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9.1 Introduction

Given a set of objects, each of which belongs to a known class, and each of which
has a known vector of variables, our aim is to construct a rule which will allow us
to assign future objects to a class, given only the vectors of variables describing the
future objects. Problems of this kind, called problems of supervised classification,
are ubiquitous, and many methods for constructing such rules have been developed.
One very important method is the naı̈ve Bayes method—also called idiot’s Bayes,
simple Bayes, and independence Bayes. This method is important for several reasons,
including the following. It is very easy to construct, not needing any complicated
iterative parameter estimation schemes. This means it may be readily applied to huge
data sets. It is easy to interpret, so users unskilled in classifier technology can un-
derstand why it is making the classification it makes. And, particularly important, it
often does surprisingly well: It may not be the best possible classifier in any given
application, but it can usually be relied on to be robust and to do quite well. For
example, in an early classic study comparing supervised classification methods, Tit-
terington et al. (1981) found that the independence model yielded the best overall
result, while Mani et al. (1997) found that the model was most effective in predicting
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164 Naı̈ve Bayes

breast cancer recurrence. Many further examples showing the surprising effectiveness
of the naı̈ve Bayes method are listed in Hand and Yu (2001) and further empirical
comparisons, with the same result, are given in Domingos and Pazzani (1997). Of
course, there are also some other studies which show poorer relative performance
from this method: For a comparative assessment of such studies, see Jamain and
Hand (2008).

For convenience, most of this chapter will describe the case in which there are
just two classes. This is, in fact, the most important special case as many situations
naturally form two classes (right/wrong, yes/no, good/bad, present/absent, and so
on). However, the simplicity of the naı̈ve Bayes method is such that it permits ready
generalization to more than two classes.

Labeling the classes by i = 0, 1, our aim is to use the initial set of objects which
have known class memberships (known as the training set) to construct a score such
that larger scores are associated with class 1 objects (say) and smaller scores with
class 0 objects. New objects are then classified by comparing their score with a
“classification threshold.” New objects with a score larger than the threshold will be
classified into class 1, and new objects with a score less than the threshold will be
classified into class 0.

There are two broad perspectives on supervised classification, termed the diagnostic
paradigm and the sampling paradigm. The diagnostic paradigm focuses attention on
the differences between the classes—on discriminating between the classes—while
the sampling paradigm focuses attention on the individual distributions of the classes,
comparing these to indirectly produce a comparison between the classes. As we show
below, the naı̈ve Bayes method can be viewed from either perspective.

9.2 Algorithm Description

Beginning with the sampling paradigm, define P(i |x) to be the probability that an
object with measurement vector x = (x1, . . . , x p) belongs to class i , f (x |i) to be the
conditional distribution of x for class i objects, P(i) to be the probability that an object
will belong to class i if we know nothing further about it (the “prior” probability of
class i), and f (x) to be the overall mixture distribution of the two classes:

f (x) = f (x |0)P(0) + f (x |1)P(1)

Clearly, an estimate of P(i |x) itself would form a suitable score for use in a clas-
sification rule. We would need to choose some suitable threshold probability to act
as the classification threshold to yield a classification. For example, it is very com-
mon to use a threshold of 1/2, so that each new object is assigned to the class it is
estimated as most likely to have come from. More sophisticated approaches take into
account the relative severities of different kinds of misclassifications when choosing
the threshold.
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A simple application of Bayes theorem yields P(i |x) = f (x |i)P(i)/ f (x), and to
obtain an estimate of P(i |x) from this, we need to estimate each of the P(i) and each
of the f (x |i).

If the training set is a simple random sample drawn from the overall population
distribution f (x), the P(i) can be estimated directly from the proportion of class i
objects in the training set. Sometimes, however, the training set is obtained by more
complicated means. For example, in many problems the classes are unbalanced, with
one being much larger than the other (e.g., in credit card fraud detection, where only
1 in 1,000 transactions may be fraudulent; in rare disease detection, where the ratio
may be even more extreme; and so on). In such cases, the larger of the two classes is
often subsampled. For example, perhaps only 1 in 10 or 1 in 100 of the larger class
will be used in the training set. If this is the case, then it is necessary to reweight the
simple observed proportion in the training set to yield an estimate of P(i). In general,
if the observations are not drawn as a simple random sample from the training set,
some thought will need to go into how best to estimate the P(i).

