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62 Apriori

4.1 Introduction

Many of the pattern finding algorithms such as those for decision tree building, clas-
sification rule induction, and data clustering that are frequently used in data mining
have been developed in the machine learning research community. Frequent pattern
and association rule mining is one of the few exceptions to this tradition. Its introduc-
tion boosted data mining research and its impact is tremendous. The basic algorithms
are simple and easy to implement. In this chapter the most fundamental algorithms of
frequent pattern and association rule mining, known as Apriori and AprioriTid [3, 4],
and Apriori’s extension to sequential pattern mining, known as AprioriAll [6, 5],
are explained based on the original papers with working examples, and performance
analysis of Apriori is shown using a freely available implementation [1] for a dataset
in UCI repository [8]. Since Apriori is so fundamental and the form of database is
limited to market transaction, there have been many works for improving compu-
tational efficiency, finding more compact representation, and extending the types of
data that can be handled. Some of the important works are also briefly described as
advanced topics.

4.2 Algorithm Description

4.2.1 Mining Frequent Patterns and Association Rules

One of the most popular data mining approaches is to find frequent itemsets from
a transaction dataset and derive association rules. The problem is formally stated as
follows. Let I = {i1, i2, . . . , im} be a set of items. Let D be a set of transactions,
where each transaction t is a set of items such that t ⊆ I. Each transaction has a
unique identifier, called its TID . A transaction t contains X , a set of some items
in I, if X ⊆ t . An association rule is an implication of the form X ⇒ Y , where
X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X ⇒ Y holds in D with confidence c
(0 ≤ c ≤ 1) if the fraction of transactions that also contain Y in those which contain
X inD is c. The rule X ⇒ Y (and equivalently X ∪Y ) has support1 s (0 ≤ s ≤ 1) inD
if the fraction of transactions in D that contain X ∪ Y is s. Given a set of transactions
D, the problem of mining association rules is to generate all association rules that
have support and confidence no less than the user-specified minimum support (called
minsup) and minimum confidence (called minconf), respectively.

Finding frequent2 itemsets (itemsets with support no less than minsup) is not tri-
vial because of the computational complexity due to combinatorial explosion. Once

1An alternative support definition is the absolute count of frequency. In this chapter the latter definition is
also used where appropriate.
2The Apriori paper [3] uses “large” to mean “frequent,” but large is often associated with the number of
items in the itemset. Thus, we prefer to use “frequent.”
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4.2 Algorithm Description 63

frequent itemsets are obtained, it is straightforward to generate association rules with
confidence no less than minconf. Apriori and AprioriTid, proposed by R. Agrawal and
R. Srikant, are seminal algorithms that are designed to work for a large transaction
dataset [3].

4.2.1.1 Apriori

Apriori is an algorithm to find all sets of items (itemsets) that have support no less
than minsup. The support for an itemset is the ratio of the number of transactions that
contain the itemset to the total number of transactions. Itemsets that satisfy minimum
support constraint are called frequent itemsets. Apriori is characterized as a level-wise
complete search (breadth first search) algorithm using anti-monotonicity property of
itemsets: “If an itemset is not frequent, any of its superset is never frequent,” which is
also called the downward closure property. The algorithm makes multiple passes over
the data. In the first pass, the support of individual items is counted and frequent items
are determined. In each subsequent pass, a seed set of itemsets found to be frequent
in the previous pass is used for generating new potentially frequent itemsets, called
candidate itemsets, and their actual support is counted during the pass over the data.
At the end of the pass, those satisfying minimum support constraint are collected,
that is, frequent itemsets are determined, and they become the seed for the next pass.
This process is repeated until no new frequent itemsets are found.

By convention, Apriori assumes that items within a transaction or itemset are sorted
in lexicographic order. The number of items in an itemset is called its size and an
itemset of size k is called a k-itemset. Let the set of frequent itemsets of size k be Fk

and their candidates be Ck . Both Fk and Ck maintain a field, support count.
Apriori algorithm is given in Algorithm 4.1. The first pass simply counts item

occurrences to determine the frequent 1-itemsets. A subsequent pass consists of two
phases. First, the frequent itemsets Fk−1 found in the (k − 1)-th pass are used to
generate the candidate itemsets Ck using the apriori-gen function. Next, the database
is scanned and the support of candidates in Ck is counted. The subset function is used
for this counting.

The apriori-gen function takes as argument Fk−1, the set of all frequent (k − 1)-
itemsets, and returns a superset of the set of all frequent k-itemsets. First, in the join
steps, Fk−1 is joined with Fk−1.

insert into Ck

select p.fitemset1, p.fitemset2, . . . , p.fitemsetk−1, q.fitemsetk−1

from Fk−1 p, Fk−1q

where p.fitemset1 = q.fitemset1, . . . , p.fitemsetk−2 = q.fitemsetk−2,
p.fitemsetk−1 < q .fitemsetk−1

Here, Fk p means that the itemset p is a frequent k-itemset, and p.fitemsetk is the
k-th item of the frequent itemset p.

Then, in the prune step, all the itemsets c ∈ Ck for which some (k − 1)-subset is
not in Fk−1 are deleted.
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64 Apriori

Algorithm 4.1 Apriori Algorithm

F1 = {frequent 1-itemsets};
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen(Fk−1); //New candidates
foreach transaction t ∈ D do begin

Ct = subset(Ck, t); //Candidates contained in t
foreach candidate c ∈ Ct do

c.count + +;
end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = ∪k Fk ;

The subset function takes as arguments Ck and a transaction t , and returns all the
candidate itemsets contained in the transaction t . For fast counting, Apriori adopts
a hash-tree to store the candidate itemsets Ck . Itemsets are stored in leaves. Every
node is initially a leaf node, and the depth of the root node is defined to be 1. When
the number of itemsets in a leaf node exceeds a specified threshold, the leaf node is
converted to an interior node. An interior node at depth d points to nodes at depth
d + 1. Which branch to follow is decided by applying a hash function to the d-th
item of the itemset. Thus, each leaf node is ensured to contain at most a certain
number of itemsets (to be precise, this is true only when creating an interior node
takes place at depth d smaller than k), and an itemset in the leaf node can be reached
by successively hashing each item in the itemset in sequence from the root. Once the
hash-tree is constructed, the subset function finds all the candidates contained in a
transaction t , starting from the root node. At the root node, every item in t is hashed,
and each branch determined is followed one depth down. If a leaf node is reached,
itemsets in the leaf that are in the transaction t are searched and those found are made
reference to the answer set. If an interior node is reached by hashing the item i , items
that come after i in t are hashed recursively until a leaf node is reached. It is evident
that itemsets in the leaves that are never reached are not contained in t .

Clearly, any subset of a frequent itemset satisfies the minimum support constraint.
The join operation is equivalent to extending Fk−1 with each item in the database and
then deleting those itemsets for which the (k − 1)-itemset obtained by deleting the
(k−1)-th item is not in Fk−1. The condition p.fitemsetk−1 < q.fitemsetk−1 ensures that
no duplication is made. The prune step where all the itemsets whose (k − 1)-subsets
are not in Fk−1 are deleted from Ck does not delete any itemset that could be in Fk .
Thus, Ck ⊇ Fk , and Apriori algorithm is correct.

The remaining task is to generate the desired association rules from the frequent
itemsets. A straightforward algorithm for this task is as follows. To generate rules,
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4.2 Algorithm Description 65

all nonempty subsets of every frequent itemset f are enumerated and for every such
subset a, a rule of the form a ⇒ ( f − a) is generated if the ratio of support( f ) to
support(a) is at least minconf. Here, note that the confidence of the rule â ⇒ ( f − â)
cannot be larger than the confidence of a ⇒ ( f −a) for any â ⊂ a. This in turn means
that for a rule ( f −a) ⇒ a to hold, all rules of the form ( f − â) ⇒ â must hold. Using
this property, the algorithm to generate association rules is given in Algorithm 4.2.

