
Chapter 7

AdaBoost

Zhi-Hua Zhou and Yang Yu

Contents

7.1 Introduction . 127
7.2 The Algorithm . 128

7.2.1 Notations . 128
7.2.2 A General Boosting Procedure . 129
7.2.3 The AdaBoost Algorithm . 130

7.3 Illustrative Examples . 133
7.3.1 Solving XOR Problem . 133
7.3.2 Performance on Real Data . 134

7.4 Real Application . 136
7.5 Advanced Topics . 138

7.5.1 Theoretical Issues . 138
7.5.2 Multiclass AdaBoost . 142
7.5.3 Other Advanced Topics . 145

7.6 Software Implementations . 145
7.7 Exercises . 146
References . 147

7.1 Introduction

Generalization ability, which characterizes how well the result learned from a given
training data set can be applied to unseen new data, is the most central concept in
machine learning. Researchers have devoted tremendous efforts to the pursuit of tech-
niques that could lead to a learning system with strong generalization ability. One
of the most successful paradigms is ensemble learning [32]. In contrast to ordinary
machine learning approaches which try to generate one learner from training data,
ensemble methods try to construct a set of base learners and combine them. Base
learners are usually generated from training data by a base learning algorithm which
can be a decision tree, a neural network, or other kinds of machine learning algorithms.
Just like “many hands make light work,” the generalization ability of an ensemble
is usually significantly better than that of a single learner. Actually, ensemble meth-
ods are appealing mainly because they are able to boost weak learners, which are

127

© 2009 by Taylor & Francis Group, LLC

128 AdaBoost

slightly better than random guess, to strong learners, which can make very accurate
predictions. So, “base learners” are also referred as “weak learners.”

AdaBoost [9, 10] is one of the most influential ensemble methods. It took birth
from the answer to an interesting question posed by Kearns and Valiant in 1988. That
is, whether two complexity classes, weakly learnable and strongly learnable prob-
lems, are equal. If the answer to the question is positive, a weak learner that performs
just slightly better than random guess can be “boosted” into an arbitrarily accurate
strong learner. Obviously, such a question is of great importance to machine learning.
Schapire [21] found that the answer to the question is “yes,” and gave a proof by
construction, which is the first boosting algorithm. An important practical deficiency
of this algorithm is the requirement that the error bound of the base learners be known
ahead of time, which is usually unknown in practice. Freund and Schapire [9] then pro-
posed an adaptive boosting algorithm, named AdaBoost, which does not require those
unavailable information. It is evident that AdaBoost was born with theoretical signif-
icance, which has given rise to abundant research on theoretical aspects of ensemble
methods in communities of machine learning and statistics. It is worth mentioning
that for their AdaBoost paper [9], Schapire and Freund won the Godel Prize, which is
one of the most prestigious awards in theoretical computer science, in the year 2003.

AdaBoost and its variants have been applied to diverse domains with great success,
owing to their solid theoretical foundation, accurate prediction, and great simplicity
(Schapire said it needs only “just 10 lines of code”). For example, Viola and Jones [27]
combined AdaBoost with a cascade process for face detection. They regarded rectan-
gular features as weak learners, and by using AdaBoost to weight the weak learners,
they got very intuitive features for face detection. In order to get high accuracy as well
as high efficiency, they used a cascade process (which is beyond the scope of this chap-
ter). As a result, they reported a very strong face detector: On a 466 MHz machine, face
detection on a 384×288 image costs only 0.067 second, which is 15 times faster than
state-of-the-art face detectors at that time but with comparable accuracy. This face
detector has been recognized as one of the most exciting breakthroughs in computer
vision (in particular, face detection) during the past decade. It is not strange that “boost-
ing” has become a buzzword in computer vision and many other application areas.

In the rest of this chapter, we will introduce the algorithm and implementations, and
give some illustrations on how the algorithm works. For readers who are eager to know
more, we will introduce some theoretical results and extensions as advanced topics.

7.2 The Algorithm

7.2.1 Notations

We first introduce some notations that will be used in the rest of the chapter. Let X
denote the instance space, or in other words, feature space. Let Y denote the set of
labels that express the underlying concepts which are to be learned. For example, we

© 2009 by Taylor & Francis Group, LLC

7.2 The Algorithm 129

let Y = {−1, +1} for binary classification. A training set D consists of m instances
whose associated labels are observed, i.e., D = {(xi , yi)} (i ∈ {1, . . . , m}), while
the label of a test instance is unknown and thus to be predicted. We assume both
training and test instances are drawn independently and identically from an underlying
distribution D.

After training on a training data set D, a learning algorithm L will output a hypoth-
esis h, which is a mapping from X to Y , or called as a classifier. The learning process
can be regarded as picking the best hypothesis from a hypothesis space, where the
word “best” refers to a loss function. For classification, the loss function can naturally
be 0/1-loss,

loss0/1(h | x) = I[h(x) �= y]

where I[·] is the indication function which outputs 1 if the inner expression is true
and 0 otherwise, which means that one error is counted if an instance is wrongly
classified. In this chapter 0/1-loss is used by default, but it is noteworthy that other
kinds of loss functions can also be used in boosting.

7.2.2 A General Boosting Procedure

Boosting is actually a family of algorithms, among which the AdaBoost algorithm
is the most influential one. So, it may be easier by starting from a general boosting
procedure.

Suppose we are dealing with a binary classification problem, that is, we are trying
to classify instances as positive and negative. Usually we assume that there exists
an unknown target concept, which correctly assigns “positive” labels to instances
belonging to the concept and “negative” labels to others. This unknown target concept
is actually what we want to learn. We call this target concept ground-truth. For a binary
classification problem, a classifier working by random guess will have 50% 0/1-loss.

