Algorithms and Data Structures in C_{++} by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

Preface

Chapter 1-Data Representations

1.1 Integer Representations

1.1.1 Unsigned Notation
1.1.2 Signed-Magnitude Notation
1.1.3 2's Complement Notation
1.1.4 Sign Extension
1.1.4.1 Signed-Magnitude
1.1.4.2 Unsigned
1.1.4.3 2's Complement
1.1.5 C++ Program Example
1.2 Floating Point Representation
1.2.1 IEEE 754 Standard Floating Point Representations
1.2.1.1 IEEE 32-Bit Standard
1.2.1.2 IEEE 64-bit Standard
1.2.1.3 C++ Example for IEEE Floating point
1.2.2 Bit Operators in C++
1.2.3 Examples
1.2.4 Conversion from Decimal to Binary
1.3 Character Formats-ASCII

1.4 Putting it All Together

1.5 Problems

Chapter 2-Algorithms

2.1 Order

2.1.1 Justification of Using Order as a Complexity Measure

2.2 Induction

2.3 Recursion

2.3.1 Factorial
2.3.2 Fibonacci Numbers

2.3.3 General Recurrence Relations

2.3.4 Tower of Hanoi

2.3.5 Boolean Function Implementation

2.4 Graphs and Trees

2.5 Parallel Algorithms

2.5.1 Speedup and Amdahls Law

2.5.2 Pipelining

2.5.3 Parallel Processing and Processor Topologies

2.5.3.1 Full Crossbar
2.5.3.2 Rectangular Mesh
2.5.3.3 Hypercube
2.5.3.4 Cube-Connected Cycles
2.6 The Hypercube Topology
2.6.1 Definitions
2.6.2 Message Passing
2.6.3 Efficient Hypercubes
2.6.3.1 Transitive Closure
2.6.3.2 Least-Weighted Path-Length
2.6.3.3 Hypercubes with Failed Nodes
2.6.3.4 Efficiency
2.6.3.5 Message Passing in Efficient Hypercubes
2.6.4 Visualizing the Hypercube: A C++ Example
2.7 Problems

Chapter 3-Data Structures and Searching

3.1 Pointers and Dynamic Memory Allocation
3.1.1 A Double Pointer Example
3.1.2 Dynamic Memory Allocation with New and Delete
3.1.3 Arrays
3.1.4 Overloading in $\mathrm{C}++$

3.4.1 Singly Linked Lists

3.4.2 Circular Lists

3.4.3 Doubly Linked Lists

3.5 Operations on Linked Lists
3.5.1 A Linked List Example
3.5.1.1 Bounding a Search Space
3.6 Linear Search
3.7 Binary Search
3.8 QuickSort
3.9 Binary Trees
3.9.1 Traversing the Tree
3.10 Hashing
3.11 Simulated Annealing
3.11.1 The Square Packing Problem
3.11.1.1 Program Description
3.12 Problems

Chapter 4-Algorithms for Computer Arithmetic
4.1 2's Complement Addition
4.1.1 Full and Half Adder
4.1.2 Ripple Carry Addition
4.1.2.1 Overflow
4.1.3 Carry Lookahead Addition
4.2 A Simple Hardware Simulator in $\mathrm{C}++$
4.3 2's Complement Multiplication
4.3.1 Shift-Add Addition
4.3.2 Booth Algorithm
4.3.3 Bit-Pair Recoding
4.4 Fixed Point Division
4.4.1 Restoring Division

4.4.2 Nonrestoring Division

4.4.3 Shifting over 1's and 0's

4.4.4 Newton's Method

4.5 Residue Number System

4.5.1 Representation in the Residue Number System

4.5.2 Data Conversion - Calculating the Value of a Number
4.5.3 C++ Implementation
4.6 Problems

Index

Table of Contents

Preface

This text is designed for an introductory quarter or semester course in algorithms and data structures for students in engineering and computer science. It will also serve as a reference text for programmers in $\mathrm{C}++$. The book presents algorithms and data structures with heavy emphasis on C++. Every C++ program presented is a stand-alone program. Except as noted, all of the programs in the book have been compiled and executed on multiple platforms.

When used in a course, the students should have access to C++ reference manuals for their particular programming environment. The instructor of the course should strive to describe to the students every line of each program. The prerequisite knowledge for this course should be a minimal understanding of digital logic. A high-level programming language is desirable but not required for more advanced students.

The study of algorithms is a massive field and no single text can do justice to every intricacy or application. The philosophy in this text is to choose an appropriate subset which exercises the unique and more modern aspects of the $\mathrm{C}++$ programming language while providing a stimulating introduction to realistic problems.

I close with special thanks to my friend and colleague, Jeffrey H. Kulick, for his contributions to this manuscript.

Alan Parker
Huntsville, AL
1993

Dedication

to
Valerie Anne Parker

Table of Contents

Previous Table of Contents Next

Chapter 1
 Data Representations

This chapter introduces the various formats used by computers for the representation of integers, floating point numbers, and characters. Extensive examples of these representations within the C++ programming language are provided.

1.1 Integer Representations

The tremendous growth in computers is partly due to the fact that physical devices can be built inexpensively which distinguish and manipulate two states at very high speeds. Since computers are devices which primarily act on two states (0 and 1), binary, octal, and hex representations are commonly used for the representation of computer data. The representation for each of these bases is shown in Table 1.1.

Table 1.1 Number Systems

Binary	Octal	Hexadecimal	Decimal
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	A	10
1011	13	B	11
1100	14	C	12
1101	15	D	13
1110	16	E	14

1111	17	F	15
10000	20	10	16

Operations in each of these bases is analogous to base 10. In base 10, for example, the decimal number 743.57 is calculated as

$$
\begin{equation*}
743.57=7 \times 10^{2}+4 \times 10^{1}+3 \times 10^{0}+5 \times 10^{-1}+7 \times 10^{-2} \tag{1.1}
\end{equation*}
$$

In a more precise form, if a number, X, has n digits in front of the decimal and m digits past the decimal

$$
\begin{equation*}
X=a_{n-1} a_{n-2} \ldots a_{1} a_{0} \cdot b_{m-1} b_{m-2} \ldots b_{1} b_{0} \tag{1.2}
\end{equation*}
$$

Its base 10 value would be

$$
\begin{equation*}
X=\sum_{j=0}^{n-1} a_{j} 10^{j}+\sum_{k=0}^{m-1} b_{m-1-k} 10^{-k} \quad 0 \leq a_{j}, b_{j} \leq 9 \tag{1.3}
\end{equation*}
$$

For hexadecimal,

$$
\begin{equation*}
X=\sum_{j=0}^{n-1} a_{j} 16^{j}+\sum_{k=0}^{m-1} b_{m-1-k} 16^{-k} \quad 0 \leq a_{j}, b_{j} \leq \mathrm{F} \tag{1.4}
\end{equation*}
$$

For octal,

$$
\begin{equation*}
X=\sum_{j=0}^{n-1} a_{j} 8^{j}+\sum_{k=0}^{m-1} b_{m-1-k} 8^{-k} \quad 0 \leq a_{j}, b_{j} \leq 7 \tag{1.5}
\end{equation*}
$$

In general for base r

$$
\begin{equation*}
X=\sum_{j=0}^{n-1} a_{j} r^{j}+\sum_{k=0}^{m-1} b_{m-1-k} r^{-k} \quad 0 \leq a_{j}, b_{j} \leq r-1 \tag{1.6}
\end{equation*}
$$

When using a theoretical representation to model an entity one can introduce a tremendous amount of bias into the thought process associated with the implementation of the entity. As an example, consider Eq. 1.6 which gives the value of a number in base r. In looking at Eq. 1.6, if a system to perform the calculation of the value is built, the natural approach is to subdivide the task into two subtasks: a subtask to calculate the integer portion and a subtask to calculate the fractional portion; however, this bias is introduced by the theoretical model. Consider, for instance, an equally valid model for the value of a number in base r . The number X is represented as

$$
\begin{equation*}
X=a_{n-1} a_{n-2} \ldots a_{k} \cdot a_{k-1} \ldots a_{0} \tag{1.7}
\end{equation*}
$$

where the decimal point appears after the k th element. X then has the value:

$$
X=r^{-k}\left(\sum_{j=0}^{n-1} a_{j} j^{j}\right)
$$

(1.8)

Based on this model a different implementation might be chosen. While theoretical models are nice, they can often lead one astray.

As a first C++ programming example let's compute the representation of some numbers in decimal, octal, and hexadecimal for the integer type. A program demonstrating integer representations in decimal, octal, and hex is shown in Code List 1.1.

Code List 1.1 Integer Example

C++ Source Program

\#include <iostream.h>
int $a[]=\{45,245,567,1014,-45,-1,256\}$;
void main()
1
int i;
for($\mathrm{i}=0 ; \mathrm{i}<$ sizeof(a$) /$ sizeof(int); $\mathrm{i}++$)
1
cout << endl << endl << "In decimal " << dec << a[i];

C++ Source Program
cout << endl <<"In hex " << hex << a[i];
cout \ll endl \ll "In octal " << oct << a $[$ i];
\}
1
In this sample program there are a couple of $\mathrm{C}++$ constructs. The \#include <iostream. h > includes the header files which allow the use of cout, a function used for output. The second line of the program declares an array of integers. Since the list is initialized the size need not be provided. This declaration is equivalent to
int $\mathrm{a}[7] ;$ - declaring an array of seven integers 0-6
$\mathrm{a}[0]=45$; - initializing each entry

$$
\begin{aligned}
& \mathrm{a}[1]=245 ; \\
& \mathrm{a}[2]=567 ; \\
& \mathrm{a}[3]=1014 ; \\
& \mathrm{a}[4]=-45 ; \\
& \mathrm{a}[5]=-1 ; \\
& \mathrm{a}[6]=256 ;
\end{aligned}
$$

The void main() declaration declares that the main program will not return a value. The sizeof operator used in the loop for i returns the size of the array a in bytes. For this case

$$
\begin{aligned}
& \operatorname{sizeof}(\mathrm{a})=28 \\
& \text { sizeof(int)=4 }
\end{aligned}
$$

The cout statement in $\mathrm{C}++$ is used to output the data. It is analogous to the printf statement in C but without some of the overhead. The dec, hex, and oct keywords in the cout statement set the output to decimal, hexadecimal, and octal respectively. The default for cout is in decimal.

At this point, the output of the program should not be surprising except for the representation of negative numbers. The computer uses a 2's complement representation for numbers which is discussed in Section 1.1.3 on page 7.

Code List 1.2 Program Output of Code List 1.1

C++ Output

In decimal 45
In hex 2d
In octal 55

In decimal 245
In hex f5
In octal 365

In decimal 567
In hex 237
In octal 1067

In decimal 1014
In hex 3f6
In octal 1766

In decimal -45
In hex ffffffd 3
In octal 37777777723

In decimal -1
In hex ffffffff
In octal 37777777777

In decimal 256
In hex 100
In octal 400

Previous	Table of Contents

Algorithms and Data Structures in $\mathrm{C}++$ by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93
Previous Table of Contents Next

1.1.1 Unsigned Notation

Unsigned notation is used to represent nonnegative integers. The unsigned notation does not support negative numbers or floating point numbers. An n-bit number, A, in unsigned notation is represented as

$$
\begin{equation*}
A \equiv a_{n-1} a_{n-2} \ldots a_{0} \tag{1.9}
\end{equation*}
$$

with a value of

$$
\begin{equation*}
A=\sum_{k=0}^{n-1} a_{k} 2^{k} \quad a_{k} \in\{0,1\} \tag{1.10}
\end{equation*}
$$

Negative numbers are not representable in unsigned format. The range of numbers in an n-bit unsigned notation is

$$
\begin{equation*}
0 \leq A \leq 2^{n}-1 \tag{1.11}
\end{equation*}
$$

Zero is uniquely represented in unsigned notation. The following types are used in the C++ programming language to indicate unsigned notation:

- unsigned char (8 bits)
- unsigned short (16 bits)
- unsigned int (native machine size)
- unsigned long (machine dependent)

The number of bits for each type can be compiler dependent.

1.1.2 Signed-Magnitude Notation

Signed-magnitude numbers are used to represent positive and negative integers. Signed-magnitude notation does not support floating-point numbers. An n-bit number, A, in signed-magnitude notation is represented as

$$
\begin{equation*}
A=a_{n-1} a_{n-2} \ldots a_{0} \tag{1.12}
\end{equation*}
$$

with a value of

$$
\begin{equation*}
A=(-1)^{a_{n-1}}\left(\sum_{k=0}^{n-2} a_{k} 2^{k}\right) \quad a_{k} \in\{0,1\} \tag{1.13}
\end{equation*}
$$

A number, A, is negative if and only if $a_{n-1}=1$. The range of numbers in an n-bit signed magnitude notation is

$$
\begin{equation*}
-\left(2^{n-1}-1\right) \leq A \leq 2^{n-1}-1 \tag{1.14}
\end{equation*}
$$

The range is symmetrical and zero is not uniquely represented. Computers do not use signed-magnitude notation for integers because of the hardware complexity induced by the representation to support addition.

1.1.3 2's Complement Notation

2 's complement notation is used by almost all computers to represent positive and negative integers. An n-bit number, A, in 2's complement notation is represented as

$$
\begin{equation*}
A \equiv a_{n-1} a_{n-2} \ldots a_{0} \tag{1.15}
\end{equation*}
$$

with a value of

$$
\begin{equation*}
A=\left(\sum_{k=0}^{n-2} a_{k} 2^{k}\right)-a_{n-1} 2^{n-1} \quad a_{k} \in\{0,1\} \tag{1.16}
\end{equation*}
$$

A number, A, is negative if and only if $a_{n-1}=1$. From Eq. 1.16, the negative of $A,-A$, is given as

$$
\begin{equation*}
-A=\left(\sum_{k=0}^{n-2}-a_{k} 2^{k}\right)+a_{n-1} 2^{n-1} \tag{1.17}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
-A=1+\left(\sum_{k=0}^{n-2}\left(\bar{a}_{k}\right) 2^{k}\right)-\overline{a_{n-1}} 2^{n-1} \tag{1.18}
\end{equation*}
$$

where \bar{x} is defined as the unary complement:

$$
\bar{x}=\left\{\begin{array}{l}
1, \text { if } x=0 \tag{1.19}\\
0, \text { if } x=1
\end{array}\right.
$$

The one's complement of a number, A, denoted by \bar{A}, is defined as

$$
\begin{equation*}
\bar{A}=\overline{a_{n-1} a_{n-2}} \cdots \overline{a_{0}} \tag{1.20}
\end{equation*}
$$

From Eq. 1.18 it can be shown that

$$
\begin{equation*}
-A=1+\bar{A} \tag{1.21}
\end{equation*}
$$

To see this note that

$$
\begin{equation*}
\bar{A}=-\overline{a_{n-1}} 2^{n-1}+\sum_{k=0}^{n-2} \overline{a_{k}} 2^{k} \tag{1.22}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{k=0}^{n-2} \bar{a}_{k} 2^{k}+\sum_{k=0}^{n-2} a_{k} 2^{k} \tag{1.23}\\
=\sum_{k=0}^{n-2}\left(a_{k}+a_{k}\right) 2^{k}=\sum_{k=0}^{n-2} 2^{k}=2^{n-1}-1
\end{gather*}
$$

This yields

$$
\begin{equation*}
\sum_{k=0}^{n-2} \overline{a_{k}} 2^{k}=2^{n-1}-1-\sum_{k=0}^{n-2} a_{k} 2^{k} \tag{1.24}
\end{equation*}
$$

Inserting Eq. 1.24 into Eq. 1.22 yields

$$
\begin{equation*}
\bar{A}+1=-\overline{a_{n-1}} 2^{n-1}+2^{n-1}-1-\sum_{k=0}^{n-2} a_{k} 2^{k}+1 \tag{1.25}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\bar{A}+1=\left(1-\overline{a_{n-1}}\right) 2^{n-1}-\sum_{k=0}^{n-2} a_{k} 2^{k} \tag{1.26}
\end{equation*}
$$

By noting

$$
\begin{equation*}
1-\overline{a_{n-1}}=a_{n-1} \tag{1.27}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\bar{A}+1=a_{n-1} 2^{n-1}-\sum_{k=0}^{n-2} a_{k} 2^{k} \tag{1.28}
\end{equation*}
$$

which is $-A$. So whether A is positive or negative the two's complement of A is equivalent to $-A$.

$$
\begin{aligned}
& 00000001=+1 \\
& 1111110 \text { (8-bit 1's complement) } \\
& \begin{array}{r}
+1
\end{array} \\
& \hline 1111111=-1 \text { (8-bit } 2 \text { 's complement) }
\end{aligned}
$$

Note that in this case it is a simpler way to generate the representation of -1 . Otherwise you would have to note that

$$
\begin{equation*}
-128+64+32+16+8+4+2+1=-1 \tag{1.29}
\end{equation*}
$$

Similarly

However, it is useful to know the representation in terms of the weighted bits. For instance, -5 , can be generated from the representation of -1 by eliminating the contribution of 4 in -1 :

Similarly, -21 , can be realized from -5 by eliminating the positive contribution of 16 from its representation.

The operations can be done in hex as well as binary. For 8-bit 2's complement one has

$$
\begin{gather*}
-1=\mathrm{FF} \tag{1.30}\\
1=\overline{\mathrm{FF}}+1=00+1=01 \tag{1.31}
\end{gather*}
$$

with all the operations performed in hex. After a little familiarity, hex numbers are generally easier to manipulate. To take the one's complement one handles each hex digit at a time. If w is a hex digit then
the 1 's complement of $w, \overline{\boldsymbol{w}}$, is given as

$$
\begin{align*}
& \bar{w}=\mathrm{F}-w \\
& \overline{\mathrm{~A}}=\mathrm{F}-\mathrm{A}=5 \tag{1.33}
\end{align*}
$$

The range of numbers in an n-bit 2's complement notation is

$$
\begin{equation*}
-2^{n-1} \leq A \leq 2^{n-1}-1 \tag{1.34}
\end{equation*}
$$

The range is not symmetric but the number zero is uniquely represented.
The representation in 2 's complement arithmetic is similar to an odometer in a car. If the car odometer is reading zero and the car is driven one mile in reverse (-1) then the odometer reads 999999 . This is illustrated in Table 1.2.

Table 1.2 2's Complement Odometer Analogy

8-Bit 2's Complement		
Binary	Value	Odometer
11111110	-2	999998
11111111	-1	999999
00000000	0	000000
00000001	1	000001
00000010	2	000002

Typically, 2's complement representations are used in the C++ programming language with the following declarations:

- char (8 bits)
- short (16 bits)
- int (16,32 , or 64 bits)
- long (32 bits)

The number of bits for each type can be compiler dependent. An 8-bit example of the three basic integer representations is shown in Table 1.3.

Table 1.3 8-Bit Representations

8-Bit Representations			
Number	Unsigned	Signed Magnitude	2's Complement
-128	NR	NR	10000000
-127	NR	11111111	10000001
-2	NR	10000010	11111110
-1	NR	10000001	11111111

0	00000000	00000000 10000000	00000000
1	00000001	00000001	00000001
127	01111111	01111111	01111111
128	10000000	NR	NR
255	11111111	NR	NR

.Not representable in 8 -bit format.
Table 1.4 Ranges for 2's Complement and Unsigned Notations

\# Bits	2's Complement	Unsigned
8	$-128 \mathrm{~d} A \mathrm{~d} 127$	0dAd255
16	$-32768 \mathrm{~d} A \mathrm{~d} 32767$	$0 \mathrm{~d} A \mathrm{~d} 65535$
32	$-2147483648 \mathrm{~d} A \mathrm{~d} 2147483647$	$0 \mathrm{~d} A \mathrm{~d} 4294967295$
n	$-2^{n-1} \mathrm{~d} A \mathrm{~d} 2^{n-1}-1$	$0 \mathrm{~d} A \mathrm{~d} 2^{n}-1$

The ranges for $8-$, 16-, and 32-bit representations for 2's complement and unsigned representations are shown in Table 1.4.

Previous Table of Contents Next

Previous Table of Contents Next

1.1.4 Sign Extension

This section investigates the conversion from an n-bit number to an m-bit number for signed-magnitude, unsigned, and 2 's complement. It is assumed that $m>n$. This problem is important due to the fact that many processors use different sizes for their operands. As a result, to move data from one processor to another requires a conversion. A typical problem might be to convert 32 -bit formats to 64 -bit formats.

Given A as

$$
\begin{equation*}
A \equiv a_{n-1} a_{n-2} \ldots a_{0} \tag{1.35}
\end{equation*}
$$

and B as

$$
\begin{equation*}
B \equiv b_{m-1} b_{m-2} \ldots b_{0} \tag{1.36}
\end{equation*}
$$

the objective is to determine b_{k} such that $B=A$.

1.1.4.1 Signed-Magnitude

For signed-magnitude the b_{k} are assigned with

$$
b_{k}=\left\{\begin{array}{cl}
a_{k}, & 0 \leq k \leq n-2 \tag{1.37}\\
0, & n \leq k \leq m-2 \\
a_{n-1}, & k=m-1
\end{array}\right.
$$

1.1.4.2 Unsigned

The conversion for unsigned results in

$$
b_{k}=\left\{\begin{array}{lc}
a_{k}, & 0 \leq k \leq n-1 \tag{1.38}\\
0, & n \leq k<m
\end{array}\right.
$$

1.1.4.3 2's Complement

For 2's complement there are two cases depending on the sign of the number:
(a) $\left(a_{n-1}=0\right)$ For this case, A reduces to

$$
\begin{equation*}
A=\sum_{k=0}^{n-2} a_{k} 2^{k} \tag{1.39}
\end{equation*}
$$

It is trivial to see that the assignment of b_{k} with

$$
b_{k}= \begin{cases}a_{k}, & 0 \leq k \leq n-2 \tag{1.40}\\ 0, & n-1 \leq k<m\end{cases}
$$

satisfies this case.
(b) $\left(a_{n-1}=1\right)$ For this case

$$
\begin{equation*}
A=\left(\sum_{k=0}^{n-2} a_{k} 2^{K}\right)-2^{n-1} \tag{1.41}
\end{equation*}
$$

By noting that

$$
\begin{equation*}
\left(\sum_{k=n-1}^{m-2} 2^{k}\right)-2^{m-1}=-2^{n-1} \tag{1.42}
\end{equation*}
$$

The assignment of b_{k} with

$$
b_{k}= \begin{cases}a_{k}, & 0 \leq k \leq n-2 \tag{1.43}\\ 1, & n-1 \leq k<m\end{cases}
$$

satisfies the condition. The two cases can be combined into one assignment with b_{k} as

$$
b_{k}=\left\{\begin{array}{cc}
a_{k}, & 0 \leq k \leq n-2 \tag{1.44}\\
a_{n-1}, & n-1 \leq k<m
\end{array}\right.
$$

The sign, a_{n-1}, of A is simply extended into the higher order bits of B. This is known as sign-extension. Sign extension is illustrated from 8 -bit 2's complement to 32 -bit 2's complement in Table 1.5.

Table 1.5 2's Complement Sign Extension

8-Bit	32-Bit
0xff	0xffffffff
0x0f	0x0000000f
0x01	0x00000001
0x80	0xffffff80

0xb0 \quad 0xffffffb0

1.1.5 C++ Program Example

This section demonstrates the handling of 16-bit and 32-bit data by two different processors. A simple $\mathrm{C}++$ source program is shown in Code List 1.3. The assembly code generated for the $\mathrm{C}++$ program is demonstrated for the Intel 80286 and the Motorola 68030 in Code List 1.4. A line-by-line description follows:

- Line \# 1: The 68030 executes a movew instruction moving the constant 1 to the address where the variable i is stored. The movew-move word-instruction indicates the operation is 16 bits.

The 80286 executes a mov instruction. The mov instruction is used for 16 -bit operations.

- Line \# 2: Same as Line \# 1 with different constants being moved.
- Line \# 3: The 68030 moves j into register $d 0$ with the movew instruction. The $a d d w$ instruction performs a word (16-bit) addition storing the result at the address of the variable i.

The 80286 executes an add instruction storing the result at the address of the variable i. The instruction does not involve the variable j. The compiler uses the immediate data, 2 , since the assignment of j to 2 was made on the previous instruction. This is a good example of optimization performed by a compiler. An unoptimizing compiler would execute
mov ax, WORD PTR [bp-4]
add WORD PTR [bp-2], ax
similar to the 68030 example.

- Line \# 4: The 68030 executes a moveq-quick move-of the immediate data 3 to register $d 0$. A long move, movel, is performed moving the value to the address of the variable k. The long move performs a 32-bit move.

The 80286 executes two immediate moves. The 32-bit data is moved to the address of the variable k in two steps. Each step consists of a 16 -bit move. The least significant word, 3 , is moved first followed by the most significant word,0.

- Line \# 5: Same as Line \# 4 with different constants being moved.
- Line \# 6: The 68030 performs an add long instruction, addl, placing the result at the address of the variable k.

The 80286 performs the 32 -bit operation in two 16 -bit instructions. The first part consists of an add instruction, add, followed by an add with carry instruction, $a \mathrm{~d} c$.

Code List 1.3 Assembly Language Example

Line	c Code
	void main()
	l
	short $\mathrm{i}, \mathrm{j} ;$
	long $\mathrm{k}, \mathrm{l} ;$
1	$\mathrm{i}=1 ;$
2	$\mathrm{j}=2 ;$
3	$\mathrm{i}=\mathrm{i}+\mathrm{j} ;$
4	$\mathrm{k}=3 ;$
5	$\mathrm{l}=4 ;$
6	$\mathrm{k}=\mathrm{k}+\mathrm{l} ;$
	l

Code List 1.4 Assembly Language Code

Line\#	$\mathbf{6 8 0 3 0}$	80286
1	movew \#1,a6@(-2)	mov WORD PTR [bp-2],1
2	movew \#2,a6@(-4)	mov WORD PTR [bp-4],2
3	movew a6@(-4),d0	
add WORD PTR [bp-2],2		
4	moveq \#3,d0	
5	movel d0,a6@(-8) moveq \#4,d0 movel d0,a6@(-12) 6	addl d0,a6@(-8) mov WORD PTR [bp-6],0 mov WORD PTR [bp-12],4 mov WORD PTR [bp-10],0 add WORD PTR [bp-8],4 adc WORD PTR [bp-6],0

This example demonstrates that each processor handles different data types with different instructions. This is one of the reasons that the high level language requires the declaration of specific types.

1.2 Floating Point Representation

1.2.1 IEEE 754 Standard Floating Point Representations

Floating point is the computer's binary equivalent of scientific notation. A floating point number has both a fraction value or mantissa and an exponent value. In high level languages floating point is used for
calculations involving real numbers. Floating point operation is desirable because it eliminates the need for careful problem scaling. IEEE Standard 754 binary floating point has become the most widely used standard. The standard specifies a 32 -bit, a 64 -bit, and an 80 -bit format.

Previous	Table of Contents

Previous Table of Contents Next

1.2.1.1 IEEE 32-Bit Standard

The IEEE 32-bit standard is often referred to as single precision format. It consists of a 23 -bit fraction or mantissa, f, an 8-bit biased exponent, e, and a sign bit, s. Results are normalized after each operation. This means that the most significant bit of the fraction is forced to be a one by adjusting the exponent. Since this bit must be one it is not stored as part of the number. This is called the implicit bit. A number then becomes

$$
\begin{equation*}
(-1)^{s}(1 . f) 2^{e-127} \tag{1.45}
\end{equation*}
$$

The number zero, however, cannot be scaled to begin with a one. For this case the standard indicates that 32 -bits of zeros is used to represent the number zero.