Algorithm 4.2 Association Rule Generation Algorithm

H1 = ∅ //Initialize
foreach; frequent k-itemset fk, k ≥ 2 do begin

A = (k − 1)-itemsets ak−1 such that ak−1 ⊂ fk ;
foreach ak−1 ∈ A do begin

con f = support( fk)/support(ak−1);
if (con f ≥ mincon f ) then begin

output the rule ak−1 ⇒ ( fk − ak−1)
with confidence = conf and support = support( fk);

add ( fk − ak−1) to H1;
end

end
call ap-genrules( fk, H1);

end

Procedure ap-genrules( fk : frequent k-itemset, Hm : set of m-item
consequents)

if (k > m + 1) then begin
Hm+1 = apriori-gen(Hm);
foreach hm+1 ∈ Hm+1 do begin

con f = support( fk)/support( fk − hm+1);
if (con f ≥ mincon f ) then

output the rule fk − hm+1 ⇒ hm+1

with confidence = conf and support = support( fk);
else

delete hm+1 from Hm+1;
end
call ap-genrules( fk, Hm+1);

end

Apriori achieves good performance by reducing the size of candidate sets. However,
in situations with very many frequent itemsets or very low minimum support, it still
suffers from the cost of generating a huge number of candidate sets and scanning the
database repeatedly to check a large set of candidate itemsets.
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66 Apriori

4.2.1.2 AprioriTid

AprioriTid is a variation of Apriori. It does not reduce the number of candidates
but it does not use the database D for counting support after the first pass. It uses a
new dataset Ck . Each member of the set Ck is of the form < TID, {I D} >, where
each I D is the identifier of a potentially frequent k-itemset present in the transaction
with identifier TID except k = 1. For k = 1, C1 corresponds to the database D,
although conceptually each item i is replaced by the itemset {i}. The member of Ck

corresponding to a transaction t is < t.TID, {c ∈ Ck |c contained in t} >.
The intuition for using Ck is that it will be smaller than the database D for large

values of k because some transactions may not contain any candidate k-itemset,
in which case Ck does not have an entry for this transaction, or because very few
candidates may be contained in the transaction and each entry may be smaller than
the number of items in the corresponding transaction. AprioriTid algorithm is given
in Algorithm 4.3. Here, c[i] represents the i-th item in k-itemset c.

Algorithm 4.3 AprioriTid Algorithm

F1 = {frequent 1-itemsets};
C1 = database D;
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen(Fk−1); //New candidates
Ck = ∅;
foreach entry t ∈ Ck−1 do begin

// determine candidate itemsets in Ck contained
// in the transaction with identifier t .TID
Ct = {c ∈ Ck |(c − c[k]) ∈ t .set-of-itemsets ∧

(c − c[k − 1]) ∈ t .set-of-itemsets};
foreach candidate c ∈ Ct do

c.count + +;
if (Ct 
= ∅) then Ck+ = 〈t .TID,Ct 〉;

end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = ∪k Fk ;

Each Ck is stored in a sequential structure. A candidate k-itemset ck in Ck maintains
two additional fields; generator and extensions, in addition to the field, support count.
The generator field stores the IDs of the two frequent (k − 1)-itemsets whose join
generated ck . The extension field stores the IDs of all the (k + 1)-candidates that are
extensions of ck . When a candidate ck is generated by joining f 1

k−1 and f 2
k−1, their

IDs are saved in the generator field of ck and the ID of ck is added to the extension
field of f 1

k−1. The t .set-of-itemsets field of an entry t in Ck−1 gives the IDs of all
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4.2 Algorithm Description 67

(k − 1)-candidates contained in t.TID. For each such candidate ck−1 the extension
field gives Tk , the set of IDs of all the candidate k-itemsets that are extensions of ck−1.
For each ck in Tk , the generator field gives the IDs of the two itemsets that generated ck .
If these itemsets are present in the entry for t .set-of-itemsets, it is concluded that ck

is present in transaction t.TID, and ck is added to Ct .
AprioriTid has an overhead to calculate Ck but an advantage that Ck can be stored

in memory when k is large. It is thus expected that Apriori beats AprioriTid in earlier
passes (small k) and AprioriTid beats Apriori in later passes (large k). Since both
Apriori and AprioriTid use the same candidate generation procedure and therefore
count the same itemsets, it is possible to make a combined use of these two algo-
rithms in sequence. AprioriHybrid uses Apriori in the initial passes and switches to
AprioriTid when it expects that the set Ck at the end of the pass will fit in memory.

4.2.2 Mining Sequential Patterns

Agrawal and Srikant extended Apriori algorithm to the problem of sequential pattern
mining [6]. In Apriori there is no notion of sequence, and thus, the problem of finding
which items appear together can be viewed as finding intratransaction patterns. Here,
sequence matters and the problem of finding sequential patterns can be viewed as
intertransaction patterns.

Each transaction consists of sequence-id, transaction-time, and a set of items. The
same sequence-id has no more than one transaction with the same transaction-time.
A sequence is an ordered list of itemsets. Thus, a sequence consists of a list of sets
of characters (items), rather than being simply a list of characters. The length of a
sequence is the number of itemsets in the sequence. A sequence of length k is called
a k-sequence. Without loss of generality, the set of items is assumed to be mapped to
a set of contiguous integers, and an itemset i is denoted by (i1i2 . . . im) where i j is an
item. A sequence s is denoted by 〈s1s2 . . . sn〉. A sequence 〈a1a2 . . . an〉 is contained in
another sequence 〈b1b2 . . . bm〉 (n ≤ m) if there exist integers i1 < i2 < · · · < in such
that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . All the transactions with the same sequence-id
which are sorted by transaction-time together form a sequence (transaction sequence).
A sequence-id supports a sequence s if s is contained in its transaction sequence. The
support for a sequence is defined as the fraction of total number of sequence-ids that
support this sequence. Likewise, the support for an itemset i is defined as the fraction
of sequence-ids that have items in i in any one of their transactions. Note that this
definition is different from that used in Apriori. Thus the itemset i and the 1-sequence
〈i〉 have the same support.

Given a transaction database D, the problem of mining sequential patterns is to
find the maximal3 sequences among all sequences that satisfy a certain user-specified
minimum support constraint. Each such maximal sequence represents a sequential
pattern. A sequence satisfying the minimum support constraint is called a frequent
sequence (not necessarily maximal), and an itemset satisfying the minimum support

3Later R. Agrawal and R. Srikant removed this constraint in their generalized sequential patterns (GSP) [32].
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68 Apriori

constraint is called a frequent itemset, or fitemset for short. Any frequent sequence
must be a list of fitemsets.

The algorithm consists of five phases: (1) sort phase, (2) fitemset phase, (3) trans-
formation phase, (4) sequence phase, and (5) maximal phase. The first three are
preprocessing phases and the last one is a postprocessing phase.

In the sort phase, the database D is sorted with sequence-id as the major key and
transaction-time as the minor key. In the fitemset phase, the set of all fitemsets is
obtained using Apriori algorithm with the corresponding modification of counting a
support, and is mapped to a set of contiguous integers. This makes comparing two
fitemsets for equality in a constant time. Note that the set of all frequent 1-sequences
are simultaneously found in this phase. In the transformation phase, each transaction
is replaced by the set of all fitemsets that are in that transaction. If a transaction does
not contain any fitemset, it is not retained in the transformed sequence. If a transaction
sequence does not contain any fitemset, this sequence is removed from the transformed
database, but it is still used in counting the total number of sequence-ids. After the
transformation, a transaction sequence is represented by a list of sets of fitemsets.
Each set of fitemsets is represented by { f1, f2, . . . , fn}, where fi is an fitemset. This
transformation is designed for efficiently testing which given frequent sequences are
contained in a transaction sequence. The transformed database is denoted as DT .

The sequence phase is the main part where the frequent sequences are to be enu-
merated. Two families of algorithms are proposed: count-all and count-some. They
differ in the way the frequent sequences are counted. Count-all algorithm counts all
the frequent sequences, including nonmaximal sequences that must be pruned later,
whereas count-some algorithm avoids counting sequences which are contained in a
longer sequence because the final goal is to obtain only maximal sequences. Agrawal
and Srikant developed one count-all algorithm called AprioriAll and two count-some
algorithms called AprioriSome and DynamicSome. Here, only AprioriAll is explained
due to the space limitation.