Suppose we are unlucky and only have a weak classifier at hand, which is only
slightly better than random guess on the underlying instance distribution D, say, it
has 49% 0/1-loss. Let’s denote this weak classifier as h1. It is obvious that h1 is not
what we want, and we will try to improve it. A natural idea is to correct the mistakes
made by h1.

We can try to derive a new distribution D′ from D, which makes the mistakes of
h1 more evident, for example, it focuses more on the instances wrongly classified by
h1 (we will explain how to generate D′ in the next section). We can train a classifier
h2 from D′. Again, suppose we are unlucky and h2 is also a weak classifier. Since
D′ was derived from D, if D′ satisfies some condition, h2 will be able to achieve
a better performance than h1 on some places in D where h1 does not work well,
without scarifying the places where h1 performs well. Thus, by combining h1 and
h2 in an appropriate way (we will explain how to combine them in the next section),
the combined classifier will be able to achieve less loss than that achieved by h1. By
repeating the above process, we can expect to get a combined classifier which has
very small (ideally, zero) 0/1-loss on D.

© 2009 by Taylor & Francis Group, LLC

130 AdaBoost

Input: Instance distribution D;
 Base learning algorithm L;
 Number of learning rounds T.
Process:
1. D1 = D. % Initialize distribution
2. for t = 1, ··· ,T:
3. ht = L(Dt); % Train a weak learner from distribution Dt
4. єt = Prx~Dt ,y I[ht (x)≠ y]; % Measure the error of ht
5. Dt+1 = AdjustDistribution (Dt , єt)
6. end
Output: H(x) = CombineOutputs({ht(x)})

Figure 7.1 A general boosting procedure.

Briefly, boosting works by training a set of classifiers sequentially and combining
them for prediction, where the later classifiers focus more on the mistakes of the
earlier classifiers. Figure 7.1 summarizes the general boosting procedure.

7.2.3 The AdaBoost Algorithm

Figure 7.1 is not a real algorithm since there are some undecided parts such
as Ad just Distribution and CombineOutputs. The AdaBoost algorithm can be
viewed as an instantiation of the general boosting procedure, which is summarized
in Figure 7.2.

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
 Base learning algorithm L;
 Number of learning rounds T.
Process:
1. D1 (i) = 1/m. % Initialize the weight distribution
2. for t = 1, ··· ,T:
3. ht = L(D, Dt); % Train a learner ht from D using distribution Dt
4. єt = Prx~Dt ,y I[ht (x)≠ y]; % Measure the error of ht
5. if єt > 0.5 then break
6. αt = ½ ln (); % Determine the weight of ht

7. Dt+1 (i) =

8. end

Output: H(x) = sign (Σt=1αt ht(x))

× { exp(–αt) if ht(xi) = yi
exp(αt) if ht(xi) ≠ yi

 % Update the distribution, where
% Zt is a normalization factor which

% enables Dt+1 to be distribution

T

1– єt
єt

Dt(i)
Zt

Dt(i)exp(–αt yi ht (xi))
Zt

Figure 7.2 The AdaBoost algorithm.

© 2009 by Taylor & Francis Group, LLC

7.2 The Algorithm 131

Now we explain the details.1 AdaBoost generates a sequence of hypotheses and
combines them with weights, which can be regarded as an additive weighted combi-
nation in the form of

H (x) =
T∑

t=1

αt ht (x)

From this view, AdaBoost actually solves two problems, that is, how to generate the
hypotheses ht ’s and how to determine the proper weights αt ’s.

In order to have a highly efficient error reduction process, we try to minimize an
exponential loss

lossexp(h) = Ex∼D,y[e−yh(x)]

where yh(x) is called as the classification margin of the hypothesis.
Let’s consider one round in the boosting process. Suppose a set of hypotheses as

well as their weights have already been obtained, and let H denote the combined
hypothesis. Now, one more hypothesis h will be generated and is to be combined
with H to form H + αh. The loss after the combination will be

lossexp(H + αh) = Ex∼D,y[e−y(H (x)+αh(x))]

The loss can be decomposed to each instance, which is called pointwise loss, as

lossexp(H + αh | x) = Ey[e−y(H (x)+αh(x)) | x]

Since y and h(x) must be +1 or −1, we can expand the expectation as

lossexp(H + αh | x) = e−y H (x)
(
e−α P(y = h(x) | x) + eα P(y �= h(x) | x)

)

Suppose we have already generated h, and thus the weight α that minimizes the
loss can be found when the derivative of the loss equals zero, that is,

∂lossexp(H + αh | x)

∂α
= e−y H (x)

(−e−α P(y = h(x) | x) + eα P(y �= h(x) | x)
)

= 0

and the solution is

α = 1

2
ln

P(y = h(x) | x)

P(y �= h(x) | x)
= 1

2
ln

1 − P(y �= h(x) | x)

P(y �= h(x) | x)

By taking an expectation over x, that is, solving ∂lossexp(H+αh)
∂α

= 0, and denoting
ε = Ex∼D[y �= h(x)], we get

α = 1

2
ln

1 − ε

ε

which is the way of determining αt in AdaBoost.

1Here we explain the AdaBoost algorithm from the view of [11] since it is easier to understand than the
original explanation in [9].

© 2009 by Taylor & Francis Group, LLC

132 AdaBoost

Now let’s consider how to generate h. Given a base learning algorithm, AdaBoost
invokes it to produce a hypothesis from a particular instance distribution. So, we only
need to consider what hypothesis is desired for the next round, and then generate an
instance distribution to achieve this hypothesis.

