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Preface

What this handbook is about

This handbook offers a fresh approach to computer vision. The whole
vision process from image formation to measuring, recognition, or re-
acting is regarded as an integral process. Computer vision is under-
stood as the host of techniques to acquire, process, analyze, and un-
derstand complex higher-dimensional data from our environment for
scientific and technical exploration.

In this sense the handbook takes into account the interdisciplinary
nature of computer vision with its links to virtually all natural sciences
and attempts to bridge two important gaps. The first is between mod-
ern physical sciences and the many novel techniques to acquire images.
The second is between basic research and applications. When a reader
with a background in one of the fields related to computer vision feels
he has learned something from one of the many other facets of com-
puter vision, the handbook will have fulfilled its purpose.

The handbook comprises three volumes. The first volume, Sensors
and Imaging, covers image formation and acquisition. The second vol-
ume, Signal Processing and Pattern Recognition, focuses on processing
of the spatial and spatiotemporal signal acquired by imaging sensors.
The third volume, Systems and Applications, describes how computer
vision is integrated into systems and applications.

Prerequisites

It is assumed that the reader is familiar with elementary mathematical
concepts commonly used in computer vision and in many other areas
of natural sciences and technical disciplines. This includes the basics
of set theory, matrix algebra, differential and integral equations, com-
plex numbers, Fourier transform, probability, random variables, and
graphing. Wherever possible, mathematical topics are described intu-
itively. In this respect it is very helpful that complex mathematical
relations can often be visualized intuitively by images. For a more for-

xi
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mal treatment of the corresponding subject including proofs, suitable
references are given.

How to use this handbook

The handbook has been designed to cover the different needs of its
readership. First, it is suitable for sequential reading. In this way the
reader gets an up-to-date account of the state of computer vision. It is
presented in a way that makes it accessible for readers with different
backgrounds. Second, the reader can look up specific topics of inter-
est. The individual chapters are written in a self-consistent way with
extensive cross-referencing to other chapters of the handbook and ex-
ternal references. The CD that accompanies each volume of the hand-
book contains the complete text of the handbook in the Adobe Acrobat
portable document file format (PDF). This format can be read on all
major platforms. Free Acrobat reader version 3.01 for all major com-
puting platforms is included on the CDs. The texts are hyperlinked in
multiple ways. Thus the reader can collect the information of interest
with ease. Third, the reader can delve more deeply into a subject with
the material on the CDs. They contain additional reference material,
interactive software components, code examples, image material, and
references to sources on the Internet. For more details see the readme
file on the CDs.
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The second volume of the Handbook on Computer Vision and Ap-
plications deals with signal processing and pattern recognition. The
signals processed in computer vision originate from the radiance of an
object that is collected by an optical system (Volume 1, Chapter 5). The
irradiance received by a single photosensor or a 2-D array of photosen-
sors through the optical system is converted into an electrical signal
and finally into arrays of digital numbers (Volume 2, Chapter 2). The
whole chain of image formation from the illumination and interaction
of radiation with the object of interest up to the arrays of digital num-
bers stored in the computer is the topic of Volume 1 of this handbook
(subtitled Sensors and Imaging).

This volume deals with the processing of the signals generated by
imaging sensors and this introduction covers four general topics. Sec-
tion 1.1 discusses in which aspects the processing of higher-dimension-
al signals differs from the processing of 1-D time series. We also elab-
orate on the task of signal processing for computer vision. Pattern
recognition (Section 1.2) plays a central role in computer vision because
it uses the features extracted by lowlevel signal processing to classify
and recognize objects.

Given the vast amount of data generated by imaging sensors the
question of the computational complexity and of efficient algorithms is
of utmost importance (Section 1.3). Finally, the performance evaluation
of computer vision algorithms (Section 1.4) is a subject that has been
neglected in the past. Consequently, a vast number of algorithms exist
for which the performance characteristics are not sufficiently known.
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This constitutes a major obstacle for progress of applications using
computer vision techniques.

1.1 Signal processing for computer vision

One-dimensional linear signal processing and system theory is a stan-
dard topic in electrical engineering and is covered by many standard
textbooks, for example, [1, 2]. There is a clear trend that the classical
signal processing community is moving into multidimensional signals,
as indicated, for example, by the new annual international IEEE confer-
ence on image processing (ICIP). This can also be seen from some re-
cently published handbooks on this subject. The digital signal process-
ing handbook by Madisetti and Williams [3] includes several chapters
that deal with image processing. Likewise the transforms and applica-
tions handbook by Poularikas [4] is not restricted to one-dimensional
transforms.

There are, however, only a few monographs that treat signal pro-
cessing specifically for computer vision and image processing. The
monograph of Lim [5] deals with 2-D signal and image processing and
tries to transfer the classical techniques for the analysis of time series
to 2-D spatial data. Granlund and Knutsson [6] were the first to publish
a monograph on signal processing for computer vision and elaborate on
a number of novel ideas such as tensorial image processing and nor-
malized convolution that did not have their origin in classical signal
processing.

Time series are 1-D, signals in computer vision are of higher di-
mension. They are not restricted to digital images, that is, 2-D spatial
signals (Chapter 2). Volumetric sampling, image sequences and hyper-
spectral imaging all result in 3-D signals, a combination of any of these
techniques in even higher-dimensional signals.

How much more complex does signal processing become with in-
creasing dimension? First, there is the explosion in the number of data
points. Already a medium resolution volumetric image with 5123 vox-
els requires 128 MB if one voxel carries just one byte. Storage of even
higher-dimensional data at comparable resolution is thus beyond the
capabilities of today’s computers. Moreover, many applications require
the handling of a huge number of images. This is also why appropriate
databases including images are of importance. An example is discussed
in Chapter 29.

Higher dimensional signals pose another problem. While we do not
have difficulty in grasping 2-D data, it is already significantly more de-
manding to visualize 3-D data because the human visual system is built
only to see surfaces in 3-D but not volumetric 3-D data. The more di-
mensions are processed, the more important it is that computer graph-
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ics and computer vision come closer together. This is why this volume
includes a contribution on visualization of volume data (Chapter 28).

The elementary framework for lowlevel signal processing for com-
puter vision is worked out in part II of this volume. Of central impor-
tance are neighborhood operations (Chapter 5). Chapter 6 focuses on
the design of filters optimized for a certain purpose. Other subjects of
elementary spatial processing include fast algorithms for local averag-
ing (Chapter 7), accurate and fast interpolation (Chapter 8), and image
warping (Chapter 9) for subpixel-accurate signal processing.

The basic goal of signal processing in computer vision is the extrac-
tion of “suitable features” for subsequent processing to recognize and
classify objects. But what is a suitable feature? This is still less well de-
fined than in other applications of signal processing. Certainly a math-
ematically well-defined description of local structure as discussed in
Chapter 10 is an important basis. The selection of the proper scale for
image processing has recently come into the focus of attention (Chap-
ter 11). As signals processed in computer vision come from dynam-
ical 3-D scenes, important features also include motion (Chapters 13
and 14) and various techniques to infer the depth in scenes includ-
ing stereo (Chapters 17 and 18), shape from shading and photometric
stereo (Chapter 19), and depth from focus (Chapter 20).

There is little doubt that nonlinear techniques are crucial for fea-
ture extraction in computer vision. However, compared to linear filter
techniques, these techniques are still in their infancy. There is also no
single nonlinear technique but there are a host of such techniques often
specifically adapted to a certain purpose [7]. In this volume, a rather
general class of nonlinear filters by combination of linear convolution
and nonlinear point operations (Chapter 10), and nonlinear diffusion
filtering (Chapter 15) are discussed.

1.2 Pattern recognition for computer vision

In principle, pattern classification is nothing complex. Take some ap-
propriate features and partition the feature space into classes. Why is
it then so difficult for a computer vision system to recognize objects?
The basic trouble is related to the fact that the dimensionality of the in-
put space is so large. In principle, it would be possible to use the image
itself as the input for a classification task, but no real-world classifi-
cation technique—be it statistical, neuronal, or fuzzy—would be able
to handle such high-dimensional feature spaces. Therefore, the need
arises to extract features and to use them for classification.

Unfortunately, techniques for feature selection have widely been ne-
glected in computer vision. They have not been developed to the same
degree of sophistication as classification where it is meanwhile well un-
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derstood that the different techniques, especially statistical and neural
techniques, can been considered under a unified view [8].

Thus part IV of this volume focuses in part on some more advanced
feature-extraction techniques. An important role in this aspect is played
by morphological operators (Chapter 21) because they manipulate the
shape of objects in images. Fuzzy image processing (Chapter 22) con-
tributes a tool to handle vague data and information.

The remainder of part IV focuses on another major area in com-
puter vision. Object recognition can be performed only if it is possible
to represent the knowledge in an appropriate way. In simple cases the
knowledge can just be rested in simple models. Probabilistic model-
ing in computer vision is discussed in Chapter 26. In more complex
cases this is not sufficient. The graph theoretical concepts presented
in Chapter 24 are one of the bases for knowledge-based interpretation
of images as presented in Chapter 27.

1.3 Computational complexity and fast algorithms

The processing of huge amounts of data in computer vision becomes a
serious challenge if the number of computations increases more than
linear with the number of data points, M = ND (D is the dimension
of the signal). Already an algorithm that is of order O(M2) may be
prohibitively slow. Thus it is an important goal to achieve O(M) or at
leastO(M ldM) performance of all pixel-based algorithms in computer
vision. Much effort has been devoted to the design of fast algorithms,
that is, performance of a given task with a given computer system in a
minimum amount of time. This does not mean merely minimizing the
number of computations. Often it is equally or even more important
to minimize the number of memory accesses.

Point operations are of linear order and take cM operations. Thus
they do not pose a problem. Neighborhood operations are still of lin-
ear order in the number of pixels but the constant c may become quite
large, especially for signals with high dimensions. This is why there is
already a need to develop fast neighborhood operations. Brute force
implementations of global transforms such as the Fourier transform re-
quire cM2 operations and can thus only be used at all if fast algorithms
are available. Such algorithms are discussed in Section 3.4. Many other
algorithms in computer vision, such as correlation, correspondence
analysis, and graph search algorithms are also of polynomial order,
some of them even of exponential order.

A general breakthrough in the performance of more complex al-
gorithms in computer vision was the introduction of multiresolutional
data structures that are discussed in Chapters 4 and 14. All chapters
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about elementary techniques for processing of spatial data (Chapters 5–
10) also deal with efficient algorithms.

1.4 Performance evaluation of algorithms

A systematic evaluation of the algorithms for computer vision has been
widely neglected. For a newcomer to computer vision with an engi-
neering background or a general education in natural sciences this is a
strange experience. It appears to him as if one would present results
of measurements without giving error bars or even thinking about pos-
sible statistical and systematic errors.

What is the cause of this situation? On the one side, it is certainly
true that some problems in computer vision are very hard and that it
is even harder to perform a sophisticated error analysis. On the other
hand, the computer vision community has ignored the fact to a large
extent that any algorithm is only as good as its objective and solid
evaluation and verification.

Fortunately, this misconception has been recognized in the mean-
time and there are serious efforts underway to establish generally ac-
cepted rules for the performance analysis of computer vision algorithms.
We give here just a brief summary and refer for details to Haralick et al.
[9] and for a practical example to Volume 3, Chapter 7. The three major
criteria for the performance of computer vision algorithms are:

Successful solution of task. Any practitioner gives this a top priority.
But also the designer of an algorithm should define precisely for
which task it is suitable and what the limits are.

Accuracy. This includes an analysis of the statistical and systematic
errors under carefully defined conditions (such as given signal-to-
noise ratio (SNR), etc.).

Speed. Again this is an important criterion for the applicability of an
algorithm.

There are different ways to evaluate algorithms according to the fore-
mentioned criteria. Ideally this should include three classes of studies:

Analytical studies. This is the mathematically most rigorous way to
verify algorithms, check error propagation, and predict catastrophic
failures.

Performance tests with computer generated images. These tests are
useful as they can be carried out under carefully controlled condi-
tions.

Performance tests with real-world images. This is the final test for
practical applications.
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Much of the material presented in this volume is written in the spirit
of a careful and mathematically well-founded analysis of the methods
that are described although the performance evaluation techniques are
certainly more advanced in some areas than in others.
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2.1 Introduction

Images are signals with two spatial dimensions. This chapter deals
with signals of arbitrary dimensions. This generalization is very useful
because computer vision is not restricted solely to 2-D signals. On the
one hand, higher-dimensional signals are encountered. Dynamic scenes
require the analysis of image sequences; the exploration of 3-D space
requires the acquisition of volumetric images. Scientific exploration of
complex phenomena is significantly enhanced if images not only of a
single parameter but of many parameters are acquired. On the other
hand, signals of lower dimensionality are also of importance when a
computer vision system is integrated into a larger system and image
data are fused with time series from point measuring sensors.

Thus this chapter deals with continuous (Section 2.2) and discrete
(Section 2.3) representations of signals with arbitrary dimensions. While
the continuous representation is very useful for a solid mathematical
foundation of signal processing, real-world sensors deliver and digital
computers handle only discrete data. Given the two representations,
the relation between them is of major importance. Section 2.4 dis-
cusses the spatial and temporal sampling on signals while Section 2.5
treats quantization, the conversion of a continuous signal into digital
numbers.

2.2 Continuous signals

2.2.1 Types of signals

An important characteristic of a signal is its dimension. A zero-dimen-
sional signal results from the measurement of a single quantity at a
single point in space and time. Such a single value can also be averaged
over a certain time period and area. There are several ways to extend
a zero-dimensional signal into a 1-D signal (Table 2.1). A time series
records the temporal course of a signal in time, while a profile does the
same in a spatial direction or along a certain path.

A 1-D signal is also obtained if certain experimental parameters of
the measurement are continuously changed and the measured parame-
ter is recorded as a function of some control parameters. With respect
to optics, the most obvious parameter is the wavelength of the electro-
magnetic radiation received by a radiation detector. When radiation is
recorded as a function of the wavelength, a spectrum is obtained. The
wavelength is only one of the many parameters that could be consid-
ered. Others could be temperature, pressure, humidity, concentration
of a chemical species, and any other properties that may influence the
measured quantity.
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Table 2.1: Some types of signals g depending on D parameters

D Type of signal Function

0 Measurement at a single point in space and time g
1 Time series g(t)
1 Profile g(x)
1 Spectrum g(λ)
2 Image g(x,y)
2 Time series of profiles g(x, t)
2 Time series of spectra g(λ, t)
3 Volumetric image g(x,y,z)
3 Image sequence g(x,y, t)
3 Hyperspectral image g(x,y,λ)
4 Volumetric image sequence g(x,y,z, t)
4 Hyperspectral image sequence g(x,y,λ, t)
5 Hyperspectral volumetric image sequence g(x,y,z,λ, t)

With this general approach to multidimensional signal processing,
it is obvious that an image is only one of the many possibilities of a
2-D signal. Other 2-D signals are, for example, time series of profiles or
spectra. With increasing dimension, more types of signals are possible
as summarized in Table 2.1. A 5-D signal is constituted by a hyperspec-
tral volumetric image sequence.

2.2.2 Unified description

Mathematically all these different types of multidimensional signals can
be described in a unified way as continuous scalar functions of multiple
parameters or generalized coordinates qd as

g(q) = g(q1, q2, . . . , qD) with q = [q1, q2, . . . , qD]T (2.1)

that can be summarized in a D-dimensional parameter vector or gen-
eralized coordinate vector q. An element of the vector can be a spatial
direction, the time, or any other parameter.

As the signal g represents physical quantities, we can generally as-
sume some properties that make the mathematical handling of the sig-
nals much easier.

Continuity. Real signals do not show any abrupt changes or discon-
tinuities. Mathematically this means that signals can generally be re-
garded as arbitrarily often differentiable.
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Finite range. The physical nature of both the signal and the imaging
sensor ensures that a signal is limited to a finite range. Some signals
are restricted to positive values.

Finite energy. Normally a signal corresponds to the amplitude or the
energy of a physical process (see also Volume 1, Chapter 2). As the
energy of any physical system is limited, any signal must be square
integrable:

∞∫
−∞

∣∣g(q)∣∣2 dDq <∞ (2.2)

With these general properties of physical signals, it is obvious that
the continuous representation provides a powerful mathematical ap-
proach. The properties imply, for example, that the Fourier transform
(Section 3.2) of the signals exist.

Depending on the underlying physical process the observed signal
can be regarded as a stochastic signal. More often, however, a signal
is a mixture of a deterministic and a stochastic signal. In the simplest
case, the measured signal of a deterministic process gd is corrupted by
additive zero-mean homogeneous noise. This leads to the simple signal
model

g(q) = gd(q)+n (2.3)

where n has the variance σ 2
n = 〈n2〉. In most practical situations, the

noise is not homogeneous but rather depends on the level of the signal.
Thus in a more general way

g(q) = gd(q)+n(g) with
〈
n(g)

〉 = 0,
〈
n2(g)

〉
= σ 2

n(g) (2.4)

A detailed treatment of noise in various types of imaging sensors can
be found in Volume 1, Sections 7.5, 9.3.1, and 10.2.3.

2.2.3 Multichannel signals

So far, only scalar signals have been considered. If more than one signal
is taken simultaneously, a multichannel signal is obtained. In some
cases, for example, taking time series at different spatial positions, the
multichannel signal can be considered as just a sampled version of a
higher-dimensional signal. In other cases, the individual signals cannot
be regarded as samples. This is the case when they are parameters with
different units and/or meaning.

A multichannel signal provides a vector at each point and is there-
fore sometimes denoted as a vectorial signal and written as

g(q) = [q1(q), q2(q), . . . , qD(q)]T (2.5)
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a b c

Figure 2.1: Representation of 2-D digital images by meshes of regular polygons:
a triangles; b squares; c hexagons.

Table 2.2: Properties of tessellations of the 2-D space with regular triangular,
square, and hexagonal meshes; Ne: number of neighbors with common edge;
Nc : number of neighbors with common edge and/or corner; l: basis length l of
regular polygon; d: distance d to nearest neighbor; and A: area of cell

Triangular Square Hexagonal

Ne 3 4 6

Nc 12 8 6

l l = √3d =
√√

16/3A l = d = √A l = 1
3

√
3d =

√√
4/27A

d d = 1
3

√
3l =

√√
16/27A d = l = √A d = √3l =

√√
4/3A

A A = 3
4

√
3d2 = 1

4

√
3l2 A = d2 = l2 A = 1

2

√
3d2 = 3

2

√
3l2

A multichannel signal is not necessarily a vectorial signal. Depend-
ing on the mathematical relation between its components, it could also
be a higher-order signal, for example, a tensorial signal . Such types of
multichannel images are encountered when complex features are ex-
tracted from images. One example is the tensorial description of local
structure discussed in Chapter 10.

2.3 Discrete signals

2.3.1 Regular two-dimensional lattices

Computers cannot handle continuous signals but only arrays of digi-
tal numbers. Thus it is required to represent signals as D-dimensional
arrays of points. We first consider images as 2-D arrays of points. A
point on the 2-D grid is called a pixel or pel . Both words are abbre-
viations of picture element . A pixel represents the irradiance at the
corresponding grid position. There are two ways to derive 2-D lattices
from continuous signals.
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a

b1

b2

b

b1

b2

c

b1

b2

Figure 2.2: Elementary cells of regular grids for 2-D digital images: a triangle
grid, b square grid, c hexagonal grid.

First, the continuous 2-D space can be partitioned into space-filling
cells. For symmetry reasons, only regular polygons are considered.
Then there are only three possible tesselations with regular polygons:
triangles, squares, and hexagons as illustrated in Fig. 2.1 (see also Ta-
ble 2.2). All other regular polygons do not lead to a space-filling ge-
ometrical arrangement. There are either overlaps or gaps. From the
mesh of regular polygons a 2-D array of points is then formed by the
symmetry centers of the polygons. In case of the square mesh, these
points lie again on a square grid. For the hexagonal mesh, the sym-
metry centers of the hexagons form a triangular grid. In contrast, the
symmetry centers of the triangular grid form a more complex pattern,
where two triangular meshes are interleaved. The second mesh is offset
by a third of the base length l of the triangular mesh.

A second approach to regular lattices starts with a primitive cell . A
primitive cell in 2-D is spanned by two not necessarily orthogonal base
vectors b1 and b2. Thus, the primitive cell is always a parallelogram ex-
cept for square and rectangular lattices (Fig. 2.2). Only in the latter case
are the base vectors b1 and b2 orthogonal. Translating the primitive
cell by multiples of the base vectors of the primitive cell then forms the
lattice. Such a translation vector or lattice vector r is therefore given
by

r = n1b1 +n2b2 n1,n2 ∈ Z (2.6)

The primitive cells of the square and hexagonal lattices (Fig. 2.2b
and c) contains only one grid located at the origin of the primitive cell.
This is not possible for a triangular grid, as the lattice points are not
arranged in regular distances along two directions (Fig. 2.1a). Thus,
the construction of the triangular lattice requires a primitive cell with
two grid points. One grid point is located at the origin of the cell, the
other is offset by a third of the length of each base vector (Fig. 2.2a)

The construction scheme to generate the elementary cells of regular
shape from the lattice points is illustrated in Fig. 2.3. From one lattice
point straight lines are drawn to all other lattice points starting with
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a b
c

Figure 2.3: Construction of the cells of a regular lattice from the lattice points:
a triangle lattice; b square lattice; and c hexagonal lattice.
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Figure 2.4: Representation of digital images by orthogonal lattices: a square
lattice for a 2-D image; and b cubic lattice for a volumetric or 3-D image.

the nearest neighbors (dashed lines). Then the smallest cell formed
by the lines perpendicular to these lines and dividing them into two
halves results in the primitive cell. For all three lattices, only the nearest
neighbors must be considered for this construction scheme.

The mathematics behind the formation of regular lattices in two
dimensions is the 2-D analog to 3-D lattices used to describe crystals
in solid state physics and mineralogy. The primitive cell constructed
from the lattice points is, for example, known in solid state physics as
the Wigner-Seitz cell .

Although there is a choice of three lattices with regular polygons—
and many more if irregular polygons are considered—almost exclu-
sively square or rectangular lattices are used for 2-D digital images.
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The position of the pixel is given in the common notation for ma-
trices. The first index, m, denotes the position of the row, the second,
n, the position of the column (Fig. 2.4a). M gives the number of rows,
N the number of columns. In accordance with the matrix notation, the
vertical axis (y axis) runs from top to bottom and not vice versa as is
common in graphs. The horizontal axis (x axis) runs as usual from left
to right.

2.3.2 Regular higher-dimensional lattices

The considerations in the previous section can be extended to higher di-
mensions. In 3-D space, lattices are identical to those used in solid-state
physics to describe crystalline solids. In higher dimensions, we have
serious difficulty in grasping the structure of discrete lattices because
we can visualize only projections onto 2-D space. Given the fact that
already 2-D discrete images are almost exclusively represented by rect-
angular lattices (Section 2.3.1), we may ask what we lose if we consider
only hypercubic lattices in higher dimensions. Surprisingly, it turns
out that this lattice has such significant advantages that it is hardly
necessary to consider any other lattice.

Orthogonal lattice. The base vectors of the hypercubic primitive cell
are orthogonal to each other. As discussed in Chapter 6, this is a sig-
nificant advantage for the design of filters. If separable filters are used,
they can easily be extended to arbitrary dimensions.

Valid for all dimensions. The hypercubic lattice is the most general
solution for digital data as it is the only geometry that exists in arbitrary
dimensions. In practice this means that it is generally quite easy to
extend image processing algorithms to higher dimensions. We will see
this, for example, with the discrete Fourier transform in Section 3.3,
with multigrid data structures in Chapter 4, with averaging in Chapter 7,
and with the analysis of local structure in Chapter 10.

Only lattice with regular polyhedron. While in 2-D, three lattices with
regular polyhedrons exist (Section 2.3.1), the cubic lattice is the only
lattice with a regular polyhedron (the hexahedron) in 3-D. None of the
other four regular polyhedra (tetrahedron, octahedron, dodecahedron,
and icosahedron) is space filling.

These significant advantages of the hypercubic lattice are not out-
weighed by the single disadvantage that the neighborhood relations,
discussed in Section 2.3.5, are more complex on these lattices than, for
example, the 2-D hexagonal lattice.

In 3-D or volumetric images the elementary cell is known as a voxel ,
an abbreviation of volume element . On a rectangular grid, each voxel
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represents the mean gray value of a cuboid. The position of a voxel is
given by three indices. The first, l, denotes the depth, m the row, and
n the column (Fig. 2.4b). In higher dimensions, the elementary cell is
denoted as a hyperpixel .

2.3.3 Irregular lattices

Irregular lattices are attractive because they can be adapted to the con-
tents of images. Small cells are only required where the image contains
fine details and can be much larger in other regions. In this way, a
compact representation of an image seems to be feasable. It is also
not difficult to generate an irregular lattice. The general principle for
the construction of a mesh from an array of points (Section 2.3.1) can
easily be extended to irregularly spaced points. It is known as Delau-
nay triangulation and results in the dual Voronoi and Delaunay graphs
(Chapters 24 and 25).

Processing of image data, however, becomes much more difficult on
irregular grids. Some types of operations, such as all classical filter op-
erations, do not even make much sense on irregular grids. In contrast,
it poses no difficulty to apply morphological operations to irregular
lattices (Chapter 21).

Because of the difficulty in processing digital images on irregular
lattices, these data structure are hardly ever used to represent raw im-
ages. In order to adapt low-level image processing operations to dif-
ferent scales and to provide an efficient storage scheme for raw data
multigrid data structures, for example, pyramids have proved to be
much more effective (Chapter 4). In contrast, irregular lattices play
an important role in generating and representing segmented images
(Chapter 25).

2.3.4 Metric in digital images

Based on the discussion in the previous two sections, we will focus in
the following on hypercubic or orthogonal lattices and discuss in this
section the metric of discrete images. This constitutes the base for all
length, size, volume, and distance measurements in digital images. It
is useful to generalize the lattice vector introduced in Eq. (2.6) that rep-
resents all points of a D-dimensional digital image and can be written
as

rn = [n1∆x1,n2∆x2, . . . ,nD∆xD]T (2.7)

In the preceding equation, the lattice constants ∆xd need not be equal
in all directions. For the special cases of 2-D images, 3-D volumetric
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images, and 4-D spatiotemporal images the lattice vectors are

rm,n =
[
n∆x
m∆y

]
,rl,m,n =

 n∆x
m∆y
l∆z

 ,rk,l,m,n =

n∆x
m∆y
l∆z
k∆t

 (2.8)

To measure distances, the Euclidean distance can be computed on
an orthogonal lattice by

de(x,x′) = ‖x −x′‖ =
 D∑
d=1

(nd −n′d)2∆x2
d

1/2

(2.9)

On a square lattice, that is, a lattice with the same grid constant in all
directions, the Euclidean distance can be computed more efficiently by

de(x,x′) = ‖x −x′‖ =
 D∑
d=1

(nd −n′d)2
1/2

∆x (2.10)

The Euclidean distance on discrete lattices is somewhat awkward.
Although it is a discrete quantity, its values are not integers. Moreover,
it cannot be computed very efficiently.

Therefore, two other metrics are sometimes considered in image
processing. The city block distance

db(x,x′) =
D∑
d=1

|nd −n′d| (2.11)

simply adds up the magnitude of the component differences of two
lattice vectors and not the squares as with the Euclidean distance in
Eq. (2.10). Geometrically, the city block distance gives the length of a
path between the two lattice vectors if we can only walk in directions
parallel to axes. The chessboard distance is defined as the maximum of
the absolute difference between two components of the corresponding
lattice vectors:

dc(x,x′) = max
d=1,... ,D

|nd −n′d| (2.12)

These two metrics have gained some importance for morphological op-
erations (Section 21.2.5). Despite their simplicity they are not of much
use as soon as lengths and distances are to be measured. The Euclidean
distance is the only metric on digital images that preserves the isotropy
of the continuous space. With the city block and chessboard distance,
distances in the direction of the diagonals are longer and shorter than
the Euclidean distance, respectively.
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Figure 2.5: Classification of the cells according to the distance from a given
cell for the a triangular, b square, and c hexagonal lattices. The central cell is
shaded in light gray, the nearest neighbors in darker gray. The numbers give
the ranking in distance from the central cell.

2.3.5 Neighborhood relations

The term neighborhood has no meaning for a continuous signal. How
far two points are from each other is simply measured by an adequate
metric such as the Euclidean distance function and this distance can
take any value. With the cells of a discrete signal, however, a ranking
of the distance between cells is possible. The set of cells with the small-
est distance to a given cell are called the nearest neighbors. The trian-
gular, square, and hexagonal lattices have three, four, and six nearest
neighbors, respectively (Fig. 2.5). The figure indicates also the ranking
in distance from the central cell.

Directly related to the question of neighbors is the term adjacency .
A digital object is defined as a connected region. This means that we
can reach any cell in the region from any other by walking from one
neighboring cell to the next. Such a walk is called a path.

On a square lattice there are two possible ways to define neighboring
cells (Fig. 2.5b). We can regard pixels as neighbors either when they
have a joint edge or when they have at least one joint corner. Thus a
pixel has four or eight neighbors and we speak of a 4-neighborhood or
an 8-neighborhood . The definition of the 8-neighborhood is somewhat
awkward, as there are neighboring cells with different distances.

The triangular lattice shows an equivalent ambivalence with the 3-
and 12-neighborhoods with cells that have either only a joint edge
or at least a joint corner with the central cell (Fig. 2.5a). In the 12-
neighborhood there are three different types of neighboring cells, each
with a different distance (Fig. 2.5a).

Only the hexagonal lattice gives a unique definition of neighbors.
Each cell has six neighboring cells at the same distance joining one
edge and two corners with the central cell.

A closer look shows that unfortunately both types of neighborhood
definitions are required on triangular and square grids for a proper



20 2 Continuous and Digital Signals

a b c

Figure 2.6: Digital objects on a triangular, b square, and c hexagonal lattice.
a and b show either two objects or one object (connected regions) depending on
the neighborhood definition.

definition of connected regions. A region or an object is called con-
nected when we can reach any pixel in the region by walking from one
neighboring pixel to the next. The black object shown in Fig. 2.6b is
one object in the 8-neighborhood, but constitutes two objects in the 4-
neighborhood. The white background, however, shows the same prop-
erty. Thus we have either two connected regions in the 8-neighborhood
crossing each other or four separated regions in the 4-neighborhood.
This inconsistency between objects and background can be overcome
if we declare the objects as 4-neighboring and the background as 8-
neighboring, or vice versa.

These complications occur also on a triangular lattice (Fig. 2.6b) but
not on a hexagonal lattice (Fig. 2.6c). The photosensors on the retina
in the human eye, however, have a more hexagonal shape, see Wandell
[1, Fig. 3.4, p. 49].

2.3.6 Errors in object position and geometry

The tessellation of space in discrete images limits the accuracy of the
estimation of the position of an object and thus all other geometri-
cal quantities such as distance, area, circumference, and orientation of
lines. It is obvious that the accuracy of the position of a single point
is only in the order of the lattice constant. The interesting question
is, however, how this error propagates into position errors for larger
objects and other relations. This question is of significant importance
because of the relatively low spatial resolution of images as compared
to other measuring instruments. Without much effort many physical
quantities such as frequency, voltage, and distance can be measured
with an accuracy better than 1 ppm, that is, 1 in 1,000,000, while im-
ages have a spatial resolution in the order of 1 in 1000 due to the limited
number of pixels. Thus only highly accurate position estimates in the



2.3 Discrete signals 21

order of 1/100 of the pixel size result in an accuracy of about 1 in
100,000.

The discussion of position errors in this section will be limited to or-
thogonal lattices. These lattices have the significant advantage that the
errors in the different directions can be discussed independently. Thus
the following discussion is not only valid for 2-D images but any type of
multidimensional signals and we must consider only one component.

In order to estimate the accuracy of the position estimate of a sin-
gle point it is assumed that all positions are equally probable. This
means a constant probability density function in the interval ∆x. Then
the variance σ 2

x introduced by the position discretization is given by
Papoulis [2, p. 106]

σ 2
x =

1
∆x

xn+∆x/2∫
xn−∆x/2

(x −xn)2 dx = (∆x)
2

12
(2.13)

Thus the standard deviation σx is about 1/
√

12 ≈ 0.3 times the lattice
constant ∆x. The maximum error is, of course, 0.5∆x.

All other errors for geometrical measurements of segmented objects
can be related to this basic position error by statistical error propa-
gation. We will illustrate this with a simple example computing the
area and center of gravity of an object. For the sake of simplicity, we
start with the unrealistic assumption that any cell that contains even
the smallest fraction of the object is regarded as a cell of the object.
We further assume that this segmentation is exact, that is, the signal
itself does not contain noise and separates without errors from the
background. In this way we separate all other errors from the errors
introduced by the discrete lattice.

The area of the object is simply given as the product of the number
N of cells and the area Ac of a cell. This simple estimate is, however,
biased towards a larger area because the cells at the border of the object
are only partly covered by the object. In the mean, half of the border
cells are covered. Hence an unbiased estimate of the area is given by

A = Ac(N − 0.5Nb) (2.14)

whereNb is the number of border cells. With this equation, the variance
of the estimate can be determined. Only the statistical error in the area
of the border cells must be considered. According to the laws of error
propagation with independent random variables, the variance of the
area estimate σ 2

A is given by

σ 2
A = 0.25A2

cNbσ 2
x (2.15)

If we assume a compact object, for example, a square, with a length
of D pixels, it has D2 pixels and 4D border pixels. Using σx ≈ 0.3
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(Eq. (2.13)), the absolute and relative standard deviation of the area
estimate are given by

σA ≈ 0.3Ac
√
D and

σA
A
≈ 0.3
D3/2 if D� 1 (2.16)

Thus the standard deviation of the area error for an object with a length
of 10 pixels is just about the area of the pixel and the relative error
is about 1 %. Equations (2.14) and (2.15) are also valid for volumetric
images if the area of the elementary cell is replaced by the volume of
the cell. Only the number of border cells is now different. If we again
assume a compact object, for example, a cube, with a length of D, we
now haveD3 cells in the object and 6D2 border cells. Then the absolute
and relative standard deviations are approximately given by

σV ≈ 0.45VcD and
σV
V
≈ 0.45
D2 if D� 1 (2.17)

Now the standard deviation of the volume for an object with a diameter
of 10 pixels is about 5 times the volume of the cells but the relative
error is about 0.5 %. Note that the absolute/relative error for volume
measurements in/decreases faster with the size of the object than for
area measurements.

The computations for the error of the center of gravity are quite
similar. With the same assumptions about the segmentation process,
an unbiased estimate of the center of gravity is given by

xg = 1
N

N−Nb∑
n=1

xn + 1
2

Nb∑
n′=1

xn′

 (2.18)

Again the border pixels are counted only half. As the first part of the
estimate with the nonborder pixels is exact, errors are caused only by
the variation in the area of the border pixels. Therefore the variance of
the estimate for each component of the center of gravity is given by

σ 2
g =

Nb
4N2σ

2 (2.19)

where σ is again the variance in the position of the fractional cells at
the border of the object. Thus the standard deviation of the center of
gravity for a compact object with the diameter of D pixels is

σg ≈ 0.3
D3/2 if D� 1 (2.20)

Thus the standard deviation for the center of gravity of an object with
10 pixel diameter is only about 0.01 pixel. For a volumetric object with
a diameter of D pixel, the standard deviation becomes

σgv ≈ 0.45
D2 if D� 1 (2.21)
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Figure 2.7: Steps from a continuous to a discrete signal.

This result clearly shows that the position of objects and all related
geometrical quantities such as the distances can be performed even
with binary images (segmented objects) well into the range of 1/100
pixel. It is interesting that the relative errors for the area and volume
estimates of Eqs. (2.16) and (2.17) are equal to the standard deviation of
the center of gravity Eqs. (2.20) and (2.21). Note that only the statistical
error has been discussed. A bias in the segmentation might easily result
in much higher systematic errors.

2.4 Relation between continuous and discrete signals

A continuous function g(q) is a useful mathematical description of a
signal as discussed in Section 2.2. Real-world signals, however, can only
be represented and processed as discrete or digital signals. Therefore
a detailed knowledge of the relation between these two types of signals
is required. It is not only necessary to understand the whole chain of
the image formation process from a continuous spatial radiance distri-
bution to a digital image but also to perform subpixel-accurate image
interpolation (Chapter 8) and warping of images (Chapter 9) as it is, for
example, required for multiscale image operations (Chapter 14).

The chain of processes that lead from the “true” signal to the digital
signal include all the steps of the image formation process as illustrated
in Fig. 2.7. First the signal of interest, s(x), such as reflectivity, temper-
ature, etc. of an object is somehow related to the radiance L(x) emitted
by the object in a generally not linear function (Volume 1, Chapter 3).
In some cases this relation is linear (e. g., reflectivity), in others it is
highly nonlinear (e. g., temperature). Often other parameters that are
not controlled or not even known, influence the signal as well. As an
example, the radiance of an object is the product of its reflectivity and
the irradiance. Moreover, the radiance of the beam from the object to
the camera may be attenuated by absorption or scattering of radiation
(Volume 1, Section 3.4.1). Thus the radiance of the object may vary with
many other unknown parameters until it finally reaches the radiation
collecting system (optics).

The optical system generates an irradiance E(x) at the image plane
that is proportional to the object radiance (Volume 1, Chapter 5). There
is, however, not a point-to-point correspondence. Because of the lim-
ited resolution of the optical systems due to physical limitation (e. g.,
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diffraction) or imperfections of the optical systems (various aberra-
tions, Volume 1, Section 4.5). This blurring of the signal is known as
the point spread function (PSF ) of the optical system and described in
the Fourier domain by the optical transfer function. The nonzero area
of the individual sensor elements of the sensor array (or the scanning
mechanism) results in a further spatial and temporal blurring of the
irradiance at the image plane.

The conversion to electrical signal U adds noise and possibly fur-
ther nonlinearities to the signal g(x, t) that is finally measured. In a
last step, the analog electrical signal is converted by an analog-to-digital
converter (ADC) into digital numbers. The basic relation between con-
tinuous and digital signals is established by the sampling theorem. It
describes the effects of spatial and temporal sampling on continuous
signals and thus also tells us how to reconstruct a continuous signal
from its samples. The discretization of the amplitudes of the signal
(quantization) is discussed in Section 2.5.

The image formation process itself thus includes two essential steps.
First, the whole image formation process blurs the signal. Second, the
continuous signal at the image plane is sampled. Although both pro-
cesses often happen together, they can be separated for an easier math-
ematical treatment.

2.4.1 Image formation

If we denote the undistorted original signal projected onto the image
plane by g′(x, t) then the signal g(x, t) modified by the image forma-
tion process is given by

g(x, t) =
∞∫
−∞
g′(x′, t′)h(x,x′, t, t′) d2x′ dt′ (2.22)

The function h is the PSF. The signal g′(x, t) can be considered as the
image that would be obtained by a perfect system, that is, an optical
system whose PSF is a δ-distribution. Equation (2.22) says that the sig-
nal at the point [x, t]T in space and time is composed of the radiance of
a whole range of points [x′, t′]T nearby which linearly add up weighted
with the signal h at [x′, t′]T . The integral can significantly be simpli-
fied if the point spread function is the same at all points (homogeneous
system or shift-invariant system). Then the point spread function h de-
pends only on the distance of [x′, t′]T to [x, t]T and the integral in
Eq. (2.22) reduces to the convolution integral

g(x, t) =
∞∫
−∞
g′(x′, t′)h(x −x′, t − t′) d2x′ dt′ = (g′ ∗h)(x, t) (2.23)
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For most optical systems the PSF is not strictly shift-invariant because
the degree of blurring is increasing with the distance from the optical
axis (Volume 1, Chapter 4). However, as long as the variation is con-
tinuous and does not change significantly over the width of the PSF,
the convolution integral in Eq. (2.23) still describes the image forma-
tion correctly. The PSF and the system transfer function just become
weakly dependent on x.

2.4.2 Sampling theorem

Sampling means that all information is lost except at the grid points.
Mathematically, this constitutes a multiplication of the continuous func-
tion with a function that is zero everywhere except for the grid points.
This operation can be performed by multiplying the image function
g(x) with the sum of δ distributions located at all lattice vectors rm,n
Eq. (2.7). This function is called the two-dimensional δ comb, or “nail-
board function.” Then sampling can be expressed as

gs(x) = g(x)
m=∞∑
m=−∞

n=∞∑
n=−∞

δ(x − rm,n) (2.24)

This equation is only valid as long as the elementary cell of the lattice
contains only one point. This is the case for the square and hexagonal
grids (Fig. 2.2b and c). The elementary cell of the triangular grid, how-
ever, includes two points (Fig. 2.2a). Thus for general regular lattices,
p points per elementary cell must be considered. In this case, a sum
of P δ combs must be considered, each shifted by the offsets sp of the
points of the elementary cells:

gs(x) = g(x)
P∑
p=1

∞∑
m=−∞

∞∑
n=−∞

δ(x − rm,n − sp) (2.25)

It is easy to extent this equation for sampling into higher-dimensional
spaces and into the time domain:

gs(x) = g(x)
∑
p

∑
n
δ(x − rn − sp) (2.26)

In this equation, the summation ranges have been omitted. One of the
coordinates of the D-dimensional space and thus the vector x and the
lattice vector rn

rn = [n1b1,n2b2, . . . ,nDbD]T with nd ∈ Z (2.27)

is the time coordinate. The set of fundamental translation vectors
{b1,b2, . . . ,bD} form a not necessarily orthogonal base spanning the
D-dimensional space.
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The sampling theorem directly results from the Fourier transform
of Eq. (2.26). In this equation the continuous signal g(x) is multiplied
by the sum of delta distributions. According to the convolution theo-
rem of the Fourier transform (Section 3.2), this results in a convolution
of the Fourier transforms of the signal and the sum of delta combs in
Fourier space. The Fourier transform of a delta comb is again a delta
comb (see Table 3.3). As the convolution of a signal with a delta dis-
tribution simply replicates the function value at the zero point of the
delta functions, the Fourier transform of the sampled signal is simply
a sum of shifted copies of the Fourier transform of the signal:

ĝs(k, ν) =
∑
p

∑
v
ĝ(k− r̂v)exp

(
−2π ikTsp

)
(2.28)

The phase factor exp(−2π ikTsp) results from the shift of the points in
the elementary cell by sp according to the shift theorem of the Fourier
transform (see Table 3.2). The vectors r̂v

r̂v = v1b̂1 + v2b̂2 + . . .+ vDb̂D with vd ∈ Z (2.29)

are the points of the so-called reciprocal lattice. The fundamental trans-
lation vectors in the space and Fourier domain are related to each other
by

bdb̂d′ = δd−d′ (2.30)

This basically means that the fundamental translation vector in the
Fourier domain is perpendicular to all translation vectors in the spatial
domain except for the corresponding one. Furthermore the distances
are reciprocally related to each other. In 3-D space, the fundamental
translations of the reciprocial lattice can therefore be computed by

b̂d = bd+1 ×bd+2

b1(b2 ×b3)
(2.31)

The indices in the preceding equation are computed modulo 3, b1(b2×
b3) is the volume of the primitive elementary cell in the spatial domain.
All these equations are familiar to solid state physicists or cristallog-
raphers [3]. Mathematicians know the lattice in the Fourier domain as
the dual base or reciprocal base of a vector space spanned by a non-
orthogonal base. For an orthogonal base, all vectors of the dual base
show into the same direction as the corresponding vectors and the mag-
nitude is given by

∣∣∣b̂d∣∣∣ = 1/ |bd|. Then often the length of the base
vectors is denoted by ∆xd, and the length of the reciprocal vectors by
∆kd = 1/∆xd. Thus an orthonormal base is dual to itself.

For further illustration, Fig. 2.8 shows the lattices in both domains
for a triangular, square, and hexagonal grid. The figure also includes
the primitive cell known as the Wigner-Seitz cell (Section 2.3.1 and
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Figure 2.8: Lattices with the fundamental translation vectors and primitive cell
in the spatial and Fourier domain for a triangular (left), square (middle), and
hexagonal (right) 2-D lattice.

Fig. 2.3) and first Brillouin zone in the spatial and Fourier domain, re-
spectively.

Now we can formulate the condition where we get no distortion of
the signal by sampling, known as the sampling theorem. If the image
spectrum ĝ(k) contains such high wave numbers that parts of it overlap
with the periodically repeated copies, we cannot distinguish whether
the spectral amplitudes come from the original spectrum at the center
or from one of the copies. In other words, a low wave number can be
an alias of a high wave number and pretend an incorrect amplitude of
the corresponding wave number. In order to obtain no distortions, we
must avoid overlapping. A safe condition to avoid overlapping is as
follows: the spectrum must be zero outside of the primitive cell of the
reciprocal lattice, that is, the first Brillouin zone.

On a rectangular grid, this results in the simple condition that the
maximum wave number (or frequency) at which the image spectrum is
not equal to zero must be restricted to less than half of the grid con-
stants of the reciprocal grid. Therefore the sampling theorem states:

Theorem 2.1 (Sampling Theorem) If the spectrum ĝ(k) of a continu-
ous function g(x) is band-limited, that is,

ĝ(k) = 0 ∀|kd| ≥ ∆kd/2 (2.32)

then it can be reconstructed exactly from samples with a distance

∆xd = 1/∆kd (2.33)
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In other words, we will obtain a periodic structure correctly only if
we take at least two samples per wavelength (or period). The maximum
wave number that can be sampled without errors is called the Nyquist
or limiting wave number (or frequency). In the following, we will often
use dimensionless wave numbers (frequencies), which are scaled to the
limiting wave number (frequency). We denote this scaling with a tilde:

k̃d = kd
∆kd/2

= 2kd∆xd and ν̃ = ν
∆ν/2

= 2ν∆T (2.34)

In this scaling all the components of the wave number k̃d fall into the
interval ]−1, 1[.

2.4.3 Aliasing

If the conditions of the sampling theorem are not met, it is not only
impossible to reconstruct the original signal exactly but also distortions
are introduced into the signal. This effect is known in signal theory as
aliasing or in imaging as the Moiré effect .

The basic problem with aliasing is that the band limitation intro-
duced by the blurring of the image formation and the nonzero area of
the sensor is generally not sufficient to avoid aliasing. This is illustrated
in the following example with an “ideal” sensor.

Example 2.1: Standard sampling

An “ideal” imaging sensor will have a nonblurring optics (the PSF is the
delta distribution) and a sensor array that has a 100 % fill factor, that
is, the sensor elements show a constant sensitivity over the whole area
without gaps in-between. The PSF of such an imaging sensor is a box
function with the width ∆x of the sensor elements and the transfer
function (TF) is a sinc function (see Table 3.4):

PSF
1
∆x1

Π(x1/∆x1)
1
∆x2

Π(x2/∆x2)

TF
sin(πk1∆x1)
πk1∆x1

sin(πk2∆x2)
πk2∆x2

(2.35)

The sinc function has its first zero crossings when the argument is
±π . This is when kd = ±∆xd or at twice the Nyquist wave number,
see Eq. (2.34). At the Nyquist wave number the value of the transfer
function is still 1/

√
2. Thus standard sampling is not sufficient to

avoid aliasing. The only safe way to avoid aliasing is to ensure that the
imaged objects do not contain wave numbers and frequencies beyond
the Nyquist limit.

2.4.4 Reconstruction from samples

The sampling theorem ensures the conditions under which we can re-
construct a continuous function from sampled points, but we still do
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not know how to perform the reconstruction of the continuous image
from its samples, that is, the inverse operation to sampling.

Reconstruction is performed by a suitable interpolation of the sam-
pled points. Again we use the most general case: a nonorthogonal
primitive cell with P points. Generally, the interpolated points gr (x)
are calculated from the values sampled at rn+sp weighted with suitable
factors that depend on the distance from the interpolated point:

gr (x) =
∑
p

∑
n
gs(rn + sp)h(x − rn − sp) (2.36)

Using the integral property of the δ distributions, we can substitute
the sampled points on the right side by the continuous values and then
interchange summation and integration:

gr (x) =
∑
p

∑
n

∞∫
−∞
g(x′)h(x −x′)δ(rn + sp −x′)dDx′

=
∞∫
−∞
h(x −x′)

∑
p

∑
n
δ(rn + sp −x′)g(x′)dDx′

The latter integral is a convolution of the weighting function h with a
function that is the sum of the product of the image function g with
shifted δ combs. In Fourier space, convolution is replaced by complex
multiplication and vice versa. If we further consider the shift theorem
and that the Fourier transform of a δ comb is again a δ comb, we finally
obtain

ĝr (k) = ĥ(k)
∑
p

∑
v
ĝ(k− r̂v)exp

(
−2π ikTsp

)
(2.37)

The interpolated function can only be equal to the original image if
the periodically repeated image spectra are not overlapping. This is
nothing new; it is exactly what the sampling theorem states. The inter-
polated image function is only equal to the original image function if
the weighting function is one within the first Brillouin zone and zero
outside, eliminating all replicated spectra and leaving the original band-
limited spectrum unchanged. On a D-dimensional orthogonal lattice
Eq. (2.37) becomes

ĝr (k) = ĝ(k)
D∏
d=1

Π(kd∆xd) (2.38)

and the ideal interpolation function h is the sinc function

h(x) =
D∏
d=1

sin(πxd/∆xd)
πxd/∆xd

(2.39)
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Unfortunately, this function decreases only with 1/x towards zero.
Therefore, a correct interpolation requires a large image area; mathe-
matically, it must be infinitely large. This condition can be weakened if
we “overfill” the sampling theorem, that is, ensure that ĝ(k) is already
zero before we reach the Nyquist limit. According to Eq. (2.37), we can
then choose ĥ(k) arbitrarily in the region where ĝ vanishes. We can
use this freedom to construct an interpolation function that decreases
more quickly in the spatial domain, that is, has a minimum-length in-
terpolation mask. We can also start from a given interpolation formula.
Then the deviation of its Fourier transform from a box function tells
us to what extent structures will be distorted as a function of the wave
number. Suitable interpolation functions will be discussed in detail in
Chapter 8.

2.5 Quantization

After spatial and/or temporal sampling of a signal, the values of a sig-
nal are still continuous. As digital computers can only handle digital
numbers, the continuous range of the electrical signal of the sensors
must be mapped onto a limited number Q of discrete gray values:

[0,∞[ Q-→ {g0, g1, . . . , gQ−1} = G (2.40)

This process is called quantization. The number of quantization levels
can be chosen on the basis of two different criteria. The first criterion
is based on our visual system. It should not be possible to recognize
the quantization levels by our visual system. In this way, we perceive
the illusion of an image with a continuous luminance.

The second criterion is application-oriented. The number of quan-
tization levels is chosen such that the required resolution in gray val-
ues is achieved. For some applications where only the object must
be distinguished from the background, for example, optical character
recognition, a binary image with only two quantization levels might be
sufficient. For other applications, where it is required to distinguish
faint changes in the image irradiance, an 8-bit digitalization is much
too coarse.

2.5.1 Equidistant quantization

Generally, image data are quantized in Q equidistant intervals ∆g.
Then all values between gq − ∆g/2 and gq + ∆g/2 are mapped onto
the quantization level q with the value gq:

q = floor
(
g − g0

∆g
+ 1

2

)
and gq = g0 + q∆g (2.41)
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If we assume a constant probability for all gray values, the quantization
error can be computed immediately in the same way as the position
error in Section 2.3.6, Eq. (2.13):

σ 2
q =

1
∆g

gq+∆g/2∫
gq−∆g/2

(g − gq)2 dg = 1
12
(∆g)2 (2.42)

If g is below the lowest lower threshold, g0 − ∆g/2, or beyond the
highest upper threshold, gQ−1 +∆g/2 as signal underflow or overflow
occurs.

Normally, gray scale images are quantized into 256 gray values.
Then each pixel occupies 8 bits or one byte. This pixel size is well
adapted to the architecture of standard computers that can address
memory bytewise. Furthermore, the resolution is good enough to give
us the illusion of a continuous change in the gray values, because the
relative intensity resolution of our visual system is no better than about
2 %.

For demanding tasks, 8-bit quantization is not sufficient. Nowadays,
high-end cameras achieve even at video rates resolutions of up to 12
bits. With so-called slow-scan cameras that read the charges out of the
CCD sensor significantly slower than video rates, quantization with up
to 16 bits is possible.

2.5.2 Unsigned or signed representation

Normally we think of image data as a positive quantity. Consequently,
it appears natural to represent it by unsigned numbers ranging in an
8-bit representation, for example, from 0 to 255. This representation
causes problems, however, as soon as we perform arithmetic opera-
tions with images. Subtracting two images is a simple example that
can produce negative numbers. As negative gray values cannot be rep-
resented, they wrap around and appear as large positive values. The
number −1, for example, results in the positive value 255 given that −1
modulo 256 = 255. Thus we are confronted with the problem of two
different representations of gray values, as unsigned and signed 8-bit
numbers. Correspondingly, we must have several versions of each algo-
rithm, one for unsigned gray values, one for signed values, and others
for mixed cases.

One solution to this problem is to handle gray values always as
signed numbers. Unsigned numbers can be converted into signed num-
bers by subtracting the maximum positive number corresponding to
the most significant bit of the signed representation. In an 8-bit repre-
sentation, we can subtract 128 to get a signed representation. For an
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n-bit representation we can write

q′ = (q − 2n−1) mod 2n, 0 ≤ q < 2n (2.43)

Then the mean gray value intensity of 2(n−1) becomes the gray value
zero and gray values lower than this mean value become negative. Es-
sentially, in this representation we regard gray values as deviations
from a mean value.

This operation converts unsigned gray values to signed gray values,
which can be stored and processed as such. Only for display must we
convert the gray values again to unsigned values by the inverse point
operation

q = (q′ + 2n−1) mod 2n, −2n−1 ≤ q′ < 2n−1 (2.44)

which is the same operation as in Eq. (2.43) because all calculations are
performed modulo 2n.

2.5.3 Nonequidistant quantization

One of the significant disadvantages of linear quantization is the very
low dynamical range. This is the reason why the quality of a digitized
image, especially of a scene with high luminance contrast, appears in-
ferior compared to what we see directly. In a digital image taken from
such a scene with a linear image sensor, either the bright parts are
overexposed or the dark parts are underexposed.

In contrast, the human visual system shows rather a logarithmic
than a linear response. This means that we perceive relative luminance
differences equally well. In a wide range of luminance values, we can
resolve relative differences of about 2 %. This threshold value depends
on a number of factors, especially the spatial frequency (wavelength)
of the pattern used for the experiment. At a certain wavelength the
luminance resolution is optimal.

The characteristics of a machine vision sensor are quite different.
The relative resolution for a linear sensor is generally given by

rE = ∆EE = ∆g
g

(2.45)

A dynamic range with respect to a minimum relative resolution rmin can
then be defined as the ratio of the maximum irradiance for the max-
imum gray value and the minimum irradiance at which the minimum
required resolution is obtained. Then for a linear sensor the dynamical
range is

dE = Emax

Emin
= Q∆g
∆g/rmin

=Qrmin (2.46)
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Although the relative resolution is far better than 2 % in the bright parts
of the image, it is poor in the dark parts. At a gray value of 10, the
luminance resolution is only 10 %. If we require a minimum resolution
of 5 %, the dynamical range of an 8-bit sensor is just about 13. This
means that the resolution is better than 5 % for a radiance range of
only a little more than one decade.

As Eq. (2.46) shows, the relative resolution of a sensor can be in-
creased by increasing the number of quantization levels. A better way,
however, is to use a nonlinear relation between the irradiance E received
by the sensor element and the resulting signal g. Two types of nonlin-
ear relations are common, an exponential relation and a logarithmic
relation.

The first relates the irradiance with an exponential law to the gray
value:

g = cEγ (2.47)

The exponent γ is denoted the gamma value. Using ∆E = (1/γ)g∆g,
the relative irradiance resolution is given by

r = ∆E
E
= 1
γ
∆g
g

(2.48)

and the dynamical range is

dE = Emax

Emin
=
(
gmax

gmin

)1/γ
= (γQrmin)1/γ (2.49)

Typically, γ = 0.4 is used. While a low γ factor lowers the maximal
relative resolution (Eq. (2.48)), the dynamical range is considerably ex-
tended. With an 8-bit sensor the maximum relative resolution is now
about 1 % and the dynamical range with a minimum resolution of 5 % is
now 59.

In contrast, a sensor with a logarithmic response

g = c lnE (2.50)

shows a constant relative resolution:

r = ∆E
E
= 1
c
∆g (2.51)

Consequently, the whole gray scale shows the same relative resolution:

dE = exp(Qr) (2.52)

This means that an 8-bit sensor with a constant relative resolution
r = 5 % covers a dynamical range of about 346,000 or 5.5 decades.
A detailed discussion on CMOS sensors with logarithmic response can
be found in Volume 1, Chapter 8.
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3.1 Vector spaces and unitary transforms

3.1.1 Introduction

AnN ×M digital image hasNM individual pixels that can take arbitrary
values. Thus it has NM degrees of freedom. Without mentioning it
explicitly, we thought of an image as being composed of individual
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pixels. Thus, we can compose each image of basis images m,nP where
just one pixel has a value of one while all other pixels are zero:

m,nPm′,n′ = δm−m′δn−n′ =
{

1 if m =m′ ∧n = n′
0 otherwise

(3.1)

Any arbitrary image can then be composed of all basis images in Eq. (3.1)
by

G =
M−1∑
m=0

N−1∑
n=0

Gm,n m,nP (3.2)

where Gm,n denotes the gray value at the position [m,n]. The inner
product (also known as scalar product ) of two “vectors” in this space
can be defined similarly to the scalar product for vectors and is given
by

(G,H) =
M−1∑
m=0

N−1∑
n=0

Gm,nHm,n (3.3)

where the parenthesis notation (·, ·) is used for the inner product in
order to distinguish it from matrix multiplication. The basis images
m,nP form an orthonormal base for anN ×M-dimensional vector space.
From Eq. (3.3), we can immediately derive the orthonormality relation
for the basis images m,nP:

M−1∑
m=0

N−1∑
n=0

m′,n′Pm,nm
′′,n′′Pm,n = δm′−m′′δn′−n′′ (3.4)

This says that the inner product between two base images is zero if
two different basis images are taken. The scalar product of a basis
image with itself is one. The MN basis images thus span an M ×N-
dimensional vector space RN×M over the set of real numbers.

An M ×N image represents a point in the M ×N vector space. If
we change the coordinate system, the image remains the same but its
coordinates change. This means that we just observe the same piece of
information from a different point of view. All these representations
are equivalent to each other and each gives a complete representation
of the image. A coordinate transformation leads us from one represen-
tation to the other and back again. An important property of such a
transform is that the length or (magnitude) of a vector

‖G‖2 = (G,G)1/2 (3.5)

is not changed and that orthogonal vectors remain orthogonal. Both
requirements are met if the coordinate transform preserves the inner
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product. A transform with this property is known as a unitary trans-
form.

Physicists will be reminded of the theoretical foundations of quan-
tum mechanics, which are formulated in an inner product vector space
of infinite dimension, the Hilbert space.

3.1.2 Basic properties of unitary transforms

The two most important properties of a unitary transform are [1]:

Theorem 3.1 (Unitary transform) Let V be a finite-dimensional inner
product vector space. Let U be a one-one linear transformation of V
onto itself. Then

1. U preserves the inner product, that is, (G,H) = (UG,UH), ∀G,H ∈
V .

2. The inverse of U , U−1, is the adjoin U∗
T

of U : UU∗
T = I.

Rotation in R2 or R3 is an example of a transform where the preser-
vation of the length of vectors is obvious.

The product of two unitary transforms U1U2 is unitary. Because
the identity operator I is unitary, as is the inverse of a unitary operator,
the set of all unitary transforms on an inner product space is a group
under the operation of composition. In practice, this means that we
can compose/decompose complex unitary transforms of/into simpler
or elementary transforms.

3.1.3 Significance of the Fourier transform (FT)

A number of unitary transforms have gained importance for digital
signal processing including the cosine, sine, Hartley, slant, Haar, and
Walsh transforms [2, 3, 4]. But none of these transforms matches in
importance with the Fourier transform.

The uniqueness of the Fourier transform is related to a property
expressed by the shift theorem. If a signal is shifted in space, its Fourier
transform does not change in amplitude but only in phase, that is, it
is multiplied with a complex phase factor. Mathematically this means
that all base functions of the Fourier transform are eigenvectors of the
shift operator S(s):

S(s)exp(−2π ikx) = exp(−2π iks)exp(−2π ikx) (3.6)

The phase factor exp(−2π iks) is the eigenvalue and the complex ex-
ponentials exp(−2π ikx) are the base functions of the Fourier trans-
form spanning the infinite-dimensional vector space of the square in-
tegrable complex-valued functions over R. For all other transforms,
various base functions are mixed with each other if one base function
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is shifted. Therefore the base functions of all these transforms are not
an eigenvector of the shift operator.

The base functions of the Fourier space are the eigenfunctions of all
linear shift-invariant operators or convolution operators. If an operator
is shift-invariant, the result is the same at whichever point in space it is
applied. Therefore a periodic function such as the complex exponential
is not changed in period and does not become an aperiodic function. If
a convolution operator is applied to a periodic signal, only its phase and
amplitude change, which can be expressed by a complex factor. This
complex factor is the (wave number dependent) eigenvalue or transfer
function of the convolution operator.

At this point, it is also obvious why the Fourier transform is com-
plex valued. For a real periodic function, that is, a pure sine or co-
sine function, it is not possible to formulate a shift theorem, as both
functions are required to express a shift. The complex exponential
exp(ikx) = coskx+i sinkx contains both functions and a shift by a dis-
tance s can simply be expressed by the complex phase factor exp(iks).

Each base function and thus each point in the Fourier domain con-
tains two pieces of information: the amplitude and the phase, that is,
relative position, of a periodic structure. Given this composition, we
ask whether the phase or the amplitude contains the more significant
information on the structure in the image, or whether both are of equal
importance.

In order to answer this question, we perform a simple experiment.
Figure 3.1 shows two images of a street close to Heidelberg University
taken at different times. Both images are Fourier transformed and then
the phase and amplitude are interchanged as illustrated in Fig. 3.1c, d.
The result of this interchange is surprising. It is the phase that deter-
mines the content of an image. Both images look somewhat patchy but
the significant information is preserved.

From this experiment, we can conclude that the phase of the Fourier
transform carries essential information about the image structure. The
amplitude alone implies only that such a periodic structure is contained
in the image but not where.

3.1.4 Dynamical range and resolution of the FT

While in most cases it is sufficient to represent an image with rather few
quantization levels, for example, 256 values or one byte per pixel, the
Fourier transform of an image needs a much larger dynamical range.
Typically, we observe a strong decrease of the Fourier components with
the magnitude of the wave number, so that a dynamical range of at least
3–4 decades is required. Consequently, at least 16-bit integers or 32-
bit floating-point numbers are necessary to represent an image in the
Fourier domain without significant rounding errors.
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a b

c d

Figure 3.1: Importance of phase and amplitude in Fourier space for the image
content: a, b two images of a traffic scene taken at different times; c compos-
ite image using the phase from image b and the amplitude from image a; d
composite image using the phase from image a and the amplitude from image
b.

The reason for this behavior is not the insignificance of high wave
numbers in images. If we simply omitted them, we would blur the
image. The decrease is caused by the fact that the relative resolution is
increasing with the wave number. With the discrete Fourier transform
(see Section 3.3), the Fourier transform contains only wave numbers
that fit exactly integer times into the image:

kvp = v
dp

(3.7)
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a
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k2
b
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2

kdϕ

k kdln

Figure 3.2: Tessellation of the 2-D Fourier domain into: a Cartesian; and b
logarithmic-polar lattices.

where d = [d1, . . . , dD]T is the size of the D-dimensional signal. There-
fore the absolute wave number resolution ∆k = 1/∆x is constant,
equivalent to a Cartesian tessellation of the Fourier space (Fig. 3.2a).
Thus the smallest wave number (v = 1) has a wavelength of the size of
the image, the next coarse wave number a wavelength of half the size
of the image. This is a very low resolution for large wavelengths. The
smaller the wavelength, the better the resolution.

This ever increasing relative resolution is not natural. We can, for
example, easily see the difference of 10 cm in 1 m, but not in 1 km. It
is more natural to think of relative resolutions, because we are better
able to distinguish relative distance differences than absolute ones. If
we apply this concept to the Fourier domain, it seems to be more natural
to tessellate the Fourier domain in intervals increasing with the wave
number, a log-polar coordinate system, as illustrated in Fig. 3.2b. Such a
lattice partitions the space into angular and lnk intervals. Thus, the cell
area is proportional to k2. In order to preserve the norm, or—physically
spoken—the energy, of the signal in this representation, the increase
in the area of the cells proportional to k2 must be considered:

∞∫
−∞
|ĝ(k)|2 dk1 dk2 =

∞∫
−∞
k2|ĝ(k)|2 d lnkdϕ (3.8)

Thus, the power spectrum |ĝ(k)|2 in the log-polar representation is
multiplied by k2 and falls off much less steep than in the Cartesian
representation. The representation in a log-polar coordinate system al-
lows a much better evaluation of the directions of the spatial structures
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and of the smaller scales. Moreover a change in scale or orientation just
causes a shift of the signal in the log-polar representation. Therefore
it has gained importance in representation object for shape analysis
(Volume 3, Chapter 8).

3.2 Continuous Fourier transform (FT)

In this section, we give a brief survey of the continuous Fourier trans-
form and we point out the properties that are most important for signal
processing. Extensive and excellent reviews of the Fourier transform
are given by Bracewell [5], Poularikas [4, Chapter 2] or Madisetti and
Williams [6, Chapter 1]

3.2.1 One-dimensional FT

Definition 3.1 (1-D FT) If g(x) : R , C is a square integrable function,
that is,

∞∫
−∞

∣∣g(x)∣∣ dx <∞ (3.9)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞∫
−∞
g(x)exp (−2π ikx) dx (3.10)

The Fourier transform maps the vector space of absolutely integrable
functions onto itself. The inverse Fourier transform of ĝ(k) results in
the original function g(x):

g(x) =
∞∫
−∞
ĝ(k)exp (2π ikx) dk (3.11)

It is convenient to use an operator notation for the Fourier trans-
form. With this notation, the Fourier transform and its inverse are
simply written as

ĝ(k) = Fg(x) and g(x) = F−1ĝ(k) (3.12)

A function and its transform, a Fourier transform pair is simply de-
noted by g(x)⇐⇒ ĝ(k).

In Eqs. (3.10) and (3.11) a definition of the wave number without the
factor 2π is used, k = 1/λ, in contrast to the notation often used in
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Table 3.1: Comparison of the continuous Fourier transform (FT), the Fourier
series (FS), the infinite discrete Fourier transform (IDFT), and the discrete Fourier
transform (DFT) in one dimension

Type Forward transform Backward transform

FT: R⇐⇒ R
∞∫
−∞
g(x)exp (−2π ikx) dx

∞∫
−∞
ĝ(k)exp (2π ikx) dk

FS:
[0,∆x]⇐⇒ Z

1
∆x

∆x∫
0

g(x)exp
(
−2π i

vx
∆x

)
dx

∞∑
v=−∞

ĝv exp
(

2π i
vx
∆x

)

IDFT:
Z⇐⇒ [0,1/∆x]

∞∑
n=−∞

gn exp (−2π in∆xk) ∆x
1/∆x∫

0

ĝ(k)exp (2π in∆xk) dk

DFT:
NN ⇐⇒ NN

1
N

N−1∑
n=0

gn exp
(
−2π i

vn
N

) N−1∑
v=0

ĝv exp
(

2π i
vn
N

)

physics with k′ = 2π/λ. For signal processing, the first notion is more
useful, because k directly gives the number of periods per unit length.

With the notation that includes the factor 2π in the wave number,
two forms of the Fourier transform are common, the asymmetric form

ĝ(k′) =
∞∫
−∞
g(x)exp(−ik′x)dx

g(x) = 1
2π

∞∫
−∞
ĝ(k)exp(ik′x)dk

(3.13)

and the symmetric form

ĝ(k′) = 1√
2π

∞∫
−∞
g(x)exp(−ik′x)dx

g(x) = 1√
2π

∞∫
−∞
ĝ(k′)exp(ik′x)dk′

(3.14)

As the definition of the Fourier transform takes the simplest form
in Eqs. (3.10) and (3.11), most other relations and equations also be-
come simpler than with the definitions in Eqs. (3.13) and (3.14). In
addition, the relation of the continuous Fourier transform with the dis-
crete Fourier transform (Section 3.3) and the Fourier series (Table 3.1)
becomes more straightforward.

Because all three versions of the Fourier transform are in common
use, it is likely to get wrong factors in Fourier transform pairs. The rules
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for conversion of Fourier transform pairs between the three versions
can directly be inferred from the definitions and are summarized here:

k without 2π , Eq. (3.10) g(x) ⇐⇒ ĝ(k)
k′ with 2π , Eq. (3.13) g(x) ⇐⇒ ĝ(k′/2π)
k′ with 2π , Eq. (3.14) g(x/

√
(2π)) ⇐⇒ ĝ(k′/

√
(2π))

(3.15)

3.2.2 Multidimensional FT

The Fourier transform can easily be extended to multidimensional sig-
nals.

Definition 3.2 (Multidimensional FT) If g(x) : RD , C is a square in-
tegrable function, that is,

∞∫
−∞

∣∣g(x)∣∣ dDx <∞ (3.16)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞∫
−∞
g(x)exp

(
−2π ikTx

)
dDx (3.17)

and the inverse Fourier transform by

g(x) =
∞∫
−∞
ĝ(k)exp

(
2π ikTx

)
dDk (3.18)

The scalar product in the exponent of the kernel xTk makes the
kernel of the Fourier transform separable, that is, it can be written as

exp
(
−2π ikTx

)
=

D∏
d=1

exp(−ikdxd) (3.19)

3.2.3 Basic properties

For reference, the basic properties of the Fourier transform are summa-
rized in Table 3.2. An excellent review of the Fourier transform and its
applications are given by [5]. Here we will point out some of the prop-
erties of the FT that are most significant for multidimensional signal
processing.
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Table 3.2: Summary of the properties of the continuous D-dimensional Fourier
transform. g(x) and h(x) are complex-valued functions, the Fourier trans-
forms of which, ĝ(k) and ĥ(k), do exist; s is a real and a and b are complex con-
stants; A and U are D×D matrices, U is unitary (U−1 = UT , see Section 3.1.2).

Property Spatial domain Fourier domain

Linearity ag(x)+ bh(x) aĝ(k)+ bĥ(k)
Similarity g(sx) ĝ(k/s)/|s|
Similarity g(Ax) ĝ

(
(A−1)Tk

)
/|A|

Rotation g(Ux) ĝ (Uk)

Separability
D∏
d=1

g(xd)
D∏
d=1

ĝ(kd)

Shift
in x space

g(x −x0) exp(−2π ikx0)ĝ(k)

Shift
in k space

exp(2π ik0x)g(x) ĝ(k− k0)

Differentiation
in x space

∂g(x)
∂xp

2π ikpĝ(k)

Differentiation
in k space

−2π ixpg(x)
∂ĝ(k)
∂kp

Definite
integral

∞∫
−∞
g(x′)dDx′ ĝ(0)

Moments

∞∫
−∞
xmp xnq g(x)dDx

(
1

−2π i

)m+n (∂mĝ(k)
∂kmp

∂nĝ(k)
∂knq

)∣∣∣∣∣
0

Convolution

∞∫
−∞
h(x′)g(x −x′)dDx′ ĥ(k)ĝ(k)

Multiplication h(x)g(x)
∞∫
−∞
ĥ(k′)ĝ(k− k′)dDk′

Finite differ-
ence

g(x + Vx0)− g(x − Vx0) 2i sin(2πx0k)

Modulation cos(2πk0x)g(x) (ĝ(k− k0)+ ĝ(k+ k0))
/

2

Spatial
correlation

∞∫
−∞
g(x′)h(x′ +x)dDx′ ĝ(k)ĥ∗(k)

Inner
product

∞∫
−∞
g(x)h∗(x)dDx

∞∫
−∞
ĝ(k)ĥ∗(k)dDk
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Symmetries. Four types of symmetries are important for the Fourier
transform:

even g(−x) = g(x),
odd g(−x) = −g(x),
Hermitian g(−x) = g∗(x),
anti-Hermitian g(−x) = −g∗(x)

(3.20)

Any function g(x) can be split into its even and odd parts by

eg(x) = g(x)+ g(−x)
2

and og(x) = g(x)− g(−x)
2

(3.21)

With this partition, the Fourier transform can be parted into a cosine
and a sine transform:

ĝ(k) = 2

∞∫
0

eg(x) cos(2πkTx)dDx + 2i

∞∫
0

og(x) sin(2πkTx)dDx (3.22)

It follows that if a function is even or odd, its transform is also even or
odd. The full symmetry results are:

real ⇐⇒ Hermitian
real and even ⇐⇒ real and even
real and odd ⇐⇒ imaginary and odd
imaginary ⇐⇒ anti-Hermitian
imaginary and even ⇐⇒ imaginary and even
imaginary and odd ⇐⇒ real and odd
Hermitian ⇐⇒ real
anti-Hermitian ⇐⇒ imaginary
even ⇐⇒ even
odd ⇐⇒ odd

(3.23)

Separability. As the kernel of the Fourier transform (Eq. (3.19)) is sep-
arable, the transform of a separable function is also separable:

D∏
d=1

g(xd)⇐⇒
D∏
d=1

ĝ(kd) (3.24)

This property is essential to compute transforms of multidimensional
functions efficiently from 1-D transforms because many of them are
separable.

Convolution. Convolution is one of the most important operations
for signal processing. It is defined by

(h∗ g)(x) =
∞∫
−∞
g(x′)h(x −x′)dDx′ (3.25)
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In signal processing, the function h(x) is normally zero except for a
small area around zero and is often denoted as the convolution mask.
Thus, the convolution with h(x) results in a new function g′(x) whose
values are a kind of weighted average of g(x) in a small neighborhood
around x. It changes the signal in a defined way, that is, makes it
smoother etc. Therefore it is also called a filter operation. The convo-
lution theorem states:

Theorem 3.2 (Convolution) Ifg(x) has the Fourier transform ĝ(k) and
h(x) has the Fourier transform ĥ(k) and if the convolution integral
(Eq. (3.25)) exists, then it has the Fourier transform ĥ(k)ĝ(k).

Thus, convolution of two functions means multiplication of their
transforms. Likewise convolution of two functions in the Fourier do-
main means multiplication in the space domain. The simplicity of con-
volution in the Fourier space stems from the fact that the base func-
tions of the Fourier domain, the complex exponentials exp

(
2π ikTx

)
,

are joint eigenfunctions of all convolution operators. This means that
these functions are not changed by a convolution operator except for
the multiplication by a factor.

From the convolution theorem, the following properties are imme-
diately evident. Convolution is

commutative h∗ g = g ∗h,
associative h1 ∗ (h2 ∗ g) = (h1 ∗h2)∗ g,
distributive over addition (h1 +h2)∗ g = h1 ∗ g +h2 ∗ g

(3.26)

In order to grasp the importance of these properties of convolu-
tion, we note that two operations that do not look so at first glance,
are also convolution operations: the shift operation and all derivative
operators. This can immediately be seen from the shift and derivative
theorems (Table 3.2 and [5, Chapters 5 and 6]).

In both cases the Fourier transform is just multiplied by a complex
factor. The convolution mask for a shift operation S is a shifted δ
distribution:

S(s)g(x) = δ(x − s)∗ g(x) (3.27)

The transform of the first derivative operator in x1 direction is
2π ik1. The corresponding inverse Fourier transform of 2π ik1, that
is, the convolution mask, is no longer an ordinary function (2π ik1 is
not absolutely integrable) but the derivative of the δ distribution:

2π ik1 ⇐⇒ δ′(x) = dδ(x)
dx

= lim
a→0

d
dx

(
exp(−πx2/a2)

a

)
(3.28)
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Of course, the derivation of the δ distribution exists—as all properties
of distributions—only in the sense as a limit of a sequence of functions
as shown in the preceding equation.

With the knowledge of derivative and shift operators being convo-
lution operators, we can use the properties summarized in Eq. (3.26) to
draw some important conclusions. As any convolution operator com-
mutes with the shift operator, convolution is a shiftinvariant operation.
Furthermore, we can first differentiate a signal and then perform a con-
volution operation or vice versa and obtain the same result.

The properties in Eq. (3.26) are essential for an effective computa-
tion of convolution operations as discussed in Section 5.6. As we al-
ready discussed qualitatively in Section 3.1.3, the convolution operation
is a linear shiftinvariant operator. As the base functions of the Fourier
domain are the common eigenvectors of all linear and shiftinvariant op-
erators, the convolution simplifies to a complex multiplication of the
transforms.

Central-limit theorem. The central-limit theorem is mostly known for
its importance in the theory of probability [7]. It also plays, however, an
important role for signal processing as it is a rigorous statement of the
tendency that cascaded convolution tends to approach Gaussian form
(∝ exp(−ax2)). Because the Fourier transform of the Gaussian is also
a Gaussian (Table 3.3), this means that both the Fourier transform (the
transfer function) and the mask of a convolution approach Gaussian
shape. Thus the central-limit theorem is central to the unique role of
the Gaussian function for signal processing. The sufficient conditions
under which the central limit theorem is valid can be formulated in
different ways. We use here the conditions from [7] and express the
theorem with respect to convolution.

Theorem 3.3 (Central-limit theorem) Given N functions hn(x) with
zero mean

∫∞
−∞hn(x)dx and the variance σ 2

n =
∫∞
−∞x2hn(x)dx with

z = x/σ , σ 2 =∑Nn=1σ 2
n then

h = lim
N→∞

h1 ∗h2 ∗ . . .∗hN ∝ exp(−z2/2) (3.29)

provided that

lim
N→∞

N∑
n=1

σ 2
n →∞ (3.30)

and there exists a number α > 2 and a finite constant c such that

∞∫
−∞
xαhn(x)dx < c <∞ ∀n (3.31)
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The theorem is of much practical importance because—especially if
h is smooth—the Gaussian shape is approximated sufficiently accurate
already for values of n as low as 5.

Smoothness and compactness. The smoother a function is, the more
compact is its Fourier transform. This general rule can be formulated
more quantitatively if we express the smoothness by the number of
derivatives that are continuous and the compactness by the asymptotic
behavior for large values of k. Then we can state: If a function g(x) and
its firstn−1 derivatives are continuous, its Fourier transform decreases
at least as rapidly as

∣∣k∣∣−(n+1) for large k, that is, lim|k|→∞ |k|ng(k) = 0.
As simple examples we can take the box and triangle functions (see

next section and Table 3.4). The box function is discontinuous (n = 0),
its Fourier transform, the sinc function decays with |k|−1. In contrast,
the triangle function is continuous, but its first derivative is discontinu-
ous. Therefore its Fourier transform, the sinc2 function decays steeper
with |k|−2. In order to include also impulsive functions (δ distributions)
in this relation, we note that the derivative of a discontinous function
becomes impulsive. Therefore, we can state: If the nth derivative of a
function becomes impulsive, the function’s Fourier transform decays
with |k|−n.

The relation between smoothness and compactness is an extension
of reciprocity between the spatial and Fourier domain. What is strongly
localized in one domain is widely extended in the other and vice versa.

Uncertainty relation. This general law of reciprocity finds another
quantitative expression in the classical uncertainty relation or the band-
width-duration product . This theorem relates the mean square width
of a function and its Fourier transform. The mean square width (∆x)2
is defined as

(∆x)2 =

∞∫
−∞
x2
∣∣g(x)∣∣2

∞∫
−∞

∣∣g(x)∣∣2

−



∞∫
−∞
x
∣∣g(x)∣∣2

∞∫
−∞

∣∣g(x)∣∣2



2

(3.32)

It is essentially the variance of
∣∣g(x)∣∣2, a measure of the width of

the distribution of the “energy” of the signal. The uncertainty relation
states:

Theorem 3.4 (Uncertainty relation) The product of the variance of∣∣g(x)∣∣2, (∆x)2, and of the variance of
∣∣ĝ(k)∣∣2, (∆k)2, cannot be smaller
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Table 3.3: Functions and distributions that are invariant under the Fourier
transform; the table contains 1-D and multidimensional functions with the di-
mension D

Space domain Fourier domain

Gauss, exp
(
−πxTx

)
Gauss, exp

(
−πkTk

)
sech(πx) = 1

exp(πx)+ exp(−πx) sech(πk) = 1
exp(πk)+ exp(−πk)

Pole, |x|−D/2 Pole, |k|−D/2

δ comb, III(x/∆x) =
∞∑

n=−∞
δ(x−n∆x) δ comb, III(k∆x) =

∞∑
v=−∞

δ(k− v/∆x)

than 1/4π :

∆x∆k ≥ 1
4π

(3.33)

The relations between compactness and smoothness and the uncer-
tainty relation give some basic guidance for the design of linear filter
(convolution) operators (Chapter 6).

3.2.4 Important transform pairs

In this section we summarize the most important Fourier transform
pairs for signal processing. These pairs together with the basic prop-
erties of the Fourier transform discussed in the previous section are
also very helpful to compute the Fourier transforms of even complex
functions.

It is well known that the Fourier transform of a Gaussian function
is again a Gaussian function with reciprocal variance:

exp

(
−πx2

a2

)
⇐⇒ exp

(
−πk2

a−2

)
(3.34)

But it is less well known that there are other functions that are invari-
ant under the Fourier transform (Table 3.3). Each of these functions
has a special meaning for the Fourier transform. The δ-comb function
III is the basis for the sampling theorem and establishes the relation
between the lattice in the spatial domain and the reciprocal lattice in
the Fourier domain. The functions with a pole at the origin, |x|D/2 in a
D-dimensional space, are the limiting signal form for which the integral
over the square of the function diverges (physically spoken, the total
energy of a signal just becomes infinite).
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Table 3.4: Important transform pairs for the continuous Fourier transform; 2-
D and 3-D functions are marked by † and ‡, respectively; for pictorial of Fourier
transform pairs, see [4, 5]

Space domain Fourier domain

δ(x) 1

Derivative of delta, δ′(x) 2π ik

cos(2πk0x) II(k/k0) = 1
2
(δ(k− k0)+ δ(k+ k0))

sin(2πk0x) II(k/k0) = i
2
(δ(k− k0)− δ(k+ k0))

Box Π(x) =
1 |x| < 1/2

0 |x| ≥ 1/2
sinc(k) = sin(πk)

πk

Triangle, Λ(x) =
1− |x| |x| < 1

0 |x| ≥ 1
sinc2(k) = sin2(πk)

π2k2

Disk†, Π
( |x|

2

)
Bessel,

J1(2π
∣∣k∣∣)∣∣k∣∣

Ball‡, Π
( |x|

2

)
sin(2πk)− 2πk cos(2πk)

2π2k3

Half circle,
(
1− k2

)1/2Π
(
k
2

)
Bessel,

J1(2πx)
2x

exp(−|x|) Lorentzian,
2

1+ (2πk)2

sgn(x) =
1 x ≥ 0

−1 x < 0
−i
πk

Unit step, U(x) =
1 x ≥ 0

0 x < 0
1
2
δ(k)− i

2πk

Relaxation, exp(−|x|)U(x) 1
1+ 2π ik

tanh(πx) = exp(πx)− exp(−πx)
exp(πx)+ exp(−πx) cosech,

−2i
exp(2πk)− exp(−2πk)

Table 3.4 summarizes the most important other Fourier transform
pairs. It includes a number of special functions that are often used in
signal processing. The table contains various impulse forms, among
others the Gaussian (in Table 3.3), the box function Π, the triangle func-
tion Λ, and the Lorentzian function. In the table important transition
functions such as the Heaviside unit step function, U , the sign function,
sgn, and the hyperbolic tangent , tanh, function are also defined.
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3.3 The discrete Fourier transform (DFT)

3.3.1 One-dimensional DFT

Definition 3.3 (1-D DFT) If g is an N-dimensional complex-valued vec-
tor,

g = [g0, g1, . . . , gN−1]T (3.35)

then the discrete Fourier transform of g, ĝ is defined as

ĝv = 1√
N

N−1∑
n=0

gn exp
(
−2π inv

N

)
, 0 ≤ v < N (3.36)

The DFT maps the vector space of N-dimensional complex-valued
vectors onto itself. The index v denotes how often the wavelength
of the corresponding discrete exponential exp(−2π inv/N) with the
amplitude ĝv fits into the interval [0,N].

The back transformation is given by

gn = 1√
N

N−1∑
v=0

ĝv exp
(

2π inv
N

)
, 0 ≤ n < N (3.37)

We can consider the DFT as the inner product of the vector g with a set
of M orthonormal basis vectors, the kernel of the DFT:

bv = 1√
N

[
1,Wv

N ,W
2v
N , . . . ,W

(N−1)v
N

]T
with WN = exp

(
2π i
N

)
(3.38)

Using the base vectors bv , the DFT reduces to

ĝv = b∗Tg or ĝ = Fg with F =


b∗T0

b∗T1

. . .
b∗TN−1

 (3.39)

This means that the coefficient ĝv in the Fourier space is obtained by
projecting the vector g onto the basis vector bv . The N basis vectors
bv form an orthonormal base of the vector space:

b∗Tv b
′
v = δv−v ′ =

{
1 if v = v ′
0 otherwise

(3.40)

The real and imaginary parts of the basis vectors are sampled sine
and cosine functions of different wavelengths (Fig. 3.3) with a charac-
teristic periodicity:

exp
(

2π in+pN
N

)
= exp

(
2π in
N

)
, ∀p ∈ Z (3.41)
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0
1

2

3 4 5

Figure 3.3: The first six basis functions (cosine part) of the DFT for N = 32 in a
cyclic representation on the unit circle.

The basis vector b0 is a constant real vector.
With this relation and Eqs. (3.36) and (3.37) the DFT and the in-

verse DFT extend the vectors ĝ and g, respectively, periodically over
the whole space:

Fourier domain ĝv+pN = ĝv , ∀p ∈ Z
space domain gn+pN = gn ∀p ∈ Z (3.42)

This periodicity of the DFT gives rise to an interesting geometric inter-
pretation. According to Eq. (3.42) the border points gM−1 and gM = g0

are neighboring points. Thus it is natural to draw the points of the
vector not on a finite line but on a unit circle, or Fourier ring (Fig. 3.3).

With the double periodicity of the DFT, it does not matter which
range of N indices we chose. The most natural choice of wave numbers
is v ∈ [−N/2,N/2−1], N even. With this index range the 1-D DFT and
its inverse are defined as

ĝv = 1√
N

N−1∑
n=0

gnW−nv
N ⇐⇒ gn = 1√

N

N/2−1∑
v=−N/2

ĝvWnv
N (3.43)

Then the wave numbers are restricted to values that meet the sam-
pling theorem (Section 2.4.2), that is, are sampled at least two times
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per period. Note that the exponentials bN−v = b−v = b∗v according to
Eqs. (3.38) and (3.41).

As in the continuous case further variants for the definition of the
DFT exist that differ by the factors applied to the forward and back-
ward transform. Here again a symmetric definition was chosen that
has the benefit that the base vectors become unit vectors. Other vari-
ants use the factor 1/N either with the forward or backward transform
and not, as we did 1/

√
N with both transforms. The definition with

the factor 1/N has the advantage that the zero coefficient of the DFT,
ĝ0 = (1/N)

∑N−1
n=0 gn, directly gives the mean value of the sequence. The

various definitions in use are problematic because they cause a lot of
confusion with factors in DFT pairs and DFT theorems.

3.3.2 Multidimensional DFT

As with the continuous FT (Section 3.2.2), it is easy to extend the DFT
to higher dimensions. In order to simplify the equations, we use the
abbreviation for the complex exponentials already used in Eq. (3.38)

WN = exp
(

2π i
N

)
with Wn+pN

N =Wn
N , W

−n
N =W∗n

N (3.44)

In two dimensions the DFT operates on M ×N matrices.

Definition 3.4 (2-D DFT) The 2-D DFT: CM×N , CM×N is defined as

Ĝu,v = 1√
MN

M−1∑
m=0

N−1∑
n=0

Gm,nW−nv
N

W−mu
M (3.45)

and the inverse DFT as

Gmn = 1√
MN

M−1∑
u=0

N−1∑
v=0

Ĝu,vWmu
M Wnv

N (3.46)

As in the 1-D case, the DFT expands a matrix into a set of NM or-
thonormal basis matrices Bu,v , which span the N ×M-dimensional vec-
tor space over the field of complex numbers:

Bu,v = 1√
MN

W−nv
N W−mu

M = 1√
MN

bubTv (3.47)

In this equation, the basis matrices are expressed as an outer product
of the column and the row vector that form the basis vectors of the 1-D
DFT. Thus as in the continuous case, the kernel of the multidimensional
DFTs are separable.

As in the 1-D case (Section 3.3.1), the definition of the 2-D DFT im-
plies a periodic extension in both domains beyond the original matrices
into the whole 2-D space.
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3.3.3 Basic properties

The theorems of the 2-D DFT are summarized in Table 3.5. They are
very similar to the corresponding theorems of the continuous Fourier
transform, which are listed in Table 3.2 for a D-dimensional FT. As in
Section 3.2.3, we discuss some properties that are of importance for
signal processing in more detail.

Symmetry. The DFT shows the same symmetries as the FT (Eq. (3.20)).
In the definition for even and odd functions g(−x) = ±g(x) only the
continuous functions must be replaced by the corresponding vectors
g−n = ±gn or matrices G−m,−n = ±Gm,n. Note that because of the
periodicity of the DFT, these symmetry relations can also be written as

G−m,−n = ±Gm,n ≡ GM−m,N−n = ±Gm,n (3.48)

for even (+ sign) and odd (− sign) functions. This is equivalent to shift-
ing the symmetry center from the origin to the point [M/2,N/2]T .

The study of symmetries is important for practical purposes. Care-
ful consideration of symmetry allows storage space to be saved and
algorithms to speed up. Such a case is real-valued images. Real-valued
images can be stored in half of the space as complex-valued images.
From the symmetry relations Eq. (3.23) we can conclude that real-valued
functions exhibit a Hermitian DFT:

Gmn = G∗mn ⇐⇒ ĜM−u,N−v = Ĝ∗uv (3.49)

The complex-valued DFT of real-valued matrices is, therefore, com-
pletely determined by the values in one half-space. The other half-space
is obtained by mirroring at the symmetry center (M/2,N/2). Conse-
quently, we need the same amount of storage space for the DFT of a
real image as for the image itself, as only half of the complex spectrum
needs to be stored.

In two and higher dimensions, matters are slightly more complex.
The spectrum of a real-valued image is determined completely by the
values in one half-space, but there are many ways to select the half-
space. This means that all except for one component of the wave num-
ber can be negative, but that we cannot distinguish between k and −k,
that is, between wave numbers that differ only in sign. Therefore we
can again represent the Fourier transform of real-valued images in a
half-space where only one component of the wave number includes
negative values. For proper representation of the spectra with zero
values of this component in the middle of the image, it is necessary to
interchange the upper (positive) and lower (negative) parts of the image
as illustrated in Fig. 3.4.

For real-valued image sequences, again we need only a half-space to
represent the spectrum. Physically, it makes the most sense to choose
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Table 3.5: Summary of the properties of the 2-D DFT; G and H are complex-
valuedM ×N matrices, Ĝ and Ĥ their Fourier transforms, anda and b complex-
valued constants; for proofs see Poularikas [4], Cooley and Tukey [8]

Property Space domain Wave number domain

Mean
1
MN

M−1∑
m=0

N−1∑
n=0

Gmn Ĝ0,0/
√
MN

Linearity aG+ bH aĜ+ bĤ
Shifting Gm−m′,n−n′ W−m′u

M W−n′v
N Ĝuv

Modulation Wu′m
M Wv′n

N Gm,n Ĝu−u′,v−v′

Finite differences
(Gm+1,n −Gm−1,n)/2

(Gm,n+1 −Gm,n−1)/2

i sin(2πu/M)Ĝuv

i sin(2πv/N)Ĝuv

Spatial
stretching

GPm,Qn Ĝuv/(
√
PQ)

Frequency
stretching

Gm,n/(
√
PQ) ĜPu,Qv

Spatial sampling Gm/P,n/Q
1√
PQ

P−1∑
p=0

Q−1∑
q=0

Ĝu+pM/P,v+qN/Q

Frequency
sampling

1√
PQ

P−1∑
p=0

Q−1∑
q=0

Gm+pM/P,n+qN/Q Ĝpu,qv

Convolution
M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm−m′,n−n′
√
MNĤuvĜuv

Multiplication
√
MNGmnHmn

M−1∑
u′=0

N−1∑
v′=0

Hu′v′Gu−u′,v−v′

Spatial
correlation

M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm+m′,n+n′
√
NĤuvĜ∗uv

Inner product
M−1∑
m=0

N−1∑
n=0

GmnH∗mn
M−1∑
u=0

N−1∑
v=0

ĜuvĤ∗uv

Norm
M−1∑
m=0

N−1∑
n=0

|Gmn|2
M−1∑
u=0

N−1∑
v=0

|Ĝuv |2
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Figure 3.4: a Half-space as computed by an in-place Fourier transform algo-
rithm; the wave number zero is in the upper left corner. b FT with the missing
half appended and remapped so that the wave number zero is in the center.

the half-space that contains positive frequencies. In contrast to a single
image, we obtain the full wave number space. Now we can identify the
spatially identical wave numbers k and −k as structures propagating
in opposite directions.

Convolution. One- and two-dimensional discrete convolution are de-
fined by

g′n =
N−1∑
n′=0

hn′gn−n′ , G′m,n =
M−1∑
m′=0

N−1∑
n′=0

Hm′n′Gm−m′,n−n′ (3.50)

The convolution theorem states:

Theorem 3.5 (Discrete convolution) If g (G) has the Fourier transform
ĝ (Ĝ) and h (H) has the Fourier transform ĥ (Ĥ), then h∗g (H ∗G) has
the Fourier transform

√
Nĥĝ (

√
MNĤĜ).

Thus, also in the discrete case convolution of two functions means
multiplication of their transforms. This is true because the shift theo-
rem is still valid, which ensures that the eigenfunctions of all convolu-
tion operators are the basis functions bv of the Fourier transform.

Convolution for arbitrary dimensional signals is also

commutative h∗ g = g ∗h,
associative h1 ∗ (h2 ∗ g) = (h1 ∗h2)∗ g,
distributive over addition (h1 +h2)∗ g = h1 ∗ g +h2 ∗ g

(3.51)

These equations show only the 1-D case.
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3.4 Fast Fourier transform algorithms (FFT)

Without an effective algorithm to calculate the discrete Fourier trans-
form, it would not be possible to apply the FT to images and other
higher-dimensional signals. Computed directly after Eq. (3.45), the FT
is prohibitively expensive. Not counting the calculations of the cosine
and sine functions in the kernel, which can be precalculated and stored
in a lookup table, the FT of an N ×N image needs in total N4 complex
multiplications and N2(N2 − 1) complex additions. Thus it is an op-
eration of O(N4) and the urgent need arises to minimize the number
of computations by finding a suitable fast algorithm. Indeed, the fast
Fourier transform (FFT) algorithm first published by Cooley and Tukey
[8] is the classical example of a fast algorithm. The strategies discussed
in the following for various types of FFTs are also helpful for other fast
algorithms.

3.4.1 One-dimensional FFT algorithms

Divide-and-conquer strategy. First we consider fast algorithms for
the 1-D DFT, commonly abbreviated as FFT algorithms for fast Fourier
transform. We assume that the dimension of the vector is a power
of two, N = 2l. Because the direct solution according to Eq. (3.36) is
O(N2), it seems useful to use the divide-and-conquer strategy. If we
can split the transformation into two parts with vectors the size ofN/2,
we reduce the number of operations from N2 to 2(N/2)2 = N2/2. This
procedure can be applied recursively ldN times, until we obtain a vector
of size 1, whose DFT is trivial because nothing at all has to be done. Of
course, this procedure works only if the partitioning is possible and the
number of additional operations to put the split transforms together
is not of a higher order than O(N).

The result of the recursive partitioning is puzzling. We do not have
to perform a DFT at all. The whole algorithm to compute the DFT has
been shifted over to the recursive composition stages. If these com-
positions are of the order O(N), the computation of the DFT totals to
O(N ldN) because ldN compositions have to be performed. In com-
parison to the direct solution of the order O(N2), this is a tremendous
saving in the number of operations. For N = 210(1024), the number is
reduced by a factor of about 100. In the following we detail the radix-2
decimation in time FFT algorithm. The name of this algorithm comes
from the partition into two parts in the spatial (time) domain. We will
first show that the decomposition is possible, that it implies a reorder-
ing of the elements of the vector (bitreversal), and then discuss the
central operation of the composition stage, the butterfly operation.
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Figure 3.5: Signal flow diagram of the radix-2 decimation-in-time Fourier
transform algorithm for N = 8; for further explanation, see text.

Decomposition. We separate the vector into two vectors by choosing
the even and odd elements separately:

ĝv =
N−1∑
n=0

gnW−nv
N =

N/2−1∑
n=0

g2nW−2nv
N +

N/2−1∑
n=0

g2n+1W−(2n+1)v
N

=
N/2−1∑
n=0

g2nW−nv
N/2 +W−v

N

N/2−1∑
n=0

g2n+1W−nv
N/2

(3.52)

where we used the identity W 2
N = WN/2 (see Eq. (3.44)). Both sums

constitute a DFT with N′ = N/2. The second sum is multiplied by a
phase factor that depends only on the wave number v . This phase
factor results from the shift theorem, as the odd elements are shifted
one place to the left. The operations necessary to combine the partial
Fourier transforms are just one complex multiplication and addition,
that is,O(N1). Thus a fast Fourier transform algorithm is possible with
the divide-and-conquer strategy.

Bitreversal. The left half of the diagram in Fig. 3.5 shows the decima-
tion steps. The first column contains the original vector, the second
the result of the first decomposition step into two vectors. The vectors
with the even and odd elements are put in the lower and upper halves,
respectively. This decomposition is continued until we obtain vectors
with one element.

As a result of the recursive decomposition, the elements of the vec-
tors are arranged in a new order. Except for the rearrangement of the
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vector elements, no computations are required. We can easily under-
stand the new ordering scheme if we represent the indices of the vec-
tor by dual numbers. In the first decomposition step we reorder the
elements according to the least significant bit, first the even elements
(least significant bit is zero), then the odd elements (least significant
bit is one). With each further decomposition step, the bit that governs
sorting is shifted one place to the left. In the end, we obtain a sort-
ing in which the ordering of the bits is reversed. The element with
the index 1 = 0012, for example, will be at the position 4 = 1002, and
vice versa. Consequently, the chain of decomposition steps can be per-
formed with one operation by interchanging the elements at the normal
and bit-reversed positions. This reordering is known as bit reversal .

Butterfly operation. In the second step of the FFT algorithm, we have
to compose the decomposed vectors again according to Eq. (3.52). In
order to see how the composition of the N values works, we study the
values for v from 0 to N/2−1 and N/2 to N−1 separately. The partial
transformations over the even and odd sampling points are abbreviated
by eĝv and oĝv , respectively. For the first part, we can just take the
partitioning as expressed in Eq. (3.52). For the second part, v ′ = v +
N/2, only the phase factor changes its sign:

W−(v+N/2)
N =W−v

N W
−(N/2)
N = −W−v

N

Making use of this symmetry we can write

ĝv = eĝv +W−v
N
oĝv

ĝv+N/2 = eĝv −W−v
N
oĝv

 0 ≤ v < N/2 (3.53)

The Fourier transforms for the indices v and v +N/2 differ only by
the sign of the second term. Thus for the composition of two terms we
need only one complex multiplication.

In the first composition step, we compose vectors with just two ele-
ments. Thus we need only the phase factor for v = 0, which is equal to
one. Consequently, the first composition step has a very simple form:

ĝ0 = eĝ0 + oĝ0

ĝ0+N/2 = ĝ1 = oĝ0 − oĝ0
(3.54)

This is an inplace operation because ĝ0 and ĝ1 take the place of eĝ0

and oĝ0, respectively. Further steps on the right side of the signal flow
diagram in Fig. 3.5 show the stepwise composition to vectors of dou-
ble the size. The composition to the 2-D vectors is given by Eq. (3.54).
The operations are pictured by vertices and nodes. The nodes repre-
sent storage stages or arithmetic units. Large open circles denote a
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Figure 3.6: Signal flow path for the calculation of ĝ0 and ĝ4 with the
decimation-in-time FFT algorithm for an 8-dimensional vector.

multiplication by the factor written into the circle. Small open circles
are adder stages. The figures from all incoming vertices are added up;
those with an open arrowhead are subtracted.

The elementary operation of the FFT algorithm involves only two
nodes. The lower node is multiplied with a phase factor. The sum and
difference of the two values are then transferred to the upper and lower
node, respectively. Because of the crossover of the signal paths, this
operation is denoted as a butterfly operation.

We gain further insight into the FFT algorithm if we trace back the
calculation of a single element. Figure 3.6 shows the signal paths for
ĝ0 and ĝ4. For each level we go back the number of knots contributing
to the calculation doubles. In the last stage all elements are involved.
The signal path for ĝ0 and ĝ4 are identical but for the last stage, thus
nicely demonstrating the efficiency of the FFT algorithm.

All phase factors in the signal path for ĝ0 are one. As expected from
Eq. (3.36), ĝ0 contains the sum of all the elements of the vector g,

ĝ0 = [(g0 + g4)+ (g2 + g6)]+ [(g1 + g5)+ (g3 + g7)]

while for ĝ4 the addition is replaced by a subtraction:

ĝ4 = [(g0 + g4)+ (g2 + g6)]− [(g1 + g5)+ (g3 + g7)]

Computational costs. After this detailed discussion of the algorithm,
we can now estimate the necessary number of operations. At each stage
of the composition, N/2 complex multiplications and N complex addi-
tions are carried out. In total we needN/2 ldN complex multiplications
andN ldN complex additions. A more extensive analysis shows that we
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can save even more multiplications. In the first two composition steps
only trivial multiplications by 1 or i occur (compare Fig. 3.6). For fur-
ther steps the number of trivial multiplications decreases by a factor
of two. If our algorithm could avoid all the trivial multiplications, the
number of multiplications would be reduced to (N/2)(ldN − 3).

Using the FFT algorithm, the discrete Fourier transform can no longer
be regarded as a computationally expensive operation, as only a few op-
erations are necessary per element of the vector. For a vector with 512
elements, only 3 complex multiplications and 8 complex additions, cor-
responding to 12 real multiplications and 24 real additions, need to be
computed per pixel.

Radix-4 FFT. The radix-2 algorithm discussed in the preceding is only
one of the many divide-and-conquer strategies to speed up Fourier
transform. It belongs to the class of Cooley-Tukey algorithms [9]. In-
stead of parting the vector into two pieces, we could have chosen any
other partition, say P Q-dimensional vectors, if N = PQ.

An often-used partition is the radix-4 FFT algorithm decomposing
the vector into four components:

ĝv =
N/4−1∑
n=0

g4nW−4nv
N +W−v

N

N/4−1∑
n=0

g4n+1W−4nv
N

+ W−2v
N

N/4−1∑
n=0

g4n+2W−4nv
N +W−3v

N

N/4−1∑
n=0

g4n+3W−4nv
N

For simpler equations, we will use similar abbreviations as for the radix-
2 algorithm and denote the partial transformations by 0ĝ, · · · ,3ĝ. Mak-
ing use of the symmetry of WvN , the transformations into quarters of
each of the vectors is given by

ĝv = 0ĝv +W−v
N

1ĝv +W−2v
N

2ĝv +W−3v
N

3ĝv

ĝv+N/4 = 0ĝv − iW−v
N

1ĝv −W−2v
N

2ĝu + iW−3v
N

3ĝv

ĝv+N/2 = 0ĝv −W−v
N

1ĝv +W−2v
N

2ĝv −W−3v
N

3ĝv

ĝv+3N/4 = 0ĝv + iW−v
N

1ĝv −W−2v
N

2ĝv − iW−3v
N

3ĝv

or, in matrix notation,
ĝv

ĝv+N/4
ĝv+N/2
ĝv+3N/4

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




0ĝv
W−v
N

1ĝv
W−2v
N

2ĝv
W−3v
N

3ĝv


To compose 4-tuple elements of the vector, 12 complex additions and
3 complex multiplications are needed. We can reduce the number of
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additions further by decomposing the matrix into two simpler matrices:
ĝv

ĝv+N/4
ĝv+N/2
ĝv+3N/4

 =


1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i




1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1




0ĝv
W−v
N

1ĝv
W−2v
N

2ĝv
W−3v
N

3ĝv


The first matrix multiplication yields intermediate results that can be
used for several operations in the second stage. In this way, we save
four additions. We can apply this decomposition recursively log4N
times. As for the radix-2 algorithm, only trivial multiplications in the
first composition step are needed. At all other stages, multiplications
occur for 3/4 of the points. In total, 3/4N(log4N−1) = 3/8N(ldN−2)
complex multiplications and 2N log4N = NldN complex additions are
necessary for the radix-4 algorithm. While the number of additions re-
mains equal, 25 % fewer multiplications are required than for the radix-
2 algorithm.

Decimation-in-frequency FFT. The decimation-in-frequency FFT ap-
plys a different partition strategy known as a Sande-Tukey algorithm.
This time, we break the N-dimensional input vector into N/2 first and
N/2 second components. This partition breaks the output vector into
its even and odd components:

ĝv =
N/2−1∑
n=0

gnW−nv
N + (−1)v

N−1∑
n=N/2

gnW−nv
N (3.55)

The two partial sums are not yet a DFT because the kernel is still wrong.
However, they become correct DFTs if we compute the even and odd
elements of the Fourier transform separately. Then

ĝ2v =
N/2−1∑
n=0

(gn + gn+N/2)W−nv
N/2

ĝ2v+1 =
N/2−1∑
n=0

W−n
N (gn − gn+N/2)W−nv

N/2

(3.56)

The basic composition step of the DIF algorithms therefore is slightly
different from Eq. (3.53):

egn = (gn + gn+N/2)
ogn = W−n

N (gn − gn+N/2) (3.57)

yet the same number of operations are required as for the decimation-
in-time (DIT) butterfly.
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Figure 3.7: Signal flow diagram of the radix-2 decimation-in-frequency FFT
algorithm for N = 8.

A recursive application of this partition results in a bit reversal of the
elements in the output vector, but not the input vector. As an example,
the signal flow graph for N = 8 is shown in Fig. 3.7. A comparison with
the decimation-in-time flow graph (Fig. 3.5) shows that all steps are
performed in reverse order. Even the elementary butterfly operations of
the decimation-in-frequency algorithm are the inverse of the butterfly
operation in the decimation-in-time algorithm.

3.4.2 Multidimensional FFT algorithms

Generally, there are two possible ways to develop fast algorithms for
multidimensional discrete Fourier transforms. First, we can decompose
the multidimensional DFT into 1-D DFTs and use fast algorithms for
them. Second, we can generalize the approaches of the 1-D FFT for
higher dimensions. In this section, we show examples for both possible
ways.

Decomposition into 1-D transforms. A 2-D DFT can be broken up in
two 1-D DFTs because of the separability of the kernel. In the 2-D case
of Eq. (3.45), we obtain

Ĝu,v = 1
MN

M−1∑
m=0

N−1∑
n=0

Gm,nW−nv
N

W−mu
M (3.58)

The inner summation forms M 1-D DFTs of the rows, the outer N 1-D
DFTs of the columns, that is, the 2-D FFT is computed as M row trans-
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formations followed by N column transformations:

Row transform G̃m,v = 1
N

N−1∑
n=0

Gm,nW−nv
N

Column transform Ĝu,v = 1
M

M−1∑
m=0

G̃m,vW−mu
M

In an analogous way, a D-dimensional DFT can be composed of D 1-D
DFTs.

Multidimensional decomposition. A decomposition is also directly
possible in multidimensional spaces. We will demonstrate such algo-
rithms with the simple case of a 2-D radix-2 decimation-in-time algo-
rithm.

We decompose anM ×Nmatrix into four submatrices by taking only
every second pixel in every second line. This decomposition yields

Ĝu,v
Ĝu,v+N/2
Ĝu+M/2,v

Ĝu+M/2,v+N/2

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0,0Ĝu,v
W−v
N

0,1Ĝu,v
W−u
M

1,0Ĝu,v
W−u
M W−v

N
1,1Ĝu,v


The superscripts in front of Ĝ denote the corresponding partial trans-
formation. The 2-D radix-2 algorithm is very similar to the 1-D radix-4
algorithm. In a similar manner as for the 1-D radix-4 algorithm, we can
reduce the number of additions from 12 to 8 by factorizing the matrix:

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


The 2-D radix-2 algorithm for an N ×N matrix requires (3/4N2) ldN
complex multiplications, 25 % fewer than the separation into two 1-D
radix-2 FFTs. However, the multidimensional decomposition has the
disadvantage that the memory access pattern is more complex than for
the 1-D Fourier transform. With the partition into a 1-D transform, the
access to memory becomes local, yielding a higher cache hit rate than
with the distributed access of the multidimensional decomposition.

3.4.3 Fourier transform of real images

So far, we have discussed only the Fourier transform of complex-valued
signals. The same algorithms can also be used for real-valued signals.
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Then they are less efficient, however, as the Fourier transform of a
real-valued signal is Hermitian (Section 3.2.3) and thus only half of the
Fourier coefficients are independent. This corresponds to the fact that
also half of the signal, namely the imaginary part, is zero.

It is obvious that another factor two in computational speed can be
gained for the DFT of real data. Three common strategies [2] that are
used to map real vectors onto complex vectors are discussed in what
follows.

Mapping of two real vectors onto one complex vector. The easiest
way to do so is to compute two real 1-D sequences at once. This concept
can easily be applied to the DFT of images, as many 1-D DFTs must be
computed. Thus, we can put the first row x into the real part and the
second row y into the imaginary part and yield the complex vector
z = x + iy. From the symmetry properties discussed in Section 3.2.3,
we infer that the transforms of the real and imaginary parts map in
Fourier space to the Hermitian and anti-Hermitian parts, respectively.
Thus the Fourier transforms of the two realM-dimensional vectors are
given by

x̂v = 1/2(ẑv + ẑN−v)
ŷv = 1/2(ẑv − ẑN−v) (3.59)

Mapping of a 2N real vector onto an N complex vector. With this
mapping strategy we just map a real vector x of the length 2N onto a
complex vector z of lengthN in such a way that the even elements come
into the real part and the odd values into the imaginary part. Thus we
have the following DFT:

Ĝv =
N−1∑
n=0

(x2n + ix2n+1)Wnv
N (3.60)

The vector with the even and odd elements results in a Hermitian and
anti-Hermitian Fourier transform, respectively. Thus the first N coeffi-
cients of the partial DFTs are given according to Eq. (3.59) as

ex̂v = 1/2(ĝv + ĝN−v)
ox̂v = 1/2(ĝv − ĝN−v) (3.61)

From the radix-2 decimation in time FFT algorithm Eq. (3.52), we know
how two such partial DFTs can be combined:

x̂v = ex̂v +W−v
N
ox̂v (3.62)

FFT via fast Hardley transform. It has often been argued [5] that
a real-valued variant of the Fourier transform, the Hardley transform,
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that uses the sum of a cosine and sine function as a kernel can compute
the Fourier transform of a real vector faster than the Fourier transform
itself. This is correct if the real vector is just put into the real part of
a complex-valued vector and an FFT algorithm is used. A fast Hardley
transform has, however, no performance advantage when one of the
preceding strategies is applied that doubles the speed of computing
the Fourier transform of a real-valued vector.
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4.1 Scale in signal processing

In Chapter 3 the representation of images in the spatial and wave-
number domain were discussed. If an image is represented in the spa-
tial domain, we do not have any information at all about the wave num-
bers contained at a point in the image. We know the position with an
accuracy of the lattice constant ∆x, but the local wave number at this
position may be anywhere in the range of the possible wave numbers
from −1/(2∆x) to 1/(2∆x) (Fig. 4.1).
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Figure 4.1: Illustration of the interdependence of resolution in the spatial and
wave-number domain in one dimension. Representations in the space domain,
the wave-number domain, and the space/wave-number domain (2 planes of
pyramid with half and quarter resolution) are shown.

In the wave-number domain we have the reverse case. Each pixel
in this domain represents one wave number with the highest wave-
number resolution possible for the given image size, which is−1/(N∆x)
for an image with N pixels in each coordinate. But any positional in-
formation is lost, as one point in the wave-number space represents a
periodic structure that is spread over the whole image (Fig. 4.1). Thus,
the position uncertainty is the linear dimension of the image N∆x.

In this section we will revisit both representations under the per-
spective of how to generate a multiscale representation of an image.

The foregoing discussion shows that the representations of an im-
age in either the spatial or wave-number domain constitute two oppo-
site extremes. Although the understanding of both domains is essential
for any type of signal processing, the representation in either of these
domains is inadequate to analyze objects in images.

In the wave-number representation the spatial structures from var-
ious independent objects are mixed up because the extracted periodic
structures cover the whole image. In the spatial representation we have
no information about the spatial structures contained in an object, we
just know the local pixel gray values.

What we thus really need is a type of joint representation that allows
for a separation into different wave-number ranges (scales) but still
preserves as much spatial resolution as possible. Such a representation
is called a multiscale or multiresolution representation.

The limits of the joint spatial/wave-number resolution are given by
the uncertainty relation discussed in Section 3.2.3. It states that the
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Table 4.1: Wave number and spatial resolutions of representations of images
in various domains

Domain / Resolution Spatial
resolution

Wave number
resolution

Product

Spatial domain ∆x 1/∆x 1

Wave-number domain N∆x 1/(N∆x) 1

Multiscale domain p∆x 1/(p∆x) 1

product of the resolutions in the spatial and wave-number domain can-
not be beyond a certain threshold. This is exactly what we observed
already in the spatial and wave-number domains. However, besides
these two domains any other combination of resolutions that meets
the uncertainty relation can be chosen. Thus the resolution in wave
numbers, that is, the distinction of various scales in an image, can be
set to any value with a corresponding spatial resolution (Fig. 4.1, Ta-
ble 4.1). As the uncertainty relation gives only the lower limit of the
joint resolution, it is important to devise efficient data structures that
approach this limit.

In the last two decades a number of various concepts have been
developed for multiresolution signal processing. Some trace back to
the early roots of signal processing. This includes various techniques
to filter signals for certain scale ranges such as the windowed Fourier
transform, Gabor filters, polar separable quadrature filters, and filters
steerable in scale (Section 4.2).

Some of these techniques are directly suitable to compute a local
wave number that reflects the dominant scale in a local neighborhood.
Multigrid image structures in the form of pyramids are another early
and efficient multiresolution [1]. More recent developments are the
scale space (Section 4.2) and wavelets [2, 3].

Although all of these techniques seem to be quite different at first
glance, this it not the case. They have much in common; they merely
look at the question of multiresolutional signal representation from a
different point of view. Thus an important issue in this chapter is to
work out the relations between the various approaches.

An early account on multiresolution imaging was given by Rosenfeld
[4]. The standard work on linear scale space theory is by Lindeberg [5]
(see also Chapter 11) and nonlinear scale space theory is treated by
Weickert [6] (see also Chapter 15).
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4.2 Scale filters

4.2.1 Windowed Fourier transform

One way to a multiresolutional signal representation starts with the
Fourier transform. If the Fourier transform is applied only to a sec-
tion of the image and this section is moved around through the whole
image, then a joint spatial/wave-number resolution is achieved. The
spatial resolution is given by the size of the window and due to the un-
certainty relation (Section 3.2.3) the wave-number resolution is reduced
by the ratio of the image size to the window size. The window function
w(x) must not be a box function. Generally, a useful window func-
tion has a maximum at the origin, is even and isotropic, and decreases
monotonically with increasing distance from the origin. This approach
to a joint space/wave-number representation is the windowed Fourier
transform. It is defined by

ĝ(x,k0) =
∞∫
−∞
g(x′)w(x′ −x)exp(−2π ik0x′)dx′2 (4.1)

The integral in Eq. (4.1) almost looks like a convolution integral (Sec-
tion 3.2.3). To convert it into a convolution integral we make use of the
fact that the window function is even (w(−k) = w(k)) and rearrange
the second part of Eq. (4.1):

w(x′ −x)exp(−2π ik0x′) =
w(x −x′)exp(2π ik0(x −x′))exp(−2π ik0x)

Then we can write Eq. (4.1) as a convolution:

ĝ(x,k0) = [g(x)∗w(x)exp(2π ik0x)] exp(−2π ik0x) (4.2)

This means that the local Fourier transform corresponds to a convo-
lution with the complex convolution kernel w(x)exp(2π ik0x) except
for a phase factor exp(−2π ik0x). Using the shift theorem (Table 3.2),
the transfer function of the convolution kernel can be computed to be

w(x)exp(2π ik0x)⇐⇒ ŵ(k− k0) (4.3)

This means that the convolution kernel is a bandpass filter with a peak
wave number ofk0. The width of the bandpass is inversely proportional
to the width of the window function. In this way, the spatial and wave-
number resolutions are interrelated to each other. As an example, we
take a Gaussian window function

w(x) = 1
σD

exp

(
−π |x|

2

σ 2

)
⇐⇒ ŵ(k) = exp

(
−π |k|

2

σ−2

)
(4.4)
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The Gaussian window function reaches the theoretical limit set by
the uncertainty relation and is thus an optimal choice; a better wave-
number resolution cannot be achieved with a given spatial resolution.

The windowed Fourier transform Eq. (4.1) delivers a complex filter
response. This has the advantage that both the phase and the ampli-
tude of a bandpass filtered signal are retrieved.

4.2.2 Gabor filter

Definition. A Gabor filter is a bandpass filter that selects a certain
wavelength range around the center wavelength k0 using the Gaussian
function. The Gabor filter is very similar to the windowed Fourier trans-
form if the latter is used with a Gaussian window function. The transfer
function of the Gabor filter is real but asymmetric and defined as

Ĝ(k) = exp
(
−π|k− k0)|2σ 2

x

)
(4.5)

From this equation it is obvious that a Gabor filter is only a useful
bandpass filter if it does not include the origin, that is, it is Ĝ(0) = 0.
This condition is met in good approximation if |k0|σx > 3.

The filter mask (point spread function) of these filters can be com-
puted easily with the shift theorem (Table 3.2):

G(x) = 1
σD

exp(2π ik0x)exp

(
−π|x|

2

σ 2
x

)
(4.6)

The complex filter mask can be split into an even real and an odd imag-
inary part:

G+(x) = 1
σD

cos(k0x)exp

(
−π|x|

2

σ 2
x

)

G−(x) = 1
σD

sin(k0x)exp

(
−π|x|

2

σ 2
x

) (4.7)

Quadrature filters and analytic signals. Gabor filters are examples
of quadrature filters. This general class of filters generates a special
type of signal known as the analytic signal from a real-valued signal.

It is the easiest way to introduce the quadrature filter with the com-
plex form of its transfer function. Essentially, the transfer function
of a D-dimensional quadrature filter is zero for one-half space of the
Fourier domain parted by the hyperplane kTn̄ = 0:

q̂(k) =
{

2h(k) kTn̄ > 0

0 otherwise
(4.8)
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Figure 4.2: a Transfer function (Eq. (4.5)); b even; and c odd part of the filter
mask (Eq. (4.7)) of a Gabor filter.

where h(k) is a real-valued function. Equation (4.8) can be separated
into an even and odd function:

q̂+(k) = (q̂(k)+ q̂(−k))/2
q̂−(k) = (q̂(k)− q̂(−k))/2

(4.9)

The relation between the even and odd part of the signal response can
be described by the Hilbert transform:

q̂−(k) = i sgn(kTn̄)q̂+(k)⇐⇒ q−(x) = i
π

∞∫
−∞

q+(x′)
(x′ −x)Tn̄ dDx′ (4.10)

The even and odd part of a quadrature filter can be combined into
a complex-valued signal by

qA = q+ − iq− (4.11)

From Eq. (4.10) we can then see that this combination is consistent
with the definition of the transfer function of the quadrature filter in
Eq. (4.8).
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Figure 4.3: Representation of a filtered 1-D signal as an analytic signal: Signal
filtered with a the even and b the odd part of a quadrature filter; c amplitude;
and d phase signal.

The basic characteristic of the analytic filter is that its even and odd
part have the same magnitude of the transfer function but that one
is even and real and the other is odd and imaginary. Thus the filter
responses of the even and odd part are shifted in phase by 90°. Thus
the even part is cosine-like and the odd part is sine-like—as can be seen
from the Gabor filter (Fig. 4.2b and c)—and they are shifted in phase by
90° (Fig. 4.3).

Although the transfer function of the analytic filter is real, it results
in a complex signal because it is asymmetric. For a real signal no in-
formation is lost by suppressing the negative wave numbers. They can
be reconstructed as the Fourier transform of a real signal is Hermitian
(Section 3.2.3).

The analytic signal can be regarded as just another representation
of a real signal with two important properties. The magnitude of the
analytic signal gives the local amplitude (Fig. 4.3c)∣∣qA∣∣2 = q2

+ + q2
− (4.12)

and the argument the local phase (Fig. 4.3d)

arg(A) = arctan
(−H
I
)

(4.13)
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While the concept of the analytic signal works with any type of 1-D
signal, it must be used with much more care in higher-dimensional sig-
nals. These problems are related to the fact that an analytical signal
cannot be defined for all wave numbers that lie on the hyperplane de-
fined by kTn̄ = 0 partitioning the Fourier domain in two half spaces.
For these wave numbers the odd part of the quadrature filter is zero.
Thus it is not possible to compute the local amplitude nor the local
phase of the signal. This problem can only be avoided if the transfer
function of the quadrature filter is zero at the hyperplane. For a phase
definition in two-dimensions that does not show these restrictions, see
Volume 3, Chapter 10.

4.2.3 Local wave number

The key to determining the local wave number is the phase of the signal.
As an introduction we discuss a simple example and consider the 1-D
periodic signal g(x) = g0 cos(kx). The argument of the cosine function
is known as the phaseφ(x) = kx of the periodic signal. This is a linear
function of the position and the wave number. Thus, we obtain the
wave number of the periodic signal by computing the first-order spatial
derivative of the phase signal

∂φ(x)
∂x

= k (4.14)

These simple considerations emphasize the significant role of the
phase in signal processing.

Local wave number from phase gradients. In order to determine the
local wave number, we need to compute just the first spatial derivative
of the phase signal. This derivative has to be applied in the same di-
rection as the Hilbert or quadrature filter has been applied. The phase
is given by

φ(x) = arctan
(−g+(x)
g−(x)

)
(4.15)

Direct computation of the partial derivatives from Eq. (4.15) is not
advisable, however, because of the inherent discontinuities in the phase
signal. A phase computed with the inverse tangent restricts the phase
to the main interval [−π,π[ and thus inevitably leads to a wrapping of
the phase signal from π to −π with the corresponding discontinuities.
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Figure 4.4: a Radial and b angular part of quadrature filter according to
Eq. (4.17) with l = 2 and B = 2 in different directions and with different peak
wave numbers.

As pointed out by Fleet [7], this problem can be avoided by comput-
ing the phase gradient directly from the gradients of q+(x) and q−(x):

kp = ∂φ(x)
∂xp

= ∂
∂xp

arctan(−q+(x)/q−(x))

= 1
q2+(x)+ q2−(x)

(
∂q+(x)
∂xp

q−(x)− ∂q−(x)∂xp
q+(x)

) (4.16)

This formulation of the phase gradient also eliminates the need for us-
ing trigonometric functions to compute the phase signal and is, there-
fore, significantly faster.

Local wave number from filter ratios. With polar separable quadra-
ture filters (r̂ (k)d̂(φ)) as introduced by Knutsson [8] another scheme
for computation of the local scale is possible. These classes of filters
are defined by

r̂ (k) = exp

[
−(lnk− lnk0)2

(B/2)2 ln 2

]

d̂(φ) =
{

cos2l(φ−φk) |φ−φk| < π/2
0 otherwise

(4.17)

In this equation, the complex notation for quadrature filters is used as
introduced at the beginning of this section. The filter is directed into
the angle φk.

The filter is continuous, as the cosine function is zero in the partition
plane for the two half spaces (|φ−φk| = π/2). The constant k0 denotes
the peak wave number. The constant B determines the half-width of



76 4 Multiresolutional Signal Representation

the wave number in number of octaves and l the angular resolution of
the filter. In a logarithmic wave number scale, the filter has the shape of
a Gaussian function. Therefore the radial part has a lognormal shape.
Figure 4.4 shows the radial and angular part of the transfer function.

The lognormal form of the radial part of the quadrature filter sets
is the key for a direct estimate of the local wave number of a narrow-
band signal. According to Eq. (4.17), we can write the radial part of the
transfer function as

r̂l(k) = exp

[
−(lnk− lnkl)2

2σ 2 ln 2

]
(4.18)

We examine the ratio of the output of two different radial center
frequencies k1 and k2 and obtain:

r̂2

r̂1
= exp

[
−(lnk− lnk2)2 − (lnk− lnk1)2

2σ 2 ln 2

]

= exp

[
2(lnk2 − lnk1) lnk+ ln2 k2 − ln2 k1

2σ 2 ln 2

]

= exp
[
(lnk2 − lnk1)[lnk− 1/2(lnk2 + lnk1)]

σ 2 ln 2

]

= exp

[
ln(k/

√
k2k1) ln(k2/k1)
σ 2 ln 2

]

=
(

k√
k1k2

)ln(k2/k1)/(σ2 ln2)

Generally, the ratio of two different radial filters is directly related
to the local wave number. The relation becomes particularly simple if
the exponent in the last expression is one. This is the case, for example,
if the wave number ratio of the two filters is two (k2/k1 = 2 and σ = 1).
Then

r̂2

r̂1
= k√

k1k2
(4.19)

4.3 Scale space and diffusion

As we have seen with the example of the windowed Fourier transform
in the previous section, the introduction of a characteristic scale adds a
new coordinate to the representation of image data. Besides the spatial
resolution, we have a new parameter that characterizes the current res-
olution level of the image data. The scale parameter is denoted by ξ1.

1In Chapter 11 t is used for the scale parameter. Here we are using ξ in order to
avoid confusion with the time coordinate t for scale spaces of image sequences.
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A data structure that consists of a sequence of images with different
resolutions is known as a scale space; we write g(x, ξ) to indicate the
scale space of the image g(x). Such a sequence of images can be gen-
erated by repeated convolution with an appropriate smoothing filter
kernel.

This section is thought as a brief introduction into scale spaces. For
an authoritative monograph on scale spaces, see Lindeberg [5].

4.3.1 General properties of a scale space

In this section, we discuss some general conditions that must be met
by a filter kernel generating a scale space. We will discuss two basic
requirements. First, new details must not be added with increasing
scale parameter. From the perspective of information theory, we may
say that the information content in the signal should continuously de-
crease with the scale parameter.

The second property is related to the general principle of scale in-
variance. This basically means that we can start smoothing the signal
at any scale parameter in the scale space and still obtain the same scale
space.

Minimum-maximum principle. The information-decreasing property
of the scale space with ξ can be formulated mathematically in different
ways. We express it here with the minimum-maximum principle, which
states that local extrema must not be enhanced. This means that the
gray value at a local maximum or minimum must not increase or de-
crease, respectively. For the physical process of diffusion this is an
intuitive property. For example, in a heat transfer problem, a hot spot
must not become hotter or a cool spot cooler.

Semi-group property. The second important property of the scale
space is related to the scale invariance principle. We want to start the
generating process at any scale parameter and still obtain the same
scale space. More quantitatively, we can formulate this property as

B(ξ2)B(ξ1) = B(ξ1 + ξ2) (4.20)

This means that the smoothing of the scale space at the scale ξ1 by an
operator with the scale ξ2 is equivalent to the application of the scale
space operator with the scale ξ1 + ξ2 to the original image. Alterna-
tively, we can state that the representation at the coarser level ξ2 can
be computed from the representation at the finer level ξ1 by applying

B(ξ2) = B(ξ2 − ξ1)B(ξ1) with ξ2 > ξ1 (4.21)

In mathematics the properties Eqs. (4.20) and (4.21) are referred to as
the semi-group property .
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Conversely, we can ask what scale space generating kernels exist
that meet both the minimum-maximum principle and the semi-group
property. The answer to this question may be surprising. As shown by
Lindeberg [5, Chapter 2], the Gaussian kernel is the only convolution
kernel that meets both criteria and is in addition isotropic and homo-
geneous. From yet another perspective this feature puts the Gaussian
convolution kernel into a unique position for signal processing. With
respect to the Fourier transform we have already discussed that the
Gaussian function is one of the few functions with a shape that is invari-
ant under the Fourier transform (Section 3.2.4, Table 3.3) and optimal
in the sense of the uncertainty relation (Section 3.2.3). In Section 7.4
we will see in addition that the Gaussian function is the only function
that is separable and isotropic.

4.3.2 Linear scale spaces

Generation by a diffusion process. The generation of a scale space
requires a process that can blur images to a controllable degree. Dif-
fusion is a transport process that tends to level out concentration dif-
ferences. In physics, diffusion processes govern the transport of heat,
matter, and momentum [9] leading to an ever-increasing equalization
of spatial concentration differences. If we identify the time with the
scale parameter ξ, the diffusion process thus establishes a scale space.

To apply a diffusion process to an image, we regard the gray value g
as the concentration of a scalar property. The elementary law of diffu-
sion states that the flux density j is directed against the concentration
gradient ∇g and proportional to it:

j = −D∇g (4.22)

where the constant D is known as the diffusion coefficient . Using the
continuity equation

∂g
∂t
+∇j = 0 (4.23)

the diffusion equation is

∂g
∂t
=∇(D∇g) (4.24)

For the case of a homogeneous diffusion process (D does not depend
on the position), the equation reduces to

∂g
∂t
= D∆g where ∆ =

D∑
d=1

∂2

∂x2
d

(4.25)
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It is easy to show that the general solution to this equation is equivalent
to a convolution with a smoothing mask. To this end, we perform a
spatial Fourier transform that results in

∂ĝ(k)
∂t

= −4π2D|k|2ĝ(k) (4.26)

reducing the equation to a linear first-order differential equation with
the general solution

ĝ(k, t) = exp(−4π2Dt|k|2)ĝ(k,0) (4.27)

where ĝ(k,0) is the Fourier transformed image at time zero.
Multiplication of the image in Fourier space with the Gaussian func-

tion in Eq. (4.27) is equivalent to a convolution with the same function
but of reciprocal width. Using

exp
(
−πa |k|2

)
⇐⇒ 1

ad/2
exp

(
− |x|

2

a/π

)
(4.28)

we obtain with a = 4πDt for a d-dimensional space

g(x, t) = 1
(2π)d/2σd(t)

exp

(
− |x|2

2σ 2(t)

)
∗ g(x,0) (4.29)

with

σ(t) =
√

2Dt (4.30)

Now we can replace the physical time coordinate by the scale parameter
ξ with

ξ = 2Dt = σ 2 (4.31)

and finally obtain

g(x, ξ) = 1
(2πξ)d/2

exp

(
−|x|

2

2ξ

)
∗ g(x,0) (4.32)

We have written all equations in such a way that they can be used
for signals of any dimension. Thus, Eqs. (4.27) and (4.29) can also be
applied to scale spaces of image sequences. The scale parameter is not
identical to the time although we used a physical diffusion process that
proceeds with time to derive it. If we compute a scale space represen-
tation of an image sequence, it is useful to scale the time coordinate
with a characteristic velocity u0 so that it has the same dimension as
the spatial coordinates: t′ = u0t. For digital signals (Section 2.3), of
course, no such scaling is required. It is automatically fixed by the
spatial and temporal sampling intervals: u0 = ∆x/∆t.
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a b

c d

Figure 4.5: Scale space of a 2-D image: a original image; b, c, and d at scale
parameters σ 1, 2, and 4, respectively.

As an illustration, Fig. 4.5 shows some individual images of the scale
space of a 2-D image at values of ξ as indicated. This example nicely
demonstrates a general property of scale spaces. With increasing scale
parameter ξ, the signals become increasingly blurred, more and more
details are lost. This feature can be most easily seen by the transfer
function of the scale space representation in Eq. (4.27). The transfer
function is always positive and monotonically decreasing with the in-
creasing scale parameter ξ for all wave numbers. This means that no
structure is amplified. All structures are attenuated with increasing ξ,
and smaller structures always faster than coarser structures. In the
limit of ξ → ∞ the scale space converges to a constant image with the
mean gray value. A certain feature exists only over a certain scale range.
We can observe that edges and lines disappear and two objects merge
into one.

Accelerated scale spaces. Despite the mathematical beauty of scale
space generation with a Gaussian convolution kernel, this approach has
one significant disadvantage. The standard deviation of the smooth-
ing increases only with the square root of the scale parameter ξ (see
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Eq. (4.31)). While smoothing goes fast for fine scales, it becomes in-
creasingly slower for larger scales.

There is a simple cure for this problem. We need a diffusion process
where the diffusion constant increases with time. We first discuss a
diffusion coefficient that increases linearly with time. This approach
results in the differential equation

∂g
∂t
= D0t∆g (4.33)

A spatial Fourier transform results in

∂ĝ(k)
∂t

= −4π2D0t|k|2ĝ(k) (4.34)

This equation has the general solution

ĝ(k, t) = exp(−2π2D0t2|k|2)ĝ(k,0) (4.35)

which is equivalent to a convolution in the spatial domain as in Eq. (4.31)
with ξ = σ 2 = D0t2. Now the standard deviation for the smoothing is
proportional to time for a diffusion process with a diffusion coefficient
that increases linearly in time. As the scale parameter ξ is proportional
to the time squared, we denote this scale space as the quadratic scale
space. This modified scale space still meets the minimum-maximum
principle and the semi-group property.

For even more accelerated smoothing, we can construct a logarith-
mic scale space, that is, a scale space where the scale parameter in-
creases logarithmically with time. We use a diffusion coefficient that
increases exponentially in time:

∂g
∂t
= D0 exp(t/τ)∆g (4.36)

A spatial Fourier transform results in

∂ĝ(k)
∂t

= −4π2D0 exp(t/τ)|k|2ĝ(k) (4.37)

The general solution of this equation in the Fourier domain is

ĝ(k, t) = exp(−4π2D0(exp(t/τ)/τ)|k|2)ĝ(k,0) (4.38)

Again,the transfer function and thus the convolution kernel have the
same form as in Eqs. (4.27) and (4.35), now with the scale parameter

ξl = σ 2 = 2D0

τ
exp(t/τ) (4.39)
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This means that the logarithm of the scale parameter ξ is now propor-
tional to the limiting scales still contained in the scale space. Essen-
tially, we can think of the quadratic and logarithmic scale spaces as
a coordinate transform of the scale parameter which efficiently com-
presses the scale space coordinate:

ξq ∝
√
ξ, ξl ∝ ln(ξ) (4.40)

4.3.3 Differential scale spaces

The interest in a differential scale space stems from the fact that we
want to select optimum scales for processing of features in images. In
a differential scale space, the change of the image with scale is empha-
sized. We use the transfer function of the scale space kernel Eq. (4.27),
which is also valid for quadratic and logarithmic scale spaces. The gen-
eral solution for the scale space can be written in the Fourier space
as

ĝ(k, ξ) = exp(−2π2 |k|2 ξ)ĝ(k,0) (4.41)

Differentiating this signal with respect to the scale parameter ξ yields

∂ĝ(k, ξ)
∂ξ

= −2π2 |k|2 exp(−2π2 |k|2 ξ)ĝ(k,0)
= −2π2 |k|2 ĝ(k, ξ)

(4.42)

The multiplication with −4π2|k|2 is equivalent to a second-order spa-
tial derivative (Table 3.2), the Laplacian operator . Thus we can write in
the spatial domain

∂g(x, ξ)
∂ξ

= 1
2
∆g(x, ξ) (4.43)

Equations (4.42) and (4.43) constitute a basic property of the dif-
ferential scale space. The differential scale space is equivalent to a
second-order spatial derivation with the Laplacian operator and thus
leads to an isotropic bandpass decomposition of the image. This is,
of course, not surprising as the diffusion equation in Eq. (4.25) relates
just the first-order temporal derivative with the second-order spatial
derivative. The transfer function at the scale ξ is

−2π2 |k|2 exp(−2π2ξ |k|2) (4.44)

For small wave numbers, the transfer function is proportional to −|k|2.
It reaches a maximum at

kmax = 1√
2π2ξ

(4.45)

and then decays exponentially.
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4.3.4 Discrete scale spaces

The construction of a discrete scale space requires a discretization of
the diffusion equation and not of the convolution kernel [5]. We start
with a discretization of the 1-D diffusion equation

∂g(x, ξ)
∂ξ

= ∂
2g(x,ξ)
∂x2 (4.46)

The derivatives are replaced by discrete differences in the following
way:

∂g(x, ξ)
∂ξ

≈ g(x,ξ +∆ξ)− g(x,ξ)
∆ξ

∂2g(x,ξ)
∂x2 ≈ g(x +∆x,ξ)− 2g(x,ξ)+ g(x −∆x,ξ)

∆x2

(4.47)

This leads to the following iteration scheme for computing a discrete
scale space:

g(x,ξ +∆ξ) = ∆ξg(x +∆x,ξ)+ (1− 2∆ξ)g(x, ξ)+∆ξg(x −∆x,ξ)
(4.48)

or written with discrete coordinates

gn,ξ+1 = ∆ξgn+1,ξ + (1− 2∆ξ)gn,ξ +∆ξgn−1,ξ (4.49)

Lindeberg [5] shows that this iteration results in a discrete scale
space that meets the minimum-maximum principle and the semi-group
property if and only if

∆ξ ≤ 1
4

(4.50)

The limit case of ∆ξ = 1/4 leads to the especially simple iteration

gn,ξ+1 = 1/4gn+1,ξ + 1/2gn,ξ + 1/4gn−1,ξ (4.51)

Each step of the scale space computation is given by a spatial smoothing
of the signal with the binomial mask B2 = [1/4 1/2 1/4] (Section 7.4).
We can also formulate the general scale space generating operator in
Eq. (4.49) using the convolution operator B. Written in the operator
notation introduced in Section 5.2.3, the operator for one iteration step
to generate the discrete scale space is

(1− ε)I + εB2 with ε ≤ 1 (4.52)

where I denotes the identy operator.
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This expression is significant, as it can be extended directly to higher
dimensions by replacing B2 with a correspondingly higher-dimensional
smoothing operator. The convolution mask B2 is the simplest mask in
the class of smoothing binomial filters. These filters will be discussed
in Section 7.4. A detailed discussion of discrete linear scale spaces is
given by Lindeberg [5, Chapters 3 and 4].

4.4 Multigrid representations

4.4.1 Basics

The scale space discussed in Section 4.3 has one significant disadvan-
tage. The use of the additional scale parameter adds a new dimension
to the images and thus leads to an explosion of the data storage re-
quirements and, in turn, the computational overhead for generating
the scale space and for analyzing it. Thus, it is not surprising that be-
fore the evolution of the scale space more efficient multiscale storage
schemes, especially pyramids, found widespread application in image
processing. With data structures of this type, the resolution of the im-
ages decreases in such an extent as the scale increases. In this way
an optimum balance between spatial and wave number resolution is
achieved in the sense of the uncertainty relation (Section 3.2.3). Data
structures of this type are known as multiresolution representations [4].

The basic idea is quite simple. While the representation of fine scales
requires the full resolution, coarser scales can be represented at lower
resolution. This leads to a scale space with smaller and smaller im-
ages as the scale parameter increases. In the following two sections
we will discuss the Gaussian pyramid (Section 4.4.2) and the Laplacian
pyramid (Section 4.4.3) as efficient discrete implementations of dis-
crete scale spaces. In addition, while the Gaussian pyramid constitutes
a standard scale space, the Laplacian pyramid is a discrete version of a
differential scale space (Section 4.3.3).

4.4.2 Gaussian pyramid

When subsampling an image, for example, by taking every second pixel
in every second line it is important to consider the sampling theorem
(Section 2.4.2). Before subsampling, the image must be smoothed to an
extent that no aliasing occurs in the subsampled image. Consequently,
for subsampling by a factor two, we must ensure that all structures,
which are sampled less than four times per wavelength, are suppressed
by an appropriate smoothing filter. This means that size reduction
must go hand-in-hand with appropriate smoothing.
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Generally, the requirement for the smoothing filter can be formu-
lated as

B̂(k̃) = 0 ∀k̃d ≥ 1
rd

(4.53)

where rd is the subsampling rate in the direction of the dth coordinate.
The combined smoothing and size reduction can be expressed in a

single operator by using the following notation to compute the q+1th
level of the Gaussian pyramid from the qth level:

G(q+1) = B↓2G(q) (4.54)

The number behind the | in the index denotes the subsampling rate.
Level 0 of the pyramid is the original image: G(0) = G.

If we repeat the smoothing and subsampling operations iteratively,
we obtain a series of images, which is called the Gaussian pyramid .
From level to level, the resolution decreases by a factor of two; the size
of the images decreases correspondingly. Consequently, we can think
of the series of images as being arranged in the form of a pyramid.

The pyramid does not require much storage space. Generally, if we
consider the formation of a pyramid from a D-dimensional image with
a subsampling factor of two and N pixels in each coordinate direction,
the total number of pixels is given by

ND
(

1+ 1
2D
+ 1

22D + . . .
)
< ND 2D

2D − 1
(4.55)

For a 2-D image, the whole pyramid needs just 1/3 more space than
the original image, for a 3-D image only 1/7 more. Likewise, the com-
putation of the pyramid is equally effective. The same smoothing filter
is applied to each level of the pyramid. Thus the computation of the
whole pyramid needs only 4/3 and 8/7 times more operations than for
the first level of a 2-D and 3-D image, respectively.

The pyramid brings large scales into the range of local neighbor-
hood operations with small kernels. Moreover, these operations are
performed efficiently. Once the pyramid has been computed, we can
perform neighborhood operations on large scales in the upper levels
of the pyramid—because of the smaller image sizes—much more effi-
ciently than for finer scales.

The Gaussian pyramid constitutes a series of low-pass filtered im-
ages in which the cut-off wave numbers decrease by a factor of two
(an octave) from level to level. Thus the Gaussian pyramid resembles a
logarithmic scale space. Only a few levels of the pyramid are necessary
to span a wide range of wave numbers. If we stop the pyramid at an
8×8 image, we can usefully compute only a seven-level pyramid from
a 512×512 image.
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Figure 4.6: Construction of the Laplacian pyramid (right column) from the
Gaussian pyramid (left column) by subtracting two consecutive planes of the
Gaussian pyramid.

4.4.3 Laplacian pyramid

From the Gaussian pyramid, another pyramid type can be derived, the
Laplacian pyramid . This type of pyramid is the discrete counterpart
to the differential scale space discussed in Section 4.3.3 and leads to a
sequence of bandpass filtered images. In contrast to the Fourier trans-
form, the Laplacian pyramid leads only to a coarse wave number de-
composition without a directional decomposition. All wave numbers,
independently of their direction, within the range of about an octave
(factor of two) are contained in one level of the pyramid.

Because of the coarse wave number resolution, we can preserve a
good spatial resolution. Each level of the pyramid contains only match-
ing scales, which are sampled a few times (two to six) per wavelength.
In this way, the Laplacian pyramid is an efficient data structure well
adapted to the limits of the product of wave number and spatial reso-
lution set by the uncertainty relation (Section 3.2.3).
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The differentiation in scale direction in the continuous scale space
is approximated by subtracting two levels of the Gaussian pyramid in
the discrete scale space. In order to do so, first the image at the coarser
level must be expanded. This operation is performed by an expansion
operator E↑2. As with the reducing smoothing operator, the degree of
expansion is denoted by the figure after the ↑ in the index.

The expansion is significantly more difficult than the size reduction
because the missing information must be interpolated. For a size in-
crease of two in all directions, first every second pixel in each row must
be interpolated and then every second row. Interpolation is discussed
in detail in Chapter 8. With the introduced notation, the generation of
the pth level of the Laplacian pyramid can be written as:

L(p) = G(p) −E↑2G(p+1) (4.56)

The Laplacian pyramid is an effective scheme for a bandpass decom-
position of an image. The center wave number is halved from level to
level. The last image of the Laplacian pyramid is a low-pass-filtered
image containing only the coarsest structures.

The Laplacian pyramid has the significant advantage that the origi-
nal image can be reconstructed quickly from the sequence of images in
the Laplacian pyramid by recursively expanding the images and sum-
ming them up. In a Laplacian pyramid with p + 1 levels, the level p
(counting starts with zero!) is the coarsest level of the Gaussian pyra-
mid. Then the level p−1 of the Gaussian pyramid can be reconstructed
by

G(p−1) = L(p−1) +E↑2Gp (4.57)

Note that this is just the inversion of the construction scheme for the
Laplacian pyramid. This means that even if the interpolation algo-
rithms required to expand the image contain errors, they affect only the
Laplacian pyramid and not the reconstruction of the Gaussian pyramid
from the Laplacian pyramid, because the same algorithm is used. The
recursion in Eq. (4.57) is repeated with lower levels until level 0, that is,
the original image, is reached again. As illustrated in Fig. 4.6, finer and
finer details become visible during the reconstruction process.

The Gaussian and Laplacian pyramids are examples of multigrid
data structures, which were introduced into digital image processing
in the early 1980s and since then have led to a tremendous increase in
speed of image processing algorithms. A new research area, multireso-
lutional image processing, was established by Rosenfeld [4].
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Figure 4.7: Pseudo 3-D plots of the directio-pyramidal decomposition according
to Eq. (4.60): a directional bandpass filter in x direction; b directional bandpass
filter in y direction; c isotropic bandpass filter, sum of a and b.

4.4.4 Directio-pyramidal decomposition

The Laplacian pyramid decomposes an image in logarithmic wave num-
ber intervals one octave (factor 2) distant. A useful extension is the ad-
ditional decomposition into different directions. Such a decomposition
is known as directio-pyramidal decomposition [10]. This decomposition
should have the same properties as the Laplacian pyramid: the addi-
tion of all partial images should give the original. This implies that
each level of the Laplacian pyramid must be decomposed into several
directional components. An efficient scheme for decomposition into
two directional components is as follows. The smoothing is performed
by separable smoothing filters followed by a subsampling operatorR↓2,
taking only each second pixel in each second line,

G(1) = R↓2BxByG(0) (4.58)

The first level of the Laplacian pyramid then is

L = G(0) −E↑2G(1) (4.59)

Then, the two directional components are given by

L1 = 1/2(L− (Bx −By)G(0))
L2 = 1/2(L+ (Bx −By)G(0))

(4.60)
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0, x 0, y

1, x 1, y

2, x 2, y

Figure 4.8: Directio-pyramidal decomposition as indicated of the image shown
in Fig. 4.6. Shown are the first three planes blown up to original size.

From Eq. (4.60) it is evident that the two directional components
L1 and L2 add up to the isotropic Laplacian pyramid L. The scheme
requires minimal additional computations as compared to the compu-
tation of the isotropic Laplacian pyramid. Only one more convolution
(of G(0) with By ) and three more additions are required. The first three
planes of the directio-pyramidal decomposition are shown in Fig. 4.8.
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5.1 Introduction

The extraction of features from multidimensional signals requires the
analysis of at least a local neighborhood. It is obvious that any process-
ing of individual pixels, so-called point operations, will be of no use for
this task. Such operations are just “cosmetics,” changing the visual im-
pression of the image but not extracting any useful information. By
analysis of the local neighborhood a rich set of features can already be
extracted. We can distinguish areas of constant gray values from those
that contain an edge, a texture, or just noise.

Thus this chapter gives an important theoretical basis for lowlevel
signal processing. We first discuss some basics, provide a general def-
inition of neighborhood operators and introduce a useful operator no-
tation (Section 5.2.3). The main part of the chapter is devoted to a
detailed discussion of the various classes of neighborhood operators:
linear shift-invariant operators or convolution operators (Section 5.3),
and various classes of nonlinear operators (Section 5.5). In this respect
we will also discuss the principal limitations of linear operators in Sec-
tion 5.5.1. The last section of the chapter (Section 5.6) focuses on more
practical questions. Can we establish some general rules as to how
to compute neighborhood operators in an efficient way? How do we
handle neighborhood operators at the borders of images?

5.2 Basics

5.2.1 Definition of neighborhood operators

A neighborhood operator takes the gray values of the neighborhood
around a point, performs some operations with them, and writes the
result back on the pixel. This operation is repeated for all points of
the signal. Therefore, we can write a neighborhood operation with a
multidimensional continuous signal g(x) as

g′(x) = N({g(x′)},∀(x −x′) ∈M) (5.1)

whereM is an area, called mask, region of support , or structure element .
The size and shape of M determines the neighborhood operation by
specifying the input values of g in the area M shifted with its origin to
the point x. The neighborhood operation N itself is not specified here.
It can be of any type; its result determines the value of the output g′
at x. For symmetry reasons the mask is often symmetric and has its
center of gravity in the origin.

For digital signals a general neighborhood operation can be expressed
as

G′m,n = N(Gm′−m,n′−n},∀ [m,n]T ∈M) (5.2)
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a
M

x

b

Figure 5.1: Mask or structure element with a continuous; and b digital 2-D
signals on a square lattice. The point that receives the result is marked.

a
b

c
d

Figure 5.2: Various types of symmetric masks on 2-D lattices: a 2×2 mask;
and b 3×3 mask on a square lattice. c and d nearest-neighborhood mask on a
hexagonal lattice.

or by equivalent expressions for dimensions other than two.
Although these equations do not specify in any way the type of

neighborhood operation that is performed, they still reveal the common
structure of all neighborhood operations. Thus very general strate-
gies can be developed to compute them efficiently as discussed in Sec-
tion 5.6.

5.2.2 Shape and symmetry of neighborhoods

As we have seen, any type of neighborhood operator is first determined
by the size of the mask. With continuous signals, the mask may take any
shape. With digital data on orthogonal lattices, the mask is normally of
rectangular shape. In any case, we must also specify the point relative
to the mask which receives the result of the operation (Fig. 5.1).

With regard to symmetry, the most natural choice is to place the
result of the operation at the pixel in the center of the mask. While this
is straightforward for continuous masks, it requires more thought for
digital signals. Natural choices for masks on an orthogonal lattice are
rectangles. Basically there are two types of symmetric masks: masks
with an even or odd size of pixels in each direction. For odd-sized
masks, the symmetry center coincides with the central pixel and, thus,
seems to be a good choice (Fig. 5.2b). The smallest size of odd-sized
masks includes only the directly neighboring pixels. In one, two, and
three dimensions, the mask includes 3, 9, and 27 pixels, respectively.
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In contrast, even-sized masks seem not to be suitable for neighbor-
hood operations because there is no pixel that lies in the center of the
mask. With a trick, we can apply them nevertheless, and they turn out
to be useful for certain types of neighborhood operations. The result
of the neighborhood operation is simply written back to pixels that lie
in between the original pixels (Fig. 5.2a). Thus, the resulting image is
shifted by half the pixel distance into every direction and the receiving
central pixel lies directly in the center of the neighborhoods. In effect,
the resulting image has one pixel less in every direction. It is very im-
portant to be aware of this shift by half the pixel distance. Therefore,
image features computed by even-sized masks should never be com-
bined with original gray values because this would lead to considerable
errors. Also, a mask must either be even-sided or odd-sized in all di-
rections for multidimensional digital signals. Otherwise, the output
lattices do not coincide.

On a hexagonal lattice (Section 2.3.1), two types of masks exist. For
one type the output lattice coincides with the input lattice, for the other
the output lattice lies in the center of the triangle spanned by three
lattice points of the input lattice (Fig. 5.2c and d). The smallest masks
have 7 and 3 pixels, respectively.

The number of pixels contained in the masks increases considerably
with their size. If R is the linear size of a mask in D dimensions, the
mask hasRD elements. The higher the dimension the faster the number
of elements with the size of the mask increases. Even small neighbor-
hoods include hundreds or thousands of elements. Therefore, it will
be a challenging task for higher-dimensional signal processing to de-
velop efficient schemes to compute a neighborhood operation with as
few computations as possible. Otherwise, it would not be possible to
use them at all.

The challenge for efficient computation schemes is to decrease the
number of computations from O(RD) to a lower order. This means
that the number of computations is no longer proportional to RD but
rather to a lower order of the size R of the mask. The ultimate goal
is to achieve computation schemes that increase only linearly with the
size of the mask (O(R1)) or, even better, do not depend at all on the
size of the mask (O(R0)).

5.2.3 Operator notation

In this section, we introduce an operator notation for signal processing
operations. It helps us to make complex composite neighbor operations
easily comprehensible. All operators will be written in calligraphic let-
ters, as B,D,H ,S. We write

G′ = HG (5.3)



5.2 Basics 97

for an operator H which transforms the image G into the image G′.
Note that this notation can be used for any type of signal. It can be
used for continuous as well as digital signals and for signals of any
dimension.

Consecutive application is denoted by writing the operators one af-
ter the other. The right-most operator is applied first. Consecutive
application of the same operator is expressed by an exponent

HH . . .H︸ ︷︷ ︸
p times

=Hp (5.4)

If the operator acts on a single image, the operand, which stands to
the right in the equations, will be omitted. In this way we can write
operator equations without targets. Furthermore, we will use braces in
the usual way to control the order of execution.

The operator notation leads to a representation-independent nota-
tion of signal processing operations. A linear shift-invariant operator
(see Section 3.2.3) performs a convolution operation in the spatial do-
main and a complex multiplication in the Fourier domain. With the
operator notation, we can write the basic properties of the linear shift-
invariant operator (Eq. (3.26)) in an easily comprehensible way and with-
out specifying a target as

commutativity H1H2 =H2H1

associativity H1(H2H3) = (H1H2)H3

distributivity over addition (H1 +H2)H3 =H1H2 +H2H3

(5.5)

As can be seen from these equations, other operations such as addi-
tion can also be used in the operator notation. Care must be taken with
any nonlinear operator. As soon as nonlinear operators are involved,
the order in which the operators are executed must strictly be given.
We stick with the notation that operators are executed from the left
to the right, provided that braces are not used to change the order of
execution.

The point operation of pixelwise multiplication in the spatial do-
main is a simple example for a nonlinear operator. As this operator
occurs frequently, it is denoted by a special symbol, a centered dot
(·). A special symbol is required in order to distinguish it from succes-
sive application of operators. The operator expression B(D · D), for
instance, means: apply the operator D to the signal, square the result
pixel-wise, and then apply the operator B. Without parentheses the ex-
pression BD · D would mean: apply the operator D to the image and
apply the operator BD to the image and then multiply the results point
by point. This notation thus gives precedence to the point-wise mul-
tiplication over consecutive operator execution. As a placeholder for
an object onto which an operator is acting, we will use the symbol “:”.
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Figure 5.3: Signal flow graphs of the operator combination B(D ·D): a direct
implementation; b optimized implementation.

In this notation, the forementioned operator combination is written as
B(D : ·D :).

The operator notation can also easily be mapped onto a signal flow
graph. This is shown in Fig. 5.3 for the operator combination discussed
in the preceding. Each operator is a node in this directed graph and
represented by a circle. The operator to be performed is indicated in the
circle. The flow of data is indicated by the directed vertices of the graph.
Such graphs are very useful to investigate the optimal arrangement
of processing units in a network. It is, for instance, evident that a
single processing unit for the operator D is sufficient, provided that
the output of this unit can feed both inputs of the multiplier.

5.3 Linear shift-invariant filters

5.3.1 Linearity

Linear operators are defined by the principle of superposition. If a and
b are two complex-valued scalars, and H is an operator that maps an
image onto another image of the same dimension, then the operator is
linear if and only if

H (a : +b :) = aH : +bH : (5.6)

We can generalize Eq. (5.6) to the superposition of many inputs

H
∑
k
ak :

 =∑
k
akH : (5.7)

The superposition property makes linear operators very useful. We
can decompose a complex image into simpler components for which
we can easily derive the response of the operator and then compose
the resulting response from that of the components.

It is especially useful to decompose an image into its individual pix-
els as it has been discussed in Section 3.1.1.
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5.3.2 Shift invariance and convolution

Another important property of an operator is shift invariance or homo-
geneity. It means that the response of the operator does not explicitly
depend on the position. If we shift a signal, the output image is the
same but for the shift applied. We can formulate this property more
elegantly with a shift operator S. For 2-D images, for example, the shift
operator is defined as

mnSGm′n′ = Gm′−m,n′−n (5.8)

An operator is then shift-invariant if and only if it commutes with the
shift operator, that is,

HS = SH (5.9)

Note that the shift operator S itself is a shift-invariant operator. An
operator that is both linear and shift invariant is known as a linear
shift-invariant operator or short LSI operator. This important class of
operators is also known as linear time-invariant or LTI operators for
time series.

It can be proven [1] that a linear shift-invariant operator must nec-
essarily be a convolution operation in the space domain. There is no
other operator type that is both linear and shift invariant. Thus, linear
shift-invariant neighborhood operators share all the useful features of
convolution that were discussed in Section 3.2.3. They are commuta-
tive, associative, and distribute over addition (see also Eq. (5.5)). These
properties are very useful for an efficient design of filter operations
(Chapter 6).

5.3.3 Point spread function

As just discussed in the previous section, an LSI filter can be repre-
sented in the space domain as a convolution operation. In two dimen-
sions the image G is convolved with another image H that represents
the LSI operator:

G′mn =
M−1∑
m′=0

N−1∑
n′=0

Hm′,n′Gm−m′,n−n′ (5.10)

Since for a neighborhood operation H is zero except for a small neigh-
borhood this operation can also be written as

G′mn =
R∑

m′=−R

R∑
n′=−R

H−m′,−n′Gm+m′,n+n′ (5.11)
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In this equation it is assumed that coefficients of H are nonzero only
in a (2R+1)× (2R+1) window. Both representations are equivalent if we
consider the periodicity in the space domain (Section 3.3.1). The latter
representation is much more practical and gives a better comprehen-
sion of the operator. For example, the following M×N matrix and 3×3
filter mask are equivalent:

0• −1 0 . . . 0 1
1 0 0 . . . 0 2
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0
−1 −2 0 . . . 0 0


≡

 0 −1 −2
1 0• −1
2 1 0

 (5.12)

For aD dimensional signal, the convolution sum can be written with
a simplified vector indexing also used in Section 2.4.4:

G′n =
R∑

n′=−R
H−n′Gn+n′ (5.13)

with n = [n1,n2, . . . ,nD], R = [R1, R2, . . . , RD], where Gn is an element
of aD-dimensional signal Gn1,n2,... ,nD . The notation for the sums in this
equation is an abbreviation for

R∑
n′=−R

=
R1∑

n′1=−R1

R2∑
n′2=−R2

. . .
RD∑

n′D=−RD
(5.14)

The vectorial indexing introduced here allows writing most of the rela-
tions for arbitary dimensional signals in a simple way. Moreover, it can
also be used for skewed coordinate systems if n are regarded as the in-
dices of the corresponding lattice vectors (see Eq. (2.27), Section 2.4.2).

The filter mask is identical to another quantity known as the point
spread function, which gives the response of the filter to a point image:

P ′n =
R∑

n′=−R
Hn′Pn−n′ = Hn (5.15)

where

Pn =
{

1 n = 0

0 otherwise
(5.16)

The central importance of the point spread function is based on the
fact that the convolution operation is linear. If we know the response
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to a point image, we can compute the response to any image, as any
image can be composed of point images as discussed in Section 3.1.1.
With respect to the analysis of time series, the point spread function is
known as the impulse response, with respect to the solution of partial
differential equations as the Green’s function [2].

5.3.4 Transfer function

The Fourier transform of the convolution mask is known as the trans-
fer function of a linear filter. The transfer function has an important
practical meaning. For each wave number, it gives the factor by which
a periodic structure is multiplied using the filter operation. This factor
is generally a complex number. Thus, a periodic structure experiences
not only a change in the amplitude but also a phase shift:

Ĝ′v = ĤvĜv = rH exp(iϕH)rG exp(iϕG)

= rHrG exp[i(ϕH +ϕG)]
(5.17)

where the complex numbers are represented by their magnitude and
phase as complex exponentials.

Using the wave number normalized to the Nyquist limit (Eq. (2.34)
in Section 2.4.2), the transfer function is given by

ĥ(k̃) =
R∑

n′=−R
hn′ exp(−π in′k̃) (5.18)

for a 1-D signal and by

ĥ(k̃) =
R∑

n′=−R
Hn′ exp(−π in′T k̃) (5.19)

for a multidimensional signal. For a nonorthogonal, that is, skewed
lattice, the vectorial index n′ has to be replaced by the reciprocal lattice
vector (Eq. (2.29)), and Eq. (5.19) becomes

ĥ(k) =
R∑

v=−R
Hr exp(−2π ir̂vTk) (5.20)

5.3.5 Symmetries

Symmetries play a central rule for linear shift-invariant filters in the
processing of higher-dimensional signal processing. This is because
of the simplified transfer function of symmetric masks. According to
Section 3.2.3, filters of even and odd symmetry have a real and purely
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imaginary transfer function, respectively. The symmetry of a filter is
most generally expressed by:

HR−r = ±Hr (5.21)

This is a necessary and sufficient condition for a real or imaginary trans-
fer function. Filters normally meet a stronger symmetry condition for
each direction d:

Hr1,... ,Rd−rd,... ,rD = ±Hr1,... ,rd,... ,rD (5.22)

For separable symmetric filters, the symmetry conditions can be
expressed for each 1-D component separately:

hRd−rd = ±hrd (5.23)

As the transfer functions of the 1-D components of separable filters
are combined multiplicatively, an even and odd number of odd compo-
nents results in an even and odd filter according to Eq. (5.21) and thus
into a real and imaginary transfer function, respectively.

Because of the significance of separable filters (Section 5.6.1), we
focus on the symmetry of 1-D filters. Besides odd and even symmetry,
it is necessary to distinguish filters with an even and odd number of
coefficients.

The situation is straightforward for filters with an odd number of
coefficients. Then the central coefficient is the center of symmetry and
the result of a filter operation is written to the position of this central
coefficient. This symmetry is implicitly considered in Eqs. (5.13) and
(5.18) where the central coefficient has the index 0. With this indexing
of the filter coefficients, the convolution sum and transfer function of
even 1-D filters with 2R+1 coefficients—also known as type I FIR filter
[3]—can be expressed as

g′n = h0gn +
R∑
n′=1

h′n(gn+n′ + gn−n′), ĥ(k̃) = h0 +
R∑
n′=1

2hn′ cos(n′πk̃)

(5.24)

and for odd filters with 2R + 1 coefficients or type III FIR filters as

g′n =
R∑
n′=1

h′n(gn−n′ − gn+n′), ĥ(k̃) = i
R∑
n′=1

2hn′ sin(n′πk̃) (5.25)

For filters with an even number of coefficients, there is no central
pixel. The symmetry center rather lies in-between two pixels. This
means that the results of a filter operation with such a filter are to be
placed on a grid that is shifted by half a pixel distance. Because of
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this shift between the output pixel and the input pixels, the transfer
function of an even filter with 2R coefficients type II FIR filter is

ĥ(k̃) = h0 +
R∑
n′=1

2hn′ cos((n′ − 1/2)πk̃) (5.26)

The transfer function of an odd filter with 2R coefficients or type IV FIR
filter is

ĥ(k̃) = i
R∑
n′=1

2hn′ sin((n′ − 1/2)πk̃) (5.27)

The equations for symmetric filters for two and more dimensions
are significantly more complex and are discussed in Jähne [4].

5.3.6 LSI operators as least squares estimators

LSI operators compute a new value at each point in a signal from a linear
combination of neighboring points. Likewise, a least squares estimator
computes the estimate of a quantity from a linear combination of the
input values. Thus it appears that a close relationship should exist
between LSI operators and least squares estimators.

We assume that we want to fit a certain function with linear param-
eters ap

f(x) =
P−1∑
p=0

apfp(x) (5.28)

to the local spatial gray value variation g(x). For 2-D digital signals,
the continuous functions fp(x) have to be replaced by matrices Fp.
All of the following equations are also valid for digital signals but it is
more convenient to stick with the continuous case. In the least squares
sense, the following error measure e2(x) should be minimized:

e2(x) =
∞∫
−∞
w(x′)

P−1∑
p=0

ap(x)fp(x′)− g(x +x′)
2

dDx′ (5.29)

In this integral the window functionw(x′) has been introduced to limit
the fit to a local neighborhood around the point x. Therefore, the
fit coefficients ap(x) depend on the position. Normally, the window
function is an isotropic even function with a maximum at the origin
monotonically decreasing with increasing distance from the origin. We
further assume that the window function is normalized, that is,

∞∫
−∞
w(x′)dDx′ = 1 (5.30)
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For the sake of simpler equations, the following abbreviations will be
used in this section:

〈
fpgx

〉 =
∞∫
−∞
w(x′)fp(x′)g(x +x′)dDx′

〈
fpfq

〉 =
∞∫
−∞
w(x′)fp(x′)fq(x′)dDx′

(5.31)

Setting all derivatives of Eq. (5.29) with respect to the parameters ap(x)
zero, the following linear equation system is obtained as the standard
least squares solution of the minimization problem

a(x) =M−1d(x) (5.32)

with

Mp,q =
〈
fpfq

〉
, a = [a0(x),a1(x), . . . , aP−1(x)]T dp =

〈
fpgx

〉
The solution of Eq. (5.32) becomes most simple if the functions fp(x)
are orthogonal to each other, that is,

〈
fpfq

〉 = 〈f 2
p〉δp−q. Then the

matrix M is diagonal and

ap(x) =
〈
fpgx

〉/〈
f 2
p

〉
(5.33)

This expression can also be written as convolution integral by using
Eq. (5.31) and substituting x′ by −x′:

ap(x) =
∞∫
−∞
w(x′)fp(−x′)g(x −x′)dDx′ (5.34)

This means that the fit coefficient for each point is computed by con-
volving the windowed and mirrored orthonormal function with the sig-
nal.

Example 5.1: Plane fit

As a simple example we discuss the local plane fit, that is, the local
approximation of the gray scale variation by a plane. The fit function
is

f(x) = a0 +a1x1 +a2x2, f0 = 1, f1 = x1, f2 = x2 (5.35)
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It is easy to verify that these three functions are orthogonal to each
other. Therefore

a0 =
∞∫
−∞
w(x′)g(x −x′)dDx′

a1 = −
∞∫
−∞
w(x′)x′1g(x −x′)dDx′

/ ∞∫
−∞
w(x′)x′1

2 dDx′

a2 = −
∞∫
−∞
w(x′)x′2g(x −x′)dDx′

/ ∞∫
−∞
w(x′)x′2

2 dDx′

(5.36)

As a special case for 2-D digital signals we take a binomial 3×3 win-
dow and obtain

W = 1
16

 1 2 1
2 4 2
1 2 1

 , F0 =

 1 1 1
1 1 1
1 1 1


F1 = 2

 −1 −1 −1
0 0 0
1 1 1

 , F2 = 2

 −1 0 1
−1 0 1
−1 0 1


(5.37)

The three matrices F0, F1, and F2 are already normalized, that is,

M−1∑
m=0

N−1∑
n=0

Wm,n((Fp)m,n)2 = 1 (5.38)

so that the division in Eq. (5.36) is not required. Then the convolution
masks to obtain the fit coefficients a0, a1, and a2 are

1
16

 1 2 1
2 4 2
1 2 1

 , 1
8

 1 2 1
0 0 0
−1 −2 −1

 , 1
8

 1 0 −1
2 0 −2
1 0 −1

 (5.39)

and we end up with the well-known binomial smoothing mask and the
Sobel operator for the estimate of the mean and slopes of a local plane
fit, respectively.

Thus, the close relationship between LSI operators and least squares
fits is helpful to see what kind of properties an LSI operator is filtering
out from a signal.

The case with nonorthogonal fit functions is slightly more complex.
As the matrix M (Eq. (5.32)) depends only on the fit functions and the
chosen window and not on the signal g(x), the matrix M can be in-
verted once for a given fit. Then the fit coefficients are given as a linear
combination of the results from the convolutions with all P fit func-
tions:

ap(x) =
P−1∑
p′=0

M−1
p,p′

∞∫
−∞
w(x′)fp′(−x′)g(x −x′)dDx′ (5.40)
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5.4 Recursive filters

5.4.1 Definition

Recursive filters are a special form of the linear convolution filters. This
type of filter includes results from previous convolutions at neighbor-
ing pixels into the convolution sum. In this way, the filter gets direc-
tional. Recursive filters can most easily be understood if we apply them
first to a 1-D discrete signal, a time series. Then we can write

g′n = −
S∑

n′′=1

an′′g′n−n′′ +
R∑

n′=−R
hn′gn−n′ (5.41)

While the neighborhood of the nonrecursive part (coefficients h) is sym-
metric around the central point, the recursive part is asymmetric, using
only previously computed values. A filter that contains only such a re-
cursive part is called a causal filter . If we put the recursive part on the
left side of the equation, we observe that the recursive filter is equiva-
lent to the following difference equation, also known as an ARMA(S,R)
process (autoregressive-moving average process):

S∑
n′′=0

an′′g′n−n′′ =
R∑

n′=−R
hn′gn−n′ with a0 = 1 (5.42)

5.4.2 Transfer function and z-transform

The transfer function of such a filter with a recursive and a nonrecursive
part can be computed by applying the discrete-space Fourier transform
(Section 3.1.1, Table 3.1) to Eq. (5.42). In the Fourier space the convolu-
tion of g′ with a and of g with h is replaced by a multiplication of the
corresponding Fourier transforms:

ĝ′(k)
S∑

n′′=0

an′′ exp(−2π in′′k) = ĝ(k)
R∑

n′=−R
hn′ exp(−2π in′k) (5.43)

Thus the transfer function is

ĥ(k) = ĝ
′(k)
ĝ(k)

=

R∑
n′=−R

hn′ exp(−2π in′k)

S∑
n′′=0

an′′ exp(−2π in′′k)

(5.44)

The nature of the transfer function of a recursive filter becomes more
evident if we consider that both the numerator and the denominator
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can have zeros. Thus the nonrecursive part of the transfer function
may cause zeros and the recursive part poles.

A deeper analysis of the zeros and thus the structure of the trans-
fer function is not possible in the form as Eq. (5.44) is written. It re-
quires an extension similar to the extension from real numbers to com-
plex numbers that was necessary to introduce the Fourier transform
(Section 3.1.3). We observe that the expressions for both the numer-
ator and the denominator are polynomials in the complex exponential
exp(2π ik). The complex exponential has a magnitude of one and thus
covers the unit circle in the complex plane. It covers the whole complex
plane if we add a radius r to the expression: z = r exp(2π ik).

With this extension, the expressions become polynomials in z. As
such we can apply the fundamental law of algebra that any complex
polynomial of degree n can be factorized in n factors containing the
roots or zeros of the polynomial. Thus we can write a new expression
in z, which becomes the transfer function for z = exp(2π ik):

ĥ(z) =

R∏
n′=−R

(1− cn′z−1)

S∏
n′′=0

(1−dn′′z−1)

(5.45)

Each of the factors cn′ and dn′′ is a zero of the according polynomial
(z = cn′ or z = dn′′ ).

The inclusion of the factor r in the extended transfer function re-
sults in an extension of the Fourier transform, the z-transform that is
defined as

ĝ(z) =
∞∑

n=−∞
gnz−n (5.46)

The z-transform of the series gn can be regarded as the Fourier trans-
form of the series gnr−n [5]. The z-transform is the key mathemat-
ical tool to understand recursive filters. Detailed accounts of the z-
transform are given by Oppenheim and Schafer [3] and Poularikas [6];
the 2-D z-transform is discussed by Lim [5].

The factorization of the z-transform of the filter in Eq. (5.45)—and in
turn of the transfer function—is an essential property. Multiplication
of the individual factors of the transfer function means that we can
decompose any filter into elementary filters containing only one factor
because multiplication of transfer functions is equivalent to cascaded
convolution in the spatial domain (Section 3.2.3). The basic filters that
are equivalent to a single factor in Eq. (5.45) will be discussed further
in Section 5.4.6.
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Recursive filters can also be defined in higher dimensions with the
same type of equations as in Eq. (5.42); also the transfer function and
z-transform of higher dimensional recursive filters can be written in
the very same way as in Eq. (5.44). However, it is generally not possi-
ble to factorize the z-transform as in Eq. (5.45) [5]. From Eq. (5.45) we
can immediately conclude that it will be possible to factorize a sepa-
rable recursive filter because then the higher dimensional polynomials
can be factorized into 1-D polynomials. Given these inherent difficul-
ties of higher-dimensional recursive filters we will restrict the further
discussion on 1-D recursive filters that can be extended by cascaded
convolution into higher-dimensional filters.

5.4.3 Infinite and unstable response

The impulse response or point spread function of a recursive filter is no
longer identical to the filter coefficients as for nonrecursive filters (Sec-
tion 5.3.3). It must rather be computed as the inverse Fourier transform
of the transfer function. The impulse response of nonrecursive filters
has only a finite number of nonzero samples. A filter with this prop-
erty is called a finite-duration impulse response or FIR filter. In contrast,
recursive filters have an infinite-duration impulse response (IIR).

The stability of the filter response is not an issue for nonrecursive fil-
ters but of central importance for recursive filters. A filter is said to be
stable if and only if each bound input sequence generates a bound out-
put sequence. In terms of the impulse response this means that a filter
is stable if and only if the impulse response is absolutely summable [3].
For 1-D filters the analysis of the stability is straightforward because
the conditions are well established by same basic algebraic theorems.
A filter is stable and causal if and only if all poles and zeros of the
z-transform ĥ(z) (Eq. (5.45)) are inside the unit circle [3].

5.4.4 Relation between recursive and nonrecursive filters

Any stable recursive filter can be replaced by a nonrecursive filter, in
general with an infinite-sized mask. Its mask is given by the point
spread function of the recursive filter. In practice, the masks cannot
be infinite and also need not be infinite. This is due to the fact that the
envelope of the impulse response of any recursive filter decays expo-
nentially (Section 5.4.6).

Another observation is of importance. From Eq. (5.44) we see that
the transfer function of a recursive filter is the ratio of its nonrecursive
and recursive part. This means that a purely recursive and a nonrecur-
sive filter with the same coefficients are inverse filters to each other.
This general relation is a good base to construct inverse filters from
nonrecursive filters.
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5.4.5 Zero-phase recursive filtering

The causal 1-D recursive filters are of not much use for processing of
higher-dimensional spatial data. While a filter that uses only previous
data is natural and useful for real-time processing of time series, it
makes not much sense for spatial data. There is no “before” and “after”
in spatial data. Even worse, the spatial shift (delay) associated with
recursive filters is not acceptable because it causes phase shifts and
thus objects to be shifted depending on the filters applied.

With a single recursive filter it is impossible to construct a zero-
phase filter. Thus it is required to combine multiple recursive filters.
The combination should either result in a zero-phase filter suitable for
smoothing operations or a derivative filter that shifts the phase by 90°.
Thus the transfer function should either be purely real or purely imag-
inary (Section 3.2.3).

We start with a 1-D causal recursive filter that has the transfer func-
tion

+ĥ(k̃) = a(k̃)+ ib(k̃) (5.47)

The superscript + denotes that the filter runs in positive coordinate
direction. The transfer function of the same filter but running in the
opposite direction has a similar transfer function. We replace k̃ by −k̃
and note that a(−k̃) = a(+k̃) and b(−k̃) = −b(k̃)) because the transfer
function of a real PSF is Hermitian (Section 3.2.3) and thus obtain

−ĥ(k̃) = a(k̃)− ib(k̃) (5.48)

Thus, only the sign of the imaginary part of the transfer function changes
when the filter direction is reversed.

We now have three possibilities to combine the two transfer func-
tions (Eqs. (5.47) and (5.48)) either into a purely real or imaginary trans-
fer function:

Addition eĥ(k̃) = 1
2

(
+ĥ(k̃)+ −ĥ(k̃)

)
= a(k̃)

Subtraction oĥ(k̃) = 1
2

(
+ĥ(k̃)− −ĥ(k̃)

)
= ib(k̃)

Multiplication ĥ(k̃) = +ĥ(k̃)−ĥ(k̃) = a2(k̃)+ b2(k̃)

(5.49)

Addition and multiplication (consecutive application) of the left and
right running filter yields filters of even symmetry, while subtraction
results in a filter of odd symmetry. This way to cascade recursive filters
gives them the same properties as zero- or π/2-phase shift nonrecur-
sive filters with the additional advantage that they can easily be tuned,
and extended point spread functions can be realized with only a few
filter coefficients.
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5.4.6 Basic recursive filters

In Section 5.4.2 we found that the factorization of the generalized re-
cursive filter is a key to analyze its transfer function and stability prop-
erties (Eq. (5.45)). The individual factors contain the poles and zeros.
From each factor, we can compute the impulse response so that the
resulting impulse response of the whole filter is given by a cascaded
convolution of all components.

As the factors are all of the form

fn(k̃) = 1− cn exp(−2π ik̃) (5.50)

the analysis becomes quite easy. Still we can distinguish two basic types
of partial factors. They result from the fact that the impulse response
of the filter must be real. Therefore the transfer function must be Her-
mitian, that is, f∗(−k) = f(k). This can only be the case when either
the zero cn is real or a pair of factors exists with complex-conjugate
zeros. This condition gives rise of two basic types of recursive filters,
the relaxation filter and the resonance filter that are discussed in detail
in what follows. As these filters are only useful for image processing
if they are applied both in forward and backward direction, we discuss
also the resulting symmetric transfer function and point spread func-
tion.

Relaxation filter. The transfer function of the relaxation filter running
in forward or backward direction is

±r̂ (k̃) = 1−α
1−αexp(∓π ik̃)

with α ∈ R (5.51)

In this equation, the wave number has been replaced by the wave num-
ber normalized with the Nyquist limit (see Section 2.4.2, Eq. (2.34)). It
also has been normalized so that r̂ (0) = 1. Comparing Eqs. (5.42) and
(5.43) it is evident that the transfer function Eq. (5.51) belongs to the
simple recursive filter

g′n = αg′n∓1 + (1−α)gn = gn +α(g′n∓1 − gn) (5.52)

with the point spread function

±r±n =
{
(1−α)αn n ≥ 0

0 else
(5.53)

This filter takes the fraction α from the previously calculated value and
the fraction 1−α from the current pixel.

The transfer function Eq. (5.51) is complex and can be divided into
its real and imaginary parts as

±r̂ (k̃) = 1−α
1− 2α cosπk̃+α2

[
(1−α cosπk̃)∓ iα sinπk̃

]
(5.54)
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Figure 5.4: Transfer function of the relaxation filter g′n = αg′n∓1 + (1 − α)gn
applied first in forward and then in backward direction for a positive; and b
negative values of α as indicated.

From this transfer function, we can compute the multiplicative (r̂ ) ap-
plication of the filters by running it successively in positive and negative
direction, see Eq. (5.49):

r̂ (k̃) = (1−α)2
1− 2α cosπk̃+α2

= 1

1+ β− β cosπk̃
(5.55)

with

β = 2α
(1−α)2 and α = 1+ β−√1+ 2β

β

From Eq. (5.53) we can conclude that the relaxation filter is stable if
|α| < 1, which corresponds to β ∈] − 1/2,∞[. As already noted, the
transfer function is one for small wave numbers. A Taylor series in k̃
results in

r̂ (k̃) ≈= 1− α
(1−α)2 (πk̃)

2 + α((1+ 10α+α2)
12(1−α2)2

(πk̃)4 (5.56)

Ifα is positive, the filter is a low-pass filter (Fig. 5.4a). It can be tuned by
adjusting α. If α is approaching 1, the averaging distance becomes infi-
nite. For negative α, the filter enhances high wave numbers (Fig. 5.4b).

This filter is the discrete analog to the first-order differential equa-
tion ẏ+τy = 0 describing a relaxation process with the relaxation time
τ = −∆t/ lnα [4].

Resonance filter. The transfer function of a filter with a pair of complex-
conjugate zeros running in forward or backward direction is

±ŝ(k̃) = 1
1−r exp(iπk̃0)exp(∓iπk̃)

· 1
1−r exp(−iπk̃0)exp(∓iπk̃)

= 1
1−2r cos(πk̃0)exp(∓iπk̃)+r2 exp(∓2iπk̃)

(5.57)
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Figure 5.5: Transfer function of the zero-phase recursive resonance filter for
a k̃0 = 1/2 and values of r as indicated; and b r = 7/8 and values of k̃0 as
indicated.

The second row of the equation shows that this is the transfer function
of the recursive filter

g′n = gn + 2r cos(πk̃0)g′n∓1 − r 2g′n∓2 (5.58)

The impulse response of this filter is [3]

h±n =


rn

sinπk̃0
sin[(n+ 1)πk̃0] n ≥ 0

0 n < 0
(5.59)

If we run the filter back and forth, the resulting transfer function is

ŝ(k̃) = 1(
1−2r cos[π(k̃−k̃0)]+r2

)(
1−2r cos[π(k̃+k̃0)]+r2

) (5.60)

From this equation, it is evident that this filter is a bandpass filter with
a center wave number of k̃0. The parameter r is related to the width of
the bandpass. If r = 1, the transfer function has two poles at k̃ = ±k̃0.
If r > 1, the filter is unstable; even the slightest excitement will cause
infinite amplitudes of the oscillation. The filter is only stable for r ≤ 1.

The response of this filter can be normalized to obtain a bandpass
filter with a unit response at the center wave number. The transfer
function of this normalized filter is

ŝ(k̃) = (1−r2)2 sin2(πk̃0)
(1+r2)2+2r2 cos(2πk̃0)−4r(1+r2)cos(πk̃0)cos(πk̃)+2r2 cos(2πk̃)

(5.61)

The denominator in Eq. (5.61) is still the same as in Eq. (5.60); it has only
been expanded in terms with cos(nπk̃0). The corresponding recursive
filter coefficients are:

g′n = (1− r 2) sin(πk̃0)gn + 2r cos(πk̃0)g′n∓1 − r 2g′n∓2 (5.62)
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Figure 5.5 shows the transfer function of this filter for values of k̃0 and
r as indicated.

For symmetry reasons, the factors become most simple for a reso-
nance wave number of k̃0 = 1/2. Then the recursive filter is

g′n = (1− r 2)gn − r 2g′n∓2 = gn − r 2(gn + g′n∓2) (5.63)

with the transfer function

ŝ(k̃) = (1− r 2)2

1+ r 4 + 2r 2 cos(2πk̃)
(5.64)

The maximum response of this filter at k̃ = 1/2 is one and the minimum
response at k̃ = 0 and k̃ = 1 is ((1− r 2)/(1+ r 2))2.

This resonance filter is the discrete analog to a linear system gov-
erned by the second-order differential equation ÿ+2τẏ+ω2

0y = 0, the
damped harmonic oscillator. The circular eigenfrequency ω0 and the
time constant τ of a real-world oscillator are related to the parameters
of the discrete oscillator, r and k̃0 by [4]

r = exp(−∆t/τ) and k̃0 =ω0∆t/π (5.65)

5.5 Classes of nonlinear filters

5.5.1 Limitations of linear filters

In the previous sections, the theory of linear shift-invariant filters was
discussed in detail. Although the theory of these filters is well estab-
lished and they can be applied, they still have some severe limitations.
Basically, linear filters cannot distinguish between a useful feature and
noise. This property can be best demonstrated with a simple example.
We assume a simple signal model with additive noise:

g′(x) = g(x)+n(x)⇐⇒ ĝ′(k) = ĝ(k)+ n̂(k) (5.66)

The signal to noise ratio (SNR) is defined by
∣∣ĝ(k)∣∣ /∣∣n̂(k)∣∣. If we now

apply a linear filter with the transfer function ĥ(k) to this signal, the
filtered signal is

ĥ(k)ĝ′(k) = ĥ(k)(ĝ(k)+ n̂(k)) = ĥ(k)ĝ(k)+ ĥ(k)n̂(k) (5.67)

It is immediately evident that the noise and the signal are damped by
the same factor. Consequently, the SNR does not increase at all by
linear filtering, it just stays the same.