The core of the naı̈ve Bayes method lies in the method for estimating the
f (x |i). The naı̈ve Bayes method assumes that the components of x are indepen-
dent within each class, so that f (x |i) = ∏p

j=1 f (x j |i)—hence the alternative name
of “independence Bayes.” Each of the univariate marginal distributions, f (x j |i),
j = 1, . . . , p; i = 0, 1, is then estimated separately. By this means, the p dimen-
sional multivariate problem is reduced to p univariate estimation problem. Univariate
estimation is familiar and simple, and requires smaller training set sizes to obtain
accurate estimates than does the estimation of multivariate distributions.

If the marginal distributions f (x j |i) are discrete, with x j taking only a few values,
one can estimate each of the f (x j |i) by simple multinomial histogram-type estimators.
Because this is so straightforward, this is a very common approach to the naı̈ve
Bayes estimator, and many implementations adopt this approach. Indeed, it is so
straightforward that many implementations partition any continuous variables (age,
weight, income, and so on) into cells so that a multinomial histogram-type estimator
can be constructed for all of the variables. At first glance, this strategy might seem to
be a weak one. After all, it means that any notion of continuity between neighboring
cells of the histogram has been sacrificed. It also requires the cells to be wide enough
to contain sufficient data points that accurate probability estimates can be obtained.
On the other hand, it can be regarded as providing a very general nonparametric
estimate of the univariate distribution, so avoiding any distributional assumptions.
In particular, it is a nonlinear transformation, so that, for example, the relationship
between estimates of f (x j |i) does not need to be monotonic in x j .

At a cost of more computational expense (in particular, at the cost of losing the
simple counting procedure which underlies histogram-type estimates), one can fit
more elaborate models to the univariate marginals. For example, one can assume
particular parametric forms for the distributions (e.g., normal, lognormal, and so on)
and estimate their parameters by standard and very familiar estimators, or one can
adopt more sophisticated nonparametric estimators, such as kernel density estimation.
While these do sacrifice the speed of the histogram approach, this is less important
in the modern world in which all the calculations will be done by machine. Having
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said that, there is another reason why one might prefer to use the histogram approach
based on forcing all the variables to be discrete—that of interpreting the results. We
discuss this below.

The assumption of independence at the core of the naı̈ve Bayes method is clearly a
strong one. It is unlikely to be true for most real problems. (How often does a diagonal
covariance matrix arise from real data in practice?) A priori, then, one might expect
the method to perform poorly precisely because of this improbable assumption lying
at its core. However, the fact is that it often does surprisingly well in real practical
applications. Reasons for this counterintuitive result are discussed below.

So far we have approached the naı̈ve Bayes method from the sampling paradigm,
describing it as being based on estimating the separate class conditional distributions
using the simplifying assumption that the variables in each of these distributions were
independent. However, the elegance of the naı̈ve Bayes method only really becomes
apparent when we note that we can obtain classifications equivalent to the above if we
use any strictly monotonic transformation of P(i |x), transforming the classification
threshold in a similar way. To see this, note that if T is a strictly monotonic increasing
transformation then

P(i |x) > P(i |y) ⇔ T (P(i |x)) > T (P(i |y))

and, in particular, P(i |x) > t ⇔ T (P(i |x)) > T (t). This means that if t is the classifi-
cation threshold with which P(i |x) is compared, then comparing T (P(i |x)) with T (t)
will yield the same classification results. (We will assume only monotonic increasing
transformations, though the extension to monotonic decreasing transformations is
trivial.)