We can expand the pointwise loss to second order about h(x) = 0, when fixing
α = 1,

lossexp(H + h | x) ≈ Ey[e−y H (x)(1 − yh(x) + y2h(x)2/2) | x]

= Ey[e−y H (x)(1 − yh(x) + 1/2) | x]

since y2 = 1 and h(x)2 = 1.
Then a perfect hypothesis is

h∗(x) = arg min
h

lossexp(H + h | x) = arg max
h

Ey[e−y H (x) yh(x) | x]

= arg max
h

e−H (x) P(y = 1 | x) · 1 · h(x) + eH (x) P(y = −1 | x) · (−1) · h(x)

Note that e−y H (x) is a constant in terms of h(x). By normalizing the expectation as

h∗(x) = arg max
h

e−H (x) P(y = 1 | x) · 1 · h(x) + eH (x) P(y = −1 | x) · (−1) · h(x)

e−H (x) P(y = 1 | x) + eH (x) P(y = −1 | x)

we can rewrite the expectation using a new term w(x, y), which is drawn from
e−y H (x) P(y | x), as

h∗(x) = arg max
h

Ew(x,y)∼e−y H (x) P(y|x)[yh(x) | x]

Since h∗(x) must be +1 or −1, the solution to the optimization is that h∗(x) holds
the same sign with y|x, that is,

h∗(x) = Ew(x,y)∼e−y H (x) P(y|x)[y | x]

= Pw(x,y)∼e−y H (x) P(y|x)(y = 1 | x) − Pw(x,y)∼e−y H (x) P(y|x)(y = −1 | x)

As can be seen, h∗ simply performs the optimal classification of x under the distri-
bution e−y H (x) P(y | x). Therefore, e−y H (x) P(y | x) is the desired distribution for a
hypothesis minimizing 0/1-loss.

So, when the hypothesis h(x) has been learned and α = 1
2 ln 1−ε

ε
has been deter-

mined in the current round, the distribution for the next round should be

Dt+1(x) = e−y(H (x)+αh(x)) P(y | x) = e−y H (x) P(y | x) · e−αyh(x)

= Dt (x) · e−αyh(x)

which is the way of updating instance distribution in AdaBoost.
But, why optimizing the exponential loss works for minimizing the 0/1-loss?

Actually, we can see that

h∗(x) = arg min
h

Ex∼D,y[e−yh(x) | x] = 1

2
ln

P(y = 1 | x)

P(y = −1 | x)

© 2009 by Taylor & Francis Group, LLC

7.3 Illustrative Examples 133

and therefore we have

sign(h∗(x)) = arg max
y

P(y|x)

which implies that the optimal solution to the exponential loss achieves the minimum
Bayesian error for the classification problem. Moreover, we can see that the function
h∗ which minimizes the exponential loss is the logistic regression model up to a factor
2. So, by ignoring the factor 1/2, AdaBoost can also be viewed as fitting an additive
logistic regression model.

It is noteworthy that the data distribution is not known in practice, and the AdaBoost
algorithm works on a given training set with finite training examples. Therefore, all
the expectations in the above derivations are taken on the training examples, and the
weights are also imposed on training examples. For base learning algorithms that
cannot handle weighted training examples, a resampling mechanism, which samples
training examples according to desired weights, can be used instead.

7.3 Illustrative Examples

In this section, we demonstrate how the AdaBoost algorithm works, from an illustra-
tion on a toy problem to real data sets.

7.3.1 Solving XOR Problem

We consider an artificial data set in a two-dimensional space, plotted in Figure 7.3(a).
There are only four instances, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x1 = (0, +1), y1 = +1)

(x2 = (0, −1), y2 = +1)

(x3 = (+1, 0), y3 = −1)

(x4 = (−1, 0), y4 = −1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

This is the XOR problem. The two classes cannot be separated by a linear classifier
which corresponds to a line on the figure.

Suppose we have a base learning algorithm which tries to select the best of the fol-
lowing eight functions. Note that none of them is perfect. For equally good functions,
the base learning algorithm will pick one function from them randomly.

h1(x) =
{ +1, if (x1 > −0.5)

−1, otherwise
h2(x) =

{ −1, if (x1 > −0.5)
+1, otherwise

h3(x) =
{ +1, if (x1 > +0.5)

−1, otherwise
h4(x) =

{ −1, if (x1 > +0.5)
+1, otherwise

© 2009 by Taylor & Francis Group, LLC

134 AdaBoost

(a) The XOR data (b) 1st round (c) 2nd round (d) 3rd round

+1+1

-1

-1

+1+1

-1

-1

x2

x1

x2

x1

+1+1

-1

-1

x2

x1

-0.550.55 -1.35-0.25 0.25

+1+1

-1

-1

x2

x1

-2.45-1.35 -0.85
0.85 1.35-0.25

Figure 7.3 AdaBoost on the XOR problem.

h5(x) =
{ +1, if (x2 > −0.5)

−1, otherwise
h6(x) =

{ −1, if (x2 > −0.5)
+1, otherwise

h7(x) =
{ +1, if (x2 > +0.5)

−1, otherwise
h8(x) =

{ −1, if (x2 > +0.5)
+1, otherwise

where x1 and x2 are the values of x at the first and second dimension, respectively.
Now we track how AdaBoost works:

1. The first step is to invoke the base learning algorithm on the original data. h2,
h3, h5, and h8 all have 0.25 classification errors. Suppose h2 is picked as the first
base learner. One instance, x1, is wrongly classified, so the error is 1/4 = 0.25.
The weight of h2 is 0.5 ln 3 ≈ 0.55. Figure 7.3(b) visualizes the classification,
where the shadowed area is classified as negative (−1) and the weights of the
classification, 0.55 and −0.55, are displayed.