From the preceding considerations, it is obvious that more complex
approaches are required than linear filtering. Common to all these ap-
proaches is that in one or the other way the filters are made dependent
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on the context or are tailored for specific types of signals. Often a con-
trol strategy is an important part of such filters that controls which
filter or in which way a filter has to be applied at a certain point in
the image. Here, we will outline only the general classes for nonlinear
filters. Pitas and Venetsanopoulos [7] give a detailed survey on this
topic.

5.5.2 Rank-value filters

Rank-value filters are based on a quite different concept than linear-
shift invariant operators. These operators consider all pixels in the
neighborhood. It is implicitly assumed that each pixel, distorted or
noisy, carries still useful and correct information. Thus, convolution
operators are not equipped to handle situations where the value at a
pixel carries incorrect information. This situation arises, for instance,
when an individual sensor element in a CCD array is defective or a
transmission error occurred.

To handle such cases, operations are required that apply selection
mechanisms and do not use all pixels in the neighborhood to compute
the output of the operator. The simplest class of operators of this
type are rank-value filters. While the convolution operators may be
characterized by “weighting and accumulating,” rank-value filters may
be characterized by “comparing and selecting.”

For this we take all the gray values of the pixels which lie within the
filter mask and sort them by ascending gray value. This sorting is com-
mon to all rank-value filters. They only differ by the position in the list
from which the gray value is picked out and written back to the center
pixel. The filter operation that selects the medium value is called the
median filter . The median filter is an excellent example for a filter that
is adapted to a certain type of signal. It is ideally suited for removing
a single pixel that has a completely incorrect gray value because of a
transmission or data error. It is less well suited, for example, to reduce
white noise.

Other known rank-value filters are the minimum filter and the max-
imum filter . As the names say, these filters select out of a local neigh-
borhood, either the minimum or the maximum gray value forming the
base for gray scale morphological filters (Chapter 21).

As rank-value filters do not perform arithmetic operations but select
pixels, we will never run into rounding problems. These filters map a
discrete set of gray values onto itself. The theory of rank-value filters
has still not been developed to the same extent as of convolution filters.
As they are nonlinear filters, it is much more difficult to understand
their general properties. Rank-value filters are discussed in detail by
Pitas and Venetsanopoulos [7].
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5.5.3 Pixels with certainty measures

Linear filters as discussed in Section 5.3 treat each pixel equally. Im-
plicitly, it is assumed that the information they are carrying is of equal
significance. While this seems to be a reasonable first approximation,
it is certain that it cannot be generally true. During image acquisition,
the sensor area may contain bad sensor elements that lead to erroneous
gray values at certain positions in the image. Furthermore, the sensitiv-
ity and noise level may vary from sensor element to sensor element. In
addition, transmission errors may occur so that individual pixels may
carry wrong information. Thus we may attach in one way or the other
a certainty measurement to each picture element.

Once a certainty measurement has been attached to a pixel, it is obvi-
ous that the normal convolution operators are no longer a good choice.
Instead, the certainty has to be considered when performing any kind of
operation with it. A pixel with suspicious information should only get
a low weighting factor in the convolution sum. This kind of approach
leads us to what is known as normalized convolution [8, 9].

This approach seems to be very natural for a scientist or engineer.
He is used to qualifying any measurement with an error. A measure-
ment without a careful error estimate is of no value. The standard de-
viation of a measured value is required for the further analysis of any
quantity that is related to the measurement. Normalized convolution
applies this common principle to image processing.

The power of this approach is related to the fact that we have quite
different possibilities to define the certainty measurement. It need not
only be related to a direct measurement error of a single pixel. If we
are, for example, interested in computing an estimate of the mean gray
value in an object, we can take the following approach. We devise a kind
of certainty measurement that analyzes neighborhoods and attaches
low weighting factors where we may suspect an edge so that these pixels
do not contribute much to the mean gray value or feature of the object.

In a similar way, we can, for instance, also check how likely the gray
value of a certain pixel is if we suspect some distortion by transmission
errors or defective pixels. If the certainty measurement of a certain
pixel is below a critical threshold, we replace it by a value interpolated
from the surrounding pixels.

5.5.4 Adaptive and steerable filters

Adaptive filters can be regarded as a linear filter operation that is made
dependent on the neighborhood. Adaptive filtering can best be ex-
plained by a classical application, the suppression of noise without
significant blurring of image features.



116 5 Neighborhood Operators

The basic idea of adaptive filtering is that in certain neighborhoods
we could very well apply a smoothing operation. If, for instance, the
neighborhood is flat, we can assume that we are within an object with
constant features and thus apply an isotropic smoothing operation to
this pixel to reduce the noise level. If an edge has been detected in
the neighborhood, we could still apply some smoothing, namely along
the edge. In this way, some noise is still removed but the edge is not
blurred. With this approach, we need a set of filters for various uni-
directional and directional smoothing operations and choose the most
appropriate smoothing filter for each pixel according to the local struc-
ture around it. Because of the many filters involved, adaptive filtering
may be a very computational-intensive approach. This is the case if
either the coefficients of the filter to be applied have to be computed
for every single pixel or if a large set of filters is used in parallel and
after all filters are computed it is decided at every pixel which filtered
image is chosen for the output image.

With the discovery of steerable filters [10], however, adaptive filter-
ing techniques have become attractive and computationally much more
efficient.

5.5.5 Nonlinear combinations of filters

Normalized convolution and adaptive filtering have one strategy in
common. Both use combinations of linear filters and nonlinear point
operations such as point-wise multiplication and division of images.
The combination of linear filter operations with nonlinear point opera-
tions makes the whole operation nonlinear.

The combination of these two kinds of elementary operations is a
very powerful instrument for image processing. Operators containing
combinations of linear filter operators and point operators are very at-
tractive as they can be composed of very simple and elementary opera-
tions that are very well understood and for which analytic expressions
are available. Thus, these operations in contrast to many others can be
the subject of a detailed mathematical analysis. Many advanced signal
and image processing techniques are of that type. This includes oper-
ators to compute local structure in images and various operations for
texture analysis.

5.6 Efficient neighborhood operations

The computational costs for neighborhood operations in higher-dimen-
sional signals can be very high. If we assume that the number of op-
erations is proportional to the size of the mask and size of the image,
a neighborhood operation is an operation of the order O((NR)D) in
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a D-dimensional image, where R and N are the linear dimension of
the mask and the image, respectively. With respect to a single point a
neighborhood operation is of the order O(RD).

This means that the number of operations for neighborhood oper-
ations is exploding with the dimension of a signal. A neighborhood
with R = 5 contains just 25 pixels in a 2-D image, while it has already
125 pixels in a 3-D image and 625 pixels in a 4-D image. For efficient
neighborhood operations it is thus of utmost importance to reduce the
order with efficient algorithms. The goal is to arrive at an algorithm of
linear order, O(R), or ultimately at an algorithm that does not depend
at all on the size of the mask, that is, O(R0).

In the rest of this chapter, we will discuss three classes of optimiza-
tion strategies:

• general strategies that are valid for all classes of neighborhood op-
erations;

• operator class specific strategies; and

• operator specific optimizations.

The most preferable technique is, of course, the first one as it is
most generic and accelerates all classes of neighborhood operations.
Optimizing a specific operator is the least preferable strategy as it is
highly specific and does not benefit any other operators. It may still be a
valid choice for frequently used operators that have high computational
cost.

In the following, we first discuss efficient algorithms for convolution
in higher dimensional signals (Section 5.6.1). Strategies for efficient
computation of morphological neighborhood operators are discussed
in Chapter 21. Then we focus on general strategies to speed up all
types of efficient neighborhood operators (Section 5.6.2). This is possi-
ble as the speed of an algorithm does not depend only on the number of
arithmetic operations but also on efficient memory access techniques.
This issue becomes increasingly important because the speed of mem-
ory access tends to lag more and more behind the computing power of
modern microcomputer architectures, especially with multimedia in-
struction sets (Volume 3, Chapter 3).

5.6.1 Minimizing computational effort

For the optimization of neighborhood operations for higher dimen-
sional signals, similar remarks are valid as for filter design (Section 6.2).
Many of the classical techniques [11, 12] that have been developed with
1-D filtering of time series are simply not optimally suited for higher-
dimensional signals. Thus the classical techniques are not reviewed
here. We rather focus on the aspects for higher-dimensional signals.
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Without doubt, a filter should have as few non-zero coefficients as
possible for fast processing. Thus the minimization of the computa-
tional effort is a design problem in the first place. How can I devise a
filter for a certain purpose that meets creation criteria concerning ac-
curacy etc. with as few coefficients as possible? This topic is treated
in Chapter 6. Here we will discuss the principles of general techniques
to speed up convolution operations. Examples of the usage of these
techniques are discussed in Chapters 6–8 and Chapter 10.

Symmetric masks. The effects of symmetries on the point spread
function and transfer function are discussed in Section 5.3.5. Symme-
tries in filter masks reduce the number of multiplications. For each
symmetry axis we can save one multiplication for a pair of pixels by
writing

hrgn−r +h−rgn+r = hr(gn−r ± gn+r ) if h−r = ±hr (5.68)

The number of additions/subtractions remains the same. If aD-dimen-
sional filter mask is symmetric in all directions, the number of multi-
plications is thus reduced by a factor of 2D. Although this constitutes
a significant reduction in the number of multiplications, the number of
additions still remains the same. Even if we saved all multiplications,
the number of arithmetic operations would be just halved. This also
means that the order of the convolution has not changed and is still
O(RD) for a D-dimensional filter of the size R. While the reduction of
multiplications was significant for early computer architectures where
multiplication was significantly slower than addition (Volume 3, Sec-
tion 3.2) this is no longer of importance for standard microprocessors
because addition and multiplication operations are equally fast. It is
still, however, an important issue for configurable hardware such as
field-programmable gate arrays (FPGA, Volume 3, Chapter 2).

Equal coefficients. Without regard to symmetries, the number of mul-
tiplications can also be reduced by simply checking the filter masks for
equal coefficients and adding all those pixels before they are multiplied
with the common factor. We demonstrate this technique with two well-
known filter masks:

SX =
 1 0 −1

2 0 −2
1 0 −1

 , B4 =


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (5.69)

In the first mask, one mask of the Sobel operator , there are only two
different multiplication factors (1 and 2) for 9 coefficients. The 5×5
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binomial operator has only six different factors (1, 4, 6, 16, 24, and 36)
for 25 coefficients. In both cases substantial savings in the number of
multiplications are achieved. However, as with the technique to make
use of the symmetries of the filter mask, no additions/subtractions are
saved and the order of the operation does not change.

Separable filters. Separable filters are one of the most efficient strate-
gies to reduce the order of a D-dimensional convolution operation. A
D-dimensional filter of the length R with O(RD) operations can be re-
placed by D 1-D convolution operations of order O(R). Thus separable
filters reduce the convolution operation from an orderO(RD) operation
to an operation of linear order O(DR). The savings in the number of
operations increase with the dimension of the signal. While for a 5×5
filter operation the number of operations can only be reduced from 25
multiplications and 24 additions to 10 multiplications and 8 additions,
for a 5×5×5 filter 125 multiplications and 124 additions are reduced
to 15 multiplications and 12 additions.

Thus whenever possible, it is advisable to use separable neighbor-
hood operations. This approach has the significant additional advan-
tage that filters can be designed for arbitrary-dimensional signals.

Selection of optimal scale. Another simple but often not considered
technique is to use multigrid image presentations such as pyramids
(Section 4.4) and to select the right scale for the operation to be per-
formed. Imagine that an operation with a rather large filter kernel could
be performed on a representation of the image with only half the size.
Then the number of pixels is reduced by a factor of 2D and the number
of operations per pixel by another factor of two if we assume that the
filter operation is of linear order. In total the number of operations
is reduced by a factor of 2D+1. For a 2-D image this means an 8-fold
speed-up and for a volumetric image a 16-fold speed-up.

5.6.2 Efficient storage schemes

In-place computation of nonrecursive neighborhood operations needs
intermediate storage because the operation requires the access to pixels
that are already overwritten with the result of previous neighborhood
operations. Of course, it would be the easiest way to store the whole im-
age with which a neighborhood operation should be performed. Some-
times this approach is useful, for instance when it is required to filter
an image with different filters or when the original image must be pre-
served anyway. Often, however, not enough storage area is available to
allow for such a simplistic approach. Thus we discuss in the following
two efficient storage schemes for neighborhood operations.
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Figure 5.6: In-place computation of the convolution with a (2R+1)× (2R+1) mask
using 2R + 1 line buffers and an accumulation buffer. a and b show the com-
putation of rows m and m+ 1, respectively.

Cyclic buffers. Any neighborhood operation with a 2-D mask on a
2-D signal requires four loops in total. Two loops scan through the 2-D
mask accumulating the results for a single pixel. Two further loops are
required to move the mask through the image rows and image columns.
If the mask moves row by row through the image, it is obvious that an
intermediate storage area with a minimum number of lines correspond-
ing to the height of the mask is required. If the mask moves to the next
row, it is not required to rewrite all lines. The uppermost line in the
buffer can be discarded because it is no longer required and can be
overwritten by the lowest row required now.

Figure 5.6 explains the details of how the buffers are arranged for
the example of a neighborhood operation with a mask that has 2R + 1
rows. To compute the convolution for row m, row m + R is read into
one of the line buffers. The five line buffers then contain the rows
m − R through m + R. Thus, all rows are available to compute the
neighborhood operation with a (2R+1)× (2R+1) mask for row m.

When the computation proceeds to row m + 1, row m + R + 1 is
loaded into one of the line buffers replacing rowm−R that is no longer
required. The 2R+1 line buffers now contain the rowsm−R+1 through
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m+R+1. Generally, the line buffer number into which a row is written
is given by the row number R modulo the number of line buffers, that
is, mmod (2R + 1).

As a whole row is available, further optimizations are possible. The
neighborhood operation can be vectorized. The accumulation of the
results can be performed with all pixels in a row for one coefficient of
the mask after the other in parallel.

It is often advantageous to use an extra accumulation buffer to ac-
cumulate the intermediate results. This is, for instance, required when
the intermediate results of the convolution sum must be stored with
higher precision than the input data. For 8-bit, that is, 1-byte images, it
is required to perform the accumulation with at least 16-bit accuracy.
After the results with all filter coefficients are accumulated, the buffer
is copied back to row m in the image with appropriate scaling.

The procedure described so far for neighborhood operations is also
very effective from the point of memory caching. Note that many com-
putations (for a 5×5 mask at least 25 operations per pixel) are per-
formed, fetching data from the 5 line buffers and storing data into one
accumulator buffer. These 6 buffers easily fit into the primary cache
of modern CPUs if the image rows are not too long. Proceeding to the
next row needs only the replacement of one of these buffers. Thus,
most of the data simply remains in the cache and for all computations
that are performed with one pixel it must be loaded only one time into
the primary cache.

Separable neighborhood operations. For separable masks, a simpler
approach could be devised as illustrated in Fig. 5.7. The convolution is
now a two-step approach. First, the horizontal convolution with a 1-D
mask takes place. Rowm is read into a line buffer. Again, a vectorized
neighborhood operation is now possible with the whole line with the
1-D mask. If higher-precision arithmetic is required for the accumula-
tion of the results, an accumulation buffer is needed again. If not, the
accumulation could directly take place in row m of the image. After
the horizontal operation, the vertical operation takes place in the same
way. The only difference is that now column by column is read into the
buffer (Fig. 5.7).

This procedure for separable neighborhood operations can easily
be extended to higher-dimensional images. For each dimension, a line
in the corresponding direction is copied to the buffer, where the con-
volution takes place and then copied back into the image at the same
place. This procedure has the significant advantage that the operations
in different directions require only different copy operations but that
the same 1-D neighborhood operation can be used for all directions. It
has the disadvantage, though, that more data copying is required. For
the processing of D-dimensional signals, each pixel is copied D times
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Figure 5.7: In-place computation of a separable neighborhood operation.
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Figure 5.8: Neighborhood operations at the image border. A (2R+1)× (2R+1)
mask is shown in two positions: with the center at the edge of the image sticking
R pixel over the edge of the image and with the edge of the mask at the edge of
the image.

from the main memory. If the neighborhood operation is performed
in one step using cyclic row buffers and if all row buffers fit into the
primary cache of the processor, it must be copied only once from the
main memory.

5.6.3 Neighborhood operators at borders

If a neighborhood operation is performed with a (2R+1)× (2R+1) mask,
a band of R rows and columns is required around the image in order to
perform the convolution up to the pixels at the image edges (Fig. 5.8).
The figure also shows that a band with R pixels at the edge of the image
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will be influenced by the way the off-image pixels are chosen. Three
different strategies are available to extend the image.

Periodic extension. This is the theoretically correct method, as the
Fourier transform expects that the image is periodically repeated
through the whole space (Section 3.3). If a filter operation is performed
in the Fourier domain by directly multiplying the Fourier transformed
image with the transfer function of the filter, this periodic extension is
automatically implied. This mode to perform the convolution is also
referred to as cyclic convolution.

Zero extension. As we do not know how the images continue outside
of the sector that is available, we do not know what kind of values we
can expect. Therefore, it seems to be wise to accept our lack of knowl-
edge and to extend the image just by zeros. This procedure, of course,
has the disadvantage that the image border is seen as a sharp edge,
which will be determined by any edge detector. Smoothing operators
behave more graciously with this extension technique. The image just
becomes darker at the borders and the mean gray value of the image is
preserved.

Extrapolating extension. This technique takes the pixels close to the
border of the image and tries to extrapolate the gray values beyond the
borders of the image in an appropriate way. The easiest technique is
just to set the required pixels outside of the image to the border pixel
in the corresponding row or column. A more sophisticated extrapola-
tion technique might use linear extrapolation. Extrapolation techniques
avoid that edge detectors detect an edge at the border of the image and
that the image gets darker due to smoothing operations at the edges.
The extrapolation technique is, however, also far from being perfect,
as we actually cannot know how the picture is extending beyond its
border. In effect, we give too much weight to the border pixels. This
also means that the mean gray value of the image is slightly altered.

It is obvious that any of these techniques is a compromise, none
is ideal. Each of the techniques introduces errors into a band of a
width of R pixels when a convolution operation is performed with a
(2R+1)× (2R+1) mask. There is only one safe way to avoid errors. Make
sure that the objects of interest are not too close to the border of the
image, that is, within the R wide bands at the edges of the images. The
border becomes, of course, wider when several convolution operations
are cascaded.
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6.1 Introduction

Filter design is a well-established area both in continuous-time and
discrete-time signal processing and subject of standard textbooks [1, 2].
This is not the case, however, for multidimensional signal processing
for three reasons:

• Filter design of higher-dimensional signals poses difficult mathe-
matical problems [3, Chapter 2].

• While design criteria for the analysis of 1-D signals (time series)
are quite clear, this is less certain for higher-dimensional signals
including images.
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Figure 6.1: Design criteria for 1-D filters: a low-pass; and b bandpass.

• The higher the dimension of the signal, the more dominant becomes
the question to design efficient filters, that is, filters that can be
computed with a minimum number of operations.

Consequently, this chapter starts with a discussion of filter design cri-
teria in Section 6.2. Then two filter design techniques are discussed:
windowing (Section 6.3) and filter cascading (Section 6.4). In the final
sections, filter design is formulated as an optimization problem (Sec-
tion 6.5) and applied to the design of steerable filters and filter families
(Section 6.6).

6.2 Filter design criteria

6.2.1 Classical design criteria in signal processing

Filter design is a well-established area both in continuous-time and
discrete-time signal processing. Well-defined basic classes of filters can
be distinguished. A low-pass filter suppresses all frequencies above a
certain threshold. Conversely, a high-pass filter passes only frequen-
cies above a certain threshold. Finally, a bandpass filter transfers fre-
quencies only in a specified frequency range while a bandstop filter
suppresses all frequencies in a specified band.

With these basic types of filters, the ideal transfer function takes
only the values one and zero. Thus the design is centered around the
idea of a passband and a stopband (Fig. 6.1). In the passband, the real
transfer function should be one within a tolerance δ1. Additional con-
straints may specify the tolerable degree of ripples. In contrast, in the
stopband the frequencies should be suppressed as much as possible,
with a maximum amplitude of δ2. Finally, the width of the transition
region νs−νp determines how fast the filter changes from the passband
to the stopband.



6.2 Filter design criteria 127

-20 -10 0 10 20
-0.2

0
0.2
0.4
0.6
0.8
1

n

Figure 6.2: Disadvantage of classical 1-D filtering for computer vision: convo-
lution of a step edge with an ideal low-pass filter causes overshoots.

An ideal filter, that is, a filter with a flat passband and stopband
and a zero width transition region, can only be realized by a mask with
an infinite number of coefficients. This general rule is caused by the
reciprocity between the Fourier and space domains (Section 3.2.3). A
discontinuity as shown for the ideal low-pass filter in Fig. 6.1a causes
the envelope of the filter coefficients to decrease not faster than with
1/x from the center coefficient. From the uncertainty relation (Sec-
tion 3.2.3), we can conclude that the narrower the selected wave-number
range of a filter is, the larger its filter mask is.

Discrete-time signal processing is dominated by causal recursive
filters (Section 5.4). This type of filters is more efficient than finite
impulse response filters, that is, less filter coefficients are required to
meet the same design criteria.

Filter design of 1-D filters according to the criteria discussed here
is treated extensively in standard textbooks of signal processing. Good
examples are, for example, [1, Chapter 7] and [2, Chapter 8].

6.2.2 Filter design criteria for computer vision

These design criteria for 1-D signals can, in principle, be applied for
higher-dimensional signals including images. Depending on the appli-
cation, the shape of the passband and/or stopband could be either cir-
cular (hyperspherical) for isotropic filters or rectangular (hypercubic)
for separable filters. However, it is not advisable to use filters designed
for the analysis of time series blindly in computer vision.

We demonstrate the disadvantages of these criteria applied to im-
ages with an ideal low-pass filter. Figure 6.2 shows that filtering of a
step edge with an ideal low-pass filter leads to undesirable overshoot-
ing effects including negative gray values. A causal recursive filter—
commonly used for time series—causes the edge to shift by a distance
proportional to the relaxation length of the filter.

Because both of these effects are undesirable for computer vision,
different design criteria have to be applied for filters to be used for
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computer vision. It is essential to establish such criteria before any
design techniques are considered.

The purpose of filtering for computer vision is feature extraction.
One of the most general features are gray value changes as they mark
the edges of objects. Thus the general design criteria for filters to be
used for image processing include the following rules:

No overshooting at step edges. This requirement implies monotonic
transfer functions.

No shift of the center of gravity of an object or of edges of an object.
This condition implies that filters have either an even or odd mask
in all directions and leads to the four types of FIR filters discussed
in Section 5.3.5.

Isotropy. In order not to bias any directions in images, smoothing fil-
ters, edge detectors, and other filters should generally be isotropic.

Separability. Separable filters are preferable because they can gener-
ally be computed much more efficiently than equivalent nonsepara-
ble filters (Section 5.6.1). This requirement is even more important
for higher-dimensional images.

6.3 Windowing techniques

Most ideal filters contain discontinuities in their transfer functions.
This includes not only the classical low-pass, high-pass, bandpass, and
bandstop filters (Fig. 6.1) but also most key filters for low-level higher-
dimensional signal processing. The ideal derivative filter iπk̃ has a
hidden discontinuity. It appears right at k̃ = ±1 where the value jumps
from π to −π ; the periodic extension of the ideal derivative filter leads
to the sawtooth function. The transfer function of the ideal interpola-
tion filter mask, the sinc function, is a box function, which is also dis-
continuous (Section 2.4.4). Finally, the transfer function of the Hilbert
filter , the sgn function, has a discontinuity at k̃ = 0 (Section 4.2.2).

The direct consequence of these discontinuities is that the corre-
sponding nonrecursive filter masks, which are the inverse Fourier trans-
forms of the transfer functions, are infinite. Although recursive filters
have an infinite impulse response they do not help to solve this prob-
lem. The impulse response of IIR filters always decays exponentially,
while discontinuities in the value (C0) or the slope (C1) of the transfer
function cause the envelope of the filter coefficients only to decay with
x−1 or x−2, respectively.

The basic principle of filter design techniques by windowing is as
follows:

1. Start with ideal transfer functions and compute the corresponding
filter coefficients.
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Figure 6.3: Transfer functions of some classical window functions (here 20 pix-
els wide): a rectangle and triangle (Barlett) window; b cosine (Hanning) and
cosine squared window; c and d show an expanded version of a and b, respec-
tively.

2. Apply a window function of finite size to the filter coefficients. The
multiplication of the filter coefficients with the window function re-
sults in a filter mask with a limited number of coefficients.

3. Check the resulting transfer function by convolving the transfer
function of the window with the ideal transfer function and com-
pute critical design parameters. Optimize the window function until
the desired criteria are met.

One of the big advantages of the windowing technique for filter de-
sign is that it is very easy to predict the deviations from the ideal behav-
ior. As we multiply the filter mask with the window function, the trans-
fer function—according to the convolution theory (Section 3.2.3)—is
convolved by the Fourier transform of the window function. Convolu-
tion in Fourier space will have no effects where the transfer function is
flat or linear-increasing and thus will only change the transfer functions
near the discontinuities. Essentially, the discontinuity is blurred by the
windowing of the filter mask. The scaling property of the Fourier trans-
form (Section 3.2.3) says that the larger the blurring is the smaller the
window is. The exact way in which the discontinuity changes depends
on the shape of the window.
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Table 6.1: Some commonly used 1-D window functions with a width of R pixels
and their properties. The last column gives the width of the transition range.
(For a definition of the sinc function and other functions, see Table 3.4.)

Name Form Transfer function ∆k̃

Rectangular Π(x/R) R sinc(Rk̃/2) 1/R
Triangular Λ(2x/R) (R/2) sinc2(k̃/4) 2/R
Cosine cos(2πx/R)Π(x/R) (R/(π

√
2)(sinc(Rk̃/2+ 1/2)+

sinc(Rk̃/2− 1/2))
π/(2R)

Cosine
squared

cos2(2πx/R)Π(x/R) (1/R)(sinc(Rk̃/2+ 1)+
2 sinc(Rk̃/2)+ sinc(Rk̃/2− 1))

2/R

Figure 6.3 shows the transfer functions of several common win-
dow functions. All transfer functions show unwanted oscillations. The
rectangular window gives the sharpest transition but shows also the
strongest oscillations decaying only with k−1. The oscillations are much
less for the cosine (Hanning) and cosine squared window (Fig. 6.3b) but
still not completely removed. The triangle window (Bartlett window)
has the advantage that its transfer function is nonnegative, resulting in
a monotonous low-pass filter.

The Gaussian window is, in principle, infinite. However, it decays
very rapidly so that it is not a practical problem. Its big advantage is
that the shape of the window and its transfer functions are identical.
Moreover, as the Gaussian window is strictly positive in both domains,
there are no oscillations at all in the transition region of a transfer
function nor any overshooting at step edges in the space domain. For
discrete filters, the Gaussian function is well approximated by the bi-
nomial distribution.

These are some general properties of window functions for filter
design:

• The integral over the transfer function of the window function is
one:

1∫
−1

ŵ(k̃)dk̃ = 1⇐⇒w(0) = 1 (6.1)

• The integral over the window function is equal to its transfer func-
tion at k̃ = 0:

∞∫
−∞
w(x)dx = ŵ(0) (6.2)

• The steepness of the transition for a filter with a discontinuity is
equal to ŵ(0). This simple relation can be obtained by computing
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Figure 6.4: Window technique applied to the design of a 2R + 1 first-order
derivative filter for R = 1 to 5. Imaginary part of the transfer function for a
rectangle; b binomial; and c triangular window. The dashed line is the ideal
transfer function, iπk̃.

the derivative of the convolution between the transfer function of
the filter and the window function and using a shifted unit step at
k̃0 for ĥ:

d

dk̃
(ĥ∗ ŵ)|k̃0

= −
∞∫
−∞
u(k̃′ − k̃0)

dŵ(k̃0 − k̃′)
dk̃′

dk̃′

= −
∞∫
k̃0

dŵ(k̃0 − k̃′)
dk̃′

dk̃′ = ŵ(0)
(6.3)

Thus the transition region is about 1/ŵ(0) wide.

Example 6.1: First-order derivative filter

The transfer function of an ideal derivative filter is purely imaginary
and proportional to the wave number:

D̂ = iπk̃, |k̃| ≤ 1 (6.4)

An expansion of this transfer function into a Fourier series results in

D̂(k̃) = 2i

(
sin(πk̃)− sin(2πk̃)

2
+ sin(3πk̃)

3
− . . .

)
(6.5)
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corresponding to the following odd filter mask with the coefficients

hr = −h−r = (−1)r

r
r ∈ [1, R] (6.6)

The usage of the rectangular window would be equivalent to keeping
only a number of elements in the Fourier series. As Fig. 6.4a shows, the
oscillations are still large and the slope of the transfer function at low
wave numbers flips with the order of the series between 0 and twice
the correct value. Thus, the resulting truncated filter is not useful at
all.

Much better results can be gained by using a binomial window func-
tion.

Window Resulting mask
1/4[1 2 1] 1/2[1 0 –1]
1/16[1 4 6 4 1] 1/12[–1 8 0 –8 1]
1/64[1 6 15 20 15 6 1] 1/60[1 –9 45 0 –45 9 –1]

(6.7)

These approximations show no oscillations; the deviation from the
ideal response increases monotonically (Fig. 6.4b). The convergence,
however, is quite slow. Even a filter with 11 coefficients (R = 5) shows
significant deviations from the ideal transfer functions for wave num-
bers k̃ > 0.6.

A triangular window results in other deficits (Fig. 6.4c). Although
the transfer function is close to the ideal transfer function for much
higher wave numbers, the slope of the transfer function is generally
too low.

Example 6.1 indicates some general weaknesses of the windowing
technique for filter design. While it is quite useful for filters with flat
responses and discontinuities such as ideal low-pass filters in balancing
overshooting and ripples vs steepness of the transitions, it does not
obviously lead to optimal solutions. It is not clear in which way the
filters are improved by the different windows.

6.4 Filter cascading

Cascading of simple filters is a valuable approach to filter design, es-
pecially for higher-dimensional signals. Complex filters can be built
by applying simple 1-D filters repeatedly in all directions of the signal.
This approach has a number of significant advantages.

Known properties. The properties of the simple filters are well known.
The transfer function can be expressed analytically in simple equa-
tions. As cascading of filters simply means the multiplication of the
transfer functions, the resulting transfer functions for even complex
filters can be computed easily and analyzed analytically.
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Arbitrary signal dimension. If filters can be composed of 1-D filters,
that is, they are separable, then filter cascading works not only in
two dimensions but also in any higher dimension. This greatly sim-
plifies and generalizes the filter design process.

Efficient computation. In most cases, filters designed in this way are
computed efficiently. This means that the filter cascading approach
not only leads to filters that can be analyzed analytically but that
can simultaneously be computed very efficiently.

Inclusion of recursive 1-D filters. In Section 5.4.2 the inherent diffi-
culty of the design of higher-dimensional recursive filters is pointed
out. Thus it appears advantageous to combine the elementary re-
cursive relaxation and resonance filters (Section 5.4.6) with nonre-
cursive filters. Examples of such filter combinations are shown in
Section 6.5.5.

6.5 Filter design as an optimization problem

The filter design techniques discussed in the previous sections provide
useful ways but it is not really known whether the solutions are optimal.
In other words, it is much better to treat filter design in a rigorous
way as an optimization problem. This means that we seek an optimal
solution in a sense that the filter deviates as little as possible from
an ideal filter under given constraints. In order to perform such an
approach, it is necessary to define a number of quantities carefully:

Parameterized ansatz. The number of coefficients and their values are
the parameters to be varied for an optimal filter. This leads to a pa-
rameterized ansatz function for a specific design criterion of the
filter, for example, its transfer function. For optimal results it is,
however, of importance to reduce the number of parameters by in-
corporating given symmetries and other constraints into the ansatz
function.

Reference function. The reference function describes the ideal design
criterion of the filter, for example, the transfer function of the ideal
filter (Section 6.5.2). Often better results can be gained, however,
if functions related to the transfer function are used as a reference
function.

Error functional. The deviation of the ansatz function from the ref-
erence function is measured by a suitable error functional (Sec-
tion 6.5.3). Into this error functional often a specific weighting of
wave numbers is included. In this way it is possible to optimize a
filter for a certain wave number range.

Optimization strategies. While the solution is trivial for a linear opti-
mization problem with the Euclidean norm, it can be much harder
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for nonlinear approaches, other error norms, and optimization for
fixed-point filter coefficients. The strategies to solve the various
types of optimization problems in filter design are summarized in
Section 6.5.4.

Some examples that illustrate these rigorous optimization tech-
niques for filter design are discussed in Section 6.5.5 in this chapter.

6.5.1 Parameterized ansatz

As discussed in Section 5.3.4 the transfer function of a filter can be
expressed directly as a function of the filter coefficients. The transfer
function of a 1-D filter with R + 1 coefficients can generally be written
as

ĥ(k̃) =
R∑
r=0

hr exp(−π i(r −R/2)k̃) (6.8)

This equation corresponds to Eq. (5.18) except that the numbering of
the filter coefficients has been rearranged and the correct shift in the
exponential term has been considered when the output for filters with
even number of coefficients (R odd) is written to a lattice shifted by half
a pixel distance.

As all filters that are used in image processing are of odd or even
symmetry, their transfer functions reduce to linear combinations of ei-
ther sine or cosine functions as expressed in Section 5.3.5 by Eqs. (5.24)
to (5.27).

If there are additional constraints for a filter to be designed, it is
the best approach to include these directly into the ansatz function. In
this way it is ensured that the constraints are met. Furthermore, each
constraint reduces the number of parameters.

Example 6.2: First-order derivative filter

A first-order derivative filter of odd symmetry has a purely imaginary
transfer function. Therefore the transfer function for a filter with
2R + 1 coefficients is

D̂(k̃) = 2i
R∑
r=1

dr sin(πr k̃) (6.9)

Often it is useful for a derivative filter to force the transfer function
for low wave numbers to the correct behavior. At the wave-number
origin, the slope of D̂(k̃) has to be 1, so we obtain the constraint

1 = 2
R∑
r=1

drr (6.10)
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This constraint is used to set the value of the first coefficient d1 to

d1 = 1/2−
R∑
r=2

drr (6.11)

If we introduce this equation into Eq. (6.9), we obtain a new con-
strained ansatz function with only R − 1 parameters:

D̂(k̃) = i sin(πk̃)+ 2i
R∑
r=2

dr (sin(πr k̃)− r sin(πk̃)) (6.12)

If a recursive filter is included into the first-order derivative filter, the
ansatz function becomes nonlinear in the filter coefficients for the
recursive part of the filter. The simplest case is the inclusion of the
relaxation filter running back and forth as discussed in Section 5.4.6,
Eq. (5.55). This filter adds one more parameter d0 and the ansatz
function becomes

D̂(k̃) =
(1−d0)2

i sin(πk̃)+ 2i
R∑
r=2

dr (sin(πr k̃)− r sin(πk̃))


1+d2

0 − 2d0 cos(πk̃)
(6.13)

Example 6.3: Smoothing filter

A normalized even smoothing filter with a 2R + 1 mask

[bR, . . . , b1, b0, b1, . . . , bR] (6.14)

meets the constraint that the sum of all coefficients is equal to one.
This can be forced by

b0 = 1− 2
R∑
r=1

br (6.15)

The resulting transfer function B̂ can then be written as

B̂(k̃) = 1+ 2
R∑
r=1

br (cos(rπk̃)− 1) (6.16)

Example 6.4: Hilbert filter

A Hilbert filter (Section 4.2.2) is also of odd symmetry. Thus it has the
same ansatz function as a first-order derivative filter in Eq. (6.9). The
constraint applied in Eq. (6.12), however, makes no sense for a Hilbert
filter. It may be useful to add the constraint that the Hilbert filter
is symmetrical around k̃ = 0.5. This additional symmetry constraint
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forces all filter coefficients with even r in Eq. (6.9) to zero. Thus the
ansatz function for such a symmetric Hilbert filter is

D̂(k̃) = 2i
R∑
r=1

d2r−1 sin(π(2r − 1)k̃) (6.17)

As with the first-order derivative filter, a recursive part can be included
into the design of a Hilbert filter. As the correction that is performed
by such a recursive filter must also be symmetric around k̃ = 0.5 (Ĥ(1−
k̃) = Ĥ(k̃)) and enhance lower and higher wave numbers, the following
ansatz function is useful:

Ĥ(k̃) = (1+d0)2

1+d2
0 − 2d0 cos(2πk̃)

2i
R∑
r=1

d2r−1 sin(π(2r − 1)k̃) (6.18)

The recursive filter is a mirrored relaxation filter (Section 5.4.6) with
double step width.

6.5.2 Reference function

At first glance, it appears that not much has to be said about the ref-
erence function because often it is simply the ideal transfer function.
This is, however, not always the best choice. As an example, we discuss
the reference function for a first-order derivative filter in multidimen-
sional signals.

Example 6.5: First-order derivative filter

The transfer function of an ideal first-order derivative filter in the
direction d is

D̂d(k̃) = iπk̃d (6.19)

This is not always the best choice as a reference function as it is of-
ten required that only the gradient direction, for example, for motion
determination in spatiotemporal images (Chapter 13), must be cor-
rect. The direction of the gradient can be expressed by the angles
of polar coordinates in a natural way. The angles φi occurring in D-
dimensional polar coordinates for the gradient direction are

φ1 = arctan
(
k̃2/k̃1

)
∈ ]−π,π]

φd = arctan

k̃d+1

/ d∑
d′=1

k̃2
d′

1/2
 ∈ [−π/2,π/2]

(6.20)

as the ideal transfer function of the derivative is D̂0(k̃) = iπk̃. Fig-
ure 6.5 explains the square root term in the denominator of the pre-
ceding formula for higher dimensions. Thus this set of angles is now
the reference function and has to be compared with the angles of the
gradient computed by the filter.
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This different reference function gives additional degrees of freedom
in defining the ansatz function. As only the ratio of the transfer func-
tions of the components of the gradient occurs in the angle computa-
tion

k̃p
k̃q
= D̂p(k̃)
D̂q(k̃)

(6.21)

the transfer functions can be multiplied by an arbitrary function B̂(k̃).
Choosing B̂(k̃) suitably we get a regularized version of a first-order
derivative filter

D̂d(k̃) = iπB̂(k̃)k̃d (6.22)

Approaches like the one just discussed do not fix the transfer func-
tion but rather a nonlinear functional of it. Thus the optimization prob-
lem becomes nonlinear even if the ansatz function is linear in the filter
coefficients.

6.5.3 Error functional

In order to compare the ansatz function a(k̃,h), where h is the vector
with the parameters, and the reference function t(k̃), a suitable mea-
sure for the difference between these two functions is required. An
error functional e(h) computes the norm of the difference between the
two functions by

e(h) =
∥∥∥w(k̃)(t(k̃)−a(k̃,h))∥∥∥/∥∥∥w(k̃)∥∥∥ (6.23)
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In this error functional, the ansatz and reference functions are com-
pared directly. A weighting function w(k̃) is introduced in order to
optimize the filter for a certain distribution of wave numbers. This is
the error given in all figures and tables (Tables 6.2–6.8) in this chapter.
Common norms are L1 (sum of absolute values), L2 (square root of the
sum of squares),

e2(h) =
1∫
0

w2(k̃)
(
t(k̃)−a(k̃,h)

)2
dk̃
/ 1∫

0

w2(k̃)dk̃ (6.24)

and L∞ (maximum absolute value):

e(h) = max
k̃=0,... ,1

w(k̃)
∣∣∣t(k̃)−a(k̃,h)∣∣∣/ max

k̃=0,... ,1
w(k̃) (6.25)

Minimizing one of the first two norms provides the lowest expected
mean error, the last one gives the best worst case estimation for an
unknown data set or image content.

For multidimensional filters, the evaluation of Eq. (6.23) is extended
over the corresponding k space. Often an isotropic weighting function
is used. However, this is not required. As a multidimensional signal
may have a nonisotropic power spectrum, the weighting function does
not need to be isotropic as well.

6.5.4 Solution strategies

Generally, the optimization problem is of the form

min
h

∥∥∥w(k̃)(t(k̃))−a(k̃,h))∥∥∥ =min
h

∥∥∥d(k̃,h)∥∥∥ (6.26)

This error functional is evaluated over the entire wave-number space.
To this end it is required to approximate the continuous k space by
discrete samples using a Cartesian lattice. We assume that space is
sampled at J wave numbers k̃j .

In the following, we briefly describe which solution methods have
been chosen to solve the various types of optimization problems that
arise for different error norms and for real and fixed-point filter coeffi-
cients.

Euclidean norm. For the Euclidean norm (L2) the minimum of the
following expression has to be found:

min
h

J∑
j=1

d2(k̃j,h) (6.27)
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This optimization problem is (generally) a nonlinear regression prob-
lem. Problems of this type can be solved by a generalized Gauss-
Newton-method, for example, [4, Section 6.1] .

Maximum norm. Using the maximum norm (L∞), the Eq. (6.26) is not
differentiable. Therefore we reformulate the problem using an addi-
tional variable δ

δ := max
j=1,... ,J

∣∣∣d(k̃j,h)∣∣∣ (6.28)

and write the maximum of the absolute value in Eq. (6.28) as inequality
constraints

−δ ≤ d(k̃j,h) ≤ δ ∀ j = 1, . . . , J

We obtain the following inequality constrained (generally) nonlinear op-
timization problem

min
δ,h
δ, subject to − δ ≤ d(k̃j,h) ≤ δ ∀ j = 1, . . . , J (6.29)

Such problems can be solved by a successive quadratic programming
(SQP) method, for example, [5, Chapter 6] or [4, Section 12.4].

Fixed-point optimization. Using the methods described here, we get
real numbers for the optimal filter coefficients. Because of recent hard-
ware developments (like Intel’s MMX or Sun’s VIS) that improve integer
arithmetic performance in computational calculations, it is also desir-
able to optimize filters with integer or rational filter coefficients.

Therefore we formulate the forementioned optimization problems
as nonlinear integer problem, more precisely, we discretize the coeffi-
cient variable space

hr = αr/2M, r = 1, . . . , R, αr ∈ Z
with M chosen suitably. We optimize over the integer variables αr in-
stead of hr . Problems of this type are known to be NP-hard [6, Section
I.5]. In our case we use the branch and bound method [7, Chapter 5.3,
Section 6.2] combined with the methods as described here for the solu-
tion of relaxed problems and some rounding heuristics to find integer
feasible solutions.

6.5.5 Examples

In this section, some examples illustrate the various optimization tech-
niques discussed in the previous sections.
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a b

Figure 6.6: Error in transfer function of optimized 1-D first-order derivative
filters. Shown is the absolute deviation from the ideal transfer function iπk̃
for a nonrecursive filter according to Eq. (6.12) with two free parameters (solid
line floating-point solution, narrow-dashed line [28 -9 2]/32 integer coefficients,
and wide-dashed line [108 -31 6]/128 integer coefficients); and b recursive filter
according to Eq. (6.33) with two free parameters.

Table 6.2: Filter coefficients of first-order derivative filters optimized according
to Eq. (6.12) with 2R + 1 coefficients. The second column contains the filter
coefficients d1, . . . , dR and the lower part of the table the coefficients for fixed-
point arithmetic with varying computational accuracy. Boldface filters are an
optimal choice with minimal filter coefficients and still an acceptable error as
compared to the floating-point solution.

R Filter coefficients Error

1 0.5 1.5× 10−1

2 0.758, -0.129 3.6× 10−2

3 0.848, -0.246, 0.0480 1.3× 10−2

4 0.896, -0.315, 0.107, -0.0215 5.6× 10−3

5 0.924, -0.360, 0.152, -0.0533, 0.0109 2.8× 10−3

6 0.942, -0.391, 0.187, -0.0827, 0.0293, -0.00601 1.6× 10−3

2 [6, -1]/8 3.60×10−2

2 [12, -2]/16 3.60×10−2

2 [24, -4]/32 3.60×10−2

2 [48, -8]/64 3.60×10−2

2 [96, -16]/128 3.60×10−2

2 [194, -33]/256 3.57×10−2

3 [6, -1, 0]/8 3.6× 10−2

3 [12, -2, 0]/16 3.6× 10−2

3 [28, -9, 2]/32 1.6× 10−2

3 [55, -16, 3]/64 1.5× 10−2

3 [108, -31, 6]/128 1.3× 10−2

3 [216, -62, 12]/256 1.3× 10−2
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Example 6.6: Optimal 1-D first-order derivative filter

The classical approaches to optimized 1-D derivative filters are well
described in standard textbooks [8, 9]. For the optimization of a 1-D
first-order derivative filter, the transfer function of the ideal derivative
filter (Eq. (6.19)) is directly taken as the reference function.

Finite impulse response ansatz function. In this case, we take the
ansatz function Eq. (6.12) with the additional constraint that we force
the slope of the transfer function for small wave numbers to be iπk̃.
Equation (6.12) is valid for filters with an odd number of coefficients
(2R + 1) with the mask

D = [dR, . . . , d1,0,−d1, . . . ,−dR] (6.30)

For even-length filters the mask is

D = [dR, . . . , d1,−d1, . . . ,−dR] (6.31)

and the ansatz function is slightly different from Eq. (6.12):

D̂(k̃) = i sin(πk̃/2)+ 2i
R∑
r=2

dr (sin(π(r − 1/2)k̃)− (r − 1/2) sin(πk̃))

(6.32)

Infinite impulse response ansatz function. The ansatz function in
Eq. (6.13) can be taken for optimization of filters with real filter coef-
ficients for floating-point arithmetic. In integer arithmetic we directly
include the coefficent α1/2M of the recursive relaxation filter:

D̂(k̃) = i
(1−α1/2M)2

1+α2
1/22M − 2(α1/2M) cos(πk̃)sin(πk̃)+ 2

R∑
r=2

αr/2M(sin(πr k̃)− r sin(πk̃))

 (6.33)

The filter coefficients shown in Tables 6.2 and 6.3 and the correspond-
ing transfer functions depicted in Fig. 6.6 are computed using the L2

norm combined with the weighting function w(k̃) = cos4(πk̃/2).

Example 6.7: Optimal Hilbert filter

As an example for the influence of the weighting function we use the
1-D Hilbert filter. As it is separable in n-D, the solution is valid for
higher dimensions, too.

Reference function. We choose the transfer function Ĥr of the ideal
Hilbert filter as reference function:

Ĥr (k̃) = i sgn(k)

Ansatz function. For weighting functions with a symmetry of around
k̃ = 0.5 we use the ansatz function Eq. (6.17). If the weighting func-
tion does not have this symmetry, the optimal filter will not have it
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Table 6.3: Filter coefficients of first-order derivative filters optimized accord-
ing to Eq. (6.33) with 2R + 1 coefficients; the second column contains the filter
coefficients d0, d1, . . . , dR , where d0 is the filter coefficient for the recursive re-
laxation filter part, and the lower part of the table the coefficients for fixed-point
arithmetic (note the loss of coefficients for small denominators shown for R = 5).

R Filter coefficients Error

1 -3.13, 0.5 1.1× 10−2

2 -0.483, 0.442, 0.0292 2.1× 10−3

3 -0.583, 0.415, 0.0487, -0.00427 6.4× 10−4

4 -0.650, 0.402, 0.0596, -0.00851, 0.00112 2.4× 10−4

5 0.698, 0.394, 0.0662, -0.0115, 0.00249, -0.000400 1.1× 10−4

1 [801, 128]/256 1.1× 10−2

2 [-120, 114, 7]/256 2.3× 10−3

3 [-146, 107, 12, -1]/256 6.8× 10−4

4 [-146, 107, 12, -1, 0]/256 6.8× 10−4

5 [-146, 107, 12, -1, 0, 0]/256 6.8× 10−4

5 [-651, 414, 59, -8, 1, 0]/1024 2.8× 10−4

5 [-1495, 799, 142, -26, 6, -1]/2048 2.0× 10−2

either. In that case we choose a filter mask [hR · · ·h1 0 −h1 · · ·−hR],
as the 1-D Hilbert filter shall be imaginary and antisymmetric. The
corresponding transfer function Ĥ is

Ĥ(k̃,h) = 2 i
R∑
r=1

hr sin(rπk̃) (6.34)

The filter coefficients are computed in L2 norm combined with a weight-
ing function cos4(π/2 k̃) and given in Table 6.4. The slow convergence
of the error indicates that the ansatz function with the weighting func-
tion cos4(π/2 k̃) was not chosen properly. It puts the most weight at
the discontinuity of the Hilbert filter at (̃k) = 0 (the discontinuities at
(̃k) = ±1 are suppressed), which cannot be well approximated with a
series of sinusoidal functions.
The weighting function sin2(πk̃), which emphasizes wave numbers
around k̃ = 0.5 and a Hilbert filter that is even with respect to k̃ = 0.5,
gives much better results (Table 6.5).
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Table 6.4: Filter coefficients of Hilbert filters optimized according to Eq. (6.34)
with 2R+1 coefficients and weighting function cos4(π/2 k̃); the second column
contains the filter coefficients d1, . . . , dR in floating point arithmetic.

R Filter coefficients Error

1 0.776 5.31×10−1

2 0.274, 0.439 4.53×10−1

3 0.922, –0.391, 0.467 3.89×10−1

4 0.228, 0.651, 0.426, 0.409 3.54×10−1

5 1.038, –0.671, 0.937, –0.560, 0.394 3.26×10−1

Table 6.5: Filter coefficients of Hilbert filters optimized according to Eq. (6.17)
with 4R − 1 coefficients and weighting function sin2(π k̃); The corresponding
filter coefficients are given; the second column contains the filter coefficients
d1, . . . , dR in floating point arithmetic and the lower part of the table the coef-
ficients for fixed-point arithmetic.

R Filter coefficients Error

1 0.543 1.3× 10−1

2 0.599, 0.111 4.4× 10−2

3 0.616, 0.154, 0.0431 2.1× 10−2

4 0.624, 0.175, 0.0698, 0.0214 1.2× 10−2

5 0.627, 0.186, 0.0861, 0.0384, 0.0122 7.5× 10−3

1 [139]/256 1.3× 10−1

2 [153, 28]/256 4.4× 10−2

3 [158, 40, 11]/256 2.1× 10−2

4 [160, 46, 19, 6]/256 1.2× 10−2

5 [161, 48, 22, 10, 3]/256 8.0× 10−3

6.6 Design of steerable filters and filter families

Steerable filters are well described in the literature [for example, 10, 11,
12, 13, 14, 15]. Because of existing detailed mathematical treatments
[see, for example, 16, 17], only a short introduction to steerability shall
be given here. As angular steerability is the most common case, it is
used as an explanatory example, but steerability in any other domain
works in the same way.

Steerable filters are a special case of filter families, fulfilling the sam-
pling theorem (see Section 2.4) exactly in a specific domain. Therefore,
the interpolation of the filter responses to a continuous response is
exactly possible.
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Example 6.8: Angular steerability

The question to answer is: Wanting to compute the exact answer of
an anisotropic filter at any angle α only by linear combination of its
answers at n given angles, which shape must it have? Or: Which
properties has a signal to fulfill to be reconstructable to a continu-
ous periodic signal (the answer of the filter at α) only by knowing n
samples of the signal?
As we learned from Section 2.4 the signal has to be bandlimited. Fur-
ther, the first Brillouin zone of the (discrete) Fourier domain of this
signal must contain only n nonzero values. This implies that we have
to smooth the signal by a suitable convolution first to obtain a signal
we are able to reconstruct by n samples. Then we can sample the
signal at least n points.
Having this in mind, the shape of an angular steerable filter is clear.
Its angular part is the kernel of the smoothing convolution, its radial
part is arbitrary.

6.6.1 Gradient computation

The smallest nontrivial set of steerable filters contains two filters in a
1-D domain like the one given by the angle α in 2-D polar coordinates.
The signal s(α) we are able to reconstruct with only two samples is

s(α) = cos(α−α0)

The smoothing kernel k(α) therefore is

k(α) = cos(α)

This gives us the most common pair of steerable filters D
D̂x(r ,φ) = f(r)k(φ) = f(r) cos(φ)
D̂y(r ,φ) = f(r)k(φ−π/2) = f(r) sin(φ) ,

where f(r) is the arbitrary radial component of the transfer function
D̂. These filters are derivative filters and α0 is the direction of the
gradient. With D denoting the result of a convolution of the image
with the operator D, the direction is computed by

α0 = arctan(
Dy
Dx
) (6.35)

as we can see by the reconstruction, that is, the interpolation of the
signal s(α)

s(α) =Dx cos(α)+Dy sin(α) (6.36)

Please note the difference between the angleα of the interpolating func-
tions and the parameters r and φ used in the integration to obtain the
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filter values. The maximum of the signal is computed by building its
derivative and solving for its zero crossing:

s′(α0) = −Dx sin(α0)+Dy cos(α0)
!= 0

a α0 = arctan(
Dy
Dx
)

Similar results can be received for higher dimensions (compare Sec-
tion 6.5.2).

6.6.2 Steerable one-dimensional higher-order derivatives

Using Eq. (6.36) for the exact computation of a steerable derivative, we
get steerable higher order 1-D derivatives Dnα by

Dnα = (Dx cos(α)+Dy sin(α))n

for example, for the case n = 2 we obtain

D2
α = (Dx cos(α)+Dy sin(α))2

= D2
x cos2(α)+ 2DxDy cos(α) sin(α)+D2

y sin2(α)

where the successive application of the derivative filters can be replaced
by the filter family Dxx := D2

x , Dxy := DxDy , Dyy := D2
y . As in

the preceding, the direction of maximal D2
α can be found in the zero

crossing of its derivative. The angle α0 of this direction is

α0 = 1
2

arctan(
2Dxy

Dyy −Dxx ) (6.37)

6.6.3 Optimization of filter families

Having any property of a filter family formulated in Fourier space, we
can optimize the whole family with the method already described here
(see Section 6.5). Examples for these properties are Eqs. (6.35) and
(6.37). Given the spatial support and the symmetries of the filters, these
equations yield both a reference function and an ansatz function.

Example 6.9: Gradient—Cartesian lattice

As we have already seen in Section 6.6.1, optimizing the direction
of the gradient is equivalent to an optimization of a steerable filter
pair. As before, the characteristic design criterion is formulated in
the reference function.

Reference function. We use the direction φ of the gradient as refer-
ence. For the 2-D case it is

φ0,0(k̃) = arctan(
k̃y
k̃x
)
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in 3-D

φ0,0(k̃) = arctan(
k̃y
k̃x
), φ1,0(k̃) = arctan( k̃z√

k̃2
x + k̃2

y

)

(compare Example 6.5).

Ansatz function. In an n-D isotropic domain a separable derivative
filter with the same support length in every coordinate direction can
be composed of a 1-D derivative filter D1 and the same smoothing
filter B for any other direction. In 2-D the filters D are

Dx = D1
x ∗ By , Dy = D1

y ∗ Bx
In 3-D the filters D are

Dx = D1
x ∗ By ∗ Bz , Dy = D1

y ∗ Bx ∗ Bz , Dz = D1
z ∗ Bx ∗ By

The transfer function of the smoothing filter and the derivative are
given in Eq. (6.16) and Eqs. (6.12) and (6.32) respectively. The ansatz
function φ(k̃,d) in 2-D is

φ0(k̃,d) = arctan(
D̂y
D̂x
)

in 3-D

φ0(k̃,d) = arctan(
D̂y
D̂x
), φ1(k̃,d) = arctan( D̂z√

D̂2
x + D̂2

y

)

Please note that the application of a filter to an image in Fourier space
is a multiplication. Therefore the image data in the fraction cancel
out.

Error. The error function d(k̃,d) is computed straightforward. In 2-D
it is

d(k̃,d) =φ0(k̃,d)−φ0,0(k̃) (6.38)

and in 3-D

d(k̃,d) =
√
(φ0(k̃,d)−φ0,0(k̃))2 + (φ1(k̃,d)−φ1,0(k̃))2 (6.39)

Results. The filters in Table 6.6 are optimized in L2 norm combined
with a weighting function Πi cos4(π/2 k̃i). Some plots for the magni-
tude of the angle error in degree for the direction of the biggest error
(22.5°) can be found in Fig. 6.7.



6.6 Design of steerable filters and filter families 147

Table 6.6: Filter coefficients for derivative filters optimized according to either
Eq. (6.38) or Eq. (6.39). The first and second columns contain the filter parts. The
first part of the table lists well-known approaches, followed by optimal filters in
floating point and fixed-point arithmetic. The last part summarizes the results
of a study on varying the denominator for fixed-point arithmetic.

Derivative Smoothing Error Name

(odd mask) (even mask) [10−4]

[1, 0]/2 none 400 3 tab

[1, 2, 0]/6 none 1700 5 tab.a

[-1, 8, 0]/12 none 150 5 tab.b

[1] [1]/2 180 2×2

[1, 0]/2 [1, 2]/4 190 Sobel

[-1, 8, 0]/12 [1, 4, 6]/16 800 5×5 Gauß

[-0.262, 1.525, 0 ] none 93 5-tab.opt

[1, 0]/2 [46.84 162.32]/256 22 3×3-opt

[77.68, 139.48]/256 [16.44, 111.56]/256 3.4 4×4-opt

[21.27, 85.46, 0]/256 [5.91, 61.77, 120.64]/256 0.67 5 ×5-opt

[21.38, 85.24, 0]/256 [5.96, 61.81, 120.46]/256 1.1 5×5×5-opt

[-67, 390 0]/256 none 92 5-tab.int

[1, 0]/2 [47, 162]/256 22 3×3-int

[76, 142]/256 [16, 112]/256 3.9 4×4-int

[24, 80, 0]/256 [7, 63, 116]/256 1.9 5×5-int

[1, 0]/2 [1, 2]/4 190 3×3-int

[1, 0]/2 [1, 6]/8 150 3×3-int

[1, 0]/2 [3, 10]/16 26 3×3-int

[1, 0]/2 [6, 20]/32 26 3 ×3-int

[1, 0]/2 [12, 40]/64 26 3×3-int

[1, 0]/2 [23, 82]/128 25 3×3-int

[1, 0]/2 [47, 162]/256 23.16 3×3-int

[1, 0]/2 [46.84, 162.32]/256 23.11 3×3-opt

Example 6.10: Gradient filters on a hexagonal grid

On a hexagonal grid only the ansatz function differs from the Carte-
sian case; reference function and error are the same. As in the Carte-
sian case there are two ways to get an ansatz function: a direct one
simply using the fact that we want to compute the derivative; and a
steerable one respecting the fact that we want to compute a direction.
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Figure 6.7: Magnitude of the angle error in degree for the direction of the
largest error (22.5°). Upper line: 3 × 3-filters (a symmetric difference, b Sobel,
c optimized). Lower line: 5× 5-filters (d [-1 8 0 -8 1]/16, e derivative of Gauss,
f optimized; refer to results in Example 6.9 and Table 6.6). Please note the
different scales of the y axes.

Direct ansatz. A direct ansatz for the derivative filters is

Dx = 1
2

[ d −d
1−d 0 −(1−d)

d −d

]
(6.40)

Dy = 1
2
√

3

[ −1 −1
0 0 0

1 1

]
(6.41)

with the transfer functions

D̂x = (1−d) sin(πk̃x)+ 2d cos(
√

3π
2
k̃y) sin(π

2
k̃x)

D̂y = 2√
3

sin(
√

3π
2
k̃y) cos(π

2
k̃x)

For this size of filters there are no more degrees of freedom, consid-
ering the symmetries and the claim D̂(k̃ = 0) = i . With these filters
the reference function and error can be computed in the same way as
in the 2-D case on a Cartesian grid.

Steerability ansatz. Gradient computation can be understood as com-
putation of the maximum of the response Dφ of a set of steerable
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Table 6.7: Filter coefficients of a first-order derivative filter optimized for hexag-
onal lattices. The first column contains the filter coefficient in floating point and
fixed-point arithmetic.

Filter coefficient d Error

85.31/256 1.28× 10−5

85/256 1.59× 10−5

directional derivative filters. They are of the same form as Dx in
Eq. (6.40) for all three equivalent directions. The ansatz then is

Dφ = D1 cos(φ)+D2 cos(φ+ π
3
)+D3 cos(φ+ 2π

3
)

For the maximum at φ0, we get

0 = D′φa 0 = D1 sin(φ0)+D2 sin(φ0 + π3 )+D3 sin(φ0 + 2π
3
)

a 0 = (D1 + 1
2
D2 − 1

2
D3) sin(φ0)+ (

√
3

2
D2 +

√
3

2
D3) cos(φ0)

The sum of filters (
√

3
2 D2 +

√
3

2 D3) yields exactly 3Dy/2 of Eq. (6.41),
(D1 + D2/2 − D3/2) is equal to 3Dx/2 of Eq. (6.40) for an adequate
choice of the parameter d. This implies, as in the Cartesian case,
that the steerable ansatz and the derivative ansatz lead to an identical
optimization.
Results. For comparability, the results that follow are obtained with
the same norm and weighting function as Example 6.9. Table 6.7
shows that the error of this filter with a single(!) parameter is about
a factor 5 smaller than for the 5×5-opt filter on a Cartesian lattice
providing 3 free parameters for optimization (see Fig. 10.2).

Example 6.11: Steerable 1-D second-order derivative

According to Section 6.6.2 we demonstrate how to optimize a filter
family designed to compute the maximum direction of a 1-D second-
order derivative.
Reference function. We use the directionφ0 of maximal second-order
1-D derivative as reference. Referring to Eq. (6.37) it is

φ0(k̃) = 1
2

arctan(
2 k̃x k̃y
k̃2
y − k̃2

x
)

Ansatz function. As in the preceding (see Example 6.9), separable
filters can be composed by 1-D derivative filtersD1 and 1-D smoothing
filters B. As in Section 6.6.2 we need

Dxx = D1
x ∗D1

x ∗ Bx ∗ By
Dyy = D1

y ∗D1
y ∗ Bx ∗ By

Dxy = D1
x ∗D1

y ∗ Bx ∗ By



150 6 Principles of Filter Design

Table 6.8: Filter coefficients di of the optimized second-order steerable deriva-
tive filter basis according to Eq. (6.42); the first column contains the filter coef-
ficients; the first part of the table lists well-known approaches, followed by the
optimal filters in floating point arithmetic.

Filter coefficients Error

1/12, 0, 0, -1/6 4.69×10−2

1/12, 4/16, 1/16, -1/6 3.72×10−2

0.208, 0.113, -0.137, 0.128 2.54×10−4

where the symbols for the filters do not always denote the same filter
but the same filter behavior. For example, a 5× 5 filter family is

Dxx = [1−1]x ∗ [1−1]x ∗ [d0 (1−2d0) d0]x∗
[d2 d1 (1−2(d1 +d2)) d1 d2]y ,

Dyy = [1−1]y ∗ [1−1]y ∗ [d0 (1−2d0) d0]y∗
[d2 d1 (1−2(d1 +d2)) d1 d2]x ,

Dxy = 1
4 [d3 (1−2d3) 0 −(1−2d3) −d3]x∗
[d3 (1−2d3) 0 −(1−2d3) −d3]y

(6.42)

For this filter family all symmetries and degrees of freedom d are
already considered. Standard parameter choices are

d0 = 1/12, d1 = d2 = 0, d3 = −1/6

and

d0 = 1/12, d1 = 4/16, d2 = 1/16, d3 = −1/6

where the occurring derivative filters are optimized for small k̃ and
there is either no or Gaussian smoothing in cross direction.
The ansatz function φ is

φ(k̃,d) = 1
2

arctan(
2 D̂xy

D̂yy − D̂xx
)

The transfer function of the smoothing filters B and the derivatives d
are given in Eq. (6.16) and Eqs. (6.12) and (6.32), respectively.
Results. For the example filter family of Eq. (6.42) the parameters d
are given in Table 6.8. All results are computed in L2 norm combined
with the weighting function Πi cos(π/2 k̃i)4.
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7.1 Introduction

Averaging is an elementary neighborhood operation for multidimen-
sional signal processing. Averaging results in better feature estimates
by including more data points. It is also an essential tool to regularize
otherwise ill-defined quantities such as derivatives (Chapters 13 and
15). Convolution provides the framework for all elementary averaging
filters. In this chapter averaging filters are considered for continuous
signals and for discrete signals on square, rectangular and hexagonal
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lattices. The discussion is not restricted to 2-D signals. Whenever it is
possible, the equations and filters are given for signals with arbitrary
dimension.

The common properties and characteristics of all averaging filters
are discussed in Section 7.2. On lattices two types of averaging filters
are possible [1, Sect. 5.7.3]. Type I filters generate an output on the
same lattice. On a rectangular grid such filters are of odd length in
all directions. Type II filters generate an output on a grid with lattice
points in-between the original lattice points (intermediate lattice). On a
rectangular grid such filters are of even length in all directions. In this
chapter two elementary averaging filters for digital multidimensional
signals are discussed, box filters (Section 7.3) and binomial filters (Sec-
tion 7.4). Then we will deal with techniques to cascade these elemen-
tary filters to large-scale averaging filters in Section 7.5. Filters with
weighted signals (normalized convolution) in Section 7.6.

7.2 Basic features

7.2.1 General properties of transfer functions

Any averaging filter operator must preserve the mean value. This con-
dition says that the transfer function for zero wave number is 1 or,
equivalently, that the sum of all coefficients of the mask is 1:

ĥ(0) = 1⇐⇒
∞∫
−∞
h(x)dDx = 1 or

∑
n∈mask

Hn = 1 (7.1)

Intuitively, we expect that any smoothing operator attenuates small-
er scales more strongly than coarser scales. More specifically, a smooth-
ing operator should not completely annul a certain scale while smaller
scales still remain in the image. Mathematically speaking, this means
that the transfer function decreases monotonically with the wave num-
ber. Then for any direction, represented by a unit vector r̄

ĥ(k2r̄) ≤ ĥ(k1r̄) if k2 > k1 (7.2)

We may impose the more stringent condition that the transfer func-
tion approaches zero in all directions,

lim
k→∞

ĥ(kr̄) = 0 (7.3)

On a discrete lattice the wave numbers are limited by the Nyquist con-
dition, that is, the wave number must lay within the first Brillouin zone
(Section 2.4.2). Then it makes sense to demand that the transfer func-
tion of an averaging filter is zero at the border of the Brillouin zone.
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On a rectangular lattice this means

ĥ(k) = 0 if kb̂d = |b̂d|/2 (7.4)

where b̂d is any of the D-basis vectors of the reciprocal lattice (Sec-
tion 2.4.2). Together with the monotonicity condition and the preserva-
tion of the mean value, this means that the transfer function decreases
monotonically from one to zero for each averaging operator.

For a 1-D filter we can easily use Eq. (5.24) to relate the condition in
Eq. (7.4) to a condition for the coefficients of type I filters:

ĥ(1) = 0⇐⇒ h0 + 2
∑
r even

hr = 2
∑
r odd

hr (7.5)

One-dimensional type II filters are, according to Eq. (5.24), always zero
for k̃ = 1.

7.2.2 Symmetry and isotropy

Even filters in continuous space. With respect to object detection,
the most important feature of an averaging operator is that it must not
shift the object position. Any shift introduced by a preprocessing op-
erator would cause errors in the estimates of the position and possibly
other geometric features of an object. In order not to cause a spatial
shift, a filter must not induce any phase shift in the Fourier space. A
filter with this property is known as a zero-phase filter . This implies
that the transfer function is real and this is equivalent with an even
symmetry of the filter mask (Section 3.2.3):

h(−x) = h(x)⇐⇒ ĥ(k) real (7.6)

Averaging filters normally meet a stronger symmetry condition in the
sense that each axis is a symmetry axis. Then Eq. (7.6) is valid for each
component of x:

h([x1, . . . ,−xd, . . . , xD]T ) = h([x1, . . . , xd, . . . , xD]
T ) (7.7)

Even filters on 1-D lattices. For digital signals we distinguish fil-
ters with odd and even numbers of coefficients in all directions (Sec-
tion 5.3.5). For both cases, we can write the symmetry condition for a
filter with Rd + 1 coefficients in the direction d as

Hr0,r1,... ,Rd−rd,... ,rD = Hr0,r1,... ,rd,... ,rD ∀d ∈ [1,D] (7.8)

when we count the coefficients in each direction from left to right from
0 to Rd. This is not the usual counting but it is convenient as only one
equation is required to express the evenness for filters with even and
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odd numbers of coefficients. For a 1-D filter the symmetry conditions
reduce to

HR−r = Hr (7.9)

The symmetry relations significantly ease the computation of the
transfer functions because for real transfer functions only the cosine
term of the complex exponential from the Fourier transform remains
in the equations (Sections 3.2 and 5.3.5). The transfer function for 1-D
even masks with either 2R + 1 (type I filter) or 2R coefficients (type II
filter) is

I ĥ(k̃) = h0 + 2
R∑
r=1

hr cos(rπk̃)

IIĥ(k̃) = 2
R∑
r=1

hr cos((r − 1/2)πk̃)

(7.10)

Note that in these equations only pairs of coefficients are counted from
1 to R. The central coefficient of a filter with an odd number of coeffi-
cients has the index zero. As discussed in Section 5.3.5, filters with an
odd number of coefficients output the filter results to the same lattice
while filters with an even number of coefficients output the filter result
to the intermediate lattice.

Even filters on higher-dimensional lattices. On higher-dimensional
lattices things become more complex. We assume that each axis is a
symmetry axis according to the symmetry condition in Eq. (7.7). This
condition implies that for type I filters with 2R+1 coefficients all coef-
ficients on the symmetry axes must be treated separately because they
are symmetric counterparts. Thus already the equation for the transfer
function of a 2-D filter with even symmetry in both directions is quite
complex:

IĤ(k̃) = H00

+ 2
R∑
n=1

H0n cos(nπk̃1)+ 2
R∑
m=1

Hn0 cos(nπk̃2)

+ 4
R∑
m=1

R∑
n=1

Hmn cos(nπk̃1) cos(mπk̃2)

(7.11)

For a type II filter with 2R coefficients, no coefficients are placed on
the symmetry axes. With an even number of coefficients, the transfer
function of a 1-D symmetric mask is given by

IIĤ(k̃) = 4
R∑
n=1

R∑
m=1

Hmn cos((n− 1/2)πk̃1) cos((m− 1/2)πk̃2) (7.12)
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A further discussion of the properties of symmetric filters up to three
dimensions can be found in Jähne [2].

Isotropic filters. In most applications, the averaging should be the
same in all directions in order not to prefer any direction. Thus, both
the filter mask and the transfer function should be isotropic. Conse-
quently, the filter mask depends only on the magnitude of the distance
from the center pixel and the transfer function on the magnitude of the
wave number:

H(x) = H(|x|)⇐⇒ Ĥ(k̃) = Ĥ(|k̃|) (7.13)

This condition can also be met easily in discrete space. It means that
the coefficients at lattice points with an equal distance from the center
point are the same. However, the big difference now is that a filter
whose coefficients meet this condition has not necessarily an isotropic
transfer function. The deviations from the isotropy are stronger the
smaller the filter mask is. We will discuss the deviations from isotropy
in detail for specific filters.

7.2.3 Separable averaging filters

The importance of separable filters for higher-dimensional signals is
related to the fact that they can be computed much faster than non-
separable filters (Section 5.6.1). The symmetry conditions for separa-
ble averaging filters are also quite simple because only the symmetry
condition Eq. (7.9) must be considered. Likewise, the equations for the
transfer functions of separable filters are quite simple. If we apply the
same 1-D filter in all directions, the resulting transfer function of a
D-dimensional filter is given after Eq. (7.10) by

I ĥ(k̃) =
D∏
d=1

h0 + 2
R∑
r=1

hr cos(rπk̃d)


II ĥ(k̃) =

D∏
d=1

2
R∑
r=1

hr cos((r − 1/2)πk̃d)

 (7.14)

With respect to isotropy, there exists only a single separable filter
that is also isotropic, the Gaussian function

1
aD

exp(−πxTx/a2) = 1
aD

D∏
d=1

exp(−πx2
d/a

2)⇐⇒

exp(−πa2k̃
T
k̃/4) =

D∏
d=1

exp(−πa2k̃2
d/4)

(7.15)
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Figure 7.1: Transfer functions of type I box filters with 3, 7, and 15 coefficients
in a a linear plot; and b a log-log plot of the absolute value.

This feature shows the central importance of the Gaussian function for
signal processing from yet another perspective.

To a good approximation, the Gaussian function can be replaced
on orthogonal discrete lattices by the binomial distribution. The coef-
ficients of a 1-D binomal filter with R + 1 coefficients and its transfer
function are given by

BR = 1
2R

[
b0 = 1, . . . , br =

(
R
r

)
, . . . , bR+1 = 1

]
⇐⇒ B̂R(k̃) = cosR(πk̃/2)

(7.16)

With the comments on the isotropy of discrete filters in mind (Sec-
tion 7.2.2), it is necessary to study the deviation of the transfer function
of binomial filters from an isotropic filter.

7.3 Box filters

The simplest method is to average pixels within the filter mask and to
divide the sum by the number of pixels. Such a simple filter is called
a box filter . It is also known under the name running mean. In this
section, type I (Section 7.3.1) and type II (Section 7.3.2) box filters and
box filters on hexagonal lattices (Section 7.3.3) are discussed.

7.3.1 Type I box filters

The simplest type I 1-D box filter is

3R = 1
3
[1,1,1]⇐⇒ 3R̂(k̃) = 1

3
+ 2

3
cos(πk̃) (7.17)

The factor 1/3 scales the result of the convolution sum in order to
preserve the mean value (see Eq. (7.1) in Section 7.2.1). Generally, a
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type I 1-D box filter with 2R + 1 coefficients has the transfer function

I R̂(k̃) = 1
2R + 1

+ 2
2R + 1

R∑
r=1

cos(πr k̃)

= 1
2R + 1

cos(πRk̃)− cos(π(R + 1)k̃)
1− cos(πk̃)

(7.18)

For small wave numbers the transfer function can be approximated by

I R̂(k̃) ≈ 1− R(R + 1)
6

(πk̃)2 + R(R + 1)(3R2 + 3R − 1)
360

(πk̃)4 (7.19)

Figure 7.1 shows that the box filter is a poor averaging filter. The trans-
fer function is not monotonical and the envelope of the transfer func-
tion is only decreasing with k−1 (compare Section 3.2.3). The high-
est wave number is not completely suppressed even with large filter
masks. The box filter also shows significant oscillations in the trans-
fer function. The filter 2R+1R completely eliminates the wave numbers
k̃ = 2r/(2R + 1) for 1 ≤ r ≤ R. In certain wave-number ranges, the
transfer function becomes negative. This corresponds to a 180° phase
shift and thus a contrast inversion.

Despite all their disadvantages, box filters have one significant ad-
vantage. They can be computed very fast with only one addition, sub-
traction, and multiplication independent of the size of the filter, that
is, O(R0). Equation (7.18) indicates that the box filter can also be un-
derstood as a filter operation with a recursive part according to the
following relation:

g′n = g′n−1 +
1

2R + 1
(gn+R − gn−R−1) (7.20)

This recursion can easily be understood by comparing the computa-
tions for the convolution at neighboring pixels. When the box mask
is moved one position to the right, it contains the same weighting fac-
tor for all pixels except for the last and the first pixel. Thus, we can
simply take the result of the previous convolution, (g′n−1), subtract the
first pixel that just moved out of the mask, (gn−R−1), and add the gray
value at the pixel that just came into the mask, (gn+R). In this way, the
computation of a box filter does not depend on its size.

Higher-dimensional box filters can simply be computed by cascad-
ing 1-D box filters running in all directions, as the box filter is separable.
Thus the resulting transfer function for a D-dimensional filter is

2R+1R̂(k̃) = 1
(2R + 1)D

D∏
d=1

cos(πRk̃d)− cos(π(R + 1)k̃d)
1− cos(πk̃d)

(7.21)
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Figure 7.2: Absolute deviation of the 2-D transfer functions of type I 2-D box
filters from the transfer function along the x axis (1-D transfer function shown
in Fig. 7.1) for a a 3×3, b 5×5, c 7×7, and d a 3R̂(k̃) filter running in 0°, 60°,
and 120° on a hexagonal grid. The distance of the contour lines is 0.05 in a
- c and 0.01 in d. The area between the thick contour lines marks the range
around zero.

For a 2-D filter, we can approximate the transfer function for small
wave numbers and express the result in cylinder coordinates by using
k1 = k cosφ and k2 = k sinφ and obtain

I R̂(k̃) ≈ 1− R(R + 1)
6

(πk̃)2 + R(R + 1)(14R2 + 14R − 1)
1440

(πk̃)4

− R(R + 1)(2R2 + 2R + 1)
1440

cos(4φ)(πk̃)4

(7.22)
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Figure 7.3: Transfer functions of type II box filters with 2, 6, and 14 coefficients
in a a linear plot; and b a log-log plot of the absolute value.

This equation indicates that—although the term with k̃2 is isotropic—
the term with k̃4 is significantly anisotropic. The anisotropy does not
improve for larger filter masks because the isotropic and anisotropic
terms in k̃4 grow with the same power in R.

A useful measure for the anisotropy is the deviation of the 2-D filter
response from the response in the direction of the x1 axis:

∆R̂(k̃) = R̂(k̃)− R̂(k̃1) (7.23)

For an isotropic filter, this deviation is zero. Again in an approximation
for small wave numbers we obtain by Taylor expansion

∆I R̂(k̃) ≈ 2R4 + 4R3 + 3R2 +R
720

sin2(2φ)(πk̃)4 (7.24)

The anisotropy for various box filters is shown in Fig. 7.2a–c. Clearly,
the anisotropy does not become weaker for larger box filters. The de-
viations are significant and easily reach 0.25. This figure means that
the attenuation for a certain wave number varies up to 0.25 with the
direction of the wave number.

7.3.2 Type II box filters

Type II box filters have an even number of coefficients in every direction.
Generally, a type II 1-D box filter with 2R coefficients has the transfer
function

II R̂(k̃) = 1
R

R∑
r=1

cos(π(r − 1/2)k̃)

= 1
2R

cos(π(R − 1/2)k̃)− cos(π(R + 1/2)k̃)
1− cos(πk̃)

(7.25)
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For small wave numbers the transfer function can be approximated by

II R̂(k̃) ≈ 1− 4R2 − 1
24

(πk̃)2 + 48R4 − 40R2 + 7
5760

(πk̃)4 (7.26)

Figure 7.3 also shows that type II box filter are poor averaging filters.
Their only advantage over type I box filters is that as a result of the
even number of coefficients the transfer function at the highest wave
number is always zero.

Higher-dimensional type II box filters are formed in the same way as
type I filters in Eq. (7.21). Thus we investigate here only the anisotropy
of type II filters in comparison to type I filters. The transfer function
of a 2-D filter can be approximated for small wave numbers in cylinder
coordinates by

II R̂(k̃) ≈ 1− 4R2 − 1
24

(πk̃)2 + (4R
2 − 1)(28R2 − 13)

11520
(πk̃)4

− (4R2 − 1)(4R2 + 1)
11520

cos(4φ)(πk̃)4
(7.27)

and the anisotropy according to Eq. (7.23) is given by

∆II R̂(k̃) ≈ 16R4 − 1
5760

sin2(2φ)(πk̃)4 (7.28)

A comparison with Eq. (7.24) shows—not surprisingly—that the ani-
sotropy of type I and type II filters is essentially the same.

7.3.3 Box filters on hexagonal lattices

On a hexagonal lattice (Section 2.3.1) a separable filter is running not in
two but in three directions: 0°, 60°, and 120° with respect to the x axis.
Thus the transfer function of a separable filter is composed of three
factors:

hR̂(k̃) = 1
(2R + 1)3

· cos(πRk̃1)− cos(π(R + 1)k̃1)
1− cos(πk̃1)

cos(πR(
√

3k̃2 + k̃1)/2)− cos(π(R + 1)(
√

3k̃2 + k̃1)/2)
1− cos(π(

√
3k̃2 + k̃1)/2)

cos(πR(
√

3k̃2 − k̃1)/2)− cos(π(R + 1)(
√

3k̃2 − k̃1)/2)
1− cos(π(

√
3k̃2 − k̃1)/2)

(7.29)

As for the box filters on a rectangular lattice (Eqs. (7.24) and (7.28)), we
compute the anisotropy of the filter using Eq. (7.23) in the approxima-
tion for small wave numbers. The result is

∆hR̂(k̃) ≈ 3R + 15R2 + 40R3 + 60R4 + 48R5 + 16R6

241920
sin2(3φ)(πk̃)6

(7.30)
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Figure 7.4: Transfer functions of binomial filters BR in a a linear plot and b a
log-log plot of the absolute value with values of R as indicated.

This equation indicates that the effects of anisotropy are significantly
lower on hexagonal grids. In contrast to the box filters on a square grid,
there is only an anisotropic term with k̃6 and not already with k̃4. From
Fig. 7.2a and d we can conclude that the anisotropy is about a factor of
5 lower for a 3R filter on a hexagonal lattice than on a square lattice.

7.4 Binomial filters

7.4.1 General properties

In Section 7.2.3 we concluded that only the Gaussian function meets the
most desirable features of an averaging filter: separability and isotropy.
In this section we will investigate to which extent the binomial filter,
which is a discrete approximation to the Gaussian filter, still meets
these criteria. The coefficients of the one-dimensional binomial filter
can be generated by repeatedly convolving the simple 1/2 [1 1] mask:

BR = 1/2 [1 1]∗ . . .∗ 1/2 [1 1]︸ ︷︷ ︸
R times

(7.31)

This cascaded convolution is equivalent to the scheme in Pascal’s tri-
angle. The transfer function of the elementary B = 1/2 [1 1] filter is

B̂ = cos(πk̃/2) (7.32)

There is no need to distinguish type I and type II binomial filters in the
equations because they can be generated by cascaded convolution as
in Eq. (7.31). Therefore, the transfer function of the BR binomial filter
is

B̂
R = cosR(πk̃/2) (7.33)

The most important features of binomial averaging filters are:
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Monotonic transfer function. The transfer function decreases mono-
tonically from 1 to 0 (Fig. 7.4).

Spatial variance. The coefficients of the binomial filter quickly ap-
proach with increasing mask size a sampled normal distribution.
The spatial variance is

σ 2
x = R/4 (7.34)

A binomial filter effectively averages over a width of 2σx . In contrast
to the box filters, the effective averaging width increases only with
the square root of the filter length.

Variance. Also the transfer function of the binomial filter quickly ap-
proaches the Gaussian function with increasing mask size (Fig. 7.4a).
It is instructive to compare the Taylor expansion of the Gaussian
function for small wave numbers with those of the transfer func-
tions of binomial filters:

exp(−k̃2/(2σ 2
k )) ≈ 1 − 1

2σ 2
k
k̃2 + 1

8σ 4
k
k̃4

B̂
R
(k̃) ≈ 1 − Rπ

2

8
k̃2 +

(
R2π4

128
− Rπ

4

192

)
k̃4

(7.35)

For large R both expansions are the same with

σk = 2√
Rπ

(7.36)

7.4.2 Binomial filters on square lattices

Higher-dimensional binomial filters can be composed from 1-D bino-
mial filters in all directions:

BR =
D∏
d=1

BRd (7.37)

Thus the transfer function of the multidimensional binomial filter BR
with (R + 1)D coefficients is given by

B̂R =
D∏
d=1

cosR(πk̃d/2) (7.38)

The isotropy of binomial filters can be studied by expanding Eq. (7.38)
in a Taylor series using cylindrical coordinates k̃ = [k̃,φ]T :

B̂R ≈ 1− R
8
(πk̃)2 + 2R2 −R

256
(πk̃)4 − R cos 4φ

768
(πk̃)4 (7.39)
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Figure 7.5: Absolute deviation of the 2-D transfer functions of binomial filters
from the transfer function along the x axis (1-D transfer function shown in
Fig. 7.4) for a a 3×3 (B2), b 5×5 (B4), c 9×9 (B8), and d a B2(k̃) filter running
in 0°, 60°, and 120° on a hexagonal grid. The distance of the contour lines is
0.005 in a and b and 0.001 in c and d. The area between the thick contour lines
marks the range around zero.

Only the second-order term is isotropic. In contrast, the fourth-order
term contains an anisotropic part, which increases the transfer func-
tion in the direction of the diagonals. A larger filter (larger R) is less
anisotropic as the isotropic term with k̃4 increases quadratically with
R while the anisotropic term with k̃4 cos 4θ increases only linearly with
R. The anisotropy deviation according to Eq. (7.23) is given by

∆B̂R ≈ R
384

sin2(2φ)(πk̃)4 + 5R2 − 4R
15360

sin2(2φ)(πk̃)6 (7.40)

and shown in Fig. 7.5.
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Figure 7.6: Anisotropy with respect to the response of the axes for a 3-D bino-
mial filter for small wave numbers. Shown is the factor of the term with (πk̃)4
as a function of the angles φ and θ.

For a 3-D binomial filter, we can use the same procedures to analyze
the anisotropy. It is only required to replace cylindrical by spherical
coordinates. Then the anisotropy for small wave numbers is given by

∆B̂R ≈ R
384

(
sin2(2φ) sin4 θ + sin2(2θ)

)
(πk̃)4 (7.41)

Figure 7.6 shows that the anisotropy is the same in the directions of the
diagonals in the xy , xz, and yz planes. A maximum in the anisotropy
that is slightly higher than in the direction of the area diagonals is
reached in the direction of the space diagonal.

7.4.3 Binomial filters on hexagonal lattices

On a hexagonal lattice a separable binomial filter is running in three
directions instead of two directions on a square lattice. Thus the masks

1
4

[
1 1
1 1

]
and

1
16

 1 2 1
2 4 2
1 2 1


on a square lattice correspond to the masks

1
8

 1 1
1 2 1

1 1

 and
1
64


1 2 1

2 6 6 2
1 6 10 6 1

2 6 6 2
1 2 1
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on a hexagonal lattice.
The anisotropy deviation according to Eq. (7.23) is given by

∆ hB̂R ≈ R
15360

sin2(3φ)(πk̃)6 (7.42)

for small wave numbers. Figure 7.5d shows that the anisotropy for B2

is already about 10 times lower than for the same filter on a square
grid. The maximum anisotropy is well below 0.01 even for this small
filter.

7.4.4 Efficient computation

We close our consideration of binomial filters with some remarks on
fast algorithms. A direct computation of a BR operator with (R + 1)D
filter coefficients requires (R+1)D multiplications and (R+1)D−1 addi-
tions. If we decompose the binomial mask into elementary smoothing
masks B = 1/2 [1 1] and apply this mask in all directions R times each,
we only need DR additions. All multiplications can be handled much
more efficiently as shift operations. For example, the computation of a
9×9 (9×9×9) binomial filter requires only 16 (24) additions and some
shift operations compared to 81 (729) multiplications and 80 (728) ad-
ditions needed for the direct approach.

7.5 Cascaded averaging

The approaches discussed so far for local averaging are no solution if
the averaging should cover large neighborhoods for the following rea-
sons: First, binomial filters are not suitable for large-scale averaging—
despite their efficient implementation by cascaded convolution with
B—because the averaging distance increases only with the square root
of the mask size (see Eq. (7.34) in Section 7.4.1). Secondly, box filters
and recursive filters are, in principle, suitable for large-scale averaging
because the number of operations does not increase with the size of the
point spread function (operation of the order O(R0)). However, both
types of filters have a nonideal transfer function. The transfer function
of the box filter is not monotonically decreasing with the wave number
(Section 7.3) and both filters show too large deviations from an isotropic
response. In this section, two techniques are discussed for large-scale
averaging that overcome these deficits and limitations, multistep aver-
aging (Section 7.5.1) and multigrid averaging (Section 7.5.2).

7.5.1 Multistep averaging

The problem of slow large-scale averaging originates from the small
distance between the pixels averaged by small masks. In order to over-
come this problem, we may use the same elementary averaging process
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a b

Figure 7.7: Transfer functions of the binomial filterB4 (B = 1/16[1 4 6 4 1]) and
the same filter stretched by a a factor of two, B4

2 (B2 = 1/16[1 0 4 0 6 0 4 0 1]),
and b a factor of four, B4

4.

but with more distant pixels. As the box, binomial and recursive aver-
aging filters are separable and thus are applied as cascaded filter oper-
ations running one after the other in all coordinate directions through
a multidimensional signal, it is sufficient to discuss increasing the step
width for 1-D filter operations. A 1-D convolution with a mask that
operates only with every S-th pixel can be written as a stretched mask

(hS)n =
{
hn′ n = Sn′
0 else

⇐⇒ ĥS(k̃) = ĥ(k̃/S) (7.43)

Because of the reciprocity between the spatial and Fourier domains the
stretching of the filter mask by a factor S results in a corresponding
shrinking of the transfer function. This shrinking goes—because of the
periodicity of the transfer function of discrete samples—along with an
S-fold replication of the transfer function as illustrated in Fig. 7.7.

An averaging filter that is used with a larger step width is no longer
a good averaging filter for the whole wave-number range but only for
wave numbers up to k̃ = 1/S. Used individually, these filters are thus
not of much help. But we can use them in cascade in such a way that
previous smoothing has already removed all wave numbers beyond
k̃ = 1/S. This is the basic principle for the design of cascaded filters.

For practical design there are two degrees of freedom. First, we can
select the basic filter that is used repeatedly with different step widths.
Here, box, binomial and relaxation filters are investigated. Second, we
can choose the way in which the step width is increased. We will con-
sider both a linear and an exponential increase in the step width. Gen-
erally, a cascaded filter operation consists of the following chain of P
operations with the filter operation B:

BaP . . .Bap . . .Ba2Ba1︸ ︷︷ ︸
P times

(7.44)
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a b

c d

Figure 7.8: Transfer functions of cascaded filtering with linear increase in step
width with a B2, b B4, c 3R, and d 5R. Shown are the transfer functions of the
original filters and of the cascaded filtering up to the six-fold step size with a
resulting averaging width

√
91 ≈ 9.54 times larger than the original filter.

where ap consists of a sequence of step widths. Whereas in each step
the same operator B with the spatial variance σ 2 is used and only the
step width is changed, the resulting step width can be computed by

σ 2
c = σ 2

P∑
p=1

a2
p (7.45)

From this equation it is also obvious that efficient filter cascading re-
quires an increasing step width. If we keep the step width constant,
the averaging width given by σc increases only with

√
P and not lin-

early with P .

Linearly increasing step width. In the simplest case, the step width
is increased linearly, that is, ap = p. This results in the following se-
quence of P step widths: 1,2,3,4, . . . , P . According to Eq. (7.45), the
resulting series of variances is

σ 2
c = σ 2

P∑
p=1

p2 = P(P + 1)(2P + 1)
6

σ 2 (7.46)

For large P , σc = P3/2σ/
√

3. Thus the averaging width increases even
stronger than linear with the number of steps. With only six steps, the
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a b

c d

e f

Figure 7.9: Transfer functions of cascaded filtering with exponential increase
in step width with a B2, b B4, c 3R, d 5R, e and f relaxation filter according
to Eq. (5.55) with α = 1/2 and α = 3/4, respectively. Shown are the transfer
functions of the original filters and of four cascaded filters (up to step size 8)
with a resulting averaging width

√
85 ≈ 9.22 times larger than the original

filter.

resulting averaging width is
√

91 ≈ 9.54 times larger than that of the
original filter (Fig. 7.8). To achieve this averaging width, the same filter
would have to be applied 91 times.

The quality of the cascaded filtering, that is, the degree of deviation
from a monotonic transfer function is determined by the basic filter.
Figure 7.8 shows the transfer functions for a number of different filters
in a double-logarithmic plot. Only the binomial filter B4 shows negligi-
ble secondary peaks well beyond 10−4. The other filters in Fig. 7.8 have
significantly more pronounced secondary peaks in the 10−4 to 10−2

range.
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a b

Figure 7.10: a Sequence of transfer functions of cascaded filtering with expo-
nential increase in step width using the B6 binomial filter. b Shows the same
sequence except that the first filter with step width 1 is B8.

Exponentially increasing step width. A linear increase in the step
width is still too slow to achieve averaging over very large scales. It is
also disadvantageous that the increase in the averaging width is of the
odd order P3/2. This means that filtering does not increase the width
of the averaging linearly. The increase is slightly stronger.

Both difficulties are overcome with an exponential increase in the
step width. The easiest way is to increase the step width by a factor
of two from filtering to filtering. The resulting mask has the standard
deviation

σ 2
c = σ 2

P∑
p=1

22p−2 = 22P − 1
3

σ 2 (7.47)

Thus the standard deviation grows exponentially to ≈ (2P/√3)σ
with only P filtering steps. In other words, the number of computations
increases only logarithmically with the averaging width.

As for the linear increase of the step width, the basic filter deter-
mines the quality of the resulting transfer function of the cascaded
filtering. Figure 7.9 shows that only the binomial filter B4 results in an
acceptable transfer function of the cascaded filtering. All other filters
show too high secondary peaks.

Figure 7.10a shows a sequence of transfer functions for the cascad-
ing of the binomial filter B6. It can be observed that the filters are not
of exactly the same shape but that the secondary peak is higher for the
first steps and only gradually levels off to a constant value. This effect
is caused by the constant term in Eq. (7.47). It can be compensated if
the first filter (p = 1) does not have variance σ 2 but has variance 4/3σ 2.
Indeed, if a B8 filter is used instead of the B6 filter in the first step, the
filters in the different steps of the filter cascade are much more similar
(Figure 7.10b).
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a b

Figure 7.11: Anisotropy of cascaded filtering with exponential increase of the
step width in a log-polar plot. Shown is the deviation from the transfer function
in the direction of the x axis for a B2

4B2
2B2

1 and b B4
4B4

2B4
1.

For higher-dimensional signals the isotropy of the averaging is of
significance. As we already know that all filters except for the binomial
filters are significantly anisotropic, only binomial filters are discussed.
While the B2 filter still shows a pronounced anisotropy of several per-
cent (Fig. 7.11a), the anisotropy is already just slightly more than 0.01
for a B4 filter (Fig. 7.11b).

7.5.2 Multigrid averaging

Multistep cascaded averaging can be further enhanced by converting
it into a multiresolution technique. The idea of multigrid smoothing
is very simple. If a larger-step mask is involved, this operation can be
applied on a correspondingly coarser grid. This means that the last
operation before using the larger-step mask needs to compute the con-
volution only at the grid points used by the following coarser grid op-
erator. This sampling procedure is denoted by a special syntax in the
operator index. O↓2 means: Apply the operator in all directions and
advance the mask two pixels in all directions. Thus, the output of the
filter operator has only half as many pixels in every direction as the
input.

Multigrid smoothing makes the number of computations essentially
independent of the standard deviation of the smoothing mask. We
again consider a sequence of 1-D averaging filters:

B↓2 · · ·B↓2B↓2︸ ︷︷ ︸
P times

The standard deviation of the filter cascade is the same as for the mul-
tistep approach with exponential increase of the step width (Eq. (7.47)).
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Also, as long as the sampling condition is met, that is, B̂p(k̃) = 0
∀k̃ ≥ 1/2, the transfer functions of the filters are the same as for the
multistep filters.

If B↓2 takes q operations, the operator sequence takes

q
P∑
p=1

1
2p−1 = 2q

(
1− 1

2P−1

)
< 2q (7.48)

Thus, smoothing to any degree takes no more than twice as many op-
erations as smoothing at the first step.

7.6 Weighted averaging

Image data, just like any other experimental data, may be characterized
by individual errors that have to be considered in any further process-
ing. As an introduction, we first discuss the averaging of a set of N
data gn with standard deviations σn. From elementary statistics, it is
known that appropriate averaging requires the weighting of each data
point gn with the inverse of the variancewn = 1/σ 2

n. Then, an estimate
of the mean value is given by

〈
g
〉 = N∑

n=1

gn/σ 2
n

/ N∑
n=1

1/σ 2
n (7.49)

while the standard deviation of the mean is

σ 2
〈g〉 = 1

/ N∑
n=1

1/σ 2
n (7.50)

The application of weighted averaging to image processing is known
as normalized convolution [3]. The averaging is now extended to a local
neighborhood. Each pixel enters the convolution sum with a weighting
factor associated with it. Thus, normalized convolution requires two
signals. One is the image G to be processed, the other an imageW with
the weighting factors.

By analogy to Eqs. (7.49) and (7.50), normalized convolution with
the mask H is defined as

G′ = H ∗ (W ·G)
H ∗W (7.51)

A normalized convolution with the mask H essentially transforms the
image G and the weighting image W into a new image G′ and a new
weighting image W ′ =H ∗W , which can undergo further processing.

Normalized convolution is just adequate consideration of pixels
with spatially variable statistical errors. “Standard” convolution can
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be regarded as a special case of normalized convolution. Then all pix-
els are assigned the same weighting factor and it is not required to use
a weighting image, because the factor remains a constant.

The flexibility of normalized convolution is given by the choice of
the weighting image. The weighting image is not necessarily associ-
ated with an error. It can be used to select and/or amplify pixels with
certain features. In this way, normalized convolution becomes a versa-
tile nonlinear operator. The application of normalized convolution is
discussed in a number of contributions in Volume 3 of this handbook:
Sections 30.3.4, 32.4.4, 33.4.3, and 37.4.2.
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8.1 Introduction

Interpolation of digital signals is required for a wide range of signal
processing tasks whenever any operation shifts the digital points of the
output signal so that they no longer coincide with the grid points of the
input signal. This occurs, among others, with the following operations:

Geometric operations. For many applications, the geometrical distor-
tions introduced by optical systems (Volume 1, Chapter 4) are not
acceptable and must be corrected. For satellite images, it is often
required to recompute the image data to a different projective map-
ping.

Signal registration. If data are taken with different sensors, these sen-
sors will almost never be in perfect spatial alignment. Thus it is
required to map them onto common spatial coordinates for further
joint processing.

175
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Multiresolution signal processing. For multigrid data structures, such
as pyramids (Section 4.4), signals are represented at different reso-
lution levels. On such data structures it is necessary to interpolate
missing points from coarser levels to be able to process them at a
finer level.

Coarse-to-fine strategies. Coarse-to-fine strategies are an often used
concept on multigrid data structures if the processing involves im-
ages that are shifted to each other either because of a different sen-
sor (image registration), a different perspective (stereo images) or
motion of objects (Chapter 13). In all these cases it is required to
warp the images with the determined displacement vector field be-
fore processing at the next finer resolution (Chapter 14).

Test image generation. In order to evaluate algorithms, it is important
to apply them to known signals. For image sequence processing,
for example, it is useful to simulate displacement vector fields by
warping images correspondingly.

For a long time there was little effort put into interpolation algo-
rithms for computer vision. Thus most of the available procedures have
been invented for computer graphics in the framework of photorealistic
rendering. An excellent survey in this respect is provided by Wolberg
[1]. Only with increasing demand for subpixel-accurate computer vi-
sion algorithms have the researchers became aware of the importance
of accurate interpolation algorithms. The demands are quite high. As
a rule of thumb, interpolation should neither change the amplitude of
a signal by more than 1 % nor shift any signal by more than 0.01.

8.2 Basics

8.2.1 Interpolation as convolution

The basis of interpolation is the sampling theorem (Section 2.4.2). This
theorem states that the digital signal completely represents the contin-
uous signal provided the sampling conditions are met. This basic fact
suggests the following general framework for interpolation:

Reconstruction of continuous signal. From the sampled signal a con-
tinuous or a higher-resolution representation is reconstructed.

Filtering. Before a resampling can be performed, it is necessary to
check whether a prefiltering of the data is required. Whenever the
data is to be resampled with a coarser resolution, aliasing could oc-
cur because the sampling condition is no longer met (Section 2.4.3).

Resampling. This step finally forms the new digital signal.

Of course, a certain procedure for interpolation can perform two or
even all of these steps in a single operation. However, it is still helpful
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for a better understanding of the procedure to separate it into these
steps.

Although these procedures sound simple and straightforward, they
are not. The problem is related to the fact that the reconstruction of the
continuous signal from the sampled signal in practice is quite involved
and can be performed only approximately. Thus, we need to balance the
computational effort with the residual error for a given interpolation
task.

Generally, a continuous multidimensional signal is interpolated from
values at all points of a lattice by (Section 2.4.4)

gr (x) =
P∑
p=1

∑
n
gs(rn + sp)h(x − (rn + sp)) (8.1)

In this equation rn are the translation vectors of the lattice and sp the
offsets of the P points in the primitive cell of the lattice. If a continuous
signal is required but only the value at a shifted point p (Eq. (8.1))
reduces to

gr (p) =
P∑
p=1

∑
n
gs(rn + sp)h(p − (rn + sp)) (8.2)

This equation reveals that interpolation is nothing else but a general-
ized convolution operation of the points on a discrete lattice with sam-
pled values from the interpolation kernel. The only difference is that
the result of the operation is not written back to the same lattice but to
a shifted lattice. Thus an interpolation operation can be described by
a transfer function. According to the discussion of the sampling theo-
rem in Sections 2.4.2 and 2.4.4, the ideal interpolation function has a
transfer function that is constantly one within the first Brillouin zone
and zero outside.

8.2.2 Interpolation on orthogonal lattices

For the rest of this chapter, we will restrict all considerations to orthog-
onal lattices because interpolation of multidimensional signals is much
easier to handle on these grids. On an orthogonal lattice with only one
point per primitive cell (P = 1), the interpolation in Eq. (8.1) reduces to

gr (x̃) =
∑
n
gs(n)h(x̃ −n) (8.3)

In this equation all vectors in the spatial domain are expressed in units
of the lattice constants: x̃d = xd/∆xd. Thus, the components of the
translation vector r are integers and are replaced by n = [n1, . . . ,nD]T ,
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Figure 8.1: Interpolation interval for interpolation masks with a an even and
b an odd number of coefficients .

the vectorial index that counts the translations vectors on a D-dimen-
sional lattice.

The ideal transfer function for interpolation of aD-dimensional sig-
nal is then a D-dimensional box function

ĝr (k̃) = ĝ(k̃)
D∏
d=1

Π(2k̃) (8.4)

where k̃ is the wave number normalized to the Nyquist limit according
to Eq. (2.34). It follows that the ideal interpolation function h is the
Fourier transform of the box function, the sinc function

h(x̃) =
D∏
d=1

sin(πx̃d)
πx̃d

=
D∏
d=1

sinc(x̃d) (8.5)

This ideal interpolation mask cannot be used in practice as it is infi-
nite. Thus an optimal approximation must be found that minimizes
the deviations from the ideal transfer function.

8.2.3 General properties of interpolation kernels

In this section some general properties of interpolation are summarized
that are useful for the design of optimal interpolation masks.

Symmetries. An interpolation mask can have an even or odd number
of coefficients. Because of symmetry reasons, the interpolation inter-
val of these two types of interpolation masks is different. For a mask
with an even number of coefficients (Fig. 8.1a), the symmetry center
lies between the two central points of the interpolation mask. Because
any interpolation mask has an interpolation interval of one distance be-
tween two points of the mask, the interpolation interval is limited to the
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interval between the two central points of the mask. For points outside
of this range, the mask is shifted a corresponding number of points
on the lattice, so that the point to be interpolated lies again within this
central interval.

For a mask with an odd number of coefficients (Fig. 8.1b), the sym-
metry center coincides with the central point. Thus the interpolation
interval is now half the distance between points on the lattice on both
sides of the central point. The symmetry conditions for these two types
of interpolation filters are analogous to type I and type II averaging fil-
ters discussed in Sections 5.3.5 and 7.3.

Interpolation condition. There are some general constraints that must
be met by any interpolation filter. They result from the simple fact that
the interpolated values in Eq. (8.3) at the lattice points n should repro-
duce the lattice points and not depend on any other lattice points. From
this condition, we can infer the interpolation condition:

h(n) =
{

1 n = 0

0 otherwise
(8.6)

Therefore any interpolation mask must have zero crossings at all
grid points except the zero point where it is one. The ideal interpolation
mask in Eq. (8.5) meets this interpolation condition.

More generally, we can state that any discrete interpolation mask
sampled from the continuous interpolation kernel should meet the fol-
lowing condition:

x̃Hn =
∑
n
h(n+ x̃) = 1 ⇐⇒ x̃Ĥ0 = 1 (8.7)

This generalized condition says nothing else but that a constant signal
(k̃ = 0) is not changed by an interpolation operation.

Separability. The ideal interpolation function in Eq. (8.5) is separa-
ble. Therefore, interpolation can as easily be formulated for higher-
dimensional images. We can expect that all solutions to the interpola-
tion problem will also be separable. Consequently, we need only dis-
cuss the 1-D interpolation problem

gr (x̃) =
R∑

n=−R
gnh(x̃ −n) (8.8)

where n and R take half-integer values for interpolation masks with an
even number of coefficients and integer values for interpolation masks
with an odd number of coefficients; x is given here in units of the lattice
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Figure 8.2: a Ideal 1-D interpolation mask and b its transfer function. The
values for the coefficients of the discrete mask to interpolate intermediate lattice
points (x̃ = 1/2) are marked by dots.

constant x̃ = x/∆x. The 1-D ideal interpolation mask sinc(x̃) and its
transfer function Π(2k̃) are illustrated in Fig. 8.2.

Once a good interpolation mask is found for 1-D interpolation, we
also have a solution for the D-dimensional interpolation problem.

An important special case is the interpolation to intermediate lattice
points halfway between the existing lattice points. This scheme doubles
the resolution and image size in all directions in which it is applied. The
coefficients of the corresponding interpolation mask are the values of
the sinc(x̃) function sampled at all half-integer values:

h =
[
(–1)r−1 2
(2r − 1)π

· · · –
2

3π
2
π

2
π

–
2

3π
· · · (–1)r−1 2

(2r − 1)π

]
(8.9)

The coefficients are of alternating sign.

Interpolation error analysis. The fact that interpolation is a convo-
lution operation and thus can be described by a transfer function in
Fourier space Eq. (8.5) gives us a tool to rate the errors associated with
an interpolation technique. The box-type transfer function for the ideal
interpolation function simply means that all wave numbers within the
range of possible wave numbers |kd| ≤ ∆xd/π experience neither a
phase shift nor amplitude damping. Also, no wave number beyond
the allowed interval is present in the interpolated signal, because the
transfer function is zero there.

8.3 Interpolation in Fourier space

Interpolation reduces to a simple operation in the Fourier domain. The
transfer function of an ideal interpolation kernel is a box function
that is zero outside the wave numbers that can be represented (see
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Eq. (8.5)). This basic fact suggests the following interpolation proce-
dure in Fourier space:

1. Enlargement of the Fourier transform of the signal. If the discrete
Fourier transform of anMD multidimensional signal is increased to
an M ′D array, the array in the spatial domain is also increased to
the same size. Because of the reciprocity of the Fourier transform,
the image size remains unchanged. Only the spacing between pix-
els in the spatial domain is decreased, resulting in a higher spatial
resolution:

M∆kd →M ′∆kd ⇐⇒ ∆x = 2π
M∆k

→ ∆x′ = 2π
M ′∆k

(8.10)

The padded area in the Fourier space is filled with zeroes.

2. Inverse Fourier transform. All that needs to be done is the compu-
tation of an inverse Fourier transform to obtain a higher resolution
signal.

The Fourier transform can also be used to shift a signal by any dis-
tance without changing the signal resolution. Then the following three-
step procedure must be applied.

1. Forward Fourier transform.

2. Multiplication with a phase factor. According to the shift theorem
(Table 3.5), a shift in the spatial domain by a distancexs corresponds
to the multiplication of the Fourier transform by the following phase
factor:

g(x)→ g(x − s) ⇐⇒ Ĝu → exp(−2π ius)Ĝu (8.11)

where the vectorial shift s is given in units of the lattice constants
∆xd.

3. Inverse Fourier transform.

Theoretically, these simple procedures result in perfectly interpo-
lated signals. A closer look, however, reveals that these techniques
have some serious drawbacks.

First, the Fourier transform of a finite image implies a cyclic repe-
tition of the image both in the spatial and Fourier domain. Thus, the
convolution performed by the Fourier transform is also cyclic. This
means that at the right or left edge of the image, convolution contin-
ues with the image at the opposite side. Because the real world is not
periodic and interpolation masks are large, this may lead to significant
distortions of the interpolation even at quite large distances from the
edges of the image.

Second, the Fourier transform can be computed efficiently only for
a specified number of values for M ′. Best known are the fast radix-2
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Figure 8.3: a 1-D linear interpolation: a continuous interpolation mask and
b its transfer function. The values for the coefficients of the discrete mask to
interpolate intermediate lattice points (x̃ = 1/2) are marked by dots.

algorithms that can be applied only to images of the size M ′ = 2N
′

(Section 3.4.1). Therefore, the Fourier transform-based interpolation is
limited to scaling factors of powers of two.

Third, the Fourier transform is a global transform. Thus it can be
applied only to a global scaling of the signal by an integer factor.

8.4 Polynomial interpolation

8.4.1 Linear interpolation

Linear interpolation is the classic approach to interpolation. The in-
terpolated points lie on pieces of straight lines connecting neighboring
grid points. In order to simplify the expressions in the following, we
use normalized spatial coordinates x̃ = x/∆x. We locate the two grid
points at −1/2 and 1/2. This yields the interpolation equation

g(x̃) = g1/2 + g−1/2

2
+ (g1/2 − g−1/2

)
x̃ for |x̃| ≤ 1/2 (8.12)

By comparison of Eq. (8.12) with Eq. (8.8), we can conclude that the
continuous interpolation mask for linear interpolation is the triangle
function

h1(x̃) = Λ(x̃) =
{

1− |x̃| |x̃| ≤ 1

0 otherwise
(8.13)

The transfer function of the interpolation mask for linear interpola-
tion, the triangle function h1(x) Eq. (8.13), is the squared sinc function
(Table 3.4)

ĥ1(k̃) = sin2(πk̃/2)
(πk̃/2)2

= sinc2(k̃/2). (8.14)
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A comparison with the ideal transfer function for interpolation Eq. (8.4),
see also Fig. 8.2b, shows that two distortions are introduced by linear
interpolation:

1. While low wave numbers (and especially the mean value k̃ = 0) are
interpolated correctly, high wave numbers are reduced in ampli-
tude, resulting in some degree of smoothing. At k̃ = 1, the transfer
function is reduced to about 40 %: ĥ1(1) = (2/π)2 ≈ 0.4.

2. As ĥ1(k̃) is not zero at wave numbers k̃ > 1, some spurious high
wave numbers are introduced. If the continuously interpolated im-
age is resampled, this yields moderate aliasing. The first sidelobe
has an amplitude of (2/3π)2 ≈ 0.045.

If we interpolate only the intermediate grid points at x̃ = 0, the
continuous interpolation function Eq. (8.13) reduces to a discrete con-
volution mask with values at x̃ = [. . . − 3/2 − 1/2 1/2 3/2 . . . ]. As
Eq. (8.13) is zero for |x̃| ≥ 1, we obtain the simple interpolation mask
H = 1/2[1 1] with the transfer function

Ĥ1(k̃) = cosπk̃/2 (8.15)

The transfer function is real, so no phase shifts occur. The signifi-
cant amplitude damping at higher wave numbers, however, shows that
structures with high wave numbers are not correctly interpolated.

Phase shifts do occur at all other values except for the intermedi-
ate grid points at x̃ = 0. We investigate the phase shift and amplitude
attenuation of linear interpolation at arbitrary fractional integer shifts
ε ∈ [−1/2,1/2]. This results in the following mask and transfer func-
tion for linear interpolation:

[(1/2− ε) (1/2+ ε)] ⇐⇒ ĥ1(ε, k̃) = cosπk̃/2+ 2iε sinπk̃/2
(8.16)

The mask contains a symmetric part [1/2 1/2] and an antisymmetric
part [−ε ε]. In order to estimate the error in the phase shift, it is
useful to compensate for the linear phase shift ∆ϕ = επk̃ caused by
the displacement ε. Then we obtain

ĥ1(ε, k̃) = (cosπk̃/2+ 2iε sinπk̃/2)exp(−iεπk̃) (8.17)

A Taylor expansion in k̃ helps to reveal the amplitude response∣∣∣ĥ1(ε, k̃)
∣∣∣ = (cos2πk̃/2+ 4ε2 sin2πk̃/2

)1/2 ≈ 1− 1− 4ε2

8
(πk̃)2

(8.18)

and phase error ∆ϕ

∆ϕ ≈ ε(1− 4ε2)
12

(πk̃)3 (8.19)



184 8 Interpolation

a

k
~

e
b

k
~

e

Figure 8.4: Error maps for linear interpolation: a amplitude error (distance
of contour lines 0.05); and b phase error expressed as a position shift ∆x
= ∆ϕλ/(2π) (distance of contour lines 0.02; thick contour lines border the
range around zero).

of the transfer function.
Figure 8.4 shows error maps of the amplitude and phase error of lin-

ear interpolation. The amplitude error is significant. While structures
with k̃ = 0.2 are attenuated by 5 %, structures with half the Nyquist
limit (k̃ = 0.5) are already attenuated by 30 %. Moreover, the phase er-
ror is significant (Fig. 8.4b). The transfer function is real only for ε = 0
and ε = 1/2. But at all other fractional shifts, a nonzero phase shift re-
mains. In Fig. 8.4b the phase shift ∆ϕ is expressed as the position shift
∆x of the corresponding periodic structure, that is, ∆x = ∆ϕλ/(2π) =
∆ϕ/(πk̃). For wave numbers of k̃ = 0.5, the maximum displacement
is about 0.05. This is a significant relative error of 20 % given the fact
that the displacement ε is only 0.25 for the maximum phase error.

8.4.2 Higher-order polynomial interpolation

Given the significant limitations of linear interpolation as discussed
in Section 8.4.1, we ask whether higher-order interpolation schemes
perform better. The basic principle of linear interpolation was that a
straight line was drawn to pass through two neighboring points. In the
same way, we can use a polynomial of degree P with P + 1 unknown
coefficients ap to pass through P + 1 points:

gr (x̃) =
P∑
p=0

apx̃p (8.20)
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For symmetry reasons, the lattice points are placed at the positions

k̃p = 2p − P
2

(8.21)

For an even number of points (P is odd), the lattice points are located
at half-integer values.

From the interpolation condition at the grid points gr (k̃p) = gp, we
obtain a linear equation system with P+1 equations and P+1 unknowns
aP of the following form when P is odd:

g0
...

g(P−1)/2
g(P+1)/2

...
gP


=



1 −P/2 P2/4 −P3/8 · · ·
...

1 −1/2 1/4 −1/8 · · ·
1 1/2 1/4 1/8 · · ·
...

1 P/2 P2/4 P3/8 · · ·





a0
...

a(P−1)/2
a(P+1)/2

...
aP


(8.22)

or written as a matrix equation:

g =Ma with Mpq =
(

2q − P
2

)p
, p,q ∈ [0, P] (8.23)

For a cubic polynomial (P = 3), the solution of the equations system
is 

a0

a1

a2

a3

 = 1
48


−3 27 27 −3

2 −54 54 −2
12 −12 −12 12
−8 24 −24 8



g0

g1

g2

g3

 (8.24)

Using Eqs. (8.20) and (8.24) we can express the interpolated values
for the position ε in the interval [−1/2,1/2] as

g(ε) = 9− 4ε2

16
(g1 + g2) − 1− 4ε2

16
(g0 + g3)

+ ε(9− 4ε2)
8

(g2 − g1) − ε(1− 4ε2)
24

(g3 − g0)

(8.25)

Thus the interpolation mask is[−α
16
+ εα

24
, 8+α

16
+ ε(8+α)

8
, 8+α

16
− ε(8+α)

8
, −α

16
− εα

24

]
(8.26)

with α = 1− 4ε2. For ε = 0 (α = 1), the mask reduces to

1
16
[−1 9 9 − 1] (8.27)
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Figure 8.5: Error maps for cubic interpolation: a amplitude error (distance
of contour lines 0.05); and b phase error expressed as a position shift ∆x
= ∆ϕλ/(2π) (distance of contour lines 0.02; thick contour lines border the
range around zero), compare Fig. 8.4.

From Eq. (8.26), we can also infer the transfer function and obtain

ĥ3(k̃) = 8+α
8

cos(πk̃/2) + i
ε(8+α)

4
sin(πk̃/2)

− α
8

cos(π3k̃/2) − i
εα
12

sin(π3k̃/2)
(8.28)

which reduces for small wave numbers to

ĥ3(k̃) ≈ 1− 9− 40ε2 + 16ε4

384
(πk̃)4 + i

9− 40ε2 + 16ε4

480
(πk̃)5 (8.29)

Thus the amplitude attenuation goes only with k̃4 and the error in the
phase shift only with k̃5 (compare Eqs. (8.18) and (8.19) for linear inter-
polation).

Figure 8.5 shows that the errors in amplitude and phase shift are sig-
nificantly lower than for linear interpolation. However, for wave num-
bers higher than 0.5, the errors are still too high for many applications.

It is not very helpful to go to higher-order polynomial interpolation.
With increasing degree P of the interpolating polynomial, the transfer
function approaches the ideal transfer function better but convergence
is too slow (Fig. 8.6). Less than 1 % amplitude error is given only for a
polynomial of degree 7 for k̃ < 0.45. Thus the extra effort of higher-
order polynomial interpolation does not pay off.
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Figure 8.6: Transfer function of polynomial interpolation filters to interpolate
the value between two grid points (ε = 0). The degree of the polynomial (1
= linear, 3 = cubic, etc.) is marked in the graph. The dashed line marks the
transfer function for cubic B-spline interpolation (Section 8.5): a Full range; b
sector as marked in a.
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Figure 8.7: a B-spline interpolation kernels of order 0 (nearest neighbor), 1 (lin-
ear interpolation), 2 (quadratic B-spline), and 3 (cubic B-spline); b corresponding
transfer functions.

8.5 Spline-based interpolation

Besides the still limited accuracy, polynomial interpolation has another
significant disadvantage. The interpolated curve is not continuous at
the grid points already in its first derivative. This is due to the fact
that for each interval between grid points another polynomial is taken.
Thus, only the interpolated function is continuous at the grid points
but not the derivatives.

Splines avoid this disadvantage by additional constraints for the
continuity of derivatives at the grid points. From the many classes
of splines, we will here discuss only one class, B-splines, and introduce
cubic B-spline interpolation. From the background of signal processing,
the easiest access to B-splines is their convolution property. The kernel
of a P -order B-spline curve is generated by convolving the box function
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P times with itself (Fig. 8.7a):

βP(x̃) = Π(x̃)∗ . . .∗Π(x̃)︸ ︷︷ ︸
(P+1) times

(8.30)

The transfer function of the box function is the sinc function (see
Table 3.4). Therefore, the transfer function of the P -order B-spline is

β̂P (k̂) =
(

sinπk̃/2
(πk̃/2)

)P+1

(8.31)

Figure 8.7b shows that the B-spline function does not make a suit-
able interpolation function. The transfer function decreases too early,
indicating that B-spline interpolation performs too much averaging.
Moreover, the B-spline kernel does not meet the interpolation condition
Eq. (8.6) for P > 1. Thus, B-splines can be used only for interpolation if
the discrete grid points are first transformed in such a way that a fol-
lowing convolution with the B-spline kernel restores the original values
at the grid points.

This transformation, known as the B-spline transformation, is con-
structed from the following condition:

gp(x) =
∑
n
cnβP(x −xn) with gp(xn) = g(xn) (8.32)

If centered around a grid point, the cubic B-spline interpolation
kernel is unequal to zero for only three grid points. The coefficients
β3(−1) = β−1, β3(0) = β0, and β3(1) = β1 are 1/6, 2/3, and 1/6. The
convolution of this kernel with the unknown B-spline transform values
cn should result in the original values gn at the grid points. Therefore,

g = c ∗ β3 or gn =
1∑

n′=−1

cn+n′βn′ (8.33)

Equation (8.32) constitutes the sparse linear equation system


g0

g1
...

gN−1

 =
1
6



4 1 0
.. . 0 1

1 4 1 0
. . . 0

0 1 4 1 0
. . .

. . .
. . .

. . .
. . .

. . . 1 4 1 0

0
. . . 0 1 4 1

1 0
. . . 0 1 4




c0

c1
...

cN−1

 (8.34)
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using cyclic boundary conditions. The determination of the B-spline
transformation thus requires the solution of a linear equation system
with N unknowns. The special form of the equation system as a con-
volution operation, however, allows for a more efficient solution. In
Fourier space, Eq. (8.33) reduces to

ĝ = β̂3ĉ (8.35)

The transfer function of β3 is β̂3(k̃) = 2/3+1/3 cos(πk̃). As this func-
tion has no zeroes, we can compute c by inverse filtering, that is, con-
voluting g with a mask that has the transfer function

β̂−1
3 (k̃) = β̂T (k̃) =

1

2/3+ 1/3 cos(πk̃)
(8.36)

This is the transfer function of a recursive relaxation filter (Section 5.4.6)
that is applied first in the forward and then in the backward direction
with the following recursion [2]:

g′n = gn − (2−
√

3)(g′n−1 − gn)
c′n = g′n − (2−

√
3)(cn+1 − g′n)

(8.37)

The entire operation takes only two multiplications and four additions.
The B-spline interpolation is applied after the B-spline transforma-

tion. In the continuous cubic case this yields the effective transfer func-
tion using Eqs. (8.31) and (8.36),

β̂I(k̃) = sin4(πk̃/2)/(πk̃/2)4

(2/3+ 1/3 cos(πk̃))
(8.38)

Essentially, the B-spline transformation performs an amplification
of high wave numbers (at k̃ = 1 by a factor 3), which compensates the
smoothing of the B-spline interpolation to a large extent.

We investigate this compensation at both the grid points and the
intermediate points. From the equation of the cubic B-spline interpo-
lating kernel (Eq. (8.30); see also Fig. 8.7a) the interpolation coefficients
for the grid points and intermediate grid points are

1/6 [1 4 1] and 1/48 [1 23 23 1] (8.39)

respectively. Therefore, the transfer functions are

2/3+ 1/3 cos(πk̃) and 23/24 cos(πk̃/2)+ 1/24 cos(3πk̃/2) (8.40)

respectively. At the grid points, the transfer functions compensate
exactly—as expected—the application of the B-spline transformation
Eq. (8.36). Thus, the interpolation curve goes through the values at the
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Figure 8.8: Error maps for cubic B-spline interpolation: a amplitude error (dis-
tance of contour lines 0.01, five times more sensitive than in Figs. 8.4 and 8.5);
and b phase error expressed as a position shift ∆x = ∆ϕλ/(2π) (distance of
contour lines 0.005, four times more sensitive than in Figs. 8.4 and 8.5; thick
contour lines border the range around zero).

grid points. At the intermediate points the effective transfer function
for the cubic B-spline interpolation is then

β̂I(1/2, k̃) = 23/24 cos(πk̃/2)+ 1/24 cos(3πk̃/2)
2/3+ 1/3 cosπk̃

(8.41)

The amplitude attenuation and the phase shifts expressed as a po-
sition shift in pixel distances are shown in Fig. 8.8. The shift and ampli-
tude damping is zero at the grid points -1/2 and 1/2. While the ampli-
tude damping is maximal for the intermediate point, the position shift
is also zero at the intermediate point due to symmetry reasons. The
interpolation errors are still too high for algorithms that ought to be
accurate in the 1/100 pixel range. If no better interpolation technique
can be applied, this means that the maximum wave number should be
lower than 0.5. Then, the maximum shift is lower than 0.01 and the
amplitude damping is less than 3 %.

8.6 Optimized interpolation

Filter design for interpolation—like any filter design problem—can be
treated in a mathematically more rigorous way as an optimization prob-
lem, as discussed in Section 6.5. The general idea is to vary the filter
coefficients in such a way that the derivation from a target function
reaches a minimum. For a general discussion of this technique, we
refer to Section 6.5.
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Figure 8.9: Transfer function of interpolation kernels optimized with the
weighted least squares technique of a Eq. (8.42) with R = 2 to 6 and b Eq. (8.43)
with R = 1 to 4 (solid line). c and d show a narrow sector of the plots in a and
b for a better estimation of small deviations from ideal values.

The target function for an interpolation filter is the box function
Eq. (8.4) as depicted in Fig. 8.2b. The ansatz functions for an interpola-
tion filter include the following constraints. First, the transfer function
is real. Thus only cos terms must be considered. Secondly, the mean
value should be preserved by the interpolation function. This implies
the condition ĥ(0) = 1. With these two conditions, the ansatz function
for a nonrecursive filter technique is

ĥ(k̃) = cos
(

1
2
πk̃

)
+

R∑
r=2

hr
[

cos
(

2r − 3
2

πk̃
)
− cos

(
1
2
πk̃

)]
(8.42)

The filters (Fig. 8.9a, c) are significantly better than those obtained
by polynomial and cubic B-spline interpolation (Fig. 8.6). Even better
interpolation masks can be obtained by using a combination of non-
recursive and recursive filters, as with the cubic B-spline interpolation
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(compare also Example 6.2 in Section 6.5.1):

ĥ(k̃) =
cos

(
1/2 πk̃

)
+

R∑
r=2

hr
[
cos

(
(2r − 3)/2 πk̃

)
− cos

(
1/2 πk̃

)]
1−α+α cos

(
πk̃

)
(8.43)

Figure 8.9b, d shows the transfer functions for R = 1 to 4. A more
detailed discussion of interpolation filters including tables with opti-
mized filters can be found in Jähne [3].
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9.1 Introduction

Generally, the need for image warping arises from the fact that we want
to relate the pixel coordinates to the world coordinates, to measure the
position, size, distance, and other geometric parameters of the imaged
objects, and to compare objects in different images. A perfect imaging
system performs a perspective transform of the world coordinates to
the pixel coordinates. Often it is possible to approximate the perspec-
tive transform by the simpler affine transform. Scaling and rotation of
images are required if objects of different size and orientation are to
be prepared for pixelwise comparison.

For precise geometric measurements, it is required to correct for the
residual geometric distortion introduced by even well-corrected optical
systems. Modern imaging solid-state sensors are geometrically very
precise and stable. Therefore, a position accuracy of better than 1/100
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a

input image output image

b

input image output image

Figure 9.1: Illustration of: a forward mapping; and b inverse mapping for spa-
tial transformation of images. With forward mapping, the value at an output
pixel must be accumulated from all input pixels that overlap it. With inverse
mapping, the value of the output pixel must be interpolated from a neighbor-
hood in the input image.

pixel distance is feasible. To maintain this accuracy, all geometric trans-
formations applied to digital images must preserve this high position
accuracy. This demand goes far beyond the fact that no distortions
are visible in the transformed images as it is required for computer
graphics applications.

Image warping is a widely neglected subject in computer vision.
Thus it is not surprising that many of the available techniques have
been developed within the frame of computer graphics applications,
especially for the mapping of textures onto objects. Image warping
is treated in detail in a monograph by Wolberg [1] and also studied in
Gomes and Velho [2]. This chapter covers the basics of geometric trans-
forms (Section 9.3) and discusses fast algorithms for scaling, rotation
and affine transforms of images (Section 9.4). All of these algorithms
can be used with various techniques of subpixel accurate interpolation.
This subject is treated in Chapter 8.

9.2 Forward and inverse mapping

A geometric transform defines the relationship between the points in
two images. This relation can be expressed in two ways. Either the
coordinates of the output image x′ can be specified as a function of
the coordinates of the input image x or vice versa:

x′ = M(x) forward mapping

x = M−1(x′), inverse mapping
(9.1)

where M specifies the mapping function and M−1 its inverse. The two
expressions in Eq. (9.1) give rise to two principal ways of spatial trans-
formations: forward mapping and inverse mapping.
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translation rotation scaling stretching shearing

Figure 9.2: Elementary geometric transforms for a planar surface element:
translation; rotation; scaling; stretching; and shearing.

With forward mapping, a pixel of the input image is mapped onto
the output image (Fig. 9.1a). Generally, the pixel of the input image lies
in between the pixels of the output image. With forward mapping, it is
not appropriate to write the value of the input pixel just to the near-
est pixel in the output image (point-to-point mapping). Then, it may
happen that a value is never written to some of the pixels of the out-
put image (holes) while others receive a value more than once (overlap).
Thus, an appropriate technique must be found to distribute the value
of the input pixel to several output pixels. The easiest procedure is
to regard pixels as squares and to take the fraction of the area of the
input pixel that covers the output pixel as the weighting factor. Each
output pixel accumulates the corresponding fractions of the input pix-
els, which—if the mapping is continuous—add up to cover the whole
output pixel.

With inverse mapping, the output pixels are mapped back onto the
input image (Fig. 9.1b). It is obvious that this scheme avoids any holes
and overlaps in the output image because all pixels are scanned se-
quentially. The interpolation problem occurs now in the input image.
The coordinate of the output image does in general not hit a pixel in
the input image but lies in between the pixels. Thus, its correct value
must be interpolated from the surrounding pixels in the input image.

9.3 Basic geometric transforms

9.3.1 Affine transform

An affine transform is a linear coordinate transformation that includes
the elementary transformations translation, rotation, scaling, stretch-
ing, and shearing (Fig. 9.2) and can be expressed by vector addition and
matrix multiplication[

x′

y ′

]
=
[
a11 a12

a21 a22

][
x
y

]
+
[
tx
ty

]
(9.2)
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With homogeneous coordinates [3, 4], the affine transform is written
with a single matrix multiplication as x

′

y ′

1

 =
 a11 a12 tx
a21 a22 ty
0 0 1


 xy

1

 (9.3)

An affine transform has six degrees of freedom: two for translation
(tx , ty ) and one each for rotation, scaling, stretching, and shearing (a11,
a12, a21, and a22). The affine transform maps a triangle into a triangle
and a rectangle into a parallelogram. Therefore, it is also referred to
as three-point mapping. Thus, it is obvious that the use of the affine
transform is restricted. More general distortions such as the mapping
of a rectangle into an arbitrary quadrilateral are not affine transforms.

9.3.2 Perspective transform

Perspective projection is the basis of geometric optical imaging as dis-
cussed in Volume 1, Chapter 4. The affine transform corresponds to
parallel projection and can only be used as a model for optical imaging
in the limit of a small field of view. The general perspective transform
is most conveniently written with homogeneous coordinates as w

′x′

w′y ′

w′

 =
 a11 a12 a13

a21 a22 a23

a31 a32 1


 wxwy
w

 or X′ = PX (9.4)

The two additional coefficients a31 and a32 in comparison to the
affine transform Eq. (9.3) describe the perspective projection.

Written in standard coordinates, the perspective transform accord-
ing to Eq. (9.4) reads as

x′ = a11x +a12y +a13

a31x +a32y + 1

y ′ = a21x +a22y +a23

a31x +a32y + 1

(9.5)

In contrast to the affine transform, the perspective transform is non-
linear. However, it is reduced to a linear transform by using homoge-
neous coordinates. A perspective transform maps lines into lines but
only lines parallel to the projection plane remain parallel. A rectangle
is mapped into an arbitrary quadrilateral. Therefore, the perspective
transform is also referred to as four-point mapping.
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9.3.3 Transforms defined by point correspondences

Generally, the coefficients of a transform, as described in the previous
section, are not known. Instead we have a set of corresponding points
between the object and image space and need to infer the coefficients
of a transform from this set. Thus point correspondences give a gen-
eral way to define a geometrical transform that need not necessarily
be an affine or perspective transform. Once point correspondences are
established, we have a list of corresponding points and need a suitable
interpolation scheme to define the correspondences between all points
in the two images by either a forward or backward mapping.

The simplest way to do this is to generate a mesh of triangles from
the points and to perform a piecewise-affine transform triangle by tri-
angle. This approach is a kind of generalization of linear interpolation
(Section 8.4.1). In this section we thus discuss how the parameters for
affine and perspective transforms can be computed from point corre-
spondences.

For an affine transform, we need three noncollinear points (to map
a triangle into a triangle). With these three points, Eq. (9.3) results in
the following linear equation system: x

′
1 x′2 x′3
y ′1 y ′2 y ′3
1 1 1

 =
 a11 a12 tx
a21 a22 ty
0 0 1


 x1 x2 x3

y1 y2 y3

1 1 1

 (9.6)

or

P′ = AP (9.7)

from which A can be computed as

A = P′P−1 (9.8)

The inverse of the matrix P exists when the three points x1, x2, x3

are linearly independent. This means geometrically that they must not
lie on one line.

With more than three corresponding points, the parameters of the
affine transform can be solved by the following equation system in a
least squares sense:

A = P′PT (PPT )−1 with

P′PT =

∑
x′nxn

∑
x′nyn

∑
x′n∑

y ′nxn
∑
y ′nyn

∑
y ′n∑

xn
∑
yn N


PPT =


∑
x2
n

∑
xnyn

∑
xn∑

xnyn
∑
y2
n

∑
yn∑

xn
∑
yn N


(9.9)
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The inverse of an affine transform is itself affine. The transforma-
tion matrix of the inverse transform is given by the inverse A−1.

The determination of the coefficients for the perspective projection
is slightly more complex. Given four or more corresponding points, the
coefficients of the perspective transform can be determined. To that
end, we rewrite Eq. (9.5) as

x′ = a11x +a12y +a13 −a31xx′ −a32yx′

y ′ = a21x +a22y +a23 −a31xy ′ −a32yy ′
(9.10)

For N points, this leads to a linear equation system with 2N equa-
tions and 8 unknowns of the form

x′1
y ′1
x′2
y ′2
...
x′N
y ′N


=



x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y ′1 −y1y ′1
x2 y2 1 0 0 0 −x2x′2 −y2x′2
0 0 0 x2 y2 1 −x2y ′2 −y2y ′2

...
xN xN 1 0 0 0 −xNx′N −yNx′N
0 0 0 xN yN 1 −xNy ′N −yNy ′N





a11

a12

a13

a21

a22

a23

a31

a32


or

d =Ma. (9.11)

This can be solved as a least squares problem by

a = (MTM)−1MTd (9.12)

9.3.4 Transforms defined by displacement vector fields

Classical tasks in computer vision such as motion analysis (Chapter 13),
stereo analysis (Chapter 18), and image registration give rise to the
definition of geometric transforms by a displacement vector field (DVF)
s. With this approach for each pixel a displacement vector is given that
establishes the spatial correspondence between two images.

Basically, there are three ways to define a displacement vector field.
In the asymmetric formulation, the DVF is directly associated with the
first of the two images and gives the displacement of the corresponding
structure in the second image. Thus the location x′ in the second image
can be computed by

x′ = x + s(x) (9.13)

This definition allows for a forward mapping of the first image to the
second or for a backward mapping of the second image to the first
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(compare Section 9.2). It is not possible, however, to perform a forward
mapping of the second image to the first or a backward mapping of the
first to the second image. Such an operation would require a DVF at all
locations in the second image of the form

x = x′ − s(x′) (9.14)

that is different from Eq. (9.13) as soon as the DVF is sufficiently inho-
mogeneous.

Finally, a symmetric definition of the DVF is possible. In this case
the DVF is given for a virtual reference image halfway between the two
images. The corresponding positions in the two images are then given
by the following pair of equations:

x = xr + s(xr )/2 and x′ = xr − s(xr )/2 (9.15)

This formulation allows for backward mappings of the two images to
the reference image. It is important to be aware of this difference in
the definition of DVFs. If a DVF is not used according to its definition
subtle errors occur where it is inhomogeneous and it is hard to distin-
guish these errors from those by imperfections in the algorithms that
compute stereo or motion displacements.

The DVF approach to image warping makes it also easy to quan-
tify the quality of the displacement vectors (DV). By adding a suitable
weighting factor, the certainty of the DVs can be specified. The weight
can become negative for areas where no corresponding points exist,
that is, in regions with occlusions.

9.4 Fast algorithms for geometric transforms

With the extensive discussion on interpolation in Chapter 8 we are well
equipped to devise fast algorithms for the different geometric trans-
forms. Basically there are two common tricks to speed up the compu-
tation of geometric transforms.

First, many computations are required to compute the interpolation
coefficients for fractional shifts. For each shift, different interpolation
coefficients are required. Thus we must devise the transforms in such
a way that we need only constant shifts for a certain pass of the trans-
form. If this is not possible, it might still be valid to compute the in-
terpolation coefficients for different fractional shifts in advance and to
reuse them later.

Second, interpolation is a separable procedure (Section 8.2.3). Tak-
ing advantage of this basic fact considerably reduces the number of
operations. In most cases it is possible to devide the transforms in a
series of 1-D transforms that operate only in one coordinate direction.
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9.4.1 Scaling

Scaling is a common geometric transform that is mostly used for in-
teractive image inspection. Another important application is multigrid
image data structures such as pyramids.

From the algorithmic point of view, magnification and diminishing
must be distinguished. In the case of magnification, we can directly
apply an appropriate interpolation algorithm. In the case of dimin-
ishing, however, it is required to presmooth to such an extent that no
aliasing occurs (Section 2.4.3). According to the sampling theorem (Sec-
tion 2.4.2), all fine structures must be removed that are sampled less
than two times at the resolution of the scaled image.

The algorithms for scaling are rather simple because scaling in the
different directions can be performed one after the other. In the fol-
lowing, we discuss scaling of a 2-D image using inverse mapping. In the
first step, we scale the N points of a row to N ′ points in the scaled im-
age. The coordinates of the scaled image mapped back to the original
image size are given by

x′n′ =
N − 1
N′ − 1

n′ with 0 ≤ n′ < N′ (9.16)

Note that the first and last points of the original image at 0 and N′ − 1
are mapped onto the first and last point of the scaled image: x′0 = 0,
x′N ′−1 = N−1. All points in between in general do not meet a grid point
on the original grid and thus must be interpolated. The horizontal
scaling can significantly be sped up because the position of the points
and thus the interpolation coefficients are the same for all rows. Thus
we can compute all interpolation coefficients in advance, store them
in a list, and then use them to interpolate all rows. We illustrate the
approach with linear interpolation. In this case, we only need to use
two neighboring points for the interpolation. Thus, it is sufficient to
store the index of the point, given byn = floor(xn′) (where the function
floor computes the largest integer lower than or equal to xn′ ), and the
fractional shift fn′ = xn′ −floor(xn′). Then we can interpolate the gray
value at the n′th point in the scaled row from

g′n′ = gn + fn′(gn+1 − gn) (9.17)

Thus 1-D linear interpolation is reduced to 3 arithmetic operations per
pixel. The computation of n and fn′ must be performed only once for
all rows.

In a very similar way, we can proceed for the interpolation in the
other directions. The only difference is that we can now apply the same
interpolation factor to all pixels of a row. If we denote rows n and rows
n′ in the original and scaled image with gn and g′n′ , respectively, we
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Figure 9.3: A 51×59 sector of an image with the letters “ei” scaled to a size of
306×354 using: a pixel replication; b linear interpolation; and c cubic interpo-
lation. The diagrams below each image show a row profile through the center
of the corresponding images at the position marked by a white line.

can rewrite Eq. (9.17) as the following vector equation:

g′n′ = gn + fn′(gn+1 − gn) (9.18)

For higher-order interpolation nothing changes with the general com-
puting scheme. Instead of Eqs. (9.17) and (9.18), we just have to take
more complex equations to interpolate the gray value in the scaled im-
age from more than two pixels of the original image. This also implies
that more interpolation coefficients need to be precomputed before we
apply the horizontal scaling. It is also straightforward to extend this
approach to higher-dimensional signals.

Figure 9.3 compares scaling with zero-order (pixel replication), lin-
ear and cubic interpolation. A small sector is blown up by a scale factor
of 6. Simple pixel replication leads to a pixelation of the image resulting
in jagged edges. Linear interpolation gives smooth edges but some vi-
sual disturbance remains. The piecewise-linear interpolation between
the pixels results in discontinuities in the slope as can be best seen
in the profile (Fig. 9.3d) through the center row of Fig. 9.3c. The best
results are obtained with cubic interpolation.
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9.4.2 Translation

Translation is the simplest of all geometric transformations and does
not require much consideration. The shift is the same for all pixels.
Thus, we need only one set of interpolation coefficients that is applied
to each pixel. As for scaling, we perform first the horizontal shift and
then the vertical shift. Note that interpolation algorithms applied in
this way have the same computational structure as a convolution oper-
ator. Therefore, we can use the same efficient storage scheme for the
horizontally shifted or scaled rows as in Section 5.6 for neighborhood
operators.

9.4.3 Rotation

With rotation it is less obvious how it can be decomposed into a se-
quence of one-dimensional geometrical transforms. Indeed, there are
several possibilities. Interestingly, these algorithms have not been in-
vented in the context of image processing but for computer graphics.

Catmull and Smith [5] suggested the following 2-pass shear-scale
transform:

R =
[

cosθ sinθ
− sinθ cosθ

]
=
[

1 0
− tanθ 1/ cosθ

][
cosθ sinθ

0 1

]
(9.19)

The first matrix performs a horizontal shear/scale operation, and the
second, a vertical shear/scale operation. Written in components, the
first transform is

x′ = x cosθ +y sinθ
y ′ = y

(9.20)

The image is shifted horizontally by the offsety sinθ and is diminished
by the factor of x cosθ. Thus Eq. (9.20) constitutes a combined shear-
scale transform in horizontal direction only (Fig. 9.4).

Likewise, the second transform

x′′ = x′

y ′′ = y ′/ cosθ −x′ tanθ
(9.21)

performs a combined shear-scale transform in vertical direction only.
This time, the image is enlarged in vertical direction by the factor of
1/ cosθ.

This usage of scaling operations for image rotation has two disad-
vantages. First, the scale operations require extra computations since
the image need not only be shifted but also scaled. Second, although
the size of an image does not change during a rotation, the first scaling
reduces the size of the image in horizontal direction and thus could
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Figure 9.4: Fast image rotation by a two-step shearing/scaling first in horizon-
tal and then in vertical direction.

cause aliasing. If a smoothing is applied to avoid aliasing, resolution is
lost. Fortunately, the problem is not too serious because any rotation
algorithm must only be applied for angles |θ| < 45°. For larger rotation
angles, first a corresponding transposition and/or mirror operation can
be applied to obtain a rotation by a multiple of 90°. Then the residual
rotation angle is always smaller than 45°.
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Figure 9.5: Fast image rotation by decomposition into three 1-D shear trans-
forms only: first in horizontal, then in vertical, and again in horizontal direction.
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With a 3-pass transform [6, 7], rotation can be decomposed into
three 1-D shear transforms avoiding scaling (Fig. 9.5):

R =
[

cosθ sinθ
− sinθ cosθ

]

=
[

1 tan(θ/2)
0 1

][
1 0

− sinθ 1

][
1 tan(θ/2)
0 1

] (9.22)

9.4.4 Affine and perspective transforms

A 2-D affine transform adds three more degrees of freedom to a simple
transform that includes only rotation and translation. These are two
degrees of freedom for scaling in x and y direction, and one degree of
freedom for shearing. Together with the degree of freedom for rota-
tion, we have (without the translation) four degrees of freedom that can
generally be described by a 2×2 matrix as discussed in Section 9.3.1:

A =
[
a11 a12

a21 a22

]
(9.23)

One way to perform an affine transform efficiently is to decompose it
into a rotation, shear, and scaling transform:

A =
[
a11 a12

a21 a22

]
=
[
sx 0
0 sy

][
1 s
0 1

][
cosθ sinθ
− sinθ cosθ

]
(9.24)

The parameters sx , sy , s, and θ can be computed from the matrix co-
efficients by

sx =
√
a2

11 +a2
21 sy = det(A)

sx

s = a11a12 +a21a22

det(A)
tanθ = −a21

a11

(9.25)

where det(A) is the determinant of the matrix A. The shear transform
and the rotation can be computed simultaneously by the 3-pass shear
transform discussed in Section 9.4.3 with the following modification to
Eq. (9.22):

R =
[

1 s
0 1

][
cosθ sinθ
− sinθ cosθ

]

=
[

1 s + tan(θ/2)
0 1

][
1 0

− sinθ 1

][
1 tan(θ/2)
0 1

]
(9.26)
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Thus the affine transform can be computed with a 3-pass shear trans-
form Eq. (9.26) followed by a scaling transform as discussed in Sec-
tion 9.4.1. Fast algorithms for perspective and more general transforms
are treated in detail in Wolberg [1].
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Figure 10.1: Illustration of a linear symmetric or simple neighborhood. The
gray values depend only on a coordinate given by a unit vector r̄.

10.1 Introduction

The analysis of the structure in small neighborhoods is a key element
in higher-dimensional signal processing. Changes in the gray values
reveal either the edge of an object or the type of texture.

10.2 Properties of simple neighborhoods

10.2.1 Representation in the spatial domain

The mathematical description of a local neighborhood by continuous
functions has two significant advantages. First, it is much easier to for-
mulate the concepts and to study their properties analytically. As long
as the corresponding discrete image satisfies the sampling theorem, all
the results derived from continuous functions remain valid because the
sampled image is an exact representation of the continuous gray-value
function. Second, we can now distinguish between errors inherent to
the chosen approach and those that are only introduced by the dis-
cretization.

A simple local neighborhood is characterized by the fact that the
gray value only changes in one direction. In all other directions it is
constant. Because the gray values are constant along lines and form
oriented structures this property of a neighborhood is denoted as local
orientation [1] or linear symmetry [2]. Only more recently, the term
simple neighborhood has been coined by Granlund and Knutsson [3].

If we orient the coordinate system along the principal directions,
the gray values become a 1-D function of only one coordinate. Gener-
ally, we will denote the direction of local orientation with a unit vector
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r̄ perpendicular to the lines of constant gray values. Then, a simple
neighborhood is mathematically represented by

g(x) = g(xT r̄) (10.1)

Equation Eq. (10.1) is also valid for image data with more than two
dimensions. The projection of the vectorx onto the unit vector r̄makes
the gray values depend only on a scalar quantity, the coordinate in the
direction of r̄ (Fig. 10.1). The essential relation now is that the gradient
is parallel to the direction r̄ into which the gray values change:

∇g(xT r̄) =


∂g(xT r̄)
∂x1

. . .

∂g(xT r̄)
∂xW

 =

r̄1g′(xT r̄)

. . .

r̄Dg′(xT r̄)

 = r̄g′(xT r̄) (10.2)

The term g′ denotes the derivative of g with respect to the scalar vari-
able xT r̄. In the hyperplane perpendicular to the gradient, the values
remain locally constant.

10.2.2 Representation in the Fourier domain

A simple neighborhood has a special form in Fourier space. Let us first
assume that the whole image is described by Eq. (10.1), that is, r̄ does
not depend on the position. Then, from the very fact that a simple
neighborhood is constant in all directions except r̄, we infer that the
Fourier transform must be confined to a line. The direction of the line
is given by r̄:

g(xT r̄) ⇐⇒ ĝ(k)δ(k− r̄(kT r̄)) (10.3)

where k denotes the coordinate in the Fourier domain in the direction
of r̄. The argument in the δ function is only zero when k is parallel to
r̄.

In a second step, a window function w(x − x0) is used to restrict
the area to a local neighborhood around a point x0. Thus g(xT r̄) in
Eq. (10.3) is multiplied by the window functionw(x−x0) in the spatial
domain. The size and shape of the neighborhood is determined by the
window function. Multiplication in the space domain corresponds to a
convolution in the Fourier domain (Section 3.2.3). Thus,

w(x −x0)g(xT r̄) ⇐⇒ ŵ(k)∗ ĝ(k)δ(k− r̄(kT r̄)) (10.4)

where ŵ(k) is the Fourier transform of the window function.
The limitation to a local neighborhood thus blurs the line in Fourier

space to a “sausage-like” shape. Because of the reciprocity of scales
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between the two domains, its thickness is inversely proportional to
the size of the window. From this elementary relation, we can already
conclude qualitatively that the accuracy of the orientation estimate is
directly related to the ratio of the window size to the wavelength of the
smallest structures in the window.

10.2.3 Direction versus orientation

For an appropriate representation of simple neighborhoods, it is first
important to distinguish orientation from direction. The direction is
defined over the full angle range of 2π (360°). Two vectors that point
in opposite directions, that is, differ by 180°, are different. The gradient
vector, for example, always points into the direction into which the gray
values are increasing. With respect to a bright object on a dark back-
ground, this means that the gradient at the edge is pointing towards the
object. In contrast, to describe the direction of a local neighborhood,
an angle range of 360° makes no sense. We cannot distinguish between
patterns that are rotated by 180°. If a pattern is rotated by 180°, it still
has the same direction. Thus, the direction of a simple neighborhood
is different from the direction of a gradient. While for the edge of an
object gradients pointing in opposite directions are conflicting and in-
consistent, for the direction of a simple neighborhood this is consistent
information.

In order to distinguish the two types of “directions,” we will speak
of orientation in all cases where an angle range of only 180° is required.
Orientation is still, of course, a cyclic quantity. Increasing the orienta-
tion beyond 180° flips it back to 0°. Therefore, an appropriate repre-
sentation of orientation requires an angle doubling.

In his pioneering paper on a general picture processing operator
Granlund [1] introduced a vectorial representation of the local orien-
tation. The magnitude of the orientation vector is set to the certainty
with which the orientation could be determined and its direction to the
doubled orientation angle. This vector representation of orientation
has two significant advantages.

First, it is more suitable for further processing than a separate rep-
resentation of the orientation by two scalar quantities. Take, for ex-
ample, averaging. Vectors are summed up by chaining them together,
and the resulting sum vector is the vector from the starting point of
the first vector to the end point of the last vector. The weight of an
individual vector in the vector sum is given by its length. In this way,
the certainty of the orientation measurement is adequately taken into
account. In a region with homogeneous orientation the vectors line up
to a large vector, that is, give a certain orientation estimate. However,
in a region with randomly distributed orientation the resulting vector
remains small, indicating that no significant local orientation is present.
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Second, it is difficult to display orientation as a gray-scale image.
While orientation is a cyclic quantity, the gray-scale representation
shows an unnatural jump between the smallest angle and the largest
one. This jump dominates the appearance of the orientation images
and thus does not give a good impression of the orientation distribu-
tion. The orientation vector can be well represented, however, as a
color image. It appears natural to map the certainty measure onto the
luminance and the orientation angle as the hue of the color. Our at-
tention is then drawn to the bright parts in the images where we can
distinguish the colors well. The darker a color is, the more difficult it
becomes to distinguish the different colors visually. In this way, our
visual impression coincides with the orientation information in the im-
age.

10.3 Edge detection by first-order derivatives

Detection of edges is one of the most important tasks of low-level multi-
dimensional signal processing. An edge marks the border of an object
that is characterized by a different feature (gray value, color, or any
other property) than the background. In the context of simple neigh-
borhoods, an edge is a special type of simple neighborhood with a sharp
transition. Low-level edge detection thus means to detect the strength
of such a transition and the direction of the edge.

First-order derivative filters are one way for low-level edge detec-
tion. A first-order derivative operator corresponds to a multiplication
by 2π ikd in the wave-number space (Section 3.2.3). Thus, a first-order
derivative operator in the direction d is represented by the following
operations in the space and wave-number domain:

∂
∂xd

⇐⇒ 2π ikd (10.5)

where k̃ is the dimensionless wave number normalized to the Nyquist
limit Eq. (2.34). One-dimensional first-order derivative operators are
not sufficient for edge detection in higher-dimensional signals because
they predominantly detect edges that are perpendicular to the direction
of the operator. As shown with Eq. (10.2) in Section 10.2.1, the gradient
vector

∇g =
[
∂g
∂x1

, ∂g
∂x2

, ..., ∂g
∂xD

]T
(10.6)

is parallel to the direction in which the gray-values change. Thus it is a
good low-level measure for edges. In the operator notation introduced
in Section 5.2.3, the gradient can be written as a vector operator. In 2-D
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and 3-D space this is

D =
[
Dx
Dy

]
or D =

 DxDy
Dz

 (10.7)

The magnitude of the gradient vector

∣∣∇g∣∣ =
 D∑
d=1

(
∂g
∂xd

)2
1/2

(10.8)

is rotation-invariant and a measure for the edge strength. Because of
the rotation invariance, this measure is isotropic. The computation of
the magnitude of the gradient can be expressed in operator notation as

|D| =
 D∑
d=1

Dd · Dd
1/2

(10.9)

The principal problem with all types of edge detectors is that a
derivative operator can only be approximated on a discrete grid. This
is the basic reason why there is such a wide variety of solutions for
edge detectors available. After the discussion of the general properties
of first-order derivative operators in Section 10.3.1, a survey of various
common edge detectors will be given.

10.3.1 General properties

Zero shift. With respect to object detection, the most important fea-
ture of a derivative convolution operator is that it must not shift the
object position. For a first-order derivative filter, a real transfer func-
tion makes no sense, because extreme values should be mapped onto
zero crossings and the steepest slopes to extreme values. This map-
ping implies a 90° phase shift, a purely imaginary transfer function and
an antisymmetric or odd filter mask. According to the classification
of linear shift-invariant (LSI) filters established in Section 5.3.5, first-
order derivative filters are either type III or type IV filters. Thus the
simplified equations Eqs. (5.25) and (5.27) can be used to compute the
transfer function.

Suppression of mean value. A derivative filter of any order must
not show response to constant values or an offset in a signal. This
condition implies that the sum of the coefficients must be zero and
that the transfer function is zero for a zero wave number:∑

n
Hn = 0⇐⇒ Ĥ(0) = 0 (10.10)
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Nonselective derivation. Intuitively, we expect that any derivative
operator amplifies smaller scales more strongly than coarser scales, as
the transfer function of a first-order derivative operator goes with k.
However, this condition is a too restrictive. Imagine that we first apply
a smoothing operator to an image before we apply a derivative oper-
ator. Then the resulting transfer function would not increase mono-
tonically with the wave number but decrease for higher wave numbers.
We would, however, still recognize the joint operation as a derivation
because the mean gray value is suppressed and the operator is only
sensitive to spatial gray-value changes.

Thus a more general condition is required. Here we suggest

Ĥ(k̃) = iπk̃dB̂(|k̃|) with B̂(0) = 1 and ∇B̂ = 0 (10.11)

This condition ensures that the transfer function is still zero for the
wave number zero and increases in proportion to k̃d for small wave
numbers. One can regard Eq. (10.11) as a first-order derivative filter
regularized by an isotropic smoothing filter.

Isotropy. For good edge detection, it is important that the response of
the operator does not depend on the direction of the edge. If this is the
case, we speak of an isotropic edge detector. The isotropy of an edge
detector can best be analyzed by its transfer function. Equation (10.11),
which we derived from the condition of nonselective derivation, gives
a general form for an isotropic first-order derivative operator.

10.3.2 First-order difference operators

This is the simplest of all approaches to compute a gradient vector.
For the first partial derivative in the x direction, one of the following
approximations may be used:

∂g(x)
∂xd

≈ g(x)− g(x −∆xdēd)
∆xd

backward

≈ g(x +∆xdēd)− g(x)
∆xd

forward

≈ g(x +∆xdēd)− g(x −∆xdēd)
2∆xd

symmetric

(10.12)

where ēd is a unit vector in the direction d. These approximations
correspond to the filter masks

−Dd = [1• − 1] ,+Dd = [1 − 1•] ,D2d = 1/2 [1 0 − 1] (10.13)
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The subscript • denotes the pixel of the asymmetric masks to which the
result is written. The symmetric difference operator results in a type III
operator (odd number of coefficients, odd symmetry, see Section 5.3.5).
The forward and backward difference operators are asymmetric and
thus not of much use in signal processing. They can be transformed in
a type IV LSI operator if the result is not stored at the position of the
right or left pixel but at a position halfway between the two pixels. This
corresponds to a shift of the grid by half a pixel distance. The transfer
function for the backward difference is then

−D̂d = exp(iπk̃d/2)
[
1− exp(−iπk̃d)

]
= i sin(πk̃d/2) (10.14)

where the first term results from the shift by half a lattice point.
According to Eq. (5.25), the transfer function of the symmetric dif-

ference operator is given by

D̂2d = i sin(πk̃d) (10.15)

This operator can also be computed from

D2d = −DdBd = [1• − 1]∗ 1/2 [1 1•] = 1/2 [1 0 − 1]

Unfortunately, these simple difference filters are only poor approx-
imations for an edge detector. From Eq. (10.15), we infer that the mag-
nitude and direction of the gradient φ′ are given by

|∇g| =
[
sin2(πk̃ cosφ)+ sin2(πk̃ sinφ)

]1/2
(10.16)

and

φ′ = arctan
sin(πk̃ sinφ)
sin(πk̃ cosφ)

(10.17)

when the wave number is written in polar coordinates (k,φ). The mag-
nitude of the gradient decreases quickly from the correct value. A
Taylor expansion of Eq. (10.16) in k̃ yields for the anisotropy in the
magnitude

∆|∇g| = |∇g(φ)| − |∇g(0)| ≈ (πk̃)
3

12
sin2(2φ) (10.18)

The resulting errors are shown in Fig. 10.2 as a function of the mag-
nitude of the wave number and the angle to the x axis. The decrease
is also anisotropic; it is slower in the diagonal direction. The errors
in the direction of the gradient are also large (Fig. 10.2b). While in the
direction of the axes and diagonals the error is zero, in the directions
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a b

Figure 10.2: Anisotropy of the a magnitude and b error in the direction of
the gradient based on the symmetrical gradient operator

[D2x,D2y
]T

. The
parameters are the magnitude of the wave number (0 to 0.9) and the angle to
the x axis (0 to π/2). Distance of contour lines: a 0.02 (thick lines 0.1); b 2°.

in-between it reaches values of about ± 10° already at k̃ = 0.5. A Taylor
expansion of Eq. (10.17) in k̃ gives in the approximation of small k̃ the
angle error

∆φ ≈ (πk̃)
2

24
sin 4φ (10.19)

From this equation, we see that the angle error is zero for φ = nπ/4
with n ∈ Z, that is, for φ = 0°, 45° 90°, . . . .

10.3.3 Roberts operator

The Roberts operator uses the smallest possible difference filters to
compute the gradients that have a common center point

Dx−y =
[

1 0
0 –1

]
and Dx+y =

[
0 1
–1 0

]
(10.20)

The filters Dx = [1 − 1] and Dy = [1 − 1]T are not suitable to form
a gradient operator because Dx and Dy shift the convolution result
by half a grid constant in the x and y directions, respectively. The
difference filters in diagonal direction result in a gradient vector that
is rotated by 45°. The errors in the magnitude and direction obtained
with the Roberts operator are shown in Fig. 10.3. The improvement is
only marginal as compared to the gradient computation based on the
simple difference operator D2 = 1/2 [1 0 − 1] (Fig. 10.2).
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a b

Figure 10.3: Anisotropy of the a magnitude and b error in the direction of the
gradient based on the Roberts edge detector Eq. (10.20). Distance of contour
lines as in Fig. 10.2.

10.3.4 Regularized difference operators

It is a common practice to regularize derivative operators by presmooth-
ing the signal (see, e. g., Chapter 15). We will investigate here to what
extent the direction and isotropy of the gradient is improved.

One type of regularized derivative filter is the derivate of a Gaussian.
On a discrete lattice this operator is best approximated by the derivative
of a binomial mask (Section 7.4) as

(B,R)Dd = D2dBR (10.21)

with the transfer function

(B,R)D̂d(k̃) = i sin(πk̃d)
D∏
d=1

cosR(πk̃d/2) (10.22)

for even R. This approach leads to nonsquare masks and results in
some improvement of the isotropy of the gradient magnitude. How-
ever, the error in the direction of the gradient is the same as for the
symmetric difference operator since the smoothing terms in Eq. (10.22)
cancel out in Eq. (10.17).

Slightly better are Sobel-type difference operators

RSd = D2dBR−1
d

∏
d′≠d

BRd′ (10.23)
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a b

Figure 10.4: Anisotropy of the a magnitude and b error in the direction of the
gradient based on the Sobel operator Eq. (10.26). Distance of contour lines as
in Fig. 10.2.

with the transfer function

RŜd(k̃) = i tan(πk̃d/2)
D∏
d=1

cosR(πk̃d/2) (10.24)

that lead to square masks by reducing the smoothing in the direction
of the derivation. The smallest operator of this type (R = 1) has in two
dimensions the masks

1Sx = 1
2

[
1 −1
1 −1

]
, 1Sy = 1

2

[
1 1
−1 −1

]
(10.25)

The best-known example of this class of filters is the Sobel operator

2Sx =DxBxB2
y =

1
8

 1 0 –1
2 0 –2
1 0 –1

 , 2Sy = 1
8

 1 2 1
0 0 0

–1 –2 –1

 (10.26)

The errors in the magnitude and direction of the gradient based on
Eq. (10.24) are given by

∆|∇g| ≈ −(πk̃)
3

24
sin2(2φ) (10.27)

and

∆φ = arctan
tan(π(k̃d/2) sinφ)
tan(π(k̃d/2) cosφ)

−φ ≈ −(πk̃d)
2

48
sin 4φ (10.28)
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and shown in Fig. 10.4. The results are remarkable in two respects.
First, the error in the direction does not depend at all on the degree
of smoothing as for the derivatives of Gaussians and is only about two
times lower than for the simple symmetric difference operator. Sec-
ond, Fig. 10.4b shows that the anisotropy of the magnitude of the gra-
dient is surprisingly low as compared to the symmetric difference filter
in Fig. 10.2b. This could not be expected from the Taylor expansion
because the term with k̃2 is only a factor of two lower than for the
symmetric difference operator in Eq. (10.19). Thus the extrapolation of
the transfer functions from small wave numbers to high wave numbers
is not valid. The example of the Sobel operator shows that oscillat-
ing higher-order terms may cancel each other and lead to much better
results as could be expected from a Taylor expansion.

10.3.5 Spline-based difference operators

The cubic B-spline transform discussed in Section 8.5 for interpolation
yields a continuous representation of a discrete image that is continu-
ous in its first and second derivative

g3(xd) =
∑
n
cnβ3(xd −n) (10.29)

where β3(xd) is the cubic B-spline function. From such an analytical
continuous representation, the spatial derivative can be computed di-
rectly as

∂g3(xd)
∂xd

=
∑
n
cn
∂β3(xd −n)

∂xd
(10.30)

For a discrete derivative filter, we only need the derivatives at the grid
points. From Fig. 8.7a it can be seen that the cubic B-spline function
covers at most five grid points. The maximum of the spline function
occurs at the central grid point. Therefore, the derivative at this point
is zero. It is also zero at the two outer grid points. Thus, the derivative
is only unequal to zero at the direct left and right neighbors of the
central point. Consequently, the derivative at the grid point n reduces
to

∂g3(xd)
∂xd

∣∣∣∣
n
= (cn+1 − cn−1)/2 (10.31)

It follows that the computation of the first-order derivative based on the
cubic B-spline transformation is indeed an efficient solution. We apply
first the cubic B-spline transform in the direction of the derivative to
be computed (Section 8.5) and then the D2x operator. The transfer
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a b

Figure 10.5: Anisotropy of the a magnitude and b error in the direction of the
gradient based on the cubic B-spline derivative operator according to Eq. (10.32).
Distance of contour lines: a 0.02 (thick lines 0.1); b 0.5°.

function of this filter is given by

B-splineD̂d = i
sin(πk̃d)

2/3+ 1/3 cos(πk̃d)
≈ iπk̃d − i

π5k̃5
d

180
(10.32)

The errors in the magnitude and direction of a gradient vector based
on the B-spline derivative filter are shown in Fig. 10.5. They are consid-
erably less than for the simple difference filters (Fig. 10.2). This can be
seen more quantitatively from Taylor expansions for the relative error
in the magnitude of the gradient

∆|∇g| ≈ −(πk̃d)
5

240
sin2(2φ) (10.33)

and for the angle error

∆φ ≈ (πk̃d)
4

720
sin 4φ (10.34)

The error terms are now contained only in terms with k̃4 and k̃5.

10.3.6 Least squares optimized gradient

The disadvantage of all approaches discussed in the previous sections
is that they give no clear indication whether the achieved solution is
good and whether any better exists. As discussed in detail in Section 6.5
the filter design problem can be treated in a rigorous mathematical way
as an optimization problem. While these techniques do not only allow
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a b

c d

e f

Figure 10.6: Pseudo 3-D plot of the error map (in degree) in the gradient
direction based on: a the symmetric difference operator; b the Sobel operator; c
an optimized 1-D derivative filter with 7 coefficients; d an optimized 3×3 Sobel-
type derivative operator; e an optimized 1-D derivative filter with 5 coefficients
and a recursive relaxation filter for corrections; and f an optimized 5×5 Sobel-
type derivative operator. All optimized filters were computed with a cos4(πk̃/2)
weighting function. The filter coefficients and the mean square error for the
optimized filters are given in Table 10.1. Parameters are the magnitude of the
wave number (0 to 0.9) and the angle to the x axis (0 to π/2).
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Table 10.1: Gradient operators optimized for minimum error in the direction
of the gradient. The mean square error is given in units of 10−4 rad. The
lst column gives the number of operations per pixel (M = multiplication, A =
addition/subtraction). For details see Chapter 6

Name Filter coefficients Error No. Ops.

D1 [1 0 –1]/2 400 1M, 1A

Sobel [1 0 –1]∗ [1 2 1]T /8 190 2M, 3A

opt. 7-tap [6 –31 108 0 –108 31 –6]/128 160? 3M, 3A

opt. 5-tap
+ relax

[7 114 0 –114 –7]/256, α = −15/32 23 4M, 6A

opt. Sobel [1 0 –1]∗ [3 10 3]T /32 26 2M, 3A

opt. 5×5 [3 10 0 –10 –3]/32∗ [7 63 116 63 7]T /256 1.9 4M, 5A

the design of optimal filters, it can also be decided precisely in respect
to which criterion the solution is optimal.

Here, we will review some of the results obtained in Section 6.5 for
gradient operators that have been optimized for a minimum error in
the direction of the gradient. Figure 10.6 shows error maps of the gra-
dients angle error as a function of the wave number and direction for
six filters. Two of them, the difference operator and the Sobel operator ,
are standard solutions taken for comparison. The four other filters in-
clude two 1-D derivative operators and two Sobel-type filters with cross
smoothing. The coefficients of the filters are summarized in Table 10.1.

All optimized filters are by far superior to the standard approaches.
The mean square error in the direction of the gradient is at least one
order of magnitude lower. The clear winner for a combination of ac-
curacy and computational efficiency is the optimized 3×3 Sobel-type
operator that requires per filter 2 multiplications and 3 additions only.
For ultimate accuracy, the 5×5 Sobel-type operator is the best choice.
This filter requires about two times more operations: 4 multiplications
and 5 additions.

10.4 Edge detection by zero crossings

10.4.1 General properties

First-order derivative operators detect edges by maxima in the magni-
tude of the gradient. Alternatively, edges can be detected as zero cross-
ings of second-order derivative operators. This technique is attractive
since only linear operators are required to perform an isotropic de-
tection of edges by zero crossings. In contrast, the magnitude of the



224 10 Local Structure

gradient is only obtained after squaring and adding first-order deriva-
tive operators in all directions.

For an isotropic zero-crossing detector, only all second-order par-
tial derivatives must be added up. The resulting operator is called the
Laplace operator and denoted by ∆

∆ =
D∑
d=1

∂2

∂x2
w

⇐⇒ −
D∑
d=1

4π2k2
d = −4π2 |k|2 (10.35)

From this equation it is immediately evident that the Laplace operator
is an isotropic operator.

A second-order derivative filter detects curvature. Extremes in func-
tion values should thus coincide with extremes in curvature. Conse-
quently, a second-order derivative filter should be of even symmetry
similar to a smoothing filter and all the properties for filters of even
symmetry discussed in Sections 5.3.5 and 7.2 should also apply to
second-order derivative filters. In addition, the sum of the coefficients
must be zero as for first-order derivative filters:∑

n
Hn = 0 ⇐⇒ Ĥ(0) = 0 (10.36)

Also, a second-order derivative filter should not respond to a con-
stant slope. This condition implies no further constraints as it is equiv-
alent to the conditions that the sum of the coefficients is zero and that
the filter is of even symmetry.

10.4.2 Laplace of Gaussian and difference of Gaussian filters

The standard implementations for the Laplace operator are well known
and described in many textbooks (see, e. g., [4]). Thus, we will discuss
here only the question of an optimal implementation of the Laplacian
operator. Because of a transfer function proportional to k̃2 (Eq. (10.35)),
Laplace filters tend to enhance the noise level in images considerably.
Thus, a better edge detector may be found by first smoothing the image
and then applying the Laplacian filter. This leads to a kind of regular-
ized edge detection and to two classes of filters known as Laplace of
Gaussian or LoG filters and difference of Gaussian or DoG filters. While
these filters reduce the noise level it is not clear to which extent they
improve or even optimize the isotropy of the Laplace operator.

In the discrete case, a LoG filter is approximated by first smoothing
the image with a binomial mask and then applying the discrete Laplace
filter. Thus we have the operator combination LBR with the transfer
function

ˆLoG = L̂B̂R = −4
D∑
d=1

sin2(πk̃d/2)
D∏
d=1

cosR(πk̃d/2) (10.37)
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For R = 0 this is the transfer function of the Laplace operator. In this
equation, we used the standard implementation of the Laplace opera-
tor, which has in two dimensions the mask

L =
 0 1 0

1 –4 1
0 1 0

 (10.38)

and the transfer function

L̂ = sin2(πk̃1/2)+ sin2(πk̃2/2) (10.39)

For small wave numbers, the 2-D transfer function in Eq. (10.37) can
be approximated in polar coordinates by

ˆLoG(k̃,φ) ≈ −(πk̃)2 +
[

1
16
+ R

8
+ 1

48
cos(4φ)

]
(πk̃)4 (10.40)

The multidimensional difference of Gaussian type of Laplace filter,
or DoG filter, is defined as

DoG = 4(B2 − I)BR = 4(BR+2 −BR) (10.41)

and has the transfer function

ˆDoG(k̃) = 4
D∏
d=1

cosR+2(πk̃d/2)− 4
D∏
d=1

cosR(πk̃d/2) (10.42)

For small wave numbers it can be approximated by

ˆDoG(k̃,φ) ≈ −(πk̃)2 +
[

3
32
+ R

8
− 1

96
cos(4φ)

]
(πk̃)4 (10.43)

The transfer function of the LoG and DoG filters are quite similar.
Both have a significant anisotropic term. Increased smoothing (larger
R) does not help to decrease the anisotropy. It is obvious that the DoG
filter is significantly more isotropic but neither of them is really optimal
with respect to a minimal anisotropy. That second-order derivative
operators with better isotropy are possible is immediately evident by
comparing Eqs. (10.40) and (10.43). The anisotropic cos 4φ terms have
different signs. Thus they can easily be compensated by a mix of LoG
and DoG operators of the form 2/3DoG + 1/3LoG, which corresponds
to the operator (8/3B2 − 8/3I − 1/3L)Bp.

This ad hoc solution is certainly not the best. Examples of optimized
second-order differential operators are discussed in Section 6.6.
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10.5 Edges in multichannel images

In multichannel images, it is significantly more difficult to analyze edges
than to perform averaging, which simply can be performed channel by
channel. The problem is that the different channels may contain con-
flicting information about edges. In channel A, the gradient can point
to a different direction than in channel B. Thus a simple addition of the
gradients in all channels

P∑
p=1

∇gp(x) (10.44)

is of no use. It may happen that the sum of the gradients over all
channels is zero although the gradients themselves are not zero. Then
we would be unable to distinguish this case from constant areas in all
channels.

A more suitable measure of the total edge strength is the sum of the
squared magnitudes of gradients in all channels

P∑
p=1

|∇gp|2 =
P∑
p=1

D∑
d=1

(
∂gp
∂xd

)2

(10.45)

While this expression gives a useful estimate of the overall edge strength,
it still does not solve the problem of conflicting edge directions. An
analysis of how edges are distributed in a D-dimensional multichannel
image with P channels is possible with the following symmetric D×D
matrix S (where D is the dimension of the image):

S = JTJ (10.46)

where J is known as the Jacobian matrix. This P×D matrix is defined
as

J =



∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xD
∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xD
...

. . .
...

∂gP
∂x1

∂gP
∂x2

· · · ∂gP
∂xD


(10.47)
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Thus the elements of the matrix S are

Skl =
P∑
p=1

∂gp
∂xk

∂gp
∂xl

(10.48)

Since S is a symmetric matrix, we can diagonalize it by a suitable
coordinate transform. Then, the diagonals contain terms of the form

P∑
p=1

(
∂gp
∂x′d

)2

(10.49)

In the case of an ideal edge, only one of the diagonal terms of the
matrix will be nonzero. This is the direction perpendicular to the dis-
continuity. In all other directions it will be zero. Thus, S is a matrix of
rank one in this case.

By contrast, if the edges in the different channels point randomly in
all directions, all diagonal terms will be nonzero and equal. In this way,
it is possible to distinguish random changes by noise from coherent
edges. The trace of the matrix S

trace(S) =
D∑
d=1

Sdd =
D∑
d=1

P∑
p=1

(
∂gp
∂xd

)2

(10.50)

gives a measure of the edge strength which we have already defined in
Eq. (10.45). It is independent of the orientation of the edge since the
trace of a symmetric matrix is invariant to a rotation of the coordinate
system.

In conclusion, the matrix S is the key for edge detection in multi-
channel signals. Note that an arbitrary number of channels can be pro-
cessed and that the number of computations increases only linearly
with the number of channels. The analysis is, however, of order O(D2)
in the dimension of the signal.

10.6 First-order tensor representation

10.6.1 Introduction

The vectorial representation discussed in Section 10.2.3 is incomplete.
Although it is suitable for representing the orientation of simple neigh-
borhoods, it cannot distinguish between neighborhoods with constant
values and isotropic orientation distribution (e. g., uncorrelated noise).
Both cases result in an orientation vector with zero magnitude.

Therefore, it is obvious that an adequate representation of gray-
value changes in a local neighborhood must be more complex. Such a
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representation should be able to determine a unique orientation and to
distinguish constant neighborhoods from neighborhoods without local
orientation.

In their paper on analyzing oriented patterns, Kass and Witkin [5]
started with the idea of using directional derivative filters by differen-
tiating a difference of Gaussian (DoG, Section 10.4.2) filter (written in
operator notation)

R(Θ) = [cosΘ sinΘ]
[
Dx(B1 −B2)
Dy(B1 −B2)

]
= [cosΘ sinΘ]

[
Rx
Ry

]

where B1 and B2 denote two Gaussian smoothing masks with different
variances. The direction in which this directional derivative is maximal
in a mean square sense gives the orientation normal to lines of constant
gray values. This approach results in the following expression for the
variance of the directional derivative:

V (Θ) = B(R(Θ) · R(Θ)) (10.51)

The directional derivative is squared and then smoothed by a binomial
filter. This equation can also be interpreted as the inertia of an object
as a function of the angle. The corresponding inertia tensor has the
form [

B(Ry · Ry) −B(Rx · Ry)
−B(Rx · Ry) B(Rx · Rx)

]
(10.52)

Tensorial descriptions of local structure in images were also discussed
by Bigün and Granlund [2] and Knutsson [6]. Without being aware of
the work of these authors, Rao and Schunck [7] and Rao [8] proposed
a moment tensor for the description and classification of oriented tex-
tures.

In the reminder of this chapter, several variants of tensorial descrip-
tion of local structure in multidimensional signals are discussed. The
treatment here is more general in the sense that it is not restricted to 2-
D single-channel images but that higher-dimensional and multichannel
signals are considered as well.

10.6.2 The structure tensor

A suitable representation can be introduced by a optimization strat-
egy to determine the orientation of a simple neighborhood in a slightly
more general way as performed by Kass and Witkin [5] (Section 10.6.1).
The optimum orientation is defined as the orientation that shows the
least deviations from the directions of the gradient. A suitable measure
for the deviation must treat gradients pointing in opposite directions
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equally. The squared scalar product between the gradient vector and
the unit vector representing the local orientation r̄ meets this criterion

(∇gT r̄)2 = |∇g|2 cos2 (∠(∇g, r̄)) (10.53)

This quantity is proportional to the cosine squared of the angle between
the gradient vector and the orientation vector and is thus maximal when
∇g and r̄ are parallel or antiparallel, and zero if they are perpendicular
to each other. Therefore, the following integral is maximized in a D-
dimensional local neighborhood:∫

w(x −x′)
(
∇g(x′)T r̄

)2
dDx′ (10.54)

where the window function w determines the size and shape of the
neighborhood around a point x in which the orientation is averaged.
The maximization problem must be solved for each point x. Equation
Eq. (10.54) can be rewritten in the following way:

r̄TJr̄ →max (10.55)

with

J =
∞∫
−∞
w(x −x′)

(
∇g(x′)∇g(x′)T

)
dDx′

The components of this symmetric D×D tensor are

Jpq(x) =
∞∫
−∞
w(x −x′)

(
∂g(x′)
∂x′p

∂g(x′)
∂x′q

)
dDx′ (10.56)

At this point it is easy to extend the tensor for multichannel signals.
It is only needed to sum the tensor components for all channels. The
weighting function might be different for each channel in order to con-
sider the significance and spatial resolution of a certain channel. With
all this, Eq. (10.56) extends to

Jr,s(x) =
P∑
p=1

∞∫
−∞
wp(x −x′)

(
∂gp(x′)
∂x′r

∂gp(x′)
∂x′s

)
dDx′ (10.57)

These equations indicate that a tensor is an adequate first-order rep-
resentation of a local neighborhood. The term first-order has a double
meaning. First, only first-order derivatives are involved. Second, only
simple neighborhoods can be described in the sense that we can analyze
in which direction(s) the gray values change. More complex structures
such as structures with multiple orientations cannot be distinguished.
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The complexity of Eqs. (10.55) and (10.56) somewhat obscures their
simple meaning. The tensor is symmetric. By a rotation of the coordi-
nate system, it can be brought into a diagonal form. Then, Eq. (10.55)
reduces to

J = [r̄ ′1, r̄ ′2, . . . , r̄ ′D]

J1′1′ 0 . . . 0

0 J2′2′ . . . 0
...

...
. . .

...
0 . . . . . . JD′D′



r̄ ′1
r̄ ′2
. . .
r̄ ′D

 → max

or

J =
D∑
d′=1

Jd′d′(r̄ ′d′)
2

Without loss of generality, we assume that J1′1′ ≥ Jd′d′ ∀d′ ≠ 1.
Then, it is obvious that the unit vector r̄′ = [1 0 . . . 0]T maximizes the
foregoing expression. The maximum value is J1′1′ . In conclusion, this
approach not only yields a tensor representation for the local neighbor-
hood but also shows the way to determine the orientation. Essentially,
we have to solve an eigenvalue problem. The eigenvalues λd and eigen-
vectors kd of a D×D matrix are defined by

Jkd = λdkd (10.58)

An eigenvector kd of J is thus a vector that is not turned in direc-
tion by multiplication with the matrix J, but is only multiplied by a
scalar factor, the eigenvalue λw . This implies that the structure tensor
becomes diagonal in a coordinate system that is spanned by the eigen-
vectors. For our further discussion it is important to keep in mind that
the eigenvalues are all real and nonnegative and form an orthogonal
basis [9, 10, 11].

10.6.3 Classification of local neighborhoods

The power of the tensor representation becomes apparent if we clas-
sify the eigenvalues of the structure tensor. The classifying criterion is
the number of eigenvalues that are zero. If an eigenvalue is zero, this
means that the gray values in the direction of the corresponding eigen-
vector do not change. The number of zero eigenvalues is also closely
related to the rank of a matrix. The rank of a matrix is defined as
the dimension of the subspace for which Jk ≠ 0. The space for which
Jk = 0 is denoted as the null space. The dimension of the null space
is the dimension of the matrix minus the rank of the matrix and equal
to the number of zero eigenvalues. We will perform an analysis of the
eigenvalues for two and three dimensions. In two dimensions, we can
distinguish the following cases:
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λ1 = λ2 = 0, rank 0 tensor. Both eigenvalues are zero. The mean square
magnitude of the gradient (λ1+λ2) is zero. The local neighborhood
has constant values. It belongs to an object with a homogeneous
feature;

λ1 > 0, λ2 = 0, rank 1 tensor. One eigenvalue is zero. The values do
not change in the direction of the corresponding eigenvector. The
local neighborhood is a simple neighborhood with ideal orientation.
This could either be the edge of an object or an oriented texture;

λ1 > 0, λ2 > 0, rank 2 tensor. Both eigenvalues are unequal to zero.
The gray values change in all directions as at the corner of an object
or a texture with a distributed orientation. In the special case of λ1 =
λ2, we speak of an isotropic gray-value structure since it changes
equally in all directions.

The classification of the eigenvalues in three dimensions is similar
to the 2-D case:

λ1 = λ2 = λ3 = 0, rank 0 tensor. The gray values do not change in any
direction; constant neighborhood.

λ1 > 0, λ2 = λ3 = 0, rank 1 tensor. The gray values change only in one
direction. This direction is given by the eigenvector to the nonzero
eigenvalue. The neighborhood includes a boundary between two
objects (surface) or a layered texture. In a space-time image, this
means a constant motion of a spatially oriented pattern (“planar
wave”);

λ1 > 0, λ2 > 0, λ3 = 0, rank 2 tensor. The gray values change in two
directions and are constant in a third. The eigenvector to the zero
eigenvalue gives the direction of the constant gray values. This hap-
pens at the edge of a three-dimensional object in a volumetric im-
age, or if a pattern with distributed spatial orientation moves with
constant speed; and

λ1 > 0, λ2 > 0, λ3 > 0, rank 3 tensor. The gray values change in all
three directions as at the corner of an object or a region with iso-
tropic noise.

In practice, it will not be checked whether the eigenvalues are zero
but below a critical threshold that is determined by the noise level in
the image.

10.6.4 The inertia tensor

In this section, we discuss an alternative approach to describe the local
structure in images. As a starting point, we consider an ideally oriented
gray-value structure. As discussed in Section 10.2.2, the Fourier trans-
form of such a structure reduces to a δ line in the direction of r̄. Thus it
seems promising to determine local orientation in the Fourier domain
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because all we have to compute is the orientation of the line on which
the spectral densities are nonzero. Bigün and Granlund [2] devised the
following procedure:

• Use a window function to select a small local neighborhood from an
image;

• Fourier transform the windowed image. The smaller the selected
window, the more blurred the spectrum will be (uncertainty rela-
tion, see Section 3.2.3). This means that even with an ideal local
orientation we will obtain a rather band-shaped distribution of the
spectral energy; and

• Determine local orientation by fitting a straight line to the spectral
density distribution. This yields the angle of the local orientation
from the slope of the line.

The critical step of this procedure is fitting a straight line to the
spectral densities in the Fourier domain. We cannot solve this problem
exactly because it is generally overdetermined. When fitting a straight
line, we minimize the sum of the squares of the distances of the data
points to the line. This technique is known as the total least squares
approach

∞∫
−∞
d2(k, r̄)|ĝ(k)|2 dDk→min (10.59)

The distance function is abbreviated using d(k, r̄). The integral runs
over the whole wave number space; the wave numbers are weighted
with the spectral density |ĝ(k)|2. Equation (10.59) is not restricted to
two dimensions, but is generally valid for local orientation or linear
symmetry in a D-dimensional space. The distance vector d is given by

d = k− (kT r̄)r̄ (10.60)

The square of the distance is then given by

|d|2 = |k− (kT r̄)r̄|2 = |k|2 − (kT r̄)2 (10.61)

In order to express the distance more clearly as a function of the vector
n̄, we rewrite it in the following manner

|d|2 = r̄T (I(kTk)− (kkT ))r̄ (10.62)

where I is the unit diagonal matrix. Substituting this expression into
Eq. (10.59) we obtain

r̄TJ′r̄ →min (10.63)
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where J′ is a symmetric tensor with the diagonal elements

J′r ,r =
∑
r≠s

∞∫
−∞
k2
s |ĝ(k)|2 dDk (10.64)

and the off-diagonal elements

J′r ,s = −
∞∫
−∞
krks|ĝ(k)|2 dDk, r ≠ s (10.65)

The tensor J′ is analogous to a well-known physical quantity, the
inertia tensor . If we replace the wave number coordinates by space
coordinates and the spectral density |ĝ(k)|2 by the specific density ρ,
Eqs. (10.59) and (10.63) constitute the equation to compute the inertia
of a rotary body rotating around the r̄ axis.