In the last maximal phase, maximal sequences are extracted from the set of all
frequent sequences. The hash-tree (similar to the one used in the subset function in
Apriori) is used to quickly find all subsequences of a given sequence.

4.2.2.1 AprioriAll

The algorithm is given in Algorithm 4.4. In each pass the frequent sequences from
the previous pass are used to generate the candidate sequences and then their support
is measured by making a pass over the database. At the end of the pass, the support
of the candidates is used to determine the frequent sequences.

The apriori-gen-2 function takes as argument Fk−1, the set of all frequent (k − 1)-
sequences. First, join operation is performed as

insert into Ck

select p.fitemset1, p.fitemset2, . . . , p.fitemsetk−1, q.fitemsetk−1

from Fk−1 p, Fk−1q

where p.fitemset1 = q .fitemset1, . . . , p.fitemsetk−2 = q.fitemsetk−2,
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4.2 Algorithm Description 69

Algorithm 4.4 AprioriAll Algorithm

F1 = {frequent 1-sequences}; // Result of fitemset phase
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen-2(Fk−1); //New candidate sequences
foreach transaction sequence t ∈ DT do begin

Ct = subseq(Ck, t); //Candidate sequences contained in t
foreach candidate c ∈ Ct do

c.count + +;
end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = maximal sequences in ∪k Fk ;

then, all the sequences c ∈ Ck for which some (k − 1)-subsequence is not in Fk−1 are
deleted. The subseq function is similar to the subset function in Apriori. As in Apriori,
the candidate sequences Ck are stored in a hash-tree to quickly find all candidates
contained in a transaction sequence. Note that the transformed transaction sequence
is a list of sets of fitemsets and all the fitemsets in a set have the same transaction-time,
and no more than one transaction with the same transaction-time is allowed for the
same sequence-id. This constraint has to be imposed in the subseq function.

4.2.3 Discussion

Both Apriori and AprioriTid need minsup and minconf to be specified in advance. The
algorithms have to be rerun each time these values are changed, throwing everything
away that was obtained in previous runs. If no appropriate values for these thresholds
are known in advance and we want to know how the results change with these values
without rerunning the algorithms, the best we can do is to generate and count only
those itemsets that appear at least once in the database without duplication and store
them all in an efficient way. Note that Apriori generates candidates that do not exist
in the database.

Apriori and AprioriTid use a hash-tree to store the candidate itemsets. Another
data structure that is often used is a trie-structure [35, 9]. Each node in the depth k of
the trie corresponds to a candidate k-itemset and stores the k-th item and the support
of the itemset. As two frequent k-itemsets that share the first (k − 1)-itemsets are
siblings below their parent node at the depth k −1 in the trie, the candidate generation
is simply to join the two siblings, and extend the tree to one more depth below the
first frequent k-itemset after pruning. In order to find the candidate k-itemsets that are
contained in a transaction t , each item in the transaction is fed from the root node and
the branch is followed according to the succeeding item until a k-th item is reached.
Many practical implementations of Apriori use this trie-structure to store not only
candidates but also transactions [10, 9].
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70 Apriori

If we go a step further, we can get rid of generating candidate itemsets at all. Further,
it is not necessary to enumerate all the frequent itemsets. These topics are discussed
in Section 4.5.

Apriori and almost all other association rule minings use two-phase strategy: first
mine frequent patterns and then generate association rules. This is not the sole way.
Webb’s MagnumOpus uses another strategy that immediately generates a large subset
of all association rules [38].

There are direct extensions of the original Apriori family. Use of taxonomy and in-
corporating temporal constraint are two examples. Generalized association rules [30]
employ a set of user-specified taxonomies, which makes it possible to extract fre-
quent itemsets that are expressed by higher concepts even when use of the base level
concepts produces only infrequent itemsets. The basic algorithm is to add all ances-
tors of each item in a transaction to the transaction and then run Apriori algorithm.
Several optimizations can be added to improve efficiency, one example being that
the support for an itemset X that contains both an item x and its ancestor x̂ is the
same as the support of the itemset X − x̂ , and thus need not be counted. Generalized
sequential patterns [32] place, in addition to the introduction of taxonomies, time
constraints that specify a minimum and/or maximum time period between adjacent
elements (itemsets) in a pattern and relax the restrictions that items in an element of
a sequential pattern must come from the same transaction by allowing the items to be
present in a set of transactions of the same sequence-id whose transaction-times are
within a user-specified time window. It also finds all frequent sequential patterns (not
limited to maximal sequential patterns). GSP algorithm runs about 20 times faster
than AprioriAll, one reason being that GSP counts fewer candidates than AprioriAll.

4.3 Discussion on Available Software Implementations

There are many available implementations of Apriori ranging from free software to
commercial products. Here, we will present only three well-known implementations
which are freely downloadable via Internet.

The first one is an implementation embedded in the most famous open-source
machine learning and data mining toolkit, Weka, provided by the University of
Waikato [40]. Apriori in Weka can be used through Weka’s common graphical user
interface together with many other algorithms that are available in Weka. The im-
plementation includes Weka’s own extensions. For example, minsup is iteratively
decreased from an upper bound Uminsup to a lower bound Lminsup with an interval
δminsup. Further, in addition to confidence the metrics lift, leverage, and conviction are
available to evaluate association rules. Lift and leverage are discussed in Section 4.5.
Conviction [11] is a metric that was proposed to measure the departure from inde-
pendence of an association rule taking implication into account. When using one of
these metrics, its minimal value has to be given as a threshold.

© 2009 by Taylor & Francis Group, LLC



4.4 Two Illustrative Examples 71

The second implementation is the one by Christian Borgelt [1], which is distributed
under the terms of the GNU Lesser (Library) General Public License. This imple-
mentation is basically a command line application, and some graphical user interfaces
are separately available. It essentially follows the flow of the original Apriori, but has
its own extensions, too, to make it faster and to reduce its memory use. It employs a
trie called the prefix tree to store both transactions and itemsets for efficient support
counting [10]. The prefix tree is slightly different from the trie explained in Sub-
section 4.2.3. Optionally, the user can choose to use a simple list instead of a prefix
tree to store transactions. Furthermore, this implementation can find not only frequent
itemsets and association rules, but also closed itemsets, and maximal itemsets. Closed
and maximal itemsets are discussed in Section 4.5. In addition, several metrics other
than confidence, such as information gain, are also available in this implementation
to evaluate and select association rules.

The third implementation is the one by Fence Bodon, which is freely distributed
for research purposes [2]. This implementation is also trie-based, similar to Borgelt’s,
but adopts a trie with a simpler structure, and computes only frequent itemsets and
association rules. It works as a command line application, and accepts four arguments.
The first three are mandatory: an input file, including transactions, an output file, and
minsup. The fourth is minconf, which is optional. If minconf is given, association rules
are mined, as well as frequent itemsets; otherwise, it outputs only frequent itemsets.
This implementation is written in C++ to provide object-oriented components which
can be easily reused to develop other Apriori-based algorithms.

4.4 Two Illustrative Examples

4.4.1 Working Examples

We will illustrate the detailed behavior of the aforementioned algorithms using a
small database shown in Table 4.1, where SID and TT mean the sequence-id and
transaction-time, respectively. We use this database in both association rule (frequent
itemset) mining and maximal sequential pattern mining. In the former case SID and
TT are ignored.

4.4.1.1 Frequent Itemset and Association Rule Mining

Suppose that we want to find frequent itemsets under minsup = 0.2 and association
rules with mincon f = 0.6.