2. The weight of x1 is increased and the base learning algorithm is invoked again.
This time h3, h5, and h8 have equal errors. Suppose h3 is picked, of which
the weight is 0.80. Figure 7.3(c) shows the combined classification of h2 and
h3 with their weights, where different gray levels are used for distinguishing
negative areas according to classification weights.

3. The weight of x3 is increased, and this time only h5 and h8 equally have the
lowest errors. Suppose h5 is picked, of which the weight is 1.10. Figure 7.3(d)
shows the combined classification of h2, h3, and h8. If we look at the sign of
classification weights in each area in Figure 7.3(d), all the instances are correctly
classified. Thus, by combining the imperfect linear classifiers, AdaBoost has
produced a nonlinear classifier which has zero error.

7.3.2 Performance on Real Data

We evaluate the AdaBoost algorithm on 56 data sets from the UCI Machine Learning
Repository,2 which covers a broad range of real-world tasks. We use the Weka (will be
introduced in Section 7.6) implementation of AdaBoost.M1 using reweighting with

2http://www.ics.uci.edu/∼mlearn/MLRepository.html

© 2009 by Taylor & Francis Group, LLC

7.3 Illustrative Examples 135

AdaBoost with decision tree (unpruned)

AdaBoost with decision tree (pruned)AdaBoost with decision stump

D
ec

is
io

n
 s

tu
m

p

D
ec

is
io

n
 t

re
e

(p
ru

n
ed

)

1.00

0.80

0.60

0.40

0.20

0.00

1.00

0.80

0.60

0.40

0.20

0.00
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

D
ec

is
io

n
 t

re
e

(u
n

p
ru

n
ed

)

1.00

0.80

0.60

0.40

0.20

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Figure 7.4 Comparison of predictive errors of AdaBoost against decision stump,
pruned, and unpruned single decision trees on 56 UCI data sets.

50 base learners. Almost all kinds of learning algorithms can be taken as base learning
algorithms, such as decision trees, neural networks, and so on. Here, we have tried
three base learning algorithms, including decision stump, pruned, and unpruned J4.8
decision trees (Weka implementation of C4.5).

We plot the comparison results in Figure 7.4, where each circle represents a data set
and locates according to the predictive errors of the two compared algorithms. In each
plot of Figure 7.4, the diagonal line indicates where the two compared algorithms
have identical errors. It can be observed that AdaBoost often outperforms its base
learning algorithm, with a few exceptions on which it degenerates the performance.

The famous bias-variance decomposition [12] has been employed to empirically
study why AdaBoost achieves excellent performance [2, 3, 34]. This powerful tool
breaks the expected error of a learning approach into the sum of three nonnegative
quantities, that is, the intrinsic noise, the bias, and the variance. The bias measures
how closely the average estimate of the learning approach is able to approximate the
target, and the variance measures how much the estimate of the learning approach
fluctuates for the different training sets of the same size. It has been observed [2,3,34]
that AdaBoost primarily reduces the bias but it is also able to reduce the variance.

© 2009 by Taylor & Francis Group, LLC

136 AdaBoost

Figure 7.5 Four feature masks to be applied to each rectangle.

7.4 Real Application

Viola and Jones [27] combined AdaBoost with a cascade process for face detection.
As the result, they reported that on a 466 MHz machine, face detection on a 384×288
image costs only 0.067 seconds, which is almost 15 times faster than state-of-the-
art face detectors at that time but with comparable accuracy. This face detector has
been recognized as one of the most exciting breakthroughs in computer vision (in
particular, face detection) during the past decade. In this section, we briefly introduce
how AdaBoost works in the Viola-Jones face detector.

Here the task is to locate all possible human faces in a given image. An image is
first divided into subimages, say 24 × 24 squares. Each subimage is then represented
by a feature vector. To make the computational process efficient, very simple features
are used. All possible rectangles in a subimage are examined. On every rectangle,
four features are extracted using the masks shown in Figure 7.5. With each mask,
the sum of pixels’ gray level in white areas is subtracted by the sum of those in dark
areas, which is regarded as a feature. Thus, by a 24×24 splitting, there are more than
1 million features, but each of the features can be calculated very fast.

Each feature is regarded as a weak learner, that is,

hi,p,θ (x) = I[pxi ≤ pθ] (p ∈ {+1, −1})
where xi is the value of x at the i-th feature.

The base learning algorithm tries to find the best weak classifier hi∗,p∗,θ∗ that
minimizes the classification error, that is,

(i∗, p∗, θ∗) = arg min
i,p,θ

E(x,y)I[hi,p,θ (x) �= y]

Face rectangles are regarded as positive examples, as shown in Figure 7.6, while
rectangles that do not contain any face are regarded as negative examples. Then, the
AdaBoost process is applied and it will return a few weak learners, each corresponds
to one of the over 1 million features. Actually, the AdaBoost process can be regarded
as a feature selection tool here.

Figure 7.7 shows the first two selected features and their position relative to a
human face. It is evident that these two features are intuitive, where the first feature
measures how the intensity of the eye areas differ from that of the lower areas, while

© 2009 by Taylor & Francis Group, LLC

7.4 Real Application 137

Figure 7.6 Positive training examples [27].

the second feature measures how the intensity of the two eye areas differ from the
area between two eyes.

Using the selected features in order, an extremely imbalanced decision tree is built,
which is called cascade of classifiers, as illustrated in Figure 7.8.

The parameter θ is adjusted in the cascade such that, at each tree node, branching
into “not a face” means that the image is really not a face. In other words, the false
negative rate is minimized. This design owes to the fact that a nonface image is easier
to be recognized, and it is possible to use a few features to filter out a lot of candidate
image rectangles, which endows the high efficiency. It was reported [27] that 10
features per subimage are examined in average. Some test results of the Viola-Jones
face detector are shown in Figure 7.9.