With this analogy, we can reformulate the problem of determining
local orientation. We must find the axis about which the rotary body,
formed from the spectral density in Fourier space, rotates with mini-
mum inertia. This body might have different shapes. We can relate its
shape to the different solutions we get for the eigenvalues of the inertia
tensor and thus for the solution of the local orientation problem in 2-D:

Ideal local orientation. The rotary body is a line. For a rotation around
this line, the inertia vanishes. Consequently, the eigenvector to the
eigenvalue zero coincides with the direction of the line. The other
eigenvector is orthogonal to the line, and the corresponding eigen-
value is unequal to zero and gives the rotation axis for maximum
inertia;

Isotropic gray value. In this case, the rotary body is a kind of flat
isotropic disk. A preferred direction does not exist. Both eigenval-
ues are equal and the inertia is the same for rotations around all
axes. We cannot find a minimum; and

Constant gray values. The rotary body degenerates to a point at the
origin of the wave number space. The inertia is zero for rotation
around any axis. Therefore both eigenvalues vanish.

We derived the inertia tensor approach in the Fourier domain. Now
we will show how to compute the coefficients of the inertia tensor in
the spatial domain. The integrals in Eqs. (10.64) and (10.65) contain
terms of the form

k2
q|ĝ(k)|2 = |ikqĝ(k)|2

and

kpkq|ĝ(k)|2 = ikpĝ(k)[ikqĝ(k)]∗



234 10 Local Structure

Integrals over these terms are inner or scalar products of the functions
ikpĝ(k). Since the inner product is preserved under the Fourier trans-
form (Table 3.2), we can compute the corresponding integrals in the
spatial domain as well. Multiplication of ĝ(k) with ikp in the wave
number domain corresponds to the first spatial derivative in the direc-
tion of xp in the space domain

J′pp(x) =
∑
q≠p

∞∫
−∞
w(x −x′)

(
∂g
∂xq

)2

dDx′

J′pq(x) = −
∞∫
−∞
w(x −x′) ∂g

∂xp
∂g
∂xq

dDx′

(10.66)

In Eq. (10.66), we already included the weighting with the window func-
tion w to select a local neighborhood.

The structure tensor discussed in Section 10.6.2, Eq. (10.56) and the
inertia tensor are closely related

J′ = trace(J)I − J (10.67)

From this relationship it is evident that both matrices have the same
set of eigenvectors. The eigenvalues λp are related by

λp =
n∑
q=1

λq − λ′p, λ′p =
n∑
q=1

λ′q − λp (10.68)

Consequently, we can perform the eigenvalue analysis with any of the
two matrices. For the inertia tensor, the direction of local orientation
is given by the minimum eigenvalue, but for the structure tensor it is
given by the maximum eigenvalue.

10.6.5 Computation of the structure tensor

The structure (Section 10.6.2) or inertia (Section 10.6.4) tensors can be
computed straightforwardly as a combination of linear convolution and
nonlinear point operations. The partial derivatives in Eqs. (10.56) and
(10.66) are approximated by discrete derivative operators. The integra-
tion weighted with the window function is replaced by a convolution
with a smoothing filter that has the shape of the window function. If
we denote the discrete partial derivative operator with respect to the
coordinate p by the operator Dp and the (isotropic) smoothing oper-
ator by B, the local structure of a gray-value image can be computed
with the structure tensor operator

Jpq = B(Dp · Dq) (10.69)
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The equation is written in the operator notation introduced in Sec-
tion 5.2.3. Pixelwise multiplication is denoted by a centered dot · to
distinguish it from successive application of convolution operators.
Equation (10.69) expresses in words that the Jpq component of the ten-
sor is computed by convolving the image independently with Dp and
Dq, multiplying the two images pixelwise, and smoothing the resulting
image with B. For the inertia tensor method, a similar tensor operator
can be formulated

J′pp =
∑
q≠p
B(Dq · Dq), J′pq = −B(Dp · Dq) (10.70)

These operators are valid in images of any dimension D ≥ 2. In a
D-dimensional image, the structure tensor hasD(D+1)/2 independent
components, hence 3 in 2-D and 6 in 3-D images. These components
are best stored in a multichannel image with D(D + 1)/2 channels.

The smoothing operations consume the largest number of opera-
tions. Therefore, a fast implementation must, in the first place, apply a
fast smoothing algorithm. A fast algorithm can be established based on
the general observation that higher-order features always show a lower
resolution than the features from which they are computed. This means
that the structure tensor can be stored on a coarser grid and thus in a
smaller image. It is convenient and appropriate to reduce the scale by
a factor of two by storing only every second pixel in every second row.

These procedures lead us in a natural way to multigrid data struc-
tures that are discussed in detail in Chapter 4.4. Multistep averaging is
discussed in detail in Section 7.5.1.

Storing higher-order features on coarser scales has another signif-
icant advantage. Any subsequent processing is sped up simply by the
fact that many fewer pixels have to be processed. A linear scale reduc-
tion by a factor of two results in a reduction in the number of pixels
and the number of computations by a factor of 4 in two and 8 in three
dimensions.

The accuracy of the orientation angle strongly depends on the im-
plementation of the derivative filters. It is critical to use a derivative
filter that has been optimized for a minimum error in the direction of
the gradient. Such filters are discussed in Section 10.3.6.

10.6.6 Orientation vector

With the simple convolution and point operations discussed in the pre-
vious section, we computed the components of the structure tensor. In
this section, we solve the eigenvalue problem to determine the orien-
tation vector. In two dimensions, we can readily solve the eigenvalue
problem. The orientation angle can be determined by rotating the in-
ertia tensor into the principal axes coordinate system. As shown, for



236 10 Local Structure

example, by Jähne [4], the orientation angle is given by

tan 2φ = 2J12

J22 − J11
(10.71)

Without defining any prerequisites, we have obtained the anticipated
angle doubling for orientation as discussed in Section 10.2.3 at the be-
ginning of this chapter. Since tan 2φ is gained from a quotient, we can
regard the dividend as the y and the divisor as the x component of a
vector and can form the orientation vector o, as introduced by Granlund
[1]

o =
[
J22 − J11

2J12

]
(10.72)

The argument of this vector gives the orientation angle and the magni-
tude a certainty measure for local orientation.

The result of Eq. (10.72) is remarkable in that the computation of
the components of the orientation vector from the components of the
orientation tensor requires just one subtraction and one multiplication
by two. As these components of the orientation vector are all we need
for further processing steps, we do not need the orientation angle or the
magnitude of the vector. Thus, the solution of the eigenvalue problem
in two dimensions is trivial.

10.6.7 Coherency

The orientation vector reduces local structure to local orientation. From
three independent components of the symmetric tensor still only two
are used. When we fail to observe an orientated structure in a neighbor-
hood, we do not know whether any gray-value variations or distributed
orientations are encountered. This information is included in the not
yet used component of the tensor J11+J22, which gives the mean square
magnitude of the gradient. Consequently, a well-equipped structure
operator needs to include also the third component. A suitable linear
combination is

s =
 J11 + J22

J11 − J22

2J12

 (10.73)

This structure operator contains the two components of the orientation
vector and, as an additional component, the mean square magnitude of
the gradient, which is a rotation-invariant parameter. Comparing the
latter with the magnitude of the orientation vector, a constant gray-
value area and an isotropic gray-value structure without preferred ori-
entation can be distinguished. In the first case, both squared quantities
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are zero; in the second, only the magnitude of the orientation vector.
In the case of a perfectly oriented pattern, both quantities are equal.
Thus their ratio seems to be a good coherency measure cc for local
orientation

cc =
(J22 − J11)2 + 4J2

12

(J11 + J22)2
=
(
λ1 − λ2

λ1 + λ2

)2

(10.74)

The coherency cc ranges from 0 to 1. For ideal local orientation (λ2 =
0, λ1 > 0) it is one, for an isotropic gray-value structure (λ1 = λ2 > 0) it
is zero.

10.6.8 Color coding of the two-dimensional structure tensor

In Section 10.2.3 we discussed a color representation of the orienta-
tion vector. The question is whether it is also possible to represent
the structure tensor adequately as a color image. A symmetric 2-D ten-
sor has three independent pieces of information (Eq. (10.73)), which fit
well to the three degrees of freedom available to represent color, for
example, luminance, hue, and saturation.

A color represention of the structure tensor requires only two slight
modifications as compared to the color representation for the orienta-
tion vector. First, instead of the length of the orientation vector, the
squared magnitude of the gradient is mapped onto the intensity. Sec-
ond, the coherency measure Eq. (10.74) is used as the saturation. In the
color representation for the orientation vector, the saturation is always
one. The angle of the orientation vector is still represented as the hue.

In practice, a slight modification of this color representation is use-
ful. The squared magnitude of the gradient shows variations too large
to be displayed in the narrow dynamic range of a display screen with
only 256 luminance levels. Therefore, a suitable normalization is re-
quired. The basic idea of this normalization is to compare the squared
magnitude of the gradient with the noise level. Once the gradient is
well above the noise level it is regarded as a significant piece of infor-
mation. This train of thoughts suggests the following normalization
for the intensity I

I = J11 + J22

(J11 + J22)+ γσ 2
n

(10.75)

where σn is an estimate of the standard deviation of the noise level.
This normalization provides a rapid transition of the luminance from
one, when the magnitude of the gradient is larger than σn, to zero when
the gradient is smaller than σn. The factor γ is used to optimize the
display.

A demonstration of the structure tensor technique is given by the
heurisko image processing workspace orient.ws in /software/10.
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11.1 Introduction

An inherent property of objects in the world is that they only exist
as meaningful entities over certain ranges of scale. If one aims at de-
scribing the structure of unknown real-world signals, then a multiscale
representation of data is of crucial importance. Whereas conventional
scale-space theory provides a well-founded framework for dealing with
image structures at different scales, this theory does not directly ad-
dress the problem of how to select appropriate scales for further anal-
ysis.

This chapter outlines a systematic methodology for formulating
mechanisms for automatic scale selection in the domains of feature
detection and image matching.

11.2 Multiscale differential image geometry

A natural and powerful framework for representing image data at the
earliest stages of visual processing is by computing differential geomet-
ric image descriptors at multiple scales [1, 2]. This section summarizes
essential components of this scale-space theory [3], which also consti-
tutes the vocabulary for expressing the scale selection mechanisms.

11.2.1 Scale-space representation

Given any continuous signal g : RD → R, its linear scale-space represen-
tation L : RD×R+ → R is defined as the solution to the diffusion equation

∂tL = 1
2
∇2L = 1

2

D∑
d=1

∂xdxdL (11.1)

with initial condition L(x; 0) = g(x). Equivalently, this family can be
defined by convolution with Gaussian kernels h(x; t) of various width t

L(x; t) = h(x; t)∗ g(x) (11.2)

where h : RD ×R+ → R is given by

h(x, t) = 1
(2πt)D/2

exp

(
−x

2
1 + . . .+x2

D
2t

)
(11.3)

and x = [x1, . . . , xD]T . There are several results [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19] stating that within the class
of linear transformations the Gaussian kernel is the unique kernel for
generating a scale-space. The conditions that specify the uniqueness
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are essentially linearity and shift invariance combined with different
ways of formalizing the notion that new structures should not be cre-
ated in the transformation from a finer to a coarser scale (see also
[18, 20, 21, 22, 23] for reviews).

11.2.2 Gaussian and directional derivative operators

From the scale-space representation, we can at any level of scale define
scale-space derivatives by

Lxα(x; t) = (∂xαL)(x; t) = ∂xα (h(x; t)∗ g(x)) (11.4)

where α = [α1, . . . ,αD]T and ∂xαL = Lx1
α1 ...xDαD constitute multiindex

notation for the derivative operator ∂xα . Because differentiation com-
mutes with convolution, the scale-space derivatives can be written

Lxα(x; t) = (∂xαh(·; t))∗ g(x) (11.5)

and correspond to convolving the original imagegwith Gaussian deriva-
tive kernels ∂xαh. Figure 11.1 shows a few examples of such Gaussian
derivative operators.

The Gaussian derivatives provide a compact way to characterize the
local image structure around a certain image point at any scale. With
access to Gaussian derivative responses of all orders at one image point
x0, we can for any x in a neighborhood of x0 reconstruct the original
scale-space representation by a local Taylor expansion. With θα denot-
ing the Taylor coefficient of order α, this reconstruction can be written

L(x; t) =
∑
α
θαLxα(x0; t) (x −x0)α (11.6)

Truncating this representation to derivatives up to order N , results in
a so-called N-jet representation [11].

The Gaussian derivatives according to Eq. (11.4) correspond to par-
tial derivatives along the Cartesian coordinate directions. Using the
well-known expression for the nth-order directional derivative ∂nβ̄ of a

function L in any direction β

∂nβ̄ L = (cosβ∂x + sinβ∂y)n L (11.7)

we can express a directional derivative in any direction (cosβ, sinβ)
as a linear combination of the Cartesian Gaussian derivatives. (This
property is sometimes referred to as “steerability” [24, 25].) For orders
up to three, the explicit expressions are

∂β̄L = Lx cosβ+ Ly sinβ

∂2
β̄L = Lxx cos2 β+ 2Lxy cosβ sinβ+ Lyy sin2 β
∂3
β̄L = Lxxx cos3 β+ 3Lxxy cos2 β sinβ

+ 3Lxyy cosβ sin2 β+ Lyyy sin3 β

(11.8)
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Figure 11.1: Gaussian derivative kernels up to order three in the 2-D case.

Figure 11.2 shows an example of computing first- and second-order
directional derivatives in this way, based on the Gaussian derivative
operators in Fig. 11.1.

More generally, and with reference to Eq. (11.6), it is worth noting
that the Gaussian derivatives at any scale (including the zero-order
derivative) serve as a complete linear basis, implying that any linear
filter can be expressed as a (possibly infinite) linear combination of
Gaussian derivatives.

11.2.3 Differential invariants

A problem with image descriptors as defined from Eqs. (11.4) and (11.7)
is that they depend upon the orientation of the coordinate system. A
simple way to define image descriptors that are invariant to rotations in
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a b

Figure 11.2: a First- and b second-order directional derivative approximation
kernels in the 22.5 degree direction computed as a linear combination of the
Gaussian derivative operators.

the image plane is by considering directional derivatives in a preferred
coordinate system aligned to the local image structure.

One such choice of preferred directions is to introduce a local or-
thonormal coordinate system (u,v) at any point P0, with the v-axis
parallel to the gradient direction at P0, and the u-axis perpendicular,
that is, ev = (cosϕ, sinϕ)T and eu = (sinϕ,− cosϕ)T , where

ev |P0 =
(

cosϕ
sinϕ

)
= 1√

L2
x + L2

y

(
Lx
Ly

)∣∣∣∣∣∣
P0

(11.9)

In terms of Cartesian coordinates, the corresponding local directional
derivative operators can then be written

∂u = sinϕ∂x − cosϕ∂y, ∂v = cosϕ∂x + sinϕ∂y (11.10)

and for the lowest orders of differentiation we have

Lu = 0, Lv =
√
L2
x + L2

y

L2
vLuu = LxxL2

y − 2LxyLxLy + LyyL2
x

L2
vLuv = LxLy(Lxx − Lyy)− (L2

x − L2
y)Lxy

L2
vLvv = L2

xLxx + 2LxLyLxy + L2
yLyy

L3
vLuuu = Ly(L2

yLxxx + 3L2
xLxyy)

−Lx(L2
xLyyy + 3L2

yLxxy)

L3
vLuuv = Lx(L2

yLxxx + (L2
x − 2L2

y)Lxyy)
+Ly(L2

xLyyy + (L2
y − 2L2

x)Lxxy)

L3
vLuvv = Ly(L2

xLxxx + (L2
y − 2L2

x)Lxyy)
+Lx((2L2

y − L2
x)Lxxy − L2

yLyyy)

(11.11)

By definition, these differential definition are invariant under rotations
of the image plane, and this (u,v)-coordinate system is characterized
by the first-order directional derivatives Lu being zero.
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Another natural choice of a preferred coordinate system is to align
a local (p,q)-coordinate system to the eigenvectors of the Hessian ma-
trix. To express directional derivatives in such coordinates, character-
ized by the mixed second-order derivative Lpq being zero, we can rotate
the coordinate system by an angle ψ defined by

cosψ
∣∣
(x0,y0) =

√√√√1
2

(
1+ Lxx−Lyy√

(Lxx−Lyy)2+4L2
xy

)∣∣∣∣∣∣
(x0,y0)

sinψ
∣∣
(x0,y0) = (sgnLxy)

√√√√1
2

(
1− Lxx−Lyy√

(Lxx−Lyy)2+4L2
xy

)∣∣∣∣∣∣
(x0,y0)

(11.12)

and define unit vectors in thep- and q-directions by ep = (sinψ,− cosψ)
and eq = (cosψ, sinψ) with associated directional derivative operators

∂p = sinψ∂x − cosψ∂y, ∂q = cosψ∂x + sinψ∂y (11.13)

Then, it is straightforward to verify that this definition implies that

Lpq = ∂p∂qL = (cosψ∂x + sinψ∂y) (sinψ∂x − cosψ∂y)L

= cosψ sinψ(Lxx − Lyy)− (cos2ψ− sin2ψ)Lxy = 0
(11.14)

A more general class of (nonlinear) differential invariants will be con-
sidered in Section 11.3.2.

11.2.4 Windowed spectral moment descriptors

The differential invariants defined so far depend upon the local differ-
ential geometry at any given image point. One way of defining regional
image descriptors, which reflect the intensity distribution over image
patches, is by considering windowed spectral moment descriptors (see
also [3, 26, 27]). Using Plancherel’s relation∫

ω∈R2
f̂1(ω) f̂∗2 (ω) dω = (2π)2

∫
x∈R2

f1(x)f∗2 (x) dx (11.15)

where ĥi(ω) denotes the Fourier transform of hi(x) (withω = 2πk as
variable in the frequency domain) and by letting f1 = Lxα and f2 = Lxβ ,
we have∫

ω∈R2
(iω)|α|+|β||L̂|2(ω) dω = (2π)2

∫
x∈R2

Lxα(x)Lxβ(x) dx (11.16)

Let us next introduce a Gaussian window function h(·; s), depending
on an integration scale parameter s, in addition to the local scale pa-
rameter t of the ordinary scale-space representation. Then, we can
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define the following windowed spectral moments:

µ20(x; t, s) =
∫
ξ∈R2

L2
x(ξ; t)h(x − ξ; s) dξ,

µ11(x; t, s) =
∫
ξ∈R2

Lx(ξ; t)Ly(ξ; t)h(x − ξ; s) dξ, (11.17)

µ02(x; t, s) =
∫
ξ∈R2

L2
y(ξ; t)h(x − ξ; s) dξ

and higher-order spectral moment descriptors can be defined in an
analogous fashion.

11.2.5 The scale-space framework for a visual front-end

The image descriptors defined in Section 11.2.2 to Section 11.2.4 pro-
vide a useful basis for expressing a large number of early visual opera-
tions, including image representation, feature detection, stereo match-
ing, optic flow and shape estimation. There is also a close connection
to biological vision. Neurophysiological studies by Young [28, 29] have
shown that there are receptive fields in the mammalian retina and vi-
sual cortex, which can be well modeled by Gaussian derivatives up to
order four. In these respects, the scale-space representation with its
associated Gaussian derivative operators can be seen as a canonical
idealized model of a visual front-end.

When computing these descriptors at multiple scales, however, as
is necessary to capture the complex multiscale nature of our world,
one can expect these descriptors to accurately reflect interesting image
structures at certain scales, while the responses may be less useful
at other scales. To simplify the interpretation tasks of later processing
stages, a key problem of a visual front-end (in addition to making image
structures more explicit by computing differential image descriptors
at multiple scales) is to provide hypothesis about how to select locally
appropriate scales for describing the data set.

11.2.6 The need for automatic scale selection

To illustrate the need for an explicit mechanism for automatic scale
selection, let us first consider the problem of detecting edges. The
left column in Fig. 11.3 shows the result of applying a standard edge
detector (described in Section 11.4.1) to an image, which have been
smoothed by convolution with Gaussian kernels of different widths.

As can be seen, different types of edge structures give rise to edge
curves at different scales. For example, the shadow of the arm only
appears as a connected edge curve at coarse scales. If such coarse scales
are used at the finger tip, however, the shape distortions due to scale-
space smoothing will be substantial. Hence, to extract this edge with
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Scale-space representation Edges Scale-space representation Ridges

Figure 11.3: Edges and ridges computed at different scales in scale-space (scale
levels t = 1.0, 4.0, 16.0, 64.0 and 256.0 from top to bottom) using a differential
geometric edge detector and ridge detector, respectively. (Image size: 256×256
pixels.)
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a reasonable trade-off between detection and localization properties,
the only reasonable choice is to allow the scale levels to vary along the
edge.

The right column in Fig. 11.3 shows corresponding results for a
ridge detector (described in Section 11.4.2). Different types of ridge
structures give rise to qualitatively different types of ridge curves de-
pending on the scale level. The fingers respond at t ≈ 16, whereas the
arm as a whole is extracted as a long ridge curve at t ≈ 256.

For these reasons, and because the choice of scale levels crucially
affects the performance of any feature detector, and different scale
levels will, in general, be required in different parts of the image, it is
essential to complement feature detectors by explicit mechanisms that
automatically adapt the scale levels to the local image structure.

11.3 A general scale-selection principle

A powerful approach to perform local and adaptive scale selection is by
detecting local extrema over scales of normalized differential entities.
This chapter presents a general theory by first introducing the notion
of normalized derivatives, and then showing how local extrema over
scales of normalized differential entities reflect the characteristic size
of corresponding image structures.

11.3.1 Normalized derivatives and intuitive idea for scale selec-
tion

A well-known property of the scale-space representation is that the
amplitude of spatial derivatives

Lxα(·; t) = ∂xαL(·; t) = ∂xα1
1
. . . ∂xαDD L(·; t)

in general decrease with scale, that is, if a signal is subject to scale-space
smoothing, then the numerical values of spatial derivatives computed
from the smoothed data can be expected to decrease. This is a direct
consequence of the nonenhancement property of local extrema, which
means that the value at a local maximum cannot increase, and the value
at a local minimum cannot decrease [3, 4]. In other words, the ampli-
tude of the variations in a signal will always decrease with scale.

As a simple example of this, consider a sinusoidal input signal of
some given angular frequencyω0 = 2πk0; for simplicity, in one dimen-
sion

g(x) = sinω0x (11.18)
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It is straightforward to show that the solution of the diffusion equation
is given by

L(x; t) = e−ω2
0t/2 sinω0x (11.19)

Thus, the amplitude of the scale-space representation Lmax as well as
the amplitude of themth-order smoothed derivative Lxm,max decrease
exponentially with scale

Lmax(t) = e−ω2
0t/2, Lxm,max(t) =ωm0 e−ω

2
0t/2

Let us next introduce a γ-normalized derivative operator defined by

∂ξ,γ−norm = tγ/2 ∂x (11.20)

that corresponds to the change of variables

ξ = x
tγ/2

(11.21)

For the sinusoidal signal, the amplitude of an mth-order normalized
derivative as function of scale is given by

Lξm,max(t) = tmγ/2ωm0 e−ω
2
0t/2 (11.22)

that is, it first increases and then decreases. Moreover, it assumes a
unique maximum at tmax,Lξm = γm

ω2
0

. If we define a scale parameter

σ of dimension length by σ = √t and introduce the wavelength λ0

of the signal by λ0 = 2π/ω0, we can see that the scale at which the
amplitude of the γ-normalized derivative assumes its maximum over
scales is proportional to the wavelength λ0 of the signal

σmax,Lξm =
√γm

2π
λ0 (11.23)

The maximum value over scales is

Lξm,max(tmax,Lξm ) =
(γm)γm/2

eγm/2
ω(1−γ)m0 (11.24)

In the case when γ = 1, this maximum value is independent of the
frequency of the signal (see Fig. 11.4), and the situation is highly sym-
metric, that is, given any scale t0, the maximally amplified frequency
is given by ωmax =

√
m/t0, and for any ω0 the scale with maximum

amplification is tmax =m/ω2
0. In other words, for normalized deriva-

tives with γ = 1 it holds that sinusoidal signals are treated in a similar
(scale-invariant) way independent of their frequency (see Fig. 11.4).
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Figure 11.4: The amplitude of first-order normalized derivatives as function
of scale for sinusoidal input signals of different frequency (ω1 = 0.5, ω2 = 1.0
and ω3 = 2.0).

11.3.2 A general principle for automatic scale selection

The example shows that the scale at which a normalized derivative as-
sumes its maximum over scales is for a sinusoidal signal proportional
to the wavelength of the signal. In this respect, maxima over scales of
normalized derivatives reflect the scales over which spatial variations
take place in the signal. This property is, however, not restricted to
sine wave patterns or to image measurements in terms of linear deriva-
tive operators of a certain order. On the contrary, it applies to a large
class of image descriptors that can be formulated as multiscale differ-
ential invariants expressed in terms of Gaussian derivatives. In [3], the
following scale selection principle was proposed:

In the absence of other evidence, assume that a scale level, at
which some (possibly nonlinear) combination of normalized deriva-
tives assumes a local maximum over scales, can be treated as re-
flecting a characteristic length of a corresponding structure in the
data.

11.3.3 Properties of the scale-selection principle

A basic justification for the forementioned statement can be obtained
from the fact that for a large class of (possibly nonlinear) combinations
of normalized derivatives it holds that maxima over scales exhibit de-
sirable behavior under rescalings of the intensity pattern. If the input
image is rescaled by a constant scaling factor s, then the scale at which
the maximum is assumed will be multiplied by the same factor (if mea-
sured in units of σ = √t). This is a fundamental requirement on a scale
selection mechanism, as it guarantees that image operations commute
with size variations.
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Scaling properties. For two signals g and g′ related by

g(x) = g′(sx) (11.25)

the corresponding normalized derivatives defined from the scale-space
representations L and L′ on the two domains are related according to

∂ξmL(x; t) = sm(1−γ) ∂ξ′mL′(x′; t′) (11.26)

and when γ = 1, the normalized derivatives are equal at corresponding
points (x; t) and (x′; t′) = (sx; s2t).

When γ ≠ 1, a weaker scale-invariance properties holds. Let us
consider a homogeneous polynomial differential invariant DL of the
form

DL =
I∑
i=1

ci
J∏
j=1

Lxαij with
J∑
j=1

|αij| =M (11.27)

The sum of the orders of differentiation in the last term does not de-
pend on the index i of that term. Then, normalized differential expres-
sions in the two domains are related by

Dγ−normL = sM(1−γ)D′γ−normL′ (11.28)

that is, magnitude measures scale according to a power law. Local max-
ima over scales are, however, still preserved

∂t
(Dγ−normL

) = 0 a ∂t′
(
D′γ−normL′

)
= 0 (11.29)

that gives sufficient scale invariance to support the scale selection meth-
odology. More generally, it can be shown that the notion of γ-normal-
ized derivatives arises by necessity, given natural requirements of a
scale-selection mechanism [30].

11.3.4 Interpretation of normalized derivatives

Lp-norms. For a D-dimensional signal, it can be shown that the varia-
tion over scales of the Lp-norm of an mth-order normalized Gaussian
derivative kernel is given by

‖hξm(·; t)‖p =
√
t
m(γ−1)+D(1/p−1) ‖hξm(·; t)‖p (11.30)

In other words, the Lp-norm of themth-order Gaussian derivative ker-
nel is constant over scales if and only if

p = 1
1+ m

D (1− γ)
(11.31)
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Hence, the γ-normalized derivative concept be interpreted as an Lp-
normalization of the Gaussian derivative kernels over scales for a spe-
cific value of p, which depends upon γ, the dimension as well as the
order m of differentiation. The perfectly scale-invariant case γ = 1
gives p = 1 for all orders m and corresponds to L1-normalization of
the Gaussian derivative kernels.

Power spectra. For a signal g : R2 → R having a power spectrum of
the form

Sg(ω1,ω2) = (f̂ f̂∗)(ω1,ω2) = |ω|−2α = (ω2
1 +ω2

2)
−α (11.32)

it can be shown that the variation over scales of the following energy
measure:

PL(·; t) =
∫
x∈R2

|∇L(x; t)|2 dx (11.33)

is given by

Pnorm(·; t) = tγ PL(·; t) ∼ tα+γ−2 (11.34)

This expression is independent of scale if and only if α = 2−γ. In other
words, in the 2-D case the normalized derivative model is neutral with
respect to power spectra of the form Sg(ω) = |ω|−2(2−γ) (and natural
images often have power spectra of this form [31]).

11.4 Feature detection with automatic scale selection

This section shows how the general principle for automatic scale selec-
tion described in Section 11.3.2 can be integrated with various types of
feature detectors.

11.4.1 Edge detection

At any scale in scale-space, let us define an edge point as a point at
which the second directional derivative Lvv in the v-direction is zero,
and the third directional derivative Lvvv is negative{

Lvv = 0,
Lvvv < 0

(11.35)

The edges in Fig. 11.3 have been computed according to this definition
[3, 32, 33, 34].

In view of the scale-selection principle, a natural extension of this
notion of nonmaximum suppression is by defining a scale-space edge a
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curve on this edge surface, such that some measure of edge strength
Eγ−normL assumes locally maxima with respect to scale on this curve

∂t(Eγ−normL(x,y ; t)) = 0,
∂tt(Eγ−normL(x,y ; t)) < 0,
Lvv(x,y ; t) = 0,
Lvvv(x,y ; t) < 0

(11.36)

Based on the γ-parameterized normalized derivative concept, we shall
here consider the following two edge strength measures:

Gγ−normL = tγ L2
v and Tγ−normL = −t3γ L3

v Lvvv (11.37)

Qualitative properties. For a diffuse step edge, defined as the primi-
tive function of a 1-D Gaussian

ft0(x,y) =
∫ x
x′=−∞

h(x′; t0)dx′

each of these edge strength measures assumes a unique maximum over
scales at tGγ−norm = tTγ−norm = (γ/(1− γ))t0. Requiring this maximum to
occur at t0 gives γ = 1/2.

For a local model of an edge bifurcation, expressed as

L(x; t) = 1
4x

4 + 3
2x

2(t − tb)+ 3
4(t − tb)2 (11.38)

with edges at x1(t) = (tb − t)1/2 when t ≤ tb, we have

(Gγ−normL)(x1(t); t) = 4 tγ (tb − t)3 (11.39)

and the selected scales are

tGγ−norm =
γ

3+ γ tb and tTγ−norm =
3γ

5+ 3γ
tb (11.40)

In other words, the scale selection method has the qualitative property
of reflecting the degree of diffuseness of the edge. Moreover, as the edge
strength decreases rapidly at a bifurcation, the selected scales will tend
away from bifurcation scales.

Results of edge detection. Let us now apply the integrated edge de-
tection scheme to different real-world images. In brief, edges are ex-
tracted as follows [35]: The differential descriptors in the edge defini-
tion, (11.36) are rewritten in terms of partial derivatives in Cartesian
coordinates and are computed at a number of scales in scale-space.
Then, a polygon approximation is constructed of the intersections of
the two zero-crossing surfaces of Lvv and ∂t(Eγ−norm) that satisfy the
sign conditions Lvvv < 0 and ∂t(Eγ−norm) < 0. Finally, a significance
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original grey-level image all scale-space edges the 100 strongest edge curves

Figure 11.5: The result of edge detection with automatic scale selection based
on local maxima over scales of the first-order edge strength measure Gγ−normL
with γ = 1/2. The middle column shows all the scale-space edges, whereas the
right column shows the 100 edge curves having the highest significance values.
Image size: 256×256 pixels.

measure is computed for each edge by integrating the normalized edge
strength measure along the curve

H(Γ) =
∫
(x; t)∈Γ

√
(Gγ−normL)(x; t) ds (11.41)

T(Γ) =
∫
(x; t)∈Γ

4
√
(Tγ−normL)(x; t) ds (11.42)

Figure 11.5 shows the result of applying this scheme to two real-world
images. As can be seen, the sharp edges due to object boundaries are
extracted as well as the diffuse edges due to illumination effects (the
occlusion shadows on the arm and the cylinder, the cast shadow on the
table, as well as the reflection on the table). (Recall from Fig. 11.3 that
for this image it is impossible to capture the entire shadow edge at one
scale without introducing severe shape distortions at the finger tip.)

Figure 11.6 illustrates the ranking on significance obtained from the
integrated edge strength along the curve. Whereas there are inherent
limitations in using such an entity as the only measure of saliency, note
that this measure captures essential information.

Figure 11.7 gives a 3-D illustration of how the selected scale levels
vary along the edges. The scale-space edges have been drawn as 3-D
curves in scale-space, overlaid on a low-contrast copy of the original
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50 most significant edges 20 most significant edges 10 most significant edges

Figure 11.6: Illustration of the ranking on saliency obtained from the integrated
γ-normalized gradient magnitude along the scale-space edges. Here, the 50, 20,
and 10 most significant edges, respectively, have been selected from the arm
image.

Figure 11.7: Three-dimensional view of the 10 most significant scale-space
edges extracted from the arm image. From the vertical dimension representing
the selected scale measured in dimension length (in units of

√
t), it can be seen

how coarse scales are selected for the diffuse edge structures (due to illumina-
tion effects) and that finer scales are selected for the sharp edge structures (the
object boundaries).

gray-level image in such a way that the height over the image plane
represents the selected scale. Observe that coarse scales are selected
for the diffuse edge structures due to illumination effects and that finer
scales are selected for the sharp edge structures due to object bound-
aries.

Figure 11.8 shows the result of applying edge detection with scale
selection based on local maxima over scales of Tγ−normL to an image
containing a large amount of fine-scale information. At first glance,
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original grey-level image the 1000 most salient scale-space edges

Figure 11.8: The 1000 strongest scale-space edges extracted using scale selec-
tion based on local maxima over scales of Tγ−normL (with γ = 1/2). (Image size:
256×256 pixels.)

these results may appear very similar to the result of traditional edge
detection at a fixed (very fine) scale. A more detailed study, however,
reveals that a number of shadow edges are extracted, which would be
impossible to detect at the same scale as the dominant fine-scale in-
formation. In this context, it should be noted that the fine-scale edge
detection in this case is not the result of any manual setting of tuning
parameters. It is a direct consequence of the scale-space edge concept,
and is the result of applying the same mechanism as extracts coarse
scale levels for diffuse image structures.

Summary. To conclude, for both these measures of edge strength, this
scale selection scheme has the desirable property of adapting the scale
levels to the local image structure such that the selected scales reflect
the degree of diffuseness of the edge.

11.4.2 Ridge detection

By a slight reformulation, ridge detection algorithms can be expressed
in a similar way. If we follow a differential geometric approach, and
define a bright (dark) ridge point as a point for which the brightness
assumes a maximum (minimum) in the main eigendirection of the Hes-
sian matrix [20, 36, 37, 38], then in the (p,q)-system this definition can
be stated as

Lp = 0,
Lpp < 0,
|Lpp| ≥ |Lqq|

or


Lq = 0,
Lqq < 0,
|Lqq| ≥ |Lpp|
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original grey-level image 100 strongest bright ridges 10 strongest bright ridges

Figure 11.9: The 100 and 10 strongest bright ridges, respectively, extracted
using scale selection based on local maxima over scales of Aγ−norm (with γ =
3/4). Image size: 128×128 pixels in the top row, and 140×140 pixels in the
bottom row.

In the (u,v)-system, this condition can for nondegenerate L equiva-
lently be written

Luv = 0 and L2
uu − L2

vv > 0 (11.43)

where the sign of Luu determines the polarity; Luu < 0 corresponds to
bright ridges, and Luu > 0 to dark ridges. Figure 11.3 shows the results
of applying this ridge detector at different scales.

In analogy with Section 11.4.1, let us next sweep out a ridge surface
in scale-space by applying this ridge definition at all scales. Then, given
a measure Rγ−normL of normalized ridge strength, define a scale-space
ridge as a curve on this surface along which the ridge strength measure
assumes local maxima with respect to scale{

∂t(RnormL(x,y ; t)) = 0

∂tt(RnormL(x,y ; t)) < 0
and

{
Lp(x,y ; t) = 0

Lpp(x,y ; t) < 0
(11.44)

Here, we consider the following ridge strength measures:

Nγ−normL = t4γ (L2
pp − L2

qq)2

= t4γ(Lxx + Lyy)2((Lxx − Lyy)2 + 4L2
xy)

(11.45)
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backprojection of ridge 1 backprojection of ridges 2–5

Figure 11.10: Alternative illustration of the five strongest scale-space ridges
extracted from the image of the arm in Fig. 11.9. Each ridge is backprojected
onto a dark copy of the original image as the union of a set of circles centered on
the ridge curve with the radius proportional to the selected scale at that point.

Qualitative properties. For a Gaussian ridge defined by g(x,y) =
h(x; t0), it can be shown that the selected scale will then be tRγ−norm =

2γ
3−2γ t0. Requiring this scale to be tRγ−norm = t0, gives γ = 3

4 .

Results of ridge detection. Figure 11.9 shows the result of apply-
ing such a ridge detector to two images and selecting the 100 and
10 strongest bright ridges, respectively, by integrating a measure of
normalized ridge strength along each curve. For the arm image, ob-
serve how a coarse-scale descriptor is extracted for the arm as a whole,
whereas the individual fingers give rise to ridge curves at finer scales
(see also Fig. 11.10).

11.4.3 Blob detection

The Laplacian operator ∇2L = Lxx +Lyy is a commonly used entity for
blob detection, because it gives a strong response at the center of blob-
like image structures [39, 40, 41]. To formulate a blob detector with
automatic scale selection, we can consider the points in scale-space at
which the the square of the normalized Laplacian

∇2
normL = t(Lxx + Lyy) (11.46)

assumes maxima with respect to space and scale. Such points are re-
ferred to as scale-space extrema of (∇2

normL)2.

Qualitative properties. For a Gaussian blob defined by

g(x,y) = h(x,y ; t0) = 1
2πt0

e−(x2+y2)/2t0 (11.47)
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original image scale-space maxima overlay

Figure 11.11: Blob detection by detection of scale-space maxima of the nor-
malized Laplacian operator: a original image; b circles representing the 250
scale-space maxima of (∇normL)2 having the strongest normalized response; c
circles overlaid on image.

Figure 11.12: Three-dimensional view of the 150 strongest scale-space maxima
of the square of the normalized Laplacian of the Gaussian computed from the
sunflower image.

it can be shown that the selected scale at the center of the blob is given
by

∂t(∇2
normL)(0,0; t) = 0 ⇐⇒ t∇2L = t0. (11.48)

Hence, the selected scale directly reflects the width t0 of the Gaussian
blob.

Results of blob detection. Figures 11.11 and 11.12 show the result
of applying this blob detector to an image of a sunflower field. In
Fig. 11.11, each blob feature detected as a scale-space maximum is il-
lustrated by a circle, with its radius proportional to the selected scale.
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Figure 11.12 shows a 3-D illustration of the same data set, by mark-
ing the scale-space extrema by spheres in scale-space. Observe how
the size variations in the image are captured by this structurally very
simple operation.

11.4.4 Corner detection

A commonly used technique for detecting junction candidates in gray-
level images is to detect extrema in the curvature of level curves mul-
tiplied by the gradient magnitude raised to some power [42, 43]. A
special choice is to multiply the level curve curvature by the gradient
magnitude raised to the power of three. This leads to the differential
invariant κ̃ = L2

vLuu, with the corresponding normalized expression

κ̃norm = t2γL2
vLuu (11.49)

Qualitative properties. For a diffuse L-junction

g(x1, x2) = Φ(x1; t0)Φ(x2; t0) (11.50)

modeled as the product of two diffuse step edges

Φ(xi; t0) =
∫ xi
x′=−∞

h(x′; t0) dx′ (11.51)

it can be shown that variation of κ̃norm at the origin is given by

|κ̃norm(0,0; t)| = t2γ

8π2(t0 + t)2 (11.52)

When γ = 1, this entity increases monotonically with scale, whereas
for γ ∈]0,1[, κ̃norm(0,0; t) assumes a unique maximum over scales
at tκ̃ = γ

1−γ t0. On the other hand, for a nonuniform Gaussian blob
L(x1, x2; t) = h(x1; t1 + t)h(x2; t2 + t), the normalized response
always decreases with scale at sufficiently coarse scales.

This analysis indicates that when γ = 1, κ̃2
norm can be expected to

increase with scales when a single corner model of infinite extent con-
stitutes a reasonable approximation, whereas κ̃2

norm can be expected
to decrease with scales when so much smoothing is applied that the
overall shape of the object is substantially distorted.

Hence, selecting scale levels (and spatial points) where κ̃2
norm as-

sumes maxima over scales can be expected to give rise to scale levels
in the intermediate scale range (where a finite extent junction model
constitutes a reasonable approximation) and the selected scale levels
thus reflect over how large a region a corner model is valid. In practice,
a slightly smaller value of γ = 7/8 is used.
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Figure 11.13: Three-dimensional view of scale-space maxima of κ̃2
norm com-

puted for a large scale corner with superimposed corner structures at finer
scales.

Results of corner detection. Figure 11.13 shows the result of detect-
ing scale-space extrema from an image with corner structures at mul-
tiple scales. Observe that a coarse scale response is obtained for the
large-scale corner structure as a whole, whereas the superimposed cor-
ner structures of smaller size give rise to scale-space maxima at finer
scales. (More results on real images will be shown in Section 11.5.)

11.4.5 Local frequency estimation

To extend the forementioned application of the scale selection method-
ology from the detection of sparse image features to the computation
of dense image descriptors, a natural starting point is to consider the
theory of quadrature filter pairs defined (from a Hilbert transform) in
such a way as to be phase-independent for any sine wave. To approxi-
mate such operators within the Gaussian derivative framework, we can
define a corresponding quasi-quadrature measure in the 1-D case by
[11, 44]

PL = L2
ξ + CL2

ξξ = tL2
x + Ct2L2

xx (11.53)

where a good choice of the parameter C is C = e/4. Note that, in order
to achieve scale invariance, it is necessary to use normalized deriva-
tives with γ = 1 in the (inhomogeneous) linear combination of Gaussian
derivatives of different order. The γ-normalized derivative concept,
however, leaves a degree of freedom, which can be parameterized by

PL = t−Γ (tL2
x + Ct2L2

xx) (11.54)
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Figure 11.14: Dense scale selection by maximizing the quasi-quadrature mea-
sure Eq. (11.55) over scales: (left) original gray-level image; (right) the variations
over scales of the quasi-quadrature measurePL computed along a vertical cross
section through the center of the image. The result is visualized as a surface
plot showing the variations over scale of the quasi-quadrature measure as well
as the position of the first local maximum over scales.

To extend this entity to 2-D signals, we can consider

PL = t−Γ
(
t(L2

x + L2
y)+ C t2 (L2

xx + 2L2
xy + L2

yy)
)

(11.55)

RL = t−Γ
(
t (L2

x + L2
y)+ C t2 ((Lxx − Lyy)2 + 4L2

xy)
)

(11.56)

Both these differential expressions are invariant under rotations and
reduce to the form of Eq. (11.54) for a 1-D signal. The second-order
differential expression in Eq. (11.55)

Sγ−normL = t2γ (L2
xx + 2L2

xy + L2
yy) (11.57)

however, is a natural measure of the total amount of second-order infor-
mation in the signal, whereas the second-order differential expression
in (Eq. (11.56))

Aγ−normL = t2γ (Lpp − Lqq)2 = t2γ ((Lxx − Lyy)2 + 4L2
xy) (11.58)

is more specific to elongated structures (e.g., ridges). The specific choice
of Γ = 1/2 means that Eq. (11.56) and can be interpreted as a linear com-
bination of the edge strength measure Eq. (11.37) with γ = 1/2 and the
ridge strength measure (Eq. (11.58)) with γ = 3/4.

Qualitative properties. These differential expressions inherit simi-
lar scale selection properties for sine waves as those described in Sec-
tion 11.3.1; see [30, 44] for an analysis.
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Results of frequency estimation. Figure 11.14 shows an example re-
sult of estimating local frequencies in this way, by detecting local max-
ima over scale of PL along a vertical cross section in an image of a
periodic pattern. Observe how the selected scale levels capture the
variations in frequency caused by the perspective effects.

11.5 Feature localization with automatic scale selection

The scale-selection techniques presented so far are useful in the stage
of detecting image features. The role of the scale-selection mechanism
is to estimate the approximate size of the image structures to which the
feature detector responds. When computing features at coarse scales
in scale-space, however, the shape distortions can be significant, and
in many cases it is desirable to complement feature-detection modules
by an explicit feature-localization stage.

The goal of this section is to show how the mechanism for auto-
matic scale selection can be formulated in this context by minimizing
measures of inconsistency over scales.

11.5.1 Corner localization

Given an approximate estimate x0 of the location and the size s of a
corner (computed according to Section 11.4.4), an improved estimate
of the corner position can be computed as follows [3, 45]: Consider at
every point x′ ∈ R2 in a neighborhood of x0, the line lx′ perpendicular
to the gradient vector (∇L)(x′) = (Lx1 , Lx2)T (x′) at that point

Dx′(x) = ((∇L)(x′))T (x −x′) = 0 (11.59)

Then, minimize the perpendicular distance to all lines lx′ in a neigh-
borhood of x0, weighted by the gradient magnitude, that is, determine
the point x ∈ R2 that minimizes

min
x∈R2

∫
x′∈R2

(Dx′(x))2wx0(x′; s) dx′ (11.60)

for a Gaussian window function wx0(·; s) : R2 → R with integration
scale s set from the detection scale ttildeκ of the corner and centered at
the candidate junction x0. After expansion, this minimization problem
can be expressed as a standard least squares problem

min
x∈R2

xTAx − 2xTb + c ⇐⇒ Ax = b (11.61)

where x = (x1, x2)T , and A, b, and c are determined by the local statis-
tics of the gradient directions ∇L(·; t) at scale t in a neighborhood of
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Figure 11.15: Corner localization by minimizing the normalized residuals over
scales for two corner structures. A basic property of the scale-selection mecha-
nism is that an increase in the noise level implies that the minimum over scales
is assumed at a coarser scale.

x0 (compare with Eq. (11.17))

A(x; t, s) =
∫
x′∈R2

(∇L)(x′) (∇L)T (x′)wx0(x′; s) dx′ (11.62)

b(x; t, s) =
∫
x′∈R2

(∇L)(x′) (∇L)T (x′)x′wx0(x′; s) dx′ (11.63)

c(x; t, s) =
∫
x′∈R2

x′T (∇L)(x′) (∇L)T (x′)x′wx0(x′; s) dx′ (11.64)

11.5.2 Scale-selection principle for feature localization

To express a scale-selection mechanism for this corner localizer, let us
extend the minimization problem (Eq. (11.61)) from a single scale to
optimization over multiple scales [46]

min
t∈R+

min
x∈R2

xTAx − 2xTb + c
norm(t)

=min
t∈R+

min
x∈R2

c − bTA−1b
traceA

(11.65)

and introduce a normalization factor norm(t) to relate minimizations
at different scales. The particular choice of norm(t) = traceA implies
that the normalized residual

r̃ = min
x∈R2

∫
x′∈R2

∣∣((∇L)(x′))T (x −x′)∣∣2wx0(x′; s) dx′∫
x′∈R2

∣∣(∇L)(x′)∣∣2 wx0(x′; s) dx′
(11.66)
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original image 100 strongest junctions

Figure 11.16: Results of composed two-stage junction detection followed by
junction localization. (left) Original gray-level image. (right) The 100 strongest
junction responses ranked according to the scale-space maxima of κ̃2

norm and
illustrated by circles with their radii proportional to the detection scales of the
junction responses.

has dimension [length]2 that can be interpreted as a weighted esti-
mate of the localization error. Specifically, scale selection according to
Eq. (11.65), by minimizing the normalized residual r̃ of Eq. (11.66) over
scales, corresponds to selecting the scale that minimizes the estimated
inaccuracy in the localization estimate.

Qualitative effects. Figure 11.15 shows the result of performing cor-
ner localization in this way, by minimizing the normalized residual r̃
over scales for two corner structures. Observe how an increase in the
noise level implies that the minimum over scales is assumed at a coarser
scale.

Results of corner localization. Figure 11.16 shows the result of in-
tegrating this corner localization module with the corner detector in
Section 11.4.4. The resulting two-stage corner automatically adapts
its detection scales and localization scales to size variations and noise
variations in the image structures. In addition, the region of interest
associated with each corner is useful for purposes such as matching.

Edge localization. In Lindeberg [3, 30] it is outlined how minimization
over scales of a similar normalized residual applies to the problem of
edge localization.
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11.6 Stereo matching with automatic scale selection

This section shows how a scale selection mechanism can be formu-
lated for a differential stereo matching scheme expressed within the
Gaussian derivative framework. With appropriate modifications, simi-
lar ideas apply to the problem of flow estimation.

11.6.1 Least squares differential stereo matching

Let us assume that the flow field between the scale-space representa-
tions L and R of two images can be approximated by a constant flow
field v over the support region of a window function w. Following
[47, 48, 49, 50, 51] and several others, consider the discrete form of
the motion constraint equation [52]

(∇L)(ξ)T (∆ξ)+ (L(ξ)−R(ξ)) = O(|∆ξ|2) (11.67)

and integrate the square of this relation using w as window function.
After expansion (and dropping the arguments) this gives the least-
squares problem

min
v∈R2

vTAv + 2bTv + c (11.68)

where A, b, and c are defined by

A =
∫

ξ∈R2

(∇L)(∇L)T w dξ

b =
∫

ξ∈R2

(R − L) (∇L)w dξ, c =
∫

ξ∈R2

(R − L)2w dξ
(11.69)

If we interpret R − L as a discrete approximation to a temporal deriva-
tive, these image descriptors fall within the class of windowed spectral
moments in Eq. (11.17). Assuming that A according to Eq. (11.69) is
nondegenerate, the explicit solution of the flow estimate is

v = −A−1b (11.70)

11.6.2 Scale-selection principle for estimating image deformations

When implementing this scheme in practice, it is natural to express it
within a coarse-to-fine multiscale framework. When performing image
matching from coarse to fine scales, however, it is not obvious what
should be the finest scales. If we attempt to match image features be-
yond a certain resolution, we could expect the errors in the deformation
estimates to increase rather than to decrease.

In analogy with Section 11.5.2, a natural way to formulate a scale-
selection mechanism for the differential stereo matching scheme is by
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Figure 11.17: Scale-space signatures of the normalized residual r̃ for synthetic
expanding patterns with structures at different scales. Notice that with increas-
ing size of the texture elements, the minimum over scales in the normalized
residual is assumed at coarser scales.

extending the least squares estimation (Eq. (11.68)) to the two-parameter
least squares problem

min
t∈R+

min
v∈R2

vTAv + 2bTv + c
norm(t)

(11.71)

where the normalization factor norm(t) determines how the informa-
tion at different scales should be compared. Again, we choose norm(t) =
traceA, while one could also conceive other normalization approaches,
such as the minimum eigenvalue of A.

The resulting normalized residual is of dimension [length]2 and
constitutes a first-order approximation of the following error measure:

E∇L =
∫
ξ∈R2 |(∇L)T (v −∆ξ)|2w(ξ) dξ∫

ξ∈R2 |∇L|2w(ξ) dξ

=
∫
ξ∈R2(v −∆ξ)T (∇L)(∇L)T (v −∆ξ)w(ξ) dξ∫

ξ∈R2(∇L)T (∇L)w(ξ) dξ
(11.72)

where v is the regional flow estimate and ∆ξ a pointwise flow estimate
that satisfies Eq. (11.67). In other words, E∇L can be seen as a measure
of the internal consistency of the estimated flow field, weighted by the
gradient magnitude.
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Figure 11.18: Scale-space signatures of the normalized residual r̃ for a syn-
thetic expanding pattern with different amounts of added white Gaussian noise.
Observe that with increasing noise level, the minimum over scales in the nor-
malized residual is assumed at coarser scales.

11.6.3 Properties of matching with automatic scale selection

Selection of coarser scales for larger-sized image structures. Fig-
ure 11.17 shows two synthetic image patterns that have been subject
to a uniform expansion. The underlying patterns are identical except
for the size of the texture elements that differs by a factor of four,
and 10 % white Gaussian noise added to each image independently af-
ter the deformation. Observe for the small-sized pattern in the first
row the minima over scales in r̃ are assumed at the finest scales, while
when the size of the image structures is increased in the second row,
the minimum over scales is assumed at coarser scales. This behavior
agrees with the intuitive notion that coarser scales should be selected
for patterns containing larger-sized image structures.

Selection of coarser scales with increasing noise level. In Fig. 11.18
the image pattern is the same, whereas the noise level is varied. Observe
that with an increasing amount of interfering fine scale structures, the
minimum in r̃ over scales is assumed at coarser scales. This behavior
agrees with the intuitive notion that a larger amount of smoothing is
required for noisy data than otherwise similar data with less noise.

Selection of finer scales near discontinuities in the deformation
field. Figure 11.19 shows the behavior of the scale selection method
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Figure 11.19: The qualitative behavior of the scale selection method at a discon-
tinuity in the deformation field. The bottom row shows scale-space signatures of
the normalized residual computed in three windows at different distances to the
discontinuity (with their positions indicated in the upper right image by three
squares overlaid on the pointwise difference between the left and the right im-
age). Observe that with decreasing distance to the discontinuity, the minimum
over scales is assumed at finer scales.

in the neighborhood of a discontinuity in the flow field. For a “wedding-
cake type” random dot stereo pair to which 1% white Gaussian noise has
been added, the results are shown of accumulating the scale-space sig-
nature of the normalized residual in three windows with different dis-
tance to the discontinuity. These windows have been uniformly spaced
from the image center to one of the discontinuities in the disparity field
as shown in Fig. 11.19c.

Observe that with decreasing distance to the discontinuity, the min-
imum over scales is assumed at finer scales. This qualitative behav-
ior agrees with the intuitive notion that smaller windows for matching
should be selected for image structures near a discontinuity in the dis-
parity field than when matching otherwise similar image structures in
a region where the disparity varies smoothly.

Notably, this rapid decrease of the selected scale levels could also
provide a clue for detecting flow field discontinuities and signaling pos-
sible occlusions.
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Figure 11.20: Selected scale levels along a central horizontal cross section
through the wedding-cake type random dot stereo pair in Fig. 11.19. Observe
that distinct minima are obtained at the two discontinuities in the disparity field.

11.7 Summary and conclusions

The scale-space framework provides a canonical way to model early vi-
sual operations in terms of linear and nonlinear combinations of Gaus-
sian derivatives of different order, orientation and scale. This chapter
has shown how scale-space descriptors can be complemented by mech-
anisms for automatic scale selection

For feature detectors expressed in terms of Gaussian derivatives,
hypotheses about interesting scale levels can be generated from scales
at which normalized measures of feature strength assume local max-
ima with respect to scale. The notion of γ-normalized derivatives arises
by necessity given the requirement that the scale selection mechanism
should commute with rescalings of the image pattern. Specific exam-
ples have been shown of how feature detection algorithms with auto-
matic scale selection can be formulated for the problems of edge detec-
tion, blob detection, junction detection, ridge detection and frequency
estimation. A general property of this scheme is that the selected scale
levels reflect the size of the image structures.

When estimating image deformations, such as in image matching
and optic flow computations, scale levels with associated deformation
estimates can be selected from the scales at which normalized mea-
sures of uncertainty assume local minima with respect to scales. It has
been illustrated how an integrated scale selection and flow estimation
algorithm has the qualitative properties of leading to the selection of
coarser scales for larger-sized image structures and increasing noise
level, whereas it leads to the selection of finer scales in the neighbor-
hood of flow-field discontinuities.
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The material in this chapter is based on [3, chapter 13], [30], [35]
and [50]; see also [53] for a complementary work. Applications of these
scale selection principles to various problems in computer vision have
been presented in [44, 54, 55, 56, 57, 58, 59]. For related works see
[33, 36, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70].
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12.1 Importance of texture

12.1.1 Definition and background

Among other object properties such as color, shape, or motion, tex-
ture is one of the most prominent image attributes in both human and
automatic image analysis.

There are a number of different definitions for texture [1]. What all
definitions have in common is the fact that they describe texture as an
attribute of an image window. This attribute represents both

• spatially deterministic aspects of the gray levels (Fig. 12.1a);

• spatially stochastic aspects of the gray levels (Fig. 12.1b); and

• spatial aspects of color distribution.

In automatic image analysis, those attributes are represented by tex-
tural features, which are real numbers calculated from the image win-
dows with the help of functions such as those described below. The
number of potential textural features is large. Because some of them
are to a certain extent invariant with respect to change in illumination,
distortions, or scaling, they can also make an important contribution
to both object segmentation and object recognition tasks.

The human visual system can also distinguish between different
types of texture. From our daily experience, we know that we are capa-
ble of distinguishing between regular textures that differ in their ori-
entation, scale, phase, color, etc. For stochastic textures, differences in
the mean gray values or the variance will be noticed. Experiments on
the human visual perception of texture have already been performed
by Julesz [2]. A broad overview of this topic is given in Pratt [1].

Nevertheless, the way the human brain analyzes texture has not
yet been fully understood. Though there are cell complexes that de-
tect color, shape, or orientations, similar representations of textural
attributes in the brain have not yet been found. Some artificial textural
features may be based on biological models, but no biological repre-
sentation of the large variety of complex artificial textural features is
known. In that sense, texture analysis is a very complex problem for the
human visual system, which might partially be performed on a higher
level in the brain.

12.1.2 Texture analysis in machine vision

Texture analysis is also a demanding task for artificial machine vision
systems. The computation of textural features such as those described
in the following requires significantly more time and memory than the
extraction of simple geometric or color-based features. A rough esti-
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a b

Figure 12.1: a Determinstic texture: a brick wall; b stochastic texture: a tiled
floor.

mate is an average of 100 to 1000 operations per pixel for any textural
feature.

The demand for vast computing power can be either satisfied by
relying on special image processing hardware or by using clusters of
standard computer processing units (CPUs). A number of comparisons
between these hardware concepts suggests that for many practical ap-
plications of complex texture analysis the benefit of special hardware
is less than a factor of 2 in terms of speed [3] (see also Volume 3, Sec-
tion 3.2). At the same time, special hardware usually causes time delays
during the development process, and considerable costs when porting
solutions to a new (and quicker) hardware platform. For these reasons,
in the author’s opinion one can observe a clear shift towards standard
hardware solutions in industrial texture analysis applications. Never-
theless, this position is controversial (see also Volume 3, Chapters 2
and 3 and Chapter 11).

In any case, a large variety of technical applications benefit from
texture analysis:

• Surface inspection is essential for industrial quality control of wood,
fabrics, or metal surfaces;

• In object recognition, textural features can complement other object
attributes such as color or shape; and

• Finally, object segmentation profits from invariance properties of
textural features with respect to rotation, illumination, or scaling.

The literature reports a number of different methods for texture
analysis. In Section 12.2, some of the most prominent feature sets are
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introduced. This section will give the reader an idea of the basic concept
of each feature set. Furthermore, it will allow the reader to implement
those feature sets. For further reading, especially on details of the the-
oretical background, links to the corresponding original publications
are given.

The list of textural feature sets given below is in no way complete,
but tries to give an overview of the variety of different models. The
author appreciates feedback on other important feature sets to be in-
cluded.

Section 12.3 compares the performance of the different textural fea-
ture sets. For this task, benchmark sets from different fields of texture
analysis are defined. Some of the sets are included on the attached
CD rom (.) The performance comparison covers the aspects of speed
and error rate in the recognition mode. Though this comparison is in
no way exhaustive, it might indicate how to proceed in order to find
adequate textural feature sets for a given problem.

Section 12.4 briefly shows that a quantitative evaluation of feature
performance can serve as a basis for automatic design of texture anal-
ysis systems. As a method of reducing both development costs and
time to market for image processing products, automatic design con-
cepts have recently attracted increasing attention.

12.2 Feature sets for texture analysis

There are numerous broader theoretical reviews on texture analysis
algorithms [4, 5]. Some papers compare the actual performance of fea-
ture sets, quite often on the basis of the Brodatz database (see [6] for
an electronic version) or the Vistex [7] image set. There are also web
sites containing benchmarks on some groups of textural features, such
as the Meastex benchmark [8].

In this chapter, we compare the performance of 318 textural fea-
tures from 18 feature sets. Because a benchmark can only be done
on a common data basis, we define 7 data sets as a basis for bench-
marking experiments. The available data sets can be used for further
comparisons.

Table 12.1 gives an overview of the different feature sets, which
are described in some more detail in this section. More details on the
implementation can be found in the given references. The intention of
the descriptions below is to provide the reader with a quick overview
of the methods and to describe the parameter configurations we have
used for our tests.
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Table 12.1: Overview of feature sets for texture analysis, with number of
features per set and theoretical principle

No. Principle

Haralick 14 gray-level co-occurrence matrix

Unser 32 sum and difference histograms

Galloway 20 gray-level run lengths

Laine 21 wavelet packet signatures

Local 14 direct functions of gray values

Fractal (1) 10 fractal box dimension

Fractal (2) 47 fractal dimension from blankets

Laws 14 Laws’ convolution matrices

Fourier coeff. 33 energy in ring-shaped regions of Fourier space

Chen 16 geometric properties from binary image planes

Sun et al. 5 modified Haralick approach

Pikaz et al. 31 pyramid decomposition

Gabor 12 Gabor wavelets

Markov 7 Markov random fields

Dapeng 13 gray-level difference co-occurrence

Amadasun 5 neighboring difference histogram

Mao et al. 6 autoregressive models

Amelung 18 histogram and gradient features

Total: 318 No. of feature sets: 18

12.2.1 Haralick’s gray-level co-occurrence features

The feature set of Haralick et al. [10] is probably one of the most fa-
mous methods of texture analysis. It is based on the calculation of the
co-occurrence matrix, a second-order statistics of the gray levels in the
image window. The co-occurrence matrix PHard,α (g,g

′) counts the num-
ber of pixel pairs (m,n) and (m′,n′) in an image that have intensity
values of g and g′ and that are separated by a pixel distance d in a
relative direction α.

In many cases, only eight neighbors and the corresponding four
directions α = 0°, 45°, 90° and 135° are taken into consideration. With
the definitions Lx = {1,2, . . . ,N} and Ly = {1,2, . . . ,M}, this leads to
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Table 12.2: Abbreviations for Haralick’s co-occurrence-based method for tex-
ture analysis (G is the number of gray levels in image)

px(g) =
G∑
g′=1

p(g,g′) py(g′) =
G∑
g=1

p(g,g′)

px+y(g′′) =
G∑
g=1

G∑
g′=1

g+g′=g′′

p(g,g′), g′′ = 2,3 . . .2G

px−y(g′′) =
G∑
g=1

G∑
g′=1

|g−g′|=g′′

p(g,g′), g′′ = 0,1 . . .G − 1

µx =
G∑
g=1

gpx(g), µy =
G∑
g=1

gpy(g)

σx =

√√√√√ G∑
g=1

px(g)(g − µx)2, σy =

√√√√√ G∑
g=1

py(g)(g − µy)2

HXY = −
G∑
g=1

G∑
g′=1

p(g,g′) log{p(g,g′)}

HXY1 = −
G∑
g=1

G∑
g′=1

p(g,g′) log{px(g)py(g′)}

HXY2 = −
G∑
g=1

G∑
g′=1

px(g)py(g′) log{px(g)py(g′)}

HX = −
G∑
g=1

px(g) logpx(g)

HY = −
G∑
g=1

py(g) logpy(g)

Q(g,g′) =
G∑

g′′=0

p(g,g′′)p(g′,g′′)
px(g)py(g′)

G: number of gray levels in the image

the following definitions for the respective co-occurrence matrices:

PHar
d,0°(g,g

′) = card
{
((m,n), (m′,n′)) ∈ (Ly × Lx)× (Ly × Lx)|

m−m′ = 0, |n−n′| = d,Gm,n = g,Gm′,n′ = g′
}

PHar
d,45°(g,g

′) = card
{
((m,n), (m′,n′)) ∈ (Ly × Lx)× (Ly × Lx)|
(m−m′ = d,n−n′ = −d) or

(m−m′ = −d,n−n′ = d), (12.1)

Gm,n = g,Gm′,n′ = g′
}
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Table 12.3: Features in Haralick’s co-occurrence-based method for texture
analysis.

Feature Definition

Angular second momentum FHar
ASM =

G∑
g=1

G∑
g′=1

(p(g,g′))2

Contrast FHar
Con =

G−1∑
g=0

g2


G∑
g=1

G∑
g′=1

|g′−g′′=g|

p(g′, g′′)


Correlation FHar

Cor = 1
σxσy

 G∑
g=1

G∑
g′=1

(gg′)p(g,g′)− µxµy


Sum of squares: variance FHar
SSV =

G∑
g=1

G∑
g′=1

(g − µ)2p(g,g′)

Inverse difference moment FHar
IDM =

G∑
g=1

G∑
g′=1

1
1+(g−g′)2p(g,g

′)

Sum average FHar
SAv =

2G∑
g=2

gpx+y(g)

Sum variance1 FHar
SVa =

2G∑
g=2

(g − FHar
SAv)2px+y(g)

Sum entropy2 FHar
SEn = −

2G∑
g=2

px+y(g) log{px+y(g)}

Entropy FHar
Ent = −

G∑
g=1

G∑
g′=1

p(g,g′) log{p(g,g′)}

Difference variance FHar
DVa =

G−1∑
g=0

(px−y(g)(g−
G−1∑
g′=0

g′px−y(g′))2)

Difference entropy FHar
DEn = −

G−1∑
g=0

px−y(g) log{px−y(g)}

Information measures of
correlation3 FHar

IC1 = HXY−HXY1
max{HX,HY }

FHar
IC2 = (1− exp[−2.0|HXY2−HXY |])1/2

Max. correlation coefficient4 FHar
MCC = (second largest eigenvalue of Q)1/2

1In the original paper of Haralick, this feature depends on FHar
SEn instead of FHar

SAv, but
we assume this to be a typographic error.
2For all Haralick features, expressions containing a log(0) term are simply sup-
pressed and do not contribute to the respective feature.
3In the original paper of Haralick, there are no absolute values. We have added them
to avoid negative numbers in the argument of the square root function.
4If the second largest eigenvalue is negative, the feature is set to 0. The calculation
of the eigenvalue has been performed with a routine from Press [9].
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PHar
d,90°(g,g

′) and PHar
d,135°(g,g

′) have equivalent definitions. In the pre-
ceding equations, the card operator denotes the number of elements in
a set.

For the actual evaluation, different methods of processing the co-
occurrence matrices are known. In our case, the four co-occurrence
matrices for the different directions and distance d = 1 are averaged:

PHar
Σ = 1

4

(
PHar

1,0° + PHar
1,45° + PHar

1,90° + PHar
1,135°

)
(12.2)

A normalized co-occurrence matrix is calculated from

pHar(g,g′) = 1
Npixpair

PHar
Σ (g,g′) (12.3)

with Npixpair as the total number of pixel pairs in the image

Npixpair =
G∑
g=1

G∑
g′=1

PHar
Σ (g,g′) (12.4)

In order to reduce the size of the co-occurrence matrices and to speed
up calculations, we have reduced the intensity resolution of the input
image down to 128 gray levels. The letter G represents the number of
distinct gray levels in the image after gray-level reduction. Additional
definitions are listed in Table 12.2.

Fourteen features are calculated from the normalized co-occurrence
matrix pHar(g,g′) (see Table 12.3).

12.2.2 Unser’s sum and difference histograms

In order to reduce the computation time necessary to calculate the co-
occurrence matrix, Unser has suggested a method to estimate its co-
efficients using a first-order statistic on the image window [11]. He
suggests sum and difference histograms on the gray levels.

Two image windows with centers at Gm,n and Gm′,n′ are displaced
by a distance d = (d1, d2)

Gm′,n′ = Gm+d1,n+d2 (12.5)

With the definition for the sum sm,n and the difference dm,n of the
respective gray levels

sm,n = Gm,n +Gm+d1,n+d2 and dm,n = Gm,n −Gm+d1,n+d2 (12.6)

the sum and difference histograms hs and hd are defined as follows:

hs(i;d1, d2) = hs(i) = card{Gm,n|sm,n = i}
hd(j;d1, d2) = hd(j) = card{Gm,n|dm,n = j} (12.7)
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Table 12.4: Unser’s sum and difference histogram features.

Feature Definition

Mean FUns
Mea =

G−1∑
i=0

iP̂(i)

Angular Second Momentum FUns
ASM =

G−1∑
i=0

(P̂(i))2

Contrast FUns
Con =

G−1∑
i=0

(i− µ)2P̂ (i)

Entropy FUns
Ent =

G−1∑
i=0

− P̂ (i)logP̂(i)

The number of total counts is

Ntot = card{G} =
∑
i
hs(i) =

∑
j
hd(j) (12.8)

The histograms get normalized by

P̂s(i) = hs(i)
Ntot

, (i = 2, . . .2G),

P̂d(j) = hd(j)
Ntot

, (j = −G + 1, . . .G − 1)
(12.9)

with G being the number of gray levels in the image. Typically, a re-
duced gray-level resolution (e. g., 32) is used.

For both histograms P̂s(i) and P̂d(j), global features can be calcu-
lated according to Table 12.4. Doing this for all of the four possible
nearest displacements in the directions 0°, 45°, 90° and 135°, this leads
to a total of 32 Unser features.

12.2.3 Galloway’s run-length-based features

Galloway has proposed a run-length-based technique, which calculates
characteristic textural features from gray-level run lengths in different
image directions [12].

The basis of the calculation of the features is a run-length matrix
that is defined as

PGalφ (g, r) = (ag,r ) (12.10)

where ag,r is the number of occurrences of a connected pixel interval
of run length r in the direction φ with all pixel values of the interval
being equal to the gray-level value g.
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Table 12.5: Definitions and features of Galloway’s run-length-based method
for texture analysis.

Abbreviations

Npix: number of pixels in image window

G: number of gray levels in image

R: maximal run length in image

N =
G∑
g=1

R∑
r=1
PGalφ (g, r)

Feature Definition

Short run emphasis FGal
SRE, φ = 1

N

G∑
g=1

R∑
r=1

PGalφ (g,r)

l2

Long run emphasis FGal
LRE, φ = 1

N

G∑
g=1

R∑
r=1
l2 · PGalφ (g, r)

Gray-level distribution FGal
GLD, φ = 1

N

G∑
g=1

(
R∑
r=1
PGalφ (g, r)

)2

Run-length distribution FGal
RLD, φ = 1

N

R∑
r=1

(
G∑
g=1
PGalφ (g, r)

)2

Run percentage FGal
RPe, φ = 1

Npix

G∑
g=1

R∑
r=1
rPGalφ (g, r)

Usually, four run-length matrices for the directions φ = 0°,45°,90°,
and 135° are calculated. In order to get sufficiently high run-length
values, a reduction of the gray values of an image is performed, in our
case down to 16 values.

Table 12.5 shows the features derived from the four run-length ma-
trices. Because they are calculated for each of the four run-length ma-
trices, a total of 20 features is derived.

12.2.4 Chen’s geometric features from binary image sequences

Chen [13] decomposes a gray-level image into a sequence of binary
images and calculates a total of 16 features from geometric properties
of the resulting blob regions.

From the original image, a series of binary images Gbin,t is con-
structed by help of thresholds t ∈ 1, . . .G − 1 as follows:

Gbin,tm,n =
{

1 for Gm,n ≥ t
0 else

(12.11)

The features below are derived for each connected region I in the image,
with a 4-neighborhood relation as the basis of connectivity. With the
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Table 12.6: Definitions and features of Chen’s binarization-based method for
texture analysis.

Abbreviations

Number of
connected areas

NOC0(t): Number of connected black areas in bi-
nary image generated with threshold t.
NOC1(t): Number of connected white areas in bi-
nary image generated with threshold t.

Average irregularity IRGLb(t) =

∑
I∈Gbin,t

[NOPb(t,I)IRGLb(t,I)]

∑
I∈Gbin,t

NOPb(t,I)
;b ∈ {0,1}

Feature Definition

For each g(t) ∈ {IRGL0(t), IRGL1(t),NOC0(t),NOC1(t)} calculate

Maximum FChe
Max =max1≤t≤G−1 g(t)

Average FChe
Ave =

1
G − 1

G−1∑
t=1

g(t)

Mean FChe
Mea =

G−1∑
t=1

tg(t)
/G−1∑

t=1

g(t)

Standard deviation FChe
StD =

√√√√√√√
1

G−1∑
t=1

g(t)

G−1∑
t=1

(t − FChe
Mea)2g(t)

definitions

x =
∑
i∈I
xi

/
|I|, y =

∑
i∈I
yi

/
|I| (12.12)

and |I| as the number of pixels in the area I, a center of gravity (x,y) is
calculated for each connected region I. The index i runs over all pixels
in a connected area I. For all connected areas I in fbint , a measure of
irregularity is defined as

IRGLb(t, I) =
1+√πmaxi∈I

√
(xi −x)2 + (yi −y)2√|I| − 1 (12.13)

The parameter b denotes connected black areas b = 0 and white areas
for b = 1. The forementioned definitions serve, together with further
definitions of the parameters “number of connected areas” and “aver-
age irregularity,” as a basis of textural features derived from the se-
quence of binary images. Those features are listed in Table 12.6. In
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our experiments, binary images are calculated with the 15 thresholds
t = 16,32,48, . . . ,240.

12.2.5 Laine’s textural energy from Daubechies wavelets

Laine uses a wavelet decomposition with Daubechies wavelets and takes
the energies in the different filter bands as features [14]. Details on
implementation including a 2-D implementation and the Daubechies
coefficients DAUB4 used here can be found in [9, Chapter 13.10].

Being interested in the application of wavelets it is sufficient to know
that, similar to a Fourier transformation, a wavelet transform repre-
sents a transformation to different orthogonal basis functions. While
for the Fourier Transform these basic functions are sine and cosine
functions, so called wavelets are used for the wavelet transform.

For the wavelet transform of a 1-D signal the transformation can
be expressed by use of a transformation matrix acting on the column
vector of the signal.

For the following discussion we concentrate on the transformation
coefficients of the DAUB4 wavelet transform used here, which is char-
acterized by the four coefficients c0, . . . , c3. The numerical values of the
DAUB4 coefficients are

c0 = 0.4829629131445341, c1 = 0.8365163037378079
c2 = 0.2241438680420134, c3 = −0.1294095225512604

(12.14)

In the case of a DAUB4 wavelet transform the transformation matrix
for a onedimensional signal with 8 components is

W =



c0 c1 c2 c3 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0
0 0 c0 c1 c2 c3 0 0
0 0 c3 −c2 c1 −c0 0 0
0 0 0 0 c0 c1 c2 c3

0 0 0 0 c3 −c2 c1 −c0

c2 c3 0 0 0 0 c0 c1

c1 −c0 0 0 0 0 c3 −c2


(12.15)

This transformation matrix can be interpreted as two different rota-
tions in the space of basic functions, which are interwoven. One rota-
tion operates on the even rows the other one on the odd rows. From
a practical point of view the filter coefficients in the odd rows can be
seen as a blurring filter while the coefficients in even rows perform a
sharpening.

After applying the transformation matrix once a permutation of the
resulting vector entries has to take place in order to “separate” the
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Figure 12.2: Schematic figure of a wavelet transformation: An image is split
into four subimages of equal size.

two filter outputs from each other. As each rotation uses only half
the number of rows a rescaling of a factor of two takes place but two
outputs (in the vector below with 4 components each) are generated.

x1

x2

x3

x4

x5

x6

x7

x8


transformation

-→



s1
d1

s2
d2

s3
d3

s4
d4


permutation

-→



s1
s2
s3
s4
d1

d2

d3

d4


(12.16)

In order to apply a wavelet transform to a 2-D image one has to trans-
form and reorder the rows and the columns of the image sequentially.
As in Fourier transforms the order of operation is not important. Each
transformation step generates four different subimages from one origi-
nal image (Fig. 12.2). The letters, for example, in the top right subimage
indicate the first transformation (e. g., on the rows) has been a sharp-
ening while the second one (on the columns) was a blurring.

While many wavelet transforms do a multiresolution analysis by
successively transforming only the top left subimage of each decom-
position step, Laine has decided to do the decomposition for all four
subimages successively.

For extracting textural features FLai an energy value is calculated
for each subimage in a decomposition sequence by summing over the
squares of all pixel values in the subimage. With three resolution steps
in the wavelet decomposition 21 features can be calculated. One coeffi-
cient stems from the original image, four from the first decomposition
level, and further 16 from the second level.

12.2.6 Local textural features

Local texture features are calculated directly from the original image
window [15]. The feature set contains statistical features and gradient
features. In the case of the first feature (gray level of central pixel),
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Table 12.7: Local textural features. For definition of the Sobel and Kirsch
operators see Table 12.8 and Table 12.9

Feature Definition

Gray level of central pixel FLoc
GLP = G

Average of gray levels in window FLoc
Ave =meanU G

Median FLoc
Med =medianG

Standard deviation of gray levels FLoc
Std =meanU

(
Gm′,n′ − FLoc

Ave

)2

Difference of maximum and
minimum gray level

FLoc
DMM =maxU G−minU G

Difference between average gray
level in small and large window

FLoc
DSL =meanUs G−meanG

Sobel feature FLoc
Sob = |SxG| + |SyG|

Kirsch feature FLoc
Kir = max

i∈{0,...,7}
(KiG)

Derivative in x-direction FLoc
DXD =meanUr G−meanUl G

Derivative in y-direction FLoc
DYD =meanUt G−meanUb G

Diagonal derivatives FLoc
DD1 =meanUtr G−meanUbl G
FLoc

DD2 =meanUtl G−meanUbr G
Combined features FLoc

CF1 = |G− FLoc
Ave|

FLoc
CF2 = |G− FLoc

Std |

for a 64×64-image and indices running from 0 to 63, the gray level is
taken at positions (32,32). Some features code derivatives in x, y , and
diagonal directions by subtracting average gray levels in subwindows
next to the central pixel. For this purpose the following subwindows
are defined:

Us = {Gm,n|M4 ≤m< 3M
4
∧ N

4
≤ n < 3N

4
}

Ur = {Gm,n|M4 ≤m< 3M
4
∧ N

2
≤ n < N}

Utl = {Gm,n|0 ≤m< M
2
∧ 0 ≤ n < N

2
} (12.17)

(12.18)

Ul,Ut, and Ub are defined in a similar way as Ur while Utr ,Ubl, and Ubr
are similar to Utl.

Feature FLoc
DXD with the derivative in x direction, for example, sub-

tracts mean gray levels in windows to the right and to the left of the
central pixel. Derivatives in y and in the diagonal directions are calcu-
lated in the same way.
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Table 12.8: Definitions of Kirsch matrices

K0 =

 5 5 5
−3 0 −3
−3 −3 −3

 K1 =

 5 5 −3
5 0 −3
−3 −3 −3

 K2 =

 5 −3 −3
5 0 −3
5 −3 −3



K3 =

 −3 −3 −3
5 0 −3
5 5 −3

 K4 =

 −3 −3 −3
−3 0 −3

5 5 5

 K5 =

 −3 −3 −3
−3 0 5
−3 5 5



K6 =

 −3 −3 5
−3 0 5
−3 −3 5

 K7 =

 −3 5 5
−3 0 5
−3 −3 −3



Table 12.9: Definitions of Sobel operators

Sx =

 −1 −2 −1
0 0 0
1 2 1

 Sy =

 −1 0 1
−2 0 2
−1 0 1



Local features of the input image are shown in Table 12.7. For an image
with G gray levels, median(G) is defined as

median(G) =min
g
{card{(m′,n′)|Gm′,n′ ≤ g} ≥ MN2 } (12.19)

The Kirsch matrices used for feature FLoc
Kir are shown in Table 12.8,

and the Sobel operators (essential for calculating feature FLoc
Sob) are shown

in Table 12.9. The Sobel operator is discussed in detail in Section 10.3.4.

12.2.7 Fractal features

A number of different fractal features are in use. In Roß et al. [16],
fractal box dimensions are calculated on a set of binary images. These
images are generated from the original image with the help of thresh-
olds calculated from the maximal gradient value in the image.

From the original image G, a gradient image G′ is generated with
the help of a Sobel operator (see Table 12.9):

D =
[
Gx
Gy

]
=
[
SxG
SyG

]
(12.20)
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An absolute value1 is calculated from the gradient image by

|D| =
√
Gx ·Gx +Gy ·Gy (12.21)

Binarization is accomplished with a threshold t such that

Gbin,tm,n =
{

1 if
∣∣Dm,n∣∣ > t

0 else
(12.22)

A fractal box dimension is calculated by covering the binary image
with a lattice of grid size r and calculating the number of squares
Ng(Gbin,t, r ) containing pixels with value 1. From that, a fractal di-
mension D is calculated by means of linear regression2 from a double-
logarithmic plot of the equation

Ng(Gbin,t, r ) = 1
rD

(12.23)

The authors of the original paper have spent some effort in adapting the
levels t for binarization to their data sample. Because our benchmark
tends to follow a more general approach, we have chosen the 10 values
ti = 25i, i ∈ 1,2, . . .10. The 10 resulting feature values are taken as
the feature set “Fractal (1).”

Another fractal feature set named “Fractal (2)” is defined in Peleg
et al. [17]. Peleg’s basic idea was to determine a fractal surface area by
covering the surface with “blankets.”

When covering a surface with a blanket of thickness 2ε, the area of
the surface is calculated from dividing the blanket volume by 2ε. The
covering blanket has an upper surface uε and a lower surface bε. With
the image gray levels Gm,n and initial conditions

u0(m,n) = b0(m,n) = Gm,n (12.24)

a sequence of blanket surfaces for different thicknesses ε is defined as
follows:

uε(m,n) = max

{
uε−1(m,n)+ 1, max

|(m,n)−(m′,n′)|≤1
uε−1(m′,n′)

}

bε(m,n) = min

{
bε−1(m,n)− 1, min

|(m,n)−(m′,n′)|≤1
bε−1(m′,n′)

}
1In our implementation, the argument of the square root is clipped to 255, and the

result of the square root is converted to an integer value.
2In the regression all data points with Ng = 0 are suppressed; on a 64×64 pixel

image, Ng is calculated for grid sizes r = 2i, i ∈ {1,2, . . . ,5}. For the implementation
of the linear regression, see [9].
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For calculation of the blanket position in step ε, this recursive defini-
tion uses the gray values of the four neighbors in step ε − 1. With the
definitions

vε =
∑
m,n
(uε(m,n)− bε(m,n)) (12.25)

for the volume vε of the blanket and

A(ε) = (vε − vε−1)
2

(12.26)

for the surface area A(ε) corresponding to a blanket radius ε, a fractal
dimension D is defined by

A(ε) = Fε2−D (12.27)

Slopes Sε are calculated from best fit lines through the three points

(log(ε− 1), log(A(ε− 1))),
(log(ε), log(A(ε))),
(log(ε+ 1), log(A(ε+ 1)))

(12.28)

In our experiments, we use the slopes S(ε) as textural features. From
49 area values A(ε), ε = 1, . . .49, 47 slopes S(ε) can be extracted.

12.2.8 Laws filter masks for textural energy

Laws has suggested a set convolution masks for feature extraction [18].
There are five 1-D filter masks with the labels “level,” “edge,” “spot,”
“wave,” and “ripple” (Table 12.10). From them, 25 2-D filter masks can
be constructed, for example,

Fle = l5eT5 =


1
4
6
4
1

 [−1,−2,0,2,1] =


−1 −2 0 2 1
−4 −8 0 8 4
−6 −12 0 12 6
−4 −8 0 8 4
−1 −2 0 2 1

 (12.29)

The 14 Laws features are calculated from

FLaw
xy = gxy + gyx

gll
(12.30)

where

gxy =
∑
m

∑
n
|(x5yT5 )∗G|, with x5,y5 ∈ {l5,e5, s5,w5,r5} (12.31)

Ten features are calculated from nondiagonal elements (x 6= y), while
another four stem from diagonal elements, and the fifth diagonal ele-
ment gll is used for normalization.
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Table 12.10: Definitions of 1-D Laws matrices

Laws matrices

l5 =


1
4
6
4
1

 e5 =


−1
−2

0
2
1

 s5 =


−1

0
2
0
−1

 w5 =


−1

2
0
−2

1

 r5 =


1
−4

6
−4

1



12.2.9 Fourier features

In [16], energy values calculated from different regions in the power
spectrum of the images Fourier transform are taken as textural fea-
tures. A total of thirty-three Fourier coefficients are extracted for the
description of textures.

The discrete Fourier transform Ĝ of a two-dimensional real image
G is defined as

Ĝu,v = 1
MN

M−1∑
m=0

N−1∑
n=0

Gm,n exp
(
−2π imu

M

)
exp

(
−2π inv

N

)
(12.32)

The resulting power spectrum |Ĝ| is symmetrical (Section 3.3.3), there-
fore only the area {[u,v]|u ∈ {−M/2+ 1, . . . ,M/2} ∧ v ∈ {0, . . . ,N/2}
will be the basis of the calculations below.

If the image is quadratic, that is, M = N , radial features can be
defined as

cr1,r2 =
∑∑

r2
1≤u2+v2≤r2

2

|Ĝu,v |2 (12.33)

The seven radial features FFou
ra0 . . .F

Fou
ra6 are calculated from

FFou
rai = cri,ri+1 , i ∈ 0, . . .6, ri = i7

N
2

(12.34)

An eighth radial feature FFou
ra7 is defined as the sum over the coefficients

in the “corners” of the Fourier domain, not included within the largest
circle. Summing over the coefficients in the respective circle segments
leads to energy values aθ1,θ2

aθ1,θ2 =
∑∑

θ1≤tan−1 v
u≤θ2

|Ĝu,v |2 (12.35)

They are the basis of the 10 directional features FFou
di0 . . .F

Fou
di9 defined by

FFou
dii = aθi,θi+1

, θi = iπ10
(i = 0, . . .9) (12.36)
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Finally, 10 horizontal and 5 vertical features are defined as

FFou
hoi =

(i−1) 1
10M+(−M2 +1)∑

u=i 1
10M+(−M2 +1)

N
2∑
v=0

|Ĝu,v |2, i ∈ {0, . . . ,9} (12.37)

and

FFou
vei =

M
2∑

u=−M2 +1

(i+1) 1
5
N
2∑

v=i 1
5
N
2

|Ĝu,v |2, i ∈ {0, . . . ,4} (12.38)

12.2.10 A modified gray-level co-occurrence approach

Sun and Wee [19] define five features from a modified Haralick ap-
proach. They calculated statistics in an 8-neighborhood and are there-
fore less dependent on image rotations.

The matrix PN(g, s,a,d) lists the number of pixels s in a neighbor-
hood N of an image point Gm,n, for which the gray-level difference
|Gm,n − Gm′,n′ | is lower or equal to a given threshold d. The neigh-
borhood is defined by a distance threshold ρ

PSunN,a,d(g, s) = card{(m,n)|Gm,n = g∧
∧ card[(m′,n′)|ρ((m,n), (m′,n′)) ≤ a
∧|Gm,n −Gm′,n′ | ≤ d] = s}

(12.39)

In our implementation, the parameter values a = 0 and d = 1 are used.
From the matrix PSunN,a,d(g, s), five features are defined, which are shown
in Table 12.11.

12.2.11 Texture analysis from pyramid decomposition

Pikaz and Averbuch [20] calculate textural features from a sequence
of graphs {Ns(t)}, where Ns(t) denotes the number of 4-connected
structures of at least size s, and t denotes a threshold used to binarize
the image. They suggest an optimized implementation that computes
the sequence of graphs in almost linear time complexity in terms of
number of pixels in the image.

In this paper, we follow the suggestion of the Pikaz and Averbuch
to use {N2(t)} to characterize a texture. As thresholds t(i) we choose

t(i) = i G − 1
Nt − 1

, i ∈ {0,1, . . . ,Nt − 2} (12.40)

with G as the number of gray levels, and Nt the number of thresholds
to be determined. In our implementation, Nt is defined as 32, which
leads to a total of 31 features.
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Table 12.11: Features from the modified Haralick approach by Sun and Wee

Abbreviations

N =
G∑
g=1

8∑
s=0
P Sun
N,1,d(g, s)

Feature Definition

Small number emphasis FSun
SNE = 1

N

G∑
g=1

8∑
s=0

PSun
N,1,d(g,s)
s2

Large number emphasis FSun
LNE = 1

N

G∑
g=1

8∑
s=0
s2 · P Sun

N,1,d(g, s)

Number distribution FSun
NDi = 1

N

8∑
s=0

(
G∑
g=1
P Sun
N,1,d(g, s)

)2

Angular second moment FSun
ASM = 1

N2

G∑
g=1

8∑
s=0
P Sun
N,1,d(g, s)2

Entropy FSun
Ent = −1

ld( 1
8·G )

G∑
g=1

8∑
s=0
P Sun
N,1,d(g, s) · ld(

PSun
N,1,d(g,s)
N )

12.2.12 Gabor wavelets

Fogel and Sagi [21] and many others suggest the use of so-called Gabor
wavelets or Gabor filters for feature extraction. Gabor wavelets are de-
fined in Section 4.2.2. They can be used to extract a certain wavelength
and orientation from an image with a specified bandwidth. Because the
Gabor filter is a quadrature filter (Section 4.2), the “energy” of the signal
in the filter band can be determined by computing the square magni-
tude of the complex filter response. Here values for the wavelength λ
and the orientation θ are λ ∈ {2,4,8} and θ ∈ {0°,45°,90°,135°}, which
leads to a total of 12 features.

12.2.13 Markov random field approach

In Kashyap et al. [22], a Markov random field approach is chosen to
extract seven different textural features. Markov random fields model
a texture by expressing all gray values of an image as a function of the
gray values in a neighborhood η of each pixel. Each pixel Gm′,n′ in this
neighborhood is characterized by its distance d = (d1, d2) from the
central pixel Gm,n:

Gm′,n′ = Gm+d1,n+d2 (12.41)

For each image, one set of global model parameters {θd} is deter-
mined, which is characteristic of a special type of texture. This global
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set of parameters model the neighborhoods of all pixels in an image.
As the fit will not be perfect, there is a remaining error ε

Gm,n =
∑

allGm′ ,n′∈η
θdGm′,n′ + εm,n (12.42)

Figure 2.5b in Chapter 2 shows the neighboring pixels of a central pixel
x. They are ordered with respect to their distance. In our current im-
plementations, all neighbors 1, 2 and 3 are included in the model. How-
ever, one single model parameter represents a pair of point-symmetric
neighbors at a time, which are averaged. In our case, 12 neighboring
pixels help to fit six model parameters. The seventh parameter is the
standard deviation that describes the error in the least squares fit. The
fit is performed with a routine from Press [9].

12.2.14 Co-occurrence with average neighborhood

Dapeng and Zhongrong [23] construct a modified co-occurrence matrix
PDap(g,d). It represents the co-occurrence between gray levels g in
the central pixel and a gray-level difference d. The gray-level difference
d is the difference between the central gray level g and the average gray
level of the eight neighboring pixels.

From this modified co-occurrence matrix, Dapeng extracts the 13
features shown in Table 12.12.

12.2.15 Co-occurrence histogram

Amadasun and King [24] use an approach similar to that of Dapeng, but
do not construct a 2-D co-occurrence matrix. Instead, they average the
differences for each gray-level value of the central pixel and construct
features from this histogram distribution

PAmaT (i) =
∑
m

∑
n

Gm,n=i

|Gm,n −Am,n| (12.43)

where Am,n is the average of the gray levels of the eight neighboring
pixels of pixel (m,n). From the histogram PAmaT (i) and the conven-
tional gray-tone histogram PAmaH (i), Amadasun calculates the textural
features presented in Table 12.13.

12.2.16 Autoregressive models

Mao and Jain [25] use multiresolution simultaneous autoregressive mod-
els for texture classification. The basic idea of a simultaneous autore-
gressive (SAR) model is to express a gray level of a pixel as a function of
the gray levels in its neighborhood. The related model parameters for
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Table 12.12: Features from the Dapeng approach

Abbreviations

N =
G∑
g=1

Dif∑
d=1
PDap(g,d)

Feature Definition

Gray-level average FDap
GLA = 1

N

G∑
g=1
g ·

Dif∑
d=1
PDap(g,d)

Gray-level variance FDap
GLV =

√√√√ 1
N

G∑
g=1
(g − FDap

GLA)2 ·
Dif∑
d=1
PDap(g,d)

Difference average FDap
DAv = 1

N

Dif∑
d=1
d ·

G∑
g=1
PDap(g,d)

Difference variance FDap
DVa =

√√√√ 1
N

Dif∑
d=1
(d− FDap

DAv)2 ·
G∑
g=1
PDap(g,d)

Small difference emphasis FDap
SDE = 1

N

G∑
g=1

Dif∑
d=1

PDap(g,d)
d2

Large difference emphasis FDap
LDE = 1

N

G∑
g=1

Dif∑
d=1
d2 · PDap(g,d)

Gray-level distribution FDap
GLD = 1

N

G∑
g=1

(
Dif∑
d=1
PDap(g,d)

)2

Difference distribution FDap
DiD = 1

N

Dif∑
d=1

(
G∑
g=1
PDap(g,d)

)2

Angular second moment FDap
ASM = 1

N2

G∑
g=1

Dif∑
d=1
PDap(g,d)2

Entropy FDap
Ent = −1

ld( 1
GDif )

G∑
g=1

Dif∑
d=1
PDap(g,d) ld( P

Dap(g,d)
N )

Contrast FDap
Con = 1

N

G∑
g=1

Dif∑
d=1
(g −d)2PDap(g,d)

Inverse difference moment FDap
IDM = 1

N

G∑
g=1

Dif∑
d=1

1
1+(g−d)2 P

Dap(g,d)

Covariance FDap
Cov = 1

N
1

FDap
GLVF

Dap
DVa

G∑
g=1

Dif∑
d=1
(g − FDap

GLA)(d −

FDap
DAv)PDap(g,d)

one image are calculated using a least squares technique and are used
as textural features. This approach is similar to the Markov random
fields described in Section 12.2.13.

However, a special neighborhood is used for rotation-invariant SAR
models. In a rotation-invariant SAR model (RISAR), each central pixel
value is a function of Nc average gray levels of Nc concentric circles.
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Table 12.13: Features from the Amadasun approach.

Abbreviations

Npix: number of pixels in image window

Nl: number of gray-level values actually occurring in image window

with PH(i) 6= 0, PH(j) 6= 0.

Feature Definition

Coarseness FAma
Coa =

(
Nl−1∑
l=0
PAma
T (l)PAma

H (l)
)−1

Contrast FAma
Con =

Nl−1∑
l=0

Nl−1∑
l′=0

(l−l′)2·PAma
H (l)·PAma

H (l′)

Nl·(Nl−1)

Nl−1∑
l=0

PAma
T (l)

Npix

Busyness FAma
Bus =

Nl−1∑
l=0

PAma
T (g)PAma

H (g)

Nl−1∑
l=0

Nl−1∑
l′=0

|PAma
T (l)PAma

H (l)−PAma
T (l′)PAma

H (l′)|

Complexity FAma
Com =

Nl−1∑
l=0

Nl−1∑
l′=0

|l−l′|(PAma
T (l)PAma

H (l)+PAma
T (l′)PAma

H (l′))
N2
pix(P

Ama
H (l)+PAma

H (l′))

Texture strength FAma
Str =

Nl−1∑
l=0

Nl−1∑
l′=0

(l−l′)2·(PAma
H (l)+PAma

H (l′))

Nl−1∑
l=0

PAma
T (l)

Figure 12.3: Neighborhoods in a RISAR approach: The central pixel is modeled
as a function of average gray levels on concentric circles.

In case the pixels are not exactly located on the circle, the gray values
are determined by a bilinear interpolation from the corresponding four
neighboring values (see Fig. 12.3). It is sensible to calculate and store
the weights only once with which each grid pixel contributes to the
average gray value of a circle.

A model for all gray values Gm,n in an image is established using

Gm,n = µ +
Nc∑
i=1

θix
m,n
i + εm,n (12.44)
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Table 12.14: Features from the Amelung approach

Abbreviations

Number of pixels in image window: Npix =
∑G
g=1 PH(g)

Feature Definition

Average FAme
Ave = 1

Npix

Gw∑
g=1
PH(g) · g

Variance FAme
Var = 1

Npix

Gw∑
g=1
PH(g) · (g − FAme

Ave )2

3rd moment FAme
3Mo = 1

Npix

Gw∑
g=1
PH(g) · (g − FAme

Ave )3

4th moment FAme
4Mo = 1

Npix

Gw∑
g=1
PH(g) · (g − FAme

Ave )4

Angular second moment FAme
ASM = 1

N2
pix

Gw∑
g=1
PH(g)2

Entropy FAme
End = −1

log( 1
G )

Gw∑
g=1
PH(g) · log( PH(g)Npix

)

to determine the parameters θ1, . . . , θNc , µ,σ from the image, with σ
being the standard deviation of ε and Nc being the number of circles
used per pixel. In our implementation, we have used four circles, which
leads to a total of six features.

A multiresolution SAR model calculates a sequence of image res-
olutions, for example, by means of a Gaussian pyramid , and deter-
mines model parameters for each image resolution. The collection of
all model parameters is used as a feature vector.

12.2.17 Statistical features

Amelung [26] has constructed a system called AST to evaluate a num-
ber of different statistical features from seven feature sets. The rest
of his features are already part of the foregoing discussion, therefore
only features extracted from gray level and gradient histograms are
combined in the features set discussed here.

Amelung’s features are shown in Table 12.14. For the histogram
PH(g) i the formulas of Table 12.14, three different histograms (gray
level histogram, histogram of absolute value and of direction of gradi-
ent) are used. A Sobel filter generates the gradient image.
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Figure 12.4: Typical setup of a texture classification experiment—features are
extracted from image windows and put into a classifier.

12.3 Assessment of textural features

12.3.1 Setup and criteria

Assessment of textural features compares different types of feature
sets on the basis of their performance in practical texture recognition
tasks. The need for basic ideas on performance characterization of
algorithms is discussed in Volume 3, Chapter 7.

The basis of our experiments is a typical classification setup as
shown in Fig. 12.4. Textural features are extracted from an image win-
dow and forwarded to a classifier, which distinguishes between differ-
ent texture types in a sample set. Each image window in the sample
set contains only one texture type; therefore only one set of features
is calculated for each image window3. Criteria for the assessment of
texture features were the recognition rate on a verification sample set
and the computation time of each feature set. We mention only that
there are further criteria for assessment such as suitability for hard-
ware implementation of a feature set, etc. All data samples are divided
into a training sample set for the teach-in process of the classifier and a
verification sample on which the recognition rate given in the following
is calculated. For each textural feature and each data set, the feature
values are normalized to zero average and a standard deviation of 1.
This guarantees that features with extreme values do not dominate the
classification result. A 1-nearest-neighborhood-algorithm with a L2 dis-
tance measure is used for classification.

3In many practical applications, it is necessary to distinguish between different types
of texture in one image. In that case, texture analysis is not primarily a means for tex-
ture classification, but for segmentation. In order to achieve sufficiently high segmen-
tation accuracy for segmentation problems, one will have to extract textural features
from overlapping instead of nonoverlapping image windows. As a consequence, pro-
cessing time will be considerably larger. Additionally, there is a trade-off between the
need of large windows sizes necessary for the computation of some textural features,
on the one hand, and a demand for small windows in order to avoid a loss in spatial
resolution during the segmentation process, on the other hand.
Nevertheless, texture segmentation problems are a very difficult basis for a benchmark,
because the exact location of the border lines between different types of texture within
one image is usually ambiguous.
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Table 12.15: Data sets for benchmarking

Data sets
Brodatz Tumor Tilda Print Slab Vistex Hon

Abbreviation BRO 64 TUM 64 TIL 64 PRI 64 SLA 64 VIS 64 HON 64

Classes 13 2 6 26 11 15 6

Patterns per class

Training 64 72 1600 16 12 32 24

Testing 64 72 1600 8 12 32 24

Verification 128 71 1600 16 12 64 24

Window size 64×64 368×280 64×64 64×64 64×64 64×64 64×64

Bits per pixel 8 8 8 8 8 8 8

The calculation time is defined as time for calculating the floating
point vector of textural features from a 64×64 pixel image window.
The actual implementation was done on a Pentium 200 MHz PC with-
out MMX under Linux, Kernel Version 2.0.22 using the GNU g++ com-
piler, version 2.7.2.1. The calculation time was measured by averaging
over a data set with Brodatz images containing 65 image windows. A
comparison with other platforms can be performed on the basis of CPU
benchmarks. A simple linpack benchmark that can be performed per
internet using a java applet [27] has given a performance of 11.4 MFlops
for our computer.

12.3.2 Data sets for benchmarking

An overview of the underlying data sets is given in Table 12.15. The
number of classes in each data set is given as well as the patterns avail-
able per class. Note that all the data set have been divided into three
subsets each for training, testing, and verification. All the recognition
results given below were determined on the verification samples.

In order to allow the reader to benchmark his own textural feature
sets with the features given in this paper, we have included most of the
data sets in /images/12 on the CD-ROM. A general description of the
data sets is given in /images/12/readme.txt.

The testing sets are not used for any experiments in this paper, but
are included to serve as intermediate performance check when auto-
matically determining optimal feature subsets. While this will be one
focus of our future work, we have decided immediately to keep one
division of our data sets fixed. This will allow us to directly compare
the performance of the feature sets from the literature given in this pa-
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

Figure 12.5: Sample images from the different benchmark sets: BRO (a1-a4):
Brodatz set with natural textures; TUM (b1-b4): cell images with and without
tumors; TIL (c1-c4): fabrics from the TILDA database; PRI (d1-d4): prints of
artificial textures.

per with the performance of automatically generated feature subsets
in future experiments.

Sample images from each data sets are shown in Figs. 12.5 and 12.6.
References for obtaining the images are given with the descriptions be-
low. Because the preparation of the data is critical for the actual recog-
nition results, we can provide detailed information on this aspect on
request. In a first step, the original images are cut into nonoverlapping
64×64 pixel image windows. In a second step, the subimages are sep-
arated into a training, a testing, and a verification sample. The actual
composition of the three samples is documented in descriptor files,
which list the subimage file names belonging to the different classes
and samples. The data sets cover different aspects from scientific and
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e1 e2 e3 e4

f1 f2 f3 f4

g1 g2 g3 g4

Figure 12.6: Sample images from the different benchmark sets (II): SLA (e1-
e4): slabs of different type; VIS (f1-f4): natural images from the Vistex database;
HON (g1-g4): metal surfaces.

applied texture analysis. Some of them are established as benchmark
samples, others are quite new, but are both large and relevant.

The Brodatz sample (/images/12/bro) is a widespread benchmark sample
for the comparison of textural features. It consists of a collection of natural
textures. Our experiments are based on the electronic version from Weber [6],
which consists of 13 different classes.

In the tumor data sample (/images/12/tum), cell images from human spu-
tum are used for visual cancer diagnosis.This data set is the only one where
the textural features are calculated on the complete image without extracting
subimages. The reason for this is that each image contains regions of both
diseased and healthy cells, and the exact assignment is not known. For those
feature extraction methods which require quadratic input, the tumor images
have been stretched to a quadratic size of 256×256 pixel by means of bilin-
ear interpolation. Because the number of samples for the two classes was not
equal in this data set, the number of patterns per class given in Table 12.15 is
the minimum number for both classes.
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Figure 12.7: Recognition rates as a function of data set size for different data
sets. The error bars resemble the standard deviation calculated with randomly
chosen data sets.

Images of different fabrics are collected in the TILDA sample (see Schulz-
Mirbach [28]) and /images/12/til). The data have been collected within the
German research program “Automatische Sichtprüfung” (automatic visual in-
spection) of the “Deutsche Forschungsgemeinschaft” (DFG).

The print sample (/images/12/pri) consists of a collection of 26 different
textures from paper prints with imitations of natural wooden surfaces. Such
papers are used for coating chipboards, for example, for use in kitchens.

The slab sample (/images/12/sla) gives a collection of 11 different sur-
face types of slabs.

The Vistex benchmark sample ((/images/12/vis), see also [7]) contains a
collection of 15 different types of natural textures.

The Hon sample (/images/12/hon) contains images of metal surfaces. It
also stems from the research program “Automatische Sichtprüfung” and is
described in [29].

12.3.3 Experiments and results

We first wanted to determine the sensitivity of the recognition rates
with respect to the actual composition of the data set. For this reason,
we have calculated standard deviations of the recognition rates for dif-
ferent data set sizes n using the Galloway feature set. The size n is the
total number of image samples in the training set; the verification set
is of the same size.

The results are shown in Fig. 12.7. The error bars given resemble the
standard deviation σ , which was calculated on the basis of recognition
results from 120 randomly chosen data subset selections. As expected,
the recognition rates increase with growing training set sizes, while the
standard deviation decreases. For reliable results, a sample set size of
at least a few hundred images is a prerequisite. Table 12.16 gives the
details of the benchmarking experiments with the different textural fea-
ture sets on the seven data sets. The table lists the recognition results
and the feature extraction time on a 64×64 pixel image windows.
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Table 12.16: Benchmark results: Recognition rates and feature extraction
time. The maximum recognition rate in each column is printed in boldface

Feature Sets Time Recognition Rates

vs Data sets in s Brodatz Tumor Tilda Print Slabs Vistex Hon

Haralick 0.536 82.9 71.3 98.9 83.4 81.8 79.5 47.2

Unser 0.050 92.6 71.3 99.9 91.6 87.1 81.4 56.9

Galloway 0.020 84.7 65.5 99.1 83.7 83.3 70.4 57.6

Laine 0.045 92.4 78.4 97.9 82.9 79.5 75.6 50.7

Local features 0.011 61.1 68.4 94.6 63.5 51.5 47.1 22.2

Fractal (1) 0.041 62.6 70.8 97.8 54.8 64.4 54.5 37.5

Fractal (2) 0.435 66.5 66.1 96.8 64.4 67.4 48.5 29.2

Laws 0.423 89.7 67.3 99.6 89.9 84.1 79.8 44.4

Fourier coeff. 0.024 92.7 78.4 98.9 86.8 83.3 80.1 49.3

Chen 1.507 93.1 83.0 99.7 84.4 80.3 84.5 45.1

Sun & Wee 0.061 63.9 57.9 92.3 74.3 71.2 58.4 40.3

Pikaz & Averbuch 0.028 79.4 81.3 98.6 84.4 78.0 74.4 45.1

Gabor 0.679 92.2 76.6 99.9 86.8 84.1 75.4 54.2

Markov 0.087 83.1 77.8 88.8 78.6 62.9 69.6 54.2

Dapeng 0.021 85.8 73.1 94.8 72.6 73.5 74.6 32.6

Amadasun 0.036 83.4 69.0 98.9 79.6 79.5 65.6 52.8

Mao & Jain 0.051 86.3 67.3 94.6 83.4 68.9 73.0 52.1

Amelung 0.082 93.0 75.4 99.7 82.5 87.1 82.1 47.9

Though the exact extraction time may vary depending on the ac-
tual implementation, it is nevertheless remarkable that the computa-
tion times vary over more than two orders of magnitude. The differ-
ences between the recognition results of feature sets are not that dras-
tic, though sufficiently high enough to justify a closer look at different
feature sets when actually implementing practical applications.

Some feature sets such as the local features perform significantly
worse than average. This result could be expected, as the underlying
mathematics of those features is significantly less complex than the
rest. On the other hand, they are easy to compute and therefore are
potential candidates for applications with hard time restrictions. Ob-
viously the average recognition rates depend on the data set. The com-
monly used Brodatz set seems to be less challenging for classification
tasks than average textural data sets. It is necessary to condense the
data from the different experiments. Therefore, we have calculated a
performance rank for each data set. This rank was determined from
the relative performance of each feature set with respect to the others,
simply by ordering the feature sets with respect to their recognition
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Figure 12.8: Summary of texture benchmark results: Average performance
ranking of the recognition rates and feature extraction time for different feature
sets. In both cases, low numbers are the better results.
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Figure 12.9: Summary of texture benchmark results: The performance devia-
tion expresses the deviation of the recognition rate of one feature set from the
average rate of all feature sets in multiples of the standard deviation. Positive
deviations resemble an above average performance. Again, feature extraction
times are given for better comparison.

rate on the respective data set. The best feature set gets rank 1, the
second best rank 2, etc. To combine the results of all data sets, average
ranks over the different data sets are calculated for each feature set.

In Fig. 12.8, a condensed version of the results is presented. It shows
both the average performance rank and (on a logarithmic scale) the
feature extraction time. Though this is only a rough measure, it can
give a first clue for selecting an optimal feature set with respect to
both calculation efforts and recognition efficiency.

A different and more quantitative way to extract relevant informa-
tion from Table 12.16 is the following: From the recognition results
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of all feature sets for one data set, a mean value and a standard devi-
ation of the performance are calculated. From that, the difference of
each recognition result from the mean is expressed as a multiple of
the standard deviation for that data sample, which gives a quantitative
ranking of the performance of the different feature sets on one data
sample. We call this measure “performance deviation.” Summing the
performance deviation over all different data sets, one gets a character-
istic that is more quantitative than the forementioned ranking method.
The results are shown in Fig. 12.9.

It is obvious that the best results for a given data set will be obtained
by combining optimal features from all different data sets. While both
the methods for and the answers to this question lie beyond the scope
of this paper, we will briefly summarize the main aspects of this ap-
proach in the next section. Note that the application of the feature
selection technique to the area of object recognition has been demon-
strated in Volume 3, Chapter 13.

12.4 Automatic design of texture analysis systems

Further work will focus on the implications from benchmarking textural
features for the design of image processing systems. In order to lower
costs and efforts for the construction of image processing solutions,
it is, for a given problem or data set, desirable to have an automated
design process for the image processing solution.

In the best case, an automatic optimization selects optimal subsets
of textural features on the basis of a given data set. First experiments
on that topic compare the performance of different selection strategies
for textural features [30]. On state of the art computer hardware plat-
forms, such selection processes can be performed within hours and are
therefore already capable of supporting the design process for practical
solutions by suggesting suboptimal feature subsets.

In order to further extend the idea of an automatic image processing
system design, features themselves can be generated automatically, for
example, by means of genetic programming. Such experiments are still
in a more basic research stage. Unfortunately, huge amounts of com-
puting power are necessary to perform such experiments because the
evaluation of any newly created feature requires an evaluation on all
images of a data set as well as training and classification of this config-
uration. This takes at least several seconds. Further experiments will
extend the benchmarking approach in combination with automatic de-
sign considerations to other fields of application, such as object recog-
nition, especially for data sets with a large number of classes. For first
results on automatic feature selection for object recognition, the reader
is referred to Volume 3, Chapter 13.
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13.1 Introduction

Motion is a powerful feature of image sequences, revealing the dynam-
ics of scenes by relating spatial image features to temporal changes.
The task of motion analysis remains a challenging and fundamental
problem of computer vision. From sequences of 2-D images, the only
accessible motion parameter is the optical flow f , an approximation of
the 2-D motion field u, on the image sensor [1]. The motion field is
given as the projection of the 3-D motion of points in the scene onto
the image sensor. The estimated optical flow field can be used as input
for a variety of subsequent processing steps including motion detec-
tion, motion compensation, motion-based data compression, 3-D scene
reconstruction, autonomous navigation and the analysis of dynamical
processes in scientific applications.

The difficulties in motion estimation are manifold and originate in
the inherent differences between the optical flow and the real motion
field. As only the apparent motion in the sequence can be extracted,
further a priori assumptions on brightness changes, object properties,
and the relation between relative 3-D scene motion and the projec-
tion onto the 2-D image sensor are necessary for quantitative scene
analysis. Horn [2] gives an optimistic view of the possibility of 3-D
reconstruction from motion fields. He shows that the motion field
can almost always be unambiguously related to translational and ro-
tational velocities of rigid surfaces. However, the motion field itself is
often inaccessible. This can be nicely demonstrated by a simple exam-
ple illustrated in Fig. 13.1. Consider a rigid sphere with homogeneous
surface reflectance, spinning around an axis through the center of the
sphere. If the surface is not textured and the illumination stays con-
stant, the apparent optical flow field would equal zero over the entire
sphere. If a directional light source moves around the same sphere the
apparent illumination changes would be falsely attributed to motion
of the sphere surface. This rather academic problem shows that even
very simple experimental setups under perfect conditions can render
motion estimation impossible. This and other examples are given by
Horn [3]. Problems frequently encountered in real-world sequences in-
clude transparent overlay of multiple motions, occlusions, illumination
changes, nonrigid motion, stop-and-shoot motion, low signal-to-noise
(SNR) levels, aperture problem and correspondence problem—to men-
tion only some of them. For this reason, Verri and Poggio [4] conclude
that the true motion field is hardly ever accessible and suggest that
only qualitative properties of the motion field should be computed [5].

These problems, however, are not always present and are usually
not spread over the entire image area. Thus, there exist many appli-
cations where motion analysis becomes feasible. At the same time,
they pose a constraint on optical flow computation that is often disre-
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Figure 13.1: Physical vs visual correspondence: a a spinning sphere with fixed
illumination leads to zero optical flow; b a moving illumination source causes
an apparent optical flow field without motion of the sphere.

garded: errors have to be detected and quantified! This is especially
important for quantitative scientific measurement tasks. In contrast to
the more qualitative requirements of standard computer vision appli-
cations, such as motion detection or collision avoidance, quantitative
measurements of dynamic processes require precise and dense optical
flow fields in order to reduce the propagation of errors into subse-
quent processing steps. In addition to the optical flow field, measures
of confidence have to be provided to discard erroneous data points and
quantify measurement precision.

Despite all of the problems, the importance of motion estimation
has continuously challenged investigations. There has been a recent
revival of interest in low-level motion estimation in the literature [6,
7, 8, 9]. An excellent overview of optical flow techniques by Barron
et al. [6] revisits existing techniques. Motion analysis seems to gain
increasing interest with a trend towards a quantitative performance
analysis of optical flow techniques. This trend might be accredited
to the rapidly increasing performance of computer hardware in both
speed and memory. More and more complicated and computationally
costly techniques have become applicable that were beyond the range
of feasibility only 10 yr ago. Rather than being restricted to only two
consecutive images, an extension of computer vision into the temporal
domain has led to new techniques with increasing performance.

Quantitative motion estimation requires the entirety of quantitative
visualization, geometric and radiometric calibration, and a quantitative
error analysis of the entire chain of computer vision algorithms. The
final results are only as precise as the least precise part of the sys-
tem. Quantitative visualization of object properties is up to the special
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requirements of applications. An overview of illumination and visu-
alization techniques is given in Volume 1 of this handbook. Without
doubt, camera calibration is an important step towards quantitative im-
age analysis and has been extensively investigated by the photogram-
metric society. Volume 1, Chapter 17 gives a summary of existing tech-
niques for radiometric and geometric calibration.

This chapter will focus on the algorithmic aspects of low-level mo-
tion estimation in terms of performance and error sensitivity of indi-
vidual parts, given a calibrated image, eventually corrupted by sensor
noise. We will start with a discussion on the principal differences be-
tween optical flow-based techniques and correlation approaches and
outline the appearance of motion in image sequences (Section 13.2).
In Section 13.3 optical flow-based techniques will be detailed includ-
ing differential and tensor based techniques. Sections 13.4 and 13.5
deal with quadrature filter-based and correlation-based techniques, re-
spectively. In Section 13.6 we try to introduce different attempts to
improve accuracy and overcome intrinsic problems of motion estima-
tion by an appropriate model of the underlying motion field. As already
mentioned, the detection and quantification of problems and errors is
a crucial factor for motion analysis. Section 13.7 will give a unified per-
spective of existing quality measures. We will conclude in Section 13.8
with a comparative analysis of the different techniques applied to a
variety of test sequences, both common examples as well as specially
developed sequences with and without ground truth information.

13.2 Basics: flow and correspondence

13.2.1 Optical flow

Moving patterns cause temporal variations of the image brightness.
The relationship between brightness changes and the optical flow field
f constitutes the basis for a variety of approaches, such as differen-
tial, spatiotemporal energy-based, tensor-based, and phase-based tech-
niques. Analyzing the relationship between the temporal variations
of image intensity or the spatiotemporal frequency distribution in the
Fourier domain serves as an attempt to estimate the optical flow field.
This section introduces the fundamental relation between motion and
brightness variations and its representation in image sequences and
Fourier domain. All optical flow-based, as well as quadrature filter-
based techniques rely inherently on the coherence of motion. There-
fore, a basic prerequisite relating the scale of patterns to the frame
rate of image acquisition is given by the temporal sampling theorem,
detailed at the end of this section.
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Brightness change constraint. A common assumption on optical
flow is that the image brightness g(x, t) at a point x = [x,y]T at time t
should only change because of motion. Thus, the total time derivative,

dg
dt
= ∂g
∂x

dx
dt
+ ∂g
∂y

dy
dt
+ ∂g
∂t

(13.1)

needs to equal zero. With the definitions f1 = dx/dt and f2 = dy/dt,
this directly yields the well-known motion constraint equation or bright-
ness change constraint equation, BCCE [10]:

(∇g)Tf + gt = 0 (13.2)

where f = [f1, f2
]T is the optical flow, ∇g defines the spatial gradient,

and gt denotes the partial time derivative ∂g/∂t.
This relation poses a single local constraint on the optical flow at a

certain point in the image. It is, however, ill-posed as Eq. (13.2) consti-
tutes only one equation of two unknowns. This problem is commonly
referred to as the aperture problem of motion estimation, illustrated in
Fig. 13.2a. All vectors along the constraint line defined by Eq. (13.2) are
likely to be the real optical flow f . Without further assumptions only
the flow f⊥,

f⊥(x, t) = −
gt(x, t)
‖∇g(x, t)‖ n, n = ∇g(x, t)

‖∇g(x, t)‖ (13.3)

perpendicular to the constraint line can be estimated. This vector is
referred to as normal flow as it points normal to lines of constant image
brightness, parallel to the spatial gradient.

Although Eq. (13.2) is formulated for a single point in the image,
any discrete realization of the spatial and temporal derivatives requires
some neighborhood of the image point to be considered. From this fact,
the question arises, should the search for f be extended to a neighbor-
hood of finite size instead of focusing on a single point? If the spatial
gradient changes within this region, additional constraints can be used
to find the 2-D optical flow f . This is the common representation of the
aperture problem as illustrated in Fig. 13.2b and c. If the spatial struc-
ture within an aperture of finite size shows directional variations, the
optical flow f can be estimated unambiguously (Fig. 13.2b). In this case
the constraint lines of several points within the neighborhood have a
joint intersection. If, on the other hand, all gradient vectors within the
aperture are pointing into the same direction, all constraint lines fall
together and the aperture problem persists (Fig. 13.2c). A variety of
approaches have been proposed that directly use Eq. (13.2) by trying to
minimize an objective function pooling constraints over a small finite
area. They can be subdivided into differential techniques, using both
local and global constraints and tensor-based techniques (Section 13.3).
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Figure 13.2: Illustration of the aperture problem: a constraint line defined by
Eq. (13.2). The normal optical flow vector f⊥ is pointing perpendicular to the
line and parallel to the local gradient ∇g(x, t); b no aperture problem for local
neighborhoods with spatially distributed structures (moving corner); c within a
local neighborhood all gradients are parallel (moving edge). The optical flow
cannot be determined unambiguously.

In order to overcome the aperture problem, the size of the region of
interest has to be enlarged, as with the growing size of the local neigh-
borhood the chances for distributed spatial structure increase. At the
same time it becomes more likely that the region extends over motion
boundaries. These two competing obstacles of optical flow computa-
tion are referred to as the generalized aperture problem [11]. Recent
approaches to overcome this problem use robust statistics to avoid av-
eraging independent optical flow fields [12] (Section 13.6.2).

Optical flow in spatiotemporal images. In the previous section we
derived the brightness change constraint equation Eq. (13.2), relating
temporal and spatial derivatives of the image brightness to the optical
flow. Another basic relation can be found if we do not restrict the
analysis to two consecutive images but rather assume the brightness
pattern g(x, t) to be extended in both space and time, forming a 3-D
spatiotemporal image.

The displacement of brightness patterns within consecutive images
of a sequence yields inclined structures with respect to the temporal
axis of spatiotemporal images. Figure 13.3 shows examples of spa-
tiotemporal images for synthetic test patterns moving with constant
velocity.

Let r = [r1, r2, r3]T = a
[
δx,δy,δt

]T be the vector pointing into the
direction of constant brightness within the 3-D xt-domain. With δx
and δy we denote infinitesimal shifts of the brightness pattern within
the infinitesimal time step δt . The (arbitrary) scaling factor a will be
set to 1 in the remainder of this chapter, as only the fractions, r1/r3

and r2/r3 are relating r to the optical flow f . The relation between the
orientation angles, the spatiotemporal vector r, and the optical flow
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a b

Figure 13.3: Illustration of the spatiotemporal brightness distribution of moving
patterns: a moving sinusoidal plaid pattern (no aperture problem); b moving
planar wave pattern (aperture problem). The upper right portions of the 3-Dxt-
cubes have been cut off, revealing the internal structure of the spatiotemporal
images.

can be derived from Fig. 13.3a to be

f =
[
r1

r3
, r2

r3

]T
= − [tanφx, tanφy

]T (13.4)

where φx and φy denote the angles between the t-axis and the projec-
tion of the vector r onto the xt- and yt-plane, respectively. Thus, op-
tical flow computation reduces to an orientation analysis in spatiotem-
poral images, that is, an estimate of the 3-D vector r.

The direction r of constant brightness at a certain point within a
spatiotemporal image is pointing perpendicular to the spatiotemporal
gradient vector ∇xtg =

[
gx,gy,gt

]T . Using the relation Eq. (13.4), the
brightness change constraint Eq. (13.2) can be formulated as:

[
gx,gy,gt

] f1

f2

1

 = r−1
3 (∇xtg)Tr = 0 (13.5)

As soon as an aperture persists within a local spatial neighborhood
the direction r of smallest brightness changes is no longer unambigu-
ous and the local spatiotemporal neighborhood consists of layered
structures instead of lines. This can be observed in Fig. 13.3b, which
shows the spatiotemporal structure of a moving planar wave pattern.
Without further constraints only the normal flow f⊥ can be computed.
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It is important to note that Eqs. (13.2) and (13.5) are mathematically
equivalent and no constraint is added by extending the formulation of
the brightness conservation into 3-D space.

Motion constraint in Fourier domain. The concept of image sequences
as spatiotemporal images allows one to analyze motion in the corre-
sponding spatiotemporal frequency domain (Fourier domain).

Let g(x, t) be an image sequence of any pattern moving with con-
stant velocity, causing the optical flow f at any point in the image plane.
The resulting spatiotemporal structure can be described by

g(x, t) = g(x − f t) (13.6)

The spatiotemporal Fourier transform ĝ(k,ω) of Eq. (13.6) is given by
[13]

ĝ(k,ω) = ĝ(k)δ(kTf −ω) (13.7)

where ĝ(k) is the spatial Fourier transform of the pattern, and δ(·)
denotes Dirac’s delta distribution. Equation (13.7) states that the 3-D
Fourier spectrum of a pattern moving with constant velocity condenses
to a plane in Fourier space. The 2-D Fourier spectrum of the pattern is
being projected parallel to the temporal frequency ω onto the plane.
Figure 13.4a shows the spatiotemporal image of a 1-D random pattern
moving with 1 pixel/frame into positivex-direction. The corresponding
Fourier (power) spectrum is shown in Fig. 13.4b.

The equation of the plane in Fourier domain is given by the argument
of the delta distribution in Eq. (13.7):

ω(k,f ) = kTf (13.8)

The normal vector of the plane is pointing parallel to the 3-D vec-
tor

[
f1, f2,1

]T . The plane constraint relation Eq. (13.8) is an equiv-
alent formulation of the brightness change constraint equation, BCCE
Eq. (13.2). It is the basis for all spatiotemporal energy-based techniques
(Section 13.4) that attempt to fit a plane to the Fourier spectrum of an
image sequence. From the inclination of the plane the optical flow can
be estimated. Taking the derivatives of ω(k,f ) Eq. (13.8) with respect
to kx and ky yields both components of the optical flow:

∇kω(k,f ) = f (13.9)

The Fourier transform does not necessarily have to be applied to
the whole image. For local estimates, multiplication with an appropri-
ate window function prior to transformation restricts the spectrum to
a local neighborhood (Fig. 13.4c). It is, however, not possible to per-
form a Fourier transformation for a single pixel. The smaller the win-
dow, the more blurred the spectrum becomes [14] (compare Fig. 13.4b
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Figure 13.4: Translating 1-D random pattern moving at 1 pixel/frame: a 2-
D xt-image (256×256); b power spectrum of the xt-image, with kx and ω
ranging from −π to π . The star-shaped patterns are due to the finite size of
the image; c windowed 2-D xt-image; d power spectrum of the windowed xt-
image.

with Fig. 13.4d). With the spatiotemporal window functionw(x, t), the
resulting Fourier spectrum is blurred by the Fourier transform of w,
according to

Æg ·w(k,ω) = ŵ(k,ω)∗ [ĝ(k)δ(kf −ω)] (13.10)

where ŵ(k,ω) denotes the Fourier transform of the window function
w(x, t), and ∗ defines the convolution

a(k,ω)∗ b(k,ω) =
∞∫
−∞
a(k− k′,ω−ω′)b(k′,ω′)dk′dω′ (13.11)

Without additional windowing, w(x, t) is given by the size of the im-
age and the number of frames, that is, a box function with the size of
the spatiotemporal image. Its Fourier transform corresponds to a 2-
D sinc function, which can be observed in the star-shaped patterns of
Fig. 13.4b.

Hence, the Fourier domain formulation Eq. (13.8) intrinsically ex-
tends the motion constraint to a local neighborhood of a pixel. In case
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l

Figure 13.5: Illustration of the temporal sampling theorem for a sinusoidal
pattern of wavelength λ. Without restrictions on the magnitude of the displace-
ment between two consecutive frames, both displacements indicated by arrows
and all multiples of λ are equally likely to be the real displacement.

of an aperture problem, the moving pattern shows spatial orientation
within the local neighborhood. This causes the 3-D Fourier spectrum to
reduce to a line instead of a plane. From the line, only one inclination
angle can be extracted, corresponding to the normal optical flow.

Temporal sampling theorem. In all cases in which spatial and tempo-
ral derivatives are directly related, it is inherently assumed that the shift
between two consecutive frames is small compared to the scale of the
pattern. In other words: the time derivative has to be unambiguously
related to the moving brightness pattern within a small spatiotemporal
neighborhood. This corresponds to the fact that derivatives are always
realized by finite differences in image sequence processing although
they are defined as infinitesimal quantities. For overly large displace-
ments, no coherent structures can be detected in the spatiotemporal
image. How fast are patterns of a certain size allowed to move? The
answer is given by the temporal sampling theorem.

Consider a moving sinusoidal pattern of wavelength λ (Fig. 13.5). If
no restrictions on the magnitude of shifts within consecutive frames
apply, the real shift cannot be unambiguously determined. It is further
undetermined up to multiples of the wavelength λ. The displacement
stays unambiguous if it can be restricted to less than half the wave-
length λ. In this case the correct optical flow can be estimated by the
minimal motion, indicated by the solid arrow in Fig. 13.5.

From the spatial sampling theorem we know that any periodic signal
has to be sampled at least twice per wavelength (Section 2.4.2). For
temporal periodic signals, the wavelength corresponds to the cycle T
with T = 2π/ω. Using Eq. (13.8) the temporal sampling theorem is
given by

∆t < T
2
= π
ω
= π
kTf

(13.12)

where ∆t denotes the minimum frame rate necessary to estimate the
optical flow f of a periodical signal with wave number k. The smaller
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the scale of a pattern, the more slowly it is allowed to move if the frame
rate cannot be increased. As all patterns can be decomposed into peri-
odic signals, Eq. (13.12) applies for any moving object. It is important
to note that it is not the size of the object, but rather the smallest wave
number contained in the Fourier spectrum of the object that is the limit-
ing factor. A large disk-shaped object can suffer from temporal aliasing
right at its edge, where high wave numbers are located.

If the temporal sampling theorem is violated by too large displace-
ments, temporal aliasing appears. In spatiotemporal images it shows
up as patterns with false inclinations or as distributed structures with-
out any relation at all. A prominent example of temporal aliasing is one
in which the wheels of horse-drawn carriages in movies seem to spin
around in the wrong direction.

An interesting analogy exists in the human visual system. From psy-
chophysical experiments with a random dot kinematogram [15] it was
found that human observers tend to estimate a coherent minimal mo-
tion, independent from the scale of clusters within the random pattern.
To explain these findings, Morgan [16] concludes that a coarse spatial
filter precedes motion detection in the human visual pathway [15].

Performing a low-pass filtering to remove all small scale spatial fre-
quencies beyond the critical limit is the basic idea of multiscale optical
flow computation techniques (Chapter 14). Starting from coarse pat-
terns, large displacements can be computed, which can be iteratively
refined from smaller scales. Such an approach, however, assumes that
patterns at all scales are moving with the same velocity. This is not
true for physical processes showing dispersion, such as water surface
waves.

It is important to note that the apparent motion, represented by the
optical flow field f , is the sampled motion, that is, the apparent mo-
tion after the spatiotemporal sampling process during image acquisi-
tion. If temporal aliasing persists, the real motion cannot be separated
from the apparently moving structures, unless other constraints apply.
Hence, optical flow computation or low level motion computation has to
be treated separately from higher level algorithms that attempt to solve
the problem of physical correspondence from visual correspondence.

13.2.2 Physical and visual correspondence

From the aperture problem we learned that only normal optical flow
can be computed in the case of linear symmetry of the brightness dis-
tribution within a local neighborhood. Translations parallel to lines of
constant gray values do not contribute to brightness variations and are
thus not detectable. The temporal sampling theorem states that large
displacements cannot be estimated from small-scale patterns. Both
problems of motion estimation can be considered as special cases of
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a more general problem, commonly referred to as the correspondence
problem. The motion of patterns does not always allow for relating cor-
responding features in consecutive frames in an unambiguous manner.
The physical correspondence of features can remain undetectable due
to an aperture problem, missing texture (recall the example of the spin-
ning sphere in Fig. 13.1) or overly large displacements. Conversely, the
apparent motion can lead to false correspondence. Variation in scene
intensity may not be due to motion but instead may be caused by vari-
ations in illumination.

If local constraints are violated, correspondence-based techniques
try to estimate a best match of features within consecutive frames
(Chapter 13.5). Depending on the kind of features under considera-
tion, these techniques can be classified into correlation methods and
token tracking techniques [17]. Correlation techniques are computa-
tionally costly and therefore restricted to short-range displacements.
Token tracking methods extract features, such as corners, straight line
segments or blobs [18] and track them over time. The search can be
extended to the entire image area, which enables estimates of long-
range displacements. All correspondence-based techniques consider
only two single images. They do not use any information about the
continuous temporal domain.

13.2.3 Flow versus correspondence

There has been much discussion of the pros and cons of optical flow
based techniques in contrast to correspondence-based techniques. We
do not want to contribute to this dispute but rather recall which method
seems to be best suited under certain circumstances.

In order to solve the aperture problem a variety of optical flow-based
approaches have been proposed that try to minimize an objective func-
tion pooling constraints over a small finite area. An excellent overview
of the current state of the art is given by Barron et al. [6]. They conclude
that differential techniques, such as the local weighted least squares
method proposed by Lucas and Kanade [19] (Section 13.3.1), perform
best in terms of efficiency and accuracy. Phase-based methods [20]
(Section 13.4.3) show slightly better accuracy but are less efficient in im-
plementation and lack a single useful confidence measure. Bainbridge-
Smith and Lane [9] come to the same conclusion in their comparison of
the performance of differential methods. Performing analytical studies
of various motion estimation techniques, Jähne [21] and [13] showed
that the 3-D structure tensor technique (Section 13.3.2) yields the best
results with respect to systematic errors and noise sensitivity. This
could be verified by Jähne et al. [22], in their analysis of a calibrated
image sequence with ground truth data provided by Otte and Nagel [8].
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On the other hand, correspondence-based techniques (Section 13.5)
are less sensitive to illumination changes. They are also capable of es-
timating long-range displacements of distinct features that violate the
temporal sampling theorem. In this case any optical flow-based tech-
nique will fail. However, correlation-based approaches are extremely
sensitive to periodic structures. With nearly periodic inputs (such as
textures or bandpass filtered signals) they tend to find multiple local
minima [6]. Comparative studies show that correlation-based tech-
niques produce unpredictable output for straight edges (aperture prob-
lem), while optical-flow based techniques correctly estimate normal
flow. Correlation techniques also perform less effectively in estimat-
ing subpixel displacements than do optical flow-based techniques [6,
23]. Especially at very small displacements in the order of less than
1/10 pixel/frame, optical flow-based techniques yield better results.

Before we turn towards a detailed description of the various tech-
niques, we want to draw the conclusion that neither correlation nor
optical flow-based techniques are perfect choices in any case. If the
temporal sampling theorem can be assured to be fulfilled, optical flow-
based techniques are generally the better choice. In other cases, when
large displacements of small structures are expected, correlation-based
approaches usually perform better.

For both kind of techniques, it is important to get confidence mea-
sures in addition to the optical flow. No technique is without errors in
any case. Only if errors can be detected and quantified can the result
be reliably interpreted. It also shows that differences in precision, at-
tributable to details of the initial formulation, are, in fact, a result of
different minimization procedures and a careful numerical discretiza-
tion of the used filters.

13.3 Optical flow-based motion estimation

In this section we want to focus on common optical flow-based tech-
niques. We can not detail all facets of the spectrum of existing tech-
niques, but rather try to give a concise overview of the basic principles.

13.3.1 Differential techniques

Local weighted least squares. Assuming the optical flow f to be
constant within a small neighborhoodU Lucas and Kanade [19] propose
a local weighted least squares estimate of the constraint Equation (13.2)
on individual pixels within U . Similar approaches are reported by [24,
25, 26, 27]. The estimated optical flow is given by the solution of the
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following minimization problem:

f = arg min‖e‖2
2, ‖e‖2

2 =
∞∫
−∞
w(x −x′)

[
(∇g)Tf + gt

]2
dx′ (13.13)

with a weighting functionw(x) selecting the size of the neighborhood.
In practical implementations the weighting is realized by a Gaussian
smoothing kernel. Additionally, w could weight each pixel according
to some kind of confidence measure, for example, the magnitude of
the gradient. In that way, a priori known errors are not propagated into
the optical flow computation.

In the initial formulation of [19], Eq. (13.13) was given by a discrete
sum of the squared residuals (∇g)Tf+gt , which have to be minimized.
The mathematically equivalent continuous least squares formulation
Eq. (13.13) replaces the weighted sum by a convolution integral [13, 21].
This formulation enables us to use linear filter theory, which allows, for
example, optimizing the convolution kernels independently from the
minimization procedure. In this way practical implementations of dif-
ferent approaches can be quantitatively compared without confusing
discretization errors with intrinsic errors of the algorithms.

The minimization of Eq. (13.13) is carried out by standard least
squares estimation. Both partial derivatives of ‖e‖2

2 with respect to
the two components f1 and f2 of the optical flow f have to equal zero
at the minimum of ‖e‖2

2:

∂‖e‖2
2

∂f1
= 2

∞∫
−∞
w(x −x′)gx

[
(∇g)Tf + gt

]
dx′ != 0 (13.14)

∂‖e‖2
2

∂f2
= 2

∞∫
−∞
w(x −x′)gy

[
(∇g)Tf + gt

]
dx′ != 0 (13.15)

If the optical flow f is assumed to be constant within the area of influ-
ence of w, it can be drawn out of the integral. Combining Eq. (13.14)
and Eq. (13.15) yields the following linear equation system[ 〈

gx gx
〉 〈
gx gy

〉〈
gx gy

〉 〈
gy gy

〉 ]︸ ︷︷ ︸
A

[
f1

f2

]
︸ ︷︷ ︸
f

= −
[ 〈
gx gt

〉〈
gy gt

〉 ]︸ ︷︷ ︸
b

(13.16)

with the abbreviation

〈a〉 =
∞∫
−∞
w(x −x′)a dx′ (13.17)
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In operator notation, the components of Eq. (13.16) are given by〈
gp gq

〉 = B(Dp · Dq), and
〈
gp gt

〉 = B(Dp · Dt) (13.18)

where B is a smoothing operator andDp,Dq, andDt are discrete first-
order derivative operators in the spatial directions p and q and in time
direction t, respectively. The solution of Eq. (13.16) is given by

f = A−1b (13.19)

provided the inverse of A exists. If all gradient vectors within U are
pointing into the same direction, A gets singular. Then, the brightness
distribution can be expressed locally as

g(x) = g(dTx) (13.20)

where d = [d1, d2]T is a vector pointing perpendicular to lines of con-
stant brightness. From Eq. (13.20) the first-order partial derivatives
can be computed as gx = d1g′ and gy = d2g′, where the abbreviation
g′ = ∂g/∂(dTx) is used. The determinant

det (A) = 〈gx gx〉 〈gy gy〉− 〈gx gy〉2 (13.21)

equals zero and A cannot be inverted. Thus, averaging Eq. (13.2) over
a small neighborhood does not yield more information than a single
point if the aperture problem persists within the neighborhood. In this
case, only the normal flow f⊥ is computed according to Eq. (13.3).

Instead of zero determinant, singularity ofA can be identified by an-
alyzing the eigenvalues of the symmetric matrix A prior to inversion.
While Simoncelli [27] suggests using the sum of eigenvalues, Barron
et al. [6] conclude that the smallest eigenvalue constitutes a more reli-
able measure. In Section 13.7 we will compare common confidence and
type measures of different approaches and show how they are related.

Jähne [13] shows that an extension of the integration in Eq. (13.13)
into the temporal domain yields a better local regularization, provided
that the optical flow is modeled constant within the spatiotemporal
neighborhood U . However, this does not change the minimization pro-
cedure and results in the same linear equation system Eq. (13.16). All
that needs to be changed are the components 〈a〉

〈a〉 =
∞∫
−∞
w(x −x′, t − t′)a dx′ dt′ (13.22)

where both the integration as well as the window functionw have been
extended into the temporal domain.

While the presence of an aperture problem can be identified by the
singularity of the matrix A, the initial assumption of constant optical
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flow within U remains to be proved. In any case, an averaged optical
flow will be computed by the solution of Eq. (13.19). This leads to
over-smoothing of the optical flow field at motion discontinuities and
false estimation at the presence of transparent motion overlay. Such
cases lead to nonzero values of the expression

[
(∇g)Tf + gt

]
, which

is called the measurement innovation, or the residual . The residual
reflects the discrepancy between the predicted measurement (∇g)Tf
and the actual measurement gt . A residual of zero means that both are
in complete agreement. Thus, a nonconstant optical flow field can be
detected by analyzing the variance of the data σ 2, given by the squared
magnitude of the residuals [13]

σ 2 = ‖e‖2
2 =

〈[
(∇g)Tf + gt

]2
�

(13.23)

where f is the estimated optical flow. In case of constant f within
U , the residuals in Eq. (13.23) vanish and σ 2 reduces to the variance
cause by noise in the image. Thus, a variance significantly larger than
the noise variance is a clear indicator for a violation of the assumption
of constant optical flow. In real applications, f will never be constant
over the whole image. If it varies smoothly over the image area, it can be
considered locally constant and the local least squares estimate can be
applied. Other models of the spatial distribution of f (x), such as linear
(affine) motion, can be incorporated into the least squares approach as
well. This will be the subject of Section 13.6.1.

From a probabilistic point of view, the minimization of Eq. (13.13)
corresponds to a maximum likelihood estimation of the optical flow,
given Gaussian-distributed errors at individual pixels [28]. Black and
Anandan [12] show that the Gaussian assumption does not hold for
motion discontinuities and transparent motions. By replacing the least
squares estimation with robust statistics they come up with an iterative
estimation of multiple motions (Section 13.6.2).

Second-order techniques. Instead of grouping constraints over a lo-
cal neighborhood, it has been proposed to use second-order informa-
tion to solve for both components of f [29, 30, 31]. This can be moti-
vated by extending the brightness constancy assumption to an assump-
tion on the conservation of the gradient ∇g under translation:

d(∇g)
dt

= 0 (13.24)

Evaluating Eq. (13.24) yields the following linear equation system for a
single point: [

gxx gxy
gxy gyy

]
︸ ︷︷ ︸

H

[
f1

f2

]
︸ ︷︷ ︸
f

= −
[
gtx
gty

]
︸ ︷︷ ︸

b

(13.25)
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The matrix H is the Hessian of the image brightness function, con-
taining all second-order partial spatial derivatives gpq = ∂2g/∂p∂q.
The second-order spatiotemporal derivatives in b are abbreviated by
gtp = ∂2g/∂t∂p. The linear equation system Eq. (13.25) can be solved
by

f =H−1b (13.26)

if the Hessian matrix is not singular. This happens if the determinant
vanishes,

det (H) = gxxgyy − g2
xy = 0 (13.27)

The trivial solution of Eq. (13.27) is given for vanishing second-order
derivatives, gxx = gyy = gxy = 0, that is, local planar brightness distri-
bution. Equation (13.27) also holds, if the image brightness shows lin-
ear symmetry within the local area supporting the second-order deriva-
tive operators. In this case, the brightness distribution can be ex-
pressed locally as

g(x) = g(dTx) (13.28)

where d = [d1, d2]T is a vector pointing perpendicular to lines of con-
stant brightness. From Eq. (13.28) the second-order partial derivatives
can be computed as

gxx = d2
1g
′′, gyy = d2

2g
′′, and gxy = d1d2g′′ (13.29)

where the abbreviation g′′ = ∂2g/∂(dTx)2 is used. With Eq. (13.29) the
condition Eq. (13.27) is satisfied and the Hessian H cannot be inverted.

Thus, second-order techniques, just as first-order techniques, do
not allow for estimating the 2-D optical flow field f in case of an aper-
ture problem within a local neighborhood. Although no local averaging
has been performed to obtain the solution Eq. (13.25), a local neighbor-
hood is introduced by the region of support of the second-order deriva-
tive operators. In order to obtain second-order differential information,
first-order properties of the image area need to be related over an in-
creased area compared to first-order differentiation. From first-order
information the full 2-D optical flow can only be extracted if the spatial
orientation changes within the region of interest. Bainbridge-Smith and
Lane [9] conclude that first-order differential techniques, such as pro-
posed by Lucas and Kanade [19], are in fact generalized second-order
techniques, because they implicitly require variation of the gradient
within the region of support.

The initial assumption (Eq. (13.24)) requests that first-order (affine)
motions, such as dilation, rotation or shear, are not allowed in the op-
tical flow field. This constraint is much stronger than the brightness
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conservation assumption of Eq. (13.2) and is fulfilled only rarely for
real motion fields. Hence, second-order techniques generally lead to
sparser optical flow fields than those of first-order techniques [6]. If
the assumption of conserved gradient is violated, the residual error

‖e‖2
2 = [Hf −b]2 (13.30)

will increase beyond the noise variance σ 2 (compare to Eq. (13.23)),
which allows one to identify erroneous estimates of f .

Global constraints. Local least squares techniques minimize the
brightness change constraint equation Eq. (13.2) over a localized aper-
ture, defined by the size of the spatial window functionw (Eq. (13.13)).

Global constraint methods extend the integration to the entire image
area and combine the local gradient constraint Eq. (13.2) with a spatial
coherence assumption. The resulting objective function ‖et‖2

2 to be
minimized consists of two terms. The first one, ‖ed‖2

2, contains the
local data (brightness) conservation constraint Eq. (13.2) at each pixel
and a second one, ‖es‖2

2, expresses the spatial relation between optical
flow vectors:

‖et‖2
2 = ‖ed‖2

2 + λ2‖es‖2
2 =

∫
D

[
(∇g)Tf + gt

]2
dx′ + λ2‖es‖2

2 (13.31)

The integration is carried out over the domainD, which can be extended
to the entire image. The parameter λ controls the influence of the spa-
tial coherence term. The optical flow f is estimated by minimizing
‖et‖2

2,

f = arg min‖et‖2
2 (13.32)

The introduction of a regularizing spatial coherence constraint ‖es‖2
2

restricts the class of admissible solutions and makes the problem well-
posed [12]. A variety of approaches have been proposed in the liter-
ature, dealing with the choice of an appropriate spatial constraint. In
general, it should interpolate optical flow estimates at regions suffering
from the aperture problem or without sufficient brightness variations.
At the same time spatial oversmoothing of motion boundaries should
be prevented. Both are competing requirements.

The most common formulation of ‖es‖2
2 has been introduced by

Horn and Schunk [10]. They propose a global smoothness constraint of
the form

‖es‖2
2 =

∫
D

[(
∂f1

∂x

)2

+
(
∂f1

∂y

)2

+
(
∂f2

∂x

)2

+
(
∂f2

∂y

)2]
dx′ (13.33)
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Minimizing Eq. (13.32) by means of Gauss-Seidel iteration [32] yields an
iterative solution for the optical flow f (k+1) at time step k+ 1 given the
flow f (k) at time k:

f (k+1) =
〈
f (k)

〉
−∇g

∇g
〈
f (k)

〉
+ gt

‖∇g‖2
2 + λ2

(13.34)

where
〈
f (k)

〉
denotes a local average of f (k). The initial estimate f (0)

is usually set to zero for the entire image. It is important to note that
the gradient ∇g apparently controls the influence of both terms in
Eq. (13.34). If the gradient vanishes, that is, at regions with low spatial
structure, the optical flow is interpolated from adjacent estimates. In
regions with high contrast the local brightness change constraint (nu-
merator of the right term in Eq. (13.34)) becomes dominant.

The propagation of the flow field into regions with low contrast is
an important feature of Horn and Schunck’s smoothness constraint.
However, as no directional selectivity is included in Eq. (13.33) the re-
sulting flow field is blurred over motion discontinuities. It also has
the drawback that a localized error can have a far-reaching effect if the
surrounding gradients are small [9].

In order to reduce smoothing across edges, Nagel [29, 33, 34] sug-
gests an oriented smoothness constraint:

‖es‖2
2 =

∫
D

1
‖∇g‖2

2 + 2δ
[E1 + δE2] dx′ (13.35)

E1 =
[
∂f1

∂x
gy − ∂f1

∂y
gx
]2

+
[
∂f2

∂x
gy − ∂f2

∂y
gx
]2

(13.36)

E2 =
(
∂f1

∂x

)2

+
(
∂f1

∂y

)2

+
(
∂f2

∂x

)2

+
(
∂f2

∂y

)2

(13.37)

The additional parameter δ controls the relative influence of the ori-
ented smoothness term E1 compared to E2, which constitutes Horn and
Schunck’s global smoothness constraint. Again, the solution is given by
an iterative Gauss-Seidel method. As an interesting feature, the rather
complicated solution equations implicitly contain second-order deriva-
tives.

In a more restrictive way, Hildreth [35, 36] reduce all computations
to zero crossings of a Laplace-filtered image. Along these contour lines
C , an objective function is defined according to

‖et‖2
2 =

∫
C

[
(∇g)Tf + gt

]2 + λ2

[(
∂f1

∂s

)2

+
(
∂f2

∂s

)2]
ds′ (13.38)
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where the first term in the integral is given by the standard data conser-
vation constraint Eq. (13.31) and ∂fp/∂s, denotes the directional deriva-
tive of fp into the direction s along the contour C . In contrast to other
approaches, all integrations are carried out along contour lines instead
of by 2-D averaging. Thus, no information is smoothed across bright-
ness edges. However, the approach inherently assumes that all edges
belong to the same object. If contours of independently moving objects
merge, the resulting optical flow field is blurred along the contour line
as well.

All approaches incorporating global constraints have in common
that they result in systems of differential equations relating spatial vari-
ations of the optical flow within the entire domainD. Such a system can
only be solved iteratively using numerical iteration methods, such as
Gauss-Seidel iteration or successive overrelaxation [28, 37]. Although
efficient iterative solutions have been developed in numerical mathe-
matics, they are still slower than closed solutions. Another problem of
iterative solutions is the question of convergence, which may depend on
image content. Further information on global constraints can be found
in Chapter 16, where a general toolbox for variational approaches is
proposed, together with an efficient numerical iteration scheme.

13.3.2 Tensor-based techniques

In Section 13.2.1 we have shown that optical flow computation can be
formulated as orientation analysis in spatiotemporal images. A prac-
tical example of such a spatiotemporal image and the corresponding
structures is shown in Fig. 13.6. This application example has been
chosen for illustration because it demonstrates nicely how any mov-
ing gray-value structure causes inclined patterns, regardless of certain
object properties.

In order to determine local orientation Bigün and Granlund [38] pro-
posed a tensor representation of the local image brightness distribution.
Starting with a different idea, Kass and Witkin [39] came to a solution
that turned out to be equivalent to the tensor method. Searching for
a general description of local orientation in multidimensional images,
Knutsson [40, 41] concluded that local structure in an n-dimensional
domain can be represented by a symmetric n × n tensor of second-
order. In the analysis of data with a dimensionality higher than two it
turns out that using scalars and vectors is no longer always convenient
[42]. Tensors—a generalization of the vector concept—are perfectly
suited to describe symmetries within local neighborhoods in multidi-
mensional spatial and spatiotemporal signals.

This section outlines the practical application of tensor representa-
tions to optical flow computation and its relation to other optical flow-
based techniques. We will show how a local least squares estimation
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Figure 13.6: Illustration of the spatiotemporal brightness distribution of moving
patterns. The sequence shows infrared images of the ocean surface moving
mainly in positive x-direction. The upper right portion of the 3-D xt- cube has
been cut off, revealing the internal structure of the spatiotemporal image.

of optical flow, such as the approach of Lucas and Kanade [19], can be
improved by using total least squares estimation instead of standard
least squares. This leads directly to the structure tensor technique for
optical flow computation [43, 44, 45, 46], which constitutes the most di-
rect approach to linear symmetry detection in spatiotemporal images.
Another tensor representation, based on combinations of quadrature
filters, will be outlined in Section 13.4.2.

The structure tensor approach. The optical flow f and the direction
r of constant brightness within a spatiotemporal image are related by
f = r−1

3 [r1, r2]T (Eq. (13.4)). Within a local neighborhood U , the vector
r has to be as perpendicular as possible to the spatiotemporal gradient
∇xtg =

[
gx,gy,gt

]T . Thus, the scalar product (∇xtg)T r has to vanish
at any point within U for the optimum estimate of r (Eq. (13.5)). In a
least squares sense, r can be found by minimizing

r = arg min
rT r=1

‖e‖2
2, ‖e‖2

2 =
∞∫
−∞
w(x −x′)

[
(∇xtg)Tr

]2
dx′ (13.39)

which is equivalent to Eq. (13.13). In order to avoid the trivial solution
r = 0, the constraint rTr = 1 has to be imposed on r. The information
within a local neighborhood U around the central point x = [x,y, t]T
is weighted by a window–function w(x −x′). In practical applications
the size of the local neighborhood U represents the area over which
the optical flow is averaged. Again, the spatial integration can be ex-
tended into the time domain for local regularization without changing
the results of the following minimization procedure [13].
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Using the abbreviation Eq. (13.17), the objective function ‖e‖2
2 can

be transformed into

‖e‖2
2 =

〈[
(∇xtg)Tr

]2
�
=
〈
rT (∇xtg)(∇xtg)Tr

〉
(13.40)

Under the assumption of constant r (that is, constant f ) within U ,
Eq. (13.40) reduces to the following quadratic form:

‖e‖2
2 = rT

〈
(∇xtg)(∇xtg)T

〉
r = rT J r (13.41)

with the 3-D symmetric structure tensor

J =

〈
gx gx

〉 〈
gx gy

〉 〈
gx gt

〉〈
gx gy

〉 〈
gy gy

〉 〈
gy gt

〉〈
gx gt

〉 〈
gy gt

〉 〈
gt gt

〉
 (13.42)

The components of J are given by

Jpq =
〈
gp gq

〉 = ∞∫
−∞
w(x −x′)gpgq dx′ (13.43)

where gp, p ∈ {x,y, t}, denotes the partial derivative along the coordi-
nate p. The implementation of the tensor components can be carried
out very efficiently by standard image processing operators. Identi-
fying the convolution in Eq. (13.43) with a smoothing of the product
of partial derivatives, each component of the structure tensor can be
computed as

Jpq = B (Dp · Dq) (13.44)

with the smoothing operator B and the differential operator Dp in the
direction of the coordinate p.

The minimization of Eq. (13.41) subject to the constraint rTr = 1
can be carried out by the method of Lagrange multiplier , minimizing
the combined objective function L(r, λ)

f = arg minL(r, λ), L(r, λ) = rT J r + λ
(
1− rTr

)
(13.45)

The Lagrange parameter λ has to be chosen such that the partial deriva-
tives of L(r, λ) with respect to all three components of r equal zero:

∂L(r, λ)
∂ri

= 2
∑
k
Jikrk − 2λri

!= 0, i ∈ {1,2,3} (13.46)

Combining the three equations in Eq. (13.46) yields the following linear
equation system

Jr = λr (13.47)
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Thus, the minimization reduces to an eigenvalue problem of the sym-
metric matrix J. Once a minimizing r is found, Eq. (13.41) reduces
to

‖e‖2
2 = rT J r = rTλr = λ (13.48)

which shows that the minimum of Eq. (13.41) is reached if the vector r
is given by the eigenvector of the tensor J to the minimum eigenvalue
λ.

Total least squares versus standard least squares. Although the
local least squares technique (Eq. (13.13)) and the structure tensor tech-
nique (Eq. (13.39)) are based on the same initial formulation, the corre-
sponding solutions Eqs. (13.19) and (13.47) are quite different. Practical
implementations of both techniques also show that the structure tensor
technique is more accurate (Section 13.8). Performing analytical stud-
ies Jähne [13] showed that the local least squares technique is biased
towards lower values of f in the presence of noise, while the structure
tensor technique yields an unbiased estimate for isotropic noise. What
are the basic differences of both techniques and how are they related?
In order to answer this question we have to examine the minimization
procedure of Eqs. (13.13) and (13.39), respectively.

In a discrete formulation, both problems of local optical flow esti-
mation constitute linear equation systems of the form

gx(x1) gy(x1)
gx(x2) gy(x2)

...
...

gx(xN) gy(xN)


︸ ︷︷ ︸

X

[
f1

f2

]

︸ ︷︷ ︸
f

= −


gt(x1)
gt(x2)

...
gt(xN)


︸ ︷︷ ︸

y

(13.49)

for N points within the local neighborhood U . The weighting coeffi-
cients w(xi) have been set to unity in order to simplify the notation.
However, this does not affect the algebraic relations of the following
argumentation.

The task of optical flow estimation can be formulated in the fol-
lowing way: given a set of explanatory variables ∇g(xi) (data matrix
X) and a set of response variables gt(xi) (vector of observations y),
try to find a best estimate of the true but unknown model parameters
f = [f1, f2

]T , which are assumed to be constant within U . If Eq. (13.49)
is overdetermined (N > 2), only approximate solutions can be found
using either a standard least squares (LS) or a total least squares (TLS)
approach. An excellent overview of the total least squares problem and
practical applications can be found in [47].
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Least squares The classical least squares (LS) approach assumes the
explanatory variables of the data matrix X to be free of error, that
is, measured with infinite precision. All errors are confined to the
observation vector y. To find the model parameter f , the least
squares estimate seeks to

min‖y −y′‖2
2, y′ = Xf (13.50)

by searching for a minimizing f . In minimizing Eq. (13.50) the gra-
dients ∇g(xi) and the temporal derivatives gt(xi) are treated sep-
arately. A best estimate f is found by taking the derivatives of the
quadratic objective function ‖y − y′‖2

2—which can be considered,
as squared magnitude of a 2-D residual error vector—with respect
to the two components f1 and f2.

Total least squares The total least squares (TLS) approach is motivated
by the fact that errors due to sampling and noise may imply inaccu-
racies of the data matrix X as well. In the case of motion estimation
both spatial and temporal derivatives may be corrupted. This fact
can be accounted for by combining X and y to the augmented data
matrix C

C = [X;y] =


gx(x1) gy(x1) gt(x1)
gx(x2) gy(x2) gt(x2)

...
...

...
gx(xN) gy(xN) gt(xN)

 (13.51)

With Eq. (13.51) the linear equation system Eq. (13.49) reduces to

[X;y]
[
f T ; 1

]T = r−1
3 Cr = 0 (13.52)

where the 3-D vector r is defined in Eq. (13.4). In order to find a best
estimate of r, we seek to

min‖Cr‖2
2, subject to rTr = 1 (13.53)

where the quadratic constraint rTr = 1 is added to avoid the trivial
solution r = 0. In minimizing Eq. (13.53), the gradients ∇g(xi) and
the temporal derivatives gt(xi) are treated on an equal basis. A best
estimate for r is found by taking the derivatives of the quadratic ob-
jective function ‖Cr‖2

2—which can be considered as squared mag-
nitude of a 3-D residual error vector—with respect to all three com-
ponents r1, r2, and r3. This method of obtaining a linear relation
between the columns of a matrix C is known as linear orthogonal
l2 approximation [48, 49], which is an alternative formulation of the
total least squares estimation problem [47, 50].
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Figure 13.7: Illustration of the difference between a standard least squares (LS)
and b total least squares (TLS) estimation. Errors in the measured variables are
indicated by Gaussian distributions. While LS assumes errors to be confined to
the observables yi, TLS allows errors in the variables xi as well.

The basic difference of least squares and total least squares can
be illustrated by a simple regression problem fitting a straight line to
measurements. Standard least squares minimizes the vertical deviation
of the response variables to the estimated line, while total least squares
minimizes the Euclidean distances of the points to the line (Fig. 13.7).

In terms of optical flow computation, using TLS instead of LS esti-
mation implies two important differences on the results of either tech-
nique:

• Instead of only the two parameters f1 and f2, the total least squares
technique varies all three parameters of the vector r. This leads to
a robust estimate of the spatiotemporal orientation in contrast to a
fixed temporal component using standard least squares.

• Both techniques yield matrices with components of the form
〈
gpgq

〉
,

where gp denotes partial derivatives in x, y , and t. Comparing the
structure tensor Eq. (13.42) to the least squares solution Eq. (13.16)
shows that the purely temporal component

〈
gtgt

〉
of Eq. (13.42) is

missing in Eq. (13.16). This component, however, allows to sepa-
rate isotropic noise, occlusions, and fast accelerations from coher-
ent motion as shown in the following section. Such regions violating
the model assumption of constant f within U have to be detected
by analyzing the residual errors in the standard least squares esti-
mation.

As a conclusion we note that the difference between the local least
squares method of Lucas and Kanade [19] and the structure tensor for-
mulation is neither imposed by the formulation of the minimization
problem nor by the extension into the temporal domain, but rather by
the minimization procedure.
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Most recently, a number of authors have become aware of the sub-
tle difference between the two minimization procedures, which leads to
significant differences in the accuracy of a variety of optical flow tech-
niques [51, 52]. An interesting extension of the TLS technique, referred
to as extended least squares technique (ELS), was proposed by Srinivasan
and Chellappa [52]. They show that the TLS optical flow solution is un-
biased only if the error in estimating the temporal gradient is equal in
variance to the error in estimating the spatial gradient. This, however,
cannot always be satisfied, for example, if spatial and temporal deriva-
tive operators have different extensions. Using the ELS solution, this
bias can be avoided.

All least squares techniques, however, intrinsically assume that the
errors are Gaussian and independent with constant variance for all
points within U [32]. This prerequisite leads directly to the quadratic
form of the error function of either technique. The assumption of Gaus-
sian error distributions is violated for multiple motions within U . In
this case, quadratic objective functions tend to over-weight outliers,
which can be reduced using robust error norms [12] (Section 13.6.2).

Eigenvalue analysis. In order to estimate optical flow from the struc-
ture tensor J we need to carry out an eigenvalue analysis of the sym-
metric 3×3 tensor (Eq. (13.47)). The symmetry of J implies that all three
eigenvalues are real and it further implies that there is an orthonormal
basis of eigenvectors [37]. These vectors are pointing into the direc-
tions of minimal and maximal brightness changes, respectively, span-
ning the principal-axes coordinate system of the local 3-D spatiotem-
poral neighborhood U . In the principal-axes system, the transformed
structure tensor J′ is diagonal and contains the eigenvalues of J as
diagonal elements:

J′ =
 λ1 0 0

0 λ2 0
0 0 λ3

 (13.54)

Without restricting generality, the eigenvalues are sorted in descending
order:

λ1 ≥ λ2 ≥ λ3 ≥ 0 (13.55)

and the corresponding eigenvectors are denoted by r1, r2, and r3.
Eigenvalue analysis is a nontrivial but standard problem of numer-

ical linear algebra for which a number of efficient solutions have been
developed [28, 37]. A standard procedure in numerical eigenvalue anal-
ysis is the Jacobi method . It consists of a sequence of orthogonal simi-
larity transformations designed successively to annihilate off-diagonal
elements of the matrix. The Jacobi method is absolutely foolproof for
all real symmetric matrices, such as the structure tensor (regardless of
the image content).
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Table 13.1: Classification of motion types: rank (J), total coherency measure ct
and spatial coherency measure cs .

Motion type ct cs rank (J)

Constant brightness, no apparent motion 0 0 0

Spatial orientation and constant motion (aperture problem) 1 1 1

Distributed spatial structure and constant motion 1 0 2

Distributed spatiotemporal structure (no coherent motion) 0 0 3

The structure tensor contains the entire information on the first-
order structure of the brightness distribution within a local spatiotem-
poral neighborhood. Four different classes of 3-D spatiotemporal struc-
tures can be distinguished and identified by analyzing the rank of the
structure tensor (Table 13.1), which is given by the number of nonzero
eigenvalues. The eigenvalues of J constitute the squared partial deriva-
tives of the spatiotemporal brightness structure along the correspond-
ing principal axis (averaged over U ). Thus, rank (J) can be identified
as the number of directions (principal axes) with non-zero brightness
derivatives, which is directly related to the optical flow.

Constant brightness. In the case rank (J) = 0, all eigenvalues are zero

λ1 = λ2 = λ3 = 0 (13.56)

that is, all partial derivatives along the principal axes vanish. Thus,
the brightness distribution remains constant within U , and no op-
tical flow can be estimated. This case can be identified by the sum
of all eigenvalues, which equals the trace of J′ (Eq. (13.54)). As the
trace of a matrix stays constant under orthogonal similarity trans-
formations,

trace (J′) = trace (J) =
3∑
p=1

Jpp (13.57)

these points can be detected by thresholding the trace of the struc-
ture tensor

trace (J) < γ (13.58)

prior to the eigenvalue analysis. For these points the eigenvalue
analysis can be skipped completely. The threshold γ has to be cho-
sen according to the noise level of the image sequence.

Normal optical flow. If rank (J) = 1, an image structure with spatial ori-
entation moves with a constant velocity, that is, the aperture prob-
lem remains within U . The spatiotemporal neighborhood consists
of layered structures and only one eigenvalue λ1 is larger than zero

λ1 > 0, λ2 = λ3 = 0 (13.59)
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The corresponding eigenvector r1 =
[
r1,1, r1,2, r1,3

]T is pointing nor-
mal to the planes of constant brightness and can be used to compute
the normal optical flow f⊥ (Eq. (13.3)):

f⊥ = −
r1,3

r 2
1,1 + r 2

1,2

[
r1,1

r1,2

]
(13.60)

Two-dimensional optical flow. For rank (J) = 2, a distributed spatial
brightness structure moves at constant velocity. No aperture prob-
lem is present within U . The spatiotemporal neighborhood consists
of extruded structures and only one eigenvector has zero eigen-
value:

λ1, λ2 > 0, λ3 = 0 (13.61)

The eigenvector r3 =
[
r3,1, r3,2, r3,3

]T to the smallest eigenvalue λ3 is
pointing into the direction of constant brightness in the spatiotem-
poral domain. This vector corresponds to the spatiotemporal ori-
entation vector r (Eq. (13.4)) and can be used to compute the 2-D
optical flow f according to:

f = 1
r3,3

[
r3,1

r3,2

]
(13.62)

Distributed spatiotemporal structure. The case rank (J) = 3 represents
no apparent linear motion. The brightness structure shows varia-
tions in all directions. Thus, all eigenvalues are larger than zero:

λ1, λ2, λ3 > 0 (13.63)

Confidence and type measures. Although the rank of the structure
tensor proves to contain all information necessary to distinguish dif-
ferent types of motion it can not be used for practical implementations
because it does not constitute a normalized measure of certainty. Addi-
tionally, it is only defined for integer values 0, . . . ,3. In real sequences
mixtures between the types of motion usually occur and the presence of
noise increases all eigenvalues simultaneously, increasing the isotropy
of the 3-D gray-value structure. In this section we will introduce nor-
malized measures to quantify the confidence and type of motion that
are suited for practical implementations. In contrast to the rank, they
yield real-valued numbers between zero and one.

Total coherency measure. In order to quantify the overall certainty of
displacement estimation we define the normalized total coherency
measure

ct =
(
λ1 − λ3

λ1 + λ3

)2

(13.64)
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with λ1 and λ3 denoting the largest and smallest eigenvalue of the
structure tensor, respectively. Table 13.1 shows the values of ct
for different cases of motion. For both types of apparent motion,
that is, aperture problem and no aperture problem, ct equals one.
If no displacement can be computed it is identical to zero. With
increasing noise level ct approaches zero for all different types of
motion.

Spatial coherency measure. While the total coherency ct gives a nor-
malized estimate for the certainty of local spatiotemporal orienta-
tion it does not allow identification of areas of apparent aperture
problem. In order to quantify the presence of an aperture problem
we define the spatial coherency measure (edge measure)

cs =
(
λ1 − λ2

λ1 + λ2

)2

(13.65)

where λ2 denotes the second largest eigenvalue of the structure ten-
sor. Table 13.1 shows the values of cs for different cases of motion.
Only if an aperture problem is present does cs reach its maximum
value of ct . For all other types of motion it equals zero. The spatial
coherency measure can be identified as the coherency measure of 2-
D local orientation estimation (Volume 2, Section 10.6.7, Eq. (10.74)).
Note that cs is normalized between zero and ct because it is not pos-
sible to detect the presence of an aperture problem more reliably
than the overall certainty.

Corner measure. From the two independent measures ct and cs , a third
number, which can be referred to as corner measure cc , can be com-
puted by cc = ct−cs . It constitutes the counterpart of cs , quantifying
the absence of an aperture problem, that is, selecting points where
both components f1 and f2 of the optical flow f can be reliably
computed.

Figure 13.8 illustrates the coherency and type measures for a mov-
ing calibration target on a linear positioning table. The coherency mea-
sure shows the entire grid without regions of homogeneous brightness.
These areas split up into the edges and crossing points of the grid for
the edge and corner measure, respectively.

The importance of confidence and type measures for quantitative
image sequence analysis are illustrated in Fig. 13.9 for a moving ring
pattern with additive noise. The optical flow field shows random flow
vectors in regions with homogeneous brightness. With the total co-
herency measure these regions can be identified. Further knowledge
about the presence of an aperture problem allows reconstruction of
the 2-D flow field from normal flow, using the local regularization tech-
nique outlined in the following section [44]. It has to be pointed out
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a b c d

Figure 13.8: Illustration of the confidence and type measures for a moving grid
on a linear positioning table: a one frame of the sequence; b total coherency
measure ct ; c spatial coherency (edge) measure cs ; d corner measure cc .

a b

c d

Figure 13.9: Illustration of the importance of confidence and type measures for
a ring pattern moving with (1,1) pixels/frame towards the upper left corner (with
additive noise σn = 1): a one frame of the moving ring pattern; b optical flow
computed for any image point without confidence and type measures; c optical
flow masked by the confidence measure ct ; d local regularization incorporating
confidence and knowledge about the presence of an aperture problem.

that the confidence and type measures introduced in this section have
to be used in conjunction with the trace of the structure tensor. Be-
cause they constitute normalized measures, high confidence may even
occur when all eigenvalues are close to zero.
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Two-dimensional flow from normal flow. For all image points with
high values of the total coherency measure and simultaneously low
values of the spatial coherency measure, that is, (ct − cs) ≈ ct ≈ 1,
the 2-D optical flow f can be computed according to Eq. (13.62). But
how do we treat points suffering from the aperture problem, that is,
cs ≈ ct ≈ 1?

It is important to note that an aperture problem does not introduce
an erroneous optical flow field but only allows computation of partial
information, eventually with high precision. As another important fact,
more edge-like structures are statistically contained in images than iso-
lated points or corners. Hence, it would be too much of a restriction
to throw away all aperture problem pixels. On the other hand, long
and straight lines are also less likely than slightly curved structures.
Thus, it should be possible to reliably compute normal flow at edges
and group it over an enlarged neighborhood to estimate the 2-D optical
flow. The two measures cs and ct quantify the presence of an aperture
problem as well as a certainty of the corresponding normal flow vector
f⊥. Given this information and the previously computed normal flow
f⊥, we try to find a best estimate of the 2-D optical flow f .

For any point suffering from the aperture problem, the normal flow
f⊥ is related to the optical flow f by

f⊥ = f T n̂, n̂ = ∇g
‖∇g‖ (13.66)

where n̂ = [n1,n2]T denotes a unit vector normal to lines of constant
brightness in the image, that is, perpendicular to edges. The normal
vector can be computed directly from the eigenvector of the structure
tensor to the largest eigenvalue, r1 =

[
r1,1, r1,2, r1,3

]T , by

n̂ =
(
r 2

1,1 + r 2
1,2

)−1/2
[
r1,1

r1,2

]
(13.67)

using solely the spatial components of r1.
Similar to the local least squares approach of Lucas and Kanade

[19], the search for a best estimate of f can be extended to a slightly
larger neighborhood, U ′ > U , where U denotes the area of support of
the smoothing kernel w used for the initial estimate of normal flow in
Eq. (13.39) [44].

A local least squares estimate of f can be found by minimizing the
following objective function with respect to both components f1 and
f2:

f = arg min‖e‖2
2 (13.68)

with



340 13 Motion

‖e‖2
2 = 〈c〉−1

∞∫
−∞
w(x −x′)c(x′)

[
f T n̂(x′)− f⊥(x′)

]2
dx′ (13.69)

and

〈c〉 =
∞∫
−∞
w(x −x′)c(x′)dx′ (13.70)

The size of the local neighborhood is defined by a window function
w, which can be chosen independently from the one in Eq. (13.39).
The measure c incorporates any confidence measure, such as, for ex-
ample, binary masks obtained by thresholding ct and cs , or analytical
functions of ct and cs . Unequal weighting of individual pixels due to
distributed confidence within U ′ formally requires a normalization of
the objective function, given by 〈c〉−1. This corresponds to a normal-
ized convolution, introduced by Granlund and Knutsson [42]. However,
〈c〉−1 constitutes a constant within U ′ that does not propagate into the
following minimization procedure and, therefore, can be omitted in the
practical implementation.

Solving Eq. (13.68) by standard least squares technique yields the
linear equation system[

〈cn1n1〉 〈cn1n2〉
〈cn1n2〉 〈cn2n2〉

]
︸ ︷︷ ︸

A

[
f1

f2

]
︸ ︷︷ ︸
f

=
[ 〈
cn1f⊥

〉〈
cn2f⊥

〉 ]︸ ︷︷ ︸
b

(13.71)

with 〈
cnpnq

〉 = ∞∫
−∞
w(x −x′)c(x′)np(x′)nq(x′) dx′ (13.72)

and 〈
cnpf⊥

〉 = ∞∫
−∞
w(x −x′)c(x′)np(x′)f⊥(x′) dx′ (13.73)

Equation (13.71) has a solution if the MatrixA can be inverted, which
is the case only if

det (A) = 〈cn1n1〉 〈cn2n2〉 − 〈cn1n2〉2 ≠ 0 (13.74)

If all normal vectors within U ′ are collinear, det (A) = 0. In this case the
aperture problem remains withinU ′ and Eq. (13.71) does not yield more
information than a single value of f⊥. As the vectors n̂ are normalized
and 0 ≤ c ≤ 1, the determinant det (A) is also normalized between 0
and 1. For orthogonal spatial distribution of n̂ and high confidence
c = 1, it reaches the maximum value of 1. Thus, det (A) constitutes a
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normalized measure incorporating both the confidence c as well as the
distribution of orientations of n̂ within U ′.

Practical implementations showed that small changes in the orien-
tation of n̂ within U ′ have already led to very precise estimates of f . If
the normal flow f⊥ can be precisely computed using, for example, the
structure tensor technique, even the tangential components of f can
be estimated if slight curvatures of the edges are present (Fig. 13.9d).

Finally, all integrations in the terms 〈·〉 can be extended into the
temporal domain for local regularization purpose.

13.3.3 Multifeature-based techniques

The basic problem of optical flow estimation is to solve the under-
constrained brightness change constrained equation Eq. (13.2) for both
components of f . Two basic approaches to this problem have been in-
troduced in this chapter. Second-order differential techniques extend
the continuity of optical flow to the spatial gradient Eq. (13.24) to obtain
two equations in two unknowns (Eq. (13.25)). Another approach was to
model the optical flow and to group constraints over a local neighbor-
hood (so far the model assumption was restricted to constant f , which
will be extended in Section 13.6). Both kinds of approaches fail, how-
ever, if the local neighborhood is subject to spatial orientation. In this
case the matrices in the resulting algebraic equations—which are ob-
tained by any technique—become singular. Thus, the aperture problem
corresponds to a linear dependence of the rows in the corresponding
solution matrix, that is, to linearly dependent constraint equations.

Multifeature (or multiconstraint) techniques try to use two or more
features to obtain overconstrained equation systems at the same loca-
tion. These features have to be linearly independent in order to solve
for both components of f . Otherwise the aperture problem remains,
leading to singularities in the overconstrained system of equations.
Multiple features can be obtained by:

• using multiple light sources and/or multispectral cameras;

• visualizing independent physical properties of the same object; and

• using results of (nonlinear) functions of the image brightness.

Of course, all features have to move with the same velocity. Otherwise
the estimated optical flow exhibits the motion of the combined feature
vector rather than the real object motion. This prerequisite can be vio-
lated for features showing different physical properties that are subject
to dispersion.

Within the scope of this book, we can give only a concise overview of
the principal possibilities of multifeature-based techniques, illustrated
by two examples, which relate to the previous results of Section 13.3.
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Augmented second-order solution. The second-order approach of
Tretiak and Pastor [30] and Uras et al. [31] can be interpreted as a two-
feature method, applying the optical flow constraint to the horizontal
and vertical spatial derivative Eq. (13.24).

Equation (13.25) can be extended by incorporating the first-order
BCCE Eq. (13.2) to form an overdetermined system of equations, gx gy

gxx gxy
gxy gyy

[ f1

f2

]
= −

 gtgxt
gyt

 (13.75)

The relative influence of first- and second-order terms in Eq. (13.75) can
be changed by attaching weights to the corresponding equations. In a
least squares sense this entails multiplying each side of Eq. (13.75) with

W =
 gx gy
gxx gxy
gxy gyy


T w1 0 0

0 w2 0
0 0 w2

 (13.76)

where the diagonal matrix contains the weights w1 and w2 of the first-
and second-order terms, respectively [9]. Using the fractional weight
w = w1/w2 and carrying out the matrix multiplication yields the fol-
lowing system of equations[

wg2
x + g2

xx + g2
xy wgxgy + gxxgxy + gyygxy

wgxgy + gxxgxy + gyygxy wg2
y + g2

yy + g2
xy

][
f1

f2

]

= −
[
wgygt + gxxgxt + gxygyt
wgxgt + gxygxt + gyygyt

]
(13.77)

This approach is referred to as augmented second-order technique by
Bainbridge-Smith and Lane [9]. They demonstrate that the first-order
weighted least squares approach of Lucas and Kanade [19] (Eq. (13.13))
becomes equivalent to Eq. (13.77) if the aperture is restricted to a size
where the brightness distribution can be adequately described by a
second-order Taylor series. For larger apertures, the effect of higher-
order derivatives leads to a more robust performance of the first-order
local weighted least squares technique.

Multifeature structure tensor technique. The effect of linearly de-
pendent constraint equations on the solubility of the corresponding
algebraic equations, can be demonstrated by a simple example using
the structure tensor technique.
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Let G(x) = [g(x),h(x)]T be a vector-valued image (e. g., color im-
age) that contains only two components with 1-D horizontal and verti-
cal brightness changes

G(x) =
[
g(x)
h(x)

]
=
[
ax
by

]
(13.78)

moving with the velocity u = [u1,u2]T .
The temporal derivatives of g and h are given by the brightness

change constraint equation Eq. (13.2), that is, gt = −(∇g)Tu = −au1

and ht = −(∇h)Tu = −bu2, with ∇g = [a,0]T and ∇h = [0, b]T . As all
partial derivatives are constant over the entire image area, the structure
tensor Eq. (13.42) of g and h computes directly to

Jg =
 a2 0 −a2u1

0 0 0
−a2u1 0 a2u2

1

 , and Jh =
 0 0 0

0 b2 −b2u2

0 −b2u2 b2u2
2

 (13.79)

respectively. As one row equals zero and the two remaining rows are
linearly dependent, rank (Jg) = rank (Jh) = 1. Thus, both components
are subject to the aperture problem over the entire image area due to
the linear brightness variation (Table 13.1). Estimating the optical flow
from g and h independently yields fg = [u1,0]T and fh = [0,u2]T .
Without further assumptions, the connection between fg and fh re-
mains unknown.

The vector-valued image, G, however, allows one to extract the 2-D
optical flow in an unambiguous fashion. How can the information from
both components be adequately combined to accomplish this?

Simply adding up both component images results in a third image
with linear spatial brightness distribution

g(x)+h(x) = ax + by (13.80)

which suffers from the aperture problem as well. This can be verified
by computing the structure tensor Jg+h

Jg+h =
 a2 ab −a(au1 + bu2)

ab b2 −b(au1 + bu2)
−a(au1 + bu2) −b(au1 + bu2) (au1 + bu2)2

 (13.81)

where any two rows are collinear. Hence, rank (Jg+h) = 1, that is, the
sum of both components does not yield additional information.

By adding up the structure tensors of both components (Eq. (13.79)),
we obtain

Jg + Jh =
 a2 0 −a2u1

0 b2 −b2u2

−a2u1 −b2u2 −(a2u2
1 + b2u2

2)

 (13.82)
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In this matrix the third row can be expressed by a linear combination
of the two first rows, which reduces the rank by one. As no other linear
dependency exists, rank (Jg + Jh) = 2, which allows for unambiguously
determining the 2-D optical flow f = u (Table 13.1).

This example demonstrates the importance of the order in which
linear and nonlinear operations are carried out. Adding features with
linear brightness variations retains the linear relationship. Adding up
the structure tensors of individual components (which consists of non-
linear operations), regularizes the combined structure tensor of linearly
independent (uncorrelated) features. This technique can be easily ex-
tended to multiple features.

13.3.4 Accurate and efficient implementation

All optical flow-based techniques require combinations of partial deriva-
tives of first- or higher-order and local smoothing. Both types of oper-
ations can be optimized for both speed-up and accuracy. Hence, any of
the algorithms outlined in this section will benefit from a careful im-
plementation. Comparative studies of different approaches are likely
to be biased if different implementations of low-level operations have
been used.

Using binomial operators, smoothing can be performed very effi-
ciently by cascading elementary binomial kernels, as detailed in Chap-
ter 7. If large kernels are required, the smoothing can be carried out
on a multigrid data structure (Sections 4.4 and 7.5).

A more critical point is the choice of appropriate derivative oper-
ators. The numerical discretization of derivative filters is often taken
for granted with a restriction to the standard symmetric difference filter
0.5 [1 0 -1]. It can be shown, however, that derivative filters optimized
for a minimum deviation from the correct direction of the gradient
vector reduce the errors in the optical flow by more than one order of
magnitude.

Figure 13.10 illustrates this fact by a simple numerical study using
the structure tensor technique. With the standard symmetric difference
filter, large deviations from the correct displacements of more than 0.1
pixels/frame occur. With an optimized 3×3 Sobel-type filter [53], the
error is well below 0.005 pixels/frame for displacements small enough
to fulfill the temporal sampling theorem. This kernel results from a
nonlinear approach for filter optimization, which will be detailed in
Chapter 6.

Analyzing the impact of noise on differential least-squares tech-
niques, Bainbridge-Smith and Lane [9] reported the same errors as in
Fig. 13.10a and identified them as discretization errors of the derivative
operators. In order to reduce these errors they used a combination of
smoothing and derivative kernels for local regularization in only one
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Figure 13.10: Systematic error in the velocity estimate as a function of the
interframe displacement of a moving random pattern. Derivatives have been
computed with a the symmetric difference filter and b an optimized 3×3 Sobel
filter [53] (Chapter 6).

dimension. The error in the estimated optical flow decreases smoothly
as the width of the smoothing kernel increases. In order to obtain er-
rors in the same order of magnitude as those of the 2-D optimization
in Fig. 13.10b, the 1-D regularization requires kernel sizes of at least 9
pixels.

13.4 Quadrature filter techniques

This section deals with different approaches based on the motion con-
straint in Fourier domain, detailed in Section 13.2.1. As the Fourier
spectrum of moving patterns falls onto a plane (Eq. (13.7)), quadrature
filter techniques try to estimate the orientation of this plane by using
velocity-tuned filters in the Fourier domain. A variety of approaches
have been proposed that differ in both the design of frequency-selective
filters and the combination of the filter outputs. All approaches have
in common that the 3-D frequency distribution is interpolated from
the response of a finite number of smoothly varying window functions,
subsampling the 3-D spectrum.

A certain wave number/frequency band can be extracted by mul-
tiplying the Fourier spectrum with an appropriate window function
ŵ(k,ω). The result of this operation, however, would be an oscillat-
ing signal with the selected wave numbers and frequencies, rather than
quantification the “presence” of the selected frequency band. In order
to reduce these oscillations and to omit zero crossings, we need to find
a second signal with the same amplitude but a phase shift of ±π/2 for
every wave number and frequency. At zero crossings of the bandpass
filtered signal, the phase-shifted signal shows extremes. A filter that
performs such a phase shift is known as Hilbert filter . It has an imag-
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inary transfer function with odd symmetry, while the bandpass filter
has a real-valued transfer function with even symmetry.