Apriori (Algorithm 4.1)
Apriori first scans the whole database and derives a set of frequent 1-itemsets
appearing in at least three transactions, F1 = {a, c, d, f, g}. From this F1,
the apriori-gen function derives a set of candidate frequent 2-itemsets C2 =
{ac, ad, a f, ag, cd, c f, cg, d f, dg, f g}. C2 consists of all possible pairs of elements
of F1 since no pruning is made at this stage.
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TABLE 4.1 A Transaction Database of the
Working Example

TID SID TT Items

001 1 May 03 c, d
002 1 May 05 f
003 4 May 05 a, c
004 3 May 05 c, d, f
005 2 May 05 b, c, f
006 3 May 06 d, f, g
007 4 May 06 a
008 4 May 07 a, c, d
009 3 May 08 c, d, f, g
010 1 May 08 d, e
011 2 May 08 b, d
012 3 May 09 d, g
013 1 May 09 e, f
014 3 May 10 c, d, f

Next, Apriori computes their support by scanning the database using the subset
function, which utilizes a hash-tree. Figure 4.1 briefly illustrates how a hash-tree is
constructed and used. Suppose that the elements of C2 are added into the hash-tree
in lexicographic order, and the maximum number of itemsets allowed to be in a leaf
node is 4. Thus, the number of itemsets in the root (leaf) node exceeds the threshold
when the fifth itemset cd is to be added. Then, the node is converted into an interior

In case that the maximum number of itemsets that can be stored in a node is 4.

(b)  Check which itemsets are included in a transaction

(a) Make a hash-tree

Given Transaction 004

cd

ac ad
af ag

dfcd cf
cg

h(x) h(x)

c d f c d f c d f
h(x)h(x)h(x)

h(a) h(c)

cd dgdf fgcd cf
cg

ac ad
af ag

ac ad
af ag

dgdf fgcd cf
cg

ac ad
af ag

dg fgcd cf
cg

ac ad
af ag

dgdf fgac ad
af ag

h(c) h(d)
h( f )h(a)

h(c) h(d)
h( f )h(a)

h(c) h(d)
h( f )h(a)

h(a)
h(c)

h( f )
h(d)

Figure 4.1 Example of hash-tree.
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one, and each itemset branches into the corresponding new leaf node according to the
hash value given by the function h(x), where x is an item, the first item in each itemset
in this case. We assume that h(x) is given in advance and is common for all nodes.
Since the first four itemsets share the same first item a, they fall into the same leaf
node, while cd falls into a different one. When checking which of the candidates are
included in a transaction, for example, Transaction 004, each item in the transaction
is hashed at the root node. For example, by hashing c in cd f , it reaches the second left
leaf node, and two itemsets cd and c f are found to be subsets of cd f as shown in the
left tree of Figure 4.1(b). Next, by hashing d, d f is found in the third left leaf node
(the middle tree), but by hashing f , no subset of cd f is found in the rightmost leaf
node (the right tree). As a result, the support counts of these itemsets found, cd, c f ,
and d f , are increased by 1. Note that, after all the transactions have been processed,
the frequencies of the candidates a f and ag are found to be 0. This means that Apriori
may generate candidates that do not exist in a given database.

After this support counting, F2 = {cd, c f, d f, dg} is derived. These frequent
2-itemsets in F2 are used as the seeds of frequent 3-itemsets. The itemsets cd and c f
in F2 sharing the first item c are joined and yield a new candidate cd f by apriori-gen
because d f is also included in F2. The itemsets d f and dg are also joined as well,
but the resulting condidate is pruned because its subset f g is not included in F2.
Consequently, C3, a set of candidate frequent 3-itemsets, consists of cd f only. Then,
Apriori counts its support by scanning the database again, and derives F3 = {cd f }.
No candidate frequent 4-itemsets can be generated from this F3 because it contains
only one itemset. Thus, Apriori terminates.

AprioriTid (Algorithm 4.3)
Apriori has to scan the whole database three times to obtain these frequent itemsets,
but AprioriTid (Algorithm 4.3) scans it only once for the first pass, and makes and uses
new datasets C1 and C2 to count the support of candidates in C2 and C3, respectively.
Figure 4.2 illustrates how AprioriTid finds frequent itemsets from these datasets. C2

is generated while counting the support of each candidate in C2, whereas C1 is gen-
erated directly from the given database. Suppose t = 〈001, {{c}, {d}}〉 ∈ C1. Then, a
candidate cd in C2 is added to Ct because t.set-of-itemsets ({{c}, {d}}) contains both
1-itemsets constituting cd. More precisely, cd is added to Ct because it is a union of
two 1-itemsets in t , which means Transaction 001 supports cd. No other candidate
is added to Ct as Transaction 001 does not support any other candidate in C2. Then,
the support count of cd is increased by 1, and 〈001, {{cd}}〉 is added to C2. Similarly,
〈003, {{ac}}〉 is added to C2 because Transaction 003 supports ac ∈ C2, although an
entry corresponding to 〈002, {{ f }}〉 of C1 is not because Transaction 002 does not
support any 2-itemsets. Eventually, C2 has 9 entries, as shown in Figure 4.2, whose
size is smaller than that of the given database. C3 is generated in the same manner
during the support counting of candidates in C3. Since the unique candidate in C3

is cd f , only the three entries of C2, including both cd and c f , whose union is cd f ,
survive in C3. Note that C3 is generated, but actually never used because C4 becomes
empty.
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Figure 4.2 Example of AprioriTid.

Association rules (Algorithm 4.2)
Next, association rules are generated from the found frequent itemsets according to
Algorithm 4.2 for the given mincon f = 0.6. Let us consider frequent 2-itemsets,
cd, c f , d f , and dg, first. It is obvious that only two kinds of rules can be generated
from each itemset. Table 4.2 summarizes the resulting rules and their confidence. The
association rules 1 and 8 are the outputs by Algorithm 4.2 because they satisfy the
mincon f constraint. The procedure ap-genrules is called for each of these satisfactory
rules, but it outputs nothing because it no longer generates other rules from the
2-itemsets.

Then, Algorithm 4.2 tries to generate association rules from the frequent 3-itemset,
cd f . First, it generates three association rules with 1-item consequent as shown in the
left half of Table 4.3. Algorithm 4.2 returns all of them as they satisfy the mincon f
constraint. After that, the procedure ap-genrules is called, taking cd f and {c, d, f }

TABLE 4.2 Association Rules Generated from Frequent
2-Itemsets

No. Rule Confidence No. Rule Confidence

1 c ⇒ d 0.71 5 d ⇒ f 0.44
2 d ⇒ c 0.56 6 f ⇒ d 0.57
3 c ⇒ f 0.57 7 d ⇒ g 0.33
4 f ⇒ c 0.57 8 g ⇒ d 1.0
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TABLE 4.3 Association Rules Generated from Frequent
3-Itemsets

1-Item Consequent 2-Item Consequent

No. Rule Confidence No. Rule Confidence

9 cd ⇒ f 0.60 12 f ⇒ cd 0.43
10 c f ⇒ d 0.75 13 d ⇒ c f 0.33
11 d f ⇒ c 0.75 14 c ⇒ d f 0.43

as its arguments. A set of 2-itemsets {cd, c f, d f } is derived by the function apriori-
gen called within ap-genrules, each of which is used as the consequent of a new
association rule. The resulting three rules are shown in the right half of Table 4.3.
But, none of them can be the outputs because their confidence is less than the specified
mincon f = 0.6. Since 3-item consequents cannot be obtained from cd f , ap-genrules
terminates, and Algorithm 4.2 terminates too because F4 = ∅.