One such monotonic transformation is the ratio

P(1|x)/(1 − P(1|x)) = P(1|x)/P(0|x) (9.1)

Using the naı̈ve Bayes assumption that the variables within each class are indepen-
dent, so that the distribution for class i has the form f (x |i) = ∏p

j=1 f (x j |i), the ratio
P(1|x)/(1 − P(1|x)) can be rewritten:

P(1|x)

1 − P(1|x)
= P(1)

∏p
j=1 f (x j |1)

P(0)
∏p

j=1 f (x j |0)
= P(1)

P(0)

p∏

j=1

f (x j |1)

f (x j |0)
(9.2)

The log transformation is also monotonic (and combination of monotonic functions
yields monotonic functions) so that another alternative score is given by

ln
P(1|x)

1 − P(1|x)
= ln

P(1)

P(0)
+

p∑

j=1

ln
f (x j |1)

f (x j |0)
(9.3)

If we define w j (x j ) = ln( f (x j |1)/ f (x j |0)) and k = ln{P(1)/(P(0))} we see that
Equation (9.3) takes the form of a simple sum

ln
P(1|x)

1 − P(1|x)
= k +

p∑

j=1

w j (x j ) (9.4)
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of contributions from the separate variables. Since the score S = k + ∑p
j=1 w j (x j )

is a direct estimate of (a monotonic transformation of) P(1|x), it is based on the
diagnostic paradigm. The ease of interpretation now becomes apparent: The naı̈ve
Bayes model is simply a sum of transformed values of the raw x j values.

In cases when each variable is discrete, or is made to be discrete by partitioning it
into cells, Equation (9.4) takes a particularly simple form. Suppose that variable x j

takes a value in the k j th cell of the variable, denoted x
(k j )
j . Then w j (x

(k j )
j ) is simply

a logarithm of a ratio of proportions: the proportion of class 1 points which fall into
the k j th cell of variable x j divided by the proportion of class 0 points which fall into

the k j th cell of variable x j . These w j (x
(k j )
j ) are called weights of evidence in some

applications: w j (x
(k j )
j ) shows the contribution the j th variable makes toward the total

score, or the evidence in favor of the object belonging to class 1 that is provided by
the j th variable. Such weights of evidence are useful in identifying which variables
are important in assigning any particular object to a class. (This is vital in some
applications, such as credit scoring in personal banking, where the law requires that
reasons must be given if an application for a loan is declined.)

9.3 Power Despite Independence

The assumption of independence of the x j within each class implicit in the naı̈ve
Bayes model might seem unduly restrictive. After all, as noted above, variables are
rarely independent in real problems. In fact, however, various factors may come into
play which means that the assumption is not as detrimental as it might seem (Hand
and Yu, 2001).

Firstly, the complexity of p-univariate marginal distributions is far lower than that
of a single p-variate multivariate distribution. This means that far fewer data points
are needed to obtain a given accuracy under the independence model than are needed
without this assumption. Put another way, the available sample will lead to an esti-
mator with smaller variance if one is prepared to restrict the model form by assuming
independence of the variables within classes. Of course, if the assumption is not true,
then there is a risk of bias. This is a manifestation of the classic bias/variance trade-off,
which applies to all data analysis modeling, and is not specific to the naı̈ve Bayes
model.

To decrease the risk of bias arising from the assumption of independence, a simple
modification of the basic naı̈ve Bayes model has been proposed. To understand the
reasoning behind this modification, consider the special case in which the marginal
distributions of all the variables are the same, and the extreme in which the variables
are perfectly correlated. This means that, for any given class, the probability that the
x j th variable takes a value r is the same for all variables. In this perfectly correlated
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case, the naı̈ve Bayes estimator is

P(1|x)

P(0|x)
= P(1)

P(0)

[
f (xk |1)

f (xk |0)

]p

while the true odds ratio is

P(1|x)

P(0|x)
= P(1)

P(0)

f (xk |1)

f (xk |0)

for any k ∈ {1, . . . , p}. We can see from this that if f (xk |1)/ f (xk |0) is larger than 1, the
presence of correlation will mean that the naı̈ve Bayes estimator tends to overestimate
P(1|x)/P(0|x), and if f (xk |1)/ f (xk |0) is less than 1, the presence of correlation will
mean that the naı̈ve Bayes estimator tends to underestimate P(1|x)/P(0|x). This
phenomenon immediately suggests modifying the naı̈ve Bayes estimator by raising
the f (xk |1)/ f (xk |0) ratios by some power less than 1, to shrink the overall estimator
toward the true odds. In general, this yields the improved naı̈ve Bayes estimator

P(1|x)

P(0|x)
= f (x |1)P(1)

f (x |0)P(0)
= P(1)

P(0)

p∏

j=1

[
f (x j |1)

f (x j |0)

]β

with β < 1. β is typically chosen by searching over possible values and choosing that
which gives best predictive results by means of a method such as cross-validation.
We can also see that this leads to a shrinkage factor appearing as a coefficient of the
w j (x j ) terms in Equation (9.4).