A frequency selective filter and its Hilbert transform is called a
quadrature filter (Section 4.2.2). The output q of the quadrature fil-
ter G is a complex valued number,

q = G ∗ g = q+ − iq− (13.83)

where g denotes the spatiotemporal image, q+ the bandpass filtered
signal and q− its Hilbert transform, with the indices ‘+’ and ‘-’ refer-
ring to the even and odd symmetry of the corresponding filters. The
magnitude

‖q‖ = q2
+ + q2

− (13.84)

minimizes the sensitivity to phase changes in the signal and provides
an estimate of the spectral density or energy of the corresponding
periodic image structure. For this reason, quadrature-filter-based ap-
proaches are commonly referred to as spatiotemporal energy-based ap-
proaches in the literature. For the simple case of a sinusoidal signal
a sin(kTx +ωt) (corresponding to a delta peak in the Fourier spec-
trum), the magnitude of q will be completely phase invariant:

q = ŵ(k,ω)a sin(kTx +ωt)− i ŵ(k,ω)a cos(kTx +ωt) (13.85)

‖q‖ = ŵ2(k,ω)a2
[
sin2(kTx +ωt)+ cos2(kTx +ωt)

]
= ŵ2(k,ω)a2

The most common quadrature filter pair is the Gabor filter . It se-
lects a certain spatiotemporal frequency region with a Gaussian window
function centered at (k0,ω0) (Fig. 4.2, Section 4.2.2). The correspond-
ing complex filter mask is given by

G(x, t) = exp [i(k0x +ω0t)]exp

[
−
(
x2

2σ 2
x
+ y2

2σ 2
y
+ t2

2σ 2
t

)]
(13.86)

More detailed information about the basic concept of quadrature filters
can be found in [13, 42]. In the following sections we will outline how
these filters can be used for optical flow estimation.

13.4.1 Spatiotemporal energy models

One-dimensional optical flow. In order to estimate 1-D motion, Adel-
son and Bergen [54] proposed the use of three quadrature filters tuned
for leftward motion qL, rightward motion qR, and static patterns qS , re-
spectively. They noted that the output of quadrature filters is affected
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by the contrast of the signal (i. e., low signal contrast generates low re-
sponse and vice versa) and suggested using ratios of filter responses to
get a contrast-independent estimate of the 1-D optical flow [24, 54]:

f1 = ‖qR‖ − ‖qL‖‖qS‖
(13.87)

This solution is closely related to the first-order local least squares
technique of Lucas and Kanade [19]. For gy = 0, the 1-D solution of
Eq. (13.16) reduces to

f1 = −
〈
gxgt

〉〈
gxgx

〉 = −Bxt (Dx · Dt)Bxt (Dx · Dx) , (13.88)

where Bxt denotes a 2-D spatiotemporal binomial operator andDx and
Dt are first-order derivative operators along the indexed coordinate.
Jähne [13] shows that a presmoothing of the image withBxt prior to the
computation of the derivatives yields a solution similar to Eq. (13.87).
Replacing Dx by DxBxt and Dt by DtBxt in Eq. (13.88), the 1-D least
squares solution is given by

f1 = Bxt (R ·R−L · L)Bxt (S · S) (13.89)

where R, L, and S are combinations of derivatives of binomial filters:

R = (Dx +Dt)Bxt
L = (Dx −Dt)Bxt
S = 2DxBxt

(13.90)

Instead of the magnitude of quadrature filter responses, the squared
output of derivative filters is used. The final smoothing of the squared
signal, however, reduces the phase dependency and zero crossings if
the scale of the local structure is smaller than the area of support of
the smoothing operator.

Two-dimensional optical flow. A quadrature filter technique for the
computation of 2-D optical flow was developed by Heeger [55, 56]. At
each of several spatial scales, he used twelve Gabor filters tuned to dif-
ferent spatial orientation at three different temporal frequencies. The
filters are arranged in three layers with cylindrical symmetry about the
temporal frequency axis (Fig. 13.11a). The expected response of a Ga-
bor filter (Eq. (13.86)) tuned to frequency (kx, ky,ω) for translating
white noise, as a function of the velocity f = [f1, f2]T , is given by:

Rk,ω(f1, f2) = exp

− 4π2σ 2
xσ 2

yσ 2
t (f1kx + f2ky +ω)(

f1σxσt
)2 + (f2σyσt

)2 + (σxσy)2

 (13.91)
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a

 

b

 

Figure 13.11: Illustration of 3-D spatiotemporal filters in Fourier domain.
Shown are level surfaces of the power spectra of the filters. Surfaces are ren-
dered assuming a fixed point light source and a Lambertian surface: a arrange-
ment of the twelve Gabor filters used in the approach of Heeger [55]. Theω axis
is pointing along the cylindrical axis of symmetry; b spatiotemporal frequency
spectra of the directional derivative filters used in the local least squares ap-
proach of Lucas and Kanade [19]. (Images courtesy of E. P. Simoncelli, New
York University, [27].)

In order to find the optical flow f that best fits the measured filter
energy responses, Heeger [55] performed a least squares plane fit of
the twelve different Rk,ω, using a numerical optimization procedure.

The Gabor filters used in this approach are, however, not symmetri-
cally arranged about the origin. This leads to systematic errors in veloc-
ity estimates if the wave number of the moving pattern does not match
the center response of the filters [27]. The choice of Gabor filters has
been motivated by the fact that they minimize a joint space-frequency
localization criterion and have been suggested for use in biological vi-
sion modeling [27, 57, 58].

Similar to the 1-D case, the 2-D first-order least squares solution can
be interpreted as a spatiotemporal energy-based approach. Simoncelli
[27] showed that the components of Eq. (13.16) can be reformulated as
local averages of squares of directional filters and differences of two
such squares. This corresponds to eight different spatiotemporally ori-
ented bandpass filters. Again, the local average of squared bandpass
filters approximates the magnitude of quadrature filters. Level con-
tours of the eight transfer functions are symmetrically arranged about
the origin (Fig. 13.11b), in contrast to the Gabor filters of Heeger [55]
(Fig. 13.11a). Thus, the velocity estimate computed with the first-order
least squares solution will be invariant to scaling of the spatial fre-
quency of the input signal.

Another interesting similarity between the first-order least squares
solution and the plane constraint in Fourier domain can be found by
transforming the objective function ‖e‖2

2 into Fourier domain. If the
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integration in Eq. (13.13) is extended to the entire image area, Parseval’s
rule allows us to find the corresponding formulation of the objective
function in Fourier domain:

‖e‖2
2 =

∞∫
−∞

[
gx(x)f1 + gy(x)f2 + gt(x)

]2 dx dt

=
∞∫
−∞

[
k1ĝ(k,ω)f1 + k2ĝ(k,ω)f2 +ωĝ(k,ω)

]2 dkdω

=
∞∫
−∞

[
kTf +ω

]2 ‖ĝ(k,ω)‖2 dkdω

(13.92)

which is exactly the form of a least squares planar regression error
function, weighted by the image power spectrum, ‖ĝ(k,ω)‖2 [27]. The
term in brackets is the squared ω-distance between the point (k,ω)
and the plane defined by kTf = −ω. This solution shows that the local
least squares solution corresponds directly to a least squares plane
fit in Fourier domain without the need for scale-selective quadrature
filters. Using a local estimate by selecting a small image area with a
window function does not change this solution.

13.4.2 Structure tensor from quadrature filter sets

In Section 13.3.2 we pointed out that tensors are perfectly suited to
describe symmetries within local neighborhoods of spatiotemporal sig-
nals. In this section we discuss how to design optimal quadrature fil-
ters that detect both spatiotemporal orientation and wave number. We
further show, how these filters can be combined to compute the struc-
ture tensor introduced in Section 13.3.2. This section is based on the
work of Knutsson [40, 41], summarized in an excellent monograph by
Granlund and Knutsson [42] detailing the theory of tensors for local
structure analysis.

Spherically separable filters. In order to interpolate the spatiotem-
poral frequency distribution optimally from the frequency responses of
directionally selective filters, they are required to have particular inter-
polation properties. Directional filters having the necessary properties
were first suggested by Knutsson [40] for the 2-D case and further ex-
tended by Knutsson [41] for the 3-D case. He found that an optimal
filter should be polar separable, that is, the transfer function should
separate into a function of radius R and a function of direction D

Q̂(k) = R(k)D(k̄) with k = [k1, k2,ω]T (13.93)
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Figure 13.12: a Radial and b angular part of the 2-D polar separable quadra-
ture filter according to Eqs. (13.94) and (13.96) with l = 1 and B = 2 with
different peak wave numbers k0 and four directions (0°, 45°, 90°, and 125°)

Here k denotes the 3-D spatiotemporal frequency vector. The argu-
ments k = ‖k‖ and k̄ = k/k are the magnitude of k and the unit direc-
tional vector, respectively.

The radial function R(k) can be chosen arbitrarily without violating
the basic requirements. Typically, R(k) is a bandpass function with a
certain center frequency and bandwidth. Knutsson et al. [59] suggested
the following radial function:

R(k) = exp

[
−(lnk− lnk0)2

(B/2)2 ln 2

]
(13.94)

which is a lognormal function, that is, a Gaussian function on a loga-
rithmic scale. The constant B is the relative bandwidth of the filter and
k0 the peak frequency.

The following directional functionD(k̄) incorporating the necessary
interpolation properties was suggested by Knutsson [41]:

D(k̄) =
{
(k̄
T
d̄i)2l if k̄

T
d̄i > 0

0 otherwise
(13.95)

where d̄i is the unit vector pointing into the direction of the filter. The
directional function has a maximum at the filter direction d̄i and varies
as cos2l(φ), where φ is the difference in angle between an arbitrary
direction k and d̄i.

For the real even and the imaginary odd filter of the quadrature filter,
the radial part R is the same and only the directional part D differs:

D+(k̄) = (k̄T d̄i)2l
D−(k̄) = i (k̄

T
d̄i)2l sign(k̄

T
d̄i)

(13.96)

Figure 13.12 illustrates the transfer function of this quadrature filter
with different peak wave number k0 and in four directions.
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Number and direction of filters. The filters used to compute local
spatiotemporal structure have to be symmetrically distributed in the
3-D Fourier domain. It is shown in [41] that the minimum number of
filters has to be greater than 4. However, as there is no way of distribut-
ing 5 filters symmetrically in 3-D space, the next possible number is 6.
The orientations of these filters are given by the following 6 normal
vectors:

d̄1 = c [a,0, b]T d̄2 = c [−a,0, b]T
d̄3 = c [b,a,0]T d̄4 = c [b,−a,0]T
d̄5 = c [0, b,a]T d̄6 = c [0, b,−a]T

(13.97)

where
a = 2, b = (1+

√
5), and c = (10+ 2

√
5)−1/2 (13.98)

Tensor construction. From the responses of the 6 directional filters,
the structure tensor J (Section 13.3.2) can be computed. According to
Granlund and Knutsson [42], J can be obtained by linear summation of
the quadrature filter output magnitudes:

J(x) =
5∑
i=0

qiMi, Mi =
(
αd̄id̄

T
i − βI

)
(13.99)

where qi is the magnitude of the complex-valued output of the quadra-
ture filter in the direction d̄i,Mi is a tensor associated with the quadra-
ture filter i, and I is the identity tensor (matrix). The two constants are
given byα = 5/4 and β = 1/4. As the elementsMi are constant tensors,
they can be precalculated. Thus, the structure tensor can be estimated
by a weighted summation of the tensors Mi, where the weights are the
quadrature filter outputs qi.

Optical flow computation. Given the structure tensor J, the optical
flow can be computed analogously to that shown in Section 13.3.2. Af-
ter an eigenvalue analysis of the structure tensor, the corresponding
eigenvectors are pointing into the directions of minimal and maximal
brightness changes, respectively. They can be used to compute either
the normal flow f⊥ or the 2-D optical flow f depending on the distri-
bution of the eigenvalues.

13.4.3 Phase techniques

Another class of techniques, based on the work of Fleet and Jepson [20],
uses quadrature filters to estimate the local phase of the spatiotempo-
ral image. The use of phase information is motivated by the fact that
the phase component of a bandpass filtered signal is less sensitive to il-
lumination changes than the amplitude component of the filter output
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[60]. This corresponds to the fact that the phase of the Fourier trans-
form carries the essential information: an image can still be recognized
when the amplitude information is lost, but not vice versa [61].

Consider a planar spatiotemporal wave with a wave number k and a
temporal frequencyω, corresponding to a delta peak in the 3-D Fourier
domain:

g(x, t) = g0 exp [−iφ(x, t)] = g0 exp
[
−i(kTx −ωt)

]
(13.100)

This spatiotemporal signal corresponds to a planar 2-D wave, traveling
with a phase speed u, withω = kTu (Eq. (13.8)). The phase of the signal

φ(x, t) = kTx −ωt = kTx − kTut (13.101)

varies linearly in space and time. The projection fc of the 2-D velocity
u onto the wave number unit vector k̄,

fc = k̄Tu = 1
‖k‖k

Tu (13.102)

is called component velocity . It is the instantaneous motion normal to
level phase contours of a periodic structure (the output of a bandpass
filter), as opposed to normal velocity , which constitutes the velocity
component normal to the local intensity structure.

The component velocity f c is pointing parallel to the phase gradient
and can be computed by

f c = −
φt(x, t)
‖∇φ(x, t)‖

∇φ(x, t)
‖∇φ(x, t)‖ (13.103)

which can be directly verified using Eq. (13.101). Comparing Eq. (13.103)
to Eq. (13.3) shows that, in fact, the phase-based technique is a differen-
tial technique applied to phase rather than intensity. The phase-based
technique, however, allows one to estimate multiple component veloc-
ities at a single image location, compared to only one normal velocity
in Eq. (13.3). If the wave-number vectors k of the different components
are linear independent, the full 2-D optical flow can be recovered. Fig-
ure 13.13 illustrates the phase and component velocity for a simple
pattern composed of two periodical signals.

The phaseφ can be computed using a quadrature filter. As with any
complex number, the argument arg(q) of the filter output represents
the local phase of the signal:

φ(x, t) = arg(q) = arctan
q−(x, t)
q+(x, t)

(13.104)

Unfortunately, a phase computed with the inverse tangent is restricted
to the main interval [−π,π[ and jumps at the transition from −π to π



13.5 Correlation and matching 353

a b

fc
1

fc
2

f f f1 2= +c c

c

Figure 13.13: Illustration of the phase technique: a sinusoidal plaid pattern
composed of two sinusoids moving with the optical flow f ; b the two individual
components allow one to extract the corresponding component velocities f 1

c and
f 2
c , respectively. The 2-D optical flow f is reconstructed from the component

velocities; c phase images of the two sinusoidal patterns.

(Fig. 13.13c). Computing the derivative of such a discontinuous signal
would inevitably lead to errors in the velocity estimate.

Fleet and Jepson [20] found a solution to avoid this problem by di-
rectly computing the phase derivatives from the quadrature filter pair,
without prior computation of the phase. This can be performed using
the identity

∇xtφ(x, t) = q+(x, t)∇xtq−(x, t)− q−(x, t)∇xtq+(x, t)q2+(x, t)+ q2−(x, t)
(13.105)

where ∇xt denotes the spatiotemporal gradient ∇xtφ =
[
φx,φy,φt

]T .
Fleet and Jepson [20] propose to decompose the image into periodic
structures by a set of Gabor filters. From the output of these filters,
the component velocity of each bandpass filtered signal is computed
by Eq. (13.103) using Eq. (13.105) for the partial derivatives. The 2-D
optical flow is composed from these component velocities by a tech-
nique similar to the minimization procedure given in Eq. (13.68) (Sec-
tion 13.3.2). The 2-D optical flow is estimated locally by solving a lin-
ear system of equations relating the component velocities to an affine
model of optical flow (Section 13.6.1).

13.5 Correlation and matching

Differential and quadrature filter-based approaches are subject to er-
rors, if the temporal sampling theorem is violated, that is, for large
displacements of the moving pattern within two consecutive frames.
Additionally, differential approaches and most quadrature filter tech-
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niques yield biased optical flow estimates, if the illumination changes
within the temporal region of support.

Correspondence-based approaches are less sensitive to these er-
ror sources. They try to find the best match of a characteristic image
feature and the corresponding feature in the consecutive frame. Cor-
respondence techniques can be classified into region-based matching
and feature-based matching techniques, respectively. Comprehensive
overviews of feature-based matching techniques are given by Faugeras
[62] and Murray [17]. These techniques—also referred to as token track-
ing techniques—are commonly extended into 3-D space to estimate dis-
parity, recover 3-D motion (object motion and ego-motion), and to track
objects. In this section we focus on region-based matching techniques,
such as cross correlation and distance minimization.

Region-based matching techniques approximate the optical flow f
by

f (x) = s(x)
t2 − t1 (13.106)

where s = [s1, s2]T is the displacement that yields the best match be-
tween two image regions in consecutive frames g(x, t1) and g(x−s, t2).
A best match is found by either minimizing a distance measure, or max-
imizing a similarity measure, with respect to the displacement s.

13.5.1 Cross correlation

A suitable similarity measure of two image regions is given by the cross-
correlation function

r(x, s) =
〈
g(x′, t1)g(x′ − s, t2)

〉(〈
g2(x′, t1)

〉 〈
g2(x′ − s, t2)

〉)1/2 (13.107)

which has to be maximized over s. The abbreviation Eq. (13.17) has
been used in Eq. (13.107) to simplify notation. The window function
w in the terms < · > determines the size of the region to be matched.
The cross-correlation function is independent of illumination changes.
It is zero for totally dissimilar patterns and reaches a maximum of one
for similar features.

The cross-correlation function is a 4-D function, depending on both
the position x within the image as well as on the shift s. In order to
restrict the number of admissible matches and to minimize computa-
tional costs, the search range of s is restricted to a finite search window.

To speed up computations, a fast maximum search strategy has
been proposed by Jähne [13]. Assuming the cross-correlation function
r(s) to be appropriately approximated by a second-order polynomial
in s, he shows that the sm maximizing r(s) can be estimated by the
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following linear system of equations:[
rs1s1 rs1s2
rs1s2 rs2s2

][
sm1
sm2

]
= −

[
rs1
rs2

]
(13.108)

with

rsp =
∂r
∂sp

and rspsq =
∂2r
∂sp∂sq

(13.109)

The first- and second-order partial derivatives of r with respect to the
components s1 and s2 are taken at s = 0. However, the fast maximum
search according to Eq. (13.108) will fail, if r cannot be approximated
by a second-order polynomial within the search region of s. In order
to overcome this problem, an iterative coarse-to-fine strategy can be
applied. Beginning at the coarsest level of a Laplacian pyramid (Sec-
tion 4.4.3), where displacements are assumed to be in the order of
1 pixel/frame or less, maxima of r can be located within a small search
space of only 1-3 pixels. Within this region the second-order approx-
imation of r is appropriate. Subpixel displacements are successively
computed from finer levels of the Laplacian pyramid, by a quadratic
approximation of r about sm from coarser levels.

13.5.2 Distance minimization matching

An alternative approach to maximizing the cross-correlation function is
to minimize a distance measure, quantifying the dissimilarity between
two image regions. A common distance measure is given by the sum-
of-squared difference (SSD):

d1,2(x, s) =
〈
[g(x′, t1)− g(x′ − s, t2)]2

〉
(13.110)

The indices 1 and 2 refer to the time t1 and t2, respectively. Again
the abbreviation Eq. (13.17) has been used to simplify notation. Inter-
estingly, Eq. (13.110) is closely related to the approach of Lucas and
Kanade [19]. Approximating g(x′ − s, t2) in Eq. (13.110) by a truncated
Taylor expansion about s = 0 and skipping all terms above first-order
yields the gradient-based formulation Eq. (13.13).

Approaches using SSD-based matching are reported by Anandan
[63] and Singh [64, 65]. The matching technique of Anandan [63] uses
a coarse-to-fine strategy based on a Laplacian pyramid. Similar to the
maximum search for the cross-correlation function described in the
preceding, the minimization of d is initially carried out on the coarsest
level of the pyramid and then successively refined to subpixel accuracy.

An interesting extension of the two-frame matching techniques is
proposed by Singh [64, 65]. He averages the SSD of two consecutive
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pairs of bandpass filtered images, that is, three frames, to average spu-
rious SSD minima due to noise or periodic texture:

d2(x, s) = d1,2(x,−s)+d2,3(x, s) (13.111)

In a second stage, this error measure is converted into a probability
response distribution using

R(x, s) = exp
[

ln(0.95)d2(x, s)
min(d2(x, s))

]
(13.112)

The choice for an exponential function for converting error distri-
bution into response distribution is motivated by the fact that the re-
sponse obtained with an exponential function varies continuously be-
tween zero and unity over the entire range of error. Hence, finding
a minimum of d2 corresponds to maximizing the response function
R(x, s) over s. In order to avoid local maxima, Singh [65] suggests find-
ing a best estimate sm of the displacement s by computing the center
of mass of R with respect to s:

sm(x) =

N−1∑
n=0

R(x, sn)sn

N−1∑
n=0

R(x, sn)

(13.113)

where the summation is carried out over all N integer values sn within
the search window. The center of mass only approximates the maxi-
mum peak value if R is symmetrically centered about the peak. Thus, a
coarse-to-fine strategy based on a Laplacian pyramid is used to ensure
the surface of R to be centered close to the true displacement [6].

13.6 Modeling of flow fields

In all optical flow techniques detailed in this chapter, tight restrictions
have been imposed on the optical flow field f (x). All techniques that
group constraints over a local neighborhood U intrinsically assumed f
to be constant within U . In order to fulfill this prerequisite, the local
neighborhood tends to be chosen as small as possible to get a local
estimate of f . The larger the neighborhood gets, the more likely it is
that f varies within U , or that U contains multiple motions. At the
same time, U has to be chosen sufficiently large as to contain enough
information to constrain the solution, that is, to overcome the aperture
problem. This competition of requirements is commonly referred to as
generalized aperture problem [66].
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A variety of approaches use least-squares estimates (either LS or
TLS) to group Eq. (13.2) or some other relation over a local neighbor-
hood U . By using a quadratic objective function, they inherently as-
sume Gaussian residual errors, locally independent with equal variance
within U . The merit of this assumption is a fairly simple, closed solu-
tion. As soon as multiple motions (e. g., occlusion boundaries or trans-
parent motion) are present within U , the residuals can not longer be
considered Gaussian [12]. If these motions are independent, the error
distribution might even become bimodal.

These considerations show that, in fact, we have already applied a
model to optical flow computation, namely the most simple model of
constant f and independent Gaussian errors withinU . This section out-
lines two principal approaches to the forementioned problems. They
try to model more appropriately the flow field and can be incorporated
into techniques detailed so far. These approaches weaken the simple
model assumptions by modeling both smooth spatial variations in the
optical flow field as well as multiple motions.

13.6.1 Parameterization of flow fields

Parameterized flow field models assume the optical flow f (x) to be
modeled according to some parametric function in the image coordi-
nates. An appropriate optical flow technique has to estimate the model
parameters a, which include the mean optical flow, as well as spatial
derivatives of f . If the model appropriately describes the spatial varia-
tion of f within a certain area, the local neighborhood can be increased
up to this size without violating the model assumption. In fact, the local
region of support has to be increased (compared to constant f within
U ) in order to compute the model parameters reliably. The more pa-
rameters have to be estimated, the larger the local neighborhood has
to be in order to regularize the solution. At the same time the compu-
tational complexity increases with the number of parameters.

Affine optical flow field. A more complicated model of the optical
flow field assumes a linear variation of f , that is, an affine transforma-
tion of local image regions:

f (x) =
[
a1 a2

a3 a4

][
x
y

]
+
[
a5

a6

]
= Ax + t (13.114)

with

a1 = ∂f1

∂x
, a2 = ∂f1

∂y
, a3 = ∂f2

∂x
, and a4 = ∂f2

∂y
(13.115)

This model appropriately describes the underlying optical flow field
f (x), if it can be locally expressed by a first-order Taylor expansion,
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a b
c d

Figure 13.14: Elementary geometric transformations of a planar surface el-
ement undergoing affine transformation: a rotation; b dilation; c shear; d
stretching.

which is always possible for smoothly varying f (x). The size of the
local neighborhood U must be chosen such that it is small enough for
the first-order condition to hold, and simultaneously large enough to
constrain the solution.

The vector t = [a5, a6]T represents the translation of the center of
the local neighborhood and corresponds to the constant optical flow
vector f used so far. From the four components a1, . . . , a4 the four
elementary geometric transformations of the local neighborhood can
be computed (see also Eq. (16.34) in Chapter 16):

• If the optical flow field has nonzero vorticity , the local neighborhood
is subject to rotation, as illustrated in Fig. 13.14a and Fig. 13.15c.
Rotation (vorticity) can be computed from the nondiagonal elements
of A by

rot(f ) = ∂f1

∂y
− ∂f2

∂x
= a3 −a2 (13.116)

• If the optical flow field has nonzero divergence, the local neighbor-
hood is subject to dilation (Fig. 13.14b and Fig. 13.15b). Dilation
(divergence) can be computed by

div(f ) = ∂f1

∂x
+ ∂f2

∂y
= a1 +a4 (13.117)

which corresponds to the trace of the matrix A.

• The shear of the local neighborhood (Fig. 13.14c and Fig. 13.15d)
can be computed by

sh(f ) = ∂f1

∂y
+ ∂f2

∂x
= a2 +a3 (13.118)

• The stretching of the local neighborhood (Fig. 13.14d and Fig. 13.15e)
can be computed by

str(f ) = ∂f1

∂x
− ∂f2

∂y
= a1 −a4 (13.119)
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a b c

d e f

Figure 13.15: Elementary affine flow fields: a pure translation (t = [1,2]T );
b pure divergence (div(f ) = 1.0); c pure rotation (rot(f ) = 1.0); d pure shear
(sh(f ) = 1.0); e pure stretching (str(f ) = 1.0); and f example of a linear com-
bination of all elementary transformations (t = [1,2]T , div(f ) = -1.0, rot(f )
= 1.0, sh(f ) = 0.3, str(f ) = 0.8).

In order to incorporate the affine model into optical flow estimation,
we need to replace the constant flow vector f in the objective functions
of any technique by the affine flow f (x,a) = Ax + t, as illustrated in
the two following examples:

Example 13.1: Local least squares estimate.

The brightness change constraint equation Eq. (13.2) for affine flow at
the point x is given by

(Ax + t)T (∇g(x))+ gt(x) = 0 (13.120)

Thus, a local least squares estimate corresponding to Eq. (13.13) can
be obtained by the following minimization problem:

f (x) = arg min‖e‖2
2, ‖e‖2

2 =
〈[
(Ax + t)T (∇g(x))+ gt(x)

]2
�

(13.121)

with respect to the model parameters a = [a1, . . . , a6]T .

Minimizing Eq. (13.121) by standard least squares technique yields a
linear system of six equations in the six unknown parameters ofa [13].
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In order to reliably solve for all six parameters, the local neighborhood
has to be sufficiently large to contain enough information about the
spatial variation of f into all directions. For too small neighborhoods,
only the translation vector t can be estimated. Fleet and Jepson [20]
use least squares estimation together with an affine model of the op-
tical flow field to estimate the 2-D flow from component velocities
(Section 13.4.3).

Example 13.2: Region-based matching.

An affine model for the displacement vector field s(x) can also be
incorporated into region-based matching techniques. Replacing the
displacement vector s by the affine displacement s(x,a),

s(x,as) =
[
as1 a

s
2

as3 a
s
4

][
x
y

]
+
[
as5
as6

]
= Asx + ts (13.122)

as = [as1, . . . , as6]T = as(t2 − t1) (13.123)

yields the following modified sum-of-squared difference (SSD) mea-
sure Eq. (13.110):

d1,2(x,as) =
〈[
g(x′, t1)− g(x′ −Asx′ − ts , t2)

]2
〉

=
〈[
g(x′, t1)− g(Dx′ − ts , t2)

]2
〉 (13.124)

withD = I−As . Please note that the translation vector t and the matrix
A have been replaced by the mean displacement ts and the matrix As ,
which contains the spatial derivatives of the displacement s, instead
of the optical flow f (Eq. (13.122)). Minimization of Eq. (13.124) yields
a linear 6× 6 system, which has to be solved for the 6 parameters as .
An affine region matching approach based on SSD-minimization has
been proposed by Shi and Tomasi [18]. They point out that the matrix
As is hard to estimate for small image regions U because the varia-
tions of s within U are small compared to the mean displacement ts .
This, however, affects not only the parameters of As , but also causes
errors in the estimation of ts , because both parameter sets interact
in the minimization procedure. They conclude that a constant flow
model gives more reliable estimates for the translation of small im-
age regions and propose an iterative two-model approach. An initial
estimate for ts is computed by assuming As to be zero. In a second
step, the affine parameters As are estimated using the initial estimate
ts .
Other approaches based on SSD using linear deformation have been
reported in [67, 68], to mention only a few sources.

Lie group transformations. Affine flow is only one possible model
of local image transformations. A mathematical generalization of the
theory of transformations can be found by using the formalism of Lie
algebra. In fact, the affine group is a subgroup of the Lie group of
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continuous transformations. Without detailing all mathematical pre-
requisites of Lie group theory, we approach this concept in terms of
coordinate transformations from Cartesian image coordinates into gen-
eralized coordinates, and outline the practical application to optical
flow computation. A more detailed treatment of Lie algebra is found in
[50, 69].

In the following, we assume the image brightness pattern to un-
dergo a spatial transformation within a time interval δt, which can be
expressed by

g(x, t) = g(x′, t − δt) = g(S−1(x,a), t − δt) (13.125)

where S = [Sx, Sy]T defines a 2-D invertible transformation acting on
the image coordinates x:

x = S(x′,a), and x′ = S−1(x,a) (13.126)

With a = [a1, . . . , ap
]T we denote the p-dimensional parameter vector

of the transformation, which is assumed to be constant within the time
interval δt. If S is chosen to form a Lie group of transformations it is
infinitely differentiable in x and analytic in a. Applied to the image
g(x, t) at a certain time instant t, it gives a transformed image g(x′, t).
Thus, successive application of the transformation S(x,a(t)) defines
a trajectory through the sequence, along which the brightness of g re-
mains constant (although being treated as constant within δt, we allow
a to slowly vary over longer periods).

As S is analytic with respect to the parameters ai, we can expand
the coordinate transformation in a first-order Taylor series about a = 0,
assuming the transformation to be infinitesimal within the time interval
δt:

x = x′ +
p∑
i=1

ai
∂S(x′,a)
∂ai

, with x′ = S(x′,a = 0) (13.127)

where a = 0 is taken as the identity element of the transformation.
Using Eq. (13.127), we can determine how the spatiotemporal bright-

ness distribution g(x, t) depends on the individual parameters ai by
taking the partial derivative

∂g(x, t)
∂ai

= ∂g
∂x
∂x
∂ai

+ ∂g
∂y

∂y
∂ai

= ∂g
∂x
∂Sx
∂ai

+ ∂g
∂y
∂Sy
∂ai

(13.128)

In operator notation, this expression can be reformulated for anyg(x, t)
as

∂g(x, t)
∂ai

= Lig(x, t) (13.129)



362 13 Motion

with Li = ∂Sx∂ai
∂
∂x
+ ∂Sy
∂ai

∂
∂y

= ξTi ∇, and ξi =
[
∂Sx
∂ai

,
∂Sy
∂ai

]T
(13.130)

The operator Li, i ∈ {1, . . . , p}, is called an infinitesimal generator of
the Lie group of transformations in ai. As the explicit time dependency
of g in Eq. (13.125) is formulated as 1-D “translation in time” with the
fixed parameter at = 1, we can immediately infer the corresponding
infinitesimal generator to be Lt = ∂/∂t.

An image sequence g(x, t) is called an invariant function under the
group of transformations in the parameter ai, if and only if

Lig(x, t) = ∂g(x, t)∂ai
= 0 (13.131)

Thus, an invariant function remains constant if it is subject to a trans-
formation with respect to the parameter ai. Examples of such patterns
and the corresponding transformations are the translation of a pattern
with linear symmetry parallel to lines of constant brightness, or a pat-
tern containing concentric circles rotated about the center of circular
symmetry.

The set of parameters ai, i ∈ {1, . . . , p}, can be regarded as general-
ized coordinates of the transformation, also referred to as canonical co-
ordinates, spanning a p-dimensional space. The unit vector η̄i pointing
along the direction of the canonical coordinate ai is given in Cartesian
(image) coordinates by

η̄i =
∣∣∣∣ ∂x∂ai

∣∣∣∣−1 ∂x
∂ai

=
∣∣∣∣ ∂S∂ai

∣∣∣∣−1 ∂S
∂ai

(13.132)

The η̄i(x), however, are depending on the position x and are not nec-
essarily orthogonal in Cartesian coordinates (Example 13.5). For a one-
parameter transformation (p = 1), η̄1(x) is pointing into the direction
of constant image brightness. For p > 1, the direction r(x) of constant
brightness is given as linear combination of the directions η̄i(x):

r(x) =
p∑
i=1

aiη̄i(x) (13.133)

This immediately shows an important property of any Lie group of
transformations: expressed in the canonical coordinates, the total trans-
formation defined by a appears as a translation. Hence, Lie groups
of transformations extend an arbitrary spatiotemporal transformation
into a p-dimensional translation in the p canonical coordinates includ-
ing the time t.
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In a final step, we expand the spatiotemporal image at g(x, t) with
respect to the parameters ai, that is, we compose the transformation
by the set of infinitesimal transformations:

g(x, t) = g(x′, t − δt)+
p∑
i=1

ai
∂g
∂ai

= g(x′, t − δt)+
p∑
i=1

aiLig (13.134)

With the initial assumption of brightness conservation (Eq. (13.125)),
that is, g(x, t) = g(x′, t−δt), we immediately get the relation between
the infinitesimal transformations and g:

p∑
i=1

aiLig = 0, ∀x (13.135)

Equation (13.135) has to be solved for the parameter vector a. In or-
der to avoid the trivial solution a = 0, we need to add the constraint
aTa = 1, which is possible, as a scaling of a does not change the group
of transformations.

It is important to note that the solution Eq. (13.135) constitutes a
generalization of the standard brightness change constraint equation
Eq. (13.2). Due to the presence of noise, Eq. (13.135) is usually not ex-
actly satisfied. However, if we find an appropriate model for the optical
flow field, which can be expressed by a Lie group of transformations,
minimizing Eq. (13.135) with respect to the parameters a yields the
underlying optical flow field. The minimization can be carried out by
standard techniques of numerical linear algebra, such as LS and TLS
estimation, as already pointed out earlier in this chapter.

An interesting relationship between Eq. (13.135) and previous ap-
proaches can be found, if we identify the sum in Eq. (13.135) by the
scalar product

aT (∇Lg), ∇L =
[L1, . . . ,Lp

]T (13.136)

where ∇L denotes the generalized gradient . This notation obviously
constitutes a generalized extension of the spatiotemporal gradient con-
straint Eq. (13.5), which has been directly used in the structure tensor
technique (Eq. (13.39)) with a = r.

In the remainder of this section, we will illustrate how the Lie group
formalism translates into practical application with the help of three
simple examples.

Example 13.3: Static patterns

The trivial example of a flow field model is zero optical flow, that is,
the assumption of static patterns. Hence,

g(x, t) = g(x, t − δt), ∀x, t (13.137)
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The only infinitesimal generator is the temporal translation Lt = ∂/∂t,
with at = 1. Using Eq. (13.135) this yields the condition

∂g(x, t)
∂t

= 0 (13.138)

Example 13.4: Translation

Another simple example of a flow field model is a constant translation
within a neighborhood U . The corresponding coordinate transforma-
tion reads

S(x, t) = x + t (13.139)

where t = [t1, t2]T denotes the translation vector, which has to be
estimated. Letting a = [t,1]T , the infinitesimal generators can be
computed by Eq. (13.130) as

L1 = Lx = ∂
∂x
, L2 = Ly = ∂

∂y
, and L3 = Lt = ∂

∂t
(13.140)

Thus, Eq. (13.135) yields

t1
∂g
∂x
+ t2 ∂g∂y +

∂g
∂t
= 0 (13.141)

which is nothing but the standard BCCE Eq. (13.2)!

Example 13.5: Rotation

A more complicated example of a flow field model is constant rotation
within a neighborhood U . The corresponding coordinate transforma-
tion reads

S(x, r ) = [−ry, rx]T , r = 1
2

rot(x) (13.142)

With the 2-D parameter vectora = [r ,1]T , the infinitesimal generators
can be computed by Eq. (13.130) as

L1 = Lr = −y ∂
∂x
+x ∂

∂y
, and L2 = Lt = ∂

∂t
(13.143)

which yields the condition Eq. (13.135)

rx ∂g
∂y

− ry ∂g
∂x
+ ∂g
∂t
= 0 (13.144)

The unit vector pointing into the direction of the canonical coordinate
r is given by

η̄r (x) = (x2 +y2)−1/2 [−y,x]T

This vector is always pointing perpendicular to the position vector
x, corresponding to the pure rotational flow field, as illustrated in
Fig. 13.15c.
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Example 13.6: Affine flow

Finally, we are going to revisit affine flow fields in the context of Lie
group transformations. The affine coordinate transformation is given
by Eq. (13.114)

S(x,a) =
[
a1 a2

a3 a4

][
x
y

]
+
[
a5

a6

]
= Ax + t (13.145)

With a = [a1, . . . , a6,1]T , using Eq. (13.130), the infinitesimal genera-
tors can be derived as

L1 = x ∂∂x , L2 = y ∂
∂y
, L3 = x ∂∂y , L4 = y ∂

∂y

L5 = ∂
∂x
, L6 = ∂

∂y
, L7 = ∂

∂t

(13.146)

The generators for the more intuitive transformations divergence, ro-
tation, shear, and stretching can be obtained as the following linear
combinations of L1, . . . ,L4:

Ld = L1 +L4 = x ∂∂x +y
∂
∂y
, Lr = L3 −L2 = x ∂∂y −y

∂
∂x

Lst = L1 −L4 = x ∂∂x −y
∂
∂y
, Lsh = L2 +L3 = y ∂

∂x
+x ∂

∂y
(13.147)

where the indices d, r , sh, st denote the elementary transformations
‘divergence’, ‘rotation’, ‘shear’, and ‘stretching’, respectively. Thus,
the Lie group formalism automatically decomposes the flow field into
the elementary transformations, given the coordinate transformation
Eq. (13.145).

The concept of Lie groups, outlined in this section, has been suc-
cessfully used by Duc [50] for optical flow computation. Although more
general than plain translation or affine flow, Lie groups of transforma-
tions do not account for brightness variations, as the image is only
warped from the original image according to Eq. (13.125). They also
do not model multiple motions and occlusions, a problem which can
be addressed by using a robust estimation framework, which will be
outlined in Section 13.6.2.

13.6.2 Robust estimates

Optical flow estimation is corrupted for all approaches pooling con-
straints over a finite-size spatial neighborhood in case it contains mul-
tiple motions, that is, at motion discontinuities and in the case of trans-
parent motion overlay. Parameterized flow field models fail to handle
these kinds of errors if they assume a smooth spatial transition of the
optical flow field.
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a
least squares regression

b
robust regression

Figure 13.16: Illustration of a least squares regression vs b robust regression
of two independent data sets.

The basic problem results from how the local constraints are com-
bined. Least squares estimation tries to minimize the quadratic objec-
tive function

‖e‖2
2 =

N−1∑
i=0

[ei]
2 (13.148)

where ei denotes the residual error at point i. The summation is carried
out over all N points within U . The influence of any residual error on
the objective function can be computed as

∂‖e‖2
2

∂ei
= 2ei (13.149)

which shows that the objective function ‖e‖2
2 depends linearly on the

individual errors without bound. Hence, a single large error (outlier) is
sufficient to corrupt the entire least squares solution.

By using a quadratic objective function, we inherently assume the
residual errors to be Gaussian and independently distributed within the
local neighborhood U , as already pointed out earlier in this chapter.
If multiple, independent motions are present, we obtain an averaged
optical flow f . Deviations from this value at individual pixels are not
Gaussian, but rather multimodal.

In a statistical context, only a fraction of the pixels within U fits to
the model assumptions, while another fraction can be viewed as out-
liers. Thus, we need to recover the model parameters that best fit the
majority of data while outliers have to be detected and rejected. This
is the main goal of robust statistics [70], which has been increasingly
used for a variety of computer vision applications [71]. Figure 13.16 il-
lustrates the difference between standard least squares (LS) and robust
estimation for the example of linear regression. While LS regression fits
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a line to the entire cloud of data points, disregarding individual clus-
ters, robust regression techniques separate the clusters. An excellent
introduction into robust estimation which addresses its application to
the problem of optical flow computation, is given by Black and Anan-
dan [12]. They propose a unified framework to account for the different
optical flow techniques outlined in this chapter.

The basic idea of robust estimation is to replace the quadratic weight-
ing of the residuals by another analytical expression ρ(ei), which is re-
ferred to as M-estimator in statistics. The ρ-function has to be designed
to perform an unequal weighting depending on the magnitude of the
residuals. Thus, we obtain the following minimization problem:

f = arg min‖e‖ρ, ‖e‖ρ =
N−1∑
i=0

ρ(ei,σs) (13.150)

The optional scale parameter σs defines the range of residuals that are
considered to belong to the set of ‘inliers’ (as opposed to ‘outliers’). For
a quadratic ρ, Eq. (13.150) corresponds to the standard least squares
formulation.

In order to reduce the influence of outliers we search to minimize
the influence of large residual errors on ‖eρ‖. The influence of indi-
vidual residuals is characterized by the influence function ψ, which is
proportional to the derivative of the ρ-function [70]:

ψ(ei,σs) = ∂ρ(ei,σs)∂ei
(13.151)

corresponding to Eq. (13.149) for a quadratic function. In order to
be robust against outliers, ψ needs to be redescending, that is, it has
to approach zero for large residuals after an initial increase for small
values. Thus, the corresponding ρ-functions show an asymptotic be-
havior. One of the most simple ρ- functions is a truncated quadratic
(Fig. 13.17a). The corresponding influence function drops to zero be-
yond a certain threshold (Fig. 13.17b). The truncated quadratic has to
be compared to the standard quadratic with an unboundedψ-function
(Fig. 13.17a and b). Another commonly used ρ-function, proposed by
Geman and McClure [72], is given by (Fig. 13.17c and d)

ρ(ei,σ) =
e2
i

σ + e2
i
, ψ(ei,σ) = 2σei

(σ + e2
i )2

(13.152)

For practical application of the robust estimation framework to op-
tical flow computation we simply need to replace the quadratic norm
of the objective functions by a robust error norm ρ. As one example,
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a b

c d

Figure 13.17: Two examples of ρ and ψ functions: a quadratic (l2 norm)
and truncated quadratic (dashed); b derivative of the quadratic and truncated
quadratic function; c Geman and McClure norm; and d derivative of the Geman
and McClure norm [72].

the local least squares technique Eq. (13.13) can be reformulated as

f = arg min‖e‖ρ, ‖e‖ρ =
∞∫
−∞
w(x −x′)ρ

(
(∇g)Tf + gt

)
dx′

(13.153)

where ρ is a robust ρ-function. The discrete summation in Eq. (13.150)
has been replaced by a weighted integration. Likewise, all other ob-
jective functions introduced in this chapter can be transformed into
robust functions. Further details can be found in [12].

In general, robust formulations do not admit closed solutions and
have to be solved iteratively. Black and Anandan [12] use over-relaxation
techniques, such as the Gauss-Seidel method . This may be regarded as
a disadvantage of robust estimation compared to LS estimation. It also
has to be pointed out that robust techniques usually search for a dom-
inant motion within U and attach a region of support to each motion.
Although multiple motions can be iteratively found, the correspond-
ing regions are disjoint. Thus, the image area is segmented into the
individual motions, even in the case of transparency.
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As an alternative to using robust M-estimators, Danuser and Stricker
[73] propose a generalized least-squares technique to determine simul-
taneously an a priori unknown number of models and fit the data to
these models. They argue that least squares (LS) estimation has consid-
erable advantages over robust estimators, namely a significantly lower
computational complexity and the fact that it can be proven to be
the best estimator in absence of outliers and systematic errors (Gauss-
Markov conditions). Furthermore, LS estimation can be efficiently com-
plemented with error propagation (Section 13.7) by treating the input
data as realizations of stochastic variables. It is, however, not robust
enough as already pointed out at the beginning of this section.

By using generalized least squares estimation—a technique which
is also referred to as data snooping [74]—LS estimation can be made
more robust with respect to outliers. The goal is to search and elim-
inate observations that are perturbed by cross errors. The concept is
similar to robust estimation with the difference that an observation
with a significantly large residual error has absolutely no influence on
the parameter estimation. The classification of the residuals is made
based on a statistical test [73]. Förstner [68] was among the first ex-
ploiting the power of this technique for application in computer vision
and pattern recognition. Danuser and Stricker [73] present a unified
perspective of the application of generalized LS estimation to a general
class of fitting problems.

13.7 Confidence measures and error propagation

Before we turn towards a comparative quantitative analysis of the re-
sults from different optical flow techniques, we want to revisit the
availability and meaning of common confidence measures. We already
pointed out several times during the course of this chapter that any
optical flow estimation is subject to statistical and systematic errors
depending on the noise level and image content. Thus, to quantify the
reliability and precision of the results, optical flow estimation always
needs to be combined with appropriate confidence measures to quan-
tify the measurement precision.

13.7.1 General properties

Confidence measures can be classified into four principal tasks. In or-
der to interpret the results of the optical flow computation, we need
to:

1. Quantify the presence of image structure or features that allow in-
formation on motion to be obtained (as opposed to homogeneous
areas).
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2. Quantify statistical errors, such as random noise.

3. Quantify the presence of an aperture problem, which corresponds
to the degree of singularity of the solution.

4. And finally, verify the underlying model assumptions.

Any good confidence measure needs to allow for the propagation of
confidence into subsequent processing steps. There are two important
ways to accomplish this task by using either normalized measures or
covariance matrices.

Normalized measures. Normalized measures yield a real-valued out-
put ranging from zero to unity from low to high confidence. As they
are normalized, they can be directly used as weighting coefficients for
individual estimates.

For example, if we need to average a property g over a local neigh-
borhood U , we can incorporate the confidence c by using the concept
of normalized convolution [42]:

〈
g
〉
n =

〈
c · g〉
〈c〉 = W ∗ [c · g]

W ∗ c (13.154)

where W denotes an appropriate smoothing kernel. In fact, c does not
necessarily have to be normalized, as the result is normalized by the
denominator in Eq. (13.154) according to the individual weighting coef-
ficients c within U . Normalized measures, however, are convenient to
use in terms of interpretation. They quantify the confidence indepen-
dent from the image contrast or other image properties.

Another alternative is to use an unbounded confidence measure,
which can be thresholded according to some heuristic or computed
value corresponding to high confidence. The resulting binary mask
serves to mask reliable measurements or can be used as confidence in
the normalized convolution Eq. (13.154).

Covariance matrices. The concept of covariance matrices is a power-
ful tool for error propagation, which has long been used in statistical es-
timation theory. However, this concept assumes Gaussian error distri-
butions, which are not always present. If the real distribution deviates
significantly from the Gaussian assumption, we need more parameters
to parameterize it appropriately.

Let a = [a1, . . . , am]T be anm-dimensional vector representing the
measured parameters of the optical flow field. In the most simple case
of plain translation it reduces to a = f (m = 2). If we assume a to be a
random vector with a mean of a0, the covariance matrix Λa is given by

Λa =
〈
(a−a0)(a−a0)T

〉
(13.155)

where 〈·〉 denotes a statistical (ensemble) average.
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The covariance matrix represents the uncertainty in the measure-
ments. On the diagonal, it contains the variances of the individual pa-
rameters, Λaii = σ 2(ai). The off-diagonal elements contain cross errors
given by the covariance of the model parameters.

As the covariance matrix is symmetric, it can be diagonalized, with
the eigenvalues λ1 ≥ λ2 as diagonal elements. These eigenvalues cor-
respond to the variances of the model parameters in the principal axes
coordinate system of the parameter space. In this coordinate system,
the errors in the parameters are independent. If no aperture prob-
lem is present, we expect errors in both components of f to be of the
same magnitude. In case of an aperture problem, however, the compo-
nent perpendicular to the flow estimate is undefined. Hence, we expect
λ1 � λ2.

A more detailed analysis of the covariance matrix and its relation to
the least squares estimation can be found in [75].

From the parameters a, we want to compute a resulting set of prop-
erties b = [b1, . . . , bn]T according to the functional relationship b =
h(a). How does the covariance of a translate into the covariance of b?

A first-order Taylor expansion of h about a0 yields

h(a) = h(a0)+Dh(a0)(a−a0)+ ε(‖a−a0‖2) (13.156)

where Dh(a0) is the first-order derivative of h at a0, that is, them×n
Jacobian matrix. Using Eq. (13.156), we can find the covariance matrix
of b to be [62]

Λb =Dh(a0)ΛaDhT (a0) (13.157)

It is important to note that the relation Eq. (13.157) constitutes only a
first-order approximation resulting from the truncated first-order Tay-
lor expansion of h.

An important application of this kind of error propagation is re-
cursive least-squares estimation procedures, such as Kalman filtering
[62, 76].

With these classifications and requirements in mind we are going
to briefly revisit common confidence measures, as they have been pro-
posed for the various optical flow techniques.

13.7.2 Interrelation of common confidence measures

Although being considered different, most confidence measures are
closely related as they are motivated by the same requirements, usually
the solubility of some kind of algebraic relation. This, however, corre-
sponds to the aperture problem in disguise. We also need to know if
any structure is available. This can be easily verified by computing the
magnitude of the spatial gradient of the image. Even for techniques,
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that are missing any confidence measure, thresholding the results with
the gradient improves the overall accuracy tremendously. Although the
resulting flow field is sparse, the remaining flow vectors can be assured
to be more reliable.

In his overview of optical flow techniques, Barron et al. [6] shows
how confidence measures are obtained by the various implementations
of optical flow techniques. In the following discussion, we focus on
optical-flow-based approaches, where the interrelation of the various
confidence measures can be demonstrated. For confidence measures
of other techniques, such as correlation-based and phase-based ap-
proaches, we would like to refer to Barron et al. [77] and [6].

Structure tensor technique. Confidence measures for the structure
tensor technique have been detailed in Section 13.3.2. They constitute
normalized measures quantifying both the overall certainty the pres-
ence of an aperture problem.

Local least squares technique. Confidence measures for the local
least squares approach have been defined by Barron et al. [6] and Si-
moncelli [27]. Both try to quantify the singularity of the matrix A in
Eq. (13.16) by analyzing the eigenvalues of A. While Simoncelli [27]
proposes to threshold the sum of eigenvalues (trace of the matrix A),
Barron et al. [6] argue that the smallest eigenvalue proved to be more
reliable in practical implementations. How are both measures related?
In the following discussion we show that both measures are comple-
mentary and can be used in combination to obtain more information
about the sources of errors.

In terms of local symmetry, the matrix A in Eq. (13.16) constitutes
the structure tensor of a 2-D subspace of the spatiotemporal neighbor-
hood and represents local orientation in 2-D images [38, 41]. Thus, it
contains information about the presence of an aperture problem, as
well as information about the presence of any structure at all. The
trace of A is nothing but the squared gradient of the image and quan-
tifies the presence of image structure, as opposed to constant bright-
ness. The trace of a matrix stays invariant under orthogonal coordinate
transformations. Thus, the sum of eigenvalues of A can be computed
beforehand without explicitly solving the eigenvalue problem. This al-
lows regions of low confidence to be identified before the computations
have to be carried out. Hence, the confidence measure of Simoncelli [27]
is perfectly suited to threshold the image before carrying out further
computations. The same kind of measure has been used to perform
an initial thresholding in the 3-D structure tensor technique [44] (Sec-
tion 13.3.2).

For the remaining image points, we need to identify regions of ap-
parent aperture problem. This can be done by analyzing the smallest
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eigenvalue of the 2-D structure tensor, that is, the eigenvalue of the
matrix A, as suggested by Barron et al. [6]. If the smallest eigenvalue is
close to zero, then the aperture problem persists within U . Rather than
thresholding the smallest eigenvalue, as suggested by Barron et al. [6],
we can compute the local orientation, that is, the difference of the two
eigenvalues, normalized to the sum of the eigenvalues [13, 21]. This
corresponds to the spatial coherency constraint of the 3-D structure
tensor technique (Section 13.3.2).

Both measures, based on the spatial gradients, do not allow for prob-
lems, such as isotropic noise, fast accelerations, and occlusions to be
identified. They can be identified by using the total coherence measure
of the 3-D structure tensor technique (Section 13.3.2). In order to de-
tect these violations of the model assumptions, the local least squares
technique needs to analyze the residual errors (Eq. (13.23)).

Second-order technique. For the second-order technique of Uras et al.
[31], Barron et al. [6] propose a confidence measure by analyzing the
spatial Hessian matrix. They suggest thresholding the determinant
det(H). As we have shown in Section 13.3.1, the determinant becomes
zero in case of an aperture problem (Eqs. (13.28) to (13.29)). It also van-
ishes in case of homogeneous brightness, that is, if all spatial gradients
are zero.

Uras et al. [31] initially suggested using the condition number of
the Hessian κ(A) ≥ 1 as confidence measure. This corresponds to the
relative magnitude of the eigenvalues of the matrix H and also quanti-
fies the relative distribution of gradients within a local neighborhood,
that is, the presence of an aperture problem. The condition number
represents the elongation of the hyperellipsoid , spanned by the two
eigenvalues as principal axes. A condition number of 1 represents a
well-conditioned matrix, that is, no aperture problem. If κ(H) is large
the matrix is ill-conditioned , that is, singular.

Barron et al. [6] found, however, that det(H) gives a more reliable
measure than κ(H).

13.8 Comparative analysis

This section tries to compare some of the previously introduced meth-
ods for optical flow computation. First of all it has to be noted that all
algorithms have specific parameters that can be fine tuned to the given
image data. This makes comparison rather difficult. Here a straight-
forward approach is chosen in that for each method a fixed parameter
set is used regardless of the image content. Thus the results may not
be optimal but can be used to compare across various types of input
material. However, we believe that a method’s sensibility to the param-
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eter choice is also a relevant criterion if it is to be used in practical
applications.

13.8.1 Test data

The test data used comprise computer-generated synthetic sequences,
synthetic sequences with real world texture, and real, camera recorded,
sequences. With the chosen material we try to capture some commonly
encountered classes of problems.

Synthetic test sequences. To allow for a comparison of estimated
and exact flow fields some synthetic sequences were used. Firstly we
generate some test data so that parameters such as magnitude and
direction of the flow fields can be controlled. Secondly we use some se-
quences provided in the literature that are generated based on realistic
textures. We use four types of synthetic sequences, an example image
of each of which is shown in Fig. 13.18:

Noise. On a uniform background of gray level 127 we added white
noise with a standard deviation of 50 gray levels. Moving sequences
are then computed from the Fourier spectra via the shift theorem
as suggested by Bainbridge-Smith and Lane [9]. The nth frame in a
sequence moving with constant velocity u is computed from

g(x,n) =
∞∫
−∞

∞∫
−∞
ĝ(k,0)exp (2π inku) d2k (13.158)

where ĝ(k,0) is the Fourier transform of the original image g(x,0).
This test pattern consists of sharp peaks in the spatial domain and
accordingly has a uniform power spectrum over the whole frequency
domain.

Sinusoidal. Like Barron et al. [7], we use a sinusoidal plaid pattern
which consists of two superposed sinusoidal plane-waves:

g(x) = sin(k1 ·x +ω1t)+ sin(k2 ·x +ω2t) (13.159)

While showing large spatial extension there are only two wavelengths
present within the Fourier spectra of these images.

Gaussian. Using a Gaussian-shaped object minimizes the trade-off be-
tween spatial and spectral extension. However, due to the low con-
trast in the outer areas this sequence does ask for reliable confi-
dence measures that restrict the flow computation to the inner re-
gions.

Grid. The grid is produced as a superposition of lines modeled with a
narrow Gaussian profile, which may be sought as the point spread
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a b c d

Figure 13.18: Generated test sequences: a noise; b sinusoidal; c Gaussian; and
d translating grid.

a b c

Figure 13.19: Diverging and translating tree sequence: a example image; b
correct translating flow; and c correct diverging flow .

function acting during image acquisition. Thus spatially rather lo-
calized structures are obtained, which in turn introduces high fre-
quencies in the spectrum. This is the typical situation that occurs
at the boundaries of moving rigid objects.

In summary, the used sequences cover a wide range of possible spa-
tial and frequency distributions and may be used as guidelines for a
classification of the image material in a given application.

Semi-synthetic sequences with realistic textures. From an image of
a tree, Fleet and Jepson [20] computed two sequences through warp-
ing with a translating and diverging flow field. This simulates camera
movement along and normal to the cameras line of sight. The origi-
nal image and the resulting correct flow fields are shown in Fig. 13.19
(/images/13/tree).

Another famous test sequence is given by the Yosemite sequence
created by Lynn Quam at SRI (Fig. 13.20, /images/13/yosemite). This
is a graphically generated sequence with the camera moving towards
the valley. The result is a mainly divergent flow field with up to 5 pix-
els/frame movement in the lower left corner—the fractal-based clouds
move left to right at 2 pixels/frame. The wide range of velocities to-
gether with occurring occlusion make this a complex scene to analyze.
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a b

Figure 13.20: Yosemite sequence: a example image; and b correct flow.

a b

Figure 13.21: Otte’s block world: a example image; and b correct flow.

Real test sequences. The ultimate test for any optical flow algorithm
is its performance on real image data. However, even though there are
many test sequences available it is usually not known what the actual
motion was. Otte and Nagel [8] provided a calibrated sequence of which
Fig. 13.21 shows image number 34 together with the actual flow field.
This sequence was recorded by a camera mounted on a moving robot
arm. The camera moves towards the scene, which is stationary apart
from the lighter block which moves to the left.

Other real sequences we employed for testing are shown in Fig. 13.22.
The Bonsai sequence (Fig. 13.22a, /images/13/bonsai) was recorded
by rotating the tree around its axis in steps of one degree. Due to nu-
merous occlusions of the small leaves this test case poses a challenging
task. The rubic sequence of Fig. 13.22b (/images/13/rubic) shows a
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a b c

Figure 13.22: Real test sequences: a bonsai sequence; b Rubic sequence; and c
taxi sequence.

Rubik’s cube rotating on a turntable. This kind of movement results in a
velocity range from 0.2 on the cube to 1.4 pixels/frame on the turntable.
Street scenes are one possible application and an example scene is given
by the Hamburg Taxi sequence (Fig. 13.22c, /images/13/taxi). Here
the taxi turns around the corner with the dark car in the lower left cor-
ner driving left to right. Furthermore, there is a moving pedestrian in
the upper left corner and a van entering the scene from the right.

13.8.2 Error measures

While there is knowledge of the actual flow fields for the synthetic data,
such ground truth is only available for real sequences taken in a con-
trolled laboratory environment. If there is knowledge about the actual
flow field fa we use four measures to describe the deviations between
this correct ground truth data and the estimated flow field f e:

Relative error. For errors in the estimated velocity magnitudes we use
the relative error:

Er = ‖ (‖f e‖ − ‖fa‖)‖‖fa‖
· 100 [%] (13.160)

This measure is particularly interesting for scientific applications where
velocities have to be measured accurately over a sometimes wide range
of magnitudes.

Direction error. Not only is the magnitude error of interest but also
how well the direction of actual and estimated flow coincides. Thus a
directional error in degrees is calculated as follows:

Ed = arccos

(
f Taf e

‖fa‖ ‖f e‖

)
(13.161)
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Angular error. If we consider a displacement vector not as a 2-D quan-

tity but as a normalized 3-D entity r̄ = [r1, r2, r3]T /
√
r 2

1 + r 2
2 + r 2

3 where

r and f are related through f = r−3 [r1, r2]T (Eq. (13.4)), it is natural
to describe an error as an angle in 3D space:

Ea = arccos
(
r̄Ta r̄e

)
(13.162)

Where r̄a and r̄e are the 3-D directions corresponding to fa and f e,
respectively. This measure has the advantage that it combines both
directional and magnitude errors simultaneously. Yet some bias is in-
troduced. As shown in Fig. 13.23a, the relation between angular and
relative error depends on speed. The angular error reaches a maximum
for a given relative error at displacements around 1 pixel/frame. The
use of Ea as error measure has also been criticized as symmetric de-
viations from the actual values do not lead to the same angular errors
[8]. This effect can also be seen in Fig. 13.23a; while there is no bias for
small displacements, the angular error is clearly higher for underesti-
mated movements with a relative error above 10 % and displacements
greater than 0.5 pixel/frame.

The relation between directional and angular error with speed is
given in Fig. 13.23b. For the same directional error the resulting angular
error is significantly higher for larger displacements. Whether there is
a positive or negative angle between estimated and actual flow has no
influence on the angular error measure.

Bias. To estimate systematic over- or under-estimation a measure of
bias is used, see also Section 14.6.1:

Eb = f
T
a(fa − f e)
‖fa‖

(13.163)

This error measure captures the deviation (including sign) between es-
timated and actual flow in the direction of the actual flow.

The described error measures yield a value at each location where
the velocity computation was successful. It is sometimes useful to view
the thus-obtained error images in order to detect problematic regions.
For comparison purposes, however, it is more convenient to compute
an average error and corresponding standard deviation over the entire
image. As Bainbridge-Smith and Lane [9] point out, this has the draw-
back that the mean error is easily dominated by a few large error values.
Thus we also report the median error value, which is not sensitive to a
few outliers.

For evaluation of the flow fields estimated on real imagery we pro-
ceed as follows. Otte’s block world sequence was taken under a con-
trolled environment. Thus the actual flow field can be computed from
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Figure 13.23: Angular error measure as a function of the displacement: a for
different relative errors; and b with varying directional error.

geometric camera calibration and the errors are computed as already
stated. For the remaining real sequences (Fig. 13.22) no ground truth
data is available. In order to compare different algorithms on this
test data we use an error measure calculated from warping the im-
age, see Chapter 9, for which the flow was computed with the esti-
mated flow field. The difference between a thus-obtained warped image
g′(x) = W(g(x),f (x)) and the original image g(x) is parameterized
by the root mean square error (rms):

Erms =
√〈
(g(x)− g′(x))2〉 (13.164)

Here 〈·〉 denotes averaging without windowing, where the averaging in
this case is done only on those areas where the optical flow computation
was successful. Hence the density of the calculated flow should also be
taken into account when algorithms are compared to each other. We
thus obtain a scalar quantity parameterizing the difference between
original and warped image. This difference stems from both errors in
the optical flow estimate and errors introduced through the warping
procedure.

Lin and Barron [78] show that Erms and the angular error Ea are well
correlated. They compared various forward and backward interpola-
tion schemes and conclude that backward bicubic spline interpolation
with smoothed flow fields is one of the best methods. For the experi-
ments reported in what follows, the 2-D binomial operator of 8th order
B8
xy is used to smooth the calculated flow fields.

This kind of error measure does have a significant drawback in that
different absolute errors will result in different error values depend-
ing on the image content. Small displacement deviations lead to larger
gray-value differences in areas with a high spatial gradient. To mod-
erate this effect the difference between the two images is weighted by
the magnitude of the spatial gradient. This leads to a normalized rms
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error measure:

Enrms =
√〈

(g(x)− g′(x))2
||∇g||2

�
(13.165)

Again averaging is done only over pixels where the flow computation
succeeded.

13.8.3 Comparison of methods and parameters

For an overview the following algorithms are used with the specific
parameters stated here. Apart from the structure tensor the imple-
mentation uses the code provided by Barron et al. [6]; the choice of
parameters is also strongly guided by theirs. In particular the amount
of presmoothing and the filter kernels are similarly chosen. Unless
otherwise stated, differentiation is done via four-point differences us-
ing the mask: 1/12 [−1,8,0,−8,1]. Doing so, the differences between
the various approaches are not obscured by the numerical accuracy of
various differentiation kernels.

However, it is not obvious how a choice of filter kernel and the mask
size used for matching are correlated. As all generated test sequences
show homogeneous translational movement, increasing filter support
and matching mask size yield better results. However, this is not usu-
ally the case in real applications and the choices used here are a com-
mon trade-off between necessary filter support and averaging over too
large areas. In a certain application other choices of parameters will
most likely yield better results. Here the intention is to compare some
methods on common test data, not to fine-tune each method.

Differential techniques. For a detailed description of differential tech-
niques see Section 13.3.1.
Local least squares (lucas, /software/13/lucas) as introduced by Lu-
cas and Kanade [19] is used on images presmoothed with a Gaussian
of standard deviation 1.5 pixel sampled to three standard deviations.
To distinguish between normal and 2-D flow a threshold on the lower
eigenvalue of 1.0 is used; see also Section 13.7.2.
Second-order optical flow (uras) is computed following Uras et al. [31].
Images are presmoothed with a spatial Gaussian of standard deviation
3.0 and a temporal Gaussian of standard deviation 1.5 pixel. A thresh-
old of 1.0 on the spatial curvature, that is, the determinant of the Hes-
sian matrix Eq. (13.27), is used to exclude unreliable measurements.
The global smoothness constraint Eq. (13.33) described by Horn and
Schunk [10] (horn, /software/13/horn) is used with the influence pa-
rameter in Eq. (13.31) chosen to be λ = 0.5. Presmoothing is done by a
Gaussian with spatiotemporal standard deviation of 1.5 pixel and maxi-
mal 100 iterations are run. This iteration is performed only on locations
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where the spatial gradient exceeds a value of 5.0.
Oriented smoothness (nagel) as another global constraint method ([29])
is used with the parameter δ in Eq. (13.35) controlling the influence
of the oriented smoothness term set to δ = 1.0. Presmoothing and
thresholding of the spatial gradient is done identically to the global
regularization described previously. The number of iterations is also
fixed to 100.

Tensor-based technique (tensor). The method is described in detail
in Section 13.3.2 ([see also 44], /software/13/tensor). Instead of a
sampled Gaussian a binomial operator is used for presmoothing, in
particular we use the 8th-order operator B8

xyt . Averaging in the ten-
sor itself (Eq. (13.44)) is done via a 4th-order binomial. Only pixels
where the trace of the tensor exceeds 25 and the coherence measure
Eq. (13.64) is above 0.9 are used.

Phase-based method (fleet). The algorithm developed by Fleet and
Jepson [20], outlined in Section 13.4.3 is used as an example phase-
based optical flow estimator. Again, spatiotemporal presmoothing with
a Gaussian of standard deviation 1.5 pixel is done prior to any subse-
quent processing (2.5 pixel yields better results but needs more tem-
poral support). A linear velocity model is fitted in a 5×5 window to
the calculated component velocities Eq. (13.102) using a standard least
squares technique. The thus-obtained 2-D estimates are only accepted
if the condition number of the linear equation system is less than 10.0
and the residual error of the fit remains below 0.5.

Correlation techniques. Both matching techniques considered here
use the sum-of-squared-differences (SSD) Eq. (13.110) as distance mea-
sure, see Section 13.5.2. Anandan [63] (anandan) employs a coarse-to-
fine strategy on the Laplacian pyramid where we use four levels for the
reported results. The relaxation to search for the minimum of the SSD
is done on a 5×5 correlation window with 15 iterations.
Second, we use the method reported by Singh [64] (singh). The first
SSD as defined in Eq. (13.111) is computed with a window size of 5×5.
The center of mass for the probability response Eq. (13.112) is then
computed from Eq. (13.113) on a 5×5 search window.

13.8.4 Results from generated synthetic data

We first report the results on the image sequences shown in Fig. 13.22,
where we vary speed, direction, and artificial noise added to the images.

Total least squares vs least squares. Figure 13.24 shows a compar-
ison of the least squares approach of Lucas and Kanade [19] and the
total least squares (structure tensor) technique operating on the noise
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Figure 13.24: Comparison of total least squares and least squares on the noise
sequence: a relative error dependent on speed and noise; and b directional
error dependent on direction and noise (displacement magnitude fixed at 0.4
pixel/frame).

sequence (Fig. 13.22a). Without additional noise both perform equally
well. When adding noise of increasing standard deviation to the im-
ages the total least squares method turns out to be more robust. Mainly
for small displacements (<0.1 pixel/frame), the relative error increases
slightly less for the total least squares approach. However, the benefit
of using total least squares becomes more evident for the directional
error as shown in Fig. 13.24b, where a relatively larger displacement of
0.4 pixel/frame is used. In this case differentiation for both methods
is done via the isotropy-optimized Sobel filter, see Section 13.3.4.

Errors in dependence of the velocity magnitude. Figure 13.25 shows
the performance of the various approaches with increasing speed on
the sinusoidal, Gaussian, and grid test patterns (Fig. 13.18b,c,d). No
results for the phase-based method by Fleet are given, because it does
not yield flow fields on these test images with the specified parameters.
While both first- and second-order differential techniques yield good re-
sults for subpixel displacements, this is not the case for the matching
methods (singh, anandan). With velocities closer to the temporal sam-
pling limit the differential methods quickly degrade while the matching
methods still recover the motion approximately. In particular, Singh’s
method captures integer pixel displacements accurately, the decrease
in accuracy for movements exceeding 4 pixel/frame is due to the im-
plementation where an upper limit on the displacement of 4 pixels is
set within the matching procedure.

The results on the moving Gaussian (Fig. 13.25b) further indicates
the usefulness of measures to distinguish between 2-D and normal flow.
In particular the global smoothness methods (horn, nagel) integrate the
unreliable velocity estimates from the low contrast outer regions, which
reduces overall accuracy. This also accounts for the large errors for
the second-order technique (uras), not reported in Fig. 13.25b, when no
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Figure 13.25: Error in dependence of the velocity magnitude: a relative error
for the sinusoidal; b angular error for the Gaussian; c relative error for the
translating grid; and d directional error for the translating grid.

threshold on the curvature is set. Applying a threshold of 1.0 as in the
other examples leaves no areas where the flow is computed.

On the grid sequence similar effects can be observed. The match-
ing techniques are unable to capture subpixel motion; however, they
perform better for integral pixel displacements than the differential
methods. Nonlocal methods (horn, nagel) have no means to decide
if 2-D or normal velocities are computed. This leads to large differ-
ences between estimated and actual flow fields in this case, as the lines
between the crossings suffer from the aperture problem. This is es-
pecially problematic in the auter regions where no crossing is close
enough to be integrated. The resulting flow fields then show the nor-
mal flow as becomes evident from Fig. 13.26. Figure 13.25c also shows
how a threshold on the gradient enables a selection of more reliable
flow estimates.

Errors in dependence of the direction of the motion. Figure 13.27
shows the performance of the various approaches with changing di-
rection of the moving sinusoidal test pattern, where the magnitude of
the movement is set to 1 pixel/frame. It is remarkable that all meth-
ods show no dependence on the direction of movement apart from the
fact that all yield best results in x- and y-direction. In this case the
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Figure 13.26: Estimated flow fields on the translating grid sequence for a dis-
placement of 0.6 pixel/frame: a nagel; b singh; c horn; d uras; e tensor; and f
lucas.

second-order method by Uras et al. [31] performs best, as will be seen
in due course; this can be attributed to the nature of the test case. To
be specific we have pure translational motion where the assumption of
gradient conservation holds (Eq. (13.24)).

Errors in dependence of additional noise. To analyze the robust-
ness of various algorithms with respect to additional noise in the im-
ages, white Gaussian noise of increasing standard deviationσn is added
to the sinusoidal test pattern. The movement occurred with velocity
u = {0.47,0.88} pixel/frame. The relative and directional errors are
shown in Fig. 13.28. All methods show nearly the same accuracy de-
cline, which is quite large between no noise and noise of standard de-
viation 2 (note the logarithmic scale in Fig. 13.28). As noted before
the phase-based method does not yield velocity estimates on this se-
quence for sensible threshold values; lowering these thresholds obvi-
ously forces the method to produce some flow fields. The result is
reported in Fig. 13.28 with a significant performance penalty.
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Figure 13.27: Error in dependence of the velocity direction for the moving
sinusoidal pattern: a relative error; and b directional error.
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Figure 13.28: Error in dependence of additional noise for the sinusoidal test
pattern: a relative error; and b directional error.

13.8.5 Results from realistic textures

Results on the translating and diverging tree and Yosemite sequences
are given in Tables 13.2–13.4.

For the translating tree sequence (Fig. 13.19b) we obtain a similar re-
sult to that reported in the preceding, considering the fact that the mo-
tion is translational with a displacement close to 2 pixel/frame. Thus it
is no surprise that the matching techniques (Anandan, Singh) also pro-
vide relatively good estimates. As before, the differential techniques
give best estimates, yet it has to be pointed out that they yield only ap-
proximately half the density of the matching techniques. As differential
methods reject any flow calculation on the homogeneous background
their superiority can in this case be attributed to their ability to reject
unreliable estimates. Interestingly, a simple threshold on the gradi-
ent magnitude, as done for the global smoothness constraint method
(horn), is sufficient here. Doing so for the oriented smoothness method
(nagel) also boosts the performance of this method significantly as re-
ported by Barron et al. [6].
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Table 13.2: Results on the translating tree sequence; the values in parentheses
are the median errors

Er Ed Ea Eb

A (100 %) 7.8(6.4)±6.0 3.6(2.8)±3.1 4.1(3.6)±2.6 -0.02(-0.03)±0.19

S (100 %) 3.8(2.7)±3.6 0.6(0.4)±3.9 1.2(0.8)±2.6 -0.02(0.00)±0.12

F (17.4 %) 3.9(1.1)±11.1 3.0(0.3)±11.8 3.0(0.3)±10.5 0.06(-0.01)±0.30

U (38.2 %) 0.9(0.7)±0.7 0.4(0.3)±0.4 0.5(0.4)±0.3 0.00(0.00)±0.02

N (100 %) 7.1(2.8)±10.9 2.1(1.1)±2.8 3.1(1.5)±4.5 0.12(0.04)±0.24

L (46.0 %) 1.4(1.0)±1.5 0.6(0.3)±0.7 0.6(0.4)±0.7 0.00(0.00)±0.04

H (53.2 %) 4.3(1.9)±6.6 1.4(0.8)±2.0 1.9(1.0)±2.4 0.07(0.03)±0.14

T (69.8 %) 1.4(1.1)±1.4 0.5(0.2)±0.7 0.6(0.4)±0.7 -0.02(-0.02)±0.03

Table 13.3: Results on the diverging tree sequence; the values in parentheses
are the median errors

Er Ed Ea Eb

A (100 %) 28.9(18.0)±78.2 17.6(9.9)±16.2 10.0(8.9)±6.0 -0.01(-0.01)±0.19

S (100 %) 26.2(20.0)±30.3 16.4(11.2)±18.5 10.2(8.9)±6.6 -0.02(-0.04)±0.18

F (32.2 %) 3.1(1.5)±6.0 2.3(1.1)±4.5 1.4(0.9)±1.6 0.00(0.00)±0.04

U (53.0 %) 8.9(6.8)±8.7 5.4(4.0)±6.4 3.8(3.5)±2.1 0.00(0.00)±0.07

N (100 %) 7.4(4.1)±17.0 4.6(2.3)±9.1 2.8(1.9)±3.2 0.02(0.01)±0.09

L (54.4 %) 5.5(2.9)±13.2 3.6(1.6)±8.9 2.0(1.5)±2.0 0.00(0.00)±0.04

H (53.5 %) 5.5(2.6)±13.3 3.8(1.9)±8.5 2.2(1.5)±2.3 0.02(0.01)±0.06

T (59.8 %) 5.4(2.6)±13.9 3.6(1.7)±7.6 2.1(1.5)±2.1 0.00(0.00)±0.04

Again the second-order method (uras) gives excellent results, even
though with slightly less density than the other differential methods
(lucas, tensor). Phase-based motion estimation (fleet) also yields good
flow fields, even though at a smaller density. This can be seen as a
general feature of this method: good but very sparse estimation.

Another interesting point to note is the large difference between
mean and median error measures both for the phase-based (F), oriented
smoothness (N) and global smoothness (H) methods. This suggests
that they could yield better results if either a better, or just some way
at all, could be found to remove unreliable estimates. Looking at the
bias Eb it is noticeable that the same methods show some bias towards
overestimating, which again is not the case for the median values.

For the diverging tree sequence (Fig. 13.19c) the situation presents
itself a bit differently. Due to the divergent flow field the movements in
the image center are far smaller than in the outer regions. As a result all
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Table 13.4: Results on the Yosemite Sequence. The values in brackets are the
median errors.

Er Ed Ea Eb

A (100 %) 42.9(25.6)±70.6 26.4(10.8)±37.7 19.7(12.9)±21.7 0.11(-0.06)±1.06

S (100 %) 25.6(15.0)±27.7 15.8(6.3)±28.8 11.5(7.5)±15.0 0.17(0.04)±0.54

F (30.6 %) 9.4(3.5)±17.3 8.3(1.8)±26.8 5.3(1.4)±14.3 0.10(-0.04)±0.47

U (14.5 %) 14.1(6.9)±36.0 12.0(2.9)±33.4 7.6(2.6)±19.6 0.14(0.01)±0.57

N (92.2 %) 27.4(13.0)±48.8 14.1(6.1)±22.6 12.7(6.2)±16.7 0.13(0.05)±0.91

L (39.8 %) 9.4(4.1)±19.8 6.8(1.8)±22.6 4.5(1.8)±12.2 0.06(0.00)±0.37

H (32.9 %) 11.7(5.2)±22.3 8.2(2.6)±23.3 5.5(2.0)±11.3 0.12(0.01)±0.37

T (62.2 %) 27.4(5.4)±62.3 7.9(2.2)±20.1 7.4(2.2)±13.3 -0.26(-0.01)±1.22

T2 (38.0 %) 18.8(3.7)±48.7 4.6(1.7)±8.4 4.9(1.6)±8.4 -0.20(-0.02)±0.86

of the compared methods yield less accurate flow fields. In particular
the matching methods (A, S) yield far worse results, as they can not
reliably determine subpixel displacements.

Best results on this sequence are obtained with the phase-based
method (F). Yet again only a smaller subset of the images is used, in
particular the more difficult inner regions are omitted.

As already mentioned, the second-order differential method (U)
yields less accurate flow fields in this case as the underlying assump-
tion of gradient conservation does not hold any more. Interestingly,
the density of the calculated flow is higher on the diverging than on
the translating tree sequence for this method. Warping with a diver-
gent flow field introduces some additional curvature into the image.

The global oriented smoothness (N) method also yields excellent
results on the diverging tree sequence, taking into account that a 100 %
dense flow field is computed. The other differential methods (L,H,T) all
yield almost identical error and density values.

Table 13.4 gives the results on the Yosemite sequence (Fig. 13.20).
Here we observe relatively poor performance of all investigated algo-
rithms, which may in part be attributed to the amount of temporal alias-
ing present in the sequence. Another difficulty with this sequence is the
sky-mountain boundary, which introduces errors if averaged across.

In order to analyze the reasons why the various methods fail we
show some of the relative error maps in Fig. 13.29. As mentioned here,
the matching techniques are typically more robust to temporal aliasing;
however, there are also large areas with slow dilational motion, which
causes these methods to fail (Fig. 13.29). In particular, Singh’s method
accurately captures the motion, of the clouds where there is severe
temporal aliasing. The fractal-based clouds do also change their shape
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Figure 13.29: Relative error on the Yosemite sequence, the error range
{0,100}[%] is mapped to the gray-value range {100,255}. Areas where no
velocity was computed are left black: a horn; b singh; c nagel; d tensor; e lucas;
and f fleet.

as they move, thus the rigidity assumption underlying all presented
methods is violated. Under such circumstances matching methods are
superior to differential approaches. As can be seen from Fig. 13.29c,d it
is the sky where both the oriented smoothness (nagel) and the structure
tensor produce erroneous flow fields. This also reflects itself in the
median errors for these two methods.

On the Yosemite sequence the least squares method (lucas) and the
phase-based method (fleet) perform best. This is due mainly to the fact
that they manage to detect critical areas and, accordingly, exclude them
from the flow computation (Fig. 13.29e,f). On this sequence the tensor
method can also be made more accurate by rejecting regions without
apparent linear motion (see Eq. (13.63). The results when requiring all
eigenvalues to be greater than 0.03 are reported as T2 in Table 13.4.

Image sequences, such as the Yosemite sequence, require a coarse-
to-fine strategy if dense flow fields are to be computed reliably. Such
a multiscale extension of the least squares approach is presented in
Chapter 14.

Real image data. Error measures on the calibrated sequence of
Fig. 13.21 are given in Table 13.5. The overall picture does not change,
the differential techniques clearly outperform the matching techniques.
This is not only due to the forced 100% density of the matching ap-
proaches as a comparison with the oriented smoothness method (N)
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Table 13.5: Results on Otte’s block world (for image 34); the values in paren-
theses are the median errors

Er Ed Ea Eb
A (100 %) 25.3(16.4)±30.5 17.8(11.2)±21.5 14.4(11.5)±11.6 0.05(0.04)±0.37

S (100 %) 21.6(13.3)±26.8 20.0(11.9)±29.2 14.9(10.9)±14.3 0.12(0.06)±0.40

U (33.6 %) 4.2(2.2)±12.5 4.4(4.0)±5.0 3.6(3.1)±3.6 -0.01(-0.01)±0.12

N (96.2 %) 16.1(7.2)±34.1 8.2(4.7)±13.0 7.5(4.4)±8.9 0.01(-0.01)±0.33

L (54.3 %) 6.8(3.1)±16.8 4.9(4.1)±5.8 4.2(3.4)±4.4 0.01(0.00)±0.17

H (46.0 %) 7.6(3.7)±17.5 4.7(4.1)±4.5 4.4(3.4)±42 0.00(0.00)±0.17

T (60.7 %) 10.8(4.5)±43.2 5.6(3.6)±4.0 4.9(3.1)±7.4 -0.05(-0.06)±0.38

shows. The actual motion (Fig. 13.21b) is mainly translational, which
favors the second-order technique (U) as already stated here.

The overall performance across the various methods is not very
good on this test sequence. However, this is due mainly to occlusion
as opposed to temporal aliasing as encountered in the Yosemite se-
quence. Thus we conclude that the investigated methods would need
to be extended to account for occlusion if such is present in the image
data under consideration.

From the flow fields calculated on the uncalibrated real image se-
quences of Fig. 13.22 the root mean square error Erms (Eq. (13.164))
takes the following values:

A S F U N L H T

bonsai 5.6 5.6 13.8 8.8 8.7 6.7 7.0 8.1
rubic 8.6 5.9 14.0 10.6 6.2 12.0 9.7 10.8
taxi 8.7 7.8 11.5 17.5 8.1 12.4 14.7 14.9

In comparison the normalized root mean square errors
Enrms (Eq. (13.165)) are found to be:

A S F U N L H T

bonsai 1.03 1.03 1.30 0.91 1.50 0.82 0.69 1.25
rubic 1.48 1.43 0.53 0.78 1.42 0.60 0.42 0.53
taxi 2.23 2.13 0.88 1.40 2.03 1.03 1.15 1.44

If we compare both error measures it becomes apparent that the ori-
ented smoothness method (nagel) makes fewer errors in regions with
higher gradient, in particular, at occlusion boundaries. Obviously this
was the reason to introduce the orientation term in the first place.

Apparently the phase-based method (F) also has lower normalized
error measures in comparison to the other methods. However, this
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Figure 13.30: Estimated flow fields on the rubic sequence: a horn; b singh; c
nagel; d uras; e tensor; f lucas; g anandan; h fleet; and i original image.

stems from the fact that here velocities are only computed at locations
with high spatial gradient in the first place. Considering the density of
the computed flow fields makes this method seem much less attractive.
The percentages of the images for which the flow is calculated are:

A S F U N L H T

bonsai 100 % 100 % 2.2 % 38.4 % 100 % 100 % 64.4 % 69.1 %
rubic 100 % 100 % 6.9 % 26.5 % 100 % 20.8 % 31.5 % 32.3 %
taxi 100 % 100 % 11.8 % 16.1 % 100 % 25.5 % 23.2 % 25.7 %

In general the performance characteristics remain the same as in the
preceding with the differential techniques providing the best trade-off
between accuracy and density of the calculated flow fields. This also be-
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comes evident when looking at the flow fields derived from the rotating
Rubic’s cube sequence as shown in Fig. 13.30. Obviously the foremen-
tioned absence of a means to distinguish reliable from unreliable flow
results in large errors on the background. Another point worth not-
ing is the similar structure of the flow computed at the frontal edge
of the cube for the oriented smoothness and the second-order method
(Fig. 13.30c,d). This can be attributed to the assumption of gradient
conservation common to both methods. For rotational motion as is the
case here this assumption is not valid and as a result the flow fields are
smoothed out.

Figure 13.30b,d also shows a common problem that is encountered
when matching techniques are used on areas with an aperture problem.
Looking at the frontal edge of the cube, both methods seem to produce
flow vectors almost at random. This may be attributed to the elon-
gated minimum of the distance measure at this location. Within this
minimum one location is chosen and most of the time this choice does
not correspond to the normal flow that is computed by the differential
methods in this case.

13.8.6 Summary

In general, good results on realistic data are not to be expected with-
out a means to remove unreliable estimates. Depending on the image
content, some way to distinguish normal from 2-D flow is essential for
accurate motion estimation. Obviously, in cases without an aperture
problem, such as the sinusoidal or noise test patterns, such a distinc-
tion is unnecessary.

In summary we found that the differential techniques give the best
overall performance with respect to both accuracy and density. If a
distinction between normal and 2-D flow has to be made, the local and
total least squares approaches [19, 44] are clearly favored. It seems
that the theoretical advantages of the total vs local least squares algo-
rithm only becomes apparent for low signal-to-noise ratios and small
displacements.

The second-order differential method by Uras et al. [31] performs
very well for pure translational motion over all velocities up to the tem-
poral sampling limit and regardless of the movement direction. How-
ever, for other types of motion, such as divergence or rotation, this
method should not be used.

The phase-based method by Fleet and Jepson [20] provides accurate
but rather sparse velocity fields. And the computational load for this
method is far higher than for the other compared techniques.

Matching techniques are only useful for larger displacements, in
particular for integer pixel displacements. However, in this case a dif-
ferential multiscale approach as described in the next chapter might
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still be the better choice. Between the two compared matching tech-
niques the method by Singh [64] was found to give more reliable re-
sults.
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14.1 Introduction

Images are formed as projections of the 3-D world onto a 2-D light-
sensing surface. The brightness of the image at each point indicates
how much light was absorbed by the surface at that spatial position
at a particular time (or over some interval of time). When an object in
the world moves relative to the sensor surface, the 2-D projection of
that object moves within the image. The movement of the projection
of each point in the world is referred to as the image velocity or the
motion field .

The estimation of the image motion field is generally assumed to be
the first goal of motion processing in machine vision systems. Motion
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estimation is also crucial for compression of image sequences (e.g., the
MPEG video compression standard uses motion-compensated predic-
tion). There is also evidence that this sort of computation is performed
by biological systems. As an approximation to this, computer vision
techniques typically compute an estimate of the motion field known as
the optical flow . The idea is to measure the apparent motion of local
regions of the image brightness pattern from one frame to the next. In
doing this, one is assuming that these intensity patterns are preserved
from frame to frame. As many authors have pointed out, the optical
flow f is not always the same as the motion field v (e. g., [1, 2]).

There are many methods of computing optical flow. The most com-
mon are correlation, gradient, spatiotemporal filtering, and Fourier
phase or energy approaches. Although based on somewhat different
assumptions, these approaches are closely related, and can be made
identical with proper formulation and choice of parameters [3, 4]. Cor-
relation (usually over a local window) is by far the most prevalent tech-
nique. This is presumably due to a combination of intuitive directness
and ease of hardware implementation. But a recent study by Barron
et al. [5] suggests that gradient-based implementations have been the
most accurate. In addition, the gradient solution is efficient (because
the solution can be computed analytically rather than via optimization),
and produces subpixel displacement estimates. A drawback of the gra-
dient approach is that it may only be used for small displacements.
But this difficulty can be alleviated using a multiscale coarse-to-fine al-
gorithm. This chapter provides a practical description of a Bayesian
multiscale gradient-based optical flow estimation algorithm, based on
work previously published in [4, 6, 7].

14.2 Differential formulation

Gradient formulations of optical flow begin with the differential bright-
ness constancy constraint equation [8]

∇Tg f + gt = 0 (14.1)

where∇g andgt are the spatial image gradient and temporal derivative,
respectively, of the image at a given spatial location and time (for no-
tational simplicity, these parameters are omitted). The equation places
a single linear constraint on the 2-D velocity vector f (at each point in
space and time). As such, one cannot solve for velocity without impos-
ing some additional constraint. This inherent indeterminacy is com-
monly known as the aperture problem.1 In locations where the spatial

1The expression refers to the fact that the motion of a moving 1-D pattern viewed
through a circular aperture is ambiguous. Actually, the problem is not really due to the
aperture, but to the one-dimensionality of the spatial image structure.
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gradient vanishes, the equation provides no constraint on the velocity
vector. This is sometimes called the blank wall problem.

Typically, the aperture problem is overcome by imposing some form
of smoothness on the field of velocity vectors. Many formulations use
global smoothness constraints [8], which require global optimization2.
Alternatively, one may assume locally constant velocity and combine
linear constraints over local spatial (or temporal) regions [10]. This
is accomplished by writing a weighted sum-of-squares error function
based on the constraints from each point within a small region, where
the points are indexed by a subscript i ∈ {1,2, . . .n}

E(f ) =
∑
i
wi
[
∇Tg(xi, t)f + gt(xi, t)

]2
(14.2)

where wi is a set of positive weights.
To compute a linear least-squares estimate (LLSE) of f as a function

of measurements ∇g and gt , consider the gradient (with respect to f )
of this quadratic expression

∇fE(f ) = 2
∑
∇g

[
∇Tg f + gt

]
= 2 [Mf +b] (14.3)

where

M =
∑
∇g∇Tg =

 ∑
g2
x

∑
gxgy∑

gxgy
∑
g2
y

 , b =
∑gxgt∑

gygt

 (14.4)

and all of the summations are over the patch, weighted by wi as in
Eq. (14.2). The (x, t) parameters have been omitted to simplify the
notation.

Setting the gradient expression equal to the zero vector gives the
least-squares velocity estimate

f̂ = −M−1b (14.5)

assuming that the matrixM is invertible. Notice that matrixM and the
vector b are both composed of blurred quadratic combinations of the
spatial and temporal derivatives.

Despite the combination of information over the patch, it is impor-
tant to recognize that the matrix M can still be singular. In particular,
one cannot solve for the velocity in regions of the image where the in-
tensity varies only one-dimensionally (the extended aperture problem)
or zero-dimensionally (the extended blank wall problem). In addition,
this basic formulation (where two motions can coexist within the same
local region) has difficulties at occlusion boundaries or when image
brightness changes are due to photometric effects.

2Although Weiss has recently shown that some solutions may be localized through
the use of Green’s functions [9].



400 14 Bayesian Multiscale Differential Optical Flow

Before introducing a model for uncertainty, it should be noted that
the basic gradient approach may be extended in a number of ways.
One can incorporate higher-order differential measurements (e.g., [11,
12]), or impose stronger constraints on the velocity field (e.g., affine
motion or rigid-body motion [13]). A total least-squares formulation
is given in Weber and Malik [14], although this solution is difficult to
stabilize. The least-squares combination of local constraints may be
replaced with a robust combination rule to give improved handling of
occlusion boundaries [15]. The most promising recent development are
techniques that simultaneously estimate motion and segment the scene
into coherently moving regions (e.g., [9, 16, 17, 18, 19, 20]). Finally,
gradient-based approaches have been shown to to be closely related to
visual motion processing in mammals (e.g., [3, 21, 22, 23, 24]).

14.3 Uncertainty model

Each of the quantities in Eq. (14.1) is an idealization. First, we do not
have the actual spatial or temporal derivatives, but estimates of these
derivatives that are corrupted by image noise, filter inaccuracies, quan-
tization, etc. Second, the equation is a constraint on the optical flow,
but we are interested in estimating the motion field. As explained ear-
lier, these two quantities often differ because changes in image inten-
sities can be caused by nonmotion effects.

These idealizations can be made explicit by introducing a set of
additive random variables. Define f̃ as the optical flow, and f as the
actual velocity field. The difference between these may be described
using a random variable n1

f̃ = f +n1

Similarly, let g̃t be the actual temporal derivative, and gt the measured
derivative. Then

gt = g̃t +n2

with n2 a random variable characterizing the uncertainty in this mea-
surement relative to the true derivative. We assume that the spatial
derivatives are measured more accurately than the temporal deriva-
tives, and thus the equation does not include any term for uncertainty
in these quantities.

Now the gradient constraint applies to the actual derivatives and
the optical flow vector; thus we may write

0 = ∇Tg f̃ + g̃t
= ∇Tg(f −n1)+ gt −n2

⇒ ∇Tg f + gt = ∇Tg n1 +n2 (14.6)
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This equation gives us a probabilistic relationship between the image
motion field and the measurements of spatiotemporal gradient. It ac-
counts for errors in our derivative measurements, and for deviations
of the velocity field from the optical flow. But it still assumes that the
underlying optical flow constraint is valid.

In order to make use of this formulation, we must characterize the
random variables ni in our definitions. It is desirable to choose these
probability distributions such that f may be estimated analytically (as
opposed to numerically). A common choice is to use independent zero-
mean Gaussian distributions. The right-hand side of Eq. (14.6) is a zero-
mean Gaussian random variable with variance equal to∇Tg Λ1∇g+Λ2,
where Λ1 and Λ2 are a covariance matrix and a variance corresponding
to n1 and n2, respectively. We interpret the equation as providing a
conditional probability expression

P(gt|f ,∇g)∝ exp
{
−1

2
(∇Tg f + gt)(∇Tg Λ1∇g +Λ2)−1(∇Tg f + gt)

}
Bayes’ rule may be used to write the desired conditional probability

P(f | ∇g,gt) = P(gt | f ,∇g)P(f )P(gt)
For the prior distribution P(f ), we choose a zero-mean Gaussian

with covariance Λp. This imposes a preference for slower speeds3.The
denominator P(gt) is only present for normalization purposes and
does not affect the relative probabilities. The resulting distribution
P(f |∇g,gt) is Gaussian

P(f |∇g,gt)
∝ exp

{
−1

2
(∇Tg f + gt)T (∇Tg Λ1∇g +Λ2)−1(∇Tg f + gt)

}
·exp

{
−1

2
f TΛ−1

p f
}

= exp
{
−1

2
f T

[
∇g(∇Tg Λ1∇g +Λ2)−1∇Tg +Λ−1

p

]
f (14.7)

− gt(∇Tg Λ1∇g +Λ2)−1∇Tg f
−1

2
gt(∇Tg Λ1∇g +Λ2)gt

}
= exp

{
−1

2
(µf − f )TΛ−1

f (µf − f )
}

3Such a preference has been suggested to play a role in human perception (e. g.,
Simoncelli [4], Weiss and Adelson [25])
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The covariance matrix Λf and mean vector µf may be derived by com-
pleting the square in the exponent

Λf =
[
∇g(∇Tg Λ1∇g +Λ2)−1∇Tg +Λ−1

p

]−1

µf = −Λf∇g(∇Tg Λ1∇g +Λ2)−1gt

The advantage of the Gaussian form is that it is parameterized by these
two quantities that are computed in analytic form from the derivative
measurements.

If Λ1 is assumed to be a diagonal matrix with diagonal entry λ1,
and the scalar variance of n2 is rewritten as λ2 ≡ Λ2, then the solution
becomes

Λf =
[

M
(λ1‖∇g‖2 + λ2)

+Λ−1
p

]−1

(14.8)

µf = −Λf
b

(λ1‖∇g‖2 + λ2)

where matrix M and vector b are defined as in Eq. (14.4), but without
the summations. Note that multiplying Λp, λ1 and λ2 by a common
scale factor will not affect the mean µf of the distribution (although it
will scale the variance).

The maximum a posteriori estimate (MAP) is simply the mean µf
because the distribution is Gaussian. This solution is very similar to
that specified by Eq. (14.3). The differences are that: (1) the addition
of the prior variance Λp ensures the invertibility of the matrix M; and
(2) the quadratic derivative terms in M and b are modified by a com-
pressive nonlinearity. That is, for regions with low contrast (i.e., small
‖∇g‖2), the λ2 term dominates the divisor of M. For high-contrast re-
gions, the λ1‖∇g‖2 term will normalize the magnitude of the quadratic
terms inM. This seems intuitively reasonable; when the contrast (SNR)
of the signal is low, an increase in contrast should increase our cer-
tainty of the velocity estimate. But as the contrast increases above the
noise level of the signal, the certainty should asymptotically reach some
maximum value rather than continuing to rise quadratically. The noise
termn2 accounts for errors in the derivative measurements. At low sig-
nal amplitudes, these will be the dominant source of error. The term
n1 accounts for failures of the constraint equation. At high contrasts,
these will be the dominant source of error.

The solution described thus far computes velocity for one point in
isolation. As described in Section 14.2, the constraint at a single loca-
tion is insufficient to uniquely specify a solution. We may therefore only
compute the component of flow that is normal (perpendicular) to the
local orientation. In the foregoing solution, the mean will be (approxi-
mately) the normal flow vector, and the width of these distributions in
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the direction perpendicular to the normal direction will be determined
by Λp. The variance in the normal direction will be determined by both
Λp and the trace of M (i.e., the sum of the squared magnitudes of the
spatial derivatives).

If normal flow (along with variance information) does not provide a
satisfactory input for the next stage of processing, then one can com-
bine information in small neighborhoods (as in Eq. (14.2)). We now need
an uncertainty model for the entire neighborhood of points. The sim-
plest assumption is that the noise at each point in the neighborhood is
independent. In practice this will not be correct. Nevertheless, as a first
approximation, if we treat the uncertainties as pointwise-independent,
then the resulting mean and variance are easy to calculate

Λf =
∑
i

wiMi
(λ1‖∇g(xi, t)‖2 + λ2)

+Λ−1
p

−1

(14.9)

µf = −Λf
∑
i

wibi
(λ1‖∇g(xi, t)‖2 + λ2)

(14.10)

where, as before, wi is a weighting function over the patch, with the
points in the patch indexed by i. Here, the effect of the nonlinearity
on the combination of information over the patch is to provide a type
of gain control mechanism. If we ignore λ2, the solution in the forego-
ing normalizes the information, equalizing the contribution from each
point in the neighborhood by the magnitude of the spatial gradient. We
will refer to this in later sections as the basic solution.

In the basic solution, information is combined over fixed size patch-
es, using a fixed weighting function. An adaptive version of this algo-
rithm could proceed by blurring over larger and larger regions (i.e.,
diffusion) until the magnitude of the variance (determinant of the vari-
ance matrix) is below some threshold. Because the variance matrix Λf
describes a 2-D shape, this could be done directionally (i.e., anisotropic
diffusion), averaging pixels that lie in the direction of maximal variance
until the variance in this direction was below a threshold.

To illustrate the solution given in Eq. (14.10), we consider the re-
sponse to a moving square. We have added a small amount of Gaussian-
distributed white noise. Figure 14.1a shows one frame of the input im-
age, along with the resulting distributions near the corner, on a side,
and in the center. In the corner, the output is a fairly narrow distribu-
tion centered near the correct velocity. The error in the mean is due to
the noise in the input. On the side, the ambiguity of the motion along
the edge (i.e., the aperture problem) is indicated by the elongated shape
of the distribution. In the center, the motion is completely ambiguous
and the resulting distribution is essentially the prior. We also show the
response for a low-contrast moving square, with the same amount of
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a

v

b

v

Figure 14.1: Output of the Bayesian algorithm in different regions of a moving
square image at two different contrasts. Each plot shows a Gaussian density
over the space of image velocities, computed using Eq. (14.10). The noise added
to both sequences was of the same amplitude.

Gaussian noise, in Fig. 14.1b. Note that the velocity distribution corre-
sponding to the corner is now substantially broader, as is that of the
edge.

14.4 Coarse-to-fine estimation

The estimation of gradients from discretely sampled image sequences
is prone to error. Some of the errors are due to poor choice of filter
kernels; we address the issue of filter kernel design in the next section.
For now, we focus on the problem of large translations. If motion from
one frame of an image sequence to the next is too large (typically, more
than 2 pixels), one cannot estimate the gradient accurately. The prob-
lem may be viewed easily in the Fourier domain, where it is evident as
temporal aliasing. Consider a 1-D signal that is moving at a constant
velocity. The power spectrum of this signal lies on a line through the
origin [26]. We assume that the spatial sampling is dense enough to
avoid aliasing (i.e., the images are spatially bandlimited before sam-
pling, at a rate above the Nyquist limit). The temporal sampling of the
imagery causes a replication of the signal spectrum at temporal fre-
quency intervals of 2π/T radians, where T is the time between frames.
This is illustrated in Fig. 14.2.
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Temporal sampling, period T

Figure 14.2: Illustration of the temporal aliasing problem. On the left is an
idealized depiction of the power spectrum of a 1-D pattern translating at speed
v . The power spectrum is distributed along the heavy line, which has a slope of
v . Temporally sampling the signal causes a replication of its power spectrum in
the Fourier domain at temporal frequency intervals of 2π/T . When the velocity
of the signal is high, the replicas of the spectrum will interfere with the filter
(gradient) measurements.

Now consider the gradient-based estimation of optical flow in the
Fourier domain. In particular, the energy function given in Eq. (14.2)
may be rewritten

E(f ) =
∑
x

∣∣∣f T∇g + gt∣∣∣2

=
∑
k

∣∣∣ĝ(k)(f Tk)+ ĝ(k)ω∣∣∣2

=
∑
k

[
(f Tk)+ω

]2 ∣∣ĝ(k)∣∣2 (14.11)

where the sum on the first line is over all image pixels and the sums
on the latter two lines are over all frequencies k. We have used Parse-
val’s rule to switch to the Fourier domain, and the fact that the Fourier
transform of the derivative operator in, for example, the x− direction
is ik1. The term in square brackets is the squaredω-distance between
the point k and the plane defined by f Tk = −ω. This equation is pre-
cisely in the form of a least-squares planar regression error function,
weighted by the image power spectrum |ĝ(k)|2! Thus, the replicated
spectra of Fig. 14.2 can confuse a motion estimation algorithm.

An important observation concerning this type of temporal aliasing
is that it affects the higher spatial frequencies of an image. In particu-
lar, for a fixed global velocity, those spatial frequencies moving more
than half of their period per frame will be aliased, but the lower spa-
tial frequencies will be left intact. This suggests a simple but effective
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approach for avoiding the problem of temporal aliasing: estimate the
velocity of a low-pass filtered copy of the image. Note that this “pre-
filter” must be quite large in spatial extent, in inverse proportion to
its small spatial-frequency extent. Given imagery that contains only a
single global motion, or a motion field that varies slowly, we could stop
our computation at this point. But typical scenes contain more com-
plex motion fields, which will not be captured by these low-frequency
estimates.

In order to get better estimates of local velocity, higher-frequency
bands must be used with spatially smaller filters. What we would like
to do is use the coarse motion estimate to “undo” the motion, roughly
stabilizing the position of the image over time. Then higher-frequency
filters can be used to extract local perturbations to the large-scale mo-
tion. Specifically, we can use higher-frequency filters to estimate opti-
cal flow on the warped sequence, and this “optical flow correction” may
then be composed with the previously computed optical flow to give a
new optical flow estimate. This correction process may be repeated at
finer and finer scales of a multiscale pyramid representation.

There are two mechanisms that one could imagine using to stabilize
the image. In an interactive setting (i.e., a biological or robotically con-
trolled visual system), the sensors can be moved so as to track a given
point or object in the scene. This action reduces the image velocity of
the object to zero.

Alternatively, in image-processing situations, where the image-gath-
ering has already occurred, we can warp a spatially and temporally
localized region of the image content in a direction opposite to the
computed motion. For our purposes, we compute the warped image
sequence

W{g,f}(x, t +∆t) = g(x − f∆t, t +∆t)
where f is the warp vector field corresponding to the velocity esti-
mated from the coarser scale measurements. Note that the warping
only need be done over a range of ∆t that covers the temporal extent
of the derivative filters that will be applied.

We will concentrate on the warping approach here, although many
of the observations apply to the tracking case as well. The warping
procedure may be applied recursively to higher and higher-frequency
sub-bands. This “coarse-to-fine” estimation process is illustrated in
Fig. 14.3. This type of approach has been suggested and used by a
number of authors [10, 27, 28, 29, 30].

As described in the foregoing, in order to generate estimates at dif-
ferent scales, we can apply the differential algorithm to low-pass pre-
filters of different bandwidth. To illustrate the effectiveness of this
technique, consider a simple test pattern containing a disk of high-
frequency texture moving at a fairly high velocity. This is illustrated in
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Figure 14.3: Illustration of the coarse-to-fine approach for eliminating tem-
poral aliasing. On the left is an idealized illustration of the (aliased) power
spectrum of the signal. A low-frequency sub-band is used to estimate the mo-
tion of this signal. These estimates are then used to “undo” the motion, leaving
a smaller, unaliased residual motion (shown on the right—note that the spec-
trum lies on a line of smaller slope). This motion may then be estimated using
higher-frequency derivative filters.

a
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c

 

Figure 14.4: a The stimulus, a rapidly moving disk containing fine-scale texture;
b optical flow computed, direct gradient algorithm; c optical flow computed
using coarse-to-fine gradient algorithm. The single dots correspond to optical
flow vectors of length zero.

Fig. 14.4. A local operator attempting to compute motion in the center
of the disk would fail. But the multiscale algorithm is able to lock onto
the coarse scale motion of the disk.

As we have described, a coarse-to-fine algorithm can be used to han-
dle problems of temporal aliasing. It is also a technique for imposing
a prior smoothness constraint (see, e. g., Szeliski [31]). This basic tech-
nique does, however, have a serious drawback. If the coarse-scale es-
timates are incorrect, then the fine-scale estimates will have no chance
of correcting the errors.

To fix this, we must have knowledge of the error in the coarse-scale
estimates. Because we are working in a probabilistic framework, and
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we have information describing the uncertainty of our measurements,
we may use this information to properly combine the information from
scale to scale. We define a state evolution equation with respect to scale

f (l+ 1) = E(l)f (l)+n0(l), n0(l) ∼ N(0,Λ0)

where l is an index for scale (larger values of l correspond to finer
scale), E(l) is the linear interpolation operator used to extend a coarse
scale flow field to finer resolution, and n0 is a random variable cor-
responding to the certainty of the prediction of the fine-scale motion
from the coarse-scale motion. We assume that the n0(l) are indepen-
dent, zero-mean, and normally distributed. This type of scale-to-scale
Markov relationship has been explored in an estimation context in [32].

We also define the measurement equation

−gt(l) =∇Tg(l)f (l)+ (n2 +∇Tg(l)n1)

as in Section 14.3. We will assume, as before, that the random variables
are zero-mean, independent and normally distributed. Remember that
this equation is initially derived from the total derivative constraint
for optical flow. This equation is a bit different than the measurement
equation used in most estimation contexts. Here, the linear operator
relating the quantity to be estimated to the measurement gt is also a
measurement.

Given these two equations, we may write down the optimal estima-
tor for f (l+ 1), the velocity at the fine scale, given an estimate for the
velocity at the previous coarse scale µf (l) and a set of fine scale (gradi-
ent) measurements. The solution is in the form of a standard Kalman
filter [33], but with the time variable replaced by the scale l

µf (l+ 1) = E(l)µf (l)+ κ(l+ 1)ν(l+ 1)

Λf (l+ 1) = Λ′(l+ 1)− κ(l+ 1)∇Tg(l+ 1)Λ′(l+ 1)

κ(l+ 1) = Λ′(l+ 1)∇g(l+ 1)
∇Tg(l+ 1)

[
Λ′(l+ 1)+Λ1

]∇g(l+ 1)+Λ2

ν(l+ 1) = −gt(l+ 1)−∇Tg(l+ 1)E(l)µf (l)

Λ′(l+ 1) = E(l)Λf (l)E(l)T +Λ0

Here, κ(l) is the Kalman gain, and ν(l) corresponds to an innovations
process that represents the new information contributed by the mea-
surements at level l.

The problem with the equations given in the foregoing is that we
cannot compute the derivative measurements at scale lwithout making
use of the velocity estimate at scale l− 1, due to the temporal aliasing
problem. In order to avoid this problem, we must write ν(l) in terms
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of derivatives of the warped sequence. We rewrite ν(l) as follows:

ν(l+ 1) = −gt(l+ 1)−∇g(l+ 1) · E(l)µf (l)

= − d
dt
g
(
x + tE(l)µf (l), t

)
≈ − ∂

∂t
W{g(l+ 1),E(l)µf (l)}(x,y, t)

Thus, the innovations process is computed as the temporal derivative
of the image at scale l+1, after it has been warped with the interpolated
flow field from scale l. In order to make the solution computationally
feasible, we ignore the off-diagonal elements in Λ′(l + 1) (i.e., the cor-
relations between adjacent interpolated flow vectors).

Now the Kalman solution may be put into the alternative “update”
form by use of the following matrix identity [33]:

B−1 + CTA−1C =
[
B − BCT (CBCT +A)−1CB

]−1

The left-hand side corresponds to the inverse of the updated covariance
matrix given in the Kalman equations in the foregoing:

Λf (l+ 1) =
[
Λ′(l+ 1)−1 +∇g(∇Tg Λ1∇g +Λ2)−1∇Tg

]−1

=
[
Λ′(l+ 1)−1 + M

(λ1‖∇g‖2 + λ2)

]−1

(14.12)

Similarly, we may rewrite the updated mean vector as

µf (l+ 1) = E(l)µf (l)+Λf (l+ 1)∇g(∇Tg Λ1 +Λ2)−1ν(l+ 1)

= E(l)µf (l)+Λf (l+ 1) b′

(λ1‖∇g‖2 + λ2)
(14.13)

where the vector b′ is defined by

b′ =∇gν(l+ 1)

These mean and covariance expressions are the same as those of
Eq. (14.8) except that: (1) the prior covariance Λp has been replaced by
Λ′(l+1); (2) the vector b has been replaced by b′, which is computed in
the same manner but using the warped temporal derivative measure-
ments; and (3) the mean µf (l + 1) is augmented by the interpolated
estimate from the previous scale.

Figure 14.5 illustrates the effectiveness of this “Kalman filter over
scale.” The stimulus is a slowly moving textured disk, with noise added.
The ordinary coarse-to-fine gradient algorithm gives terrible results be-
cause the noise leads to large errors in the coarse-scale velocity esti-
mates that cannot be corrected at finer scales. The covariance-propa-
gating version defined by Eqs. (14.12) and (14.13) produces better esti-
mates (i. e., the mean vectors are closer to the actual flow), and the co-
variance information accurately indicates the more uncertain vectors.
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Figure 14.5: Example using the covariance-propagating coarse-to-fine algo-
rithm: a The stimulus, a slowly moving disk containing fine-scale texture in
the presence of additive Gaussian white noise; b optical flow computed us-
ing standard coarse-to-fine gradient algorithm; c optical flow computed using
Kalman-like coarse-to-fine gradient algorithm with covariance propagation; d
the determinant of the terminal covariance matrix, indicating uncertainty of
the estimate.

Given that the derivative measurements will fail when the image ve-
locity is too high, a more sophisticated version of this algorithm could
prune the tree during the coarse-to-fine operation. That is, we can ter-
minate the recursion at a given location (x,y, t) and level l if the inter-
polated covariance estimate from the previous scale Λ′(l) is too large.

14.5 Implementation issues

In this section we will discuss some important issues that arise when
implementing the algorithms discussed thus far.

14.5.1 Derivative filter kernels

The choice of convolution kernels used to estimate gradients can have
a substantial impact on the accuracy of the estimates [34, 35], and yet
many authors do not even describe the filters that they use. The most
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Table 14.1: First-order derivative kernels. Shown are pairs of derivative (D)
and interpolator (B) kernels of various sizes

3B 0.223755 0.552490 0.223755
3D –0.453014 0 0.453014

4B 0.092645 0.407355 0.407355 0.092645
4D –0.236506 –0.267576 0.267576 0.236506

5B 0.036420 0.248972 0.429217 0.248972 0.036420
5D –0.108415 –0.280353 0 0.280353 0.108415

6B 0.013846 0.135816 0.350337 0.350337 0.135816 0.013846
6D –0.046266 –0.203121 –0.158152 0.158152 0.203121 0.046266

common choice in the literature is a first-order difference. This type
of differentiation arises naturally from the definition of continuous
derivatives, and is reasonable when the spacing between samples is well
below the Nyquist limit. But simple first-order differences are likely to
produce poor results for the optical flow problem when applied directly
to the input imagery, especially in highly textured regions (i. e., regions
with much fine-scale content).

In the digital signal processing community, there has been a fair
amount of work on the design of discrete differentiators (see, e.g., Op-
penheim and Schafer [36]). This work is usually based on approximat-
ing the derivative of a continuous sinc function. The difficulty with this
approach is that the resulting kernels typically need to be quite large in
order to be accurate. In the computer vision literature, many authors
have used sampled Gaussian derivatives that exhibit better differenti-
ation properties than simple differences, but are less computationally
expensive than sinc functions.

We have previously described a simple design procedure for matched
pairs of 1-D kernels (a low-pass kernel and a differentiator) suitable for
gradient estimation [4, 34, 35].4 Let B̂(k) be the discrete Fourier trans-
form (DFT) of the interpolator (often called the “prefilter”), and D̂(k)
the DFT of the derivative filter. Then our design method attempts to
meet the following requirements:

1. The derivative filters must be good approximations to the derivative
of the prefilter. That is, for a derivative along the x-axis, we would
like jk1B̂(k) ≈ D̂(k), where k1 is the component of the frequency
coordinate in the x direction;

2. The low-pass prefilter should be symmetric, with B̂(0) = 1;

4Fleet and Langley have designed recursive filters for these purposes [37].
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3. For computational efficiency and ease of design, the prefilter should
be separable. In this case, the derivatives will also be separable, and
the design problem will be reduced to one dimension; and

4. The design algorithm should include a model for signal and noise
statistics (e.g., Carlsson et al. [38]).

Table 14.1 gives sample values for a set of derivative kernels and their
associated prefilters, at three different sizes [34]. These give signifi-
cantly improved performance in optical flow or orientation estimation
tasks.

14.5.2 Averaging filter kernels

The algorithm also requires averaging over a patch, which is equiva-
lent to applying a low-pass filter. We desire this low-pass filter to have
only positive weights as it will be used combine a set of squared con-
straints and should produce a positive value. There is a trade-off in
choosing the spatial extent of the filter. A large filter will produce bet-
ter power spectral estimates by combining information over a larger
region. But it is also more likely to combine inconsistent motions. The
question can only be properly settled given a knowledge of the statis-
tics of the motion of the imagery to be analyzed. We experimented
with binomial blurring filters and found that separable application of
the kernel [0.0625,0.25,0.375,0.25,0.0625] produced reliable results
without overblurring.

14.5.3 Multiscale warping

In Section 14.4, we discussed the implementation of coarse-to-fine al-
gorithms to reduce temporal aliasing. Conceptually, this approach op-
erates by using prefilters of varying bandwidths.

A more efficient technique for generating multiscale representations
is to construct an image pyramid [39], by recursively applying low-pass
filtering and subsampling operations. In this case, the images at differ-
ent scales are also represented at different sampling rates. Assuming
the low-pass filter prevents aliasing, the effect of the subsampling in
the Fourier domain is to stretch out the spectrum. This allows us to use
the same derivative filters at each scale, rather than designing a whole
family of derivative filters at different scales.

The algorithm begins by building a multiscale pyramid on each frame
of the input sequence, and computing the optical flow on the sequence
of top level (lowest frequency) images using the computation specified
by Eq. (14.10). An upsampled and interpolated version of this coarse,
low-resolution flow field must then be used to warp the sequence of
images in the next pyramid level. We used a simple bilinear interpo-
lator in this case because the optical flow is somewhat smooth due to
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the blurring operation. Optical flow is then computed on this warped
sequence, and this “optical flow correction” is composed with the pre-
viously computed optical flow to give a new optical flow estimate. This
correction process is repeated for each level of the pyramid until the
flow fields are at the resolution of the original image sequence.

The warping equation is fairly unambiguous in the continuous case.
But there are many ways in which one can implement a warping algo-
rithm on discretely sampled image data. Consider the task of warping
a frame at time t1 back to time t0. The primary issues are:

Indexing Should we use the velocity estimate at t0 or t1 (or a velocity
estimate between the frames) as the warp field? Assuming that the
velocity vectors are in units of pixels/frame, does the velocity esti-
mate at position (x, t) correspond to the displacement of intensity
at (x − f , t − 1) to (x, t), or from (x, t) to (x + f , t − 1)?

Order If our filters are several frames long and thus require warping
of several frames, should we use the velocity estimates at each of
these frames, or just the velocity estimate of the central frame?

Interpolation Given that velocity vector components are typically not
multiples of the pixel spacing, how should we interpolate the inten-
sities of the warped images?

We compared several different variants and chose a simple and ef-
ficient warping scheme. We assume an odd-length temporal derivative
filter of length 2Nt + 1, and we use a velocity field estimate associ-
ated with the center frame. Because our derivative filters are separa-
ble, we apply the spatial portion to Nt frames centered at frame O.
Let g′(x, t),−Nt ≤ t ≤ Nt be the set of spatially filtered frames. We
then combine the temporal differentiation operation with the warping
operation as follows:

g′t(x,0) =
Nt∑

t=−Nt
d(t)I

{
g′
(
x + t f̂ (x,O), t

)}

where d(t) is the temporal derivative kernel; f̂ is the previous estimate
of optical flow; and I{·} is a bi-cubic spline interpolator used to evaluate
g′ at fractional-pixel locations.

14.5.4 Boundary handling

Convolution operations are used to compute the derivative filter re-
sponses, and to blur the energies. They are also used in coarse-to-fine
schemes to construct the multiresolution image pyramid. Tradition-
ally, convolution boundaries are handled by computing circular convo-
lution. That is, the image is treated as one period of a periodic signal.
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This often produces poor results because it associates the image con-
tent near one boundary with that near the opposite boundary.

There are many alternatives for handling edges. Let h(n) be a 1-D
signal, indexed by the discrete variable n, with n = 0 corresponding to
the leftmost sample. Then we define an edge-handling mechanism (for
the left edge) by assigning a value for the function f at negative values
of n. Several example methods that we have experimented with are as
follows:

1. Reflect the image about its edge pixel (or just beyond the edge pixel):
h(−n) = h(n) (or h(−n) = h(n− 1) );

2. Imbed the image in a “sea of zeros”: h(−n) = 0, for each n > 0;

3. Repeat the edge pixel: h(−n) = h(0);
4. Reflect and invert (so as to preserve zeroth- and first-order continu-

ity): h(−n) = 2h(0)−h(n); and

5. Return zero for the convolution inner product whenever the filter
kernel overhangs an edge of the image.

For the blurring and pyramid filtering operations we have found that re-
flection (item 1) is preferable. For the derivative operations, we choose
to repeat the edge pixel (item 3).

14.6 Examples

We computed velocity field estimates for a set of synthetic and real
image sequences in order to examine the behavior of the basic (first
derivative) solution of Eq. (14.10).

14.6.1 Performance measures

In cases where the velocity field is known, we can analyze the errors
in our estimates. There are a number of ways to do this. The simplest
measure is the squared magnitude of the difference between the correct
and estimated flow

Emag2 = |f̂ − f |2

where f is the actual velocity, and f̂ is the estimate. Viewing an image
containing these values at each spatial location often provides useful
information about the spatial structure of the errors. Errors in optical
flow are sometimes reported as a ratio of the error magnitude to mag-
nitude of the actual flow, but this is problematic when the actual flow
vectors are small.
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Fleet and Jepson [40] used an error criterion based on the unit vector
normal to the velocity plane in spatiotemporal frequency

Eangular = arccos
[
ū(f̂ ) · ū(f )

]
where ū(·) is a function producing a 3-D unit vector

ū(f ) = 1√
|f |2 + 1

 f 1

f 2

1


and the resulting angular error is reported in units of degrees.

We also define a measure of bias in order to quantify characteristic
over- or under- estimation of velocity magnitudes

Ebias = f · (f − f̂ )|f |
Positive values of this measure, for example, indicate that the algorithm
is overestimating the velocity magnitude.

In situations where we have estimated velocity field covariancesΛf ,
as well as means µf , we can check that the covariance information ad-
equately describes the errors in the flow estimates. The appropriate
technique here is to normalize each of the errors according to the co-
variance information

Enormalized =
√(
f actual − f est

)T Λ−1
f
(
f actual − f est

)
If the flow field errors are exactly modeled by the additive Gaussian

noise model, then a histogram of the values of the Enormalized values
should be distributed as a 2-D univariate Gaussian integrated over its
angular coordinate

h(x)∝ xe−x2/2, x > 0

That is, a χ statistic.

14.6.2 Synthetic sequences

We generated a series of very simple synthetic test sequences to study
the error behavior of the algorithm. These stimuli involve only transla-
tion of the image patterns, and therefore fully obey (modulo intensity
quantization noise) the total derivative (Eq. (14.1)) for optical flow. Fur-
thermore, because the entire image translates with a single velocity, the
combination of information in a neighborhood is fully justified. Thus,
these examples are primarily a test of the filters used to measure the
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Figure 14.6: Velocity field estimated for a spatial impulse moving rightward at
one pixel/frame. Dots correspond to zero velocity vectors.

derivatives, and the prior probability constraint used to determine a
solution when there is an aperture or blank-wall problem. For this sec-
tion, we used only the single-scale basic gradient algorithm, and we set
the noise parameters as λ1 = 0, λ2 = 1, λp = 1e−5.

To illustrate the spatial behavior of the algorithm, we estimated the
velocity field of an impulse image moving at one pixel per frame. The
flow field is shown in Fig. 14.6. The estimated velocity is correct in the
center of the image (at the location of the impulse). The finite size of
the derivative filters (five-tap kernels were used for this example) and
the blurring of the energies leads to the situation shown, in which the
impulse drags part of the background along. The velocity surrounding
the impulse is consistent with the image intensities; because the image
is zero everywhere except at the impulse, the motion is completely
indeterminate.

Next, we examined a sinusoidal plaid pattern, taken from Barron
et al. [5]. Two sinusoidal gratings with spatial frequency 6 pixels/cycle
are additively combined. Their normal orientations are at 54° and −27°
with speeds of 1.63 pixels/frame and 1.02 pixels/frame, respectively.
The flow is computed using the multiscale algorithm. We built a one-
level Gaussian pyramid on each frame, using the following five-tap ker-
nel: [0.0625,0.25,0.375,0.25,0.0625]. Derivative filters used are the
five-tap first derivative kernels given in Table 14.1. The covariance pa-
rameters were set as follows: λ1 = 0;λ2 = 1;λp = 1e−5; and λ0 = 0.15.
One frame of the sequence, the estimated flow, and the error magnitude
image are shown in Fig. 14.7.

Also shown is a table of error statistics. The errors compare quite fa-
vorably with the mean angular errors reported by Barron et al. [5]. Our
mean angular error is an order of magnitude less than all the meth-
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a

 

b

 

c

 

Mean Emag2 1.597 · 10−4

Mean Eangular 0.2746°

St. dev. Eangular 0.300°

Mean Ebias 0.004378

Figure 14.7: Velocity field estimates for sinusoidal plaid sequence: a example
frame from the sequence; b estimated velocity field; and c error magnitude
image. Note that the error is concentrated at the boundaries, where derivative
measurement is difficult. Error statistics for this computation are given in the
table (see text for definitions).

ods examined, except for that of Fleet and Jepson [40] for which the
value was 0.03°. But Barron et al. point out that the Fleet and Jepson
results are computed with filters that are tuned for the sinusoids in the
stimulus and that for a stimulus composed of different sinusoids, the
algorithm would exhibit biases.

We also note that our algorithm is significantly more efficient than
most of the algorithms in Barron et al. [5]. For example, the Fleet and
Jepson algorithm is implemented with a set of 46 kernels. These are
implemented separably as 75 convolutions with 1-D 21-tap kernels.
Our solution requires eight convolutions (with 1-D kernels) for the first
derivative measurements with kernels that are only three or five taps
in length.

Moving one step closer to real imagery, we estimated velocity fields
for a “texture-mapped” fly-through sequence of the Yosemite valley 5.
Starting with an aerial photograph and a range (height) map of the
Yosemite valley, a sequence of images was rendered for a series of
camera positions. Photometric effects are not included in this render-
ing process; the image pixel values are interpolated directly from the
intensities of the original photograph. Thus, the sequence contains all
of the standard problem sources except for lighting effects (i.e., sin-

5This sequence was generated by Lyn Quam at SRI International.
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Mean Emag2 0.031747

Mean Eangular 3.8105°

St. dev. Eangular 7.09378°

Mean Ebias −0.01083

Figure 14.8: Results of applying the algorithm to the synthetic “Yosemite” se-
quence: a example frame from the original sequence; b correct flow field; c
estimated velocity field; and d error magnitude image. Note that errors are
concentrated near occlusion boundaries.

gular regions, temporal aliasing, and multiple motions at occlusions).
Note that we have the camera motion and the depth of each point in
the image, we can compute the actual image motion fields.

Again, we computed velocity fields using the multiscale solution.
This time, we build a three-level Gaussian pyramid. Parameter settings
were as follows: λ1 = 2×10−5; λ2 = 0.004; λp = 0.5; and λ0 = 0.15. The
results are illustrated in Fig. 14.8. We show a frame from the original
sequence, the correct velocity field, the estimated velocity field, and the
error magnitude image. Also given is a table of statistics. The statistics
do not include the points closer than 10 pixels to the border.

The results are quite accurate, with most errors occurring (as ex-
pected) at occlusion boundaries, and at the borders of the image (which
may be viewed as a type of occlusion boundary). But qualitative com-
parisons with the results of the Heeger or Fleet and Jepson algorithm
indicate that the errors near these boundaries are contained within
smaller regions near the boundaries because the support of the filters
is much smaller.
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Figure 14.9: a Image of Enormalized for the Yosemite sequence velocity estimates;
b histogram of Enormalized values; c expected distribution h(x) for this histogram
(see text).

Furthermore, the error statistics compare quite favorably to those
reported in [5]. In particular, the best result reported is that of Lucas
and Kanade, with a mean angular error of 3.55° and standard devia-
tion of 7.09°. This is almost identical to our result, but the flow vector
density is only 8.8 %. The best result reported at 100 % is that of Uras,
which had a mean angular error of 10.44°, and standard deviation of
15.00°. The values given in Fig. 14.8 are significantly lower.

To analyze the appropriateness of the noise model, we computed
an Enormalized at each point. We show this image in Fig. 14.9, along with
the histogram of values. If the flow field errors were exactly modeled
by the simple additive Gaussian noise terms, then this histogram would
be in the form of the χ statistic distribution (also plotted in Fig. 14.9).
Qualitatively, the error histogram is seen to match, suggesting that the
noise model is not unreasonable.

14.7 Conclusion

In this chapter, we described a Bayesian estimator for motion fields.
We combine differential constraints over local spatial regions (thereby
assuming a smooth motion field), and we assume a Gaussian prior prob-
ability density in which slower speeds are more likely. The output of
the algorithm is a Gaussian distribution over the space of image veloc-
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ities, at each position in the image. The mean of the distribution is a
gain-controlled modification of the basic differential optical flow solu-
tion. The covariance matrix captures directional uncertainties, allowing
proper combination of the output with other sources of information.

We developed a coarse-to-fine estimation algorithm for handling the
problem of large displacements (temporal aliasing). Here we are able
to take advantage of the uncertainty information provided by the co-
variance estimates, propagating this information using a Kalman filter
over scale. Propagation of motion fields (and their covariances) over
time has been described in [41]. We discussed the details of algorithm
implementation, and showed several diagnostic examples designed to
demonstrate the various strengths and weaknesses of the algorithm we
have developed. We generated velocity field estimates for a number of
synthetic sequences.
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15.1 Introduction

Starting with Perona and Malik’s pioneering work in 1987 [1, 2], non-
linear diffusion filtering has become a popular tool in medical imaging
[3, 4, 5, 6, 7, 8, 9] as well as many other areas; it has been used for
improved subsampling algorithms [10], postprocessing of fluctuating
numerical data [11], blind image restoration [12], computer-aided qual-
ity control [13, 14], and segmentation of textures [15, 16] and remotely
sensed data [17, 18]. In the meantime it has also entered commercial
software packages such as the medical visualization tool Analyze1.

Nonlinear diffusion filters regard the original image as the initial
state of a diffusion process that adapts itself to the evolving image.
Different adaptation strategies provide different ways to include a pri-
ori knowledge into the evolution. The embedding of the original image
into a family of gradually smoother, simplified versions of it allows non-
linear diffusion filtering to be considered as a scale-space technique.
The fact that the nonlinear adaptation may also enhance interesting
structures such as edges relates them to image enhancement and im-
age restoration methods.

The goal of the present chapter is to give an introduction to some
selected key aspects of nonlinear diffusion filtering. We shall discuss
some main ideas and study how they can be realized in practice by
choosing adequate algorithms and suitable parameters. Questions of
this type are often posed by practitioners, but are hardly addressed in
the literature. This chapter is not intended as a state-of-the art review of
the relevant literature in this area because descriptions in this direction
are already available elsewhere [19, 20].

The chapter is organized as follows. Section 15.2 presents differ-
ent nonlinear diffusion models. They comprise isotropic filters with a
scalar-valued diffusivity as well as anisotropic ones with a diffusion ma-
trix (diffusion tensor). In Section 15.3 we will be concerned with a con-
tinuous theory that establishes well-posedness and scale-space results
for most of the previous models. Section 15.4 discusses some numeri-
cal algorithms for nonlinear diffusion filtering. We shall see that these
discrete nonlinear diffusion filters can be regarded as iterated small
averaging masks where the stencil weights are adapted to the evolving
image. Section 15.5 describes a well-posedness and scale-space theory
for discrete nonlinear diffusion filters that is in complete analogy to
the continuous results.

The practically important question of how to select appropriate fil-
ter parameters is addressed in Section 15.6. In Section 15.7 some ex-
tensions are sketched, in particular, generalizations to multichannel
images. The chapter is concluded with a summary in Section 15.8.

1Analyze is a registered trademark of Mayo Medical Ventures, 200 First Street SW,
Rochester, MN 55905, U.S.A.
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15.2 Filter design

15.2.1 The physics behind diffusion

Most people have an intuitive impression of diffusion as a physical proc-
ess that equilibrates concentration differences without creating or de-
stroying mass. This physical observation can be easily cast in a mathe-
matical formulation. The equilibration property is expressed by Fick’s
law

j = −D∇u (15.1)

This equation states that a concentration gradient ∇u causes a flux j
that aims to compensate for this gradient. The relation between ∇u
and j is described by the diffusion tensor D, a positive-definite sym-
metric matrix. The case where j and ∇u are parallel is called isotropic .
Then we may replace the diffusion tensor by a positive scalar-valued
diffusivity D. In the general anisotropic case, j and ∇u are not parallel.

The observation that diffusion does only transport mass without de-
stroying it or creating new mass is expressed by the continuity equation

∂tu = −div j (15.2)

where t denotes the time. If we plug in Fick’s law, Eq. (15.1), into the
continuity equation, we end up with the diffusion equation

∂tu = div(D∇u) (15.3)

This equation appears in many physical transport processes [21]. In the
context of heat transfer it is called heat equation.

In image processing we may identify the concentration with the gray
value at a certain location. If the diffusion tensor is constant over
the whole image domain, one speaks of homogeneous diffusion, and
a space-dependent filtering is called inhomogeneous. Often the diffu-
sion tensor is a function of the differential structure of the evolving
image itself. Such a feedback leads to nonlinear diffusion filters.

Sometimes the computer vision literature deviates from the pre-
ceding notations: It can happen that homogeneous filtering is named
isotropic, and inhomogeneous blurring is called anisotropic, even if it
uses a scalar-valued diffusivity instead of a diffusion tensor.

15.2.2 Limitations of linear diffusion filtering

Let us consider a 2-D (scalar-valued) image that is given by a continuous
bounded mapping g : R2 → R. One of the most widely used methods
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a b c

Figure 15.1: a Orange, 256× 256 pixels; b linear diffusion, t = 100; c Perona-
Malik diffusion, λ = 3, t = 100.

for smoothing g is to regard it as the initial state of a homogeneous
linear diffusion process

∂tu = ∂xxu+ ∂yyu (15.4)

u(x,0) = g(x) (15.5)

From the literature on partial differential equations it is well known
that its solution is given by the convolution integral

u(x, t) =
{
g(x) (t = 0)
(K√2t ∗ g)(x) (t > 0)

(15.6)

where Kσ denotes a Gaussian with standard deviation σ

Kσ(x) := 1
2πσ 2 · exp

(
−|x|

2

2σ 2

)
(15.7)

Linear diffusion filtering is the oldest and best-studied example of a
scale-space. Usually, Witkin’s 1983 work is regarded as the first refer-
ence to the linear scale-space idea [22], but linear scale-space has al-
ready been axiomatically derived by Iijima in 1962 [23, 24]. A detailed
treatment of linear scale-space theory can be found in [25, 26, 27].

Figure 15.1a, b shows an example where an image depicting an or-
ange is filtered by linear diffusion. In spite of its excellent smoothing
properties, two disadvantages of linear diffusion filtering become ap-
parent:

(a) Semantically useful information is eliminated in the same way as
noise. Because linear diffusion filtering is designed to be uncom-
mitted, one cannot incorporate image-driven information in order to
bias the scale-space evolution towards a desired task, for instance,
edge detection; and
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a b

c d

Figure 15.2: a MR image degraded by additive Gaussian noise with zero mean,
256 × 256 pixels, signal-to-noise ratio: 1; b Perona–Malik diffusion, λ = 4, t =
25; c regularized isotropic nonlinear diffusion, λ = 4, σ = 2, t = 25; d edge
enhancing anisotropic diffusion, λ = 4, σ = 2, t = 25.

(b) Linear diffusion filtering dislocates structures when moving from
finer to coarser scales. Hence, structures that are identified at a
coarse scale have to be traced back to the original image in order to
get their correct location [22, 28]. In practice, this may be difficult
to handle and give rise to instabilities.

15.2.3 Isotropic nonlinear diffusion

Basic Idea. In order to avoid the blurring and localization problems
of linear diffusion filtering, Perona and Malik proposed a nonlinear
diffusion method [1, 2]. Their nonuniform process (which they name
anisotropic2) reduces the diffusivity at those locations that have a larger
likelihood to be edges, that is, which have larger gradients.

Let Ω denote a rectangular image domain and consider an image
g(x) : Ω → R. Perona and Malik obtain a filtered image u(x, t) as the

2In our terminology, the Perona–Malik filter is regarded as an isotropic model be-
cause it reveals a scalar-valued diffusivity and not a diffusion tensor.
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Figure 15.3: a Diffusivity D(s2) = 1/(1 + s2/λ2); b flux Φ(s) = s/(1 + s2/λ2).
From Weickert [19].

solution of the diffusion equation3

∂tu = div(D(|∇u|2)∇u) on Ω × (0,∞) (15.8)

with the original image as initial condition

u(x,0) = g(x) on Ω (15.9)

and reflecting boundary conditions (∂n denotes the derivative normal
to the image boundary ∂Ω)

∂nu = 0 on ∂Ω × (0,∞) (15.10)

Among the diffusivities they propose is

D(|∇u|2) = 1
1+ |∇u|2/λ2 (λ > 0) (15.11)

The experiments of Perona and Malik were visually impressive in
that edges remained stable over a very long time. Edge detection based
on this process clearly outperformed the linear Canny edge detector,
even without applying nonmaximum suppression and hysteresis thresh-
olding. This is due to the fact that diffusion and edge detection interact
in one single process instead of being treated as two independent pro-
cesses that are to be applied subsequently. However, the Perona-Malik
approach reveals some problems that we shall discuss next.

Forward-backward diffusion. To study the theoretical behavior of the
Perona-Malik filter, let us for simplicity of notation restrict ourselves
to the 1-D case.

3For smoothness reasons we write |∇u|2 instead of |∇u|.
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For the diffusivity Eq. (15.11) it follows that the flux function Φ(s) :=
sg(s2) satisfies Φ′(s) ≥ 0 for |s| ≤ λ, and Φ′(s) < 0 for |s| > λ (see
Fig. 15.3). As Eq. (15.8) can be rewritten as

∂tu = ∂x(Φ(∂xu)) = Φ′(∂xu)∂xxu (15.12)

we observe that (in spite of its nonnegative diffusivity) the Perona-Malik
model resembles a forward diffusion

∂tu = ∂xxu (15.13)

for |∂xu|≤λ, and the backward diffusion

∂tu = −∂xxu (15.14)

for |∂xu| > λ. Hence, λ plays the role of a contrast parameter sepa-
rating forward (low contrast) from backward (high contrast) diffusion
areas. In the same way as the forward diffusion smoothes contrasts,
the backward diffusion enhances them. Thus, the Perona–Malik model
may enhance gradients whose absolute value is larger than λ; see Per-
ona and Malik [2] for more details on edge enhancement .

The forward-backward diffusion behavior is explicitly intended in
the Perona-Malik method, as it gives the desirable result of blurring
small fluctuations and sharpening edges. Two other examples for diffu-
sivities where a contrast parameter λ separates forward from backward
diffusion are

g(s2) = exp

(
−s2

2λ2

)
(15.15)

g(s2) =


1 (s2 = 0)

1− exp
(−3.31488
(s/λ)8

)
(s2 > 0)

(15.16)

Experiments indicate that the latter example often gives more “seg-
mentation-like” results. Figure 15.1c shows an example where the last
diffusivity has been used. Its edge-enhancing potential is clearly visible
at the contours of the orange.

An obvious practical problem of the Perona-Malik filter is that it
misinterprets large gradients due to noise as semantically important
edges that it should preserve. It is thus unsuited for denoising severely
degraded images. This problem is illustrated in Fig. 15.2b.

Besides this practical problem, there is also a theoretical one. A rea-
sonable requirement for an evolution process in image analysis is that
of well-posedness, that is, the problem should have a unique solution
that depends continuously on the initial image.
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Unfortunately, forward-backward diffusion equations of Perona-
Malik type reveal ill-posedness aspects; although there are some con-
jectures [29, 30] that they might have generalized solutions4, until now
nobody was able to prove their existence. If they exist, there is evidence
that their steady states do not depend continuously on the original im-
age [31].

However, the practical behavior of finite difference approximations
is much better than one would expect from the forementioned theory:
One can easily calculate a discrete solution for all times, and this solu-
tion converges to a flat image for t → ∞. The mainly observable insta-
bility is the so-called staircasing effect , where a sigmoid edge evolves
into piecewise-linear segments that are separated by jumps. A dis-
crete explanation for this so-called Perona-Malik paradox [30] has been
given in Weickert and Benhamouda [32]. They proved that a standard
spatial finite difference discretization is sufficient to turn the Perona-
Malik process into a well-posed system of nonlinear ordinary differen-
tial equations. If a simple explicit time discretization is applied, then
the resulting scheme is monotonicity preserving in the 1-D case [33],
that is, a monotone function remains monotone after filtering. Thus,
oscillations cannot appear and artifacts are restricted to staircasing.
In this sense, a naive implementation of the Perona-Malik filter often
works reasonably well because of the regularizing5 effect of the dis-
cretization. Different discretizations, however, may lead to strongly
differing results. Thus, it seems to be more natural to introduce the
regularization directly into the continuous Perona-Malik equation in
order to become more independent of the numerical implementation
[34, 35]. This shall be done next.

Regularized isotropic nonlinear diffusion. In 1992, Catté, Lions,
Morel and Coll [34] proposed a regularization of the Perona-Malik proc-
ess that has a unique solution, and which is even infinitely times differ-
entiable. Besides this theoretical advantage, their modification is also
more robust under noise.

They propose to regularize the gradient within the diffusivity D by
convolving it with a Gaussian Kσ with standard deviation σ > 0. Thus,
their filter uses

∂tu = div(D(|∇uσ |2)∇u) (15.17)

where uσ := Kσ ∗u. Experiments showed that this regularization leads
to filters that can still enhance edges [33], produces less staircasing [35],
and that are less sensitive to the discretization [36].

4A generalized solution satisfies a generalized (integral) formulation of the diffusion
equation. In particular, a generalized solution does not have to be twice differentiable
in x.

5A regularization of an ill-posed problem is a well-posed approximation to it.
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The regularizing effect of the modification by Catté et al. [34] is due
to the fact that∇uσ remains bounded. Moreover, the convolution with
a GaussianKσ makes the filter insensitive to structures at scales smaller
than σ . Therefore, when regarding Eq. (15.17) as an image-restoration
equation, it reveals (besides the contrast parameter λ) an additional
noise scale σ . This avoids a shortcoming of the genuine Perona-Malik
process that misinterprets strong oscillations due to noise as edges that
should be preserved or even enhanced. This is illustrated in Fig. 15.2c.
Noise within a region can be eliminated very well, but at edges, |∇uσ |
is large and the diffusion is inhibited. Therefore, this regularization is
not optimal in the vicinity of noisy edges.

To overcome this problem, a desirable method should prefer diffu-
sion along edges to diffusion perpendicular to them. This cannot be
done with a scalar-valued diffusivity, one has to use a diffusion matrix
(diffusion tensor) instead. This leads us to anisotropic diffusion filters.

15.2.4 Edge-enhancing anisotropic diffusion

An anisotropic diffusion filter for edge-enhancing diffusion does not
only take into account the contrast of an edge, but also its direction.

This can be achieved by constructing the orthonormal system of
eigenvectors v1, v2 of the diffusion tensor D such that v1 ‖ ∇uσ and
v2 ⊥ ∇uσ . In order to prefer smoothing along the edge to smoothing
across it, one can choose the corresponding eigenvalues λ1 and λ2 as
[11]

λ1 := D(|∇uσ |2) (15.18)

λ2 := 1 (15.19)

In general, ∇u is not parallel to one of the eigenvectors of D as long as
σ >0. Hence, the behavior of this model is really anisotropic. If we let
the regularization parameter σ tend to 0, we end up with the isotropic
Perona–Malik process.

There is an interesting relation between the regularized isotropic
Diffusion in Eq. (15.17) and edge-enhancing anisotropic diffusion. While
the former uses a scalar-valued diffusivity

D(|∇uσ |2) = D(∇uTσ∇uσ) (15.20)

one can formally write the diffusion tensor of edge-enhancing diffusion
as

D(∇uσ) = D(∇uσ∇uTσ) (15.21)

This can be seen as follows. If D can be represented as a globally con-
vergent power series

D(s) =
∞∑
k=0

αksk (15.22)
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we can regard D(∇uσ∇uTσ) as the matrix-valued power series

D(∇uσ∇uTσ) =
∞∑
k=0

αk(∇uσ∇uTσ)k (15.23)

The matrix (∇uσ∇uTσ)k has eigenvectors ∇uσ and ∇u⊥σ with corre-
sponding eigenvalues |∇uσ |2k and 0. From this it follows thatD has the
eigenvectors∇uσ and∇u⊥σ with corresponding eigenvaluesD(|∇uσ |2)
and D(0) = 1.

Figure 15.2d depicts a result of edge-enhancing anisotropic diffu-
sion. We observe that it is capable of reducing noise at edges.

15.2.5 Coherence-enhancing anisotropic diffusion

A second motivation for introducing anisotropy into diffusion proc-
esses arises from the wish to process 1-D features such as line-like
structures. We shall now investigate a modification of a model by Cottet
and Germain [37], which is specifically designed for the enhancement
of coherent flow-like structures [14].

For this purpose one needs more sophisticated structure descrip-
tors than∇uσ . A good descriptor for local orientation is the structure
tensor (second-moment matrix, scatter matrix, interest operator) [38, 39]

Jρ(∇uσ) := Kρ ∗ (∇uσ∇uTσ) (15.24)

and its equivalent approaches [40, 41]. The component-wise convo-
lution with the Gaussian Kρ averages orientation information over an
integration scale ρ. Because Jρ is a symmetric positive-semidefinite ma-
trix, there exists an orthonormal basis of eigenvectors v1 and v2 with
corresponding eigenvalues µ1 ≥ µ2 ≥ 0. The eigenvalues measure the
average contrast (gray-value variation) in the eigendirections within a
scale ρ. Therefore, v1 is the orientation with the highest gray-value
fluctuations, and v2 gives the preferred local orientation, the coher-
ence direction. The expression (µ1−µ2)2 is a measure of the local
coherence. If one wants to enhance coherent structures, one should
smooth mainly along the coherence direction v2 with a diffusivity λ2

that increases with respect to the coherence (µ1−µ2)2. This can be
accomplished by designing D such that it possesses the same eigen-
vectors v1, v2 as Jρ and choosing its corresponding eigenvalues as

λ1 := α (15.25)

λ2 :=


α if µ1=µ2,

α+ (1−α)exp
( −c
(µ1−µ2)2

)
else

(15.26)

where c > 0. The small positive parameter α∈ (0,1) is mainly intro-
duced for theoretical reasons, as we will see in Section 15.3. It keeps
the diffusion tensor uniformly positive-definite.
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a b

Figure 15.4: a Fingerprint, 256×256 pixels; b coherence-enhancing anisotropic
diffusion c = 1, σ = 0.5, ρ = 4, t = 20. From Weickert [14].

Figure 15.4 shows the restoration properties of coherence-enhancing
anisotropic diffusion when being applied to a fingerprint image. The
diffusion filter encourages smoothing along the coherence orientation
v2 and is therefore well-suited for closing interrupted lines. Due to its
reduced diffusivity at noncoherent structures, the locations of the se-
mantically important singularities in the fingerprint remain the same.
It should be noted that this filter cannot be regarded as a regulariza-
tion of a Perona-Malik process. Moreover, a pure local analysis cannot
detect interrupted lines. This requires semilocal information from the
structure tensor that averages orientation information over an integra-
tion scale ρ.

15.3 Continuous theory

Interestingly, all of the previously mentioned diffusion filters can be
cast in the form

∂tu = div(D(Jρ)∇u) (15.27)

Evidently, coherence-enhancing diffusion uses D = D(Jρ(∇uσ)), but
also the diffusion tensor for edge-enhancing diffusion can be written
as

D = D(∇uσ∇uTσ) = D(J0(∇uσ)) (15.28)

and regularized isotropic nonlinear diffusion uses

D = D(|∇uσ |2) I = D(trace(J0(∇uσ))) I (15.29)
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and linear diffusion corresponds to D = I.
This gives rise to the question as to whether these filters can be

treated within a unifying theoretical framework. The answer is: yes.
Let us consider the following filter structure:

Assume that g is bounded, ρ≥0, and σ > 0. Consider the
problem

∂tu = div(D(Jρ(∇uσ))∇u) on Ω × (0,∞)
u(x,0) = g(x) on Ω

〈D(Jρ)∇u, n〉 = 0 on ∂Ω × (0,∞)

where the diffusion tensor D = (dij) satisfies the following
properties:

(C1) Smoothness:
D(Jρ(v)) is component-wise in C∞(Ω) for all v that are
component-wise in C∞(Ω);

(C2) Symmetry:
d12(J)=d21(J) for all symmetric matrices J∈R2×2; and

(C3) Uniform positive-definiteness:
If v ∈ R2 is bounded by some constant K, then there
exists a positive lower bound c(K) for the eigenvalues
of D(Jρ(v)).



(Pc)

For this class the following theoretical results can be shown:6

(a) (Well-posedness and smoothness)
There exists a unique weak solution u(x, t) that is infinitely times
differentiable for t > 0, and which depends continuously on f with
respect to the L2(Ω) norm;

(b) (Extremum principle)
Let a := infΩ f and b := supΩ f . Then, a ≤ u(x, t) ≤ b on Ω×[0,∞);

(c) (Average gray-level invariance)
The average gray level µ := 1

|Ω|
∫
Ω f(x)dx is not affected by nonlin-

ear diffusion filtering: 1
|Ω|
∫
Ωu(x, t)dx = µ for all t > 0;

(d) (Lyapunov functionals)
E(u(t)) := ∫

Ω r(u(x, t))dx is a Lyapunov function for all convex
r ∈ C2[a,b]: E(u(t)) is decreasing and bounded from below by∫
Ω r(µ)dx:

6 The spaces Lp(Ω), 1 ≤ p <∞ consist of the functions w, for which the (Lebesgue)
integral

∫
Ω |w(x)|p dx exists. They are supplemented with the norm ‖w‖Lp(Ω) :=

(
∫
Ω |w(x)|p dx)1/p .
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(e) (Convergence to a constant steady state)
lim
t→∞
u(x, t) = µ in Lp(Ω), 1 ≤ p <∞.

The existence, uniqueness and regularity proof goes back to Catté
et al. [34], all other results are proved in Weickert [20].

What do these results mean? A solution that is infinitely times dif-
ferentiable for t > 0 shows a strong smoothing property, which is char-
acteristic for diffusion processes; even if the bounded initial image is
discontinuous, the filtered result becomes smooth immediately.

Continuous dependence of the solution on the initial image is of
significant practical importance, as it guarantees stability under per-
turbations. This is of importance when considering stereo images, im-
age sequences or slices from medical CT or MR sequences, because we
know that similar images remain similar after filtering.

Many smoothing scale-space properties are closely related to ex-
tremum principles; Hummel [42], for instance, shows that under certain
conditions the maximum principle for diffusion processes is equivalent
to the property that the corresponding scale-space never creates addi-
tional level-crossings for t > 0.

Average gray-level invariance is a property that distinguishes dif-
fusion filters from morphological scale-spaces as treated in Alvarez
et al. [43]. The latter cannot be written in divergence form and, thus,
they are not conservative. Moreover, average gray-level invariance is
required in scale-space-based segmentation algorithms such as the hy-
perstack [44]. In addition to this invariance it is evident that (Pc) sat-
isfies classical scale-space invariances similarly to invariances under
gray-level shifts, contrast reversion, translations and rotations. Usual
architectural properties of scale-spaces (e. g., the semigroup property)
are satisfied as well.

The Lyapunov functionals introduced in the forementioned item (d)
show that the considered evolution equation is a simplifying, informa-
tion-reducing transform with respect to many aspects. Indeed, the spe-
cial choices r(s) := |s|p, r(s) := (s−µ)2n and r(s) := s ln s, respectively,
imply that all Lp norms with 2≤p≤∞ are decreasing (e. g., the energy
‖u(t)‖2

L2(Ω)), all even central moments are decreasing (e. g., the vari-
ance), and the entropy S[u(t)] := − ∫Ωu(x, t) ln(u(x, t))dx, a mea-
sure of uncertainty and missing information, is increasing with respect
to t [11]. Using Parseval’s equality we know that a decreasing energy
is equivalent to a decreasing sum of the squared Fourier coefficients.
Thus, in spite of the fact that the filters may act as image enhancers,
their global smoothing properties in terms of Lyapunov functionals can
be interpreted in a deterministic, stochastic, information-theory-based
and Fourier-based manner. The temporal evolution of Lyapunov-like
expressions such as the entropy has also been used for selecting the
most important scales [45, 46], and there are interesting relations be-
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tween Lyapunov functionals, generalized entropies and fractal theory
[47].

The result item (e) tells us that, for t→∞, this simplifying scale-
space representation tends to the most global image representation
that is possible; a constant image with the same average gray level as f .

15.4 Algorithmic details

Usually, the differential equations for nonlinear diffusion cannot be
solved analytically. Hence one has to use numerical approximations. Fi-
nite difference (FD) methods finite difference methods are mainly used,
as they are relatively easy to implement and a digital image already
provides information on a regular rectangular pixel grid. Good intro-
duction to these methods can be found in Morton and Mayers [48]
and Mitchell and Griffiths [49]. Finite difference methods replace all
derivatives by finite differences. To illustrate the principle, we have
to introduce some notations first. Let h1 and h2 denote the pixel size
in x and y direction, respectively, and τ the time step size. We set
xm := (m− 1/2) h1, yn := (n− 1/2) h2, tk := kτ and denote by Ukmn
an approximation of u(xm,yn, tk). In image processing, it is often as-
sumed that h1 = h2 = 1.

15.4.1 Regularized isotropic diffusion

Let us start with the Catté/Lions/Morel/Coll equation

∂tu = ∂x
(
D(|∇uσ |2) ∂xu

)
+ ∂y

(
D(|∇uσ |2) ∂yu

)
(15.30)

A simple finite-difference approximation to ∂tu in (xm,yn, tk) is
given by

∂tu ≈ U
k+1
mn −Ukmn
τ

(15.31)

By expanding u(xm,yn, tk+1) in a Taylor series around (xm,yn, tk), it
may be verified that this approximation has an error of order O(τ).
This first-order error is characteristic for one-sided approximations.

The spatial derivatives can be approximated in the following man-
ner:

∂x(D ∂xu) ≈ (D ∂xu))km+1/2,n−(D ∂xu))km−1/2,n
h1

≈ 1
h1

(
Dkm+1,n+Dkmn

2
Ukm+1,n−Ukmn

h1
− Dkmn+Dkm−1,n

2
Ukmn−Ukm−1,n

h1

)
(15.32)
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This is a second-order approximation in space because it uses central
differences; Dkmn is given by

Dkmn := D


√√√√√Vkm+1,n − Vkm−1,n

h1

2

+
Vkm,n+1 − Vkm,n−1

h2

2
 (15.33)

where Vkmn is a Gaussian-smoothed version of Ukmn.
The preceding approximations lead to the scheme

Uk+1
mn−Ukmn
τ = 1

h1

(
Dkm+1,n+Dkmn

2
Ukm+1,n−Ukmn

h1
− Dkmn+Dkm−1,n

2
Ukmn−Ukm−1,n

h1

)
+ 1

h2

(
Dkm,n+1+Dkmn

2
Ukm,n+1−Ukmn

h2
− Dkmn+Dkm,n−1

2
Ukmn−Ukm,n−1

h2

)
(15.34)

As a result, the unknown Uk+1
mn can be calculated explicitly as a weighted

mean of known values at level k. In stencil notation, the averaging mask
is as follows:

0 τ
Dkm,n+1+Dkm,n

2h2
2

0

τ
Dkm−1,n+Dkm,n

2h2
1

1− τ D
k
m−1,n+2Dkm,n+Dkm+1,n

2h2
1

−τ D
k
m,n−1+2Dkm,n+Dkm,n+1

2h2
2

τ
Dkm+1,n+Dkm,n

2h2
1

0 τ
Dkm,n−1+Dkm,n

2h2
2

0

(15.35)

This example illustrates that nonlinear diffusion filtering can be re-
alized by iteratively applying a 3×3 averaging mask, where the stencil
weights are adapted to the underlying image structure via the diffu-
sivity D. The weights have to be updated at each iteration step, as D
depends on the evolving image.

It should be noted that the stencil weights sum up to 1. One can
guarantee stability if one can ensure that all weights are nonnegative,
because then the averaging operation calculates Uk+1

mn as a convex com-
bination of values at time level k. This avoids over- and undershoots.

Nonnegativity is always satisfied for the noncentral weights. If h1 =
h2 = 1 and the diffusivity D does not exceed 1 (as in all our examples),
then the central stencil weight is nonnegative for

τ ≤ 1
4

(15.36)

This time-step size restriction ensures stability of the scheme.
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15.4.2 Anisotropic nonlinear diffusion

Let the diffusion tensor be represented byD =
(
A
B
B
C

)
, where all entries

may depend on the underlying image structure. The functions A, B and
C can be expressed in terms of the eigenvalues and eigenvectors of D

A = λ1 cos2ψ+ λ2 sin2ψ (15.37)

B = (λ1−λ2) sinψ cosψ (15.38)

C = λ1 sin2ψ+ λ2 cos2ψ (15.39)

For edge-enhancing anisotropic diffusion the eigenvalues λ1 and λ2

are given by Eq. (15.18) and Eq. (15.19), respectively, and the first eigen-
vector (cosψ, sinψ)T is parallel to ∇uσ .

In the case of coherence-enhancing anisotropic diffusion we have to
perform a principal component analysis of the structure tensor Jρ =(
J11
J12

J12
J22

)
first. Its eigenvalues are given by

µ1 = 1
2

(
J11+J22 +

√
(J11−J22)2 + 4J2

12

)
(15.40)

µ2 = 1
2

(
J11+J22 −

√
(J11−J22)2 + 4J2

12

)
(15.41)

and the first eigenvector (cosψ, sinψ)T satisfies(
cosψ
sinψ

) ∥∥∥
 2J12

J22−J11 +
√
(J11−J22)2 + 4J2

12

 (15.42)

The diffusion tensor uses identical eigenvectors and its eigenvalues are
calculated via Eqs. (15.25) and (15.26) from the eigenvalues of the struc-
ture tensor.

An anisotropic diffusion filter can be written as

∂tu = div(D∇u) = div

[
A∂xu+ B ∂yu
B ∂xu+ C ∂yu

]
= ∂x(A∂xu)+ ∂x(B ∂yu)+ ∂y(B ∂xu)+ ∂y(C ∂yu)

(15.43)

Compared to isotropic nonlinear diffusion, the main novelty of this
process is the mixed derivative expression ∂x(B ∂yu)+ ∂y(B ∂xu). The
standard central difference approximations to these terms are

∂x(B ∂yu) ≈ 1
2h1

(
Bm+1,n

Um+1,n+1−Um+1,n−1
2h2

− Bm−1,n
Um−1,n+1−Um−1,n−1

2h2

)
∂y(B ∂xu) ≈ 1

2h2

(
Bm,n+1

Um+1,n+1−Um−1,n+1
2h1

− Bm,n−1
Um+1,n−1−Um−1,n−1

2h1

)
(15.44)
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If the other derivatives are approximated as in Section 15.4.1, we obtain
the averaging mask

τ
−Bkm−1,n−Bkm,n+1

4h1h2
τ
Ckm,n+1+Ckm,n

2h2
2

τ
Bkm+1,n+Bkm,n+1

4h1h2

τ
Akm−1,n+Akm,n

2h2
1

1− τ A
k
m−1,n+2Akm,n+Akm+1,n

2h2
1

−τ C
k
m,n−1+2Ckm,n+Ckm,n+1

2h2
2

τ
Akm+1,n+Akm,n

2h2
1

τ
Bkm−1,n+Bkm,n−1

4h1h2
τ
Ckm,n−1+Ckm,n

2h2
2

τ
−Bkm+1,n−Bkm,n−1

4h1h2

(15.45)

For sufficiently small τ , this mask reveals the sign pattern

? + ?
+ + +
? + ?

(15.46)

It should be noted that bmay have any sign. Thus, ? may become neg-
ative, and we cannot guarantee the stability of this scheme by regarding
it as a convex combination.

Although this scheme may create some over- and undershoots, it is
experimentally quite stable if the time step size τ does not exceed 0.25
for h1 = h2 = 1. This scheme is popular because of its simplicity.

It is possible to construct provably stable schemes where all stencil
weights are nonnegative. They are, however, more complicated. More
details can be found in Weickert [20, pp. 88–95].

15.5 Discrete theory

It would be desirable that the continuous well-posedness and scale-
space properties also carry over to the discrete case. In order to es-
tablish similar results, it is instructive to write the explicit scheme
(Eq. (15.34)) in a shorter and more abstract form. Instead of represent-
ing a pixel by a double index (m,n), we may also use a single index
i(m,n). Then Eq. (15.34) can be written as

uk+1
i = uki + τ

2∑
l=1

∑
j∈Nl(i)

Dj +Di
2h2

l
(uj −ui) (15.47)

where Nl(i) denotes the neighbors of pixel i in l-direction. This also
takes into account the zero flux boundary conditions if we allow only
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inner neighbors. In vector-matrix notation, the preceding scheme gives

uk+1 = Q(uk)uk (15.48)

where Q(u) = (Qij(u))ij satisfies

Qij :=


τ Di+Dj

2h2
l

(j ∈Nl(i))

1− τ
2∑
l=1

∑
j∈Nl(i)

Di+Dj
2h2
l

(j = i)
0 (else)

(15.49)

In order to interpret this scheme within a general framework, we
study a filter class satisfying the subsequent requirements:

Let g ∈ RN . Calculate a sequence (u(k))k∈N0 of processed
versions of g by means of

u0 = g,
uk+1 = Q(uk)uk, ∀k ∈ N0,

where Q = (Qij) has the following properties:
(D1) continuity in its argument
(D2) symmetry: Qij =Qji ∀ i, j
(D3) unit row sum:

∑
j Qij = 1 ∀ i

(D4) nonnegativity: Qij ≥ 0 ∀ i, j
(D5) irreducibility
(D6) positive diagonal



(Pd)

Q is irreducible, if any two pixels are connected by a path with nonva-
nishing matrix elements. Formally: For any i, j there exist k0,...,kr with
k0=i and kr =j such that Qkpkp+1 ≠ 0 for p = 0,...,r−1.

Under these prerequisites one can establish results that are in com-
plete analogy to the continuous setting [20]:

(a) (Continuous dependence on initial image)
For every k > 0 the unique solution uk of (Pd) depends continuously
on the initial image f ;

(b) (Extremum principle)
Let a :=minj fj and b :=maxj fj . Then, a ≤ uki ≤ b for all i and k;

(c) (Average gray-level invariance)
The average gray level µ := 1

N
∑
j fj is not affected by the discrete

diffusion filter: 1
N
∑
j ukj = µ for all k ∈ N0;

(d) (Lyapunov sequences)
E(uk) :=∑i r (uki ) is a Lyapunov sequence for all convex r ∈ C[a,b]:
E(uk) is decreasing in k and bounded from below by

∑
i r (µ);



15.6 Parameter selection 441

(e) (Convergence to a constant steady state)
lim
k→∞

uki = µ for all i.

Remarks:

(a) It is easy to see that Eq. (15.48) satisfies (D1)–(D6) for τ < 0.25:
Indeed, (D1)–(D3) are automatically satisfied by the construction of
Q. A positive diagonal ofQ requires τ < 0.25. All other elements of
Q are automatically nonnegative, and the irreducibility follows from
the fact that all pixels are connected with their neighbors through
nonvanishing diffusivities;

(b) The standard discretization of the mixed derivative terms for aniso-
tropic diffusion filters violate the nonnegativity requirement (D4). In
Weickert [20], however, it is shown that one can construct more so-
phisticated discretizations that allow satisfying (D1)–(D6). Hence,
the discrete scale-space theory is also applicable to anisotropic fil-
ters.

(c) The preceding explicit discretizations suffer from a restriction of
their time-step-size τ . In practice, this restriction can be quite se-
vere, requiring a large number of iterations with small step sizes
in order to end up at an “interesting” time. This may lead to poor
efficiency.
It is, however, possible to design absolutely stable schemes that
do not suffer from any step-size limitations. The price one has to
pay for this absolute stability is the solution of linear systems of
equations. A recently established class of additive operator split-
ting (AOS) schemes [50] is an efficient representative of this class.
They lead to very simple linear systems that can be solved in linear
complexity by recursive filtering, and they separate each iteration
step into 1-D diffusions that are summed up afterwards. They treat
all axes equally, they satisfy (D1)–(D6), and (under typical accuracy
requirements) they are about one order of magnitude more efficient
than explicit schemes. A further speed-up by another order of mag-
nitude is possible by implementing them on a parallel computer
[51]. They are also applicable to anisotropic filters [20]. A detailed
description of AOS algorithms can be found in Weickert et al. [50].

15.6 Parameter selection

The preceding model contains several parameters that have to be spec-
ified in practical situations. The goal of this section is to clarify their
meaning and to present some empirical guidelines for their selection.

Because the time t is an inherent parameter in each continuous dif-
fusion process, it has nothing to do with its discretization. The com-
mon tradition in image analysis, however, is to assign unit length to
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a pixel. In this case, a different discretization has to be regarded as
a rescaling of the image domain. The scaling behavior of diffusion
processes implies that a spatial rescaling that replaces x by βx, has
to replace t by β2t. This means, for instance, that a subsampling in
each image direction by a factor 2 results in a four times faster image
evolution. Moreover, typical finite-difference implementations reveal
a computational effort that is proportional to the pixel number. This
gives another speed-up by a factor 4, such that the whole calculation
becomes 16 times faster.

There remains another question to be addressed: what is a suitable
stopping time t of the process? It should be observed that this ques-
tion only appears when regarding the diffusion process as a restoration
method. Considering it as a scale-space means that one is interested
in the entire evolution. In a linear scale-space representation based on
the diffusion process ∂tu = ∆u, the time t corresponds to a convolu-
tion with a Gaussian of standard deviation σ = √2t. Thus, specifying
at spatial smoothing radius σ immediately determines the stopping
time t.

In the nonlinear diffusion case, the smoothing is nonuniform and
the time t is not directly related to a spatial scale. Other intuitive mea-
sures, such as counting the number of extrema, are also problematic
for diffusion filters, as it is well known that for linear and nonlinear
diffusion filters in dimensions ≥ 2, the number of local extrema does
not necessarily decrease monotonically, that is, creation of extrema is
not an exception but an event that happens generically [52].

However, there’s another possibility to define an average measure
for the simplicity or globality of the representation. This can be con-
structed by taking some Lyapunov functional E(u(t)) and investigating
the expression

Ψ(u(t)) := E(g)− E(u(t))
E(g)− E(µ) (15.50)

We observe that Ψ(u(t)) increases monotonically from 0 to 1. It gives
the average globality of u(t) and its value can be used to measure the
distance of u(t) from the initial state g and its constant steady-state µ.
Prescribing a certain value for Ψ provides us with an a posteriori crite-
rion for the stopping time of the nonlinear diffusion process. Moreover,
this strategy frees the users from any recalculations of the stopping
time, if the image is resampled. Last but not least, Ψ can also be used
to synchronize different nonlinear diffusion scale-spaces in order to
ease the comparison of results. Practical applications to the restoration
of medical images have demonstrated the usefulness and simplicity of
this criterion [51, 53]. They use the variance as Lyapunov functional.

For the Perona-Malik filter, it is evident that the “optimal” value for
the contrast parameter λ has to depend on the problem. One possibil-
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ity to determine a good practical value for λ is to calculate a cumulate
histogram for |∇g|2 and to set λ to a certain quantile of this histogram.
Perona and Malik use the 90 % quantile, that is, 90 % of all gradients are
smaller than λ. Often one can get better results by staying more in
the backward diffusion region, for example, by choosing a 50 % quan-
tile. The smaller the quantile, however, the slower the diffusion. Other
proposals for choosing λ use statistical properties of a training set of
regions that are considered as flat [54], or estimate it by means of the
local image geometry [7].

Regularized isotropic nonlinear diffusion and edge-enhancing an-
isotropic diffusion use another parameter besides λ, namely the noise
scale σ . Because these filters are insensitive to scales smaller than σ ,
one should adapt σ to the noise. Useful values range from less than
one pixel size for “noiseless” images to several pixels for more degraded
images.

Coherence-enhancing anisotropic diffusion uses three other param-
eters: α, c, and ρ.

We have already seen that the regularization parameter α was intro-
duced to ensure a small amount of isotropic diffusion. This parameter
is mainly important for theoretical reasons. In practice, it can be fixed
to a small value (e.g., 0.001), and no adaptation to the actual image
material is required.

The parameter c is a threshold parameter playing a similar role as
the contrast parameter λ in the other processes. Structures with co-
herence measures (µ1 − µ2)2 � c are regarded as almost isotropic,
and the diffusion along the coherence direction v2 tends to α. For
(µ1 −µ2)2 � c, the diffusion along the coherence direction v2 tends to
its maximal value, which is limited by 1. Therefore, c can be estimated
by calculating a cumulate (µ1 − µ2)2 histogram for g, and by setting
c to a certain quantile. If one estimates that 95 % of the image loca-
tions have strongly preferred 1-D structures, one may set c to the 95 %
quantile of the process.

The integration scale ρ of the structure tensor should reflect the
texture scale of the problem. For instance, for a fingerprint image, it
should not be smaller than the distance between two neighboring lines.
Because overestimations are by far less critical than underestimations
[20], it is often not very difficult to find parameter estimates that work
well over the whole image domain. For coherence-enhancing diffusion,
it is important that the noise scale σ is significantly smaller than the
integration scale ρ; too large values for σ results in a cancellation of
opposite gradient, and the orientation information in the texture is de-
stroyed.

The suggestions in this section are intended as first guidelines. It is
often reported that people who start using nonlinear diffusion filters
quickly develop a good intuition for selecting appropriate parameters.
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15.7 Generalizations

15.7.1 Similarity terms

Diffusion filters with a constant steady state require that a stopping
time T be specified if one wants to get nontrivial results. A method to
obtain nontrivial steady states consists of adding a reaction term that
keeps the steady-state solution close to the original image [55, 56]

∂tu = div(D(|∇u|2)∇u)+ β(g−u) (β > 0) (15.51)

It should be noted that the additional similarity term does not solve the
parameter selection problem; instead of specifying a stopping time T ,
one has to determine β. However, diffusion–reaction methods can be
related to the minimization of energy functionals. These relations are
discussed in Chapter 16.

15.7.2 Higher dimensions

It is easily seen that many of the previous results can be generalized
to higher dimensions. This may be useful when considering, for ex-
ample, CT or MR image sequences arising from medical applications
or when applying diffusion filters to the postprocessing of fluctuating
higher-dimensional numerical data. Spatially regularized 3-D nonlin-
ear diffusion filters have been investigated by Gerig et al. [4] in the
isotropic case, and by Rambaux and Garçon [57] in the edge-enhancing
anisotropic case. Experiments with 3-D coherence-enhancing diffusion
are presented in Weickert [58]. It should be noted that the entire contin-
uous and discrete well-posedness and scale-space theory is applicable
in any dimension.

15.7.3 Vector-valued models

Vector-valued images can arise either from devices measuring multi-
ple physical properties or from a feature analysis of one single image.
Examples for the first category are color images, multispectral Land-
sat exposures and multispin echo MR images, whereas representatives
of the second class are given by statistical moments or the jet space
induced by the image itself and its partial derivatives up to a given or-
der. Feature vectors play an important role for tasks such as texture
segmentation.

The simplest idea of how to apply diffusion filtering to multichannel
images would be to diffuse all channels separately and independently
from each other. This leads to the undesirable effect that edges may be
formed at different locations for each channel. In order to avoid this,
one should use a common diffusivity that combines information from
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Figure 15.5: a Forest scene, 226×323 pixels; b regularized isotropic nonlinear
diffusion σ = 2, λ = 10, t = 25; c coherence-enhancing anisotropic diffusion
c = 1, σ = 0.5, ρ = 5, t = 10. From Weickert [60].

all channels. Nonlinear isotropic vector-valued diffusion models were
studied by Gerig et al. [4] and Whitaker [15] in the context of medical
imagery. They use filters of type

∂tui = div

D( m∑
j=1

|∇uj,σ |2
)
∇ui

 (i = 1, ...,m) (15.52)

where the vector [u1(x, t), . . . ,um(x, t)]T describes the multichannel
image. It is assumed that all channels use a similar intensity range.
A corresponding vector-valued edge-enhancing anisotropic diffusion proc-
ess is given by Weickert [59]

∂tui = div

D( m∑
j=1

∇uj,σ ∇uTj,σ
)
∇ui

 (i = 1, ...,m) (15.53)

Vector-valued coherence-enhancing diffusion uses a common structure
tensor that results from the sum of the structure tensors in all channels
[60]

∂tui = div

D( m∑
j=1

Jρ(∇uj,σ )
)
∇ui

 (i = 1, ...,m) (15.54)

Figure 15.5 illustrates the effect of Eqs. (15.52) and (15.54) on a color
image.
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15.8 Summary

In this chapter we have investigated several models for nonlinear dif-
fusion filtering that serve as examples of how one can incorporate a
priori knowledge in a scale-space evolution. These filters may also be
regarded as enhancement methods for features such as edges or flow-
like structures. We have discussed a general continuous well-posedness
and scale-space theory, which also carries over to the algorithmically
important discrete setting. Standard finite-difference algorithms al-
low realization of nonlinear diffusion filters by iterated avaraging with
small masks where the stencil weights are adapted to the evolving im-
age. Such methods are not difficult to implement and they can be gen-
eralized to filters for higher-dimensional data sets as well as vector-
valued images.

This chapter is intended as an introduction to the topic. The area
is very vivid, and much research is in progress with respect to theo-
retical foundations, highly efficient algorithms, relations between non-
linear diffusion and other image-processing methods such as curve
evolutions, morphology, and snakes. For further studies of this and
related areas, the reader is referred to Weickert [20], Caselles et al.
[61], ter Haar Romeny [62], ter Haar Romeny et al. [63] and the ref-
erences therein.
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16.1 Introduction

This chapter explains variational techniques for the adaptive process-
ing of 2-D and 3-D images, vector-valued images, and image sequences
for the purpose of nonlinear smoothing, segmentation, extraction of lo-
cal image structure (homogeneous regions, edges, characteristic points),
noise suppression and restoration, and computation of optical flow.
For each category of image data, the exposition provides:
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Figure 16.1: a Data from a real image; b the data from a adaptively smoothed.

• a description of a variational approach,

• a consistent discretization of the approach (results are provided in
terms of computational molecules),

• an iterative scheme to solve the resulting system of nonlinear equa-
tions numerically, and

• examples computed to indicate the range of applications.

The material presented introduces the reader to a specific research field
of image processing and computer vision and should enable him to inte-
grate these techniques into solution approaches to diverse application
problems.

16.1.1 Motivation and general problem formulation

Consider the data in Fig. 16.1a and the result of applying a variational
technique in Fig. 16.1b. Obviously, small signal variations have been
smoothed out whereas the coarse signal structure in terms of more
distinct signal variations has been preserved. Thus, the data have been
processed by a smoothing process that is capable of adapting itself
to the local signal structure. The need for this kind of unsupervised
(pre-)processing arises in numerous applications involving real data.

In a more general way, the following important issues underlie the
design of variational techniques for adaptive image processing:

• Data reduction by adaptively suppressing image details (local signal
variations), as illustrated in Fig. 16.1.

• Partitioning of the image domain into locations with significant sig-
nal variations and homogeneous regions (image segmentation). Lo-
calization of signal variations is important along with the robust
contrast information of regions.

• Optimality of segmentations in terms of measures of “strength of
local signal variation” and “homogeneity.”
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• Discretization and consistency. Many useful concepts and prop-
erties like “level lines of functions” or “rotational invariance” are
meaningful only for continuous problem formulations. Approxi-
mate problem formulations that preserve such concepts and prop-
erties in the limit of increasingly fine discretizations are called con-
sistent .

• Computational architecture and parallelism. As is obvious from
Fig. 16.1, the result at a certain location cannot be computed by
just taking two neighboring data points into consideration. Rather,
a local context of several data points has to be considered. Never-
theless, all approaches described in this chapter can be realized on
fine-grained parallel architectures with nearest-neighbor communi-
cation.

In general, a variational approach is formulated by considering in-
put data g ∈ S1 and the processed data vg ∈ S2 as elements of some
spaces S1, S2 of functions defined over the given image domain A, and
by defining vg as a solution of a minimization problem:

vg = arg min
v∈S2

J(v) , J(v) =
∫
A
L(g,v)dx (16.1)

where the function L depends on the problem at hand. In most cases,
the right-hand side of Eq. (16.1) can be decomposed as follows:

J(v) =
∫
A
Lg(g,v)dx +

∫
Ar
Lr (v)dx +

∫
At
Lt(v)dx (16.2)

Here, the sets Ar and At define a partition of the image domain A into
regions and transitions and are implicitly defined by local properties of
the functions v , like the magnitude of the gradient, for example. As a
consequence, the optimal segmentation of A is obtained by computing
the minimum vg of the functional J in Eq. (16.1).

16.1.2 Basic references to the literature

In this section, references are given to some important research papers
as well as to other fields related to the contents of this chapter. No
attempt, however, has been made to survey any aspect of variational
modeling in image processing and early computer vision. The general
references given here will be supplemented by more specific references
in subsequent sections.

A clear-cut mathematical definition of the image segmentation prob-
lem has been given by [1]:

JMS(v,K) = α
∫
A
(v − g)2 dx +

∫
A\K
|∇v|2 dx + βL(K) (16.3)
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Given some image data g, a piecewise smooth function vg , which may
have jumps along a 1-D discontinuity set K ⊂ A, has to be determined
such that the functional J in Eq. (16.3) attains a local minimum. Accord-
ing to the general form of Eq. (16.2), the functional Eq. (16.3) comprises
three terms: The first term measures the distance between v and the
data g with respect to the L2(A)-norm, the second term measures the
homogeneity of v in terms of the magnitude of the gradient of v :

|∇v| =
∣∣∣∣∣
[
vx
vy

]∣∣∣∣∣ = (v2
x + v2

y

)1/2
, for x =

[
x
y

]
∈ R2

and the third term measures the length of the discontinuity set K. The
relative influence of these terms depends on two global parameters α
and β that can be controlled by the user. The reader should note that
dropping any term in Eq. (16.3) would lead to meaningless minimizers
and segmentations, respectively.

The variational segmentation approach of Mumford and Shah pro-
vides a mathematically sound definition of what most conventional seg-
mentation approaches (see, e.g., [2, 3]) try to achieve. This has been
demonstrated in a recent review [4]. On the other hand, the approach
of Eq. (16.3) turned out to be mathematically rather involved, and it is
by no means straightforward to specify consistent discrete approxima-
tions of it (see [4, 5], and [6] for a simplified version of the approach
of Eq. (16.3)). For these reasons, we confine ourselves in Section 16.2
to mathematically simpler yet practically useful variational problems
that, in some sense, approximate the approach Eq. (16.3) of Mumford
and Shah.

Rather influential results in the field of image segmentation and
restoration have been presented by Geman and Geman [7]. Their ap-
proach can be seen as a discrete counterpart of the Mumford-Shah
model given here. Furthermore, their seminal paper describes a proba-
bilistic problem/solution formulation in terms of Markov random fields,
Gibbs distributions, and Gibbs sampling, which turned out to be basic
to much subsequent work. Gibbs distributions are nowadays widely
used across several disciplines in order to model spatial context. This
broader probabilistic viewpoint, however, will not be pursued in this
chapter. We merely point to the fact that all functionals J considered
here induce Gibbs distributions over the space S2 in Eq. (16.1) in a nat-
ural way by means of:

p(v) = 1
Z

exp
(− J(v))

with a normalizing constant Z . For a recent review we refer to Li [8], and
for a more mathematically oriented account to Geman [9] and Winkler
[10].
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Further important work has been reported by Blake and Zisserman
[11]. In particular, their Graduated-Non-Convexity approach introduced
the idea of homotopy-like deterministic minimization algorithms to the
field of computer vision. The related concept of mean-field anneal-
ing has been presented by Geiger and Girosi [12]. See also Geiger and
Yuille [13] for a review of variational segmentation approaches. An-
ticipating Section 16.2.3, let us mention that we do not pursue these
concepts, which amount to solving sequences of nonlinear systems of
equations, here. Rather, we explain a minimization algorithm in terms
of sequences of linear systems of equations, which, from our point of
view, is more compatible with current concepts of parallel computing.

Another important current research field is known under the key-
word “images and PDEs” [14] (PDE = partial differential equation). The
connection to this field is given by the Euler-Lagrange equation, which
corresponds to the functional Eq. (16.1) (see Section 16.2.1). This non-
linear diffusion equation may be used to describe how a starting point
approaches a minimizer of the functional J. In the field “images and
PDEs,” however, more general types of nonlinear diffusion equations are
investigated. Corresponding research topics include nonlinear smooth-
ing schemes for edge-detection and image enhancement, extensions of
the linear scale-space paradigm and invariance principles, and equa-
tions describing the evolution of active contours (so-called ‘snakes’).
For further details and surveys we refer to [15, 16, 17, 18, 19, 20] and
Volume 2, Chapter 15.

Within this field, the nonlinear smoothing schemes described in this
chapter form a special class. The distinguishing feature is that each ap-
proach obeys a global optimality criterion Eq. (16.1) that makes explicit
how different criteria Eq. (16.2) are combined in order to compute an
optimal segmentation of given image data. Note that Euler-Lagrange
equations are not needed for implementing a variational technique.
Furthermore, there are many well-posed variational approaches, like
that of Eq. (16.3) for example, the functionals of which are not smooth
enough to admit an equivalent description in terms of PDEs.

16.2 Processing of two- and three-dimensional images

This section describes variational techniques for the processing of sca-
lar-valued images. In Section 16.2.1, a variational principle is presented
and related mathematical issues are discussed. In particular, we distin-
guish convex from nonconvex minimization approaches. Section 16.2.2
shows how these approaches are converted into nonlinear systems of
equations. An algorithm to numerically compute a solution to these
equations is described in Section 16.2.3. Finally, some representative
numerical examples are presented in Section 16.2.4.
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16.2.1 Variational principle

We consider a family of functionals Eq. (16.1) of the following form:

J(v) = 1
2

∫
A

{
(v − g)2 + λ(|∇v|)

}
dx (16.4)

This formulation has been introduced by Nordström [22]. Among var-
ious possibilities, we choose two particular definitions of the function
λ (see Fig. 16.2):

λc(t) =
λc,low(t) = λ2

ht
2 , 0 ≤ t ≤ cρ

λc,high(t) = ε2
ct2 + (λ2

h − ε2
c)cρ(2t − cρ) , 0 < cρ ≤ t

(16.5)

and

λnc(t) =
λnc,low(t) = λ2

ht
2 , 0 ≤ t ≤ cρ

λnc,high(t) , 0 < cρ ≤ t
(16.6)

where

λnc,high(t) =



1
2δt

[
(εnc − 2λ2

hcρ)t
2

+(2λ2
h(cρ + δt)− εnc

)
cρ(2t − cρ)

] , t ≤ cρ + δt

εnc
(
t − cρ − δt

2

)
+ cρλ2

h(cρ + δt) , cρ + δt ≤ t

0 < εc,δt� 1, and εnc < 2λ2
hcρ . These functions are continuously dif-

ferentiable, and the essential parameters to be specified by the user are
λh and cρ . Definitions Eq. (16.5) and Eq. (16.6) lead to representative ex-
amples of convex and nonconvex variational approaches, respectively,
as they exhibit the essential features of other definitions that have been
reported in the literature (see the list in [23], for example),

According to Eq. (16.2), the functional Eq. (16.4) takes the form:

J(v) = 1
2

∫
A
(v − g)2 dx + 1

2

∫
Ar
λlow(|∇v|)dx + 1

2

∫
At
λhigh(|∇v|)dx

(16.7)

where the region and transition sets Ar and At are defined by low and
high magnitudes of the gradient of v , respectively:

Ar = {x ∈ A : |∇v| ≤ cρ} (16.8)

At = {x ∈ A : |∇v| > cρ} (16.9)

Let us briefly discuss some major differences between the convex
and nonconvex case of Eq. (16.4):
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Figure 16.2: a Graph of λc , which is a convex combination of a quadratic
and a linear function (λh = 4, cρ = 1, εc = 0.1); b graph of λnc , which
quadratically combines a quadratic function with a linear function of slope
εnc(λh = 4,cρ = 1, δt = 0.01, εnc = 0.5).

Convex case. In this case the continuous problem formulation
Eq. (16.4) is well-posed for a certain choice of function spaces S1, S2

in Eq. (16.1), and for each given image data g there is a unique func-
tion vg minimizing the functional J in Eq. (16.1) with λ = λc from
Eq. (16.5). With other words, the intrinsic properties of the approach
are well-defined and do not depend on discrete concepts used for mod-
eling sensors and computation. Furthermore, any discrete solutionvh,g
computed as shown in subsequent sections approximates the function
vg in the sense that, as the resolution of the sensor becomes increas-
ingly better, we have:

‖vg − vh,g‖S2 → 0

Convex variational approaches have been advocated by several re-
searchers (e.g., [24, 25, 26]), mainly due to uniqueness of the solution.
Our definition Eq. (16.5) given in the preceding follows Schnörr [25].
We note, however, that in addition to uniqueness of the solution, con-
vex variational approaches exhibit favorable properties like continuous
dependence of the solution on the data and parameters, for example.
Furthermore, a comparison of Eq. (16.7), regarded as an approximation
of the Mumford-Shah model, with Eq. (16.3) reveals that using λc,high

for the transition measure in Eq. (16.7) does not mean to make a bad
compromise in order to achieve convexity. Rather, the length of the
discontinuity set of v in Eq. (16.3) is replaced by length of level lines of
v , which are summed up over the contrast at locations where v rapidly
varies. This is a meaningful measure for real signals with bounded
gradients [27].