4.4.1.2 Sequential Pattern Mining

Next, we find frequent maximal sequential patterns from the same transaction database
in Table 4.1 by using AprioriAll (Algorithm 4.4) for minsup = 0.3. Figure 4.3
illustrates the flow of the first three phases, that is, sort phase, fitemset phase, and
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Figure 4.3 Transformation from the original database to the transformed database.
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TABLE 4.4 Frequent Sequences and Candidate Sequences
F1 C2 F2 C3 F3 C4 F4

〈1〉 〈11〉 〈12〉 〈21〉 〈13〉 〈31〉 〈11〉 〈12〉 〈111〉 〈112〉 〈113〉 〈114〉 〈124〉 〈142〉 〈1244〉 〈1424〉
〈2〉 〈14〉 〈41〉 〈15〉 〈51〉 〈22〉 〈13〉 〈14〉 〈122〉 〈132〉 〈124〉 〈142〉 〈144〉 〈224〉 〈1424〉 〈2424〉
〈3〉 〈23〉 〈32〉 〈24〉 〈42〉 〈25〉 〈22〉 〈32〉 〈134〉 〈144〉 〈222〉 〈224〉 〈242〉 〈324〉 〈2244〉 〈3424〉
〈4〉 〈52〉 〈33〉 〈34〉 〈43〉 〈35〉 〈24〉 〈42〉 〈242〉 〈322〉 〈324〉 〈342〉 〈342〉 〈244〉 〈2424〉
〈5〉 〈53〉 〈44〉 〈45〉 〈54〉 〈55〉 〈52〉 〈34〉 〈244〉 〈422〉 〈424〉 〈442〉 〈424〉 〈344〉 〈3244〉

〈44〉 〈522〉 〈344〉 〈444〉 〈3424〉

transformation phase on this example. In the sort phase, transactions in the database
are sorted with sequence-id (SID) as the major key and transaction-time (TT) as the
minor key. Then, in the fitemset phase, fitemsets are derived in the similar manner to
Apriori. Note that the support of an fitemset is the number of transaction sequences,
including the itemset, but not the number of transactions including it. Thus, the re-
sulting set of frequent 1-itemsets in this case is {c, d, f }. In the transformation phase,
each transaction sequence is transformed into a list of sets of fitemsets as shown in
the bottom of Figure 4.3 by replacing each transaction in the sequence with a set of
fitemsets the transaction contains. Note that the second transaction is dropped in the
transaction sequence 4 because it consists of only one nonfrequent itemset {a}.

AprioriAll generates a set of candidate sequences C2 from F1 by calling the function
apriori-gen-2. The resulting C2 is shown in Table 4.4. The function apriori-gen-2 is
similar to apriori-gen, but differs in its join operation: The join operation of apriori-
gen-2 generates two new k-sequences from two (k − 1)-sequences whenever they are
joinable, while the join operation of apriori-gen generates only one k-itemset from
two (k − 1)-itemsets. For example, when deriving C2, both two sequences 〈12〉 and
〈21〉 are generated from 〈1〉 and 〈2〉. In addition, 〈11〉 is also generated by joining the
identical sequence 〈1〉. This is necessary to generate a sequence in which multiple
occurrences of an fitemset is allowed.

Counting the support of each candidate sequence is done in the similar way as
Apriori using a hash-tree, and F2, a set of frequent 2-sequences, is derived as shown
in Table 4.4. This F2 is used to generate a set of candidate sequences C3 as well. Note
that from 〈11〉 and 〈12〉, a 3-sequence 〈112〉 is generated by joining them, but not 〈121〉
because its subsequence 〈21〉 is not included in F2. This process consisting of the can-
didate generation and support counting is repeated until no more frequent sequences
are derived. In this example, since no candidate of 5-sequences can be generated from
F4, F5 becomes empty and thus, the iteration terminates. Finally, AprioriAll outputs
〈1424〉, 〈2424〉, 〈3424〉, 〈11〉, 〈13〉, and 〈52〉 as the maximal frequent sequences as
the other frequent sequences are included in one of them.

4.4.2 Performance Evaluation

In this section, we discuss the performance of Apriori with respect to its runtime,
the number of derived association rules and frequent itemsets when minsup, minconf,
and the number of transactions are varied. We used the implementation by Christian
Borgelt [1] for this assessment because it provides options that allow us to simulate a
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Figure 4.4 Runtime for various minsup and minconf values.

naive implementation closest to the original Apriori. Thus, we disabled its functions
of sorting items with respect to their support and of filtering unused items from
transactions.

As a benchmark dataset, we used the Mushroom dataset downloadable from UCI
Machine Learning Repository [8], which contains 8124 cases with 23 nominal at-
tributes including a class attribute. Each case is regarded as a transaction, and each
attribute value of each case is converted into an item by joining it with the correspond-
ing attribute name, for example, “cap-shape=x,” where cap-shape is an attribute name
and x is an attribute value. In 2480 cases, the attribute value of one attribute is miss-
ing. Since we ignored missing values, the transactions corresponding to them have 22
items, while the others have 23 items. Some attribute values have different meanings
for different attributes. For example, “n” means “none” for the attribute “odor,” while
“brown” for “cap-color.” As a result, the number of valid pairs of attribute name and
attribute value, that is, number of distinct items, became 118.

First, we show the runtime of Apriori for various minsup and minconf values
in Figure 4.4. All runtimes shown in this section were measured on a PC running
Windows XP with 2.8 GHz Pentium IV and 4 GB memory. In these experiments,
the maximal number of items per rule is set to 5 for convenience. We also limited
the minimal number of items per rule to 2 in order to prevent a rule with no premise
from being derived. In addition, a prefix tree was not used to store transactions.
From the results, it is obvious that the change of minconf does not affect the runtime
so much, but the runtime exponentially increases as minsup becomes smaller. The
similar tendency is observed in Figure 4.5, showing the relation between minsup
and the number of derived association rules. This is because the number of frequent
itemsets exponentially increases as minsup becomes smaller, as shown in Figure 4.6.
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These results show that minsup, or the antimonotonicity property of itemsets, is very
effective to prune nonfrequent itemsets.

Next, we show the relation between the runtime and the number of transactions
in Figure 4.7. In this evaluation, we copied the original dataset multiple times (up to
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Figure 4.6 Number of frequent itemsets for various minsup values.
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4 times). Note that the fraction of each item remains the same for all datasets, so
is the number of resulting association rules (frequent itemsets). Figure 4.7 shows
that the runtime linearly increases as the number of transactions becomes larger.
Consequently, under a certain distribution of items, minsup is much more influential
to the runtime than both minconf and the number of transactions in Apriori.

Finally, we briefly mention association rules mined through the experiments, es-
pecially, for convenience, those which have only one item representing the class
attribute in the consequent. The class value is either “edible” (e) or “poisonous” (p).
A typical rule found under minsup = 0.3 and mincon f = 0.9 is “odor = n gill-size
= b ring-number = o ⇒ class = e,” which is the simplest one among those whose
consequent is “class = e,” confidence is 1.0, and support is maximum (0.331). This
rule means a mushroom is edible if its order is none, the size of its gill is broad, and
the number of its rings is one. The attributes “odor” and “gill-size” appear as the first
and the third test nodes, respectively, in the decision tree learned from this dataset by
J48, a decision tree learner available in Weka, under its default setting. A similar rule
“odor = n spore-print-color = w gill-size = b ⇒ class = e” can be derived from the
decision tree and its confidence is 1.0, too, but it is true for only 528 cases, while the
association rule is true for 2689 cases. On the other hand, no rule whose confidence
is 1.0 and consequent is “class = p” was found under this setting because minsup
was too high. When setting minsup = 0.2, 470 such rules were found.

In general we can obtain a small number of association rules in a short runtime for a
high minsup, but many of them could be trivial. To find more interesting rules, we have
to use a smaller minsup, but it leads to an unacceptable runtime and a huge number of
association rules, which in turn would make it harder to find interesting association
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rules. More efficient algorithms and better measures are required to find frequent
itemsets and interesting association rules, which are the topics of the next section.

4.5 Advanced Topics

Since the first proposal of frequent pattern and association rule mining algorithm
by Agrawal and Srikant, there have been many publications on various kinds of im-
provements, extensions, and applications, ranging from efficient scalable data mining
methodologies, to handling a wide diversity of data types, various extended mining
tasks, and a variety of new applications. Some of the important advanced topics are
briefly described in this section. There are good tutorials and surveys for frequent
pattern mining by Han et al. [16] and Goethals [15] that contain a substantial amount
of references.