A second reason why the assumption of independence is not as unreasonable as
might at first seem is that often data might have undergone an initial variable selection
procedure in which highly correlated variables have been eliminated on the grounds
that they are likely to contribute in a similar way to the separation between classes.
Think of variable selection methods in linear regression, for example. This means
that the relationships between the remaining variables might well be approximated
by independence.

A third reason why the independence assumption may not be too detrimental is that
only the decision surface matters. While the assumption might lead to poor estimates
of probability or of the ratio P(1|x)/P(0|x), this does not necessarily imply that
the decision surface is far from (or even different from) the true decision surface.
Consider, for example, a situation in which the two classes have multivariate normal
distributions with the same (nondiagonal) covariance matrix, and with the vector of
differences between the means lying parallel to the first principal axis of the covariance
matrix. The optimal decision surface is linear and is the same with the true covariance
matrices and under the independence assumption.

Finally, of course, the decision surface produced by the naı̈ve Bayes model can in
fact have a complicated nonlinear shape: The surface is linear in the w j (x j ) but highly
nonlinear in the original variables x j , so that it can fit quite elaborate surfaces.
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9.4 Extensions of the Model

We have seen that the naı̈ve Bayes model is often surprisingly effective. It also has the
singular merit of being very easy to compute, especially if the discrete variable version
is used. Coupled with the ease of understanding and interpretation of the model,
perhaps especially in terms of the simple points-scoring perspective in Equation (9.4),
these factors explain why it is so widely used. However, its very simplicity, along with
the fact that its core assumption often appears unrealistic, has led many researchers
to propose extensions of it in an attempt to improve its predictive accuracy.

We have already seen one of these above, to ease the independence assumption
by shrinking the probability estimates. Shrinking has also been proposed to improve
the simplistic multinomial estimate of the proportions of objects falling into each
category in the case of discrete predictor variables. So, if the j th discrete predictor
variable, x j , has cr categories, and if n jr of the total of n objects fall into the r th
category of this variable, the usual multinomial estimator of the probability that a
future object will fall into this category, n jr/n, is replaced by (n jr + c−1

r )/(n + 1).
This shrinkage, which is also sometimes called the Laplacian correction, also has a
direct Bayesian interpretation. It can be useful if the sample size and cell widths are
such that there may not be very many objects in a cell.

Perhaps the most obvious way of easing the independence assumption is by intro-
ducing extra terms in the models of the distributions of x in each class, to allow for
interactions. This has been attempted in a large number of ways, but all of them nec-
essarily introduce complications, and so sacrifice the basic simplicity and elegance
of the naı̈ve Bayes model. In particular, if an interaction between two of the variables
in x is to be included in the model, then the estimate cannot be based merely on the
univariate marginals.

Within the i th class, the joint distribution of x is

f (x |i) = f (x1|i) f (x2|x1, i) f (x3|x1, x2, i) . . . f (x p|x1, x2, . . . , x p−1, i) (9.5)

and this can be approximated by simplifying the conditional probabilities. The extreme
arises with f (x j |x1, . . . , x j−1, i) = f (x j |i) for all j , and this is the naı̈ve Bayes
method. Obviously, however, models between these two extremes can be used. If the
variables are discrete, one can estimate appropriate models, with arbitrary degrees of
interaction included, by using log-linear models. For continuous variables, graphical
models and the literature on conditional independence graphs are appropriate. An
example which is appropriate in some circumstances is the Markov model

f (x |i) = f (x1|i) f (x2|x1, i) f (x3|x2, i), . . . , f (x p|x p−1, i) (9.6)

This is equivalent to using a subset of two-way marginal distributions instead of
merely the univariate marginal distributions in the naı̈ve Bayes model.