1.2.1.2 IEEE 64-bit Standard

The IEEE 64-bit standard is often referred to as double precision format. It consists of a 52-bit fraction or mantissa, f, an 11-bit biased exponent, e, and a sign bit, s. As in single precision format the results are normalized after each operation. A number then becomes

$$
\begin{equation*}
(-1)^{s}(1 . f) 2^{e-1023} \tag{1.46}
\end{equation*}
$$

The number zero, however, cannot be scaled to begin with a one. For this case the standard indicates that 64-bits of zeros is used to represent the number zero.

1.2.1.3 C++ Example for IEEE Floating point

A C++ source program which demonstrates the IEEE floating point format is shown in Code List 1.5.
Code List 1.5 C++ Source Program
C++ Source
\#include <stdio.h>
\#include <iostream.h>
\#include <iomanip.h>
union float_point_32 \{
float fp ;
long li;
float_point_32(float in= float(0.0))
1

$$
\mathrm{fp}=\mathrm{in} ;\}
$$

\};
union float_point_64 \{
double fp ;
long li[2];
float_point_64(double in = double(0.0))
1
$\mathrm{fp}=\mathrm{in} ;$)
\};
class float_number_32 \{
float_point_32 f;
public:
float_number_32(float in=float(0.0)) \{f.fp=in; \}
float fp() \{ return f.fp; \}
long li() \{ return f.li; \}
long sign() \{return f.li\&0x80000000?1:0; \}
long exponent()
\{ return (f.li\&0x7f800000)>>23;\}
void fraction();
void print() \{
cout << "Floating point $=$ " << f.fp <<
" 32-bit Representation = " << hex << setfill('0') << setw(8)
\ll f.li \ll dec \ll endl

C++ Source

\ll "sign $=$ " << sign() <<" biased exponent $=$ " << exponent() <<
" unbiased exponent $=$ " << exponent()-127
<< endl <<"fraction = ";
fraction();
cout << endl \ll endl; \}
\};
void float_number_32::fraction()
1
unsigned long mask $=0 \times 400000$;
int i ;
if (f.li==0) cout << " 0 ."; else cout << " $1 . "$;
for $(\mathrm{i}=0 ; \mathrm{i}<23 ; \mathrm{i}++$) \{
if(mask\&f.li) cout << " 1 ";
else cout <<"0";
mask $=$ mask $\gg 1 ;$ \}
\}
class float_number_64 \{
float_point_64 f;
public:
float_number_64(double in=double(0.0)) \{f.fp=in;\}
double fp() \{ return f.fp; \}
long li_ms() \{ return f.li[1];\}
long li_ls() \{ return f.li[0]; \}
long sign() \{return f.li[0]\&0x80000000?1:0; \}
long exponent()
$\{$ return (f.li[1]\&0x7ff00000)>>20;\}
void fraction();

void print() \{

cout << "Floating point $=$ " << f.fp <<
" 64-bit Representation $=$ " << hex << setfill('0') << setw(8)
\ll li_ms ()$\ll \operatorname{setw}(8) \ll$ li_ls() << dec << endl;
\ll "sign $=$ " << sign() <<" biased exponent $=$ " << exponent() <<

C++ Source

" unbiased exponent = " << exponent()-1023
<< endl << "fraction = ";
fraction();
cout << endl << endl; \}
\};
void float_number_64::fraction()
1
unsigned long mask $=0 \times 80000$;
int i ;
if $((f . l i[0] \| f . l i[1])==0)$ cout << " $0 . "$; else
cout <<"1.";
for $(i=0 ; i<20 ; i++) \mid$
if(mask\&f.li[1]) cout << " 1 ";
else cout << "0";
mask $=$ mask $\gg 1$; \}
mask $=0 \times 80000000$;
for $(i=0 ; i<32 ; i++) \mid$
if(mask\&f.li[0]) cout << " 1 ";
else cout <<"0";
mask $=$ mask $\gg 1 ;$ \}
1
void main()

float_number_ $32 \times(0.1) . y(-5.0)$;

float_number_64 z(0.1);
x.print();
y.print();
z.print();
\}

The output of the program is shown in Code List 1.6. The union operator allows a specific memory location to be treated with different types. For this case the memory location holds 32 bits. It can be treated as a long integer (an integer of 32 bits) or a floating point number. The union operator is necessary for this program because bit operators in C and $\mathrm{C}++$ do not operate on floating point numbers. The float_point_32(float in=float(0.0)) $\{f p=i n\}$ function demonstrates the use of a constructor in $\mathrm{C}++$. When a variable is declared to be of type float_point_32 this function is called. If a parameter is not specified in the declaration then the default value, for this case 0.0 , is assigned. A declaration of float_point_32 $x(0.1), y$; therefore, would initialize x.fp to 0.1 and y.fp to 0.0 .

Code List 1.6 Output of Program in Code List 1.5

```
C++ Output
Floating point =0.1 32-bit representation =3dcceced
sign = 0 biased exponent = 123 unbiased exponent =-4
fraction = 1.10011001100110011001101
Floating point =-5 32-bit representation =c0a00000
sign = 1 biased exponent = 129 unbiased exponent =2
fraction = 1.01000000000000000000000
Floating point =0.1 64-bit representation = 3fb999999999999a
sign = 1 biased exponent = 1019 unbiased exponent =-4
fraction =
1.1001100110011001100110011001100110011001100110011010
```

The union float_point_64 declaration allows 64 bits in memory to be thought of as one 64-bit floating point number(double) or 232 -bit long integers. The void float_number_32::fraction() demonstrates scoping in C++. For this case the function fraction() is associated with the class float_number_32. Since fraction was declared in the public section of the class float_-number_32 the function has access to all of the public and private functions and data associated with the class float_number_32. These functions and
data need not be declared in the function. Notice for this example $f . l i$ is used in the function and only mask and i are declared locally. The setw() used in the cout call in float_number_64 sets the precision of the output. The program uses a number of bit operators in C++ which are described in the next section.

1.2.2 Bit Operators in C++

$C++$ has bitwise operators $\&, \wedge, \mid$, and \sim. The operators $\&, \wedge$, and | are binary operators while the operator \sim is a unary operator.

- ~, 1's complement
- \& , bitwise and
- ^, bitwise exclusive or
- |, bitwise or

The behavior of each operator is shown in Table 1.6.
Table 1.6 Bit Operators in C++

\mathbf{a}	\mathbf{b}		$\mathbf{a \& b}$	$\mathbf{a}^{\wedge} \mathbf{b}$	$\mathbf{a} \mid \mathbf{b}$	$\sim \mathbf{a}$
0	0		0	0	0	1
0	1		0	1	1	1
1	0		0	1	1	0
1	1		1	0	1	0

To test out the derivation for calculating the 2's complement of a number derived in Section 1.1.3 a program to calculate the negative of a number is shown in Code List 1.7. The output of the program is shown in Code List 1.8. Problem 1.11 investigates the output of the program.

Code List 1.7 Testing the Binary Operators in C++

C++ Source Code

\#include <iostream.h>
class data
1
int x ;
public:
void $\operatorname{set}($ int $y)\{x=y: \mid$
void print() |
cout << "The value of x is " << $x \ll$ endl;
cout << "The value of the 2 's complement of x is " <<~x+1 << endl << endl;

I;

void main()
1
data x ;
x.set(7); x.print();

C++ Source Code

x.set(-100); x.print();
x.set(0); x.print();
x.set(1<<sizeof(int)*8-1); x.print();
x.set((1<<sizeof(int)*8-1)+1); x.print();
\}
Code List 1.8 Output of Program in Code List 1.7

C++ Output

The value of x is 7
The value of the 2 's complement of x is -7

The value of x is -100
The value of the 2 's complement of x is 100

The value of x is 0
The value of the 2 's complement of x is 0

The value of x is -32768
The value of the 2 's complement of x is -32768

The value of x is -32767
The value of the 2 's complement of x is 32767
A program demonstrating one of the most important uses of the OR operator, \mid, is shown in Code List 1.9. The output of the program is shown in Code List 1.10. Figure 1.1 demonstrates the value of x for the program. The eight attributes are packed into one character. The character field can hold $256=2^{8}$ combinations handling all combinations of each attribute taking on the value ON or OFF. This is the most common use of the OR operators. For a more detailed example consider the file operation command for opening a file. The file definitions are defined in <iostream.h> by BORLAND C++ as shown in Table 1.7.

Figure 1.1 Packing Attributes into One Character
Code List 1.9 Bit Operators

```
C++ Source Code
#include <iostream.h>
#define ATTRIBUTE0 0x1
#define ATTRIBUTE1 0x2
#define ATTRIBUTE2 0x4
#define ATTRIBUTE3 0x8
#define ATTRIBUTE4 0x 10
#define ATTRIBUTE5 0x20
#define ATTRIBUTE6 0x40
#define ATTRIBUTE7 0x80
typedef unsigned char attribute;
void main()
I
attribute x;
x=ATTRIBUTEOIATTRIBUTE3IATTRIBUTE5;
```

//Test to see if a has desired attribute;
if(x\&ATTRIBUTE6) cout << "x has attribute ATTRIBUTE6" << endl;
else cout << "x does not have attribute ATTRIBUTE6" << endl;
if(x\&ATTRIBUTE3) cout << "x has attributc ATTRIBUTE3" << endl;
else cout << "x does not have attribute ATTRIBUTE3" << endl;
if(x\&(ATTRIBUTE2IATTRIBUTE0)) cout \ll " x has at least one of the attributes:"

C++ Source Code

" ATTRIBUTE2, ATTRIBUTE0" \ll endl;
cout << "x has a hex value: " << hex << (int) $x \ll$ endl;
\}
Code List 1.10 Output of Program in Code List 1.9

C++ Output
 x does not have attribute ATTRIBUTE6 x has attribute ATTRIBUTE3
 x has at least one of the attributes: ATTRIBUTE2, ATTRIBUTE0
 x has a hex value: 29

Table 1.7 Fields for File Operations in C++

Source
enum open_mode $\{$
in $=0 \times 01, / /$ open for reading
out $=0 \times 02, / /$ open for writing
ate $=0 \times 04, / / /$ seek to eof upon original open
app $=0 \times 08, / /$ append mode: all additions at eof
trunc $=0 \times 10, / /$ truncate file if already exists
nocreate $=0 \times 20, / /$ open fails if file doesn't exist
noreplace $=0 \times 40, / /$ open fails if file already exists
binary $=0 \times 80 / /$ binary (not text) file
$\} ;$

A program illustrating another use is shown in Code List 1.11. If the program executes correctly the output file, test.dat, is created with the string, "This is a test", placed in it. The file, test.dat, is opened for writing with ios::out and for truncation with ios::trunc. The two modes are presented together to the ofstream constructor with the use of the or function.

Code List 1.11 Simple File I/O

```
C++ Source
#include <fstream.h>
void main()
    |
    ofstream file("test.dat",ios::outlios::trunc);
    if(!file)
        {
        cout << "Could not open file"<< endl;
        return;
        }
    file << "This is a test";
    }
```

Previous Table of Contents Next

Copyright © CRC Press LLC

Previous Table of Contents Next

1.2.3 Examples

This section presents examples of IEEE 32-bit and 64-bit floating point representations. Converting 100.5 to IEEE 32-bit notation is demonstrated in Example 1.1.

Determining the value of an IEEE 64-bit number is shown in Example 1.2. In many cases for problems as in Example 1.1 the difficulty lies in the actual conversion from decimal to binary. The next section presents a simple methodology for such a conversion.

1.2.4 Conversion from Decimal to Binary

This section presents a simple methodology to convert a decimal number, A, to its corresponding binary representation. For the sake of simplicity, it is assumed the number satisfies

$$
0 \leq A<1
$$

in which case we are seeking the a_{k} such that

$$
\begin{equation*}
A=\sum_{k=1}^{\infty} a_{k} 2^{-k} \tag{1.48}
\end{equation*}
$$

Representing 100.5 in IEEE 32-Bit Format

Step 1 Convert number to binary $100.5=1100100.1$

Step 2 Scale the number so the fraction begins with a 1
$100.5=1.1001001 \times 2^{6}$
Step 3 For sign bit place 0 if positive, 1 if negative sign bit $=0$

Step 4 Calculate 8 -bit exponent field in binary
$\exp =127+6=133=10000101$
Step 5 Strip fraction which follows 1 .
fraction $=1001001$
Step 6 Combine bits together
01000010110010010000000000000000
s exp fraction
Step 7 Convert to hex
42C90000

Answer: 42C90000

Example 1.1 IEEE 32-Bit Format

The simple procedure is illustrated in Code List 1.12. The C Code performing the decimal to binary conversion is shown in Code List 1.13. The output of the program is shown in Code List 1.14. This program illustrates the use of the default value. When a variable is declared as z is by data z, z is assigned 0.0 and precision is assigned 32 . This can be seen as in the program z.prec() is never called and the output results in 32 bits of precision. The paper conversion for 0.4 is illustrated in Example 1.3.

1.3 Character Formats-ASCII

To represent keyboard characters, a standard has been adopted to ensure compatibility across many different machines. The most widely used standard is the ASCII (American Standard Code for Information Interchange) character set. This set has a one byte format and is shown in Table 1.8. It allows for 256 distinct characters and specifies the first 128. The lower ASCII characters are control characters which were derived from their common use in earlier machines.Although the ASCII standard is widely used, different operating systems use different file formats to represent data, even when the data files contain only characters. Two of the most popular systems, DOS and Unix differ in their file format. For example, the text file shown in Table 1.9 has a DOS format shown in Table 1.10 and a Unix format shown in Table 1.11. Notice that the DOS file use a carriage return, cr, followed by a new line, nl,
while the Unix file uses only a new line. As a result Unix text files will be smaller than DOS text files. In the DOS and Unix tables, underneath each character is its ASCII representation in hex. The numbering on the left of each table is the offset in octal of the line in the file.

Find the value of the IEEE 64-bit number given by the 16 hex digits 4042900000000000

Step 1 Convert to binary and identify sign, exponent, and fraction.
010000000100001010010000 ... 0000

Step 2 Calculate Exponent
Exponent $=10000000100=1028$
Exponent value $=1028-1023=5$
Step 3 Calculate Fraction
Add implicit 1
Fraction $=1.00101001$
Step 4 Put it together
Result $=1.00101001 \times 2^{5}$
$=100101.001=37.125$

Answer: 37.125

Example 1.2 Calculating the Value of an IEEE 64-Bit Number

Example 1.3 Converting 0.4 from Decimal to Binary
Code List 1.12 Decimal to Binary Conversion

Pseudo-Code

```
\(\mathrm{k}=1\)
While (More Precision Required)
    \(A \leftarrow 2 A\)
    if \(\mathrm{A}>1\)
        \(\hat{1}=A-1\)
        \(a_{k}=1\)
        !
    else \(a_{k}=0\)
    \(\mathrm{k}=\mathrm{k}+\mathrm{l}\)
    I
```

Code List 1.13 Decimal to Conversion C++ Program

C++ Source

// This program demonstrates the conversion of a decimal number
// to a binary number for numbers of type double
// Numbers must be of the form $0 . \mathrm{xxxxxxxxxxx}$
\#include <iostream.h>
class data \{
double d;
unsigned int precision;
public:
data(double in $=0.0$) \{ d=in;precision=32;\}
void prec(unsigned int p) \{ precision=p; \}
void binary_calc(double in);
void value() \{ cout << "Decimal value $=$ " <<d << endl; \}
void binary() \{ cout << "Binary value = "; binary_calc(d);
cout << endl << endl; \}
\};
void data::binary_calc(double in)

```
I
int i;
    cout << "0." ; // program works on this format of numbers only
    for(i=0;i<precision;i++)
        |
        in*=2.0;
        if(in>=1)
        {
        in-=1;
        cout <<"1";
        }
    else cout << "0";
    };
```

 J
 void main()
 1

C++ Source

data $\mathrm{x}(0.7), \mathrm{y}(0.1), \mathrm{z}$;
x.prec(20);
x.value();
x.binary();
y.prec(32);
y.value();
y.binary();
z.value();
z.binary();
\}
Code List 1.14 Output of Program in Code List 1.13

C++ Output

Decimal value $=0.7$
Binary value $=0.10110011001100110011$

Decimal value $=0.1$
Binary value $=0.00011001100110011001100110011001$

Decimal value $=0$
Binary value $=0.00000000000000000000000000000000$
Table 1.8 ASCII Listing

oo nul	01 soh	02 stx	03 etx	04 eot	05 enq	06 ack	07 bel
08 bs	09 ht	0a nl	0b vt	0c np	Od cr	0e so	Of si
10 dle	11 dc 1	12 dc 2	13 dc 3	14 dc 4	15 nak	16 syn	17 etb
18 can	19 em	1a sub	1 b esc	1 cfs	1 dgs	1 ers	1 f us
20 sp	21 !	22 "	23 \#	24 \$	25%	26 \&	27 '
28 (29)	2 a *	$2 \mathrm{~b}+$	2c,	2d -	2 e .	$2 \mathrm{f} /$
300	311	322	333	344	355	366	377
388	399	3 a	3 b ;	$3 \mathrm{c}<$	$3 \mathrm{~d}=$	3 e >	3f ?
40 @	41 A	42 B	43 C	44 D	45 E	46 F	47 G
48 H	49 I	4a J	4b K	4 c L	4 dM	4 e N	4f O
50 P	51 Q	52 R	53 S	54 T	55 U	56 V	57 W
58 X	59 Y	5a Z	5b [$5 \mathrm{c} \backslash$	5d]	$5 \mathrm{e}^{\wedge}$	5 f
60	61 a	62 b	63 c	64 d	65 e	66 f	67 g
68 h	69 i	6aj	6 bk	6 c 1	6d m	6 n	6 fo
70 p	71 q	72 r	73 s	74 t	75 u	76 v	77 w
78 x	79 y	7 az	7 b \{	7c\|	7d \}	7 e ~	7f del

Table 1.9 Text File

Test File
This is a test file
We will look at this file under Unix and DOS

[^0]

Algorithms and Data Structures in C++ by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

$$
\text { Previous Table of Contents } \text { Next }
$$

1.4 Putting it All Together

This section presents an example combining ASCII, floating point, and integer types using one final C++ program. The program is shown in Code List 1.15 and the output is shown in Code List 1.16.

The program utilizes a common memory location to store 8 bytes of data. The data will be treated as double, float, char, int, or long. A particular memory implementation for this program is shown in Figure 1.2.

Table 1.10 DOS File Format

Table 1.11 Unix File Format (ISO)

ISO File Format

41	Note: This is a particular implementation for a given machine. A different machine might elect to store the data differently. The important part is that the differences be transparent to the user.	
42		
43	All values are in hex.	
44		
45		
47		
48		

Figure 1.2 Memory Implementation for Variable t

Figure 1.3 Mapping of each Union Entry

The organization of each union entry is shown in Figure 1.3. For the union declaration t there are only eight bytes stored in memory. These eight bytes can be interpreted as eight individual characters or two longs or two doubles, etc. For instance by looking at Table 1.8 one sees the value of $\operatorname{ch}[0]$ which is 0×41 which is the letter A. Similarly, the value of $\operatorname{ch}[1]$ is 0×42 which is the letter B. When interpreted as an integer the value of $i[0]$ is 0×41424344 which is in 2 's complement format. Converting to decimal one has $i[0]$ with the value of

$$
\begin{equation*}
i[0]=68+67(256)+66\left(256^{2}\right)+65\left(256^{3}\right)=1094861636 \tag{1.49}
\end{equation*}
$$

If one were to interpret 0×41424344 as an IEEE 32 -bit floating point number its value would be 12.1414 . If one were to interpret 0×45464748 as an IEEE 32 -bit floating point number its value would be 3172.46.

Code List 1.15 Data Representations

C++ Source

\#include <iostream.h>
union test
I
double d;
float f[2];
char ch[8];
int i[2];
long $1[2]$;
\};
void main()
1
union test t ;
int i ;
cout <<"The size of double is " << sizeof(double) << endl;
cout << "The size of float is " << sizeof(float) << endl;
cout << "The size of char is " << sizeof(char) << endl;
cout << "The size of int is " << sizeof(int) << endl;
cout <<"The size of long is " << sizeof(long) << endl;
t.l[0]=0x41424344;
t.l[1] $=0 \times 45464748$;
cout << "As characters: "; for $(\mathrm{i}=0 ; \mathrm{i}<8 ; \mathrm{i}++)$ cout $\ll \operatorname{t.ch}[i]$; cout \ll endl; cout <<"As a double: " << t.d << endl;
cout \ll "As two integers: " <<t.i[0] <<" " < t.i[1] << endl;
cout \ll "As two longs: " <<t.1[0] <<" " < t. $1[1] \ll$ endl;
cout <<"As two floats: " \ll t.f[0] <<" " \ll t.f[1] \ll endl;
]
Code List 1.16 Output of Program in Code List 1.15

C++ Output

The size of double is 8
The size of float is 4

C++ Output

The size of char is 1
The size of int is 4
The size of long is 4
As characters: ABCDEFGH
As a double: $2.39374 \mathrm{e}+06$
As two integers: 10948616361162233672
As two longs: 10948616361162233672
As two floats: 12.14143172 .46
There are only one's and zero's stored in memory and collections of bits can be interpreted to be characters or integers or floating point numbers. To determine which kind of operations to perform the compiler must be able to determine the type of each operation.

1.5 Problems

(1.1) Represent the following decimal numbers when possible in the format specified. 125, $-1000,267,45$, 0,2500 . Generate all answers in HEX!
a) 8 -bit 2 's complement- 2 hex digits
b) 16 -bit 2 's complement- 4 hex digits
c) 32 -bit 2 's complement- 8 hex digits
d) 64 -bit 2 's complement- 16 hex digits
(1.2) Convert the 12 -bit 2's complement numbers that follows to 32 -bit 2 's complement numbers. Present your answer with 8 hex digits.
a) 0 xFA 4
b) 0×802
c) 0×400
d) $0 x 0 \mathrm{FF}$
(1.3) Represent decimal 0.35 in IEEE 32-bit format and IEEE 64-bit format.
(1.4) Represent the decimal fraction $4 / 7$ in binary.
(1.5) Represent the decimal fraction 0.3 in octal.
(1.6) Represent the decimal fraction 0.85 in hex.
(1.7) Calculate the floating point number represented by the IEEE 32-bit representation F8080000.
(1.8) Calculate the floating point number represented by the IEEE 64-bit representation F808000000000000.
(1.9) Write down the ASCII representation for the string "Hello, how are you?". Strings in C++ are terminated with a 00 in hex (a null character). Terminate your string with the null character. Do not represent the quotes in your string. The quotes in $\mathrm{C}++$ are used to indicate the enclosure is a string.
(1.10) Write a C++ program that outputs "Hello World".
(1.11) In Code List 1.8 the twos complement of the largest representable negative integer, -32768 , is the same number. Explain this result. Is the theory developed incorrect?
(1.12) In Section 1.1.4 the issue of conversion is assessed for signed-magnitude, unsigned, and 2's complement numbers. Is there a simple algorithm to convert an IEEE 32-bit floating point number to IEEE 64-bit floating point number?

$$
\begin{array}{|l|l|}
\hline \text { Previous } & \text { Table of Contents } \\
\hline
\end{array}
$$

Previous Table of Contents Next

Chapter 2 Algorithms

This chapter presents the fundamental concepts for the analysis of algorithms.

2.1 Order

N denotes the set of natural numbers, $\{1,2,3,4,5, \ldots\}$.

Definition 2.1

A sequence, x, over the real numbers is a function from the natural numbers into the real numbers:

$$
x: \mathrm{N} \rightarrow R
$$

x_{1} is used to denote the first element of the sequence, $x(1)$ In general,

$$
x=\{x(1), x(2), \ldots, x(n), \ldots\}
$$

and will be written as

$$
\begin{equation*}
x=x_{1}, x_{2}, \ldots, x_{n}, \ldots \tag{2.1}
\end{equation*}
$$

\square
Unless otherwise noted, when x is a sequence and f is a function of one variable, $f(x)$, is the sequence obtained by applying the function f to each of the elements of x. If

$$
y=f(x)
$$

then

$$
y_{k}=f\left(x_{k}\right)
$$

For example,

$$
\begin{aligned}
|x| & =\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|, \ldots \\
3 x & =3 x_{1}, 3 x_{2}, \ldots, 3 x_{n}, \ldots
\end{aligned}
$$

Definition 2.2

If x and y are sequences, then x is of order at most y, written $x \quad O(y)$, if there exists a positive integer N and a positive number k such that

$$
\begin{equation*}
x_{n} \leq k y_{m} \quad \text { for all } n>N \tag{2.2}
\end{equation*}
$$

Definition 2.3

If x and y are sequences then x is of order exactly y, written, $x^{\sim}(y)$, if $x^{\sim}(y)$ and $y O(x)$.

Definition 2.4
If x and y are sequences then x is of order at least y, written, $x ®(y)$, if $y \quad O(x)$.

Definition 2.5

The time complexity of an algorithm is the sequence

$$
t=t_{1}, t_{2}, \ldots
$$

where t_{k} is the number of time steps required for solution of a problem of size k.

Find the time complexity sequence for the addition of $2 k$ numbers. Assume an infinite number of processors are available and each processor is capable of performing the addition of two numbers in a single time step.
Solution: If addition is performed in a tree-like manner, the time for computation with k processors is

$$
\begin{aligned}
& t_{k}=\left\lceil\log _{2} 2 k\right\rceil=1+\left\lceil\log _{2} k\right\rceil \\
& t=\{1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6, \ldots\}
\end{aligned}
$$

Example 2.1 Time Complexity

The calculation of the time complexity for addition is illustrated in Example 2.1. A comparison of the order of several classical functions is shown in Table 2.1. The time required for a variety of operations on a 100 Megaflop machine is illustrated in Table 2.2. As can be seen from Table 2.1 if a problem is truly of exponential order then it is unlikely that a solution will ever be rendered for the case of $\mathrm{n}=100$. It is this fact that has led to the use of heuristics in order to find a "good solution" or in some cases "a solution" for problems thought to be of exponential order. An example of Order is shown in Example 2.2. through Example 2.4.

Table 2.1 Order Comparison

Function	$\mathbf{n = 1}$	$\mathbf{n}=\mathbf{1 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{1 0 0 0}$	$\mathbf{n}=\mathbf{1 0 0 0 0}$
$\log (n)$	0	3.32	6.64	9.97	13.3
$n \log (n)$	0	33.2	664	9.97×10^{3}	1.33×10^{5}
n^{2}	1	100	10000	1×10^{6}	1×10^{8}
n^{5}	1	1×10^{5}	1×10^{10}	1×10^{15}	1×10^{20}
e^{n}	2.72	2.2×10^{4}	2.69×10^{43}	1.97×10^{434}	8.81×10^{4342}
$n!$	1	3.63×10^{6}	9.33×10^{157}	4.02×10^{2567}	2.85×10^{35659}

Table 2.2 Calculations for a 100 MFLOP machine

Time	\# of Operations
1 second	10^{8}
1 minute	6×10^{9}
1 hour	3.6×10^{11}
1 day	8.64×10^{12}
1 year	3.1536×10^{15}
1 century	3.1536×10^{17}
100 trillion years	3.1536×10^{29}

2.1.1 Justification of Using Order as a Complexity Measure

One of the major motivations for using Order as a complexity measure is to get a handle on the inductive growth of an algorithm. One must be extremely careful however to understand that the definition of Order is "in the limit." For example, consider the time complexity functions f_{1} and f_{2} defined in Example 2.6. For these functions the asymptotic behavior is exhibited when n e 10^{50}. Although $f_{1} \sim\left(e^{n}\right)$ it has a value of 1 for $n<10^{50}$. In a pragmatic sense it would be desirable to have a problem with time complexity f_{1} rather than f_{2}. Typically, however, this phenomenon will not appear and generally one might assume that it is better to have an algorithm which is $\sim(1)$ rather than $\sim\left(e^{n}\right)$. One should always remember that the constants of order can be significant in real problems.