4.5.1 Improvement in Apriori-Type Frequent Pattern Mining

There have been many attempts to devise more efficient algorithms of frequent itemset
mining in the framework of Apriori algorithm in that they generate candidates. These
include hash-based technique, partitioning, sampling, and using vertical data format.

Hash-based technique can reduce the size of candidate itemsets. Each itemset
is hashed into a corresponding bucket by using an appropriate hash function.
Since a bucket can contain different itemsets, if its count is less than a minimum
support, these itemsets in the bucket can be removed from the candidate sets.
DHP [26] uses this idea.

Partitioning can be used to divide the entire mining problem into n smaller
ones [29]. The dataset is divided into n nonoverlapping partitions such that
each partition fits into main memory and each partition is mined separately.
Since any itemset that is potentially frequent must occur as a frequent itemset
in at least one of the partitions, all the frequent itemsets found this way are
candidates, which can be checked by accessing the entire dataset only once.

Sampling is simply to mine a random sampled small subset of the entire data.
Since there is no guarantee that we can find all the frequent itemsets, normal
practice is to use a lower support threshold. Trade-off has to be made between
accuracy and efficiency.

Vertical data format associates TID with each itemset, whereas Apriori uses
a horizontal data format, that is, frequent itemsets are associated with each
transaction. With the vertical data format, mining can be performed by taking
the intersection of TIDs. The support count is simply the length of the TID set
for the itemset. There is no need to scan the database because TID set carries the
complete information required for computing support. This technique requires,

© 2009 by Taylor & Francis Group, LLC



4.5 Advanced Topics 81

Algorithm 4.5 FP-Growth Algorithm: F[I ](FP-tree)

F[I ] = ∅;
foreach i ∈ I that is in D in frequency increasing order do begin

F[I ] = F[I ] ∪ {I ∪ {i}};
Di = ∅;
H = ∅;
foreach j ∈ I in D such that j < i do begin

// ( j is more frequent than i)
Select j for which support (I ∪ {i, j}) ≥ minsup;
H = H ∪ { j};

end
foreach (T id, X ) ∈ D with i ∈ X do
Di = Di ∪ {(T id, {X \ {i}} ∩ H )};

Construct conditional FP-tree from Di ;
Call F[I ∪ {i}](conditional FP-tree);
F[I ] = F[I ] ∪ F[I ∪ {i}](conditional FP-tree);

end

given a set of candidate itemsets, that their TIDs are available in main memory,
which is of course not always the case. However, it is possible to significantly
reduce the total size by using a depth-first search. Eclat [43] uses this strategy.
In the depth-first approach, it is necessary to store at most the TID list of all
k-itemsets with the same first k − 1 items (k − 1 prefix) at depth d with k ≤ d
in the main memory.

4.5.2 Frequent Pattern Mining Without Candidate Generation

The most outstanding improvement over Apriori would be a method called FP-growth
(frequent pattern growth) that succeeded in eliminating candidate generation [17, 18].
It adopts a divide and conquer strategy by (1) compressing the database representing
frequent items into a structure called FP-tree (frequent pattern tree) that retains all
the essential information and (2) dividing the compressed database into a set of
conditional databases, each associated with one frequent itemset and mining each
one separately. It scans the database only twice. In the first scan, all the frequent items
and their support counts (frequencies) are derived and they are sorted in the order
of descending support count in each transaction. In the second scan, items in each
transaction are merged into an FP-tree and items (nodes) that appear in common in
different transactions are counted. Each node is associated with an item and its count.
Nodes with the same label are linked by a pointer called a node-link. Since items
are sorted in the descending order of frequency, nodes closer to the root of the FP-
tree are shared by more transactions, thus resulting in a very compact representation
that stores all the necessary information. Pattern growth algorithm works on FP-tree
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by choosing an item in the order of increasing frequency and extracting frequent
itemsets that contain the chosen item by recursively calling itself on the conditional
FP-tree, that is, FP-tree conditioned to the chosen item. FP-growth is an order of
magnitude faster than the original Apriori algorithm. The algorithm of FP-growth
is given in Algorithm 4.5. F[∅](FP-tree) returns all the frequent itemsets. As noted
easily, the divide and conquer strategy mentioned by Han et al. is equivalent to the
depth-first search without candidate generation. The Di is called i-projected database
and generally much smaller than the FP-tree of the whole database. It is, thus, expected
that Di fits in the main memory even if the latter does not. The idea of pattern growth
can also be applicable to closed itemset mining [27] (see Section 4.5.4) and sequential
pattern mining [28] (see Section 4.5.8).

4.5.3 Incremental Approach

When the database is not stationary and a new batch of transactions keeps being added,
it happens that some items that were frequent become no more frequent (losers) and
some other items that were infrequent become frequent (winners). Rerunning Apriori
or any other frequent pattern mining algorithm each time the database is updated
is not efficient. The FUP algorithm in [12] provides a way to incrementally update
the frequent itemsets using Apriori framework. It works efficiently on the updated
database since the size of the increment database �D is generally much smaller than
the initial database D.

Let Fk , F ′
k be the frequent k-itemsets in D and D ∪ �D, respectively, and Ck be

the candidate frequent itemsets in D ∪ �D. At k-th iteration, Ck can be generated
from F ′

k−1 using apriori-gen function. Any itemset in Fk that contains any one of the
losers of size k − 1 (those which are in Fk−1 but not in F ′

k−1) as its subset are filtered
out from Fk without checking �D. Frequency of the remaining itemsets in Fk are
counted over �D and those frequent in D∪�D are identified (A), and excluded from
Ck because we know that they are frequent. The remaining itemsets are those not in
Fk . Their frequency is counted over �D and those not frequent in �D are removed
from Ck because we know that they are infrequent in D. Frequency of the remaining
elements in Ck are counted over D ∪ �D and the frequent ones are retained (B). F ′

k
is A ∪ B. As can be seen above, FUP has to scan the updated database for each k, but
the size of the Ck is expected to be very small. The experiment shows that it is only
about 2 to 5% of that of rerunning Apriori for the updated database, and FUP runs
2 to 16 times faster than Apriori.

4.5.4 Condensed Representation: Closed Patterns
and Maximal Patterns

An itemset (pattern) X is a maximal itemset if (1) there exists no itemset X ′ such that
X ′ is a proper superset of X . An itemset (pattern) X is a closed itemset if (1) there
exists no itemset X ′ such that X ′ is a proper superset of X and (2) every transaction
containing X also contains X ′. They are frequent if their support is no less than the
minsup. A closed itemset satisfies I (T (X )) = X , where T (X ) = {t ∈ D|X ⊆ t} and
I (S) = ∩t∈St for S ⊆ D. For any two itemsets X and Y , if X ⊂ Y and their support
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is the same, X is not a closed itemset. A closed itemset is a lossless representation,
whereas a maximal itemset is not. Thus, once the closed itemsets are found, all the
frequent itemsets can be derived from them. A rule X ⇒ Y is an association rule
on frequent closed itemsets if (1) both X and X ∪ Y are frequent closed itemsets,
(2) there does not exist a frequent closed itemset Z such that X ⊂ Z ⊂ (X ∪ Y ), and
(3) the confidence of the rule is no less than minconf. The complete set of association
rules can be generated once frequent closed itemsets are found.

CLOSET partitions the database and decomposes the problem into a set of subprob-
lems, each with the corresponding conditional database, and it is known efficient [27].
First, all the frequent items are derived and sorted in the order of descending support
count as f list = 〈i1, i2, . . . , in〉. The j-th subproblem (1 ≤ j ≤ n) is to find the com-
plete set of frequent closed itemsets containing in+1− j but no ik (for n+1− j < k ≤ n).
The in+1− j conditional database is the subset of transactions containing in+1− j , where
all the occurrences of infrequent items, item in+1− j , and items following in+1− j in
the f list are omitted. The corresponding FP-tree is generated and used for search.
Each subproblem is recursively decomposed if necessary. The frequent closed item-
sets are identified from the conditional database using the following properties. If
X is a frequent closed itemset, there is no item appearing in every transaction in
the X -conditional database. If an itemset Y is the maximal set of items appearing in
every transaction in the X -conditional database, and X ∪ Y is not subsumed by some
already found frequent closed itemset with identical support, X ∪ Y is a frequent
closed itemset. As in FP-growth, further optimization is possible.