Yet other extensions combine naı̈ve Bayes models with tree methods (e.g., Langley,
1993), for example splitting the overall population into subsets on the basis of the
values the objects take on some of the variables and then fitting naı̈ve Bayes models
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to each subset. Such models are popular in some applications, where they are known
as segmented scorecards. The segmentation is a way to allow for interactions which
would cause difficulties if a single overall independence model was fitted.

Another way of embedding naı̈ve Bayes models in higher-level approaches is by
means of multiple classifier systems, for example, in a random forest or via boosting.

There is a very close relationship between the naı̈ve Bayes model and another
very important model for supervised classification: the logistic regression model.
This was originally developed within the statistical community, and is very widely
used in medicine, banking, marketing, and other areas. It is more powerful than the
naı̈ve Bayes model, but this extra power comes at the cost of necessarily requiring a
more complicated estimation scheme. In particular, as we will see, although it has the
same attractively simply basic form as the naı̈ve Bayes model, the parameters (e.g.,
the w j (x

(k j )
j )) cannot be estimated simply by determining proportions, but require an

iterative algorithm.
In examining the naı̈ve Bayes model above, we obtained the decomposition

Equation (9.2) by adopting the independence assumption. However, exactly the same
structure for the ratio results if we model f (x |1) by g(x)

∏p
j=1 h1(x j ) and f (x |0) by

g(x)
∏p

j=1 h0(x j ), where the function g(x) is the same in each model. If g(x) does
not factorize into a product of components, one for each of the raw x j , we are not
assuming independence of the x j . The dependence structure implicit in g(x) can be
as complicated as we like—the only restriction being that it is the same in the two
classes; that is, that g(x) is common in the factorizations of f (x |1) and f (x |0). With
these factorizations of the f (x |i), we obtain

P(1|x)

1 − P(1|x)
= P(1)g(x)

∏p
j=1 h1(x j )

P(0)g(x)
∏p

j=1 h0(x j )
= P(1)

P(0)
.

∏p
j=1 h1(x j )

∏p
j=1 h0(x j )

(9.7)

Since the g(x) terms cancel, we are left with a structure identical to Equation (9.2),
although the hi (x j ) are not the same as the f (x j |i) (unless g(x) ≡ 1). Note that in this
factorization it is not even necessary that the hi (x j ) be probability density functions.
All that is needed is that the overall products g(x)

∏p
j=1 hi (x j ) are densities.

The model in Equation (9.7) is just as simple as the naı̈ve Bayes model, and takes
exactly the same form. In particular, by taking logs we end up with a points-scoring
model as in Equation (9.4). But the model in Equation (9.7) is more flexible than
the naı̈ve Bayes model because it does not assume independence of the x j in each
class. Of course, this considerable extra flexibility of the logistic regression model
is not obtained without cost. Although the resulting model form is identical to the
naı̈ve Bayes model form (with different parameter values, of course), it cannot be
estimated by looking at the univariate marginals separately: An iterative procedure
must be used. Standard statistical texts (e.g., Collett, 1991) give algorithms for esti-
mating the parameters of logistic regression models. Often an iterative proportional
weighted least squares method is used to find the parameters which maximize the
likelihood.

The version of the naı̈ve Bayes model based on the discretization transformation of
the raw x j can be generalized to yield other extensions. In particular, the more general

© 2009 by Taylor & Francis Group, LLC



9.5 Software Implementations 171

class of generalized additive models (Hastie and Tibshirani, 1990) take exactly the
form of additive combinations of transformations of the x j .

The naı̈ve Bayes model is tremendously appealing because of its simplicity, ele-
gance, robustness, as well as the speed with which such a model can be constructed,
and the speed with which it can be applied to produce a classification. It is one of the
oldest formal classification algorithms, and yet even in its simplest form it is often
surprisingly effective. A large number of modifications have been introduced, by the
statistical, data mining, machine learning, and pattern recognition communities, in
an attempt to make it more flexible, but one has to recognize that such modifications
are necessarily complications, which detract from its basic simplicity.