Show that $n \log n \in \Theta(\log (n!))$

Solution:

$$
\begin{aligned}
& \log (n!)=\log (1 \times 2 \times \ldots n) \\
& =\log (1)+\log (2)+\ldots \log (n) \\
& \leq \log (n)+\log (n)+\ldots \log (n) \\
& =n \log n
\end{aligned}
$$

so
$n \log n \in \Omega(\log (n!))$

Similarly

$$
\log (n!) \geq \log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\ldots+\log (n)
$$

$$
\log (n!) \geq \frac{n}{2} \log \left(\frac{n}{2}\right)
$$

$$
\log (n!) \geq \frac{n}{2} \log (n)-\frac{n}{2} \log (2)
$$

$$
\log (n!) \geq \frac{n \log (n)}{4} \quad n>10
$$

so

$$
n \log (n) \in O(\log (n!))
$$

Example 2.2 Order

Find a sequence f such that

$$
f \notin O(n) \quad \text { and } f \notin \Omega(n)
$$

Solution:

One possible instance is

$$
f(n)=\left\{\begin{array}{l}
\sqrt{n}, \mathrm{n} \text { odd } \\
n^{2}, \mathrm{n} \text { even }
\end{array}\right.
$$

Example 2.3 Order

> Previous Table of Contents Next
Previous Table of Contents Next

2.2 Induction

Simple induction is a two step process:

- Establish the result for the case $N=1$
- Show that if is true for the case $N=n$ then it is true for the case $N=n+1$

This will establish the result for all $n>1$.
Induction can be established for any set which is well ordered. A well-ordered set, S, has the property that if

$$
x, y \in S
$$

then either

- $x<y$
- $x>y$ or
- $x=y$

If $f \in O(g)$ and $g \in O(h)$ prove that $f \in O(h)$

Solution: From the definition of order there exists $N_{1}, N_{2}, k_{1}, k_{2}$ such that

$$
f_{n} \leq k_{1} g_{n} \quad n>N_{1}
$$

and

$$
g_{n} \leq k_{2} h_{n} \quad n>N_{2}
$$

therefore,

$$
f_{n} \leq k_{1} k_{2} h_{n} \quad n>\max \left(N_{1}, N_{2}\right)
$$

with $k_{3}=k_{1} k_{2}$ and $N_{3}=\max \left(N_{1}, N_{2}\right)$
one has

$$
f_{n} \leq k_{3} h_{n} \quad n>N_{3}
$$

which gives the desired result. \square

Example 2.4 Order

Additionally, if $S 2$ is a nonempty subset of S :

$$
S^{\prime} \subseteq S \quad S^{\prime} \neq \varnothing
$$

then $S 2$ has a least element. An example of simple induction is shown in Example 2.5.
The well-ordering property is required for the inductive property to work. For example consider the method of infinite descent which uses an inductive type approach. In this method it is required to demonstrate that a specific property cannot hold for a positive integer. The approach is as follows:

Show using induction that

$$
\sum_{j=0}^{n} \frac{1}{(1+j)(2+j)}=1-\frac{1}{n+2}
$$

Step 1: Establish the case for $n=0$.

$$
\frac{1}{(1+0)(2+0)}=1-\frac{1}{0+2}
$$

Step 2: Assume true for n and establish the case for $n+1$.

Let

$$
f(n)=\sum_{j=0}^{n} \frac{1}{(1+j)(2+j)}
$$

then

$$
\begin{aligned}
f(n+1) & =f(n)+\frac{1}{(1+n+1)(2+n+1)} \\
& =1-\frac{1}{n+2}+\frac{1}{(n+2)(n+3)} \\
& =1+\frac{1-(n+3)}{(n+2)(n+3)} \\
& =1-\frac{1}{n+3}
\end{aligned}
$$

$$
=1-\frac{1}{(n+1)+2}
$$

Example 2.5 Induction

1. Let $P(k)=T R U E$ denote that a property holds for the value of k. Also assume that $P(0)$ does not hold so $P(0)=F A L S E$.

Let S be the set that

$$
\begin{equation*}
S=\{k: P(k)=T R U E\} \quad k=1,2,3, \ldots \tag{2.3}
\end{equation*}
$$

From the well-ordering principle it is true that if S is not empty then S has a smallest member. Let j be such a member:

$$
j=\min _{k}(P(k)=T R U E)
$$

(2.4)
2. Prove that $P(j)$ implies $P(j-1)$ and this will lead to a contradiction since $P(0)$ is $F A L S E$ and j was assumed to be minimal so that S must be empty. This implies the property does not hold for any positive integer k. See Problem 2.1 for a demonstration of infinite descent.

2.3 Recursion

Recursion is a powerful technique for defining an algorithm.

Definition 2.6

A procedure is recursive if it is, whether directly or indirectly, defined in terms of itself.
\square

2.3.1 Factorial

One of the simplest examples of recursion is the factorial function $f(n)=n!$. This function can be defined recursively as

$$
\begin{align*}
& f(0)=1 \tag{2.5}\\
& f(n)=n f(n-1) \quad n>0 \tag{2.6}
\end{align*}
$$

A simple C++ program implementing the factorial function recursively is shown in Code List 2.1. The output of the program is shown in Code List 2.2.

Code List 2.1 Factorial

C++ Source Program

\#include <iostream.h>
double fact(double x)
1
if($x==1.0$) return(1.0);
else return(x^{*} fact($\mathrm{x}-1.0$);
\}
main()
1
int i ;
for $(\mathrm{i}=1 ; \mathrm{i}<10 ; \mathrm{i}++)$ cout \ll fact $(\mathrm{i}) \ll$ endl;
\}

Code List 2.2 Output of Program in Code List 2.1

C++ Output
1
2
6
24
120
720
5040
40320
362880

2.3.2 Fibonacci Numbers

The Fibonacci sequence, $F(n)$, is defined recursively by the recurrence relation

$$
\begin{gather*}
F(n)=F(n-1)+F(n-2) \tag{2.7}\\
F(0)=0 \quad F(1)=1
\end{gather*}
$$

A simple program which implements the Fibonacci sequence recursively is shown in Code List 2.3. The output of the program is shown in Code List 2.4.

Code List 2.3 Fibonacci Sequence Generation

Code List 2.4 Output of Program in Code List 2.3

C++ Output

The value for 7 is 13
The value for 8 is 21
The value for 9 is 34
The value for 10 is 55
The value for 11 is 89
The value for 12 is 144
The value for 13 is 233
The value for 14 is 377
The value for 15 is 610
The value for 16 is 987
The value for 17 is 1597
The value for 18 is 2584
The value for 19 is 4181
The recursive implementation need not be the only solution. For instance in looking for a closed solution to the relation if one assumes the form $F(n)=>^{n}$ one has

$$
\begin{equation*}
\lambda^{n}=\lambda^{n-1}+\lambda^{n-2} \tag{2.9}
\end{equation*}
$$

which assuming » ` 0

$$
\begin{equation*}
\lambda^{2}=\lambda+1 \tag{2.10}
\end{equation*}
$$

The solution via the quadratic formula yields

$$
\begin{equation*}
\lambda=\frac{1 \pm \sqrt{5}}{2} \tag{2.11}
\end{equation*}
$$

Because Eq. 2.7 is linear it admits solutions of the form

$$
\begin{equation*}
F(n)=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n} \tag{2.12}
\end{equation*}
$$

To satisfy the boundary conditions in Eq. 2.8 one obtains the matrix form

$$
\left[\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(2.13)
multiplying both sides by the 2×2 matrix inverse

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]=\frac{-1}{\sqrt{5}}\left[\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
-\frac{1+\sqrt{5}}{2} & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(2.14)
which yields

$$
\begin{align*}
& A=\frac{\sqrt{5}}{5} \tag{2.15}\\
& B=-\frac{\sqrt{5}}{5} \tag{2.16}
\end{align*}
$$

resulting in the closed form solution

$$
\begin{equation*}
F(n)=\frac{\sqrt{5}}{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) \tag{2.17}
\end{equation*}
$$

A nonrecursive implementation of the Fibonacci series is shown in Code List 2.5. The output of the program is the same as the recursive program given in Code List 2.4.

Code List 2.5 Fibonacci Program — Non Recursive Solution

C++ Source Code

```
#include <iostream.h>
#include <math.h>
void main()
{
double x,y;
for(y=0.0;y<20.0;y++)
|
```


C++ Source Code

$\mathrm{x}=\mathrm{sqrt}(5.0) / 5.0 * \mathrm{pow}(0.5+\mathrm{sqrt}(5.0) / 2.0, \mathrm{y})$;

$\mathrm{x}-=\mathrm{sqrt}(5.0) / 5.0^{*}$ pow(0.5-sqrt(5.0)/2.0,y);
cout << "The value for " << y <<" is" << (int) $(x+0.5) \ll$ endl;
\}
\}

2.3.3 General Recurrence Relations

This section presents the methodology to handle general 2 nd order recurrence relations. The recurrence relation given by

$$
\begin{equation*}
a R(n)=b R(n-1)+c R(n-2) \tag{2.18}
\end{equation*}
$$

with initial conditions:

$$
\begin{equation*}
R(0)=d \quad R(1)=e \tag{2.19}
\end{equation*}
$$

can be solved by assuming a solution of the form $R(n)=»^{n}$. This yields

$$
\begin{equation*}
a \lambda^{2}-b \lambda-c=0 \tag{2.20}
\end{equation*}
$$

If the equation has two distinct roots, $>_{1},{ }_{2}$, then the solution is of the form

$$
\begin{equation*}
R(n)=C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n} \tag{2.21}
\end{equation*}
$$

where the constants, C_{1}, C_{2}, are chosen to enforce Eq. 2.19. If the roots, however, are not distinct then an
alternate solution is sought:

$$
R(n)=C_{1} n \lambda^{n}+C_{2} \lambda^{n}
$$

where » is the double root of the equation. To see that the term $C_{1} n »{ }^{n}$ satisfies the recurrence relation one should note that for the multiple root Eq. 2.18 can be written in the form

$$
\begin{equation*}
R(n)=2 \lambda R(n-1)-\lambda^{2} R(n-2) \tag{2.23}
\end{equation*}
$$

Substituting $C_{1} n »^{n}$ into Eq. 2.23 and simplifying verifies the solution.

Algorithms and Data Structures in C_{++} by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

2.3.4 Tower of Hanoi

The Tower of Hanoi problem is illustrated in Figure 2.1. The problem is to move n discs (in this case, three) from the first peg, A, to the third peg, C. The middle peg, B, may be used to store discs during the transfer. The discs have to be moved under the following condition: at no time may a disc on a peg have a wider disc above it on the same peg. As long as the condition is met all three pegs may be used to complete the transfer. For example the problem may be solved for the case of three by the following move sequence:

$$
(A, C),(A, B),(C, B),(A, C),(B, A),(B, C),(A, C)
$$

where the ordered pair, (x, y), indicates to take a disk from peg x and place it on peg y.

Figure 2.1 Tower of Hanoi Problem
The problem admits a nice recursive solution. The problem is solved in terms of n by noting that to move n discs from A to C one can move $n-1$ discs from A to B move the remaining disc from A to C and then move the $n-1$ discs from B to C. This results in the relation for the number of steps, $S(n)$, required for size n as

$$
\begin{equation*}
S(n)=2 S(n-1)+1 \tag{2.25}
\end{equation*}
$$

with the boundary conditions

$$
S(1)=1 \quad S(2)=3
$$

Algorithms and Data Structures in C++:Algorithms
Eq. 2.25 admits a solution of the form

$$
\begin{equation*}
S(n)=A 2^{n}+B \tag{2.27}
\end{equation*}
$$

and matching the boundary conditions in Eq. 2.26 one obtains

$$
\begin{equation*}
S(n)=2^{n}-1 \tag{2.28}
\end{equation*}
$$

A growing field of interest is the visualization of algorithms. For instance, one might want to animate the solution to the Tower of Hanoi problem. Each disc move results in a new picture in the animation. If one is to incorporate the pictures into a document then a suitable language for its representation is PostScript. ${ }^{1}$ This format is supported by almost all word processors and as a result is encountered frequently. A program to create the PostScript ${ }^{\circledR}$ description of the Tower of Hanoi is shown in Code List 2.6 The program creates an encapsulated postscript file shown in Code List 2.7. The word processor used to generate this book took the output of the program in Code List 2.7 and imported it to yield Figure 2.1! This program illustrates many features of $\mathrm{C}++$.

${ }^{1}$ PostScript® is a trademark of Adobe Systems Inc.

The program utilizes only a small set of the PostScript® language. This primitive subset is described in Table 2.3.

Table 2.3 PostScript ${ }^{\circledR}$ — Primitive Subset

Command	Description
x setgray	set the gray level to $x . x=1$ is white and $x=0$ is black. This will affect the fill operation.
$x y$ scale	scale the X dimension by x and scale the Y dimension by y.
x setlinewidth	set the linewidth to x.
$x y$ moveto	start a subpath and move to location $x y$ on the page.
$x y$ rlineto	draw a line from current location $\left(x_{1}, y_{1}\right)$ to $\left(x_{1}+x, y_{1}+y\right)$. Make the endpoint the current location. Appends the line to the subpath.
fill	close the subpath and fill the area enclosed.
newpath	create a new path with no current point.
showpage	displays the page to the output device.

The program uses a number of classes in C++ which are derived from one another. This is one of the most powerful concepts in object-oriented programming. The class structure is illustrated in Figure 2.2.
In the figure there exists a high-level base class called the graphic context. In a typical application a number of subclasses might be derived from it. In this case the graphics context specifies the line width, gray scale, and scale for its subsidiary objects. A derived class from the graphics context is the object class. This class contains information about the position of the object. This attribute is common to objects whether they are rectangles, circles, etc. A derived class from the object class is the rectangle class. For this class, specific information about the object is kept which identifies it with a rectangle, namely the width and the height. The draw routine overrides the virtual draw function for the object. The draw
function in the object class is void even though for more complex examples it might have a number of operations. The RECTANGLE class inherits all the functions from the GRAPHICS_CONTEXT class and the OBJECT class.

In the program, the rectangle class instantiates the discs, the base, and the pegs. Notice in Figure 2.1 that the base and pegs are drawn in a different gray scale than the discs. This is accomplished by the two calls in main():

- peg.set_gray(0.6)
- base.set_gray(0.6)

Any object of type RECTANGLE defaults to a set_gray of 0.8 as defined in the constructor function for the rectangle. Notice that peg is declared as a RECTANGLE and has access to the set_gray function of the GRAPHICS_CONTEXT. The valid operations on peg are:

- peg.set_line_width(), from the GRAPHICS_CONTEXT class
- peg.set_scale(), from the GRAPHICS_CONTEXT class
- peg.set_gray(), from the GRAPHICS_CONTEXT class
- peg.location(), from the OBJECT class
- peg.set_location(), from the RECTANGLE class
- peg.set_width(), from the RECTANGLE class
- peg.set_height(), from the RECTANGLE class
- peg.draw(), from the RECTANGLE class

The virtual function draw in the OBJECT class is hidden from peg but it can be accessed in $\mathrm{C}++$ using the scoping operator with the following call:

- peg.object::draw(), uses draw from the OBJECT class

> Previous Table of Contents Next
Previous Table of Contents Next

Hence, in the program, all the functions are available to each instance of the rectangle created. This availability arises because the functions are declared as public in each class and each derived class is also declared public. Without the public declarations $\mathrm{C}++$ will hide the functions of the base class from the derived class. Similarly, the data the functions access are declared as protected which makes the data visible to the functions of the derived classes.

The first peg in the program is created with rectangle peg(80,0,40,180). The gray scale for this peg is changed from the default of 0.8 to 0.6 with peg.set_gray(0.6). The peg is drawn to the file with peg.draw(file). This draw operation results in the following lines placed in the file:

- newpath
- 1 setlinewidth
- 0.6 setgray
- 800 moveto
- 0180 rlineto
- 400 rlineto
- 0-180 rlineto
- fill

The PostScript® action taken by the operation is summarized in Figure 2.3. Note that the rectangle in the figure is not drawn to scale. The drawing of the base and the discs follows in an analogous fashion.

Code List 2.6 Program to Display Tower of Hanoi

C++ Source

\#include <iostream.h>
\#include <iomanip.h>
\#include <fstream.h>
//This program creates an encapsulated postscript file
//to draw the Tower of Hanoi
class graphics_context \{
protected:
double line_w;
double x_scale, y_scale;
double gray;
public:
void set_line_width(double $x=1.0$) \{line_w=x;\};
void set_scale(double $x=1.0$, double $y=1.0$)
$\left\{x _\right.$scale $=x ; y _$scale $\left.=y ;\right\} ;$
void set_gray(double $x=0.0$) \{gray=x;\};

Figure 2.2 Class Structure
newpath
start new path - no current point
$(80,0)$ current point

800 moveto start a new subpath go to iocation 800

0180 rlineto draw a relative line from
 the current point add the line to the subpath

400 rlineto
draw a relative line from the current point and add the line to the subpath

0-180 rlineto
draw a relative line from the current point and add the line to the subpath

fill

close the subpath and fill the area.

Figure 2.3 PostScript Rendering

class object : public graphics_context |

protected:
double x_loc, y_{-}loc;
public:
void location(double $x=0.0$, double $\mathrm{y}=0.0$) $\left\{x_{-}\right.$loc $=x ; y_{-}$loc $=y$; \}; virtual void draw() |);

1;

class rectangle : public object |
protected:
double width, height;
public:
rectangle(double $x=0.0$, double $y=0.0$, double $w=1.0$,
double $\mathrm{h}=1.0$) ($\mathrm{x} _l \mathrm{loc}=\mathrm{x}$; $\mathrm{y} _l o c=\mathrm{y}$; width=w; height=h; set_scale(); set_line_width(); set_gray(0.8); ।;
void set_location(double x, double y) \{ $x_{-} l o c=x ; y_{-} l o c=y ;$; ; void set_width(double w) \{ width=w; \};
void set_height(double h) \{ height=h; \};
void draw(ofstream\& file)
1
file << "newpath" \ll endl;
file << line_w <<" setlinewidth" << endl;
file << gray <<" setgray" << endl;
file << x_loc <<" " << y_loc << " moveto" \ll endl;
file << " 0 " << height*y_scale <<" rlineto" << endl;
file << width*x_scale < " 0 rlineto" \ll endl;
file << " 0 " << -height*y_scale << " rlineto" << endl;
file << "fill" \ll end;

;;

1;

C++ Source

```
void main()
I
ofstream file("tower.eps",ios::outlios::trunc);
if(ffile)
    cout << "Could not open file\n";
    retum;
    |
```

// Add standard postscript header
file << "\%!PS-Adobe-2.0 EPSF-2.0" << endl;
file <<"\%\%BoundingBox: 00300 90" << endl;
file << "\%\%Creator: Alan Parker" << endl;
file << "\%\%EndComments" << endl;
file << "0.8 setgray" << endl;
file <<"0.5 0.5 scale" << end;
// create the first peg and draw it
rectangle peg(80,0,40,180);
peg.set_gray(0.6);
peg.draw(file);
peg.set_location(280,0);
peg.draw(file);
peg.set_location(480,0);
peg.draw(file);
// create the base
rectangle base($0,0,600,20$);
base.set_gray(0.6);
base.draw(file);
// create the disc and draw it
rectangle disc(20,20,160,20);
disc.draw(file);
disc.set_location(40,40);
disc.set_width(120);

C++ Source

disc.draw(file);
disc.set_location(60,60);
disc.set_width(80);
disc.draw(file);
// Close file with standard trailer
file << "showpage" << endl << "\%\%Trailer" << endl;
file.close();

Code List 2.7 File Created by Program in Code List 2.6

File Tower.eps

\%!PS-Adobe-2.0 EPSF-2.0
\%\%BoundingBox: 0030090
\%\%Creator: Alan Parker
\%\%EndComments
0.8 setgray,
0.50 .5 scale
newpath
1 setlinewidth
0.6 setgray

800 moveto
0180 rlineto
400 rlineto
$0-180$ rlineto
fill
newpath
1 setlinewidth
0.6 setgray

2800 moveto
0180 rlineto

400 rlineto

File Tower.eps

$0-180$ rlineto
fill
newpath
1 setlinewidth
0.6 setgray

4800 moveto
0180 rlineto
400 rlineto
$0-180$ rlineto
fill
newpath
1 setlinewidth
0.6 setgray

00 moveto
020 rlineto
6000 rlineto
$0-20$ rlineto
fill
newpath
1 setlinewidth
0.8 setgray

2020 moveto
020 rlineto
1600 rlineto
$0-20$ rlineto
fill
newpath
1 setlinewidth
0.8 setgray4040 moveto
020 rlineto
1200 rlineto
File Tower.eps
$0-20$ rlineto
fill
newpath
1 setlinewidth
0.8 setgray
6060 moveto
020 rlineto
800 rlineto
$0-20$ rlinetofill
showpage
\%\%Trailer

2.3.5 Boolean Function Implementation

This section presents a recursive solution to providing an upper bound to the number of 2-input NAND gates required to implement a boolean function of n boolean variables. The recursion is obtained by noticing that a function, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n variables can be written as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n} g\left(x_{1}, \ldots, x_{n-1}\right)+\bar{x}_{n} h\left(x_{1}, \ldots, x_{n-1}\right) \tag{2.29}
\end{equation*}
$$

for some functions g and h of $n-1$ boolean variables. The implementation is illustrated in Figure 2.4. The number of NAND gates thus required as a function of $n, C(n)$, can be written recursively as:

$$
C(n)=2 C(n-1)+4
$$

The solution to the simple recurrence relation yields, assuming a general form of $C(n)=»^{n}$ followed by a constant to obtain the particular solution

$$
\begin{equation*}
C(n)=A 2^{n}+B \tag{2.31}
\end{equation*}
$$

Applying the boundary condition $C(1)=1$ and $C(2)=6$ one obtains

Figure 2.4 Recursive Model for Boolean Function Evaluation

$$
\begin{equation*}
C(n)=5\left(2^{n}\right)-4 \tag{2.32}
\end{equation*}
$$

2.4 Graphs and Trees

This section presents some fundamental definitions and properties of graphs.

Definition 2.7

A graph is a collection of vertices, V, and associated edges, E, given by the pair

$$
\begin{equation*}
G=(V, E) \tag{2.33}
\end{equation*}
$$

A simple graph is shown in Figure 2.5.
In the figure the graph shown has

$$
\begin{gather*}
V=\left\{v_{1}, v_{2}, v_{3}\right\} \tag{2.34}\\
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{1}\right)\right\} \tag{2.35}
\end{gather*}
$$

Figure 2.5 A Simple Graph

Definition 2.8

The size of a graph is the number of edges in the graph

$$
\begin{equation*}
\operatorname{size}(G)=|E| \tag{2.36}
\end{equation*}
$$

Definition 2.9

The order of a graph G is the number of vertices in a graph

$$
\begin{equation*}
\operatorname{order}(G)=|V| \tag{2.37}
\end{equation*}
$$

-

For the graph in Figure 2.5 one has

$$
\begin{equation*}
\operatorname{size}(G)=2 \quad \operatorname{order}(G)=3 \tag{2.38}
\end{equation*}
$$

Definition 2.10

The degree of a vertex (also referred to as a node), in a graph, is the number of edges containing the vertex.

Definition 2.11

In a graph, $G=(V, E)$, two vertices, v_{1} and v_{2}, are neighbors if

$$
\left(v_{1}, v_{2}\right) \quad E \text { or }\left(v_{1}, v_{2}\right) \quad E
$$

In the graph in Figure $2.5 v_{1}$ and v_{2} are neighbors but v_{1} and v_{3} are not neighbors.

Definition 2.12

If $\mathrm{G}=\left(V_{1}, E_{1}\right)$ is a graph, then $H=\left(V_{2}, E_{2}\right)$ is a subgraph of G written \subseteq if \subseteq and \subseteq.

A subgraph of the graph in Figure 2.5 is shown in Figure 2.6.

Figure 2.6 Subgraph of Graph in Figure 2.5

The subgraph is generated from the original graph by the deletion of a single edge $\left(v_{2}, v_{3}\right)$.

Definition 2.13

A path is a collection of neighboring vertices.

For the graph in Figure 2.5 a valid path is

$$
\begin{equation*}
\text { path }=\left(v_{1}, v_{2}, v_{3}\right) \tag{2.39}
\end{equation*}
$$

Definition 2.14

A graph is connected if for each vertex pair $\left(v_{i}, v_{j}\right)$ there is a path from v_{i} to v_{j}.

The graph in Figure 2.5 is connected while the graph in Figure 2.6 is disconnected.

Definition 2.15

A directed graph is a graph with vertices and edges where each edge has a specific direction relative to each of the vertices.

An example of a directed graph is shown in Figure 2.7.

Figure 2.7 A Directed Graph

The graph in the figure has $G=(V, E)$ with

$$
\begin{align*}
& V=\left\{v_{1}, v_{2}, v_{3}\right\} \tag{2.40}\\
E= & \left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{2}\right),\left(v_{2}, v_{1}\right)\right\} \tag{2.41}
\end{align*}
$$

In a directed graph the edge $\left(v_{i}, v_{j}\right)$ is not the same as the edge $\left(v_{j}, v_{i}\right)$ when $i^{`} j$. The same terminology G $=(V, E)$ will be used for directed and undirected graphs; however, it will always be stated whether the graph is to be interpreted as a directed or undirected graph.

The definition of path applies to a directed graph also. As shown in Figure 2.8 there is a path from v_{1} to v_{4} but there is no path from v_{2} to v_{5}.

Figure 2.8 Paths in a Directed Graph

A number of paths exist from v_{1} to v_{4}, namely

$$
\begin{equation*}
p_{1}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \quad p_{2}=\left(v_{1}, v_{2}, v_{4}\right) \quad p_{3}=\left(v_{1}, v_{4}\right) \tag{2.42}
\end{equation*}
$$

Previous Table of Contents Next

Copyright © CRC Press LLC

Previous Table of Contents Next

Definition 2.16

A cycle is a path from a vertex to itself which does not repeat any vertices except the first and the last.
\square
A graph containing no cycles is said to be acyclic. An example of cyclic and acyclic graphs is shown in Figure 2.9.

Figure 2.9 Cyclic and Acyclic Graphs
Notice for the directed cyclic graph in Figure 2.9 that the double arrow notations between nodes v_{2} and v_{4} indicate the presence of two edges $\left(v_{2}, v_{4}\right)$ and $\left(v_{4}, v_{2}\right)$. In this case it is these edges which form the cycle.

A tree is an acyclic connected graph.

Examples of trees are shown in Figure 2.10.

Definition 2.18

An edge, e, in a connected graph, $G=(V, E)$, is a bridge if $G 2=(V, E 2)$ is disconnected where

$$
\begin{equation*}
E^{\prime}=E-e \tag{2.43}
\end{equation*}
$$

(a)

(b)

Figure 2.10 Trees

ㅁ

If the edge, e, is removed, the graph, G, is divided into two separate connected graphs. Notice that every edge in a tree is a bridge.

Definition 2.19

A planar graph is a graph that can be drawn in the plane without any edges intersecting.

。

An example of a planar graph is shown in Figure 2.11. Notice that it is possible to draw the graph in the plane with edges that cross although it is still planar.

Definition 2.20

The transitive closure of a directed graph, $G=\left(V_{1}, E_{1}\right)$ is a graph, $H=\left(V_{2}, E_{2}\right)$, such that,

$$
\begin{equation*}
V_{2}=V_{1} \tag{2.44}
\end{equation*}
$$

Figure 2.11 Planar Graph

$$
\begin{equation*}
E_{2}=f\left(V_{1}, E_{1}\right) \tag{2.45}
\end{equation*}
$$

where f returns a set of edges. The set of edges is as follows:

$$
\begin{equation*}
\left(v_{1}, v_{2}\right) \in f\left(V_{1}, E_{1}\right) \quad \text { if there is a path from } v_{1} \text { to } v_{2} \tag{2.46}
\end{equation*}
$$

Thus in Eq. 2.45, \supseteq. Transitive closure is illustrated in Figure 2.12.