LCM is another algorithm, known to be the most efficient, to find the closed patterns
(itemsets) [34]. It derives frequent closed itemsets via a closure operation without
generating nonclosed itemsets. A closure of an itemset X , denoted by Clo(X ), is
the unique smallest closed itemset including X , that is, I (T (X )). Without loss of
generality, we assume all items in a transaction database are uniquely indexed by
contiguous natural numbers. Then, X (i) = X ∩ {1, . . . , i} is called the i-prefix of
X , which is the subset of X having only elements no greater than i . The core index
of a closed itemset X , denoted by core i(X ), is the minimum index i such that
T (X (i)) = T (X ). LCM generates, from a frequent closed itemset X , another frequent
closed itemset Y such that Y = Clo(X ∪ {i}) and X (i − 1) = Y (i − 1), where i is an
item that satisfies i 
∈ X and i > core i(X ). Y is called the prefix-preserving closure
extension, or ppc-extension for short, of X . LCM recursively applies this closure
operation to closed itemsets from an empty itemset to larger ones in a depth-first
manner. Completeness and nonredundancy of the enumeration of closed itemsets by
LCM are guaranteed by the following property: If Y is a nonempty closed itemset,
then there is just one closed itemset X such that Y is a ppc-extension of X . Since
LCM generates a new frequent closed itemset Y from T (X ) and a subset of I, its
time complexity to enumerate all frequent closed itemsets for X is O(||T (X )||× |I|),
where ||T (X )|| is the summation of size of each transaction included inT (X ). Let C be
a set of all frequent closed itemsets in D. Then, the time complexity of LCM is linear
in |C| with a factor depending on ||T ||× |I|. In fact, to improve the computation time
and memory use, LCM incorporates three techniques: occurrence deliver, anytime
database reduction, and fast prefix-preserving test. Occurrence deliver constructs
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T (X ∪ {i}) for all i by scanning T (X ) only once instead of scanning it for each i .
Anytime database reduction reduces the size of the database by removing unnecessary
transactions and items from it each time before an iteration starts with the current
closed itemset to reduce both the computation time and memory use. Fast prefix-
preserving test significantly reduces the number of items to be accessed to test the
equality X (i − 1) = Y (i − 1) by checking only items j such that j < i , j 
∈ X (i − 1)
and they are included in the transaction of the minimum size in T (X ∪ {i}) instead
of actually generating a closure when performing a ppc-extention. If an item j is
included in every transaction in T (X ∪ {i}), then j is included in Clo(X ∪ {i}), thus
X (i − 1) 
= Y (i − 1).

4.5.5 Quantitative Association Rules

When the item has a continuous numeric value, current frequent itemset mining algo-
rithms are not applicable unless the values are discretized and appropriate intervals
defined. This is known as quantitative frequent itemset (QFI) mining. The items can
be both categorical and numeric. An example is {〈 Age: [30,39] 〉, 〈 House-owner:
Yes 〉, 〈 Married: Yes 〉}, where an item is represented as 〈 attribute: its value (range) 〉.
QFI mining was initially proposed in the study of mining quantitative association
rules [31], but later density-based subspace clustering has commonly been applied
because a QFI is viewed as an axis-parallel hyper-rectangular containing a cluster
of transactions in a numeric attribute space. SUBCLUE [20] and QFIMiner [36] are
two such examples. QFIMiner finds in O(N log N ) all dense clusters of no less than
minsup in all subspaces formed by both numeric and categorical attributes, where N
is the number of transactions. An optimal value interval for each numeric item in each
frequent itemset is obtained by Apriori-like level-wise algorithm with the antimono-
tonicity property of dense clusters. QFIMiner is shown to be faster than SUBCLUE
and scales very well.

4.5.6 Using Other Measure of Importance/Interestingness

The problem of support-confidence framework is that there is no valid means to
determine appropriate values for minsup and minconf. Especially setting minsup too
high will miss important rules and setting it too low will generate too many rules.
In fact, it is possible that a rule with infrequent itemsets is of great interest for some
applications. Further, this framework fails to capture the notion of correlation. It can
happen that a rule X ⇒ Y which satisfies both minsup and minconf constraints has
no correlation between X and Y , that is, support(X ) × support(Y ) = support(X ∪Y ).

Therefore, an alternative approach is to use other measures that account for im-
portance or interestingness of a rule and select rules that have high score for these
measures. Support and confidence can still be used as a constraint (setting minsup
and minconf to 0 means not to use them at all). These measures include lift, leverage,
redundancy, productivity, and well-known statistical measures such as chi-square,
correlation coefficient, information gain, and so on.

Lift and leverage represent the ratio and the difference between the support and the
support that would be expected if X and Y were independent, respectively. They try
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to find rules with strong correlations between X and Y .

lift(X ⇒ Y ) = confidence(X ⇒ Y )

confidence(∅ ⇒ Y )
= support(X ⇒ Y )

support(X ) × support(Y )
leverage(X ⇒ Y ) = support(X ⇒ Y ) − support(X ) × support(Y )

= support(X ) × (confidence(X ⇒ Y ) − support(Y ))

Redundant rule constraint discards a rule X ⇒ Y if ∃Z ∈ X : support(X ⇒
Y ) = support(X − [Z ] ⇒ Y ). A more powerful constraint is productive constraint.
A rule is said to be productive if its improvement is greater than 0, where the rule’s
improvement is defined as

improvement(X ⇒ Y ) = confidence(X ⇒ Y ) − maxZ⊂X (confidence(Z ⇒ Y )).

The improvement of a redundant rule cannot be greater than 0 and hence a constraint
that rules must be productive discards all redundant rules. Further, it can discard rules
that include items in the antecedent that are independent of the consequent, given the
remaining items in the antecedent.

Statistical measures are useful in finding discriminative patterns (itemsets). How-
ever, these measures do not satisfy the antimonotonicity property, and finding the best
k patterns or rules is not that easy. If a measure is convex with respect to its arguments,
it is possible to estimate its upperbound for supersets of a pattern X (itemset) for a
fixed conclusion Y (normally, a class value) [23] and use this to prune the search
space. Statistical measures mentioned above satisfy this property.

Webb’s KORD algorithm [39] finds k-optimal rules through the space of pairs X
and Y (without fixing Y ) and uses leverage as a measure to optimize using various
pruning strategies.

4.5.7 Class Association Rules

When a transaction t is associated with a class cl, it is natural to use association
rules for classification purpose. The association rules mined for classification pur-
pose are called class association rules (CARs). CARs have the form {〈p1 : q1〉, 〈p2 :
q2〉, . . . , 〈pm : qm〉} ⇒ cl. Here a numeric item has a numeric interval value, whereas
a categorical item has a categorical value. LetDcl be a set of all instances having a class
cl in D. CBA [22], CMAR [21], and CAEP [14] are the representative CAR-based
classification systems. Especially, CAEP introduces a notion of emergent patterns and
uses the strength of all CARs. Let the support of an itemset a byDcl be supportDcl (a) =
|{t ∈ Dcl |a ∈ t}|/|Dcl |. A set of QFIs, FQFI(cl), in which every itemset a satisfies
supportDcl (a) ≥ minsup, is derived for every cl fromDcl . Next, for every a ∈ FQFI(cl),
the growth rate defined by growth rateDcl→Dcl

(a) = supportDcl
(a)/supportDcl

(a) is
calculated for each class cl, where Dcl = D − Dcl represents the opponent in-
stances of cl. When the growth rate of a is not less than its threshold ρ(≥ 1), that
is, growth rateDcl→Dcl

(a) ≥ ρ, a is called an emergent pattern (EP) and is selected
for a rule body where its head is the class cl, that is, a ⇒ cl. Let FEP(cl) be a set
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of all EPs selected from FQFI(cl) under this measure. The underlying principle here
is to select the rule bodies that are strong enough to differentiate the class cl from
the others. The strength of an EP a is measured by the relative difference between
supportDcl (a) and supportDcl

(a): supportDcl (a)/(supportDcl (a) + supportDcl
(a)) =

growth rateDcl→Dcl
(a)/(growth rateDcl→Dcl

(a) + 1). This can be aggregated to de-

fine the aggregate score defined by score(t, cl) = ∑
a⊆t,a∈F E P(cl)

growth rate(a)
growth rate(a) + 1 ∗

supportDcl
(a) which represents the possibility of t to be classified into cl by EPs in

FEP(cl). Since the distribution of the number of EPs is not uniform over cl, instances
may get higher scores for some classes. Another factor, called a base score, which
is defined to be the median of all aggregate scores in {score(t, cl)|t ∈ Dcl}, is intro-
duced to offset this bias, giving the normalized score defined by norm score(t, cl) =

score(t,cl)
base score(cl) . The cl for which the normalized score is maximum is assigned to the
class of t . This was shown to perform very well.