9.5 Software Implementations

The simplicity of the naı̈ve Bayes algorithm means that, in its basic form, it has been
very widely implemented, and many free versions are available on the Web. The
open-source Weka implementation (http://www.cs.waikato.ac.nz/ml/weka/) allows
the individual variables to be modeled by normal distributions, by kernel estimates,
or by splitting them into discrete categories.

Perhaps it is worthwhile making a cautionary comment. The term Bayesian has sev-
eral different interpretations, and its now common use in the phrase “naı̈ve Bayes clas-
sifier” can mislead the unwary. In particular, “Bayesian networks” are more general
classes of models, which include the naı̈ve Bayes model as a special case, but which
generally also allow various interactions to be included in the model. An example of
the sorts of confusion this can lead to is described in Jamain and Hand (2005).

9.6 Examples

9.6.1 Example 1

To illustrate the principles of the naı̈ve Bayes method, consider the artificial data set
shown in Table 9.1. The aim is to use these data as a training set to construct a rule
which will allow prediction of variable D for future customers, where D is default on
a bank loan (the last column, labeled 1 for default and 0 for nondefault). The variables
which will be used for the prediction are columns 1 to 3: time with current employer,
T , in years; size of loan requested, S, in dollars; and H , whether the applicant is a
homeowner (1), rental tenant (2), or “other” (3). In fact, the naı̈ve Bayes method is a
common approach to credit default problems of this kind, although typically in such
applications the training set will contain hundreds of thousands of accounts and will
use many more variables, and the naı̈ve Bayes method will be used as leaves in a
segmented scorecard of the kind described above.
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TABLE 9.1 Data for Example 1

Time with Emp, T Size of Loan, S Homeowner, H Default, D

5 10,000 1 0
20 10,000 1 0

1 25,000 1 0
1 15,000 3 0

15 2,000 2 0
6 12,000 1 0
1 5,000 2 1

12 8,000 2 1
3 10,000 1 1
1 5,000 3 1

Time with employer is a continuous variable. For each of the two classes separately,
we could estimate the distribution f (T |i), i = 0, 1 using a kernel method or some
assumed parametric form (lognormal would probably be a sensible choice for such a
variable), or we could use the naı̈ve Bayes approach in which the variable is split into
cells, estimating the probability of falling in each cell by the proportion of cases from
class i which fall in that cell. We shall take this third approach and, to keep things as
simple as possible, will split T into only two cells, whether or not the customer has
been with the employer for 10 or more years. This yields probability estimates

f̂ (T < 10|D = 0) = 4/6, f̂ (T ≥ 10|D = 0) = 2/6

f̂ (T < 10|D = 1) = 3/4, f̂ (T ≥ 10|D = 1) = 1/4

Similarly, we shall do the same sort of thing with size of loan, splitting it into just
two cells (purely for convenience of explanation) according to the intervals ≤ 10,000
and > 10,000. This yields probability estimates

f̂ (S ≤ 10000|D = 0) = 3/6, f̂ (S > 10000|D = 0) = 3/6

f̂ (S ≤ 10000|D = 1) = 3/4, f̂ (S > 10000|D = 1) = 1/4

For the nondefaulter class, the homeowner column yields three estimated proba-
bilities:

f̂ (H = 1|D = 0) = 4/6, f̂ (H = 2|D = 0) = 1/6, f̂ (H = 3|D = 0) = 1/6

For the defaulter class, the respective probabilities are

f̂ (H = 1|D = 1) = 1/4, f̂ (H = 2|D = 1) = 2/4, f̂ (H = 3|D = 1) = 1/4

Suppose now that a new application form is received, from an applicant who has
been with his or her (this phrasing is chosen deliberately: It is illegal to use sex as
a predictor for making loan decisions such as this.) employer for less than 10 years
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(T < 10), is seeking a loan of $10,000 (S ≤ 10000), and is a homeowner (H = 1).
This leads to an estimated value of the ratio P̂(1|x)/P̂(0|x) of

P(1|x)

P(0|x)
= P(1)