Graph

Transitive Closure

Figure 2.12 Transitive Closure of a Graph

2.5 Parallel Algorithms

This section presents some fundamental properties and definitions used in parallel processing.

2.5.1 Speedup and Amdahls Law

Definition 2.21

The speedup of an algorithm executed using n parallel processors is the ratio of the time for execution on a sequential machine, $T_{S E Q}$, to the time on the parallel machine, $T_{P A R}$:

$$
\begin{equation*}
\text { Speedup }(n)=\frac{T_{S E Q}}{T_{P A R}} \tag{2.47}
\end{equation*}
$$

\square

If an algorithm can be completely decomposed into n parallelizable units without loss of efficiency then the Speedup obtained is

$$
\begin{equation*}
\text { Speedup }(n)=\frac{T_{S E Q}}{\frac{T_{S E Q}}{n}}=n \tag{2.48}
\end{equation*}
$$

If however, only a fraction, f, of the algorithm is parallelizable then the speedup obtained is

$$
\begin{equation*}
\operatorname{Speedup}(n)=\frac{T_{S E Q}}{\left((1-f)+\frac{f}{n}\right) T_{S E Q}}=\frac{1}{1-f+\frac{f}{n}} \tag{2.49}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\text { Speedup }(n))=\frac{1}{1-f} \tag{2.50}
\end{equation*}
$$

This is known as Amdahl's Law. The ratio shows that even with an infinite amount of computing power an algorithm with a sequential component can only achieve the speedup in Eq. 2.50. If an algorithm is 50% sequential then the maximum speedup achievable is 2 . While this may be a strong argument against the merits of parallel processing there are many important problems which have almost no sequential components.

Definition 2.22

The efficiency of an algorithm executing on n processors is defined as the ratio of the speedup to the number of processors:

$$
\begin{equation*}
\text { Efficiency }(n)=\frac{\text { Speedup }(n)}{n} \tag{2.51}
\end{equation*}
$$

Using Amdahl's law

$$
\begin{equation*}
\text { Efficiency }(n)=\frac{1}{n(1-f)+f} \tag{2.52}
\end{equation*}
$$

with

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\text { Efficiency }(n))=0 \quad \text { when } f \neq 1 \tag{2.53}
\end{equation*}
$$

2.5.2 Pipelining

Pipelining is a means to achieve speedup for an algorithm by dividing the algorithm into stages. Each stage is to be executed in the same amount of time. The flow is divided into k distinct stages. The output of the j th stage becomes the input to the $(j+1)$ th stage. Pipelining is illustrated in Figure 2.13. As seen in the figure the first output is ready after four time steps Each subsequent output is ready after one additional time step. Pipelining becomes efficient when more than one output is required. For many algorithms it may not be possible to subdivide the task into k equal stages to create the pipeline. When this is the case a performance hit will be taken in generating the first output as illustrated in Figure 2.14.

Figure 2.13 A Four Stage Pipeline

Figure 2.14 Pipelining
In the figure $T_{S E Q}$ is the time for the algorithm to execute sequentially. $T_{P S}$ is the time for each pipeline stage to execute. $T_{P I P E}$ is the time to flow through the pipe. The calculation of the time complexity sequence to process n inputs yields

$$
\begin{align*}
& T_{S E Q}(n)=n T_{S E Q} \tag{2.54}\\
& T_{P I P E}(n)=k T_{P S}+(n-1) T_{P S} \tag{2.55}
\end{align*}
$$

for a k-stage pipe. It follows that $T_{\text {PIPE }}(n)<T_{S E Q}(n)$ when

$$
\begin{equation*}
n>\frac{T_{P S}(k-1)}{T_{S E Q}-T_{P S}} \tag{2.56}
\end{equation*}
$$

The speedup for pipelining is

$$
\begin{equation*}
S(n)=\frac{T_{S E Q}(n)}{T_{P I P E}(n)}=\frac{T_{S E Q}}{T_{P S}-\frac{(k-1) T_{P S}}{n}} \tag{2.57}
\end{equation*}
$$

$$
\begin{aligned}
& f_{1}= \begin{cases}1, & n<10^{50} \\
e^{n}, & n \geq 10^{50}\end{cases} \\
& f_{2}= \begin{cases}e^{n}, & n<10^{50} \\
1, & n \geq 10^{50}\end{cases} \\
& f_{1} \in \Theta\left(e^{n}\right) \text { and } f_{2} \in \Theta(1)
\end{aligned}
$$

Example 2.6 Order

which yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S(n)=\frac{T_{S E Q}}{T_{P S}} \tag{2.58}
\end{equation*}
$$

In some applications it may not be possible to keep the pipeline full at all times. This can occur when there are dependencies on the output. This is illustrated in Example 2.7. For this case let us assume that the addition/subtraction operation has been set up as a pipeline. The first statement in the pseudo-code will cause the inputs x and 3 to be input to the pipeline for subtraction. After the first stage of the pipeline is complete, however, the next operation is unknown. In this case, the result of the first statement must be established. To determine the next operation the first operation must be allowed to proceed through the pipe. After its completion the next operation will be determined. This process is referred to flushing the pipe. The speedup obtained with flushing is demonstrated in Example 2.8.

1	If $x>3$ then
2	$y=y+4 ;$
3	else
$y=y-2 ;$	

Example 2.7 Output Dependency PseudoCode

Determine the speedup, in the limit, for a k-stage pipe over a sequential algorithm if the pipe has to be flushed 40% of the time.

Solution:

$$
\begin{aligned}
& T_{P I P E}(n)=(0.4 n) k T_{P S}+(0.6 n) T_{P S} \\
& S(n)=\frac{T_{S E Q}(n)}{T_{P I P E}(n)}=\frac{T_{S E Q}}{T_{P S}(0.4 k+0.6)}
\end{aligned}
$$

Example 2.8 Pipelining

2.5.3 Parallel Processing and Processor Topologies

There are a number of common topologies used in parallel processing. Algorithms are increasingly being developed for the parallel processing environment. Many of these topologies are widely used and have been studied in great detail. The topologies presented here are

- Full Crossbar
- Rectangular Mesh
- Hypercube
- Cube-Connected Cycles

Previous Table of Contents Next

2.5.3.1 Full Crossbar

A full crossbar topology provides connections between any two processors. This is the most complex connection topology and requires $(n(n-1) / 2$ connections. A full crossbar is shown in Figure 2.15.

In the graphical representation the crossbar has the set, V, and E with

Figure 2.15 Full Crossbar Topology

$$
\begin{align*}
V & =\left\{p_{i}, 0 \leq i<n\right\} \tag{2.59}\\
E & =\left\{\left(p_{i}, p_{j}\right), 0 \leq i<n, 0 \leq j<n\right\} \tag{2.60}
\end{align*}
$$

Because of the large number of edges the topology is impractical in design for large n.

2.5.3.2 Rectangular Mesh

A rectangular mesh topology is illustrated in Figure 2.16. From an implementation aspect the topology is easily scalable. The degree of each node in a rectangular mesh is at most four. A processor on the interior of the mesh has neighbors to the north, east, south, and west. There are several ways to implement the exterior nodes if it is desired to maintain that all nodes have the same degree. For an example of the external edge connection see Problem 2.5.

2.5.3.3 Hypercube

A hypercube topology is shown in Figure 2.17. If the number of nodes, n, in the hypercube satisfies $n=$ 2^{d} then the degree of each node is d or $\log (n)$. As a result, as n becomes large the number of edges of
each node increases. The magnitude of the increase is clearly more manageable than that of the full crossbar but it can still be a significant problem with hypercube architectures containing 64 K nodes. As a result the cube-connected cycles, described in the next section, becomes more attractive due to its fixed degree.

The vertices of an n dimensional hypercube are readily described by the binary ordered pair

$$
\begin{equation*}
\left(x_{0}, x_{2}, \ldots, x_{d-1}\right) \quad x_{j} \in\{0,1\} \tag{2.61}
\end{equation*}
$$

Figure 2.16 Rectangular Mesh
With this description two nodes are neighbors if they differ in their representation in one location only. For example for an 8 node hypercube with nodes enumerated
$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$
(2.62)
processor $(0,1,0)$ has three neighbors:
(0, 1, 1)
(0, 0, 0)
$(1,1,0)$

Figure 2.17 Hypercube Topology

2.5.3.4 Cube-Connected Cycles

A cube-connected cycles topology is shown in Figure 2.18. This topology is easily formed from the hypercube topology by replacing each hypercube node with a cycle of nodes. As a result, the new topology has nodes, each of which, has degree 3 . This has the look and feel of a hypercube yet without the high degree. The cube-connected cycles topology has $n \log n$ nodes.

2.6 The Hypercube Topology

This section presents algorithms and issues related to the hypercube topology. The hypercube is important due to its flexibility to efficiently simulate topologies of a similar size.

2.6.1 Definitions

Processors in a hypercube are numbered $0, \ldots, n-1$. The dimension, d , of a hypercube, is given as

$$
\begin{equation*}
d=\log n \tag{2.63}
\end{equation*}
$$

where at this point it is assumed that n is a power of 2 . A processor, x, in a hypercube has a representation of

$$
\begin{equation*}
x=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \quad x_{j} \in\{0,1\} \tag{2.64}
\end{equation*}
$$

For a simple example of the enumeration scheme see Section 2.5.3.3 on page 75. The distance, $d(x, y)$, between two nodes x and y in a hypercube is given as

$$
\begin{equation*}
d(x, y)=\sum_{k=0}^{d-1}\left|x_{k}-y_{k}\right| \tag{2.65}
\end{equation*}
$$

The distance between two nodes is the length of the shortest path connecting the nodes. Two processors, x and y are neighbors if $d(x, y)=1$. The hypercubes of dimension two and three are shown in Figure 2.19.

2.6.2 Message Passing

A common requirement of a parallel processing topology is the ability to support broadcast and message passing algorithms between processors. A broadcast operation is an operation which supports a single processor communicating information to all other processors. A message passing algorithm supports a single message transfer from one processor to the next. In all cases the messages are required to traverse the edges of the topology.

To illustrate message passing consider the case of determining the path to send a message from processor 0 to processor 7 in a 3-dimensional hypercube as shown in Figure 2.19. If the message is to traverse a path which is of minimal length, that is $d(0,7)$, then it should travel over three edges. For this case there are six possible paths:

Algorithms and Data Structures in C++:Algorithms

$$
\begin{aligned}
& 000-001-011-111 \\
& 000-001-101-111 \\
& 000-010-011-111 \\
& 000-010-110-111 \\
& 000-100-101-111 \\
& 000-100-110-111
\end{aligned}
$$

Figure 2.19 Hypercube Architecture

In general, in a hypercube of dimension d, a message travelling from processor x to processor y has d (x, $y)!$ distinct paths (see Problem 2.11). One simple algorithm is to compute the exclusive-or of the source and destination processors and traverse the edge corresponding to complementing the first bit that is set. This is illustrated in Table 2.4 for left to right complementing and in Table 2.5 for right to left complementing.

Table 2.4 Calculating the Message Path — Left to Right

Processor Source	ProcessorDestination	Exclusive-Or	Next Processor
000	111	111	100
100	111	011	110
110	111	001	111

Table 2.5 Calculating the Message Path — Right to Left

Processor Source	Processor Destination	Exclusive-Or	Next Processor
000	111	111	001
001	111	110	011
011	111	100	111

The message passing algorithm still works under certain circumstances even when the hypercube has nodes that are faulty. This is discussed in the next section.

2.6.3 Efficient Hypercubes

This section presents the analysis of the class of hypercubes for which the message passing routines of the previous section are valid. Examples are presented in detail for an 8-node hypercube.

2.6.3.1 Transitive Closure

Definition 2.23

The adjacency matrix, A, of a graph, G, is the matrix with elements $a_{i j}$ such that $a_{i j}=1$ implies there is an edge from i to j. If there is no edge then $a_{i j}=0$.

The adjacency matrix, A, of the transitive closure of the 8 -node hypercube is simply the matrix

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

For a hypercube with all functional nodes every processor is reachable.
Previous Table of Contents Next

Previous	Table of Contents

2.6.3.2 Least-Weighted Path-Length

Definition 2.24

The least-weighted path-length graph is the directed graph where the weights of each edge correspond to the shortest path-length between the nodes.

The associated weighted matrix consists of the path-length between the nodes. The path-length between a processor and itself is defined to be zero. The associated weighted matrix for an 8 -node hypercube with all functional nodes is

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\
1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\
1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\
2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\
1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\
2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\
2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\
3 & 2 & 2 & 1 & 2 & 1 & 1 & 0
\end{array}\right]
$$

$a_{i j}$ is the distance between nodes i and j. If nodes i and j are not connected via any path then $a_{i j}=$.

2.6.3.3 Hypercubes with Failed Nodes

This section introduces the scenario of failed processors. It is assumed if a processors or node fails then all edges incident on the processor are removed from the graph. The remaining processors will attempt to function as a working subset while still using the message passing algorithms of the previous sections. This will lead to a characterization of subcubes of a hypercube which support message passing. Consider the scenario illustrated in Figure 2.20. In the figure there are three scenarios with failed processors.

In Figure 2.20 b a single processor has failed. The remaining processors can communicate with each other using a simple modification of the algorithm which traverses the first existing edge encountered.

Similarly, in Figure 2.20c communication is still supported via the modified algorithm. This is illustrated in Table 2.6. Notice that in Table 2.6 the next processor after 000 was 001 . For the topology in the figure the processor did not exist so the algorithm proceeded to the next bit from right to left which gave 010 . Since this processor existed the message was sent along the path.

a) all processors functional

b) processor 7 fails

c) processors 6,1 fail

d) processors 1,2 fail

Figure 2.20 Hypercube with Failed Nodes
Table 2.6 Calculating the Message Path — Right to Left for Figure 2.20c

Processor Source	Processor Destination	Exclusive-Or	Next Processor
000	111	111	010
010	111	101	011
011	111	100	111

The scenario in Figure 2.20d is quite different. This is illustrated in Table 2.7.
In this case, the first processor considered to is 001 but it is not functional. Processor 010 is considered next but it is not functional. For this case the modified algorithm has failed to route the message from processor 000 to 011 . There exists a path from 000 to 011 one of which is

$000-100-101-111-011$

Notice that the distance between the processors has increased as a result of the two processors failures. This attribute is the motivation for the characterization of efficient hypercubes in the next section.

Table 2.7 Calculating the Message Path — Right to Left for Figure 2.20d

Processor Source	Processor Destination	Exclusive-Or	Next Processor
000	011	011	$?$

2.6.3.4 Efficiency

Definition 2.25

A subcube of a hypercube is efficient if the distance between any two functional processors in the subcube is the same as the distance in the hypercube.
व
A subcube with this property is referred to as an efficient hypercube. This is equivalent to saying that if A represents the least-weighted path-length matrix of the hypercube and B represents the least-weighted path-length matrix of the efficient subcube then if i and j are functional processors in the subcube then $b_{i j}$ $=a_{i j}$ This elegant result is proven in Problem 2.20. The least-weighted path-length matrix for efficient hypercubes place in column i and row i if processor i is failed.

The cubes in Figure 2.20b and c are efficient while the cube in Figure 2.20d is not efficient. If the cube is efficient then the modified message passing algorithm in the previous section works. The next section implements the procedure for hypercubes with failed nodes.

2.6.3.5 Message Passing in Efficient Hypercubes

The code to simulate message passing in an efficient hypercube is shown in Code List 2.8. The output of the program is shown in Code List 2.9. The path for communicating from 0 to 63 is given as 0-1-3-7-15-31-63 as shown in Code List 2.9. Subsequently processor 31 is deactivated and a new path is calculated as 0-1-3-7-15-47-63 which avoids processor 31 and traverses remaining edges in the cube. The program continues to remove nodes from the cube and still calculates the path. All the subcubes created result in an efficient subcube.

Code List 2.8 Message Passing in an Efficient Hypercube

C++ Source Code
\#include <iostream.h>
\#define TRUE 1
\#define FALSE 0
\#define ACTIVE 1

```
#define INACTIVE 0
#define NO_PROCESSORS 64
#define DIMENSION 6
class node {
private:
int number;
int status;
public:
            node(int num=0) { number=0; status=ACTIVE; };
            int proc_num() | return number;);
            int pstatus() { return status;};
            void set_status(int stat) { status=stat; };
            void set_num(int num) {number = num;};
|;
node hyp[NO_PROCESSORS];
void path_calc(node p1, node p2)
{
int p3;
int edge;
int i,j,z;
int ex_or;
p3=p1.proc_num();
edge =1;
cout << "Calculating path from " << p1.proc_num() <<
    " to " << p2.proc_num() << endl;
```


C++ Source Code

cout << p1.proc_num() <<"";
for $(\mathrm{j}=0 ; \mathrm{j}<\mathrm{DIMENSION} ; \mathrm{j}++)$ \{

```
ex_or=p3^p2.proc_num();
edge=1;
z=ex_or;
for(i=0;i<DIMENSION;i++)
{
if((z%2==1)&&(hyp[p3^edge]).pstatus()==ACTIVE) {
cout << hyp[p3^edge].proc_num() <<" ";
p3=p3^edge;
break;
}
edge*=2;
z=z>>1;
}
}
cout << " Inactive Processors: ";
for(j=0; j<NO_PROCESSORS; j++) if (hyp[j].pstatus()==INACTIVE)
    cout << hyp[j].proc_num() <<" ";
    cout << endl
    <<"****************************************"
    <<"**********************"
    << endl;
```

\};
void init_cube()
I
int i ;
for(i=0;i<NO_PROCESSORS;i++) hyp[i].set_num(i);
\};
void main()
\{
init_cube();
C++ Source Code
path_calc(hyp[0],hyp[63]);
hyp[31].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
hyp[15].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
hyp[1].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
hyp[2].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
hyp[7].set_status(INACTIVE);
hyp[23].set_status(INACTIVE);
hyp[55].set_status(INACTIVE);
path_calc(hyp[0],hyp[63]);
path_calc(hyp[42],hyp[6]);
\};

Code List 2.9 Output of Program in Code List 2.8

C++ Output

Calculating path from 0 to 63

0137153163 Inactive Processors:
**
Calculating path from 0 to 63
0137154763 Inactive Processors: 31

Calculating path from 0 to 63
0137235563 Inactive Processors: 1531

Calculating path from 0 to 63
0237235563 Inactive Processors: 11531

Calculating path from 0 to 63
C++ Output0457235563 Inactive Processors: 121531
**Calculating path from 0 to 63
04513296163 Inactive Processors: 12715233155
**Calculating path from 42 to 6
4246386 Inactive Processors: 12715233155
**

2.6.4 Visualizing the Hypercube: A C++ Example

This section presents a C++ program to visualize the hypercube. A program to visualize the cube is shown in Code List 2.10. The program was used to generate the PostScript image in Figure 2.21 for a 64 node hypercube. The program uses a class structure similar to the program to visualize the Tower of Hanoi in Code List 2.6.

The program introduces a new PostScript construct to draw and fill a circle

$$
x \text { y radius angle } 1 \text { angle } 2 \text { arc }
$$

The program uses the scale operator to force the image to fill a specified area. To illustrate this, notice that the program generated both Figure 2.21 and Figure 2.22. The nodes in Figure 2.22 are enlarged via the scale operator while the nodes in Figure 2.21 are reduced accordingly.

The strategy in drawing the hypercube is such that only at most two processors appear in any fixed horizontal or vertical line. The cube is grown by replications to the right and downward.

Figure 2.21 A 64-Node Hypercube
Code List 2.10 C++ Code to Visualize the Hypercube

C++ Code

\#include <iostream.h>
\#include <iomanip.h>
\#include <fstream.h>
\#include <math.h>
\#define NO_PROCESSORS 64
\#define DIMENSION 6
\#define RIGHT 1

Figure 2.22 An 8-Node Hypercube

C++ Code

\#define DOWN 0

class cube
1
public:
int x; int y;
\};
class graphics_context \{
protected: double line_w;

C++ Code

double x_scale, y_scale;
double gray;
public:
void set_line_width(double $\mathrm{x}=1.0$) \{line_w=x; \};
void set_scale(double $x=1.0$, double $y=1.0$)

$$
\left\{x _ \text {scale }=x ; y _ \text {scale }=y ;\right\}
$$

void set_gray(double $x=0.0$) \{gray=x; \};
\};
class object : public graphics_context \{ protected:
double $x _l o c, y_{-} l o c ;$
public:
void location (double $x=0.0$, double $\mathrm{y}=0.0$)

$$
\left\{x _l o c=x ; y _l o c=y ;\right\} ;
$$

double xlocation() \{ return x_loc; \};
int number;
public:
node(int num $=0$, double $x=0.0$, double $y=0.0$, double $r=0.5$)
1 number=num;
$x _l o c=x ; y _l o c=y$; radius $=r$;
set_scale();
set_line_width();
set_gray();

C++ Code
I; int proc_num() \{ return number; \};
void set_num(int num) (number = num; \};
void set_location(double x, double y) \{ x_loc=x; $\left.y_{-} l o c=y ;\right\}$;
void set_radius(double r) (radius=r; \};
void draw(ofstream\& file)
1
file << "newpath" << endl;
file << line_w <<" setlinewidth" \ll endl;
file << gray << " setgray" << endl;
file << x_loc << " " << y_loc <<" " << radius <<
" 0360 arc fill" << endl;
f;

I:

```
huuc myp!ivQ_rinu~Luounoj,
int p2(int x)
{
return (int) pow(2.0,(double) x);
};
void init_cube()
{
int i;
int dim,line,processor;
int translation;
int direction=RIGHT;
cube temp[NO_PROCESSORS];
for(i=0;i<NO_PROCESSORS;i++) hyp[i].set_num(i);
hyp[0].set_location(1,1);
hyp[1].set_location(2,1);
hyp[2].set_location(1,2);
hyp[3].set_location(2,2);
```

C++ Code	
for(i=0; $\mathrm{i}<$ NO_PROCESSORS; $\mathrm{i}++$)	
1	
temp[i].x=hyp[i].xlocation();	
temp[i].y=hyp[i].ylocation();	
)	
for(dim=3;dim<=DIMENSION;dim++) \{	
translation=1;	
for(line=1; line<=p2(dim-1);line++)	
1	
for(processor=0;processor<p2(dim-1);processor++)	
1	
	if(direction==RIGHT)
	if(hyp[processor].ylocation()==line)

temp[processor].y=translation++;
if(direction==DOWN)
if(hyp[processor].xlocation()==line)
temp[processor]. $\mathrm{x}=$ translation++;
\}
)
if(direction==RIGHT)
I

$$
\text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{p} 2(\operatorname{dim}-1) ; \mathrm{i}++)
$$

1
temp $[\mathrm{i}+\mathrm{p} 2(\operatorname{dim}-1)] \cdot \mathrm{x}=$ temp i$] \cdot \mathrm{x}+\mathrm{p} 2(\operatorname{dim}-2)$;
temp[i+p2(dim-1)]. $\mathrm{y}=\mathrm{temp}[\mathrm{i}] . \mathrm{y}$;
\}
\}
if(direction==DOWN)
I

$$
\text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{p} 2(\operatorname{dim}-1) ; \mathrm{i}++)
$$

1
temp[i+p2(dim-1)].y=temp[i].y+p2(dim-2);

C++ Code

temp[i+p2(dim-1)].x=temp[i].x;
)
I
direction=(direction+1)\%2;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{NO}$ _PROCESSORS; $\mathrm{i}++$)
hyp[i].set_location(temp[i].x,temp[i].y);
void drawline(ofstream\& file, int i, int j)

```
|
file << hyp[i].xlocation() << " " << hyp[i].ylocation()
    << " moveto" << endl;
    file << hyp[j].xlocation() << " " << hyp[j].ylocation()
    <<" lineto stroke" << endl;
    |
    void render_cube(ofstream& file)
    {
int i;
for(i=0;i<p2(DIMENSION);i++)
    |
    int k=1.j;
    for(j=0;j<DIMENSION;j++){
        drawline(file,i,i^k);
        k*=2;
        }
        for(i=0;i<NO_PROCESSORS;i++)
        hyp[i].draw(file);
    }
    void main()
```


C++ Code

1
init_cube();
ofstream file("hyper1.ps",ios::outlios::trunc);
if(!file)
1
cout << "Could not open file\n";
return;
I
// Add standard postscript header
file << "\%!PS-Adobe-2.0 EPSF-2.0" \ll end!;
file <<"\%\%BoundingBox: 00300300 " << endl;
file << "\%\%Creator: Alan Parker" << endl;
file << "\%\%EndComments" << endl;
file << " 0.0 setgray" << endl;
double scale $=300.0 /($ pow $(2.0$, DIMENSION-1) +2.0$)$;
file << scale << " " << scale << " scale" << endl;
file << 1.5/scale << " setlinewidth" << endl;
render_cube(file);
file << "showpage" << endl << "\%\%Trailer" << endl;
file.close();
1
Code List 2.11 Output of Program in Code List 2.10

C++ File Created
\%!PS-Adobe-2.0 EPSF-2.0
\%\%BoundingBox: 00300300
\%\%Creator: Alan Parker
\%\%EndComments
0.0 setgray
5050 scale
0.03 setlinewidth

C++ File Created
11 moveto
22 lineto stroke
11 moveto
13 lineto stroke
11 moveto
31 lineto stroke
22 moveto
11 lineto stroke
22 moveto
24 lineto stroke
22 moveto
42 lineto stroke
13 moveto
24 lineto stroke
13 moveto
11 lineto stroke
13 moveto
33 lineto stroke
24 moveto
13 lineto stroke

$\angle 4$ moveto

22 lineto stroke
24 moveto
44 lineto stroke
31 moveto
42 lineto stroke
31 moveto
33 lineto stroke
31 moveto
11 lineto stroke
42 moveto
31 lineto stroke

C++ File Created

42 moveto
44 lineto stroke
42 moveto
22 lineto stroke
33 moveto
44 lineto stroke
33 moveto
31 lineto stroke
33 moveto
13 lineto stroke
44 moveto
33 lineto stroke
44 moveto
42 lineto stroke
44 moveto
24 lineto stroke
newnath

1 setlinewidth
0 setgray
110.50360 arc fill newpath
1 setlinewidth
0 setgray
220.50360 arc fill
newpath
1 setlinewidth
0 setgray
130.50360 arc fill
newpath
1 setlinewidth
0 setgray
240.50360 arc fill

C++ File Created
newpath
1 setlinewidth
0 setgray
310.50360 arc fill
newpath
1 setlinewidth
0 setgray
420.50360 arc fill
newpath
1 setlinewidth
0 setgray
330.50360 arc fill
newpath
1 setlinewidth
0 setgray
440.50360 arc fill
showpage
\% \%Trailer

[^1]

2.7 Problems

(2.1) [Infinite Descent — Difficult] Prove, using infinite descent, that there are no solutions in the positive integers to

$$
x^{4}+y^{4}=z^{4}
$$

(2.2) [Recuffence] Find the closed form solution to the recursion relation

$$
\begin{gathered}
F(0)=a \\
F(1)=b \\
F(n)=F(n-1)-F(n-2)
\end{gathered}
$$

and write a C++ program to calculate the series via the closed form solution and print out the first twenty terms of the series for

$$
a=5 \quad b=-5
$$

(2.3) [Tower of Hanoi] Write a C++ Program to solve the Tower of Hanoi problem for arbitrary n. This program should output the move sequence for a specific solution.
(2.4) [Tower of Hanoi] Is the minimal solution to the Tower of Hanoi problem unique? Prove or disprove your answer.
(2.5) [Rectangular Mesh] Given an $8 x 8$ rectangular mesh with no additional edge connections calculate the largest distance between two processors, where the distance is defined as the minimum number of edges to traverse in a path connecting the two processors.
(2.6) [Rectangular Mesh] For a rectangular mesh with no additional edge connections formally describe the topology in terms of vertices and edges.
(2.7) [Rectangular Mesh] Write a C++ program to generate a PostScript image file of the rectangular mesh for $1 \mathrm{~d} n \mathrm{~d} 20$ without additional external edge connections. To draw a line from the current point to (x, y) use the primitive

$x y$ lineto

followed by

gsave

stroke

grestore

to actually draw the line. Test the output by sending the output to a PostScript printer.
(2.8) [Cube-Connected Cycles] Calculate the number of edges in a cube connected cycles topology with $n \log n$ nodes.
(2.9) [Tree Structure] For a graph G, which is a tree, prove that

$$
\operatorname{order}(G)=\operatorname{size}(G)+1
$$

(2.10) [Cube-Connected Cycles] For a cube-connected cycles topology formally describe the topology in terms of vertices and edges.
(2.11) [Hypercube] Given two arbitrary nodes in a hypercube of dimension n calculate the number of distinct shortest paths which connect two distinct nodes, A and B, as a function of the two nodes. Use a binary representation for each of the nodes:

$$
\begin{gathered}
A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\} \quad B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\} \\
a_{i}, b_{i} \in\{0,1\}
\end{gathered}
$$

(2.12) [Hypercube] Given a hypercube graph of dimension n and two processors A and B what is the minimum number of edges that can be removed such that there is no path from A to B.
(2.13) Is every edge in a tree a bridge?
(2.14) Devise a broadcast algorithm for a hypercube of arbitrary dimension. Write a C++ program to simulate this broadcast operation on an 8-dimensional hypercube.
(2.15) Devise a message passing algorithm for a hypercube of arbitrary dimension. Write a $\mathrm{C}++$ program to simulate this algorithm and demonstrate it for a 12-dimensional hypercube.
(2.16) Write a C++ program to visualize a complete binary tree. Your program should scale the node sizes to fit on the page as a function of the dimension in a similar fashion to Code List 2.10. (2.17) Describe in detail the function of each procedure in the code to visualize the hypercube in Code List 2.10. Present a high-level description of the procedures render_cube and init_cube.
(2.18) Write a $\mathrm{C}++$ program to display the modified adjacency matrix of an n-dimensional hypercube similar to the matrix presented in Eq. 2.67.
(2.19) Write a C++ program to visualize a 64 -node hypercube which supports message passing. Your program should use a separate gray level to draw the source and destination processors and should draw the edges which form the path in a different gray scale also.
(2.20) [Difficult] Prove that the modified message passing algorithm works for any two functional processors in an efficient hypercube.
(2.21) Write a $\mathrm{C}++$ program to determine if a hypercube with failed nodes is efficient.
(2.22) Calculate the least-weighted path-length matrix for each of the subcubes in Figure 2.20.
(2.23) Given a hypercube of dimension d calculate the probability that a subcube is efficient
where the subcube is formed by the random failure of two processors.
(2.24) Modify the C++ program in Code List 2.10 to change the line width relative to the node size. Test out the program for small and high dimensions.
(2.25) Rewrite Code List 2.10 to build the hypercube using a recursive function.
(2.26) The program in Code List 2.10 uses a simple algorithm to draw a line from each processor node to its neighbors. As a result, the edges are drawn multiple times within in the file. Rewrite the program to draw each line only once.