Nonconvex case. In this case, to our knowledge, no continuous and
well-posed problem formulation of Eq. (16.4) has been reported in the
literature. This means that, strictly speaking, the variational approach
of Eq. (16.4) with λnc from Eq. (16.6) makes sense mathematically only
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after having discretized the approach. In contrast to the convex case,
the resulting approach depends on the particular discretization method
used. Our definition Eq. (16.6) given here follows closely Blake and
Zisserman [11] who thoroughly investigated a discrete version of the
nonconvex approach of Eq. (16.4).

In general, there are multiple local minima {vg} for given image
data g, making the approach dependent on the starting point and more
sensitive against perturbations of the input image data and parameter
values. A comparison of the nonconvex version of Eq. (16.4) with the
Mumford-Shah model Eq. (16.3) shows that the 1-D discontinuity mea-
sure in Eq. (16.3) is approximated by the area of regions with a large
gradient of v . In contrast to the convex case discussed here, however,
further properties of v are not “measured” within these regions. A
numerical example in Section 16.2.4 illustrates this point.

For the purpose of discretization in Section 16.2.2, we set the first
variation of the functional Eq. (16.4) at the point vg equal to zero, as a
necessary condition for vg to be a local minimizer of J. ∀v ∈ S2:

d
dτ
J(vg + τv)

∣∣
τ=0 =

∫
A

{
(vg − g)v + ρ(|∇vg|)∇vTg∇v

}
dx = 0

(16.10)

where we introduced the so-called diffusion coefficient:

ρ(t) = λ
′(t)
2t

, t ≥ 0 (16.11)

Note that in the convex case, Eq. (16.10) uniquely determines the global
minimizer vg of J in Eq. (16.4).

For the following it will be convenient to write Eq. (16.10) in a more
compact form. To this end, we use the customary notation for the
linear action of some functional q on a function v :

〈q,v〉 := q(v) (16.12)

Equation (16.10) may then be written as follows:

〈A(vg),v〉 = 〈f ,v〉 , ∀v ∈ S2 (16.13)

with a nonlinear operator Amapping vg to the linear functional A(vg):

〈A(vg),v〉 =
∫
A

{
vgv + ρ(|∇vg|)∇vTg∇v

}
dx (16.14)

and the linear functional f :

〈f ,v〉 =
∫
A
gv dx (16.15)

Equation (16.13) is the starting point for the discretization with the
finite element method (FEM) to be described in Section 16.2.2.
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16.2.2 Finite element method discretization

We first explain the basic scheme that can be applied mechanically to
obtain a proper discretization of all variational approaches described
in this chapter. Next we illustrate the application of this scheme for
the case of 1-D signals. Finally, the results of discretizing the 2-D and
3-D cases are described.

The material presented in this Section is fairly standard. A more
general introduction and further details can be found in numerous text-
books on the finite element method .

Basic scheme. The first step is to triangulate the underlying domain
A and to choose piecewise linear basis functions φi(x), i = 1, . . . ,N.
Examples will be given in the following sections. These basis functions
define a linear subspace:

Sh := span{φ1, . . . ,φN} ⊂ S2

and we approximate problem Eq. (16.13) by restricting it to this sub-
space. Let vh,g, vh ∈ Sh denote representatives of the functions vg,v ∈
S2 (h denotes the discretization parameter related to the mesh-width
of the triangulation):

vh,g =
N∑
i=1

vg,iφi(x) , vh =
N∑
i=1

viφi(x) (16.16)

Then our task is to solve the following equation for a minimizing func-
tion vh,g :

〈A(vh,g),vh〉 = 〈f ,vh〉 , ∀vh ∈ Sh (16.17)

Inserting Eq. (16.16) yields (recall from Eq. (16.12) that the left-hand
quantities in Eq. (16.17) act linearly on vh):

N∑
i=1

vi〈A(vh,g),φi〉 =
N∑
i=1

vi〈f ,φi〉 , ∀vh ∈ Sh

This equation has to be satisfied for arbitrary functionsvh ∈ Sh. Hence,
we conclude that:

〈A(vh,g),φi〉 = 〈f ,φi〉 , i = 1, . . . ,N (16.18)

Eq. (16.18) is a system of N nonlinear equations that has to be solved
for the N real numbers vg,j, j = 1, . . . ,N, that determine a minimizing
function vh,g in Eq. (16.16). Again we note that in the convex case, this
nonlinear vector equation has a unique solution vg . Numerical schemes
to compute vg are the subject of Section 16.2.3.
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Figure 16.3: A piecewise linear basis function for the 1-D case.

Introductory Example: 1-D signals. Suppose the input signal g is
given on a regularly spaced mesh as shown in Fig. 16.1a. To each node
i = 1, . . . ,N we assign a basis function φi as depicted in Fig. 16.3. Note
that the function φi is uniquely defined by the following three condi-
tions:

• φi is piecewise linear,

• φi = 1 at node i, and

• φi = 0 at all nodes j ≠ i.

This holds true in the 2-D and 3-D case, too (see in what follows). Fur-
thermore, we set without loss of generality the distance between adja-
cent pixels equal to 1.

Next we wish to compute the i-th equation of Eq. (16.18). To this
end, we represent g in the same way as vh,g :

g(x) =
N∑
i=1

giφi(x)

Furthermore, we denote the two constant values of ρ(|v ′h,g(x)|) within
the intervals around node iwithρ(+) andρ(−), respectively (see Fig. 16.3).
For example, for any x in the interval (+) we have:

ρ(+) = ρ
(∣∣∣ N∑
j=1

vg,jφ′j(x)
∣∣∣) = ρ(|vg,i+1 − vg,i|)

Using this notation and Eqs. (16.14) and (16.15), the i-th equation of
Eq. (16.18) then reads:

1
6
vg,i−1 + 2

3
vg,i + 1

6
vg,i+1 + ρ(−)(vg,i − vg,i−1)− ρ(+)(vg,i+1 − vg,i)

= 1
6
gi−1 +

2
3
gi +

1
6
gi+1 , i = 2, . . . ,N − 1 (16.19)

Note that at the boundary node only the half support of φ1 and φN ,
respectively, lie within the domain A. As a consequence, the natural
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Figure 16.5: 2-D case: a uniform triangulated domain A; b a piecewise linear
basis function; and c local labeling of nodal variables and triangular elements.

boundary conditions are automatically incorporated just by computing
Eq. (16.18). We obtain:

1
3
vg,1 + 1

6
vg,2 − ρ(+)(vg,2 − vg,1) = 1

3
g1 +

1
6
g2 , i = 1

1
6
vg,N−1 + 1

3
vg,N + ρ(−)(vg,N − vg,N−1) = 1

6
gN−1 +

1
3
gN , i = N

In the 2-D and 3-D case, the corresponding equations are rather
lengthy. Therefore, we prefer a graphic notation in terms of stencils
specifying the coefficients of nodal variables. Figure 16.4 illustrate this
for Eq. (16.19) using two stencils, the first one for the first term on the
left-hand side of Eq. (16.19) (Fig. 16.4a; we get the same stencil for the
right-hand side of Eq. (16.19)), and the second one for the second term
on the left-hand side of Eq. (16.19) (Fig. 16.4b).

2-D images. The 2-D case runs completely analogous to the 1-D case
here. In most applications a uniform triangulation of the underlying
domain A suffices (Fig. 16.5a; see, e.g., [27] for an application using
less regular grids). The corresponding piecewise linear basis function
is depicted in Fig. 16.5b.

The support of a basis function together with a labeling of neigh-
boring nodal variables and triangular regions is shown in Fig. 16.5c (we
use a dummy function u here playing the role of either vg or g). Using
this notation we have, for example:

ρ(1) = ρ
([
(u5 −u4)2 + (u2 −u5)2

]1/2)
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Figure 16.6: 2-D case: a first; and b second stencil.

The resulting two stencils for an arbitrary interior node are shown in
Fig. 16.6. As shown in the last Section, appropriate modifications of
these stencils at boundary nodes are automatically obtained by choos-
ing the correct domain of integration in Eq. (16.18). It can easily be seen
that for ρ = constant the stencil in Fig. 16.6b gives the familiar 5-point
stencil of the Laplacian operator. In the nonlinear case, this stencil tries
to capture the rotational invariance of the underlying continuous prob-
lem formulation. Hence, this discretization is less directionally biased
than just using separate horizontal and vertical first-order differences.

3-D images. The 3-D case, again, runs completely analogous to the
1-D case. However, the partitioning of the underlying domain A be-
comes slightly more complicated if we still wish to use piecewise linear
basis functions. For segmentation problems it is reasonable to do so
because then merely element-by-element threshold operations are in-
volved (see Eqs. (16.8) and (16.9)).

We associate with each given voxel gi a node of a regular 3-D mesh
covering the underlying domain A. Each cube-cell of this mesh is sub-
divided into 5 tetrahedra as shown in Fig. 16.7. In each tetrahedron,
functions are represented by linearly interpolating the nodal variables
associated with the 4 vertices. FEM theory requires that adjacent el-
ements have in common either complete faces or complete edges or
vertices. Therefore, the orientation of the subdivision has to change
like a checkerboard in each coordinate direction (Fig. 16.8).

To illustrate this in more detail, we consider the interior tetrahe-
dron depicted in Fig. 16.9a, the treatment of which is not as straight-
forward as with the remaining four tetrahedra. Suppose the nodal val-
ues u0, . . . ,u3 of some function u is given. To obtain some value u(x)
within the tetrahedron, we make the linear ansatz:

u(x) = c0 +
 c1

c2

c3


T  xy

z
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Figure 16.7: 3-D case: subdividing the cube between 8 nodes into 5 tetrahedra:
a the cube with the two tetrahedra shown in b removed.

Figure 16.8: 3-D case: partitioning the domain A.

The interpolation conditions read:
u0

u1

u2

u3

 =


1 pT0
1 pT1
1 pT2
1 pT3



c0

c1

c2

c3
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where the vectors p0, . . . ,p3 give the vertices’ positions. Solving for the
coefficients ci yields:

u(x,y,z) = 1
2


1
x
y
z


T 

1 1 1 −1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1



u0

u1

u2

u3


Note that the representation of a basis function φi centered at node i
is obtained by setting ui = 1 and uj = 0 for i ≠ j.

Integrals appearing in Eq. (16.18) are best carried out by mapping
the interior tetrahedron Tint in Fig. 16.9a onto a reference tetrahedron
Tref shown in Fig. 16.9b:

x = p0 +
[
p1 −p0,p2 −p0,p3 −p0

]︸ ︷︷ ︸
A

ξ

Accordingly, using the chain rule, derivatives of some function u trans-
form:

∇xu = A−T∇ξu

Integrating some functionu over the interior tetrahedron then becomes:∫
Tint

u(x)dx

=
∫
Tref

u
(
x(ξ,η,ζ),y(ξ,η,ζ), z(ξ,η,ζ)

)∣∣∣∂(x,y,z)
∂(ξ,η,ζ)

∣∣∣︸ ︷︷ ︸
=2

dξ dηdζ

= 2

1∫
0

1−ζ∫
0

1−η−ζ∫
0

u(ξ)dξ dηdζ

We conclude this section by specifying the two stencils for an inte-
rior node, analogous to the 1-D and 2-D case cited here. Note however
that, according to Fig. 16.8, we have two types of nodes.

Figure 16.10a shows the first type of interior nodes along with the
adjacent tetrahedra. Figure 16.10b shows the first stencil for such a
node. For the second stencil, we have only two different coefficients,
analogous to Fig. 16.6b. The first coefficient is for the interior node in
Fig. 16.10a:

1
2

8∑
i=1

ρ(i)
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Figure 16.9: Mapping an interior tetrahedron: a onto a reference tetrahedron;
b (see text).
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Figure 16.10: Interior node of type 1: a adjacent tetrahedra; b first stencil.

where the sum is running over all adjacent tetrahedra. The second
coefficient is the same for each exterior node in Fig. 16.10a:

−1
6

4∑
i=1

ρ(i)

where the sum is running over all tetrahedra adjacent to both the inte-
rior and the considered exterior node.

Figure 16.11a shows the second type of interior nodes along with
the adjacent tetrahedra. Figure 16.11b shows the first stencil for such
a node. For the second stencil, we have again two different coefficients.
The first coefficient is for the interior node in Fig. 16.11a:

1
4

32∑
i=1

ρ(i)

where the sum is running over all adjacent tetrahedra. The second
coefficient is the same for each exterior node i in Fig. 16.11a:

− 1
12

n(i)∑
j=1

ρ(j)
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Figure 16.11: Interior node of type 2: a ajacent tetrahedra (for better visibility
only 4 of 32 tetrahedra have been drawn); b first stencil.

where the sum is running over all n(i) tetrahedra adjacent to both the
interior and the considered exterior node i.

16.2.3 Algorithm

This section describes a class of algorithms that can be used to solve
the nonlinear system of equations Eq. (16.18) numerically. The design
of such an algorithm is based on a technique that replaces the orig-
inal nonlinear system by a sequence of linear systems of equations,
which can be solved efficiently with various linear solvers. Only the lin-
earization technique is described here. Algorithms for the solution of
the resulting sparse linear systems can be found in numerous excellent
textbooks (e.g., [28, 29]). For additional details, an investigation of al-
ternative approaches and parallel implementations we refer to [30, 31].

In the following, it will be more convenient to specify modifications
of Eq. (16.13) rather than Eq. (16.18). According to the discretization of
Eq. (16.13) described in Section 16.2.2, the corresponding modifications
of Eq. (16.18) are then immediate.

Minimization of convex functionals. Consider Eq. (16.13). This non-
linear equation becomes linear if we “freeze” its nonlinear part by us-
ing the solution of the previous iteration step as its argument. With
Eqs. (16.14) and (16.15), Eq. (16.13) thus becomes (k counts the itera-
tion steps):∫

A

{
vk+1
g v + ρ(|∇vkg|)

(∇vkg)T∇v}dx =
∫
A
gv dx , ∀v ∈ S2

(16.20)

To our knowledge, this approach was introduced as the so-called
Kačanov method in the field of mathematical elasticity 25 yr ago (see [32,
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33, 34]). In the case of convex functionals Eq. (16.4) with λ from
Eq. (16.5), it can be shown that the sequence vkg according to Eq. (16.20)
converges to the global minimizer vg , that is, the unique solution of
Eq. (16.13), irrespective of the starting point v0

g [31, 35].

Minimization of nonconvex functionals. A linearization technique
closely related to that of the previous section has been proposed by
Geman and Reynolds [36] (see also Charbonnier et al. [37]). The idea
is to rewrite the original functional Eq. (16.4) using an auxiliary func-
tion w:

Jaux(v,w) = 1
2

∫
A

{
(v − g)2 +w|∇v|2 +ψ(w)

}
dx (16.21)

and to update, iteratively, vg and w:

vk+1
g = arg min

v
Jaux(v,wk) (16.22)

and

wk+1 = arg min
w
Jaux(vk+1

g ,w) (16.23)

Note that wk is fixed in Eq. (16.22), so that vk+1
g is computed as the

solution of the linear equation:∫
A

{
vk+1
g v +wk(∇vk+1

g
)T∇v}dx =

∫
A
gv dx , ∀v ∈ S2 (16.24)

To make step Eq. (16.23) more explicit, we have to explain how the
function ψ in Eq. (16.21) is chosen. ψ is chosen such that:

λ(t) = inf
w

(
wt2 +ψ(w))

with λ from the original minimization problems Eqs. (16.4) and (16.6).
If λ is such that ρ in Eq. (16.11) is strictly monotone and decreasing
(as in Eq. (16.6)), then it is not difficult to show that step Eq. (16.23)
reduces to:

wk+1 = ρ(|∇vk+1
g |) (16.25)

that is, ψ is not needed explicitly to carry out Eq. (16.23). As a result,
we have the iteration Eq. (16.20) again, with ρ now defined by some non-
convex function λ. As ρ defined by Eqs. (16.11) and (16.5) illustrates,
it is possible to weaken the assumptions slightly and to consider func-
tions ρ that are (not strictly) monotone decreasing, too.

According to nonconvexity, only a local minimum can be expected
after convergence of the iteration from the preceding. Furthermore,
this minimum generally depends on the starting point v0

g .
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a b c

Figure 16.12: a Isocontour surface of 3-D data set; b contaminated with noise;
c after adaptive smoothing of the data shown in b (see text).

16.2.4 Applications

In this section, we demonstrate various aspects of the variational ap-
proach Eq. (16.4) with a few numerical examples. In all experiments
we used the convex case Eq. (16.5), with one exception (Fig. 16.17) to
exhibit some differences to the nonconvex case. As a convergence cri-
terion the following threshold with respect to the maximum residuum
of the nonlinear Eq. (16.18) was used:

max
i∈{1,...,N}

∣∣〈A(vh,g)− f ,φi〉∣∣ ≤ 0.1

Adaptive smoothing. We first illustrate the adaptive smoothing be-
havior with an academic example. Figure 16.12 shows an isocontour
surface of a real 3-D data set in a, superimposed with noise in b, and
c shows the corresponding isocontour surface of the minimizing func-
tion vg by processing the noisy data g shown in a. Two aspects can
be seen here: First, noise can be eliminated without destroying sig-
nificant signal structure in terms of large gradients. Second, whereas
smoothing stops locally along the gradient direction (i. e., normal to
the surface), smoothing still occurs along the surface, as can be seen
from the small ripples of the surface in Fig. 16.12a that have been elim-
inated in c. One main advantage of variational approaches is that such
complex, locally adaptive smoothing behavior emerges from a global
optimization principle and does not have to be encoded explicitly.

As a realistic application case, Fig. 16.13 shows a slice through a
noisy 3-D CT data set a and sections with some object b and c. Fig-
ure 16.14 illustrates how adaptive variational smoothing of the 3-D im-
age data eliminates noise without destroying the fairly complex signal
structure. As a result, detection of the object by a simple threshold
operation becomes robust.



16.2 Processing of two- and three-dimensional images 469

a b c

Figure 16.13: a Slice of a 3-D CT image data set; b, c sections with an object of
interest.

Segmentation and feature extraction. In this section, we illustrate
the segmentation of images into homogeneous regions Eq. (16.8) and
transition regions Eq. (16.9). Figure 16.15 shows a Lab scene g in a and
the processed image vg in b. According to definitions Eqs. (16.8) and
(16.9), vg implicitly encodes a partition of the image plane as shown in
Fig. 16.15c. By choosing a smaller value for the scale parameter λh in
Eq. (16.5), finer details can be resolved at the cost of less smoothing (i.e.,
noise suppression) within homogeneous regions (Fig. 16.15d). This lat-
ter aspect, that is feature detection through anisotropic locally adaptive
processing while simultaneously smoothing within nonfeature regions,
is a main feature of variational approaches. Figure 16.16 illustrates this
aspect in more detail. As a result, local contrast information around
signal transitions becomes robust.

Finally, let us consider some differences between convex Eq. (16.5)
and nonconvex Eq. (16.6) variational processing. Figure 16.17 shows
the corresponding results for the image shown in Fig. 16.17a. Noise
suppression along with region formation can be clearly seen for both
approaches, whereas contrast is better preserved using the nonconvex
version. However, as can be seen in Fig. 16.17d and e, the formation
of transition regions is more susceptible to noise for the nonconvex
than for the convex approach. This is due to the fact that smoothing
almost completely stops in the nonconvex case, whereas in the con-
vex case smoothing still continues in directions perpendicular to the
gradient direction. From our viewpoint, this fact together with the ex-
istence of multiple local minima and the dependency on the starting
point reduces the attractivity of nonconvex approaches, in particular
in the context of image sequence processing where gradual changes of
the input image data may not lead to gradual changes of corresponding
image segmentations.
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Figure 16.14: Left column: Original data. Right column: Adaptively smoothed
data: a,b section of Fig. 16.13; c,d 3-D plot of a and b, respectively; e,f result of
threshold operation.

Noise suppression and restoration. For large gradients |∇v|, the
convex smoothness term of the functional Eq. (16.4), Eq. (16.5) is dom-
inated by the so-called total variation measure, which for admissible
functions with respect to problem Eq. (16.4) takes the simple form:∫

At
λ(|∇v|)dx ∼

∫
At
|∇v|dx

As an alternative to restoring signal transitions in the context of image
segmentation, this measure can also be used to restore entire images
by the variational approach [38, 39, 40, 41]. This powerful approach
can be simulated by choosing a small value for the parameter cρ in
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a b

c d

Figure 16.15: a Lab scene g; b the unique minimizer vg to Eq. (16.4); c the
segmentation encoded by vg according to Eqs. (16.8) and (16.9); d choosing a
smaller scale parameter λh in Eq. (16.5) enables the computation of finer details.

Eq. (16.5). Figure 16.18 shows as an example the restoration of a mam-
mogram. We note, however, that a proper adaptation of the approach
Eq. (16.4) to restoration tasks requires in general the inclusion of a blur-
ring operator K into the first term of Eq. (16.4) which models the point
spread function of the imaging device:∫

A
(Kv − g)2 dx

16.3 Processing of vector-valued images

This section extends the variational approach of Eq. (16.4) to vector-
valued images. We describe a straightforward extension appropriate
for the processing of color images, for example. A variation of this
approach that is useful for some image sequence processing tasks is
presented in Section 16.4.
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Figure 16.16: a Section of the Lab scene shown in Fig. 16.15; b detection and lo-
calization of signal structure is not affected very much by elimination of smaller
details. As a result, local contrast information around signal transitions be-
comes robust; c, d 3-D plots of a and b, respectively.

16.3.1 Variational principle

Let

g : x ∈ A ⊂ Rd →Rn (16.26)

denote a vector-valued image. For example, we have d = 2 and n = 3
for color images. For the gradient of vector-valued functions v we use
the symbol:

Dv :=
[
∇v1, . . . ,∇vn

]
The corresponding inner product and norm are denoted as:

(Du,Dv) = trace(DuTDv) , ‖Dv‖ = (Dv,Dv)1/2
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a b c

d e

Figure 16.17: a Real image; b unique minimum of the convex variational ap-
proach; c local minimizer of the nonconvex variational approach. Contrast is
better preserved by the nonconvex approach; d, e segmentations according to
b and c, respectively. Transitions detected by the convex approach are more
robust against noise because smoothing does not stop completely.

The variational approach—analog to Eq. (16.4)—then reads ([42]):

J(v) = 1
2

∫
A

{
|v − g|2 + λ(‖Dv‖)

}
dx (16.27)

Computing the first variation, we again obtain a variational equation
of the form Eq. (16.13) that, for λ defined by Eq. (16.5), uniquely de-
termines the global minimizer vg of the functional Eq. (16.27), where
(see definitions Eq. (16.14) and Eq. (16.15) in the scalar case):

〈A(vg),v〉 =
∫
A

{
vTgv + ρ(‖Dvg‖)(Dvg,Dv)

}
dx (16.28)

and

〈f ,v〉 =
∫
A
gTv dx (16.29)

Alternatively, one may use definition Eq. (16.6) in order to formulate a
nonconvex variational approach. An alternative meaningful extension
of the standard smoothness term in Eq. (16.4) to the case of vector-
valued images is discussed in Sapiro and Ringach [43].
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Figure 16.18: a Section of a mammogram; b restored image; c, d 3-D plots of
a, b .

16.3.2 Finite element method discretization

For simplicity, we consider the case of color images, that is, d = 2 and
n = 3 in Eq. (16.26). Each component function of a vector-valued image
is represented as in Eq. (16.16). For example, for the three components
of vh this means:

vh,i =
N∑
j=1

vi,jφj(x) , i = 1, . . . ,3 (16.30)

and similarly for the components of gh and vh,g. Inserting these repre-
sentations into Eq. (16.13) (using the definitions Eqs. (16.28) and (16.29)),
we obtain a nonlinear system of equations analogous to Eq. (16.18)
where each equation corresponds to a variable vi,j , i = 1, . . . ,3, j =
1, . . . ,N (see the derivation of Eq. (16.18) in Section 16.2.2). As a conse-
quence, the stencil presented for the case of 2-D images in Section 16.2.2
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a b

c d

Figure 16.19: a Color image; c,d the minimizer vg computed at a small and a
larger scale, respectively; b the segmentation corresponding to c; topologically
connected regions are marked with the mean color, transitions are marked with
black.

can be used. The only difference concerns the argument of the func-
tions ρ(i), which now is ‖Dvh,g‖ instead of |∇vh,g| in the scalar case.
Correspondingly, the resulting nonlinear system of equations can be
solved by a sequence of linear systems of equations by successively
“freezing” the argument of ρ for one iteration step (see Section 16.2.3).

16.3.3 Numerical example: color images

Figure 16.19 shows a color image g and the minimizer vg to Eq. (16.27)
computed at a small (λh = 2) and a larger scale (λh = 9), respectively.
The preservation of image structure as well as the formation of homo-
geneous regions is clearly visible.
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16.4 Processing of image sequences

In this section, we describe a specific alternative to the smoothness
term of the functional Eq. (16.27) adapted to the estimation of motion
fields. A motion field is a vector field that describes the instantaneous
velocity of projected scene points in the image plane. Estimates of the
motion field for a fixed time point are referred to as optical flow fields
f in the literature (see Chapters 13 and 14).

16.4.1 Preprocessing

To compute f , local constraints due to the spatiotemporal variation of
the image data g(x, t) may be used:

dg
dt
=∇gTf + ∂g

∂t
= 0 (16.31)

Here, the assumption has been made that g behaves like a “conserved
quantity.” As this assumption is often severely violated under realistic
illumination conditions, g is replaced by more robust quantities related
to the output of bandpass filters. Furthermore, multiple constraint
equations similar to Eq. (16.31) can be used (see, e.g., [44, 45, 46, 47]).
For more information related to the topic “optical flow” the reader is
referred to Chapters 13 and 14. A survey of current problems in the
field of image sequence analysis has been presented by Mitiche and
Bouthemy [48].

16.4.2 Variational principle

In the following we focus on variational approaches to the computation
of optical flow fields f . The classical approach is due to [49]:

J(f ) = 1
2

∫
A

{(∇gTf + gt)2 + λ2(|∇f1|2 + |∇f2|2
)}

dx , λ ∈ R
(16.32)

which has been considerably generalized in the literature (see, e.g., [50]
and references therein). Formally, f may be regarded as a vector-valued
image, so the nonquadratic smoothness term in Eq. (16.27),

1
2

∫
A
λ
(‖Df‖)dx (16.33)

with λ from Eq. (16.5) or Eq. (16.6), can be used to replace the terms
with derivatives of f1, f2 in Eq. (16.32). By this, the computation of f
by minimizing the functional J becomes adaptive to so-called motion
boundaries, that is, significant changes of the structure of the optical
flow f .
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An alternative to Eq. (16.33) that may be useful in some applications
is given by [51]:

1
4

∫
A

{
λd
(|div(f )|)+ λr (|rot(f )|)+ λs(|sh(f )|)}dx (16.34)

where:

div(f ) = f1,x + f2,y ,
rot(f ) = f2,x − f1,y ,

sh(f ) = [f2,y − f1,x, f1,y + f2,x
]T

denote the component’s divergence, vorticity, and shear of the vector-
gradient Df . The functions λd,λr and λs are defined by Eq. (16.5) (or
Eq. (16.6)). Parameter values may differ for each function. Using defi-
nition Eq. (16.5) makes the functional Eq. (16.34) together with the first
data term in Eq. (16.32) convex so that the minimizing f is unique [52].
For cρ →∞ in Eq. (16.5) the functional Eq. (16.34) becomes identical to
the smoothness term in Eq. (16.32) due to the identity:

‖Df‖2 = 1
2

(
div2(f )+ rot2(f )+ |sh(f )|2

)
16.4.3 Finite element method discretization

In this section, we describe how the nonlinear system of equations
corresponding to the functional Eq. (16.34) is computed, analogous to
Eq. (16.18). Note that these equations have to be supplemented ac-
cording to some data term (like the first term of the right-hand side in
Eq. (16.32), for example) chosen by the user, the discretization of which
proceeds in the same manner (see also Section 16.2.2).

Analogous to Section 16.2.1 and Section 16.3.1 (see, e. g., Eq. (16.28)),
let fg denote the minimizer of Eq. (16.34), and let f denote arbitrary
admissible vector fields. Computing the first variation of Eq. (16.34) in
the direction of a vector field f yields:

1
2

∫
A

{
ρd
(|div(fg)|

)
div(fg)div(f )+ ρr

(|rot(fg)|
)
rot(fg)rot(f )

+ ρs
(|sh(fg)|

)
sh(fg)T sh(f )

}
dx

(16.35)

where (see Eq. (16.11)):

ρd(t) =
λ′d(t)

2t
, ρr (t) = λ

′
r (t)
2t

, ρs(t) = λ
′
s(t)
2t

Next, vector fields fg,f are represented as in Eq. (16.30) by functions
fh,g,fh, which, in turn, are represented by variables f 1,g,i,f 2,g,i and
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a

b

Figure 16.20: a Stencil w.r.t. variables f 1,g,j of the equation corresponding to
a variable f 1,i; b stencil w.r.t. variables f 2,g,j of the equation corresponding to
a variable f 1,i.

f 1,i,f 2,i, for i = 1, . . . ,N. Inserting into Eq. (16.35) yields a nonlinear
equation for each variable f 1,i,f 2,i in terms of the variables f 1,g,j ,f 2,g,j
representing the minimizing vector field fg (see Section 16.2.2). We
summarize the result by specifying the stencils in Figures 16.20 and
16.21 of equations that correspond to interior variables f 1,i and f 2,i,
respectively.

At boundary locations, appropriate modifications of these stencils
are automatically obtained by carrying out the integral in Eq. (16.35).
Recall from Section 16.2.2 that these stencils depict the coefficients of
the variables f 1,g,j ,f 2,g,j around node i. Due to nonlinearity, these co-
efficients are themselves functions of f 1,g,j ,f 2,g,j . Using the notation
introduced in Section 16.2.2, and denoting for notational simplicity the
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a

b

Figure 16.21: a Stencil w.r.t. variables f 1,g,j of the equation corresponding to
a variable f 2,i; b stencil w.r.t. variables f 2,g,j of the equation corresponding to
a variable f 2,i.

variables corresponding to

fg =
[
f1,g

f2,g

]

with u1j,u2j (instead of f 1,g,j ,f 2,g,j), then ρd,(1), for example, means
(see Fig. 16.5c):

ρd,(1) = ρd
(∣∣div(fh,g)

∣∣)
within element(1)

= ρd
(∣∣u15 −u14 +u22 −u25

∣∣)
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Figure 16.22: Left column: Structure-selective smoothing: a computer-
generated vector field; only the shear-term of the gradient is different from zero;
b noisy input data; c reconstructed vector field by filtering divergent and rota-
tional components. Right column: Structure-adaptive smoothing; d computer-
generated vector field comprising a divergent and a rotational component; e
noisy input data; f restored vector field. The smoothness term Eq. (16.34) auto-
matically adapts to the local vector field structure.



16.5 References 481

16.4.4 Numerical examples

Because the preprocessing step, that is, the evaluation of constraint
equations like Eq. (16.31) is not the topic of the present chapter, we
restrict ourselves to illustrate the effect of using the smoothness term
of Eq. (16.34). To this end, we generated noisy vector fields fd and
supplemented Eq. (16.34) with the data term:

1
2

∫
A
|f − fd|2 dx

The main difference between the standard smoothness measure of
Eq. (16.33) and Eq. (16.34) is that the first term favors piecewise con-
stant vector fields whereas the latter term admits vector fields with
richer local structure. This is illustrated in Fig. 16.22 with vector fields
being nowhere constant.
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17.1 Introduction

Stereopsis is the perception of depth from the parallactic differences
between the images seen by the left and the right eye. Wheatstone [1],
using his mirror-stereoscope, was the first to demonstrate that image
difference, or disparity , is indeed the crucial carrier of information.

Much work in stereovision has been devoted to one particular type
of image differences, namely the position differences of the images of
individual points in the two cameras or eyes. In order to measure these
point disparities, an image matching procedure is required as reviewed
for example, by Dhond and Aggarwal [2], Förstner [3], Jenkin et al. [4].
Image matching and the associated correspondence problem [5, 6] will
not be dealt with in this chapter. The traditional view that correspon-
dence is the central problem in stereopsis has been challenged by recent
psychophysical findings indicating that other types of disparity as well

485
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a

b

c

d

e

Figure 17.1: Types of image differences or disparities: a point disparities; b
orientation disparities; c intensity disparities; d disparate highlights (photomet-
ric disparities); e monocular occlusion (“amodal stereopsis”). For crossed fusion,
use the left two columns, for uncrossed fusion the right ones. Readers not used
to free stereoscopic fusion should cover up the left column and place a piece of
cardboard vertically between the right two columns. By placing the head sym-
metrically over the cardboard, each eye is allowed to view one column only. In
this situation, fusion is easily obtained.

as global image comparisons play an important part at least in human
vision [7, 8].

The different viewpoints used for recording the two half-images of
a stereogram result in a number of different types of image differences,
some of which are illustrated in Fig. 17.1. A comprehensive discussion
is given in Arndt et al. [9] and Howard and Rogers [10].

1. Horizontal disparity is the horizontal offset of the images of an in-
dividual point projected into the two cameras. It can be measured
as an angle or as a distance on the camera target (Fig. 17.1a).

2. Vertical disparity is the analogous offset in the vertical image direc-
tion. Because the stereo baseline between the two cameras is usually
horizontal, vertical disparities are usually rather small. They van-
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ish in nonverging camera systems, that is, systems with parallel view
axes.

3. Orientation disparities occur if oblique lines are imaged. Gener-
ally, the resulting lines in the two images will have different slope
(Fig. 17.1b). Related higher-order disparities include the projected
movement of a point moving in space or the deformation (size,
shear, rotation) of a planar figure.

4. Disparate shading as shown in Fig. 17.1c,d may result for purely
geometrical reasons. Fig. 17.1c shows a Lambertian shaded cylin-
der with horizontal disparities that cannot be pinpointed to feature
points in the image. Still, depth perception is obtained. Figure 17.1d
shows a more complicated case where disparities are due to specu-
lar reflection, that is, to the fact that the same surface point looks
different when observed from different directions. It is interesting
to note that even though the highlight is the virtual image of the light
source and its disparity therefore corresponds to a point behind the
spherical surface, human observers are able to make correct use of
disparate highlights. That is to say, they perceive a protruding sur-
face when the highlight’s disparity is uncrossed [11].

5. Monocular occlusion, also called amodal or DaVinci stereopsis, is an-
other example of stereopsis without feature correspondence. In the
case shown in Fig. 17.1e, the dot seems to float behind the rectangle
as if it was occluded in the right image. When exchanging the two
half-images, perceived depth is not inverted.

The image differences illustrated in Fig. 17.1a-c can be formalized by
a so-called disparity map, that is, a continuous, one-to-one function
δ(x′, y ′) such that

Ir (x′, y ′) = Il(x′ − δ1(x′, y ′),y ′ − δ2(x′, y ′)) (17.1)

where the components of δ are the horizontal and vertical disparities.
Using first-order derivatives of δ leads to the orientation and defor-
mation disparities. The global disparity map exists only if the imaged
surface is completely visible from both eyes (no monocular occlusion)
and if shading is Lambertian. It does not in general exist at the most
interesting image regions, that is, at depth discontinuities.

17.2 Stereo geometry

In this Section, we review the geometry of binocular space, as it has
been developed in psychophysics and optometry [12]. We will argue
that the formulation presented here is also advantageous for technical
stereoheads. We will assume throughout this chapter that the view
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Figure 17.2: Naming conventions for binocular geometry: a view axes and
fixation; b image position of peripheral points. f : Fixation point. nl,nr : nodal
points. c: “Cyclopean point” halfway between the nodal points. b: baseline
distance. ϕr ,ϕl: azimuth angles of the cameras (viewing directions) in a head-
centered system. α = αf : Vergence. γ: Version. p: arbitrary point viewed while
fixating at f . αp : target vergence of p. βl,βr : azimuth angles of point p in
camera-centered coordinate system.

axes of the two cameras meet at some point in space, called the fixation
point. The case of parallel camera axes is contained as a limiting case.

World coordinates will be given in a Cartesian system (x,y, z)whose
origin is the midpoint of the camera nodal points. The horizontal x axis
points to the right, the verticaly axis points upward, and the horizontal
z axis marks the depth direction away from the observer. This coordi-
nate system is not the head coordinate system in that it does not rotate
with the head; it is, however, centered at the head. Image coordinates
are denoted by (x′l, y

′
l ) for the left and (x′r ,y ′r ) for the right camera.

17.2.1 Hering coordinates

The basic variables describing a binocular head are illustrated in
Fig. 17.2a. The heading direction is normal to the baseline connect-
ing the camera nodal points and the pan-axis of the head. We as-
sume for now that the nodal points are located at nl = (−b/2,0,0)
and nr = (+b/2,0,0), respectively; the length of the baseline therefore
is b. We consider first the geometry of the horizontal (epipolar, (x, z))
plane; for a more complete discussion, see Howard and Rogers [10]. The
viewing directions of the cameraϕl andϕr are defined with respect to
the heading direction and positive turns are to the right. Rather than
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using these viewing directions themselves, we introduce the quantities

α = ϕl −ϕr (17.2)

γ = 1
2
(ϕl +ϕr) (17.3)

These quantities are known as the (Hering)-vergence (α) and (Hering)-
version (γ), respectively.

Vergence takes the value 0 if the camera axes are parallel. Negative
values do not occur as long as the axes converge, that is, as long as there
is an intersection point of the viewing axes. For each vergence α > 0, a
circle can be drawn through the nodal points and the intersection point
of the two camera axes. This circle has the radius

R = b
2 sinα

(17.4)

and the center

v =
[

0,0, b
2

cotα
]T

(17.5)

It is called the Vieth-Müller circle (VMC) of vergenceα. As an application
of the theorem of Thales, it is easy to show that whenever fixating a
point on a fixed VMC, the same vergence angle α will result, that is, the
VMCs are the iso-vergence lines.

Version as defined in Eq. (17.4) is the average, or “cyclopean,” view-
ing direction of the two cameras. More formally, when fixating a point f
with some vergence α, consider the corresponding Vieth-Müller-circle.
The point on the circle halfway between the two nodal points may be
called the “cyclopean point” c; the visual direction from this point to
the fixation point is Hering’s version, γ (see Fig. 17.2). To see this, con-
sider the three triangles ∆nlfnr (apical angle α), ∆nlfc (apical angle
αl), ∆cfnr (apical angle αr ), all of which are inscribed into the same
VMC. Therefore, from Eq. (17.4)

b
2 sinα

= bl
2 sinαl

= br
2 sinαr

where bl and br denote the length of the chords nl,c and c,nr , re-
spectively. If bl = br , that is, if c is centered between nl and nr , it
follows that αl = αr . Since, from simple trigonometry, αl =ϕl−γ and
αr = γ −ϕr , this implies γ = 1

2(ϕl +ϕr).
Note that c depends on the current vergence angle. The lines of

constant version are the so-called hyperbolas of Hillebrand . Simple
trigonometric considerations yield the transformation rule from Hering
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Figure 17.3: Curves of iso-vergence (Vieth-Müller circles) and iso-version (hy-
perbolas of Hillebrand). The nodal points are located at n = (±1,0). The bold
lines are spaced at 10° both for version and vergence. The light line spacing is
2°.

vergence and version to Cartesian x,y,z coordinates:

H(α,γ) =
 xy
z

 = b
2 sinα

 sin 2γ
0

cosα+ cos 2γ



= R
 cosϕr sinϕl − cosϕl sinϕr

0
2 cosϕr cosϕl

 (17.6)

The iso-curves of this transformation for constant vergence (circles)
and constant version (hyperbolas) are plotted in Fig. 17.3.

17.2.2 Horizontal disparity

So far, we have considered only the camera axes and their intersec-
tion points. As camera movements are mostly rotations, the angular
description seems rather natural. We now turn to points that are not
currently fixated and to their images in the two cameras, and will show
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Figure 17.4: Stereo geometry for collimated imaging devices (complex eyes).
Each quadrangle corresponds to one pair of image points. Points in 3-D space
can be distinguished if they fall into different quadrangles. A Vieth-Müller cir-
cle and an iso-version hyperbola are marked for comparison with Fig. 17.3.
(Redrawn based on figures from Burkhardt et al. [13])

that the angular formulation applies here as well. Let the system fix-
ate a point f and consider a second point p. The angles between the
optical axis of each camera and the ray through point p will be called
βl and βr , respectively (see Fig. 17.2b). They correspond to the image
coordinates of the projection of p, which is given by x′l,r = f tanβl,r
where f is the focal length of the camera. The disparity of the point p
is defined by angular difference:

δ = βl − βr (17.7)

Likewise, we define the average eccentricity

η = 1
2
(βl + βr ) (17.8)

It is quite clear that disparity δ depends on the current vergence
angle of the system. If this is changed such as to fixate p, δ is obviously
reduced to zero. To stress this dependence of disparity on vergence,
δ is sometimes called relative disparity. Let us now denote by αp the
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vergence angle obtained when fixating p, sometimes also called the
target vergence of p. Let us further denote by δf (p) the disparity of
point p when fixating f . It is then easy to show that

δf (p) = αf −αp (17.9)

Analogously, we have:

ηf (p) = γf − γp (17.10)

With these relations, we can also use the coordinate system derived for
eye movements for disparities. For example, when fixating a point with
Hering-coordinates (αf , γf ), the Cartesian coordinates of a point with
disparity δf (p) and eccentricity ηf (p) are H(αf +δf (p), γf +ηf (p)),
where H is the transformation defined in Eq. 17.6. In Fig. 17.3 dispari-
ties with respect to an arbitrary fixation point are immediately given by
the distance from the fixation point in vergence direction. Hering co-
ordinates thus provide a means for a unified evaluation of disparities
at changing vergence conditions. As a consequence, we have shown
that for each vergence state of the system, the corresponding VMC is
the (theoretical) horopter , that is, the geometrical locus of all points
having disparity zero with respect to the fixation point.

Figure 17.4 shows an alternative account of binocular geometry in
the plane. While this approach applies most clearly to collimated imag-
ing systems such as the complex eyes of insects [13], it is also useful
for discussions of stereo resolution [14]. Resolution is inversely pro-
portional to the size of the quadrilaterals in Fig. 17.4.

17.2.3 Vertical disparity and epipolar lines

So far, we have considered only the horizontal plane together with cam-
era movements about axes orthogonal to this plane. In this case, dis-
parities are completely described by Eqs. (17.7) to (17.9). Points outside
this plane are imaged to positions that may differ both in their horizon-
tal and vertical coordinates. As an example, consider a point at height
h above the horizontal plane. Its vertical coordinate in the two image
planes will depend on the distance of the point from the camera nodal
points. Therefore, disparity will have a vertical component.

Vertical disparities are closely related to the notion of epipolar lines
(see Fig. 17.5). Consider a point pl in the left image plane. The geo-
metrical locus of all points p in 3-D space generating an image at point
pl is a ray from the left nodal point containing pl. When observed
from the right camera, this ray is imaged at a certain line in the image.
The plane spanned by all rays from the right nodal point to the ray of
possible positions of p is identical to the plane passing through the
two nodal points and pl or any one of its generators p; it is called the
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nl

nr

f

Figure 17.5: Epipolar lines and vertical disparities in a verging stereo system.
nl, nr : left and right nodal points. f fixation. The image planes are orthogonal
to the “optical axes” nlf and nrf , respectively. The epipolar lines diverge
towards the midline of the system.

epipolar plane of p. The intersections of the epipolar plane with the
image planes form a pair of epipolar lines. Any point imaged on some
epipolar line in one image must be imaged on the corresponding epipo-
lar line in the other image. That is to say that horizontal and vertical
disparity have a constant ratio, which corresponds to the slope of the
epipolar lines. All epipolar lines of one image meet at a common in-
tersection point, which is also the intersection of the image plane with
the baseline connecting the two nodal points of the camera system. If
the vergence angle is zero, that is, if the camera axes are parallel to
each other and orthogonal to the base line, the epipolar lines become
parallel and horizontal and all vertical disparities vanish.

Epipolar lines are important in two respects. First, if the coordinates
of the fixation point are known, epipolar lines can be predicted from
camera geometry. In the stereo-matching process, this information can
be used to simplify the matching process because corresponding image
points must be localized along the respective epipolar lines. One way
to do this is by means of the so-called epipolar transformation [15], a
collineation applied to the images to make epipolar lines horizontal.

A second application of epipolar lines is the calibration of stereo
camera systems. If vergence is symmetric, the vergence angle can be
infered from a single known stereo correspondence with nonzero ver-
tical disparity. In symmetric vergence, the epipolar lines of the two
half-images are mirror-symmetric with respect to the vertical midline
of the images. The intersection points of all epipolar lines are located
on the x′ axis of the image coordinate system at y ′r ,l = ±f cotα/2
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� -f cotα/2

Figure 17.6: Slope of an epipolar line in symmetrical vergence. The figure
shows the two image planes superimposed. If a pair of corresponding points
((x′l,y

′
l ), (x′r ,y ′r )) is known, the slope of the right epipolar line can be deter-

mined by mirroring the point from the left image at the vertical image midline
(y ′ axis), which results in a point (−x′l,y ′l ), shown by an open dot. The line
through (x′r ,y ′r ) and (−x′l,y ′l ) is the epipolar line. From its intersection with
the horizontal axis, the vergence angle α (Eq. (17.2)) can be inferred.

for the left and right image, respectively (see Fig. 17.6). As before, α
denotes vergence and f is the focal length of the camera. If a pair of
corresponding points is given by (x′r ,y ′r ) in the right image and (x′l, y

′
l )

in the left image, the slope of the epipolar line in the right image is

sr =
y ′r −y ′l
x′r +x′l

(17.11)

The epipolar line crosses the horizontal image axis at xr −yr/sr . From
this, we obtain:

α = 2 arctan
y ′r −y ′l

x′ly
′
r +x′ry ′l

(17.12)

Note that the enumerator of the fraction in this equation is the verti-
cal disparity in Cartesian coordinates. Equation (17.12) is undefined
for points on the horizontal or vertical image axes. In conclusion, in
symmetrically verging systems, one pair of corresponding image points
suffices to determine the absolute position of the point in space, even
if the vergence of the camera system is allowed to change.

17.2.4 Binocular camera movements

So far, we have considered cases where the camera rotation was con-
fined to a pair of axes orthogonal to the horizontal plane. If we now
turn to general fixation points, we first have to discuss the degrees of
freedom of the required turns. The possible arrangements and nam-
ing conventions are summarized in Fig. 17.7. The human eye moves
according to the Listing system shown in Fig. 17.7c.
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Figure 17.7: Degrees of freedom of rotation for technical and biological camera
systems. The central square with the pupil marks the camera. a Fick system.
The first turn is about the vertical axis, the second about a horizontal one. b
Helmholtz system. The first turn is about a vertical axis, the second turn about
an axis orthogonal moving axis. c Listing system. The camera is placed in a
bearing. In the first rotation the outside ring is moved, thereby selecting an axis
for the second turn. All systems include a roll movement about the view axis as
a third step. It is not shown here.

We give rotation matrices for the three systems that rotate a space
direction [a,b, c]T witha2+b2+c2 = 1 and c ≠ 1 into the straight ahead
direction of the camera, [0,0,1]T . Additional roll movement about that
axis of gaze is not included in these matrices.

In the Fick system (Fig. 17.7a), the first rotation is around a vertical
axis, while the second uses a horizontal one. Technically, this is real-
ized by two independent pan-tilt camera systems. The equation reads:

F(a,b,c) =

 c/
√
a2 + c2 0 −a/

√
a2 + c2

−ab/
√
a2 + c2

√
a2 + c2 −bc/

√
a2 + c2

a b c

 (17.13)

The Helmholtz system starts with a turn about a fixed horizontal
axis (Fig. 17.7b). Stereo heads using the Helmholtz geometry can thus
be built with a common tilt axis. Additional turns are about an axis
orthogonal to this tilt axis. The matrix is:

H(a,b,c) =


√
b2 + c2 −ab/

√
b2 + c2 −ac/

√
b2 + c2

0 c/
√
b2 + c2 −b/

√
b2 + c2

a b c

 (17.14)

Finally, in the Listing system, movement starts by choosing an axis
of rotation. The second step is a turn about that axis moving the gaze
direction from the start to the goal position on a great circle. All pos-
sible axes lie in what is called Listing’s plane, a plane orthogonal to the
principal (straight ahead) direction passing through the center of the
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Figure 17.8: Space horopter for a stereo camera system with nodal points
(±1,0,0)> fixating at (2.0,0.3,3.0)>: a Fick system; b Helmholtz system; c List-
ing system.

eye:

L(a,b,c) =
 (a

2c + b2)/(1− c2) −ab/(1+ c) −a
−ab/(1+ c) (a2 + b2c)/(1− c2) −b

a b c

 (17.15)

In human vision, Listing’s law states that the roll position at any one
viewing direction is as if the eye had moved to this direction along a
great circle from the straight ahead position. Roll is independent of the
actual way by which the current position is reached.

17.2.5 The space horopter

An important concept for understanding stereo geometry is the space
horopter , that is, the set of points in the 3-D world whose vertical and
horizontal disparity vanish simultaneously. It is clear that the space
horopter passes through the point of fixation. Because the vanishing
of both horizontal and vertical disparity poses a 2-D constraint on the
horopter, one would expect it to be a curve, or some 1-D manifold.
With the rotation matrices given in the foregoing, the problem can be
formulated as follows.

Let f = [
f1, f2, f3

]T denote a fixation point with f3 > 0. Let M
denote one of the forementioned rotation matrices. We write

Ml =Mf−nl ; Mr =Mf−nr (17.16)

where the camera nodal points are denoted by nl and nr , respectively.
Ml(p − nl) thus describes the coordinate transformation of a point p
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Table 17.1: Examples for stereo camera heads with various degrees of freedom.
In the DoF column, the first number applies to the cameras, the second to the
head, and the third to a further support system (body, vehicle, etc.)

DoF Type Examples

Helmholtz architectures (common tilt axis)

1+ 4+ 0
symmetric vergence + head tilt,
pan, x,y-translation

U Penn; Krotkov [17]

1+ 2+ 0
symmetric vergence + head tilt
and pan (symmetric Helmholtz)

Harvard head; Clark and
Ferrier [18]

2+ 1+ 6
camera pan + yoked tilt + Puma
arm

Rochester head; Coombs
and Brown [19]

Fick architectures (independent tilt and pan)

4+ 2+ 0
camera pan and tilt about nodal
points + eccentric pan and tilt of
neck module

KTH head; Pahlavan and
Eklundh [20]

4+ 0+ 2
camera pan and tilt + turn and z-
translation of vehicle

Seelen et al. [21]

Listing architecture (camera movement on great circles)

6+ 6+ 6 human head

from world coordinates into the coordinate system centered around the
left camera. A point on the horopter must then satisfy the equation

Ml(p −nl) = λMr (p −nr ) (17.17)

Where λ is a positive real variable describing the ratio of the distances
of point p to the two nodal points.

Figure 17.8 shows solutions of Eq. (17.17) for the three systems of
camera axes. For the Helmholtz system, the space horopter is com-
posed of a Vieth-Müller circle in a plane tilted away from the horizon-
tal by the common elevation angle, and a medial line perpendicular to
the circle. In the other cases, the space horopter is a space curve that
degenerates to the circle plus line arrangement for fixation points in
the horizontal or medial plane. For a derivation of the space horopter
in the Listing case, see Solomons [16].

17.2.6 Stereo camera heads

The discussion of stereo geometry presented so far applies to stereo
camera systems with a fair number of degrees of freedom to move. In
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Figure 17.9: Comparison of camera heads with two degrees of freedom. The
center of rotation of the camera head is marked by h: a and b head with
independently moving camera ((ϕl,ϕr ) system); c head with symmetric version
and yoked pan movements ((α,ξ) system). In the (ϕl,ϕr ) system, the zero-
disparity circle can be made passing through just one point (x or y) at any one
time. In the (α,ξ) system, the disparity of both points can be compensated
simultaneously. Note that the spatial relation of x, y and h is the same in all
panels.

human vision, these are the yoked variables, vergence and version, for
the movements within the horizontal plane; for movements outside the
horizontal plane, Listing’s law applies. Mechanically, each eye has the
full three degrees of freedom of rotation. Movements of head and body
give additional flexibility to the system.

An overview of some technical camera heads is given in Table 17.1;
for a more comprehensive discussion, see Murray et al. [22]. As an
example of the design questions arising in the design of camera heads,
we discuss one simple geometrical property of verging camera systems
that seems to have been overlooked previously.

Consider a simple camera head with two degrees of freedom. These
can be either the two viewing directions (pan) ϕl and ϕr of the indi-
vidual cameras, or the symmetric vergence of the system α and the
heading direction ξ. For simplicity, we assume that the head turns
around a vertical axis through the midpoint between the two camera
nodal points and the cameras turn around parallel axes through their
respective nodal points. Note that ξ is not identical to the version angle
γ introduced in Section 17.2.1. Two criteria could be the following:

C1 Is it possible to fixate any point in the plane, thereby reducing its
disparity to zero?

C2 Given two points in the plane, is it possible to simultaneously reduce
both disparities to zero? In this case, a smooth surface passing
through the two points would have low disparity values throughout.
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With respect to criterion 1, the (ϕl,ϕr ) system has a problem with
points on the base line. The (α, ξ) system can fixate any point in the
plane without restriction. With respect to criterion 2, it is quite clear
that for the (ϕl,ϕr ) system, simultaneous disparity reduction of two
points is possible only if the two points happen to be on a circle passing
through the two nodal points. In the (α, ξ) system, however, simulta-
neous disparity reduction is always possible as long as the line through
the two points x and y is neither the baseline nor the horizontal mid-
line of the system. The corresponding settings for the camera head
are:

ξ = arctan
(4x2 − b2)y2 − (4y2 − b2)x2

(4y2 − b2)x1 − (4x2 − b2)y1
(17.18)

α = arctan
b(x1 sinξ +x2 cosξ)

x2 − b2/4

= arctan
b(y1 sinξ +y2 cosξ)

y2 − b2/4
(17.19)

An example of this relationship is shown in Fig. 17.9c.

17.3 Global stereopsis

17.3.1 Global disparity

In this section, we will briefly discuss global image difference as one
interesting variable in stereo vision. We will assume that the left and
right images are related to each other by a 1-D disparity map δ(x′, y ′)
such that

Ir (x′, y ′) = Il(x′ − δ(x′, y ′),y ′) (17.20)

Vertical disparities will be neglected in this analysis.
We will prove in this section that the global disparity or image shift

minimizing the overall image difference equals the averaged true dis-
parity, weighted by local image contrast. To see this, we introduce the
global image correlation

Φ(D) :=
∫ ∫
[Il(x′, y ′)− Ir (x′ +D,y ′)]2 dx′ dy ′ (17.21)

Setting I(x′, y ′) := Il(x′, y ′) and substituting Eq. (17.20) into Eq. (17.21),
we obtain:

Φ(D) =
∫ ∫
[I(x′, y ′)− I(x′ − δ(x′, y ′)+D,y)]2 dx′ dy ′ (17.22)
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The minimization is now performed by calculating the derivativeΦ′(D).
Application of the chain rule yields:

Φ′(D) = 2
∫ ∫

Ix′(x′ − δ(x′, y ′)+D,y ′) (17.23)

[I(x′, y ′)− I(x′ − δ(x′, y ′)+D,y ′)]dx′ dy ′

SettingΦ′(D∗) = 0 and linearly approximating the term in square brack-
ets, we obtain:

0 ≈
∫ ∫

Ix′(x′, y ′)[(D∗ − δ(x′, y ′))Ix′(x′, y ′)]dx′ dy ′ (17.24)

This yields the final result:

D∗ ≈
∫ ∫
δ(x′, y ′)I2x′(x′, y ′)dx′ dy ′∫ ∫

I2x′(x′, y ′)dx′ dy ′
(17.25)

As stated above, Eq. (17.25) shows that the global disparity, that
is, the image shift maximizing overall correlation between the left and
the right image, is equivalent to the average of the local disparities,
weighted by the squared partial derivative of the image intensity func-
tion I2x′(x′, y ′), which may be considered a measure of image contrast
in the “disparity direction.”

In verging camera systems, global disparities can be used to adjust
the vergence angle and thus the working point of stereopsis to some
point of interest in space. In biological vision, disparities are consid-
ered only in a narrow range around zero, called Panum’s fusional area.
The advantage of this is that high disparity resolution can be deployed
to regions in space where it is actually needed. In terms of stereo corre-
spondence algorithms, the ability to verge results in a smaller required
search space for disparities. Global image correlation as defined in
Eq. (17.21) has been used for vergence control, for example, by Ahuja
and Abbott [23]. In human vergence movements, an averaging mecha-
nism as described by Eq. (17.25) has been demonstrated by Mallot et al.
[24]. Phase-based approaches to global disparity estimation have been
discussed by Theimer and Mallot [25].

17.3.2 Inverse perspective mapping

As one example of a technical application of global stereopsis, we briefly
discuss obstacle avoidance by inverse perspective mapping [26, 27].
Here, prior to disparity calculations, the images are transformed in a
way that makes global disparity an even more interesting variable. The
basic idea is illustrated in Fig. 17.10. Consider two stereoscopic views
of a scene as depicted in Fig. 17.10a,b. If no obstacle were around, the
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a b

c d e

Figure 17.10: Obstacle avoidance by inverse perspective mapping: a,b left and
right images of a scene; c predicted right view based on inverse perspective
mapping of the left view; d comparison of actual and predicted right image.
The actual image is shown as gray values, whereas the prediction is shown by
contours. The images coincide in the ground plane, but deviate increasingly
for objects raising above the plane; e difference image of actual and predicted
right image. The obstacle can easily be segmented from the ground plane.

right image could be predicted from the left by a perspective remap-
ping technique. This remapping is a projective collineation that can be
obtained by projecting the right image back to the ground plane and
imaging the result with the left camera. Comparing the original and the
predicted right image, one obtains deviations in those image regions
where something is protruding or receding from the horizontal plane,
that is, in obstacle regions. If both images are identical, no obstacle
is present. An intuitive way to think of this is that inverse perspective
mapping creates a zero-disparity plane (for comparisons of the right
and the predicted right image) that coincides with the ground plane.
Whenever a “disparity” occurs, an obstacle must be present.

The technique is not sensitive to cast shadows and other image
structure as long as it is confined to the plane. Disparity is zero for
points in the ground plane and increases with obstacle elevation. In-
verse perspective mapping has been applied successfully in autono-
mous robots [21], [28] as well as to driver support systems on the high-
way [29], [30].

Inverse perspective mapping is a projective collineation, most suit-
ably formalized in terms of homogeneous coordinates. Let x̃l and x̃r
denote the homogeneous representations of the left and right image
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points xl and xr . Intuitively, x̃l and x̃r are the rays passing through
the respective image points. Inverse perspective mapping is then de-
scribed by a 3× 3 matrix Q with

x̃r =Qx̃l (17.26)

which depends on the rotation between the two cameras MlMT
r , the

relative position of the camera nodal points, nl−nr , the normal of the
assumed ground plane g, and the distance between the ground plane
and the left camera nodal point d. The relation reads:

Q =MlMT
r +

(nl −nr )g>
d

(17.27)

For a proof, see Faugeras [31], proposition 6.1. Similar ideas can be
applied to the monocular analysis of optical flow, in which case the
inverse perspective mapping goes from the image plane to the assumed
ground plane [26]. As compared to the stereoscopic case, optical flow
has the disadvantage that it works only when the observer is moving,
requiring faster motions when more reliable obstacle information is
sought.
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18.1 Introduction

Photogrammetric terrain reconstruction from aerial and space stereo-
pairs of images occupies a prominent place in cartography and remote
sensing of the Earth’s surface. Traditional analytical photogramme-
try, based on human stereopsis, involves the following two main steps.
First, several ground control points (GCP) are detected in the images for
placing these latter in such a way as to visually perceive a stereo model
of the 3-D surface and embed it into a reference 3-D coordinate system.
This step is called image orientation or calibration [1] (see also Chap-
ter 17). Then, the perceived stereo model is visually traced along x- or
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y-profiles (3-D lines with constant y- or x-coordinates, respectively) or
along horizontals (lines with constant z-coordinates).

A dense set of regularly or irregularly spaced 3-D points of the pro-
files or horizontals form a digital surface model (DSM) of the terrain.
On-line or posterior visual exclusion of particular “noncharacteristic”
objects, such as forest canopy or buildings, converts a DSM into a digi-
tal terrain model (DTM), digital elevation model (DEM), or triangulated
irregular network (TIN)1.

Digital photogrammetry uses (interactive) computational methods
both to orient the images by detecting the GCPs and to reconstruct the
terrains [3, 4]. The computational binocular stereo models a “low-level”
human stereopsis that is based on the one-to-one correspondence be-
tween 3-D coordinates of the visible terrain points and 2-D coordinates
of the corresponding pixels in stereo images (for more detail, see Chap-
ter 17). Under a known optical geometry of binocular stereo viewing,
found by calibration, 3-D coordinates of each spatial point are com-
puted from differences between 2-D coordinates of the corresponding
pixels. The difference of x-coordinates is called a horizontal disparity ,
or x-parallax. The difference of y-coordinates is a vertical disparity , or
y-parallax. The disparities can be presented as a digital parallax map
(DPM) that specifies all the correspondent pixels in a given stereo pair.
A DSM is computed from a DPM using the calibration parameters.

Each binocularly visible terrain area is represented by (visually) sim-
ilar corresponding regions in a given stereo pair, and the correspon-
dences can be found by searching for the similar regions in the im-
ages. As human stereo vision finds these similarities so easily and, at
most, reliably hides the principal ill-posedness of the binocular stereo,
there always exist a multiplicity of optical 3-D surfaces giving just the
same stereo pair [5]. Therefore, it is impossible to reconstruct precisely
the real terrain from a single pair, and the computational reconstruc-
tion pursues a more limited goal of bringing surfaces close enough to
those perceived visually or restored by traditional photogrammetric
techniques from the same stereo pair.

Natural terrains possess a large variety of geometric shapes and
photometric features, thus the computational reconstruction assumes
only a very general prior knowledge about the optical 3-D surfaces to be
found (at most, specifications of allowable smoothness, discontinuities,
curvature, and so forth). Long-standing investigations have resulted in
numerous stereo methods (see, for instance, [6, 7, 8, 9, 10, 11]. Some of
them, mostly, simple correlation or least-square image matching [12,
13, 14] have already found practical use in modern photogrammetric

1A DEM contains 3-D points (x,y,z) supported by a regular (x,y)-lattice; a DTM
either means just the same as the DEM or incorporates also some irregular characteristic
topographic features, and a TIN approximates the surface by adjacent nonoverlapping
planar triangles with irregularly spaced vertices (x,y,z) [2].
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devices. But there is still the need to develop more efficient and robust
methods to be implemented in practice.

18.1.1 Intensity-based stereo: basic features

To measure the similarity between stereo images, both photometric
and geometric distortions including discontinuities due to partial oc-
clusions should be taken into account. Photometric distortions are due
to nonuniform albedo of terrain points, nonuniform and noisy transfer
factors over a field-of-view (FOV) of each image sensor, and so forth.
Because of these distortions, the corresponding pixels in stereo im-
ages may have different signal values. Geometric distortions are due to
projecting a 3-D surface onto the two image planes and involve: (i) spa-
tially variant disparities of the corresponding pixels; and (ii) partial oc-
clusions of some terrain points. As a result, the corresponding regions
may differ in positions, scales, and orientations. Partial occlusions lead
to only monocular visibility of certain terrain patches so that some im-
age regions have no stereo correspondence. If a terrain is continuous,
then, the geometric distortions preserve the natural x- and y-order of
the binocularly visible points (BVP) in the images.

Due to occlusions, even without photometric distortions, two or
more terrain variants are in full agreement with the same stereo pair.
Therefore, terrain reconstruction, as an ill-posed problem, must involve
a proper regularization [5, 15, 16].

Today’s approaches to computational stereo differ in the following
features: (i) similarities that are measured for matching the images;
(ii) the extent to which the image distortions are taken into account;
(iii) the regularizing heuristics that are involved; and (iv) how the stereo
pair is matched as a whole. All the approaches exploit the image signals,
that is, gray values (intensities) or, generally, colors (signal triples in
RGB or other color scale) or multiband signatures (signals in several and
not only visible spectral bands). But with respect to image matching,
they are usually classified as feature-based and intensity-based stereo.

The first group relies on specific image features (say, edges, iso-
lated small areas, or other easily detectable objects) to be found in
both stereo images by preprocessing. Then, only the features are tested
for similarity. Usually, a natural terrain has a relatively small number
of such characteristic features, and in most cases the intensity-based
approaches where image similarity is defined directly in terms of the
signal values (gray levels, colors, or multiband signatures) are used to
reconstruct terrains.

The intensity-based approaches are based on mathematical models
that relate optical signals of the surface points to the image signals in
the corresponding pixels. The model allows one to deduce a particu-
lar measure of similarity between the corresponding pixels or regions
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in the images to be used for stereo matching. The similarity measure
takes account of the admissible geometric and photometric image dis-
tortions.

The simplest model assumes: (i) no local geometric distortions; and
(ii) either no photometric distortions or only spatially uniform contrast
and offset differences between the corresponding image signals. More
specifically, it is assumed that a horizontal planar patch of a desired
terrain is viewed by (photometrically) ideal image sensors and produces
two relatively small corresponding rectangular windows in both stereo
images. Then, the similarity between the two windows is measured by
summing squared differences between the signals or by computing the
cross correlation [7, 8, 17].

The forementioned model is easily extended to take account of vary-
ing x-slopes of a surface patch: by exhausting relative x-expansions
and contractions of both the windows and searching for the maximum
similarity [14]. An alternative way is to adapt the window size until the
simplifying assumption about a horizontal surface patch is justified
[18].

More elaborated models compute similarity under various nonuni-
form photometric distortions of the images. In particular, to partially
exclude the nonuniformity either only phases of the Fourier transforms
of both the windows are matched [19], or outputs of Gabor wavelet fil-
ters are used to isolate illumination perturbances of the images from
variations of the surface reflectance attributed to orientations of the
terrain patches [20]; or cepstrums, that is, amplitudes of the Fourier
transforms of the logarithmic Fourier transforms of the windows, are
used to isolate the surface reflectance variations from the perturba-
tions caused by the noisy linear optical stereo channels that transfer
the signals [21], and so forth. On frequent occasions complex combi-
nations of intensity- and feature-based techniques are used to obtain a
robustness to typical image distortions [22].

Alternative and computationally less complex signal models in [23,
24] allow one to take into account both the varying surface geometry
and the nonuniform signal distortions along a single terrain profile.
The models admit arbitrary changes of the corresponding gray values
provided that ratios of the corresponding gray-level differences remain
in a given range. Section 18.3 presents these models in more detail.

18.1.2 Global versus local optimization

A terrain is reconstructed by searching for the maximum similarity be-
tween the corresponding regions or pixels in a given stereo pair. A
similarity measure takes account of the admissible image distortions
and includes some regularizing heuristics to deal with the partial occlu-
sions. Generally, there exist two possible scenarios for reconstructing a
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terrain: to exhaust all possible variants of a visible surface (a global op-
timization) or to successively search for each next small surface patch,
given the previously found patches (a local optimization). For a contin-
uous terrain, both the variants are guided by the visibility constraints.

The local optimization is widely used in practice because in many
cases it needs less computation and easily takes into account both x-
and y-disparities of the corresponding pixels. But, it has the following
drawback. If each local decision is taken independently from others,
then the patches found may form an invalid 3-D surface violating the
visibility constraints. But if each next search is guided by the previously
found patches, then the local errors are accumulated and, after a few
steps, the “guidance” may result in completely wrong matches. In both
cases, the local optimization needs an intensive interactive on-line or
post-editing of a DPM or DSM to fix the resulting errors.

The global optimization is less subject to the local errors. But it
is feasible only if the direct exhaustion of the surface variants can be
avoided. In particular, this is possible when a terrain is reconstructed
in a profile-by-profile mode and an additive similarity measure allows
the use of dynamic programming techniques for the global optimiza-
tion. Historically, this approach was first proposed in [25] (see also the
comprehensive review [7]) and then extended in [23, 24, 26, 27]. Dy-
namic programming algorithms, but mostly for a feature-based stereo,
were studied in many subsequent works, such as [28, 29, 30, 31, 32].
The symmetric dynamic programming stereo in [23, 24, 33] uses the
maximum likelihood or Bayesian decision rule, derived from a particu-
lar probability model of the initial stereo images and desired surfaces,
and takes into account:

• the geometric symmetry of stereo channels (image sensors);

• basic regular and random nonuniform distortions of the images;
and

• discontinuities in the images because of occlusions in each channel.

18.2 Statistical decisions in terrain reconstruction

In this section, we review the symmetric geometry of binocular stereo
and discuss the influence of the visibility constraints on optimal statis-
tical decisions for terrain reconstruction [34]. We restrict our consider-
ation to an ideal horizontal stereo pair (in the general case, stereo geo-
metry is discussed in Chapter 17). For considerations of probabilistic
models and optimal statistical decisions in more detail, see Chapter 26.

A DSM is considered as a bunch of epipolar profiles obtained by
crossing a surface by a fan of epipolar planes. An epipolar plane con-
tains the base-line connecting the optical centers of stereo channels.
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Traces of an epipolar plane in the images, that is, two corresponding
epipolar (scan) lines, represent any epipolar profile in this plane. Thus,
to reconstruct a profile only the signals along the epipolar lines have
to be matched [12, 13].

18.2.1 Symmetric stereo geometry

Both images of an ideal stereo pair are in the same plane. Let L and
R denote two square lattices supporting a digital stereo pair in this
plane. The pixels have integer x and y coordinates with steps of 1.
The corresponding epipolar lines coincide with the x-lines having the
same y-coordinate in the two images, and a DPM contains only the
x-parallaxes of the corresponding pixels.

Figure 18.1 shows a cross section of a digital surface by an epipolar
plane. Lines oLxL and oRxR represent the corresponding x-lines in the
images. The correspondence between the signals in the profile points
and in the image pixels is given by the symbolic labels “a” – “k.” Notice
that both the solid and the dashed profiles give just the same labels in
the images if the signals for these profiles have the shown labels.

Let [X,y,Z]T be the symmetric 3-D coordinates of a point in the
DSM. Here, y = yL = yR denotes the y-coordinate of the epipolar
lines that specify an epipolar plane containing the point and [X,Z]T

are the Cartesian 2-D coordinates of the point in this plane. The X-axis
coincides with the stereo base-line that links optical centers OL and OR
of the channels and is the same for all the planes. The Z-axis lies in the
plane y . The origin O of the symmetric (X,Z) coordinates is midway
between the centers [24]. If spatial positions of the origin O and plane
y are known, the symmetric coordinates [X,y,Z]T are easily converted
into any given Cartesian 3-D coordinate system.

Let pixels [xL,y]T ∈ L and [xR,y]T ∈ R correspond to a surface
point [X,y,Z]T . Then the x-parallax p = xL − xR is inversely propor-
tional to the depth (distance, or height) Z of the point [X,Z]T from the
base-line OX: p = bf/Z . Here, b denotes the length of the base-line
and f is the focal length for the channels.

Each digital profile in the epipolar plane y is a chain of the isolated
3-D points [X,y,Z]T that correspond to the pixels [xL,y]T ∈ L and
[xR,y]T ∈ R. The DSM points [X,y,Z]T , projected onto the image
plane through the origin O, form the auxiliary “central” lattice C. This
lattice has x-steps of 0.5 and y-steps of 1.

A symmetric DPM on the lattice C is obtained by replacing the co-
ordinates X and Z of a DSM in the epipolar plane y with the corre-
sponding (x,y)-coordinates in C and the x-parallaxes, respectively. If
the pixels [xL,y]T ∈ L and [xR,y]T ∈ R in a stereo pair correspond
to a surface point with the planar coordinates [x,y]T ∈ C, then the
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Figure 18.1: Digital terrain profile in the epipolar plane.

following simple relations hold:

xL = x + p2 ; xR = x − p2 (18.1)

Figure 18.2 shows the epipolar plane of Fig. 18.1 in the symmetric
(x,p) coordinates. Figure 18.3 presents two more profiles giving rise
to the same distribution of the corresponding pixels along the epipolar
lines under the shown labels of the points.

We will consider an extended DPM (p,g) that contains a digital
surface p : C → P and an ortho-image g : C → Q of the surface in
the symmetric 3-D coordinates. Here, P = [pmin, pmin + 1, . . . , pmax] is
a finite set of the x-parallax values and Q = [0,1, . . . , qmax] is a finite
set of the signal values (say, gray levels).

The ortho-image g represents the optical signals g(x,y) ∈ Q in
the surface points [x,y,p = p(x,y)]T ; (x,y) ∈ C. The digital sur-
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face p consists of the epipolar profiles py . Each profile has a fixed
y-coordinate of the points and is represented by the two epipolar lines
gL,y and gR,y with the same y-coordinate of the pixels in the images.

18.2.2 Simple and compound Bayesian decisions

Partial occlusions of the surface points impose the following strict vis-
ibility constraints on the x-parallaxes along an epipolar line in a sym-
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metric DPM:

p(x − 0.5, y)− 1 ≤ p(x,y) ≤ p(x − 0.5, y)+ 1 (18.2)

Let P be the parent population of all the DPMs p that satisfy the con-
straints Eq. (18.2). The constraints result in specific statistical decisions
for reconstructing a DPM p ∈ P from a given stereo pair.

Let an error be defined as any discrepancy between the true and
the reconstructed surface. The conditional Bayesian MAP-decision that
minimizes the error probability by choosing a surface p ∈ P with the
maximum a posteriori probability is as follows:

popt = arg max
p∈P

Pr(p|gL,gR) (18.3)

Here, Pr(p|gL,gR) is the a posteriori probability distribution (p.d.) of
the surfaces for a given initial stereo pair.

If the probability model of a terrain and stereo images allows only
the prior p.d. Pr(gL,gR|p) of the images to be obtained, then the con-
ditional maximum likelihood decision can be used instead of the con-
ditional MAP-decision:

popt = arg max
p∈P

Pr(gL,gR|p) (18.4)

Let a pointwise error be a difference between the true and the re-
constructed x-parallax value in a particular surface point. Compound
Bayesian decisions are more adequate to the low-level stereo than the
simple rules in Eqs. (18.3) and (18.4) because they minimize either the
expected number of the pointwise errors:

popt = arg max
p∈P

∑
(x,y)∈C

Prx,y(p(x,y)|gL,gR) (18.5)

or the mean magnitude of the pointwise errors, that is, the variance of
the obtained DPM about the true one

popt = arg max
p∈P

∑
(x,y)∈C

(p(x,y)−E{p(x,y)|gL,gR})2 (18.6)

Here, Prx,y(p|gL,gR) denotes a posterior marginal probability of the
surface point [x,y,p = p(x,y)]T for a given stereo pair and E{...} is
a posterior expectation of the surface point, that is, the expected x-
parallax value in the surface point with the planar coordinates (x,y)

E{p(x,y)|gL,gR} =
∑
p∈P
pPrx,y(p|gL,gR) (18.7)

Due to the constraints Eq. (18.2), the rule in Eq. (18.5) with the max-
imum sum of the posterior marginal probabilities of the surface points
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(the MSPM-decision) is not reduced to the well-known pointwise MPM-
decision with the maximal posterior marginal probability of each pro-
file point [16]. Likewise, the rule in Eq. (18.6) with minimal variance
of these points about the posterior expectations (the MVPE-decision) is
not reduced to the well-known PE-decision that chooses the posterior
expectations as the reconstructed points [35].

Both the conditional simple decisions in Eqs. (18.3) and (18.4) and
the conditional compound MSPM- and MVPE-decisions in Eqs. (18.5) and
(18.6) allow for the dynamic programming reconstruction of an epipolar
profile (see Section 18.4).

18.3 Probability models of epipolar profiles

This section presents geometric and photometric probability models
describing the initial stereo images and the desired surfaces. Geomet-
ric models [26, 27] represent an epipolar profile by a Markov chain of
admissible transitions between the vertices in a planar graph of profile
variants (GPV). Figures 18.2 and 18.3 show examples of the GVP. Ra-
diometric models [23, 24, 25, 33] describe basic regular and random
photometric distortions of stereo images gL and gR with respect to the
optical signals, that is, to the ortho-image of a surface 2.

18.3.1 Prior geometric model

Transitions between the GPV-vertices in the coordinates x,p represent
all profile variants with at least the MVPs [23, 24]. Each GPV-vertex
v = [x,p, s] has three visibility states s indicating the binocular (s = B)
or only monocular (s = ML or MR) observation by the stereo channel L
or R. It is obvious that only the eight transitions shown in Fig. 18.4 are
allowed in a GPV.

The Markov chain model with a stationary p.d. describes the ex-
pected shape and smoothness of a profile by transition and marginal
probabilities of the visibility states. This allows for probabilistic or-
dering of the profile variants in Figs. 18.2 and 18.3 that have the same
similarity with respect to image signals. Let Pr(v|v′) be a probability of
transition from a preceding vertex v′ to a current vertex v. The differ-
ences x−x′ and p−p′ between the x-coordinates and x-parallaxes in
these GPV-vertices are uniquely specified by the visibility states s and
s′. Therefore, the transition probabilities can be denoted as Pr(s|s′). If
the Markov chain has the stationary p.d. of the visibility states in the
equilibrium, then only seven of the allowable transitions have nonzero

2In the following, the abbreviations BVP and MVP denote the binocularly and the
only monocularly visible surface points, respectively.
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Figure 18.4: Admissible transitions in the GPV.

probability and the transition MR →ML is absent

Pr(ML|MR) ≡ Pr(x,p,ML|x − 1, p,MR) = 0

The GPV in Fig. 18.5 with a narrow "tube" of x-parallaxes demon-
strates both the uniform internal transitions and specific uppermost/
lowermost transitions that allow the equilibrium conditions to be pre-
served. Let M substitute for both ML or MR so that

Pr(ML|B) = Pr(MR|B) ≡ Pr(M|B); Pr(B|ML) = Pr(B|MR) ≡ Pr(B|M);
Pr(ML|ML) = Pr(MR|MR) ≡ Pr(M|M); Pr(ML|MR) ≡ Pr◦(M|M)

The transition probabilities Pr(B|M) and Pr(M|B) and the resulting
marginal probabilities of the visibility states Pr(B) and Pr(M) in the
generated profiles are expressed in terms of the two transition proba-
bilities Pr(B|B) and Pr(M|M) as follows:

Pr(M|B) = 1− Pr(B|B)
2

; Pr(B|M) = 1− Pr(M|M); Pr◦(M|M) = 0;

Pr(B) = 1− Pr(M|M)
2− Pr(B|B)− Pr(M|M) ; Pr(M) = 0.5(1− Pr(B|B))

2− Pr(B|B)− Pr(M|M)
(18.8)

To retain the equilibrium conditions at the boundaries of the GPV in
Fig. 18.5 and the marginal probabilities Pr(B) and Pr(M) for the internal
GPV-vertices, the transition probabilities for the extreme GPV-vertices
at the uppermost boundary are as follows:

Prupp(B|B) = 1− Pr(M); Prupp(M|B) = Pr(M);
Prupp(B|M) = 1; Prupp(M|M) = 0; Pr◦upp(M|M) = 0

(18.9)
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At the lowermost boundary there are the following transition probabil-
ities:

Prlow(B|B) = 1− Pr(M)
Pr(M)

; Prlow(M|B) = Pr(M)
Pr(B)

; Prlow(B|M) = 1;

Prlow(M|M) = 0; Pr◦low(M|M) = 0 if Pr(M) ≤ Pr(B)

and

Prlow(B|B) = 0; Prlow(M|B) = 1; Prlow(B|M) = Pr(B)
Pr(M)

;

Prlow(M|M) = 0; Pr◦low(M|M) = 1− Pr(B)
Pr(M)

if Pr(M) > Pr(B)

18.3.2 Prior photometric models

A symmetric photometric model specifies the basic distortions of the
images gL and gR with respect to the ortho-image g of a DPM . The
distortions are described by positive transfer factors that vary over a
FOV of each stereo channel and by a random noise in the channels

qL = aLq + rL; qR = aRq + rR (18.10)
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Here, q = g(x,y) is the signal q ∈Q in the point [x,y,p = p(x,y)]T
of a surface represented by a DPM (p,g), and qL = gL(xL,y) and
qR = gR(xR,y) are the signal values in the corresponding image pixels.
The transfer factors aL = aL(xL,y), aL = aR(xR,y) and the random
noise rL = rL(xL,y), rR = rR(xR,y) present the multiplicative and the
additive parts of the ortho-image distortions, respectively. The trans-
fer factors aL and aR vary in a given range A = [amin, amax] such that
0 < amin ≤ (aL,aR) ≤ amax.

Transfer factors represent the most regular part of the image dis-
tortions that cannot be independent for the adjacent BVPs to retain a
visual resemblance between the stereo images. To describe these inter-
dependencies, the symmetric difference model [23, 24] involves a direct
proportion between each gray-level difference in the adjacent BVPs and
the two corresponding differences in the stereo images to within the
additive random noise:

aLq −a′Lq′ = eL(q − q′); aRq −a′Rq′ = eR(q − q′) (18.11)

Here, q = g(x,y) and q′ = g(x′, y ′) are the signal values in the neigh-
boring BVPs along the same epipolar profile (y = y ′) or in the two
adjacent profiles (|y−y ′| = 1) in the DPM; p and eL, eR denote the pos-
itive “difference” transfer factors. These factors describe local interac-
tions between the “amplitude” factors aj over the FOVs and can vary
within a given range E = [emin, emax] where 0 < emin ≤ (eL, eR) ≤ emax.
The difference model in Eq. (18.11) admits large deviations between
the corresponding gray levels but retains the visual resemblance of the
images by preserving the approximate direct proportions between the
corresponding gray-level differences.

For the independent p.d. of the ortho-image signals and the inde-
pendent random noise rL, rR in the stereo images, Eq. (18.11) results
in a Markov chain of the image signals corresponding to the BVPs and
in the independent image signals corresponding to the MVPs along a
given profile, respectively.

Under a given surface geometry p, different statistical estimates of
the surface ortho-image g and transfer factors aL, aR can be deduced
using particular assumptions about a p.d. of the random noise and
variations of the transfer factors. The estimates are based on the cor-
responding image signals for the BVPs of a surface. The match between
the estimated ortho-image and the initial stereo images to within a given
range of the transfer factors forms a theoretically justified part of a
quantitative intensity-based measure of similarity between the stereo
images.

A heuristic part of the measure corresponds to the MVPs because
the model in Eq. (18.10) does not indicate how to estimate parameters
of the image distortions without prior assumptions about their links
with similar parameters for the neighboring BVPs.
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18.3.3 Posterior model of a profile

The geometric model (Eq. (18.8)) and the photometric model (Eq. (18.11))
describe a terrain profile py ∈ p and signals gL,y , gR,y along the corre-
sponding epipolar lines in the images by particular Markov chains. As
a result, both the prior p.d. Pr(gL,y ,gR,y |py) of the signals for a given
profile and the posterior p.d. Pr(py |gL,y ,gR,y) of the profiles for given
image signals can be assumed to expand in the products of conditional
transition probabilities.

For brevity, the index y is omitted below. Let Pr(gL,gR|vi−1,vi)
denote the transition probability of the image signals for two given
successive GPV-vertices along a profile. Let Pr(vi|vi−1;gL,gR) be the
transition probability of the two successive GPV-vertices along the pro-
file for given corresponding image signals. Then the forementioned
prior and posterior p.d. are as follows:

Pr(gL,gR|py) = Pr0(gL,gR|v0)
N−1∏
i=1

Pr(gL,gR|vi−1,vi) (18.12)

Pr(p|gL,gR) = Pr0(v0|gL,gR)
N−1∏
i=1

Pr(vi|vi−1;gL,gR) (18.13)

Here, i denotes serial numbers of the GPV-vertices along a profile,
N is the total number of these points, Pr0(gL,gR|v0) is the marginal
probability of the image signals for a given starting GPV-vertex v0, and
Pr0(v0|gL,gR) is the marginal probability of the starting GPV-vertex
v0 for given image signals. The transition probabilities in Eqs. (18.12)
and (18.13) are derived from the photometric model of Eq. (18.11), but
the transition probabilities in Eq. (18.13) depend also on the geometric
model of Eq. (18.8).

The marginal probabilities of the GPV-vertices are calculated in suc-
cession along the GPV by the obvious relations that follow directly from
Figs. 18.4 and 18.5:

Pr(v|gL,gR) =
∑

v′∈ω(v)
Pr(v′|gL,gR)Pr(v|v′;gL,gR) (18.14)

Here, ω(v) denotes a set of the nearest neighboring GPV-vertices v′
that precede the current vertex v. Generally, the set contains the fol-
lowing GPV-vertices shown in Fig. 18.4:

ω(x,p,ML) =
{
(x − 1, p, B), (x − 0.5, p − 1,ML)

}
ω(x,p,B) = {

(x − 1, p, B), (x − 1, p,MR); (x − 0.5, p − 1,ML)
}

ω(x,p,MR) =
{
(x − 0.5, p + 1, B), (x − 0.5, p + 1,MR)

}
(18.15)
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Transitional probabilities Pr(vi|vi−1;gL,gR) in Eq. (18.13) are re-
lated by the photometric model of Eq. (18.11) to the maximum residual
deviations of each stereo image gL, gR from the estimated ortho-image
g. The deviations are obtained by transforming the estimated ortho-
image in such a way as to find the best approximation of each stereo
image to within a given range E of the difference transfer factors. Let i
be ordinal number of a GPV-vertex along the profile. Let

qL,i = gL(xL,i,y) and qR,i = gR(xR,i,y)

be the gray values in the pixels[
xL,i,y

]T ∈ L and
[
xR,i,y

]T ∈ R
corresponding to the GPV-vertex vi,B = [xi,pi, si = B]. Let uL,i and
uR,i be the gray values that approximate qL,i and qR,i, respectively, in
the transformed ortho-images. The ortho-image is transformed to ap-
proximate the images gL and gR by minimizing the maximum square
deviation from both the images.

Under a particular p.d. of the random noise, the transition proba-
bilities for the neighboring BVPs are as follows [24, 33]:

Pr(vi,B|vi−1,B ;gL,gR)∝ Pr(B|B)exp
(−γd(qL,i, qL,i−1, qR,i, qR,i−1)

)
(18.16)

where the factor γ is inversely proportional to the expected variance of
the residual minimax deviations δL,i = qL,i − uL,i ≡ −δR,i = uR,i − qR,i
of the approximation. The local dissimilarity d(...) = (δL,i)2 in the ex-
ponent depends on the corresponding gray-level differences ∆L:i,i−1 =
qL,i−qL,i−1 and ∆R:i,i−1 = qR,i−qR,i−1 in the images, on the current esti-
mate eopt of the difference transfer factors, and on the residual errors
as follows:

δL,i = δL,i−1 +∆L:i,i−1 − eopt(∆L:i,i−1 +∆R:i,i−1)

eopt = arg min
e∈E

{(
δL,i−1 +∆L:i,i−1 − e(∆L:i,i−1 +∆R:i,i−1)

)2
} (18.17)

Here, e = eL/(eL + eR) is the normed transfer factor and E denotes its
range: E = [emin, emax] where 0 < emin ≤ 0.5 ≤ emax = 1− emin < 1.

The transition probability Pr(vi,B|vi−1,M ;gL,gR) for the transition
M → B (that is, si−1 = M and si = B) has similar form except for us-
ing the nearest preceding BVP along the profile instead of the adjacent
MVP vi−1 to get the dissimilarity value d(...) of Eqs. (18.16) and (18.17).
The relations in Eq. (18.17) are derived from the model in Eq. (18.11)
by minimizing the maximum pixelwise error of adjusting the ortho-
image to the stereo images. It is easily shown that the gray value qi for
the BVP vi is estimated by averaging the corresponding image signals:
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qi = (q1i + q2i)/2. The ortho-image is then transformed to approxi-
mate each stereo image by changing the gray-level differences for the
successive BVPs within a given range E of the transfer factors.

But, additional heuristics are essential to define the transition prob-
abilities for the transitions M → M and B → M because the MVPs do
not allow one to estimate the transfer factors and ortho-image sig-
nals. If the transfer factors and additive noise in Eq. (18.10) vary rather
smoothly over the FOVs there are several possible ways to introduce
these heuristics:

• constant value of a residual square deviation d(...) = d0 ≡ δ2
0 > 0

for all the MVPs [23, 24];

• extension of a deviation computed for a current BVP on the subse-
quent MVPs [24]; and

• extension of a relative deviation of the approximation λL,i = δL,i/qL,i
for a current BVP on the subsequent MVPs: δL,k =max

{
δ0, λL,iqL,k

}
;

k = i+ 1, i+ 2, ..., as long as sk =ML or MR, and so forth.

18.4 Dynamic programming reconstruction

This section reviews the dynamic programming terrain reconstruction
based on the optimal statistical decisions Eqs. (18.3) to (18.6). The
additive similarity measures, obtained by taking the logarithm of the
p.d. in Eqs. (18.12) and (18.13), allow one to implement the maximum
likelihood rule of Eq. (18.4) or the Bayesian MAP decision of Eq. (18.3),
respectively. The relations in Eqs. (18.14) and (18.15) allow one to com-
pute the additive similarity measures of Eqs. (18.5) and (18.6) for the
compound Bayesian rules. Each similarity measure is maximized by
dynamic programming to take account of the visibility constraints of
Eq. (18.2) [23, 24, 33].

Some heuristics are embedded into the similarity measures to cope
with discontinuities in the images due to occlusions and reduce the
resulting multiplicity of the surfaces that are consistent with the im-
ages. Also, confidences of the reconstructed terrain points have to be
estimated for evaluating and validating the obtained results.

18.4.1 Unified dynamic programming framework

Equations (18.12) to (18.14) provide a unified dynamic programming
framework for terrain reconstruction in a profile-by-profile mode. Each
epipolar profile py is reconstructed as a continuous path in the GPV
maximizing an additive similarity measure

popt = arg max
p
W(p|gL,gR) (18.18)
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The similarity measure W(...) is represented as follows:

W(p|gL,gR) =
n−1∑
i=1

w(vi−1;vi|gL,gR) (18.19)

where the local similarity term w(...) describes the transition between
the GPV-vertices vi−1 and vi. In particular, such a term can be obtained
from the transition probabilities in Eqs. (18.16) and (18.17).

Dynamic programming search for the global maximum of the simi-
larity measure in Eq. (18.19) involves a successive pass along the x-axis
of the GPV. At any currentx-coordinatexc, all the possible GPV-vertices
vc = (xc, pc, sc) are examined to calculate and store, for each, the ver-
tex, the local potentially optimal backward transition vc → vp = t(vc)
to one of the preceding vertices ω(vc) listed in Eq. (18.15).

Let [xb,xe] be a given range of thex-coordinates of the GPV-vertices.
LetWxc(vc) denote the similarity value accumulated along a potentially
optimal part of the profile with x-coordinates between xb and xc that
ends in the GPV-vertex vc . Then the basic dynamic programming re-
current computation is as follows:

t(vc) = arg max
vp∈ω(vc)

{
Wxp(vp)+w(vp;vc|gL,gR)

}
Wxc(vc) = Wxp(t(vc))+w(t(vc);vc|gL,gR)

(18.20)

After passing a given range of the x-coordinates, the desired profile
popt of Eq. (18.18) is obtained by the backward pass using the stored
potentially-optimal transitions t(v) for the GPV-vertices

vopt
N−1 = arg max

ve

{
Wxe(ve)

}
vopt
i−1 = t(vopt

i ); i = N − 1, ...,1
(18.21)

The maximum accumulated similarity value in Eq. (18.21) corresponds
to the desired global maximum of the similarity value in Eq. (18.18):

W(popt|gL,gR) =Wxe(vopt
N−1) (18.22)

By embedding calculations of the corresponding marginals of
Eq. (18.14) into this search one can implement in a similar way the
compound decisions in Eqs. (18.5) and (18.6).

18.4.2 Regularizing heuristics

The similarity measure of Eq. (18.19), deduced from the probabilistic
models of the surface and stereo images, does not overcome the inher-
ent ambiguity of terrain reconstruction. Figures 18.2 and 18.3 show
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that visually the least appropriate “pit-like” dotted profile in Fig. 18.3,
even with no photometric distortions, concurs successfully with other,
much more natural profiles. This variant is excluded either by setting
proper parameters of the geometric model of Eq. (18.8) or by using a
simple heuristic based on the expected surface smoothness. The latter
is rather straightforward: under the equal signal similarity, the most
smooth profile, that is, with the maximum number of the BVPs, has to
be chosen. This heuristic, easily implemented by dynamic program-
ming, counts in favor of the solid profile in Fig. 18.2 with the five BVPs.

But there are visually less appropriate variants that cannot be ex-
cluded using only the numbers of the BVPs or the probability ordering
of Eq. (18.8). Therefore, additional heuristics have to be introduced
to obtain the terrains that mostly agree with the visual reconstruction.
Such a heuristic can be based on an assumption that the more photo-
metric transformations (even the admissible ones) are required to con-
vert one stereo image into another in line with a given surface, the less
appropriate is the surface. For example, the conversion of the epipolar
line gL into the corresponding line gR in accord with the solid or the
dashed profile in Fig. 18.2 results in two gaps, size of 2 and 1 or of 4
and 1, respectively, to be interpolated. In the first case, the gL-signals
(“f,”“h”) and (“h,”“k”) have to be interpolated for fitting the gR-signals
(“f–g–h”) and (“h–i–j–k”). In the second case, the gL-signals (“a,”“f”) and
(“f,”“k”) are compared to the gR-signals (“a–d–f”) and (“f–g–h–i–j–k”).

The solid and the dashed profiles in Fig. 18.3 involve two gaps of
size 2 or one gap of size 6, respectively. The desired heuristic should
take account of the signal matches after such a transformation. The
latter heuristic is embedded in Gimel’farb [27] to the MAP-decision of
Eq. (18.3) by summing the two weighted similarity measures

popt = arg max
p

{
αW(p|gL,gR)+ (1−α)Wreg(p|gL,gR)

}
(18.23)

Here,α is a relative weight of the heuristic part (0 ≤ α ≤ 1),W(p|gL,gR)
denotes the similarity measure of Eq. (18.19) between the epipolar lines
gL and gR in the stereo images under a profile p, and Wreg(p|gL,gR)
is the similarity measure between the two lines gL and gR matched in
accord with the profilep. The second measure estimates the magnitude
of deformations that transform one of the images into another image.
The magnitude is given by a sum of square differences between the
corresponding intensity changes along the profile p

Wreg(p|gL,gR) =
n−1∑
i=1

(
∆L:i,b(i) −∆R:i,b(i)

)2 (18.24)

Here, b(i) is the closest BVP that precedes the GPV-vertex vi along the
profile p and ∆L:i,k = gL(xL,i,y)−gL(xL,k,y) and ∆R:i,k = gL(xR,i,y)−
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gR(xR,k,y) denote the gray-level differences between the two pixels in
each stereo image. The pixels correspond to the GPV-vertices vi and
vk; k < i, along the epipolar profile.

The weighted similarity measure in Eq. (18.23) decides in favor of
the profile giving the highest resemblance between the stereo images
transformed one into the other, all other factors being equal. Thus, it
tries to suppress the pit-like profile variants that may cause large dif-
ferences between the corresponding parts of the transformed images.

18.4.3 Confidence of the digital parallax map

Computational stereo does nothing more than match stereo images.
Even if the geometric constraints and regularizing heuristics allow the
elimination of some geometric ambiguities shown in Figs. 18.2 and 18.3,
there still exist the photometric ambiguities, that is, the places with no
signal variations to guide the matching. A BVP of a terrain is confident if
it is represented by a specific visual pattern that gives no multiple good
matches in a close vicinity of the corresponding points in the images.

Only in this case can human visual reconstruction be used for val-
idating the computed DPM or DSM . But, if the detectable pattern is
present only in a single image due to partial occlusions, or is absent
at all because the signal values are almost equal, then the computed
surface points have very low or even zero confidence. Such places can
hardly be compared to the GCPs, even if these latter exist due to field
surveys or have been found by photogrammetric visual reconstruction.

Let S = C → [0, Smax] denote a confidence map for a DPM with a con-
ditional confidence range 0 ≤ S(x,y) ≤ Smax. The confidence measure
has to be derived from the image signals used for stereo matching: the
more discriminative the image features, the more confident the recon-
structed terrain point.

Generally, the confidence measures reflect not only the image and
terrain features but also the features of stereo matching. For example,
in [36] two confidence measures for a DPM obtained by a correlation-
based local optimization are considered. The first measure is based
on a difference p(x,y) − p′(x,y) between the best-match disparity
p(x,y) in the DPM and the second-best-match disparity p′(x,y) for
the same planar position (x,y) ∈ C in the DPM. The second measure ex-
ploits the ratio of the cross correlation, giving the best match to the au-
tocorrelation threshold. Experiments with these measures have shown
that low-confident terrain areas must be excluded both from stereo
matching and stereo evaluation.

We restrict our consideration to a simple confidence measure that
does not take into account a matching algorithm. This measure is more
convenient for evaluating different stereo techniques because the con-
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fidence map is computed only from the initial stereo images and the
obtained DPM.

The basic photometric distortions in Eq. (18.11) are specified by a
given range of relative changes of the gray-level differences in both im-
ages: each gray-level difference between two neighboring BVPs in the
profile can be changed in each image to within this range. Therefore,
in the simplest case, the gray-level differences estimated for the BVPs
in the reconstructed DPM may serve as the confidence measure: the
higher the difference, the more definite the matching and the greater
the confidence. Let (b(x),y) denote the planar coordinates of a BVP
that precedes a BVP with the planar coordinates (x,y) in the recon-
structed DPM (p,g). Then, S(x,y) = |g(x,y)−g(b(x),y)|. It should
be noted that the “vertical” gray-level differences take no part in the
forementioned confidences only because of the adopted independent
line-by-line DPM reconstruction.

The obtained confidence map allows the confident and nonconfi-
dent parts of a DPM to be separated by simple thresholding. A more
elaborated approach involves a separate linear approximation of the
gray levels in the stereo images that correspond to the BVPs before and
after a current BVP. The obtained ∨- or ∧-shaped gray-level approxima-
tions and variations of the image signals with respect to them allow a
rough estimate of a fiducial interval for the x-disparities in this point.
The greater the interval, the smaller the confidence.

18.5 Experimental results

Experiments with real aerial and ground stereo pairs (a few of them are
presented in [27, 33, 37]) indicate that the symmetric dynamic program-
ming approach gives dense DPMs that agree closely with the visually
perceived surfaces. To exclude outliers caused by inexact epipolar geo-
metry of the images or by low-contrast image regions, the reconstruc-
tion involves online median filtering over several adjacent profiles.

In [33] the accuracy of the DPM the size of 1124(x)×450(y) points
reconstructed from a stereo pair of highland was verified using 433
GCPs with x-parallaxes found by an analytic photogrammetric device.
The profiles were reconstructed within the range P = [−50,50] in the
profile-by-profile mode. The histogram of absolute deviations between
the computed and manually perceived DPMs in the GCPs is shown in
Table 18.1, the mean absolute deviation being 1.47 of the x-parallax
unit.

Because of difficulties in obtaining the GCPs for the available stereo
pairs, we have used in most cases the simplified performance evalua-
tion method of [11]. This method checks the computed x-parallaxes
against the ones that are visually found for some arbitrarily chosen
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a b

c d

Figure 18.6: a , b 512×512 stereo pair “Pentagon;” c the reconstructed DPM;
and d the thresholded confidence map.

characteristic terrain points. In our experiments, generally about 60 to
70% of the computed x-parallaxes are within the ±1 range with respect
to the chosen control values. Most significant errors occur in shaded,
vastly occluded, or highly textured terrain regions.

For example, Figs. 18.6 and 18.7 show the initial stereo pairs “Pen-
tagon” and “Mountain,” range images of the reconstructed DPMs, and
the thresholded confidence maps. The threshold θ is set as to choose
20% of all the DPM points as the confident ones with S(x,y) ≥ θ. These
latter are shown by black pixels in Fig. 18.6d and Fig. 18.7d.

The range images Fig. 18.6c and Fig. 18.7c represent the x-parallax
map by gray-scale coding (from the nearest white pixels to the most
distant black pixels). The x-parallax map is reduced to the left stereo
image, that is, to the lattice L. The DPMs are obtained by using the
similarity measure of Eq. (18.23) with the following basic parameters:
the weight w = 0.5 (variations in a broad range 0.2 ≤ w ≤ 0.8 have
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a b

c d

Figure 18.7: a , b 700×1100 stereo pair “Mountain;” c the reconstructed DPM;
and d the thresholded confidence map.



18.5 Experimental results 527

Table 18.1: Absolute deviations of x-parallaxes for the 433 GCPs in the recon-
structed DPM

Deviation 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 8

Number of the GCPs 98 257 356 403 421 433

% of the GCPs 23 60 82 93 97 100

Table 18.2: Processing time for reconstructing the DPM “Pentagon”

Algorithm [24, 27] [22] [20]

Computer HiNote VP Series 500 Symbolics 3650 IBM RS/6000
(OS ) (Windows-95) (Genera 7.2) (N/A)

Language MS Visual C++ Lisp N/A

DPM size 512×512 512×512 256×256

Time 38s 22h 44m 16s 20m

almost no effect on the resulting DPMs), the range E = [0.2,0.8] of the
normed transfer factor in Eq. (18.17), and the residual square deviation
d0 = 100 for the MVPs.

On the whole, the obtained range images correspond rather closely
to the visual depth perception of these scenes, and the chosen confi-
dent points represent main topographic landmarks of these terrains.
But, there are a few local depth errors: mainly along the upper right
edge of the Pentagon building in Fig. 18.6 and in a small textured re-
gion at the upper left part of Fig. 18.7. The errors in Fig. 18.6 are caused
by a strip of the wall along this edge, which is seen in the right image
but is occluded (and, thus, has no stereo correspondence) in the left im-
age. This strip is grouped in the reconstructed profiles with the similar
neighboring roof’s details that are observed in both images.

These errors illustrate the main drawbacks of the simplified sym-
metric binocular stereo used in the experiments: (i) it takes no account
of the possibly inexact epipolar geometry of the images; (ii) it takes
no account of y-interactions between the signals because of the in-
dependent profile-by-profile reconstruction mode; (iii) the regularizing
heuristics do not overcome in full measure all the errors caused by the
MVPs that match closely the neighboring BVPs.

Nonetheless, in spite of the local errors, the overall quality of the re-
construction of the observed surfaces is fairly good. Also, this dynamic
programming approach greatly surpasses many other algorithms in
time complexity. Table 18.2 shows the processing times for recon-
structing the same scene “Pentagon” by our dynamic programming ap-
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proach and by the algorithms of Cochran and Medioni [22] and Chen
et al. [20].

These and other experimental results show that the efficient and fast
dynamic programming terrain reconstruction can be obtained by inte-
gration of the theoretical image/surface models, the optimal statistical
decision rules, and the regularizing heuristics that take into account
the ill-posedness of the problem.
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Figure 19.1: Reconstructed face using photometric stereo.

19.1 Introduction

Reflectance-based shape recovery of nonplanar surfaces from one or
several irradiance images is a classic task in computer vision [1, 2].
The goal is to reconstruct the 3-D shape of an object from its irradi-
ances by using its reflection properties. The problem is called shape
from shading (SFS) if just one irradiance image is used as input for the
reconstruction process [3]. The term photometric stereo method (PSM )
or just photometric stereo refers to the extension of shape from shad-
ing to a class of methods that use two (2S PSM) or more (3S PSM, etc.)
images for shading-based 3-D shape recovery.

A broad spectrum of techniques is available to approach reflectance-
based shape recovery in appropriate fields of application (see, e.g.,
Klette et al. [4]). For example, 3S PSM may be used for generating height
maps of a human face, a human hand, etc. (see Fig. 19.1). Using col-
ored illumination [5, 6] this 3-D reconstruction may even be achieved
for dynamic scenes several times per second. The use of inexpensive
equipment (three light sources and a video camera), not dangerous ra-
diation (as in case of laser light) and a reasonable performance are some
advantages of PSM. Furthermore, the image values of (one of) the ac-
quired images may be used for texture mapping without any additional
need to register height and texture data, because the generated height
values are located at the same pixel position as the acquired image
values.

This field of reflectance-based shape recovery also contains serious
mathematical problems (see, e.g., proofs of existence or uniqueness of
object surfaces [7], or analysis of shadows or interrefections [8, 9]).
This chapter reports the advances in applied and in theoretical work.
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19.1.1 Shape from shading and photometric stereo

There are a number of factors that influence the measured irradiances
of an image. First, the image that is acquired by the sensor depends
on the geometrical and spectral distribution of the light source that
illuminates the observed scene. The individual objects of the scene are
characterized by their geometry and by their reflection properties. The
geometry and the reflection properties affect the light falling on the
imaging sensor. The imaging system converts the light to measured
image irradiances.

Shape from shading (SFS) methods try to infer the geometry of an
object from a single image. For this inversion, the mentioned factors
and their influences have to be considered for the conceptual design
of an SFS method. The only a prioi constraint is that the geometry has
to be extracted from the image. An additional goal could be to extract
the reflection properties from the given image, and, as well, to obtain a
more complete description of the visible surface.

It is impossible to infer unambiguous geometrical properties of ob-
jects from image irradiances without restricting the general problem.
The design of SFS methods that allow a mathematical proof of exis-
tence, uniqueness or convergence of a solution, is a field of ongoing
active research.

Common assumptions to ensure an unambiguous surface recon-
struction from a single or several images are as follows:

(i) The irradiance E0 and the direction s of the illumination are known.
There are no intraobject or interobject interreflections, that is, scene
objects do not act as secondary light sources. In general, a light
source is assumed that emits parallel light of a constant irradiance
E0 from a constant and known illumination direction s = [s1, s2, s3]T .
If the illumination direction s coincides with the viewer direction v,
that is, s = [0,0,−1]T , then SFS simplifies significantly. Some SFS
methods exist that assume a close point light source, hence the light
rays cannot be modeled as parallel. Approaches that assume diffuse
illumination (e. g., sky illumination) comprise another special case.
Furthermore, the effects of the inverse square law (see, e. g., [4]) are
usually disregarded;

(ii) The reflection properties of the object surfaces are known. For addi-
tional simplification, linearly reflecting surfaces or Lambertian sur-
faces are often assumed where the albedo ρ is constant and known
for the entire object;

(iii) The modeling by reflectance maps assumes that a unique scene radi-
ance value is assigned to each surface orientation n = [n1,n2,n3]T .
Often the reflectance map is assumed to be known. For example, it
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is assumed that the reflectance map can be approximated as being
locally or globally linear;

(iv) For the object surface geometry it is assumed that faces can be ap-
proximated by continuous or continuously differentiable functions
u in classes as C1 or C2. Some methods exist that are especially
designed to reconstruct polyhedral objects. In general, it has to be
assumed that height values of respective orientations are known at
a few (singular) points in advance. Of special interest are boundary
points showing zero irradiances (occluding boundaries) and points
of maximal irradiance. Sometimes it is assumed that the surface
can be locally approximated as a plane (facet model) or as a sphere;

(v) The sensor is linear; and

(vi) Shading-based shape recovery methods usually assume an ortho-
graphic projection of scene objects into the xy−image plane. This
allows taking in account surface functions u(x,y) with first-order
derivatives ux , uy and normals n = [ux,uy,−1

]T . There are also
methods that assume perspective projection.

These assumptions can be reduced by extracting from the scene
some parameters that were expected to be known. For example, usu-
ally only the product of the irradiance E0 of the light source and the
albedo ρ has to be determined and not their individual values. Under
the assumptions of parallel illumination, a Lambertian reflection, and
an orientation n0 in the scene that coincides with the illumination di-
rection s, it follows that the product E0ρ can be read from the maximal
irradiance value. Also, in practice, many of the constraints (except two
of them) prove to be rather uncritical restrictions. The critical assump-
tions are that the albedo ρ is restricted to be constant over the whole
object (or even over the whole image), which corresponds to a uniform
coloring, and the limitation to Lambertian surfaces because, in addi-
tion to the diffuse component, many materials exhibit a considerable
amount of specular reflection. A genuine Lambertian surface allows a
representation by a graph of a function u.

Assume parallel and constant illumination from lighting direction
s = [s1, s2, s3]T , a genuine Lambertian surface, constant albedo ρ, and a
known product E0ρ. According to Lambert’s cosine law and the image
irradiance equation it holds that

E = E0ρ cos(α) (19.1)

with α = ∠ (n, s), for the measured irradiance E and a surface normal
n = [

ux,uy,−1
]T . The term cos(α) and hence the angle α can be

calculated from the known quantities. All vectors that subtend the
angle α with the illumination direction are solutions to Eq. (19.1).
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The Gaussian sphere is useful in representing these solutions. With-
out loss of generality, we can restrict the surface orientations to unit
surface normals n̄. Then the solution vectors n̄ form the lateral area
of a right circular cone. The vertex of the cone lies at the center of the
Gaussian sphere. The orientation of the cone (vector of the cone axis) is
determined by the illumination direction s. The boundary of the circu-
lar base of the cone is incident with the surface of the Gaussian sphere.
All these points on the Gaussian sphere are surface orientations satis-
fying the equation for the image irradiance function E.

For Lambertian surfaces often we consider image irradiance equa-
tions

Ei(x,y) = ρ(x,y)
ux(x,y)pi +uy(x,y)qi − ri√

ux(x,y)2 +uy(x,y)2 + 1
√
p2
i + q2

i + r 2
i

(19.2)

defined over domains Ωi = {[x,y]T ∈ R2 : 0 ≤ Ei(x,y) ≤ 1}, for
light sources i = 1,2,3, . . . , with irradiances E0,i = 1 and orientations
[pi, qi, ri]

T , and image coordinates [x,y]T .
Shape from shading (SFS) methods are extended to PSM if several

irradiances are known for every image point and the corresponding
surface point. Because of the larger amount of data an improvement
of the reconstruction results and furthermore a reduction of the nec-
essary assumptions can be expected. Photometric stereo methods first
recover surface orientations and can be combined with an integration
method to calculate a height or depth map. Even without a subsequent
integration step the surface orientations can be used, for example, to
determine curvature parameters of object surfaces or to recognize ob-
jects.

To acquire images for photometric stereo the object is consecutively
illuminated by several light sources. Each image Ei is taken with only
one light source being switched on. Movement inside the system con-
sisting of the object, the light sources, and the sensor is not allowed.
Therefore, more than one irradiance value can be assigned to a pro-
jected surface point without encountering a correspondence problem.
Each acquired image corresponds to one light source.

We distinguish between albedo-dependent photometric stereo meth-
ods and albedo-independent methods. The property of albedo-depend-
ent methods is that the albedo ρ of the surface material or the product
E0ρ has to be known for every image point (x,y). This is especially
true for all SFS methods. Albedo-independent methods have the prop-
erty that the albedo has theoretically no influence on the reconstruction
of orientations or height values as long as ρ > 0.
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Figure 19.2: Example of pre-kneeing to preserve the dynamic range.

19.1.2 Linear sensor

Modern cameras suitable for image processing are usually based on
semiconductor sensors, the so-called charge coupled device (CCD) chips.
Several properties of these cameras are of interest for measuring irra-
diances (see, e.g., [10]).

A linear behavior of the imaging sensor is assumed in shading-based
techniques such as SFS, 2S PSM or 3S PSM. For these techniques it is as-
sumed that the gray values (or the color values) in the image have a
direct linear relation to the measured image irradiances (the radiation
entering the camera lens, see also Volume 1, Chapters 2 and 5). First,
we briefly mention that signal attenuation caused by a pre-knee circuit,
clipping, and blooming already lead to a nonlinear camera response.
Further reasons for nonlinear camera behavior are explained in the fol-
lowing and a sketch of a linearization technique is given.

Attenuation of the signal occurs if more photons fall on the CCD chip
than the image acquisition system is able to process. This can be caused
by different factors when the image signal is processed in analog form
(voltages) in the camera or when the signal is digitized in the frame
grabber. One reason for attenuation is the limited dynamic range of
the components in the imaging system. The analog component of the
camera system causes an attenuation if the electric signal is processed
by a so-called pre-knee circuit . Figure 19.2 shows the characteristics
of the pre-knee circuit of the Sony three-chip camera DXC-930P. The
voltage of the signal is linearly attenuated starting at a certain level of
the input signal. As a result, the signal is no longer globally linear.

Furthermore, clipping of the input signal occurs whenever the ana-
log signal exceeds the highest processable voltage, for example when
the analog signal is converted to a digital signal (a gray value for each
color channel) in the frame grabber. Usually, the clipping level (white
level) of the analog/digital converter can be controlled by programming
the frame grabber.



19.1 Introduction 537

If the intensity of the incoming light at a CCD cell exceeds a certain
level that is several times higher than the clipping level, then the CCD
cell is no longer able to accumulate more charge per time unit. The
additional charge is spread into the neighboring CCD cells. This effect
is called blooming and appears as a white streak or blob around the af-
fected pixels in the image. Blooming is particularly noticeable in scene
analysis when specular highlights occur on the surface of the object
that has to be reconstructed. For interline transfer sensors blooming
starts at about 600 % overload according to [11].

In principle, CCD chips possess the property of having a high lin-
earity because photons are transformed directly into charge in a CCD
cell. But CCD cameras usually delinearize the signal for display require-
ments. It has to be guaranteed that the light received by the camera is
transformed into a proportional amount of light emitted by a monitor
screen. The input voltage U of a cathode ray tube in a monitor and the
emitted radiant intensity I are in exponential relationship I ≈ Uγ where
γ is the gamma value. Therefore, a circuit is integrated in the camera
for the gamma correction. The circuit adjusts the linear CCD camera
signal Uin to the nonlinear monitor characteristic

Uout = U(1−1/γ)
max U1/γ

in (19.3)

where Umax is the maximum voltage. The gamma value γ depends on
the monitor and the video standard of the television system.

Therefore, the gamma correction has to be inverted to linearize the
camera characteristic. This gamma re-correction can be done through
substituting γ by 1/γ if the gamma value of the camera is known. This
leads to the equation

Eout = G(1−γ)max E
γ
in (19.4)

which transforms the measured image irradiance values (gray values)
from Ein to Eout. For many CCD cameras it is possible to switch the
gamma value through the camera control unit to 1. This avoids a
gamma re-correction procedure.

If neither the gamma value is known nor the gamma correction can
be switched off, then the gamma value has to be calculated by using
a calibration image. A calibration image for this purpose usually con-
tains a number of gray and/or matte color patches of known reflection
properties (see [12, 13] for one example of a calibration chart). The
spectral reflectance factors of gray patches of such a calibration chart
are constant over the visible wavelength interval of the light. The con-
stant reflectance factors (albedos) can be represented as percentages
that describe how much light the gray patches reflect. The percentages
are properties of the patches and are independent from the illumina-
tion and the camera. The relationship between these percentages and
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the measured image irradiances describes directly the camera behavior
with respect to linearity. Because a model of the nonlinear character-
istic of the camera is known (see Eq. (19.4)) the gamma value can be
estimated.

Besides the gamma correction that causes a nonlinear camera be-
havior the black level has to be considered. A CCD cell generates elec-
trons even if no light (photons) is falling on the light-sensitive area
caused by thermal energy within the CCD chip. The current generated
by these electrons is called dark current . The analog/digital converter
transforms the associated voltage into an image gray value (measured
image irradiance). The gray value that is a result of the dark current is
called black level . It can be modeled as being an additive offset to the
camera signal and must be subtracted from the gray values. Actually
the black level does not lead to a nonlinear characteristic but the goal
is to produce a camera curve that is directly linear, that means a totally
black gray patch having 0 % reflection should generate the gray value 0.
Often the black level can be adjusted by a knob at the camera control
unit called master black control.

A further factor playing an important role with respect to color re-
production is the overall scaling of the three color channels. A gray
object taken under white illumination produces a gray image, hence the
color channels have identical gray values v . Therefore, the gray value
triple c = [v,v,v]T is assigned to each pixel when we assume ideal-
ized image acquisition. Although called “white,” the color of white light
sources, such as daylight, fluorescent lamps, and usual light bulbs, pro-
duce different white tones, expressed in color temperature values. To
get “white” for these different light sources a so-called white balance
has to be performed. A manual white balance is done by exposing a
white object to the color camera and pushing the white balance button
at the camera control unit.

19.1.3 Illumination parameters

The 3S PSM approach (as discussed later on) can also be employed for
the calculation of an illumination direction (see [1]). Assume that we
have acquired the irradiance images of a curved calibration object hav-
ing a Lambertian surface of known geometry (e. g., a sphere) and having
uniform albedo ρ. The 3S PSM assumes that three positive irradiance
values E = [E1, E2, E3]T can be measured for every image point [x,y]T

with respect to three illumination directions p, q, and r; 3S PSM is then
directed on calculating a (unit) surface normal n̄ from such an irradi-
ance triplet by using the known illumination parameters.

Now we consider a one-point light source. For the calculation of one
illumination direction s the calibration object has to ensure (at least)
three depicted and illuminated surface points with known and non-
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coplanar surface (unit) normals n̄1, n̄2, and n̄3. These three known
surface normals are combined into a matrix N = [n̄1, n̄2, n̄3]. Further,
assume a diagonal matrix D that contains in its diagonal positions the
irradiance values of the light source at the considered image points.
In practice we can assume that these light-source irradiances are con-
stant over the object, that is, D contains the same positive value in all
three diagonal positions. This leads to the following system of image
irradiance equations:

E = ρDNs̄T (19.5)

The unit vector of the illumination direction that is scaled by the albedo
ρ can be determined with

s̄T = N−1 1
ρ
D−1E (19.6)

This shows that in practice the matrixD can simply be the identity ma-
trix. Because the meaning of being given or unknown data is exchanged
for the surface normals and the illumination directions in comparison
to 3S PSM, this method is also referred to as inverse 3S PSM . The robust-
ness can be improved by including more than three surface normals.

19.2 Reflection and gradients

The amount of light encoded into the gray value of a particular pixel of
a digital image can be seen as the result of interactions between surface
materials and light sources. Vision-based shape-recovery methods are
influenced by the lighting and by the reflection characteristics of the
observed objects. Therefore it is necessary to model the properties of
both the illumination and the object materials. A discussion of radio-
metric and photometric quantities that are relevant to computer vision
is presented in Klette et al. [4], Haralick and Shapiro [14].
Vision-based shape recovery normally leads to reconstructions of gra-
dient maps. These gradient maps have to be integrated for generating
depth or height maps. This section deals with reflection models [15]
and gradient integration. Both topics are interesting subproblems in
shading-based shape recovery.

19.2.1 Reflectance distribution functions and maps

The bidirectional reflectance-distribution function (BRDF) describes re-
flection characteristics (see also Volume 1, Chapter 3). The BRDF was
defined in 1977 by the National Bureau of Standards, USA, for the stan-
dardization of reflection representations [16]. The BRDF describes how
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Figure 19.3: Geometry of the bidirectional reflectance-distribution function
(BRDF).

“bright” a differential surface dA of a material appears when it is ob-
served from a general direction and illuminated from a particular di-
rection (see Fig. 19.3). The BRDF

fr (θ2,φ2;θ1,φ1) = dL1 (θ2,φ2;θ1,φ1;E2)
dE2 (θ2,φ2)

(19.7)

is defined as the ratio between the reflected differential radiance dL1 in
viewer direction and the differential irradiance dE2 coming from an il-
lumination direction. The BRDF is expressed in sr−1 (1 / steradian). The
term “direction” in this definition should be interpreted as a differen-
tial solid angle in a direction given by spherical coordinates. The letter
θ denotes the slant angle and the letter φ stands for the tilt angle. The
spherical coordinates of the BRDF refer to a right-handed coordinate
system where the origin coincides with the surface point and whose
z-axis coincides with the surface orientation. The tilt angle is taken
counterclockwise by looking onto the surface patch.

If the differential irradiance dE2 is described in the foreshortened
portion of the illumination over the differential solid angle dΩ2 by us-
ing the radiance that is received by the surface, the BRDF can be for-
mulated as

fr (θ2,φ2;θ1,φ1) = dL1 (θ2,φ2;θ1,φ1;E2)
L2 (θ2,φ2) cos(θ2) dΩ2

(19.8)



19.2 Reflection and gradients 541

If we integrate over the entire observed solid angle Ω2 of the incoming
radiation the reflected radiance L1 is represented by

L1 =
∫
Ω2

fr (θ2,φ2;θ1,φ1)L2 (θ2,φ2) cos(θ2) dΩ2 (19.9)

The irradiance dE2 depends on a direction because it holds

dE2 (θ2,φ2) = L2 (θ2,φ2) cos(θ2) dΩ2 (19.10)

A perfectly diffuse reflecting surface appears equally bright when ob-
served from any arbitrary direction. Furthermore, this feature is also
independent from the type of illumination. If a surface emits the en-
tire incoming energy through reflection, then it is called a Lambertian
reflector and neither absorption nor transmission of radiation takes
place. It follows that the entire radiance L1 that is reflected over the
visible hemisphere is equal to the incoming irradiance E2. A Lambertian
reflector has three important properties:

(i) The reflected radiance L1 does not depend on the direction (isotropic)
and is constant, that is, L1 (θ1,φ1) = L1 = const;

(ii) The BRDF is constant, that is, fr (θ2,φ2, θ1,φ1) = fr = const; and

(iii) The radiant emittance M is equal to the irradiance E2.

The radiant emittance M can now be expressed as the integral of the
reflected radiance L1 over the visible hemisphere

M =
∫
Ω1

L1 dΩ1 = L1π = E2 (19.11)

From this it follows that

fr = L1

E2
= 1
π

(19.12)

holds for the Lambertian reflector. If the Lambertian reflector is illumi-
nated by a light source that has the radiance L2(θ2,φ2) we get

L1 = 1
π

∫
Ω2

L2(θ2,φ2) cos(θ2) dΩ2 (19.13)

as reflected radiance. This equation contains Lambert’s cosine law

L1 = E0

π
cos(θ2) (19.14)

for the reflected radiance L1 of a Lambertian reflector illuminated by
a parallel radiating light source of irradiance E0. The index 0 usually
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γ

Figure 19.4: Definition of three photometric angles α, β, and γ. Each arrow
marks the direction of one light ray.

denotes a quantity related to the light source. It is assumed that illu-
mination directions outside of the interval

0 ≤ θ2 <
π
2

(19.15)

do not cause reflections.
According to its definition the Lambertian reflector does not absorb

any radiation for any wavelength. The albedo ρ is used to describe
surfaces that possess all properties of a Lambertian reflector apart from
a partial absorption of the incoming radiation (Lambertian surfaces). It
describes the relative portion of the radiation that is reflected by the
surface. The albedo can be seen as a scaling factor that lies usually
in the interval [0,1]. The definition of the albedo can be extended to
non-Lambertian surfaces.

The three photometric angles α, β, and γ are defined with respect
to the surface normal n (see Fig. 19.4), where α is the angle between
the surface normal and the illumination direction (incident angle), β
is the angle between the surface normal and the reflection direction
(emittance angle), and γ is the angle between the illumination direction
and the reflection direction (phase angle). Without loss of generality,
the reflection direction can be aligned to the viewer direction (optical
axis of sensor).

The viewer direction is described by a vector v that points to the
viewer (camera). Generally, an orthographic projection is assumed so
that the viewer direction reduces to v = [0,0,−1]T . This is the standard
viewer direction. The illumination direction is also simply described by
a vector s that points to the light source.

The radiance equation for a Lambertian reflector can be extended
for a general Lambertian surface not being necessarily a Lambertian
reflector. Let us assume that the surface has albedo ρ and is illuminated
by a parallel radiating light source with irradiance E0 under the incident
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a b

Figure 19.5: Irradiance image of a linearly shaded sphere using the illumina-
tion orientation s = [−0.5,0,−1]T : a three overlaid isoirradiance curves; and b
a grid representation of the irradiances.

angle α. Then the corresponding radiance equation is

L1 = E0

π
ρ cos(α) = E0

π
ρ cos ∠ (n, s) (19.16)

Considering surface reflection properties and assuming nonvarying il-
lumination directions s and viewer directions v variations in the re-
flected radiation are solely caused by changes of the surface orien-
tation. Horn [17] introduced the reflectance map to model this rela-
tionship. Reflectance maps can be defined as continuous or discrete
functions. Usually, the gradient space representing the surface gradi-
ents [p,q]T = [

ux,uy
]T is chosen for reflectance maps because of

its simplicity. In this case the reflectance map function is R(p,q).
Another useful representation are stereographic coordinates

[
f ,g

]T
and reflectance maps Rs(f ,g). Furthermore, a general reflectance map
Rn(n̄) can be defined by using the unit surface normal n̄. As an exam-
ple,

R(p,q) = E0ρ
s1p + s2q − s3∥∥∥[s1, s2, s3]T∥∥∥ (19.17)

is a linear reflectance map, for illumination direction s = [s1, s2, s3]T
and using gradient space representation. The shading of a sphere that
has linear reflectance is shown in Fig. 19.5.

Constant scaling factors are usually eliminated from the represen-
tation of reflectance maps, as the factor 1/π for the Lambertian re-
flectance maps. Consequently, the reflectance map

R (p,q) = E0ρ cos ∠
(
[p, q, −1]T , s

)
, Rn (n̄) = E0ρn̄s̄T

or Rs(f ,g) = E0ρ
[
4f , 4g, f 2 + g2 − 4

]T s̄
4+ f 2 + g2

(19.18)
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a b

Figure 19.6: Reflectance map of a Lambertian surface in gradient space with
illumination direction s = [0.5,1,−1]T : a isoradiance contour plot; b 3-D plot.

corresponds to a Lambertian surface (see Fig. 19.6). A rotationally sym-
metric Lambertian reflectance map is given by

R (p,q) = E0ρ
1∥∥∥[p, q, −1]T

∥∥∥ , where s = s̄ = v = v̄ = [0, 0, −1]T

(19.19)

Lambertian reflectance maps with s ≠ v are not rotationally symmetric.
The left-hand side of Fig. 19.6 shows the reflectance map as isoradiance
plot thus every curve shows orientations of equal scene radiance val-
ues (isoradiance curves). The second-order isoradiance curves in these
maps describe a point, a circle, an ellipse, a parabola, a hyperbola, or
a straight line. Every isoradiance curve defines the location of equal
irradiances in a captured image. Consequently, these curves are also
called isoirradiance curves.

The point in the isoradiance plot represents the gradient that is iden-
tical to the gradient [ps, qs]T of the illumination direction and hence
takes the maximal radiance value. The gradients lying on the straight
line represent those surface normals, which are orthogonal to the il-
lumination direction. The function value zero is assigned to them be-
cause surface patches oriented in this way cannot receive light from
the light source. This straight line is called self-shadow line.

It holds an algebraic duality that the distance between the illumi-
nation gradient [ps, qs]T and the origin is reciprocal to the distance
between the self-shadow line and the origin. The illumination gradient
and the self-shadow line are located on different sides of the origin. It
follows that the self-shadow line is uniquely defined by the illumination
gradient. The self-shadow line is called the dual line to this gradient.

For isotropically reflecting surface materials with unknown reflec-
tion characteristics the mapping of an orientation to a radiance value
can be determined using a calibration object (see [4]). The following
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assumptions are made: the calibration object has the same surface
material as the surface that has to be reconstructed later on by using
SFS or PSM. Note that only one surface material can be characterized
by a single reflectance map.

19.2.2 Reflection and image irradiance equation

The simple reflection representation in the form of reflectance maps
allows the description of the large class of isotropic reflecting materials.
However, for more general cases it is of benefit to use analytical reflec-
tion models in a more general way than already done for the Lamber-
tian reflection [18]. An analytical reflection model should satisfy the
requirements of simplicity and should be physically plausible as much
as possible. In general, hybridly reflecting surfaces have to be con-
sidered where reflection is an additive composition of diffuse or body
reflection Lb and of specular or interface reflection Ls .

The diffuse reflection component is usually modeled by Lambert’s
cosine law though there exists no complete physical explanation of
Lambert’s cosine law. By contrast, many models exist for the descrip-
tion of the specular reflection component. In principle, there are two
different ways to describe specular reflection, approaches that use phys-
ical optics (wave optics) and approaches that apply models from geo-
metrical optics [19]. Approaches of physical optics use the electromag-
netic theory for the analysis of the reflection where the Maxwell equa-
tions constitute the mathematical basis. The application of geometrical
optics is a lot simpler, but it can be used only if the wavelength of the
incoming light is small compared to the roughness of the material. Con-
sequently, reflection models that are derived from geometrical optics
can always be approximations of the wave-optical reflection models.
Two general representatives of these approaches are the Beckmann-
Spizzichino model (physical optics) and the Torrance-Sparrow model
(geometrical optics) (see [20]). Simplifications of both reflection mod-
els are used in computer vision and computer graphics to describe the
specular component.

The Beckmann-Spizzichino model describes the specular reflection
by two additively overlapping components usually called specular spike
and specular lobe. The specular spike-component models a portion of
the reflection that only occurs in a very narrow range of angles around
the direction of perfect specular (mirror-like) reflection. The diffuse
portion of the specular reflection is modeled by the lobe component. It
describes the scattering reflection caused by the surface roughness.

The Torrance-Sparrow model describes the specular reflection for
surfaces whose roughness is large compared to the wavelength of the
light. It models the surface by planar, perfectly specular reflecting
microfacets whose orientations are normally distributed around the
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Figure 19.7: Simple model of an inhomogeneous dielectric material.

macroscopic surface orientation that is visually inferable. The mathe-
matical formula mainly comprises a Fresnel term, the geometrical at-
tenuation factor, and a Gaussian normal distribution. The Fresnel term
describes the reflection behavior depending on the illumination direc-
tion s, on the viewer direction v, and on the refraction index of the
surface material. Note that the refraction index depends on the wave-
length. Besides a simplified Torrance-Sparrow model the Phong model
is used in computer vision and in computer graphics [21].

A model that describes hybrid reflection properties without specify-
ing the diffuse and the specular reflection component explicitly is the
dichromatic reflection model (DRM). This model can be used for inhomo-
geneous dielectric materials whose surface structure can be modeled
as being composed of an interface and an optically neutral medium
containing color pigments (see [22]). Fig. 19.7 illustrates the principal
structure of such an inhomogeneous dielectric.

The interface separates the surface from the environment that is
usually air. If the distribution of the color pigments is uniform and the
pigments display the same optical behavior, then it can be assumed that
the penetrating light does not have a specific direction when it leaves
the surface (body or diffuse reflection). Part of the radiation falling on
the object surface does not penetrate the medium and is reflected by
the interface (interface or specular reflection). The DRM models the
specular reflection component with microfacets. Mathematically, the
DRM can be formulated in the following way:

L(λ,n, s,v) = Ls(λ,n, s,v)+ Lb(λ,n, s,v)
= ms(n, s,v)cs(λ)+mb(n, s,v)cb(λ)

(19.20)

where the modeled scene radiance L is a quantity that depends on the
wavelength λ.

The essential assumption of the DRM is that both reflection compo-
nents can be factorized into a geometrical component and a spectral
component as given in Eq. (19.20). The geometrical components are
ms and mb. The spectral components are cs and cb. The factor cs
is called interface reflection color and cb is the body reflection color .
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Figure 19.8: a Dichromatic plane of a curved, hybridly reflecting object show-
ing one color; b an L-shaped color cluster of a real watering can (see Fig. 19.9,
left).

The factorization of the interface reflection only holds under specific
assumptions [4]. The factorization of the body reflection is feasible
without any further significant restrictions.

With the additional assumption of a neutral reflecting interface, cs
describes the spectral distribution (color) of the light source. This spe-
cial case of the DRM is called the neutral interface reflection model
(NIRM). The geometrical component ms can be made explicit by the
formulas of a simplified Torrance-Sparrow model, the Phong model or
other models. But the particular advantage of the DRM is that the geo-
metric component of the specular reflection does not have to be mod-
eled explicitly to apply the DRM for various tasks. The scaling factor
mb can be usually modeled by Lambert’s cosine law.

If the description of the scene radiance L is restricted to three nar-
row wavelength bands in the red, green, and blue spectral range of the
visible light, then the scene radiance can be represented as a 3-D color
vector

L =ms(n, s,v)cs +mb(n, s,v)cb (19.21)

Because from the mathematical point of view, ms and mb represent
arbitrary scaling factors, the vectors cs and cb form a 2-D subspace (a
plane) in the RGB color space (dichromatic plane, color-signal plane).

It can be observed that the colors in the dichromatic plane form T-
and L-shaped clusters if the object has sufficiently many and different
surface orientations. Figure 19.8 shows on the left the outline of a typ-
ical L-shaped cluster and on the right the cluster for the real orange
watering can (see Fig. 19.9, left). If the object shows several hybridly
reflecting materials one cluster arises for every material. The repre-
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a b

Figure 19.9: a Image of a real watering can showing a large highlight; b pic-
ture of the watering can after removal of the specular reflection. The six gray
patches in the bottom line were used to linearize the camera (compare Sec-
tion 19.1.2).

sentations shown in Fig. 19.8 are called color histograms. Contrary to
gray-value histograms, color histograms only have binary values. Color
histograms only code whether or not a certain color exists in the image.
Both the DRM and the NIRM are of great importance in physics-based
computer vision. For example, it is possible to separate the reflection
components and hence to remove the specular reflection component
(highlights) from images by analyzing color histograms [9, 22, 23].

Figure 19.9 displays an example of such a highlight removal. The left
picture shows the original image of a watering can. The right picture
shows the watering can after the elimination of the specular reflection
component using the DRM. These reflection models can also be used to
remove interreflections [8], for color image segmentation, color classi-
fication, and color object recognition.

Now we discuss the relation between the radiance reflected from the
object surfaces (scene radiance) to its counterpart, the measured image
irradiance of the imaging sensor. It can be shown [24] that (under a few
assumptions, see also [4]) the relation between the reflected radiance L
and the image irradiance E can be approximated by

E = L π
4
d2

f 2 cos4(ψ) (19.22)

where d is the diameter of the lens, f is its focal length, and ψ is the
angle between the optical axis and the light ray going through the center
of the observed small solid angle.

This relationship in conjunction with a reflectance map R leads to
the image irradiance equation

E (x, y) = cR (p, q) (19.23)
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where c is a scaling factor. Because the surface gradient (p,q) depends
on world coordinates but the image irradiance E is given in terms of
image coordinates, this equation implicitly contains the assumption of
an orthographic projection as it was already assumed for defining the
reflectance map.

If, additionally, the image irradiance is proportional to the values
measured by the imaging sensor and the digitization system, then the
relationship between the scene radiance and the measured image irra-
diance (gray value) of the image is linear, too. Normal video cameras
have a built-in gamma recorrection (compare Section 19.1.2) that is a
nonlinear mapping between the image irradiances and the gray values.
Therefore a photometric calibration must be carried out to linearize the
camera before the image irradiance equation can be applied. For sim-
plification purposes the image irradiance equation is often represented
in the literature by

E (x, y) = R (p, q) (19.24)

Therefore, the function E(x,y) in this equation can be regarded as an
image irradiance function and as a measured image irradiance function.
The image irradiance equation is the most important tool to describe
the relationship between irradiances, scene radiances, and surface gra-
dients.

19.2.3 Depth maps from gradient maps

The models of surface geometry are also used in shading-based shape
recovery, besides the models of surface reflection. Classes of Cn func-
tions are suitable to describe curved surfaces. These classes model
continuity, respectively, of differentiability assumptions. Generally,
Cn (Ω) denotes the class of all functions that are defined on a domain
Ω, for n ≥ 0. These functions are continuous, and their derivatives
exist up to and including the nth order and are continuous as well. In
this chapter either the real plane <2 or a bounded subset of this plane
is assumed to be the definition domain Ω. Accordingly, often we re-
frain from stating the definition domain. Furthermore, only the sets
C1 or C2 are relevant in this chapter. Functions of these sets are called
C1-continuous, respectively, C2-continuous surface functions.

A surface function u = u(x,y) is also characterized by the validity
or invalidity of the integrability condition

∂2u(x,y)
∂x∂y

= ∂2u(x,y)
∂y∂x

(19.25)

for all [x,y]T ∈ Ω. As a special corollary from Frobenius’ theorem
in mathematical analysis it follows that the validity of this condition
uxy = uyx is “approximately equivalent” to C2-continuity (see [4]).
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Function u = u(x,y) is an antiderivative of a vector field w(x,y) =
[p(x,y), q(x,y)]T over a domain Ω if

p (x,y) = ∂u∂x (x,y) = ux (x,y) and q (x,y) = ∂u∂y (x,y) = uy (x,y)
(19.26)

hold for all [x,y]T ∈ Ω. Mathematical analysis offers (in principle)
ways to calculate such an antiderivative. For example, the integration
of vector fields can be based on arbitrarily specified integration paths,
that is, on piecewise C1-curves

γ : [a,b] → <2, γ (t) = [γ1(t), γ2(t)]T = [x(t),y(t)]T (19.27)

that lies inside the region Ω, with a < b, γ(a) = [x0, y0]T , and γ(b) =
[x̂, ŷ]T . For such a curve it holds that

u(x̂, ŷ) = u(x0, y0)+
∫
γ

p (x,y) dx + q (x,y) dy (19.28)

where the result at position [x̂, ŷ]T is independent from the integration
path. The depth map, the height map, and the gradient map, respec-
tively, are functions over the image grid{

[x,y]T : 1 ≤ x ≤M ∧ 1 ≤ y ≤ N
}

In the ideal case at each point [x,y]T a depth map for surface func-
tion u states the depth u(x,y) of those surface points that are pro-
jected into this image point. A height map is defined relatively to an
assumed background plane (of height zero), which is parallel to the im-
age plane. In the ideal case at each point [x,y]T the height value is
equal to the (scaled) height of those surface point that is projected into
this image point. Height is measured with respect to the chosen back-
ground plane. A given depth or height map allows us to reconstruct
object faces in 3-D space within a subsequent computation step of a
general backprojection approach. In this chapter we consider depth or
height maps as the ultimative goal of single-view shape recovery .

Shading-based shape recovery techniques normally provide gradi-
ent values for a discrete set of visible points on object surfaces. This
requires a subsequent integration step to achieve (within possible lim-
its) the specified ultimative goal of (relative) depth or height maps.

The general remarks about integration paths support local integra-
tion techniques: Assume a scan algorithm that passes through all image
points of the image grid (e.g., known under names as meander scan,
Hilbert scan, or Peano scan, etc.). Starting with initial depth values this
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a b

c d

Figure 19.10: a Object; b reconstructed gradient map using 3S PSM; c contour
plot and d shaded surface with Lambertian texture for the lighting direction
s = [0,0,−1]T of reconstruction results using the Frankot-Chellappa algorithm.

algorithm can be used to propagate depth values according to a local
approximation rule (e.g., based on the 4-neighborhood) using the given
gradient data. Such a calculation of relative depth values can be done
within repeated scans (i.e., using different scan algorithms). Finally, re-
sulting depth values can be determined by averaging operations. Initial
depth values have to be provided or assumed for the start positions of
the different runs.

Several proposals follow this general scheme of local propagations
(for a review, see [25]). A global integration method , based on results of
Frankot and Chellappa [26] and presented in Klette et al. [4], leads, in
practice to considerably better results for the task of calculating depth
from gradients. The solution calculated by this Frankot-Chellappa al-
gorithm is optimal in the sense of the quadratic error function between
ideal and given gradient values. It only provides a relative height func-
tion up to an additive constant. See Fig. 19.10 for an example of a
reconstructed surface.
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19.3 Three light sources

This section discusses 3S PSM where it is assumed that no motion oc-
curs inside the system consisting of the object, the light sources, and
the sensor. Therefore, three irradiances (an irradiance triplet) can be
assigned to every object point that is projected into the image plane.
It is assumed that all irradiances are positive, which means that shad-
ows are excluded from the analysis. The smaller the angle between the
illumination directions, the more object portions are covered simulta-
neously by all light sources. On the other hand, with smaller angles
the sensitivity with respect to noise in the measurements of the irra-
diances during the image acquisition increases. The same holds for
the sensitivity with respect to the inaccurate estimation of other fixed
parameters, for example, the illumination directions. Thus, no optimal
choice of illumination directions exists for 3S methods.

19.3.1 Albedo-dependent analysis

We begin our discussion of shape recovery with the assumption of a
Lambertian surface. The shape of a smooth genuine Lambertian surface
with uniform albedo can be uniquely determined by 3S PSM (see [1] or
[7]).

Three irradiance values are measured for any visible surface point
where each value corresponds to the case that exactly one of the light
sources was switched on. We assume a Gaussian sphere representation
of the reflectance maps, that is, each measured irradiance corresponds
to a circle on the sphere representing all possible unity normals at the
given surface point. This requires the assumption that for all three light
sources the products E0ρ of the light source irradiances and the albedo
are known. On the Gaussian sphere the true orientation at the given
surface point is represented by the intersection point of all these three
circles on the Gaussian sphere (assuming noncoplanar light source ori-
entations).

If the three illumination directions are not coplanar and the three
image irradiances are consistent with each other, then 3S PSM leads to
a unique solution. The orientation of a point on a Lambertian surface
can be recovered uniquely with three image irradiances independent
of the neighborhood of the considered image point. We do not have
to introduce smoothness assumptions or integrability constraints. The
reconstruction of the surface orientations is carried out point-locally
by analyzing irradiance triplets. But note that so far this is the ideal
case in theory.

The pair of gradients of an irradiance pair is given by the intersection
of two conic sections in the gradient space for a Lambertian surface.
The left picture in Fig. 19.11 illustrates the intersection of two conic
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Figure 19.11: Isoirradiance curves of 2S (left) and 3S (right) PSM.

sections. When an additional light source is introduced that generates
the image irradiance E3, then the three conic sections intersect at a
unique point. The intersection (p,q) in gradient space represents the
desired orientation.

However, when the irradiances are measured for a real surface point,
then basically there never exists a unique intersection due to noise and
other errors. But even in this case two gradients would exist for each
consistent pair of irradiances. If three consistent irradiance pairs are
used to calculate the solution pairs, then six intersections occur. Three
of the six intersections should represent orientations that point ap-
proximately into the same direction similar to the sought-after surface
normal n = [p,q,−1]T . Finally, not the gradients themselves but the
orientations should be compared to determine an approximate orien-
tation.

Furthermore, the recovery of the solution can also be achieved with-
out explicitly calculating the solution candidates, simply by generat-
ing the intersection curves nonanalytically. For this approach the re-
flectance maps are represented as image matrices. For this purpose,
first, a generation of the discrete reflectance maps (for all three light
sources) can be performed. The use of a calibration object has the ad-
vantage that neither the illumination directions nor the products E0iρ
have to be known. Then the selection of the orientations can be carried
out through simple threshold segmentations of the reflectance maps.
The three irradiances measured in the image are taken to specify the
thresholds. The segmentation result consists of three regions that rep-
resent the orientations that are consistent with the image irradiances.
Finally, the binarized reflectance maps are intersected (binary AND op-
eration). The centroid of the resulting region can be used to represent
approximately the orientation at the considered image point. Note that
the stereographic projection is a more convenient 2-D representation
of the orientations because it causes less distortions. The width W
of the segmentation interval [Ei −W/2, Ei +W/2], with i = 1,2,3, can
be adapted to the noise level in the image acquisition system and to
expected variations in the albedo.
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This described threshold segmentation for 3S PSM has the advantage
that it is easily applicable to surfaces that have no Lambertian reflec-
tion properties because we do not have to solve a system of nonlinear
equations. For reflectance maps that are synthetically generated and
parameterized by a set of real parameters, ambiguous solutions can
easily be detected for a certain accuracy without a uniqueness proof. If
the reflectance maps are generated by using a calibration object, then
we do not have to determine the reflection parameters, that is, the sur-
face roughness and the ratio of the diffuse and the specular reflection
component.

For a look-up table solution to 3S PSM note that an irradiance triplet
that is measured in the images can be regarded as a point in a Cartesian
coordinate system E1E2E3 where each of the three axes (irradiance axis)
represents the image irradiances of one light source. A surface orien-
tation is uniquely assigned to every possible irradiance triplet; thus the
generation of a 3-D look-up table is possible. The generation of the
look-up table can be carried out in two different ways. If the illumi-
nation directions and irradiances of the light sources are known, then
the look-up table can be built by applying explicit equations. Moreover,
a calibration object can be employed for the generation. Again, it is
advantageous that the directions and irradiances of the light sources
as well as the reflection parameters do not have to be known explicitly.
A surface orientation is determined by looking up the entry that cor-
responds to the measured irradiance triplet. The look-up table entry
contains either a 2-D representation of the surface orientation or it is
empty. If the image irradiances are digitized with 8-bit accuracy and
the surface orientations are encoded with 2×4 Bytes, then the look-up
table needs 128 MB (!) of memory.

Figure 19.12 illustrates two different views of a look-up table for
a real sphere showing Lambertian reflection characteristics. The esti-
mated illumination directions for the sphere are

s1 = [−0.312,−0.231,−1]T

s2 = [0.049,0.304,−1]T

s3 = [0.411,−0.236,−1]T

The estimated ratios of the light source irradiances are 1.0 : 1.022 :
0.772. A total number of 41717 triplets with positive 8-bit irradiances
were measured on the sphere having a radius of 123 pixels. For the
sake of clarity, the illustrations only display 1303 irradiance triplets.
Fig. 19.12 on the right shows an orthographic projection of the look-up
table.

It can easily be seen that the irradiances describe an ellipsoidal sur-
face. In this example, the density of the look-up table is only approx-
imately 3 % with respect to the number of its entries. It can be shown
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a b

Figure 19.12: a The 3-D oblique view of a real look-up table in a coordinate
system that is spanned by three irradiances originating from three different
light sources; b orthogonal projection along the irradiance axis E3.

that in the ideal case this point distribution describes in fact the sur-
face of an ellipsoid [6]. The center of this ellipsoid is located at the
origin of the E1E2E3 coordinate system. The ellipsoid is restricted to
the first octant of the coordinate system because only positive irradi-
ances make sense. Each irradiance restricts the other two irradiance
values to an ellipse in the E1E2E3 space. Hence a unique solution is
found by intersecting the three orthogonal ellipses.

The lengths of the three semiaxes of the ellipsoid are proportional
to the albedo of the surface material. Moreover, the orientation of the
ellipsoid is albedo-independent and determined by the three illumi-
nation directions. Every ray in the E1E2E3 space passing through the
origin represents a unique orientation. From the mentioned properties
it follows that the look-up table can be made albedo-independent by
propagating each entry along a ray. Thus, a valid surface orientation is
assigned to every look-up table entry.

19.3.2 Albedo-independent analysis

In the following it will be assumed that the albedo ρ remains unknown.
At first we note that a pair of irradiances constrains the gradients of a
Lambertian surface with unknown albedo to a straight line in gradient
space (see [27]). Under parallel illumination the two image irradiance
equations of a Lambertian surface can be represented as

E1 = E01ρ
nTs1

‖n‖‖s1‖ and E2 = E02ρ
nTs2

‖n‖‖s2‖ (19.29)
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resulting in the equation

ρnT (E01E2 ‖s2‖ s1 − E02E1 ‖s1‖ s2) = 0 (19.30)

which can be interpreted as a scaled scalar product. If ρ 6= 0, then
the albedo can be eliminated from the equation that leads to albedo
independence. By collecting the known quantities in E0a,b = E0aEb ‖sb‖
the equation can be represented as the simplified scalar product

nT (E01,2s1 − E02,1s2) = 0 (19.31)

The representation

nT (s1,2 − s2,1) = 0, with sa,b = E0a,bsa = E0aEb ‖sb‖ sa (19.32)

is even more compact. The vector difference s1,2 − s2,1 consists of
known quantities and lies in the symmetry plane defined by the illu-
mination directions s1 and s2. For a given illumination geometry the
variables of the vector difference s1,2 − s2,1 are just the two image ir-
radiances E1 and E2. The vector s1 × s2 is perpendicular to the set
of vectors defined by s1,2 − s2,1. The solutions of the foregoing equa-
tion are vectors n, for which the scalar product becomes zero. From
this it follows that all those vectors n satisfy the equation that is ori-
ented orthogonal to the vector difference s1,2 − s2,1. The gradients of
the possible vector differences s1,2 − s2,1 lie in the gradient space on
a determinable straight line h that is constant for a given illumination
geometry. The straight line h is the line that is dual to the gradient
(ps, qs) = (p(s1 × s2), q(s1 × s2)). A unique point on h is assigned to
each irradiance pair (E1, E2). From the relationship

nT (s1,2 − s2,1) = 0 (19.33)

it follows that each gradient on the straight line h has a dual straight
line k that represents the possible solutions n of Eq. (19.33).

The straight line h can be described explicitly by the equation

qh = h(ph) = −psqs ph −
1
qs

(19.34)

The set of straight lines generated by the straight line h can be repre-
sented explicitly by

qk = k(pk) = qs
1+psph (1+phpk) (19.35)

The variable ph itself depends on the measured image irradiance pair
(E1, E2) and can be calculated by

ph = p(w), with w = E01E2 ‖s2‖ s1 − E02E1 ‖s1‖ s2 (19.36)
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Thus, all gradients that are consistent with any arbitrary irradiance pair
can be calculated by using Eq. (19.33). It can be shown that the gradient
(ps, qs) lies on the straight line k. The albedo ρ can be found for every
gradient by substituting a solution into any of the two image irradiance
equations.

Similar equations to Eq. (19.33) can be formulated for the irradiance
pairs (E1, E3) and (E2, E3). For the pair (E1, E3) the equation

nT (E01E3 ‖s3‖ s1 − E03E1 ‖s1‖ s3) = 0 (19.37)

arises, which can be combined with the equation for the image irradi-
ance pair (E1, E2). The terms in parentheses are vectors that are orthog-
onal to the desired surface orientation n. After calculating the vector
product

w = (E01E2 ‖s2‖ s1 − E02E1 ‖s1‖ s2)× (E01E3 ‖s3‖ s1 − E03E1 ‖s1‖ s3)
(19.38)

a vector results that is collinear to the surface normal n. Therefore, n
= sw. The scaling factor s must have such a sign that the surface nor-
mal n obtains a negative z-component. Besides the surface normal the
albedo can be point-locally recovered by substituting the normalized
vector n̄ into one of the three image irradiance equations. When the
equation is divided by one of the three irradiances of the light sources,
for example, by E03, then the direction of the calculated vector

(E01

E03
E2 ‖s2‖ s1 − E02

E03
E1 ‖s1‖ s2)× (E01

E03
E3 ‖s3‖ s1 − E1 ‖s1‖ s3) (19.39)

does not change with respect tow. This property is helpful for the real-
ization of an albedo-independent photometric stereo method because
it means that only the ratios of the irradiances of the light sources have
to be known. This leads to a different scaling of the albedo value.

Figure 19.13 shows three input images of a synthetic Mozart statue
for the described 3S photometric stereo method. The images were gen-
erated by using Lambertian reflectance maps. A light source setup hav-
ing the slant angles σ(s1) = σ(s2) = σ(s3) = 20° and the tilt angles
θ(s1) = 90°, θ(s2) = −150°, θ(s3) = −30° were chosen for rendering.
Relatively small slant angles for the illumination directions guarantee
that no strong self-shadows arise. The ratios of the irradiance values
E0i of the light sources are equal to one.

Figure 19.14 illustrates the shape recovery results for the Mozart
statue. The integration of the height map was carried out using the
Frankot-Chellappa algorithm, see Section 19.2.3. The left picture of
Fig. 19.14 shows a grid representation of the reconstruction. Because
detail information gets lost in this representation the right-hand picture
presents the same surface by using texture mapping. The texture image
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a b c

Figure 19.13: Image triplet of a synthetic Mozart statue for 3S photometric
stereo. In the text the indices 1, 2, and 3 are assigned to the images from left to
right.

a b

Figure 19.14: Surface reconstruction results: a grid representation; and b tex-
ture mapping.

was calculated from the recovered surface normals by using a Lamber-
tian reflectance map with the illumination direction s = [1,1,−1]T .

The image triplet of a real hand shown in Fig. 19.15 is an example of
an object with a nonconstant albedo (different blood circulation). The
ratios of the light source irradiances were estimated as 1.0 : 0.638 :
0.640. Estimations for the illumination directions of the three hand
images are

s1 = [−0.370,−0.028,−1]T

s2 = [0.044,0.472,−1]T

s3 = [0.420,0.043,−1]T

The 3-D plots presented in Fig. 19.16 show that a good surface recon-
struction is possible by using 3S photometric stereo. Artifacts can oc-
cur when the hand is not entirely still and when the specular reflection
component (caused by the transpiration) is not taken into account by
the reflection model. In the right picture of Fig. 19.16 the first input
image is mapped onto the 3-D reconstruction.
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a b c

Figure 19.15: An image triplet of a real hand used as input for a 3S photometric
stereo method. The images 2 and 3 were brightened for visualization purposes
where the indices 1, 2, and 3 are assigned to the images from left to right.

a b

Figure 19.16: Surface reconstruction results: a grid representation; b first input
image was chosen for texture mapping.

19.4 Two light sources

A more complex task is given if only two light sources are used to ac-
complish the task of unique surface recovery. The illumination direc-
tions p and q of the two light sources are assumed to be not collinear.
In order to prevent an interference of the irradiances of the two light
sources, the two pictures have to be taken consecutively. The object
and the camera have a fixed position and orientation. Thus, an irradi-
ance pair [E1, E2]T is assigned to each image point and the correspond-
ing surface point for 2S PSM.

19.4.1 Albedo-dependent analysis

This section focuses on fundamentals of situations when the shape
of a smooth Lambertian surface is uniquely determined by a pair of
images. More applied results for 2S PSM can be found in Klette et al.
[4]. First, we discuss gradient computation and then we analyze the
corresponding uniqueness and existence problems. For more detailed
texts an interested reader is referred to [7, 28] or Onn and Bruckstein
[29]. A 2S PSM algorithm is formulated and discussed in Klette et al.
[4] following Kozera [7], Onn and Bruckstein [29]. The second stage
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of the shape recovery process involves gradient integration as already
discussed in Section 19.2.

Suppose that a genuine Lambertian surface represented by the graph
of a function u of class C1 defined over a domain Ω = Ω1∩Ω2 is illumi-
nated from two linearly independent directions p = [p1, p2, p3]T and
q = [q1, q2, q3]T . The captured images are E1 and E2, respectively. We
assume that the albedo ρ(x,y) is constant over the entire domain Ω
with ρ(x,y) ≡ c and 0 < c ≤ 1. Note that 〈p|q〉 is the dot product of
both vectors. We then have the following (see [7] and [29]):

Theorem 19.1 The first derivatives ux and uy of function u can be
expressed in terms of E1, E2, p, and q, where ‖p‖ = ‖q‖ = 1, in the
following form ux = e1/e3 and uy = e2/e3, where

e1 = (q1〈p|q〉 −p1)E1 + (p1〈p|q〉 − q1)E2 + (p3q2 −p2q3)ε
√
Λ,

e2 = (q2〈p|q〉 −p2)E1 + (p2〈p|q〉 − q2)E2 + (p1q3 −p3q1)ε
√
Λ,

e3 = (p3 − q3〈p|q〉)E1 + (q3 −p3〈p|q〉)E2 + (p1q2 −p2q1)ε
√
Λ

(19.40)

and where Λ = Λ(x,y) = [
1 − E2

1(x,y) − E2
2(x,y)

] − 〈p|q〉[〈p|q〉 −
2E1(x,y)E2(x,y)

]
, and ε = ε(x,y) is a function taking values ±1 so

that f(x,y) = ε(x,y)√Λ(x,y) is a continuous function.

The case when Λ > 0: When Λ is positive over Ω, the function ε ap-
pearing in Eq. (19.40) must take one of the values 1 or −1 because the
gradient (ux,uy) has to be a continuous function. As an immediate
consequence, Theorem 19.1 implies that there exist at most two C2/C1

solutions to the system (Eq. (19.2)).
The next theorem formulates necessary and sufficient conditions

for the existence of exactly two solutions of class C2 (and so of class
C1) to the system Eq. (19.2) (see also [7] and [29]).

Theorem 19.2 Let E1 and E2 be functions of class C1 over a simply con-
nected region Ω of <2 with values in (0,1] and let e1, e2, and e3 be de-
fined by Eq. (19.40). Suppose that Λ > 0 on Ω and that, for each choice
of sign, σ± = (p3 − q3〈p|q〉)E1 + (q3 − p3〈p|q〉)E2 ± (p1q2 − p2q1)

√
Λ

does not vanish over Ω. Then

(e1/e3)y = (e2/e3)x (19.41)

is a necessary and sufficient condition for the existence of exactly two
solutions of class C2 to Eq. (19.2), for each choice of sign.

Consequently, if both vector fields
[
u+x,u+y

]T
where ε(x,y) ≡ 1, and[

u−x,u−y
]T

where ε(x,y) ≡ −1 are integrable (see Eq. (19.41)), then

there exist exactly two C2 class solutions to Eq. (19.2) over Ω.
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Now we analyze the meaning of Eq. (19.41) for images E1 and E2

generated by a C2 Lambertian surface, that is, when Eq. (19.2) is sat-
isfied for a certain function u of class C2. We have the following (see
also [28] and [29]):

Theorem 19.3 Let p = [0,0,−1]T and q = [q1, q2, q3]T be such that
q2

1 +q2
2 > 0 and ‖q‖ = 1, and let u be a function of class C2 on a simply

connected open subset Ω of <2. Suppose that functions E1 and E2 are
given by Eq. (19.2). Suppose, moreover, that Λ > 0 over Ω. In order
that there exist a solution of class C2 to Eq. (19.2) different from u, it is
necessary and sufficient that u satisfies

q1q2(uyy −uxx)+ (q2
1 − q2

2)uxy = 0 (19.42)

As Eq. (19.42) is generically not satisfied by function u, a C2 class
uniqueness, in the case when Λ > 0 over Ω, is therefore in most cases
ensured. In other words, the integrability condition (Eq. (19.42)) disam-
biguates surface reconstruction for two image patterns and essentially
ascertains a generic uniqueness for 2S PSM.

In connection with the previous theorem a natural question arises
about the possible analytic and geometric relationship between these
two solutions (if both exist). Clearly, each of them has to satisfy an
additional constraint imposed by Eq. (19.42). A standard method of
characteristics (see the classical theory of the second-order partial dif-
ferential equations [30], applied to Eq. (19.42)) yields (see [7]):

Theorem 19.4 Suppose that q2
1 + q2

2 > 0. Any solution u of class C2 to
Eq. (19.42) over an open convex region Ω is given by

u(x,y) =
{
φ(q1x + q2y)+ψ(q1x − q2y) if q1q2 6= 0

φ(x)+ψ(y) if q1q2 = 0
(19.43)

for some functionsφ andψ of class C2. Conversely, for any functionsφ
and ψ of class C2, the foregoing formula defines a solution of class C2

to Eq. (19.42). In addition, if a C2 class function u satisfying Eq. (19.42)
is determined, then the corresponding functions φ and ψ can be found
by using the following formulas:

φ(x) =
{
u(q1x/(q2

1 + q2
2), q2x/(q2

1 + q2
2))− c if q1q2 ≠ 0

u(x,0)− c if q1q2 = 0
(19.44)

ψ(x) =
{
u(−q2x/(q2

1 + q2
2), q1x/(q2

1 + q2
2))+ c if q1q2 ≠ 0

u(0, x)+ c if q1q2 = 0
(19.45)

where c is an arbitrary constant.
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The last theorem implies that if there exist two C2 class solutions to
Eq. (19.42) (which is a rare case), then each of them can be decomposed
as a sum of two single-variable C2 class functions. A natural question
arises about the relationship between pairs [φu,ψu]T and [φv,ψv]T .
This is answered by the following (see [28]):

Theorem 19.5 Let p = [0,0,−1]T and q = [q1, q2, q3]T be such that
q2

1 + q2
2 > 0 and ‖q‖ = 1. Let u be a function of class C2 defined over

and open convex region Ω, satisfying Eq. (19.2) and

u(x,y) =
{
φ(q1x + q2y)+ψ(q1x − q2y) if q1q2 ≠ 0

φ(x)+ψ(y) if q1q2 = 0
(19.46)

for some functions φ and ψ of class C2. Then the second solution v to
Eq. (19.2) of class C2 can be expressed in the form:

v(x,y) =


φ(q1x + q2y)−ψ(q1x − q2y) if q1q2 ≠ 0

−φ(x)+ψ(y) if q1 = 0

φ(x)−ψ(y) if q2 = 0

(19.47)

The last two theorems determine analytic representations of two C2

class solutions as well as establish the corresponding relationship be-
tween these representations. Furthermore, one can derive now two al-
ternative schemes for finding those two solutions (if both exist). First,
as indicated in Theorem 19.1 and Theorem 19.2 one can recover both
functions u and v by calculating the corresponding contour integrals.
However, only one contour integration is in fact necessary. Having
found the first solution u, we can apply Theorem 19.4 and decompose
u in terms of a pair of C2 class functions (φ,ψ). Finally, Theorem 19.5
renders the second solution v , represented uniquely in terms of a pair
of functions [φ,ψ]T .

In addition, a geometric relationship between the graphs of two so-
lutions u and v can also be now established. Namely, as easily veri-
fied, the Gaussian curvature Ku(x,y) of the graph of function u cal-
culated at point [x,y,u(x,y)]T , and the Gaussian curvature Kv(x,y)
of the graph of function v calculated at point [x,y,v(x,y)]T satisfy
Ku(x,y) = −Kv(x,y).

The immediate consequence of this fact is that there is no ±u + c
ambiguity in 2S PSM when both Λ and the Gaussian curvature of at
least one solution do not vanish. Such a symmetry is characteristic for
the single-image shape recovery when a point light-source is positioned
overhead. However, one can expect nonuniqueness (in two point light-
source photometric stereo) resulting from replacing u by −u + c for
the graphs with zero Gaussiam curvature. Note also that, if an admis-
sible class of shapes contains only convex/concave surfaces consisting
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exclusively of elliptic points the second solution (if it exists) consists ex-
clusively of hyperbolic points. Such a theoretical solution is considered
not physically plausible as being a priori excluded from an admissible
class of surfaces. Consequently, any restriction of class of admissible
solutions, might also disambiguate a possible case of nonuniqueness
in 2S PSM.

Example 19.1: Lambertian surface

Let p = [0,0,−1]T and q = [1/√3,1/
√

3,−1/
√

3
]T

, and let E1(x,y) =
(x2+y2+1)−1/2 and E2(x,y) = (x+y+1)

[
3(x2+y2+1)

]−1/2
. Consider

the corresponding two image irradiance equations for 2S PSM:

1√
u2
x +u2

y + 1
= 1√

x2 +y2 + 1

ux +uy + 1
√

3
√
u2
x +u2

y + 1
= x +y + 1√

3
√
x2 +y2 + 1

(19.48)

defined over Σ = {[x,y]T ∈ <2 : x + y + 1 ≥ 0, x < y}. An easy
inspection shows that Λ vanishes only along the line x = y and thus
Λ is positive over Σ. Applying Theorems 19.1 and 19.2 yields that

both vector fields
[
u+x,u+y

]T = [y,x]T and
[
u−x,u−y

]T = [x,y]T are

C2 integrable. Moreover, the corresponding C2/C1 class solutions to
Eq. (19.48), defined over Σ, are given up to a constant asu+(x,y) = xy
and u−(x,y) = 1/2(x2 + y2). Alternatively, we can first integrate

one of the vector fields, say,
[
u+x,u+y

]T
, and verify that u+ satisfies

Eq. (19.42). Hence the second vector field
[
u−x,u−y

]T
is also C2 in-

tegrable. By Eq. (19.43), the function u+(x,y) = φ(1/√3(x + y)) +
ψ(1/

√
3(y − x)). Furthermore, formulae Eq. (19.44) and Eq. (19.45)

yield
φ(x) = u+((

√
3x/2), (

√
3x/2))− c = (3/4)x2 − c

and
ψ(x) = u+(−(

√
3x/2), (

√
3x/2))+ c = −(3/4)x2 + c

Using Theorem 19.5 results in

u−(x,y) =φ(1/
√

3(x +y))−ψ(1/
√

3(y −x)) = (x2 +y2)/2

which obviously coincides with the second solution, already deter-
mined by using a standard contour gradient integration method. Ob-
serve that u− also satisfies Eq. (19.42). Note, moreover, that the graph
of u+ consists exclusively of hyperbolic points with negative Gaus-
sian curvature Ku+(x,y) = −(1+x2+y2)−2, whereas the graph of u−
consists exclusively of elliptic points with positive Gaussian curvature
Ku−(x,y) = (1+x2 +y2)−2.

Hence, the equation Ku(x,y,u(x,y)) = −Kv(x,y,v(x,y)) is clearly
also fulfilled. The reconstructed surfaces coincide with the Lamber-
tian paraboloid and hyperboloid, respectively.
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The case when Λ ≡ 0: We consider the case when Λ introduced in The-
orem 19.1 vanishes for given E1 and E2 defined (captured) over some
domain Ω.

An immediate consequence of Theorem 19.1 is that there is at most
one C2/C1 class solution to the system Eq. (19.2). The next theorem
formulates a necessary and sufficient condition for existence of exactly
one solution u of class C2 to the system Eq. (19.2) (see [7]).

Theorem 19.6 Let E1 and E2 be functions of class C1 over a simply con-
nected region Ω of <2 with values in (0,1]. Suppose that Λ ≡ 0 on Ω
and that σ = (p3 −q3〈p|q〉)E1 + (q3 −p3〈p|q〉)E2 does not vanish over
Ω. Then a necessary and sufficient condition for the existence of exactly
one class C2 solution u of Eq. (19.2) is (g1/g3)y = (g2/g3)x , where

g1 = (q1〈p|q〉 −p1)E1 + (p1〈p|q〉 − q1)E2

g2 = (q2〈p|q〉 −p2)E1 + (p2〈p|q〉 − q2)E2

g3 = (p3 − q3〈p|q〉)E1 + (q3 −p3〈p|q〉)E2

Furthermore, in case of Λ vanishing over Ω, it can be shown that the
graph of u constitutes a developable surface of cylindrical type and
that the vectors n = [

ux,uy,−1
]T , p, and q are co-planar, for each

[x,y]T ∈ Ω. For a more detailed analysis an interested reader is re-
ferred to [28].

We close this subsection with an example highlighting another im-
portant aspect appearing in 2S PSM. As it turns out, the uniqueness
problem is not a mere function of an unknown surface but also de-
pends on the mutual position of vectors n = [ux,uy,−1

]T , p, and q.
This is explicitly illustrated in the following example:

Example 19.2: Lambertian surface

Let q =
[
q1(q2

1 + q2
2 + 1)−1/2, q2(q2

1 + q2
2 + 1)−1/2,−(q2

1 + q2
2 + 1)−1/2

]T
and p = [0,0,−1]T , and let
E1(x,y) = (a2 + b2 + 1)−1/2

and
E2(x,y) = (aq1 + bq2 + 1)(a2 + b2 + 1)−1/2(q2

1 + q2
2 + 1)−1/2.

Assume that the vectors p and q are linearly independent. Consider
now the corresponding two image irradiance equations for 2S PSM:

1√
u2
x +u2

y + 1
= 1√

a2 + b2 + 1

q1ux + q2uy + 1√
q2

1 + q2
2 + 1

√
u2
x +u2

y + 1
= q1a+ q2b + 1√

q2
1 + q2

2 + 1
√
a2 + b2 + 1

(19.49)

A straightforward calculation shows that Λ vanishes over Ω, if

aq2 − bq1 = 0
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The latter happens only and only if the three vectorsn = [ux,uy,−1
]T

,
p, and q are co-planar, that is, when they are linearly dependent.
Theorem 19.6 yields the existence of exactly one C2/C1 solution to
Eq. (19.49) defined as u(x,y) = ax+by +c. If, in turn, aq2−bq1 ≠ 0
(i.e., vectors n, p, and q are linearly independent) then Λ is positive
over Ω. Thus, the Theorem 19.2 ensures the existence of exactly two
C2/C1 solutions: u+(x,y) = ax+by+c and u−(x,y) = Ax+By+c,
where A = (a(q2

1 − q2
2) + 2bq1q2)/(q2

1 + q2
2) and B = (b(q2

2 − q2
1) +

2aq1q2)/(q2
1 + q2

2). As expected, the condition Eq. (19.42) is satisfied
by both u+ and u− and

Ku+(x,y,u+(x,y)) = −Ku−(x,y,u−(x,y)) = 0

Note, finally, that each reconstructed surface coincides with a Lam-
bertian plane.

The case when Λ ≥ 0: So far, we have considered the cases in which
Λ is either positive or vanishes over a given domain Ω. Now we shall
treat the situation in which Λ is nonnegative. Our analysis will not be
complete as we shall confine ourselves to the specific case concerning
the topology of the zero sets of Λ. Namely, we assume that region
Ω = D1 ∪D2 ∪ Γ , where subdomains D1 and D2, and a smooth curve Γ
are mutually disjoint, Λ is positive over D1 ∪D2, and Λ vanishes over
Γ . It can be verified that this special topological case is obeyed by most
pairs of images and pairs of point light-source directions.

Assume that there exists at least one solution u of class C2 to
Eq. (19.2) and that the irradiance functions E1, E2 appearing in these
equations are C1 class over Ω. Suppose that the set {[x,y]T ∈ Ω : Λ =
0} is a smooth curve Γ such that Ω \ Γ = D1 ∪ D2, where D1 and D2

are disjoint open subsets of Ω, on which, of course, Λ is positive. By

Theorem 19.2, there exist at most two solutions
[
u1

1,u
2
1

]T
to Eq. (19.2)

of class C2 over D1 and at most two solutions (u1
2,u

2
2) to Eq. (19.2) of

class C2 over D2, respectively.
We do not exclude the possibility that u1

i = u2
i for either i = 1, or

i = 2, or i = 1 and i = 2. Clearly, the restriction of u to Di coincides
with either u1

i or u2
i for i = 1,2.

Conversely, suppose that for some i and j with i, j = 1,2 and some
constant c the limits

lim[x′,y ′]T∈D1→[x,y]T∈Γ u
i
1(x′, y ′) =

lim[x′,y ′]T∈D2→[x,y]T∈Γ (u
j
2(x′, y ′)+ c) = gij(x,y)

exist for each [x,y]T ∈ Γ . Set

vij(x,y) =


ui1(x,y) if [x,y]T ∈ D1

gij(x,y) if [x,y]T ∈ Γ
uj2(x,y)+ c if [x,y]T ∈ D2

(19.50)
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a

1
2

b

1
2

Figure 19.17: Needle map pair illustrating the surface normal pairs of a sphere
calculated in an albedo dependent 2S PSM. The straight-line segment drawn
in bold illustrates locations of unique solutions (set Γ ). The labels identify the
regions D1 of ui1 and D2 of uj2: a pair of positive solutions; b pair of negative
solutions.

and suppose that for each [x,y]T ∈ Γ the function vij is of class C2.
Then vij is a class C2 solution of Eq. (19.2) over Ω and in such a case

we say that the functions ui1 and uj2 bifurcate along Γ in the C2 class.
It is clear that, up to a constant, one can define in this way at most four
solutions of class C2 to Eq. (19.2) over Ω.

As an example, assume a synthetic sphere with a radius of 100 pix-
els and Lambertian reflectance maps having the illumination directions
p = [−0.3,−0.3,−1]T and q = [0.3,0.3,−1]T . Possible solutions of 2S
PSM are shown in Fig. 19.17. The set Γ is shown as a straight-line seg-
ment. In region D1 lying left of the straight-line segment the negative
solutions are the correct gradients, whereas in region D2 the positive
solutions correspond to the intended solution. The other solutions are
not integrable, respectively. Each of the two regions contains approx-
imately 12,000 image points. Thus, for the synthetic sphere we can
robustly distinguish between the integrable and the nonintegrable so-
lution.

For image pairs of more complex objects such as the synthetic Lam-
bertian Mozart statue that was already used in the previous section the
selection of the correct solution is more difficult. Illumination direc-
tions p and q having the spherical coordinates

σ(p) = σ(q) = 20°, θ(p) = −150° and θ(q) = −30°

were chosen to render the statue. The two irradiance images of the
Mozart statue are displayed in Fig. 19.13 (center b and right c picture).
For a discrete image a threshold has to be defined that indicates which
orientations are considered as belonging to the symmetry plane. A
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a b

Figure 19.18: a Labeled image of a synthetic Mozart statue. For the coding
of the four gray values refer to the text. The arrows indicate regions with
incorrectly selected surface normals; b 3-D plot of the recovered Mozart statue
where the Frankot-Chellappa algorithm was used for gradient map integration.

simple and useful criterion is to measure the angle that is subtended
by the symmetry plane and the examined orientation. If the angle is
smaller than a threshold, then the solution is classified as being unique.
A threshold of 10° was applied for the Mozart statue.

The left picture of Fig. 19.18 shows a labeled segmentation result.
In the black regions one of the two irradiances is zero so that no orien-
tation can be determined. The light-gray regions characterize locations
whose orientations were classified as belonging to the symmetry plane.
Dark-gray regions represent locations for which the integrability crite-
rion could be calculated. White regions indicate locations that were left
untouched because they are too close to the boundary, the irradiances
are too low, or the gradients are too steep.

A wrong selection of a positive or negative solution occurs in some
regions. The largest areas where the wrong solution was selected are
indicated by arrows. The right-hand picture of Fig. 19.18 shows the
recovered surface of the Mozart statue. Because for integration of the
surface the global Frankot-Chellappa method [26] and [4] was used, the
incorrectly recovered surface normals have only a minor effect on the
overall result. Visible errors occur at the chin where a double chin ap-
pears. The recovery result can be improved by adaptive segmentation.

The next result establishes necessary and sufficient conditions that
a bifurcation takes place (Kozera [7])

Theorem 19.7 Let p = [0,0,−1]T and let q = [q1, q2, q3]T be such that
q2

1 + q2
2 > 0 and ‖q‖ = 1. For a pair of C1 class functions E1 and E2

defining a system Eq. (19.2), suppose that the set {[x,y]T ∈ Ω : Λ = 0} is
a smooth curve Γ such thatΩ\Γ = D1∪D2, whereD1 andD2 are disjoint
open subsets of Ω. Assume that there exist two different solutions of
class C2 to Eq. (19.2) over D1 and two different solutions of class C2 to
Eq. (19.2) over D2, respectively. Let u be a solution over D1 and v be a
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solution over D2 such that

g(x,y) = lim[x′,y ′]T∈D1→[x,y]T∈Γ u(x
′, y ′)

= lim[x′,y ′]T∈D2→[x,y]T∈Γ (v(x
′, y ′)+ c)

for some choice of constant c. Assume, moreover, that the triplet of
functions [u,v,g]T defines in Eq. (19.50) a C1 class function z over Ω.
If q2

1 −q2
2 ≠ 0, then the function z is of class C2 over Ω if and only if, for

each [x,y]T ∈ Γ

lim(x′,y ′)∈D1→[x,y]T∈Γ uxx(x
′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vxx(x

′, y ′)
lim(x′,y ′)∈D1→[x,y]T∈Γ uyy(x

′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vyy(x
′, y ′)

If q2
1 −q2

2 = 0, then the function z is of class C2 over Ω if and only if, for
each [x,y]T ∈ Γ , either

lim(x′,y ′)∈D1→[x,y]T∈Γ uxx(x
′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vxx(x

′, y ′)
lim(x′,y ′)∈D1→[x,y]T∈Γ uxy(x

′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vxy(x
′, y ′)

or

lim(x′,y ′)∈D1→[x,y]T∈Γ uyy(x
′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vyy(x

′, y ′)
lim(x′,y ′)∈D1→[x,y]T∈Γ uxy(x

′, y ′) = lim(x′,y ′)∈D2→[x,y]T∈Γ vxy(x
′, y ′)

It should be emphasized that a similar result establishing sufficient
conditions for C1 class bifurcations can be derived. As shown in [7]
such bifurcations are generically feasible. Furthermore, it can also be
proved that, if there exist exactly two C2 class solutions to Eq. (19.2),
defined over D1 and D2, then only an even number of C2 class bifur-
cations is possible. This combined with the case of having exactly one
C2 solution over D1 and/or D2 permits having either zero, one, two,
or four C2 class solutions to Eq. (19.2), defined globally over Ω. Re-
call, however, that the existence of a unique solution of class C2, over
D1 and D2, is generically ensured (see the subsection covering the case
when Λ > 0). Therefore, a global generic uniqueness result for C2 class
functions, considered over Ω can also be ascertained.

An interested reader is referred to [28] for a more detailed discus-
sion of this case. We present now an example in which a different
number of C2/C1 class bifurcations appear in 2S PSM.

Example 19.3: One bifurcation—a generic case

Assume that p = [0,0,−1]T and q = [q1, q2, q3]T are linearly indepen-
dent and that ‖q‖ = 1. It is easy to show that for the corresponding
two images of a Lambertian hemisphere

uh(x,y) = −
√

1−x2 −y2
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the function Λ vanishes along Γ = {[x,y]T ∈ Ω : q2x − q1y = 0}.
Clearly, the curve Γ decomposes Ω into two disjoints subdomains D1

and D2, over which Λ is positive. As the condition Eq. (19.42) is not
satisfied by uh over both D1 and D2, Theorem 19.3 ensures that there
exists exactly one C2 class solution over each D1 and D2 that is uh.
Thus, there can be maximum one C2 class solution over Ω, subject to
the existence of a successful C2 class bifurcation along the curve Γ . As
the hemisphere uh constitutes a global C2 class solution over Ω, the
existence of at least one C2 class bifurcation is therefore ascertained.
Summing up, two images of a Lambertian hemisphere can be uniquely
interpreted within the set of C2 class functions.
Two bifurcations: Consider two image irradiance equations introduced
in Example 19.2. Let Ω be a simply connected set containing the
D1 = {[x,y]T ∈ Ω : x < y}, D2 = {[x,y]T ∈ Ω : x > y}, and
Γ = {[x,y]T ∈ Ω : x = y}. As mentioned before Λ vanishes along Γ
and, moreover, there exist exactly two C2 class solutions to Eq. (19.48),
over D1 and D2, defined as follows: u+(x,y) = xy and u−(x,y) =
(x2 + y2)/2. An easy inspection shows that only two C2 class bifur-
cations succeed. Namely, by using Eq. (19.50), u(x,y) = xy and
v(x,y) = (x2 + y2)/2 yield two C2 class functions defined glob-
ally over entire Ω. The remaining two other functions (introduced
in Eq. (19.50))

w(x,y) =


xy if [x,y]T ∈ D1

x2 if [x,y]T ∈ Γ
(x2 +y2)/2 if [x,y]T ∈ D2

z(x,y) =


(x2 +y2)/2 if [x,y]T ∈ D1

x2 if [x,y]T ∈ Γ
xy if [x,y]T ∈ D2

are not of class C2 along the line Γ . A simple verification shows,
however, that both functions w and z are still C1 class functions
over Γ . Hence there exist exactly two (four) C2 (C1) class solutions
to Eq. (19.48) considered over entire Ω.

Four bifurcations: Let p = [0,0,−1]T and q = [0,1/√2,−1/
√

2
]T

, and
let E1(x,y) = (1 + x8)−1/2 and E2(x,y) = (2(1 + x8))−1/2 be defined
over Ω = <2. A straightforward calculation shows that for the corre-
sponding two image irradiance equations a function Λ vanishes only
along the line x = 0, that is, over the y−axis. Moreover, there ex-
ist, over both D1 = {[x,y]T ∈ <2 : x > 0} and D2 = {[x,y]T ∈
<2 : x < 0}, exactly two C2 class solutions: u(x,y) = x5/5 and
v(x,y) = −x5/5. It is a matter of simple calculation to show that four
functions: v11, v12, v21, and v22 (defined with the aid of Eq. (19.50))
are of class C2 over Γ . Therefore, there exist exactly four C2 class so-
lutions over entire Ω. Note that, if Ω does not contain y−axis, then
there exist only two C2 class solutions to the corresponding 2S PSM
problem, namely, u and v , and in this case there is no possibility of
having bifurcations.
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It is evident now, that bifurcations can either reduce or increase the
number of global C2/C1 class solutions over the entire domainΩ. How-
ever, a reduction case, due to the condition Eq. (19.42), is generic. Note
finally, that if none of the integrability conditions is fulfilled or none
of the bifurcations succeeds, a pair of such spurious images cannot be
generated by a genuine Lambertian surface (see [7]).

19.4.2 Albedo-independent analysis

As discussed for Eq. (19.36), all gradients that are consistent with any
2S PSM irradiance pair can be calculated by using Eq. (19.36). If we look
at the corresponding points on the Gaussian sphere, then every pair of
positive irradiances restricts the orientations to a half of a great circle
because the latter is represented in the gradient space by a straight
line. In contrast to the gradient space the representation of orientations
using the Gaussian sphere is independent from the viewer direction
v. Therefore, the number of solutions reduces implicitly from a great
circle to a half of a great circle because only those orientations are
relevant.

The perimeter of the circles can be seen as a measure of the cardi-
nality of the orientations that are consistent with the irradiances. The
larger the irradiance value, the smaller the perimeter of the circle. The
irradiance E and the perimeter of the circle are related through the
equation

U = 2π
(

1−
(
E
E0ρ

)2
)

(19.51)

On the other hand, the perimeter of the circle of albedo-independent
2S methods remains always equal to 2π for all irradiance pairs and
therefore it is in general larger than the circles in SFS methods while
keeping the viewer direction and the restriction of the orientations by
the illumination directions in mind. Besides the surface orientation,
another unknown variable, the albedo ρ, exists for 2S methods. Neigh-
boring orientations on the surface are often linked together through
smoothness assumptions as discussed in Section 19.4.1. From a for-
mal point of view, such assumptions would also be sensible for the
albedo. But for real-world objects discontinuous albedo changes are
more likely. Usually, discontinuous albedo variations occur more often
than smooth color-value changes or gray-value changes.

Assume that a unique gradient map of a Lambertian surface has
to be recovered from a pair of irradiance images without knowing the
albedo value ρ. Assume that the two illumination directions s1 and s2

are known associated with the irradiance images.
Lee and Rosenfeld [31] propose a 3-D shape recovery method for

Lambertian surfaces that can be approximated locally by spheres. Un-



19.5 Theoretical framework for shape from shading 571

der the assumption of a locally spherical surface it can be shown that
the possible orientations can be restricted to a straight line in the gradi-
ent space for a given single image irradiance value E. This is even pos-
sible without knowledge of the E0ρ term. The restriction to a straight
line follows by using the irradiance changes for the considered image
point. It can be shown that this straight line can be represented by the
equation

Eyp − Exq = tan(σ(s))
(
cos(θ(s))Ey − sin(θ(s))Ex

)
(19.52)

As for linear reflectance maps two irradiances are sufficient to recover
the gradient [p,q]T = [ux,uy]T uniquely by intersecting two straight
lines for each image point. This solution is not only independent of the
albedo ρ, it can be calculated so that the solution becomes independent
of the absolute irradiances of the light sources, as well. In practice this
makes the determination of the illumination parameters easier. As a
conclusion the knowledge of the ratio E01/E02 of the irradiances values
is sufficient. For the numerical determination of the partial derivatives
of the image irradiance function E(x,y) it has to be assumed that the
albedo ρ does not change in the immediate neighborhood of an image
point.