P(0)

p∏

j=1

f̂ (x j |1)

f̂ (x j |0)
= P(1)

P(0)
× f̂ (T |1) f̂ (S|1) f̂ (H |1)

f̂ (T |0) f̂ (S|0) f̂ (H |0)

= 4/10

6/10
× 3/4 × 3/4 × 1/4

4/6 × 4/6 × 3/6 × 4/6
= 0.422

Since P(1|x) = 1−P(0|x), this is equivalent to P(1|x) = 0.296 and P(0|x) = 0.703.
If the classification threshold is 0.5 [i.e., if we decide to classify a customer with
vector x to class 1 if P(1|x) > 0.5 and to class 0 otherwise], then this customer will
be classified as likely to belong to class 0—the nondefaulter class. This customer
would be a good bet for making a loan to.

9.6.2 Example 2

An important and relatively new application domain for the naı̈ve Bayes method is
spam filtering. Spams are unsolicited and typically unwanted emails, often direct
marketing of some kind and frequently offering dubious financial or other oppor-
tunities. Some of them are so-called phishing exercises. The principle behind them
is that even a low response rate is profitable if (a) the cost of mailing the emails is
negligible and (b) enough are sent. Since they are sent out automatically to millions
of email addresses, one may receive many hundreds of these daily. With this num-
ber, even to move the cursor and physically hit the delete button would consume
significant amounts of time. For this reason researchers have developed classification
rules called spam filters, which examine incoming emails, and assign them to spam
or not-spam classes. Those assigned to the spam class can be deleted automatically,
or sent to a holding file for later examination, or treated in any other way deemed
appropriate.

Naı̈ve Bayes models are very popular for use as spam filters, going back to the
early seminal work by Sahami et al. (1998). In their simplest form, the variables in
the model are binary variables corresponding to the presence or absence, in the email,
of each word. However, the naı̈ve Bayes model also permits the ready addition of other
binary variables corresponding to the presence or absence of other syntactic features
such as punctuation marks, currency units ($, £, €, and so on), combinations of words,
whether the source of the email was an individual or a list, and so on. In addition, other
nonbinary variables are useful as further predictors, for example, the type of domain
of the source, the percentage of nonalphanumeric characters in the subject heading,
and so on. It will be clear from the above that the potential number of variables is
very large. Because of this, a feature selection step is typically undertaken (recall
the discussion of why the naı̈ve Bayes model may do well, despite its underlying
independence assumption).

One important aspect of spam filtering is the imbalance in the severity of the
misclassification costs. Misclassifying a legitimate email as spam is much more se-
rious than the reverse. Both this and the relative size of the two classes play roles in
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determining the classification threshold. In their experiments, Sahami et al. (1998)
chose a threshold of 0.999 with which to compare P(spam | x).

One strength of the naı̈ve Bayes model is that it can just as easily be applied to
count variables as to binary variables. The multivariate binary spam filter described
above is easy to extend to more elaborate models for the distributions of the values
of the variables. We have already referred to the use of multinomial models ear-
lier, in which continuous variables are partitioned into more than two cells (and the
homeowner variable in the artificial data of Example 1 was a case of a trinomial
variable). Experiments suggest that, at least for spam filtering, the multinomial ap-
proach using frequencies of word appearances in the emails is superior to using mere
presence/absence variables. Metsis et al. (2006) carried out a comparative analysis
of different versions of the naı̈ve Bayes model, in which the marginal variables are
treated in different ways, applying the methods to some real email data sets.

9.7 Advanced Topics

The chief attraction of the naı̈ve Bayes model is its extreme simplicity, permitting easy
(univariate) estimation and straightforward interpretation via the weights of evidence.
The first of these properties is also associated with robustness, provided the estimates
of the marginal distributions are robust. In particular, if the marginal distributions are
categorical, then each cell needs to contain sufficient data points to yield accurate
estimates. With this in mind, researchers have explored optimal partitioning of each
variable. The approach, most in tune with the straightforward naı̈ve Bayes estimator,
is to examine each variable separately—perhaps splitting into equal quantiles (this is
generally superior to splitting into equal length cells). A more sophisticated approach
will choose the cells based on the relative number from each class in each cell. This
can also be done by considering each variable separately. Finally, one can partition
each cell taking into account the overall fit to the distribution in each (or both) classes,
but this moves away from the simple marginal approach. Investigations of some of
these issues are described in Hand and Adams (2000).