Previous Table of Contents Next

Previous Table of Contents Next

Chapter 3
 Data Structures and Searching

This chapter introduces data structures and presents algorithms for searching and sorting.

3.1 Pointers and Dynamic Memory Allocation

This section investigates pointers and dynamic memory allocation in C++. As a first example consider the C++ source code in Code List 3.1.

Code List 3.1 Integer Pointer Example

C++ Source Code
void main()
\{
int ${ }^{*} \mathrm{p}, \mathrm{k} ;$
$\mathrm{p}=$ new int;
${ }^{\text {* }}=7$;
$\mathrm{k}=3 ;$
delete $\mathrm{p} ;$
$\mathrm{p}=\& \mathrm{k} ;$
*p=4;
$\}$

At the beginning of the program there are two variables that are allocated. The first variable is a variable p which is declared as a pointer to an integer. The second variable, k, is declared as an integer. The variable p is stored at address A1. The address A1 will contain an address of a variable which will be
interpreted as an integer. Initially this address is not assigned. The variable k is stored at address A3. Note that the addresses of p and k do not change during the execution of the program. These addresses are allocated initially and belong to the program for its execution life.

The statement $p=$ new int in the program allocates room for an integer in memory and makes the pointer p point to that location. It does not assign a value to the location that p points to. In this case p now contains the address A4. The memory location at address A4 will contain an integer. The new operator is a request for memory allocation. It returns a pointer to the memory type requested. In this example room is requested for an integer.

The statement ${ }^{*} p=7$ assigns the integer 7 to the location that p points to. In this case the address A4 will now contain a 7 .

The statement $k=3$ assigns 3 to the address where k is located. In this case the address A3 will contain the integer 3.

The statement delete p now requests to deallocate the memory granted to p with the new operator. In this case p will still point to the location but the data at the location is subject to change. It can be the case that $* p$ is no longer 7 . Note that once the memory is freed the program no longer may have a right to access the data. The memory location A4 is free to be assigned to any other program which requests memory space.

The statement $p=\& k$ assigns the address of k to p. The address of k is A3. For this case, p, located at A1 will now contain the address A3.

The statement $* p=4$ now assigns the integer 4 to the address that p points to. For this case the data at address A3 will now contain 4 .

This statement has changed the value of k. The flow for the memory is shown in Figure 3.1.
There are a number of pitfalls to be concerned with pointers. The declaration int ${ }^{*} p$ does not allocate room for the integer. It simply allocates room for a variable p which will point to an integer in memory. As a result the following code segment is invalid:

$$
\begin{aligned}
& \text { int *p; } \\
& \text { *p=7; }
\end{aligned}
$$

For this code segment the address that p contains is not valid. Unfortunately depending on the platform you are using to develop your programs this might not generate an error on compilation and in some operating systems even on execution.

Figure 3.1 Memory Layout for C++ Program
The following code segment is acceptable int $*$ p, k;
$\mathrm{p}=\& \mathrm{k}$;

* $\mathrm{p}=4$;

For this code segment, p points to the address of k which has been allocated memory for an integer.
The code shown in Code List 3.2 is also valid. The output for the program is shown in Code List 3.3.
Code List 3.2 Pointer Example

C++ Source Code

```
#include <iostream.h>
    void main()
    {
int * * p;
p = new int *;
*p = new int;
**p=7;
cout << "The value of p is " << p << endl;
cout << "The value of *p is " << *p << endl;
cout <<"The value of **p is " << **p << endl;
}
```

Code List 3.3 Output of Program in Code List 3.2

C++ Output

The value of p is 0×1 eb4
The value of *p is 0×2530
The value of ${ }^{* *}$ p is 7
The style of the output will change dramatically depending on the operating system and platform used to develop the code. It is sufficient to note that for the code in Code List $3.2 p$ contains an address that points to a location that contains an address that points to a location that contains an integer.

Algorithms and Data Structures in C_{++}:Data Structures and Searching

Previous	Table of Contents

Copyright © CRC Press LLC
Previous Table of Contents Next

3.1.1 A Double Pointer Example

Consider the simple program which prints out the runtime, arguments provided by the user. The program source is shown in Code List 3.4. The output of the program is shown in Code List 3.5. The program is executed by typing in the command

ARGV1 arg1 arg2
Code List 3.4 Double Pointer Example

C++ Source Code

```
#include <iostream.h>
void main(int argc, char * * argv)
|
int i;
for(i=0;i<argc;i++)
cout << " Argument " << i <<< " is " << argv[i] << endl;
for(i=0;i<argc;i++)
cout << " Argument " << i << " is " << *(argv+i) << endl;
for(i=0;i<arge;i++,argv++)
cout << " Argument " << i << " is " << *argv << endl;
argv--;
cout << " Lets look at &((*argv)[1]) :" << &((*argv)[1]) << endl ;
cout << " Lets look at (*argv)[1] : " << (*argv)[1] << endl;
cout << " Lets look at (*argv)[4]+0x32 : " << (*argv)[4]+0x32 << endl;
cout << " Lets look at (char) (*argv)[4]+0x32 :"
    << (char) ((*argv)[4]+0x32) << endl;
```

// Restore argv
argv-=2;


```
cout << " Should be the same as *(*(argv+1)+1):" <<*(*(argv+1)+1) << endl;
}
```

Code List 3.5 Output of Program in Code List 3.4

C++ Output

Argument 0 is ARGV.EXE
Argument 1 is arg 1
Argument 2 is arg2
Argument 0 is ARGV.EXE
Argument 1 is arg 1
Argument 2 is arg 2
Argument 0 is ARGV.EXE
Argument 1 is arg 1
Argument 2 is arg 2
Lets look at \& ((*argv)[1]) : rg2
Lets look at (*argv)[1] : r
Lets look at (*argv)[4]+0x32:50
Lets look at (char) (*argv)[4]+0x32:2
Lets look at argv[1][1] : r
Should be the same as *(*(argv+1)+1) : r
The name of the program is ARGV1.EXE. The arguments passed to the program are arg1 and arg2. The main procedure receives two variables, argc and argv. For this case argc will be the integer 3 since there are 2 arguments passed to the program. It is 3 instead of 2 because argv will also hold the program name in addition to the arguments passed as can be seen in the program output. In the program argv is a pointer to a pointer to a character. The organization is shown in Figure 3.2. Looking at the figure one notes a
rather complex organization. In the figure argv is stored at memory location Al. Its value is the address A2. The address A2 contains the address A5 which contains a contiguous set of characters. The first character at address A5 is the letter A (in hex 41, using ASCII). The character at address A5+1 is the letter R (in hex 52). The set of characters is terminated with a NULL character, (in hex 00). The null character indicates the end of the string. It is used by programs which are passed the address A5 to print the character. These programs print each consecutive character until they reach a NULL. A failure to place a NULL character at the end of a string will result in many string operation failures in addition to printing improperly. Remember in $\mathrm{C} / \mathrm{C}++$ a string is merely a collection of contiguous characters terminated in a NULL.

C and $\mathrm{C}++$ can treat pointers as arrays. This is a very powerful and sometimes dangerous feature. For this example one can interpret

20×32
00×00

Figure 3.2 Program Organization in Memory

$$
\begin{gathered}
\operatorname{argv}[0]=\mathrm{A} 5 \\
\operatorname{argv}[1]=\mathrm{A} 6 \\
\operatorname{argv}[2]=\mathrm{A} 7 \\
\operatorname{argv}[3]=\text { undefined, }
\end{gathered}
$$

There are only two arguments + the program name.
Remember that argv is a pointer to a char to a char, written as char **.
$\operatorname{argv}[0]$ is a char * or a pointer to a char.
When the io function cout receives a char * it will interpret the characters at the location as a string. In this case during the first print loop argv[0] points to A5 where the string representing the name of the program resides (technically, the command line argument invoking the program).
Going to the location A5 cout proceeds to print out ARGV.EXE and stops printing characters because of the NULL character reached.

C and C++ also support pointer arithmetic. This can lead to complex expressions. For this example $\operatorname{argv}+1$ is synonymous with \&argv[1] which in this case one has

$$
\begin{gathered}
\operatorname{argv}+1=\mathrm{A} 3 \\
\operatorname{argv}+2=\mathrm{A} 4 \\
\operatorname{argv}+0=\mathrm{A} 2 \\
\operatorname{argv}[0]=\mathrm{A} 5 \\
\operatorname{argv}[1]=\mathrm{A} 6 \\
\operatorname{argv}[2]=\mathrm{A} 7 \\
\& \operatorname{argv}[0]=\mathrm{A} 2 \\
\& \operatorname{argv}[1]=\mathrm{A} 3 \\
\& \operatorname{argv}[2]=\mathrm{A} 4 \\
\operatorname{argv}=\mathrm{A} 2 \\
\operatorname{argv}=\& \operatorname{argv}[0]
\end{gathered}
$$

In C and $\mathrm{C}++$ when you name an array like $\mathrm{x}[10]$ then x with no brackets refers to the address of $\mathrm{x}[0]$:

$$
x=\& x[0]
$$

One can traverse the pointers using * or [] that is the following is identical

$$
\begin{gathered}
* x=x[0] \\
*(x+1)=x[1] \\
*(x+2)=x[2]
\end{gathered}
$$

Notice that

$$
\begin{gathered}
\operatorname{argv}[0]=\mathrm{A} 5 \\
\operatorname{argv}[0][0]=' \mathrm{~A} \\
\operatorname{argv}[0][1]=' \mathrm{R} ' \\
\operatorname{argv}[1][0]=\text { 'a' } \\
\operatorname{argv}|1| \mid 1]=' \mathrm{r} '
\end{gathered}
$$

Make sure you understand all the outputs of the program. If you are going to spend a lot of time programming in C or $\mathrm{C}++$ then you should review this chapter frequently until you are completely comfortable with the concepts.

3.1.2 Dynamic Memory Allocation with New and Delete

$\mathrm{C}++$ has introduced memory allocation operators new and delete to deal with requesting and freeing memory. An example of the use of new and delete are illustrated in Code List 3.6. The output of the program is shown in Code List 3.7. There are some important features of new and C++ illustrated in this program.

Code List 3.6 Dynamic Memory Allocation in C++

C++ Source

// This program demonstrates the differences between new
// and malloc
\#include <iostream.h>
\#include <malloc.h>
\#include <new.h>
class
test

public:
test() \{ cout <<"Constructor function called" << endl; \}
\sim test() \{ cout <<"Destructor function called" << endi; \}
\};

C++ Source

void main()

\{
test * k, *; // Declare pointers to class test
test w; // Declare a variable test to investigate constructor functions cout << "At Point 1" << endl;
$\mathrm{j}=$ new test[4]; // Request an array of class objects of size 9 cout << "At Point 2" << endl;
$\mathrm{k}=\left(\right.$ test $\left.{ }^{*}\right)$ malloc(4*sizeof(test) $)$; // Request array
cout << "At Point 3" << endl;
delete[] j; // Give back memory allocated
cout << "At Point 4" << endl;
free(k); // Give back memory allocated
cout << "At Point 5" << endl;
\}
Code List 3.7 Output of Program in Code List 3.6
C++ Output
Constructor function called
At Point 1
Constructor function called
Constructor function called
Constructor function called
Constructor function called
At Point 2At Point 3Destructor function calledDestructor function calledDestructor function calledDestructor function calledAt Point 4

C++ Output

At Point 5

Destructor function called

The program declares a class called test. Two variables k and j are declared as pointers to objects of type test. Upon declaration room is stored in memory for the pointers k and j.

A variable w of type test is created with the statement test w;. This statement illustrates the use of constructor functions in $\mathrm{C}++$. When w is created the constructor function test () is called which results in "Constructor function called" being printed.

The statement $j=$ new test [4]; requests memory for an array of size four for the class test. As a result of using new the constructor function is called four times. After the statement j will point to the first element.

The statement $k=($ test $*)$ malloc $(4 *$ sizeof $($ test $)$); requests memory for an array of size 4 for the class test.

Using malloc, however, will not call the constructor function for the class k. As a result nothing is printed at this point of the program.

The statement delete[] j; gives back the memory requested by the new operator earlier. The brackets [] are used when new is used to declare an array. At this point the destructor function \sim test $($) is called for each element in the array.

The statement $f r e e(k)$ gives back the memory allocated by the malloc request. As with malloc, free will not call the destructor function.

Before the program terminates the variable local to main w will first lose its scope and as a result the destructor function will be called for w.

In C++ new and delete should be used in lieu of malloc and free to ensure the proper calling of constructor and destructor functions for the classes allocated. Notice that new also avoids the use of the sizeof operator which simplifies its use.

$$
\begin{array}{|l|l|}
\hline \text { Previous } & \text { Table of Contents } \\
\hline
\end{array}
$$

Previous	Table of Contents

3.1.3 Arrays

Sequential arrays stored in memory also rely on pointers for index calculations. The array example in Code List 3.8 demonstrates the differences between pointers and arrays for the case of the multidimensional array. The output of the program is shown for two different platforms. Code List 3.9 shows the output of the program for a DOS system while Code List 3.10 shows the output of the program on a Unix system. For this program two different methodologies are used for implementing the storage of four integers. The memory allocation is illustrated in Figure 3.3. The key difference between the implementation of the pointers and the multidimensional array is that the array $a[2][2]$ is not a variable. As a result, operations such as $a=a+1$ are invalid.

Figure 3.3 Memory Organization for Code List 3.8
Someone slightly familiar with C or $\mathrm{C}++$ might be surprised to see that the output indicates that the values of \& a, a, and $* a$ are all equal. While this looks unusual it is correct. The declaration int $a[2][2]$ in C and $\mathrm{C}++$ declares a to be an array of arrays. In this case there are two arrays each containing two
integers. The first array is located at address A4 while the second array is located at the address A5.

- a - returns the starting address of the array of arrays which is given as A4 in Figure 3.3.
- *a-returns the starting address of the first array in the list which is also A4 in Figure 3.3
- $\& a$ - returns the starting address of the array a which is A4. This does not return the address of the element (if there is one) that actually points to a. When you declare an array via int $a[2][2]$ there is no variable which points to the beginning of the array that the programmer can change. The compiler basically ignores the ampersand when the variable is declared as an array. Remember, this is the difference between pointers and arrays. The location where a points to cannot change during the program.

The output for b follows directly the addressing as illustrated in Figure 3.3
Code List 3.8 Array Example

C++ Source Code

```
#include <iostream.h>
// This program demonstrates multidimensional addressing
// in C and C++
void main()
{
int a[2][2];
int **b;
b = new int * [2];
b[0] = new int [2];
b[1] = new int [2];
b[0][0]=1;
b[0][1]=2;
b[1][0]=3;
b[1][1]=4;
a[0][0]=1;
a[0][1]=2;
a[1][0]=3;
a[1][1]=4;
```

cout << "The size of int is " << sizeof(int) \ll endl:

```
cout << "The size of a is " << sizeof(a) << endl;
```

cout << "The size of b is " \ll sizeof(b) \ll endl;
cout << "The value of a is " << a \ll endl;
cout << "The value of *(a) is " << * $\mathrm{a} \ll$ endl;
cout << "The value of \&a is" << \& a \ll endl;

C++ Source Code cout \ll "The value of $* * \mathrm{a}$ is " $\ll * * \mathrm{a} \ll$ endl; cout << "The value of $a+1$ is " << a+1 << endl; cout << "The value of * $(a+1)$ is " << * $(a+1) \ll$ endl; cout \ll "The value of $* *(a+1)$ is " <<** $(a+1) \ll$ endl; cout << "The value of * $\mathrm{a}[1]$ is " << * $\mathrm{a}[1] \ll$ endl; cout \ll "The value of $(* a)[1]$ is " $\ll(* a)[1] \ll$ endl; cout <<"The value of b is " << b << endl; cout << "The value of \&b is " << \& b << endl; cout << "The value of $\mathrm{b}+1$ is " $\ll \mathrm{b}+1 \ll$ endl; cout \ll "The value of *(b) is " << *b \ll endl; cout << "The value of *(b+1) is " << * $(\mathrm{b}+1) \ll$ endl; cout << "The value of $* *(\mathrm{~b}+1)$ is " << ** $(\mathrm{b}+1) \ll$ endl; cout << "The value of **b is " <<**b << endl; cout << "The value of (*b)[1] is " \ll (*b) [1] << end; cout << "The value of *b[1] is " << *b[1] << endl; cout \ll "The value of $b[1][0]$ is " $\ll b[1][0] \ll$ endl;

Code List 3.9 Output of Code in Code List 3.8

C++ Output (DOS)

The size of int is 2
The size of a is 8
The size of b is 2
The value of a is 0 xffee
The value of *(a) is 0xffee
The value of \&a is 0xffee
The value of **a is 1
The value of $a+1$ is $0 x f f f 2$
The value of * $(a+1)$ is $0 x f f f 2$
The value of ${ }^{* *}(a+1)$ is 3
The value of *a[1] is 3

C++ Output (DOS)

The value of $(* a)[1]$ is 2
The value of b is $0 \times 10 f 8$
The value of \&b is $0 x f f e c$
The value of $b+1$ is $0 \times 10 f a$
The value of *(b) is 0×1100
The value of *(b+1) is 0×1108
The value of $* *(b+1)$ is 3
The value of ${ }^{* *}$ b is 1
The value of (*b)[1] is 2
The value of *b[1] is 3
The value of $b[1][0]$ is 3

Code List 3.10 Output of Code in Code List 3.8

C++ Output (UNIX)

The size of int is 4
The size of a is 16
The size of b is 4
The value of a is $0 x f 7 \mathrm{fffb} 80$
The value of *(a) is $0 x f 7 \mathrm{fffb} 80$
The value of \&a is $0 x f 7 \mathrm{fffb} 80$
The value of ${ }^{* *}$ a is 1
The value of $\mathrm{a}+1$ is 0 xf 7 fffb 88
The value of * $(a+1)$ is $0 x f 7 f f f b 88$
The value of ${ }^{* *}(a+1)$ is 3
The value of $* a[1]$ is 3
The value of (*a)[1] is 2
The value of b is $0 \times 1 \mathrm{cba} 0$
The value of \&b is $0 x f 7 \mathrm{fffb} 7 \mathrm{c}$
The value of $b+1$ is $0 \times 1 \mathrm{cba} 4$
The value of *(b) is $0 \times 1 \mathrm{cbb} 0$
The value of *(b+1) is $0 \times 1 \mathrm{cbc} 0$

C++ Output (UNIX)

The value of **(b+1) is 3
The value of $* * \mathrm{~b}$ is 1
The value of $(* b)$ [1] is 2
The value of *b[1] is 3
The value of $b[1][0]$ is 3

3.1.4 Overloading in C++

An example of overloading in $\mathrm{C}++$ is shown in Code List 3.11. The output of the program is shown in

Code List 3.12. This program overloads the operator () which is used to index into a set of characters for a specific data bit. The packing is illustrated in Figure 3.4 for the variable e declared in the program.

\vdots 8 8 8 5

Figure 3.4 Packing Bits in Memory
Code List 3.11 Operator Overloading Example

| C++ Source |
| :--- | :--- |
| // This program demonstrates packing bits in memory |
| // It illustrates the use of operator overloading in C++ |
| \#include <iostream.h> |
| class binary_data |
| I |

C++ Source

unsigned char * data;
public:
int size;
binary_data(int size)
I
data $=$ new unsigned char[size/8+(size\%8?1:0)]:
binary_data::size=size;
int i :
for($\mathrm{i}=0 ; \mathrm{i}<$ size; $\mathrm{i}++$) assign($\mathbf{i}, 0$);
)
~binary_data()
1
delete[] data;
)
int operator() (int index);
void assign(int index,int value);
void print();
I;
void binary_data::print()
I
int i;
for(i=size-1;i>=0;i--) cout \ll (*this)(i);
1
int binary_data::operator() (int index)
I
unsigned char mask=0x1<<index\%8;
return ((((this->data)[index/8])\&mask)?1:0);
I
void binary_data: $:$ assign(int index, int value)
I
if(value) data $[$ index/8]l=value<<index\%8;
else data[index/8] \& = (0x1<<index\%8);

```
C++ Source
void main()
I
binary_data q(4);
binary_data d(9);
binary_data e(37);
q.assign(0,1):
q.assign(2.1):
q.assign(3,1);
q.assign(2,q(1));
d.assign(3,1);
d.assign(4,1);
c.assign(36,1);
e.assign(14,1);
cout << "The value of q is "; q.print(); cout << endl;
cout << "The value of d is "; d.print(); cout << endl;
cout << "The value of e is "; e.print(); cout << endl;
}
```

Code List 3.12 Output of Program in Code List 3.11

C++ Output

The value of q is 1001
The value of d is 000011000
The value of e is 1000000000000000000000100000000000000

3.2 Arrays

This section demonstrates the creation of an array class in C++ using templates. The goal of the program is to demonstrate the implementation of a feature of $\mathrm{C}++$ which is already built in; therefore, the code is for instructive purposes only. The code for a program to create an array class is illustrated in Code List 3.13, The output of the program is shown in Code List 3.14. The array class is declared in the program as a generic class with a type T which is specified later when an array variable is declared. As seen in the main function three arrays are declared: a, b, and c. The array a consists of ten integers. The array b
consists of five doubles. The array c consists of 3 characters. The constructor function for the array initializes all the elements of the array to zero. The function set_data is used to assign a value to a specific element in the array. The function print_data is used to print a specific element in the array.

Code List 3.13 Creating an Array Class in C++

C++ Source

// This program creates a template to create an array.
// C++ supports arrays already so this is for instructive // purposes only \#include <iostream.h> template<class T, int size> class array \{
private:
T data[size]; public:

array(void);

T get_data(int i);
void set_data(int i, T x);

$$
\text { void print_data(char * x, int } i \text {); }
$$

$$
\text { \}; }
$$

// Initialization constructor for array
template<class T, int size> array<T, size>::array(void)
[int i ; for($\mathrm{i}=0 ; \mathrm{i}<$ size; $\mathrm{i}++$) data[i] $=0$; \}
// function to retrieve element i
template<class T, int size>
T array<T,size>::get_data(int i)
1
return data[i];
J
// function to print element i
template<class T, int size>

```
    C++ Source
    void array<T,size>::print_data(char * x, int i)
        |
        cout << x <<"[" << i << "]=" << data[i] << endl;
        }
    // function to assign a value to element i
    template<class T, int size>
    void array<T,size>::set_data(int i,T x)
    {
        data[i]=x;
        |
    void main()
    I
        array<int,10> a;
        array<double,5> b;
        array<char,3> c;
        a.print_data("a",3);
        b.print_data("b",4);
            b.set_data(4,4.7);
            a.set_data(3,10.8);
            a.print_data("a",3);
            b.print_data("b",4);
            c.set_data(2,'n');
            c.print_data("c",2);
}
```

Code List 3.14 Output from Code List 3.13

C++ output

$\mathrm{a}[3]=0$
$\mathrm{b}[4]=0$
$\mathrm{a}[3]=10$

C++ output

$\mathrm{b}[4]=4.7$
$\mathrm{c}[2]=\mathrm{n}$

3.3 Stacks

A stack is a data structure used to store and retrieve data. The stack supports two operations push and pop. The push operation places data on the stack and the pop operation retrieves the data from the stack. The order in which data is retrieved from the stack determines the classification of the stack.

A FIFO (First In First Out) stack retrieves data placed on the stack first. A LIFO (Last In First Out) stack retrieves data placed on the stack last. A LIFO stack push and pop operation is illustrated in Figure 3.5.

Figure 3.5 Push and Pop in a LIFO Stack
The source code to implement a LIFO stack class is shown in Code List 3.15. The output of the program is shown in Code List 3.16. Notice that templates are used again so the type used for the stack is defined at a later point.