19.5 Theoretical framework for shape from shading

Approaches in shading-based shape recovery transform measured irra-
diance values into data about surface functions u. These transforma-
tions are based on models about light sources, sensors, surface geom-
etry or surface reflectance. Within a given context the theoretical fun-
damentals are specified by problems as:

(i) existence of solutions u within a class of surface functions (as C1

or C2, or convex surfaces) and with respect to used models;

(ii) uniqueness of solutions u;

(iii) analytic or geometric relationships between several solutions (as
possible decompositions into “similar” components);

(iv) methods for calculating such solutions u;

(v) algorithms for implementing such methods; and

(vi) features of these algorithms as stability, domain of influence, or
convergence of iterative solutions towards the proper solution u.

So far, we reviewed results related to topics (i) ... (v) in this chapter.
As an illustration to results to topic (vi) we discuss briefly the con-

vergence of algorithms for linear SFS (see [32]).
We assume discrete irradiance values E (x,y) at exactly all grid

point positions within a rectangular domain Ω. The grid resolution
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is specified by a grid constant 2−r , for r = 0,1,2, ... and the resulting
grid points are called r -grid points. We assumeNr ×Nr r -grid points in
Ω, say, with Nr = 2r (N0+1)−1. These measured image irradiances are
assumed to correspond to reflectance properties of a projected object
surface satisfying a linear image irradiance equation

a∂u
∂x (

x,y)+ b ∂u∂y (x,y) = E (x,y) (19.53)

We assume an integrable function u on Ω and (a,b) 6= (0,0). The task
is to calculate a function u over Ω based on the available input set
of discrete irradiance values E(x,y) at r -grid points, and based on a
specified boundary condition, where u satisfies Eq. (19.53).

More precisely, we are interested in a numerical solution of the fol-
lowing Cauchy problem: If sgn(ab) ≥ 0 then

u(x,0) = f(x), for 0 ≤ x ≤ N0 + 1

is given as boundary condition, and if sgn(ab) < 0 then

u(x,N0 + 1) = f(x), for 0 ≤ x ≤ N0 + 1

is given. Furthermore, also

χ (0, y) = g (y) , for 0 ≤ y ≤ N0 + 1

is assumed to be known.
The functions f , g are integrable on [0,N0 + 1] and satisfy f (0)

= g (0) if sgn (ab) ≥ 0, or f (0) = g (N0 + 1) if sgn (ab) < 0. This
Cauchy problem is given in “digital form,” that is, only values at r -grid
point positions are given for functions p = ux , q = uy , E, f , and g.

A linear partial differential equation may be solved with the aid of
the finite difference method. Assuming normed function spaces on Ω
the sequence of r -grids allows us to define corresponding normed r -
grid spaces; see Kozera and Klette [32] for details. A finite difference
scheme (FDS) is defined for all r -grids, for r = 0,1,2, . . . , and basically
it characterizes an operator Rr mapping an unknown function defined
on Ω, as u in our case, into a function ur

Rr (u) = ur , with ur(i, j) ≈ u(i2−r , j2−r )

defined on r -grid points that is considered to be an approximation of
the unknown function.

For example, applying a (simple) forward difference approach to-
gether with Taylor’s expansion yields

∂u
∂x

∣∣∣∣(i,j)
r

= ur (i+ 1, j)−u(i, j)
2−r

+O (2−r )
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in the x-direction, and

∂u
∂y

∣∣∣∣(i,j)
r

= ur (i, j + 1)−u(i, j)
2−r

+O (2−r )

in the y-direction. A (simple) backward difference approach in x-direc-
tion is given by

∂u
∂x

∣∣∣∣(i,j)
r

= u(i, j)−u(i− 1, j)
2−r

+O (2−r )

just to mention a further example. The differences are normalized
by the distance 2−r between neighboring r -grid points, in x- or in y-
direction. Larger neighborhoods could be used for defining more com-
plex forward or backward approaches, and further approaches may
also be based on symmetric, or unbalanced neighborhoods of r -grid
points. Finally, a finite difference scheme is characterized by selecting
one approach for the x−, and another one for the y-direction.

The forward-forward FDS transforms the given differential equation
into

aur (i+ 1, j)−ur (i, j)
2−r

+ bur (i, j + 1)−ur (i, j)
2−r

+O (2−r ) = E (i2−r , j2−r )

and this equation may be simplified as

ũr (i, j + 1) =
(
1+ a

b

)
ũr (i, j)− a

b ũr (i+ 1, j)+ 2−r
b E (i2

−r , j2−r )

where ũr (i, j) is used as an approximation for function ur (i, j). The
backward-forward FDS leads to

ũr (i, j + 1) =
(
1− a

b

)
ũr (i, j)+ a

b ũr (i− 1, j)+ 2−r
b E (i2

−r , j2−r )

the forward-backward FDS leads to

ũr (i+ 1, j) =
(
1− b

a

)
ũr (i, j)+ b

aũr (i, j − 1)+ 2−r
a E (i2

−r , j2−r )

and the backward-backward FDS leads to

ũr (i, j) = 1
1+c ũr (i, j − 1)+ c

1+c ũr (i− 1, j)+ 2−r
b(1+c)E (i2

−r , j2−r )

where c = a
b 6= −1, and for c = −1 to

ũr (i− 1, j) = ũr (i, j − 1)+ 2−r
b E (i2

−r , j2−r )

These schemes are studied in Kozera and Klette [32].
A finite difference scheme is consistent with an initial boundary

value problem if the error of approximation in representing the orig-
inal problem converges to zero as 2−r → 0. The listed four schemes
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are consistent. A finite difference scheme is convergent to the solution
ur (if it exists) if the digitization error converges to zero as 2−r → 0.
A further notion of stability for linear difference schemes was defined
by Rjabenki and Filippov . A linear difference scheme is RF stable if the
operators {

R−1
r

}
r=0,1,2,...

are uniformly bounded as 2−r → 0. A consistent and RF stable finite
difference scheme is convergent to the solution of the given Cauchy
problem if such a solution exists.

For the convergence analysis of the given schemes let c = a/b as-
suming that b 6= 0, and d = b/a assuming that a 6= 0.

Theorem 19.8 [32] The forward-forward FDS is RF stable iff−1 ≤ c ≤ 0.
The backward-forward FDS is RF stable iff 0 ≤ c ≤ 1. The forward-
backward FDS is RF stable iff 0 ≤ d ≤ 1. The backward-backward FDS
is RF stable iff c ≥ 0 or c = −1.

Consequently, in these positive cases the sequences of functions

{ũr }r=0,1,2,...

are convergent to the solution of the specified Cauchy problem.

19.6 Shape from shading

The SFS problem is the hardest in the class of shading-based shape
recovery problems. The given information is a single image E and a
reflectance model [33, 34].

It was shown by [1] that the SFS problem for a Lambertian surface
with constant albedo corresponds to that of solving the following first-
order partial differential equation:

E(x,y) = p1ux +p2uy −p3√
p2

1 +p2
2 +p2

3

√
u2
x +u2

y + 1
(19.54)

defined over a domain Ω. We consider here the case when the albedo
is constant; see Eq. (19.54). Given 0 ≤ E(x,y) ≤ 1, the questions of the
existence and uniqueness of solutions to Eq. (19.54) arise naturally. Ex-
istence corresponds to the problem of whether a given shading pattern
with intensity between 0 and 1 is generated by a genuine Lambertian
surface. Uniqueness corresponds to that of whether a shading pattern
is due to one and only one Lambertian shape (given up to a constant).
We shall analyze in this section only the case when s = [0,0,−1]T . Then
one can rewrite Eq. (19.54) as the eikonal equation

u2
x +u2

y = E(x,y) (19.55)
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with E(x,y) = E(x,y)−2 − 1.
In this section we present first two different classes of images for

which there are no genuine shapes. In the second part of this section
we refer to the uniqueness problem for the eikonal equation Eq. (19.55).
Lastly, we briefly discuss a number of methods recovering the unknown
surface from its single image.

19.6.1 Images without solution

Let R be either a positive number or +∞. Let f be a nonnegative contin-
uous function on the interval [0, R) vanishing exactly at zero. Consider
Eq. (19.55) with

E(x,y) = f(
√
x2 +y2) (19.56)

given over D(R) = {[x,y]T ∈ <2 : x2 + y2 < R2}. With this special
form of image, the class of circularly symmetric solutions is of the
form ±U + k, where

U(x,y) =
∫√x2+y2

0

√
f(σ) dσ (19.57)

A condition on f guaranteeing that all solutions to the corresponding
eikonal equation are unbounded may readily be formulated. Clearly, in
the class of circularly symmetric solutions, this sufficient condition is∫ R

0

√
f(σ) dσ = +∞ (19.58)

It is less evident, though true, that the same condition is sufficient in
the general case. In fact, we have the following (see [35, 36]):

Theorem 19.9 Let f be a nonnegative continuous function on [0, R)
vanishing exactly at zero and satisfying Eq. (19.58). Then there is no
bounded C1 solution in D(R) to Eq. (19.55) with E given by E(x,y) =
f(
√
x2 +y2).

Interestingly, condition Eq. (19.58) is not only sufficient but also neces-
sary for the unboundedness of all solutions to the equation in question.
We have the following theorem (see [35, 36]):

Theorem 19.10 Let f be a nonnegative continuous function in [0, R)
vanishing exactly at zero and satisfying

∫ R
0

√
f(σ)dσ < +∞. Then every

solution in D(R) to Eq. (19.55) with E(x,y) = f(
√
x2 +y2) is bounded.
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Observe that whether the integral
∫ R
0

√
f(σ) dσ is finite or infinite de-

pends exclusively on the behavior of f near R. The integral will be
infinite if, for example, f(r) diverges to infinity sufficiently rapidly as
r tends to R. This means that, in the context of real images of Lamber-
tian surfaces illuminated by an overhead point light-source, a circularly
symmetric image cannot be derived from a genuine shape if it gets dark
too quickly as the image boundary is approached.

We now establish the existence of images E for which there is no
solution whatsoever to Eq. (19.55); see also [37, 38].

Theorem 19.11 Let Ω be a bounded open-connected subset of the <2

with boundary ∂Ω being a piecewiseC1 curve of length `∂Ω. Let [x0, y0]T

be a point in Ω and r be a positive number such that the closed disk
D̄(x0, y0, r ) of radius r centered at [x0, y0]T is contained in Ω. Sup-
pose E is a nonnegative continuous function on the closure of Ω, positive
in Ω, such that

4r
√
E1 > `∂Ω

√
E2 with

E1 =min{E(x,y) : [x,y]T ∈ D̄(x0, y0, r )}
E2 =max{E(x,y) : [x,y]T ∈ ∂Ω}

(19.59)

Then there is no C1 solution to Eq. (19.55) in Ω.

Note that the theorem is of local character: if Ω is a subset of a domain
∆ and E is a nonnegative function on ∆ whose restriction to Ω satisfies
Eq. (19.59) for some choice of D̄(x0, y0, r ) in Ω, then, obviously, there
is no C1 solution to Eq. (19.55) in ∆. Reformulated in terms of Lamber-
tian shading, this locality property can be expressed as saying that no
genuine image can admit too dark a spot on too bright a background,
assuming that the background does not contain a point having unit
brightness. The precise balance between the qualifications “too dark”
and “too bright” is, of course, given by condition Eq. (19.59).

19.6.2 Ambiguous shading patterns

The second part of this section refers to the uniqueness problem for the
eikonal equation Eq. (19.55). Uniqueness of this kind has been demon-
strated in the case where E(x,y) = (x2+y2)(1−x2−y2)−1. Deift and
Sylvester [39], proved that ±(1 − x2 − y2)1/2 + k are the only C2 so-
lutions to this equation over the unit disk D(1). All of these solutions
are hemispherical in shape. In an effort to obtain a more general result,
Bruss [40] asserted the following: if D(R) is the disk in the xy-plane
with radius R centered at the origin, and f is a continuous function on
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[0, R) of class C2 over (0, R) satisfying the following conditions:

(i) f(0) = 0 and f(r) > 0 for 0<r<R;
(ii) limr→0 f ′(r) = 0, limr→0 f ′′(r) exists and is positive; and
(iii) limr→R f(r) = +∞.

Then all solutions of class C2 to Eq. (19.55) in D(R) with

E(x,y) = f(
√
x2 +y2)

take the form

±
∫√x2+y2

0

√
f(σ)dσ + k (19.60)

and thus are circularly symmetric with common shape. It is possible
to show that Bruss’ claim is invalid (for the construction of the specific
counterexample, see [36, 37]). Similarly, in Kozera [41] it was recently
shown that Brooks’ uniqueness results [42, 43] concerning the images
of the Lambertian plane and hemisphere have been erroneously proved.
Some new uniqueness results have also been established in Oliensis
[44] and Rouy and Tourin [45]. It should be noted, however, that these
results introduce additional uniqueness enforcement conditions that
cannot be easily obtained as the initial data from a mere single image.

We shall present now a number of surface reconstruction algorithms
for a single-image shape recovery and will briefly discuss their intrinsic
limitations.

19.6.3 Method of characteristic strips

This method is based on the classical approach from the theory of the
first-order partial differential equations applied to the equation

F(x,y,u,p,q) = 0 (19.61)

where F(x,y,u,p,q) = p2 + q2 −E(x,y) over image Ω. This was first
introduced in the shape-from-shading literature by [1]. For a more de-
tailed theory discussing the general case of F involving n-independent
variables, an interested reader is referred to [30]. We shall briefly now
outline the basics of the method of characteristic strips in the context
of the shape-from-shading problem.

Given an initial curve γ ⊂ <2 in the image (image boundary) Ω and
surface height over γ, the unknown surface S(t, s) is generated along
the so-called base characteristics [x(t, s),y(t, s)]T expressed in a para-
metric form depending on (t, s)-variables (see the first two equations in
Eq. (19.62)). Here, variable s parameterizes initial curve γ and variable
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t parameterizes the evolution of the surface S(t, s) along base charac-
teristic direction (i. e., whenever s is fixed). In other words, the surface
S is swept out by the family of characteristics of the form

t → [x(t, s),y(t, s),u(t, s),p(t, s), q(t, s)]T

satisfying the corresponding system of five ordinary differential equa-
tions (called also characteristic equations)

xt(t, s) = 2p(t, s)
yt(t, s) = 2q(t, s)

ut(t, s) = 2E(x(t, s),y(t, s))
pt(t, s) = Ex(x(t, s),y(t, s))
qt(t, s) = Ey(x(t, s),y(t, s))

(19.62)

It is assumed here that the function u defined over generalized initial
curve γ̃ ∈ R5

x(0, s) = x0(s)
y(0, s) = y0(s)

u(0, s) = u0(s)
p(0, s) = p0(s)
q(0, s) = q0(s)

(19.63)

satisfies an eikonal equation and a chain-rule along γ̃

p2
0(s)+ q2

0(s) = E(x0(s),y0(s))
u̇0(s) = p0(s)ẋ0(s)+ q0(s)ẏ0(s)

(19.64)

and that the curve γ obeys the so-called noncharacteristic condition

ẋ0Fq − ẏ0Fp ≠ 0 (19.65)

for all [x0(s),y0(s)]T ∈ γ(s). The last condition excludes the case
when the initial curve γ coincides with the base characteristic direction.
In such a situation the solution would collapse to a single curve in <3.
Note also that, if p0(s0) and q0(s0) are a priori given, then by using
implicit function theorem and condition Eq. (19.65) one can find p0(s)
and q0(s), defined in some neighborhood of s0. Assuming that γ is
non-characteristic and that F and γ are of class C2, the following result
(due to Cauchy; see, for example, [30]) can be established:

Theorem 19.12 There exists, in some strip neighborhood of γ, exactly
one C1 solution [x(t, s),y(t, s),u(t, s),p(t, s), q(t, s)]T of the Cauchy
problem (Eq. (19.62) and Eq. (19.63)) such that

ũ(x(t, s),y(t, s)) = u(t(x,y)s(x,y))

defines a unique C2 solution to the problem (Eq. (19.61))
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With the aid of the foregoing theorem, one can transform a given first-
order partial differential equation into an equivalent system of five mu-
tually coupled ordinary differential equations. Such transformation, in
general, renders still a diffucult task for finding an exact analytic solu-
tion to a corresponding Cauchy problem, Eqs. (19.62) and (19.63). To
see it, note that the unknown functions appearing in left-hand sides
of Eq. (19.62), reappear also in the right-hand sides of the same sys-
tem in a nonlinear form. The alternative, is to resort, for example, to
the finite-difference approximations of the derivatives applied to the
left-hand sides of the system Eq. (19.62). Consequently, by using a
forward-difference derivative approximation, the following sequential
scheme can be derived:

x(tn+1, sk) = x(tn, sk)+ 2∆tp(tn, sk)
y(tn+1, sk) = y(tn, sk)+ 2∆tq(tn, sk)
u(tn+1, sk) = u(tn, sk)+ 2∆tE(x(tn, sk),y(tn, sk))
p(tn+1, sk) = p(tn, sk)+∆tEx(x(tn, sk),y(tn, sk))
q(tn+1, sk) = q(tn, sk)+∆tEy(x(tn, sk),y(tn, sk))

(19.66)

where each
[
tn, sk

]T
represents the corresponding point on the grid ex-

pressed in the [t, s]T coordinate system. It is clear that given Eq. (19.66)
and Dirichlet and Neumann boundary conditions Eq. (19.63) one can se-
quentially find a numerical solution to Eq. (19.62). The following con-
vergence and stability results for the forementioned numerical scheme
can be established (see, for example, Gear [46]):

Theorem 19.13 Assume that function E ∈ C2(Ω̄) is defined over com-
pact Ω̄. Then, if 0 ≤ t ≤ b, the numerical solution to Eq. (19.66) is con-
vergent to the solution [x(t, s),y(t, s),u(t, s),p(t, s), q(t, s)]T of the
Cauchy problem, Eqs. (19.62) and (19.63). Moreover, a corresponding
finite-difference Eq. (19.66) is stable with the stability upper-bound con-
stant equal to ebL, where

α1 = 2 sup[x,y]T∈Ω{|Ex(x,y)| + |Ey(x,y)|}
α2 = sup[x,y]T∈Ω{|Exx(x,y)| + |Eyx(x,y)|}
α3 = sup[x,y]T∈Ω{|Exy(x,y)| + |Eyy(x,y)|}

and constant L =max1≤i≤3{2, |αi|}.
The main problem with the method of characteristic strips stems from
the fact that the surface should not be reconstructed over [t, s]T coor-
dinate system but in the standard Cartesian [x,y]T coordinate system.
The corresponding transformation between two coordinate systems
usually changes the rectangular grid (expressed in [t, s]T variables) to
the curvilinear Cartesian grid. Hence, the coverage of the image domain
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by base characteristics [x(t, s),y(t, s)]T tends to be uneven, resulting
in an inhomogeneous density of the reconstructed surface. The next
problem is that the coverage of the image domain will only be extensive
if the initial curve and surface are appropriately chosen. Furthermore,
the method is not amenable to parallelism and should not be applied
in the neighborhood of the occluding boundary, where constant L = ∞.
Note, however, that for any fixed constant L, a strong stability condition
can be enforced by shrinking ∆t, respectively. The latter ensures that
the computed numerical solution to Eq. (19.66) is “close” to the ideal
solution to Eq. (19.66), and thus, by the last convergence result, “close”
to the solution of the Cauchy problem, Eqs. (19.62) and (19.63). Finally,
it should be pointed out that the method of characteristic strips re-
quires Dirichlet and Neumann boundary conditions, which, in the case
if not a priori given, might not be easily obtainable from a mere image
Ω.

We close this section with an example illustrating some difficul-
ties that might appear in solving the Cauchy problem, Eqs. (19.62) and
(19.63), analytically even in special simple cases of eikonal equation.

Example 19.4:

Consider the following eikonal equation

u2
x(x,y)+u2

y(x,y) = c (19.67)

where c > 0 is an arbitrary constant. With no extra boundary con-
ditions the problem is ill-posed as the family of functions v(x,y) =
ax + by , where a2 + b2 = c, constitutes different C2 class solutions
to Eq. (19.67). Let us now incorporate Dirichlet and Neumann bound-
ary conditions along the Y−axis: v(0,y) = b̄y , vx(0,y) = ā, and
vy(0,y) = b̄, where (ā, b̄) ≠ (0,0), ā ≠ 0, and ā2 + b̄2 = c. The corre-
sponding Cauchy problem, Eqs. (19.62) and (19.63) takes the following
form:

(a) xt(t, s) = 2p(t, s)
(b) yt(t, s) = 2q(t, s)

(c) ut(t, s) = 2c
(d) pt(t, s) = 0
(e) qt(t, s) = 0

(19.68)

with the corresponding boundary conditions defined as

(a) x(0, s) = 0
(b) y(0, s) = s

(c) u(0, s) = b̄s
(d) p(0, s) = ā
(e) q(0, s) = b̄

(19.69)

Note that the conditions from Eq. (19.64) are here clearly satisfied.
Furthermore, Eq. (19.68)(d, e) combined with Eq. (19.69)(d, e) yield
p(t, s) = ā and q(t, s) = b̄. By coupling Eq. (19.68)(a) and Eq. (19.69)(a)
together with Eq. (19.68)(b) and Eq. (19.69)(b)we obtain that x(t, s) =
2āt and y(t, s) = 2b̄t + s. Thus, t(x,y) = x/2ā and s(x,y) =
y−(b̄/ā)x. With the aid of Eq. (19.68)(c) and Eq. (19.69)(c) we arrive
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at u(t, s) = ct + b̄s. Putting t(x,y) and s(x,y) back into u(t, s),
and bearing in mind that c = ā2 + b̄2, we finally obtain u(t, s) =
ũ(x(t, s),y(t, s)) = āx + b̄y . Theorem 19.12 ensures also, that the
latter forms a uniqueC2 class solution to Cauchy problem, Eqs. (19.68)
and (19.69). A moment reflection reveals, however, that finding an ex-
act analytic solution for u2

x(x,y)+u2
y(x,y) = x2 +y2, by using the

method of characteristic strips, is much more complicated.

19.6.4 Method of equal-height contours

This method is a variant of the method of characteristic strips. Namely,
it is assumed here that γ(s) (where s ∈ (a,b)) is a smooth (piecewise-
smooth) equal-height contour contained in the image Ω (i. e., ũ(x,y) =
C over γ). By imposing such special Dirichlet boundary conditions it
is possible to determine the Neumann boundary conditions, up to two
pairs of gradients defined along curveγ. In case of equal-height contour
a corresponding solution ũ is generated along the evolution of equal-
height contours γt , for which γ0 = γ. In other words, the unknown
surface is swept out by

[
γt, ũ(γt)

]T
, where the family

γt(s) = {[x(t, s),y(t, s)]T : [s, t]T ∈ (a,b)× (c,d)}
of equal-height contours is generated by solving the following Cauchy
problem:

xt(t, s) = ± ys(t, s)√
E(x(t, s),y(t, s))(x2

s (t, s)+y2
s (t, s))

yt(t, s) = ∓ xs(t, s)√
E(x(t, s),y(t, s))(x2

s (t, s)+y2
s (t, s))

x(0, s) = x0(s)
y(0, s) = y0(s)

(19.70)

and γ0(s) = [x(0, s),y(0, s)]T is the initial equal-height contour. A
final solution ũ is given here by

ũ(x(t, s),y(t, s)) = u(t, s) = t + C (19.71)

where u(0, s) = C . The choice of appropriate pair of signs (+,−) or
(−,+) in Eq. (19.70), governs the direction of evolution of equal-height
contours (either outwards or inwards).

Note that, if we differentiate ũ(x(t, s),y(t, s)) = t over the param-
eter s, the chain rule yields p(t, s)xs(t, s) + q(t, s)ys(t, s) = 0. This
combined with the fact that p2(t, s) + q2(t, s) = E(x(t, s),y(t, s)) im-
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plies that

p(t, s) = ±ys(t, s)
√E(x(t, s),y(t, s))√

x2
s (t, s)+y2

s (t, s)

q(t, s) = ∓xs(t, s)
√E(x(t, s),y(t, s))√

x2
s (t, s)+y2

s (t, s)

(19.72)

In particular, for s = 0, there exist exactly two choices of Neumann
boundary conditions guaranteeing—in each case—the existence of a
unique C2 class solution to a corresponding Cauchy problem (see The-
orem 19.12). Indeed, let u be a C2 class solution to Eqs. (19.70) and
(19.71) with Dirichlet boundary condition set to u(γ) = C . An easy in-
spection shows that function v = −u+2C satisfies u2

x +u2
y = E(x,y),

Dirichlet boundary conditions v(γ) = C , and one of the Neumann
boundary conditions Eq. (19.72). Thus, we have an essential duality in
solving a Cauchy problem, Eqs. (19.70) and (19.71), which is ambiguous
up to a vertical shift and mirror-like reflection.

Note, that Eqs. (19.70) to (19.72) can be transformed into an equiv-
alent system of five characteristic strip equations:

xt(t, s) = p(t, s)
p2(t, s)+ q2(t, s)

yt(t, s) = q(t, s)
p2(t, s)+ q2(t, s)

ut(t, s) = 1

pt(t, s) = Ex(x(t, s),y(t, s))
2(p2(t, s)+ q2(t, s))

qt(t, s) = Ey(x(t, s),y(t, s))
2(p2(t, s)+ q2(t, s))

(19.73)

The last system differs from the system of characteristic strips by
the speed of evolution along the base characteristic direction. Thus,
both systems are equivalent and render the same solution. This vari-
ant of the method of characteristic strips was mentioned in shape-
from-shading literature by Bruckstein [47] and later re-introduced by
Kimmel and Bruckstein [48, 49]. For a more detailed mathematical
analysis of this method an interested reader is also referred here to
Osher [50], Sethian [51]. The corresponding discrete method of equal-
height contour evolution is analyzed in Osher and Sethian [52], Sethian
[53]. Recently, a fast marching level set method has been applied to
the eikonal equation over a rectangular grid [54]. An interested reader
is also referred to [32], where convergence, stability, and performance
of various finite-difference schemes (applied over a rectangular grid to
the linear shape from shading problem) have been discussed.
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Note finally, that the knowledge of the initial equal-height contour
(which is a clear drawback of this method), as opposed to the general
case of extracting general Dirichlet and Neumann boundary conditions
(necessary for applying a method of characteristic strips) can, in certain
cases, be obtainable. The latter happens, for example, if the surface is
positioned on the horizontal plane and disappears continuously from
the viewing direction.

We close this subsection with an example illustrating the equal-
height contour method.

Example 19.5:

Consider the eikonal equation introduced in Eq. (19.67). Let the initial
height contour γ0(s) be x(0, s) = s/a, y(0, s) = −s/b, along which
u(0, s) = 0, and ab ≠ 0. We search for ũ(x(t, s),y(t, s)) = u(t, s) = t,
where the pair [x(t, s),y(t, s)]T satisfies the following system:

xt(t, s) = −ys(t, s)√
c(x2

s (t, s)+y2
s (t, s))

yt(t, s) = xs(t, s)√
c(x2

s (t, s)+y2
s (t, s))

u(t, s) = t
x(0, s) = x0(s)
y(0, s) = y0(s)

(19.74)

In order to solve Eq. (19.74), pertinent Neumann boundary conditions
have to be incorporated. Choosing in Eq. (19.72) a pair (−,+) we ob-
tain:

p(t, s) = −ys(t, s)√c√
x2
s (t, s)+y2

s (t, s)
and q(t, s) = xs(t, s)

√
c√

x2
s (t, s)+y2

s (t, s)

Thus p(0, s) = a and q(0, s) = b along initial equal-height contour
γ0(s) and therefore the last two equations of Eq. (19.73) yieldsp(t, s) =
a and q(t, s) = b. This, together with the first two equations of
Eq. (19.73) yields x(t, s) = (a/c)t + s/a and y(t, s) = (b/c)t − s/b.
Hence, t(x,y) = ax + by . As ũ(x(t, s),y(t, s)) = u(t, s) = t we fi-
nally arrive at one of two C2 class solutions to Eq. (19.74). Choosing,
in turn, the second pair (+,−) in Eq. (19.72) we obtain the second C2

class solution ṽ(x̄(t, s), ȳ(t, s)) = −ax̄ − bȳ to Eq. (19.74).

19.6.5 Direct variational method

The methods of Ikeuchi and Horn [55], Horn [1] and Bruckstein [47]
rely in a crucial way on provision of prior information (Dirichlet or
Neumann boundary conditions). The amount of necessary information
usually exceeds the minimal amount of initial data required by vari-
ous theoretical uniqueness results. This is so because the algorithms
based on differential equations cannot proceed by starting from singu-
lar points (i.e., for the point for which E(x0, y0) = 0), which, as it turns
out, are important clues for the shape recovery process.
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a
b

Figure 19.19: Reconstruction result of the synthetic Mozart statue by using the
method by Ikeuchi and Horn [55], using a weighting factor equal to 1.0 and
300 iterations: a needle map visualization of the reconstructed gradient field; b
3-D plot of the recovered Mozart statue where the Frankot-Chellappa algorithm
was used for gradient map integration.

An iterative SFS method with functional minimization developed by
Ikeuchi and Horn [55] is discussed in Klette et al. [4]. The method has
one parameter (a weighting factor). To compare the performance with
previous results shown for the synthetic Mozart statue an example is
shown in Fig. 19.19 for 300 iterations.

In this section we only outline a direct variational method by ana-
lyzing the simplest case. For a more general case see [56]. We assume
here that a domain Ω has exactly one singular point S0 = [x0, y0]T . A
direct variational method discussed in [56] is based on the following
crucial result.

Theorem 19.14 If a function u satisfies an eikonal equation Eq. (19.55)
over a domain Ω, and X and Y are points in Ω that can be joined by the
base characteristic curve wholly contained in Ω, then the relative depth
|u(X)−u(Y)| between points of the graph of u is given by

|u(X)−u(Y)| =min
γ

∫
γ

√
Edl (19.75)

where the minimum is taken over all piecewise-smooth curves γ in Ω
joining X and Y , and the integration is meant with respect to standard
measure.

The proof of Theorem 19.14 reveals that a minimal value of Eq. (19.75)
is attained along the base characteristic direction (i.e., along gradient
direction). It can be shown that for the convex (concave) Lambertian sur-
face the corresponding image has exactly one singular point S0 (where
ux(S0) = uy(S0) = 0) and that each point of the image X ∈ Ω can
be joined by the base characteristic curve with S0. Consequently, the
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previous theorem yields

u(X) = u(S0)−min
γ

∫
γ

√
Edl and u(X) = u(S0)+min

γ

∫
γ

√
Edl
(19.76)

whenever the surface is convex/concave. Note that, for the saddle-like
function u(x,y) = xy the base characteristic pattern (which in case of
arbitrary eikonal equation coincides with the gradient direction) does
not have the forementioned property. Consequently, the method pre-
sented here can only be applicable to the convex (concave) surfaces. In
an effort of extending this result for an image containing more than
one singular point a generalization of the notion of the convex (con-
cave) surface is necessary. It is useful at this stage to consider those
smooth surfaces having base characteristic curves pointing outward (or
inward) at the periphery of the domain. They are called convex skirt sur-
faces (see [56] or [44]). In addition, it is assumed that the convex skirt
function, in the neighborhood of the singular point S0, has a nonvan-
ishing Hessian. By using index theory (see [56]) it can be shown that the
number of singular points has to be odd. Moreover, if N+ denotes the
number of concave singular surface points, N− denotes the number of
convex singular surface points, and N± denotes the number of saddle
singular surface points, then it can be shown that any convex skirt sur-
face with nonvanishing Hessian has to satisfy the following condition
N++N−−N± = 1. The latter imposes a clear constraint on the number of
possible solutions. For n = 1, we have only two possible cases: N+ = 1
together with its mirror-like reflectionN− = 1. For the case when n = 3,
there are four possible solutions. An interested reader is referred here
to [56], where a method of finding a convex skirt solution (generaliz-
ing Theorem 19.14) together with explicit shape recovery algorithm is
presented. A similar topic is also discussed by [57].

Finally, we point out that in order to derive a computational scheme
for Eq. (19.76) Dijkstra’s greedy algorithm for finding the shortest path
from the single source to any other node on a weighted graph can be
used [58]. The source here, will be a singular point S0, the nodes of
the graph coincide with the rectangular grid points and the edges are
the straight lines joining the eight neighboring points with any point
at the grid. Assuming that the grid increment is h, the corresponding
weight function ω([xi,yj]T , [xk,yl]T ) assigned to each existing edge
([(xi,yj]T , [xk,yl]T ) can be defined as

ω =


h
2
(
√
E(xi,yj)+

√
E(xk,yl)), if |k− i| + |l− j| = 1

h√
2
(
√
E(xi,yj)+

√
E(xk,yl)), if |k− i| + |l− j| = 2

(19.77)
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For more detailed analysis concerning numerical schemes for Eq. (19.76)
an interested reader is referred to [56] and [58].

The use of the forementioned optimization method reduces the
number of initial information necessary to ascertain well-posedness
of a given shape-from-shading problem (e.g., no boundary conditions
are here requested). Similarly to the case of photometric stereo, the
unknown function u is found, up to an arbitrary constant. In addition,
the computational scheme for Eq. (19.76) can be derived over a fixed
rectangular grid. The major disadvantage stems, however, from the
necessity of tightening the original class of C1 class surfaces to con-
vex/concave skirt C1 class surfaces. Such a restriction appears neither
in photometric stereo nor in other single image shape reconstruction
algorithms. The latter is, however, achieved by imposing additional
constraints such as multiple illuminations or accessibility of boundary
conditions.

19.7 Concluding remarks

Shape from shading methods require a strong restriction of the object
surfaces because the problem to recover a surface from a single image
is extremely underdetermined. Therefore, SFS is an ill-posed problem.
Assumptions on the surface properties support finding a unique solu-
tion to a certain extent. But with every additional restriction the prac-
tical use of such methods declines as well. Very critical simplifications
are the following three assumptions:

(i) The term E0ρ is known and constant;

(ii) The surfaces are at least C1-continuous; and

(iii) 3-D coordinates of singular points and/or singular orientations are
known.

This chapter informed about 2S and 3S PSM techniques that allow re-
fraining from assumptions (i) and (iii). Assumption (ii) is also related to
the discrete integration problem as briefly discussed in Section 19.2.3.
Photometric stereo methods can be improved further by using colored
light sources [5, 6], or by integration of shadow information [9, 59].

This chapter also informed about theoretical work, and here we can
state a situation where SFS or albedo-dependent 2S PSM are analyzed
in greater detail as 3S PSM so far. However, there exist more contribu-
tions to fundamentals of 3S PSM as cited in this chapter. In comparison
to different shape recovery techniques, as, for example, stereo image
analysis (see Chapters 17 and 18), based on structured lighting [4], on
focus (see Chapter 20), or on motion and occluding boundaries (see, for
example, [4]), shading-based shape recovery has special benefits as, for
example, the use of inexpensive equipment, reconstruction of smooth
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surfaces, and no use of dangerous radiation. It offers reasonable accu-
racy and time-efficient reconstructions for selected applications.
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3-D object
imaging
optics

2-D image

Figure 20.1: Loss of depth information caused by the projection of a 3-D scene
onto a 2-D image.

20.1 Introduction

Image acquisition always contracts the 3-D information of the scene to
2-D information of the image due to the projection on the 2-D image
plane. Therefore the reconstruction of the depth information from 2-D
images is a fundamental problem in computer vision applications.

Many different approaches to the problem are known, including
stereo (Dhond and Aggarwal [1], Chapters 17 and 18) or its generaliza-
tion to multiview imaging, shape from shading and photogrammetric
stereo (Chapter 19, shape from motion, texture analysis and depth from
focus.

Depth from focus addresses the reconstruction of the depth infor-
mation by using the fact that images usually contain blur. A typical
situation is well known from photographs taken with the lens focused
to a close distance. While the foreground is well focused, objects in
the background appear blurred. In general, the blur increases with
increasing distance from the location of focus. In this sense the depth-
from-focus technique can be classified as a triangulation technique
(Volume 1, Section 18.4).

The basic idea of depth from focus is to correlate the grade of the
blurring with the distance of the objects and therefore estimate their
3-D positions from the defocus. Unfortunately, defocus is not the only
source of blur, but can also be feigned by smooth brightness changes in
the scene. Therefore, depth-from-focus either requires multiple views
of the same scene in order to distinguish defocus from blur, or mak-
ing use of known properties of the scene and the lens setup. Both
approaches lead to different realizations of depth recovery and will be
discussed later in this chapter.
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20.2 Basic concepts

20.2.1 Defocused imaging

Defocused imaging has been discussed in detail in Volume 1, Chapter 4.
Therefore, only a brief overview is given here in order to summarize the
most important terms and definitions.

Depth of field. A paraxial lens of focal length f focuses all rays emerg-
ing from a point P onto its corresponding point P ′ in image space ac-
cording to the basic lens equation

1
f
= 1
d0
+ 1
di

(20.1)

Therefore only objects located at a given distance d0 are imaged well
focused onto the image plane at the fixed position di, whereas objects
at other distances d′0 appear blurred. The distance range in which the
blur does not exceed a certain value is called the depth of field. A good
value to characterize the depth of field is f-number f/2R, which gives
the ratio of the focal length to the diameter of the lens. As a zero-order
approximation, blurring is described by the radius ε of the blur circle
for an object point at d′0 = d0+∆d0, which is controlled by the ratio of
the image distances

ε
R
= di
d′i
− 1 = di ∆d0

d0d′0
(20.2)

The depth of field is now determined by the choice of a maximal radius
of the blur circle, the so-called circle of confusion. If εc denotes the
circle of confusion, the depth of field can be expressed in terms of
the magnification M = di/d0, the f-number O = f/2R, and the object
distances

∆d0 = 2O
Mf

d′0εc =
d0

Mf
2Oεc − 1

(20.3)

In Eqs. (20.2) and (20.3) we combined the two distinct cases of ∆d0

being positive or negative by understanding ε as having the same sign
as ∆d0. Distinguishing between positive and negative signs shows the
inherent asymmetry for the depth of field, caused by the nonlinearity
of Eq. (20.1)

|∆d0| = 2O
Mf

d′0|εc| =
d0

1∓ Mf
2Oεc

(20.4)

Therefore it is a common practice to assume MR � εc , leading to the
approximation of d′0 ≈ d0 in Eq. (20.3) and removing the asymmetry.
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Depth of focus. Moving the image plane instead of the object plane
also causes a defocused image. Equivalent to the depth of field in ob-
ject space the term depth of focus in image space denotes the maximal
dislocation of the image plane with respect to a given circle of confu-
sion. Again, with the approximation of the circle of confusion being
small compared to the lens radius, the depth of focus is given by

∆di = 2O
f
diεc (20.5)

The relation between depth of focus and depth of field is given by the
longitudinal magnification M2

∆d0 =M2∆di (20.6)

Point spread function of optical systems. The point spread function
is one of the central terms in depth-from-focus, because it describes the
effect of image blur in a quantitative way. The image of an object is the
superposition of the images of all object points. An ideal, aberration-
free optics would image every object point onto its conjugate point
in the image plane. In the case of defocus the rays emerging from
the object point no longer meet at the image plane, but at the plane
conjugate to the actual object plane. The image of the object point is
therefore an intensity distribution at the image plane, which is is called
the point spread function (PSF) of the lens. Under certain assumptions,
which are described in detail in Volume 1, Section 4.7, the effect of
blurring can be described as a convolution of the well-focused image,
as it would be achieved by a pinhole camera, with the PSF

g(x′) =
∫
f(x(~ξ′))PSF(~ξ′ −x′)d2ξ′ = f(x(x′))∗ PSF(x′) (20.7)

In many cases, we can assume that the shape of the PSF remains
unchanged for every object point, independent of its distance from the
plane of best focus. Then, the PSF can be described by a shape function
S and a scaling factor σ , which varies with the distance g′

PSFZ(x) =
S
(

x
σ(Z)

)
∫
S
(

x
σ(Z)

)
d2x

(20.8)

The denominator normalizes the PSF to
∫

PSFZ(x)d2x = 1, forcing
gray-value preservation. In many cases it is sufficient to replace σ by
the radius of the blur circle ε. The shape function can be completely
different for different optical setups. Nevertheless, only a few shape
functions are sufficient in order to describe the main properties of stan-
dard optics. These are:
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• circular box function This PSF is used for optical systems with cir-
cular aperture stop, which are not dominated by wave optics;

• noncircular box function This PSF is used for optical systems with
noncircular aperture stop, which are not dominated by wave optics;

• Gaussian Widely used in order to describe the PSF; and

• Airy disk Used for optical systems that are dominated by wave op-
tics, with coherent and monochromatic illumination, mainly micro-
scopic systems

The details of the various point spread functions can be found in
Volume 1, Section 4.7.1

20.2.2 Defocus in the Fourier domain

In Fourier space, the convolution turns into a multiplication of the
Fourier transform of the object function with the Fourier transform
of the PSF. The latter is called the optical transfer function (OTF). Its
values give the transfer coefficient for spatial structures of different
wavelength through the optical system. A value of zero indicates that
this particular wavelength cannot be seen by the optics. A typical OTF
will act as a low-pass filter, eliminating higher spatial frequencies, that
is, high resolution details.

20.3 Principles of depth-from-focus algorithms

As Eq. (4.46) shows, defocus appears as multiplication in Fourier space.
Because of its commutativity, there is no distinction between the PSF
and the object function. This has serious implications for depth-from-
focus algorithms, because it means that the gray-value structure de-
pends on both object properties as well as the PSF. A smooth gray-value
transition may arise from either a massive defocus or merely reflects a
non-uniform object surface. On the other hand, depth estimation from
defocus requires the effect of blur caused by the PSF to be separated
from other sources. Two different approaches to solve this problem
are possible:

Multiple-view approaches. Using multiple cameras viewing the same
scene with different focal or aperture settings results in a set of images
with the same object function, but taken with different PSFs. Separa-
tion of the object properties from the PSF effects becomes possible. A
variety of realization of these approaches is possible:

• Focus series A series of images is taken with a single camera while
varying the focusing of the lens. Within the focus series, at each
image point the image with the maximum sharpness is selected from
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the series, resulting in a depth map. Of course, this is only possible
with static objects that are not moving during the image acquisition.

• Dual focus view Using two cameras with different object planes
results in two images taken with different PSFs for every plane in
between the two object planes. Only at the very center do the two
PSFs become identical, thus leading to the same images at this po-
sition. Using cameras with different optics, for example different
focal length, eliminates this problem.

• Multiple aperture view Instead of using different focusing, two or
more cameras can be focused at the same object while having dif-
ferent f-numbers, resulting in different blurring. As a special case,
consider a combination of a pinhole camera with a camera of finite
aperture. The image from the pinhole camera shows no blurring,
thus giving the object function. With this information, the influence
of the PSF can be calculated from the other image.

Single-view approaches. Solving the depth-from-focus problem by
using a single image instead of multiple views allows the observation
of fast moving objects with little effort. To discriminate object function
and PSF, a priori knowledge about the object function and the PSF is
necessary. This class of algorithms therefore requires either the objects
to be restricted to known shapes or the selection of regions, wherein
the object features are known, for example, step edges or point objects.

Ambiguity of depth estimation. It is important to notice that there
may be an ambiguity in depth estimation by depth from focus, due to
the fact that the size of the PSF has its minimum at the plane of best
focus, increasing in both directions: towards and farther away from the
camera position. If no special arrangements are made, this results in an
ambiguity of the depth estimation, because two positions of the object
are possible and cannot be distinguished. This has to be taken into
account especially with single-view methods, but also with multiple-
view methods because there is only a certain distance range in which
no ambiguity occurs.

20.4 Multiple-view depth-from-focus

Multiple-view approaches use sets of views of the same scene, taken
with different camera settings, and mainly with different focusing. Con-
sidering the changing camera parameter as an additional dimension of
the image data, they start with an already 3-D data set. These data are
transformed in order to achieve the desired depth information. These
approaches are used most commonly with focus series.
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Figure 20.2: Focus series of a machine screw used for depth recovery.

20.4.1 Introduction to focus series

Focus series are a common approach for the investigation of motionless
objects, and are often used in microscopy. The focus of a single camera
is changed to a number of settings, resulting in a series of images taken
with different planes of best focus (Fig. 20.2). The depth value of each
pixel can be found directly from selecting the image showing the less
blur from the series. This is done be calculating a sharpness measure
on each image of the stack, and then for each pixel or small region of
the image, finding the maximum of the sharpness measure along the
depth axis. Unfortunately, usually the number of images is limited,
resulting in a poor depth resolution. Interpolation of the sharpness
measure between the images is therefore required in order to increase
depth resolution.

The quality of the depth map is mainly given by the method used to
located the image of best focus within the series, and the interpolation
that is done in between these images.

20.4.2 Sharpness measure

As pointed out in Volume 1, Section 4.7.1, defocus causes suppression
of higher spatial frequencies in the power spectrum of the image. Any
filter sensitive to high spatial frequencies in a local neighborhood is
therefore suitable as a sharpness filter. Obviously, a large variety of
such filters exists, but most of the filters belong to the two main classes
of contrast operators or bandpass filters. In the following, an example
of each filter class is given.
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Figure 20.3: Focus series of a metric screw taken with a telecentric optics with
an object to image ratio of 20.

Contrast filter. Contrast filters allow a fast implementation of the
sharpness measure. They measure the range of gray values available
in a neighborhood N of the pixel. Because the lack of high spatial fre-
quencies results in slower gray-value changes, the local contrast also
decreases with increasing defocus. As contrast detector, either the lo-
cal contrast operator

Cl(x) =max
x′∈N

g(x′)−min
x′∈N

g(x′) (20.9)

or the normalized contrast

Cn(x) =
max
x′∈N

g(x′)−min
x′∈N

g(x′)

max
x′∈N

g(x′)+min
x′∈N

g(x′)
(20.10)

can be used. These filters are very sensitive to contrast changes, but
also sensitive to isolated noise pixels. They can be improved by replac-
ing the minimum and maximum operator by rank filters, for example,
p-quantile filters. The p-quantile Q(p) value in an neighborhood N is
defined as the gray value at which the pth fraction of all gray values
in N are below Q(p) and the 1 − pth fraction of gray values is above
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a b

Figure 20.4: a Depth map of a machine screw calculated by the variance
method; b overall sharp image calculated from the original images using the
depth map.

Q(p). This can be expressed by the local gray-value histogram H(g) of
the neighborhood N as

Q(p) = F−1(p) with F(g) =
g∑
−∞
H(g) (20.11)

F(g) is the cumulative distribution function (CDF) [2] of the gray-value
distribution.

As a contrast filter, it is used with a value of p < 0.5 in the following
manner as a local p-quantile filter:

Cp(x) =Q(1−p,Vx)−Q(p,Vx) (20.12)

or as the corresponding normalized filter

Cp(x) = Q(1−p,Vx)−Q(p,Vx)Q(1−p,Vx)+Q(p,Vx) (20.13)

As the p-quantile is a generalization of minimum and maximum
operators, the local contrast operator Eq. (20.9) is the p-quantile of
p = 0. In order to achieve high processing speed, a variance-based
method has been implemented by one of the authors. The results of
this method, applied to a focus series of a screw (Fig. 20.3) are shown
in Fig. 20.4a. To give a first estimate of the position, for each region of
16×16 pixel the image with the highest local contrast has been chosen.
In addition, an overall sharp image is calculated by selecting each pixel
from the image previously found to have the highest contrast at this
position (see Fig. 20.4b).
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Bandpass filter. In order to find image regions containing high spa-
tial frequencies, high-pass and bandpass filters can be used. Although
the high-pass filters seem to be optimal in selecting high frequencies,
they tend to fail due to their noise sensitivity. Therefore they are com-
bined with a low-pass filter, which cuts the wavelength above the cut
wavelength of the high-pass filter to form a bandpass. Bandpass filters
select a range of spatial frequencies from the Fourier transform of the
image. The center wave number and width of the filter can be optimized
to meet the requirements of the image material. A bandpass filter can
easily be constructed from the difference of two Gaussian filters, as the
well-known Difference of Gaussian (DoG) filter

DoGσ1,σ2(x) =
1√

2πσ1
e
− x2

2σ1
2 − 1√

2πσ2
e
− x2

2σ2
2 (20.14)

As an effective implementation, pyramid decompositions of the im-
ages can preferably be used. Darell and Wohn [3] report an algorithm
using first a bandpass decomposition of the image by a Laplacian pyra-
mid, adequate for DoG filtering. In order to average the results over
a larger area, a Gaussian pyramid is constructed on each level of the
Laplacian pyramid, resulting in a dual pyramid structure Ik,l

Ik,l = EG(k)L(l)I (20.15)

where I is the image, G(k) is the operator for the kth level of the Gaus-
sian pyramid, L(l) is the operator for the lth level of the Laplacian pyra-
mid, and E is the expansion operator suitable to interpolate the sub-
sampled image back to the original image size. This is used as the final
sharpness measure. Figure 20.5 shows the results of calculating the
depth from the depth series in Fig. 20.3 using different levels for both
the Gaussian as the Laplacian pyramid. For these images, the combina-
tion of the 0-th level of the Laplacian pyramid with the second level of
the Gaussian pyramid selects the optima wave-number range.

20.4.3 Three-dimensional reconstruction

So far, all methods result in a depth map, giving a distance value for
each pixel in the image, also called a 2.5D reconstruction. Therefore,
only opaque surfaces can be surveyed with this method, as they appear
in many technical applications. However, microscopic imaging typically
deals with transparent or semitransparent objects. The question arises
whether it is possible to perform a fully 3-D reconstruction of the object
from depth series. This can be done by deconvolving the image stack
with the inverse of the 3-D point spread function of the microscope.
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Figure 20.5: Depth map calculated from different combinations of levels of
the Laplacian and Gaussian pyramid. The best results are obtained from the
combination of the 0-th level of the Laplacian pyramid with the first and second
level of the Gaussian pyramid.

20.5 Dual-view depth-from-focus

The basic idea of dual-view depth-from-focus techniques is to take two
images of the same scene, but with different parameters of the optical
setup to realize different point spread functions. To ensure that the
image pair is taken at the same time, beamsplitters and folding mirrors
are used as illustrated in Fig. 20.6.

20.5.1 Dual aperture

In order to achieve a depth estimate at a position x0, a region centered
at this point is considered. The choice of the size of this region deter-
mines the spatial resolution of the depth map. Pentland [4] developed a
method based on the assumption of a Gaussian point spread function,
which will be summarized here. Denoting the two images by gi, the
object function by Oi, and the variances of the two Gaussian PSFs by
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Figure 20.6: Optical setup for a dual aperture camera system. One beamsplit-
ter and a folding mirror are necessary to simultaneously acquire two images
with different aperture of the same object.

σi, the relation of the two images is given by

g1(x)
g2(x)

= O1(x)∗Gσ1(x)
O2(x)∗Gσ2(x)

(20.16)

It is important to note that there is no matching problem, because
the two camera setups are identical except for the f-number. Therefore
the object functions are identical. In Fourier space, the convolution
turns into a multiplication. By dividing the Fourier transforms instead
of the images, the result becomes independent of the object functions

ĝ1(k)
ĝ2(k)

= Ô(k)Ĝσ1(k)
Ô(k)Ĝσ1(k)

= σ
2
2Gσ ′1(k)
σ 2

1Gσ ′1(k)
with σ ′i =

1
σi

(20.17)

or

ĝ1(k)
ĝ2(k)

= σ
2
2

σ 2
1

e−
k2
2 (σ

2
1−σ2

2 ) ∼ Gσ(k) with σ = 1
σ 2

1 −σ 2
2

(20.18)

The ratio of the Fourier transforms of the two images therefore is a
Gaussian with variance σ , which can be estimated with standard algo-
rithms. From Eq. (20.2) the depth d′0 is known to be

ε
R
= di
d0
− di
d′0
⇒ d′0 =

dif
di − f − 2Oε

(20.19)

Pentland [4] uses ε as a direct estimate for σ . If only two cameras
are used, one has to be a pinhole camera in order to fixσ1 to zero. Using
three or more cameras with finite aperture results in a set of estimates
of the differences of the σ -values

Sij = σ 2
i −σ 2

j (20.20)

and therefore allows for the solution of Eq. (20.19).
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Figure 20.7: Illustration of the convolution ratio of the two PSFs h1 and h2.

20.5.2 Dual aperture and focus

In fact, is possible to reconstruct depth information from only two cam-
eras without the limitations to pinhole setups. Assuming again identi-
cal optics but for the aperture settings of the both cameras, two images
are taken from the same scene O by the convolution with two different,
now arbitrarily shaped point spread functions h1 and h2

g1(x) = O(x)∗h1(x), g2(x) = O(x)∗h2(x) (20.21)

Convolution ratio. As introduced by Ens and Lawrence [5], the convo-
lution ratio h3 of two defocus operators is defined as the convolution
kernel that transforms the low aperture (and therefore less blurred)
image g1 into the high aperture image g2, as indicated in Fig. 20.7

g2(x) = g1(x)∗h3(x) (20.22)

Now, g2 can be expressed either in terms of h2 or h1 and h3

g2(x) = O(x)∗h1(x)∗h3(x) = O(x)∗h2(x) (20.23)

which is equivalent to

h1(x)∗h3(x) = h2(x) (20.24)

Depth recovery now requires two separate steps. First, the convolu-
tion ratio has to be computed from the image pair. Second, it has to be
correlated with the true depth information. Ens and Lawrence [6] give
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a method based on inverse filtering to compute the convolution ratio.
The windowed Fourier transform of the two images is given by

gi(x)wi(x) = (O(x)∗h1(x))wi(x) space domain

ĝi(k)∗ ŵi(k) = (Ô(k)ĥ1(k))∗ ŵi(k) Fourier domain
(20.25)

with the window functions wi(x). Windowing is necessary in order to
calculate spatial resolved depth maps instead of a global depth estimate
for the complete scene.

To isolate the convolution ratio, the ratio of the two Fourier trans-
forms is taken

ĝ2(k)∗ ŵ2(k)
ĝ1(k)∗ ŵ1(k)

= (Ô(k)ĥ2(k))∗ ŵ2(k)
(Ô(k)ĥ1(k))∗ ŵ1(k)

(20.26)

Selection of the size of the window. The convolution ratio can be
computed by means of Fourier transformation

h3(x) = FT −1

[
ŵ2(k)∗ ĥ2(k)
ŵ1(k)∗ ĥ1(k)

]
(20.27)

The size of the window function is critical for the quality of the
depth estimation, because larger sizes of the window improve the Fourier
transformations, but, on the other hand, decrease the resolution of the
depth maps. In addition, if the size of the window is large, only slow
depth transitions can be detected. In the 1-D case, Ens and Lawrence [6]
compute the correlation of accuracy and window size with a numerical
simulation.

Window size Error

4 66 %
8 24 %
16 6 %
32 1 %

For this calculation, a step edge sceneO = {...,0,0,1,1, ....} has been
used with a defocus operator of a pinhole camera h1 = {0,1,0} and a
defocus operator h2 = {1,1,1}. Using a Gaussian window function, it
can be seen that the error decreases as the size of the window function
increases. To achieve smaller error, the window size has to be one order
of magnitude larger than the PSF. If the size of w is small in order
to guarantee a good spatial resolution of the depth map, its Fourier
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transform ŵ can assumed to be constant, thus Eq. (20.27) turns into
the simpler representation

h3(x) = FT −1

[
ĥ2(k)
ĥ1(k)

]
(20.28)

A common problem with inverse filtering are zero crossings of the
Fourier transform, because these wave numbers cannot be reconstructed.
The image functions gi = O∗hi have two kinds of zero crossings. The
zero crossings of the object function O occur in both image functions,
while the zero crossings of the defocus operators h1 and h2 differ. Un-
fortunately, the convolution of Ô with the Fourier transforms ĥi can
change the location of the zero crossings. The next sections introduce
several algorithms suitable to solve the problems associated with zero
crossing shifts.

Constraint inverse filtering. By using regularization, the problems
with inverse filtering can be reduced. Therefore, the inverse filtering
can be constrained by least squares fitting ĥ3(k) to a model. In this
approach a quadratic model (ĥ3(k) = ak2 + b) is used, because it has
been shown that the characteristic part of ĥ3(x) is a quadratic-type
shape. Equation (20.28) can be written as

ĥ1(k)ĥ3(k)− ĥ2(k) = 0 (20.29)

With H1 is a matrix with ĥ1(k) stacked along its diagonal and h2,3

stacked vectors formed from ĥ2,3(k); Eq. (20.29) can be denoted in
matrix notation

H1h3 −h2 = 0 (20.30)

The regularized form of Eq. (20.30) minimized the functional

‖H1 ·h3 −h2‖2 + λ‖Ch3‖2 =min (20.31)

where

• λ is a scalar parameter, which adjusts between fitting h3 more to
the data or to the quadratic shape; and

• C is a matrix that minimizes the second term if h3 has quadratic
shape.

To get the solution for this minimization problem and derive the best-
fitted h3, the Euler equation (Bertero and Poggio [7]) for Eq. (20.31) is
solved for h3

HT1H1h3 −HT1h2 + λCTCh3 = 0 �

h3 =
(
HT1H1 + λCTC

)−1
HT1h2

(20.32)
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From this the parameter to the best-fitted quadratic can be derived.
By comparing the zero crossing of the quadratic and of the theoretically
derived ĥ3, that is, the Airy function mentioned in Section 20.2.1, the
depth can be calculated.

Matrix methods. A different approach is the matrix-based method,
which was introduced by Ens and Lawrence [6]. This method character-
izes the depth-from-focus problem as a system of linear equations. To
write the convolution from Eq. (20.22) as matrix-vector multiplication,
a special matrix type will be required. First, the 1-D case will be dis-
cussed, therefore it is assumed that g1, g2 are 1 × (m +n − 1) images
and h3 is a 1×m-filter mask. To write g1 ∗h3 = g2 in matrix notation,
from g1 a Toeplitz matrix G1 is contructed as follows:

G1 =



g1(m) g1(m+ 1) . . . g1(m+n− 1)

g1(m− 1) g1(m) g1(m+ 1)
...

... g1(m− 1) g1(m)
. . .

...
... g1(m− 1)

. . . g1(m+ 1)
...

. . . g1(m)
... g1(m− 1)
...

...
g1(1) g1(n)



(20.33)

where the row i of the matrix contains the i times shifted 1-D-image.
The image g2 and the filter mask h3 are stacked into column vectors
g2 and h3, so the matrix notation is

G1h3 = g2 (20.34)

In the 2-D case G1 is a block Toeplitz matrix

G1 =



G1,M G1,M+1 . . . G1,M+N−1

G1,M−1 G1,M G1,M+1
...

... G1,M−1 G1,M
. . .

...
... G1,M−1

. . . G1,M+1
...

. . . G1,M
... G1,M−1
...

...
G1,1 G1,N



(20.35)
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where each G1,i is m ×n Toeplitz matrix that is constructed from the
ith image row of g1(x). The vectors g2 and h3 contain the image rows
of g2(x) and h3(x) put next to each other

g2 = [ g2(1,1), . . . , g2(n,1),
g2(1,2), . . . , g2(n,2),
. . . ,
g2(1,m), . . . , g2(n,m)]T

(20.36)

Now Eq. (20.22) can be written in matrix notation

G1h3 = g2 (20.37)

and solved for h3

h3 = G−1
1 g2 (20.38)

which can be done exactly for the case that there is no noise and one
image is not blurred because it was taken with a pinhole camera. When
noise is added the problem becomes ill-posed. Small changes in the
input data g1(x) can produce large fluctuations in the matrix G−1

1 .
As in the foregoing paragraph about constrained inverse filtering,

additional information can be used to make the calculation more ro-
bust. Because h1(x) and h2(x) can be theoretically or experimentally
derived and referred to Eq. (20.24), h3(x) must belong to a family of
patterns. Therefore, a regularization approach can be used and the
following functional, the regularized form of Eq. (20.35), must be min-
imized:

‖G1h3 − g2‖2 + λ‖Ch3‖2 =min (20.39)

where λ is a scalar parameter and C is a matrix minimizing the second
term if h3 belongs to the family of patterns. The Euler equation for
Eq. (20.39) is

GT1G1h3 −GT1g2 + λCTCh3 = 0 (20.40)

which can be solved for h3

h3 =
(
GT1G1 + λCTC

)−1
GT1g2 (20.41)

Unfortunately, it is computationally expensive to solve Eq. (20.41),
and additionally it is only easy to find the matrix C for simple patterns
of h3 as, for example, quadratic.

For geometric opticsh1(x) andh2(x) are unique indicators of scene
depth, therefore using Eq. (20.24) is also a unique indicator of depth.
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line l region A1

Figure 20.8: Geometry at the step edge.

Now for each depth a h3(x) pattern can be calculated a priori and
put together in a table. To achieve higher depth resolution the depth
discretization is made finer and the pattern table becomes larger. From
Eq. (20.22) we get

g1(x)∗h3(x)− g2(x) = 0 (20.42)

which will be satisfied for the exact h3(x), but not for ȟ3(x) from the
pattern table. To find the best ȟ3(x), the table is searched for the ȟ3(x)
that minimizes the following equation:

∑
x

[
g1(x)ȟ3(x)− g2(x)

]2 =min (20.43)

The depth value that belongs to the best ȟ3(x) is the depth of the
scene, with respect to the discretization error of the table.

20.6 Single-view depth-from-focus

Single-view depth-from-focus requires only one image of the scene to
be taken. Therefore, it is necessary to know properties either of the
object function or of the point spread function. Even if the shape of
the PSF is completely known, restrictions to the object function are
necessary in order to solve the depth-from-focus problem. A common
approach is to calculate depth estimates only at image regions, whose
properties can be estimated from the image itself, for example, line
edges. This results in sparse depth maps, where values are given only
at these positions. Often, the point spread function is approximated
by box functions or Gaussians.
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20.6.1 Sharp discontinuities

Step edges in the gray value are ideal in order to separate the defocus
from the image. For the implementation of such depth-from-focus al-
gorithms, first, a detection of step edges has to be made. The actual
depth estimation can only be performed in the neighborhood of these
edges. This section will describe several approaches for the depth re-
covery near linear step edges. A step edge of height γ along a straight
line is defined by

O(x) =
{
g0 + γ : x ∈ A2

g0 : x ∈ A1
(20.44)

The spatial constant. An important prerequisite of the methods de-
scribed here is that the point spread function is of known shape, and, in
addition, has rotational symmetry. Furthermore, we assume the point
spread function to be of Gaussian shape with variance σ(z)2, where σ
depends on the distance z of the object to the plane of best focus; σ is
often denoted as the spatial constant. Because of the symmetry, images
of objects located in front or behind this plane are indistinguishable.
Therefore, the object position has to be limited to one side of the focal
plane.

Estimation of the spatial constant. As the gray values in the neigh-
borhood of a step edge are determined by the height of the step g1 and
g2 and the spatial constant σ , the analysis of the gray-value changes
close to the edge provides a way to estimate σ . Algorithms of this kind
have been introduced first by Pentland [8] and Grossman [9] who coined
the term depth-from-focus to denote these methods.

Direct estimation of the spatial constant. The approach of Pentland
[4] focuses on the estimation of σ from the gray value along a line l
perpendicular to the edge, as indicated in Fig. 20.8.

Without loss of generality, the edge line may be in the y-direction
at the position x0 for the further computations. Therefore, instead of
Eq. (20.44) we use Ox(x) unless otherwise noted.

Ox(x) =
{
g0 + γ : x > x0

g0 : x < x0
(20.45)

We define the sharpness measure C(x) as the Laplacian of the im-
age, which itself is the convolution of the object function O with a



610 20 Depth-from-Focus

C(x) c(x)

Figure 20.9: Sharpness measures C(x) and c(x) along the line l.

Gaussian Gσ

C(x) = ∆(Gσ ∗Ox)

=
∫
∆Gσ(

√
x −x′)Ox(x′)d2x′

= δ
[

d
dx
G1
σ (x −x0)

] (20.46)

Herein G1 denotes a 1-D Gaussian. The position of the step edge in
the blurred image is defined as the zero crossing of the Laplacian of
the image. At this very position, we obtain

C(x) = δ
[

d
dx
G1
σ (x)

]
= − δx√

2πσ 3
e−

x2

2σ2 (20.47)

From

ln
∣∣∣∣C(x)x

∣∣∣∣ = ln
δ√

2πσ 3
− x2

2σ 2 (20.48)

we obtain an equation linear in x2 as seen in Fig. 20.9

ax2 + b = c with a = − 1
2σ 2 b = ln

δ√
2πσ 3

c = ln
∣∣∣∣C(x)x

∣∣∣∣ (20.49)

A standard linear regression then yields an estimate of σ , which is
correlated to the depth.

Decomposition of the spatial constant. Analyzing the gray values
along lines perpendicular to the edges require precise edge finders. Es-
pecially, errors in the edge direction introduce deviations in the spatial
constant and therefore lead to errors in the depth estimations. Lai et al.
[10] extended Pentland’s algorithms without requiring an exact deter-
mination of the line direction.
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Figure 20.10: Definitions of the horizontal and vertical edge distances.

We start with a step edge

O(x) =
{
g0 + γ : x < a+ by

g0 : x > a+ by (20.50)

in an arbitrary direction, given by the line x = a+by . Again, assuming
a Gaussian PSF, the gray value at a point P can be expressed by its
distance d perpendicular to the edge

g(x) = Gσ ∗O = g1

∫
x∈A1

Gσ(x)d2x + g2

∫
x∈A2

Gσ(x)d2x

= g1E
(
d(x)
σ

)
+ g2E

(
−d(x)
σ

) (20.51)

with

E(x) =
∫ x
−∞
G1

1(x
′)dx′ (20.52)

The main idea of Lai et al. [10] is to decompose the spatial constant σ
into two components σx and σy for the horizontal and vertical axis,
and then derive equations for the horizontal and vertical gray-value
changes. It is convenient to split the 2-D equation Eq. (20.51) into two
1-D equations, using the horizontal and vertical edge distances δx and
δy , as defined in Fig. 20.10.

To simplify matters, the origin of coordinate system shall be located
at the currently investigated point P . Using d = cosα(δx−x) for solely
horizontal movements and d = sinα(δy−y) for vertical ones, the gray
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value can be written as

g(x)(x) = g(x,y = 0) = g1E
(
δx −x
σx

)
+ g2E

(
−δx −x

σx

)

g(y)(y) = g(x = 0, y) = g1E
(
δy −y
σy

)
+ geE

(
−δy −y

σy

) (20.53)

with σ = cos(α)σx = sin(α)σy .
Equation (20.53) can be rewritten as

g(x) = g2 +∆gN
(
δx −x
σx

)

g(y) = g2 +∆gN
(
δy −y
σy

) (20.54)

According to Eq. (20.54), σ can be calculated by estimating the 1-D
spatial constants σx and σy and combing them to

σ = σxσy√
σ 2
xσ 2

y

(20.55)

To solve the depth estimation problem, either the spatial constant
σ or its decompositions σx and σy must be estimated from a suitable
region of the image. First, this region has to be chosen in the neigh-
borhood of step edges. The most general method is to formulate an
optimization problem, either from Eq. (20.51) for direct estimation of
σ or from Eq. (20.54) for the decomposed spatial constants. It can be
formulated as

C(g1, g2, σi) =
∑(

g(x)− g2 −∆gE
(
δx −x
σx

)2
)
→min (20.56)

or, equivalently

∂C(g1, g2, σi)
∂g1

= 0
∂C(g1, g2, σi)

∂g2
= 0

∂C(g1, g2, σi)
∂σ1

= 0

(20.57)

Lai et al. [10] use a standard Newton method to solve Eqs. (20.56) and
(20.57).

Edge detection. Edge detection is a basic step in image processing
for these algorithms (Chapter 10). Therefore, its accuracy should be
as good as possible in order to eliminate errors in the depth estima-
tion (Chapter 6). Besides simple edge filters as first- and second-order
derivatives, Lai et al. [10] prefer the Laplace of Gaussian (LoG) filter



20.6 Single-view depth-from-focus 613

first proposed by Marr and Hildreth [11] and Hildreth [12] (see also
Section 10.4.2). According to Haralick [13], it can be written as

∆g(x) = 1
4πσ 4

(
2− |x|

2

σ 2

)
exp

(
−|x|

2

2σ 2

)
(20.58)

Estimating depth. Depth estimation is carried out by correlating the
spatial constant σ with the actual distance of the object. This is done
by establishing an analytical relation between the spatial constant and
depth, and by performing a calibration of the image acquisition system.
As a first-order approximation blurring is described by the blur circle,
for example, a point spread function of uniform value (Subbarao and
Gurumoorthy [14]). The radius of the blur circle is calculated assum-
ing paraxial and aberration-free optics. As known from Eq. (20.2), the
radius εc of the blur circle is given by

εc
R
= di ∆dodod′o

(20.59)

Therefore, the depth D is given by

D = d′o = do +∆do =
dif

di − f − 2Oεc
(20.60)

with f being the focal length of the lens,O is its F-number, and di is the
distance from the lens to the image plane. The assumption of a Gaus-
sian point spread function instead of the blur circle can be expressed
by replacing εc by the spatial constant σ and an adaptation factor k as
εc = kσ . According to Subbarao [15], k is in the range of 0 ≤ k ≤ 0.5.
Equation (20.60) can further be simplified to

D = A
B − kσ with A = kdif

O
and B = kdi − f

O
(20.61)

whereA and B can be seen as system constants, which are to be derived
by the calibration procedure. This can be done easily be estimating σ
for several points of known distanceD and performing an optimization
problem on Eq. (20.61).

20.6.2 Object-based depth-from-focus

Object-based algorithms represent a different approach for single-view
depth-from-focus. These algorithms are of special interest when ob-
serving fast-moving objects. They assume that the images contain
only a limited number of object classes, which can be clearly distin-
guished by image segmentation. Because the object properties are
known, depth reconstruction becomes possible with only one image. In
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Figure 20.11: Overview of the input and output parameters of the object-based
depth-from-focus algorithm.

fact, provided that an appropriate calibration has been done, not even
the shape of the point spread function has to be known. Object-based
algorithms have to be seen in clear contrast to the algorithms described
so far. These provide a depth map, which may be dense or spare, on
the image, while object-based approaches first segment the image in
order to find and classify objects, and result in a depth estimate for
each single object.

In this section, two different approaches of object-based depth-from-
focus will be discussed. Because of the different nature of the objects
the two methods use different object features in order to solve the
depth-recovery problem.

Object feature-based algorithm. This algorithm has been developed
by Jähne and Geißler [16] for objects of circular shape, but arbitrary
size. In general, the algorithm can be applied to any objects of given
shape, which are distinguished only in their size, that is, a scaling fac-
tor. Besides the depth the algorithm results in a correct measurement
of the size of the objects, even if they undergo massive blur. The ba-
sic idea of the algorithm is to establish a robust measure of both size
and blur, and then correlate these parameters by means of a suitable
calibration, thus giving correct size and depth as the result (Fig. 20.11)
Shape of objects and PSF. As the first step of the algorithm, the shape
of the objects has to be parameterized. An object is represented by its
shape function and a scaling factor. For the application the algorithm
has been developed, the shape function is a circular box function. Thus,
an object of radius r is described by

I(x) = Π
( |x −x0|

2r ′
)
)
∗ PSF(x)Z (20.62)

with the box function

Π(x) =
{

1 : |x| ∈ [0,1/2]
0 : otherwise

(20.63)
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Figure 20.12: Definition of the 1/q-area as the size of blurred objects.

Hereby, the object is already blurred due to its defocused position at
the depth z 6= 0. As known from Section 20.2.1, the point spread func-
tion can be described by a shape function, which remains unchanged
for every defocus, and a scaling parameter that describes the amount
of blur. In the following, we assume the image gray values to be nor-
malized in such a manner that a well-focused object has a minimum
gray value of zero and a maximum gray value of 1.0. Furthermore, for
the following calculations, we will assume the point spread function
being of rotational symmetry.
Size parameter. Besides the scaling due to the magnification of the
imaging optics, defocus itself changes the size of the objects, because
there is no inescapable definition of the size of an object with blurred
edges. Therefore, as the preliminary size of a blurred object, Jähne and
Geißler [17] chose the equivalent radius of the 1/q-area of the object.
The 1/q-area is hereby defined as the area over which the gray value of
the object is larger than 1/q of the peak gray value (Fig. 20.12).

Now, an optimal value of q has to be chosen. For a linear edge, the
value q = 0.5 leads to a constant (normalized) gray value of 0.5 at the
object boundary, as long as the scope of the PSF does not exceed the
size of the object, because

gobject edge =
∫
x≤0

PSF(x,y) dx dy (20.64)

due to the symmetry of the PSF.
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Figure 20.13: As long as the PSF is of point symmetric shape, the gray value at
the object edge remains unchanged if the object is convoluted with the PSF.
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Figure 20.14: Influence of the edge curvature to the edge gray value.

Unfortunately, the objects are of circular shape. This leads to a
smaller integration area than in Eq. (20.64), causing a slight decrease
of the gray values at the object edges. This is illustrated in Fig. 20.14.

The change of the edge gray value with increasing defocus depends
on the shape function of the PSF. The more the PSF is concentrated
towards its center, the less distinct is the effect. Figure 20.15 illustrates
this with a box-shaped and a Gaussian-shaped PSF, where the latter
shows less variation.

Any value for q will therefore cause deviations in the size estimate
of blurred objects. Therefore, there is no optimal value at all. In the
following, we will choose 0.5, but this is for convenience only. This
will cause the size shift as shown in Fig. 20.16 In the depth-from-focus
correlation of the input parameters, the correct size will be calculated.
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Figure 20.15: Gray value at the object edge for a Gaussian- and box-shaped
point spread function.
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Defocus parameter. As the measure of blur, the mean gray value gm
on the 1/q-area is suitable. Due to the normalization of the gray values,
gm is also normalized and ranges from 0 to 1. Because the integral gray-
value sum

∫
g(x)d2x is independent of defocus, the mean gray value

decreases with increasing defocus. Thus, it provides a normalized and
monotonic measure.

At this point, depth recovery could be done by establishing a cali-
bration matrix, which correlates the 1/q-area, and the mean gray value
on it with the actual depth. However, it is possible to use the uniform
shape of objects and PSF to reduce the calibration matrix to a 1-D cali-
bration vector. This is explained in the next section.
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Figure 20.17: Increasing defocus of an object of 100 pixel radius. Besides the
images of the objects, the right part of the illustration shows the radial gray
value cross section. The defocus increases from A to F.

Similarity condition. For a better analysis of gm we use the fact that
the depth dependence of the PSF can be approximated by a scale factor
η(Z) and a shape function P

PSFZ(x) =
P
(
x
η(Z)

)
∫
P
(
x
η(Z)

)
d2x

(20.65)

The division by the integral of the shape function forces the normal-
ization of the PSF to

∫
PSFZ(x)d2x = 1, which denotes x coordinates

on the image plane, while Z denotes the distance of the object point
to the plane of focus. As already pointed out, all objects are of the
same shape. Denoting the magnification of the optics by V(Z), they
are described by their shape function O and their radius R

G(x) = O
(

x
V(Z)R

)
(20.66)

The image of an object, which may be defocused, is therefore given by

n(x) = G(x)∗ PSFZ(x) ∼ O
(

x
V(Z)R

)
∗P

(
x
η(Z)

)
(20.67)

Images of object with the same ratio between the scale factorsV(Z)R
of the object function and the scale factor η(Z) of the point spread
function are distinguished only in scaling, but not in shape. In particu-
lar, the mean gray value remains unaffacted. Therefore, the similarity
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condition Eq. (20.68) holds as follows:

η(Z)
V(Z)R

= const a gm = const (20.68)

In addition, gm can be expressed as

gm(Z,R) = gm
(
η(Z)
V(Z)R

)
(20.69)

With a telecentric optics, this can be further simplified. With this
setup, explained in Volume 1, Section 4.6.3, the scaling of the PSF then
becomes linear and symmetric in Z , and can be approximated as η(Z) ∼
|Z|. In addition, V(Z) remains constant over Z . Finally, the mean gray
value depends only on the normalized distance |Z|/R

gm(Z,R) = gm
( |Z|
R

)
(20.70)

Similar considerations lead to the similarity condition for the equiv-
alent radius. Images of objects with the same ratio Z/R are distin-
guished by a scale factor only, which has to be given by the object size.
Therefore

R1/2 = Rρ
( |Z|
R

)
a
R1/2

R
= ρ

( |Z|
R

)
(20.71)

Depth estimation.
With Eqs. (20.69) and (20.71) the depth estimation is carried out by

the following steps:

• Segmentation. The image is segmented in order to find the objects
and to determine their 1/q-area and respective mean gray value;

• Normalized depth. From the defocus measure gm the normalized
depth |Z|/R is calculated according to the inversion of Eq. (20.70);

• True radius. From the 1/q-equivalent radius R1/q and Eq. (20.71)
the true radius R is obtained.

• Depth estimation. From the normalized depth |Z|/R and the radius
R the depth |Z| can be calculated easily.

The relations between normalized depth, ratio of radii R1/q/R and
mean gray value have to be obtained by a calibration procedure. Fig-
ure 20.18 shows the result of the calibration used for the depth-from-
focus method. The application of the method to particle size and
concentration measurements is described in detail in Volume 3, Chap-
ter 29.
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Figure 20.18: Calibration data used for the depth-from-focus approach: left)
calibration of mean gray value versus normalized depth; right) calibration of
radius versus normalized depth.

Pyramid-based depth-from-focus. As already pointed out, defocus
can be measured by analyzing the suppression of high spatial frequen-
cies. This has been used by Scholz et al. [18] and Suhr et al. [19] in
order to solve the depth-from-focus problem for a biotechnological ap-
plication. The application itself is described in detail in Volume 3, Sec-
tion 29.4. Here we focus on the depth-from-focus algorithm. A Lapla-
cian pyramid is defined as the difference of the levels of the Gaussian
pyramid ([20],Burt [21], see also Section 4.4.3), thus consisting of a se-
quence of DoG filters in octave steps, combined with subsampling to
save memory and time. Therefore each level L(P) of the Laplacian pyra-
mid is obtained by

L(P) = G(P) −E(P+1)G(P+1)

=
[
I(P+1) −E(P+1)(RB)(P)

]P−1∏
p=0

(RB)(p)
G(0) (20.72)

with G(0) as the lowest level of the Gaussian pyramid, which is the
original image, B as smoothing operator, the reduction operatorR and
the expansion operator E (Jähne [22]). The transfer functions of the
first four levels of the pyramid are shown in Fig. 20.19. As a result,
only the fine scales, removed by the smoothing operation, remain in
the finer level.
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Figure 20.19: Transfer functions of the first four levels of the Laplacian pyra-
mid using a B16 binomial convolution kernel.

Because the application deals with the detection of cells in a fluid
medium, it concerns objects of similar shape and size. Due to the prop-
erties of the cells and the imaging technique used, all cells appear as
approximately Gaussian-shaped objects of very similar size, but differ-
ent brightness. The basic idea of the algorithm is to calculate a feature
vector for each object observed. The feature vector is defined as the
squared filter response on each level of the Laplacian pyramid

|L(k)|2 =
M−1∑
i=0

N−1∑
j=0

(L(k)i,j )
2 (20.73)

whereby L(k) denotes the kth level of the Laplacian pyramid. The fea-
ture vector is then

F = (F0, F1, ..) = (|L(0)|2, |L(1)|2, |L(2)|2, ...|L(n)|2) (20.74)

The orientation of F is independent of the brightness of the object,
therefore the ratios of the components of the feature vector

Oi,j = tanφi,j = |L
(j)|2

|L(i)|2 i, j ∈ [0,1, ...,n] ∀i 6= j (20.75)

are normalized with respect to the brightness of the object. Each of
the directional components Oi,j is a measure of the defocus, and is
sensitive to a certain wave-number range.

In order to achieve the actual depth estimation, first, a calibration
has to be done in order to correlate the feature vector with the actual
depth of the objects (Scholz et al. [23]). The calibration data are stored
in lookup tables for the depth recovery of the measured objects.
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a

b

Figure 21.1: a A gray-scale image and b its topographic or set representa-
tion called subgraph generated by associating each point of the image with an
elevation value proportional to its gray-level.

21.1 Introduction

Mathematical morphology (MM ) or simply morphology can be defined
as a theory for the analysis of spatial structures [1]. It is called mor-
phology because it aims at analyzing the shape and form of objects.
Mathematical morphology is not only a theory, but also a powerful im-
age analysis technique. The purpose of this chapter is to introduce the
morphological operators used in practical applications1. The emphasis
is therefore put on the technique rather than the theory.

Morphological operators belong to the class of nonlinear neighbor-
hood operators (Chapter 5). The neighborhood used for a given mor-
phological operator is called structuring element . The operators are
then defined by testing whether the structuring element fit or does not
fit the image objects considered as sets of an n-dimensional space. A
set representation of a binary image is trivial because it is already de-
fined as a set of black pixels and its complement, the set of white pixels.
For gray-scale images, a set representation can be achieved by consider-
ing the set of points lying below the image intensity surface and above
the image definition domain. The resulting set is called subgraph. The
subgraph of a 2-D gray-scale image is shown in Fig. 21.1. From this
figure, it can be seen that a gray-scale image is viewed as a topographic
surface, the brighter the gray-tone level of a pixel, the higher the ele-
vation of the terrain point corresponding to this pixel. In practice, set
operators such as union and intersection can be directly generalized
to gray-scale images of any dimension by considering the point-wise
maximum and minimum operators.

1A comprehensive description of the principles and applications of morphological
image analysis can be found in Soille [2].
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Morphological operators are best suited to the selective extraction
or suppression of image structures. The selection is based on their
shape, size, and orientation. In this sense, morphological operators
are low-level image operators that already integrate some knowledge
about the image objects that are under study. For instance, line seg-
ment structuring elements should be considered for the morphological
processing of thin elongated objects such as glass fibers in materials
sciences or roads in satellite images.

By combining elementary morphological operators, important im-
age processing tasks can also be achieved. For example, there exist
combinations leading to the definition of morphological edge sharpen-
ing, contrast enhancement, and gradient operators. A morphological
segmentation operator integrating region growing and boundary detec-
tion techniques is also available.

Morphological operators are not restricted to the processing of 2-D
images. They are well suited for n-dimensional binary and gray-scale
images. Likewise, multicomponent images are handled by processing
each component separately. Although most of the examples in this
chapter deal with 2-D images, all morphological operations discussed
in this chapter can also be applied to multichannel images and higher-
dimensional images.

The chapter is organized as follows. The basics of morphological
operators and background notions useful for defining and character-
izing them are discussed in Section 21.2. A brief description of the
fundamental morphological transformations follows in Section 21.3 in-
cluding erosion and dilation (Section 21.3.1), morphological gradients
(Section 21.3.2), and opening and closing (Section 21.3.3). Morphologi-
cal operators requiring two rather than a unique input image are called
geodesic and detailed in Section 21.3.6. Operators such as the hit-or-
miss transform requiring two rather than a unique structuring element
are presented in Section 21.3.9. While Section 21.4 deals with efficient
computation of morhpological operations, Section 21.3 demonstrats
their application to nonlinear filtering, segmentation and other elemen-
tary image processing tasks. A survey of scientifical and technical appli-
cations solved using morphological operators is presented in Volume 3,
Chapter 12.

21.2 Basics

21.2.1 Image transforms and cross sections

In mathematical terms, a gray-tone image f is a mapping of a subsetDf
of Zn called the definition domain of f into a finite chain of nonnegative
integers:

f :Df ⊂ Zn -→ {0,1, . . . , tmax}
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where tmax is the maximum value of the data type used for storing
the image (i. e.„ 2n − 1 for pixels coded on n bits). There is no need
to consider negative values because usual morphological operators do
preserve the dynamic range of the input image. Note that a binary
image is nothing but a gray-scale image with only two gray-scale levels
(0 for the background and 1 for the foreground).

Morphological image transformations are image-to-image transfor-
mations, that is, the transformed image has the same definition domain
as the input image and it is still a mapping of this definition domain
into the set of nonnegative integers. We use the generic notation Ψ for
such mappings. The identity transform I is a trivial example of image-
to-image transformation.

A widely used image-to-image transformation is the threshold op-
erator T , which sets all pixels x of the input image f whose values lie
in the range [ti, tj] to 1 and the other ones to 0:

[T[ti, tj](f )](x) =
{

1, if ti ≤ f(x) ≤ tj
0, otherwise

It follows that the threshold operator maps any gray-tone image into a
binary image.

The cross section of a gray-tone image f at level t is the set of pixels
of the image whose values are greater than or equal to t. In image
transformation terms, the cross-section operator CSt maps a gray-tone
image into a binary image as follows:

CSt = T[t, tmax] (21.1)

The subgraph of a gray-tone image (see example in Fig. 21.1b) cor-
responds to the stacking of its successive cross sections. Hence, we
can decompose a gray-tone image into the sum of its cross sections,
starting at level 1:

I =
tmax∑
t=1

CSt

The decomposition of a gray-scale image into the sum of its successive
cross sections is often referred to as the threshold decomposition or
threshold superposition principle [3]. An image-to-image transforma-
tion Ψ is invariant to threshold decomposition if it can be written as the
sum of the transformations of the cross sections:

Ψ , invariant to threshold decomposition a Ψ =
tmax∑
t=1

Ψ CSt.
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21.2.2 Set operators

The basic set operators are the union ∪ and the intersection ∩. For gray-
tone images, the union becomes the point-wise maximum operator ∨
and the intersection is replaced by the point-wise minimum operator ∧:

union: (f ∨ g)(x) =max[f (x), g(x)]
intersection: (f ∧ g)(x) =min[f (x), g(x)]

(21.2)

Another basic set operator is complementation. The complement of an
image f , denoted by f c , is defined for each pixel x as the maximum
value of the data type used for storing the image minus the value of
the image f at position x:

f c(x) = tmax − f(x) (21.3)

The complementation operator is denoted by �: �(f) = f c .
The set difference between two sets X and Y , denoted by X \ Y ,

is defined as the intersection between X and the complement of Y :
X \ Y = X ∩ Yc

The transposition of a set B corresponds to its symmetric set with
respect to its origin:

B̌ = {−b | b ∈ B}. (21.4)

A set B with an origin O is symmetric if and only if B = B̌.

21.2.3 Order relationships

The set inclusion relationship allows us to determine whether two sets
are ordered, that is, whether the first is included in the second or vice
versa. In this section, we show how to extend ordering relationships to
gray-scale images and to image transformations.

An image f is less than or equal to an image g with the same def-
inition domain if the value of f is less than or equal to the value of g
at all pixels x in the common domain of definition. Equivalently, for
all gray-scale levels t, the cross section of f at level t is included in the
cross section of g at the level t:

f ≤ g a ∀x, f (x) ≤ g(x) a ∀t, CSt(f ) ⊆ CSt(g)

Order relationships for image transformations are defined by anal-
ogy: a transformation Ψ1 is less than or equal to a transformation Ψ2 if
and only if, for all images f , Ψ1(f ) is less than or equal to Ψ2(f ):

Ψ1 ≤ Ψ2 a ∀f , Ψ1(f ) ≤ Ψ2(f )
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a b c

Figure 21.2: The points of a digitization network are considered as the vertices
of a graph. The arcs or edges of the graph define the neighbors of each vertex:
a hexagonal graph; b 4-connected graph; c 8-connected graph.

21.2.4 Graph, path, and connectivity

Important notions of discrete geometry have already been presented
in Section 2.3. Graph theoretical concepts for image processing are
discussed in Chapter 24. Thus this section just summaries the basic
definitions and concepts used in morphology.

A nonoriented graph G associated to a digitization network is a pair
(V ,E) of vertices V and edges E, where

V = (v1, v2, . . . , vn) is a set of vertices or points of the digitization
network,

E = (e1, e2, . . . , em) is a family of unordered pairs (vi, vj) of ver-
tices represented by edges or arcs.

A graph is said to be simple if it does not contain any loop (i.e.,
(vi, vi)-type edge) and if there exists no more than one arc linking any
given pair of vertices. A graph is planar if it can be drawn in the plane
without intersecting any pair of edges. The three most common graphs
used in image analysis are the hexagonal graph for the triangular net-
work and the 4- and 8-connected graphs for the square network (see
Fig. 21.2).

These graphs are also referred to as grids. For 3-dimensional im-
ages digitized according to a cubic network, common graphs are 6-,
16-, or 26-connected. Other useful networks for 3-dimensional images
are the centred cubic and face-centred networks. In the following, the
neighbors of a pixel v in a graph G = (V ,E) are denoted by NG(v):

NG(v) = {v ′ ∈ V | (v,v ′) ∈ E}
For each digitized set X, there corresponds a graph whose vertices

are the points of X and whose edges are the pairs (vi, vj) such that vi
is a neighbor of vj in the considered digitization graph.

A sequence v0, v1, . . . , vl of distinct vertices of a graph G is a path
P of length l if vi and vi+1 are neighbors for all i in 0,1, . . . , l − 1. A
set is connected if each pair of its points can be joined by a path all of
whose points are in the set.
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21.2.5 Discrete distances and distance functions

Definitions. The concept of distance is widely used in image analysis
and especially in mathematical morphology. There exist many discrete
distances satisfying the three axioms of a metric (compare discussion
in Section 2.3). The choice of a given metric depends on the application
speed, memory load, and accuracy requirements.

The discrete distance dG between two pixels p and q in a graph or
grid G is the smallest length of the paths P linking p to q:

dG(p,q) =min{L(P) | P path linking p to q in G} (21.5)

The path(s) corresponding to the smallest length is (are) called short-
est path(s) or geodesics. If the underlying graph is 4-connected, the
metric is known as the city-block metric which is denoted by db. The
8-connected graph defines the chess board metric dc . An alternative ap-
proach is to consider the points of the digitization network as if they
were embedded into the Euclidean space Rn. By doing so, the neigh-
borhood relationships between points of the image definition domain
are not taken into account and the actual Euclidean distance de is con-
sidered. In practice, Euclidean distances are often rounded to their
nearest integer value. The rounded Euclidean distance function de′ is
a semimetric because it does not satisfy the triangle inequality axiom
of a metric [4].

The distance function D on a binary image f associates each pixel
x of the definition domain Df of f with its distance to the nearest
zero-valued pixel:

[D(f)](x) =min{d(x,x′) | f(x′) = 0} (21.6)

The distance function is sometimes referred to as the distance trans-
form. Depending on whether de or dG is used in Eq. (21.6), one defines
a Euclidean or a discrete distance function.

The link existing between distance transforms and morphological
operations will be highlighted in Section 21.3.1. In fact, we will see
that distance functions are widely used in morphology for analyzing
objects of binary images. A distance function on a binary image of
cells is shown in Fig. 21.3.

Skeleton by influence zones. The set of pixels of a binary image
that are closer to a given connected component than any other con-
nected component defines the influence zone of the considered con-
nected component. For example, the influence zones of a collection
of points are the Voronoï polygons associated with these points. In
mathematical terms, let X be a binary image or set and K1, K2, . . . , Kn
the connected components of X. The influence zone IZ of a connected
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a b

Figure 21.3: Distance function on a binary image of cells. Note that the high
values of the distance function correspond to the center of the cells: a binary
image of cells; b rounded Euclidean distance function on (a).

component Ki is the set of pixels of the image definition domain, which
is closer to Ki than any other particle of X:

IZ(Ki) = {x | ∀ j ∈ {1, . . . ,n}, i ≠ j ⇒ d(x, Ki) < d(x, Kj)} (21.7)

The skeleton by influence zones or SKIZ is defined as the points that
do not belong to any influence zone:

SKIZ(X) = �[
⋃
i
IZ(Ki) ]

Hence, the SKIZ of a set is equivalent to the boundary of its influence
zones.

21.2.6 Image operator properties

The properties of an image operator allows us to predict its behav-
ior. Hence they are very helpful for choosing the appropriate operators
when developing a methodology for solving an image analysis problem.
The properties of linear shift-invariant image operators have already
been described in Section 5.3. Morphological operators are nonlinear
shift-invariant filters that may satisfy some other properties:

Idempotence. A transformation Ψ is idempotent if applying it twice
to any image is equivalent to applying it only once:

Ψ , idempotent a ΨΨ = Ψ
It therefore makes no sense to apply an idempotent transformation
twice. Removing all objects of a given surface area on a binary image
is an example of an idempotent transformation. Idempotence is a key
property of a morphological filter. Ideal bandpass filters are also idem-
potent operators.
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Extensivity. A transformation Ψ is extensive if it is greater than or
equal to the identity transform I:

Ψ , extensive a I ≤ Ψ

Anti-extensivity. A transformation Ψ is anti-extensive if it is less than
or equal to the identity transform I:

Ψ , anti-extensive a I ≥ Ψ

Increasingness. A transformation Ψ is increasing if it preserves the
order relationships between images:

Ψ , increasing a ∀f ,g, f ≤ g ⇒ Ψ(f ) ≤ Ψ(g) (21.8)

Any increasing operator defined for binary images can be directly ex-
tended to gray-scale images using the threshold superposition princi-
ple. Consider for instance the binary operator that removes all con-
nected components with a surface area smaller than a given threshold
value. This operator is increasing and can be extended to gray-scale im-
ages by applying the operator to each cross section and stacking them
back to get the transformed gray-scale image.

Duality. Two transformations Ψ and Φ are dual with respect to com-
plementation if applying Ψ to an image is equivalent to applying Φ to
the complement of the image and taking the complement of the result:

Ψ and Φ dual with respect to complementation � a Ψ = �Φ� (21.9)

For example, setting to 0 all foreground connected components whose
surface area is less than a given threshold value λ is the dual trans-
formation of setting to 1 all background-connected components whose
surface area is less than λ.

Self-duality. A transformation Ψ is self-dual with respect to comple-
mentation if its dual transformation with respect to the complementa-
tion is Ψ itself:

Ψ , self-dual with respect to complementation �a Ψ = �Ψ�

Linear shift-invariant filters (i.e., convolutions) are all self-dual opera-
tors. When a transformation is not self-dual, a symmetric processing
can only be approximated by applying the transformation and then its
dual (see Section 21.5.3).
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21.2.7 Structuring element

An SE is nothing but a small set used to probe the image under study.
An origin must also be defined for each SE so as to allow its positioning
at a given point or pixel: an SE at point xmeans that its origin coincides
with x. The elementary isotropic SE of an image is defined as a point
and its neighbors, the origin being the central point. For instance, it is
a centered 3 × 3 window for a 2-D image defined over an 8-connected
grid. In practice, the shape and size of the SE must be adapted to the
image patterns that are to be processed. Some frequently used SEs are
discussed hereafter.

Digital approximations of line segments. Line segments are often
used to remove or extract elongated image structures. There are two
parameters associated with line SEs: length and orientation. The latter
has degree units and the former is usually given in number of pixels.
This number should be set according to the actual width or length of
the objects that are to be processed. In a square grid, there are only
2k−2 possible orientations for a line segment having an odd extent of
k pixels.

Periodic lines. Digital connected line segments at arbitrary orienta-
tion are only broad approximations of Euclidean line segments. This
led Jones and Soille [5, 6] to introduce the concept of periodic lines by
considering those points of the Euclidean line that fall exactly on grid
points. A periodic line Pλ,~v with the following equation:

Pλ,~v =
i=λ⋃
i=0

i~v (21.10)

where λ+ 1 > 0 is the number of points in the periodic line and ~v is a
constant vector called the periodicity of the line. Periodic line structur-
ing elements have proven their utility for filtering linear image features
and generating better approximations of disk-like SEs from cascades of
periodic lines.

Digital approximations of the disk. Due to their isotropy, disks and
spheres are very attractive SEs. Unfortunately, they can only be approx-
imated in a digital grid. The larger the neighborhood size is, the better
the approximation is. Radial decomposition of disks (Section 21.4.2)
can be obtained by cascading periodic lines in various directions.

Pair of points. A pair of points is nothing but a periodic line having
only 2 points: P1,~v . In the case of binary images, an erosion with a pair
of points can be used to estimate the probability that points separated
by a vector ~v are both object pixels, that is, by measuring the number
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of object pixels remaining after the erosion. By varying the modulus of
~v , it is possible to highlight periodicities in the image (Section 21.5.2).

Composite structuring elements. A composite or two-phase SE con-
tains two non-overlapping SEs sharing the same origin. Composite SEs
are considered for performing hit-or-miss transforms (Section 21.3.9).
The first is used for an erosion and the second for a dilation, both
transformations being computed in parallel.

Elementary symmetric structuring elements. Many morphological
transformations consist in iterating fundamental operators with the
elementary symmetric SE, that is, a pixel and its neighbors in the con-
sidered neighborhood graph.

Further structuring elements. Elementary triangles are sometimes
considered in the hexagonal grid and 2×2 squares in the square grid.
In fact, the 2×2 square is the smallest isotropic SE of the square grid
but it is not symmetric in the sense that its center is not a point of the
digitization network. Such small, non-symmetric SEs will be used for
filtering fine image structures using opening and closing transforma-
tions (Section 21.3.3).

21.3 Morphological operators

Morphological operators aim at extracting relevant structures of the
image. This can be achieved by probing the image with another set of
given shape called the structuring element (SE), see Section 21.2.7. Ero-
sions and dilations are the two fundamental morphological operators
because all other operators are based on their combinations.

21.3.1 Erosion and dilation

Erosion. The first question that may arise when we probe a set with
a structuring element is “Does the structuring element fit the set?” The
eroded set is the locus of points where the answer to this question is
affirmative. In mathematical terms, the erosion of a set X by a structur-
ing element B is denoted by εB(X) and is defined as the locus of points
x, such that B is included in X when its origin is placed at x:

εB(X) = {x | Bx ⊆ X} (21.11)

Equation 21.11 can be rewritten in terms of an intersection of set trans-
lations, the translations being determined by the SE:

εB(X) =
⋂
b∈B
X−b
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a

b

c d

Figure 21.4: Erosion ε and dilation δ of a set X by a 2× 2 structuring element
whose origin is the upper left pixel. a A binary imageX. b A structuring element
B. c Erosion of X by B. d Dilation of X by B.

This latter definition itself can be directly extended to binary and gray-
scale images: the erosion of an image f by a structuring element B is
denoted by εB(f ) and is defined as the minimum of the translations of
f by the vectors −b of B:

εB(f ) =
∧
b∈B
f−b (21.12)

Hence, the eroded value at a given pixel x is the minimum value of the
image in the window defined by the structuring element when its origin
is at x:

[εB(f )](x) =min
b∈B

f (x +b) (21.13)

To avoid the erosion of the image structures from the border of the
image, we assume that the image values outside the definition domain
are set to tmax.

Dilation. The dilation is the dual operator of the erosion and is based
on the following question: “Does the structuring element hit the set?”
The dilated set is the locus of points where the answer to this question
is affirmative.

The dilation of a set X by a structuring element B is denoted by
δB(X) and is defined as the locus of points x such that B hits X when
its origin coincides with x:

δB(X) = {x | Bx ∩X ≠∅} (21.14)

The dilation and erosion of a discrete binary image are illustrated in
Fig. 21.4.

Equation (21.14) can be rewritten in terms of a union of set transla-
tions, the translations being defined by the SE:

δB(X) =
⋃
b∈B
X−b (21.15)



21.3 Morphological operators 639

This latter definition can be directly extended to binary and gray-scale
images: the dilation of an image f by a structuring element B is denoted
by δB(f) and is defined as the maximum of the translation of f by the
vectors −b of B:

δB(f) =
∨
b∈B
f−b (21.16)

In other words, the dilated value at a given pixel x is the maximum
value of the image in the window defined by the structuring element
when its origin is at x:

[δB(f )](x) =max
b∈B

f (x +b) (21.17)

When dilating an image, borders effects are handled by assuming a
zero-extension of the image. Gray-scale erosion and dilation are illus-
trated in Fig. 21.6.

We denote by nB a structuring element of size n, that is, an SE B
that has been dilated n times by its transposed B̌ (see Eq. (21.4)):

nB = δnB̌ (B). (21.18)

Notice that if B = B̌ then the following relationship holds: δnB = δnB .

Properties. The dilation and the erosion are dual transformations
with respect to complementation. This means that any erosion of an
image is equivalent to a complementation of the dilation of the comple-
mented image with the same structuring element (and vice versa). This
duality property illustrates the fact that erosions and dilations do not
process the objects and their background symmetrically: the erosion
shrinks the objects but expands their background (and vice versa for
the dilation).

Erosions and dilations are invariant to translations and to threshold
decomposition. They also preserve the order relationships between
images, that is, they are increasing transformations.

The dilation distributes the point-wise maximum operator∨ and the
erosion distributes the point-wise minimum operator ∧:

δ(
∨
i
fi) =

∨
i
δ(fi)

ε(
∧
i
fi) =

∧
i
ε(fi)

For example, the point-wise maximum of two images dilated with an
identical structuring element can be obtained by a unique dilation of
the point-wise maximum of the images. This results in a gain of speed.
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The two following equations concern the composition of dilations
and erosions:

δB2δB1 = δ(δB̌2
B1) (21.19)

εB2εB1 = ε(δB̌2
B1) (21.20)

These two properties are very useful in practice as they allow us to de-
compose a morphological operation with a large SE into a sequence of
operations with smaller SEs. For example, an erosion with a square SE
of side n in pixels is equivalent to an erosion with a horizontal line of
n pixels followed by an erosion with a vertical line of the same size.
It follows that there are 2(n − 1) min comparisons per pixel with de-
composition and n2 − 1 without, that is, O(n) resp. O(n2) algorithm
complexity.

The decomposition property is also important for hardware imple-
mentations where the neighborhood size is fixed (e.g., fast 3×3 neigh-
borhood operations). By cascading elementary operations, larger neigh-
borhood size can be obtained. For example, an erosion by a square of
width 2n+ 1 pixels is equivalent to n successive erosions with a 3× 3
square.

Erosion and distance function. The elementary erosion of size n of
a set X with a diamond 	 or square � can be obtained by thresholding
the corresponding distance function on X for all values strictly greater
than n:

εn	(X) = {x ∈ X | Db(x) > n} = T[n+1,tmax][Db(X)]
εn�(X) = {x ∈ X | Dc(x) > n} = T[n+1,tmax][Dc(X)]

Pseudo-Euclidean erosions, that is, erosions by the best digital approx-
imation of a disk of a given size, can be obtained by thresholding the
rounded Euclidean distance function:

εne′(X) = {x ∈ X | De′(x) > n} = T[n+1,tmax][De′(X)]

Minkowski operators. The Minkowski subtraction of a set B to a set
X is the intersection of the translations of X by the vectors of B and
is denoted by 	: X 	 B = ⋂

b∈B Xb. By inspecting Eq. (21.11), it can
be seen that εB(X) = X 	 B̌. The erosion is therefore equivalent to the
Minkowski subtraction if and only if the SE is symmetric with respect to
its origin (i.e., B = B̌). The same developments apply for the Minkowski
addition ⊕: X ⊕ B = ⋃b∈B Xb, and therefore δB(X) = X ⊕ B̌.

21.3.2 Morphological gradients

A common assumption in image analysis consists of considering image
objects as regions of rather homogeneous gray-levels. It follows that
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object boundaries or edges are located where there are high gray-level
variations. Morphological gradients are operators enhancing intensity
pixel variations within a neighborhood. The erosion/dilation outputs
for each pixel the minimum/maximum value of the image in the neigh-
borhood defined by the SE. Variations are therefore enhanced by com-
bining these elementary operators.

The basic morphological gradient, also called Beucher gradient [7,
8], is defined as the arithmetic difference between the dilation and the
erosion with the elementary structuring element B of the considered
grid. This morphological gradient is denoted by ρ:

ρB = δB − εB. (21.21)

From this latter equation, it can be seen that the morphological gradient
outputs the maximum variation of the gray-level intensities within the
neighborhood defined by the SE rather than a local slope.

In Fig. 21.5b, it can be seen that the thickness of step edge detected
by a morphological gradient equals two pixels: one pixel on each side of
the edge. A zero thickness can be achieved with inter-pixel approaches
or by defining the edge as the interface between two adjacent regions.
Alternatively, half-gradients can be used to detect either the internal or
the external boundary of an edge. These gradients are one-pixel thick
for a step edge.

The half-gradient by erosion or internal gradient ρ− is defined as
the difference between the identity transform and the erosion:

ρ−B = I − εB (21.22)

The internal gradient enhances internal boundaries of objects brighter
than their background and external boundaries of objects darker than
their background. For binary images, the internal gradient will provide
a mask of the internal boundaries of the objects of the image.

The half-gradient by dilation or external gradient ρ+ is defined as
the difference between the dilation and the identity:

ρ+B = δB − I (21.23)

Note that the following relationships hold: ρ− = ρ+� and ρ+ + ρ− =
ρ. In Fig. 21.5, internal and external gradients are compared to the
morphological gradient.

The choice between internal or external gradient depends on the
nature of the objects to be extracted. For instance, an external gradient
applied to a thin dark structure will provide a thin edge whereas an
internal gradient will output a double edge.

Morphological, external, and internal gradients are illustrated in
Fig. 21.6. Note the effect of half-gradients on thin bright and dark fea-
tures.
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a b

c d

Figure 21.5: Morphological gradients of a 1-D digital signal f with sharp tran-
sitions between homogeneous regions: a Original 1-D signal f ; b Beucher’s gra-
dient ρ(f) = δB(f)− εB(f ); c Internal gradient ρ−(f ) = f − εB(f ); d External
gradient ρ+(f ) = δB(f)− f .

21.3.3 Opening and closing

The erosion of an image not only removes all structures that cannot
contain the structuring element but it also shrinks all the other ones.
The search for an operator recovering most structures lost by the ero-
sion leads to the definition of the morphological opening operator. The
principle consists in dilating the image previously eroded using the
same structuring element. In general, not all structures are recovered.
For example, objects completely destroyed by the erosion are not re-
covered at all. The dual operator of the morphological opening is the
morphological closing. Both operators are the basis of the morpholog-
ical approach to image filtering developed in Section 21.5.3.

Morphological opening. Once an image has been eroded, there exists
in general no inverse transformation to get the original image back. The
idea behind the morphological opening is to dilate the eroded image to
recover as much as possible the original image.

The opening γ by a structuring element B is denoted by γB and is
defined as the erosion by B followed by the dilation with the transposed
SE B̌:

γB = δB̌εB (21.24)

In Eq. (21.24), it is essential to consider the transposed SE for the dila-
tion. Indeed, an erosion corresponds to an intersection of translations.
It follows that a union of translations in the opposite direction (i.e., a
dilation by the transposed SE) must be considered when attempting to
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d e f

Figure 21.6: Morphological gradients or how to combine erosion and dilation
for enhancing object boundaries: a original image f ; b dilated image δ(f); c
eroded image ε(f). Edge images: d ρ+(f ) = δ(f) − f ; e ρ−(f ) = f − ε(f ); f
ρ(f) = δ(f)− ε(f ). In this figure, the SE B is a 3×3 square.

recover the original image. Consequently, the opening of an image is
independent from the origin of the SE.

Although the opening is defined in terms of erosions and dilations in
Eq. (21.24), it possesses a geometric formulation in terms of SE fit using
the question already introduced for the erosions: “Does the structuring
element fit the set?” Each time the answer to this question is affirmative,
the whole SE must be kept (for the erosion, it is the origin of the SE that
is kept). Therefore, the opened set is the union of all SEs fitting the set:

γB(X) =
⋃
{B | B ⊆ X} (21.25)

Morphological closing. The idea behind the morphological closing
is to build an operator tending to recover the initial shape of the im-
age structures that have been dilated. This is achieved by eroding the
dilated image.

The closing by a structuring element B is denoted by φB and is de-
fined as the dilation with a structuring element B followed by the ero-
sion with the transposed structuring element B̌:

φB = εB̌δB (21.26)

Using set formalism, we have the following question for defining a clos-
ing: “Does the SE fit the background of the set?” If yes, then all points
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Figure 21.7: Opening and closing of a 13×10 discrete binary image by a 2× 2
square structuring element (the object pixels are the gray pixels): a a binary
image X; b a structuring element B; c opening of X by B; d closing of X by B.

Original

Eroded Opened

Dilated Closed

Figure 21.8: Opening and closing of a gray-scale image with a 5×5 square SE.

of the SE belong to the complement of the closing of the set:

φB(X) = �[
⋃
{B | B ⊆ Xc}] =

⋂
{Bc | X ⊆ Bc}

Contrary to the opening, the closing filters the set from the outside.
The opening and closing of a discrete image by a 2 × 2 square SE is
shown in Fig. 21.7.

Note that the opening removes all object pixels that cannot be cov-
ered by the structuring element when it fits the object pixels while the
closing fills all background structures that cannot contain the structur-
ing element. In Fig. 21.8, the closing of a gray-scale image is shown
together with its opening.

Properties. When we open a set, we probe it from the inside because
the SE has to fit the set. More precisely, an opening removes the object
pixels that cannot be covered by the SE translations that fit the image
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objects. The closing has the opposite behavior because it adds the back-
ground pixels that cannot be covered by the SE translations that fit the
background of the image. In other words, openings and closings are
dual transformations with respect to set complementation.

The fact that openings and closings are not self-dual transforma-
tions means that one or the other transformation should be used de-
pending on the relative brightness of the image objects we would like to
process. The relative brightness of an image region defines whether it is
a background or foreground region. Background regions have a low in-
tensity value compared to their surrounding regions and vice versa for
the foreground regions. Openings filter the foreground regions from
the inside. Closings have the same behavior on the background regions.
For instance, if we want to filter noisy pixels with high intensity values
an opening should be considered.

We have already stated that openings are anti extensive transfor-
mations (some pixels are removed) and closings are extensive trans-
formations (some pixels are added). Therefore, the following ordering
relationships always hold:

γ ≤ I ≤ φ
Morphological openings γ and closingsφ are both increasing trans-

formations. This means that openings and closings preserve order rela-
tionships between images. Moreover, successive applications of open-
ings or closings do not further modify the image. Indeed, they are both
idempotent transformations: γγ = γ and φφ = φ. The idempotence
property is often regarded as an important property for a filter because
it ensures that the image will not be further modified by iterating the
transformation. It corresponds well to a sifting operation: Once we
have sifted materials through a sieve, sifting the materials once more
using the same sieve will not further sieve these materials.

Algebraic opening and closing. If an increasing, idempotent, and
anti extensive transformation can be defined as an erosion by a struc-
turing element followed by a dilation with the transposed structuring
element, it is referred to as a morphological opening. A transformation
having the same properties, but that cannot be written as a unique ero-
sion followed by a dilation with the transposed SE, is called an algebraic
opening. Its dual transformation is an algebraic closing. Matheron [9]
has shown that any algebraic opening can be defined as the supremum
of a family of morphological openings. A useful algebraic opening is
the surface area opening γλ [10, 11]. It can be defined as the union of
all openings with connected SEs whose size in number of pixels equals
λ:

γλ =
∨
i
{γBi | Area(Bi) = λ}
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The surface area opening of a binary image comes down to removing
all connected components whose surface area in number of pixels is
smaller than a given threshold value λ.

21.3.4 Top-hats

The choice of a given morphological filter is driven by the available
knowledge about the shape, size, and orientation of the structures we
would like to filter. For example, we may choose an opening by a 2× 2
square SE to remove impulse noise or a larger square to smooth the
object boundaries. Morphological top-hats [12] proceed a contrario.
Indeed, the approach undertaken with top-hats consists in using knowl-
edge about the shape characteristics that are not shared by the relevant
image structures. An opening or closing with an SE that does not fit the
relevant image structures is then used to remove them from the image.
These structures are recovered through the arithmetic difference be-
tween the image and its opening or between the closing and the image.
These arithmetic differences are at the basis of the definition of mor-
phological top-hats. The success of this approach is due to the fact
that there is not necessarily a one-to-one correspondence between the
knowledge about what an image object is and what it is not. Moreover,
it is sometimes easier to remove relevant image objects than to try to
suppress the irrelevant objects.

The white top-hat or top-hat by opening WTH of an image f is the
difference between the original image f and its opening γ:

WTH = I − γ (21.27)

As the opening is an anti extensive image transformation, the gray-scale
values of the white top-hat are always greater or equal to zero.

The black top-hat or top-hats by closing BTH of an image f is defined
as the difference between the closing φ of the original image and the
original image:

BTH = φ− I (21.28)

It follows that BTH = WTH�. Due to the extensivity property of the
closing operator, the values of the black top-hat images are always
greater or equal to zero. The application of top-hat transforms to the
correction of illumination is discussed in Section 21.5.1.

21.3.5 Granulometries

Principle. The concept of a granulometry [13], or size distribution,
may be likened to the sifting of rocks in a gravel heap. The rocks are
sifted through screens of increasing size, leaving only the rocks that
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are too big to pass through the sieve. The process of sifting the rocks
at a particular size is analogous to the opening of an image using a
particular size of structuring element. The residue after each opening is
often collated into a granulometric curve, revealing useful information
about the distribution of object sizes in the image.

In mathematical terms, a granulometry is defined by a transforma-
tion having a size parameter λ and satisfying the three following ax-
ioms:

• Antiextensivity: the rocks that remain in the sieve are a subset in the
initial rocks.

• Increasingness: When sifting a subset of a heap of rocks, the rocks
remaining in the sieve are a subset of those remaining after sifting
the whole heap.

• Absorption: Let us consider a sifting transformation Φ at two differ-
ent sizes λ and ν . Sifting withΦλ and then withΦν will give the same
result as sifting with Φν prior to Φλ. It is only the size of the largest
sieve that determines the result. This property is called absorption:

ΦλΦν = ΦνΦλ = Φmax(λ,ν) (21.29)

Note that for λ = ν the idempotence property is a particular case of
the absorption property.

By definition, all openings satisfy the two first properties. How-
ever, not all openings with SEs of increasing size satisfy the absorption
property. Disk-like SEs or line segments of increasing size are usually
considered (families based on cascades of periodic lines are detailed in
[6]). Figure 21.9 illustrates a granulometry with a family of square SEs
of increasing size. Note that the size distribution does not require the
particles to be disconnected.

Granulometries are interpreted through granulometric curves. Three
kinds of granulometric curves are currently used:

1. Number of particles of Φλ vs. λ
2. Surface area of Φλ vs. λ
3. Loss of surface area between Φλ and Φλ+1 vs. λ

The latter type of granulometric curve is often referred to as the pattern
spectrum [14] of the image. A large impulse in the pattern spectrum
at a given scale indicates the presence of many image structures at
that scale. The granulometric curve associated with the granulometry
presented in Fig. 21.9 is provided in Fig. 21.10 together with its pattern
spectrum.

Granulometries also apply to gray-tone images. In this latter case,
the surface area measurement should be replaced by the volume.
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Figure 21.9: Successive openings of a binary image of blood cells or granulom-
etry (using square SEs of increasing size): a Original image f ; b Opening of size
1: γB(f); c γ3B(f ); d γ9B(f ); e γ13B(f ); f γ15B(f ).

a

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 5 10 15 20

Su
rf

ac
e 

ar
ea

 o
f

o
p
en

ed
 im

ag
e

Size of opening

b

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20

Lo
ss

 o
f 

p
ix

el
s 

b
et

w
ee

n
2
 s

u
cc

es
si

ve
 o

p
en

in
g
s

Size of opening

Figure 21.10: Granulometric curves corresponding to Fig. 21.9. a Surface area
of the opening vs size of the opening. b Derivative of a. The high peak observed
in the pattern spectrum (b) indicates that most cells of Fig. 21.9a are at this size.

21.3.6 Geodesic operators

All morphological operators discussed so far involved combinations
of one input image with specific structuring elements. The approach
taken with geodesic operators is to consider two input images. A mor-
phological operator is applied to the first image and it is then forced to
remain either greater than or lower to the second image. Authorized
morphological operators are restricted to elementary erosions and di-
lations. The choice of specific structuring elements is therefore eluded.
In practice, geodesic transformations are iterated until stability making
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Figure 21.11: Geodesic dilation of a 1-D marker signal f with respect to a mask
signal g. Due to the point-wise minimum operator, all pixels of the elementary
dilation of f having values greater than g are set to the value of g: a 1-D
marker signal f and mask signal g, f ≤ g: b Elementary dilation δ(1)(f ); c
Geodesic dilation δ(1)g (f ).

the choice of a size unnecessary. It is the combination of appropriate
pairs of input images which produces new morphological primitives.
These primitives are at the basis of formal definitions of many impor-
tant image structures for both binary and gray-scale images.

Geodesic dilation. A geodesic dilation involves two images: a marker
image and a mask image. By definition, both images must have the
same domain of definition and the mask image must be larger than or
equal to the marker image. The marker image is first dilated by the
elementary isotropic structuring element. The resulting dilated image
is then forced to remain below to the mask image. The mask image
acts therefore as a limit to the propagation of the dilation of the marker
image.

Let denote by f the marker image and by g the mask image (f ≤ g).
The geodesic dilation of size 1 of the marker image f with respect to
the mask image g is denoted by δ(1)g (f ) and is defined as the point-wise
minimum between the mask image and the elementary dilation δ(1) of
the marker image:

δ(1)g (f ) = δ(1)(f )∧ g (21.30)

When dealing with binary images, the mask image is often referred to as
the geodesic mask and the marker image the marker set. The geodesic
dilation is illustrated on 1-D signals in Fig. 21.11.

The geodesic dilation of size n of a marker image f with respect
to a mask image g is obtained by performing n successive geodesic
dilations of f with respect to g:

δ(n)g (f ) = δ(1)g [δ(n−1)
g (f )]

It is essential to proceed step-by-step and to apply the point-wise mini-
mum operator after each elementary geodesic dilation in order to con-
trol the expansion of the marker image. Indeed, the geodesic dilation
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is lower or equal to the corresponding conditional dilation:

δ(n)g (f ) ≤ δ(n)(f )∧ g

Geodesic erosion. The geodesic erosion is the dual transformation of
the geodesic dilation with respect to set complementation:

ε(1)g (f ) = ε(1)(f )∨ g (21.31)

where f ≥ g and ε(1) is the elementary erosion. Hence, the marker im-
age is first eroded and second the point-wise maximum with the mask
image is calculated.

The geodesic erosion of size n of a marker image f with respect
to a mask image g is obtained by performing n successive geodesic
erosions of f with respect to g:

ε(n)g (f ) = ε(1)g [ε(n−1)
g (f )]

Morphological reconstruction. Geodesic dilations and erosions of a
given size are seldom used in practice. However, when iterated until
stability, they allow the definition of powerful morphological recon-
struction algorithms.

Definition. The reconstruction by dilation of a mask image g from a
marker image f (f ≤ g) is defined as the geodesic dilation of f with
respect to g until stability and is denoted by Rg(f):

Rg(f) = δ(i)g (f )

where i is such that δ(i)g (f ) = δ(i+1)
g (f ).

The reconstruction by dilation on 1-D gray-tone signals is illustrated
in Fig. 21.12. In this figure, stability is reached after the fifth geodesic
dilation.

The morphological reconstruction by dilation of a mask image from
a given marker image is an increasing (f1 ≤ f2 ⇒ Rg(f1) ≤ Rg(f2)),
antiextensive (Rg(f) ≤ g), and idempotent (RRg(f)(f ) = Rg(f)) trans-
formation. It is therefore an algebraic opening.

The reconstruction by erosion of a mask image g from a marker
image f (f ≥ g) is defined as the geodesic erosion of f with respect to
g until stability is reached. It is denoted by R?g (f):

R?g (f) = ε(i)g (f )

where i is such that ε(i)g (f ) = ε(i+1)
g (f )
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Figure 21.12: Morphological reconstruction by dilation of a 1-D signal g from
a marker signal f . The geodesic dilation of size 5 of the marker signal with
respect to the mask signal g is equivalent to the reconstruction of g from f
since further geodesic dilations do not modify the result anymore: a 1-D marker
signal f and mask signal g; b geodesic dilation of size 1 of f with respect to g;
c geodesic dilation of size 2 of f with respect to g; d geodesic dilation of size
3 of f with respect to g; e geodesic dilation of size 4 of f with respect to g; f
geodesic dilation of size 5 of f with respect to g.

On the choice of the mask and marker images. Morphological re-
construction algorithms are at the basis of numerous valuable image
transformations. These algorithms do not require choosing an SE nor
setting its size. The main issue consists in selecting an appropriate
pair of mask/marker images. The image under study is usually used as
mask image. A suitable marker image is then determined using:

1. Knowledge about the expected result

2. Known facts about the image or the physics of the object it repre-
sents

3. Some transformations of the mask image itself

4. Other image data if available (i. e., multispectral and multitemporal
images)

5. Interaction with the user (i.e., markers are manually determined)

One or usually a combination of these approaches is considered. The
third one is the most utilized in practice but it is also the most criti-
cal: one has to find an adequate transformation or even a sequence of
transformations. As the marker image has to be greater (respectively,
less) than the mask image, extensive (respectively, antiextensive) trans-
formations are best suited for generating them.
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21.3.7 Reconstruction-based operators

Particles connected to the image border. In many applications it
is necessary to remove all particles connected to the image border.
Indeed, they may introduce some bias when performing statistics on
particle measurements. Particles connected to the image border are
extracted using the input image as mask image and the intersection
between the input image and its border as marker image. The marker
image contains therefore seeds for each particle connected to the image
border and the reconstruction outputs the image of all these particles.
Note that large blobs have a higher probability to intersect the image
border than small blobs. Statistical methods must be considered for
compensating this bias.

The removal of objects connected to the image border can be ex-
tended to gray-scale images. In this latter case, the marker image equals
zero everywhere except along its border where the values of the input
image are considered.

Removal of holes of a binary image. We define the holes of a binary
image as the set of background components that are not connected to
the image border. It follows that the complement of the background
component(s) that touch(es) the image border outputs an image whose
holes have been suppressed. This can be achieved with a reconstruc-
tion by erosion where the mask image equals the input image and the
marker image an image of constant value tmax having the same border
values as the input image. This definition is suited to the processing of
gray-tone images (see example in Volume 3, Chapter 19).

Double threshold. The double threshold operator DBLT consists in
thresholding the input image for two ranges of gray-scale values, one
being included in the other. The threshold for the narrow range is then
used as a seed for the reconstruction of the threshold for the wide
range:

DBLT[t1≤t2≤t3≤t4](f ) = RT[t1 ,t4](f )[T[t2,t3](f )]

The resulting binary image is much cleaner than that obtained with a
unique threshold. Moreover, the result is more stable to slight modifi-
cations of threshold values. The double threshold technique is some-
times called hysteresis threshold [15].

Regional extrema. Image minima and maxima are important morpho-
logical features. They often mark relevant image objects: minima for
dark objects and maxima for bright objects. In morphology, the term
minimum is used in the sense of regional minimum, that is, a mini-
mum whose extent is not necessarily restricted to a unique pixel: A
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Figure 21.13: A regional minimum at level 1 in the hexagonal grid.

regional minimum M of an image f at elevation t is a connected com-
ponent of pixels with the value t whose external boundary pixels have a
value strictly greater than t. An example of regional minimum is given
in Fig. 21.13. We denote by RMIN the operator extracting all regional
minima of an image.

The regional maxima RMAX of an image are equivalent to the re-
gional minima of the complement of this image: RMAX = RMIN�. The
extrema of an image are defined as the union of its regional minima
and maxima.

The set of all regional maxima RMAX of an image f can be obtained
by performing the following morphological reconstruction by dilation:

RMAX(f ) = f −Rf (f − 1) (21.32)

If the image data type does not support negative values, the following
equivalent definition should be considered:

RMAX(f ) = f + 1−Rf+1(f ) (21.33)

Similarly, the regional minima RMIN of an image f are given by

RMIN(f ) = R?f (f + 1)− f (21.34)

The detection of minima is illustrated in Fig. 21.14.

Minima imposition. The minima imposition technique [16] concerns
the filtering of the image minima. It assumes that markers of relevant
image features have been determined. The marker image fm is then
defined as follows for each pixel x:

fm(x) =
{

0, if x belongs to a marker
tmax, otherwise

The imposition of the minima of the input image g is performed in two
steps. First, the point-wise minimum between the input image and the
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a

f

f+1
b

Rf (f+1)*

f

Figure 21.14: Minima detection by reconstruction: subtracting f from R?f (f +
1) provides a mask of the minima of f : a 1-D signal f ; b Reconstruction by
erosion of f from f + 1.

a

f

fm

b

(f+1)∧fm

fm
c

R[(f+1)∧fm]fm
*

Figure 21.15: Minima imposition technique. The input signal f contains 7
minima. The two minima of the marker signal fm are imposed to the input
signal by using a morphological reconstruction by erosion: a Input signal f and
marker signal fm; b Point-wise minimum between f + 1 and fm: (f + 1)∧ fm
c Reconstruction of (f + 1)∧ fm from the marker function fm.

marker image is computed: f ∧ fm. By doing so, minima are created
at locations corresponding to the markers (if they do not already exist)
and we make sure that the resulting image is lower or equal to the
marker image. Moreover, two minima to impose may already belong to
a minima of f at level 0. It is therefore necessary to consider (f + 1)∧
fm rather than f ∧ fm. The second step consists in a morphological
reconstruction by erosion of (f + 1)∧ fm from the marker image f :

R?[(f+1)∧fm](fm)

The imposition of minima is illustrated in Fig. 21.15 on a 1-D signal.
The same developments apply for maxima imposition techniques.

Opening/closing by reconstruction. The opening by reconstruction
of size n an image f is defined as the reconstruction of f from the
erosion of size n of f :

γ(n)R (f ) = Rf [ε(n)(f )] (21.35)

It is an algebraic opening. Contrary to the morphological opening, the
opening by reconstruction preserves the shape of the components that
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a b c

Figure 21.16: Opening by reconstruction of a binary image: c the output image
is the reconstruction of a the original image f using b the erosion as marker
image (erosion of f by a square SE).

a b c

Figure 21.17: Morphological closing and morphological closing by reconstruc-
tion of an image of a container plate: a Image of a container plate f ; b Closing
of f by a 15×15 square; c Closing by reconstruction of f with the same square.

are not removed by the erosion: All image features that cannot con-
tain the structuring element are removed, the others being unaltered.
This is illustrated in Fig. 21.16 for a binary image. The original im-
age (Fig. 21.16a) is first eroded (Fig. 21.16b). The eroded sets are then
used as seeds for a reconstruction of the original image. This leads to
Fig. 21.16c.

Closings by reconstruction are defined by duality:

φ(n)R (f ) = R?f [δ(n)(f )] (21.36)

The morphological closing and closing by reconstruction of a container
plate is shown in Fig. 21.17.

The structuring element considered for both closings is a large square.
The dark image structures that have been completely filled by the mor-
phological closing remain closed after the reconstruction. This hap-
pens for the 0 and the 2 surrounded by a rectangle box.

The following order relationships hold:

γ ≤ γR ≤ I ≤ φR ≤ φ.

Opening and closing by reconstruction are used for processing signals
of at least two dimensions. Indeed, the opening (respectively closing) by
reconstruction of 1-D signals is always equivalent to its morphological
opening (respectively closing).
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21.3.8 Geodesic distance and skeleton by influence zones

Binary geodesic transformations have been first introduced in image
analysis using the concept of geodesic distance [17, 18]: the geodesic
distance dA(p,q) between two pixels p and q in A is the minimum of
the length L of the path(s) P = (p1, p2, . . . , pl) joining p and q and
included in A:

dA(p,q) =min{L(P) | p1 = p, pl = q and P ⊆ A}

The geodesic skeleton by influence zones [18] stems directly from the
definition of the geodesic distance. Let X be a set composed of the
union of connected components Ki and included in a larger connected
set A. The geodesic influence zone IZA(Ki) of a connected component
Ki of X in A is the locus of points of A whose geodesic distance to Ki
is smaller than their geodesic distance to any other component of X:

IZA(Ki) = {p ∈ A,∀ j ∈ [1,N] \ {i}, dA(p,Ki) < dA(p,Kj)}

The use of geodesic distances for interpolating the deformation of
a curve into another is detailed in Volume 3, Section 19.2. Geodesic
influence zones are at the basis of the definition of the watershed trans-
formation presented in Section 21.5.4.

21.3.9 Hit-or-miss

Hit-or-miss transformations [1] involve SEs composed of two sets: the
first has to fit the object under study while the second has to miss it.
Hence, the name fit-and-miss would have been more appropriate. Hit-
or-miss transformations are applied to binary images for extracting
neighborhood configurations such as those corresponding to isolated
background and foreground pixels. Adding all pixels having a given
configuration to an image leads to the definition of thickenings and
subtracting them from the image defines the thinning operator. Thin-
nings are at the basis of discrete algorithms for computing the skeleton
of a set.

The basic idea behind the hit-or-miss transform consists in extract-
ing image pixels of a binary image having a given neighboring config-
uration such as a foreground pixel surrounded by background pixels
(i. e.„ an isolated foreground pixel). The neighboring configuration is
therefore defined by two disjoint sets, the first for the object pixels
and the second for the background pixels. These two sets form what
we call a composite SE that has a unique origin, that is, both sets share
the same origin.

In order to perform a hit-or-miss transform, the SE is set to every
possible position of the image. At each position, the following question
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B1B2

X

B

HMT(X,B)

Figure 21.18: Hit-or-miss transformationHMT of a set X by a composite struc-
turing element B (B1 is the gray disk and B2 the white disk, the origin of both
disks is located at the center of B1).

is considered “Does the first set fit the foreground while, simultaneously,
the second set misses it (i.e., fits the background)?”. If the answer is
affirmative, then the point defined by the origin of the SE is a point of
the hit-or-miss transformation of the image. Let us now formalize this
definition in terms of morphological transformations.

The hit-or-miss transformation HMT of a set X by a composite
structuring element B = (B1, B2) is the set of points, x, such that when
the origin of B coincides with x, B1 fits X and B2 fits Xc :

HMTB(X) = {x | (B1)x ⊆ X, (B2)x ⊆ Xc} (21.37)

The hit-or-miss transformation of a set X by a composite structuring
element B is sometimes denoted by X ç B. Using the definition of the
erosion Eq. (21.11), the HMT can be written in terms of an intersection
of two erosions:

HMTB(X) = εB1(X)∩ εB2(Xc) (21.38)

By definition, B1 and B2 have the same origin. They also need to be
disjoint sets (i.e., B1 ∩ B2 = ∅), otherwise the hit-or-miss would output
the empty set whatever X.

An example is provided in Fig. 21.18. Both SEs of the composite SE
B are disks but they have a common origin located at the center of the
gray disk B1.

It follows that B2 does not contain its origin. Points of the hit-or-
miss transform of the set X by the composite SE B (see right-hand side
of the figure) are such that when the origin of B coincides with each
of these points, the disk B1 fits X and, simultaneously, the disk B2 fits
the background of X. Hence, the hit-or-miss transformation extracts
all points of the image having a neighborhood configuration as defined
by the composite SE B.
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21.3.10 Thinning and Thickening

Thinnings consist in removing the object pixels having a given config-
uration. In other words, the hit-or-miss transform of the image is sub-
tracted from the original image. Contrary to hit-or-miss transforms,
there exists a definition of thinnings for gray-scale images.

Binary case. The thinning of a set or binary image X by a composite
SE B is denoted2 by X©B and defined as the set difference between X
and the hit-or-miss transform of X by B:

X© B = X \HMTB(X) (21.39)

The origin of the SE must belong to B1 the set of object pixels, otherwise
the operation comes down to the identity transform. By definition,
thinnings are antiextensive and nonincreasing operators.

Gray-scale case. Due to their nonincreasingness, thinnings defined in
Eq. (21.39) cannot be extended to gray-scale images using the threshold
decomposition principle. However, there exists a definition for gray-
scale image that comes down to Eq. (21.39) when applied to binary
images [19] and Beucher [20], Beucher [7]. The principle is the follow-
ing. The gray scale value of the image at position x is set to the largest
value of the image within the neighborhood defined by the background
pixels of the SE if and only if the smallest value of the image within the
neighborhood defined by the object pixels of the SE equals the image
value at position x, otherwise the gray-scale value of the image at posi-
tion x is not modified (remember that, for a thinning, the origin of the
SE must belong to the set B1 of object pixels of the SE):

(f © B)(x) =


[δB2(f )](x)

if [δB2(f )](x) < f(x) and

f(x) = [εB1(f )](x)

f(x) otherwise

(21.40)

In this equation, the dilated value can be smaller than the original value
because the SE B2 does not contain its origin. The definition for binary
images is a particular case of this definition. Indeed, the dilation by
B2 equals zero if all points of B2 fit the background of the set and the
erosion by B1 equals one if and only if all points of B1 fit the foreground.

Thickenings consist in adding background pixels with a specific con-
figuration to the set of object pixels.

2Beware that in the literature, the symbol ◦ is sometimes used for the morphological
opening operator (and • for the morphological closing).
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Binary case. The thickening of a binary image or set X by a composite
SE B is denoted by X � B and defined as the union of X and the hit-or-
miss transform of X by B:

X � B = X ∪HMTB(X)

For a thickening, the origin of the SE must belong to the set B2 of back-
ground pixels. Thickenings are extensive and nonincreasing transfor-
mations. Thinnings and thickenings are dual transformations:

X � B = (Xc© Bc)c (21.41)

where B = (B1, B2) and Bc = (B2, B1)

Gray-scale case. The thickening of a gray-scale image by a composite
SE B at a pixel x is defined as the eroded value of the image by B2 if this
value is larger than the original image value at x and if the dilated value
by B1 is equal to this original image value; otherwise the thickening
remains at the original value:

(f � B)(x) ={
[εB2(f )](x), if [δB1(f )](x) = f(x) and f(x) < [εB2(f )](x),
f (x), otherwise

21.4 Efficient computation of morphological operators

21.4.1 Distance transforms

The reference sequential algorithm for computing city-block and chess-
board distance functions (see Section 21.2.5) is due to Rosenfeld and
Pfaltz [21]. It requires one forward and one backward image sequential
scan. Backward neighborsN−G are considered for forward scans and for-
ward neighbors N+G for backward scans. Backward neighbors of a pixel
are the already processed neighbors of this pixel when performing a
forward scan (and vice versa for the forward neighbors). For example,
the 4-connected backward neighbors N−4 of a pixel are its left and top
neighbors, the 4-connected forward neighbors N+4 being the right and
down pixels. Once the two scans have been performed, the input binary
image f holds the distance function:

1. Forward image scan

2. if f(p) = 1

3. f(p)← 1+min{f(q) | q ∈ N−G (p)}
4. Backward image scan

5. if f(p) ≠ 0
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6. f(p)←min[f (p),1+min{f(q) | q ∈ N+G (p)}]
The reference sequential algorithm for computing Euclidean dis-

tance transforms is due to Danielsson [22]. Distance transforms in
arbitrary dimensions are discussed in [23].

21.4.2 Erosions and dilations

The raw algorithm for computing erosions or dilations consists in con-
sidering for every pixel all the neighbors defined by the SE and calculat-
ing the min or max value among them (see Eqs. 21.13 and 21.17). There
are therefore n− 1 min/max comparisons per image pixel for an SE of
n pixels. This number of operations can often be reduced drastically
by using appropriate algorithms and data structures. These techniques
are reviewed hereafter.

Linear structuring elements. In the case of linear structuring ele-
ments, van Herk [24] has proposed a recursive algorithm requiring three
min/max comparisons per image pixel whatever the length of the SE.
In his implementation, a 1-D input array f of length nx is divided into
blocks of size k, where k is the length of the SE in number of pixels.
The elements of f are indexed by indices running from 0 to nx − 1.
It is also assumed that nx is a multiple of k. Two temporary buffers
g and h of length nx are also required. In the case of dilation, the
maximum is taken recursively inside the blocks in both the right and
left directions. When both g and h have been constructed, the result
for the dilation r at any index x is given by considering the maximum
value between g at position x and h at position x+k−1. This recursive
dilation algorithm can be written as follows:

g(x) =
{
f(x) if x = 0, k, . . . , (m− 1)k
max[g(x − 1), f (x)] otherwise

h(x) =
{
f(x) if x =mk− 1, (m− 1)k− 1, . . . , k− 1
max[h(x + 1), f (x)] otherwise

r(x) = max[h(x),g(x + k− 1)]

This algorithm has also been presented by Gil and Werman [25]. It has
been extended to plain and periodic lines at arbitrary angles in [26].

Decomposition of SEs. Decompositions of structure elements as per
Eqs. (21.19) and (21.20) are used to speed up the computations of ero-
sions and dilations. For example, dilating or eroding an image with
a hexagon having n pixels along its sides is equivalent to dilating or
eroding the image successively with three line segments of n pixels
(see Fig. 21.19).
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= = =

Figure 21.19: Generation of an hexagon of size 2 by cascading three line seg-
ment dilations.

This reduces the number of comparisons from 3(n2−n) to 3(n−1)
or even 9 when using the recursive procedure described in the previous
section. A logarithmic decomposition of convex sets has been proposed
by van den Boomgaard and van Balen [27] and is based on the definition
of the extreme sets of a convex set [28].

Moving histogram technique. The frequency distribution of the gray-
scale values falling within the structuring element is computed and
used for determining the minimum or maximum values of the image
within this window. When processing the following pixel, the histogram
is updated by taking into account the pixels that come out of the win-
dow and those that come in. For example, in the case of a line segment
structuring element, there are only 2 such pixels whatever the length
of the line segment. The scanning order of the image pixels should be
chosen so as to minimize the number of pixels coming in and out.

This idea stems from the work of Huang et al. [29] on median and
rank filters. An adaptation to arbitrary-shaped structuring elements is
proposed in [30].

Fast binary erosions and dilations. As n pixels can be stored in an
n-bit data type word, a logical operator can be simultaneously applied
to n pixels using a unique bitwise operator. A description of this tech-
nique can be found for example in [27]. Moreover, the contours of the
objects of a dilated binary image can be obtained by processing the
contours of the original objects rather than processing the whole im-
age pixels. Zamperoni [31] implemented a technique for dilating and
eroding binary images using the Freeman boundary coding scheme [32].
Vincent [33] has shown that these ideas can be extended to arbitrary
SEs.

Ragnemalm [34] developed an algorithm for fast erosion and dila-
tion by contour processing and thresholding of distance maps using a
queue of stacks for an ordered peeling of a set. A version of the al-
gorithm implementing Euclidean peelings is also presented. van Vliet
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and Verwer [35] developed a queue-based contour processing method
for fast binary neighborhood operation. Finally, Ji et al. [36] propose a
fast algorithm for arbitrary structuring elements using interval coding.

In summary, a careful analysis of the image and structuring ele-
ment should be considered before implementing a morphological op-
erator. Moreover, we will see in the following sections that advanced
morphological transformations although defined from combinations
of erosions and dilations are often speeded up by using specific algo-
rithmic techniques. A comparison between parallel, sequential, chain-
code-based, and queue-based implementations is discussed in [37].

21.4.3 Openings and granulometries

Openings. By definition, morphological openings and closings can be
obtained from the erosion and dilation primitives discussed in the pre-
vious section. In some cases [38], faster algorithms can be obtained by
implementing the geometric interpretation of the definition of open-
ings, Eq. (21.25).

Algebraic openings cannot be defined as an erosion followed by a
dilation with the transposed SE nor in terms of SE fits. The implementa-
tion of the definition of the area opening in terms of a union of openings
with all connected SEs having a given number of pixels would require
a too large number of erosions and dilations as the number of con-
nected SEs with n pixels grows exponentially with n. This led Vincent
[39] to propose an efficient algorithm based on priority queue or heap
data structures. An evaluation of several implementations of these data
structures for computing morphological transformations can be found
in [40].

Granulometries. The opening of size λ+1 of an image f can be written
as follows:

γ(λ+1)B = δ(λ+1)BεBελB (21.42)

Provided that the erosion at the previous step has been stored, the
opening requires an erosion of size 1 and a dilation of size λ + 1. If
the SE is obtained by cascading line segments, the recursive procedure
described in Section 21.4.2 should be used because the processing time
for computing an opening will be the same whatever the size of the SE.

Granulometries of binary images with a family of isotropic SEs can
be further speeded up by computing the opening function of the input
binary image. The opening function OF maps each pixel of the input
binary image X with the size of the opening that removes it from X:

[OF(X)](x) =max{λ |x ∈ γλB(X)}
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Therefore, the histogram of the opening function is equivalent to the
derivative of the granulometric curve of the original binary image. This
technique is detailed in [41] together with a fast implementation based
on a sequential algorithm similar to that used for computing distance
functions. It has been extended by Nacken [42] to opening functions
based on chamfer metrics and Vincent [43] to granulometries along
horizontal, vertical, or diagonal lines in gray-scale images. A fast imple-
mentation of local gray-scale granulometries using tree data structures
is proposed in [44].

21.4.4 Geodesic transforms

Fast morphological reconstruction. The raw algorithm for imple-
menting a morphological reconstruction by dilation of a mask image
g from a marker image f consists in iterating sequences of elemen-
tary dilations and point-wise image transformations. This algorithm is
best suited for parallel processors. On sequential computers, a better
approach is to perform the point-wise minimum while computing the
dilation. In this latter case, a succession of forward and backward im-
age sequential scans are necessary. Backward neighborsN−G are consid-
ered for forward scans and forward neighbors N+G for backward scans.
During each scan, the dilated value of each pixel of the marker image
is computed using the appropriate set of neighbors and it is directly
updated by the point-wise minimum with the corresponding pixel of
the mask image. By doing so, already processed pixels are taken into
account for processing further pixels. When stability is reached, the
marker image holds the desired reconstruction:

1. Repeat until stability

2. Forward scan of all pixels p
3. f(p)←min[g(p),max{f(q) | q ∈ N−G (p)∪p}]
4. Backward scan of all pixels p
5. f(p)←min[g(p),max{f(q) | q ∈ N+G (p)∪p}]

Using this algorithm, any reconstruction of a 1-D signal can be per-
formed in only two scans (forward and backward scans). On 2-D im-
ages, a higher number of scans is usually required to reach stability.
This number is image dependent. A detailed description of parallel,
sequential, and queue-based implementations is provided in [45].

Fast regional extrema detection. A fast algorithm for setting to the
minimum image value tmin all image pixels which does not belong to
a regional maximum has been proposed in [46]. The input image f is
first copied into the output image g (step 1). The procedure continues
by scanning the image (step 2) and checking, for each pixel of g having
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a value different from tmin (step 3), whether it has a neighbor of higher
intensity value (step 4). If yes, then all pixels connected to this pixel
and having the same intensity are set to zero (step 5):

1. g ← f
2. Scan of all pixels x
3. if (g(x) ≠ tmin)
4. if (∃y ∈ NG(x) | f(y) > f(x))
5. g(z)← tmin, ∀z ∈ γx{w | g(w) = f(x)}

At the end of this procedure, the pixels belonging to the regional
maxima keep their original value, the other ones being set to tmin. In the
algorithm, γx refers to the connected opening: γx(X) is reconstruction
of the connected component ofXmarked byx. Fast connected opening
γx can be implemented using stack data structures.

21.5 Morphological image processing

21.5.1 Correction of uneven illumination

An illumination gradient occurs when a scene is unevenly illuminated.
There is a need for correcting this effect because gray-scale measure-
ments and global threshold techniques cannot be applied to images of
unevenly illuminated scenes. The best solution is to optimize the light-
ing system so as to acquire evenly illuminated images but still this is
impossible in many practical situations. For instance, the background
‘illumination’ of an x-ray image of a manufactured metallic part of un-
even width is directly proportional to the width of this part and is there-
fore uneven: the larger the width, the darker the output intensity level.

If the image objects have all the same local contrast, that is, if they
are either all darker or brighter than the background, top-hat trans-
forms can be used for mitigating illumination gradients. Indeed, a top-
hat with a large isotropic structuring element acts as a high-pass filter.
As the illumination gradient lies within the low frequencies of the im-
age, it is removed by the top-hat. White top-hats are used for dark
backgrounds and black top-hats for bright backgrounds.

For example, Fig. 21.20a shows an badly illuminated image of seeds.
A closing with a large structuring element removes the seeds but pre-
serves the illumination function. The black top-hat or subtraction of
the original image from the closing provides us with an evenly illumi-
nated image (Fig. 21.20c). A more contrasted image can be obtained by
dividing the original image with its closing (Fig. 21.20d).

Note that in quality control applications where a series of objects are
acquired at a fixed position, another solution consists in capturing first
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a b

c d

Figure 21.20: Use of top-hat for mitigating inhomogeneous illumination: a
Original image f ; b Closing of f with a large square: φ(f); c Black top-hat:
BTH(f) =φ(f)− f ; d Division of f by φ(f).

an image without any object and then perform the point-wise division
of further image captures with this background image.

21.5.2 An erosion-based image measurement

An image measurement consists in reducing the image to some mean-
ingful numerical values. In this section, we show that erosions by a
pair of points can be used for extracting information such the direc-
tion of oriented image structures or the periodicity of periodic image
structures.

The covariance K of an image consists in measuring the volume3 of
the image eroded by a pair of points P1,~v Eq. (21.10):

K(f ;P1,~v) = Vol[εP1,~v (f )] (21.43)

In the case of binary images, the covariance is nothing but the surface
area of the intersection of the image with the image translated by a

3The volume of an image equals the sum of the gray-level intensities of all its pixels.
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a b

c

Figure 21.21: Erosion of an image with points separated by an increasing dis-
tance along the horizontal direction. When the distance equals the periodicity
of the dashed lines, these are not eroded: a An image f with periodic dashed
lines; b εP1,(11,0) (f ); c εP1,(21,0) (f ).

vector ~v :
K(X;P1,~v) = Area(X ∩X~v)

An example of erosion by a pair of points is provided in Fig. 21.21.
In practice, a family of pair of points is considered such as a pair of

points in a given direction separated by an increasing distance. A dia-
gram “Volume of erosion by a pair of points vs distance between these
points” is then plotted and interpreted for determining the periodicity
of periodic image structures. For example, the sum of the gray-levels
for erosions by points separated by an increasing distance along the
horizontal direction applied to Fig. 21.21a is shown in Fig. 21.22. The
peaks of this diagram are located at multiple of the distance separating
two successive dashed lines, that is, about 21 pixels (Fig. 21.21c).

The covariance can also be used to determine the orientation of
image structures automatically by considering a family of erosions by
a pair of equidistant points in various directions.

21.5.3 Filtering

Morphological filters are nonlinear filters suited to the selective removal
of image structures, the selection being based on their shape and lo-
cal contrast4. Contrary to linear filters, morphological filters preserve
sharp edges.

4The local contrast of an object tells us whether it is a dark object on a bright back-
ground or vice versa.
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Figure 21.22: Use of covariance for determining the periodicity of periodic
image structures: sum of gray-levels of erosion of Fig. 21.21a by the horizontal
pair of points P1,(i,0) vs i (i denotes the distance separating the pair of points).

Morphological filter definitions. The basic idea behind a morpholog-
ical filter is to suppress image structures selectively. These structures
are either noise or irrelevant image objects. It follows that the struc-
tures that are preserved should not be modified by further applications
of the same filter. This illustrates a key property of a morphological fil-
ter: the idempotence. In this sense, a morphological filtering operation
can be compared with the sifting of materials through a sieve: Once
the materials have been sifted, they will not be further sifted by pass-
ing them through the same sieve. A morphological filter also shares the
increasing property of a sifting process. This property ensures that the
order relationships between images are preserved.

The idempotence and increasing properties are necessary and suf-
ficient conditions for an image transformation to be a morphological
filter:

Ψ , morphological filter a Ψ is increasing and idempotent.

Consequently, closings are extensive morphological filters and open-
ings are antiextensive morphological filters. They are the basic mor-
phological filters.
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a b

c d

Figure 21.23: Opening as a union of openings: a The input image represents
a watermark on paper containing laid (horizontal) and chain (vertical) lines.
The union of openings shown in d using b horizontal and c vertical structuring
elements is an opening that can be used to extract laid and chain lines while
suppressing the watermark.

Design of a morphological filter. New filters can be designed by com-
bining elementary filters. However, all combinations are not allowed.
For instance, the composition of two openings is generally not an open-
ing nor a filter. In fact, the composition of two idempotent transfor-
mations is not necessarily an idempotent operation. In this section, we
detail parallel and sequential combinations of existing filters leading to
new filters.

Parallel combinations. Let us consider for example the image of a
watermark shown at the left of Fig. 21.23. Assume that we would like
to design a filter extracting both laid and chain lines while removing
the watermark. This can be simply achieved by calculating the union
of two openings performed in parallel: the first with a horizontal SE
and the second with a vertical SE.

It can be shown that this union of openings is extensive, idempo-
tent, and increasing. It follows that it is still an opening (in the alge-
braic sense). This example illustrates an important way of building new
openings from existing ones because any union of a series of openings
is still an opening. The dual rule applies for closings:
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1. Any union (or point-wise maximum) of openings is an opening:
(
∨
i γi) is an opening.

2. Any intersection (or point-wise minimum) of closings is a closing:
(
∧
i φi) is a closing.

Such parallel combinations are often used for filtering elongated
image structures. In this case, openings (for bright objects) or closings
(for dark objects) with line segments in several directions are consid-
ered (the longer the SE, the larger the number of directions).

Sequential combinations. We have already mentioned that the com-
position of two openings is not necessarily a filter. However, the com-
position of two ordered filters is always a filter. The pair of ordered
filters considered is often an opening γ and the dual closing φ. An
opening filters out bright image structures while a closing has the same
filtering effect but on the dark image structures. If the image is cor-
rupted by a symmetrical noise function, it is therefore interesting to
use a sequential combination such as an opening followed by a closing
or vice versa, the selection depending on the local contrast of the image
objects that should be extracted.

Compositions of ordered filters leading to new filters are given here-
after:

γφ, φγ, γφγ, and φγφ are filters

This rule is called the structural theorem [47]. Moreover, the following
ordering relationships are always satisfied:

γ ≤ γφγ ≤ γφ
φγ

≤ φγφ ≤ φ

The φγ filter is often called an open-close filter as it consists of an
opening followed by a closing. Close-open filters are defined by dual-
ity. Although open-close and close-open filters have almost the same
filtering effect, they are not equivalent. Moreover, there exists no order
relationship between γφ and φγ nor between γφ and I or φγ and I.

Consecutive applications of openings and closings are at the basis
of the alternating sequential filters described in the next section.

Alternating sequential filters. As detailed in the previous section,
the filtering of an image corrupted by dark and bright noisy structures
can be achieved by a sequence of either close-open or open-close fil-
ters. When the level of noise is high in the sense that it contains noisy
structures over a wide range of scales, a unique close-open or open-
close filter with a large SE does not lead to acceptable results. For
example, Fig. 21.24a shows a noisy interferogram that is filtered by
open-close (Fig. 21.24b) and close-open (Fig. 21.24c) filters with 5 × 5
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a b c

d e f

g h i

Figure 21.24: Alternating sequential filters: a the original image is a subset of
a noisy interferogram. The first row shows a direct application of b an open-
close or c close-open filter with a 5 × 5 square; d to f display a series of ASFs
of increasing size and starting with a closing; g to i show ASFs starting with an
opening.

square. Due to the high level of noise, the opening of the open-close
filter removes almost all structures leading thereby to an almost dark
image (Fig. 21.24b). The dual behavior is obtained with the close-open
filter (Fig. 21.24c).

A solution to this problem is to alternate closings and openings,
beginning with a small structuring element and then proceeding with
ever increasing structuring elements until a given size is reached. This
sequential application of open-close (or close-open) filters is called an
alternating sequential filter [48, 49].
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Definition. Let γi be an opening and φi be the dual closing of size
i. Following the structural theorem the following combinations are all
morphological filters:

mi = γiφi, ri = φiγiφi
ni = φiγi, si = γiφiγi

An alternating sequential filter of size i is defined as the sequential
combination of one of these filters, starting the sequence with the filter
of size 1 and terminating it with the filter of size i:

Mi = mi · · ·m2m1, Ri = ri · · ·r2r1

Ni = ni · · ·n2n1, Si = si · · · s2s1

It can be proved that alternating sequential filters (ASFs) are all mor-
phological filters. Moreover, they satisfy the following absorption law:

i ≤ j ⇒ ASFjASFi = ASFj and ASFiASFj ≤ ASFj
Note that Mi and Ni constitute a pair of dual filters that are not or-

dered. The final result depends therefore on whether an opening or the
dual closing is used as first filter in the sequence. Although ASFs are not
self-dual, they act in a much more symmetrical way than closings and
openings. The ASFs are particularly suited to noise reduction before
applying other morphological operators like gradients and top-hats.

Example. Examples of ASFs are given in the two last rows of Fig. 21.24.
The goal is to filter the noisy interferogram shown in Fig. 21.24a. The
used structuring elements are squares of width equal to 2i + 1 pixels
where i denotes the size of the ASF. Figure 21.24d to f show ASF of type
M . The ASF of typeN are illustrated in Fig. 21.24g to i. Notice that both
filters suppress noisy structures of the original image. The larger the
size of the ASF, the larger the size of the structures that are removed.

Toggle mappings. The idea of toggle mappings stems from associat-
ing an image with:

1. a series of transformations ψi
2. a toggling criterion, that is, a decision rule that determines at each

pixel x which ψi must be considered.

A trivial example of a toggle mapping is the threshold operator. The
primitives are the white and black images, and the decision rule in-
volves at pixel x, the value f(x) and that of a constant, namely the
threshold level. In general, the primitives are derived from the func-
tion f itself and the toggling criterion is chosen in order to optimize
either noise reduction or contrast enhancement.
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a b

Figure 21.25: Morphological center based on two primitives: a A 1-D signal
together with its open-close and close-open filters by an SE of 2 pixels. b The
corresponding morphological center.

a b

Figure 21.26: b Morphological center of the interferogram shown in a using
the dual pair of ASFs M5 (Fig. 21.24f) and N5 (Fig. 21.24i) as primitives. This
filter is self-dual.

Morphological center. Starting from a pair of image transformations,
the output value of the morphological center [50, 51] at a given pixel
is the median value of the triplet defined by the original image value
and the two transformed values. By doing so, it can be seen that the
output value will be different from the original value if and only if both
transformed values are larger (or smaller) than the original image value.
In this latter case, the output value will always be the value that is closer
to the original image value. A formal definition suited to a series of
transformations is presented hereafter.

Let {ψ1,ψ2, . . . ,ψn} be a family of mappings. The morphological
center β with respect to this family is defined as follows:

β = (I ∨
∧
i
ψi)∧

∨
i
ψi (21.44)

When there are only two mappings, the morphological center at point
x is nothing but the median value of f , ψ1(f ), and ψ2(f ) at x. This is
illustrated in Fig. 21.25 for a 1-D signal.
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a b

Figure 21.27: Two-state toggle contrast κ2 of a 1-D signal using an erosion and
a dilation with a line segment of 5 pixels as primitives. Note that steeper edge
slopes are obtained without smoothing effect.

The morphological center is not an idempotent transform. When
theψi’s are all increasing mappings, they transmit to β their increasing
property. Moreover, if pairs of dual transformations are used for the
ψi’s, the resulting center is self-dual. The self duality of an operator
means that it processes dark and bright image structures symmetri-
cally. Note that using an opening and a closing as primitives does not
make sense because the morphological center will be the identity trans-
form. In practice, one has to consider dual pairs of compositions such
as {φγ, γφ}, {γφγ, φγφ}, or even an ASF and its dual as primitives,
that is, pair of dual filters that are not ordered with respect to the iden-
tity transform. The morphological center of the noisy interferogram
shown in Fig. 21.24a and using the dual pair of ASF filters M5 and N5

as primitives is shown in Fig. 21.26.

Toggle contrast. Contrary to morphological centers, toggle contrast
mappings κ modify the image f at pixel x only when f(x) lies within
the interval defined by the minimum and the maximum of all ψi(f)
at pixel x [52, 53, 54]. Let us for instance define the two-state toggle
contrast κ2 with an antiextensive transformation ψ1 and an extensive
transformation ψ2 as primitives:

κ2(x) =
{
ψ2(x), if ψ2(x)− I(x) < I(x)−ψ1(x)
ψ1(x), otherwise

(21.45)

In other words, at each point x, κ2 equals the value of the transform
that is the closest to the original function. An example is provided in
Fig. 21.27 for a 1-D signal and on an image in Fig. 21.28.

Toggle contrasts based on erosions and dilations sharpen the edges
much more than those based on openings and closings. Contrary to
top-hat contrast operators [55], erosion/dilation toggle contrasts sharp-
en the edges but do not boost the contrast of image structures smaller
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a b

Figure 21.28: Two-state toggle contrast κ2 for sharpening a blurred fluorescein
angiogram of the eye. The primitives are the erosion and dilation by a 3 × 3
square: a original angiogram f ; b κ2(f ).

than the considered SE. Also, they preserve the dynamic range of the
input data but do destroy many image structures.

21.5.4 Segmentation

Assuming that image objects are connected regions of rather homoge-
neous intensity levels, one should be able to extract these regions by
using some neighborhood properties rather than purely spectral prop-
erties as for histogram-based segmentation techniques. Indeed, a high
gray-scale variation between two adjacent pixels may indicate that these
two pixels belong to different objects.

The morphological approach to image segmentation combines re-
gion growing and edge detection techniques: It groups the image pixels
around the regional minima of the image and the boundaries of adja-
cent groupings are precisely located along the crest lines of the gradi-
ent image. This is achieved by a transformation called the watershed
transformation.

The watershed transformation. Let us consider the topographic rep-
resentation of a gray-level scale image. Now, let a drop of water fall on
such a topographic surface. According to the law of gravitation, it will
flow down along the steepest slope path until it reaches a minimum.
The whole set of points of the surface whose steepest slope paths reach
a given minimum constitutes the catchment basin associated with this
minimum. The watersheds are the zones dividing adjacent catchment
basins. This is illustrated in Fig. 21.29a.

Provided that the input image has been transformed so as to output
an image whose minima mark relevant image objects and whose crest
lines correspond to image object boundaries, the watershed transfor-
mation will partition the image into meaningful regions. This approach
to the segmentation of gray-scale images is detailed below.



21.5 Morphological image processing 675

a

watersheds

catchment basins

minima

a
water level

dam
dam

minima

Figure 21.29: a Minima, catchment basins, and watersheds on the topographic
representation of a gray-scale image. b Building dams at the places where the
water coming from two different minima would merge.

Definition in terms of flooding simulations. The definition of the
watersheds in terms of water flows is not well-suited to an algorithmic
implementation as there are many cases where the flow direction at a
given point is not determined (e. g., flat regions or pixels having more
than one neighbor pixel with the lowest gray-scale value). However,
a definition in terms of flooding simulations alleviates all these prob-
lems. Consider again the gray tone image as a topographic surface and
assume that holes have been punched in each regional minima of the
surface. The surface is then slowly immersed into a lake. Starting from
the minima at the lowest altitude, the water will progressively flood
the catchment basins of the image. In addition, dams are erected at
the places where the waters coming from two different minima would
merge (see Fig. 21.29b). At the end of this flooding procedure, each
minimum is completely surrounded by dams, which delineate its as-
sociated catchment basin. The resulting dams correspond to the wa-
tersheds. They provide us with a partition of the input image into its
different catchment basins.

In other words, the set of the catchment basins CB of the gray-scale
image f is equal to the set Xhmax , that is, once all levels have been
flooded:

(i) Xhmin = Thmin(f )
(ii) ∀ h ∈ [hmin, hmax − 1], Xh+1 = RMINh+1(f )∪ IZTt≤h+1(f )(Xh)

where RMINh(f ) denotes the regional minima of f at level h. The wa-
tersheds WS of f correspond to the boundaries of the catchment basins
of f . An efficient queue-based algorithm is detailed in [56, 57].

Marker-controlled segmentation. The basic idea behind the marker-
controlled segmentation is to transform the input image in such a way
that the watersheds of the transformed image correspond to meaning-
ful object boundaries. The transformed image is called the segmen-
tation function. In practice, a direct computation of the watersheds
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Model for object boundaries
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Input image
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Watershed transformation
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Model for object markers

User interaction

Figure 21.30: Morphological paradigm for image segmentation. Image under-
standing is done at the very first stages of the process. The ‘intelligent’ part of
the process is when it generates the marker and the segmentation functions.
Then, the rest of the procedure is non-parametric.

of the segmentation function produces an over-segmentation, which is
due to the presence of spurious minima. Consequently, the segmen-
tation function must be filtered before computing its watersheds. Any
filtering technique may be considered. However, the minima imposition
technique described in Section 21.3.7 is the best filter in most applica-
tions. This technique requires the determination of a marker function
marking the relevant image objects and their background. The corre-
sponding markers are then used as the set of minima to impose to the
segmentation function. The schematic of this approach is summarized
in Fig. 21.30.

The object markers are extracted from the image using some fea-
ture detectors. The choice of appropriate feature detectors relies on
some a priori knowledge or assumptions about the properties of an
image object. Common features include image extrema, flat zones (i. e.,
connected components of pixels of constant gray-level value), zones of
homogeneous texture, etc. In some applications, the markers may be
defined manually. One marker per region is necessary as there will be
a one-to-one correspondence between the markers and the segments
of the final partition. However, if the class of object marked by each
marker is known, several markers of the same class may be considered
for each image object. The size of a marker can range from a unique
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pixel to a large connected component of pixels. When processing noisy
images, large markers perform better than small ones.

The determination of the segmentation function is based on a model
for the definition of an object boundary. For example, if the image
objects are defined as regions of rather constant gray-scale values, a
morphological gradient operator will enhance the object boundaries.
If the image objects are regions of homogeneous texture, operators
highlighting the transition between two textures should be considered.

The object markers are then used as the set of markers to impose to
the segmentation function. Finally, the object boundaries are obtained
by computing the watersheds of the filtered segmentation function.

Meyer [58] proposed an extension of the watershed algorithm pre-
sented in [57]. It consists in combining the minima imposition and the
computation of the watersheds into a unique step. This is achieved
by using a priority queue or an array of queues, one for each priority.
The flooding simulation is initiated from the external boundaries of the
markers, each pixel being inserted in a queue with a priority equal to
its gray-level in the original image. The flooding is then simulated by
processing the pixels at the lowest priority and successively inserting
their nonprocessed neighbors in the queue whose priority corresponds
to their gray-level (or the current priority level if the pixel value is less
than this priority level). The markers being labeled beforehand, an im-
age of labeled catchment basins is created while simulating the flooding
process. Further details can be found in [16].

Application to the separation of overlapping blobs. Images of round
objects like cells or coffee beans can be segmented by simple threshold-
ing techniques provided that the object gray-scale values are different
from those of the background. However, it may be that the resulting
blobs are connected or overlap each other. This is illustrated by the
image of cells shown in Fig. 21.3a. Granulometries can be used to es-
timate the average size of the cells as well as their number. However,
shape description of the individual blobs requires the prior separation
of all connected blobs. The marker-controlled segmentation provides
us with a powerful tool for solving this problem. Its principle is sum-
marized in Fig. 21.31.

The top left-hand side of the figure represents three blobs we would
like to separate. The inverse of the distance transform of these blobs
is an appropriate segmentation function because there is a one-to-one
correspondence between the regional minima of the inverted distance
function and the number of blobs. Moreover, the watershed lines of
this inverted distance function provide us with a suitable separation
of the blobs. Usually, the distance function must be filtered to remove
irrelevant maxima before applying the watershed transformation. Ad-
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Figure 21.31: Segmentation of overlapping blobs by watershedding the com-
plement of their distance function [57].

ditional applications of the watershed transformation to the segmenta-
tion of binary and gray-tone images are given in Volume 3, Chapters 12,
19, and 39.
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22.1 Introduction

Our world is fuzzy , and so are images, projections of the real world onto
the image sensor. Fuzziness quantifies vagueness and ambiguity, as
opposed to crisp memberships. The types of uncertainty in images are
manifold, ranging over the entire chain of processing levels, from pixel-
based grayness ambiguity over fuzziness in geometrical description up
to uncertain knowledge in the highest processing level.

The human visual system has been perfectly adapted to handle un-
certain information in both data and knowledge. It would be hard to
define quantitatively how an object, such as a car, has to look in terms
of geometrical primitives with exact shapes, dimensions, and colors.
Instead, we are using a descriptive language to define features that
eventually are subject to a wide range of variations. The interrelation
of a few such “fuzzy” properties sufficiently characterizes the object of
interest. Fuzzy image processing is an attempt to translate this ability
of human reasoning into computer vision problems as it provides an
intuitive tool for inference from imperfect data.

Where is the transition between a gray-value slope and an edge?
What is the border of a blurred object? Which gray values exactly belong
to the class of “bright” or “dark” pixels? These questions show, that
image features almost naturally have to be considered fuzzy. Usually
these problems are just overruled by assigning thresholds—heuristic or
computed—to the features in order to classify them. Fuzzy logic allows
one to quantify appropriately and handle imperfect data. It also allows
combining them for a final decision, even if we only know heuristic
rules, and no analytic relations.

Fuzzy image processing is special in terms of its relation to other
computer vision techniques. It is not a solution for a special task, but
rather describes a new class of image processing techniques. It pro-
vides a new methodology, augmenting classical logic, a component of
any computer vision tool. A new type of image understanding and
treatment has to be developed. Fuzzy image processing can be a sin-
gle image processing routine, or complement parts of a complex image
processing chain.

During the past few decades, fuzzy logic has gained increasing im-
portance in control theory, as well as in computer vision. At the same
time, it has been continuously attacked for two main reasons: It has
been considered to lack a sound mathematical foundation and to be
nothing but just a clever disguise for probability theory. It was prob-
ably its name that contributed to the low reputation of fuzzy logic.
Meanwhile, fuzzy logic definitely has matured and can be considered
to be a mathematically sound extension of multivalued logic. Fuzzy log-
ical reasoning and probability theory are closely related without doubt.
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They are, however, not the same but complementary, as we will show
in Section 22.1.3.

This chapter gives a concise overview of the basic principles and
potentials of state of the art fuzzy image processing, which can be
applied to a variety of computer vision tasks.

22.1.1 A brief history

In 1965, Zadeh introduced the idea of fuzzy sets, which are the exten-
sion of classical crisp sets [1]. The idea is indeed simple and natural:
The membership of elements of a set is a matter of grade rather than
just zero or one. Therefore, membership grade and membership func-
tions play the key role in all systems that apply the idea of fuzziness.
Prewitt was the first researcher to detect the potentials of fuzzy set
theory for representation of digital images [2]:

‘ ‘ . . . a pictorial object is a fuzzy set which is specified by some mem-
bership function defined on all picture points. From this point of view,
each image point participates in many memberships. Some of this un-
certainty is due to degradation, but some of it is inherent. The role of
object extraction in machine processing, like the role of figure/ground
discrimination in visual perception, is uncertainty-reducing and orga-
nizational. In fuzzy set terminology, making figure/ground distinc-
tions is equivalent to transforming from membership functions to
characteristic functions.”

In 1969, Ruspini introduced the fuzzy partitioning in clustering [3].
In 1973, the first fuzzy clustering algorithm called fuzzy c means was
introduced by Bezdek [4]. It was the first fuzzy approach to pattern
recognition. Rosenfeld extended the digital topology and image geo-
metry to fuzzy sets at the end of the 70s and beginning of the 80s
[5, 6, 7, 8, 9, 10, 11]. It was probably the most important step toward
the development of a mathematical framework of fuzzy image process-
ing because image geometry and digital topology play a pivotal role in
image segmentation and representation, respectively. One of the pio-
neers of fuzzy image processing is S. K. Pal. Together with coworkers,
he developed a variety of new fuzzy algorithms for image segmenta-
tion and enhancement [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
In the past decades, many other researchers have also investigated the
potentials of fuzzy set theory for developing new image processing
techniques. The width and depth of these investigations allow us to
speak of a new methodology in computer vision: fuzzy image process-
ing. But many questions should be answered: What actually is fuzzy
image processing? Why should we use it? Which advantages and dis-
advantages have fuzzy algorithms for image processing? In following
sections of this chapter, we will try to answer these questions.
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22.1.2 Basics of fuzzy set theory

The two basic components of fuzzy systems are fuzzy sets and oper-
ations on fuzzy sets. Fuzzy logic defines rules, based on combinations
of fuzzy sets by these operations. This section is based on the basic
works of Zadeh [1, 24, 25, 26, 27].

Crisp sets. Given a universe of discourse X = {x}, a crisp (conven-
tional) set A is defined by enumerating all elements x ∈ X

A = {x1, x2, . . . , xn} (22.1)

that belong to A. The membership can be expressed by a function fA,
mapping X on a binary value:

fA : X -→ {0,1}, fA =
{

1 if x ∈ A
0 if x ∉ A

(22.2)

Thus, an arbitrary x either belongs to A, or it does not, partial mem-
bership is not allowed.

For two sets A and B, combinations can be defined by the following
operations:

A∪ B = {x|x ∈ A or x ∈ B}
A∩ B = {x|x ∈ A and x ∈ B}

Ā = {x|x ∉ A, x ∈ X}
(22.3)

Additionally, the following rules have to be satisfied:

A∩ Ā = ∅, and A∪ Ā = X (22.4)

Fuzzy sets. Fuzzy sets are a generalization of classical sets. A fuzzy
set A is characterized by a membership function µA(x), which assigns
each element x ∈ X a real-valued number ranging from zero to unity:

A = {(x,µA(x))|x ∈ X} (22.5)

where µA(x) : X → [0,1]. The membership function µA(x) indicates
to which extend the element x has the attribute A, as opposed to the
binary membership value of the mapping function fA for crisp sets
Eq. (22.2).

The choice of the shape of membership functions is somewhat ar-
bitrary. It has to be adapted to the features of interest and to the final
goal of the fuzzy technique. The most popular membership functions
are given by piecewise-linear functions, second-order polynomials, or
trigonometric functions.

Figure 22.1 illustrates an example of possible membership func-
tions. Here, the distribution of an optical flow vector (Chapter 13),
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Figure 22.1: Possible membership functions for a the magnitude and b the
direction of an optical flow vector f .

is characterized by fuzzy magnitude, f = ‖f‖, and fuzzy orientation
angle, given by two independent sets of membership functions.

It is important to note that the membership functions do not nec-
essarily have to add up to unity:

µA(x)+ µB(x)+ . . . 6= 1 (22.6)

as opposed to relative probabilities in stochastic processes.
A common notation for fuzzy sets, which is perfectly suited for

fuzzy image processing, has been introduced by Zadeh [26]. Let X be a
finite set X = {x1, . . . , xn}. A fuzzy setA can be represented as follows:

A = µA(x1)
x1

+ . . .+ µA(xn)
xn

=
n∑
i=1

µA(xi)
xi

(22.7)

For infinite X we replace the sum in Eq. (22.7) by the following integral:

A =
∫
X

µA(x)
x

dx (22.8)

The individual elements µA(xi)/xi represent fuzzy sets, which consist
of one single element and are called fuzzy singletons. In Section 22.3.1
we will see how this definition is used in order to find a convenient
fuzzy image definition.

Operations on fuzzy sets. In order to manipulate fuzzy sets, we need
to have operations that enable us to combine them. As fuzzy sets are
defined by membership functions, the classical set theoretic operations
have to be replaced by function theoretic operations. Given two fuzzy
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sets A and B, we define the following pointwise operations (∀x ∈ X):

equality A = B a µA(x) = µB(x)
containment A ⊂ B a µA(x) ≤ µB(x)
complement Ā, µĀ(x) = 1− µA(x)
intersection A∩ B, µA∩B(x) =min{µA(x),µB(x)}
union A∪ B, µA∪B(x) =max{µA(x),µB(x)}

(22.9)

It can be easily verified that the conditions of Eq. (22.4) are no longer
satisfied

A∩ Ā = min{µA(x),1− µA(x)} 6= ∅
A∪ Ā = max{µA(x),1− µA(x)} 6= X (22.10)

for µ(x) 6≡ 1, due to the partial membership of fuzzy sets.
The results of the complement, intersection, and union operations

on fuzzy sets is illustrated in Fig. 22.2. The operations defined in
Eq. (22.9) can be easily extended for more than two fuzzy sets and
combinations of different operations.

Linguistic variables. An important feature of fuzzy systems is the
concept of linguistic variables, introduced by Zadeh [26]. In order to
reduce the complexity of precise definitions, they make use of words or
sentences in a natural or artificial language, to describe a vague prop-
erty.

A linguistic variable can be defined by a discrete set of membership
functions {µA1 , . . . , µAN } over the set {x} = U ⊂ X. The membership
functions quantify the variable x by assigning a partial membership of
x with regard to the terms Ai. An example of a linguistic variable could
be the property “velocity,” composed of the terms “slow,” “moderate,”
and “fast.” The individual terms are numerically characterized by the
membership functions µs , µm, and µf . A possible realization is shown
in Fig. 22.1a.
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Linguistic hedges. Given a linguistic variablex represented by the set
of membership functions {µAi}, we can change the meaning of a linguis-
tic variable by modifying the shape (i. e., the numerical representation)
of the membership functions. The most important linguistic hedges
are intensity modification, µi, concentration, µc , and dilation, µd:

µi(x) =
{

2µ2(x) if 0 ≤ µ(x) ≤ 0.5
1− 2[1− µ(x)]2 otherwise

µc(x) = µ2(x)

µd(x) = √
µ(x)

(22.11)

An application example using dilation and concentration modifica-
tion is shown in Fig. 22.19.

Fuzzy logic. The concept of linguistic variables allows us to define
combinatorial relations between properties in terms of a language.

Fuzzy logic—an extension of classical Boolean logic—is based on
linguistic variables, a fact which has assigned fuzzy logic the attribute
of computing with words [28].

Boolean logic uses Boolean operators, such as AND (∧), OR (∨), NOT
(¬), and combinations of them. They are defined for binary values of
the input variables and result in a binary output variable. If we want to
extend the binary logic to a combinatorial logic of linguistic variables,
we need to redefine the elementary logical operators. In fuzzy logic, the
Boolean operators are replaced by the operations on the corresponding
membership functions, as defined in Eq. (22.9).

Let {µAi(x1)} and {µBi(x2)} be two linguistic variables of two sets of
input variables {x1} and {x2}. The set of output variables {x3} is char-
acterized by the linguistic variable {µCi(x3)}. We define the following
basic combinatorial rules:

if (Aj ∧ Bk) then Cl:

µ′Cl(x3) =
(
min

{
µAj (x1), µBk(x2)

})
µCl(x3) (22.12)

if (Aj ∨ Bk) then Cl:

µ′Cl(x3) =
(
max

{
µAj (x1), µBk(x2)

})
µCl(x3) (22.13)

if (¬Aj) then Cl:

µ′Cl(x3) =
(
1− µAj (x1)

)
µCl(x3) (22.14)
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Thus, the output membership function µCi(x3) is modified (weighted)
according to the combination of Ai and Bj at a certain pair (x1, x2).
These rules can easily be extended to more than two input variables. A
fuzzy inference system consists of a number of if-then rules, one for
any membership function µCi of the output linguistic variable {µCi}.

Given the set of modified output membership functions {µ′Ci(x3)},
we can derive a single output membership function µC(x3) by accumu-
lating all µ′Ci . This can be done by combining the µ′Ci by a logical OR,
that is, the maximum operator:

µC(x3) =max
i

{
µ′Ci(x3)

}
(22.15)

Defuzzification. The resulting output membership function µC(x3)
can be assigned a numerical value x ∈ {x} by defuzzification, reversing
the process of fuzzification. There are a variety of approaches to get a
single number from a membership function reported in the literature.
The most common techniques are computing the center of area (center
of mass) or the mean of maxima of the corresponding membership
function. Applications examples are shown in Section 22.4.3.

The step of defuzzification can be omitted if the final result of the
fuzzy inference system is given by a membership function, rather than
a crisp number.

22.1.3 Fuzzy logic versus probability theory

It has been a long-standing misconception that fuzzy logic is nothing
but another representation of probability theory. We do not want to
contribute to this dispute, but rather try to outline the basic difference.

Probability describes the uncertainty in the occurrence of an event.
It allows predicting the event by knowledge about its relative frequency
within a large number of experiments. After the experiment has been
carried out, the event either has occurred or not. There is no uncer-
tainty left. Even if the probability is very small, it might happen that
the unlikely event occurs. To treat stochastic uncertainty, such as ran-
dom processes (e. g., noise), probability theory is a powerful tool, which
has conquered an important area in computer vision (Chapter 26).

There are, however, other uncertainties, that can not be described by
random processes. As opposed to probability, fuzzy logic represents
the imperfection in the informational content of the event. Even after
the measurement, it might not be clear, if the event has happened, or
not.

For illustration of this difference, consider an image to contain a
single edge, which appears at a certain rate. Given the probability dis-
tribution, we can predict the likelihood of the edge to appear after a
certain number of frames. It might happen, however, that it appears in
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every image or does not show up at all. Additionally, the edge may be
corrupted by noise. A noisy edge can appropriately be detected with
probabilistic approaches, computing the likelihood of the noisy mea-
surement to belong to the class of edges. But how do we define the
edge? How do we classify an image that shows a gray-value slope? A
noisy slope stays a slope even if all noise is removed. If the slope is
extended over the entire image we usually do not call it an edge. But
if the slope is “high” enough and only extends over a “narrow” region,
we tend to call it an edge. Immediately the question arises: How large
is “high” and what do we mean with “narrow?”

In order to quantify the shape of an edge, we need to have a model.
Then, the probabilistic approach allows us to extract the model param-
eters, which represent edges in various shapes. But how can we treat
this problem, without having an appropriate model? Many real world
applications are too complex to model all facets necessary to describe
them quantitatively. Fuzzy logic does not need models. It can handle
vague information, imperfect knowledge and combine it by heuristic
rules—in a well-defined mathematical framework. This is the strength
of fuzzy logic!

22.2 Why fuzzy image processing?

In computer vision, we have different theories, methodologies, and
techniques that we use to solve different practical problems (e. g., dig-
ital geometry, mathematical morphology, statistical approaches, prob-
ability theory, etc.). Because of great diversity and complexity of prob-
lems in image processing, we always require new approaches. There are
some reasons to use fuzzy techniques as a new approach. We briefly
describe two of them [29].

22.2.1 Framework for knowledge representation/processing

The most important reason why one should investigate the potentials
of fuzzy techniques for image processing is that fuzzy logic provides
us with a powerful mathematical framework for representation and
processing of expert knowledge. Here, the concept of linguistic vari-
ables and the fuzzy if-then rules play a key role. Making a human-like
processing possible, fuzzy inference engines can be developed using
expert knowledge. The rule-based techniques, for example, have the
general form:

If condition A1, and condition A2, and . . . , then action B

In real applications, however, the conditions are often partially satisfied
(e.g., the question of homogeneity in a neighborhood can not always be
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Figure 22.3: Imperfect knowledge in image processing (similar to [29]).

answered with a crisp yes or no). Fuzzy if-then rules allow us to perform
actions also partially.

22.2.2 Management of vagueness and ambiguity

Where is the boundary of a region? Is the region homogeneous? Which
gray level can serve as a threshold? Should we apply noise filtering,
edge enhancement, or smoothing technique? What is a road or a tree
in a scene analysis situation? These and many other similar ques-
tions arise during image processing—from low-level through high-level
processing—and are due to vagueness and ambiguity. There are many
reasons why our knowledge in such situations is imperfect. Imprecise
results, complex class definitions, different types of noise, concurring
evidences, and finally, the inherent fuzziness of many categories are
just some sources of uncertainty or imperfect knowledge.

Distinguishing between low-level, intermediate-level, and high-level
image processing, the imperfect knowledge is due to grayness ambi-
guity, geometrical fuzziness, and imprecision/complexity (Fig. 22.3).
Fuzzy techniques offer a suitable framework for management of these
problems.

22.3 Fuzzy image understanding

To use the fuzzy logic in image processing applications, we have to de-
velop a new image understanding. A new image definition should be es-
tablished, images and their components (pixels, histograms, segments,
etc.) should be fuzzified (transformation in membership plane), and
the fundamental topological relationships between image parts should
be extended to fuzzy sets (fuzzy digital topology).
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a

b c

Figure 22.4: Images as an array of fuzzy singletons. a test image as a fuzzy set
regarding b brightness (bright pixels have higher memberships), and c edginess
(edge pixels have higher memberships).

22.3.1 A new image definition: Images as fuzzy sets

An image G of sizeM × N with L gray levels can be defined as an array
of fuzzy singletons (fuzzy sets with only one supporting point) indi-
cating the membership value µmn of each image point xmn regarding
a predefined image property (e.g., brightness, homogeneity, noisiness,
edginess, etc.) [13, 15, 29]:

G =
M⋃
m=1

N⋃
n=1

µmn
xmn

(22.16)

The definition of the membership values depends on the specific re-
quirements of particular application and on the corresponding expert
knowledge. Figure 22.4 shows an example where brightness and edgi-
ness are used to define the membership grade of each pixel.

22.3.2 Image fuzzification: From images to memberships

Fuzzy image processing is a kind of nonlinear image processing. The
difference to other well-known methodologies is that fuzzy techniques
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operate on membership values. The image fuzzification (generation
of suitable membership values) is, therefore, the first processing step.
Generally, three various types of image fuzzification can be distin-
guished: histogram-based gray-level fuzzification, local neighborhood
fuzzification, and feature fuzzification [29].

As in other application areas of fuzzy set theory, the fuzzification
step should be sometimes optimized. The number, form, and location
of each membership function could/should be adapted to achieve bet-
ter results. For instance, genetic algorithms are performed to optimize
fuzzy rule-based systems [30].

Histogram-based gray-level fuzzification [29]. To develop any point
operation (global histogram-based techniques), each gray level should
be assigned with one or more membership values regarding to the cor-
responding requirements.

Example 22.1: Image brightness

The brightness of an image can be regarded as a fuzzy set containing
the subsets dark, gray, and bright intensity levels (of course, one may
define more subsets such as very dark, slightly bright, etc.). Depend-
ing on the normalized image histogram, the location of the member-
ship functions can be determined (Fig. 22.5). It should be noted that
for histogram-based gray-level fuzzification some knowledge about
image and its histogram is required (e.g., minimum and maximum of
gray-level frequencies). The detection accuracy of these histogram
points, however, should not be very high as we are using the concept
of fuzziness (we do not require precise data).

Local neighborhood fuzzification [29]. Intermediate techniques (e.g.,
segmentation, noise filtering etc.) operate on a predefined neighbor-
hood of pixels. To use fuzzy approaches to such operations, the fuzzi-
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Figure 22.6: On local neighborhood fuzzification [31].

fication step should also be done within the selected neighborhood
(Fig. 22.6). The local neighborhood fuzzification can be carried out de-
pending on the task to be done. Of course, local neighborhood fuzzifi-
cation requires more computing time compared with histogram-based
approach. In many situations, we also need more thoroughness in
designing membership functions to execute the local fuzzification be-
cause noise and outliers may falsify membership values.

Example 22.2: Edginess

Within 3×3-neighborhood U we are interested in the degree of mem-
bership of the center point to the fuzzy set edge pixel. Here, the edgi-
ness µe is a matter of grade. If the 9 pixels in U are assigned the
numbers 0, . . .8 and G0 denotes the center pixel, a possible member-
ship function can be the following [29]:

µe = 1−
1+ 1

∆

8∑
i=0

‖G0 −Gi‖
−1

(22.17)

with ∆ =maxU(Gi).

Example 22.3: Homogeneity

Within 3×3-neighborhood U , the homogeneity is regarded as a fuzzy
set. The membership function µh can be defined as:

µh = 1− G
max,l −Gmin,l

Gmax,g −Gmin,g (22.18)

where Gmin,l, Gmax,l, Gmin,g , and Gmax,g are the local and global min-
imum and maximum gray levels, respectively.
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Feature fuzzification [29]. For high-level tasks, image features should
usually be extracted (e.g., length of objects, homogeneity of regions,
entropy, mean value, etc.). These features will be used to analyze the
results, recognize the objects, and interpret the scenes. Applying fuzzy
techniques to this tasks, we need to fuzzify the extracted features. It is
necessary not only because fuzzy techniques operate only on member-
ship values but also because the extracted features are often incomplete
and/or imprecise.