© 2009 by Taylor & Francis Group, LLC

138 AdaBoost

Figure 7.7 Selected features [27].

7.5 Advanced Topics

7.5.1 Theoretical Issues

Computational learning theory studies some fundamental theoretical issues of
machine learning. First introduced by Valiant in 1984 [25], the Probably Approx-
imately Correct (PAC) framework models learning algorithms in a distribution free
manner. Roughly speaking, for binary classification, a problem is learnable or strongly
learnable if there exists an algorithm that outputs a hypothesis h in polynomial time

not a face

facenot a face

not a face ...

Figure 7.8 A cascade of classifiers.

© 2009 by Taylor & Francis Group, LLC

7.5 Advanced Topics 139

Figure 7.9 Outputs of the Viola-Jones face detector on a number of test images [27].

such that for all 0 < δ, ε ≤ 0.5,

P
(
Ex∼D,y [I [h(x) �= y]] < ε

) ≥ 1 − δ

and a problem is weakly learnable if the above holds for all 0 < δ ≤ 0.5 but only
when ε is slightly smaller than 0.5 (or in other words, h is only slightly better than
random guess).

In 1988, Kearns and Valiant [15] posed an interesting question, that is, whether
the strongly learnable problem class equals the weakly learnable problem class. This
question is of fundamental importance, since if the answer is “yes,” any weak learner
is potentially able to be boosted to a strong learner. In 1989, Schapire [21] proved that
the answer is really “yes,” and the proof he gave is a construction, which is the first

© 2009 by Taylor & Francis Group, LLC

140 AdaBoost

boosting algorithm. One year later, Freund [7] developed a more efficient algorithm.
Both algorithms, however, suffered from the practical deficiency that the error bound
of the base learners need to be known ahead of time, which is usually unknown in
practice. Later, in 1995, Freund and Schapire [9] developed the AdaBoost algorithm,
which is effective and efficient in practice.

Freund and Schapire [9] proved that, if the base learners of AdaBoost have errors
ε1, ε2, · · · , εT , the error of the final combined learner, ε, is upper bounded as

ε = Ex∼D,yI[H (x) �= y] ≤ 2T
T∏

t=1

√
εt (1 − εt) ≤ e−2

∑T
t=1 γ 2

t

where γt = 0.5 − εt . It can be seen that AdaBoost reduces the error exponentially
fast. Also, it can be derived that, to achieve an error less than ε, the round T is upper
bounded as

T ≤
⌈

1

2γ 2
ln

1

ε

⌉

where it is assumed that γ = γ1 = γ2 = · · · = γT .
In practice, however, all the operations of AdaBoost can only be carried out on

training data D, that is,
εD = Ex∼D,yI[H (x) �= y]

and thus the errors are training errors, while the generalization error, that is, the error
over instance distribution D

εD = Ex∼D,yI[H (x) �= y]

is of more interest.
The initial analysis [9] showed that the generalization error of AdaBoost is upper

bounded as

εD ≤ εD + Õ

(√
dT

m

)

with probability at least 1 − δ, where d is the VC-dimension of base learners, m is
the number of training instances, and Õ(·) is used instead of O(·) to hide logarithmic
terms and constant factors.

The above bound suggests that in order to achieve a good generalization ability,
it is necessary to constrain the complexity of base learners as well as the number of
learning rounds; otherwise AdaBoost will overfit. However, empirical studies show
that AdaBoost often does not overfit, that is, its test error often tends to decrease even
after the training error reaches zero, even after a large number of rounds, such as
1000.

For example, Schapire et al. [22] plotted the performance of AdaBoost on the
letter data set from UCI Machine Learning Repository, as shown in Figure 7.10 (left),
where the higher curve is test error while the lower one is training error. It can be
observed that AdaBoost achieves zero training error in less than 10 rounds but the
generalization error keeps on reducing. This phenomenon seems to counter Occam’s

© 2009 by Taylor & Francis Group, LLC

7.5 Advanced Topics 141

er
ro

r
ra

te

ra
ti

o
 o

f
te

st
 s

et

t θ

20

15

10

5

0

1.0

0.5

10 100 1000 -1 -0.5 0.5 1

Figure 7.10 Training and test error (left) and margin distribution (right) of AdaBoost
on the letter data set [22].

Razor, that is, nothing more than necessary should be done, which is one of the basic
principles in machine learning.

Many researchers have studied this phenomena, and several theoretical explana-
tions have been given, for example, [11]. Schapire et al. [22] introduced the margin-
based explanation. They argued that AdaBoost is able to increase the margin even
after the training error reaches zero, and thus it does not overfit even after a large
number of rounds. The classification margin of h on x is defined as yh(x), and that
of H (x) = ∑T

t=1 αt ht (x) is defined as

y H (x) =
∑T

t=1 αt yht (x)
∑T

t=1 αt

Figure 7.10 (right) plots the distribution of y H (x) ≤ θ for different values of θ . It
was proved in [22] that the generalization error is upper bounded as

εD ≤ Px∼D,y(y H (x) ≤ θ) + Õ

(√
d

mθ2
+ ln

1

δ

)

≤ 2T
T∏

t=1

√
ε1−θ

t (1 − ε)1+θ + Õ

(√
d

mθ2
+ ln

1

δ

)

with probability at least 1 − δ. This bound qualitatively explains that when other
variables in the bound are fixed, the larger the margin, the smaller the generalization
error.