C++ Source

// This programs creates a stack class with push and pop operations \#include <iostream.h>
//Define the stack class, set default stack size to 2
// use a template so you can define the type at a later point
template<class T,int size $=2>$
class stack \mid
private: T data[size]:
int stack_ptr;
public:
stack(void):
void push(T x);
T pop();
\}:
// Constructor function to zero elements in stack
// and to initialize data

C++ Source
template<class T, int size>
stack<T,size>:stack(void)
\quad I
int \mathbf{i};
for(i=0;i<size;i++) data[i] $=0 ;$
stack_ptr= $0 ;$

```
C++ Source
    I
// push data onto stack
template<class T, int size>
void stack<T,size>::push(T x)
    {
    if(stack_ptr>=size)
        I
        cout << "Cannot push data: stack full" << endl;
        return;
        }
    data[stack_ptr++]=x;
    cout << "Placed " << x << " on stack" << endl;
    return;
    |
template<class T. int size>
T stack<T,size>::pop()
    I
    if(stack_ptr<=0)
        |
        cout << "Cannot pop data: stack empty" << endl;
        retum data[0];
        }
    cout << "Popped " << data[--stack_ptr] <<" from stack" << endl;
    return data[stack_ptr]:
    }
void main()
    |
// create a stack of integers
    stack<int,10> s;
    s.push(45);
    s.pop();
```

// try to pop an empty stack

C++ Source

s.pop();
s.push(56);
s.push(29);
s.push(31);
s.pop();
s.pop():
// create a stack of doubles
stack<double,2> d;
d.push(4.5);
d.push(5.9);
// try to push on a full stack
d.push(7.2);
d.pop();
d.pop();
// try to pop an empty stack
d.pop();
// declare a stack of characters - use default size
stack<char> c;
char w;
c.push('n');
c.push('l');
// try to push on a full stack
c.push('w');
c.pop();
// grab the stack value
w=c.pop();
cout << "I got that character ** " \ll w \ll
" ** that was popped." << endl;
// try to pop an empty stack

Code List 3.16 Output of Program in Code List 3.15

C++ Output
Placed 45 on stack
Popped 45 from stack
Cannot pop data: stack empty
Placed 56 on stack
Placed 29 on stack
Placed 31 on stack
Popped 31 from stack
Popped 29 from stack
Placed 4.5 on stack
Placed 5.9 on stack
Cannot push data: stack full
Popped 5.9 from stack
Popped 4.5 from stack
Cannot pop data: stack empty
Placed n on stack
Placed 1 on stack
Cannot push data: stack full
Popped I from stack
Popped n from stack
I got that character ** $\mathrm{n} *$ that was popped.
Cannot pop data: stack empty

3.4 Linked Lists

This section presents the linked list data structures. This is one of the most common structures in program design.

> | Previous | Table of Contents |
| :--- | :--- |

Algorithms and Data Structures in C_{++} by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

> Previous Table of Contents Next

3.4.1 Singly Linked Lists

A linked list with four entries is shown in Figure 3.6. As seen in the figure, there is a pointer which points to the head of the list. Each object in the list has associated data and a pointer to the next element in the list. The figure is shown with four objects. The final element contains a NULL pointer. This is common practice to indicate the end of the list. The data in the linked list can be a single element or a large collection of data.

A C++ program to demonstrate the linked list is shown in Code List 3.17. program creates a linked lists of classes. The class template is declared as

```
template <class T>
class list {
private:
```

```
list <T> * next;
```

list <T> * next;
friend class start_list<T>;
friend class start_list<T>;
friend class iterator<T>;

```
friend class iterator<T>;
```

public:

```
T data;
```

\};

In this declaration next is declared as a pointer to the next element in the list. Two classes are declared as friends to the class, start_list and iterator. As a result these classes will have access to the functions and data of the class list. data is declared as public in the class. The data type T is declared later in the program.

The next class declared in the program is start_list which is defined as

```
{
list<T> *start;
friend clas iterator<T>;
public:
start_list(void) { start=0;}
~start_list(void);
void add(T t);
int isMember(T t);
}
```

For this class, a pointer to the start of a list is declared. The constructor function start_list() initializes start to zero when an item of class start_list is declared. The function start_list () is declared inline. The function $a d d$ is used to add elements to the list. The destructor function \sim start_list() is called when data of type start_list lose their scope. The function $\sim \operatorname{start} \operatorname{list}()$ is not declared inline. The function isMember is used to determine if a data element matches an element in any of the members of the linked list. Notice that in the program, start_list is used to instantiate a class of type list. The add function is declared next in the program This function creates an element of type list and appends it to the current list. If the list is empty then the function assigns start to the beginning of the new list.

The isMember function is declared next in the program. The isMember function searches the list and tries to find a match to the data t that is passed. If a match is found the function returns I else the function returns 0 .

The destructor function for the class, \sim start_list, is defined next. The destructor function begins at the start of the list and deletes the lists that are formed making up the entire linked list. The destructor function in turn assigns start to null. This function will be called in the program when any data of type start_list loses scope. This is a very powerful technique of C++. Typically the constructor functions are used to acquire memory upon the creation of a variable and the memory is freed up via the destructor function.

The next class defined is the iterator class. The iterator class is used to traverse the linked list. The iterator class contains a pointer to the start of a list and a cursor to traverse the list. The class contains a function reset which sets the cursor back to the start of the list. The constructor function for the class accepts a parameter which is a pointer to a class of type start_list. The constructor function calls reset to initialize cursor. The function next is used to iterate the list. The function assigns the pointer p to cursor and cursor to cursor->next if cursor is not null.

The program then initiates a number of typedefs which create lists and pointers to list for the data types
of string, double, int, char.
The main() routine creates a number of lists. The first list created, number, is declared with list_double number. This list will contain a list of data elements of type double. Upon the declaration of list_double room for the data has not been allocated and the list pointers have been set to null. The first time room for data is allocated is during the call number.add(4.5). This adds 4.5 to the list. Subsequent calls to number.add() append the data to the list. To access the numbers in the newly formed list a list_double_iterator is declared with list_-double_iterator $x(\&$ number $)$. The list_double_ptr p access the data via calls to the iterator function $x . n e x t()$. The output for the program is shown in Code List 3.18.

Code List 3.17 Linked List Source

C++ Linked List Source Code

// This program creates a template to create a linked list
// of data. A function to add data is provided as well as a

C++ Linked List Source Code
// function to search for a member
\#include <iostream.h>
// This is used to instantiate the data
template<class T>
class list \{
private:
list<T> * next;
friend class start_list<T>;
friend class iterator $<\mathrm{T}>$;
public:
T data;
\};
template<class T>

C++ Linked List Source Code
class start_list
list<T> * start;
friend class iterator $<\mathrm{T}>$;
public:
start_list(void) \{ start=0;\}
~start_list(void);
void add(T t); int isMember(T t);
)
template<class T>
void start_list<T>::add(T t)
1
list<T> ${ }^{*} \mathrm{p}=$ start, ${ }^{*} \mathrm{q}=\mathrm{start},{ }^{*} \mathrm{r}$;
while($\mathrm{p}!=0$) $\{\mathrm{q}=\mathrm{p} ; \mathrm{p}=\mathrm{p}->$ next; \}
$\mathrm{r}=$ new list<T>;
$\mathrm{r}->$ data $=\mathrm{t} ; \mathrm{r}->$ next $=0 ;$
if(start) q->next $=r$; else start=r;
)
// This will not test if the list contains a specific string template<class T>
int start_list<T>::isMember(T t)
\{
list $<\mathrm{T}>{ }^{*} \mathrm{p}=$ start, ${ }^{*} \mathrm{q}=$ start;
while(p!=0)
$\mathrm{q}=\mathrm{p}$;
p=p->next;

C++ Linked List Source Code

return 0;

$$
\text { \} }
$$

template<class $\mathrm{T}>$ start_list<T>::~start_list(void)
1
list<T> * p = start, *q;
while $(\mathrm{p}!=0)$ \{ $\mathrm{q}=\mathrm{p} ; \mathrm{p}=\mathrm{p}->$ next; delete $\mathrm{q} ;$ \}
start $=0$;
\}
template<class T>
class iterator
\{
start_list<T> *1;
list< $>$ * cursor;
public:

> void reset(void) $\{$ cursor=l->start; \} iterator(start_list<T> *li) $$
\{\mathrm{l}=\text { li; reset(); \}}
$$

list<T> *next(void);
\}
template<class $\mathrm{T}>$ list< $>$ * iterator< $>$: :next(void)
\{
list $<\mathrm{T}>$ * $\mathrm{p}=$ cursor;

if(cursor) cursor=cursor->next;

return p;
\}
typedef start_list<char *> list_string;
typedef start_list<double> list_double;
typedef start_list<int> list_int;
C++ Linked List Source Code
typedef start_list<char> list_char;
typedef list<char *> * list_string_ptr;
typedef list<double> * list_double_ptr;
typedef list<int> * list_int_ptr;
typedef list<char> * list_char_ptr;
typedef iterator<char *> list_string_iterator;
typedef iterator<double> list_double_iterator;
typedef iterator<int> list_int_iterator;
typedef iterator<char> list_char_iterator;
void main()1
list_double number;
list_double_ptr p;
list_string str;
list_string_ptr q;
number.add(4.5);
number.add(5.7);
number.add(3.4);
str.add("Hello\n");
str.add("This is a ");

str.add("Test\n");

list_double_iterator \mathbf{x} (\&number);
list_string_iterator y (\&str);
cout << "List: " <<endl;
while((p=x.next())!=0) cout << "Item" << p->data << endl; if(number.isMember(4.5)) cout << "4.5 is in list"<<endl; else cout << " 4.5 is not in list" << end;
if(number.isMember(4.4999)) cout << "4.4999 is in list"<<endl; else cout << "4.4999 is not in list" << endl; cout << endl << "List: " << endl;

C++ Linked List Source Code

while((q=y.next())! $=0$) cout \ll q->data;
\};
head

Figure 3.6 Linked List

Code List 3.18 Output from Code List 3.17
C++ Output
List:
Item 4.5
Item 5.7
Item 3.4
4.5 is in list
4.4999 is not in list

List:

Hello
This is a Test

3.4.2 Circular Lists

A circular list with two entries is shown in Figure 3.7. A circular list contains a pointer from the last object in the list to the first. In a sense, the new list has no beginning or end. The circular list is common in use for storing the most recent data when limited to finite storage. A common technique is to allocate a fixed amount of storage for a particular database and after it fills up to write over the old data by looping back around to the beginning. Obviously, the application is limited to cases where data loss is not critical. An example might be a database used to store the last 20 issues of The Wall Street Journal.

3.4.3 Doubly Linked Lists

A doubly linked list with two elements is shown in Figure 3.8. Doubly linked lists are used to provide bidirectional access to the data in the list. For many searching techniques it might be useful to traverse data from both sides of the list. A good example of this is quicksort which is discussed in Section 3.8.

Figure 3.7 Circular List

Figure 3.8 Doubly Linked List

\section*{| Previous Table of Contents | Next |
| :--- | :--- |}

Copyright © CRC Press LLC

Previous	Table of Contents	Next

3.5 Operations on Linked Lists

There are a number of operations on linked lists that are useful. These operations might be assigned to a class from which different types of linked lists are derived. Some common operations might be

- add_object — to add an object to the linked list
- destroy_object - to destroy an object of the linked list
- find_Object - to find an object in the list
- find_member - to search the whole list for a specific member
- find_last-member - finds the last object in the list which matches the specific member

A number operations including sorting might also be defined for the linked list.

3.5.1 A Linked List Example

This section presents a complete example in C++ which demonstrates the use of linked lists to search for the solution to a particular coffee-house game. The purpose of the game is to eliminate as many pegs as possible on a triangular board by jumping individual pegs. The board used for this example consists of ten slots and nine pegs. The board is numbered and initialized as shown in Figure 3.9. Initially, the nine pegs occupy slots one through nine and slot zero is unoccupied. A peg may jump an adjacent peg (horizontally, or diagonally) into an unoccupied slot. The peg that is jumped is removed from the board. This is similar to capturing a piece by jumping in the game of checkers.

A valid move sequence produced by the program in Code List 3.19 is illustrated in Figure 3.9. The first move in the game is for peg number five to jump over peg number two landing in the empty slot zero. Peg number two is removed from the board and the game continues. The next move is to move peg number seven, jumping over peg number four, and landing in the unoccupied slot two. Peg number four is then removed from the board. The game continues in a similar fashion until there are no more possible moves. At the end of the game in Figure 3.9 three pieces remain on the board: piece number five, piece number six, and piece number eight.

The output of the program is shown in Code List 3.20. The output presents an X if there is a peg remaining at a specific position and a 0 if there is no peg. As seen in the output file at the stage the search is printed out there are three pegs left for each combination. The output is the exhaustive list of all combinations which result in three pegs remaining after six moves. In all cases there are no more additional valid moves. The paths are printed for each solution. Multiple paths give rise to the same final peg distribution for instance
and

$$
[(5,0),(7,2),(9,7),(6,8),(1,6),(0,5)]
$$

both result in 00000XX0X0.
One of the problems with the program is the massive amount of data required to store all valid paths which lead to a fixed peg configuration. Consider the problem of expanding the game to the "real" coffee house game which really consists of 14 pegs initially placed on a triangle. If the program is modified to support the new triangle then it requires too much memory to run on most workstations. As a result if the desired problem is to find one path that is optimal a different approach described in the next section must be taken.
(6)

Figure 3.9 A Particular Game Sequence

3.5.1.1 Bounding a Search Space

In order to minimize the arbitrary expansion of paths for the coffee house game of size 15 the program can be modified to remove any entries in the linked list which duplicate a configuration obtainable via another path. If this approach is taken then only one path will be saved at each point in the iteration for a given intermediate position. This will bound the search space at each iteration and will result in a workable solution. Using a rather unsophisticated argument it is easy to see that the amount of memory is reduced significantly and is realistically bounded. Since each position is represented as a sequence of 15 0 's and X's the maximum number of positions under consideration at any time is 215 . For each position only one path is stored instead of the myriad of paths which result in the same position. This approach is used in Problem 3.6 to find a solution for the coffee house game.

Code List 3.19 Source Code for Game Simulation
C++ Source Code
\#include <iomanip.h>
/* relationship array defining legal movements on triangle */int rship[][3]=\{$\{0,2,5\}$,

$$
\{0,1,3\},
$$

$$
\{2,5,9\},
$$

$$
\{2,4,7\},
$$

$$
\{1,3,6\},
$$

$$
\{1,4,8\},
$$

$$
\{3,1,0\} \text {, }
$$

$$
\{3,4,5\},
$$

$$
\{5,2,0\},
$$

$$
\{5,4,3\},
$$

$$
\{6,3,1\},
$$

$$
\{6,7,8\},
$$

$$
\{7,4,2\},
$$

$$
\{7,8,9\},
$$

$$
\{8,7,6\},
$$

C++ Source Code

\{8,4,1\},
\{9,8,7),
(9,5,2)

\};

\#define pri
\#define printlist
\#define max_level 7
\#define triangle_size 10
\#define testpoint 0
class path
(
public:
int src;
int dest;
path * next;
path * prev;
J;
class instance
I
public:
char config[triangle_size];
path * pa;
int elements;
instance * next;
instance * prev;
J;
class relation
\{
public:
int del;
int from;

C++ Source Code

\};
void path_copy(path * old, path * * pstart)

$$
\{
$$

path *ptemp, *ptemp2;
*pstart=new path;
(*pstart)->src=old->src;
(*pstart)->dest=old->dest;
(*pstart)->next=NULL;
(*pstart)->prev=NULL;
ptemp=old->next;
ptemp2=*pstart;
while(ptemp!=NULL)
\{
ptemp $2->$ next $=$ new path;
ptemp2->next->prev=ptemp2;
ptemp2=ptemp2->next;
ptemp2->src=ptemp->src;
ptemp2->dest=ptemp->dest;
ptemp2->next=NULL;
ptemp=ptemp->next;
)
\}
void path_mem_free(path * list)
I
path * temp, * temp2;
if(list==NULL) return;
temp=list;

```
if(temp==NULL) return;
while(temp->next!=NULL) temp=temp->next;
while(temp->prev!=NULL)
I
temp2=temp;
```


C++ Source Code

temp=temp->prev;
delete temp2;
\}
delete temp;
\}
void struct_mem_free(instance * list)
I
instance * temp, * temp2;
if(list==NULL) return;
temp=list;
while(temp!=NULL)
1
path_mem_free(temp->pa);
temp=temp->next;
\}
temp=list;
while(temp->next!=NULL) temp=temp->next;
while(temp->prev!=NULL)
\{
temp2=temp;
temp=temp->prev;
delete temp2;

delete temp;

void add_to_new(relation * rel,instance * old,instance * * new_l, int node)
1

```
path * temp_path;
instance * temp;
int i;
if(*new_l == NULL)
|
```


C++ Source Code

```
*new_l = new instance;
for(i=0;i<triangle_size;i++)
                                    (*new_l)->config[i]=old->config[i];
(*new_l)->config[node]=1;
(*new_l)->config[rel->del]=0;
(*new_l)->config[rel->from]=0;
(*new_l)->next=NULL;
(*new_l)->prev=NULL;
if(old->pa==NULL)
|
                            (*new_l)->pa = new path;
                            (*new_l)->pa->src=rel->from;
                            (*new_l)->pa->dest=node;
                            (*new_l)->pa->next=NULL;
                            (*new_l)->pa->prev=NULL;
1
else
|
temp_path=temp_path->next;
temp_path->next = new path;
temp_path->next->prev=temp_path;
temp_path=temp_path->next;
temp_path->src=rel->from;
temp_path->dest=node;
temp_path->next=NULL;
1
1
else
1

C++ Source Code
\[
\begin{aligned}
& \text { temp=*new_l; } \\
& \text { while(temp->next!=NULL) temp=temp->next; } \\
& \text { temp->next=new instance; } \\
& \text { for(i=0;i<triangle_size;i++) } \\
& \qquad \text { (temp->next)->config[i]=old->config[i]; } \\
& \text { (temp->next)->config[node]=1; } \\
& \text { (temp->next)->config[rel->del]=0; } \\
& \text { (temp->next)->config[rel->from]=0; } \\
& \text { (temp->next)->next=NULL; } \\
& \text { (temp->next)->prev=temp; } \\
& \text { temp=temp->next; } \\
& \text { if(old->pa==NULL) } \\
& \text { I } \\
& \text { temp->pa = new path; }
\end{aligned}
\]
```

 temp->pa->src=rel->from;
 temp->pa->dest=node;
 temp->pa->next=NULL;
 temp->pa->prev=NULL;
)
else
(
path_copy(old->pa,\&temp_path);
temp->pa=temp_path;
while(temp_path->next!=NULL)
temp_path=temp_path->next;
temp_path->next = new path;
temp_path->next->prev=temp_path;
temp_path=temp_path->next;
temp_path->src=rel->from;
temp_path->dest=node;
temp_path->next=NULL;
}

```

\section*{C++ Source Code}
)
void check_move(relation * rel,instance * old,instance * * new_l,int node)
I
```

while(rel!=NULL)
{
if((old->config[rel->from]==1) \&\&
(old->config[rel->del]==1))
{
add to new(rel.old.new I.node):

```
```

 }
 rel=rel->next;
 }

```
\};
void print_list(instance * list).
\{
    path * pa;
int \(i\);
\#ifdef printlist
    for \((\mathrm{i}=0 ; \mathrm{i}<\) triangle_size; \(i++\) )
    \{
        if(list \(->\) config \([\mathrm{i}]==0\) )
        cout <<"O";
        else cout << "X";
    \};
cout <<"";
\#endif
\[
\mathrm{pa}=\text { list }->\mathrm{pa} ;
\]
cout <<"[";
while(pa!=NULL)
\{
    cout <<"(" << pa->src <<"," << pa->dest <<" ")";

\section*{C++ Source Code}

\section*{pa=pa->next;}
if (pa) cout <<",";
1
cout << "]" << endl;

\section*{void main()}

I
```

int i,node,level;
instance * old_list, * new_list, *tmp_list, *tmp2;
relation * rel[triangle_size], * temp;
int RCNT = sizeof(rship)/(3*sizeof(int));
/* generate data for the initial instance */
old_list = new instance;
for(i=0;i<triangle_size;i++) old_list->config[i]=1;
old_list->config[testpoint]=0;
old_list->elements=14;
old_list->next=NULL;
old_list->prev=NULL;
old_list->pa=NULL;
new_list=NULL;
/*end code for initial instance */
print_list(old_list);
/* code to define relationships */
for(i=0;i<triangle_size;};++) rel[i] = NULL
for(i=0; i< RCNT ;i++)
{
node=rship[i][0];
if (rel[node]==NULL)
|
rel[node]=new relation;
rel[node]->del=rship[i][1];

```

\section*{C++ Source Code}
    1
    else
        \{
        temp = rel[node];
        while(temp->next != NULL) temp = temp->next;
        temp->next \(=\) new relation;
        temp=temp->next;
        temp->next \(=\) NULL;
        temp->del \(=\operatorname{rship}[\mathrm{i}][1]\);
        temp->from=rship[i][2];
        )
    f;/*end for*/
    /* end code to define relationships */
    for(level=0;level<max_level;level++)
    I
    tmp2=old_list;
while(old_list!=NULL) \{
\[
\begin{array}{l}\text { for(i=0;i<triangle_size;i++) } \\ \text { if(old_list->config[i]==0) } \\ \text { /* found candidate for expansion */ } \\ \text { check_move(rel[i],old_list,\&new_list,i); } \\ \text { | /* end for */ } \\ \text { old_list=old_list->next; }\end{array}
\]
I;
/* end do */
struct_mem_free(tmp2);
\#ifdef pri
    tmp_list=new_list;

\section*{C++ Source Code}
\[\)\begin{tabular}{l}
\text { if(level== max_level-2) print_list(tmp_list); } \\
\text { tmp_list=tmp_list->next; }
\end{tabular}
\]
\#endif

old_list=new_list;
new_list=NULL;
3/* end for(level.... */

Code List 3.20 Output of Program in Code List 3.19
C++ OutputOXXXXXXXXX []OOOOOXXOXO [(5,0),(7,2),(0,5),(3,0),(9,2),(0,5)]XOOOOXOOXO [(5,0),(7,2),(0,5),(3,0),(9,7),(6,8)]OOOOOXXOXO [(5,0),(7,2),(0,5),(9,2),(3,0),(0,5)]XOOOOXOOXO [(5,0),(7,2),(0,5),(9,7),(3,0),(6,8)]XOOOOXOOXO [(5,0),(7,2),(0,5),(9,7),(6,8),(3,0)]OOOOOXXOXO [(5,0),(7,2),(0,5),(9,7),(6,8),(1,6)]XOOOOXOOXO [(5,0),(7,2),(9,7),(0,5),(3,0),(6,8)]XOOOOXOOXO [(5,0),(7,2),(9,7),(0,5),(6,8),(3,0)]OOOOOXXOXO [(5,0),(7,2),(9,7),(0,5),(6,8),(1,6)]XOOOOXOOXO [(5,0),(7,2),(9,7),(6,8),(0,5),(3,0)]OOOOOXXOXO [(5,0),(7,2),(9,7),(6,8),(0,5),(1,6)]OOOOOXXOXO [(5,0),(7,2),(9,7),(6,8),(1,6),(0,5)]OXXOOOXOOO [(5,0),(3,5),(9,2),(0,3),(6,1),(8,6)]OXXOOOOOOX [(5,0),(3,5),(9,2),(0,3),(6,1),(7,9)]OXXOOOOOOX [(5,0),(3,5),(9,2),(0,3),(7,9),(6,1)]OXXOOOXOOO [(5,0),(3,5),(9,2),(0,5),(7,9),(9,2)]OXXOOOOOOX [(5,0),(3,5),(9,2),(7,9),(0,3),(6,1)]OXXOOOXOOO [(5,0),(3,5),(9,2),(7,9),(0,5),(9,2)]
\begin{tabular}{|l|}
\hline C++ Output \\
\hline \hline OXXOOOXOOO \([(5,0),(3,5),(0,3),(6,1),(9,2),(8,6)]\) \\
OXXOOOOOOX \([(5,0),(3,5),(0,3),(6,1),(9,2),(7,9)]\) \\
OXXOOOXOOO \([(5,0),(3,5),(0,3),(6,1),(8,6),(9,2)]\) \\
OXXOOOXOOO \([(5,0),(3,5),(0,3),(9,2),(6,1),(8,6)]\) \\
OXXOOOOOOX \([(5,0),(3,5),(0,3),(9,2),(6,1),(7,9)]\) \\
OXXOOOOOOX \([(5,0),(3,5),(0,3),(9,2),(7,9),(6,1)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(0,3),(5,0),(6,1),(0,3)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(0,3),(5,0),(6,8),(9,7)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(0,3),(6,1),(5,0),(0,3)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(0,3),(6,8),(5,0),(9,7)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(0,3),(6,8),(9,7),(5,0)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(0,3),(6,8),(9,7),(2,9)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(6,8),(0,3),(5,0),(9,7)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(6,8),(0,3),(9,7),(5,0)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(6,8),(0,3),(9,7),(2,9)]\) \\
XOOXOOOXOO \([(3,0),(8,1),(6,8),(9,7),(0,3),(5,0)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(6,8),(9,7),(0,3),(2,9)]\) \\
OOOXOOOXOX \([(3,0),(8,1),(6,8),(9,7),(2,9),(0,3)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(6,1),(0,3),(8,6),(6,1)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(6,1),(0,5),(9,2),(8,6)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(6,1),(0,5),(9,2),(7,9)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(6,1),(0,5),(8,6),(9,2)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(6,1),(8,6),(0,3),(6,1)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(6,1),(8,6),(0,5),(9,2)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(0,5),(6,1),(9,2),(8,6)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(0,5),(6,1),(9,2),(7,9)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(0,5),(6,1),(8,6),(9,2)]\) \\
OXXOOOXOOO \([(3,0),(5,3),(0,5),(9,2),(6,1),(8,6)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(0,5),(9,2),(6,1),(7,9)]\) \\
OXXOOOOOOX \([(3,0),(5,3),(0,5),(9,2),(7,9),(6,1)]\) \\
\hline
\end{tabular}

\subsection*{3.6 Linear Search}

A linear search is a search which proceeds in a linear fashion through a list.
The \(\mathrm{C}++\) code to perform a linear search on strings is shown in Code List 3.21. The output of the

\section*{Code List 3.21 Linear Search Code for Strings}
```