Example 22.4: Object length

If the length of an object was calculated in a previous processing step,
the fuzzy subsets very short, short, middle-long, long and very long
can be introduced as terms of the linguistic variable length in order
to identify certain types of objects (Fig. 22.7).

22.3.3 Fuzzy topology: Noncrisp definitions of topological rela-
tionships

Image segmentation is a fundamental step in all image processing sys-
tems. However, the image regions can not always be defined crisply. It
is sometimes more appropriate to consider the different image parts,
regions, or objects as fuzzy subsets of the image. The topological rela-
tionships and properties, such as connectedness and surroundedness,
can be extended to fuzzy sets. In image analysis and description, the
digital topology plays an important role. The topological relationships
between parts of an image are conventionally defined for (crisp) sub-
sets of image. These subsets are usually extracted using different types
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q

thresholding

original image binary image

Figure 22.8: On crisp and fuzzy connectedness. The pixels p and q are fuzzy
connected in original image, and not connected in the binary image.

of segmentation techniques (e. g., thresholding). Segmentation proce-
dures, however, are often a strong commitment accompanied by loss
of information. In many applications, it would be more appropriate to
make soft decisions by considering the image parts as fuzzy subsets. In
these cases, we need the extension of (binary) digital topology to fuzzy
sets. The most important topological relationships are connectedness,
surroundedness and adjacency. In the following, we consider an image
g with a predefined neighborhood U ⊂ g (e.g., 4- or 8-neighborhood).

Fuzzy connectedness [5]. Let p and q ∈ U(⊂ g) and let µ be a mem-
bership function modeling G or some regions of it. Further, let δpq be
paths from p to q containing the points r . The degree of connectedness
of p and q in U with respect to µ can be defined as follows (Fig. 22.8):

connectednessµ(p,q) ≡max
δpq

[
min
r∈δpq

µ(r)
]

(22.19)

Thus, if we are considering the image segments as fuzzy subsets of the
image, the points p and q are connected regarding to the membership
function µ if the following condition holds:

connectednessµ(p,q) ≥min [µ(p),µ(q)] (22.20)

Fuzzy surroundedness [5, 11, 32]. Let µA, µB and µC be the mem-
bership functions of fuzzy subsets A, B and C of image G. The fuzzy
subset C separates A from B if for all points p and r in U ⊂ G and all
paths δ from p to q, there exists a point r ∈ δ such that the following
condition holds:

µ(C)(r) ≥min [µA(p),µB(q)] (22.21)

In other words, B surrounds A if it separates A from an unbounded
region on which µA = 0. Depending on particular application, appro-
priate membership functions can be found to measure the surrounded-
ness. Two possible definitions are given in Example 22.5, where µB�A
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Figure 22.9: Example for calculation of fuzzy surroundedness.
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adjacent

b
adjacent / surrounded

c
surrounded

Figure 22.10: Relationship between adjacency and surroundedness.

defines the membership function of the linguistic variable ‘B surrounds
A’ (Fig. 22.9) [29, 32].

Example 22.5: Surroundedness

µB�A(θ) =


π − θ
π

0 ≤ θ < π

0 otherwise

, µB�A(θ) =


cos2

(
θ
2

)
0 ≤ θ < π

0 otherwise

Fuzzy adjacency [5, 11, 17]. The adjacency of two disjoint (crisp) sets
is defined by the length of their common border. Following, a brief
description of generalization of this definition to fuzzy sets.

Let µ1 and µ2 be piecewise-constant fuzzy sets of G. The image G
can be partitioned in a finite number of bounded regions Gi, meeting
pairwise along arcs, on each of which µ1(i) and µ2(j) are constant. If
µ1 and µ2 are disjoint then in each region Gi either µ1 = 0 or µ2 = 0.
Let A(i, j, k) be the k-th arc along which Gi and Gj meet. Then the
adjacency of µ1 and µ2 can be defined as follows:

adjacency(µ1, µ2) =
∑

i,j,k i≠j
µ1(i)µ2(j)‖A(i, j, k)‖ (22.22)

where ‖A(i, j, k)‖ indicates the length of the k-th arc. This definition
may not fully agree with our intuition in some situations. For instance,
consider the following cases:
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1. µ1 = 0.1, µ2 = 0.15 -→ adjacency = 0.015

2. µ1 = 0.7, µ1 = 0.75 -→ adjacency = 0.525

The difference of membership values is the same in both cases,
namely 0.05. Intuitively, one may expect that the adjacency should
also be the same in both cases. Therefore, it may be useful to use other
definitions of fuzzy adjacency:

adjacency(µ1, µ2) =
∑
i,j,k

‖A(i, j, k)‖
1+ ‖µ1(i)µ2(j)‖ (22.23)

Now, to introduce a definition for degree of adjacency for fuzzy
image subsets, let us consider two segments S1 and S2 of an image G.
Further, let B(S1) be the set of border pixels of S1, and p an arbitrary
member of B. The degree of adjacency, can be defined with respect to
the definition of adjacency in Eq. (22.22) as follows:

degree of adjacency(µ1, µ2) =
∑

p∈B(S1)

1
1+d(p) (22.24)

where d(p) is the shortest distance of pixel p from the border of seg-
ment S2. Considering the adjacency definition in Eq. (22.23), the degree
of adjacency can also be defined as follows:

degree of adjacency(µ1, µ2) =
∑

p∈B(S1)

1
1+ ‖µ1(i)µ2(j)‖

1
1+d(p)

(22.25)

where p ∈ S1 and q ∈ S2 are border pixels, and d(p) is the shortest dis-
tance between p and q. Here, it should be noted that there exists a close
relationship between adjacency and surroundedness (Fig. 22.10a,b). De-
pending on particular requirements, one may consider one or both of
them to describe spatial relationships.

22.4 Fuzzy image processing systems

Fuzzy image processing consists (as all other fuzzy approaches) of
three stages: fuzzification, suitable operations on membership values,
and, if necessary, defuzzification (Fig. 22.11). The main difference to
other methodologies in image processing is that input data (histograms,
gray levels, features, . . . ) will be processed in the so-called member-
ship plane where one can use the great diversity of fuzzy logic, fuzzy
set theory and fuzzy measure theory to modify/aggregate the mem-
bership values, classify data, or make decisions using fuzzy inference.
The new membership values are retransformed in the gray-level plane



700 22 Fuzzy Image Processing

fuzzification

de-
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Gray-Level Plane Membership Plane

Figure 22.11: General structure of fuzzy image processing systems [29].

Table 22.1: On relationships between imperfect knowledge and the type of
image fuzzification [29].

Problem Fuzzification Level Examples

Brightness ambiguity/
vagueness

histogram low thresholding

Geometrical fuzziness local intermediate edge detection,
filtering

Complex/ill-defined data feature high recognition,
analysis

to generate new histograms, modified gray levels, image segments, or
classes of objects. In the following, we briefly describe each processing
stage.

22.4.1 Fuzzification (coding of image information)

Fuzzification is in a sense a type of input data coding. It means that
membership values are assigned to each input (Section 22.3.2). Fuzzi-
fication does mean that we assign the image (its gray levels, features,
segments, ...) with one or more membership values with respect to the
properties of interest (e. g., brightness, edginess, homogeneity). De-
pending on the problem we have (ambiguity, fuzziness, complexity), the
suitable fuzzification method, should be selected. Examples of proper-
ties and the corresponding type of fuzzification are given in Table 22.1.
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Figure 22.12: Example for modification-based fuzzy image processing [29].

22.4.2 Operations in membership plane

The generated membership values are modified by a suitable fuzzy ap-
proach. This can be a modification, aggregation, classification, or pro-
cessing by some kind of if-then rules.

Aggregation. Many fuzzy techniques aggregate the membership val-
ues to produce new memberships. Examples are fuzzy hybrid connec-
tives, and fuzzy integrals, to mention only some of them. The result
of aggregation is a global value that considers different criteria, such
as features and hypothesis, to deliver a certainty factor for a specific
decision (e. g., pixel classification).

Modification. Another class of fuzzy techniques modify the mem-
bership values in some ways. The principal steps are illustrated in
Fig. 22.12. Examples of such modifications are linguistic hedges, and
distance-based modification in prototype-based fuzzy clustering. The
result of the modification is a new membership value for each fuzzified
feature (e. g., gray level, segment, object).

Classification. Fuzzy classification techniques can be used to classify
input data. They can be numerical approaches (e. g., fuzzy clustering
algorithms, fuzzy integrals, etc.) or syntactic approaches (e. g., fuzzy
grammars, fuzzy if-then rules, etc.). Regarding to the membership val-
ues, classification can be a kind of modification (e. g., distance-based
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adaptation of memberships in prototype-based clustering) or aggrega-
tion (e. g., evidence combination by fuzzy integrals).

Inference. Fuzzy if-then rules can be used to make soft decisions us-
ing expert knowledge. Indeed, fuzzy inference can also be regarded as a
kind of membership aggregation because they use different fuzzy con-
nectives to fuse the partial truth in premise and conclusion of if-then
rules.

22.4.3 Defuzzification (decoding of the results)

In many applications we need a crisp value as output. Fuzzy algorithms,
however, always deliver fuzzy answers (a membership function or a
membership value). In order to reverse the process of fuzzification,
we use defuzzification to produce a crisp answer from a fuzzy output
feature. Depending on the selected fuzzy approach, there are different
ways to defuzzify the results. The well-known defuzzification methods
such as center of area and mean of maximum are used mainly in in-
ference engines. One can also use the inverse membership function if
point operations are applied. Figure 22.12 illustrates the three stages
of fuzzy image processing for a modification-based approach.

22.5 Theoretical components of fuzzy image processing

Fuzzy image processing is knowledge-based and nonlinear. It is based
on fuzzy logic and uses its logical, set-theoretical, relational and epis-
temic aspects. The most important theoretical frameworks that can
be used to construct the foundations of fuzzy image processing are:
fuzzy geometry, measures of fuzziness/image information, rule-based
approaches, fuzzy clustering algorithms, fuzzy mathematical morphol-
ogy, fuzzy measure theory, and fuzzy grammars. Any of these topics
can be used either to develop new techniques, or to extend the existing
algorithms [29]. In the following, we give a brief description of each
field. Here, the soft computing techniques (e. g., neural fuzzy, fuzzy
genetic) are not mentioned due to space limitations.

Combined approaches, such as neural fuzzy and fuzzy genetic tech-
niques are not considered here because of space limitations. In Sec-
tions 22.5.1–22.5.7 we will briefly introduce each of these topics.

22.5.1 Fuzzy geometry

Geometrical relationships between the image components play a key
role in intermediate image processing. Many geometrical categories
such as area, perimeter, and diameter, are already extended to fuzzy
sets [5, 6, 7, 8, 9, 10, 11, 16, 17]. The geometrical fuzziness arising
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Table 22.2: Theory of fuzzy geometry [5, 6, 7, 8, 9, 10, 11, 16, 17, 29]

Aspects of fuzzy geometry Examples of subjects and features

digital topology connectedness, surroundedness, adjacency

metric area, perimeter, diameter, distance between
fuzzy sets

derived measures compactness index of area coverage, elon-
gatedness

convexity convex/concave fuzzy image subsets

thinning/medial axes shrinking, expanding, skeletonization

elementary shapes fuzzy discs, fuzzy rectangles, fuzzy triangles

during segmentation tasks can be handled efficiently if we consider
the image or its segments as fuzzy sets. The main application areas
of fuzzy geometry are feature extraction (e. g., in image enhancement),
image segmentation, and image representation ([12, 16, 17, 29, 29, 33],
see also Table 22.2).

Fuzzy topology plays an important role in fuzzy image understand-
ing, as already pointed out earlier in this chapter. In the following, we
describe some fuzzy geometrical measures, such as compactness, in-
dex of area coverage, and elongatedness. A more detailed description
of other aspects of fuzzy geometry can be found in the literature.

Fuzzy compactness [7]. Let G be an image of size MN , containing
one object with the membership values µm,n. The area of the object—
interpreted as a fuzzy subset of the image—can be calculated as:

area(µ) =
M∑
m=0

N∑
n=0

µm,n (22.26)

The perimeter of the object can be determined as

perimeter(µ) =
M∑
m=1

N−1∑
n=1

‖µm,n − µm,n+1‖ +
M−1∑
m=1

N∑
n=1

‖µm,n − µm+1,n‖

(22.27)

The fuzzy compactness, introduced by Rosenfeld [7] can be defined as

compactness(µ) = area(µ)
[perimeneter(µ)]2

(22.28)

In the crisp case, the compactness is maximum for a circle. It can be
shown that the compactness of fuzzy sets is always more than a cor-
responding case. Many fuzzy techniques are, therefore, developed for
image segmentation, which minimizes the fuzzy compactness.
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Figure 22.13: Calculation of elongatedness of crisp image subsets is often ac-
companied with loss of information (pixels marked with “x” are lost during the
thresholding task).

Index of area coverage [16, 17]. The index of area coverage of a fuzzy
image subset µ, introduced by Pal and Ghosh [16], represents the frac-
tion of the maximum image area actually covered by this subset. It is
defined as follows:

ioac(µ) = area(µ)
length(µ)breadth(µ)

(22.29)

Here, the length and breadth of the fuzzy image subset are calculated
as follows:

length(µ) =max
m

{∑
n
µm,n

}
(22.30)

breadth(µ) =max
n

{∑
m
µm,n

}
(22.31)

The definition of the index of area coverage is very similar to com-
pactness. For certain cases, it can be shown that there exists a relation-
ship between the two definitions.

Fuzzy elongatedness [7]. As an example for cases that have no simple
generalization to fuzzy sets, we briefly explain the elongatedness of an
object. The elongatedness can serve as a feature to recognize a certain
class of objects. Making strong commitments to calculate such geo-
metrical features (e. g., thresholding), it can lead to loss of information
and falsification of final results (Fig. 22.13).

Let µ be the characteristic function of a crisp image subset. The
elongatedness can be defined as follows:

elongatedness(µ) = area(µ)
[thickness(µ)]2

(22.32)

Now, letting µ be the membership function of a fuzzy image subset,
a closely related definition of fuzzy elongatedness is introduced by
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Rosenfeld [5]:

fuzzy elongatedness(µ) =max
δ>0

area(µ − µ−δ)
(2δ)2

(22.33)

Here, µδ denotes the result of a shrinking operation in a given distance
δ, where the local “min” operation can be used as a generalization of
shrinking.

22.5.2 Measures of fuzziness and image information

Fuzzy sets can be used to represent a variety of image information. A
central question dealing with uncertainty is to quantify the “fuzziness”
or uncertainty of an image feature, given the corresponding member-
ship function. A goal of fuzzy image processing might be to minimize
the uncertainty in the image information.

Index of fuzziness. The intersection of a crisp set with its own com-
plement always equals zero (Eq. (22.4)). This condition no longer holds
for two fuzzy sets. The more fuzzy a fuzzy set is, the more it intersects
with its own complement. This consideration leads to the definition of
the index of fuzziness γ. Given a fuzzy set A with the membership
function µA defined over an image of size M × N , we define the linear
index of fuzziness γl as follows:

γl(G) = 2
MN

∑
m,n

min(µmn,1− µmn) (22.34)

Another possible definition is given by the quadratic index of fuzzi-
ness γq defined by

γq(G) = 1√
MN


∑
m,n

min(µmn,1− µmn)
2


1/2

(22.35)

For binary-valued (crisp sets) both indices equal zero. For maximum
fuzziness, that is, µmn = 0.5 they reach the peak value of 1.

Fuzzy entropy. An information theoretic measure quantifying the in-
formation content of an image is the entropy . The counterpart in fuzzy
set theory is given by the fuzzy entropy , quantifying the uncertainty of
the image content. The logarithmic fuzzy entropy Hlog , is defined by
[34]

Hlog(G) = 1
MN ln 2

∑
m,n
Sn(µmn) (22.36)
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where

Sn(µmn) = −µmn ln(µmn)− (1− µmn) ln(1− µmn) (22.37)

Another possible definition, called the exponential fuzzy entropy has
been proposed by Pal and Pal [21]:

Hexp(G) = 1
MN(

√
e− 1)

∑
m,n

{
µmne(1−µmn) + (1− µmn)eµmn − 1

}
(22.38)

The fuzzy entropy also yields a measure of uncertainty ranging from
zero to unity.

Fuzzy correlation. An important question in classical classification
techniques is the correlation of two different image features. Similarly,
the fuzzy correlation K(µ1, µ2) quantifies the correlation of two fuzzy
features, defined by the membership functions µ1 and µ2, respectively.
It is defined by [13]

K(µ1, µ2) = 1− 4
∆1 +∆2

∑
m,n
(µ1,mn − µ2,mn)2 (22.39)

where

∆1 =
∑
m,n

(
2µ1,mn − 1

)2 , and ∆2 =
∑
m,n

(
2µ2,mn − 1

)2 (22.40)

If ∆1 = ∆2 = 0, K is set to unity. Fuzzy correlation is used either to
quantify the correlation of two features within the same image or, al-
ternatively, the correlation of the same feature in two different images.
Examples of features are brightness, edginess, texturedness, etc.

More detailed information about the theory on common measures
of fuzziness can be found in [13, 14, 21, 35, 36, 37, 38]. A variety of
practical applications are given by [19, 20, 29, 39, 40, 41, 42].

22.5.3 Rule-based systems

Rule-based systems are among the most powerful applications of fuzzy
set theory. They have been of utmost importance in modern develop-
ments of fuzzy-controllers. Thinking of fuzzy logic usually implies
dealing with some kind of rule-based inference, in terms of incorpo-
rating expert knowledge or heuristic relations. Whenever we have to
deal with combining uncertain knowledge without having an analytical
model, we can use a rule-based fuzzy inference system. Rule-based
approaches incorporate these techniques into image processing tasks.

Rule-based systems are composed of the following three major parts:
fuzzification, fuzzy inference, and defuzzification.
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Figure 22.14: The rules of a fuzzy-inference system create fuzzy patches in
the product space A × B. These regions constitute the support of the function
µC(a,b).

We outlined the components fuzzification and defuzzification ear-
lier in this chapter. They are used to create fuzzy sets from input data
and to compute a crisp number from the resulting output fuzzy set,
respectively.

The main part of rule-based systems is the inference engine. It con-
stitutes the brain of the fuzzy technique, containing the knowledge
about the relations between the individual input fuzzy sets and the
output fuzzy sets. The fuzzy inference system comprises a number of
rules, in terms of if-then conditions, which are used to modify the mem-
bership functions of the corresponding output condition according to
Eqs. (22.12) to (22.14). The individual output membership functions
are accumulated to a single output fuzzy set using Eq. (22.15).

An interesting aspect of rule-based systems is that they can be inter-
preted as a nonlinear interpolation technique approximating arbitrary
functions from partial knowledge about relations between input and
output variables. Consider f(a,b) to be a function of the two variables
a, and b. In case we do not know the analytical shape of f we need
an infinite number of relations between a, b, and f(a,b) in order to
approximate f . If we quantify a and b by fuzzy sets Ai and Bi, it is suf-
ficient to know the relations between the finite number of pairs (Ai, Bj).
The continuous function f over the entire parameter space A × B can
be interpolated, as illustrated in Fig. 22.14. In control theory, the func-
tion f(a,b) is called the control surface. It is, however, necessary to
carefully choose the shape of the membership functions µAi and µBi , as
they determine the exact shape of the interpolation between the sparse
support points, that is, the shape of the control surface.
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Figure 22.15: Crisp versus fuzzy classification. a Set of feature points. b Crisp
classification into two sets A and B. Features close to the separation line are
subject to misclassification. c Fuzzy membership function µA and µB used for
fuzzy clustering.

More detailed information about the theory on rule-based systems
can be found in [24, 25, 26, 27]. A variety of practical applications are
given by [29, 43, 44, 45, 46, 47].

22.5.4 Fuzzy/possibilistic clustering

In many image processing applications, the final step is a classifica-
tion of objects by their features, which have been detected by image
processing tools. Assigning objects to certain classes is not specific to
image processing but a very general type of technique, which has led
to a variety of approaches searching for clusters in an n-dimensional
feature space.

Figure 22.15a illustrates an example of feature points in a 2-D space.
The data seem to belong to two clusters, which have to be separated.
The main problem of all clustering techniques is to find an appropriate
partitioning of the feature space, which minimizes misclassifications of
objects. The problem of a crisp clustering is illustrated in Fig. 22.15b.
Due to a long tail of “outliers” it is not possible to unambiguously find
a separation line, which avoids misclassifications. The basic idea of
fuzzy clustering is not to classify the objects, but rather to quantify
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the partial membership of the same object to more than one class, as
illustrated in Fig. 22.15. This accounts for the fact that a small tran-
sition in the feature of an object—eventually crossing the separation
line—should only lead to a small change in the membership, rather
than changing the final classification. The membership functions can
be used in subsequent processing steps to combine feature properties
until, eventually, a final classification has to be performed.

Within the scope of this handbook we are not able to detail all exist-
ing clustering techniques. More detailed information about the theory
of fuzzy-clustering and the various algorithms and applications can be
found in the following publications [4, 29, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57].

22.5.5 Fuzzy morphology

Fuzzy morphology extends the concept of classical morphology (Chap-
ter 21) to fuzzy sets. In the following we assume the image to be repre-
sented by a fuzzy membership function µ. In addition to the member-
ship function at any pixel of the image of sizeM ×N , we need a “fuzzy”
structuring element , ν . The structuring element can be thought of as
the membership function. The shape of the structuring element, that is,
the values of the membership function νmn, determine the spatial area
of influence as well as the magnitude of the morphological operation.

Without going into details of the theoretical foundations, we show
two possible realizations of the two basic morphological operations
fuzzy dilation and fuzzy erosion, respectively [29].

Example 22.6: Fuzzy erosion

1. [58, 59]:

Eν(x) = inf max [µ(y), (1− ν(y −x))] , x,y ∈ X (22.41)

2. [60]:

Eν(x) = inf [µ(y)ν(y −x)+ 1− ν(y −x)] , x,y ∈ X (22.42)

Example 22.7: Fuzzy dilation

1. [58, 59]:

Eν(x) = sup min [µ(y), ν(y −x)] , x,y ∈ X (22.43)

2. [60]:

Eν(x) = sup [µ(y)ν(y −x)] , x,y ∈ X (22.44)

Other realizations and more detailed information about the theory
of morphology can be found in the following publications [29, 61, 62,
63, 64, 65, 66, 67, 68, 69].
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22.5.6 Fuzzy measure theory

Fuzzy sets are useful to quantify the inherent vagueness of image data.
Brightness, edginess, homogeneity, and many other categories are a
matter of degree. The class boundaries in these cases are not crisp.
Thus, reasoning should be performed with partial truth and incomplete
knowledge. Fuzzy set theory and fuzzy logic offer the suitable frame-
work to apply heuristic knowledge within complex processing tasks.

Uncertainty arises in many other situations as well, even if we have
crisp relationships. For instance, the problem of thresholding is not
due to the vagueness because we have to extract two classes of pix-
els belonging to object and background, respectively. Here, the main
problem is that the decision itself is uncertain—namely assigning each
gray level with membership 1 for object pixels and membership 0 for
background pixels. This uncertainty, however, is due to the ambiguity,
rather than to vagueness. For this type of problems, one may take into
account fuzzy measures and fuzzy integrals.

Fuzzy measure theory—introduced by Sugeno [70]—can be consid-
ered as a generalization of classical measure theory [71]. Fuzzy inte-
grals are nonlinear aggregation operators used to combine different
sources of uncertain information [29, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82].

Fuzzy measures. Let X be a universe of discourse (a set of features,
algorithms, images of different sources, etc.). A fuzzy measure

g : 2X -→ [0,1] (22.45)

over the set X in a measurable space (X,K), satisfies the following
conditions (K is the power set of X):

1. Boundedness:

g(∅) = 0 and g(X) = 1 (22.46)

2. Monotony:

A ∈ K, B ∈ K, A ⊂ B ⇒ g(A) ≤ g(B) (22.47)

3. Lower continuity:

{An} ⊂ K, A1 ⊂ A2 ⊂ . . . ,
∞⋃
n=1

An ∈ K ⇒ lim
n→∞g(An) = g

 ∞⋃
n=1

An


(22.48)

4. Upper continuity:

{An} ⊂ K, A1 ⊃ A2 ⊃ . . . ,
∞⋂
n=1

An ∈ K, ⇒ lim
n→∞g(An) = g

 ∞⋂
n=1

An


(22.49)
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A fuzzy measure is a set function and represents the (subjective) esti-
mation of importance of each information source. Sugeno [70] intro-
duced a class of fuzzy measures, called λ-fuzzy measures, also referred
to as Sugeno measures. A fuzzy measure gλ is a Sugeno measure in
(X,K) if it satisfies the following rule (λ-rule):

1. A, B, and A∪ B ∈ K, A∩ B = ∅
2. gλ(A∪ B) = gλ(A)+ gλ(B)+ λgλ(A)gλ(B)
3. λ ∈ (−1/ supgλ(A),∞)∪ {0}

In pattern recognition and image processing applications, we gen-
erally have to deal with finite numbers of elements. The λ-rule can be
formulated as follows:

gλ

 n⋃
i=1

Ai

 = {∑ni=1 gλ(Ai) if λ = 0
1
λ

[∏n
i=1 (1+ λgλ(Ai))− 1

]
if λ 6= 0

(22.50)

The Sugeno measure can be completely constructed if the value of λ
is known. Assuming the universe of discourse X = {x1, x2, . . . , xn}, we
consider the case that the Sugeno measure is not a probability measure
(λ 6= 0):

gλ(X) = 1
λ

 n∏
i=1

(1+ λgλ({xi}))− 1

 (22.51)

The value of λ can be calculated from the following equation:

1+ λgλ(X) =
n∏
i=1

(1+ λgλ({xi})) (22.52)

For the case that gλ(X) = 1 we receive the following polynomial expres-
sion:

1+ λ =
n∏
i=1

(1+ λµ({xi})) (22.53)

Example 22.8:

LetX = {a,b, c}. Suppose that a fuzzy measureg is defined as follows:

g(x) =



0.0 if x = ∅
0.4 if x = {a}
0.2 if x = {b}
0.3 if x = {c}
1.0 if x = {a,b, c} = X

(22.54)

We solve Eq. (22.52) to find the corresponding λ-fuzzy measure:

1+ λ = (1+ 0.4λ)(1+ 0.2λ)(1+ 0.3λ) (22.55)
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Figure 22.16: Illustration of the fuzzy integral.

which has the two solutions λ1 = 0.372 and λ2 = −11.2, respectively.
The only useful solution is given by λ1, as λ2 < −1. The fuzzy λ-fuzzy
measure can be completely constructed:

gλ({∅}) = g({∅}) = 0.0,
gλ({a}) = g({a}) = 0.4,
gλ({b}) = g({b}) = 0.2,
gλ({c}) = g({c}) = 0.3,
gλ({a,b}) = g({a})+ g({b})+ λg({a})g({b}) = 0.63,
gλ({a, c}) = g({a})+ g({c})+ λg({a})g({c}) = 0.74,
gλ({b, c}) = g({b})+ g({c})+ λg({b})g({c}) = 0.52,
gλ({a,b, c}) = g({X}) = 1.0.

Fuzzy integrals. The fuzzy integral of a function h : X -→ [0,1] over
X, with respect to the fuzzy measure g is defined as follows:∫

h(x) ◦ g = sup
a∈[0,1]

[α∧ g(Fα)] (22.56)

where F(α) = {x|h(x) ≥ α}. Some basic properties of fuzzy integrals
are

1.
∫
a ◦ g = a, a ∈ [0,1],

2.
∫
h1 ◦ g ≤

∫
h2 ◦ g, if h1 ≤ h2,

3.
∫
A h ◦ g ≤

∫
B h ◦ g, if A ⊂ B.

Let X be a set with a finite numbers of elements x1, x2, . . . , xn.
Further let h be a decreasing function of x:

h(x1) ≥ h(x2) ≥ . . . ≥ h(xn) (22.57)
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g

Figure 22.17: Segmentation by fusion of multispectral images [29].

The fuzzy integral can be reformulated as follows:∫
h(x) ◦ g =

n∨
i=1

[h(xi)∧ g(Hi)] (22.58)

whereHi = {x1, x2, . . . , xi}. The operators ∨ and ∧ represent the maxi-
mum and minimum operator, respectively. This reformulation of fuzzy
integral reduces the computational cost from 2n to n calculations, tak-
ing into account that the function h should be sorted in a previous
step.

The calculation of the fuzzy integral in Eq. (22.58) can be regarded
as a pessimistic fusion of objective evidence (value of the function h)
and subjective importance of the information source (fuzzy measure
g). One may develop a more optimistic fusion by exchanging the order
of maximum and minimum operators (Fig. 22.16).

Applications. Fuzzy integrals as nonlinear aggregation operators can
be applied to different problems in image processing and pattern recog-
nition. The main application areas are the fusion of different deci-
sions (differing experts, algorithms, etc.) and fusion of different sen-
sors [72, 73, 74, 75, 76, 77, 78, 80, 81]. For instance, Keller et al. [78]
used fuzzy integration for image segmentation. Tizhoosh [29] applied
the fuzzy integral to segment images by fusing multispectral images
(Fig. 22.17) [29] and for fusion of subjective image quality evaluations
in medical applications [82].
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One of the problems using fuzzy integral as an aggregation oper-
ator relates to constructing the underlying fuzzy measure. The most
simple way is to interpret the subjective evaluation of the expert as
fuzzy densities. This way, however, is not possible in many applica-
tions. Therefore, in the literature some techniques are introduced for
construction of fuzzy measures. For instance, the use of a confusion
matrix [72, 78], a genetic approach [83], or an approach based on re-
lations equations [84], are some examples for automatic generation of
fuzzy measures.

22.5.7 Fuzzy grammars

Language is a powerful tool to describe patterns. The structural infor-
mation can be qualitatively described without a precise numerical quan-
tification of features. The theory of formal languages has been used
for speech recognition before it has been considered to be relevant for
pattern recognition. The main reason was that formal languages have
been criticized for being not flexible enough for an application in pat-
tern recognition, especially for dealing with disturbances such as noise
or unpredictable events.

Fuzzy grammars, introduced by Zadeh and Lee [85], are an exten-
sion of classical formal languages that are able to deal with uncertain-
ties and vague information. Fu [86] uses the theory of fuzzy grammars
for the first time in image processing. Theoretical and practical aspects
of fuzzy languages are detailed by [87, 88, 89, 90]. Practical examples
can be found in [23, 91, 92].

22.6 Selected application examples

22.6.1 Image enhancement: contrast adaptation

Image enhancement tries to suppress disturbances, such as noise, blur-
ring, geometrical distortions, and illumination corrections, only to men-
tion some examples. It may be the final goal of the image processing
operation to produce an image, with a higher contrast or some other
improved property according to a human observer. Whenever these
properties cannot be numerically quantified, fuzzy image enhancement
techniques can be used. In this section we illustrate the example of con-
trast adaptation by three different algorithms.

In recent years, some researchers have applied the concept of fuzzi-
ness to develop new algorithms for contrast enhancement. Here, we
briefly describe following fuzzy algorithms:

1. Minimization of image fuzziness

2. Fuzzy histogram hyperbolization

3. Rule-based approach
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a b

Figure 22.18: Example for contrast enhancement based on minimization of
fuzziness: a original image; and b contrast enhanced image.

Example 22.9: Minimization of image fuzziness [15, 18, 33]

This method uses the intensification operator to reduce the fuzziness
of the image that results in an increase of image contrast. The algo-
rithm can be formulated as follows:

1. setting the parameters (Fe, Fd, gmax) in Eq. (22.59)

2. fuzzification of the gray levels by the transformation G:

µmn = G(gmn) =
[

1+ gmax − gmn
Fd

]−Fe
(22.59)

3. recursive modification of the memberships (µmn -→ µ′mn) by fol-
lowing transformation (intensification operator [24]):

µ′mn =
{

2 [µmn]2 0 ≤ µmn ≤ 0.5
1− 2 [1− µmn]2 0.5 ≤ µmn ≤ 1

(22.60)

4. generation of new gray levels by the inverse transformation G−1:

g′mn = G−1(µ′mn) = gmax − Fd
(
(µ′mn)−1/Fe − 1

)
(22.61)

Figure 22.18 shows an example for this algorithm. The result was
achieved after three iterations.

Example 22.10: Fuzzy histogram hyperbolization [29, 42]

Due to the nonlinear human brightness perception, this approach
modifies the membership values of original image by a logarithmic
function. The algorithm can be formulated as follows (Fig. 22.19):

1. setting the shape of membership function

2. setting the value of fuzzifier β (Fig. 22.19)

3. calculation of membership values

4. modification of the membership values by β
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a

A
dilation

concentration

b c

Figure 22.19: a Application of dilation (β = 0.5) and concentration (β = 2)
operators on a fuzzy set. The meaning of fuzzy sets may be modified applying
such operators. To map the linguistic statements of observers in the numerical
framework of image processing systems, linguistic hedges are very helpful. b
and c are examples for contrast enhancement based on hyperbolization (β =
0.9).

5. generation of new gray levels by following equation:

g′mn =
(

L− 1
exp(−1)− 1

)(
exp

(
−µβ(gmn)

)
− 1

)
(22.62)

Example 22.11: Fuzzy rule-based approach [29, 42]

The fuzzy rule-based approach is a powerful and universal method for
many tasks in the image processing. A simple rule-based approach to
contrast enhancement can be formulated as follows (Fig. 22.20):

1. setting the parameter of inference system (input features, member-
ship functions, ...)

2. fuzzification of the actual pixel (memberships to the dark, gray and
bright sets of pixels, see Fig. 19)

3. inference (if dark then darker, if gray then gray, if bright then brighter)

4. defuzzification of the inference result by the use of three singletons

22.6.2 Edge detection

Another important application example of fuzzy techniques is edge
detection. Edges are among the most important features of low-level
image processing. They can be used for a variety of subsequent pro-
cessing steps, such as object recognition and motion analysis.

The concept of fuzziness has been applied to develop new algo-
rithms for edge detection, which are perfectly suited to quantify the
presence of edges in an intuitive way. The different algorithms make
use of various aspects of fuzzy theory and can be classified into the
following three principal approaches:
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a
dark brightgray

ggg maxmidmin

0
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b

c

Figure 22.20: a Input membership functions for rule-based enhancement based
on the characteristic points of image histogram; b and c example for contrast
enhancement based on fuzzy if-then rules.

1. Edge detection by optimal fuzzification [93]

2. Rule-based edge detection [46, 47]

3. Fuzzy-morphological edge detection [29]

Here, we briefly describe the rule-based technique, which is the
most intuitive approach using fuzzy logic for edge detection. Other
approaches to fuzzy-based edge detection can be found in [43, 44].

Example 22.12: Rule-based edge detection [46, 47]

A typical rule for edge extraction can be defined as follows:

if a pixel belongs to an edge

then it is assigned a dark gray value

else it is assigned a bright gray value

This rule base is special in terms of using the “else” rule. In that way
only one explicit logical relation is used and anything else is assigned
the complement. It would be harder and more costly to specify all
possible cases that can occur.

The input variables are differences between the central point P of a
small 3 × 3 neighborhood U and all neighbors Pi ∈ U . Instead of
computing all possible combinations of neighboring points, only eight
different clusters of three neighboring points are used [29]. Each of
the eight differences is fuzzified according to a membership function
µi, i = {1, . . . ,8}.
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a b

Figure 22.21: Example for rule-based edge detection: a original image; and b
fuzzy edge image.

The output membership function µe corresponding to “edge” is taken
as a single increasing wedge. The membership function µn of “no
edge” is its complement, that is, µn = 1− µe.
The fuzzy inference reduces to the following simple modification of
the output membership functions:

µe =max{µi; i = 1, . . . ,8}, and µn = 1− µe (22.63)

Figure 22.21 illustrates the result of this simple rule-based approach.

The final mapping of edges onto gray values of an edge image can be
changed by modifying the shape of the individual membership func-
tions. If small differences are given less weight, the noise of the input
image will be suppressed. It is also very straightforward to construct
directional selective edge detectors by using different rules according
to the orientation of the neighboring point clusters.

22.6.3 Image segmentation

The different theoretical components of fuzzy image processing pro-
vide us with diverse possibilities for development of new segmentation
techniques. The following description gives a brief overview of differ-
ent fuzzy approaches to image segmentation [29].

Fuzzy rule-based approach If we interpret the image features as lin-
guistic variables, then we can use fuzzy if-then rules to segment the
image into different regions. A simple fuzzy segmentation rule may
seem as follows: IF the pixel is dark AND its neighborhood is also
dark AND homogeneous, THEN it belongs to the background.

Fuzzy clustering algorithms Fuzzy clustering is the oldest fuzzy ap-
proach to image segmentation. Algorithms such as fuzzy c-means
(FCM, [49]) and possibilistic c-means (PCM, [55]) can be used to build
clusters (segments). The class membership of pixels can be inter-
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preted as similarity or compatibility with an ideal object or a certain
property.

Measures of fuzziness and image information Measures of fuzziness
(e. g., fuzzy entropy) and image information (e. g., fuzzy divergence)
can also be used in segmentation and thresholding tasks (see the
example that follows).

Fuzzy geometry Fuzzy geometrical measures such as fuzzy compact-
ness [5] and index of area coverage [16] can be used to measure
the geometrical fuzziness of different regions of an image. The op-
timization of these measure (e. g., minimization of fuzzy compact-
ness regarding the cross-over point of membership function) can be
applied to make fuzzy and/or crisp pixel classifications.

Fuzzy integrals Fuzzy integrals can be used in different forms:

1. Segmentation by weighting the features (fuzzy measures repre-
sent the importance of particular features)

2. Fusion of the results of different segmentation algorithms (opti-
mal use of individual advantages)

3. Segmentation by fusion of different sensors (e. g., multispectral
images, fuzzy measures represent the relevance/importance of
each sensor)

Example 22.13: Fuzzy thresholding

In many image processing applications, we often have to threshold
the gray-level images to generate binary images. In these cases, the
image contains a background and one or more objects. The produc-
tion of binary images serves generally the feature calculation and ob-
ject recognition. Therefore, image thresholding can be regarded as
the simplest form of segmentation, or more general, as a two-class
clustering procedure. To separate the object gray levels g0 from the
background gray levels gB , we have to determine a threshold T . The
thresholding can be carried out by the following decision:

g =
{
g0 = 0 if 0 ≤ gi ≤ T
gB = 1 if T ≤ gi ≤ L− 1

(22.64)

The basic idea is to find a threshold T that minimizes/maximizes the
amount of image fuzziness. To answer the question of how fuzzy the
image G of sizeM × N and L gray levels g = 0,1, ..., L−1 is, measures
of fuzziness-like fuzzy entropy [34]:

H = 1
MN ln 2

L−1∑
g=0

h(g) [−µ(g) ln(µ(g))− (1− µ(g)) ln(1− µ(g))]

(22.65)



720 22 Fuzzy Image Processing

a b c

d e f g

Figure 22.22: Different membership functions for fuzzy thresholding applied
by: a Pal and Murthy [20]; b Huang and Wang [39]; and c [29]; d original image;
Results of thresholding: e Pal and Murthy [20]; f Huang and Wang [39]; and g
Tizhoosh [41].

or index of fuzziness [38]

γ = 2
MN

L−1∑
g=0

h(g)min (µ(g),1− µ(g)) (22.66)

can be used, where h(g) denotes the histogram value and µ(g) the
membership value of the gray level g, respectively.

The general procedure for fuzzy thresholding can be summarized as
follows:

1. Select the type of membership function (Fig. 22.22)

2. Calculate the image histogram

3. Initialize the membership function

4. Move the threshold and calculate in each position the amount of
fuzziness using fuzzy entropy or any other measure of fuzziness

5. Find out the position with minimum/maximum fuzziness

6. Threshold the image with the corresponding threshold

The main difference between fuzzy thresholding techniques is that
each of them uses different membership function and measures of
fuzziness, respectively. Figure 22.22 illustrated three examples of
fuzzy membership functions applied to thresholding together with
the corresponding results on a test image. For the analytical form
of the various membership functions, we would like to refer to the
literature [20, 33, 39, 41].
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Table 22.3: The practical and theoretical ripeness of different fuzzy ap-
proaches [29]

Fuzzy approach Theoretical/practical ripeness

rule-based systems extensively investigated

fuzzy-clustering ↓ ↓ ↓ ↓ ↓ ↓ ↓
measures of fuzziness ↓ ↓ ↓ ↓ ↓ ↓
fuzzy geometry ↓ ↓ ↓ ↓ ↓
neural fuzzy approaches ↓ ↓ ↓ ↓
fuzzy genetic approaches ↓ ↓ ↓
fuzzy measures/integrals ↓ ↓
fuzzy grammars ↓
fuzzy morphology more investigations necessary

22.7 Conclusions

Among all publications on fuzzy approaches to image processing, fuzzy
clustering and rule-based approaches have the greatest share. Mea-
sures of fuzziness and fuzzy geometrical measures are usually used
as features within the selected algorithms. Fuzzy measures and fuzzy
integrals seem to become more and more an interesting subject of re-
search. The theoretical research on fuzzy mathematical morphology
seems still to be more important than practical reports. Only a few ap-
plications of fuzzy morphology can be found in the literature. Fuzzy
grammars, finally, seem to be still as unpopular as its classical coun-
terpart. Table 22.3 gives an overview of theoretical/practical ripeness
of different fuzzy approaches (here, the ripeness, as a fuzzy number,
may also be interpreted as degree of popularity measured by number
of corresponding publications).

The topics detailed in Sections 22.4.1–22.5.7 can also be used to
extend the existing image processing algorithms and improve their
performance. Some examples are: fuzzy Hough transform [94], fuzzy
mean filtering [95], and fuzzy median filtering [96].

Besides numerous publications on new fuzzy techniques, the liter-
ature on introduction to fuzzy image processing can be divided into
overview papers [13, 14, 77, 97], collections of related papers [49], and
textbooks [15, 29, 31, 56, 72].

Fuzzy clustering algorithms and rule-based approaches will certain-
ly play an important role in developing new image processing algo-
rithms. Here, the potentials of fuzzy if-then rule techniques seem to
be greater than already estimated. The disadvantage of rule-based ap-
proach, however, is its expensive computing in local operations. Hard-
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ware developments will be presumably a subject of investigations. Fuzzy
integrals will find more and more applications in image data fusion.
The theoretical research on fuzzy morphology will be completed with
regard to its fundamental questions, and more practical reports will be
published in this area. Fuzzy geometry will be further investigated and
play an indispensable part of fuzzy image processing.

It is not possible (and also not meaningful) to do everything in image
processing with fuzzy techniques. Fuzzy image processing will mainly
play a supplementary role in computer vision. Its part will be possibly
small in many applications; its role, nevertheless, will be a pivotal and
decisive one.
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23.1 Introduction

Neural networks have been successfully employed to solve a variety of
computer vision problems. They are systems of interconnected simple
processing elements. There exist many types of neural networks that
solve a wide range of problems in the area of image processing. There
are also many types of neural networks and they are determined by
the type of connectivity between the processing elements, the weights
(synapses) of the connecting links, the processing elements’ character-
istics, and training or learning rules. These rules specify an initial set
of weights and indicate how weights should be modified during the
learning process to improve network performance.
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The theory and representation of the various network types is moti-
vated by the functionality and representation of biological neural net-
works. In this sense, processing units are usually referred to as neu-
rons, while interconnections are called synaptic connections. Although
different neural models are known, all have these basic components in
common [1]:

1. A finite set of neurons a(1),a(2), . . . , a(n) with each neuron having
a specific neural value at time t, which will be denoted by at(i).

2. A finite set of neural connections W = (wij), where wij denotes the
strength of the connection of neuron a(i) with neuron a(j).

3. A propagation rule τt(i) =
∑n
j=1at(j)wij .

4. An activation function f , which takes τ as an input and produces
the next state of the neuron at+1(i) = f(τt(i) − θ), where θ is a
threshold and f a hard limiter, threshold logic, or sigmoidal func-
tion, which introduces a nonlinearity into the network.

23.2 Multilayer perceptron (MLP)

Multilayer perceptrons (MLP) are one of the most important types of
neural nets because many applications are successful implementations
of MLPs. Typically the network consists of a set of processing units that
constitute the input layer , one or more hidden layers, and an output
layer . The input signal propagates through the network in a forward
direction, on a layer-by-layer basis. Figure 23.1 illustrates the configu-
ration of the MLP.

A node in a hidden layer is connected to every node in the layer
above and below it. In Fig. 23.1 weight wij connects input node xi to
hidden node hj and weight vjk connects hj to output node ok. Classi-
fication begins by presenting a pattern to the input nodes xi, 1 ≤ i ≤ l.
From there data flows in one direction through the perceptron until
the output nodes ok, 1 ≤ k ≤ n, are reached. Output nodes will have a
value of either 0 or 1. Thus, the perceptron is capable of partitioning
its pattern space into 2n classes.

The steps that govern the data flow through the perceptron during
classification are [1]:

1. Present the pattern p = [p1, p2, . . . , pl] ∈ Rl to the perceptron, that
is, set xi = pi for 1 ≤ i ≤ l.

2. Compute the values of the hidden-layer nodes as it is illustrated in
Fig. 23.2.

hj = 1

1+ exp−
(
w0j +

∑l
i=1wijxi

) 1 ≤ j ≤m (23.1)
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Figure 23.1: Two-layer perceptron.
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Figure 23.2: Propagation rule and activation function for the MLP network.

3. Calculate the values of the output nodes according to

ok = 1

1+ exp
(
v0k +

∑m
j=1 vjkhj

) 1 ≤ k ≤ n (23.2)

4. The class c = [c1, c2, . . . , cn] that the perceptron assigns p must be
a binary vector. So ok must be the threshold at some level τ and
depends on the application.

5. Repeat Steps 1,2,3, and 4 for each pattern that is to be classified.

Multilayer perceptrons (MLPs) are highly nonlinear interconnected
structures and are, therefore, ideal candidates for both nonlinear func-
tion approximation and nonlinear classification tasks. A classical prob-
lem that can be solved only by the MLP is the XOR-problem. While a
linear classifier is able to partition Rm into regions separated by a hy-
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a b

Figure 23.3: XOR-problem and solution strategy using the MLP.

perplane, the MLP is able to construct very complex decision boundaries
as illustrated in Fig. 23.3.

Multilayer perceptrons have been applied to a variety of problems in
image processing, including optical character recognition [2] and med-
ical diagnosis [3, 4].

23.2.1 Backpropagation-type neural networks

Multilayer perceptrons (MLPs) have been applied successfully to solve
some difficult and diverse problems by training them in a supervised
manner with a highly popular algorithm known as the error backprop-
agation algorithm. This process consists of two passes through the
different layers of the network: a forward and a backward pass. Dur-
ing the forward pass a training pattern is presented to the perceptron
and classified.

The backward pass recursively, level by level, determines error terms
used to adjust to the perceptron’s weights. The error terms at the first
level of the recursions are a function of ct and output of the percep-
tron (o1, o2, . . . , on). After all the errors have been computed, weights
are adjusted using the error terms that correspond to their level. The
algorithmic description of the backpropagation is given here [1]:

1. Initialization: Initialize the weights of the perceptron randomly
with numbers between -0.1 and 0.1; that is,

wij = random([−0.1,0.1]) 0 ≤ i ≤ l,1 ≤ j ≤m
vjk = random([−0.1,0.1]) 0 ≤ j ≤m,1 ≤ k ≤ n (23.3)

2. Presentation of training examples: Present pt =
[
pt1, p

t
2, . . . , p

t
l

]
from the training pair (pt,ct) to the perceptron and apply steps
1, 2, and 3 from the perceptron classification algorithm described
earlier.
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3. Forward computation: Compute the errors δok,1 ≤ k ≤ n in the
output layer using

δok = ok(1− ok)(ctk − ok) (23.4)

where ct =
[
ct1, c

t
2, . . . , ctn

]
represents the correct class of pt . The

vector (o1, o2, . . . , on) represents the output of the perceptron.

4. Forward computation: Compute the errors δhj , 1 ≤ j ≤ m, in the
hidden-layers nodes using

δhj = hj(1−hj)
n∑
k=1

δokvjk (23.5)

5. Backward computation: Let vjk denote the value of weight vjk after
tth training pattern has been presented to the perceptron. Adjust
the weights between the output layer and the hidden layer using

vjk(t) = vjk(t − 1)+ ηδokhj (23.6)

The parameter 0 ≤ η ≤ 1 represents the learning rate.

6. Backward computation: Adjust the weights between the hidden
layer and the input layer according to

wij(t) =wij(t − 1)+ ηδhjpti (23.7)

7. Iteration: Repeat steps 2 through 6 for each element of the training
set. One cycle through the training set is called an iteration.

Design considerations. MLPs construct global approximations to non-
linear input-output mapping. Consequently they are capable of gener-
alization in regions of the input space where little or no data are avail-
able.

The size of a network is an important consideration from both the
performance and computational points of view. It has been shown [5]
that one hidden layer is sufficient to approximate the mapping of any
continuous function.

The number of neurons in the input layer is equal to the length of
the feature vector. Likewise, the number of nodes in the output layer
is usually the same as the number of classes. The number of subse-
quent hidden layers and the number of neurons in each layer are de-
sign choices. In most applications, the latter number is a small fraction
of the number of neurons in the input layer. It is usually desirable to
keep this number small to reduce the danger of overtraining. On the
other hand, too few neurons in the hidden layer may make it difficult
for the network to converge to a suitable partitioning of a complex fea-
ture space. Once a network has converged, it can be shrunk in size and
retrained, often with an improvement in overall performance.
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Data used for training must be representative of the population over
the entire feature space and training patterns should be presented ran-
domly. The network must be able to generalize to the entire training
set as a whole, not to individual classes one at a time.

23.2.2 Convolution neural networks (CNN)

Convolution neural networks (CNN) represent a well-established meth-
od in medical image processing [6, 7]. The difference between a CNN
and an MLP applied to image classification is that a CNN works directly
with images and not with extracted features. The basic structure of a
CNN is shown in Fig. 23.4, which represents a four-layer CNN with two
input images, three image groups in the first hidden layer, two groups
in the second hidden layer and a real-valued output [7]. The number
of layers and the number of groups in each layer are implementation-
oriented. The image propagates from input to output by means of
convolution with trainable weight kernels.

Forward Propagation. Let Hl,g denote the gth image group at layer
l, and let N(l) be the number of such groups. Image propagation from
the input layer (l = 1) to the output layer (l = L) proceeds as follows
[7]. The image Hl,g(l ≥ 2) is obtained by applying a point-wise sigmoid
nonlinearity to an intermediate image Il,g , that is,

Hl,g(i, j) = 1
1+ exp(−Il,g(i, j)) , g = 1, . . . ,N(l) (23.8)

The intermediate image Il,g is equal to the sum of the images obtained
from the convolution of Hl−1,g′ at layer l − 1 with trainable kernel of
weights wl−1,g,g′ . More precisely

Il,g =
N(l−1)∑
g′=1

Hl−1,g′ ∗ ∗wl−1,g,g′ (23.9)

where ∗∗ denotes two-dimensional (2-D) convolution, andwl−1,g,g′ de-
notes the kernel of weights connecting the g′th group in the (l− 1)th
layer of the gth group in the lth layer.

The spatial width Sw(l−1) of the weight kernel wl−1,g,g′ defines the
receptive field for the layer l. The spatial width SH(l) of an image at
layer l is related to the image width at the layer l− 1 by

SH(l) = SH(l− 1)− Sw(l− 1)+ 1 (23.10)

Consequently the image width becomes smaller as the layer number
increases. The edge effect in convolution is avoided by using this defi-
nition. The width of the receptive field of a given node in the lth layer
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Figure 23.4: Convolution neural network.

is equal to the sum of the kernel widths of the proceeding layers minus
(l − 2). The spatial width of the image at the output layer (l = L) is
one. The output of the CNN, defined as O(g) ≡ HL,g(0,0), is thus a real
number.

Note that an MLP is a special case of a CNN. If for the weight kernels
and image groups in a CNN we substitute real numbers, then we get
ordinary MLP weights for the weight kernels and nodes for the images.
The underlying equations in both networks are the same.

Backpropagation. Like the MLP the CNN learns through backpropaga-
tion. For each training image p (or set p of training images in case the
input layer processes more than one image) we can define the desired-
output value O(p)d (g), where g = 1, . . . ,N(L) denotes the output node
number. At each training epoch t, training images are applied to the
CNN and the actual CNN outputsO(p)a [t] are computed using Eqs. (23.8)
and (23.9). The CNN output error for training image p at training epoch
t is defined as

Ep[t] = 1
2

N(L)∑
g=1

(O(p)d (g)−O(p)a (g)[t])2 (23.11)

and the cumulative CNN error during training epoch t is defined as

E[t] =
P∑
p=1

E(p)[t] (23.12)
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where p is the total number of training samples.
It can be shown that both for an MLP and for a CNN, the computation

of the partial derivatives needed for weights updating can be carried
out as a backpropagation process.

23.3 Self-organizing neural networks

In a self-organizing map, the neurons are placed at the nodes of a lattice
that is usually 1-D or 2-D. The neurons become selectively tuned to
various input patterns or classes of input patterns in the course of
a competitive learning process. The location of the neurons so tuned
(i. e., the winning neurons) tend to become ordered with respect to each
other in such a way that a meaningful coordinate system for different
input features is created over the lattice [8]. A self-organizing feature
map is therefore characterized by the formation of a topographic map
of the input patterns, in which the spatial locations (i. e., coordinates) of
the neurons in the lattice correspond to intrinsic features of the input
patterns, hence the name “self-organizing feature map” [9].

23.3.1 Kohonen maps

The principal goal of a Kohonen self-organizing map is to transform
an incoming signal pattern of arbitrary dimension into a 1-D or 2-D
discrete map, and to perform this transformation adaptively in a topo-
logical ordered fashion. Many activation patterns are presented to the
network, one at a time. Typically, each input presentation consists sim-
ply of a localized region of activity against a quiet background. Each
such presentation causes a corresponding localized group of neurons
in the output layer of the network to be active.

The essential components of such a network are [9]:

1. A 1-D or 2-D lattice of neurons that computes simple discriminant
functions of inputs received from an input of arbitrary dimension
as shown in Fig. 23.5a.

2. A procedure that compares these discriminant functions and selects
the neuron with the largest discriminant function value (“winner
neuron”).

3. An interactive network that activates the selected neuron and its
neighbors simultaneously. The neighborhood Λi(x)(n) of the win-
ning neuron is chosen to be a function of the discrete time n. Fig-
ure 23.5b illustrates such a neighborhood, which usually first in-
cludes all neurons in the network and then shrinks gradually with
time.
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Figure 23.5: a Kohonen neural network; and b neighborhood Λi, of varying
size, around “winning” neuron i, identified as a black circle.

4. An adaptive process that enables the activated neurons to increase
their discriminant function values in relation to the input signals.

The learning algorithm of the self-organized map is simple and is
outlined here:

1. Initialization: Choose random values for the initial weight vectors
wj(0) to be different for j = 1,2, . . . ,N, where N is the number
of neurons in the lattice. The magnitude of the weights should be
small.

2. Sampling: Draw a sample x from the input distribution with a cer-
tain probability, the vector x represents the input.

3. Similarity Matching: Find the best matching (winning) neuron i(x)
at time n, using the minimum-distance Euclidean criterion:

i(x) =argminj ||x(n)−wj(n)||, j = 1,2, . . . ,N (23.13)

4. Updating: Adjust the synaptic weight vectors of all neurons, using
the update formula

wj(n+ 1) =
{
wj(n)+ η(n)[x(n)−wj(n)], j ∈ Λi(x)(n)
wj(n) otherwise

(23.14)

where η(n) is the learning-rate parameter, andΛi(x)(n) is the neigh-
borhood function centered around the winning neuron i(x); both
η(n) and Λi(x) are varied dynamically during learning for best re-
sults.

5. Continuation: Continue with step 2 until no noticeable changes in
the feature map are observed.
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Figure 23.6: Mapping between input space X and output space A.

The presented learning algorithm has some interesting properties,
which are explained based on Fig. 23.6. To begin with, let X denote
a spatially continuous input (sensory) space, the topology of which is
defined by the metric relationship of the vectors x ∈ X. Let A denote
a spatially discrete output space, the topology of which is endowed by
arranging a set of neurons as the computation nodes of a lattice. Let
Φ denote a nonlinear transformation called a feature map, which maps
the input space X onto the output space A, as shown by

Φ : X →A (23.15)

Property 1: Approximation of the input space: The self-organizing fea-
ture mapΦ, represented by the set of synaptic weight vectors {wj|j =
1,2, . . . ,N}, in the input space A, provides a good approximation
to the input space X.

Property 2: Topological ordering: The feature map Φ computed by the
learning algorithm is topologically ordered in the sense that the spa-
tial location of a neuron in the lattice corresponds to a particular
domain or feature of input patterns.

Kohonen maps have been applied to a variety of problems in image
processing, including texture segmentation [10] and medical diagnosis
[11].

Design considerations. The success of the map formation is criti-
cally dependent on how the main parameters of the algorithm, namely,
the learning-rate parameter η and the neighborhood function Λi, are
selected. Unfortunately, there is no theoretical basis for the selection
of these parameters. But there are some practical hints [12]:

The learning-rate parameter η(n) used to update the synaptic vector
wj(n) should be time-varying. For the first 100 iterations η(n) should
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begin with a value close to unity and decrease thereafter gradually, but
stay above 0.1.

For topological ordering of the weight vectorswj to take place, care-
ful consideration has to be given to the neighborhood function Λi. Λi
can take many geometrical forms but should include always the win-
ning neuron in the middle. The neighborhood function Λi usually be-
gins such that all neurons in the network are included and then it grad-
ually shrinks with time. During the first 1000 iterations the radius of
the neighborhood function Λi shrinks linearly with time n to a small
value of only a couple of neighboring neurons.

23.3.2 Learning vector quantization

Vector quantization [9] is a technique that exploits the underlying struc-
ture of input vectors for the purpose of data compression. Specifically,
an input space is split into a number of distinct regions, and for each
region a reconstruction vector is defined. When the quantizer is pre-
sented a new input vector, the region in which the vector lies is first
determined, and it is represented by the reproduction vector of that re-
gion. Thus, by using an encoded version of this reproduction vector for
storage in place of the original input vector, considerable savings can
be realized. The collection of possible reconstruction vectors is called
a reconstruction codebook and its members are called codewords.

A vector quantizer with minimum encoding distortion is called a
Voronoi quantizer (for a detailed discussion of Voronoi diagrams, see
Sections 24.4 and 25.1. An input space is divided into four Voronoi cells
with associated Voronoi vectors as shown in Fig. 23.7. Each Voronoi
cell contains those points of the input space that are the closest to the
Voronoi vector among the totality of such points.

Learning vector quantization (LVQ) is a supervised learning tech-
nique that uses class information to move the Voronoi vectors slightly,
so as to improve the quality of the classifier decision regions. An input
vector x is picked at random from the input space. If the class labels
of the input vector x and a Voronoi vector w agree, then the Voronoi
vector is moved in the direction of the input vector x. If, on the other
hand, the class labels of the input vector x and the Voronoi vector w
disagree, the Voronoi vectorw is moved away from the input vector x.

Let {wj|j = 1,2, . . . ,N} denote the set of Voronoi vectors, and
{xi||1,2, . . . , L} denote the set of input vectors. We assume that there
are more input vectors than Voronoi vectors. The learning vector quan-
tization (LVQ) algorithm proceeds as follows [9]:

1. Suppose that the Voronoi vectorwc is the closest to the input vector
xi. Let Cwc denote the class associated with the Voronoi vector wc ,
and Cxi denote the class label of the input vector xi. The Voronoi
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Figure 23.7: Voronoi diagram involving four cells.

vector wc is adjusted as follows:

wc(n+ 1) =
{
wc(n)+αn[xi −wc(n)] Cwc = Cxi
wc(n)−αn[xi −wc(n)] otherwise

(23.16)

where 0 < αn < 1.

2. The other Voronoi vectors are not modified.

The learning constant αn should decrease monotonically with the
number of iterations n. The relative simplicity of the LVQ, its ability
to work in unsupervised mode has made it a useful tool for image seg-
mentation problems [11].

23.4 Radial-basis neural networks (RBNN)

23.4.1 Regularization networks

The design of a supervised network may be accomplished in many dif-
ferent ways. The backpropagation algorithm for the design of a mul-
tilayer perceptron can be viewed as an application of an optimization
method known in statistics as stochastic approximation. In this section
we present a different approach by viewing the design of a neural net-
work as an approximation problem in a high-dimensional space. In the
context of a neural network, the hidden units provide a set of “func-
tions” that constitute an arbitrary “basis” for the input patterns (vec-
tors) when they are expanded into the hidden-unit space; these func-
tions are called radial-basis functions. Major contributions to the the-
ory, design, and application of radial-basis function networks include
papers by Moody and Darken [13] and Poggio and Girosi [14].

The construction of a radial-basis function (RBF) network in its most
basic form involves three different layers. For a network with N hid-
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den neurons, the output of the ith output node fi(x) when the n-
dimensional input vector x is presented, is given by

fi(x) =
N∑
j=1

wijΨj(x) (23.17)

where Ψj(x) = Ψ(||x −mj||/σj) is a suitable radially-symmetric func-
tion that defines the output of the jth hidden node. Often Ψ(.) is cho-
sen to be the Gaussian function where the width parameter σj is the
standard deviation. mj is the location of the jth centroid, where each
centroid is represented by a kernel/hidden node, and wij is the weight
connecting the jth kernel/hidden node to the ith output node. Fig-
ure 23.8a illustrates the configuration of the network.

The steps that govern the data flow through the radial-basis function
network during classification are:

1. Present the pattern p = [p1, p2, . . . , pn] ∈ Rl to the RBF network,
that is, set xi = pi for 1 ≤ i ≤ n.

2. Compute the values of the hidden-layer nodes as it is illustrated in
Fig. 23.8b.

ψi = exp
(
−d(x,mi,Ki)/2

)
(23.18)

The shape matrix Ki is positive definite and its elements kijk

kijk =
hijk

σij ∗σik
(23.19)

represent the correlation coefficients hijk and σij the standard devi-
ation.
We have for hijk: h

i
jk = 1 for j = k and |hijk| ≤ 1 otherwise.

3. Calculate the values of the output nodes according to

foj = φj =
∑
i
wjiψi (23.20)

4. The class c = [c1, c2, . . . , cn] that the RBF network assigns p must
be a binary vector.

5. Repeat Steps 1,2,3, and 4 for each pattern that is to be classified.

The learning process undertaken by an RBF network may be viewed
as follows. The linear weights associated with the output units of the
network tend to evolve on a different “time scale” compared to the non-
linear activation functions of the hidden units. The weight adaptation
process is a linear process compared to the nonlinear parameter adap-
tation of the hidden layer neurons. As the different layers of an RBF
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Figure 23.8: RBF network: a three-layer model; and b the connection between
input layer and hidden layer neuron.

network are performing different tasks, it is reasonable to separate the
optimization of the hidden and output layers by using different tech-
niques. The output layer’s weights are adjusted according to a simple
delta rule as shown in the MLP case.

There are different strategies we can follow in the design of an RBF
network, depending on how the centers of the RBF network are specified
[9]:

1. Fixed centers selected at random: It is the simplest approach to
assume fixed radial-basis functions defining the activation functions
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of the hidden units. Specifically, the locations of the centers may be
chosen randomly from the training set.

2. Self-organized selection of centers: The locations of the centers of
the hidden units are permitted to move in a self-organized fashion,
whereas the linear weights of the output layer are computed using
a supervised learning rule. The self-organized component of the
learning process serves to allocate network resources in a meaning-
ful way by placing the centers of the radial-basis functions in only
those regions of the input space where significant data are present.

3. Supervised selection of centers: The centers and all other free pa-
rameters of the network undergo a supervised learning process; in
other words, the RBF network takes on its most generalized form.
A natural candidate for such a process is error-correction learning,
which is most conveniently implemented using a gradient-descent
procedure that represents a generalization of the LMS algorithm.

RBF networks have been applied to a variety of problems in image
processing, like image coding and analysis [15] and also in medical
diagnosis [16].

Design considerations. The RBF networks construct local approxi-
mations to nonlinear input-output mapping, with the result that these
networks are capable of fast learning and reduced sensitivity to the
order of presentation of training data. In many cases, however, we
find that in order to represent a mapping to some desired degree of
smoothness, the number of radial-basis functions required to span the
input space adequately may have to be very large. This fact can be very
inappropriate in many practical applications.

The RBF network has only one hidden layer and the number of basis
functions and their shape is problem-oriented and can be determined
on-line during the learning process [17, 18]. The number of neurons in
the input layer is equal to the length of the feature vector. Likewise, the
number of nodes in the output layer is usually the same as the number
of classes.

23.5 Transformation radial-basis networks (TRBNN)

The selection of appropriate features is an important precursor to most
statistical pattern recognition methods. A good feature selection mech-
anism helps to facilitate classification by eliminating noisy or nonre-
presentative features that can impede recognition. Even features that
provide some useful information can reduce the accuracy of a classi-
fier when the amount of training data is limited. This so-called “curse
of dimensionality,” along with the expense of measuring and includ-



744 23 Neural Net Computing for Image Processing

ing features, demonstrates the utility of obtaining a minimum-sized
set of features that allow a classifier to discern pattern classes well.
Well-known methods in literature applied to feature selection are the
floating search methods [19] and genetic algorithms [20].

Radial-basis neural networks are excellent candidates for feature
selection. It is necessary to add an additional layer to the traditional
architecture (e. g., Moody and Darken [13]) to obtain a representation of
relevant features. The new paradigm is based on an explicit definition
of the relevance of a feature and realizes a linear transformation of the
feature space.

Figure 23.9 shows the structure of a radial-basis neural network with
the additional layer 2, which transforms the feature space linearly by
multiplying the input vector and the center of the nodes by the matrix
B. The covariance matrices remain unmodified.

x′ = Bx, m′ = Bm, C
′ = C (23.21)

The neurons in layer 3 evaluate a kernel function for the incoming in-
put while the neurons in the output layer perform a weighted linear
summation of the kernel functions:

y(x) =
N∑
i=1

wi exp
(
−d(x′ ,m′

i)/2
)

(23.22)

with

d(x′ ,m′
i) = (x

′ −m′
i)
TC−1

i (x
′ −m′

i) (23.23)

Here, N is the number of neurons in the second hidden layer, x is
the n-dimensional input pattern vector, x′

is the transformed input
pattern vector, m′

i is the center of a node, wi are the output weights
and y represents them-dimensional output of the network. The n×n
covariance matrix Ci is of the form

Cijk =


1
σ 2
jk

if m = n

0 otherwise
(23.24)

where σjk is the standard deviation. Because the centers of the Gaus-
sian potential function units (GPFU) are defined in the feature space,
they will be subject to transformation by B too. Therefore, the expo-
nent of a GPFU can be rewritten as:

d(x) = (x −mi)TBTC−1
i B(x −mi) (23.25)

and is in this form similar to Eq. (23.23).
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For the moment, we will regard B as the unit matrix. The network
models the distribution of input vectors in the feature space by the
weighted summation of Gaussian normal distributions, which are pro-
vided by the Gaussian Potential Function Units (GPFU) Ψj . To measure
the difference between these distributions, we define the relevance ρn
for each feature xn:

ρn = 1
PJ

∑
p

∑
j

(xpn −mjn)2

2σ 2
jn

(23.26)

where P is the size of the training set and J is the number of the GPFUs.
If ρn falls below the threshold ρth, one will decide to discard feature
xn. This criterion will not identify every irrelevant feature: If two fea-
tures are correlated, one of them will be irrelevant, but this cannot be
indicated by the criterion.

Learning paradigm for the transformation radial-basis neural net-
work. We follow the idea of Lee and Kil [17] for the implementation of
the neuron allocation and learning rules for the TRBNN. The network
generation process starts initially without any neuron.

The mutual dependency of correlated features can often be approx-
imated by a linear function, which means that a linear transformation
of the input space can render irrelevant features.

First we assume that layers 3 and 4 have been trained so that they
comprise a model of the pattern generating process while B is the unit
matrix. Then the coefficients Bnr can be adapted by gradient descent
with the relevance ρ′n of the transformed feature x′n as the target func-
tion. Modifying Bnr means changing the relevance of xn by adding xr
to it with some weight Bnr . This can be done online, that is, for every
training vector xp without storing the whole training set. The diagonal
elements Bnn are constrained to be constant 1, because a feature must
not be rendered irrelevant by scaling itself. This in turn guarantees that
no information will be lost. Bnr will only be adapted under the condi-
tion that ρn < ρp, so that the relevance of a feature can be decreased
only by some more relevant feature. The coefficients are adapted by
the learning rule:

Bnewnr = Boldnr − µ
∂ρn
∂Bnr

(23.27)

with the learning rate µ and the partial derivative:

∂ρn
∂Bnr

= 1
PJ

∑
p

∑
j

(x′pn −m
′
jn)

σ 2
jn

(x′pr −m
′
jr ) (23.28)
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Figure 23.9: Linear transformation radial-basis neural network.

In the learning procedure, which is based on, for example, Lee and Kil
[17], we minimize according to the LMS criterion the target function:

E = 1
2

P∑
p=0

|y(x)−Φ(x)|2 (23.29)

where P is the size of the training set. The neural network has some
useful features as automatic allocation of neurons, discarding of degen-
erated and inactive neurons and variation of the learning rate depend-
ing on the number of allocated neurons.

The relevance of a feature is optimized by gradient descent:

ρnewi = ρoldi − η ∂E
∂ρi

(23.30)

Based on the new introduced relevance measure and the change in the
architecture we get the following correction equations for the neural
network:

∂E
∂wij

= −(yi −Φi)Ψj

∂E
∂mjn

= − ∑
i (yi −Φi)wijΨj

∑
k (x′k −m′

jk)
Bkn
σ2
jk

∂E
∂σjn

= − ∑
i (yi −Φi)wijΨj

(x′n −m′
jn)

2

σ 3
jn

(23.31)



23.6 Hopfield neural networks 747

In the transformed space the hyperellipses have the same orien-
tation as in the original feature space. Hence they do not represent
the same distribution as before. To overcome this problem, layers 3
and 4 will be adapted at the same time as B. Converge these layers
fast enough, they can be adapted to represent the transformed training
data, providing a model on which the adaptation of B can be based. The
adaptation with two different target functions (E and ρ) may become
unstable if B is adapted too fast, because layers 3 and 4 must follow
the transformation of the input space. Thus µ must be chosen � η. A
large gradient has been observed causing instability when a feature of
extreme high relevance is added to another. This effect can be avoided
by dividing the learning rate by the relevance, that is, µ = µ0/ρr .

23.6 Hopfield neural networks

23.6.1 Basic architecture considerations

A pattern, in parlance of a N node Hopfield neural network, is an N-
dimensional vector p = [p1, p2, . . . , pN] from the space P = {−1,1}N .
A special subset of P is the set of patterns E = {ek : 1 ≤ k ≤ K},
where ek = [ek1, ek2, . . . , ekN]. The Hopfield net associates a vector from
P with an exemplar pattern in E. The neural net partitions P into classes
whose members are in some way similar to the exemplar pattern that
represents the class. The Hopfield network finds a broad application
area in image restoration and segmentation.

As already stated in the introduction, neural networks have four
common components. For the Hopfield net we have the following:

Neurons: The Hopfield network has a finite set of neurons x(i),1 ≤
i ≤ N, which serve as processing units. Each neuron has a value (or
state) at time t denoted by xt(i). A neuron in the Hopfield net has
one of the two states, either -1 or +1; that is, xt(i) ∈ {−1,+1}.

Synaptic Connections: The cognition of a neural net resides within
the interconnections between its neurons. For each pair of neu-
rons, x(i) and x(j), there is a connection wij called the synapse
between x(i) and x(j). The design of the Hopfield net requires that
wij =wji and wii = 0. Figure 23.10a illustrates a 3-node network.

Propagation Rule: It defines how states and connections influence the
input of a neuron. The propagation rule τt(i) is defined by

τt(i) =
N∑
j=1

xt(j)wij − bi (23.32)

Activation Function: The activation function f determines the next
state of the neuron xt+1(i) based on the value τt(i) calculated by
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Figure 23.10: a Hopfield neural network; and b propagation rule and activation
function for the Hopfield network.

the propagation rule and the current value xt(i). Figure 23.10b il-
lustrates this fact. The activation function for the Hopfield net is
the hard limiter defined here:

xt+1(i) = f(τt(i),xt(i)) =
1, if τt(i) > 0

−1, if τt(i) < 0
(23.33)

The network learns patterns that are N-dimensional vectors from
the space P = {−1,1}N . Let ek = [ek1, ek2, . . . , ekn] denote the kth exem-
plar pattern where 1 ≤ k ≤ K. The dimensionality of the pattern space
determines the number of nodes in the net, such that the net will have
N nodes x(1),x(2), . . . ,x(N).

The training algorithm of the Hopfield neural network.

1. Assign weights wij to the synaptic connections:

wij =

∑K
k=1 eki e

k
j , if i ≠ j

0, if i = j (23.34)
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Keep in mind that wij = wji, so it is necessary to perform the pre-
ceding computation only for i < j.

2. Initialize the net with the unknown pattern. The pattern to be learned
is now presented to the net. If p = [p1, p2, . . . , pN] is the unknown
pattern, put

x0(i) = pi, 1 ≤ i ≤ N (23.35)

3. Iterate until convergence. Using the propagation rule and the acti-
vation function we get for the next state

xt+1(i) = f
 N∑
j=1

xt(j)wij,xt(i)

 (23.36)

This process should be continued until any further iteration will
produce no state change at any node.

4. Continue the classification process. For learning another pattern,
repeat steps 2 and 3.

The convergence property of Hopfield’s network depends on the
structure of W (the matrix with elements wij) and the updating mode.
An important property of the Hopfield model is that if it operates in a
sequential mode and W is symmetric with non-negative diagonal ele-
ments, then the energy function

Ehs(t) = 1
2

n∑
i=1

n∑
j=1

wijxi(t)xj(t)−
n∑
i=1

bixi(t)

= −1
2
xT (t)Wx(t)−bTx(t)

(23.37)

is nonincreasing [21]. The network always converges to a fixed point.

23.6.2 Modified Hopfield network

The problem of restoring noisy-blurred images is important for many
applications ([22, 23, 24], see also Chapter 16). Often, the image degra-
dation can be adequately modeled by a linear blur and an additive white
Gaussian process. Then the degradation model is given by

z =Dx + η (23.38)

where x,z and η represent the ordered original and degraded images
and the additive noise. The matrix D represents the linear spatially
invariant or spatially varying distortion.

The purpose of digital image restoration is to operate on the de-
graded image z to obtain an improved image that is as close to the
original image x as possible, subject to a suitable optimality criterion.
A common optimization problem is:

minimize f(x) = 1
2
xTTx −bTx subject to 0 ≤ xi ≤ 255 (23.39)
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Figure 23.11: Block diagram of the modified Hopfield network model applied
to image restoration.

where xi denotes the ith element of the vector x, b = DTz and T is a
symmetric, positive semidefinite matrix equal to

T =DTD+ λCTC (23.40)

In Eq. (23.40), C is a high-pass filter and λ, the regularization para-
meter, controls the tradeoff between deconvolution and noise smooth-
ing. Comparing Eq. (23.39) and Eq. (23.37) it is clear that the func-
tion f(x) to be minimized for the restoration problem equals Ehs for
W = −T and x = v.

Updating rule. The modified Hopfield network for image restoration
that was proposed in [25] is shown in Fig. 23.11 and is given by the
following equations:

xi(t + 1) = g(xi(t)+∆xi), i = 1, . . . ,n (23.41)

where

g(v) =


0, v < 0

v, 0 ≤ v ≤ 255

255, v > 255

(23.42)

∆xi = di(ui) =


−1, ui < −θi
0, −θi ≤ ui ≤ θi
1, ui > θi

with

θi = 1
2tii > 0 and ui = bi −

∑n
j=1 tijxj(t)

(23.43)
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The degraded image z is used as the initial condition for x. xi are
the states of neuron, which take discrete values between 0 and 255,
instead of binary values. This consideration is possible because the
interconnections are determined in terms of pixel locations and not
gray-level values, as can be seen from Fig. 23.11.

In the following, an algorithm is presented that sequentially updates
each pixel value according to the updating rule. For the analysis to be
followed let l(t) denote a partition of the set {1, . . . ,n}. The algorithm
has the following form:

1. x(0) =DTz; t := 0 and i := 1.

2. Check termination.

3. Choose l(t) = {i}.
4. temp = g(x(t)+∆xiei) where ∆xi is given by Eq. (23.43).

5. If temp ≠ x(t) then x(t + 1) := temp and t := t + 1.

6. i;= i+ 1 (if i > n, i = i−n) and go to step 1.

In step 3 of the preceding algorithm, the function g(.) is used with a
vector as an input. In this case g(x) = [g(x1), . . . , g(xn)], where g(xi)
is defined by Eq. (23.42).
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24.1 Introduction

Graphs are important data structures for computer vision. They are
widely used to represent the neighborhood relations that exist in the
discrete sensor images that we obtain from the world. At the same
time, we use graphs to represent the scenes captured by the sensor as
well as the relational structure of our knowledge about the world. Both
representations are combined by image understanding techniques.

An important aspect for the representation of image structure is
the duality that holds between regions and their boundaries. The im-
age representations we cover in this chapter can represent this duality
relation explicitly. The chapter starts with Section 24.2, which contains
the basic notions from graph theory that will be used during the rest of
the chapter. Section 24.3 discusses two alternative ways to represent
2-D digital images by a pair of dual graphs. Section 24.4 is devoted
to Voronoi diagrams and Delaunay graphs, dual representations for
higher dimensional images. Section 24.5 gives an overview of match-
ing algorithms.

Knowledge representations and their use in computer vision are
only partly covered in this Chapter. Section 24.6 describes graph gram-
mars, formalisms that allow deriving a new graph from an old one,
and that are used in the knowledge-based system for image retrieval
IRIS described in Chapter 25. Additional knowledge-based image un-
derstanding techniques involving operations on graphs are covered in
Chapter 27.

24.2 Basic definitions

The definitions from graph theory that are contained in this section can
be found in standard textbooks on graph theory (e.g., those by Berge
[1], Christofides [2], Harary [3], Thulasiraman and Swamy [4]).

Section 24.2.1 defines graphs as sets of vertices and edges, as well
as the concepts of adjacency and degree. More complex notions like
connectedness of graphs and subgraphs are defined in Section 24.2.2.

Section 24.2.3 and Section 24.2.4 are devoted to duality between
graphs.

24.2.1 Graphs, vertices, edges

Definition 24.1 A graph G = (V ,E) consists of two sets: a finite set V
of elements called vertices and a finite set E of elements called edges.
Each edge creates a binary relation between a pair of vertices.

We use the symbols v1, v2, v3, . . . to represent the vertices and the sym-
bols e1, e2, e3, . . . to represent the edges of the graph.
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v1 v2 v3

v4

v5 v6

v7 v8 v9

e1 e2

e3
e4 e5

e6 e7

e8
e9

e10 e11 e12

e13 e14

Figure 24.1: Pictorial representation of a graph G(V,E).

Figure 24.1 shows the example of a graph. Vertices are represented
by black spots (•), edges by straight lines.

Definition 24.2 The vertices vi and vj associated with an edge el are
called the end vertices of el; el is said to be incident to its end vertices.
The edge is denoted as el = (vi, vj).

Definition 24.3 More than one edge in a graph G(V,E) may have the
same pair of end vertices. All edges having the same pair of end vertices
are called parallel edges.

Definition 24.4 An edge el is called a self-loop at vertex vi if its end
vertices are identical, that is, el = (vi, vi).

Definition 24.5 Two edges are adjacent if they have a common end
vertex.

Definition 24.6 Two vertices are adjacent if they are the end vertices
of some edge.

Definition 24.7 The number of edges incident to a vertex v of a graph
G(V,E) is called its degree or its valency. It is denoted by d(v). A
self-loop at a vertex v increases the degree of v by two.

Definition 24.8 A vertex of degree 1 is called a pendant vertex.

Definition 24.9 The edge incident to a pendant vertex is called a pen-
dant edge.
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v2 v3
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v5 v6

v7 v8 v9

e4 e5
e6

e12

e13 e14

Figure 24.2: Two paths of G.

24.2.2 Paths, subgraphs, and components of a graph

Definition 24.10 A path K in a graph is a finite alternating sequence
of vertices and edges v0, e1, v1, e2, . . . , vk−1, ek, vk such that

1. vertices vi−1 and vi are the end vertices of the edge ei, 1 ≤ i ≤ k;

2. all edges are distinct;

3. all vertices are distinct.

Vertices v0 and vk are called end vertices of the path, and we refer to
it as v0−vk path. The number of edges in a path is called the length of
the path.

Figure 24.2 shows two examples of paths of the graph G in Fig. 24.1.

Definition 24.11 A graph G is connected if there exists a path between
every pair of vertices in G.

Definition 24.12 Consider a graph G = (V ,E). G′ = (V ′, E′) is a sub-
graph of G if V ′ and E′ are, respectively, subsets of V and E such that
an edge (vi, vj) is in E′ only if vi and vj are in V ′.

Definition 24.13 Let V ′ be a subset of the vertex set V of a graph
G = (V ,E). Then the subgraph G′ = (V ′, E′) is the induced subgraph
of G on the vertex set V ′ (or simply vertex-induced subgraph 〈V ′〉 of G)
if E′ is a subset of E such that an edge (vi, vj) is in E′ if and only if vi
and vj are in V ′.

Definition 24.14 A clique of a graph G(V,E) is a set S ⊆ V such that in
〈S〉 every pair of vertices is adjacent.

Definition 24.15 If el is an edge of a graph G = (V ,E), then G − el is
the subgraph of G that results after removing the edge el from G. Note
that the end vertices of el are not removed from G. The removal of a
set of edges from a graph is defined as the removal of single edges in
succession.
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Figure 24.3: Three examples of circuits of G.

Definition 24.16 A set V is said to be partitioned into subsets
V1, V2, . . . , Vp, if

Vi 6= ∅,1 ≤ i ≤ p ;

V1 ∪ V2 ∪ . . . ∪ Vp = V, and
Vj ∩ Vk = ∅, ∀ j, k; j 6= k

We refer to subsets V1, V2, . . . , Vp as a partition of V .

Definition 24.17 Consider a graph G(V,E) which is not connected.
Then the vertex set V ofG can be partitioned into subsets V1, V2, . . . , Vp
such that the vertex-induced subgraphs 〈Vi〉, i = 1,2, . . . , p, are con-
nected and no vertex in subset Vi is connected to any vertex in subset Vj ,
i 6= j. We call subgraphs 〈Vi〉, i = 1,2, . . . , p, connected components
or simply components of G.

24.2.3 Circuits, cutsets, cuts, and dual graphs

Definition 24.18 A circuit is a path the end vertices of which are iden-
tical.

Figure 24.3 shows three circuits of the graph G in Fig. 24.1.

Definition 24.19 A cutset C of a connected graph G is a minimal set
of edges of G with respect to inclusion (⊆) such that its removal from G
disconnects G, that is, the graph G − C is disconnected.

Figure 24.4 shows graph G of Fig. 24.1 after removal of the cutset C =
{e9, e10, e11, e12}: G − C is disconnected and consists of exactly two
components 〈{v1, v2, v3, v4, v5, v6}〉 and 〈{v7, v8, v9}〉 A notion that is
closely related to the one of a cutset is that of a cut.

Definition 24.20 Consider a connected graph G(V,E) with vertex set V .
Let V1 and V2 be a partition of V . Then the set C of all edges having one
end vertex in V1 and the other end vertex in V2 is called a cut of G.
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Figure 24.4: G after removal of the cutset {e9, e10, e11, e12}.

According to [4, p. 44], we denote a cut by 〈V1, V2〉. The relationship
between a cut and a cutset is stated more formally in Theorems 24.1
and 24.2, the proofs of which can be found in [4, p. 45].

Theorem 24.1 A cut in a connected graphG is a cutset or union of edge-
disjoint cutsets.

Theorem 24.2 A cut 〈V1, V2〉 of a connected graph G is a cutset of G if
the induced subgraphs of G on the vertex sets V1 and V2 are connected.
If S is a cutset of a connected graph G, and V1 and V2 are the vertex sets
of the two components of G − S, then S = 〈V1, V2〉.

Circuits and cutsets are used to define an important relationship be-
tween pairs of graphs.

Definition 24.21 A graph G is a combinatorial dual of a graph G if
there is a one-to-one correspondence between the edges ofG and those of
G such that a set of edges inG is a circuit if and only if the corresponding
set of edges in G is a cutset.

Duality is a symmetric relation, as we formally state in Theorem 24.3.

Theorem 24.3 Consider two graphs G and G. If G is a dual of G, then
G is a dual of G.

The proof can be found in [4, p. 189].

24.2.4 Planar graphs and geometrical duals

Definition 24.21 defines the combinatorial dual of a graph. For pictorial
representations of dual graphs we use a different way of defining dual
graphs based on drawings of graphs on surfaces.

Definition 24.22 A graph is said to be embeddable into a surface S if
it can be drawn on S so that its edges intersect only at their end vertices.
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Figure 24.5: A graph G (solid lines) and its geometrical dual G (dashed lines).

Definition 24.23 A graph G is said to be planar if it can be embedded
into a plane. Such a drawing of a planar graph G is called a planar
embedding of G or simply a plane graph.

Definition 24.24 An embedding of a planar graph into a plane divides
the plane into regions or faces. A region or face is finite if the area it
encloses is finite; otherwise it is infinite.

Definition 24.25 The edges on the boundary of a face contain exactly
one circuit, and this circuit is said to enclose the face. Let f1, f2, f3, . . . , fr
be the faces of a planar graph with fr as the exterior face. We denote
by Ci,1 ≤ i ≤ r , the circuit on the boundary of region fi. The circuits
C1, C2, . . . , Cr−1, corresponding to the finite faces, are called meshes or
cycles. Like Harary ( [3], p. 103), we will refer to a cycle corresponding
to a face fi as the cycle of fi, and we will denote it as C(fi).

Definition 24.26 specifies how to obtain a dual graph from a planar
embedding of a graph.

Definition 24.26 Let G be a plane graph. Then the geometrical dual G
of G is constructed as follows:

1. place a vertex vi in each face fi of G, including the exterior region;

2. if two regions fi and fj have an edge e in common, then join the
corresponding vertices vi and vj by a line crossing only e; this line
represents edge e = (vi, vj).

Figure 24.5 shows a simple example of a pair of dual graphs. Note the
correspondence between vertices of G and faces of G. Also, each edge
of G corresponds to one edge of G, indicated in the drawing by one
dashed line crossing exactly one solid line.

Geometrical and combinatorial duals are equivalent as proved by
Whitney [5, 6, loc. cit. [3]], who formulated Theorem 24.4 concerning
the equivalence between planarity and the existence of a combinatorial
dual. We cite Theorem 24.4 from [3, p. 115].
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Theorem 24.4 A graph is planar if and only if it has a combinatorial
dual.

24.2.5 Trees and rooted trees

Definition 24.27 A graph is said to be acyclic if it has no circuits. A
tree is a connected acyclic graph. A rooted tree is one which has a
distinguished vertex, called the root.

24.3 Graph representation of two-dimensional digital
images

In a region adjacency graph [7], regions can be referred to as units, and
adjacency relations between regions are represented explicitly. Ballard
and Brown [7, p. 159] use the dual of a region adjacency graph to rep-
resent region boundaries explicitly.

In this section we propose a dual graph representation of a digital
image that is complete in the sense that it also represents the image
boundary explicitly.

24.3.1 Digital images

The processing of images by computers requires that images are sup-
plied in some digital form. Definitions 24.28 and 24.29 of images and
digital images are adopted from Haralick and Shapiro [8].

Definition 24.28 A 2-D image is a spatial representation of an object, a
2-D or 3-D scene. It may be abstractly thought of as a continuous func-
tion I of two variables defined on some bounded and usually rectangular
region of a plane. The value of the image located at spatial coordinates
(r , c) is denoted by I(r , c).

Definition 24.29 differs from the original definition found in [8].

Definition 24.29 A 2-D digital image is an image in digital format and
is obtained by partitioning the area of the image into a finite set of small
mutually exclusive convex polygons called resolution cells. Each reso-
lution cell has a representative image value assigned to it. The number
of resolution cells of an image is called its size.

In contrast to Haralick and Shapiro, we do not assume an array struc-
ture of a digital image. In the remainder of this contribution, we may
sometimes refer to 2-D digital images simply as images for convenience.

Kovalevsky [9] points out that the essential difference between an
image and a set of resolution cells consists in adjacency relations be-
tween cells.
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Figure 24.6: Two different ways of representing image structure by a graph.

Definition 24.30 Two resolution cells are adjacent if they have a com-
mon side. A resolution cell is adjacent to itself.

24.3.2 The representation of the image

Figure 24.6 shows two different ways of constructing a graph that rep-
resents neighborhood relations in a digital image. In this particular
example the image contains nine square resolution cells. The left part
of Fig. 24.6 shows a graph that is minimal in the sense that all neigh-
borhood relations between resolution cells are represented by an edge
in the image.

The graph displayed in the right part of Fig. 24.6 is derived from the
same image, but it also represents resolution cell sides of the image
boundary β. This is important for the correct representation of those
regions of an image that have contours containing sides of the image
boundary. The boundary of such regions would not be represented
completely by the graph shown in the left part of Fig. 24.6.

In this thesis the second image representation is selected for its abil-
ity to reflect the topological properties of the image in a more complete
way. Definition 24.31 specifies the corresponding algorithm for the
construction of a plane graph G(V,E) and its geometrical dual G(V,E)
from a digital image.

Definition 24.31 Let I be a 2-D digital image, and let the resolution cells
of I be denoted as ci. Let further each cell ci ∈ I be assigned to an
equivalence class ki. Then a graph G(V,E) and its geometrical dual
G(V,E) is obtained from I by the following process:

1. Place a vertex vi ∈ V in every resolution cell ci and assign vi to the
equivalence class ki of ci. Place one vertex vE in the plane surround-
ing I;

2. if two cells ci, cj have a common side, then draw a line between ver-
tices vi and vj in such a way that the common side is intersected; this
line represents the edge (vi, vj) ∈ E;
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Figure 24.7: Construction of the face graph.

3. if a cell ci is on the boundary of I, then draw a line between vertices
vi and vE such that a side common to ci and the plane surrounding
I is intersected; this line represents the edge (vi, vE) ∈ E;

4. construct the geometrical dual G of G according to Definition 24.26.

We refer to graph G as the neighborhood graph as its edges explicitly
represent adjacency between elements of the representation of I. Graph
G is called face graph because vertices v ∈ V represent faces of a planar
embedding of G.

Figure 24.7 illustrates the construction of the dual graph (dashed lines).
Note that each resolution cell corner that is common to at least two cells
corresponds to a mesh of three or more in length in the neighborhood
graph G. Each vertex of the face graph G corresponds to one face of
G. For this reason there is also a correspondence between resolution
cell corners and vertices of G, illustrated in Fig. 24.7 by the fact that
each dashed circle encloses one resolution cell corner. The right part
of Fig. 24.7 shows the final result of the construction process of Defi-
nition 24.31.

A dual graph representation obtained from a digital image according
to Defintion 24.31 can be transformed into a topologically correct and
minimal representation of the image regions by a massively parallel
process [10].

24.4 Voronoi diagrams and Delaunay graphs

The history of Voronoi diagrams goes back to Descartes (1664) in as-
tronomy. Later, Dirichlet (1850) exploited Voronoi diagrams in R2 and
R3, and Voronoi (1905) in higher dimensions in the study of reducibil-
ity of positive definite quadratic forms. One can notice that Voronoi
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diagrams have been discovered in many fields under different names
such as Dirichlet regions, Thiessen polygons (1911), and Wigner and
Seitz zones (1933) ([11, 12, 13]).

In this section we give some definitions and properties of Voronoi
diagrams and Delaunay graphs. Proofs will not be given here for the
sake of shortness. A comprehensive cover of the topics can be found
for example, in [14, 15, 16]. Let ϕ be a finite set of distinct points in
Rk, k ∈ N∗.

Definition 24.32 (Voronoi diagram) Let x be a point ofϕ. The Voronoi
region VR(x|ϕ) associated with x is the set of points nearer from x than
from any of the other points of ϕ:

VR(x|ϕ) = {z ∈ Rk,d(z,x) ≤ d(z,y),∀z ∈ϕ}
where d is the Euclidean distance. The Voronoi diagram of ϕ is the
union of the Voronoi regions:

VD(ϕ) =
⋃
x∈ϕ

VR(x|ϕ)

According to this definition, one can see that each Voronoi region is
polyhedral and convex as an intersection of half-hyperplanes. More
precisely, if H(x,y) denotes the half-hyperplane that is the perpendic-
ular bissector of the segment [x,y] containing x then

VD(x|ϕ) =
⋂

y∈ϕ\{x}
H(x,y)

(H(x,y) is called the dominance region of x over y). Furthermore the
Voronoi diagram is a “partition” of Rk in such a way:⋃
x∈ϕ

V(x) = Rk and [V(x) \ ∂V(x)]∩ [V(y) \ ∂V(y)] = ∅, x,y ∈ϕ

In R2 a Voronoi vertex is defined as a point where three or more
Voronoi polygons meet (see Fig. 24.8). However, one has to distinguish
the case where one or more Voronoi edges degenerate to a point:

Definition 24.33 If there exists at least a Voronoi vertex which is incident
to more than k + 1 edges, the Voronoi diagram is called degenerate.
Otherwise, it is called nondegenerate (see Fig. 24.9).

One can see that a Voronoi diagram is not degenerate if we assume
that the set of pointsϕ is in general position (no k+2 points lie on the
same hypersphere and no l+ 1 points lie on a l− 1 dimensional affine
subspace of Rk, l = 2, · · · , k) [12].

According to the Definition 24.32, the following property is rather
trivial:
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Figure 24.8: Voronoi diagram.

Figure 24.9: Degenerate Voronoi diagrams. The vertices indicated by open
circles have more than three edges.

Property 24.1 The point x ∈ϕ is the nearest point from point x̃ if and
only if x̃ is contained in Vor(x|ϕ).
This property is related to the following problem [17]:

Problem 1 (The nearest neighbor search problem) Given a set of dis-
tinct points ϕ, find the nearest neighbor point among ϕ from a given
point x̃ (x̃ is not necessarily a point in ϕ).

A straightforward method to solve problem 1 would be to calculate
and compare all distances ‖x̃ − x‖, x ∈ ϕ. Although this is not very
complex for only one point, it might become tedious with increasing
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a b

Figure 24.10: Bounded Voronoi diagrams: a a disconnected boundary Voronoi
region (shaded); and b Boundary Voronoi polygons (star-shaped with respect to
their points)

number of point probes. Thus, if the same set of pointsϕ is repeatedly
used for (minimum) distance calculations, it is reasonable to calculate
the Voronoi diagram first and then use the Voronoi diagram to solve
the point-location problem (i.e., to find the region in which a point x̃
falls).

In practical applications we consider a Voronoi diagram in a bounded
region S.

Definition 24.34 Let Vor(ϕ) be a Voronoi diagram in Rk, S ⊂ Rk and

Vor(ϕ)∩ S = {Vor(x1|ϕ)∩ S,Vor(x2|ϕ)∩ S, . . . , V(xn)∩ S}
(24.1)

The set Vor(ϕ)∩ S is called a bounded Voronoi diagram. If a Voronoi
polytope Vor(x|ϕ) shares the boundary of S and if it is connected,
Vor(x|ϕ) is called a boundary polytope. If it is disconnected, it is called
a boundary region (see Fig. 24.10).

Since polytope in a k-dimensional Voronoi diagram may be unbound-
ed, Voronoi edges may be infinitely long. Thus, strictly spoken, the k-
dimensional Voronoi diagram is not a graph. However, as we will see,
any Voronoi diagram may be transferred to a Voronoi graph by simply
adding a point in an unbounded region.

The following definition was given by Delaunay in 1934.

Definition 24.35 (Delaunay graph) The Delaunay graph DG(ϕ) is a
graph composed of simplexes in which the interior of the hypersphere
S(ψ) circumscribed by every simplex ψ of DG(ϕ) does not contain any
point of ϕ: ∀ψ ∈ DG(ϕ), ∂ (S(ψ))∩ϕ = ∅.

We assume that the set of points ϕ is in general position in a way
to ensure the existence and unicity of the Delaunay graph. In this case,
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Figure 24.11: Delaunay graph.

the Delaunay graph and the Voronoi diagram are dual in a graph the-
oretical sense as there is a one-to-one correspondence between the
(k − l)−facets of VD(ϕ) and the l−facets of DG(ϕ), 0 ≤ l ≤ k [12].
Furthermore, DG(ϕ) is a partition of the convex-hull of ϕ, denoted by
CH(ϕ) (see Fig. 24.11).

The Delaunay graph contains various interesting subgraphs for com-
puter vision as the Gabriel graph, the relative neighbor graph, the min-
imum spanning tree and the nearest neighbor graph [11].

Definition 24.36 (Gabriel graph) Two points x and y are said to be in
the Gabriel graph GG(ϕ) if and only if the interior of the hypersphere
with [x,y] in diameter does not contain any point of ϕ.

One can show that two points x and y are in GG(ϕ) if x and y are De-
launay neighbors and the Delaunay edge joining x and y intersect the
hyperface between the two Voronoi polytopes VD(x|ϕ) and VD(y|ϕ)
(see Fig. 24.12).

Definition 24.37 (Relative neighbor graph) Two points x and y are
said to be in the relative neighbor graph RNG(ϕ) if and only if the
interior of the hyperspheres centered in x (respectively, y) with d(x,y)
in radius do not contain any point of ϕ (see Fig. 24.13).

Definition 24.38 (Euclidean minimum spanning tree) An Euclidean
minimum spanning tree EMST(ϕ) is a tree such that the nodes are given
by the points ofϕ and the sum of the length of the edges is minimal (see
Fig. 24.14).

The algorithm to compute the minimum spanning tree is based on
the following lemma:
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Figure 24.12: Gabriel graph.

Figure 24.13: Relative neighbor graph.

Lemma 24.1 Let {ϕ1,ϕ2} be a partition of the set of points ϕ. There
is a Euclidean minimum spanning tree of ϕ that contains the shortest
edge joining ϕ1 and ϕ2.

The EMST algorithm will handle, at each step, a forest of tree. The
initial forest is the set of points. The general step of the algorithm is:

1. Select a tree T in the forest;

2. Find an edge (x′, y ′) such that d(x′, y ′) = min
x∈T , y∈ϕ\T

d(x,y);

3. If T ′ is the tree containing y ′, merge T and T ′ by binding them with
edge (x′, y ′).

The algorithm terminates when the forest consists of a single tree
EMST(ϕ). The second step of the algorithm is computed with the help
of the Voronoi diagram.



768 24 Graph Theoretical Concepts for Computer Vision

Figure 24.14: Minimum spanning tree.

One can notice that the EMST is related to the following problem:

Problem 2 (The closest pair problem) Given a set of distinct points ϕ,
find the closest pair (i.e., the pair {x,y}, x,y ∈ ϕ with minimum dis-
tance among all possible pairs in ϕ).

In fact the closest pair of ϕ is an edge of EMST(ϕ).

Definition 24.39 (Nearest neighbor graph) The nearest-neighbor graph
NNG(ϕ) is the directed graph defined by the following directed relation:

x�
ϕ
ya d(x,y) = min

y∈ϕ\{x}
d(x,y)

When the Euclidean distances d(x,y) and d(x,z) are equal, y and z
are ordered in terms of nearness of x according to the lexicographic
order on the polar coordinates (see Fig. 24.15).

The computation of the nearest neighbor graph is closely related to
the Voronoi diagram according to the following property:

Property 24.2 The nearest neighbor fromx is the point ofϕ\{x}whose
Voronoi polyhedra share the (k− 1)-Voronoi faces of Vor(x|ϕ).

More generally, y is a directed neighbor of x in the l−nearest neigh-
bor graph, l ∈ N∗, if there exists i, i ≤ l such that y is the i−th nearest
neighbor of x in the set of points ϕ \ {x}. One can notice that the
l−nearest neighbor graph ofϕ is not a subgraph of DT(ϕ) for l ≥ 2 in
the general case. Meanwhile, we have the following proposition, which
is very interesting to compute the l−nearest neighbor graph from the
Delaunay graph:
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Figure 24.15: Nearest neighbor graph.

Proposition 24.1 The minimum path in the Delaunay graph DG(ϕ)
between a point x ∈ϕ and its ith nearest neighbor is at most of length
i (#ϕ ≥ i).

Proposition 24.2 NNG(ϕ) ⊂MST(ϕ) ⊂ RNG(ϕ) ⊂ GG(ϕ) ⊂ DG(ϕ).
The proof is given in [16]. As a tree is a connecting graph, the Gabriel
graph and the relative neighbor graph are also connecting graphs. Un-
fortunately, the nearest neighbor graph is not a connecting graph in
the general cases.

One can show that the Gabriel graph, the relative neighbor graph,
the minimum spanning tree and the nearest neighbor graph can be
computed in O(n) from the Delaunay graph in the plane according to
the Proposition 24.2 [16].

In the following, some other basic properties of the k-dimensional
Voronoi diagram are stated. In order to describe topological properties
of a Voronoi diagram in the plane with respect to the number of Voronoi
vertices, Voronoi edges and Voronoi polygons, first the Voronoi dia-
gram has to be transferred to a (planar) graph. In graph theory edges
are not allowed to be infinitely long. Hence, a dummy point q0 is placed
sufficiently far away from the convex hull CH(ϕ) (see Fig. 24.16). Sub-
sequently, each infinite Voronoi edge is cut at a certain point and con-
nected to the dummy point q0. Let Q+1 denote the set of Voronoi ver-
tices including the dummy point p0 and Eb denote the set of the (ma-
nipulated) Voronoi edges. The so-obtained graph G(Q+1, Eb) forms a
planar graph and is called the Voronoi graph induced from the Voronoi
diagram. The Euler formula (see e.g., [18]) can be applied to the Voronoi
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q0

Figure 24.16: A Voronoi graph induced from a Voronoi diagram by the addition
of a dummy point outside the convex hull of the set of points ϕ.

graph. Since the number of vertices nv is incremented by 1 for the
added dummy point, the Euler formula leads to:

Proposition 24.3 Letn,ne andnv denote the number of points, Voronoi
edges and Voronoi vertices of a 2-D Voronoi diagram, respectively. Then

nv −ne +n = 1 (24.2)

More generally Euler-Schlaefli’s equation (see e.g., [19]) for the k-dimen-
sional case leads to:

Proposition 24.4 Let nl be the number of l-dimensional Voronoi faces
in a k-dimensional Voronoi diagram. Then

k∑
l=0

(−1)lnl = (−1)k (24.3)

In the following some estimates of the number of Voronoi edges and
vertices are given. They can be easily deduced from Euler’s equation
(Eq. (24.2)).

Proposition 24.5 Let n,ne and nv be the numbers of points, Voronoi
edges and Voronoi vertices of a 2-D Voronoi diagram, respectively. Fur-
ther let nc be the number of infinite Voronoi polygons and let 3 ≤ n <∞.
Then

ne ≤ 3n− 6 ne ≥ 3nv +nc − 3

nv ≤ 2n− 5 nv ≥ 1
2
(n−nc)+ 1

(24.4)
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a b c

a*i
b*i

Figure 24.17: In triangulation a, the quadrangle is nonconvex. Thus, there
is no alternative triangulation to the one shown. In triangulations b and c,
the quadrangle is convex and does not degenerate into a triangle. Thus, there
are two possible triangulations. The minimum angle among six angles in the
two triangles in triangulations b and c is a∗i and b∗i , respectively. The minimum
anglea∗i in triangulation b is larger than the minimum angleb∗i in triangulation
c. Thus, triangulation b is regarded as locally better according the local max-
min angle criterion.

Other results are given for the stationary Poisson point process in Rk

in [12] where ϕ “locally finite” (for all bounded Borel B set of Rk,
# (B ∩ϕ) < +∞).

To complete this section some interesting geometrical properties of
Delaunay triangulations will be presented. For a given set ϕ of points
there are many possible triangulations spanning ϕ. Sometimes, one
would like to obtain a triangulation, which is as closely equiangular as
possible. One way to achieve such a triangulation is to demand that the
minimum angle in a triangulation is as large as possible. This criterion
is (locally) achieved applying the local max-min angle criterion: (see
Fig. 24.17).

The local max-min angle criterion: For a triangulation T of CH(ϕ)
spanningϕ, let4xi1xi2xi3 and4xi1xi2xi4 be two triangles sharing an
internal edge xi1xi2 in CH(ϕ). For a convex quadrangle xi1xi3xi2xi4,
which does not degenerate into a triangle, let αij, j ∈ {1, · · · ,6} be six
angles in 4xi1xi2xi3 and 4xi1xi2xi4; βij, j ∈ {1, · · · ,6} be six angles
in 4xi1xi3xi4 and 4xi2xi3xi4. If the relation

min
j
{αij, j ∈ {1, · · · ,6}} ≥min

j
{βij, j ∈ {1, · · · ,6}} (24.5)

holds, then the edge satisfies the local max-min angle criterion. Fur-
thermore, if the quadrangle is nonconvex or degenerates into a triangle,
then xi1xi2 is also said to satisfy the local max-min angle criterion.

It can now be shown that the Delaunay triangulation satisfies the
local max-min angle criterion and that any triangulation satisfying this
criterion is the Delaunay triangulation:



772 24 Graph Theoretical Concepts for Computer Vision

Proposition 24.6 (local max-min theorem) Let ϕ be a set of distinct
points

ϕ = {x1, . . . , xn} ⊂ R2(3 ≤ n <∞)

which satisfies the noncospherity assumption (compare Definition 24.33);
T (ϕ) be further a triangulation of CH(ϕ). T (ϕ) is the Delaunay trian-
gulation spanning ϕ if and only if every internal edge in T (ϕ) satisfies
the local max-min angle criterion.

Note that the local max-min angle theorem gives rise to a construc-
tive algorithm which provides a Delaunay triangulation spanning a given
setϕ. This procedure is referred to as the swapping procedure or, alter-
natively, the locally optimal procedure [20] and the locally equiangular
triangulation [21]. Generally, in these procedures starting with an arbi-
trary triangulation spanningϕ every edge that does not fulfill the local
max-min angle criterion is swapped as illustrated in Fig. 24.17.

The Delaunay triangulation is the triangulation with the lexicograph-
ically largest angle vector. Intuitively this means that in the Delaunay
triangulation elongated and thin triangles are avoided. Thus, it can be
expected that the distanceD(x,y) of two points x,y ∈ϕ in the Delau-
nay graph (i.e., the length of the shortest path between these two points)
provides a good estimate of the Euclidean distance. This proposition
is described by the following property which is due to [22].

Proposition 24.7 For any x,y ∈ϕ

D(x,y) ≤ c ·d(x,y) (24.6)

where d(x,y) denotes the Euclidean distance between x and y and

c = 2π
3 cos(π/6)

≈ 2.42

On the other hand, Chew shows that c can be arbitrarily close to π/2 ≈
1.57 [23]. Note that forn points there areO(n2) pairs of points whereas
there are only O(n) edges in the Delaunay triangulation. Thus, accord-
ing to Proposition 24.7 for a large set of points the distance network of
these points can be efficiently approximated by the Delaunay triangu-
lation with only O(n) storage requirements.

Recently Baccelli, Tchoumatchenko and Zuyev show that for the De-
launay graph constructed with respect to a Poisson process, c is asymp-
totically less than 4/π ≈ 1.27 [24]. Simulations nevertheless show that
the asymptotic ratio c is approximately 1.05 for the Poisson-Delaunay
graph [24].
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Figure 24.18: Addition of a new point pl (open circle) into a Voronoi diagram
with five points (filled circles). Dashed lines indicate the Voronoi polygon asso-
ciated with the new point pl.

24.4.1 Approaches for the computation of Voronoi diagrams

An algorithm for computing a Voronoi diagram should provide a full
topological description of the resulting geometrical structure (e.g., a list
of vertices and edges that belong to one polygon as well as a list of all
contiguous polygons). This way of representation, however, requires an
unreasonable amount of memory. A data structure that allows the re-
trieval of a variety of topological information with a minimum of mem-
ory requirements is the winged-edge data structure that is commonly
used in geometric modeling and computer graphics [7, 25, 26]. The
complexity of this data structure for n points in the plane is O(n), as
the number of vertices and edges in a 2-D Voronoi diagram is O(n)
(Proposition 24.5). The retrieval of edges and vertices surrounding a
polygon can be performed in O(n) time.

The computation of Voronoi diagrams in higher dimensional space
is clearly more complex than in the plane. As the number nl of l-faces
of the Voronoi diagram (0 ≤ l ≤ k) for n points in a k-dimensional
space is of O(nmin{k+1−l,dk/2e}) [13], the lower bound of the worst-case
time complexity of an algorithm for constructing the k-dimensional
Voronoi diagram of n points is O(n logn+ndk/2e).

The most famous algorithms to compute the Voronoi diagram and
the Delaunay graph are the divide and conquer [16] and the incremen-
tal [27] ones. The idea of the divide-and-conquer algorithm is to divide
the problem recursively into subproblems and then, merge the results
obtained. The main advantage of this algorithm is its O(n logn) op-
timal complexity in R2 and O(n2) optimal complexity in R3 [28]. The
incremental algorithm works by local modification of the Voronoi dia-
gram after insertion of a new point in the structure. We start with only
one point in the structure and then we add one point after the other (see
Fig. 24.18). Although its worst-case time complexity is O(n2) in R2 for
the computation of planar Voronoi diagrams, its average time complex-
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Figure 24.19: Split step in Voronoi polyedra of a volume data: 9 polyhedra, 45
polyhedra, 331 polyhedra, 1023 polyhedra, 3456 polyhedra, and 7000 polyhe-
dra (convergence).

ity can be reduced to O(n) when the data are (not too far) uniformly
distributed [29]. In Rk the reader may refer to [30, 31, 32]. Practically
we use the incremental technique because it is important to add or to
remove a polytope without computing the whole structure again.

24.4.2 Applications

The concepts of Voronoi diagram and Delaunay graph are used exten-
sively in many fields (see [13] and references therein).

One can find an application for convex partitioning of a gray-level
image in 2-D and 3-D. Our algorithm is a generalization of the split-and-
merge algorithm on octree regular structures [33], extended to Voronoi
irregular structures [34, 35, 36]. The global principle results in the steps
of the following algorithm (cf. Definitions 24.40 and 24.41):

1. Select a small number of points in the image using a Poisson process.

2. Compute the Voronoi diagram and the Delaunay graph from the
selected point.

3. Compute mean gray value and standard deviation of each polygon.

4. For all polyhedra, split if the polyhedron is not homogeneous (Def-
inition 24.40).

5. Repeat 2-4 until convergence (all the polyhedra are homogeneous).

6. Merge: suppression of the useless polyhedra (Definition 24.41).
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The proof of convergence is straightforward (in the worst case all the
polygons have one pixel in their interior, which gives a variance equal
to zero).

Definition 24.40 A region enclosed by a polyhedron is said to be ho-
mogeneous if and only if the variance in the region is less than a given
threshold.

Definition 24.41 A polyhedra VD(x|ϕ) is said to be useless if and only
if all the neighbors of VD(x|ϕ) have almost equal gray-level means.

An illustration of the split-and-merge algorithm is given in Fig. 24.19,
where the size of the image is 128× 128× 31 with 256 gray values.

The convex partitioning obtained is useful in several applications:

• Image segmentation using irregular pyramid [37, 38];

• Fractal image compression [39];

• Quantitative information for chromosome territories in the cell nu-
clei [40, 41] and for the spatial distribution of the AgNOR proteins
to discriminate malignant tumor pathology [42].

An application of spatial Delaunay Gibbs point processes models in bi-
ology in the context of stochastic geometry is given in [43, 44]. Indeed,
an image of the piece of prostatic tissue is reproduced in Fig. 24.20a.
The architecture presents some cancer on the left side and some nor-
mal hyperplasia type on the right side of the image. One can easily
grasp the difference of architecture on which the pathological diagnos-
tic is based (Gleason grade). Once the image is segmented in a way to
extract the center of the cell nuclei (result of the image segmentation
in Fig. 24.20b), the Voronoi region yields somehow a natural way to
represent the region of influence of each cell [45, 46, 47] (Fig. 24.20c).
Indeed, under Definition 24.32, the Voronoi region associated with the
center of the cell x is the set of points of R2 closer to x than to any
of the other cell centers. Thus the Delaunay graph (Fig. 24.20d) associ-
ated with a potential function depicts the neighborhood relationships
in between cells.

24.5 Matching

Matching techniques are widely used in computer vision to relate struc-
tural descriptions. The relations that are established by matching tech-
niques can be grouped in two classes, relations between image struc-
tures, and relations between an image structure and structured knowl-
edge about scenes. The latter class of relations are established to solve
image understanding problems.
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a b

c d

Figure 24.20: a Image of a prostatic tissue; b cell nuclei segmentation; c Voronoi
diagram; d Delaunay triangulation.

24.5.1 Graph isomorphisms and matchings

Ballard and Brown [7] propose the notion of isomorphism to formally
express the matching problem in graph-theoretical terms (Definitions
24.42, 24.43, and 24.44). For the sake of completeness, we add the
formal Definitions 24.5.1, 24.46, and 24.47 of matchings that can be
found in, for example, Thulasiraman and Swamy [4].

Definition 24.42 Given two graphs (V1, E1) and (V2, E2), find a 1:1 and
onto mapping (an isomorphism) f between V1 and V2 such that for
v1, v2 ∈ V1, V2, f (v1) = v2 and for each edge of E1 connecting any pair
of nodes v1 and v ′1 ∈ V1 there is an edge of E2 connecting f(v1) and
f(v ′1).

Definition 24.43 Find isomorphisms between a graph (V1, E1) and a
subgraph (V2, E2) of another graph (a subgraph isomorphism).
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Figure 24.21: Illustration of matchings.

Definition 24.44 Find all isomorphisms between subgraphs of a graph
(V1, E1) and subgraphs of another graph (V2, E2) (a “double”subgraph
isomorphism).

In graph theory, matchings are defined as particular sets of edges.

Definition 24.45 Two edges in a graph are said to be independent if
they do not have any common vertex. Edges e1, e2, . . . are said to be
independent if no two of them has a common vertex. A matching in a
graph is a set of independent edges.

Reference [4] uses the graph drawn in Fig. 24.21 to illustrate matchings,
for example, the set {e1, e4} in Fig. 24.21 is a matching.

Definition 24.46 A maximal matching is a maximal set of independent
edges; a matching with the largest number of edges is called a maximum
matching.

Set {e1, e4} in Fig. 24.21 is a maximal matching, {e5, e6} is not.
Set {e1, e5, e6} is a maximum matching of the graph in Fig. 24.21.

Definition 24.47 Let M be a matching in a graph. A vertex is said to
be saturated in M if it is an end vertex of an edge in M . A matching
saturating all the vertices of a graph G is called a perfect matching
of G.

Both the graph isomorphism problem and the subgraph isomor-
phism problem are “notoriously hard in general” [48, p. 574]. Although
NP-complete in general, the subgraph isomorphism problem can be
solved in polynomial time if both graphs are rooted trees [48, p. 575].
For the definition of computational complexity and NP completeness,
we recommend the study of Garey and Johnson [49].

For the solution of the graph isomorphism problem, more “easy”
cases exist in which efficient algorithms can solve the problem. Be-
sides the case of rooted trees, for which an O(n) algorithm exists for
the graph isomorphism problem, van Leeuwen [48, pp. 576] mentions
planar graphs.
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a b

Figure 24.22: a Construction of a model graph with image features as at-
tributes; b matching of model graph and graph representing the structure of
an image.

24.5.2 Matching in computer vision: problem statement

The matching illustrated by Fig. 24.21 connects vertices of one graph.
In computer vision matchings usually connect vertices of two graphs.
The vertices of the graphs carry attributes that represent features ex-
tracted from images. Figure 24.22a shows an example of how a graph
may be derived from an image. The left part represents an image that
shows perceptionally significant features of a face: the eyes, the nose,
and the mouth. If the computer vision task is face recognition, then
it is reasonable to extract these features from the image and to store
them as attributes of vertices. The vertices may then be connected by
edges according to the spatial relationships of their attributes in the
image domain, thus yielding the graph represented in the right part
of Fig. 24.22.

Note that the edges of graphs derived from images do not necessar-
ily represent spatial relationships of image features, but may represent
their relationships in more general terms. Figure 24.22b illustrates the
matching problem of computer vision by means of the graph displayed
in Fig. 24.22a, and which is represented as a model in the left part of
the image.

The right part of Fig. 24.22b contains a graph that has been derived
from a new image. Dashed lines in Fig. 24.22b represent edges of a
matching. These edges establish relations between vertices of both the
model graph and the graph derived from the new image. In practice a
vertexn of the new graph is connected to a vertexm of the model graph
if the attributes of n and m are similar according to an application-
specific measure of similarity.

A general problem encountered in computer vision is the presence
of noise and occlusions. One consequence of noise and occlusion is
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illustrated in Fig. 24.22b: not all of the vertices of the displayed graphs
are saturated. The feature of the left eye’s signature derived from the
new image differs from the features stored with any vertex of the model
graph. The similarity measure computed to establish the matching is
insufficient to establish a relation between the unsaturated vertices,
thus hindering a perfect matching.

Another problem caused by noise and occlusions consists in ambi-
guities. Based on the similarity measure used to compute the matching,
a vertex of one graph may be found similar to more than one vertex of
the other graph. This may lead to several possible matchings and re-
quires a decision for the optimal matching.

24.5.3 Matching by association graph construction

A popular approach to solving the matching problem in computer vi-
sion is by construction of an association graph [7, 50, 51]. It is adopted
in many fields of computer vision [52, 53, 54, 55, 56, 57, 58].

In an association graph, each edge m of a matching M is repre-
sented by a vertex that carries the end vertices of m as attributes. By
construction, the association graph represents all possible matchings
relating two graphs. All vertices representing the edges of one match-
ing are connected to form a clique. Thus, each individual matching is
represented by a clique in the association graph, and the search of the
best possible matching corresponds to a search of the clique with the
largest number of vertices in the association graph. We report here the
construction process given by Ballard and Brown [7]. Recently, Pelillo
et al. [59] have extended the method to cope with the problem of finding
correct matchings between hierarchical structures.

Definition 24.48 Given two attributed graphsG1(V1, E1) andG2(V2, E2),
the association graph G(V,E) is constructed as follows. For each pair
vi ∈ V1, vj ∈ V2 of similar vertices, define a vertex v ∈ V that carries the
label (vi, vj). Vertices vi and vj are similar if their respective attributes
are similar.

Consider two vertices u and v of G carrying labels (vk,vl) and
(vi, vj), respectively. u and v are connected by an edge e ∈ E if they
have “compatible” topological relationships, that is, the edges (vi, vk) ∈
E1 and (vj,vl) ∈ E2 exist, or if the vertices of the vi,vk-path in G1 and
the vertices of the vj,vl-path in G2 are all pairwise similar.

Cliques in the association graph can be found using the following
procedure:

Definition 24.49 Let G(V,E) be an association graph. The following
recursive procedure finds all cliques in G, starting from X = ∅:
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Cliques(X, V-X) :=
if (no vertex in V-X is connected to all elements of X,

then {X};
else

Cliques (X + {v}, V) + Cliques(X, V - {v}),
where v is connected to all elements of X.

24.6 Graph grammars

The graph grammar formalism presented in this section is based mainly
on the work of Kreowski and Rozenberg [60]. According to require-
ments coming up from the application to knowledge representation this
formalism has been extended with some features, such as attributes
and semantic relations. Surveys and detailed introduction to graph
grammars can be found, for example, in [60, 61, 62, 63].

24.6.1 Graph

Definition 24.50 Let ΣE,ΣR be two finite sets of labels.

1. A tuple BP = (E,R, s, t, kE, kR) is a labeled graph, in this section
shortly called graph, with

• E ≠∅ is a finite set of entities, normally called vertices,

• R ⊆ E × E is a finite set of relations, normally called edges,

• s, t : R → E are direction mappings, which assign to each relation
r ∈ R a source s(r) ∈ E and a target t(r) ∈ E,

• kE : E → ΣE and kR : R → ΣR are mappings called entity and
relation labeling, which assign to each entity e ∈ E a label σe ∈ ΣE
or to each relation r ∈ R a label σr ∈ ΣR.

2. A graph G with E = ∅ is called empty and is denoted by λ.

3. Let G1 and G2 be graphs. G2 is called a subgraph of G1, denoted by
G2 ⊆ G1, ifRG2 ⊆ RG1 , EG2 ⊆ EG1 , and the mappings sG2 , tG2 , kEG2

, kRG2
are restrictions of the corresponding mappings of G1 to RG2 and EG2 .

4. Let G1 and G2 be graphs. Let V ⊆ G1 and W ⊆ G2 be subgraphs. Let
g : V →W be a graph homomorphism1 with g(V) =W . Then G1 and
G2 can be glued together along the gluing parts V and W according
to g yielding the new graph U , called the (g-)gluing of G1 and G2,
which is defined as follows:

(a) EU = EG2 + (EG1 − EV),RU = RG2 + (RG1 −RV)
1Two mappings gE : EG1 → EG2 , gR : RG1 → RG2 form a graph homomorphism

g : G1 → G2 if they preserve incidences and labels; for details see [60].
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gl(B) = Vpr(B) = Wund(B) = BP con(B) = U

Figure 24.23: A structured graph (see Kreowski and Rozenberg [60]).

(b) sU , tU : RU → EU,kEU : EU → ΣEU , kRU : RU → ΣRU are defined for all
r ∈ RU and e ∈ EU by
fU(r) = if r ∈ EG2 then fG2(r) else if fG1(e) ∈ EV then g(fG1(e))
else fG1(e), where f ∈ {s, t}, and kEU (e) = if e ∈ EG2 then kEG2

(e)
else kEG1

(e). and kRU (r) = if r ∈ RG2 then kRG2
(r) else kRG1

(r).
The gluing of G1 and G2 is called the disjoint union of graphs, if the
gluing parts are empty, i.e., V =W = λ.

5. LetG be a graph andV ⊆ G a subgraph ofG. Then the pairA = (G,V)
is called a weakly structured graph; G is called underlying struc-
ture of A (denoted by und(A)), and V is called the gluing part of A
(denoted by gl(A)).

6. Let G be a graph and V ⊆W ⊆ G, that is, V a subgraph of W , and W
a subgraph of G. Let also U ⊆ G be a discrete2 subgraph of G. Then
the 4-tuple B = (G,U,W,V) is called a structured graph; G is called
underlying structure of B (denoted by und(B)), U is called contact
part of B (denoted by con(B)),W is called protected part of B (denoted
by pr(B)), and V is called the gluing part of B (denoted by gl(B)).

An abstract example of a structured graph is given in Fig. 24.23. In
this figure the general relations of the graphs G,U,W,V are shown by
relations of shapes. Kreowski and Rozenberg mainly distinguish the
different transformation rules in [60] according to the protected part
of the left-hand side:

Comment 24.6.1 If a rule protects nothing, that is, pr(B) = λ, then
it is called destructive; if a rule protects the connecting part, that is,
con(B) ⊆ pr(B) ≠ λ, it is called protecting. The subgraphpr(B)\gl(B)
is called in this section the context of the structured graph B.

In order to structure complex graph entities we will split them in our
formalism into smaller parts and iterate this graph resulting in a hier-
archically distributed graph. The dynamical aspects of a graph struc-
tured in that hierarchically and distributed way are described by graph

2RU = ∅.
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transformations [64] that can change the topology of a graph. In our
formalism this will be called graph transformation. The “informations”
about the hierarchical structure will be stored in special attributes, the
so-called roles.

24.6.2 Transformation rules

The notion of a transformation rule3 and its application to a graph is
described in general.

Definition 24.51 A tuple tr = (B,A,apt,γ, IM) is a transformation
rule, with

• B is a structured graph, called left-hand side of tr ,

• A is a weakly structured graph, called right-hand side of tr ,

• apt : gl(A)→ gl(B) is an isomorphism, called gluing adaptor,

• γ = (γin, γout) is an ordered pair of two relations γin,γout ⊆ E ×
ΣR × E × ΣR × E, called embedding specification of tr Sometimes it
is better to have a function for the embedding specification, which
creates the (γin, γout)-pair on the fly. Then γ denotes this function4:
γ(<important input>)→ (γin, γout)5.

• IM is a set of application conditions, represented as equations, called
the information management specifications of tr .

Our transformation rules will be applied in different applications. The
semantics of the right- and left- hand side as well as the semantics of
the information management specifications change according to these
different applications. Some examples for the different applications
are given:

hierarchy As already mentioned here, we will use these rules to de-
scribe hierarchically distributed graphs. In this case the left-hand
side, that is, the state before the application of the rule specifies the
graph, which will be refined. The right- hand side, that is, the state
after the application of the rule, specifies the refined graph. In the
information management specifications pre- and postconditions of
this refinement step are described. These conditions can be proofed
by external domains, like calendar systems, arithmetic calculus etc.

optimization We also use these rules to find nonoptimized graphs,
specified by the left-hand side. The right-hand side and the infor-
mation management specifications describe how this graph is opti-
mized.

3In [60] these rules are called structured graph rewriting rules.
4In the IRIS-system described in this book a function is used.
5 A horrible part resulting from the "‘application marshlands"’: Sometimes the em-

bedding depends on the current state of the real world.
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analysis We use standard algorithms, for example, [65], to check the
specified rules for soundness and correctness. The rules themselves
are used to analyze a given graph, that is, a given graph G is describ-
able by a set of transformation rules.

execution A given graph G is executed by applying a special set of
transformation rules, which are called execution rules. There the
left-hand side describes the preconditions and the right- hand side
the postconditions of an elementary execution step. The informa-
tion management specifications describe additional pre- and post-
conditions and the “effects,” which should be performed if the ex-
ecution is performed. In the IRIS system described in this book we
execute the graph to recognize objects.

simulation The simulation of a given graph is handled like the execu-
tion of a graph; instead of calling the real systems, dummies will be
used to simulate the real world.

According to [60] we split the application of a transformation rule tr
to a graph G into five basic steps (see Fig. 24.24 on page 785).

Definition 24.52 Let G be a graph and tr = (B,A,apt,γ, IM) be a
transformation rule. Then the application of tr to G is done by exe-
cuting the following five steps.

choose Choose a graph homomorphism g : und(B)→ G, that is, choose
an occurrence of B in the graphG, denoted by g(and(B)). g is called
locating homomorphism. (syntactical check)

check The rule tr is g-applicable to G if the following conditions are
satisfied:

1. if a graph entity e ∈ Eg(und(B)) is incident6 with a relation r ∈
RG \Rg(und(B)), then e ∈ Eg(con(B)).

2. The application conditions of IM are satisfyable.

(semantics check)

remove If tr is g-applicable to G, then construct the remainder graph,
denoted by G \ g(und(B)) as a subgraph of G such that

EG\g(und(B)) = (EG \ Eg(und(B)))∪ Eg(pr(B))
and

RG\g(und(B)) = {r ∈ (RG \ (Rg(und(B)))∪Rg(pr(B)))
‖sG(r), tG(r) ∈ EG\g(und(B))}

add f : gl(A)→ g(gl(B)) is defined by

6If for two graph entities a,b ∈ E and a graph relation r ∈ R: s(r) = a, t(r) = b,
then a,b are called incident with relation r .
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• ∀e ∈ Egl(A) : fE(e) = ge(aptE(e)) and

• ∀r ∈ Rgl(A) : fR(r) = gr (aptR(r)).
Then construct the f -gluing of und(A) and G \ g(und(B)); the re-
sulting graph is denoted by (G \ g(und(B)))]und(A).

connect Add to (G \g(und(B)))]und(A) new relations according to
the following rules:

1. For each removed relation r ∈ RG connecting sG(r) ∈ EG\Eg(und(B))
and tG(r) ∈ Eg(und(B)) \ Eg(pr(B)), and for each added graph en-
tity e ∈ Eund(A) \ Egl(A) a new relation r ′ leading from sG(r) to e,
labeled by σr ′ , is established provided that

(sG(r),σ∗, tG(r),σr ′ , e) ∈ Cin
where σ∗ ≥Σ σr .

2. For each removed graph r ∈ RG connecting sG(r) ∈ Eg(und(B)) \
Eg(pr(B)) and tG(r) ∈ EG \ Eg(und(B)), and for each added graph
entity e ∈ Eund(A)\Egl(A) a new relation r ′ leading from e to tG(r),
labeled by σr ′ , is established provided that

(sG(r),σr , e,σr ′ , tG(r)) ∈ Cout
where σ∗ ≥Σ σr .

3. If γ denotes a function, then apply this function to create the con-
necting relations.

The resulting graph is denoted by G′.

G1 directly derives a graph G2 through tr if G2 is isomorphic to G′1.
A direct derivation is denoted by G1 ⇒ G2; a sequence of derivation is
denoted by G1 ⇒∗KB G2, where KB is a set of transformation rules, our
knowledge base.

An abstract example of a direct derivation is given in Fig. 24.24. The
specifications of IM may be executed in the connect-step; this is the
case when the specifications are used to pass or generate information,
that is, when the specifications are assignments.

In the case in which we use a destructive transformation rule the
embedding of the right-hand side is done by the connector only. In
the other case, that is, we use a protecting transformation rule, the
embedding of the right-hand side is done by the gluing mechanism
only.

As mentioned here, we use different sets of transformation rules—
in the following defined as graph grammar—to describe different ap-
plications within our formalism, like optimization, analysis etc. In the
terminology of the research in Artificial Intelligence these grammars are
describing our knowledge base about general and/or individual graphs,
their disadvantages, how these disadvantages can be bridged, how the
graph itself can be optimized and so forth.
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Figure 24.24: A derivation step yielding G′ from G (see Kreowski and Rozen-
berg [60]).

Definition 24.53 A structured graph grammar is a system
PG = (Σ, T ,KB, SG), where

• Σ = (ΣE,ΣR) is a pair of labels,

• T = (TE, TR) is a pair of terminal objects, where TE ⊆ ΣE and TR ⊆
ΣR,

• KB is a finite set of transformation rules, and

• SG is a graph, called start graph.

graph entities Coming up from the realization, that objects or any
other graph entities strongly depend on (context) specific conditions,
we offer to represent all this information, that is, all necessary knowl-
edge, in one uniform formalism. The advantage of this integrated rep-
resentation is that in any application of our formalism, for example,
analysis, execution, optimization etc., it is possible to use any knowl-
edge. This will lead to a qualitatively better and extensive handling of
knowledge.

In this section we specify the different graph entities to offer the
integrated representation. This is done mainly by establishing specific
attributes to our graph entities.
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Definition 24.54 A complex graph entity e ∈ E of label s = σ(e) is a
tuple e = (eimp, eexp, ebody, ei, ee, evis, euser ), with

• eimp is a set of import pegs,

• eexp is a set of export pegs,

• ebody ≠∅ is a set of alternative graphs, called detailed graphs of e,
• ei : eimp → ebody and ee : ebody → eexp are import/export attaching

functions,

• evis is a set of visibility specifications,

• euser is a set of user defined informations/attributes.

An atomic graph entity e ∈ E is a tuple
e = (eimp, eexp, ebody, ei, ee, evis, euser ), with

• eimp, eexp, ei, ee, evis , and euser as above,

• ebody ≠∅ is a set of alternative nodes, called basics of e.

Note that the body of a graph entity is not directly coupled to the
export part but uses an intermediate interface part . In this way, specifi-
cations may be developed independently from each other and mapping
of required import resources to actually existing export resources may
be done afterwards by means of relations.
euser are user defined attributes usable in the information specifica-

tions to pass, verify and/or generate any kind of information. External
domains, like arithmetic, etc., are integrated in our formalism by using
these attributes and the information specifications.

In distributed applications it is important to have a kind of informa-
tion hiding principle, that is, a set of visibility specifications, realized by
evis . Any graph entity has its own private state, that is, its information
may be declared as invisible for a set of users and visible for another
set of users such as, for example, the access mode in UNIX.
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25.1 Introduction

Virtually all objects in life sciences are 3-D. Imaging techniques such
as light microscopy, electron microscopy or x-ray tomography provide
a sequence of 2-D serial cross sections through those 3-D objects. The
problem is to reconstruct the 3-D shape from the set of serial sections.
The shape representation should allow a rapid 3-D display, the simula-
tion of arbitrary cuts and the analysis of geometrical parameters of the
object. This problem is similar to image sequence analysis, where an
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Figure 25.1: Three different approaches to shape reconstruction from serial
sections.

object needs to be reconstructed in time space. The problem of match-
ing different time images, interpolation of movement and deformation
of objects can be considered as a 3-D shape reconstruction problem.

Several solutions to the shape reconstruction problem have been
proposed in the literature. Basically, three different classes of shape re-
construction approaches can be identified (Fig. 25.1). In the first class,
the 3-D image data stack is considered to be built up by a set of in-
dependent serial sections. This situation occurs in applications where
the object is physically sectioned as in electron microscopy. The prob-
lem is then to first extract a contour of the object of interest in each of
the sections. The shape reconstruction problem may be considered as a
spatial interpolation problem. Based on topological considerations, the
3-D triangulation of the object based on the 2-D contour information
needs to be constructed.

In the second class of shape reconstruction approaches, the image
volume is considered as a continuous space made up by image vox-
els. This situation occurs in applications where the object is optically
sectioned as in light microscopy. Due to the optical imaging proper-
ties, the different sections must not be considered independently, as
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each section contains additional information from the section below
and above it (see Volume 1, Section 21.4.1). In this case; the problem
is to find surfaces within the continuous image space. This problem is
referred to as the tiling or tessellation problem.

A third class of algorithms is closely related to the tiling approach.
Instead of finding surfaces in the continuous image space, the object
is first segmented into sets of connected voxels by appropriate filter-
ing techniques. The problem is then to extract and follow the faces of
the voxels on the object boundary. Based on combinatorial consider-
ations on boundary voxels, object surfaces are constructed (marching
cube algorithms, for review see Watt and Watt [1]). This class of algo-
rithms has been extensively used for shape reconstruction in computer
tomography.

In this chapter, a unified geometrical concept to solve the shape
reconstruction problem from serial sections is presented. The shape
reconstruction approach is based on the Voronoi diagram and its dual
Delaunay graph (for a detailed description of these structures in com-
puter vision see Section 24.4). The Delaunay construction, given a set
of points, decomposes the m-dimensional Euclidean space into non-
overlapping spacefilling simplexes. Thus, the space is tessellated using
tiles that are identical to each other up to linear transformations. The
Voronoi construction decomposes the space into polyhedral cells of
much less uniform character with variable number of faces. The con-
cept of Voronoi diagrams, however, is simple and appealingly intuitive.
Given a finite set of distinct, isolated points in the Euclidean space of
m dimensions, all locations in that space are associated with the clos-
est (not necessarily unique) member of this set. These two structures,
the Delaunay and the Voronoi construction, are mutually dual: Two
points are joint in the Delaunay tessellation if and only if their respec-
tive Voronoi polyhedra share an (m− 1)-dimensional face.

Voronoi diagrams have been exploited in numerous fields of ap-
plications including crystallography, astronomy, urban planning and
also in mathematics, particularly in combinatorics and computational
geometry. In this chapter, we will show how Voronoi diagrams might
be used to solve the shape reconstruction problems of types I and II
(see preceding text). This approach provides a powerful instrument
for rapid shape reconstruction and quantitative evaluation of serially
sectioned objects. In Section 25.3, an approach to shape reconstruction
from serial sections based on 2-D contours (shape reconstruction prob-
lem I) is described, whereas in Section 25.4 an approach to volumetric
shape reconstruction in continuos image space (shape reconstruction
problem II) is presented. Both shape reconstruction approaches will
be illustrated by applications in the field of biology. This chapter will
conclude with a discussion of the different shape reconstruction ap-
proaches in Section 25.5.
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25.2 Incremental approach

Among many other methods, the incremental method is one of the most
important and efficient methods for the computation of Voronoi dia-
grams (Section 25.2; for comprehensive review see Okabe et al. [2]).
Although its worst-case time complexity is O(n2) for the computa-
tion of planar Voronoi diagrams, its average time complexity can be
reduced to O(n) by applying algorithmic techniques such as the buck-
eting method. Hence, it is optimal in an average sense and has outper-
formed O(n logn)-methods as the divide-and-conquer method.

The basic idea of the incremental method is subsequently to add
new seeds into the Voronoi diagram (see Fig. 24.18). This is done by
first finding the nearest neighbor of the new seed in the set of gener-
ators of the previous step (i. e., the Voronoi polygon in which the new
generator is located; compare Step 1 in Algorithm 25.1). In the sec-
ond step, the Voronoi diagram is updated in the neighborhood of the
nearest generator (compare Algorithm 25.3). Precisely, let Vl−1 be the
Voronoi diagram of the (l − 1) generators p1, p2, . . . , pl−1. Then, the
Voronoi diagram Vl of the (l − 1) and the new generator pl is created
as follows:

Algorithm 25.1 (Incremental method)
Input: Voronoi diagram Vl−1 and new generator pl
Output: Voronoi diagram Vl
Procedure: Step 1. Search for the Voronoi polyhedron in which the new

generator is located, that is, search for the generator point
pi, i ∈ {1 . . . l− 1} being closest to the new generator pl.
Step 2. To obtain Vl modify the Voronoi diagram Vl−1 in a
neighborhood of pi by inserting the new generator pl.

The main part of the incremental method is Step 2, which will be de-
scribed in further detail in Algorithm 25.3. Step 1 of the incremental
method can be done by:

Algorithm 25.2 (Nearest neighbor search)
Input: l generators p1, p2, . . . , pl, Voronoi diagram

Vl−1 and initial guess pk, k ∈ {1 . . . l− 1}
Output: the generator pi, i ∈ {1 . . . l− 1} being closest to pl
Procedure: Step 1. In the set of adjacent generators of pk find the gener-

ator pj with minimum distance to pl
Step 2. If d(pk,pl) ≤ d(pj,pl) return pk, else pk ← pj and go
to step 1.

Obviously, the preceding algorithm terminates in finite time with
the closest generator pi of pl. The worst-case time complexity of the
algorithm isO(l), because any of the l generators will be visited at most
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once. The average time required by the preceding algorithm, however,
strongly depends on the choice of the initial guess. A good initial guess
may be achieved with quaternary tree bucketing (see Ohya et al. [3] for
a 2-D solution). Applying this approach, the average time complexity
of the nearest neighbor search is reduced to O(1).

Step 2 of the incremental method can be completed by the boundary
growing procedure (see the algorithm that follows, which is given in a
“pseudo” programming language). The algorithm is explained for the
2-D case, but can be easily transferred to the 3-D case [4, 5]. The main
idea of this method is to divide the vertices of the Voronoi diagram of
the former step into two classes:

The class of vertices that are closer to the new generator than to
any other generator and the class of vertices that are closer to one of
the old generators than to the new one (open circles in Fig. 24.18). The
first set of vertices will be suppressed as they fall into the Voronoi
polygon defined by the new generator. Accordingly, the set of edges
is divided into three classes: The first class consists of edges that are
incident to vertices which are to be suppressed (e.g., e1 in Fig. 24.18).
These edges will also be suppressed in the new Voronoi diagram. The
corresponding generating seeds of these edges will not be neighbors in
the new Voronoi diagram, as their common edge was suppressed (e.g.,
s1 and s2 in Fig. 24.18).

The second class consists of edges that are not incident to any of the
suppressed vertices (e.g., e2 in Fig. 24.18). These edges will be retained
and the neighborhood relationship between the corresponding generat-
ing seeds will not be changed. The third class consists of hybrid edges,
that is, edges that are incident to one vertex to be suppressed and one
to be retained (e.g., s3 in Fig. 24.18). These edges will be changed during
the update of the Voronoi diagram, as one of the incident vertices is to
be suppressed. However, the corresponding generating seeds of these
edges will remain neighbors in the new Voronoi diagram.

Algorithm 25.3 (Boundary growing procedure)
Input: Voronoi diagram V (Pl−1)
Output: Voronoi diagram V (Pl)
Step 1 Current generator p = nearest generator to pl. The vertices of

polygon of the current generator which are closer to pl have to
be suppressed [6].

Step 2 Divide the set of vertices of the current polygon V(p) into two
sets: The set of vertices I that have to be suppressed and the set
of vertices that have to be kept.

Step 3 Insert the current generator p into the list of already treated gen-
erators.

Step 4 For all neighbors p̃ of the current generator which do not appear
in the list of already treated generators do
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Figure 25.2: Illustration of the initializing configuration of a 3-D Voronoi dia-
gram: Left: Eight generators are placed at the vertices of a cube circumscribing
the convex hull of P . Right: The resulting first polyhedron is created by a gen-
erator inside the cube. This polyhedron is bounded.

Step 4a Intersect the two sets V(p) (set of points of the current gen-
erator) and V(p̃) (set of points of the neighboring generator):
V(p) ∩ V(p̃) = (A1,A2). In 3-D, the intersection would be a
polygon, whereas in 2-D one directly obtains an edge. Thus,
in 3-D the algorithm has to branch in order to decide which
edges of the polygon constitute the new polyhedron V(p̃).

Step 4b If (I ⊇ V(p) ∩ V(p̃)) then p and p̃ are no longer neighbors.
The common edge between p and p̃ is to be suppressed; thus,
p and p̃ are no longer neighbors.

Step 4c elseif (I 6⊇ V(p) ∩ V(p̃) and V(p̃) ∩ I ≠ ∅) then One of the
vertices of the intersection edge is to be suppressed, whereas
the other one is to be kept.

Step 4d Insert p̃ in the list of generators to be treated.

Step 4e The new vertex is calculated as the intersection between the
line (A1,A2) and the medial line between pl and p. This new
point is added to the list of vertices of V(pl). The new gener-
ator pl is assigned neighbor of p and p̃ and vice versa.

Step 5 Continue while the list of generators to be treated is not empty.

The above algorithm only works well for bounded polyhedra. To
avoid exceptional branching within the algorithm, all polyhedra are
forced to be finite using a simple trick: Recalling that a Voronoi polyhe-
dron is infinite if and only if the respective generator is on the boundary
of the convex hull CH(P) spanning the set of generators P . Thus, by
adding artificial generators in the background (i.e., sufficiently far away
from the convex hull), the only infinite polyhedra will be those of the
artificial generators, whereas all other polyhedra are bounded. For this
purpose four initial generators are added in 2-D such that all generators
to be added are placed within the convex hull of the four initial genera-
tors. In 3-D eight initial generators are added, which lie on the vertices
of a cube circumscribing the convex hull of P (compare Fig. 25.2).
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The time complexity of the region growing procedure obviously de-
pends on the size of the substructure that has to be deleted. As the
average number of vertices of a 2-D Voronoi polygon is six or less (recall
Section 24.5), one could expect that the size of structure to be deleted
should be constant. However, under certain conditions the number of
vertices to be deleted might depend on the number of generators. Thus,
to restrict the average size of the substructure to be constant, one has
to take care that before starting the incremental method the generators
are reordered in such a way that they are as uniformly distributed as
possible. For this purpose, the bucketing technique may also be ap-
plied. Ohya et al. [3, 7]) showed that the construction of the quaternary
tree and the reordering of the generators can be done in linear time. In
addition, the nearest neighbor search method as well as the deletion of
the substructure can be expected to be completed in O(1) time apply-
ing the bucketing method. Thus, in total the average time complexity
of the incremental method could be reduced from O(n2) to O(n).

25.3 Three-dimensional shape reconstruction from con-
tour lines

In this section the 3-D image data stack is considered to be built up by
a set of independent serial sections. The shape reconstruction prob-
lem may then be considered as an interpolation problem between the
extracted contours in each individual section. Based on topological
considerations, the 3-D triangulation of the object based on the 2-D
contour information needs to be constructed.

Several solutions have been proposed in the literature. In Keppel
[8] and Fuchs et al. [9] the problem is reduced to the reconstruction of
a sequence of surfaces between each pair of adjacent contours. The
surfaces are constructed as elementary triangles between two vertices
on one contour and another vertex on the adjacent contour. It can
be shown that this shape reconstruction problem is equivalent to the
search of a path in a directed graph. Associating a weight to the edges
of that graph a classical shortest path algorithm will produce an op-
timal shape reconstruction (for review of different choices of weights
see Boissonnat [10]). Because of the existence of different weights this
shape reconstruction approach was used in a wide range of applica-
tions. However, it was pointed out in Sloan and Hrechanyk [11] that the
tiling algorithms are not suited for the shape reconstruction of objects
with rapid topological changes. For example the shape reconstruction
of a convex contour in one plane and a spiral like contour in the adja-
cent plane would result in a surface intersecting itself. In addition, this
approach cannot handle the topologically important case of (multiple)
hierachical contours (see Section 25.3.3).
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Figure 25.3: a Representation of a cross-sectional contour and the neighbor-
hood on the contour specifying inside and outside of the shape by the sense of
orientation; b hierarchically structured contours: The two contours are topo-
logically connected contours, as they contribute to the surface of one and the
same object.

Here we will present an alternative approach based on the Delaunay
graph for 3-D shape reconstruction of serial contour data first sug-
gested by Boissonnat [10]. The principal idea is to compute a tetra-
hedral representation of the object. The object will be reconstructed
section by section. The contour vertices will suit as Voronoi seeds. The
Voronoi diagram and its dual Delaunay graph are then computed by a
split-and-merge approach described in Section 25.4.2. The set of inter-
mediate reconstructions from each pair of neighboring contours will
be combined into a final shape reconstruction. Contours that mark
the start or end of a bifurcation and thus do not show an overlap
in two consecutive sections will not be linked in the reconstruction
(Fig. 25.4). This approach not only provides a triangulated surface of
the reconstructed object but also a volumetric representation of the
reconstructed object.

25.3.1 Topological prerequisites

First we need to formalize the contour definition to obtain the correct
topological representation of the sectioned object. A contour is de-
fined as a closed, cyclic and planar polygon circumscribing the object
of interest. This definition induces a bidirectional neighborhood on the
contour.

Note that the object might include holes or complicated bifurca-
tions (see Fig. 25.3). Since inside and outside of a sectioned object is
given by the sense of orientation of the contour vertices, holes are given
an inverse sense of orientation as the regular outlining contours (see
Fig. 25.3).

With these topological prerequisites the Voronoi diagram and its
dual structure, the Delaunay graph, may be computed for the set of
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Figure 25.4: Schematic representation of overlapping contours: Two contours
that show an overlap when being projected on each other will be linked. Left:
top view; right: side view.

contour vertices taken as Voronoi seeds. However, when reconstruct-
ing the 3-D object by the Delaunay approach neighboring vertices on
the contours also need to be neighbors in the Delaunay graph. It was
shown [10] that this condition can be met for arbitrary contour lines by
adding a finite number of vertices to the contour. Hence, in the follow-
ing we will assume that neighboring vertices on the contour will also
be neighbors in the Delaunay graph.

25.3.2 Classification of tetrahedra

For each pair of consecutive sections the Voronoi diagram is computed
on the set of contour vertices as Voronoi seeds. By this a tetrahedriza-
tion of the 3-D image space made up by two serial sections is obtained.
In order to extract objects in the Delaunay tetrahedrization the De-
launay tetrahedra have to be classified as in or out. Inside tetrahedra
constitute to the object while outside tetrahedra belong to the back-
ground. The object surface is made up by triangular facets between in
and out tetrahedra. Furthermore, the direction of the surface normal
is given by the sense of orientation on the contours.

In this subsection we will deal only with the case of simple con-
tours, that is, a contour does not contain holes. The more general case
of hierachical contours will be dealt with in the following subsection.
For a classification of tetrahedra as in or out we first distinguish four
intermediate classes of tetrahedra (Fig. 25.5):

1. exactly three out of the four vertices of a tetrahedron belong to one
and the same contour;

2. two pairs of vertices of a tetrahedron belong to two different con-
tours;

3. two vertices belong to one contour, the remaining two vertices be-
long to two different contours; and

4. all four vertices belong to different contours.
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Figure 25.5: Four classes of Delaunay tetrahedra.

A final classification of tetrahedra as in or out will then be achieved
on the basis of the intermediate classification specified here and the
following additional conditions:

1. Tetrahedra of class 1: If the triangle defined by the three contour
vertices lies within the contour, then the tetrahedron will be consid-
ered as in (else out ).

2. Tetrahedra of class 2: the two pairs of contour vertices form an
edge. We now have to distinguish the following cases:

(a) The two vertices are neighbors on the contour, that is, the edge is
part of the contour polygon. Those tetrahedra are indefinite and
will be classified by an iterative approach. The set of indefinite
tetrahedra will be iteratively visited. Each tetrahedron having two
or more neighboring inside tetrahedra will be labeled as inside.
The remaining set of still indefinite tetrahedra will be classified
as out.

(b) If one of the two edges is inside (or outside) the contour, then the
tetrahedron will be considered as in (or out ).

3. Tetrahedra of types 3 and 4 will be considered as out.
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25.3.3 Generalization for hierarchical contours

In the previous subsection we described only the case of simple con-
tours. Here a generalization to the topologically important case of hier-
archical contours induced by holes within the object (Fig. 25.3b) will be
provided. In the foregoing classifications the concept of (simple) con-
tours needs to be replaced by the concept of topologically connected
contours. Two contours are called topologically connected if they con-
tribute to the surface of one and the same object.

25.3.4 Refinement of the Delaunay tetrahedrization

The set of contour vertices may not be sufficient to describe rapid topo-
logical changes between adjacent contours. Hence the Delaunay sur-
face representation might not lead to an appropriate topological rep-
resentation of the object shape. Therefore additional points must be
inserted into the Delaunay graph. Different approaches to a solution
of this interpolation problem have been suggested (see Boissonnat and
Geiger [12], Oliva et al. [13]).

Here the 3-D outside skeleton of the initial object is applied to in-
sert additional points for the Delaunay tetrahedrization. The outside
skeleton is defined as the set of lines between the Voronoi vertices cor-
responding to two neighboring outside tetrahedra. If large topological
changes occur such as, for example, bifurcations and birth of holes, the
outside skeleton intersects the initial object.

The gravity center of the common triangular face between two tetra-
hedra defined by the intersection criterion was shifted into a medial
plane. This new point suits as a new seed for the refined Delaunay
tetrahedrization. The result of this process is shown in Fig. 25.6. So
called nonsolid connections [12], which can be seen in Fig. 25.6a at the
border line, can be eliminated by introducing seeds at the medial plane.
Therefore a disconnection of the internal skeleton is avoided and the
neighborhood structure on the closing planes is not influenced.

25.3.5 Shape reconstruction of multiple cross sections

To reconstruct an object consisting of multiple cross sections, we apply
the presented algorithm pairwise to consecutive sections. The recon-
structed surface slices are then merged to one object by stacking the
surface slices one above another. As we used a Delaunay tetrahedriza-
tion of the object and because the triangulated closing plane shared
by two consecutive cross sections is identical [10], the neighborhood
representation given by the individual surface slices is conserved from
one reconstructed slice to the other. The neighborhood information
is still conserved after refinement of the Delaunay tetrahedrization by
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a b

Figure 25.6: a The light gray lines represent the 3-D outer skeleton which in-
tersects the object (see small black spots on the surface); b same after adding
new seeds.

adding new seeds in the medial plane (see Fig. 25.6). We can easily link
the identical medial surfaces together and therefore get a Delaunay-
like neighborhood representation throughout the whole object. Note
however that the refined tetrahedrization of the object is generally not
a Delaunay type tetrahedrization. Exploiting the neighborhood struc-
ture connected components can easily be found and, therefore, volume,
surface and Gouraud normals can be computed.

25.3.6 Applications

The reconstruction algorithm for cross-sectional contours was applied
to the shape reconstruction of peroxisomes in rat hepatocytes (Fig. 25.8,
data obtained from Grabenbauer [14]) or rat brain material (Fig. 25.7,
data from Schwegler, University of Magdeburg, FRG). Ultra thin sec-
tions of rat liver (approx. 40-60 nm section thickness) were imaged by
electron microscopy. The images were digitized and transfered to a
Silicon Graphics workstation. After alignment and contouring of se-
rial sections a 3-D shape reconstruction was computed within a few
seconds as described in the foregoing text. The reconstructed shapes
were displayed online using the Computer Aided Reconstruction soft-
ware package (MiniCAR, Sätzler and Eils, unpublished).

25.4 Three-dimensional shape reconstruction from vol-
umetric data

In this section the 3-D image volume is considered as a continuous im-
age space (Chapter 2). The shape reconstruction problem is hence to
find surfaces within the continuous image space. Here we will describe
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a b

c d

Figure 25.7: a Shows a side view of an aligned image stack of electron micro-
scopical sections through a spine; c shows the outlined contours from the spine
shown in a and its optical densities (active zones); b shows the shape reconstruc-
tion of the spine and its optical densities; d shows the reconstructed shape of the
active zones only.

an approach that is based on the Voronoi diagram. In a first step the im-
age space is subdivided into simple geometric entities, that is, Voronoi
polyhedra made up by image voxels with similar image information.
Thereafter, objects are segmented as sets of connected polyhedra ex-
ploiting the dual Delaunay graph structure. A surface representation
as well as morphological parameters such as volume or surface area
of segmented objects can be easily extracted from the geometric shape
representation. In the following subsection a motivation for the ge-
ometric model as an appropriate model for 3-D shape reconstruction
of serial sections in light microscopy is given. In Section 25.4.2 a split-
and-merge approach to 3-D shape reconstruction will be introduced. In
Section 25.4.3 some applications of the split-and-merge approach for
quantitative image analysis in cell biology will be given.
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Figure 25.8: a and b show serial sections from a rat liver recorded on an elec-
tron microscope. The peroxisomes of the rat hepatocytes are outlined; c and d
show two different views of the reconstructed peroxisomes.

25.4.1 The geometrical model for three-dimensional shape recon-
struction of serial sections in light microscopy

In image processing two different approaches to segmentation might be
distinguished (see, e.g., Jähne [15]): Point-oriented methods and region-
oriented methods. The point-oriented methods decide for each point,
regardless of its neighborhood, whether it belongs to the object (fore-
ground) or background.

In the design of appropriate imaging methods for shape reconstruc-
tion of microscopical images one has to consider the following obsta-
cles (see Volume 1, Chapter 21):

• The objects are smeared by the imaging properties of the micro-
scope. This process is usually modeled by a convolution of the
original object with the so-called point spread function of the mi-
croscope.

• The imaging process induces considerable noise in the image.
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• The resolution along the optical axis is worse than in the focal plane.

Although point oriented methods such as thresholding are widely
used for segmentation of serial sections in light microscopy, such methods
appear to be inappropriate for the following reasons: The histograms
of the images usually do not show a bimodal behavior because of the
smearing property of the microscopical system. In addition, the bio-
logical objects of interest do not have a distinct but a fuzzy boundary.
Furthermore, the noisy image structure requires the incorporation of a
noise model. These considerations argue for a region-oriented model
for image segmentation.

In the next subsection a split-and-merge approach for image seg-
mentation [4, 5, 16, 17, 18] based on the incremental construction of
the 3-D Voronoi diagram (see Section 25.2) is presented. The image
volume is divided into subunits consisting of Voronoi polyhedra. Each
of these subunits represents a volume with a homogeneous gray value
distribution, that is, the standard deviation of the gray-value distri-
bution inside the subunit does not exceed the overall standard devi-
ation of the gray-value distribution of the whole image volume. The
large amount of image data is thus compressed to a small amount of
subunits. Furthermore, the geometrical structure of the polyhedra is
well-suited for computational processing. Based on simple geometrical
considerations geometrical parameters such as volume or surface area
and the distance between different objects (i.e., the distance between
two opposing facets) may be easily calculated. Additionally, facets of
polyhedra may be easily decomposed into triangles (i.e., the smallest
entities in computer graphics), providing the basis for rapid visualiza-
tion of segmented objects.

25.4.2 The split-and-merge approach for image segmentation

The split-and-merge approach is based on a geometrical model. The
basic idea is to partition the image volume consisting of serial sections
into convex polyhedra, thus building the 3-D Voronoi diagram. For
the decomposition each polyhedron is associated with a generator and
each image point (voxel) is assigned to a polyhedron. The neighbor-
hood information is contained in the Delaunay graph, which is dual to
the Voronoi graph. The construction of the Voronoi diagram and the
dual Delaunay graph follows the incremental approach (compare Algo-
rithm 25.1). With this approach the image guides the evolution of the
Voronoi diagram by adding generators in those regions of the image
space with a high variance of gray values. As there is no a priori knowl-
edge of the location of the generators, the Voronoi diagram must be
built dynamically (compare Fig. 25.9):
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Algorithm 25.4 The split-and-merge method

1. Split:

(a) Initialization:
In a first step approximately 30-70 generators depending on the size of
the image volume are randomly placed in the image space according to
a Poisson process. For these initializing generators the Voronoi diagram
and the Delaunay graph are built. For each Voronoi polyhedron, param-
eters such as volume, surface area, mean, and variance of gray values
of the voxels (volume elements) belonging to the respective polyhedron
are calculated. Those parameters are used for further refinement of the
tessellation.

(b) Propagation:
In the following step, each polyhedron obtained in the previous step
is tested for homogeneity. In principle, a wide variety of homogeneity
criteria can be chosen. Here a polyhedron is regarded as homogeneous,
if one of the following criteria holds:

• The standard deviation of the gray-value distribution of all voxels be-
longing to the respective polyhedron is below the overall standard
deviation of the gray values of the image volume.
The noise inside a geometrical unit (i.e., a polyhedron) cannot be ex-
pected to be smaller than the noise in the whole image volume.

• The volume of the respective polyhedron is below a preset limit.
The minimum size of a polyhedron is limited as a polyhedron should
not be smaller in volume than the smallest unit that can be resolved
depending on the resolution of the image acquisition system.

If a polyhedron is homogeneous within the preset limits it must not be
further subdivided and is retained. If a polyhedron is still regarded as
being inhomogeneous, a new generator is added at the gravity center of
the common facet between two neighboring inhomogeneous generators
(for a 2-D demonstration see Fig. 25.10). For the new set of generators
the Voronoi diagram and the Delaunay graph are computed. For each
Voronoi polyhedron, the preceding described parameters are calculated
again.

(c) Convergence:
The propagation step is iterated until all polyhedra are regarded as being
homogeneous.
Apparently, the rate of convergence depends on the choice of homo-
geneity criteria. Robust analytical parameters such as gradient or Lapla-
cian may be added to the variance criteria. Additionally, the surface
area of the common facet between adjacent polyhedra could be used to
decide whether a further subdivision of these polyhedra is useful.

2. Merge:
If all neighbors of a polyhedron P with generator p are homogeneous and
have an almost equal average gray value, then the respective generator p
is deleted. This deletion step is described in detail in Bertin and Chassery
[16].
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Figure 25.9: Flowchart of the Split-and-Merge method.

25.4.3 Segmentation and measurements

In this subsection some applications of the split-and-merge approach to
3-D shape reconstruction and quantitative image analysis are given. Af-
ter computing the Voronoi diagram the objects of interest such as tes-
sellated chromosome territories have to be segmented in the Voronoi
diagram. According to the geometrical model objects are defined as
sets of neighboring polyhedra, which are similar according to a chosen
similarity criterion. For this purpose the Delaunay graph is modified
to a weighted graph in the following way:

Definition 25.1 The (binary) weighted Delaunay graph
Let D(P, ED) be a Delaunay graph on the set of generators P with a set
of edges ED. Further, let V (P, EV ) be the dual Voronoi graph. Each of
the Voronoi generators pi, i = 1 . . .n, is assigned to a (characteristic)
value by a mapping fc : P , <. Further, let fr : fc(P) × fc(P) ,
{0,1} be a (similarity) relation on the pairs of characteristic values of
the generators pi. Then the weighted Delaunay graph Dw(P,Ew) is
obtained from the Delaunay graph D by assigning all edges el ∈ ED
the value fr (fc(pi), fc(pj)) where pi and pj are incident to the edge el.
For convenience an edge with the weight 1 (0) will be termed a 1-edge (0-
edge), the generators incident to a 1-edge 1-neighbors and a component
consisting of only 1-edges a 1-component.
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Figure 25.10: Application of the iterative Voronoi tessellation procedure to
one light optical section of a human female cell nucleus with two painted X-
territories: a original image of one section of a nucleus with two painted X-
chromosomes; b initial Voronoi tessellation. The dots demonstrate the loca-
tions of the generating Voronoi seeds. Each image point contained in a polygon
is closer to its generating seed than to any other Voronoi seed; c, d Voronoi-
tessellation step nos. 2 and 5; e final Voronoi tessellation; f a geometric repre-
sentation of each object is obtained as a connected component in the weighted
Delaunay graph (see Definition 25.1). Note that a 2-D tessellation is demon-
strated here for simplicity, while a true 3-D Voronoi tessellation was applied to
the stack of light optical serial sections obtained for each nucleus.

There are several possibilities for choosing the similarity criterion
(expressed by fr ), ranging from statistical conditions (e.g., mean, vari-
ance or gradient of gray values) to geometrical constraints (e.g., volume,
surface, roundness, curvature). In this thesis the characteristic value of
a generator pi is the mean gray value of all image voxels belonging to
the respective polyhedron Pi. Furthermore, the relation fr is defined
as follows:

fr (fc(pi), fc(pj)) =
{

0 : fc(pk) < t k = i∨ k = j
1 : fc(pk) ≥ t k ∈ {i, j} (25.1)

where t ∈ < is a preset (threshold) value. Literally, the foregoing def-
inition means that the edge between two generators is weighted by 0,
if the mean gray value of either Pi or Pj (or both Pi and Pj) is less than
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the preset threshold (i.e., at least one of the two polyhedra assigned to
the generators pi and pj belongs to the background). Accordingly, a
weight 1 of the edge incident to two generators means that both asso-
ciated polyhedra belong to one and the same foreground object (recall
that two generators are neighboring in the Delaunay graph if and only
if their associated Voronoi polyhedra share a common edge).

In terms of graph theory the search for neighboring polyhedra with
a mean gray value not less than a preset threshold is equivalent to
a search for 1-components in the weighted Delaunay graph. (recall
Definiton 24.17 for definition of components).

Polyhedra whose generators are 1-neighbors in the weighted Delau-
nay graph are considered to belong to the same object. Hence, the set of
polyhedra in a given 1-component constitutes one object. Starting with
an arbitrary generator in the Voronoi diagram fulfilling the constraint
(e.g., whose associated mean gray value exceeds the preset threshold),
a search for 1-neighbors is performed simultaneously in all directions.
Each generator already assigned to an object is labeled to avoid double
assignment. For all labeled generators a search for 1-neighbors is per-
formed in the same way giving a 1-component of the weighted Delaunay
graph. At this stage, the extraction of the first object is finished. Sub-
sequently, another unlabeled, that is, untreated generator fulfilling the
constraint is selected in the Voronoi diagram. For this generator, again
a search for a 1-component is performed in the same way as described
here, thus yielding the second object. This procedure is iterated until
there are no more unlabeled generators fulfilling the constraint (i. e., all
1-components of the Delaunay graph are found):

Algorithm 25.5 Method for the determination of 1-components in the
weighted Delaunay graph

Input List P of n unlabeled generators; Voronoi diagram V (P) i = 0

Output: k lists of labeled generators Pi (each list corresponds to one 1-
component in the Delaunay graph)

Repeat the following steps until all generators are labeled:

Step 1 Increment i
Step 2a Find an unlabeled generator.

Step 2b Assign a label to this generator and insert it into the list Pi
Step 3 Repeat the following step until no more unlabeled 1-neighbors

of generators contained in Pi are found.

Step 4 Label and add all unlabeled 1-neighbors of the generators con-
tained in the list Pi to this list.

Note that the forementioned extraction algorithm is very fast, as it
basically consists of insertion of generators into the list of components
Pi and of labeling of generators, which is done in constant time. More-
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over, as any polyhedron can only belong to one and only one object,
the average time complexity of the algorithm does not exceed O(n).

In the following the computation of morphological parameters such
as volume and surface area of objects extracted in the 3-D Voronoi di-
agram will be described. To calculate the volume O of this object one
simply adds the volume of all polyhedra Pi belonging to this object (i.e.,
all polyhedra whose associated generators are part of the respective 1-
component). The volume [vol(Pi)] of a single polyhedron is computed
by counting all image voxels v whose centers cv lie inside the poly-
hedron. The volume vol(Pi) of a polyhedron Pi is then obtained by
multiplying the number of voxels v by the volume volvoxel of a single
voxel:

[vol(O)] =
∑
pi∈O

[vol(Pi)] and [vol(Pi)] =
∑
cv∈Pi

volvoxel (25.2)

The surface area surf(O) of an object can be estimated by the sum of
surface areas of all facets that constitute to the boundary of the object:

[surf(O)] =
∑

pi∈Oand incident to a 0-edge

surface(pi,pj) (25.3)

The determination of such facets consists of two steps. In the first
step the generators pi of the object O which are incident to a 0-edge
(see the preceding data) are searched. These generators are associated
with a polyhedron, which is the neighbor of a polyhedron pj not be-
longing to the object and thus shares a common (surface) facet with
this background polyhedron. In the second step the common facet
surface(pi,pj) is calculated. Finally, the third step decomposes this
facet into triangles and the surface areas of the triangles are calculated
analytically:

Algorithm 25.6 Surface area estimation
Input: Voronoi diagram V (P) of a set P of unlabeled generators pi;

Object 0 ⊂ P
Output: Surface area of the object 0

Repeat the following steps until all generators incident to a 0-edge are labeled:

Step 1 Find and label pi ∈ O which is incident to a 0-edge in the
weighted Delaunay graph

Step 2 Compute the common facet between the polyhedron associated
with the generator pi found in Step1 and the polyhedron associ-
ated with its 0-neighbor.

Step 3 a) Decompose the facets determined in Step 2 into triangles.

b) Compute the surface area of the facet as the sum of the surface
areas of its triangles.

c) Add the surface area of the facet to the surface area of the
object
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25.4.4 Applications

The split-and-merge approach to shape reconstruction has been widely
used for image analysis in light microscopy (see, e.g., Eils et al. [17, 18],
Dietzel et al. [19, 20], Eils et al. [21]). Here, some applications of the
Voronoi tessellation procedure to obtain quantitative morphological
data for chromosome territories in human cell nuclei are demonstrated.
As a model system, chromosomes 7 and X were visualized in human
female amniotic fluid cell nuclei by chromosomal in situ suppression
hybridization with chromosome specific composite probes [21]. Chro-
mosome territories were segmented by the split-and-merge approach
and visualized on a Silicon Graphics workstation (Fig. 25.11). The mor-
phology of chromosome territories was described by three parame-
ters, that is, volume, surface area, and a roundness factor (shape fac-
tor). The complete evaluation of a nucleus including calculation of the
Voronoi diagram, 3-D visualization of extracted territories using com-
puter graphical methods, and quantitative image analysis was carried
out on a Silicon Graphics workstation in generally less than five min.
The geometric information obtained by this procedure revealed that
both X- and 7-chromosome territories were similar in volume. Round-
ness factors indicated a pronounced variability in interphase shape for
both pairs of chromosomes. Surface estimates showed a significant
difference between the two X-territories but not between chromosome
7-territories [21].

In a second application the 3-D morphology of human X chromo-
some territories was studied in more detail by a four color experiment
[20]. According to this study the bended structure of the inactive X
chromosome territory cannot be explained by a tight telomere-telomere
association (Fig. 25.11).

25.5 Summary

In this chapter we presented a unified geometrical concept for shape
reconstruction from serial sections. This concept was based on a fun-
damental structure in computational geometry, that is, the Voronoi
diagram. In combination with its dual Delaunay graph, the Voronoi
diagram provides a powerful tool for shape reconstruction of serial
sections and extraction of morphological parameters from the recon-
structed objects.

In shape reconstruction problem I we did not have any 3-D structure
(such as image voxels). The information about the 3-D object consisted
solely of (planar) contours obtained from the cross-sectional images.
In this case the shape reconstruction problem can be considered as an
interpolation problem between the sequential object contours. Consid-
ering the contour points as Voronoi seeds a volumetric representation
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a b

Figure 25.11: a Computer graphic visualization of segmented chromosome ter-
ritories of a typical female, human cell nucleus by ray tracing. The extracted
territories have been colored in red (top right domain, Xi), yellow (buttom right,
Xa), light blue and dark blue (top and bottom left, 7). The cell nucleus was mod-
eled by an ellipsoid. As the nucleus was not counterstained in this experiment,
the size of the ellipsoid reflects the average size of amniotic fluid cell nuclei
measured in other experiments; b provide enlarged 3-D reconstruction of two
X-territories in a female, human cell nucleus. The centromere region has been
colored in magenta, the telomere region (Xpter) of the short arm in light gray
and the telomere region (Xqter) of the long arm region in green.

by Delaunay tetrahedra of the 3-D image volume was obtained. Using
the sense of orientation of contour points and the neighborhood infor-
mation on contours, tetrahedra were classified as in or out. Objects
were then identified as connected sets of inside tetrahedra.

To handle rapid topological changes between two consecutive con-
tours additional intermediate points were inserted using the 3-D outside
skeleton of the initial object. The outside skeleton was defined as the
set of lines between Voronoi vertices corresponding to two neighboring
outside tetrahedra. If topological changes occurred as, for example, bi-
furcations and birth of holes, the outside skeleton intersected the initial
object.

The gravity center of the common triangular face between two tetra-
hedra defined by the intersection criterion was shifted into a medial
plane. Using these points as additional Voronoi seeds a refined Delau-
nay tetrahedrization was computed. With this approach we were able to
eliminate nonsolid connections. Hence, objects from planar contours
even with large topological changes between sequential contours could
be reconstructed in a topologically correct way.
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In shape reconstruction problem of type II the object was defined as
a set of image voxels. The shape reconstruction problem was then to
compute a 3-D Voronoi tessellation of the continuous image space. We
used the incremental method for the computation of the 3-D Voronoi
diagram. Although its worst-case time complexity is inferior to other
methods, it is optimal in an average sense and has thus outperformed
other approaches such as the divide-and-conquer method. The basic
idea of the incremental method is to subsequently add new seeds into
the Voronoi diagram. The Voronoi diagram is updated in a local neigh-
borhood of the new generator by an efficient boundary growing proce-
dure. The incremental approach was integrated into a split-and-merge
approach to shape reconstruction and segmentation. In a split step
the Voronoi tessellation of the 3-D image space is iteratively refined.
Thereafter, neighboring similar Voronoi polyhedra are merged, thus
reducing the complexity of the resulting Voronoi tessellation. Objects
were identified as components in the weighted Delaunay graph, that is,
sets of neighboring polyhedra with similar image information.

The reconstruction approaches described herein are integrated into
user friendly software packages. Using the geometrical graph struc-
ture of the Voronoi diagram, morphological parameters such as sur-
face area and volume can be easily computed for extracted objects. In
combination with the possibility of rapid visualization and animation
of extracted objects, both shape reconstruction approaches provide a
powerful instrument for the morphological analysis of 3-D structures
in a wide range of applications.
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26.1 Introduction

The mapping of real world objects to the image plane including the
geometric and the radiometric parts of image formation is basically
well understood [1, 2]. From an abstract point of view, a camera is
thought of as a geometric engine that projects the 3-D world to the 2-
D image space. The resulting image data and prior knowledge on the
considered application are the major sources of information for vari-
ous vision issues. Common examples are image restoration, filtering,
segmentation, reconstruction, modeling, detection, recognition or pose
estimation algorithms. The most challenging and still not sufficiently
solved problems in computer vision, however, are especially related to
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object recognition [3]. Up to now, there have been no general algo-
rithms that allow the automatic learning of arbitrary 3-D objects and
their recognition and localization in complex scenes. State-of-the-art
approaches dealing with high-level vision tasks are essentially domi-
nated by model-based object recognition methods [4]. Generally speak-
ing, segmentation algorithms decompose given images in primitives,
reference models are matched to observations, and distance measures
are the basis for class decisions and pose estimates. The selection of
discriminating image features and the adequate representation of ob-
ject models define herein the vital problems. The overall performance
of vision systems is basically biased by these components.

In the past, numerous applications have led to various types of rep-
resentations for object models that allow the implementation of ex-
cellent systems showing the required run-time behavior; several re-
cent systems are reported in [5]. Many image processing and com-
puter vision algorithms are characterized by prevailing ad hoc solu-
tions. Most techniques apply intuitive ideas specified for the given ap-
plication and neglect the exploration of precisely defined mathematical
models. There exists no unified theoretical formalization that provides
the framework for the analytical analysis of designed complete sys-
tems. For the most part, it is left to empirical studies to justify the
usage of the chosen representation scheme.

It is beyond the scope of this chapter to provide an exhaustive
overview and a lucid discussion of models successfully applied in com-
puter vision. We also cannot introduce general models that fit all re-
quirements of conceivable applications, but we do present some prob-
abilistic modeling schemes and their basic features, which have been
shown to be proper for a wide range of vision problems. Theoretical
aspects that unnecessarily complicate the presentation of substantial
concepts are disclaimed and left to references. The applied researcher
will get some understanding of ideas that form the basis of probabilistic
modeling techniques and the methods used to deal with these models
in practice. This overview will hopefully inspire further developments
and applications of statistical techniques in computer vision.

The organization of the chapter is as follows: The next section sum-
marizes arguments for a probabilistic formulation of computer vision
modules and introduces the basic requirements for object models. The
formal definitions of the considered vision problems that have to be
solved using probabilistic models are summarized in Section 26.3.

Following the abstract framework, we introduce a family of prob-
abilistic models. We start with a general modeling scheme and spe-
cialize this to various probabilistic models such as histograms (Sec-
tion 26.4.1), intensity-based models (Section 26.4.2), mixtures of densi-
ties with incorporated feature transforms (Section 26.4.3), or Markov
random fields (Section 26.4.4). Section 26.5 addresses automatic model
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generation including parameter estimation techniques and structural
learning. Those who will apply statistical methods to computer vision
will notice that the usage of probabilistic models is painstaking and ne-
cessitates a huge amount of engineering to fit particular requirements.
In Section 26.6 we will give several hints for solving problems that are
usually related to probabilistic models, and how these can be solved
in many cases—either heuristically or by means of theoretically well-
understood techniques. The chapter concludes with a summary and a
brief discussion.

26.2 Why probabilistic models?

An immediate question is why we should prefer a probabilistic setup to
any other recognition algorithms. In fact, both from a pragmatic and a
theoretical point of view, the advantages of a statistical framework are
persuasive:

• Sensor signals and associated features show a probabilistic behavior
due to sensor noise, varying illumination conditions or segmenta-
tion errors;

• Generally, pattern recognition routines should use all available sourc-
es of information including prior knowledge and empirical data. A
unified mathematical formulation incorporating all modules is de-
sirable. In a probabilistic setting for computer vision, prior knowl-
edge is encoded in prior probabilities of objects or of multiple object
appearance in more complex scenes (probabilistic scene modeling).
Stochastic properties of empirical data are summarized in densities
characterizing pattern classes [6, 7]. According to Bayes’ theorem
posteriors finally combine both prior and class probabilities in a
unified manner by a simple multiplication [8];

• Another fundamental argument supporting statistical methods is
that decision theory guarantees the optimality of Bayesian classi-
fiers, which maximize posterior probabilities (see also Section 26.3).
All classifiers attempt to give models for designing (theoretically)
optimal decisions. Essentially, this corresponds to the approxima-
tion of posterior probabilities estimated from the given training data
[6]. The use of probabilistic models is straightforward and seems
to be the most natural one;

• The design of learning algorithms can utilize comprehensive results
in statistics and statistical learning theory [9, 10]. If, for instance,
approximations of posterior distributions are based on parametric
density functions, standard parameter estimation techniques can be
applied for model generation such as those in [9, 11].
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Figure 26.1: The source channel model for scene analysis.

• Object recognition and scene analysis can be considered in terms
of communication (according to [12]). Figure 26.1 shows the object
recognition problem incorporated into the source channel model,
which is well known from information theory [13]. In computer vi-
sion applications, the system engineer can strongly influence both
the signal generator and the decoder. For instance, the acquisition
of data can be affected in terms of viewing direction, number of
views and resolution. The decoding is basically determined by used
models and associated inference and recognition algorithms. Ac-
cording to the source channel model and the use of a probabilistic
framework, we conclude that active vision algorithms, which basi-
cally act on source coding, can make use of all theoretical results
provided by information theory. In contrast to other pattern recog-
nition applications such as speech processing, the source channel
model in computer vision is not yet well established [14], and there
seems an immense potential for future algorithms that will advan-
tageously use this analogy; and

• Finally, the success of probabilistic models in different areas of ap-
plied pattern recognition also motivate the use of statistical methods.
Speech recognition and handwritten character recognition systems
based on hidden Markov models have already left the research stage
and have led to commercial products. Probabilistic methods indis-
putably represent the state-of-the-art techniques in these fields and
provide the most powerful known algorithms [12].

In addition to these general as well as fundamental advantages, a prob-
abilistic setting introduces some valuable tools for simplification and
for the increase of computational tractability; the incorporation of inde-
pendency assumptions regarding observed features leads to compro-
mise solutions and paves the way to eliminate the trade-off between
computational efficiency and models that are still rich enough to pro-
vide the required discriminating power. Marginalizations, that is the
elimination of random variables by integration, reduce the complexity,
allow the usage of probabilistic models, if the input data are incomplete,
and provide techniques to define hierarchical modeling schemes.

In practice, the design and usage of probabilistic models should fol-
low the general guideline: as much theory as necessary, and as simple
as possible.
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Figure 26.2: Gray-level image and the result of line and corner detection.

26.3 Object recognition: classification and regression

Most computer vision problems can be considered in terms of stan-
dard pattern recognition problems related to classification and regres-
sion. A digital image f is mathematically considered as a matrix of
discrete intensity values f = [fm,n]1≤m≤M,1≤n≤N . For further process-
ing, most high-level vision tasks require the labeling or segmentation
of images. The labeling is defined by a discrete mapping of intensity
values to categorical variables. Examples are the assignment of binary
values to back and foreground pixels or the association of image ele-
ments with regions. In low-level image processing an important task
is especially the segmentation of images into lines or corners. Apart
from segmentation errors, these geometric features allow the use of
known relationships between the 3-D world and the 2-D observation;
they form the basis of most known 3-D recognition and pose estimation
systems [3, 15]. From an abstract point of view, the detection of geo-
metric features also maps an image to a matrix of the same size where
each entry is, for instance, either assigned to the label element of a line
or no element. Figure 26.2 illustrates an example of segmented point
and line features. These basic low-level operations show that formally
we have to find an appropriate function that assigns image data to a
set of labels.

In a unified manner also the solution of object identification prob-
lems can be considered as a labeling procedure [16]. A given image f
(or the result of any preprocessing and segmentation steps) is assigned
to a single classΩκ , which is an element of the set of considered classes
Ω = {Ω1,Ω2, . . . ,ΩK}.1 If more objects are present, the classifier is ex-
pected to compute the set of corresponding classes. An image is thus
mapped to a set of classes. Of course, there are different ways to as-
sociate pattern classes with objects. It usually depends on the given

1In the text the authors mostly prefer to denote a pattern class by Ωκ instead of
using the integer κ to reveal that classes are categorical variables without any ordering.
Integers would imply the natural ordering, which is indeed not present.
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application and the used features, whether or not types of objects are
considered to represent instances of the same class. For example, ob-
jects can share the same 3-D shape and differ in color. A restriction
to geometry-like corners or lines leads to recognition algorithms where
objects of different colors belong to the same class, if their 3-D shape
is identical. These geometric features are almost invariant with respect
to colors. A green cube will result in the same corners as a red cube.
Another problem is caused by objects that are considered to be ele-
ments of different classes but share a common view, that is, there exist
viewing directions where you cannot distinguish between these objects.

Including image segmentation, the task of object recognition, that is,
the discrete mapping of images to pattern classes, is a composition of
various labeling (respectively, classification) processes. The mapping
from the original image to discrete classes is mostly subdivided into
the following stages (with variations [7]):

1. Preprocessing: in the preprocessing stage images are filtered. Do-
main and range of these image transforms are discrete intensity
values;

2. Segmentation: the segmentation maps the image matrix to a matrix
that defines, for instance, geometric primitives. In the most gen-
eral case, segmentation algorithms transform images to parameters
that define geometric features uniquely, for example, start and end
points of straight line segments. In this case a single image point
can belong to different geometric primitives. Examples are points
where lines intersect; and

3. Classification: the final classification stage maps segmentation re-
sults to classes.

The discussion so far reveals that the basic problem in object recog-
nition can be stated as follows: We have to define and to provide a
modeling scheme that allows one to compute a mapping δ from im-
ages to labels or classes, dependent on the given application. With-
out loss of generality, we restrict the description to classes and omit
identical formulas for labels. The classification is in fact defined by
δ(f ) = κ ∈ {1,2, . . . , K}. This mapping ζ characterizes the so-called
decision rule of the classifier. It is not obvious for system design how
to choose the decision rule and how to select an appropriate representa-
tion of objects that allow the comparison of models and observations.
Due to our ultimate goal of implementing reliable object recognition
systems, it is a natural consequence that we seek classifiers with mini-
mum error rates. For that purpose, let us define a loss function L(λ,κ)
that penalizes classification errors. The function L(λ,κ) measures the
price we pay for classifying an observation belonging to class Ωλ to Ωκ .
Herein, we take for granted that correct decisions are cheaper than mis-
classifications. Now we choose the decision rule δ∗ that minimizes the
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expected classification loss. With respect to this objective, the optimal
classifier results from solving the minimization problem

δ∗(f ) = argminδ(f )

K∑
λ=1

L(λ,δ(f ))p(λ|f ) (26.1)

wherep(λ|f ) is the a posteriori probability for observing classΩλ given
the image f . Having especially a 0-1 loss function, where we charge
classification errors by 1, the objective function in Eq. (26.1) takes its
minimal value if we fade out the highest summand by correct decisions.
Therefore, we determine that class of highest posterior probability, and
the optimal decision rule minimizing the average loss is

δ∗(f ) = argmaxκ p(κ|f ) = argmaxκ p(κ)p(f |κ) (26.2)

Classifiers applying this decision rule are called Bayesian classifiers.
The observation that Bayesian classifiers minimize the expected loss
and therefore the misclassification rate is the major reason for the in-
troduction of probabilistic models in computer vision and other fields
of pattern recognition [6, 11, 12]. We get an excellent classifier if we
are able to characterize the statistical properties of objects appearing in
sensor data. But usually this is a highly nontrivial task and represents
the fundamental problem in probabilistic modeling: the definition and
computation of posteriors based on empirical data. Without appro-
priate probabilistic models and accurate approximations of posteriors,
there is no way to implement an optimal object recognition system.