The problem with CAEP is that it discretizes each numeric attribute by an entropy
measure without taking account of the dependency that exists in multiple attributes,
and thus a cluster of instances having the same class can often be fragmented. Natural
solution is to combine QFIMiner and CAEP, which is LSC-CAEP [37, 36].

4.5.8 Using Richer Expression: Sequences, Trees, and Graphs

Mining frequent itemsets started with a simple transaction dataset, but later it has
been generalized to be able to deal with richer expression such as sequences, trees,
and graphs. The pioneering work to mine sequential patterns by Agrawal and Srikant
has already been discussed in Section 4.2.2. PrefixSpan [28] is another representative
algorithm in frequent sequential pattern mining, which is a pattern-growth based
algorithm and adopts a divide and conquer strategy similar to FP-growth to avoid
unfruitful enumeration of smaller candidates to find larger patterns. PrefixSpan, first,
finds sequential patterns consisting of only one item, and then, for each of them, say
ik , extracts a set of sequences containing it, that is, the 〈ik〉-projected database. From
each such projected database, PrefixSpan finds frequent sequential patterns of size 2
having 〈ik〉 as their prefix, and again generates a projected database for each size 2
pattern newly found to find sequential patterns of size 3. This process is recursively
repeated until no more sequential patterns are found.

A tree is characterized by V , a set of vertices, and E , a set of edges. A labeled tree
assigns a set of labels L to either one or both of vertices and edges. An edge connects
a vertex to another one. Every two vertices in a tree are reachable through one or more
edges, but there is no cyclic path. TreeMinerV [44] and FREQT [7] are representative
algorithms to mine subtrees frequently appearing in a collection of trees. They were
independently proposed, but share the same level-wise strategy to enumerate frequent
subtrees, which finds frequent subtrees having k + 1 vertices ((k + 1)-subtrees) from
k-subtrees by adding one edge to every possible position on a specific path called the
rightmost path of each k-subtree with a vertex corresponding to the other end of the
edge. Dryade [33] is a tree mining algorithm that can find frequent closed subtrees. A
closed subtree is a maximal subtree among those having the same frequency. Unlike
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the other tree mining algorithms, Dryade assembles frequent closed subtrees level by
level from a set of basic units called tiles, which are one depth closed subtrees.

A graph is a super class of trees and can have cyclic paths. AGM [19] is the first
algorithm that mines frequent subgraphs from a collection of graphs by a complete
search. It is based on Apriori and generates a candidate subgraph of size k (k-subgraph)
from two known frequent (k − 1)-subgraphs which share the same (k − 2)-subgraph.
Since there is no edge information available between the two (k − 1)-th vertices,
all the possibilities are considered. AGM generates two k-subgraphs from a pair of
(k − 1)-subgraphs, one with an edge between them and the other without an edge
(this is a case where there are no labels defined for edges). Although Apriori-based
approach enables to conduct a systematic complete search of frequent subgraphs, it
has to generate a large number of candidates that do not actually exist in a given
set of graphs. AGM uses adjacency matrix to represent a graph and introduces a
notion of canonical form to solve subgraph isomorphism which is known to be NP-
complete. gSpan [41] is one representative pattern-growth-based subgraph mining
algorithm. It finds frequent subgraphs in a depth-first manner by adding an edge to
each possible position on the rightmost path of a known frequent subgraph. gSpan
takes into account only the edges that actually exist in a given set of graphs, so it
never generates candidates that do not actually exist. GBI [42] and SUBDUE [13]
are greedy algorithms to find frequent subgraphs, which recursively replace every
occurrence of a typical subgraph in a graph with a new vertex. The typicality is
defined by a measure based on frequency, for example, information gain in GBI and
the minimum description length in SUBDUE. DT-ClGBI [25] generates a decision
tree that classifies unknown graphs from a set of training graphs with known classes.
It invokes a graph mining algorithm, Cl-GBI [24], an extension of GBI, at every test
node of the decision tree. The resulting frequent subgraphs are used as attributes of
graphs, and the most discriminative one is chosen to split the set of graphs that reached
the node into two subsets: those which include the subgraph and the others.

4.6 Summary

Experimenting with Apriori-like algorithm is the first thing that data miners try to
do. In this chapter the basic concepts and algorithms of Apriori family (Apriori,
AprioriTid, AprioriAll) were introduced first and then their working mechanisms were
explained with illustrative examples, followed by a performance evaluation of Apriori
using a typical freely available implementation. Since Apriori is so fundamental and
easy to implement, there are many variants of it. The limitation of Apriori approach
is discussed and an overview of recent important advancement in frequent pattern
mining methodologies is provided. There are other topics that cannot be covered in
this chapter. These include use of constraints, colossal patterns, noise handling, and
top-k representatives.
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4.7 Exercises

1. Prove that Apriori can derive all frequent itemsets from a given transaction
database.

2. Prove the following relation:

support(X ∪ Y ∪ Z ) ≥ support(X ∪ Y ) + support(X ∪ Z ) − support(X ),

where X, Y , and Z are itemsets in a database.

3. Given the database shown in Table 4.5, find all frequent itemsets using Apriori
and AprioriTid for minsup = 0.3 and compare their efficiency.

4. Explain the relation between a hash-tree and a trie.

5. Draw an FP-tree for the database shown in Table 4.5 and explain how frequent
itemsets are derived from the FP-tree.

6. Download and install Weka on your computer, and mine association rules by
using Apriori from the Soybean dataset included in the Weka’s package for
various metrics to evaluate association rules using the same minimum threshold
(fix the other parameters). Then, report how the resulting association rules
change according to the metrics.

7. Draw a prefix tree to store the database in Section 4.4 with reference to [10]
and explain how the efficiency of frequency counting can be improved in this
case.

8. In an FP-tree, items in a transaction are sorted in the order of descending support
count, while in a prefix tree for Apriori they are sorted in the order of ascending
support count. Discuss the reason why they adopt the different orders.

9. When a transaction database has a small number of very long transactions,
Apriori-based algorithms take much time to mine frequent itemsets. Explain
the reason why they need so much time and propose an efficient method of
mining closed itemsets from such a database.

TABLE 4.5 Database for Exercise 3

TID Items

T01 Cheese, Milk, Egg
T02 Apple, Cheese
T03 Apple, Bread, Cheese, Orange, Grape
T04 Bread, Egg, Orange
T05 Cheese, Milk, Grape
T06 Apple, Cheese, Egg, Orange
T07 Bread, Cheese, Orange
T08 Cheese, Egg, Grape
T09 Bread, Cheese, Egg, Grape
T10 Bread, Cheese, Grape
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TABLE 4.6 Sequence Database
for Exercise 10

SID Transaction Sequences

S01 〈(bc)(d)(ab)(de f )〉
S02 〈(abc)(c f )(d f )〉
S03 〈(ce f )(d f )(ab)( f )〉
S04 〈(be)(ac)(cd f )〉

10. Given the sequence database shown in Table 4.6, find frequent sequential pat-
terns by AprioriAll for minsup = 0.5.
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