Missing data are a potential problem in all data analysis. Classification methods
which cannot handle incomplete data are at a disadvantage. When the data are missing
completely at random, then the naı̈ve Bayes model copes without any difficulty:
Valid estimates are obtained by simply estimating the marginal distributions from the
observed data. If the data are informatively missing, however, then more complex
procedures are needed. This is an area meriting further research.

More and more problems involve dynamic data, and data sets which sequentially
accrue. The naı̈ve Bayes method can be adapted very readily to such problems, by
virtue of its straightforward estimation.

So-called “small n, large p” problems have become important in certain areas, such
as bioinformatics, genomics, and proteomics, especially in the analysis of microarray
data. These are problems characterized by the fact that the number of variables is
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much larger than the sample size. Such problems pose difficulties; for example, the
covariance matrix will be singular, leading to overfitting. To tackle such problems,
it is necessary to make some kinds of assumptions or (equivalently) to shrink the
estimators in some way. One approach to such problems in the context of supervised
classification is to use the naı̈ve Bayes method. This has its in-built assumption of
independence, which acts to protect against overfitting. More elaborate versions of
this idea combine naı̈ve Bayes models with more sophisticated classifiers, trying to
strike the best balance.

9.8 Exercises

1. Using a package such as the open-source package R, generate samples of size
100 from each of the two classes. Class 1 is bivariate normal, with zero means
and identity covariance matrix. Class 2 is bivariate normal, with mean vector
(0, 2) and diagonal covariance matrix with leading diagonal (1, 2). Fit a naı̈ve
Bayes model to these data, based on assuming (correctly) that the marginal
distributions are normal. Plot the decision surface to see that it is not linear.

2. The tables below show the bivariate distributions from samples for two classes,
where the variables each have three categories. Show that the two variables are
independent in each of the two classes. Taking the classification threshold as
1/2, calculate the decision surface for a naı̈ve Bayes classifier and show that it
is nonlinear.

144 144 144

144 144 144

144 144 144

9 90 9

90 900 90

9 90 9

3. For the data from Exercise 2, calculate the weights of evidence for the categories
of each variable, so that the naı̈ve Bayes classifier can be expressed as a weighted
sum.

4. The tables below show the bivariate distributions from samples for two classes,
where the variables each have three categories. Show that the two variables are
not independent in each of the two classes. Taking the classification threshold
as 1/2, fit a naı̈ve Bayes classifier to these data and show that nevertheless its
decision surface is optimal.

© 2009 by Taylor & Francis Group, LLC



176 Naı̈ve Bayes

27 30 27

30 2700 30

27 30 27

432 48 432

48 432 48

432 48 432

5. Using data simulated from multivariate normal distributions, compare the rel-
ative performance of a naı̈ve Bayes classifier and a simple linear discriminant
classification rule as the (assumed common) correlation between the variables
increases.

6. Using a suitable data set from the UCI Machine Learning Repository, with
continuous variables which are partitioned into discrete cells, investigate the
effect of changing the number and width of the cells in each variable.

7. Using the same data set as in Exercise 6, compare the models produced by the
naı̈ve Bayes classifier and logistic regression.

8. A common way to extend the naı̈ve Bayes classifier in some applications is
to partition the data into segments, with separate naı̈ve Bayes classifiers con-
structed for each segment. Clearly such partitioning will be most effective if
its splits allow for interactions which the naı̈ve Bayes classifier would not pick
up. Develop guidelines to assist people in making such splits.

9. The idea of modeling the distribution of each class by assuming independence
extends immediately to more than two classes. For more than two classes write
down appropriate classification models in the weights of evidence format.

10. One of the particular attractions of the naı̈ve Bayes classifier is that it permits
very simple estimation. Develop updating rules which allow the classifier to be
sequentially updated as new data arrive.
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