C++ Source Code
\#include <stdlib.h>
\#include <iostream.h>
\#include <string.h>
// Initialize the array Note that array must be sorted
char array[][10] = ["Datal", "Data2", "Data3","Data4", "Data5", "Data6",
"Data7", "Data8"};

```
// function used by bsearch to compare data
int compare(const void * i , const void * j )
I
cout \(\ll\left(\right.\) char \(\left.^{*}\right) \mathrm{i} \ll\) " is compared to ";
cout \(\ll(\) char *) \(\mathrm{j} \ll\) endl;
return(stremp((char *) i,(char *) j));
\}
int find(char * key)
1
int * ptr;
size_t number_elements=8;
\(\mathrm{ptr}=(\) int *) lfind(key,(void *) array,_\&number_elements,10,compare);
return(ptr!=NULL);
\}
void main(void)
I
if(find("Datal")) cout << "Datal is in list" << endl;

\section*{C++ Source Code}
else cout << "Datal is not in list" \ll endl;
if(find("Data12")) cout << "Data12 is in list" << endl;
else cout << "Data12 is not in list" << endl;
\}

Code List 3.22 Output of Program in Code List 3.21

C++ Output
Datal is compared to Datal
Datal is in list
Data12 is compared to Data1
Data12 is compared to Data2
Data12 is compared to Data3
Data12 is compared to Data4
Data12 is compared to Data5
Data12 is compared to Data6
Data12 is compared to Data7
Data12 is compared to Data8
Data12 is not in list

\subsection*{3.7 Binary Search}

The binary search is used in a sorted array to search for an element. The search consists of comparing against the middle of the list and proceeding to search the higher or lower sublist in a recursive fashion.

A binary search is shown in C++ in Code List 3.23. The output is shown in Code List 3.24. A binary search for strings is illustrated in Code List 3.25. The output of the program is shown in Code List 3.25.

Code List 3.23 Binary Search for Integers

\section*{C++ Source Code}
\#include <stdlib.h>
\#include <iostream.h>

\section*{C++ Source Code}
// Initialize the array
int array []\(=\{100,200,50,80,90,600\} ;\)
// function used by bsearch to compare data int compare(const void * i, const void * j)
\{ return(*(int *) i- *(int *) j); )
int find(int key) \{ int * ptr; ptr = (int *) bsearch(\&key,array,6,sizeof(int),compare); return(ptr!=NULL);
\}
void main(void) \{
if(find(80)) cout << " 80 is in list" << endl; else cout << "80 is not in list" << endl;
if(find(81)) cout << "81 is in list" << endl; else cout << " 81 is not in list" << endl;

\section*{Code List 3.24 Output of Program in Code List 3.23}

\section*{C++ Output}

80 is in list 81 is not in list

\section*{\begin{tabular}{|l|l|}
\hline Previous & Table of Contents \\
\hline
\end{tabular}}


Algorithms and Data Structures in \(\mathrm{C}_{++}\) by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93


\subsection*{3.8 QuickSort}

The quick sort algorithm is a simple yet quick algorithm to sort a list. The algorithm is comprised of a number of stages. At each stage a key is chosen.

\section*{Code List 3.25 Binary Search for Strings}

\section*{C++ Source Code}
\#include <stdlib.h>
\#include <iostream.h>
\#include <string.h>
// Initialize the array Note that array must be sorted
char array[][10] = ["Datal", "Data2", "Data3","Data4", "Data5", "Data6", "Data7", "Data8"\};
// function used by bsearch to compare data
int compare(const void * \(i\), const void * j)
I
cout \(\ll\) (char *) \(\mathrm{i} \ll\) " is compared to ";
cout \(\ll(\) char *) \(\mathrm{j} \ll\) endl;
return(strcmp((char *) i,(char *) j));
I
```

int find(char * key)

```
\{
int * ptr;
ptr \(=\left(\right.\) int \(\left.^{*}\right)\) bsearch(key,(void *) array,8,10,compare):
return(ptr!=NULL);
I
```

void main(void)

```
1
if(find("Datal")) cout << "Datal is in list" << endl;
    else cout << "Data1 is not in list" << endl;
if(find("Data12")) cout << "Data12 is in list" <<endl;
    else cout <<"Data12 is not in list" << endl;
I

The algorithm starts at the left of the list until an element is found which is greater than the key. Starting from the right, an element is searched for which is less than the key. When both the elements are found they are exchanged. After a number of iterations the list will be divided into two lists. One list will have all its elements less than or equal to the key and the other list will have all its elements greater than or equal to the key. The two lists created are then each sorted by the same algorithm.

Code List 3.26 Output of Program in Code List 3.25

\section*{C++ Output}

Datal is compared to Data5
Data1 is compared to Data3
Data1 is compared to Data2
Datal is compared to Datal
Data1 is in list
Data12 is compared to Data5
Data12 is compared to Data7

\section*{Data12 is compared to Data6}

\section*{Data12 is not in list}

The internal details of a quicksort algorithm are shown in the C++ program in Code List 3.27. The output of the program is shown in Code List 3.28.

A number of different approaches can be used to determine the key. The quicksort algorithm in this section uses the median of three approach. In this approach a key is chosen for each search segment.

The key is given as the median of three on the bounds of the segment. For instance, in Code List 3.28, the initial segment to sort contains 18 elements, indexed \(0-17\). The first key is determined by the calculation
\[
\begin{align*}
& k e y=\left\lfloor\frac{(x[0]+x[8]+x[17])}{3}\right\rfloor \\
= & \left\lfloor\frac{(300+455+12)}{3}\right\rfloor=\left\lfloor\frac{767}{3}\right\rfloor=255 \tag{3.1}
\end{align*}
\]

After the comparisons two lists are formed. In this case the lists are \(0-8\) and \(9-17\). Every element in the first list will be less than or equal to the key 255 and everything in the second list will be greater than or equal to 255 . The two new lists can be sorted in parallel. This example is sequential code so that the second list 9-17 is dealt with first.

The comparisons occurring within the first list is illustrated in Code List 3.29. Two comparisons can be done in parallel. Starting from the left a search is made for the first element greater than 255. In this case the first element satisfies that criteria.

Starting from the right a search is made for the first element that is less than 255. In this case it is the last element. At this point the two elements are exchanged in the list which results in the second list in Code List 3.29. Continuing in this manner proceeding from the left the next element in the list is searched for which is greater than 255 . In this case it is the third element in the list, 415 . Proceeding from the right the first element less than 255 found is 100 . Again, 100 and 415 are exchanged resulting in the third list. Eventually the two left and right pointers overlap indicating that the list has been successfully sorted about the key.

C++ also provides a quicksort operator which performs the median of three sort. This is illustrated for strings is illustrated in Code List 3.34. The output of the program is shown in Code List 3.35 A quicksort C++ program for doubles is shown in Code List 3.30 The output is shown in Code List 3.31. A quicksort program for integers is shown in Code List 3.32. The output is shown in Code List 3.33.

\section*{Code List 3.27 QuickSort C++ Program}

\section*{C++ Source Code}
\#include <iostream.h>

\section*{// Data for the sort algorithm} int data[] \(=\{300,200,415,406,433,89,42,767\), \(455,321,309,1045,114,87,-6,89,100,12\} ;\)
// This is the class for the subsets of the data to be sorted class subset

\section*{\{}
public:
int left;
int right;
subset * next;
\};
```

C++ Source Code
// The primary class
class array
I
subset * list;
public:
void print_data();
int get_key(subset * list);
void print_key(subset * list);
void exchange(int i, int j);
void compare(int *i, int *j, int k);
void quick_sort();
array(0 (list = new subset;
list->left=0;
list->right=sizeof(data)/sizeof(int)-1;
list->next=NULL;
|
|;
// This functions prints the value of the data
void array::print_data()
|
int i;
for(i=0;i<sizeof(data)/sizeof(int);i++) cout << data[i] << " "';
cout << endl;
|

```
// This returns the key for the first bounds in the list int array::get_key(subset * list)

1
return (data[list->left]+data[list->right]+ data[(list->left+list->right)/2])/3;

\section*{C++ Source Code}
// This prints the value of the key for the pointer passed void array::print_key(subset * list)

1
cout << "Present key =" << get_key(list) << endl; )
void array::exchange(int i, int j )
\[
1
\]
int tmp;
\[
\operatorname{tmp}=\text { data }[i] ;
\]
data[i]=data[j];
data[j]=tmp;
\[
1
\]
// This routine compares data within the bounds to the key k // This routine performs at most one exchange void array::compare(int *i,int *j, int k)

1
int \(\mathrm{m}={ }^{*} \mathrm{i}, \mathrm{n}={ }^{*} \mathrm{j}\);
for \((; \mathrm{m}<\mathrm{j} ; \mathrm{m}++)\) if(data \([\mathrm{m}]>\mathrm{k})\) break;
for \((: n>* i ; n--)\) if(data[n]<k) break;
if( \(m<n\) ) exchange( \(m, n\) );
* \(\mathrm{i}=\mathrm{m}\);
*j=n;
\}
void array::quick_sort()
1

\section*{C++ Source Code}
while(list!=NULL)
1
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\);
subset * tmp=list->next;
subset * newl;
\(\mathrm{i}=\) list->left;
\(j=\) list \(->\) right;
\(\mathbf{k}=\mathrm{get}\) _key(list);
cout \(\ll\) endl \(\ll\) "Working on list " \(\ll \mathrm{i} \ll\) " ** \(\ll \mathrm{j} \ll\) endl;
print_key(list);
print_data():
while(i<j) compare(\&i,\&j,k);
if(list->left < j)
1
cout << "create new list " << list->left
\(\ll \omega * \ll \mathrm{j} \ll\) end!;
newl = new subset;
newl->left = list \(->\) left:
newl->right \(=\mathbf{j}\);
newl->next=tmp;
tmp=newl:
|
if(list->right > i)
1
cout \(\lll\) "create new list " \(\ll\) i
\(\ll * * *<\) list->right << endl;
newl \(=\) new subset;
newl->left \(=\mathrm{i}\);
newl->right \(=\) list \(->\) right;


Code List 3.28 Output of Program in Code List 3.27

\section*{C++ Output}

Working on list 017
Present key \(=255\)
\(3002004154064338942767455321309104511487-68910012\) create new list 08 create new list 917
\(1220010089-68942871143213091045455767433406415300\)

Working on list 917
Present key \(=462\)
\(1220010089-68942871143213091045455767433406415300\)
create new list 915
create new list 1617
\(1220010089-68942871143213093004554154334067671045\)

\section*{C++ Output}

Working on list 1617
Present key \(=859\)
\(1220010089-68942871143213093004554154334067671045\)
\(1220010089-68942871143213093004554154334067671045\)

Working on list 915
Present key \(=394\)
\(1220010089-68942871143213093004554154334067671045\)
create new list 911
create new list 1215
\(1220010089-68942871143213093004554154334067671045\)

Working on list 1215
Present key \(=425\)
\(1220010089-68942871143213093004554154334067671045\)
create new list 1213
create new list 1415
\(1220010089-68942871143213093004064154334557671045\)

Working on list 1415
Present key \(=440\)
\(1220010089-68942871143213093004064154334557671045\)
\(1220010089-68942871143213093004064154334557671045\)

Working on list 1213
Present key \(=409\)
\(1220010089-68942871143213093004064154334557671045\)
\(1220010089-68942871143213093004064154334557671045\)

Working on list 911
Present key \(=310\)

\section*{C++ Output}
\(1220010089-68942871143213093004064154334557671045\)
create new list 910
\(1220010089-68942871143003093214064154334557671045\)

Working on list 910
Present key = 303
\(1220010089-68942871143003093214064154334557671045\)
\(1220010089-68942871143003093214064154334557671045\)

Working on list 08
Present key \(=40\)
\(1220010089-68942871143003093214064154334557671045\)
create new list 01
create new list 28
\(12-6100892008942871143003093214064154334557671045\)

Working on list 28
Present key \(=101\)
\(12-6100892008942871143003093214064154334557671045\) create new list 26 create new list 78
\(12-6100898789422001143003093214064154334557671045\)

Working on list 78
Present key \(=171\)
\(12-6100898789422001143003093214064154334557671045\) \(12-6100898789421142003003093214064154334557671045\)

Working on list 26
Present key \(=76\)
\(12-6100898789421142003003093214064154334557671045\) create new list 36

\section*{C++ Output}
\(12-6428987891001142003003093214064154334557671045\)

Working on list 36
Present key \(=92\)
\(12-6428987891001142003003093214064154334557671045\) create new list 35
\(12-6428987891001142003003093214064154334557671045\)

Working on list 35
Present key \(=88\)
\(12-6428987891001142003003093214064154334557671045\) create new list 45
\(12-6428789891001142003003093214064154334557671045\)

Working on list 45
Present key \(=89\)
\(12-6428789891001142003003093214064154334557671045\)
\(12-6428789891001142003003093214064154334557671045\)

Working on list 01
Present key \(=6\)
\(12-6428789891001142003003093214064154334557671045\)
\(-612428789891001142003003093214064154334557671045\)

Code List 3.29 QuickSort Comparison

\section*{Comparisons on First List 0-17}

Working on list 017
Present key \(=255\)
\(3002004154064338942767455321309104511487-68910012\) \(122004154064338942767455321309104511487-689100300\) \(122001004064338942767455321309104511487-689415300\)
```

Comparisons on First List 0-17
122001008943389427674553213091045114 87-6406415300
12200100 89-68942767455 321 309104511487433406415300
1220010089-6894287455321 3091045114767433406415300
1220010089-68942871143213091045455767433406415300

```

Code List 3.30 QuickSort For Double Types

\section*{C++ Source Code}
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include <iostream.h>
int user_sort(const void *a, const void *b);
double age[]=\{45.0,25.5,12,29,37,37,41.1\};
void main()
```

{
int i;
qsort((void *)age,7,sizeof(double),user_sort);
for(i=0;i<7;i++) cout << age[i] <<endl;
}

```
int user_sort(const void *a, const void *b)
    I
if( *(double *) a * (double *)b) return -1 ;
if( \({ }^{*}\left(\right.\) double \(\left.{ }^{*}\right) \mathrm{a}>{ }^{*}\left(\right.\) double \(\left.\left.{ }^{*}\right) \mathrm{b}\right)\) return 1 ;
return 0;

Code List 3.31 Output for Program in Code List 3.30

\section*{C++ Output}

12
25.5


Code List 3.32 QuickSort Program for Integers
```

C++ Source Code
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include <iostream.h>
int user_sort(const void *a, const void *b);
int age[]={4,14,7,34,23,26,43};
void main()
{
int i;
qsort((void *)age,7,sizeof(int),user_sort);
for(i=0;i<7;i++) cout << age[i] <<endl;
}
int user_sort(const void *a, const void *b)
{
return(*(int *)a - *(int *)b);
|

```

Code List 3.33 Output for Program in Code List 3.32

\section*{C++ Output}

4
7
14

\section*{C++ Output}

\section*{Code List 3.34 QuickSort Program}
```

C++ Source Code
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include <iostream.h>
int user_sort(const void *a, const void *b);
char names[][10]={"Jones","Gaede","Wells","Nichols"};
void main()
{
int i;
qsort((void *)names,4,10,user_sort);
for(i=0;i<4;i++) cout << names[i] <<endl;
}
int user_sort(const void *a, const void *b)
{
return(strcmp((char *)a,(char *)b));
}

```

Code List 3.35 Output of Program in Code List 3.34

\section*{C++ Output}

\section*{Gaede}

\section*{Jones}

Nichols
Wells

\subsection*{3.9 Binary Trees}

A binary tree is a common data structure used in algorithms. A typical class supporting a binary tree is
```

class tree
{
public:
int key;
tree * left;
tree * right;

```
\}

A binary tree is balanced if for every node in the tree the height of the left and right subtrees are within one.

\subsection*{3.9.1 Traversing the Tree}

There are a number of algorithms for traversing a binary tree given a pointer to the root of the tree. The most common strategies are preorder, inorder, and postorder. The preorder strategy visits the root prior to visiting the left and right subtrees. The inorder strategy visits the left subtree, the root, and the right subtree. The postorder strategy visits the left subtree, the right subtree, followed by the root. These strategies are recursively invoked.

\subsection*{3.10 Hashing}

Hashing is a technique in searching which is commonly used by a compiler to keep track of variable names; however, there are many other useful applications which use this approach. The idea is to use a
hash function, \(h(E)\), on elements, \(E\), to assist in locating an element. For instance a dictionary might be defined using an array of twenty six pointers, \(D\) [26]. Each pointer points to a linked list of data for the specific letter of the alphabet. The hashing function on the string simply returns the number of the letter of the alphabet minus one of the first characters in the string:
\[
\begin{equation*}
h(a c e)=0 \quad h(z e b r a)=25 \tag{3.2}
\end{equation*}
\]

There are two major operations which need to be supported for the hash table created:
- search for an element
- search for an element and insert the element if not found
- indicate if the hash table is full

The idea of hashing is to simplify the search process so the hashing function should be simple to calculate. Additionally, there should be a simple way to locate the data, referred to as resolving collisions, once the hash function is evaluated.

\subsection*{3.11 Simulated Annealing}

The simulated annealing algorithm is illustrated in Figure 3.10. The goal of simulated annealing is to attempt to find an optimum to a large-scale problem which typically cannot be found by conventional means. The solution is sought by iterating and evaluating a cost at each stage. The algorithm maintains a concept of a temperature. When the temperature is high the algorithm will be likely to accept a higher cost solution. When the temperature is very low the algorithm will almost always only accept solutions of lower cost. The temperature begins high and is cooled until an equilibrium is reached. By allowing the initial temperature to be high the algorithm will be allowed to "climb hills" to seek a global optimum. Without this feature it is possible to be trapped in a local minimum. This is illustrated in Figure 3.12. By allowing the function to move to a higher value it is able to climb over the hill and find the global minimum.

Simulated annealing is applied to the square packing problem described in the next section. This illustrates the difficulty and complexity of searching in general problems.
Previous Table of Contents Next
\begin{tabular}{|l|l|}
\hline Previous Table of Contents & Next \\
\hline
\end{tabular}

\subsection*{3.11.1 The Square Packing Problem}

The square packing problem is as follows:
Given a list of squares (integer sides) determine the smallest square which includes the list of squares in a nonoverlapping manner.

A given instance for the square packing problem is shown in Figure 3.11. For this figure the list of squares provided have sides
\[
1,1,1,1,1,2,3,3,3,3,6
\]

An optimal solution as shown in the figure packs the squares into a 9 x 9 square. A \(\mathrm{C}++\) source program implementing the simulated annealing algorithm for the square packing problem is shown in Code List 3.36. The output of the program is shown in Code List 3.37.

\subsection*{3.11.1.1 Program Description}

This section describes the program. The description begins with the start of the file and proceeds forward.

The program includes a number of files to support the functions in the program. Of importance here is the inclusion of <sys/time.h>. This is machine dependent. This program may have to be modified to run on different platforms. At issue is the conformance to drand48() and associated functions as well as the time structure format.

The function \(\operatorname{drand} 48\) () returns a double random number satisfying
\[
0 \leq \text { drand } 48<1
\]
srand48() is used to seed the random number generator. The defined constants are shown in Table 3.1.
Table 3.1 Program Constants
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Constant } & \multicolumn{1}{c|}{ Meaning } \\
\hline NO_SQUARES & The number of squares in the problem \\
\hline \hline SQUARE-SIZE-LIMIT & \begin{tabular}{l} 
The maximum size of the square. The squares that are \\
generated will have sides from 1 to SQUARE_SIZE_LIMIT. \\
This is used when the initial linked list is generated with \\
random square sides.
\end{tabular} \\
\hline INITIAL_TEMPERATURE & The initial temperature in the simulated annealing process.
\end{tabular}
\begin{tabular}{|c|l|}
\hline \hline \multicolumn{1}{|c}{ R } & \begin{tabular}{l} 
The temperature cooling ratio. The temperature is cooled by \\
this factor each time NO_STEPS have been performed.
\end{tabular} \\
\hline NO_ITERATIONS & \begin{tabular}{l} 
The number of times to cool. This is the number of times the \\
temperature is reduced by a factor of R.
\end{tabular} \\
\hline NO_STEPS & \begin{tabular}{l} 
This is the number of steps in the algorithm to perform at the \\
fixed temperature.
\end{tabular} \\
\hline PLUS & \begin{tabular}{l} 
This is the representation for the PLUS operator which is \\
used to represent when blocks are placed on top of each \\
other.
\end{tabular} \\
\hline \hline TIMES & \begin{tabular}{l} 
This is the representation for the TIMES operator which is \\
used to represent when blocks are placed next to each other.
\end{tabular} \\
\hline TEST & \begin{tabular}{l} 
When this is defined the test data, for which the optimal \\
solution is known, is used.
\end{tabular} \\
\hline
\end{tabular}

The representation used in the program for placing the squares is a stacked base approach. Squares placed on top of each other are noted with a + . Squares placed next to each other are noted with a *.

The notation \(12 *\) means square 2 to the right of 1 . The notation \(12+\) means square 1 on top of 2 . The notation is unraveled in a stack base manner so to evaluate the meaning of \(0123 * 4+*+\) you push each of the elements on the stack and when you encounter an operation you remove two elements from the stack and replace it with the modified element. The array results in the operation in Table 3.2:

Table 3.2 Interpreting Representation
\begin{tabular}{|l|l|}
\hline Representation & Meaning \\
\hline \(0123^{*} 4+{ }^{*}+\) & Original Array \\
\hline \(0154+{ }^{*}+\) & Block 5 created which is composed of block 2 next to 3 \\
\hline \(016^{*+}\) & Block 6 created which is composed of block 5 on top of 4 \\
\hline \(07+\) & Block 7 created which is block 1 next to 6 \\
\hline 8 & Block 8 created which is block 0 on top of 7 \\
\hline
\end{tabular}

A possible notation, for instance, for Figure 3.11, is
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & + & \(*\) & 5 & + & 6 & + & 8 & 9 & \(*\) & 10 & \(*\) & + & 3 & 4 & \(*\) & 7 & + & \(*\) \\
\hline
\end{tabular}

This would represent the square packed into the 9 x 9 square. Notice that each of the blocks above contain a number or an operation. The program elects to define the + operation as the number NO_SQUARES and the TIMES operation as the NO_SQUARES+1. As a result the valid representations will be the numbers 0-12.

Two stacks are defined in the program, one to store the current x width of a box and the current y width. This is needed because when you combine squares of different sizes you end up with a rectangle. If you combine a \(1 \times 1\) with a \(2 \times 2\) you will end up with a \(3 \times 2\) or a \(2 \times 3\).

The test data is initially stored as
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \(*\) & + & \(*\) & + & \(*\) & + & \(*\) & + & \(*\) \\
\hline
\end{tabular}

\author{
Previous Table of Contents Next
}

Copyright © CRC Press LLC
\begin{tabular}{|l|l|}
\hline Previous & Table of Contents \\
\hline
\end{tabular}

The program starts with the array and perturbs it by replacing it with a neighboring array and evaluating the cost of the string. The calculate_cost() function calculates the cost of a given array.

To calculate a neighboring array the algorithm selects a random strategy. This is a required aspect to simulated annealing. The neighboring strategy must be random. The strategy is described in Table 3.3.

Table 3.3 Neighbor Solution Strategy
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Operation } & \multicolumn{1}{c|}{ Description } \\
\hline \hline\(A \_o p \_t o \_o p \_A()\) & \begin{tabular}{l} 
Swap an operation with an element. For instance replace \(10+\) \\
with + 10.
\end{tabular} \\
\hline\(o p_{-} A \_t o \_A \_o p()\) & \begin{tabular}{l} 
Swap an operation with an element. For instance replace + 10 \\
with \(10+\).
\end{tabular} \\
\hline\(A B_{-} t o \_B A\) & Exhange two elements. For instance replace \(45+\) to \(54+\). \\
\hline switch_op() & \begin{tabular}{l} 
switch two operators in the sequence. For instance replace 45 \\
\(*+\) with \(45+*\).
\end{tabular} \\
\hline\(A B C_{-} o p \_t o \_A B \_o p \_C()\) & \begin{tabular}{l} 
replace a sequence of three elements followed by an \\
operation to two elements followed by the operation followed \\
by the last element. For instance replace \(2435+6\) with 24 \\
\(3+56\). \\
Notice this is similar to A_op_to_op_A().
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

There are certain representations which are not valid that are handled by the program. For instance
\[
34 * 5+
\]
cannot be replaced with
\[
3 * 45+
\]
because you need two elements for each operation you run into. In general at any point in the array the number of elements to that point must exceed the number of operations to that point by 1 . The program ensures that only valid perturbations are considered.

The output of the program is shown in Code List 3.37. The program found an optimal solution. Since the program is a random program it may not find the optimal solution each time. The program also doesn't output the square number but rather the size of the size. This increases the readability of the solution. The solution to the problem is not unique.

Code List 3.36 Simulated Annealing
```

C++ Source Code
\#include <math.h>
\#include <stdlib.h>
\#include <sys/time.h>
\#include <iostream.h>
extern double drand480;
extern long Irand48(/*long*/);
exterm int rand();
extern void srand48(long seedval);
\#define NO_SQUARES 11
\#define SQUARE_SIZE_LIMIT 6
\#define INITIAL_TEMPERATURE 70.0
\#define R 0.8
\#define NO_ITERATIONS 20
\#define NO_STEPS 10000
\#define PLUS NO_SQUARES
\#define TIMES NO_SQUARES+1
\#define TRUE 1
\#define FALSE 0
\#define TEST
int op[2*NO_SQUARES-1];

```

\section*{C++ Source Code}
int present_op[2*NO_SQUARES-1];
int data[NO_SQUARES];
```

C++ Source Code
int stack_x[NO_SQUARES], stack_y[NO_SQUARES];
int stack_pointer;
int x0_val, y0_val;
int x1_val, y1_val;
\#fdef TEST
int test_set[NO_SQUARES]={1,1,1,1,1,2,3,3,3,3,6};

```

\section*{C++ Source Code}
\#endif
// list structure passed to progam
class square_list \{
    public:
    int side;
    square_list * next;
\};
void get_list_start(square_list * * list)
\{
int i ;
struct square_list * build_list, * list_start;
build_list=new square_list;
list_start = build_list;
for(i=0;i<NO_SQUARES;i++)

\section*{C++ Source Code}

\section*{\#ifndef TEST}
build_list->side \(=(\operatorname{lrand} 48() \gg 4) \%\left(S Q U A R E \_S I Z E \_L I M I T\right)+1 ;\)

\section*{\#endif}
\#ifdef TEST
ound_nst->side \(=\) test_setı1];

\section*{\#endif}
build_list->next = new square_list;
build_list=build_list->next;
\}

\section*{\#ifndef TEST}
build_list->side \(=\) rand ()\(\%(\) SQUARE_SIZE_LIMIT \()+1\);
\#endif
build_list->next = NULL;
*list = list_start;
J
/***********************************************************/
/* create initial operation array */
/* operations are alternately chosen PLUS and TIMES */
void create_operation_array()
'
int \(\mathrm{i}, \mathrm{j}\);
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{NO}\) _SQUARES; \(\mathrm{i}++\) ) op[ i\(]=\mathrm{i}\);
for \((\mathrm{j}=0 ; \mathrm{j}<\mathrm{NO}\) _SQUARES; \(\mathrm{j}++\) ) op \([\mathrm{i}++\mathrm{]}=\) PLUS \(+\mathrm{i} \% 2\);
\}

/* remove data from stack */
void pop()
\{
stack_pointer- -;

\section*{C++ Source Code}
\[
\begin{aligned}
& \text { y1_val=y0_val; } \\
& \text { x0_val=stack_x[stack_pointer]; } \\
& \text { y0_val=stack_y[stack_pointer]; }
\end{aligned}
\]
\}
/**********************************************************/
/* push data on to stack */
void push(int x , int y )
I
stack_x[stack_pointer]=x;
stack_y[stack_pointer]=y;
stack_pointer++;
\}
/*********************************************************/
/* pieces side by side */
void merge_times()
\{
if(y0_val <= y1_val) y0_val = y1_val;
x0_val += x1_val;
\}
/*********************************************************/
/* pieces on top of each other */
void merge_plus()
I
if(x0_val <= x1_val) x0_val = x1_val;
y0_val += y1_val;
\}

/* calculate the cost of op array */
int calculate_cost()
I
int i ;
```

C++ Source Code
stack_pointer=0;
for(i=0;i<2*NO_SQUARES-1;i++)
I
switch(op[i])
{
case PLUS:
pop();
pop();
merge_plus();
push(x0_val,y0_val);
break;
case TIMES:
pop0;
pop();
merge_times(;
push(x0_val,y0_val);
break;
/* data */
default:
push(data[op[i]],data[op[i]]);
break;
I
}
pop();
if(x0_val>=y0_val) return(x0_val*x0_val);
else return(y0_val*y0_val);
}
//**/

```
// function to determine if an item is data or an operation */ int is_data(int x)

\section*{C++ Source Code}
if( \((\mathrm{op}[\mathrm{x}]!=\) TIMES \() \& \&(\mathrm{op}[\mathrm{x}]!=\) PLUS \())\) return(TRUE); else return(FALSE);
\}
\(/ /{ }^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / ~}\)
// neighbor solution calculations */
void switch_op()
i
int i,j,k,loc;
\[
\mathrm{k}=-1 \text {; }
\]
/* choose random operator */
\(\mathrm{j}=\operatorname{lrand48()\% (NO\_ SQUARES-1);~}\)
```

/* search for location */
for(i=0;i<2*NO_SQUARES-1;i++)
{
if((op[i]==PLUS)|(op[i]==TIMES))
I
k++;
if(k==j) loc=i;
}
}

```
```