However, this margin-based explanation was challenged by Brieman [4]. Using
minimum margin �,

� = min
x∈D

y H (x)

Breiman proved a generalization error bound is tighter than the above one using
minimum margin. Motivated by the tighter bound, the arc-gv algorithm, which is a
variant of AdaBoost, was proposed to maximize the minimum margin directly, by

© 2009 by Taylor & Francis Group, LLC

142 AdaBoost

updating αt according to

αt = 1

2
ln

(
1 + γt

1 − γt

)
− 1

2
ln

(
1 + �t

1 − �t

)

Interestingly, the minimum margin of arc-gv is uniformly better than that of AdaBoost,
but the test error of arc-gv increases drastically on all tested data sets [4]. Thus, the
margin theory for AdaBoost was almost sentenced to death.

In 2006, Reyzin and Schapire [20] reported an interesting finding. It is well-known
that the bound of the generalization error is associated with margin, the number of
rounds, and the complexity of base learners. When comparing arc-gv with AdaBoost,
Breiman [4] tried to control the complexity of base learners by using decision trees
with the same number of leaves, but Reyzin and Schapire found that these are trees
with very different shapes. The trees generated by arc-gv tend to have larger depth,
while those generated by AdaBoost tend to have larger width. Figure 7.11 (top)
shows the difference of depth of the trees generated by the two algorithms on the
breast cancer data set from UCI Machine Learning Repository. Although the trees
have the same number of leaves, it seems that a deeper tree makes more attribute
tests than a wider tree, and therefore they are unlikely to have equal complexity.
So, Reyzin and Schapire repeated Breiman’s experiments by using decision stump,
which has only one leaf and therefore is with a fixed complexity, and found that the
margin distribution of AdaBoost is actually better than that of arc-gv, as illustrated in
Figure 7.11 (bottom).

Recently, Wang et al. [28] introduced equilibrium margin and proved a new bound
tighter than that obtained by using minimum margin, which suggests that the mini-
mum margin may not be crucial for the generalization error of AdaBoost. It will be
interesting to develop an algorithm that maximizes equilibrium margin directly, and
to see whether the test error of such an algorithm is smaller than that of AdaBoost,
which remains an open problem.

7.5.2 Multiclass AdaBoost

In the previous sections we focused on AdaBoost for binary classification, that is,
Y = {+1, −1}. In many classification tasks, however, an instance belongs to one of
many instead of two classes. For example, a handwritten number belongs to 1 of 10
classes, that is, Y = {0, . . . , 9}. There is more than one way to deal with a multiclass
classification problem.

AdaBoost.M1 [9] is a very direct extension, which is as same as the algorithm shown
in Figure 7.2, except that now the base learners are multiclass learners instead of binary
classifiers. This algorithm could not use binary base classifiers, and requires every
base learner have less than 1/2 multiclass 0/1-loss, which is an overstrong constraint.

SAMME [35] is an improvement over AdaBoost.M1, which replaces Line 5 of
AdaBoost.M1 in Figure 7.2 by

αt = 1

2
ln

(
1 − εt

εt

)
+ ln(|Y| − 1)

© 2009 by Taylor & Francis Group, LLC

7.5 Advanced Topics 143

C
u

m
u

la
ti

ve
 a

ve
ra

g
e

tr
ee

 d
ep

th
C

u
m

u
la

ti
ve

 f
re

q
u

en
cy

10

9.5

9

8.5

8

7.5

7
500

0.70.60.50.40.30.20.10-0.1

45040035030025020015010050

Round

(a)

“AdaBoost_bc”
“Arc-gv_bc”

1.2

1

0.8

0.6

0.4

0.2

0

“AdaBoost_bc”
“Arc-gv_bc”

Margin

(b)

Figure 7.11 Tree depth (top) and margin distribution (bottom) of AdaBoost against
arc-gv on the breast cancer data set [20].

This modification is derived from the minimization of multiclass exponential loss. It
was proved that, similar to the case of binary classification, optimizing the multiclass
exponential loss approaches to the optimal Bayesian error, that is,

sign[h∗(x)] = arg max
y∈Y

P(y|x)

where h∗ is the optimal solution to the multiclass exponential loss.

© 2009 by Taylor & Francis Group, LLC

144 AdaBoost

A popular solution to multiclass classification problem is to decompose the task into
multiple binary classification problems. Direct and popular decompositions include
one-vs-rest and one-vs-one. One-vs-rest decomposes a multiclass task of |Y| classes
into |Y| binary classification tasks, where the i-th task is to classify whether an
instance belongs to the i-th class or not. One-vs-one decomposes a multiclass task
of |Y| classes into |Y|(|Y|−1)

2 binary classification tasks, where each task is to classify
whether an instance belongs to, say, the i-th class or the j-th class.

AdaBoost.MH [23] follows the one-vs-rest approach. After training |Y| number of
(binary) AdaBoost classifiers, the real-value output H (x) = ∑T

t=1 αt ht (x) of each
AdaBoost is used instead of the crisp classification to find the most probable class,
that is,

H (x) = arg max
y∈Y

Hy(x)

where Hy is the AdaBoost classifier that classifies the y-th class from the rest.
AdaBoost.M2 [9] follows the one-vs-one approach, which minimizes a pseudo-

loss. This algorithm is later generalized as AdaBoost.MR [23] which minimizes a
ranking loss motivated by the fact that the highest ranked class is more likely to be
the correct class. Binary classifiers obtained by one-vs-one decomposition can also
be aggregated by voting or pairwise coupling [13].