Besides classification also the position and orientation of objects
with respect to a reference coordinate system are of potential interest.
For instance, a robot that has to grasp objects requires pose parameters
of high accuracy. Let us assume the intrinsic camera parameters are
known. Thus pose estimation of objects is confined to the computation
of rotation and translation. These transforms are referred to the world
coordinate system. In the following we denote rotation by R ∈ IR3×3

and the translation by t ∈ IR3. Details concerning the representation
of the orthogonal rotation matrix are omitted, and we refer to [17]. For
simplicity, the six degrees of freedom determining the pose are denoted
by the vector θ. In contrast to the classification problem, the input data
are no longer mapped to discrete variables such as class numbers, but
to a real-valued vector θ. In terms of statistical decision theory, pose
estimation thus corresponds to a regression problem. With regard to
optimal regression, we introduce analogously to classification a penalty
function for estimates. Pose parameters have to be determined such
that the mean loss is observed. Here, the loss function L(θ, ηκ(f ))
charges the errors in pose estimates, where the regression function ηκ
maps the observation to pose parameters. This function depends on
the actual class Ωκ of the shown object and is therefore indexed by κ,
that is, ηκ(f ) = θ ∈ IR6. The most commonly used loss function in
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Figure 26.3: An example of over-fitting (solid line: over-fitting with no errors
regarding training samples; dashed line: smooth approximation with errors).

regression is the square error, which is defined by ||θ − ηκ(f )||2. The
regression problem associated with pose estimation is generally stated
as the minimization task

η∗κ(f ) = argminηκ(f )

∫
L(θ, ηκ(f ))p(θ|f , κ) dθ (26.3)

where p(θ|f , κ) is the probability density function of θ given the image
f and the class Ωλ. A similar argument to Bayesian classifiers shows
that the optimal estimate regarding the square error loss function is
given by the conditional expectation η∗κ(f ) = E[θ|f , κ].

In practice, the major problem is the representation of the regres-
sion function, and many applications restrict the forementioned condi-
tional expectation to a parametric family of functions. In these cases,
the minimization Eq. (26.3) reduces to parameter estimation problems.
Commonly used parametric functions in statistics are, for example, lin-
ear functions [18]. In addition to parameterization, further constraints
to regression functions can (and often should) be incorporated by regu-
larization. For instance, we can also claim that the average curvature of
the regression function in combination with the square error has to be
minimized [10]. If the regression function is not restricted to a specific
parametric family and regularization is unconsidered, the regression
problem is generally ill-posed, and we observe an over-fitting to train-
ing data. Figure 26.3 illustrates the problem of over-fitting; the filled
bullets represent the sample data and the solid and the dashed line
show different approximations of the sampled function. In the case of
over-fitting (solid line), the function values between sample data tend
to be inaccurate and rough.

A general rule of thumb is to incorporate all available knowledge
into the model and recognition process. Notably, the relation between
the observation and pose parameters can be defined if the 3-D struc-
ture of objects and the projection properties of the chosen sensor are
known. We suggest the regression of probability density functions for
observations that are parameterized regarding the pose θ. From a the-
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oretical point of view, we thus consider a generalization of the earlier-
defined square error loss, and obviously the negative likelihood value of
the parametric density function for given observations acts as the loss
value of the estimated pose. Assuming a uniform distribution of pose
parameters, the optimal pose parameters θ∗ result from the maximum
likelihood estimate

θ∗ = argmaxθ p(f |κ;θ) (26.4)

In this case, the pose estimation using probabilistic models corresponds
to a standard parameter estimation problem.

The discussion shows that recognition and pose estimation are fi-
nally a combination of two familiar problems in statistical decision
theory—classification and regression. We conclude this section by sum-
marizing the guidelines for the construction and usage of probabilistic
models in object recognition and localization:

• We have to provide prior distributions p(κ), κ = 1,2, . . . , K, which
include all available knowledge regarding the given classes and their
appearance in images; and

• The probabilities p(f |κ;θ), κ = 1,2, . . . , K, of observed images f
(or features) have to be defined. Especially, if we are also interested
in object localization, the probability density function has to be pa-
rameterized with respect to pose parameters denoted by θ. The
specification of these probability density functions constitutes the
hardest problem within the design of probabilistic models. In the
following sections, the class density p(f |κ;θ) is also referenced by
the term model density .

Related to the abstract mathematical structure of probabilistic models,
there are several related computational aspects of practical importance:

• We have to provide learning algorithms that allow the automatic
training of probability density functions from empirical data. From
scratch, the training includes both the acquisition of the concrete
model structure, for instance, the automatic decision for the re-
quired family of distributions, and the estimation of associated mod-
el parameters. Both theoretical and empirical results are necessary,
which give hints how to select the sample data for model acquisition,
and which validation methods are advantageous to judge generated
models; and

• In view of runtime efficiency it is very important to implement so-
phisticated (in terms of low complexity and high efficiency) inference
strategies, which allow the fast evaluation of posteriors p(κ|f ;θ)
for given observations f and usually unknown pose parameters θ.

We begin the discussion of various probabilistic modeling schemes
by a generic definition of model densities.
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26.4 Parametric families of model densities

The discrete image matrix f = [fm,n]1≤m≤M,1≤n≤N is formally consid-
ered as a random matrix. Each entry fm,n of the matrix f is charac-
terized by three components: the position in the image defined by the
2-D grid coordinates [m,n]T and the associated pixel value fm,n. For
some reasons, which will become clear later, we take the image matrix
f by a set of random vectors{

[m,n,fm,n]T | 1 ≤m ≤M,1 ≤ n ≤ N
}

(26.5)

and define both 2-D grid points and intensity values as potential ran-
dom measures. Depending on the used image type, the intensity fm,n
can be a color vector, a gray level or more generally a vector including
any other label. Independent of the concrete dimension and interpreta-
tion of pixel values, the induced random vectors Eq. (26.5) can be char-
acterized by a conditional probability density function, which depends
on the present pattern class Ωκ . Because the appearance of objects in
the image plane changes with the object pose, the density will also be
parameterized regarding the pose θ.2 Generally, we get for the whole
image the probability density

p
({[
m,n,fm,n

]T∣∣∣1 ≤m ≤M,1 ≤ n ≤ N
}
|κ;θ

)
(26.6)

which depends on the present object belonging toΩκ (or any other type
of labels).

Example 26.1: Dimension of parameter space

For discrete-valued random variables, that is, both the grid point co-
ordinates and the intensity values are quantized, the use of the dis-
crete probability function Eq. (26.6) is beyond its practical applica-
tion. An example clarifies the necessity of simplifications: Let us as-
sume we consider for a single set of pose parameters θ the discrete
distribution of gray levels in the image plane. To assign probabil-
ities to a 512×512 8-bit gray-level image would require more than
2× 106 discrete measures. Obviously, an immense training set would
be necessary to estimate these probabilities even for a single pose
vector. Inevitably we will also encounter problems with the curse-
of-dimensionality [19], which originally prohibits the effective usage
and computational tractability of this modeling scheme (see also Sec-
tion 26.6).

This example shows that the model density (Eq. (26.6)) is far too
general, not computationally feasible, and too abstract for any applica-
tion. Nevertheless, it is the source of a broad class of model densities.

2We point out that θ is considered as a parameter and not as a random variable.
This is also indicated in expressions by a separating semicolon.
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The introduction of additional constraints, the consideration of depen-
dencies of bounded order, the incorporation of specializations, and the
usage of continuous instead of discrete random variables are basic tools
that will induce reduced parameter sets. Conceivable, simple, and well-
studied continuous probability density functions are Gaussian densi-
ties and convex combinations of Gaussians [7]. Evident specializations
are marginals and the introduction of independencies. The right combi-
nation of these techniques pushes the dimension of the final parameter
space to mathematical feasibility and the curse-of-dimensionality can
be beaten.

26.4.1 Histograms

An extreme case of marginalization and independency are histograms
of intensity values. Relative frequencies of intensities represent a non-
trivial probabilistic model of images given a pattern class Ωκ . We com-
pute the discrete probabilities of intensity values independently of their
position in the image grid. To derive histograms from Eq. (26.6), first we
decompose the probability density function according to the assump-
tion that all intensity values are mutually independent; thus, we obtain
the factorization

p
({[
m,n,fm,n

]T |1 ≤m ≤M,1 ≤ n ≤ N
}∣∣∣κ;θ)

)
=

M∏
m=1

N∏
n=1

p
([
m,n,fm,n

]T |κ;θ
) (26.7)

The marginal over the image coordinates leads to the demanded dis-
crete probabilities

p (f |κ;θ) =
M∏
m=1

N∏
n=1

 M∑
m′=1

N∑
n′=1

p
([
m′,n′, fm,n

] |κ;θ
) (26.8)

Histograms show several obvious advantages: they are generated
easily and these discrete probability mass functions show some useful
invariance properties. Assuming that we have normalized images, pla-
nar rotations and translations of objects will not (drastically) change
the distribution of gray levels. Therefore, the pose parameters in the
histogram can be reduced by these three degrees of freedom. The pose
parameters include only out-of-plane rotations, denoted byϕx andϕy ,
and 1-D translations tz along the optical axis. We gather from this ex-
ample the important fact that clever marginals can reduce the dimen-
sion of pose parameters. Marginals provide a powerful technique for
efficient pose estimation algorithms based on probabilistic models [20].

Histograms are accepted as simple and useful probabilistic mod-
els that are widely and successfully applied in computer vision [14].
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However, discrete probabilities of intensities are also marginals that
drastically simplify the real probability density function of object ap-
pearances in images. Marginalization is known to reduce the discrim-
inatory power. Histograms only record the overall intensity composi-
tion of images. As a consequence, there is an increase of the rate of
misclassifications. Histograms show tremendous invariances. Based
on histograms, for instance, all images where we just permute pixels,
lead to identical distributions of gray levels and thus the same classi-
fication results. Many applications defuse this property by restricting
the computation of histograms to local window frames. But even in
local histograms, the invariance to permutations is present. Remark-
ably, despite this extreme kind of invariance histograms are proper for
a wide range of applications.

Example 26.2: Object recognition using histograms

Let us consider a single (M ×N) 8-bit gray-level image f for reduced
pose parametersθ′, which include out-of-plane rotations and the trans-
lation along the z-axis. The histogram of this image is computed based
on relative frequencies. For an arbitrary intensity value f , for instance,
we get the discrete probability

p(f |κ;θ′) = #{fm,n = f |1 ≤m ≤M,1 ≤ n ≤ N}
NM

(26.9)

where #{·} denotes the cardinality of the set {·}. Let us consider sin-
gle planar objects under constant illumination. The background is as-
sumed to be constant and no occlusion occurs. If the chosen objects
do not show identical histograms, that is, there exists no permutation
of pixels, which maps one image of an object to the image of another
object, the classification simply based on distributions of gray levels
is efficient and reliable. Figure 26.4 shows four different industrial
objects that can be classified using histograms: for constant illumina-
tion, for a fixed distance between objects and camera it is possible to
use a histogram-based recognition procedure, which classifies these
objects with a recognition rate of 100 % (no pose estimation). The rota-
tions and translations, however, are restricted to 2-D transforms, and
we took 90 sample views of each object to generate the histograms,
and a disjoint set of 87 images of each object for classification.
The dependency on illumination can be eliminated or minimized if we
do not consider intensities but the result of filtering operations such
as wavelets, Gabor filtering or high-pass filters [14].

26.4.2 Probabilistic modeling of intensities and image points

The major disadvantage of histograms for solving classification and
pose estimation issues is due to invariance properties and the assumed
independency of grid positions. A first step to generalize relative fre-
quencies of intensity values is an isolated modeling of intensities de-
pendent on grid points, that is, we do not consider the probability of
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Figure 26.4: Industrial objects.

Figure 26.5: Explicit modeling of intensity distribution in the image grid.

observing a special intensity value in the image, but the probability of a
certain intensity at a given grid point. Instead of eliminating grid points
by marginalization, we thus compute the joint probability of the inten-
sity value f at the randomly selected image point [m,n]. This prob-
ability density function is given by p(m,n|κ)p(f |m,n,κ;θ), where θ
denotes the pose parameter. Assuming mutually independent inten-
sity values and image points, the density of the complete image f is
obtained by the product

p(f |κ;θ) =
M∏
m=1

N∏
n=1

p(m,n|κ)p(fm,n|m,n,κ;θ) (26.10)

The priors of grid points are set equal if all image points are consid-
ered. Therefore, the probabilities p(m,n|κ) in Eq. (26.10) include no
additional information and can be omitted. Figure 26.5 illustrates the
basic idea of the chosen model: all image points are separately modeled
and mutually independent.

Example 26.3: Explicit modeling of sensor noise

Let us assume that pose parameters remain constant, that is, we omit
the parameter θ and illumination conditions do not change. In this
case, the randomness of intensity values in real images is basically
influenced by sensor noise. Without additional information, sensor
noise is well modeled by a white, zero mean, Gaussian density, that is,
formally we consider the random variable f as a continuous measure.
In consequence of this observation, we define the intensity value f
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at the grid point [m,n]T for a given class Ωκ to be p(f |m,n;κ), a
normally distributed random variable

p(f |m,n,κ) =N (f ;µκ,m,n,Σκ,m,n) =
1√

det 2πΣκ,m,n
exp(a)

where a = − 1
2 (f −µκ,m,n)TΣ−1

κ,m,n(f −µκ,m,n)
(26.11)

Here, µκ,m,n denotes the mean vector and Σκ,m,n the positive semidef-
inite, symmetric covariance matrix of the intensity value at the grid
point [m,n]T of an object belonging to classΩκ . All density functions
corresponding to image points are thus parameterized with respect to
means and covariances of intensity values. Instead of estimating the
discrete probability for each intensity level at a single image point,
only the computation of mean and covariance is required. This exam-
ple shows an important advantage of continuous random variables: it
often reduces the number of free parameters. Additionally, we can de-
crease the dimension of the parameter space drastically if the chosen
noise model is homogeneous in terms of showing identical covari-
ances for all pixels of the given sensor. In that case, the Gaussians at
all grid points [m,n] distinguish in means, but share the same covari-
ance Σ of intensity values, that is, we set Σκ,m,n = Σ. This technique
is called parameter tying (see also Section 26.6): Different random
measures have partially the same parameters. Parameter tying is a
widely applied technique in statistics. It provides robust estimates
especially in the presence of sparse training data, because a reduction
of the parameter space induces estimates of higher reliability.

The introduced modeling scheme based on mutually independent
image entries raises several questions:

• The first problem is the incorporation of pose parameters. Varia-
tions in position and orientation of objects have to be incorporated
into this model. Because an object is modeled based on distribu-
tions where the intensities are included as continuous random vari-
ables and the grid points as discrete ones, even the simplest trans-
forms in the image plane cause problems. Generally, planar rota-
tions and translations define no discrete mapping of grid points. To
deal with this problem, obviously resampling is required. In case of
in-plane transforms, in [21] it is suggested to use linear interpola-
tion between intensity values.

• Another fair criticism on this modeling scheme is due to the inde-
pendency constraint of neighboring pixel values. Obviously, this
independency assumption does not fit to the real-world situation.
Widely used constraints such as the smoothness criterion, which
states that neighboring pixels share similar intensity values, require
the explicit incorporation of dependencies.

An alternative probabilistic model, which resolves some of foremen-
tioned problems, results from a different factorization of the original
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Figure 26.6: Probability densities of image points conditioned on three different
intensity values.

probability p([m,n,fm,n]T |κ;θ) and a different interpretation of ran-
dom variables: Now we consider the intensity values as discrete mea-
sures, the coordinates of grid points as continuous random variables.
Instead of

p([m,n,fm,n]T |κ;θ) = p(m,n|κ)p(f |m,n,κ;θ) (26.12)

we use the decomposition

p([m,n,fm,n]T |κ;θ) = p(fm,n|κ)p(m,n|fm,n, κ;θ) (26.13)

Assuming again mutual independency of random vectors, the joint
probability density function of the complete image showing class Ωκ is
now given by

p(f |κ;θ) =
M∏
m=1

N∏
n=1

p(fm,n|κ)p(m,n|fm,n, κ;θ) (26.14)

Figure 26.6 shows three density functions. Each of these densities cor-
responds to a single intensity value, and visualizes the distribution of
grid points showing a certain intensity value.

In the case of modeling distributions of intensities at image points,
we were able to incorporate explicit knowledge on the sensor noise
model (Example 26.3). The density function p(m,n|f ,κ;θ), however,
is the probability measure that the image point [m,n] appears showing
the specific intensity value f . Therefore, this density characterizes the
spatial distribution of a particular intensity in the image plane. For
the parametric representation of grid point distributions conditioned
on an intensity value, a single Gaussian is obviously not an adequate
approximation. The density associated with grid points is expected to
be a multimodal and thus concave function. Therefore, we suggest the
use of mixtures of densities [22]

p(m,n|f ,κ;θ) =
lf∑
i=1

pi p(m,n|Bf ,κ ;θ) (26.15)
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where lf denotes the order of the mixture density , the coefficients pi
sum up to 1, and the densities p(m,n|Bf ,κ) are parameterized in Bf ,κ .
If, for instance, the mixture base densities are Gaussians, these parame-
ters correspond to mean vectors and covariance matrices. Convex com-
binations of probability density functions are generally advantageous,
because they show good approximation properties of multimodal func-
tions, and they are not restricted to discrete values of [m,n]T . This
model obviously avoids interpolation for grid points if the object is
rotated and translated in the image plane.

Example 26.4: Spatial distribution of intensities

The prior probabilities p(f |κ) of intensities are a minor problem and
can be defined by relative frequencies Eq. (26.9). In this case, how-
ever, the parameter θ′ is not required because we use a simplified
model and assume that this probability does not depend on the ob-
ject’s pose. The basic issue in defining an appropriate model using the
representation suggested in Eq. (26.14) is the right choice of the den-
sity p(m,n|fm,n, κ;θ) based on convex combinations. We neglect the
pose parameters and consider a mixture representation of this den-
sity: A widely applied approximation method for multimodal func-
tions is based on linear combinations of Gaussians [22]. Once the
number lf of mixture components associated with a certain intensity
value f is known, the multi-modal density is represented by

p(m,n|f ,κ) =
lf∑
i=1

piN ([m,n]T ;µκ,i,Σκ,i) (26.16)

where pi ≥ 0,
∑lf
i=1pi = 1, and µκ,i ∈ IR2 and Σκ,i ∈ IR2×2 denote

the mean vector and covariance matrix of the ith mixture component
associated with the gray-level f .
The extension of this model based on Gaussian mixtures with respect
to pose parameters is straightforward if pose parameters θ define an
affine mappings. Let the affine mapping be given by the matrix R
and the vector t. If an arbitrary normally distributed random vari-
able with mean vector µ and and covariance matrix Σ is transformed
by this affine mapping, the resulting random variable is again Gaus-
sian. The corresponding mean vector is defined by Rµ + t and the
covariance matrix by RΣRT [8]. Using this example, at least in-plane
transformations are easily built in Eq. (26.16): For given 2-D rotations
and translations we get the density

p(m,n|f ,κ;R, t) =
lf∑
i=1

piN ([m,n]T ;Rµκ,i + t,RΣκ,iRT ) (26.17)

The probabilistic models so far are substantially restricted to 2-D
images, and out-of-plane rotations and translations are still an open
problem; the statistical characterization of 3-D objects and their ap-
pearance in the image plane including six degrees of freedom is not yet
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possible. The simplest way to extend these models is to quantize the
pose and formally consider each 2-D view of an object as a separate
class. This appearance-based strategy, however, shows the disadvan-
tage that for each discrete set of pose parameters single probabilistic
models have to be computed, and we have to deal with quantization
errors in pose parameters. In [21], the authors suggest interpolating
those density parameters that define the 2-D views and in-plane trans-
formations dependent on pose parameters. Without additional geo-
metric knowledge, regression (Section 26.3) provides the only way to
generalize the given 2-D models to arbitrary pose parameters. The se-
lection of an appropriate regression function, however, is a crucial and
nontrivial issue.

Example 26.5: Model parameters and regression

As we have already mentioned in our discussion of histograms, pose
parameters θ, which define a 3-D rotation and translation, are parti-
tioned into two subsets:

• [ϕz, tx, ty]: transformations in the image plane; these include ro-
tations around the optical axis and translations in the 2-D image
plane, that is, three degrees of freedom; and

• [ϕx,ϕy, tz]: out-of-plane rotations around the horizontal and ver-
tical axes and translations along the optical axis represent the other
parameters.

The incorporation of in-plane affine transformations was already men-
tioned in Example 26.4. The extension of these models with respect to
the additional pose parameters [ϕx,ϕy, tz] is not obvious. Accord-
ing to Section 26.3 we have to use regression to generalize our models
such that we can deal with arbitrary pose parameters.

Let us consider the model suggested in Example 26.3. We estimate
mean vectors and covariance matrices of all image points for a given
set of nonplanar rotations and translations represented by the vector
[ϕx,ϕy, tz]. Furthermore, we simplify the problem and assume that
the covariance matrices are independent of rotations and translations.
This is acceptable because we expect no change in sensor noise with
varying pose parameters. Only mean vectors are parameterized, that
is, for a given grid point [m,n]T the parameterized mean vectors are
µm,n(ϕx,ϕy, tz), 1 ≤m ≤M and 1 ≤ n ≤ N .

Due to these restrictions, we have to estimate the mean vectors depen-
dent on pose parameters [ϕx,ϕy, tz]. For that purpose, we define for
each image point a parametric regression function that is computed
such that the following sum of square errors is minimal:

ε =
∑

ϕx,ϕy ,tz

||µ(ϕx,ϕy, tz)− ηκ(ϕx,ϕy, tz)||2 (26.18)

For simplicity, we omitted the indices m and n that identify the con-
sidered grid point. As an example of parametric regression we can
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choose trivariate polynomials defined by

ηκ(ϕx,ϕy, tz) =
∑
s≥0

∑
i1+i2+i3=s

ai1,i2,i3 ϕx
i1ϕyi2tzi3 (26.19)

where ai1,i2,i3 are the real-valued coefficients of the basis monomials

ϕxi1ϕyi2tzi3 . Of course, the degree of this polynomial can be selected
such that there are no approximation errors, but it is expected that the
induced over-fitting (see Fig. 26.3) will lead to insufficient results. An
implementation and experimental evaluation of this regression tech-
nique for 3-D pose estimation applied to the model introduced in Ex-
ample 26.3 is discussed in [21]. The used pixel values, however, are
not intensities but the result of Gabor filters. The authors restrict the
regression function to a univariate polynomial of low degree (8 ad-
dends) and therefore avoid an explicit regularization. The error using
a quantization of 10° for out-of-plane-rotations leads to a mean error
of 4.6° without providing explicit 3-D information. Planar rotations
show a mean error of 2.1°.

The regression based on polynomials or arbitrarily selected para-
metric functions appears incidentally and without any geometric jus-
tification. A more obvious way would be to compute the distribution
of the appearing object using the knowledge of the 3-D structure, the
illumination model, and the mapping from the 3-D world to the image
plane. An incorporation of the overall geometric relationships seems
worthwhile. However, the major problem with respect to this issue is
that the projection from 3-D to 2-D can be computed explicitly, not its
inverse. But there is some hope: There exist first results towards the
incorporation of geometry in probabilistic models if we use geometric
features instead of intensities [20, 23, 24]. The next section consid-
ers segmentation results of images as random measures for pose esti-
mation and summarizes existing probabilistic models using geometric
features instead of intensity values or results of any preprocessing op-
erations.

26.4.3 Model densities using geometric features

Let us assume that preprocessing and segmentation algorithms map
the observed image to a set of 2-D points. The information provided
by the whole image is thus reduced to a comparatively small set of
features. We denote the set of points by O = {ok|k = 1,2, . . . ,m},
where ok ∈ IR2. Some examples for the segmentation of gray-level
images into point features are shown in Fig. 26.7. Here the corners
are features attached to the associated 3-D object. If we rotate and
translate the corresponding 3-D points of the object in the 3-D space,
this linear transform, the object geometry, and the projection to the
image plane characterize the resulting 2-D features—apart from noise,
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Figure 26.7: Gray-level images and sparse sets of computed point features.

occlusion, and segmentation errors. If the correspondences of 3-D and
2-D points are known, the transform can be written in a single equation.
We denote the assignment of 2-D features ok in the image to the index
of the corresponding feature of the 3-D object by ζκ . The identifier
ζκ in this context is not incidental. In fact, the assignment of 2-D and
3-D points can formally be considered as a classification or, in other
words, all points get a label indicating the correspondence. If there
are m observed features and nκ 3-D points for class Ωκ , the discrete
mapping ζκ is defined by

ζκ :

{
O → {1,2, . . . ,nκ}
ok , ik

(26.20)

We get the probability observing a set of single points with a given
assignment function ζκ by the following substitutions in our generic
density Eq. (26.6): The grid coordinates [m,n]T are now represented
by the grid coordinates of segmented point features ok, and instead of
the intensity value fm,n characterizing each image point, we use ζκ(ok)
in the argument triple. Based on this substitution and considering the
assignment as discrete random variables we obtain

p({(ok, ζκ(ok))|k = 1,2, . . . ,m}|κ;θ) =
m∏
k=1

p(ζκ(oκ))p(ok|ζκ, κ;θ)

(26.21)

if independent point features are assumed.



836 26 Probabilistic Modeling in Computer Vision

Unlike the intensity values f in the corresponding density Eq. (26.14),
the assignment ζκ(ok) of single-point features is unknown. We have no
information on the correspondence between 3-D points and 2-D obser-
vations. Because the assignment is modeled as a random variable, we
make use of the power of statistical framework and eliminate this ran-
dom measure by marginalization. We sum Eq. (26.21) over all possible
assignments. This yields the model density of the observed 2-D points
without knowing the originally required correspondence defined by ζκ

p({ok|k = 1,2, . . . ,m}|κ;θ) =
∑
ζκ

m∏
k=1

p(ζκ(ok))p(ok|ζκ, κ;θ) (26.22)

Example 26.6: Point features under orthographic projection

Statistical tests show that point features in images are approximately
normally distributed [24]. The mapping from the 3-D world to 2-D
images is defined by an orthographic projection. If a 3-D point c is
rotated, translated and projected orthographically, this mapping is
known to be affine [1]. There exists a matrixR ∈ IR2×3 and a translation
vector t ∈ IR2, which map the 3-D point c to the 2-D point o

o = Rc + t (26.23)

The constraint that 2-D point features observed in the image are nor-
mally distributed still holds if we assume the corresponding 3-D point
features to be Gaussian (see Eq. (26.17)). Let µκ,ζκ(ok) be the 3-D mean
vector of the 3-D model point indexed by ζκ(ok) of class Ωκ , which
corresponds to ok. If the orthographic projection is known, these two
vectors are related by Eq. (26.23), and the 2-D mean vector of the image
point is defined by

µ′κ,ζκ(ok) := Rµκ,ζκ(ok) + t
Analogously, the (2× 2) covariance matrix is given by

Σ′κ,ζκ(ok) := RΣκ,ζκ(ok)R
T

where RΣκ,ζκ(ok)R
T denotes the (3 × 3) covariance matrix of the 3-D

model point. The model density of observed 2-D point features in the
presence of unknown assignments is therefore

p({ok|k = 1,2, . . . ,m}|κ;θ)

=
∑
ζκ

m∏
k=1

p(ζκ(ok))N (ok;µ′κ,ζκ(ok),Σ
′
κ,ζκ(ok))

(26.24)

This model density is experimentally studied in [20]. The empirical
evaluation uses 4 polyhedral objects as shown in Fig. 26.8. The pa-
rameters of the model density are estimated automatically (see also
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Figure 26.8: Polyhedral 3-D objects.

Section 26.5 and Example 26.12), where training images contain 400
views of each object. The disjoint test set also includes 400 samples
of each class, and the achieved recognition rate based on sparse point
features is 70 %. An example where this probabilistic model is used for
pose estimation is illustrated in Fig. 5.2, Chapter 5. In consideration
of the tremendous reduction of information using only 2-D point fea-
tures instead of complete images this result represents a lower bound
of the achievable recognition rate. Features of higher discriminatory
power, which also incorporate implicit 3-D information—such as the
available models that use point features—will reduce misclassifica-
tions.

The probabilistic models introduced so far use intensity images or
segmentation results as input data, and in fact they represent extreme
cases concerning independency assumptions; we have always used mu-
tually independent random variables; either grid points, intensities, as-
signments or point features were independent and the corresponding
densities properly factorized. In the following we will discuss statisti-
cal representations that also incorporate dependencies of higher (i. e.,
arbitrary) order.

26.4.4 Markov random fields

Very popular and widely used probabilistic models in image process-
ing and computer vision are Markov random fields (MRFs) [16, 25, 26]
(Section 12.2.13). MRFs in general allow the use of locally bounded de-
pendencies. We introduce the basic concepts of MRFs in an abstract
manner, and illustrate these using concrete examples out of the field
of computer vision.

Let X = {Xi|i = 1,2, . . . , L} define a set of random variables. We
suppose that for each random variable Xi there exists a well-defined
neighborhood. The set of neighbors of Xi is commonly denoted by [26]

∂(Xi) = {Xj| Xi and Xj are neighbors} (26.25)
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Figure 26.9: Neighborhoods of first (left) and second (right) order.

Example 26.7: First- and second-order neighbors

In image processing applications the random measures Xi are usually
intensity values, and local neighborhood is based on the given struc-
ture of the image grid. For instance, we can consider each random
measure associated with a pixel to be a neighbor of a certain random
variable if the Euclidean distance of grid coordinates is one (first-order
neighborhood) or lower or equal to

√
2 (second-order neighborhood).

Figure 26.9 illustrates first- and second-order neighborhoods.
The introduction of neighborhoods based on the topology of image
grids is most common in image processing. Because we interpret each
image point as a triple [m,n,fm,n]T , the definition of contra-intuitive
neighborhood relations also is possible: analoguos to intensities, we
can also consider the grid point [m,n]T associated with an intensity
value f as a random variable. Now a neighborhood relationship can be
induced using intensities. For instance, if we consider gray-level im-
ages, we define grid points to be neighbors if the absolute difference
between their gray levels is bounded by a threshold. This neighbor-
hood shows no obvious geometric interpretation in the image plane
because pixels that are far apart in the image grid are considered to
be neighbors.

Mathematically, MRFs are defined by two basic properties:

1. Positivity: The probability of observing an arbitrary set of random
variables X is nonzero, that is,

p(X) > 0 (26.26)

2. Markov property: The probability of observing a certain random
variable Xi ∈ X depends only on its neighbors ∂(Xi), that is,

p(Xi|{X1, X2, . . . , Xi−1, Xi+1, . . . , XL}) = p(Xi|∂(Xi)) (26.27)

The Markov property introduces statistical dependencies of bound-
ed order and defines the local characteristics of the MRF. The order of
dependency is herein the cardinality of the set of neighbors. The pre-
ceding used neighborhood system induces a graph structure on the ran-
dom variables, and therefore it enables us to use the language of graph
theory in the context of Markov random fields; the vertices of the graph
are defined by the random variables, and two vertices are connected by
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Figure 26.10: Cliques corresponding to first-order neighborhoods.

an edge if the corresponding random variables are neighbors. This
analogy between neighborhoods, random variables and graphs also al-
lows the notion of cliques. In graph theory a clique is defined as a set of
vertices in which all pairs are mutual neighbors, that is, a clique defines
a complete subgraph.

Example 26.8: Cliques of first- and second-order neighborhoods

Unconsciously, we already made use of the analogy of neighborhood
systems and graphs in Example 26.7 where we have visualized depen-
dencies between image points. Obviously, only pairs of vertices con-
nected by an edge satisfy the clique definition, which requires a mu-
tual neighborhood relation between all vertices. Figure 26.10 shows
the cliques to the graph associated with the first-order neighborhood.
Note also that the empty graph is by definition a clique.

Equipped with the neighborhood systems and the concept of cliques,
now we are able to compute the joint density of MRFs with the most cur-
rent tools: The equivalence theorem for MRFs [26] states that the joint
density p(X) over all random variables X is proportional to a prod-
uct of real-valued functions associated with cliques of the graph. The
clique functions, however, have to be symmetric in their arguments,
that is, whenever we change the order of input variables, the output is
not affected. If C = {C1, C2, . . . , CP} denotes the set of cliques and XCi
the random variables belonging to clique Ci, then there exists a set of
clique functions φCi(XCi), i = 1,2, . . . , P , such that

p(X) = 1
Z
∏
Ci∈C

φCi(XCi) (26.28)

The denominator Z is a normalization factor, which guarantees that
the integral over the complete domain of the density function turns
out to be unity; Z is constant and due to its definition, is independent
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of the actual random variable X. Fortunately, the positivity constraint
Eq. (26.26) allows writing this product in Gibbsian form. For the set
of random variables X, the overall density leads to the so-called Gibbs
field

p(X) = 1
Z

exp

− ∑
Ci∈C

VCi(XCi)

 = 1
Z

exp(−U(X)) (26.29)

Gibbs distributions are well studied in statistical physics and according
to physicists we call the function VCi potential function, which maps the
set of random variables belonging to clique Ci to real values; the sum
U(X) of potentials is the energy function. In case of discrete random
variables, here Z is defined by the marginal

Z =
∑
Y

exp(−U(Y)) (26.30)

The computation of conditional densities using Gibbs distributions is
surprisingly simple. If the Markov field is given in Gibbsian form, the
conditional dependency for observing any random variable Xj satisfies

p(Xj|X1, . . . , Xj−1, Xj+1, XL) =
exp

(∑
Ci∈C VCi(XCi)

)
∑
Xj exp

(∑
Ci∈C VCi(XCi)

)
=

exp
(∑

Ci∈C(Xj) VCi(XCi)
)

∑
Xj exp

(∑
Ci∈C(Xj) VCi(XCi)

) (26.31)

where C(Xj) is the set of all cliques including random variable Xj . All
factors of the numerator and denominator cancel that do not contain
an element of the clique Cj to which the random variable Xj belongs.
This shows that the conditional density of random variable Xj depends
on its local neighborhood—as required by the Markov property.

Most computer vision researchers are usually less familiar with sta-
tistical physics, and therefore the use of the Gibbs fields seems inconve-
nient and apparently not necessarily advantageous. However, we have
seen in (26.31) that this notation is advantageous for the computation
of conditional probabilities, and we abate the first skepticism on Gibbs
distributions looking at a familiar but also degenerated example:

Example 26.9: A trivial Markov random field

Again, we consider the probabilistic image model as introduced in
Eq. (26.10). There we proposed the idealized assumption that all in-
tensity values fm,n in the image grid are mutually independent. This
independency structure induces a trivial neighborhood system on the
image grid: the set of nontrivial cliques is defined by empty singletons.
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According to the definition of MRFs, Eq. (26.10) defines a Markov ran-
dom field if the positivity constraint is valid. The latter is obviously
true if we model the distributions of intensity values at each image
point by Gaussians. Because positivity guarantees the equivalence
between Markov random and Gibbs fields, there has to exist a clique
representation of the joint densityp(f |κ;θ) based on Gibbsian forms.
Originally we had the product over all singletons

p(f |κ;θ) = 1
Z

M∏
m=1

N∏
n=1

p(fm,n|m,n,κ;θ) (26.32)

where p(fm,n|κ;θ) denotes the probability density of intensities at
[m,n]T . The restriction to Gaussians (Eq. (26.11)) shows that the rep-
resentation in Eq. (26.32) already complies with a Gibbs distribution
Eq. (26.29). Therefore, Eq. (26.10) defines an MRF.
Unfortunately, Gibbs distributions do not provide a unique represen-
tation of MRFs. In fact, arbitrary positive densities p(X) can be trans-
formed to an infinite set of Gibbsian forms: For an arbitrary strictly
positive scalar c we define

U(X) = − log (c ·p(X)) (26.33)

and

Z =
∑
Y

exp(−U(Y)) =
∑
Y
c ·p(Y) = c (26.34)

since log(·) and exp(·) are mutually inverse. This simple procedure
leads to a Gibbsian representation of p(X).

So far, we have seen that MRFs define a Gibbs field. The equivalence
theorem states that this is also true in reverse order: each Gibbs field
induces a Markov random field. This remarkable correspondence be-
tween Markov random and Gibbs fields was discovered by Hammersley
and Clifford. The rather technical proof of the Gibbs-Markov equiva-
lence is omitted and beyond the scope of this chapter. The interested
reader will find a pretty elegant version in [26].

In practice, the knowledge of the equivalence theorem reveals two
options to define priors and model densities based on MRF:

1. We ignore the result on Gibbs distributions and compute the joint
density for a set of random variables by standard manipulations.
One example are 1-D Markov chains that are extensively used in
speech recognition [12]. There, the probability of observing a set of
random variables p(X) is usually computed using the factorization

p([X1, X2, . . . , XL]) = p(X1)
L∏
i=2

p(Xi|Xi−1) (26.35)

Two random variables Xi and Xj are considered to be neighbors if
the difference of indices is ±1. In the context of Markov chains the
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explicit factorization based on clique functions in Gibbsian form
is quite uncommon, and learning corresponds here to the immedi-
ate estimation of p(X1) and the transition probabilities p(Xi|Xi−1)
instead of estimating potential functions. In case of bounded de-
pendency, we have the identity

p(Xj|X1, . . . , Xj−1, Xj+1, . . . , XL) = p(Xj|Xj−1)p(Xj+1|Xj) (26.36)

and thereforeXj depends only on its neighbors ∂(Xj) = {Xj−1, Xj+1}
This yields:

p(Xj|X1, . . . , Xj−1, Xj+1, . . . , XL) = p(Xj|∂(Xj)) (26.37)

2. According to the given application we define a neighborhood sys-
tem, consider the associated graph, and define the energy function
in terms of clique potentials. The evaluation of the density for a
given observation is done by multiplying clique functions Eq. (26.37).
If, for instance, a parametric representation of clique potentials is
selected, learning is restricted to the estimation of these degrees of
freedom.

Both strategies—the explicit use of conditional densities and the ap-
plication of Gibbsian densities—are in fact equivalent and useful in
practice. It obviously depends on the concrete problem and the given
model as to which representation is advantageous. Let us consider two
examples based on the Gibbsian form of Markov random fields that
define prior densities of images, and a 2-D Markov chain model that is
applied to image segmentation.

Example 26.10: The Ising model

One of the most referenced and nontrivial introductory examples of
MRFs is the Ising model, which was invented by the physicist E. Ising.
It is a statistical model to explain empirical observations on ferro-
magnetism theoretically. We state this model in terms of images and
intensity values, as we are more familiar with this terminology. Let us
consider images as a 2-D square lattice. We induce a graph structure
according to neighbors of first order. The range of discrete intensity
values fm,n is restricted to {±1}. In the physical model these intensity
values describe the spin at the considered lattice point. The energy of
the complete random field is supposed to be minimal if all spins are
identical. This is obviously valid for the energy function

U(f ) = −α
M−1∑
m=1

N∑
n=1

fm,nfm+1,n +
M∑
m=1

N−1∑
n=1

fm,nfm,n+1

 (26.38)

where α > 0.

Ising’s model, however, does not weight singleton cliques (see also
Fig. 26.9) by zero as suggested in Eq. (26.38), but incorporates these
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Figure 26.11: Two images maximizing the prior defined by Eq. (26.39).

singleton potentials in the energy function as an additive term weighted
by β

U(f ) = −α
M−1∑
m=1

N∑
n=1

fm,nfm+1,n +
M∑
m=1

N−1∑
n=1

fm,nfm,n+1

+ β M∑
m=1

N∑
n=1

fm,n

(26.39)

We omit the physical interpretation ofα and β, which basically depend
on the temperature and the chosen material. For different choices of
these parameters we get different binary images that maximize the
density function of this Gibbs field. Figure 26.11 shows some exam-
ples.

Example 26.11: Third-order Markov random field

A remarkable and rich subclass of Markov random fields are third-
order Markov mesh fields as introduced by Abend et al. [27]. Third-
order Markov mesh fields of an image f are defined by the conditional
densities

p(fm,n|{fk,l|k <m or l < n}) = p
(
fm,n

∣∣∣∣∣ fm−1,n−1 fm−1,n

fm,n−1

)
(26.40)

where the spatial ordering of the conditional random variables visual-
izes the chosen neighborhood. In analogy to 1-D Markov chains, these
conditional probabilities require a special treatment at the boundaries.
The boundary densities are given by the marginals

p
(
fm,n

∣∣∣∣∣ fm−1,n−1 fm−1,n

fm,n−1

)
=



p(fm,n) , if m = n = 1

p(fm,n|fm,n−1) , if n >m = 1

p(fm,n|fm−1,n) , if m> n = 1
(26.41)

The joint probability for observing an image f is obtained by the prod-
uct

p(f ) =
M∏
m=1

N∏
n=1

p
(
fm,n

∣∣∣∣∣ fm−1,n−1 fm−1,n

fm,n−1

)
(26.42)



844 26 Probabilistic Modeling in Computer Vision

If we also assume that all transition probabilities are spatially homo-
geneous, that is, the probabilities in Eq. (26.40) are independent from
the position defined by [m,n]T in the image grid, we can estimate the
number of discrete probabilities required to define this random field:
for G discrete intensity values we need G4 discrete probabilities. Us-
ing the Gibbsian form of MRF it is straightforward to show that the
forementioned definition leads to the Markov property [27] (see also
Eq. (26.37))

p(fm,n|{fk,l|k 6=m,l 6=m}) = p

fm,n
∣∣∣∣∣∣∣
fm−1,n−1 fm−1,n fm−1,n+1

fm,n−1 fm,n+1

fm+1,n−1 fm−1,n fm+1,n+1


(26.43)

This is a basic result, which states that Eqs. (26.40) and (26.41) and
the Markov property Eq. (26.43) define the same random fields.

Up to now we have considered MRFs in general and the given exam-
ples have shown that MRFs can be used to define priors (Example 26.10
and Example 26.11); we can define a probability density for a given set
of observations. The Bayesian classifier , however, requires the defini-
tion of posterior probabilities including priors and model densities.

Major applications of Markov random field models do not deal with
object recognition and pose estimation, but with image labeling [16, 26].
Based on prior models and observations a labeled image is computed
using Bayesian labeling: this can be a restored image [25], a transfor-
mation into line segments [28], or texture segmentation [29].

26.5 Automatic model generation

We have introduced various probabilistic models. With the exception of
histograms the discussion has neglected the problem of model genera-
tion. Of course, the explicit construction of model densities by human
interaction has to be avoided. In general, the objective of learning is to
generate a probability density function that best describes the statisti-
cal behavior of training samples. As already stated in the Introduction,
learning of probabilistic models conceptually includes both automatic
acquisition of the structure and the model parameters based on em-
pirical data. Both subproblems interact, and cannot be considered as
mutually independent parts. Variations of the model structure, obvi-
ously, change the number of parameters. The common principle of
structural and parametric learning is as follows:

• we define a search space;

• choose an objective function that scores the actual structure or para-
meter set;
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• use a search algorithm that guides the navigation in the search
space; and

• terminate learning, if no improvement occurs.

In spite of fitting into this general framework, the overall complexity of
both learning problems is completely different. While the estimation
of parameters usually corresponds to optimization problems of con-
tinuous functions, structural optimization implies a search problem in
a combinatorial space of exponential size. At the beginning of the dis-
cussion of training algorithms, let us assume the structure of the model
density is known, and learning reduces to a parameter estimation prob-
lem.

26.5.1 Parameter estimation

There exists a vast literature on parameter estimation techniques, and
the basic problem is the definition of an accurate objective function,
which has to be optimized with respect to model parameters. The
most popular parameter estimation techniques are the maximum likeli-
hood (ML) and the maximum a posteriori (MAP) estimation [9]. We will
not summarize these standard techniques, but present a more gen-
eral parameter estimation algorithm, which is applied especially in the
presence of incomplete sample data and which has an excellent reputa-
tion for model generation. Indeed, most estimation problems in com-
puter vision have to deal with incomplete information: missing depth
information; self occlusion; segmentation errors; unknown correspon-
dences of features; etc. In 1977, Dempster et al. came up with the
expectation maximization algorithm (EM algorithm, [30, 31]), which is
especially constructed for estimation problems with latent data and is
in fact a generalized version of ML estimation.

The basic idea of the EM algorithm uses the missing information
principle. In colloquial speech the available training data are consti-
tuted by the equation:

observable information = complete information

− missing information

This difference can be rewritten in terms of classical information the-
ory: Let X be the random variable for the observable data. The aleatory
variable Y denotes the missing data. Thus the complete information
is represented by the pair (X,Y). All these random variables are asso-
ciated with parametric distributions: p(X;B); p(Y ;B); and p(X,Y ;B),
where the shared parameter set is summarized by B. Obviously, we can
apply Bayes’ rule and get: p(X;B) = p(X,Y ;B)/p(Y |X;B) In a straight-
forward manner the application of the logarithm induces the difference

(− log p(X|B)) = (− log p(X,Y |B))− (− log p(Y |X,B)) (26.44)
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Here, the negative log-likelihood function (− log p(X;B)) denotes the
observable, the term (− log p(X,Y ;B)) the complete, and (− log p(Y |
X;B)) the missing information. We conclude that the informal principle
in Eq. (26.44) corresponds to the forementioned colloquial description.

The maximization of the log-likelihood function log p(X;B) with
respect to the parameter set B results in a maximum likelihood esti-
mation. Instead of maximizing log p(X|B), we could also minimize the
difference on the right-hand side of Eq. (26.44). This observation leads
to an iterative estimation technique for the parameter set B:

Assume that B̂
(0)

is the initial estimate ofB, and B̂
(i)

denotes the esti-
mated value of the ith iteration step. Now we consider Eq. (26.44) in the
(i+ 1)-st iteration. The multiplication of both sides by the conditional

density p(Y |X; B̂
(i)
) and the marginalization over the non-observable

part Y , results into the key-equation of the EM algorithm∫ (
log p(X|B̂(i+1)

)
)
p(Y |X, B̂(i)) dY︸ ︷︷ ︸

(a)

=

∫ (
log p(X,Y |B̂(i+1)

)
)
p(Y |X, B̂(i)) dY︸ ︷︷ ︸

(b)

(26.45)

−
∫ (

log p(Y |X, B̂(i+1)
)
)
p(Y |X, B̂(i)) dY︸ ︷︷ ︸

(c)

This equation shows some remarkable properties [30]:

a) Since log p(X|B̂(i+1)
) is independent of Y , the variable of the inte-

gral, we get∫ (
log p(X|B̂(i+1)

)
)
p(Y |X, B̂(i)) dY = log p(X|B̂(i+1)

) (26.46)

the log-likelihood function of Eq. (26.44). The multiplication and
marginalization have no effect on the left-hand side of Eq. (26.44).

b) The term

Q(B̂
(i+1)|B̂(i)) :=

∫ (
logp(X,Y |B̂(i+1)

)
)
p(Y |X, B̂(i)) dY (26.47)

is a conditional expectation for the complete information, if B̂
(i)

and
X are known. In the following, we call this expectation Q-function
or Kullback-Leibler statistics in accordance with [30].

c) The last term

H(B̂
(i+1)|B̂(i)) :=

∫ (
logp(Y |X, B̂(i+1)

)
)
p(Y |X, B̂(i)) dY (26.48)
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denotes the negative entropy of the missing information. A con-
sequence of Jensen’s inequality is that Eq. (26.48) decreases within
each iteration, that is,

H(B̂
(i+1)|B̂(i))−H(B̂(i)|B̂(i)) ≤ 0 (26.49)

These conclusions suggest an iterative approximation of the max-
imum likelihood estimation: instead of the maximization of the log-
likelihood, we iteratively maximize the Kullback-Leibler statistics
(Eq. (26.47)), which automatically decreases (Eq. (26.48)). This iterative
process of maximizing (M-step) the expectation (Eq. (26.47)) (E-step)
characterizes the expectation maximization algorithm.

The advantages of the EM algorithm are versatile. The basic idea is
motivated by the parameter estimation problem with missing informa-
tion. Mostly, the EM algorithm decouples the estimation process in a
manner that fits well with the modular structures of the chosen statisti-
cal models. The high-dimensional optimization problems are often de-
composed in lower-dimensional independent search problems, which
result in closed-form iteration formulas or optimization problems of
the Q-function with iterative inner loops.

In most applications the EM technique yields simple and elegant
algorithms, which have low storage requirements due to its iterative
nature, and are easily implemented. With respect to numerical stabil-
ities, the maximization of Kullback-Leibler statistics has proven to be
more robust than direct ML estimation [22].

Despite these arguments, the EM algorithm shows some major dis-
advantages: It is known to be a local optimization method with a linear
convergence rate [30]. Thus the success of the parameter estimation

depends greatly on the chosen initial value B̂
(0)

. If the initialization
is not close to the global optimum of the likelihood function, the EM
iterations will not succeed and terminate in a local maximum of the
log-likelihood function. There are several modifications of the EM algo-
rithm for improving the low convergence rate [9], but they are omitted
here.

This general introduction of the EM algorithm opens a wide range
of applications, and the intuitive introduction based on the missing
information principle will simplify the usage of EM to solve specific
parameter estimation problems.

We conclude this subsection on parameter estimation by demon-
strating the power of the EM algorithm using a concrete probability
model introduced in Example 26.6:
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Example 26.12: Estimation of mean vectors from projections in the pres-
ence of unknown assignments

Let us assume we have to estimate the mean vectors of normally dis-
tributed 3-D points based on 2-D points from different viewpoints;
see Fig. 26.7 for some example views. The mapping of 3-D points to
the 2-D space is supposed to be orthogonal, and the correspondence
between the observed 2-D and 3-D points is unknown. Training data
using multiple views include:

• the set of point features of each view, which are denoted by %O =
{%o1, . . . , %o%m} for the %th view. Here, %nκ is the number of point
features of the %th view; and

• for each training view the pose parameters. These are affine trans-
form, and represented by the matrix %R ∈ IR2×3 and the vector
%t ∈ IR2 for each sample view indexed by %.

We assume that the model density introduced in Eq. (26.24) charac-
terizes the appearance of observations in the image. The estimation
of 3-D mean vectors has to be done unsupervised with respect to
these correspondences, as they are not part of observations. Obvi-
ously, this is a parameter estimation problem based on latent data.
The application of the EM algorithm requires the successive maxi-
mization of the Kullback-Leibler statistics. Here, the observable ran-
dom variables are the 2-D points (i. e., X=O) and the hidden variables
are represented by the assignment between 2-D and 3-D points, (i. e.,
Y = [ζκ(o1), . . . , ζκ(om)]). We omit the technical computation of the
Kullback Leibler statistics; for details we refer to [20]. We get the final
iteration formula, which successively maximizes the Q-function with
respect to the 3-D mean vector µκ,j belonging to the jth 3-D feature
of class Ωκ

µ̂(i+1)
κ,j =

∑
%

%m∑
k=1

p(%,k) %RT (%RΣ̂
(i+1)
κ,j

%RT )−1%R

−1

∑
%

%m∑
k=1

p(%,k)%RT (%RΣ̂
(i+1)
κ,j

%RT )−1 (%ok − %t) (26.50)

where

p(%,k) = p̂(i)(j)p(%ok|µ̂(i)κ,j , Σ̂
(i)
κ,j , %R, %t)

%nκ∑
l=1

p̂(i)(l)p(%ok|µ̂(i)κ,j , Σ̂
(i)
κ,j , %R, %t)

(26.51)

This iteration formula allows the estimation of 3-D mean vectors using
2-D observations without knowing the assignment. Although this for-
mula seems quite complicated it is can be reduced to the well-known
estimator for mean vectors by specialization: Assume the object is
respresented by a single feature in each view, that is, %m = 1 for all
%, and there is no feature transform, that is, the affine transform is
equal to the identity, and re-evaluate Eq. (26.50).
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26.5.2 Automatic learning of model structure

The methods for learning the structure of probabilistic models are far
beyond the available results in parameter estimation. In structural
learning, we have to find:

• the dependency structure of random variables; and

• the number of stochastic processes incorporated in the probabilistic
model.

As in parameter estimation the most obvious criterion for optimization
is the likelihood function, but it has to be used cautiously. Without
any regularization, structural optimization tends to over-fit the sample
data in the sense that the resulting structure adapts to sample data
perfectly. The estimated model structure is usually far too complex as
the following example shows:

Example 26.13: Over-fitting in structural learning

Suppose we know that two features o1 and o2 belonging to one ob-
ject are mutually independent. Each feature can be detected with the
probability 0.5. Based on the maximum likelihood criterion, structural
learning now decides whether or not these features are mutually in-
dependent in the observation. For all observations we will get the ML
estimate that exactly fits the observation, specifically, we select the
probability that considers both features as mutually dependent ran-
dom measures. Convince yourself using a sample set of 1000 images
resulting in the following data and maximize the likelihood function:

• the pair (o1,o2) is observed 200 times;

• only feature o1 show 300 images;

• the single feature o2 was detected in 250 images; and

• the segmentation algorithm was not able to compute any feature in
250 images.

Due to this observation of model over-fitting, it is suggested that
an objective function be introduced that combines the maximum like-
lihood function with a scoring function for the model complexity [32].
In terms of Bayesian estimation, we maximize the a posteriori probabil-
ity instead of the likelihood function. The prior probability for models
therein measures the model complexity. The optimization has to be
done using combinatorial search techniques such as genetic algorithms
(see also Chapter 27, Section 27.5).

Because we have considered parameter estimation problems in the
presence of latent training data, procedures for structural learning also
have to be provided that work on incomplete training data. A variant
of the EM algorithm—the structural EM algorithm—was recently de-
veloped and allows the training of model structures in the presence
of incomplete training data [33]. The basic idea herein is to estimate
missing variables using the actual structure and the available empirical



850 26 Probabilistic Modeling in Computer Vision

data. The estimates are plugged in and we start structural optimization
with a complete data set. The best structure (or a set including struc-
tures with highest scores) of this step is used for refining estimates of
missing variables. The refinement of estimates and the optimization
of the model structure are repeated until the procedure converges.

26.6 Practical issues

Before we conclude this chapter with a brief summary, we comment
on some practical issues generally related to the usage of probabilistic
models in computer vision.

The most critical decisions in probabilistic modeling are related to
the dependency structure of considered random variables and the num-
ber of parameters in the chosen model. If probabilistic models do
not result in satisfactory recognition rates, the most obvious problem
might be caused by inaccurate independency assumptions and by the
selection of inappropriate parametric distributions. The increase of
dependencies and the related growth of free parameters suggest more
accurate models. In fact, for many applications this is a totally false
conclusion that is related to a fundamental problem in pattern recog-
nition [19, 34]: the curse-of-dimensionality. Indeed it can be shown
that:

• in high-dimensional spaces it is impossible to get large sample sets,
that is, with increasing dimension an exponentially increasing num-
ber of data points is required to guarantee a densely sampled Eu-
clidean space;

• all interpoint distances are large and rather equal;

• nearest neighborhoods are not local; and

• all data points are close to the boundary of the considered space.

The natural consequence of this principle is that a careless increase of
model complexity will end in insufficient classification results. These
are hard to understand if the engineer is not aware of the curse. The
only way to avoid problems related to the curse-of-dimensionality is
to restrict the considered functions to a special class of parametric
functions. Reasonable high-dimensional models require some locally
restricted structure or reduced parameters enforced by parameter ty-
ing; otherwise parametric models are not practical. But this strategy is
two edged: Often probabilistic models are criticized because of incor-
porated independency assumptions—regardless of convincing experi-
mental results. For a wide range of classification problems, however,
even naive Bayes [11], which approximates class conditional densities
of random vectors by the product of its marginals, is surprisingly suc-
cessful. Theoretically, it is not yet completely solved and clear why
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these simple techniques often are superior to more sophisticated ones,
but certainly one reason is the curse-of-dimensionality.

Another matter is based on the bias variance trade-off in parameter
estimation. If a parameter set B has to be estimated using empirical
data, the mean square error between the real value B0 and its estimate
B̂ is a measure for the quality of the estimation procedure

E[(B0 − B̂)2] = (B0 − E[B̂])2 + E[(B̂− E[B̂])2] (26.52)

The first term (B0 − E[B̂]) herein denotes the bias and E[(B̂ − E[B̂])2]
is the variance of the estimator. Typically, bias and variance interact:
low bias induces high variance, low variance high bias. If the para-
metric model is correct, then the estimation is unbiased and even the
variance will be low. However, if the chosen model does not exactly fit,
we observe usually low bias but high variance, and minor changes in
the training samples cause high variations in estimates. For that rea-
son, restricted parametric models of lower variance are often preferred
to more complex and highly parameterized density functions [35]. The
high variance of these estimates also explains the success of the boot-
strap [36], where the training set is sampled by replacement. Instead of
using the training set as is, we randomly choose a subset of empirical
data, estimate the parameters, and repeat this process several times.
At the end the computed models are averaged and finally show a lower
variance [37].

We assume implicitly that training data are sufficient for estimat-
ing the required parameters. The dimension of the chosen parameter
space, the curse-of-dimensionality, the bootstrap, and the fact that we
observe only samples of a subset of the real set of events are hints that
this basic assumption is possibly wrong. Our models also have to con-
sider and to predict random measures with a probability nonequal to
zero, which are not part of the observation. At first glance, this seems
awkward and most unrealistic. A simple example, however, shows its
necessity: If we model objects by histograms it might happen that some
intensity values are never observed. The histogram will include the
probability 0 and whenever we observe this intensity value during run-
time, the complete product of probabilities (Eq. (26.8)) will annihilate.
This example shows that we also have to attend to methods that can
deal with sparse training samples. Statistical models used for speech
recognition have been used widely in this field. In many applications
techniques such as deleted interpolation or Good-Turing estimates pro-
vide reliable estimates [12], and these methods will also support and
improve probabilistic models in computer vision. Good estimates of
parametric models are the crucial prerequisite for the successful use
of probabilistic models.



852 26 Probabilistic Modeling in Computer Vision

26.7 Summary, conclusions, and discussion

This chapter provided an overview on probabilistic models in computer
vision and related algorithms. The basic arguments that suggest a pref-
erence for probabilistic modeling schemes over others have been sum-
marized. Bayesian classifiers allow the unified incorporation of prior
knowledge and class-specific densities. However, it is a fundamental
problem to define adequate statistical models that solve the trade-off
between independency assumptions, the dimension of the parameter
space, the curse-of-dimensionality, the size of available sample data,
and the discriminatory power. The generic point of view starting with
a general probabilistic model has proven to be advantageous: inde-
pendencies and marginalization are powerful tools to switch between
different levels of model densities. We have shown that mixture den-
sity models, hidden Markov models, Markov random fields, and others,
have the same roots in the generic model of sensor data.

In the authors’ opinion there is an immense potential for probabilis-
tic models with regard to robust learning techniques, excellent clas-
sifiers, and a systematic and theoretically well-founded approach to
active vision.
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27.1 Introduction

27.1.1 General remarks

The problem of image understanding is to transform a sensor signal,
that is, an image or image sequence, into a task-specific symbolic de-
scription. This should be done not just somehow, but in an optimal
manner, where optimality is still to be defined. It is not necessary to
extract all information contained in the images but to provide the rele-
vant information in a format that suits the subsequent usage, either by
man or by machine. Usually, information is not required as arrays or
subarrays of pixels, but in some symbolic and condensed format. An
example is given in Fig. 27.1. Processing must be done within a time
defined by the application. The provided results must be sufficiently
reliable and processing must be robust with respect to various adverse
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conditions. It may be necessary to adapt automatically to changing
properties of the images and imaging conditions. There may be time
and equipment for an active exploration of an environment in order
to optimize viewpoints for interpretation, as may be the case in ser-
vice robotics, or there may be no (or very little) time and equipment to
do so, as is usually the case in autonomous car driving. For such sys-
tems profitable applications are waiting or are already being exploited
in areas like production automation, quality control, medical image in-
terpretation, traffic control and guidance, remote sensing, inspection
of machines or buildings or traffic routes, and sensor controlled au-
tonomous robots and vehicles, to name a few.

Interpretation of sensory inputs can only be done with respect to
an internal model or with respect to internal knowledge of the envi-
ronment, where in principle the observations may in turn modify the
internal model. Hence, all interpretation is model-based or knowledge-
based.

We present an approach to represent a model of the task domain or
the a priori knowledge about it in a semantic network and to compute an
interpretation that is optimal with respect to a given judgment function.
From among the different approaches to optimization we consider an
algorithm based on graph search and we show that the optimization
problem can also be solved iteratively by combinatorial optimization.

An early example of an operational system using this approach was
described by Niemann et al. [1] and in the textbook by Sagerer and
Niemann [2]. Related work on semantic networks can be found, for
example, in Kumar [3], Niemann et al. [4], Shastri [5], and Sowa [6].
Other approaches to knowledge representation are rule-based systems,
[7, 8, 9, 10], fuzzy rules, [11, 12], relational structures, [13, 14], or for-
mal logic, [15, 16, 17]. We see the advantages of semantic networks
in that they allow a well-structured representation of knowledge that
approaches human intuition, that relations between elements of the
knowledge base are made explicit and hence can be used efficiently,
that context-dependent relations can be modeled and used for inter-
pretation, that alternatives of processing and uncertain results can
be handled via standard optimization procedures, and that usage of
knowledge is possible by task-independent control algorithms having
a sound theoretical basis. For knowledge representation in semantic
networks several slightly different definitions were developed. We will
outline here the approach developed in [2, 18] and refer the reader to
the foregoing references for other definitions.

Algorithms and programs for information processing will require a
lot of specialized knowledge from its designer, for example, knowledge
about signal processing, statistical decision making, object-oriented
programming, and the like. Therefore, sometimes almost anything
is called “knowledge-based.” In general, and in this contribution, the
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a b

c
Diagnostic Interpretation

sector deg. cert. images

ventral 1 1.00 19, 21 { 23

medial 2 1.00 18 { 20

dorsal 1 .96 20, 22

Figure 27.1: a An example (of a section) of an image from a magnetic res-
onance (MR) image sequence; b extracted contours of the cartilage; and c an
automatically computed diagnostic interpretation showing also the degree of
arthrosis and the certainty of the interpretation.

term knowledge-based interpretation is reserved for an approach where
task-specific knowledge is explicitly represented in the system for inter-
pretation and where this knowledge is used by a separate and mainly
task-independent control algorithm to compute an optimal interpreta-
tion. The representation of knowledge is treated in Section 27.2, op-
timal interpretation is defined in Section 27.3, control algorithms are
treated in Section 27.4 and Section 27.5, general ideas for judgment
functions are given in Section 27.6, and some extensions and remarks
on applications are given in Section 27.7. Due to limitations of space,
the presentation has to omit many details and formal definitions; these
can be found in Sagerer and Niemann [2].

27.1.2 Overview of the approach

Based on statistical decision theory, the classification of 2-D and 3-D
objects as well as spoken words and utterances traditionally is treated
as an optimization problem, for example, see Section 26.3. Based on
logic inferences, knowledge-based interpretation often is still related
to rule-based and heuristic approaches. It is shown here that interpre-
tation also can be formulated and solved as an optimization problem.

In any case, given an image the task is to compute a symbolic de-
scription which

• optimally fits to the observed images;

• is maximally compatible with explicitly represented task-specific
knowledge;

• and contains all, or at least most of, the information requested by
the user, which may be a human or a machine (see Fig. 27.1).
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Therefore, image understanding basically is an optimization problem.
Two main phases of processing are assumed, that is, a phase of

mainly data-driven processing and a phase of mainly model-driven proc-
essing. However, it is not assumed in general that these two phases are
strictly sequential in the sense that the first phase must be finished
before the second may start. Rather it is assumed that the timing of
the phases, the data used by them, and the order of switching between
phases is determined by a control strategy implemented by a control
module or control algorithm. During data-driven processing no explic-
itly represented task-specific knowledge is used (e.g., no knowledge
about cars or diseases of the knee), whereas during model-driven pro-
cessing this knowledge is the essential part.

This view is motivated by the fact that the human visual system also
seems to have two processing phases. One phase is mainly data-driven
and subconscious, for example, when perceiving immediate cues like
shades of gray, color, depth, or motion. The other phase works with
conscious scrutiny, for example, when looking for a certain person or
evaluating a medical image. In addition, present day image understand-
ing systems start with some data-driven preprocessing and segmenta-
tion before going into model-driven processing.

We assume that the process of image understanding starts with
some preprocessing (e.g., filtering, morphological operation, or nor-
malization) transforming an image, that is, an array of pixels f , into
another image h. We will not treat this step here. The next step is the
computation of an initial segmentation

A= 〈O〉 (27.1)

of the image. The initial segmentation A is given as a network of seg-
mentation objectsO, for example, lines, vertices, regions, together with
their attributes, for example, length, color, velocity, and space coordi-
nates. A segmentation object is a structure

O = [D : TO, name
(A : (TA, R∪ VT ))∗, attributes
(P : O)∗, parts
(S(AO,AP) :R)∗, relations
G :Rn] judgment

(27.2)

For example, a segmentation object O may be “right angle,” its at-
tributes the coordinates of a circumscribing rectangle, its parts the
two lines forming a right angle, the relation a fuzzy relation defining
the degree of fulfilment of the predicate right angle, and the judgment
a combination of edge strength and fulfilment of the relation. Initial
segmentation will not be treated here. The interested reader can find
material in this volume.
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The phase of mainly data-driven processing is followed by a model-
driven phase, where we assume that a model M of the task domain is
given and that this model is represented by a network of concepts C

M= 〈C〉 (27.3)

The model has to contain all the information relevant to solve a given
task of image understanding and to compute from an image the infor-
mation requested by a user, but need not contain anything else. The
structure of a concept is defined below in Eq. (27.4).

The segmentation objects O and concepts C give a “natural” in-
terface between segmentation and understanding. There must be so-
called primitive concepts, which can be linked directly to results of seg-
mentation. For example, assume a model M for the diagnostic inter-
pretation of MR images of the knee contains, among others, concepts
defining the cartilage by curved contour lines. In this case segmentation
should extract appropriate curved contour lines that may be assigned
to the primitive concepts of the cartilage. This way segmentation and
model are interfaced. An object-oriented implementation of A and M
is advantageous, [19], and material on this is given in Volume 3, Chap-
ter 5.

In principle, the border between parts of the system implemented
in a semantic network and parts of a system implemented, for exam-
ple, by a network of procedures, can be chosen arbitrarily. For exam-
ple, in Weierich et al. [20] everything, starting with the input image
and including initial segmentation, is defined in concepts; in Salzbrunn
et al. [21] initial segmentation is implemented by procedures and the
semantic network starts with the definition of objects. As a rough “rule
of thumb” one may say that preprocessing and initial segmentation are
well handled by procedures, knowledge-based inferences by a semantic
network, and object recognition and localization either by a semantic
network (if the search complexity is low, for example, in the images
shown in Fig. 27.1) or by algorithms tailored to object recognition, for
example, statistical approaches or neural networks.

27.2 Model of the task domain

As mentioned here, knowledge about the task domain is explicitly rep-
resented in a model M, which is a network of concepts C . In order
to make possible a task-independent control algorithm, which uses the
model (and the initial segmentation A) to interpret an image, all con-
cepts representing whichever item of knowledge have the same syntax.
This is defined in the next subsection.
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Figure 27.2: Three links (spec, part, and conc) are provided to relate a concept
to other concepts defining it and one link (inst) to relate it to instances of the
concept found in an image.

27.2.1 Definition of a concept

We start from some colloquial and usually ambiguous natural language
conception, such as “car,” “accident,” “drive,” “big,” and so on. This
conception is represented internally (in the computer) by a recursive
formal data structure that contains the information relevant to the task
domain. For example, for autonomous driving of cars on a highway the
price of a car will not be relevant, but the size and shape. The internal
formal representation is called a concept . The concept is referenced by
a name that may be identical to the colloquial conception. For exam-
ple, the conception “car” is represented internally by a concept named
“car” (or “Auto”). If some subset of pixels is computed to meet the def-
inition of a concept C with sufficient reliability, an instance I(C) of the
concept is found, linked to this concept C , and stored in a memory of
intermediate results. In order to allow for a well-structured represen-
tation of knowledge, the three links or relations “part,” “concrete,” and
“specialization” are introduced, see also Fig. 27.2. The structure of a
concept C is defined by

C = (D : TC, name
[Hobl, Hopt]∗, sets of modality
(V : C)∗, specializations
(L : I)∗, instances
(A : (TA , F))∗, attributes
(S(AC,AP ,AK), F)∗, relations
(G , F)) judgment

H = ((Pci : C+)∗, contextindep. parts
(Pcd : C+)∗, contextdepend. parts
(K : C+)∗) concretizations

(27.4)
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The main defining components of a concept are sets of modality
consisting of obligatory and optional elements Hobl and Hopt, respec-
tively. The notation [Hobl,Hopt]∗ indicates that there may be zero, one,
or more such sets. Obligatory elements must be present in order to
compute an instance of a concept in the image, optional ones may
be present. The sets of modality facilitate a compact representation
of knowledge because slight modifications, for example, chairs with
three, four, or five legs, can be represented in the same concept by dif-
ferent sets of modality. The defining components of an element H are
its context-independent and context-dependent parts Pci, Pcd and con-
cretes K. The distinction between parts and concretes allows one to
represent relations between different levels of abstraction or different
conceptual systems. For example, a “wheel” is a physical part of a “car”
(attached to the concept “car” by the link “part”), which naturally is in
the conceptual system of “cars.” The same holds for a “house” and its
“roof.” A wheel may “rotate,” but a rotation is not a physical part of a
car or a wheel but a special type of “motion.” Hence, a wheel would be
related to a rotation as a concrete by the link “conc.” Another view of a
concretization is that it is closer to the pixel data, for example, a “line”
as a concrete of a “house” is closer to the pixels, see Fig. 27.2.

The distinction between context-independent and -dependent parts
allows one to handle context-dependent relations between objects and
their parts. With respect to the usage of a knowledge base this means
that a context-independent part may be detected or inferred without
having the superior concept, whereas a context-dependent part can
only be inferred after having the superior concept. For example, the
“hood” of a car usually can be detected in an image without having the
car, but a “leg of a chair” usually can be inferred from straight lines
only if the chair as a context has been established.

In order to have compact knowledge bases and to define hierarchies
of conceptions it is possible to introduce a concept as the specialization
of some other (more general) concept. It is common to imply that all
defining elements (parts, concretes, attributes, relations) of a more gen-
eral concept are handed down to the more special one or are inherited
by it unless explicitly defined otherwise. For example, an “apartment
house” is a special “house” related to it by the link “spec.”

According to the preceding definition a concept C has a set of at-
tributes (or features, properties) A, each one referencing a function (or
procedure) F , which can compute the value of the corresponding at-
tribute. The notation (A : . . . )∗ indicates that there may be an arbitrary
number (including zero) of attributes in a concept.

In general there may be structural relations S between the attributes
AC of a concept or between attributes AP and AK of its parts and con-
cretes, respectively. Since in image processing noise and processing
errors are inevitable, relations usually can only be established with lim-
ited precision. Therefore, each relation references a function F comput-
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ing a measure of the degree of fulfilment of this relation, for example,
in the sense of a fuzzy relation.

Finally, every concept C has an attached function F computing a
judgment G(I(C)) of an instance I(C). The judgment may be a good-
ness or value or alternatively a cost or loss, but obviously this does not
make an esential difference. Some general remarks on judgment are
given in Section 27.6. The judgment G may be a scalar or a vector.

The active elements of the model are the functions computing values
during instantiation. The concepts and links may be viewed as declara-
tive knowledge, the functions as procedural knowledge. It is mentioned
that some additional elements were introduced in the references given
in Section 27.1 but have to be omitted here due to space limitations.

In order to facilitate a task-independent and efficient control algo-
rithm it is useful to request that a model M of a task domain is cycle-
free, that is, there is no path in the semantic network leading from a
concept C via links of different type back to C , and consistent , that
is, between two concepts there cannot be links of different type. The
designer of a model has to ensure these restrictions, which are also
meaningful for knowledge representation. A model represented by a
semantic network then is a special type of graph having three types
on links, the part, the concrete, and the specialization and one type of
node, the concept. During processing two more node types are used,
the modified concept and the instance.

27.2.2 Instance and modified concept

In knowledge-based image analysis one tries to determine which objects
and so on are actually present in the image. The occurrence of an object
is represented by an instance I(C) of the corresponding concept C , see
also Fig. 27.3. The relation between the concept and its instance is
represented by a link L from C to I(C). An instance is represented by
a structure identical to Eq. (27.4) except that references to functions
are replaced by the actual values computed by those functions from
the image. Since due to noise and processing errors the occurrence of
an instance can only be inferred with limited certainty and precision, a
judgment G is computed for every instance of a concept.

There may be the situation that some instances have been computed
and allow the restriction of attribute values of a concept C , which can-
not yet be instantiated. In this case a so called modified concept Q(C)
is created. For example, the detection of one “wheel” of a “car” con-
strains both the location of the car (bottom-up) and of the other wheels
(top-down). This way constraints are propagated bottom-up and top-
down. Modified concepts improve both the efficiency and reliability
of interpretation. An example of some concepts is given in Fig. 27.3,
taken from Salzbrunn et al. [21], to illustrate the definition Eq. (27.4).
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Figure 27.3: Examples of concepts linked to other concepts and modeling in-
dustrial parts

The general concept “parts of electric motors” is useful if there are sev-
eral more special concepts, like “ventilator,” “rotor,” and so on. Then
all concepts can be accessed via the general one, and by inheritance all
special concepts as well as their parts are defined by “lines” which in
turn may be “straight” or “circular.” Since in this example the concept
“line” does not have parts or concretes, it is a primitive concept . The
instantiation of primitive concepts is done, by definition, by means of
segmentation results, as mentioned already in Section 27.1.2.

The process of instantiation can be defined and implemented by
task-independent rules. They define the conditions to compute a par-
tial instance (which is necessary to handle context-dependent parts), to
instantiate a concept, to enlarge an instance by optional components
Hopt, to compute a modified concept top-down or bottom-up, or to com-
pute modified concepts from initial segmentation results. Details of
the instantiation of concepts have to be omitted here. In principle, in
order to compute an instance of a concept, first its obligatory context-
independent parts and its obligatory concretes must be instantiated.
If this is the case, an instance can be created and its attributes, rela-
tions, and judgment computed. An obligatory context-dependent part
can only be instantiated if a partial instance of its superior concept is
available. The instance may be extended by computing instances of
optional parts and concretes.

27.2.3 Function-centered representation

Facing both the large amount of data and the limited processing time in
the image understanding tasks outlined in the foregoing, the exploita-
tion of parallelism provides a promising way to achieve the processing
rates neccessary to keep up with the sensory input. Most parallel se-
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mantic network systems employ an isomorphic mapping between the
processors of a parallel hardware and the nodes and links of a knowl-
edge base, which turned out to be a feasible approach if both concepts
and inferences are simple [5].

However, as in our formalism a concept may have an arbitrary num-
ber of attributes and structural relations, complex concepts may be-
come a bottleneck in instantiation. Therefore, we employ a representa-
tion of a semantic network based on the functions F in the concept def-
inition Eq. (27.4). This is natural because the functions for computing
values of attributes, relations, and judgments are the active elements in
the model. Each computation by a function needed during instantiation
is represented by a node of a directed acyclic graph that may be mapped
to a multiprocessor system for purposes of parallel processing. Basi-
cally, from the arguments of the functions F a dependency structure
is created showing which functions may be computed in parallel and
which sequentially because their arguments need results provided from
other functions. The details of the automatic conversion of a model to
this dependency structure are given in Fischer and Niemann [22].

27.3 Interpretation by optimization

The result of interpretation is a symbolic description

B = 〈I(C)〉 (27.5)

which is a network of instances of concepts defined in the model. It
contains both a condensed “summary” in the form of instantiated goal
concepts as well as details in the form of instances of parts and con-
cretes down to primitive concepts.

Every primitive concept is instantiated by a segmentation result, and
every object, event, situation, motion or whatever is relevant to the task
domain is defined by a concept in the model M. In particular, the goal
(or the goals) of interpretation is also defined in a concept, the goal
concept Cg . Intermediate results of processing give rise to, possibly
competing, instances Ii(C) of a concept C . Every concept has, among
other defining items, an associated judgment G, which allows the com-
putation of the score, value, or alternatively of the cost, of an instance
I(C). Therefore, also the goal concept has an associated judgment.

A natural definition of image interpretation then is to require the
determination of the best scoring instance I∗(Cg) of the goal concept,
that is

I∗(Cg) = arg max
{I(Cg)}

{G(I(Cg) | M,A} (27.6)

The actual computation of interpretations is done by the control mod-
ule as outlined in Sections 27.4 and 27.5.
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The dependence of Eq. (27.6) on the model M ensures that the in-
terpretation is compatible with a priori knowledge and contains all the
information required by a subsequent user. The dependence on the ini-
tial segmentationA ensures that the interpretation is compatible with
the observed data. Finally, the computation of the best scoring instance
ensures that from among competing interpretations the best one is se-
lected. Hence, the requirements of Section 27.1.2 are met and image
interpretation is formulated and solved as an optimization problem.

27.4 Control by graph search

In general, the task of a control module is to compute an efficient strat-
egy for the interpretation of an image, given a model. This requires
in particular to determine which available processing algorithm should
be applied to which subset of intermediate results. In the foregoing
context this requires the computation of an optimal instance I∗(Cg) of
the goal concept. One approach to do this is by graph search. Because
our model consists only of concepts with identical syntactic definition,
the control algorithm can be implemented task-independently. Only
the judgment functions G defining the quality of instances are task-
dependent.

When using graph search, every state of analysis, characterized by
the current intermediate results, is associated with a node v in a search
tree. If a node is not a goal node vg of the search process, new nodes are
generated by applying transformations. In our context the transforma-
tions are given by the rules mentioned at the end of Section 27.2.2. We
thus have an implicitly defined graph, which is given by a start node and
by transformations to generate new nodes from a given node. Clearly,
we are only interested in generating as few nodes of the search tree as
are necessary to find an optimal instance I∗(Cg) of the goal concept.
Therefore, an algorithm for graph search is needed to find the optimal
path efficiently, that is, the minimal cost path, to the goal node.

Let v0 be the start node of the search tree, vi the current node, and
vg the goal node. Let ϕ(vi) be the cost of an optimal path from v0 to
vg via vi,ψ(vi) the cost of an optimal path from v0 to vi, and χ(vi) the
cost of an optimal path from vi to vg . Then the additive combination

ϕ(vi) =ψ(vi)+ χ(vi) (27.7)

must hold. As one usually does not know the true costs, they are re-
placed by their estimates ϕ̂(vi), ψ̂(vi), χ̂(vi). The estimate χ̂(vi)must
be optimistic, that is,

χ̂(vi) ≤ χ(vi) for all vi (27.8)
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An obvious optimistic estimate is χ̂(vi) = 0. However, more efficient
search can be expected if an estimate 0 < χ̂(vi) ≤ χ(vi) is known. In
addition it is required that the estimate is monotone in the sense

χ̂(vj)− χ̂(vk) ≤ r(vj,vk) (27.9)

where r(vj,vk) are the true costs of an optimal path from vj to a suc-
cessor vk. A graph search algorithm meeting these constraints is called
an A∗-algorithm, [18, 23]. The operation of this algorithm is:

1. Given a nonempty set Vs of start nodes, a nonempty set Vg of goal
nodes, a judgment function ϕ̂(v) for a node v , and a set T of trans-
formations to generate successor nodes of a node v . A list OPEN is
initialized by Vs ∪ v0, and a list CLOSED by v0.

2. Remove from OPEN the best scoring node vk and put it on CLOSED.

3. If vk ∈ Vg , then STOP with “success,” that is the best scoring path
to a goal node was found; and otherwise expand vk to generate the
set Vk of successor nodes. If no successors can be generated, then
STOP with “failure,” that is, no goal node can be reached.

4. Compute the scores of the nodes in Vk, and add to OPEN those
successor nodes not yet on OPEN and not on CLOSED. Determine if
a better path to a node in OPEN was found and adjust the scores on
OPEN accordingly.

5. Continue with step 2.

It is known that this algorithm will terminate if a path to a goal node
exists, and that it will always terminate for finite graphs. The admis-
sibility has been proven, that is, if there is a path to a goal node, the
algorithm will terminate with the optimal path in the sense of the judg-
ment function. If the judgment function is monotone, Eq. (27.9), then
the algorithm has already found the optimal path to each node vi cho-
sen for expansion; this means that in this case ψ̂(vi) = ψ(vi). Finally,
it is mentioned that the A∗-algorithm has exponential complexity in the
worst case. But it is also known that for “good” scoring functions its
complexity may only be linear. Hence, the design of a proper judgment
is essential for the feasibility of this approach.

In the problem of computing an optimal instance of the goal concept
in a semantic network, an elementary control algorithm is as follows.
Elementary control by graph search starts with the top-down expansion
of the goal Cg until primitive concepts are reached. Primitive concepts
do not have parts and/or concretes and can be instantiated by results
of initial segmentation. This expansion is independent of the input
image and can be done once for the knowledge base. The result of
expansion is the instantiation path, which is a list of concepts. All
concepts on this list must be instantiated in order to instantiate the
goal Cg . After expansion the concepts on the instantiation path are
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instantiated bottom-up until the goal is reached. Of course, this step
depends on the input image. Due to alternative definitions of a concept,
due to competing instances, and due to a combinatorial multiplicity
of assigning results of initial segmentation to primitive concepts, it
is necessary to concentrate the instantiation on the most promising
alternatives. Clearly, this can be done by the A∗-algorithm.

With reference to Fig. 27.4 let the goal of processing be to compute
an optimal instance of the concept A in model M. A search tree is
initialized with an empty root node as shown in the figure. Next the
goal of processing, that is, concept A is put on a new search tree node.
Because it is useful to only deal with modified concepts and instances,
A is modified to Q(A) before putting it on the node, even though at
this stage of processing the modification is “no modification.” The in-
stantiation algorithm notices that instantiation of A at first needs an
instance of E (see path 2 in Fig. 27.4), and, therefore, Q(E) is put on a
new search tree node. Since E is a primitive concept, it can be instanti-
ated. It is assumed that there are two competing instances I1(E), I2(E)
causing two new modificationsQ2(A),Q3(A). The judgment of the two
new search tree nodes is computed. It is assumed that the node con-
taining I1(E) has the best judgment, therefore, search continues at this
node.

The process of putting modified concepts from the model and newly
computed instances and modifications on the search tree continues un-
til A is finally instantiated. In the example, two competing instances
I1(A), I2(A) are shown. It is realized that at this state of computation
some nodes have successors, that is, they were already selected for ex-
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pansion, and some do not yet have successors. Let us assume that from
among the unexpanded nodes the one containing I2(A) has the best
score. If we used an optimistic and monotone judgment function as
outlined here, the properties of the A∗-algorithm assure us that search
is finished, that is, no better instance than I2(A) can be found. If some
unexpanded node not containing an instance of A (for example, the
node containing I2(E) and Q3(A)) had had a better judgment, search
would have continued at that node, because a better scoring goal node
might be found in the following. This approach is sufficiently pow-
erful to interpret, for example, scintigraphic or MR image sequences.
Extensions are mentioned in Section 27.7.

27.5 Control by combinatorial optimization

An alternative to the foregoing approach to design a control module
is to convert the network of concepts into a network of functions as
outlined in Section 27.2.3. A particular assignment of segmentation
results to primitive concepts and a particular assignment of concept
definitions (i.e., sets of modality) is considered as a state in a com-
binatorial optimization problem by means of which one computes an
optimal assignment. This can be done by algorithms like simulated an-
nealing, great deluge, or genetic programming. Details are given, for
example, in Fischer [24].

The function-centered representation of a semantic network origi-
nally was developed to speed up analysis by the parallel computation
of instances. In addition it provides an approximate interpretation at
every iteration and therefore supports the fast computation of subop-
timal interpretations, which may be used by other processing modules
if less processing time is available—the so-called any time property .

The algorithm may be divided into two stages. In the first one, a
bottom-up instantiation is executed, values and judgments are com-
puted for each attribute, structural relation, link, or concept of the
function network. Initially this will lead to many competing interpre-
tations having low values of judgment. In the second stage interpreta-
tions obtained from bottom-up instantiation are iteratively improved
by applying a combinatorial optimization procedure. Ideally, this will
lead to a unique interpretation having a high value of judgment.

As indicated by its name, bottom-up instantiation proceeds from
the bottom to the top of the network, starting with the computation
of attributes that provide an interface to the initial segmentation, and
finishing with the judgment of goal concepts. As a result of bottom-up
instantiation we obtain instances for the goal concepts, each provided
with a judgment G(I(Cg)). From the best-scored instances we create a
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vector

g = (G(I∗(Cg1), . . . ,G(I∗(Cgn)) (27.10)

representing the final result of a single iteration step.
From Fig. 27.5, which depicts the principle of bottom-up instanti-

ation, it becomes evident that the computation of instances and their
judgment is completely determined by assigning to each interface (at-
tribute) node Ai a (possibly empty) subset {O(i)j } of segmentation ob-
jects and selecting for each concept node Cl a unique set of modality
H(k)l . This allows us to characterize the current state of analysis by a
vector

rc =
[
(Ai, {O(i)j }) | i = 1, . . . ,m ; (Ck,H

(k)
l ) | k = 1, . . . ,m′

]
(27.11)

where m is the number of interface nodes and m′ the number of con-
cepts having more than one member in its set of modality. Hence,
Eq. (27.10) is a function of the current state rc , that is, g = g(rc).
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Treating the vector rc as the current state of analysis, the computa-
tion of an optimal instance according to Eq. (27.6) may be identified
as a combinatorial optimization problem whose optimum is defined
by a suitable cost function φ; its choice will be given in Section 27.6.
This approach was used, for example, to find street markers in image
sequences of traffic scenes [24].

27.6 Judgment function

Judgment functions for graph search may be scalar functions or vector-
valued functions. In the last case the evaluation of the best scoring
instance is done in lexicographic order. An examples of a scalar func-
tion will be presented. In the case of combinatorial optimization the
judgment function mainly measures the deviation between the current
state and the desired state as outlined in what follows.

Judgment deals with the quantitative treatment of alternative, un-
certain, or imprecise results that may arise during segmentation as well
as during knowledge-based processing. Therefore, judgment has to
take place in both phases of processing outlined in Section 27.1.2. In
this section we will briefly give an idea of the scoring of segmentation
and recognition results and then treat the judgment of instances and
states of analysis that may occur during graph search.

Results of initial segmentation are either scored heuristically or for-
warded to knowledge-based processing without a judgment of quality.
Heuristic scores are based, for example, on the contrast and length of
a line, the error of approximating a set of points by a straight line, or
the homogeneity of a region.

Judgment of assignments between results of initial segmentation
and primitive concepts of the knowledge base are obtained, for exam-
ple, from the fit between computed segmentation objects and expected
model elements. This may be done by fuzzy functions or distance
measures. The former are useful for scoring the agreement between
attributes, for example, for the diameter of a circle stored in the model
and the diameter of a circle found in an image. The latter are useful
for scoring straight or curved lines.

Graph search. During knowledge-based processing we have to distin-
guish between the judgment G(I(C)) of an instance I(C) of a concept
C and the judgment φ(v) of a node v in the search tree. The score of
an instance in principle is always based on the quality of the match be-
tween data and model or on the quality of fulfilment of fuzzy inference
rules. The score of a search tree node is always based on the current
estimate of the quality of an instance of the associated goal concept
as is requested and evident from graph search, Eq. (27.7), as well as
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combinatorial optimization, Eq. (27.10). Therefore, instantiation is al-
ways directed towards optimal instantiation of a goal concept Cg as
requested in Eq. (27.6).

In general the judgment of an instance of a concept is a combination
of the judgments of its parts, concretes, attributes, and relations

G(I(C)) = G(I(Pi)) ◦G(I(Kj)) ◦G(Ak) ◦G(Sl) (27.12)

For example, the operation ◦ may be a sum- or a max-operation in the
case that the judgment measures costs.

Let the goal concept be Cg and C be some concept having the set
Di, i = 1, . . . ,n of parts and concretes. Let G be a measure of cost nor-
malized to 0 ≤ G ≤ Gmax. Then an estimate of the cost of an instance
of the goal Cg associated with a node v in the search tree and denoted
by Ĝ(Iv(Cg)) can be computed at every stage of analysis from the re-
cursive definition of the goodness of a instance Iv(C) associated with
v by

Ĝ(Iv(C)) =



G(Iv(C)) if C is instantiated and Iv(C) is the

instance associated with v

0 if C is primitive and still uninstantiated

Ĝ(Ĝ(Iv(D1)), . . . , Ĝ(Iv(Dn)) | C)
if C is still uninstantiated and instances

Iv(D1), . . . , Iv(Dn) are associated with v

Due to the requirements of the A∗-algorithm we then use

φ(v) = Ĝ(Iv(Cg)) (27.13)

as an optimistic estimate of the cost of an instance of the goal concept
in node v .

Combinatorial optimization. To design a cost function φ suited for
combinatorial optimization, we assume that an error-free segmentation
would support a single interpretation, and therefore results in an ideal
judgment G(I∗(Cgi)) = 1.0 for the correct goal concept. On the other
hand, at the same time this segmentation would give no evidence to
any other goal concept, that is, G(I∗(Cgj )) = 0.0, j ≠ i. Therefore, we
would obtain the i-th unit vector ei as an ideal result of instantiation,
if the i-th goal concept provides the desired symbolic description. We
approximate this behavior and define

φ(rc) = min1≤i≤n{(ei − g̃(rc))2}
g̃(rc) = g(rc)

||g(rc)||
(27.14)
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as a cost function, that computes the minimum distance from g(rc),
see Eq. (27.10), to the unit vectors ei. Note that this function provides a
problem-independent measure of costs because no assumptions on the
contents of the knowledge base are made, and that there is a correspon-
dence to the judgment of a search tree node in Section 27.4 because
both evaluate the expected quality of goal achievement.

27.7 Extensions and remarks

In addition to the basic definitions and properties of semantic networks
presented here, several extensions and modifications are presented in
the references. These include, for example: the inclusion of additional
links to facilitate the automatic construction of concepts from camera
views or the interpretation of elliptic sentences; the definition of pri-
orities for the instantiation of concepts on the instantiation path; the
inclusion of adjacency matrices to define a time order of concepts; the
definition of holistic concepts, which can be instantiated either from
classification of feature vectors or from segmentation results; the def-
inition of vector-valued goodness functions; the formulation of a con-
trol algorithm alternating between phases of top-down expansion and
bottom-up instantiation; the updating of an instance representing one
object in a time-sequence of images instead of computing a new in-
stance of the same object at every image; details are available from
Sagerer and Niemann [2].

The approach outlined here was used, for example: to interpret
scintigraphic time-sequences of images of the heart [1]; to interpret
MR volume-sequences of images of the knee [20]; to generate mod-
els for industrial parts and to recognize them [21, 25]; to understand
speech and to carry out a spoken dialog [26, 27]; to interpret time-
sequences of images for car driving [28, 29]; to evaluate remote sens-
ing data [30, 31, 32]; or to compute protein-docking [33]. Additional
references on image understanding systems are available from Crevier
and Lepage [34].

It thus can be concluded that semantic networks combined with a
task-independent control algorithm are a flexible, powerful, and suc-
cessful approach to knowledge-based image understanding.
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876 28 Visualization of Volume Data

Visualization is a means of representing structure information from
volume data sets by presenting the graphical objects as if they were real.
These data sets can be generated by various sources like computed to-
mography (CT), magnetic resonance imaging (MRI), ultrasound, confo-
cal microscopes, etc. but sources like time series of 2-D images may
be used as well. What characterizes these data is that each element is
assigned to a node in a three or higher dimensional grid. Rectilinear
grids are assumed for the following discussion because they play the
most relevant role in practice; further discussions of general models
can, for example, be found in specific papers [1, 2, 3].

This chapter has the scope of presenting both an overview of cur-
rent state of the art rendering algorithms for volume data, and how to
use them most efficiently. The latter should allow the practitioner to
prepare the data set accordingly to see the desired information.

28.1 Theoretical foundations of selected visualization
techniques

Theoretical foundations of volume rendering in simplified physical mod-
els are a trade off between accurate physical simulation of illumination
and resulting rendering speed. This trade off is solved by the assump-
tions of geometric optics and by limiting the discussion to models that
rely only on reflection/refraction, and absorption of light. Two models
in computer graphics that describe this interaction are presented in the
following. They are the foundations of most commonly used render-
ing methods like radiosity, ray-tracing, surface rendering, and volume
rendering.

28.1.1 The rendering equation

Our basic starting point for discussing the propagation of light is the
known rendering equation of Kajiya [4]. Let us consider the reflection
(or refraction) of light at an arbitrary surface point x in the virtual
scene (see also Chapter 2). The bidirectional reflectivity ρ(x′,x,x′′)
describes the fraction of intensity of incoming light I(x,x′′) from a
visible neighboring point x′′ that is reflected or refracted to another
visible neighboring point x′ (see also Fig. 28.1). By integration over
all such points x′′ one obtains the overall light intensity reflected by
surface point x towards x′:

∫
ρ(x′,x,x′′)I(x,x′′)dx′′.

Besides indirect reflection, x′ can also be illuminated by light sources
positioned at x. Its intensity is described by q(x′,x). Finally, the fac-
tor g(x′,x) denotes the visibility of x′ from x: A surface in between
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Figure 28.1: The volume element x is illuminated by light from its neighboring
volume elements x′′ and reflects light to the local neighbor x′.

both points can block the light (g(x′,x) = 0) or not1. In the latter case
g(x′,x) = 1/r 2 because the reflection point x can be considered as a
point light source leading to a quadratic attenuation of intensity as a
function of the distance to this source. Thus the rendering equation
reads:

I(x′,x) = g(x′,x)
(
q(x′,x)+

∫
ρ(x′,x,x′′)I(x,x′′)dx′′

)
(28.1)

Solving this rendering equation (e. g., by Monte Carlo methods) is
very time consuming. For two exceptions, however, it can be simplified
significantly.

In the first exception all surfaces are ideally diffuse reflectors. The
reflectivity ρ(x′,x,x′′) depends on only x and x′. Therefore the ren-
dering equation reads:

I(x′,x) = g(x′,x)
(
q(x′,x)+ ρ(x′,x)

∫
I(x,x′′)dx′′

)
(28.2)

With I(x) = ∫S I(x,x′′)dx′′ the rendering equation Eq. (28.2) simplifies
to:

I(x′) =
∫
g(x′,x) (q(x′,x)+ ρ(x′,x)I(x)) dx (28.3)

which—assuming a discrete set of flat surface elements—leads to a set
of linear equations that can be solved by standard methods of numer-
ical mathematics. This approach is known as the radiosity method .

1Initially, absorption is not considered by this contribution but can be added as well.
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The other exception is ideally specular surfaces. These surfaces
reduce the number of contributing reflecting sources to three:

I(x′,x) = g(x′,x)[q(x′,x)
+ρ(x′,x,x′′r )I(x,x′′r )
ρ(x′,x,x′′t)I(x,x′′t)
ρ(x′,x,x′′Phong)I0]

(28.4)

where x′′r is the point that reflects light onto x to x′ by ideal reflec-
tion; x′′t is the point that is reached by ideal transmission, x′′Phong is
the contribution of the light source, modeled by the Phong illumina-
tion model (see Section 3.3.5), and I0 is the initial light intensity of the
considered light source2. This second solution, Eq. (28.4), is known as
ray-tracing.

Ray-tracing and radiosity approaches are very expensive methods
to display 3-D objects defined by surfaces. The reason is that multiple
reflections have to be considered. By neglecting light from multiple
reflections or refractions the rendering equation can be simplified fur-
ther. From the equation for ray-tracing there remains only the third
contribution, I(x′,x) = g(x′,x)ρ(x′,x,x′′Phong)I0, whereby it is as-
sumed that the viewer does not look directly into a light source and
blocking of incoming light I0 does not occur. The bidirectional reflec-
tivity ρ can be modeled by the Phong illumination model and g(x′,x)
determines the visible surfaces in the case of nontransparent objects.

This simplified version of 3-D rendering is the starting point of
OpenGL (see Section 28.3.1) that can allow for real-time visualization.

28.1.2 Particle model approach

Krüger’s particle model [5] is another description for modeling the
physical interactions of light with matter; and it will lead to an algo-
rithm for volume data, volume rendering. Krüger’s approach considers
the change of intensity I(x, s, ν) as a function of the frequency ν of
the light ray, the current point in the volume x, and the current ray
direction s.

Solely inelastic and elastic scattering are considered to be the causes
for effects like absorption, emittance, and dispersion. In mathematical
terms, the interactions are described by the Boltzmann equation [6],
which is a special case of transport theory problems [7].

2For ray-tracing the eventual blocking of incoming light I0 is tested as well.
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In this approach the local change of the intensity ∇I in direction s
is given by

s∇I(x, s, ν) = −σt(x, ν)I(x, s, ν)+ q(x, s, ν)

− Sin
∂I(x, s, ν)

∂ν
+ σs(x, ν)

∫
dΩ · ρ(x, s′ → s)I(x, s′, ν)

(28.5)

with:

• σt = σs + σa as the intensity loss due to scattering, described by
factor σs ; and absorption, described by factor σa.

• q is the intensity of a local light source.

• Sin describes the loss due to inelastic scattering like dispersion.

The last term is the contribution to I by scattering on other surfaces.
It corresponds to the integral term in the rendering equation Eq. (28.1):

• ρ(x, s′ → s) is hereby the amount of light that is scattered from
direction s′ into direction s at point x. This contribution can be, for
example, modeled by the Phong illumination model.

• dΩ is the solid angle around s.

By formal integration one obtains the following integro-differential
equation:

I(x, s, ν) = Is(x −R′s, s, ν)exp(−τ(R))

+
R∫
0

exp[−(τ(R)− τ(R′))]Q(x −R′s, s, ν) dR′
(28.6)

Is(x − R′s, s, ν) is the incident light intensity, τ is the optical length,
defined by:

τ(R) =
∫ R

0
dR′σt(x −R′s, s, ν) (28.7)

with Q as the generalized source, defined by:

Q(x, s, ν) = q(x, s, ν)+σs(x, ν)
∫
p(x, s′ → s)I(x, s, ν) dΩ (28.8)

For the derivation of the volume rendering algorithms, Eq. (28.6) is
first simplified by restricting the generalized source (see Eq. (28.8)) to
a single source q (neglect of refraction and multiple reflections). The
second simplification of Eq. (28.6) is the omission of absorption from
incident light energy: Is(x −R′s, s, ν)exp(−τ(R)) = 0. It follows:

I(x, s, ν) =
∫ R

0
exp[−(τ(R)− τ(R′))]q(x −R′s, s, ν) dR′ (28.9)
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By inserting the τ-term:

I(x, s, ν) =
∫ R

0
dR′ exp

(
−
∫ R′
R

dR′′σt(x −R′′s, s, ν)
)
q(x −R′s, s, ν)

(28.10)

Equation (28.10) is known as the volume rendering equation [8]. The
discretization of this formula gives:

I(x, s, ν) =
Z∑
z=0

exp

− Z∑
k=z+1

σt(k)∆z

q(z)∆z
=

Z∑
z=0

q(z)∆z
Z∏

k=z+1

exp(−σt(k)∆z)
(28.11)

As a common simplification, exp(−σt(k)∆z) is approximated by
1−α(P,k) and q(z)∆z by C(P, z)α(P, z), where P is the considered
ray, α is the opacity of the corresponding voxel and C is the voxel
color.

The standard ray-casting formula states now (wherebyC(P) replaces
I(x, s, ν)):

C(P) =
Z∑
z=0

C(P, z)α(P, z)
Z∏

k=z+1

(1−α(P,k)) (28.12)

28.2 Basic concepts and notation for visualization

The discussion and the application of rendering methods requires the
introduction of some basic concepts and notations. We assume the fol-
lowing configuration. A viewer located at point V looks at an artificial
scene built up of geometric objects and those represented by volume
data sets (see Fig. 28.2). The image he sees is generated on the projec-
tion plane by rendering algorithms. To define this projection plane one
requires one point on the plane, the view reference point Vvrp, and a
normal vector, the view plane normal Vvpn pointing to the viewer.

In order to define a unique coordinate system on this plane, one
additional vector is necessary. It is the projection v of the view up
vector Vvup onto the projection plane. This vector v defines the up-
direction in the rendered image. The second coordinate direction u is
defined by the cross product of v with the view plane normal Vvpn:
u = v×Vvpn.

From the artificial scene the viewer sees only a part that is later
displayed in a graphical window on the computer screen. The visi-
ble region of the scene is defined by the viewing frustum as shown in
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Figure 28.2: Definition of basic notations for a 3-D view.

Fig. 28.2. All objects outside are considered as transparent and are
clipped accordingly.

The objects in the virtual scene are either defined by their geomet-
ric shape or by a volume data set. Geometric shapes are represented,
for example, by polygon nets, Bezier surfaces or NURBS. Data sets are
defined by grids. In this chapter we concentrate on rectilinear grids
since they are often used and fast rendering algorithms have been de-
veloped for them. Each grid point is called VOXEL that comes from
VOlume piXEL. It is assumed to be a result of resampling an object by
imaging devices and it is assumed to be at most 16 bit wide. For exam-
ple, CT, MRI, ultrasound, and even confocal microscopes fulfill these
demands.

28.3 Surface rendering algorithms and OpenGL

28.3.1 OpenGL

In this section, one of two different approaches is presented that allows
to render volume data sets. It is based on surface rendering motivated
as a simplification of the rendering equation in Section 28.1.1. For this
rendering approach there has evolved a de facto application program-
ming interface (API). This is OpenGL that is shortly sketched in the
following.

OpenGL, derived from Iris GL of Silicon Graphics Inc., has its roots
in the programming of dedicated graphics hardware. Its definition as
a state machine still forces the programmer to obey or take advantage
of many side effects during programming. In the following a brief de-
scription of its processing model is given, but for a full reference the
reader is referred to special literature [9, 10].
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Figure 28.3: Sketch of the OpenGL architecture.

OpenGL’s visualization process can be described by two pipelines
that are filled by single or grouped OpenGL commands (Fig. 28.3).
Groups of commands, so-called display lists, have been introduced to
allow for a faster processing. The pipelines, in particular, are the geo-
metry and the pixel pipeline.

Geometry pipeline. Although OpenGL allows describing the shape of
objects by surface patches like Bezier or NURBS surfaces, for efficiency
reasons these higher-order surface representations are mapped into
polygon nets in the first stage of the OpenGL geometry pipeline. After
this evaluator stage all objects are described by polygons and their
respective vertices.

Operations like geometric transformations, shading, and clipping
are applied to these vertices. Among the geometric transformations
are, for example, rotation, scaling, shearing, translation, and perspec-
tive projection. For shading the Phong illumination model is applied.
And clipping planes determine the visible half-spaces in the virtual en-
vironment. The result are polygon vertices within the viewing frustum
that are projected onto the projection plane and which have a color
(red, green, blue, abbreviated as RGB) and eventually an opacity (A).

In the subsequent rasterization stage polygons are filled with pixels
in the screen coordinate system. This is called rasterization where the
pixels are arranged at raster points of a virtual raster display. During
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this rasterization the color values of the vertices have to be translated
into pixel RGB values. This is done by either flat shading, that is, the
polygon has a uniform color, or Gouraud shading, in which the color
of the vertices is linearly interpolated within the polygon. Additionally,
texture mapping can be applied. It maps a predefined pattern, stored in
a texture buffer of the pixel pipeline onto the polygon. For each raster
point the texture color is interpolated and either replaces the polygon
color or is blended with it.

The last stage in the geometry pipeline is the fragment stage. Frag-
ments are the pixel’s RGB(A) values that are generated in the rasteri-
zation stage. There are several processing modes that can be enabled.
Most important is the z-buffering that determines the visible surface
(it corresponds to the function g(x′,x) of Section 28.1.1). After this
stage, the final image is stored in the frame buffer that can be directly
read to display the result on the computer screen.

Pixel pipeline. The second pipeline is for pixel processing and tex-
turing. Pixels can be manipulated in the fragment phase in the geo-
metry pipeline and on the frame buffer. Texturing information maps
2-D images on the rasterized polygons. In newer extensions of Silicon
Graphics Inc. [11] OpenGL specification 3-D texture mapping is possi-
ble. Here, individual slices are resampled from a volumetric regular
data set and then blended using the over operator as defined in the
next section.

Surface rendering algorithms specified, for example, by sets of
OpenGL commands have been integrated into specialized high-perform-
ance rendering engines [12] and many graphics cards [13, 14, 15]. These
systems allow scenes with several thousand to million polygons per
second to be rendered. For this reason, surface-based algorithms have
been considered to be ideal for real-time rendering engines operating
on volumetric data sets. It is the reason why much research has been
dedicated into this direction [16].

28.3.2 Iso-surface extraction by marching cubes

The question that now arises is how to apply surface rendering to vol-
umetric data sets. The solution to this problem is quite straightfor-
ward. One has to define each object in the volume data by surfaces
that form the object’s boundary. This thin surface can be determined
by segmentation procedures that have been described in this book (see
Chapter 25). In medicine automatic segmentation is a very difficult
and mostly unsolved task. The method that is mostly applied is the
segmentation using a global gray-value threshold. It leads directly to
the extraction of iso-surfaces in the gray-value data set.
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An algorithm for iso-surface extraction in volume data sets is the
marching cubesmarching cube algorithm [16]. Basically, it assumes
that the gray values between grid points vary linearly. This way iso-
surfaces lead to polygon nets. The polygon’s vertices are hereby lo-
cated on the edges between two neighboring nodes in the grid, one
being above and one being below the user-defined threshold. The ver-
tex position on the edge is determined by linear interpolation. After
this interpolation of the polygon net’s vertices a precalculated look-up
table serves for assigning them to individual polygons.

After this generation of a polygon net, the objects can be rendered
by OpenGL, that is, standard rendering techniques. Unfortunately, the
number of polygons that are generated can be very high. For example,
the extraction of the surface of a CT data set of a human jaw (an ex-
ample is shown in Fig. 28.4) requires about 900,000 polygons whereby
the full data set contains 8 million voxels. As a remedy the number of
polygons is reduced, that is, neighboring polygons are fused if the gen-
erated errors are below a given bound (methods for mesh decimation
are described in Schroeder [17]).

28.4 Volume rendering

28.4.1 Ray-casting

Iso-surfacing as described in the previous section suffers from several
problems that are connected with the extraction of a surface. For ex-
ample, if the threshold is chosen too high, relevant but poorly defined
structures are not extracted as a separate object. Lowering the thresh-
old, however, leads to an extraction of noise. Moreover, some struc-
tures, for example, a tumor that infiltrates surrounding healthy tissue,
cannot be described by surfaces in principle. Indeed, the basic prob-
lem is the underlying extraction of a surface that displays only a limited
amount of information that is in the data set3.

In order to overcome these problems one has to overcome the dif-
ficulty to extract surfaces, that is, a volume-oriented approach is nec-
essary. In the following we discuss this approach more thoroughly as
it allows for a more flexible representation of objects in data sets with-
out being forced to describe them by surfaces. This approach is called
ray-casting.

3This does not mean that surface rendering is unsuited to display the object’s shape.
On the contrary, if the object surface can be determined and if this surface correctly
describes the object, surface rendering should be chosen. However, in many volume
data sets, especially due to noise in the image, surface extraction is difficult and thus
volume rendering is often superior.
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Figure 28.4: CT scan of a human head (256×256×128 voxels). Extraction of
the bone surface by Marching Cubes (vtk Toolkit [18]). Threshold: 1500, image
size 800×800. Image generated by Marco Heidl.

The basic starting point of ray-casting is the volume rendering equa-
tion Eq. (28.12). It describes how the light is accumulated to generate an
image. Its algorithmic realization can be characterized by four phases.

First, primary or viewing rays are cast into the virtual scene (see
Fig. 28.5). The viewing rays are perpendicular to the compositing plane
and are equidistantly arranged on a regular 2-D grid on this composit-
ing plane. Similarly, the grid points of this 2-D grid later coincide with
the pixels shown on the screen.

Second, each ray is sampled at equidistant points; these are the
sample points (see Fig. 28.5). For sampling, the gray value of the sample
point is interpolated from the data set’s neighboring voxel gray values.
Trilinear interpolation is most frequently used for that purpose (see
Lacroute [8] and also Chapter 8). The result of this resampling is a
resampled data set, which is a rectilinear cube as well.

Third, at each sample point a gradient is estimated by difference or
gradient filters (see Fig. 28.6 and Section 10.3). The gradient is nor-
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View Rays

b

View Rays
Sample Point

Figure 28.5: a First step of ray-casting: By viewing the data set from various
directions, the compositing plane can be oriented arbitrarily to the data set,
which is assumed to be a rectilinear grid. Rays are cast from this plane into
the volume whereby the rays are equidistant and orthogonal to the plane. Each
starting point of the rays thus coincides with the pixels in the final projection.
b Second step of ray-casting: Sample points at equidistant positions are sampled
in the second step along each ray.

malized by the gradient magnitude. Moreover, it delivers the normal
direction of a potential surface near the sample point in the data set.

Gray value and gradient magnitude are used to derive opacity and
RGB (red, green, blue) values via look-up tables (LUTs). It is assumed
that both input values of the LUT are equally influential for differenti-
ating between different objects, which thereby allows them to be dis-
played with appropriate colors and opacities.

Gradient values are taken along with the viewer and light source di-
rections to perform shading. Phong shading, which is most frequently
used [8], calculates the amount of incoming light that is reflected in the
viewer direction.

The fourth stage is compositing (also called alpha-blending). It uses
a recursive formulation of the volume rendering equation Eq. (28.12).
With the following over operator the recursive procedure determines
the intensity of light that reaches the compositing plane:

Cout = C(P, z)α(P, z)+ Cin(1−α(P,z))
=: (C(P, z)α(P, z)) over Cin

(28.13)

where Cout and Cin are the outgoing and incoming color intensities for
voxel z of ray P , α(P,z) is the corresponding opacity of this voxel, and
C(P, z) is the light intensity the voxel reflects.
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Figure 28.6: a Third stage: gradients are determined in the third step using lo-
cal difference filters either on the original data or on the sampled data. b Fourth
stage: in the compositing step of ray-casting the light reflected in the viewer di-
rection is attenuated on its way through the data set and the intensities of all
sample points of the ray are composited to the final pixel value.

Figure 28.7: The picture shows a jaw and an ellipsoid. With the shadow the
relative distance of the ellipsoid to the bone can be estimated.

28.4.2 Shadowing approaches

The ray-casting approach can be further improved by shadowing tech-
niques. Shadows play an important role if the relative depth of two
objects is to be determined visibly. As an example, see Fig. 28.7. For
brevity we will call this algorithm volume ray-casting.

One of the earliest approaches to shadowing algorithms is the two-
phase approach from Kajiya and Von Herzen [19]. In the first phase, the
incident light absorption is calculated. The intensity that reaches each
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Figure 28.8: a Grant’s approach for shadowing in volume rendering. b Sketch
of a sweep plane for illustration.

voxel is stored in a shadow buffer. In the second phase a standard ray-
casting is performed whereby during shading the amount of reflected
light is multiplied by the locally stored intensity.

The approach developed by Kajiya has two severe limitations. First,
it requires a shadow buffer array as large as the original data set. Sec-
ond, it needs two phases or two sweeps over the data set, which limits
the performance if the data read out is time critical.

By restricting the position of the light sources Grant found a more
efficient solution [20]. In his solution light sources are either positioned
in the viewer half plane in front of the data set or opposite to it, that
is, behind the data set (see also Fig. 28.8).

To understand the algorithm, let us assume that the light sources
are in the viewer half plane4. Assume further that the shadow buffer is
a plane (2-D array) that initially coincides with the compositing plane.
The latter is located in front of the data set (seen from the viewer po-
sition). As the light falls onto this shadow buffer without absorption,
each sample point on this plane obtains the same intensity.

Let us now consider the first sample points of all rays cast into the
virtual scene from the compositing plane (phase 1). These points lie
again on a plane due to the constant sample distance. For simplicity,
we call it first resampling plane. The initial intensity at the compositing
plane (the start position of each ray) is given by the shadow buffer. For
the next sampling plane the shadow buffer is updated by placing it
at the first resampling plane position. Given the light intensity of the
previous shadow buffer calculation is made as to how much of this light
reaches the current shadow buffer. This operation requires a second

4This is the most interesting case because, otherwise, the viewer looks into the light
sources or the light is reflected in the direction opposite to the viewer. Nevertheless,
this second case can be similarly described.
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a b c

Figure 28.9: Rendering of a skull imaged by CT: a Using only one light source,
for example, at 45°, produces totally black shadow areas that hide information.
b Using only one light source, for example, at 0° generates no shadows so that
visible information about surface orientation is poor. c With two light sources
a combination of depth and structure information is obtained.

resampling of the data set because the light direction is normally not
along either the data set or the resampling grid.

Meinzer’s Heidelberg raytracer approach. The disadvantages of
Grant’s approach are the large buffer size corresponding to the size of
the resulting image, in general, and two resampling steps (for one light
source). Meinzer overcame these problems by further restricting the
light source position [21] to 0° and 45° relative to the viewing direction.
He assumes that incident and reflected rays are sweep plane parallel.
Sweep planes are planes that are spanned by rays cast from pixels of
the scanline. In Meinzer’s approach, the 45° light rays are in this plane
as well (see also Fig. 28.8). As consequence the scanlines can be gener-
ated independently of each other because all operations remain in this
plane. Thus the full shadow buffer plane is not necessary (as was the
case for Grant’s approach) but only one line, the intersection of Grant’s
shadow buffer with the sweep plane, is required.

Furthermore, due to the restriction of the light rays within sweep
planes and their fixation to 0° and 45° relative to the viewer direction
they traverse the resampled data set along one main coordinate and
along one diagonal direction. This allows a second resampling to be
omitted and thus reduces the computational demand of this algorithm.

Number of light sources. For the realization of volume ray-tracing
the effects of shadowing have to be considered. For example, without
any precautions the volume ray-tracer produces hard shadows without
penumbra. A typical result is shown in Fig. 28.9. Areas lying in the
shadow are totally black and no information can be gathered about
them.
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Another example is the use of only a 0° light source (see Fig. 28.9).
In this example the depth information can hardly be guessed as shad-
ows do not occur and the direction of the light source does not reveal
additional details.

In order to overcome these problems two light sources are neces-
sary. These are sufficient to generate images that exhibit both an illu-
mination of all surfaces directly visible by the viewer and shadowing,
which provides additional information about depth.

28.4.3 Methods for accelerating volume visualization

Rendering volume data sets with the forementioned volume rendering
algorithms requires minutes per image on a conventional PC. However,
transparent regions exhibit no interactions with the light rays. Thus
their contribution can be omitted. An algorithmic technique that makes
use of exactly this information is space-leaping. Similarly, if the light
intensity that reaches a certain sampling point in the volume is below a
threshold (e.g., a few percent), further, deeper lying sample points can
be neglected because their contribution to the final image is negligible.
Both techniques, in combination, cut rendering cost by at least a fac-
tor of 10 assuming that the data set exhibits hard surfaces and empty
space between them. A good example of what can be reached by these
methods can be found in Lacroute [8].

When interactivity or even real-time operation can be supported,
progressive refinement (also called dynamic resolution) can be used.
It generates a coarse view as long as the user moves the object and
gives a detailed view when no interaction occurs [22, 23, 24]. For a
survey of these and other approaches see Yagel [25] and for recent
implementations see Lacroute [8], Brady et al. [26], Freund and Sloan
[27].

28.5 The graphics library VGL

The VGL is a set of libraries for volume and polygon rendering, which
has been developed by Volume Graphics GmbH 5. The VGL combines
volume rendering and surface rendering6 with shadowing techniques.
Thus one can, for example, render a scene where volume and surface
objects are combined, transparencies of both objects are handled cor-
rectly and each object (either surface or volume) can cast a shadow on
other objects (again either surface or volume). This flexibility is unique

5http://www.volumegraphics.com; for a demo version, see /software/28
6The actual version of VGL uses the Mesa library, which is not a licensed OpenGL

implementation, but nearly 100 % OpenGL compatible. Mesa is copyrighted (C) by Brian
Paul, see http://www.mesa3d.org

http://www.volumegraphics.com
http://www.mesa3d.org
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insofar as this is the only commercially available platform independent
application programming interface (API) that combines these features.
The VGL uses volume rendering algorithms based on algorithmic op-
timization like space-leaping and early ray-termination. The VGL is
available for most UNIX flavors (Solaris, IRIX, DEC OSF/1, Linux) as well
as for Windows 95 and Windows NT.

Besides the functional features, the VGL uses threads for the distri-
bution of the rendering load to several processors. This way, speed-up
of a factor of 3.5 could be achieved for rendering a normal image of
2562 pixel on a 4-processor PentiumPro200 system.

The VGL is a C++ class library with classes for the representation of
volume data, surface (polygon) data, and even a complete scene. The
major programming concept of VGL is to define a scene built up of
primitives. From VGL’s point of view a primitive is either an object
defined by volume (voxel) data or an object defined by a set of OpenGL
calls. The scene collects all primitives in conjunction with additional
specifications concerning the rendering and a render class delivers the
rendered image.

The basic VGL classes are the image and volume classes, the volume
and polygon primitive classes, and the scene class. All classes of the
VGL are designed to be simple and easy to use. The complexity of
VGL scenes is not achieved by using complex classes, but by combining
simple classes in a very flexible way. The volume and image classes are
template-based with the data type for each voxel being the template
parameter. The user of VGL can render volumes with 8-, 16-, or 32-
bit integer, 32-bit floating-point or 32-bit RGBA data per voxel—all in
one scene without restrictions concerning the number of volumes and
polygon objects in the scene.

28.5.1 VGL image and volume classes

Images and Volumes in the VGL are containers for 2- or 3-D data, which
are located on a rectilinear grid. The VGL contains a base class for
images and a base class for volumes with different implementations
for either images or volumes. The implementations include images
and volumes with their own memory for data, images, and volumes.
They can reference parts of other images or volumes, and images and
volumes. In addition, they can represent scaled duplicates of other
images or volumes. The gap between images and volumes is filled with
the “slice” class, which is set up onto a volume and represents a normal
image. The slice class gives access to slices of volume data as if they
were normal images.
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Figure 28.10: Example scene rendered with VGL. The included volume data
sets are among other things: magnetic lock scanned with neutrons (top left),
courtesy B. Schillinger, Department for Physics, TU Munich; part of an engine
block (top right); “Chapel Hill” data set (bottom right), courtesy North Carolina
Memorial Hospital; Volume Graphics Logo (bottom middle); Visible Human (bot-
tom left), courtesy US National Library of Medicine; MRT scan of human heart
preparation (middle left). All other objects are polygon data distributed with
the “Geomview” software package.

28.5.2 Volume primitives

The volume classes are only a container for 3-D voxel data without any
additional information. To render these data, two further information
items are missing: the so-called classification (leading to opacity and
color) and the geometric information (position in the scene and the
clipping specifications).

The mapping from voxel data to opacity and color is added by the
“render volume” class derived from the volume class. The render vol-
ume class takes any volume (even parts of other volumes or zoomed
representations of volumes) as source of voxel data and adds an in-
ternal look-up table (LUT), which assigns voxel values to opacity and
color values. The LUT operation is done before any further processing
occurs; in particular the LUT is assigned before the interpolation is ac-
complished. The consequences of this behavior are discussed in more
detail in Section 28.5.

The geometric information is added with the so-called “volume prim-
itive” class. This class takes a “render volume” as source of voxel data
in conjunction with classification information and adds the geometry
of the volume: rotation, translation, scaling, and clipping.
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28.5.3 Polygon primitives

The “polygon (surface) primitives” are defined in the VGL by a set of
OpenGL function calls. The polygon primitive class represents the in-
terface and container for the OpenGL function calls. In VGL point of
view OpenGL calls are used to define the shape and aspect of an object;
it is not the final method to render surface objects. After building a
polygon primitive by creating a polygon primitive object and filling it
with appropriate OpenGL code, the polygon primitive is inserted into
the scene and handled as any other primitive. The unified handling of
primitives includes the geometric operations such as rotation, scaling,
and translation; and the clipping definitions. Every primitive, regard-
less of whether it is a polygon or volume primitive, will be handled in
exactly the same way.

28.5.4 The VGL scene

The scene is the master object for all rendering in the VGL. The scene is
built up by adding primitives, either volume or polygon primitives. Ad-
ditional information like scene-wide clipping planes, the light sources,
the specification of the used rendering algorithm, and the viewer po-
sition and viewing direction completes the scene definition. After the
scene has been defined in all details, the render call creates the ren-
dered image, which can either be displayed on the screen or processed
further inside the VGL.

28.5.5 VGL rendering pipeline

The basic principle of volume rendering is to cast rays from the viewer
position into the scene and to calculate a resulting color value for each
ray, as described in Section 28.4.

The differences between the various implementations of volume
rendering reside in how the resulting color for each ray is calculated.
Differences can occur in the ray geometry, that is, if parallel or perspec-
tive projection is used, or in the algorithm, which generates a resulting
color from samples along the ray. The VGL in its actual version is based
on the ray geometry model introduced by the Heidelberger Raytracer
Model [21], but with modifications, for example, to introduce perspec-
tive projection [28]. Because of the usage of this ray geometry model,
the VGL is restricted to two light sources with fixed positions. The
long-term development of VGL will aim at real ray-tracing approaches
without any restrictions in light sources.

The main difference between VGL and other commonly used volume
rendering packages is located in the rendering pipeline. Nearly all vol-
ume rendering methods place the classification of voxels into opacity
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and color after the interpolation step. By contrast, the VGL does the
assignment of opacity and color before the interpolation, and interpo-
lates the opacity and color channels separately.

Unlike other volume rendering approaches the VGL assumes that
there are four independent channels of information available about the
space covered by the volume data, the opacity and red, green, and blue
colors. Voxel data is typically only monochromatic and represents one
(sampled) value in the 3-D space. If the voxel data is sampled accord-
ing to Shannon’s theorem one can think of the voxel data to represent
a continuous function f(p) with p being a 3-D coordinate. Starting
from this function f(p) the rendering pipeline with the classification
after interpolation proceeds as in an 8-neighborhood f(N(p)) of voxels
around p:

interpolation: f ′(p)
gradients: ∇f ′(p)
classification: α(p),R(p),G(p), B(p)
rendering equation

(28.14)

The function f ′(p) describes the resampled function value, α(p)
gives the opacity and R(p), G(p), B(p) are the red, green, and blue
color components at the resampled position p, respectively.

The VGL rendering pipeline with the “classification before interpo-
lation” corresponds to:

classification: α(N(p)),R(N(p)),G(N(p)), B(N(p))
interpolation: α′(p),R′(p),G′(p), B′(p)
gradients: ∇α′(p)
rendering equation

(28.15)

Hereby α(N(p)), R(N(p)), G(N(p)), B(N(p)) describe the 8-neigh-
borhood of voxels around p as having been classified before the resam-
pled values α′(p), R′(p), G′(p), B′(p) are generated.

Both approaches have advantages and disadvantages. The standard
rendering pipeline does not modify the volume data f(p) until the
resampling has occurred. The gradients are calculated on the original
volume data. Then the assignment of opacity and color occurs, which
can in principle take the resampled volume data at p and the gradient
∇f ′(p) into account. The flexibility in the classification step is paid
with the inflexibility of manipulating the original volume data f(p)
in the rendering process. One can, in principle, map the resampled
volume data f ′(p) to a totally arbitrary opacity function α(p), but the
gradients will not coincide with the seen opacity distribution.

The rendering kernel of the VGL assumes that the input data is al-
ready given as opacity α(p) and color distribution (R(p), G(p), and
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Figure 28.11: The geometry of VGL rendering.

B(p)). After this information has been given—either by assigning opac-
ity and color to f(p) or by using RGBA data as volume data source—the
following rendering process has a better motivation from physics: The
gradients used to estimate surfaces in the volume data are calculated
on the opacity α(p) and each of the physical features of the volume
(opacity and color) is interpolated and processed independently.

Another difference between standard volume rendering and the VGL
is the different “rendering equation.” While standard volume rendering
use relies on the over-operator Eq. (28.13) to combine the sampled val-
ues along a ray, the VGL uses an integration according to the following
formula:

CR(P) =
∫∞

0
exp

(
−
∫ z

0
α′(P, z′) dz′

)
R′(P, z)CR(P, z) dz (28.16)

and equivalently for CG and CB . The resulting color CR,G,B(P), which
will be displayed on the screen at pixel position (Px, Py), is calculated
using an integration along the ray being sent from the viewer position
into the scene. The ray is described by P(z) = P(0) + z · v(px,py)
with P(0) being the viewer position and v(Px, Py) as the unit direction
vector for the ray. The result is then projected onto the screen coordi-
nates (Px, Py). The integration is evaluated for each color channel. At
every ray position P(z) the emitted color intensity is the product of the
“color emitting factor” R(P, z), G(P,z), or B(P, z), and the lighting fac-
tor CR,G,B . The emitted color intensity at position P(z) will be absorbed
on the way to the viewer by the material present between the viewer at
P(0) and the point P(z). This is considered with the exponential term
exp(− ∫ z0 α(P,z′) dz′).
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The lighting factor CR,G,B itself is defined as

CR,G,B(P, z) =
Lights∑
i=0

IiR,G,B(P, z)RKF(α
′(P, z),∇α′(P, z),v(Px, Py), li)

(28.17)

The lighting factor at position P(z) is in principle the product of the
light intensity IiR,G,B of light source i at position P(z), with the ren-
dering kernel function RKF(α′(P, z),∇α′(P, z),v(Px, Py), li), summed
over all light sources. The rendering kernel function describes the rel-
ative amount of light that will be reflected into the viewer direction.
To calculate this fraction, the rendering kernel has to know the actual
position P(z), the opacity and the gradient at position P(z), as well as
the viewer position P(0) and the light position li.

The light intensity at position P(z) is calculated using an exponen-
tial absorption term such as:

IiR,G,B(P, z) = IiR,G,B(0)exp

(
−
∫ d

0
dt′ α′(P ′, z′)

)
(28.18)

This time the integration runs along a ray from the light source position
li to the point P(z), described by

P ′(z′) = li + z′ P(z)− li|P(z)− li| (28.19)

The parameter d is the distance between the light position li and the
viewer point in space P(z). The light absorption mentioned here intro-
duces shadows in the rendering process in a very natural way.

These integrals cannot be evaluated analytically, but have to be ap-
proximated by numerical integration. The accuracy of the numerical
integration result depends strongly on the distance between the dis-
crete steps for the integration. As a rule of thumb, these distances
should be chosen to be smaller than the grid distance of the discrete
voxel values, but the correct sampling distance also depends on the
rendering kernel function.

The VGL implements three different rendering algorithms that dif-
fers only in the rendering kernel function. These are the so-called Scat-
ter, ScatterHQ and MRT algorithms.

Scatter. The Scatter algorithm has the most trivial rendering kernel
function:

R(α′(P, z),∇α′(P, z),v(Px, Py), li) ≡ 1 (28.20)

In fact only the usage of two light sources with the light absorption
term (shadows) gives the contrast of the resulting image.
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a b c

d e f

Figure 28.12: Rendering of a CT scan of a human jaw with a, d Scatter, b, e
ScatterHQ, and c, f MRT algorithms. The top line shows the CT scan including
the soft tissue, the bottom line the bone structures only.

Scatter HQ. The ScatterHQ algorithm inherits the Scatter algorithm
terms and adds a second rendering kernel term with:

R(α′(P, z),∇α′(P, z),v(Px, Py), li) = α′(P, z) (28.21)

These terms give image contrast even without shadowing, but must
be evaluated with a very low sampling distance to achieve a numer-
ical integration without inaccuracy, which would introduce image
artifacts.

MRT. The MRT algorithm inherits the Scatter algorithm terms and
adds a second gradient-dependent rendering kernel term with:

R(α′(P, z),∇α′(P, z),v(Px, Py), li) = P(z)− li
|P(z)− li|

∇α′(P, z)
|∇α′(P, z)|

(28.22)

In addition the VGL supports other, so-called projective rendering
algorithms, like maximum intensity projection (MIP), XRay projection
and a summation algorithm. These algorithms have in common the
fact that they do not inherit the rendering model introduced before,
but only traverse the scene along rays and deliver simple results: the
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sample with the highest opacity value (MIP), the exponentially absorbed
light intensity along the ray at the end of the ray (XRay), or the sum of
all sample values found along the ray (sum algorithm).

28.6 How to use volume rendering

A volume rendering should consist not only of rendering algorithms
for a given voxel data set, but it should also support interactive modifi-
cations of rendering parameters to obtain the best possible impression
of the volume data. This section describes briefly the most common
manipulation possibilities like viewer navigation, clipping, and classifi-
cation.

28.6.1 Viewer navigation

The navigation model of the VGL is similar to that of OpenGL. The
position of the viewer inside the scene is described with the so-called
“modelview” matrix (concerning transformations see also Section 9.3).
The modelview matrix maps the scene coordinates to “eye” coordinates.
The viewer has the defined position (0|0|0) in eye coordinates and looks
along the negative z-axis.

The image plane, and the projection of the scene onto the image
plane are defined with the so-called “projection” matrix. This matrix
defines, in particular, if perspective projection or parallel projection is
used, where the near and far clipping planes are, and which portion of
the scene will be seen in the rendered image.

Because the VGL can arrange any number of primitives into one
scene, the location of the primitives in the scene is determined by an ad-
ditional per-primitive matrix, the so-called “object” matrix. The object
matrix maps the object coordinates (either voxel coordinates for vol-
ume primitives or OpenGL vertex coordinates for polygon primitives)
to scene coordinates.

28.6.2 Clipping

Clipping is a valuable tool for volume data examination because it can
be used to remove undesired parts of the volume data for the rendering
process. In the VGL, every primitive can have an arbitrary number of
clipping planes7.

Clipping planes are introduced by defining a plane equation in prim-
itive coordinates, consisting of four parameters. Ifxo, yo, and zo define

7The used OpenGL implementation for rendering OpenGL primitives may introduce
a maximum limit of clipping planes.
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a b

Figure 28.13: Rendering of a CT scan of a human jaw a without and b with
additional clipping. Clipping can remove undesired parts of the object.

a point in primitive coordinate system, and a, b, c, and d are the clip-
ping parameters, then the point (xo,yo, zo)T will be clipped, if

xo ·a+yo · b + zo · c +d < 0 (28.23)

28.6.3 Classification

While surface rendering requires a good preprocessing step to extract
the object’s shape (either by more or less complex segmentation or by
iso-surfacing as described here) volume rendering offers online manip-
ulation of material properties like opacity and color in the classifica-
tion step. The classification step in the VGL uses a LUT approach to
map voxel values into opacities and colors. Hereby, the voxel values
can be arbitrary. This freedom in the voxel values to opacity and color
mapping supports many classification scenarios without any additional
effort:

• Global gray-value mapping: depending on the object’s gray value the
LUT defines its opacity. One can, for example, use a global thresh-
olding to render interesting objects opaque whereas the remaining
objects are transparent.

• Combined index and gray-value mapping: another option is to select
a coding where the upper bits of the voxel values are the labels for
objects and the lower bits are their gray values. This way the upper
bits define the voxels of certain objects and the object properties can
be manipulated separately, just by loading the correct LUT values
for each separated object.
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a b c

d e f

Figure 28.14: Rendering of a CT scan of a human jaw with a an opacity di-
rectly proportional to the CT gray values; b with “noise” removed; and c with
“noise” and “soft tissue” removed. The graphs below show the used gray value
to opacity setting.

• Index-based mapping: The voxel gray values need not represent any
physical value, but can represent only index values. This approach
is very useful for artificial data, which contains information about
voxel groups (voxels which belong to one group get the same in-
dex value). Each voxel group can be assigned its opacity and color
independently from all other voxel groups. One possible field of ap-
plication is the support of interactive segmentation in a two-phase
approach: In this case the original data set is presegmented in the
first phase into several thousand elementary regions. Voxels be-
longing to one region obtain a unique region number. Each such
region is assigned the average gray value of its voxels for visualiza-
tion. In the second phase a merging algorithm operates on these
preclassified regions to create real objects out of the elementary re-
gions. As the number of regions is much smaller than the number
of voxels in the data set this operation requires only a fraction of a
second on a normal PC. By setting the LUT so, that merged regions
are visible with their average gray values, while nonmerged regions
are invisible (opacity is set to zero), the visualization of the segmen-
tation result is possible in interactive time, and the “merge—LUT
setting—visualization” cycle can be repeated very fast. This inter-
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a b

Figure 28.15: a Rendering of a presegmented MRI data set (“Chapel Hill” data
set, courtesy North Carolina Memorial Hospital): the segments are marked with
index bits and contain 256 gray values each. b Rendered segmentation result
using the index-based mapping method.

active segmentation approach has been described by Kühne et al.
[29].

• Other combinations with classifiers: Another approach is the inte-
gration of classifiers in the visualization process. For example, the
voxel can be a feature vector. A classifier can operate on such fea-
ture vectors and assign them opacities. Features can, for example,
be local mean and spread of gray values, local textures etc. and the
classifier can, for example, be a statistical one. The advantage of
this approach is that the classification result can be checked imme-
diately and the classifier can be optimized accordingly.

Often, one wants to emphasize the boundary of objects. This gives a
more accurate view of the object’s shape. A typical approach to solving
this problem is to multiply the reflected intensity with the gradient
magnitude. A similar result can be achieved with the LUT by combining
an indicator for a surface (like the gradient magnitude) along with gray
values in the voxel value. High opacities are then assigned to voxels
with large surface indicator values.

28.7 Problems, limitations and advantages of volume ren-
dering

Problems that may occur during visualization are discussed herein. The
limitations of this rendering approach are also presented.
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a b

Figure 28.16: a Rendering of the human jaw CT scan with too little sampling
distance; the render result shows typical artifacts. b The same image rendered
with correct sampling distance.

28.7.1 Aliasing

One of the most striking problems for visualization is aliasing. The
source of this problem comes from the resampling step, that is, phase
1 of volume rendering. The resampling determines the accuracy of the
numerical integration of the rendering equations. It is recommended
to use a resampling distance between successive sampling points of a
ray that is smaller than the grid distance between successive voxels. Let
us use the term “factor” as the ratio of grid distance to resampling dis-
tance. While a factor 1 gives mostly good results, an oversampling by
a factor of 2 is often the best trade off between image quality and ren-
dering speed. The latter is inversely proportional to this oversampling
factor. Good solutions can also be achieved by using a higher order in-
tegration formula for the rendering equation Eq. (28.12) or Eq. (28.16).
An elegant solution to this problem without changing the rendering
algorithms has been found by de Boer [30].

28.7.2 Classification

Another problem is connected with the classification before interpo-
lation. If, for example, an abrupt change of the opacity as a function
of the gray value is chosen, the rendered object appears to have been
built up by bricks. It is clear that resampling cannot change this sit-
uation very much, because the opacity function presented in the VGL
rendering kernel represents indeed “bricks.” The usage of an arbitrary
function as voxel value to opacity mapping will lead to an opacity func-
tion o(x), which may no longer comply with Shannon’s theorem. A
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Figure 28.17: Effect of different gray value to opacity mappings: a, d threshold
LUT; b, e LUT with small transition area; c, f LUT with wide transition area.
The lower row shows the selected LUT settings while the upper row shows the
rendering results. See text for details.

suggested remedy uses a gradual change of the opacity with the gray
values so as to avoid the introduction of unwanted frequencies in the
spectrum of the opacity functionα(p). In this way the rendering kernel
can access data that satisfy Shannon’s theorem and give a much better
impression of the true shape of an object.

28.7.3 Shadows

Shadows can play an important role during visualization. One exam-
ple has already been shown (see Section 28.4.2). On the other hand,
shadowing is a time-consuming operation that—if omitted—can speed
up rendering considerably. The main reason is not that there are fewer
computations needed but that several algorithmic optimization methods
are more efficient and others can only be used without shadowing. The
rendering time savings by omitting shadows in the actual version of
VGL can be up to a factor of two.

28.7.4 Irregular grids

Currently, only rectilinear grids are supported because they allow ef-
ficient implementations. Most data sets can be converted into a recti-
linear grid. In some cases, for example, for finite element simulations
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a b

Figure 28.18: a Rendering of an artificial data set. The lines of the “bounding
box” are only one voxel wide. b Zoomed image of the one-voxel lines. The
image resolution achieved by volume rendering is as good as the resolution of
the volume data itself.

where the grid sizes vary by several orders of magnitude a specialized
volume rendering algorithm is required. This will be supported by VGL
in a later phase.

28.7.5 Noise

Noise is a basic problem for all rendering techniques. Due to its con-
struction volume rendering is not very sensible to it if it is possible
to display the noise as semitransparent objects. If not, it is clear that
there is a problem: if one cannot at least gradually separate an object
from its noise, one cannot visualize it.

28.7.6 Resolution

The resolution that can be achieved by volume rendering is as good as
the extent of the smallest information container, the voxel. In order
to make the full resolution visible it is recommended to expand the
data set by a factor of 2 and render it again. The result is that by
this expansion one can use an expensive resampling method whereas
interactive volume rendering requires the most simple reconstruction
filters like trilinear interpolation to achieve this high speed.

28.7.7 Volume data sources

The modalities of data sets are according to our experience not very
critical. We have tested the software tool with MR; and CT images,
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ultrasound and confocal microscope images have also been used, and
even neuron tomographic data sets led to crisp images if the data has
been prepared accordingly (i. e., the noise must be partially separable
from the information).
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29.1 Introduction

Modern microscope technology as described in Inoue and Spring [1],
Shotton [2], enables researchers, technicians and quality assurance per-
sonnel to collect large numbers of high-quality images. However, de-
spite the relatively recent addition of digital storage and networking,
machines are still generally used in a stand-alone manner insofar as the
output is quite simply a huge number of images, with little attempt at
proper cataloging, and little beyond the filename to identify the con-
tents of each image.

For years, most light microscopes have restricted data output to
storing only pixel data and a small number of associated parameters
in standard image formats, for example, pixel spacing values. A good
example is the TIFF format specification [3], that lists all data tags that
can be stored in a TIFF file. Traditionally, developers have not offered
the possibility of storing extra information because they could see only
limited opportunities for its later use.

Although standard database technology has been available for many
years, as described in Date [4], England and Stanley [5], Ullman and
Widom [6], it was only recently that commercial relational database
management systems (RDBMS) have really ventured down from large-
scale mainframe and workstation systems to inexpensive systems on
the desktop. The improvement in quality of such desktop systems, and
the more accessible range of interfaces to integrated development envi-
ronments, now offer the developer of smaller turnover products (such
as microscopes) the chance to store data in personalized databases.
Moreover, these changes have increased the number of data process-
ing programs that are able to access such database stores—for example,
image processing programs such as AVS Express [7].

Commercially available Laboratory Information Management Sys-
tems (LIMS) [8] demonstrate that relatively slow data acquisition can
be combined with data storage and analysis, typically using an RDBMS
to store information. Increased usage of LIMS demonstrates how the
continual improvement of data collection and processing operations is
vital for running many types of laboratories. And as legal demands
increase, LIMS becomes mandatory for demonstrating conformance to
stringent quality requirements, for example, ISO9000. Potential bene-
fits for LIMS users include better access to information, improved qual-
ity of results, better control of costs, and increased processing speed.

In the field of microscopy, information about the operational state
of the instrument can be stored automatically. Further information
concerning the specimen and experiment being performed can be gath-
ered from the user in a nonintrusive manner by fully integrating the
data collection process into the microscope control program. Such a
system offers many benefits to any user, as well as scientific collab-
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orators, reviewers, and researchers in associated fields. For example,
fast and simple (automatic) instrument configuration, configuration of
different instruments to the same state, improved analysis and pre-
sentation of results, semiautomatic submissions to other databases,
better quality of submissions to other databases, remote monitoring
and maintenance, and perhaps, experimental repetition.

In this paper we describe more fully the potential benefits of inte-
grating an RDBMS into a confocal microscope system [9] and thus of
storing increased amounts of information. We outline the basic design
and features of such a system, and finally, consider the future of such
techniques.

29.2 Towards a better system for information manage-
ment

29.2.1 Benefits

Development of an integrated microscope and database system can
provide the following benefits to users, scientific collaborators, review-
ers, and researchers in associated fields:

Fast, simple, automatic machine configuration. This can be achieved
by associating a complete set of configuration parameters with each
scan window. Machine adjustment and optimization can then be made
by repeatedly changing instrument parameters, rescanning the same
sample area into a new scan window, and observing the effect of these
changes on the resultant image. The best image can then be quickly
selected and the associated parameters “reused” to configure the ma-
chine. This is like an advanced “undo” function insofar as users can al-
ways return to a preferred machine state. Moreover, functions to reuse
subsets of parameters can also be created. Thus, preselected areas can
be quickly scanned with the same illumination and detector sensitivity
parameters, or the same area can be scanned with different detector
sensitivity parameters.

Configuration of different machines to the same state. This is ba-
sically an extension of the first point and possible if the microscope
configuration interface uses physical parameters, that is, stored image
data and associated parameters are in physical units. In particular,
stored data must be “real” values, not “data-sheet” values. The micro-
scope magnification should be calibrated and not rely merely on the
magnification value stamped on the side of an objective lens. With
parameters properly handled as physical values, users are no longer
tied to finishing an experiment within a single session, or even using
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a particular machine, and collaborating scientists can better compare
images acquired with identical parameters.

Improved analysis of results. Many properties of a light microscope
are not described by a straight-line relationship. Indeed, many variable
properties are often assumed to be constant. For example, resolution
is not constant over the entire field of view. Thus, storing more in-
formation about the machine allows better calibration, using more so-
phisticated models of machine behavior. Even if a particular variable is
not modeled within the database, storing more information about the
factors affecting it may enable subsequent development of algorithms
to cater to this variance.

For example, image signal intensity is reduced the deeper the fo-
cus is in the sample. This is a result of aberrations induced by mis-
matches in refractive index [10]. Image processing programs such as
AVS [7] can improve image data using information about the immer-
sion medium, microscope optical system, and position of data samples
relative to optical boundaries (such as the sample coverslip). Corrected
image data has a more uniform contrast, making images easier to view,
and also giving immense improvements in the results of 3-D rendering
techniques such as ray tracing.

Improved access to data. Better access to data via querying is quickly
possible when more information is stored in a modern RDBMS. Such
programs are not only optimized to perform fast queries on the data
they contain, but typically also offer an array of tools and interfaces
which serve both novice and expert programmer in the task of data
processing. The RDBMS also offer presentation interfaces to many com-
monly used office programs, as well as dynamically generated HTML
files. Users can perform sort, select, retrieve, and compare operations
on image archives, querying not only the filenames, but also the entire
spectrum of information associated with the image. Searches can even
be performed over a number of database files.

Semiautomatic submissions to other databases. The possibilities
of exporting data to other databases are also improved when more
data are stored in a RDBMS. In the past, users were satisfied when they
could import data into image processing programs. However, storing
increased amounts of information with the source microscope images
means that more useful, semiautomatic submissions can be made to
data warehouses. For example, for biological applications it is highly
valuable to export data to a database that also stores biology-related
information, such as the BioImage database [11], which will contain
images from a variety of microscopes, using a large spectrum of micro-
scopical techniques. This allows the comparison of similar samples ob-
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served with different techniques that provide different resolution and
visualize different types of interaction. This aids the dissemination of
data within the research community. In the medical field, the DICOM
standard, described by Bennett [12], is becoming more widely used for
the storage and transfer of data, with a resulting demand for machines
able to save using this format.

Remote monitoring and maintenance. If the actual state of the in-
strument is stored and made available over a computer network, then
this information can be examined on-line by a system administrator.
Users can thus benefit from fast fault diagnosis and rectification as well
as from advice on how to better configure the microscope. An RDBMS
is a convenient storage system because it is inherently multiuser .

Automatic experimental repetition. For experimental scientific re-
sults to be useful, they must be unquestionably repeatable. The greater
the amount of information recorded about both machine and sample,
the more precisely an experiment can be repeated. By storing data in
a database and constructing systems that process this information to
automatically repeat large amounts of experimental procedure, the po-
tential for errors is reduced. Scientists can thus independently verify
experimental results more easily and quickly, the point from which new
progress can be made.

29.3 From flat files to database systems

In early confocal microscope systems, information about the machine
configuration was contained within a single text file that could be read
and written at any time during program execution. Such a “flat file”
format avoided the need for recompilation of the entire microscope
program but rapidly became unsuitable for human viewing as content
expanded.

Image intensity data was saved to hard disk as a stream of bytes,
and information about a particular image was mostly limited to sav-
ing pixel spacing information in an adjacent text file. Thus, reading
such data into image processing programs required a certain amount
of programming effort or manual intervention.

On-line configuration of a number of system parameters was possi-
ble, often by calling up a “setup” file, containing a subset of information
required to obtain an image. However, the information was intended
as an aid simply to obtain an image, rather than to adjust every one
of the large number of machine variables perfectly. Indeed, storage of
some component settings was impossible because these were mechan-
ical. Moreover, if a hardware component were replaced, then appar-
ently identical machine settings would result in different image data,
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the reason for which would be untraceable, for example, filter selection
by reference to filter wheel positions, rather than to actual filters.

Standard file systems permitted restricted search facilities. That is,
laboriously constructed string searches on filenames and parameters
contained within the associated text files. Results were returned in a
similar user-unfriendly manner.

More recently, it has become standard practice to store image data
in more sophisticated, generic file formats that may also hold a num-
ber of parameters. A good example is the LSM410 confocal microscope
(Carl Zeiss Jena GmbH), which stores files in an expanded TIFF format
[3]. Real world pixel sizes are stored along with the image data. This
offers the advantage of being automatically readable by a large number
of image-processing programs, with the additional possibility of per-
forming simple measurement operations, provided that the program
can also decode the extra size tags.

Most recently, microscopes with integrated RDBMS have been devel-
oped. Examples are the commercially available LSM510 (Carl Zeiss Jena
GmbH) and the instrument used for research at the European Molecular
Biology Laboratory (EMBL), the Compact Confocal Camera (CCC). These
machines use RDBMS to describe their hardware configurations to an
unprecedented level of accuracy. Parts can be changed without affect-
ing performance and the machine is automatically configured. Image
data and associated parameters are also managed via databases. Each
image is associated with its own set of parameters, thereby perfectly
defining the state of the machine at the instant the image was recorded.
As a vast amount of data can be referenced for quantification of image
data, the RDBMS opens up enormous possibilities for data processing.

29.4 Database structure and content

A well-defined database structure enables not only faster runtime per-
formance, but also simplifies programming and program structure,
speeding up development time of the overall machine control program.

The database must contain sufficient information to enable the mi-
croscope control program to achieve automatic machine configuration.
This information can be contained by groups of tables termed “compo-
nent specifications,” “part descriptions,” and “image acquisition param-
eters.” Additional information, describing the specimen, is required to
meet the most fundamental goal of experimental repetition. The fol-
lowing sections describe these groups in more detail1.

1A full example database is available on the CD accompanying this book.
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Figure 29.1: Database table design showing entries for the specification of a
particular type of objective lens. This is a typical spread of entries for any of the
“potential” components within the system. Field names with data type “Number”
are of type long integer or double. Data type “OLE Object” represents a link to
another file or program object. For example, the entry “Diagram” may be a
bitmap image. In other “potential” objects, OLE Object entries could be links
to spreadsheet files, containing calibration data, for example, filter absorption
against wavelength. Many entries are described as nominal, indicating that
an entry in another calibration table is required to hold the actual value for a
specific component. In contrast, parameters such as “Length” and “Diameter”
are not expected to vary significantly between individual components.

29.4.1 Component specifications

Component specifications are essentially datasheet-like descriptions of
items that could potentially be used within a complete system. The
information is general and, therefore, valid for any machine, so that
a single database of such tables could serve a number of machines.
The collection of tables describing all possible components is like a li-
brary used for machine construction. In our examples, such tables have
names with the prefix “Potential.” Typically, entries give information
on how to control a part, how to incorporate it into the system, and
give an indication of the expected performance.
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Figure 29.1 shows the structure of the table “Potential Objective
Lenses.” Many of the entries are described as “nominal.” That is, the ac-
tual performance may not match the expected performance as specified
by the manufacturer. Information about length, diameter, and travel is
provided for controlling a revolver containing a number of objective
lenses. When automatically changing objective lenses, the current lens
must be moved slightly away from the sample. Then, the revolver must
be turned so that the new lens is moved to the correct position. Finally,
the new lens must be moved so that its focus position is at the same
point within the sample as was that of the old objective lens.

Note that only a subset of entries is necessary for the machine to
function. However, by offering as many discrete database fields as pos-
sible we are helping database users to create a more precise description
of the microscope and its components, thereby increasing the possibil-
ities for later searching the database and reducing errors. The alterna-
tive to this, offering a general field called “description,” allows incon-
sistent, incomplete entries, thus reducing the efficiency of subsequent
queries and data processing (see Chapter 25).

29.4.2 Part descriptions

Each particular machine contains many components. Each component
requires a unique entry through which it can be referenced and con-
trolled. In our examples, such tables are prefixed “Available.” Because
many parts require calibration, separate “Calibration” tables have also
been included. A database of “Available” and “Calibration” tables is
required for each microscope.

Figure 29.2 shows the tables and relationships required for control
of a revolver containing objective lenses. The group of three objec-
tive lens tables shows the general relationships used between “Avail-
able,” “Potential,” and “Calibration” tables. Thus, “Calibration Objec-
tive Lenses” contains a full record over time of repeated calibrations of
the part. “Available Objective Lenses” contains measured values (nu-
merical aperture, magnification etc.) for the part, and also a reference
to the part through which it is controlled—a revolver. Likewise, the
“Revolver” tables are controlled via a computer interface described in
the “Interface” tables. Describing parts in this way ensures that the sys-
tem delivers constant performance, even if parts are exchanged. This
hierarchy of tables essentially describes how real world values are set
via the various machine control-interfaces.

29.4.3 Image acquisition parameters

Every time a sample is scanned and data is collected, “Available” parts
are set to values that may be different to those used for other scans. To
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Figure 29.2: Tables and relationships required for selection of an objective lens
during microscope runtime. If an image is to be acquired with an objective
lens of magnification 100, the microscope control program receives a request
for this magnification. A search is performed over the “Available Objective
Lenses” for “Magnification” 100. If an objective lens matching this criteria is
found, the entries “Available Objective Lenses: ID Revolver” and “Available
Objective Lenses: Revolver Position” are used to access “Available Revolvers”
table to find the particular revolver containing the required objective lens. This
in turn is used to check which “Available Interface” must be addressed, and how
to move the revolver to the required position.

record these temporally changing values, another hierarchy of tables is
required (Fig. 29.3). These tables can exist in a database file separate
from the Part Description and Component Specification tables, as they
do not relate to a particular machine. Most conveniently, all informa-
tion associated with the image data can be stored in a database owned
by an individual user. At the topmost level, each set of image and para-
meter data has been termed a “Recording.” A recording may consist
of a number of “Tracks,” where a track is defined as a path from light
source to detector. Thus, at the lowest level, each track refers to tables
containing settings for individual system components in that path. All
the values are “real world” (laser power in Watts, and not the voltage
that must be applied to the laser input to achieve this power).

Any recording can be reloaded into the machine and its parameters
reused for automatic reconfiguration. Moreover, because a recording
contains absolute values, this information can be used to configure
another machine equipped with similar parts.
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Figure 29.3: Tables and relationships required for “User database” of image
parameter data.

29.4.4 Workflow and specimen parameters

Any specimen being examined under the microscope has been subject
to processing steps prior to observation. If a specimen is observed a
number of times, it may also be subject to processing steps between
observations, for example, the addition of chemicals. Also, different
features or areas of interest might be imaged. Finally, information
obtained by the microscope may be subject to post-processing. As
the microscope system we are describing is not yet integrated into a
complete LIMS, it is sufficient to store a reference to other logbook
or database records describing sample preparation. Similarly, post-
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processing can refer back to a number of recordings in our microscope
database. To reference the sample, a number of text fields are included
in the “Recordings” table. Description of the experimental procedure
is achieved with the text field “Experimental Step.”

29.5 Database system requirements

Whilst an RDBMS market overview is unnecessary and beyond the scope
of this report, there are nevertheless a number of points important in
the selection of a database program, and the subsequent implementa-
tion of programs which access it. For further information concern-
ing selection of a database technology, see Stonebraker [13]. From
the following set of requirements it was clear that in the case of the
CCC a “desktop” system best covered these needs, and, thus, Microsoft
Access was selected (see databases /software/29/CCCUserDatabase
and /software/29/CCCHardwareDatabase as examples).

29.5.1 “Fast” standard programming interface

In a confocal microscope system, images are generally saved either sin-
gly, as one might occasionally save documents from within a word pro-
cessing application, or automatically as part of a timed sequence of
scans. In biological applications using fluorescent probes to mark ar-
eas of interest in biological specimens, scan speed is limited. Saving of
image sequences must, therefore, be performed as quickly as possible
to allow maximum time for data acquisition. Intervals between saving
image and parameter data are typically greater than 0.1 s. (This is not
the same as video, where only image data is saved quickly, and not
parameter data.) A standard interface solution of using embedded SQL
code within a compiled C++ program, coupled with current computer
and software performance2 can perform a save operation at least one
order of magnitude faster than this.

29.5.2 High-level programming environment

Once data has been stored in a database, there are many desirable func-
tions that do not have to be executed if time is critical. For example,

2Saving recording and track information to a test database took 35 ms per im-
age (Computer running Windows NT 4.0, using a 200-MHz Pentium, 128 MB RAM,
Matrox MGA Millenium graphics card with 4MB RAM). This was achieved by opening the
database, performing all queries and opening all the required tables at the start of the
time series, so that for each image only “AddNew” and “Update” database operations
were required. At the end of the time series, all recordsets were closed. Typical scan
times on a confocal fluorescent microscope for a 0.25 MB image are between 0.25 s and
10 s, and the time to save the actual image data to hard disk is less than 20 ms. Thus,
the time consumed by the database functionality is acceptably small.
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searching through an array of thumbnail images to retrieve a particular
image. Fast implementation of such features is possible using visual
query builders (thus removing the need for detailed knowledge of SQL),
and high-level programming languages, which allow novice program-
mers to customize their applications.

29.5.3 Relatively small database content and number of tables

The complete description of a confocal microscope contains about nine-
ty tables, a small number for any RDBMS. Component specifications and
part descriptions do not grow or shrink during the lifetime of the mi-
croscope, and take up only a few megabytes of space on disk. Again,
this is a relatively small amount of data for most database programs.
The “User’s database” only increases in size by a few kilobytes every
time a “Save” operation is performed. So, even with thousands of save
operations the amount of data stored in the recordings tables will re-
main relatively small.

29.5.4 Small number of users

Database files containing Component specifications and Part descrip-
tions will only ever be operated on simultaneously by a single user and
a single administrator. User database files are intended to be “single
user,” although the database is often accessed by a small number of
concurrently running processes.

29.5.5 Minimal licensing and installation effort, maximum trans-
portability

Users should be able to backup their archives to transportable me-
dia, then view these archives on any computer they choose. Thus, the
database program should be separate from the archive files, easy to
install and, preferably, available on a number of different computing
platforms.

29.6 Data flow—how it looks in practice

Having implemented a table and database structure, a microscope con-
trol program must be developed which fully uses this fundamental to
achieve our goals of experimental repetition, automatic configuration
and so on. Typically, this might be modeled and explained as a num-
ber of data flow diagrams. However, for simplicity the following section
gives an overview of the tasks to be performed, indicating when, from
where, and by whom data is entered into the database. Figure 29.4 is
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Figure 29.4: Screenshot of the Compact Confocal Camera (CCC) user interface,
showing the main forms required for operation of the machine. The CCC is an
example of a microscope that stores machine configuration and image infor-
mation in an RDBMS. The form in the top left corner contains the main menus,
by which all other forms are called up. The two forms on the right represent
views onto a database of user images. The top right form shows a gallery of
thumbnail images. The bottom right form shows a thumbnail image and as-
sociated parameters from a single image. Images and data can be reloaded
directly from either of these forms. The cascade of 4 image windows in the
middle of the screen show images either just scanned, or images reloaded from
a user database. The menu bar on the right-hand side of each window con-
tains the “reuse” buttons—marked “!!” and “!T”. The “!!” button automatically
overwrites all parameters in the main recording object with parameters from
the window in which the “!!” button was pressed. The parameters in the main
recording object (in effect, the current state of the machine) are displayed in
the two forms on the left-hand side of the screen: “Magnification and Field of
View”, and “Tracks”. The “!T” button automatically overwrites just the tracks
information in the main recording object, with parameters from the window
in which the “!T” button was pressed, leaving the top-level parameters such as
scan window size, samples per line untouched.



920 29 Databases for Microscopes and Microscopical Images

a screenshot of the CCC microscope user interface, showing the main
information presented to a user working with the machine.

29.6.1 Preconfiguration

Before the microscope can be started, the system administrator com-
pletes component specifications and part descriptions. This can be ac-
complished in Microsoft Access via semiautomatically generated forms.
Default calibration data is added automatically by the microscope con-
trol program if no data is found. Each component is calibrated the first
time the system is started.

29.6.2 Hardware configuration and test

When the user starts the microscope control program, a subset of the
information contained in “Potential,” “Available,” and “Calibration” ta-
bles is loaded into program objects. This gives fast access to control
values. Complete hardware configuration and test takes a few seconds,
during which time a progress bar is displayed. Thus, the bulk of queries
are undertaken when time is not critical, that is, not during a timed se-
ries of scans. During this startup phase, the state of each component is
also written back into the hardware database and the user is notified of
errors where system performance is degraded or assistance is required.
An administrator, sitting at a remote machine, can open the hardware
database and check the status of any or all system components.

Finally, a central “Recording” object is created whose parameters
are identical to the user’s default startup recording (user preference
data can also be stored in a database). This “Recording” object mirrors
the “Recordings” tables, thus containing a collection of “Tracks,” which
in turn contains collections of “Track components.”

29.6.3 Scanning and saving

When the user presses the “Scan” button, the central “Recording” ob-
ject is used as the specification for the required scan. If required, a
new window is created, then the microscope scan process is started
and sample data displayed. Upon scan completion, the central record-
ing object is copied into the recording object associated with the scan
window.

To save the contents of a scan window, the user has merely to se-
lect the image database file into which it should be saved and specify a
name. The associated recording object is written to the database, and
image data is saved to disk in whatever standard format the user se-
lects. If the data consists of a number of tracks or image planes, then
these can even be automatically saved as separate gray-scale images or
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composite color images in a new directory. This vastly simplifies the
process of analyzing data in third-party image processing packages.

29.6.4 On-line reuse of saved information

The image databases are fully integrated into the system: the user can
browse any database as a gallery of thumbnail images, a tabular list
of recording properties, and a single form showing all the parameters
from a single recording. Query functions are of course readily available.

At any time, a recording can be selected from one of the database
forms and can be opened by the microscope program. Upon opening, a
new scan window is created containing a new recording object, which is
filled with parameters from the relevant tables. The microscope can be
automatically configured to produce an image identical to the one just
loaded by copying the recording information from the loaded scan win-
dow into the central recording object and updating the user interface to
show the new values. Thus, the next scan will use this information for
configuring the hardware. Another nice feature is the ability to reuse a
subset of the scan window’s information, such as “Reuse Tracks.”

29.6.5 Sample referencing and experimental procedure

At any time while working with the microscope control program, the
user can enter sample details, or describe an experimental step be-
ing performed. An example form for entering such data is shown in
Fig. 29.5. This information is automatically added to the “recording”
information every time a save operation is stored.

29.7 Future prospects

29.7.1 BioImage: a database for multidimensional biological mi-
croscope images

The BioImage database project [11] [http://www.bioimage.org/], funded
by the European Union (EU), is a collaborative project between six Eu-
ropean research groups and two industrial partners3. Its aim is to

3The partnership comprises of (1) Centro Nacional de Biotecnología — CSIC, Madrid,
Spain, and (2) European Molecular Biology Laboratory, Heidelberg, Germany, who host
and run the database servers and who are, respectively, responsible for macromolec-
ular and cellular image data; (3) Biozentrum, University of Basel, Switzerland, who
provide electron and scanning probe microscopy expertise; (4) Centro de Investigación
y Desarrollo - CSIC, Barcelona, Spain, who are responsible for crystallographic data and
links with other databases; (5) Silicon Graphics, Cortaillod, Switzerland, as hardware
provider and developer of visualization tools; (6) The European BioInformatics Insti-
tute, Cambridge, U.K., as database consultant; (7) Department of Zoology, University of
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Figure 29.5: Example form showing user entries for referencing specimen and
experiment. In the database, experimental step is a text field. By using a combo-
box, a selection of predefined experimental steps can be offered to the user to
encourage consistent and useful entries in the database.

develop a new database for scientific use, organizing complex infor-
mation associated with multidimensional biological data sets. It will
provide access to image data acquired by different techniques, such as
light microscopy and atomic force microscopy, thus emphasizing dif-
ferent, complementary physical aspects of similar objects, and facilitat-
ing hitherto unprecedented levels of comparison and data access. To
meet these objectives, specific volume image visualization and handling
tools will have to be developed, enabling users to compare, overlay, cor-
relate, and combine different images and the associated information.
This will enhance the understanding of living processes at the cellular,
molecular and, ultimately, atomic level.

The BioImage database will have a structure consisting of five parts.

1. Organizational information, such people, institutes, manufacturers
etc.

2. Links to data sets and related meta-data, such as that stored in the
“Recordings” tables of the CCC database.

3. Information about the biological specimen, such as sample taxon-
omy (general), and age (specific).

Oxford, U.K., who provide video data expertise; and (8) Informix Software, U.K., as the
database technology provider and consultant.
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4. Sample preparation information, such as preparation steps and their
physical, chemical and biological parameters, extending to post-
processing steps.

5. Instrumentation information, such as microscopes, their compo-
nents, and their settings during data acquisition as stored in the
CCC database.

Technical details about individual microscopes and their compo-
nents cannot be stored in such great detail as would be the case in
an individual microscope such as the CCC because first, the emphasis
of the BioImage database is on biological content of the images it con-
tains. Second, images from a large spectrum of microscope techniques
(electron, light and video, scanning probe microscopy etc.) are to be
documented. Component parameters have to be restricted to those
which are characteristic for a large set of instrument types and that
are necessary for the accurate documentation of the image acquisition
process and for subsequent evaluation of the data.

The BioImage database will store considerably more information
than the microscopes about the specimen, preparation techniques, and
the features visible in individual images. Biological specimens ranging
from macromolecules to entire cells and organisms will be documented.
Controlled vocabularies either provided by the BioImage database it-
self or through links to other biological databases like NCBI will allow
consistent nomenclature and referencing. The sample preparation will
be saved step by step with the possibility to either document the pa-
rameters explicitly or to provide links to other on-line databases with
a description of the sample preparation (like the Materials-&-Methods
part of a publication). For this, the BioImage database must provide
links to other key databases such as the Protein Data Bank (PDB) and
bibliographic ones.

The possibility of reusing previously saved instrument configura-
tion and sample preparation information at submission time is impor-
tant to reduce the amount of information required for a single sub-
mission. To further aid the submission process, programs that make
automatic submissions from other databases will be developed. There-
fore, a smart submission interface has to be built that allows checking
for and selecting data already existing in the database.

29.7.2 Object relational database management systems (ORDBMS)

Stonebraker [13] describes a simple classification scheme for DBMS ap-
plications, defining which type of DBMS is most suitable for a particular
project. This indicates that the microscope data acquisition and pro-
cessing system described in this report would gain certain benefits from
being based around an object relational database. (A most comprehen-
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sive description of features for such an ORDBMS is given by Atkinson
et al. [14].) Our experience in developing microscope data acquisition
systems has proved that a good database structure greatly simplifies
the subsequent task of constructing the microscope control program.
All the main program objects mirror the structure of the underlying
database, and add functionality that operates on the data these objects
contain. It therefore seems like an obvious step to more fully integrate
functionality into the database, using a system that can cope with more
complex, user-defined data. An ORDBMS typically offers more exten-
sive querying possibilities, which makes it more suited to querying im-
age and scientific data (as opposed to business data). A tighter binding
of data to the database would mean that the main bulk of program
data would always be within the database process, thus increasing sys-
tem speed. Fast hardware control could still be accomplished with C++
modules called from within the database. This could also mean greater
security in the event of a system crash, as information would already
be in the database. Many ORDBMS are oriented towards image storage,
fueled by requirements of many web developers.

29.7.3 Feature matching

Algorithms such as described by Faloutsos et al. [15] show how feature
information can be extracted from images, which can then be added as
entries to an existing database. Such feature information can then be
queried. An example of such a “search by image content” is given in
Pentland et al. [16].

The precise feature matching algorithm required is heavily depen-
dent upon the type of images (and thus features) in which a user might
be interested. A journalist searching a photographic archive for, say,
images of fruit, will require different algorithms than a doctor search-
ing for images of tumors in MRI scans.

29.7.4 Conclusions: application to other fields?

In this paper we have set out the benefits of integrating databases into
an example image acquisition system (a confocal microscope) and the
basic information required for achieving this integration. Similar ben-
efits could clearly be gained by applying the same principles to other
image acquisition systems, and, indeed, the coverage of the prototype
confocal system at EMBL has already been extended to include a wider
range of microscopical techniques. The main consideration before com-
mencing upon such an implementation is the list of potential benefits.
Systems with a large number of control parameters would clearly ben-
efit, as many of the advantages for the confocal system involve gaining
better on-line control of the machine. Such machines would probably
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also benefit from the greater amount of analysis that could be per-
formed upon the data acquired. The next considerations concern the
data itself. What data is required to enable useful machine control func-
tions such as automatic configuration? What data needs to be stored to
really increase the amount of useful off-line analysis, and how should
this data be structured? Although data entries would almost certainly
be very different for machines in other fields, most implementations
could successfully use the top-level structure of the confocal micro-
scope database. That is, groups of tables containing data sheet informa-
tion, parts information, and time-dependent part information. Finally,
feasibility issues need to be addressed. Can the required amounts of
data be ordered, stored and accessed fast enough? Are there speed
penalties as a result of data security requirements? What are the finan-
cial costs of implementing and distributing such a system?
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gamma value 33, 537
Gauss-Markov conditions 369
Gauss-Seidel iteration 327, 328
Gauss-Seidel method 368
Gaussian function 741
Gaussian kernel 240
Gaussian potential function unit

744
Gaussian pyramid 84, 85, 298
Gaussian sphere 535
general Lambertian surface 542
generalized aperture problem

314, 356
generalized coordinates 362
generalized gradient 363
generalized initial curve 578
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generalized least-squares 369
genuine Lambertian surface 534
geodesic

dilation 649
distance 656
erosion 650
skeleton

by influence zones 656
geodesic transform

fast algorithm 663
geodesics 633
geometric distortions 507
geometric texture features 284
geometry of binocular space 487
geometry pipeline 882
Gibbs distribution 454
Gibbs field 840
global integration method 551
global smoothness 326
global stereopsis 499
GPFU 744
gradient 398

external 641
internal 641
morphological 641

gradient histogram 298
gradient map 550
gradient space 543
gradient vector 213
gradient-descent procedure 743
granulometry 646

computation of 662
graph 754

acyclic 760
combinatorial dual of a 758
connected 756
definition 632
embeddable 758
geometrical dual of a 759
planar 759
planar embedding of a 759
plane 759

graph isomorphism 776
Green’s function 101
grid 632

H
Haralick’s texture features 281
Hardley transform 65

heat equation 425
heat transfer 425
Heidelberg raytracer approach

889
height 535
height map 550
Helmholtz system 495
Hering coordinates 488
Hessian 325, 373
hexagonal lattice 162
hidden layer 730
hidden Markov model 820
hidden variable 848
hierarchical contours 801
high-pass filter 126
Hilbert filter 128, 135, 345
Hilbert space 37
Hilbert transform 72
histogram 818

moving 661
hit-or-miss 656
holes removal

binary 652
homogeneous diffusion 425
homogeneous system 24
Hopfield neural network 747
horizontal disparity 486, 490,

506
horopter 492, 496
hybridly reflecting surfaces 545
hyperbolas of Hillebrand 489
hyperbolic point 563
hyperbolic tangent 50
hyperellipsoid 373
hyperpixel 17
hyperspectral 11
hyperspectral imaging 2

I
idempotence 634
IIR 108
ill-conditioned 373
ill-posedness 430
illumination direction 538
image

2-D 760
and PDE 455
noisy-blurred 749

image analysis 743
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image border 652
image coding 743
image content 923
image enhancement 424
image format

DICOM 911
TIFF 908

image grid 550
image irradiance 536
image irradiance equation 534,

539, 548
image partitioning 453
image restoration 424, 469
image segmentation 453, 468
image sequence 2
image structure

representation by dual
graphs 761

imperfection 690
impulse response 101, 108
incident angle 542
increasingness 635
index of area coverage 704
index of fuzziness 705
index theory 585
inertia tensor 233
inference 820, 825
inference engine 707
infinite-duration impulse

response 108
influence function 367
influence zone 633

geodesic 656
inhomogeneous diffusion 425
inner product 36, 234
innovation 324
input layer 730
instance 860
instantiation path 866
integrability condition 549
integration of vector field 550
integration path 550
integration scale 432, 443
integration scale parameter 244
intensity-based model 818
interest operator 432
interface reflection 545
interface reflection color 546
interpolation 29, 175

cubic B-spline 187
in Fourier space 180
linear 182
optimized 190
polynomial 184
spline-based 187

interpolation condition 179
interpolation filter 128
intersection 631
invariance 242
invariant function 362
inverse 3S PSM 539
inverse Fourier transform 41, 43
inverse mapping 194, 195
inverse perspective mapping 500
irradiance 1, 533
irregular grids 903
isoirradiance curves 544
isomorphism

double subgraph 777
subgraph 776

double 777
isoradiance curves 544
isotropic 425
isotropic diffusion

regularized 436
isotropic nonlinear diffusion 427
isotropy 18

J
Jacobi method 334
Jacobian matrix 226, 371

K
Kačanov method 466
kernel 51
kernel of weights 734
kernel, separable 53
Kirsch operator 289
knowledge

declarative 862
procedural 862

Kohonen map 736
Kullback-Leibler statistics 846

L
laboratory information

management system
908
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Lagrange multiplier 330
Lagrange parameter 330
Lambert’s cosine law 534, 541
Lambertian reflectance map 544
Lambertian reflector 541
Lambertian surfaces 535, 542
Laplace of Gaussian 224, 612
Laplace operator 224
Laplacian operator 82, 240, 257
Laplacian pyramid 84, 86
lattice of neurons 736
lattice vector 14, 17
lattice vectors 100
Laws’ texture features 291
layered texture 231
learning 849

error-correction 743
learning-rate parameter 738
least squares approach 332
least squares technique

extended 334
level-crossing 435
Lie algebra 360
Lie group 360
Lie group of transformations

361
lighting factor 895
LIMS 908
line

periodic 636
linear 537
linear diffusion 425
linear image irradiance equation

572
linear interpolation 182
linear orthogonal l2

approximation 332
linear reflectance map 543
linear SFS 571
linear shift-invariant filter 214
linear shift-invariant operator

38, 99
linear symmetry 210, 232, 325
linear system theory 2
linear time-invariant operator 99
linearization 466
linguistic variables 688
Listing system 495
LMS algorithm 743

local amplitude 73
local integration techniques 550
local orientation 210, 232, 373
local phase 73
local scale parameter 244
local texture features 287
local wave number 69, 76
LoG 224, 612
log-polar coordinate system 40
logarithmic decomposition 661
logarithmic scale space 81
lognormal 76
lognormal function 350
look-up table solution to 3S PSM

554
Lorentzian function 50
loss function 822
low level motion 319
low-pass filter 126
LS 332
LSI 99
LTI 99
Lyapunov functional 434, 442
Lyapunov sequence 440

M
M-estimator 367
machine vision 276
MAP 402
marching cubes 884
marker function 676
marker image

choice of 651
Markov chain 514, 517, 518
Markov random field 294, 454,

818, 837
mask 94
mask image

choice of 651
matching 777

in a graph 777
maximal 777
maximum 777
perfect 777

mathematical morphology 628
maximal matching 777
maximizing 354
maximum a posteriori estimate

402
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maximum filter 114
maximum intensity projection

897
maximum matching 777
maximum norm 139
mean of maxima 690
mean of maximum 702
measurement 665
medial filter 661
median filter 114
medical diagnosis 732
membership function 686
mesh 759
method of characteristic strips

577
metric 633
microscope 908

compact confocal camera
912

confocal 909, 917
LSM410 912
LSM510 912
user interface 918, 919

minima
imposition 653, 676
regional 675

algorithm 663
minimal motion 318
minimization algorithm 466
minimum

regional 653
minimum filter 114
minimum-maximum principle 77
missing information principle

845
mixture density 832
MLP 730
MM 628
model 859, 862
model density 825
model generation

automatic 819
models

vector-valued 444
Moiré effect 28
monocular occlusion 487
monotonicity preserving 430
Monte Carlo 877
morphological filter 114, 667

morphological gradient 677
morphology 628
motion 3
motion boundary 476
motion constraint equation 265,

313
motion field 310, 397, 476
MRF 837
MRT 897
multichannel image 444
multichannel signal 12
multilayer perceptron 730
multiresolution representation

68, 84
multiresolutional image

processing 87
multiresolutionaldata structure

4
multiscale 406, 412
multiuser system 911

N
N-jet representation 241
naive Bayes 850
neighborhood 19, 674, 838
neighborhood function 737, 738
neighborhood operation 4
neighborhood, 4- 19
neighborhood, 8- 19
neural connection 730
neural network 729
neuron 730

winning 737
neuron allocation

automatic 746
neuron state 747
neurons 730
neutral interface reflection model

547
noise 904

homogeneous 12
zero-mean 12

noise scale 431, 443
noise suppression 469
noisy-blurred images 749
noncharacteristic condition 578
nonenhancement property of

local extrema 247
nonlinear 537
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nonlinear classification 731
nonlinear diffusion 424, 455
nonlinear diffusion filter 425
nonlinear relaxation 466
nonlinear signal processing 3
nonmaximum suppression 251
normal flow 313, 402
normal optical flow 318
normal velocity 352
normalized convolution 115,

173, 340, 370
normalized derivative 248, 260

scaling property 250
normalized residual 263, 266
null space 230
Nyquist 154

O
object recognition 277, 828
object relational database 923
object segmentation 277
object surface geometry 534
obstacle avoidance 500
OpenGL 881
opening 642, 667

algebraic 645
by reconstruction 654
fast algorithm 662
function 662
top-hat by 646
union of 669

operations on fuzzy sets 686
operator notation 96
optical character recognition 732
optical flow 310, 398, 476
optical transfer function 24
optimization method 740
optimized interpolation 190
ordering relationships

between images 631
for image transformations

631
orientation 212
orientation analysis 315
orientation disparity 487
orientation vector 212, 236
oriented smoothness 327
oriented texture 231
orthonormal base 36, 51

orthonormality relation 36
outer product 53
outlier 366
output layer 730
over-fitting 824

P
Panum’s fusional area 500
parallel computer 441
parallel edges 755
parameter estimation 819, 824,

825, 845, 847
parameter selection 441
parameter vector 11
Parseval’s rule 349
Particle model 878
partition 757
Pascal’s triangle 163
passband 126
path 19, 632

in a graph 756
end vertices 756
length 756

of steepest slope 674
pattern classification 3
pattern spectrum 647
peeling

Euclidean 661
pel 13
pendant

edge 755
vertex 755

perceptron 730, 732
perfect matching 777
performance analysis of computer

vision algorithms 5
performance characterization

299
performance evaluation 5
perimeter 703
periodic extension 123
Perona-Malik filter 427

contrast parameter 442
Perona-Malik paradox 430
perspective transform 193, 196
phase 38, 74, 351, 352
phase angle 542
phase of Fourier component 38
Phong model 546
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photogrammetric stereo 592
photometric angle 542
photometric distortion 507
photometric stereo 532
photorealistic rendering 176
picture element 13
pixel 13
pixel pipeline 883
planar embedding

of a graph 759
planar graph 759
plane graph 759
point correspondence 197
point operation 4, 94, 234
point spread function 24, 100,

108, 594
point-wise

maximum 631
minimum 631

polar separable 75, 349
pole 112
polygon

regular 14
polygon primitives 893
polynomial interpolation 184
pose estimation 817, 821,

823–825, 827, 828
positivity 440
potential function 840
power spectrum 40

self-similar 251
pre-knee circuit 536
preprocessing 822
primitive cell 14, 177
principle of superposition 98
prior knowledge 817, 819
probabilistic model 817–819,

852
profile 10
projection of scene objects 534
projection plane 880
propagation rule 730
PSF 24, 594
PSM 532
pyramid 406, 412
pyramidal decomposition 293
pyramidal texture features 293

Q
quadratic scale space 81
quadrature filter 294, 346
quadrature filter pair 260
quantitative image analysis

Voronoi diagram 802
application 811
surface estimate 810

quantization 10, 24, 30
quantization error 31
quantum mechanics 37
queue 661

priority 677

R
radial-basis functions 740
radial-basis neural network 740
radially-symmetric function 741
radiance 1
radiosity method 877
radix-4 FFT algorithm 61
rank 230
rank filter 661
rank-value filter 114
ray-casting 884
ray-tracing 878
RBF 740
RBNN 740
RDBMS 908
real-world image 5
receptive field 734
reciprocal 49
reciprocal base 26
reciprocal lattice 26
recognition 817
recognition rate 299
reconstruction 650

by dilation 650
by erosion 650
fast morphological 663

recursive algorithm 660
recursive filter 106, 127
reflectance map 533, 543
reflection properties 533
refractive index 910
region adjacency graph 760
region of support 94
region-based matching 354
regional extremum 652
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regional minimum 653
regression 821, 824, 825
regression function 823
regression problem 823
regular polygon 14
regularization 430
relational database management

system 908
relative resolution 40
relaxation filter 136
removal

of an edge 756
rendering equation 876
rendering kernel function 896
representation-independent

notation 97
residual 322, 324
residual error vector 332
resolution 904
restoration 433, 469
RF stable 574
ridge detection 255
ridge strength measure 256, 261
ridge surface 256
Rjabenki 574
Roberts operator 217
robust estimation 367
robust statistics 366
rooted tree 760
rotation 202, 358
run-length 283
running mean 158

S
sampled motion 319
sampling 10
sampling theorem 27, 84, 177

temporal 318
saturated vertex 777
scalar product 36, 234
scale 3, 76
scale invariance 77
scale selection 435

for feature detection 249
for feature localization 263
for stereo matching 265

scale space 69, 77, 240, 424
scale-space derivative 241
scale-space edge 251

scale-space extrema 257
scale-space representation 240
scale-space ridge 256
scale-space theory 240
scaling 200
scatter matrix 432
second-moment matrix 432
second-order statistics 279
segmentation 468, 822

function 675
initial 858
marker-controlled 675

self-duality 635
self-loop 755
self-organizing map 736
self-shadow line 544
semantic network 862

consistent 862
cycle-free 862

semi-group property 77
sensor 534
separable filter 108
separable kernel 53
separation 677
sequential algorithm

for discrete distance
functions 659

for the reconstruction 663
set difference 631
set of modality 861
SFS 532
shadowing approaches 887
shadows 903
shape

from contours
applications 802
bifurcations 801
holes 801
multiple sections 801
refinements 801

shape from contours
Delaunay graph 791
hierarchical contours 801
topological prerequisites

798
shape from shading 532, 592
shape from voxels

Voronoi diagram 791
shape matrix 741
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shape representation
Delaunay graph 791
Voronoi diagram 791

shear 358
shift operator 37, 99
shift theorem 37, 56, 70, 181
shift-invariant system 24
sifting 667
sigmoid nonlinearity 734
sign function 50
signal processing

linear 2
signal-to-noise ratio 5
similarity measure 354
similarity terms 444
simple neighborhood 210, 228
single-view shape recovery 550
singular point 584
skeleton

by influence zones 634
geodesic 656

slant angle 557
smoothing filter 234
smoothness 434
smoothness constraint 399
Sobel operator 118, 219, 223,

289
spatial coherency measure 337
spatial domain 67
spatial width 734
spatiotemporal energy 346
spatiotemporal frequency domain

316
spatiotemporal image 314
spectral density 346
spectral moment 244, 245, 265
spectrum 10
specular 545
spline 187
spline-based interpolation 187
split-and-merge

Voronoi diagram 805
geometrical model 805
method 806
quantitative image analysis

807
SQL 917
stability 108, 437
stable filter response 108

staircasing 430
staircasing effect 430
standard least squares 331
standard method of

characteristics 561
statistical error 5, 23
statistical texture features 298
steerable filter 241
steradian 540
stereo 3, 592

feature-based 507
intensity-based 507

stereo camera head 495, 497
stereo matching 265
stochastic approximation 740
stopband 126
stopping time 442
stretching 358
structural theorem 669
structure element 94
structure tensor 330, 349, 351,

372, 432, 438
structure tensor technique 329,

342
structuring element 628, 636,

637, 709
arbitrary 661
composite 637, 656
decomposition 640, 660
linear 660
pair of points 665
transposition 631

subgraph 628, 756
vertex-induced 756

subgraph isomorphism 776
subsampling 84
successive overrelaxation 328
Sugeno measures 711
sum histogram 282
sum-of-squared difference 355
superposition

principle 630
superposition principle 98
supervised network 740
surface 231
surface inspection 276, 277
surface orientation 533
surroundedness 696
symbolic description 864
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symmetry 434, 440
symmetry plane 556
synapse 729
synaptic vector 738
systematic error 5

T
target function 190
target vergence 492
temporal aliasing 405
temporal sampling theorem 318
tensor representation 328
tensorial signal 13
tesselation 14
textural energy 291
texture 276

layered 231
oriented 231

thickening 658
thinning 658
three-point mapping 196
threshold 630

decomposition 630
double 652
hysteresis 652

threshold segmentation for 3S
PSM 554

TIFF 908
tiling 793
tilt angles 557
time series 10, 106
TIN 506
TLS 332
toggle mapping 671
token tracking 320, 354
top-hat 646, 664

black 646
by closing 646
by opening 646
for removing uneven

illumination 664
white 646

topographic 674
Torrance-Sparrow model 545
total coherency measure 336
total least squares 232, 331
total least squares approach 332
transfer function 101

transformation radial-basis neural
network 743

translation 202
translation vector 14
transport process 425
transposition 631
TRBNN 743
tree 760

rooted 760
triangle function 50
triangulated irregular network

506
triangulation 461, 463, 592
type I FIR filter 102
type II FIR filter 103
type III FIR filter 102
type IV FIR filter 103

U
uncertainty relation 48, 68, 84,

86, 232
uniform positive definiteness

434
uniformly bounded 574
union 631
unit step function 50
unit surface normal 535
unitary transform 37
Unser’s texture features 283
unsupervised mode 740

V
valency of a vertex 755
variance 12
variational approach 453
vector quantization 739
vector-valued models 444
vectorial signal 12
vergence 489
version 489
vertex 632, 754

degree of a 755
pendant 755
saturated 777
valency of a 755

vertical disparity 486, 492, 506
VGL rendering pipeline 893
VGL scene 893
Vieth-Müller circle 489
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view plane normal 880
view reference point 880
viewer navigation 898
visual front-end 245
visualization 3
volume 665
volume data source 904
volume element 16
Volume Graphics GmbH 890
volume primitive 892
volume rendering 884
volume rendering equation 880
volumetric image 2, 16
volumetric image data

geometric model 804
geometric representation

802
surface representation 802

Voronoi diagram 791
computation of 794

boundary growing
procedure 795

bucketing technique 796
incremental method 794
nearest neighbor search

794
split-and-merge 805
time complexity 796

geometric model 804
quantitative image analysis

802
application 811
surface area estimate 810

shape from voxels 791
shape representation 791,

802
split-and-merge

quantitative image analysis
807

Voronoi quantizer 739
vorticity 358
VOXEL 881
voxel 16

W
warp 406, 413
watershed 674, 675
watershed transformation 656
wave-number domain 68

wavelength 10
wavelet 69
wavelet decomposition 286
wavelet-based texture features

286
weight kernel 734
weight vector 737
weighted averaging 173
well-posedness 429, 434
white balance 538
white level 536
Wigner-Seitz cell 15, 26
windowed Fourier transform 70
winning neuron 737

X
XOR-problem 731
XRay 897

Z
z-transform 107
zero extension 123
zero-mean homogeneous noise

12
zero-phase filter 155
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