Error correcting output codes (ECOCs) [6] can also be used to decompose a
multiclass classification problem into a series of binary classification problems. For
example, Figure 7.12a shows output codes for four classes using five classifiers. Each
classifier is trained to discriminate the+1 and −1 classes in the corresponding column.
For a test instance, by concatenating the classifications output by the five classifiers,
a code vector of predictions is obtained. This vector will be compared with the code
vector of the classes (every row in Figure 7.12(a) using Hamming distance, and the
class with the shortest distance is deemed the final prediction. According to infor-
mation theory, when the binary classifiers are independent, the larger the minimum
Hamming distance within the code vectors, the smaller the 0/1-loss. Later, a unified
framework was proposed for multiclass decomposition approaches [1]. Figure 7.12(b)
shows the output codes for one-vs-rest decomposition and Figure 7.12(c) shows the
output codes for one-vs-one decomposition, where zeros mean that the classifiers
should ignore the instances of those classes.

↓ ↓ ↓ ↓ ↓
y1 = +1 −1 +1 −1 +1

y2 = +1 +1 −1 −1 −1

y3 = −1 −1 +1 −1 −1

y4 = −1 +1 −1 +1 +1

(a) Original code (b) One-vs-rest code (c) One-vs-one code

H1 H2 H3 H4 H5

↓ ↓ ↓ ↓
y1 = +1 −1 −1 −1

y2 = −1 +1 −1 −1

y3 = −1 −1 +1 −1

y4 = −1 −1 −1 +1

H1 H2 H3 H4

↓ ↓ ↓ ↓ ↓
y1 = +1 +1 +1 0 0 0

y2 = –1 0 0 +1 +1 0

y3 = 0 −1 0 −1 0 +1

y4 = 0 0 −1 0 −1 −1

H1 H2 H3 H4 H5

↓
H6

Figure 7.12 ECOC output codes.

© 2009 by Taylor & Francis Group, LLC

7.6 Software Implementations 145

7.5.3 Other Advanced Topics

Comprehensibility, that is, understandability of the learned model to user, is desired
in many real applications. Similar to other ensemble methods, a serious deficiency
of AdaBoost and its variants is the lack of comprehensibility. Even when the base
learners are comprehensible models such as small decision trees, the combination of
them will lead to a black-box model. Improving the comprehensibility of ensemble
methods is an important yet largely understudied direction [33].

In most ensemble methods, all the generated base learners are used in the ensemble.
However, it has been proved that stronger ensembles with smaller sizes can be ob-
tained through selective ensemble, that is, ensembling some instead of all the available
base learners [34]. This finding is different from previous results which suggest that
ensemble pruning may sacrifice the generalization ability [17,24], and therefore pro-
vides support for better selective ensemble or ensemble pruning methods [18, 31].

In many applications, training examples of one class are far more than other classes.
Learning algorithms that do not consider class imbalance tend to be overwhelmed by
the majority class; however, the primary interest is often on the minority class. Many
variants of AdaBoost have been developed for class-imbalance learning [5,14,19,26].
Moreover, a recent study [16] suggests that the performance of AdaBoost could be
used as a clue to judge whether a task suffers from class imbalance or not, based on
which new powerful algorithms may be designed.

As mentioned before, in addition to the 0/1-loss, boosting can also work with other
kinds of loss functions. For example, by considering the ranking loss, RankBoost [8]
and AdaRank [30] have been developed for information retrieval tasks.

7.6 Software Implementations

As an off-the-shelf machine learning technique, AdaBoost and its variants have easily
accessible codes in Java, MATLAB�, R, and C++.

Java implementations can be found in Weka,3 one of the most famous open-source
packages for machine learning and data mining. Weka includes AdaBoost.M1 al-
gorithm [9], which provides options to choose the base learning algorithms, set the
number of base learners, and switch between reweighting and resampling mech-
anisms. Weka also includes other boosting algorithms, such as LogitBoost [11],
MultiBoosting [29], and so on.

MATLAB implementation can be found in Spider.4 R implementation can be found
in R-Project.5 C++ implementation can be found in Sourceforge.6 There are also
many other implementations that can be found on the Internet.

3http://www.cs.waikato.ac.nz/ml/weka/.
4http://www.kyb.mpg.de/bs/people/spider/.
5http://cran.r-project.org/web/packages/.
6http://sourceforge.net/projects/multiboost.

© 2009 by Taylor & Francis Group, LLC

146 AdaBoost

7.7 Exercises

1. What is the basic idea of Boosting?

2. In Figure 7.2, why should it break when εt ≥ 0.5?

3. Given a training set
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x1 = (+1, 0), y1 = +1)
(x2 = (0, +1), y2 = +1)
(x3 = (−1, 0), y3 = +1)
(x4 = (0, −1), y4 = +1)
(x5 = (0, 0), y5 = −1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

is there any linear classifier that can reach zero training error? Why/why not?

4. Given the above training set, show that AdaBoost can reach zero training error
by using five linear base classifiers from the following pool.

h1(x) = 2I[x1 > 0.5] − 1 h2(x) = 2I[x1 < 0.5] − 1

h3(x) = 2I[x1 > −0.5] − 1 h4(x) = 2I[x1 < −0.5] − 1

h5(x) = 2I[x2 > 0.5] − 1 h6(x) = 2I[x2 < 0.5] − 1

h7(x) = 2I[x2 > −0.5] − 1 h8(x) = 2I[x2 < −0.5] − 1

h9(x) = +1 h10(x) = −1

5. In the above exercise, will AdaBoost reach nonzero training error for any
T ≥ 5? T is the number of base classifiers.

6. The nearest neighbor classifier classifies an instance by assigning it with the
label of its nearest training example. Can AdaBoost boost the performance of
such classifier? Why/why not?

7. Plot the following functions in a graph within range z ∈ [−2, 2], and observe
their difference.

l1(z) =
{

0, z ≥ 0

1, z < 0
l2(z) =

{
0, z ≥ 1

1 − z, z < 1

l3(z) = (z − 1)2 l4(z) = e−z

Note that, when z = y f (x), l1, l2, l3, and l4 are functions of 0/1-loss, hinge loss
(used by support vector machines), square loss (used by least square regression),
and exponential loss (the loss function used by AdaBoost), respectively.

8. Show that the l2, l3, and l4 functions in the above exercise are all convex
(l is convex if ∀z1, z2 : l(z1 + z2) ≥ (l(z1) + l(z2))). Considering a binary
classification task z = y f (x) where y = {−1, +1}, find that function to which
the optimal solution is the Bayesian optimal solution.

9. Can AdaBoost be extended to solve regression problems? If your answer is yes,
how? If your answer is no, why?

© 2009 by Taylor & Francis Group, LLC

References 147

10. Run experiments to compare AdaBoost using reweighting and AdaBoost using
resampling. You can use Weka implementation and data sets from UCI Machine
Learning Repository.

References

[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Re-
search, 1:113–141, 2000.

[2] E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2):105–
139, 1999.

[3] L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statis-
tics Department, University of California, Berkeley, 1996.

[4] L. Breiman. Prediction games and arcing algorithms. Neural Computation,
11(7):1493–1517, 1999.

[5] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost:
Improving prediction of the minority class in boosting. In Proceedings of the
7th European Conference on Principles and Practice of Knowledge Discovery
in Databases, pages 107–119, Cavtat-Dubrovnik, Croatia, 2003.

[6] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,
1995.

[7] Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. Journal of Machine Learning Research, 4:933–963,
2003.

[9] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

[10] Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statis-
tical view of boosting (with discussions). The Annals of Statistics, 28(2):337–
407, 2000.

[12] S. German, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

© 2009 by Taylor & Francis Group, LLC

148 AdaBoost

[13] T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of
Statistics, 26(2):451–471, 1998.

[14] M. V. Joshi, R. C. Agarwal, and V. Kumar. Predicting rare classes: Can boost-
ing make any weak learner strong? In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
297–306, Edmonton, Canada, 2002.

[15] M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. In Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, pages 433–444, Seattle, WA, 1989.

[16] X.-Y. Liu, J.-X. Wu, and Z.-H. Zhou. Exploratory under-sampling for class-
imbalance learning. IEEE Transactions on Systems, Man and Cybernetics—
Part B, 2009.

[17] D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In Proceedings
of the 14th International Conference on Machine Learning, pages 211–218,
Nashville, TN, 1997.

[18] G. Martínez-Muñoz and A. Suárez. Pruning in ordered bagging ensembles. In
Proceedings of the 23rd International Conference on Machine Learning, pages
609–616, Pittsburgh, PA, 2006.

[19] H. Masnadi-Shirazi and N. Vasconcelos. Asymmetric boosting. In Proceedings
of the 24th International Conference on Machine Learning, pages 609–619,
Corvallis, OR, 2007.

[20] L. Reyzin and R. E. Schapire. How boosting the margin can also boost classifier
complexity. In Proceedings of the 23rd International Conference on Machine
Learning, pages 753–760, Pittsburgh, PA, 2006.

[21] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

[22] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, 1998.

[23] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37(3):297–336, 1999.

[24] C. Tamon and J. Xiang. On the boosting pruning problem. In Proceedings of the
11th European Conference on Machine Learning, pages 404–412, Barcelona,
Spain, 2000.

[25] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[26] P. Viola and M. Jones. Fast and robust classification using asymmetric AdaBoost
and a detector cascade. In T. G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems 14, pages 1311–
1318. MIT Press, Cambridge, MA, 2002.

© 2009 by Taylor & Francis Group, LLC

References 149

[27] P. Viola and M. Jones. Robust real-time object detection. International Journal
of Computer Vision, 57(2):137–154, 2004.

[28] L. Wang, M. Sugiyama, C. Yang, Z.-H. Zhou, and J. Feng. On the margin
explanation of boosting algorithm. In Proceedings of the 21st Annual Confer-
ence on Learning Theory, pages 479–490, Helsinki, Finland, 2008.

[29] G. I. Webb. MultiBoosting: A technique for combining boosting and wagging.
Machine Learning, 40(2):159–196, 2000.

[30] J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval.
In Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 391–398, Amster-
dam, The Netherlands, 2007.

[31] Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-definite
programming. Journal of Machine Learning Research, 7:1315–1338, 2006.

[32] Z.-H. Zhou. Ensemble learning. In S. Z. Li, editor, Encyclopedia of Biometrics.
Springer, Berlin, 2008.

[33] Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules from trained
neural network ensembles. AI Communications, 16(1):3–15, 2003.

[34] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be
better than all. Artificial Intelligence, 137(1-2):239–263, 2002.

[35] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class AdaBoost. Technical
report, Department of Statistics, University of Michigan, Ann Arbor, 2006.

© 2009 by Taylor & Francis Group, LLC

	The Top Ten Algorithms in Data Mining
	Table of Contents
	Chapter 7: AdaBoost
	7.1 Introduction
	7.2 The Algorithm
	7.2.1 Notations
	7.2.2 A General Boosting Procedure
	7.2.3 The AdaBoost Algorithm

	7.3 Illustrative Examples
	7.3.1 Solving XOR Problem
	7.3.2 Performance on Real Data

	7.4 Real Application
	7.5 Advanced Topics
	7.5.1 Theoretical Issues
	7.5.2 Multiclass AdaBoost
	7.5.3 Other Advanced Topics

	7.6 Software Implementations
	7.7 Exercises
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