// swap */
if(op[loc]==PLUS) op[loc]=TIMES;
else op[loc]=PLUS;

```
\}

/* neighbor solution calculations */
void ABC_op_to_AB_op_C()

\section*{C++ Source Code}
```

int i,j,k,temp;
k=0;
for(i=0;i<2*NO_SQUARES-4;i++)
if((is_data(i))\&\&(is_data(i+1))\&\&(is_data(i+2))
\&\&(!is_data(i+3))) k++;
if(k==0) return;
j=lrand480%k;
k=0;
for(i=0;i<2*NO_SQUARES-4;i++)
if((is_data(i))\&\&(is_data(i+1))\&\&(is_data(i+2))
\&\&(!is_data(i+3))\&\&(k++==j))
I
temp=op[i+2];
op[i+2]=op[i+3];
op[i+3]=temp;
return;
}

```
/* neighbor solution calculations */
void on \(A\) to \(A\) on)

```

int i,j,k,temp;
k=0;
for(i=0;i<2*NO_SQUARES-2;i++)
if((!is_data(i))\&\&(is_data(i+1))) k++;
if(k==0) return;
j=Irand48()%k;
k=0;
for(i=0;i<2*NO_SQUARES-2;i++)
if((!is_data(i))\&\&(is_data(i+1))\&\&(k++==j))

```

\section*{C++ Source Code}
\(\square\)
            temp=op[i];
            \(\mathrm{op}[\mathrm{i}]=\mathrm{op}[\mathrm{i}+1]\);
            op[i+1]=temp;
            return;
    ।
I

/* neighbor solution calculations */
void A_op_to_op_A()
I
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\), temp;
int operations \(=0\);
int data_item \(=0\);
\(\mathrm{k}=0\);
for( \(\mathrm{i}=0 ; \mathrm{i}<2 *\) NO_SQUARES-3; \(\mathrm{i}++\) )
\{
if(is data(i)) data item++: else onerations++:
if((is_data(i))\&\&(!is_data(i+1))
\&\&(data_item>=(operations +3 ))) \(\mathrm{k}++\);
)
if( \(k==0\) ) return;
\(\mathrm{j}=\) Irand 48 () \% k ;
\(\mathrm{k}=0\);
data_item \(=0\);
operations \(=0\);
for(i=0;i<2*NO_SQUARES-3;i++) \{
if(is_data(i)) data_item++; else operations++;
if((is_data(i))\&\&(!is_data(i+1)) \(\& \&(\) data_item \(>=(\) operations +3\()) \& \&(\mathrm{k}++==\mathrm{j}))\)
\(\{\)

\section*{C++ Source Code}
temp=op[i];
op[i]=op[i+1];
op[i+1]=temp;
return;
\}
)
I

/* neighbor solution calculations */
void AB_to_BA()
1

\author{
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{m}, \mathrm{n}\);
}
int K1,temp;
\(\mathrm{i}=\) Irand48()\%NO_SQUARES;
\(\mathrm{j}=\) Irand48()\%NO_SQUARES;
while( \(\mathrm{i}==\mathrm{j}\) ) \(\mathrm{i}=\) lrand48()\%NO_SQUARES;
\[
\mathrm{k} 1=0 ;
\]
for \((\mathrm{k}=0 ; \mathrm{k}<2\) *NO_SQUARES \(-1 ; \mathrm{k}++\) )
\(\{\)
```

if(is_data(k))
{
if(i==k1) m=k;
if(j==k1) n=k;
k1++;

```
)
)
temp \(=\mathbf{o p}[\mathrm{m}] ;\)
\(o p[m]=o p[n] ;\)
\(o p[n]=t e m p ;\)
)
/**********************************************************/
/* sample data for which optimal is known = 81 */

\section*{C++ Source Code}
void sample_data()
\{
int \(i\);
for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{NO}\) _SQUARES; \(\mathrm{i}++\) ) data[ i\(]=2\);
\}
/***********************************************************/
/* randomly select neighbor of op */

\section*{void neighbor_solution()}

1

\section*{switch((lrand48()>>4)\%5)}
\(\{\)
case 4: A_op_to_op_A();
break;
case 3:
op_A_to_A_op();
break;
case 2:
AB_to_BA();
break;
case 1:
switch_op();
break;
case 0:
ABC_op_to_AB_op_C();
break;
default:
break;
\}
)

\section*{/**********************************************************/ \\ /* function to accept neighbor */}

\section*{C++ Source Code}
void accept_neighbor()
1
```

int 1;
for(i=0;i<2*NO_SQUARES-1;i++) present_op[i]=op[i];

```
)
/* print final output */
void print_results(int optimal_cost)
    1
    int i ;
    cout << "Calculated cost " << optimal_cost << endl;
    for( \(\mathrm{i}=0 ; \mathrm{i}<2 *\) NO_SQUARES \(-1 ; \mathrm{i}++\) )
            | switch(present_op[i])
        I
        case PLUS: cout <<" + ";
        break;
        case TIMES: cout <<"*";
        break;
        default:
        cout << data[present_op[i]] <<"";
        break;
        )
    )
    cout << endl;
    \}
/**********************************************************/
/* main program */
main()
I
        int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\);
class square_list * list_start;
int optimal_cost, random_neighbor_cost;
int cost;
double temperature=INITIAL_TEMPERATURE;
double probability,random_0_1;
/* set random number generator */
struct timeval tp;
struct timezone tzp;
gettimeofday(\&tp,\&tzp);
srand48(tp.tv_usec);
/* get external list */
get_list_start(\&list_start);
/* create operation array for neighbor solution */
create_operation_array();
/* create present active optimal operation_array */
for \((\mathrm{i}=0 ; \mathrm{i}<2 *\) NO_SQUARES-1;i++) present_op[i]=op[i];
/* get data */
\(\mathrm{i}=0\);
while(list_start!=NULL)
\{
data[i++]=list_start->side;
list_start=list_start->next;
\}
/* use sample data from handout if defined at beginning of program*/
optimal_cost=calculate_cost();
/* perform annealing */
for( \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{NO}\) _ITERATIONS; \(\mathrm{j}++\) )
\begin{tabular}{|ll|}
1 & for(i=0;i<NO_STEPS;i++) \\
1
\end{tabular}
```

C++ Source Code
for(k=0;k<2*NO_SQUARES-1;k++)
op[k]=present_op[k];
neighbor_solution();
cost=calculate_cost();
if(cost<=optimal_cost)
|
accept_neighbor();
optimal_cost=cost;
|
else |
probability =
exp(-(cost-optimal_cost)/temperature);
random_0_1 = drand48();
if(random_0_1 <= probability)
I
accept_neighbor();
optimal_cost=cost;
};
|
}
temperature*=R;
}
print_results(optimal_cost);
return 1;
1

```

\section*{Output of Program in Code List \(\mathbf{3 . 3 6}\)}

Calculated cost 81
\(11+2 * 11 * 1 * 3+3++33 * 6+*\)

\section*{begin}

Start with Initial Solution, \(S=S_{0}\)
Start with Initial Temperature, \(T=T_{0}\)
while(not satisfied) do

\section*{begin}
while (not in equilibrium) do begin
\(S^{\prime}\) is some random neighbor of \(S\)
Calculate Cost differential:
\[
\left(\delta=\operatorname{Cost}\left(S^{\prime}\right)-\operatorname{Cost}(S)\right)
\]

Assign a probability, prob, prob \(=\min \left\{1, e^{-\delta / r}\right\}\)
            if random \((0,1) \leq p r o b\) then \(S=S^{\prime}\)
                end;

Update Temperature T;
end;
Output solution \(S\)

Figure 3.10 Generic Simulated Annealing Algorithm


Figure 3.11 A Given Instance of the Square Packing Problem


Figure 3.12 Hill Climbing Analogy

\subsection*{3.12 Problems}
(3.1) [Pointers, Dynamic Memory Allocation] Write a C++ program to invert a 30 matrix with floating point elements. Your program should only declare triple pointers in main(). Every declaration in \(\operatorname{main}()\) must be of the form: type \(* * *\) variable. This also applies to any loop variables needed. No other variables outside of main() should be declared (you can use classes outside of main()). Any memory allocated with new should be removed with delete. Input the matrix using the cin operator and output the results using the cout operator. If the matrix is not invertible you should print "Matrix not Invertible".
(3.2) [Dynamic Memory Allocation, FIFO] Write a C++ program to implement a FIFO stack which allocates space dynamically. The size of the stack should increase dynamically (via new) with each push operation and decrease (via delete) with each pop operation. Support an operation to print the data presently on the stack.
(3.3) [Linked Lists] Write a C++ program to maintain a linked lists of strings. The program should support an operation to count the number of entries in the linked list which match a specific string.
(3.4) [Linked Lists, Sorting] Write an operation for the program in Problem 3.3 which will sort the linked list in alphabetical order.
(3.5) [Linked Lists] Write a general linked list C++ program which supports operations to
- Combine two lists
- Copy a list.
- Split a list at a specific location into two lists

Make sure you handle all the special cases associated with the start and end of a list.
(3.6) [Bounding] Modify the coffee house game program to find a solution where the triangle dimension is 15 . The program should use a bounding technique which results in unique intermediate peg locations at each iteration.
(3.7) [Merging Sorted Linked Lists] Write a C++ program to merge two separate sorted lists into one sorted list. Calculate the order of your algorithm in terms of the size of the input list, \(n\).
(3.8) [Binary Trees] Write a C++ program which is passed a pointer to a binary tree and prints out the keys traversed via preorder, postorder and inorder strategies. Assume your tree class is defined as
```

class tree
{
public:
int key;
tree * left;
tree * right;
}

```
(3.9) [Balanced Trees] Write a C++ program which inserts an element anywhere into a balanced tree and results in a tree structure which is still balanced. Assume your tree class is the one defined in Problem 3.8.
(3.10) [Balanced Trees] Write a C++ program which deletes an element with a specific key from a balanced tree and results in a tree structure which is still balanced. Assume your tree class is the one defined in Problem 3.8.
(3.11) [Balanced Trees] Write a C++ program which maintains a sorted key list in a balanced binary tree. You should Support insertion and deletion of elements in the tree. For this problem the definition of sorted means that at each node in the tree every element in the left subtree is less than or equal to the root key of the subtree and every element in the right subtree is greater than or equal to the root key of the subtree. After insertions and deletions the tree should be balanced. Assume your tree class is the one defined in Problem 3.8.
(3.12) [Order] Calculate the number of operations in terms of the size of the tree for the performance of the algorithm in Problem 3.10.
(3.13) [Hashing - Difficult] Consider a linked list structure which supports the concept of an element with a number of friends:
```

class element
{
public:
char data[100];
element * f1;

```
```

element * f2;
element * f3;
}

```

Consider a number of strings, say 2000, to be placed in classes of this nature. Develop a hashing algorithm which will use the fact that an element has three friends to determine the location of the string given only a pointer to a root element. Support the hashing functions to search and insert strings into the table. Try to characterize your data which would make your hashing algorithm optimal.
(3.14) [QuickSort] Investigate different key selection strategies for the quicksort algorithm. Test out at least five different strategies and use large lists of random data as your performance benchmark. Compare each strategy and rate the strategies in terms of their performance.
(3.15) [Simulated Annealing] Modify Code List 3.36 to use simulated annealing to pack a number of rectangles into a rectangle with smallest area. Support the option to pack rectangles into a square with smallest area.

> Previous Table of Contents Next
Previous Table of Contents Next

\section*{Chapter 4 \\ Algorithms for Computer Arithmetic}

\subsection*{4.1 2's Complement Addition}

This section presents the principles of addition, multiplication and division for fixed point 2's complement numbers. Examples are provided for a selection of important fixed point algorithms.

Two's complement addition generates the sum, \(S\), for the addition of two n-bit numbers \(A\) and \(B\) with
\[
\begin{aligned}
A & =a_{n-1} \ldots a_{0} \\
B & =b_{n-1} \ldots b_{0} \\
S & =s_{n-1} \ldots s_{0}
\end{aligned}
\]

A C++ program simulating 8-bit two's complement addition is shown in Code List 4.1. The output of the program is shown in Code List 4.2

Code List 4.1 2's Complement Addition
C++ Source Code
```

\#include <iostream.h>
unsigned char a[] = {0xfa,0x13,0xc4,0xff,0x80};
unsigned char b[] = {0x06, 0xdf,0xa6,0xfe,0x80};
\#define NINPUTS (sizeof(a)/sizeof(unsigned char))
void main()
{
unsigned char sum;

```

\section*{C++ Source Code}
\[
\begin{aligned}
& \text { int overflow, carry; } \\
& \text { register int i; } \\
& \text { unsigned char add(unsigned char augend,unsigned char addend, } \\
& \qquad \text { int * ovflp,int * carryp); }
\end{aligned}
\]
int b2w(unsigned char \(n\) );
carry \(=0\);
for(i=0;i<NINPUTS; \(i++\) )

\{
cout <<"a=" << b2w(a[i]) <<" b=" << b2w(b[i]) << endl;
sum \(=\operatorname{add}(\mathrm{a}[\mathrm{i}], \mathrm{b}[\mathrm{i}]\), \&overflow, \&carry);
cout <<"sum =" << b2w(sum) <<" overflow=" << overflow <<
    " carry= " << carry << endl << endl;
\}
\}
unsigned char add(unsigned char augend, unsigned char addend, int * ovflp,int *carryp)

\section*{\{}
unsigned int sum;
unsigned char rtn;
sum \(=\) augend+addend;
rtn = sum;
if \((\) carryp! \(=0)\) *carryp \(=(\) sum \& \(0 \times 100) \gg 8\);
if \((\) ovflp! \(=0)\) *ovflp \(=(((\) augend \& \(0 \times 80)==(\) addend\&0x80 \())\)
```

return rtn;
}
int b2w(unsigned char n)
{
return (((n\&0x80)==0)?(n\&0xff):(nl(-1<<8)));
}

```

Code List 4.2 Output of Program in Code List 4.1

\section*{C++ Output}
\(a=-6 b=6\)
sum \(=0\) overflow \(=0\) carry \(=1\)
\(a=19 b=-33\)
sum \(=-14\) overflow \(=0\) carry \(=0\)
\(a=-60 b=-90\)
sum \(=106\) overflow= 1 carry= 1
\(a=-1 b=-2\)
sum \(=-3\) overflow \(=0\) carry \(=1\)
\(a=-128 b=-128\)
sum \(=0\) overflow= 1 carry= 1

The programs do not check for overflow but simply simulate the additon as performed by hardware.

\subsection*{4.1.1 Full and Half Adder}

In order to develop some fast algorithms for multiplication and addition it is necessary to analyze the process of addition and multiplication at the bit level. Full and half adders are bit-level building blocks that are used to perform addition.

A half adder is a module which inputs two signals, \(a_{i}\) and \(b_{i}\), and generates a sum, \(s_{i}\), and a carry-out \(c_{i}\). A half adder does not support a carry-in. The outputs are as in Table 4.1.

Table 4.1 Half Adder Truth Table
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Input } & \multicolumn{2}{c|}{ Output } \\
\hline \(\boldsymbol{a}_{\boldsymbol{i}}\) & \(\boldsymbol{b}_{\boldsymbol{i}}\) & \(\boldsymbol{s}_{\boldsymbol{i}}\) & \(\boldsymbol{c}_{\boldsymbol{i}}\) \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 1 \\
\hline
\end{tabular}

A full adder has a carry-in input, \(c_{i}\). A full adder is shown in Table 4.2.
Table 4.2 Full Adder Truth Table
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Input } & \multicolumn{2}{c|}{ Output } \\
\hline \(\boldsymbol{a}_{\boldsymbol{i}}\) & \(\boldsymbol{b}_{\boldsymbol{i}}\) & \(\boldsymbol{c}_{\boldsymbol{i} \boldsymbol{-} \boldsymbol{l}}\) & \(\boldsymbol{s}_{\boldsymbol{i}}\) & \(\boldsymbol{c}_{\boldsymbol{i}}\) \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

The full adder and half adder modules are shown in Figure 4.1. The boolean equation for the output of the full adder is
\[
\begin{align*}
& s_{i}=a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1}  \tag{4.1}\\
& c_{i}=a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1}+a_{i} b_{i} c_{i-1} \tag{4.2}
\end{align*}
\]

The boolean equation for the output of the half adder is
\[
\begin{equation*}
s_{i}=a_{i} b_{i}+a_{i} b_{i}=a_{i} \oplus b_{i} \tag{4.3}
\end{equation*}
\]
where \(\bullet\) denotes the exclusive-or operation.
\[
\begin{equation*}
c_{i}=a_{i} b_{i} \tag{4.4}
\end{equation*}
\]

The output delay of each module can be expressed in terms of the gate delay,", of the technology used to
implement the boolean expression. The sum, \(s_{i}\), for the full adder can be implemented as in Eq. 4.1 using four 3-input NAND gates in parallel followed by a 4 -input NAND gate. The gate delay of a k-input NAND gate is " so the sum is calculated in 2". This is illustrated in Figure 4.2. For the half-adder the sum is calculated within I " and the carry is generated within I".The Output Delay for the Half Adder is shown in Figure 4.2.


Figure 4.1 Full and Half Adder Modules

\subsection*{4.1.2 Ripple Carry Addition}

2's complement addition of n-bit numbers can be performed by cascading Full Adder modules and a Half Adder module together as shown with a 4-bit example in Figure 4.3. The carry-out of each module is passed to the carry-in of the subsequent module. The output delay for an n-bit ripple-carry adder using a Half Adder module in the first stage is
\[
\text { Output Delay }=(2 n-1) \Delta
\]

For many applications this delay is unacceptable and can be improved dramatically.
A C++ program to perform ripple carry addition is shown in Code List 4.3. The output of the program is shown in Code List 4.4. The program demonstrates the addition of \(1+(-1)\). As can be seen in the output the carry ripples through the result at each simulation until it has passed over N bits.


Figure 4.2 Output Delay Calculation for a Full Adder


Figure 4.3 2's Complement 4-Bit Adder


\section*{Figure 4.4 Output Delay Calculation for a Half Adder}

Code List 4.3 Ripple Carry Addition

\section*{C++ Source Code}
// This program simulates Ripple Carry Addition
\#include <iostream.h>
\#define N 16
class DATA
I
public:
char a,b, carry_in, sum, carry_out;
);
class FADDER
\{ public:

DATA d_old, d_new;
FADDER() \{ d_old.a=d_old.b=d_old.carry_in
void add();
void update_data() \{d_old=d_new;\}
\};

\section*{void FADDER::add()}

\section*{C++ Source Code}

int i ;
unsigned int mask=0x1;
for(i=0;i<N;i++)
1
\(\mathrm{f}[\mathrm{i}] . \mathrm{d}\) _old. \(\mathrm{a}=\mathrm{A} \&\) mask;
f[i].d_old.b=B\&mask;
A \(\gg=1\);
B \(\gg=1\);
\}
)
void full_add(FADDER *f)
\{

\section*{C++ Source Code}
int i ;
for(i=0;i<N;i++) f[i].add();
\}
void update(FADDER *f)
I
int i ;
for(i=0;i<N;i++) f[i].update_data();
\}
void print_data(FADDER *f)
\[
\begin{aligned}
& \text { cout <<"A ="; } \\
& \text { for }(\mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>=0 ; \mathrm{i}--) \text { cout } \ll(\mathrm{f}[\mathrm{i}] . \mathrm{d} \text { _old.a? " } 1 \text { ":" } 0 \text { "); } \\
& \text { cout <<" B = "; } \\
& \text { for( } \mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>=0 ; \mathrm{i}-- \text { ) cout } \ll \text { (f[i].d_old.b? " } 1 \text { ":" } 0 \text { "); } \\
& \text { cout <<" SUM = "; } \\
& \text { for }(\mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>=0 ; \mathrm{i}--) \text { cout << (f[i].d_old.sum? " } 1 \text { ":"0"); } \\
& \text { cout << endl; }
\end{aligned}
\]

\title{
FADDER f[N];
}
set_data(1,-1,f);
print_data(f);
int \(i\);
for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++\) )
\{

C++ Source Code
full_add(f);
update(f);
print_data(f);

Code List 4.4 Output of Program in Code List 4.3

\section*{C++ Output}
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=0000000000000000\) \(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111111110\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111111100\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111111000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111110000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111100000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111111000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111110000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111100000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111111000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111110000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111100000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1111000000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1110000000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1100000000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=1000000000000000\)
\(\mathrm{A}=0000000000000001 \mathrm{~B}=1111111111111111 \mathrm{SUM}=0000000000000000\)

\subsection*{4.1.2.1 Overflow}

The addition of two numbers may result in an overflow. There are four cases for the generation of overflow in 2's complement addition:
- Positive Number + Positive Number (result may be too large)
- Positive Number + Negative Number
- Negative Number + Positive Number
- Negative Number + Negative Number (result may be too negative)

Overflow is not possible when adding numbers with opposite signs. Overflow occurs if two operands are positive and the sum is negative or two operands are negative and the sum is positive. This results in the boolean expression
\[
\begin{equation*}
\text { Overflow }=a_{n-1} b_{n-1} s_{n-1}+a_{n-1} b_{n-1} s_{n-1} \tag{4.5}
\end{equation*}
\]
\[
\text { Previous Table of Contents } \mathrm{Next}
\]
Previous Table of Contents Next

The calculation of overflow for ripple-carry addition can be simplified by analyzing the carry-in and carry-out to the final stage of the addition. This is demonstrated in Table 4.3. An overflow occurs when

Table 4.3 Carry Analysis for Overflow Detection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\boldsymbol{a}_{\boldsymbol{n} \mathbf{1}}\) & \(\boldsymbol{b}_{\boldsymbol{n} \mathbf{- 1}}\) & \(\boldsymbol{s}_{\boldsymbol{n} \mathbf{- 1}}\) & \(\boldsymbol{c}_{\boldsymbol{n} \boldsymbol{1}}\) & \(\boldsymbol{c}_{\boldsymbol{n} \boldsymbol{2}}\) & Overflow \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}
\[
\begin{equation*}
c_{n-1} \neq c_{n-2} \tag{4.6}
\end{equation*}
\]
which results in the boolean expression
\[
\begin{equation*}
\text { Overflow }=c_{n-1} \oplus c_{n-2} \tag{4.7}
\end{equation*}
\]

\subsection*{4.1.3 Carry Lookahead Addition}

In order to improve on the performance of the ripple-carry adder the carry-in to each stage is predicted in advance rather than waiting for the carry-in to propagate from the previous stages. The carry-out of each stage can be simplified from Eq. 4.2 to
\[
\begin{equation*}
c_{i}=a_{i} b_{i}+a_{i} c_{i-1}+b_{i} c_{i-1} \tag{4.8}
\end{equation*}
\]
or
\[
\begin{equation*}
c_{i}=a_{i} b_{i}+\left(a_{i}+b_{i}\right) c_{i-1} \tag{4.9}
\end{equation*}
\]
which is written as
\[
c_{i}=g_{i}+p_{i} c_{i-1}
\]
with
\[
\begin{gathered}
g_{i}=a_{i} b_{i} \\
p_{i}=a_{i}+b_{i}
\end{gathered}
\]

The interpretation of Eq. 4.10 is that at stage \(i\) a carry may be generated by the stage, \(\left(g_{i}=1\right)\), or a carry may be propagated from a previous stage, \(\left(p_{i}=1\right)\). When \(g_{i}=1\) stage \(i\) will always have a carry-out regardless of the carry-in. When \(g_{i}=0\) stage \(i\) will have a carry when the carry-in is 1 and \(p_{i}=1\), thus it is said to have propagated the carry. The time required to produce the generate, \(g_{i}\), and the propagate, \(p_{i}\), is 1". For the a four-bit adder as in Figure 4.3 one has
\[
\begin{gathered}
c_{0}=g_{0} \\
c_{1}=g_{1}+p_{1} c_{0} \\
c_{2}=g_{2}+p_{2} c_{1}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0} \\
c_{3}=g_{3}+p_{3} c_{2}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}
\end{gathered}
\]

\section*{(4.11)}
(4.12)
(4.13)

The interpretation of Eq. 4.14 is that a carry-out will occur from stage 3 of the 4 -bit adder if it is
- generated in stage 3
- generated in stage 2 and propagated through stage 3
- generated in stage 1 and propagated through stage 2 and stage 3
- generated in stage 0 and propagated through stage 1 and stage 2 and stage 3

The carry of the final stage, c3, can be generated in 2" as shown in Figure 4.5. Similarly, the other carries can be calculated in 2 " or less.

Once the carries are known the sum can be generated within 2". Thus for the four bit adder the sum can be generated in a total of 5 " with
- 1 " to calculate the generates and propagates
- 2 " to calculate the carries
- 2 " to calculate the sums


Figure 4.5 Delay Calculation
Using ripple-carry the four bit adder would require 7 " to form the result. With the CLA adder the carries are thus generated by separate hardware. As is common, speed is thus achieved at the cost of additional hardware. The 4-bit CLA adder module is shown in Figure 4.3.

The CLA approach can be extended to n-bits yielding the following equation for the carry bits
\[
\begin{equation*}
c_{i}=\sum_{j=0}^{i}\left(\prod_{k=j+1}^{i} p_{k}\right) g_{j} \tag{4.15}
\end{equation*}
\]
with the product term evaluating to one when the indices are inconsistent. The calculation of the carries in Eq. 4.15 can be accomplished in 2" once the generates and propagates are known; however, there is a hardware requirement to be met. For each carry of the stage the implementation in 2 " requires that the gates have a fan-in (number of inputs, to the gate) of \(i+1\). For an n-bit CLA adder realized in this manner a gate with a fan-in of \(n\) is required. This can be seen in Figure 4.5 where for a 4 -bit CLA adder the carry inputs are calculated using a 4 -input NAND gate. While this is practical for a 4 -bit adder it is not practical for a 64 -bit adder. As a result of this an inductive approach is needed to limit the fan-in requirements of the gates to implement the circuit. The timing of the 4-bit CLA adder module is shown in Figure 4.7.


Figure 4.6 2's Complement 4-Bit CLA Adder Module
When an inductive approach is taken the module shown in Figure 4.3 will need to input a carry in to the lowest stage. As a result the basic building block will be as shown in Figure 4.3. The module will be depicted as shown in Figure 4.8. The module serves as a basic building block for a 16-bit CLA adder as shown in Figure 4. 10. For this case there are four groups of CLA-4 building blocks. The carry lookahead hardware module \(C L M\left(15^{\prime} 0\right)\) provides the carry input to each of the groups. This carry is predicted in an analogous fashion to before. Group 0 will generate a carry if it is generated by one of the four individual full adders within the group. One can define group generate, \(g g_{0}\), as
\[
\begin{equation*}
g g_{0}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0} \tag{4.16}
\end{equation*}
\]


Figure 4.7 4-Bit CLA Adder Module Timing


Figure 4.8 2's Complement 4-Bit Module Representation


Figure 4.9 2's Complement 4-Bit CLA Adder Module
and group propagate, \(g p_{0}\), as
\[
\begin{equation*}
g p_{0}=p_{3} p_{2} p_{1} p_{0} \tag{4.17}
\end{equation*}
\]

Similarly,
\[
\begin{gather*}
g g_{1}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}  \tag{4.18}\\
g p_{1}=p_{7} p_{6} p_{5} p_{4}  \tag{4.19}\\
g g_{2}=g_{11}+p_{11} g_{10}+p_{11} p_{10} g_{9}+p_{11} p_{10} p_{9} g_{8}  \tag{4.20}\\
g g_{3}=g_{15}+p_{15} g_{14}+p_{15} p_{14} g_{13}+p_{15} p_{14} p_{13} g_{12} \tag{4.21}
\end{gather*}
\]
\[
\begin{equation*}
g p_{3}=p_{15} p_{14} p_{13} p_{12} \tag{4.22}
\end{equation*}
\]


Figure 4.10 16-Bit CLA Adder with Group Lookahead
From these equations one can derive the group carries as \(g c_{0}\), the carry out of group 0 ,
\[
\begin{equation*}
g c_{0}=g g_{0} \tag{4.23}
\end{equation*}
\]
\(g c_{1}\), the carry out of group 1,
\[
\begin{equation*}
g c_{1}=g g_{1}+g p_{1} g g_{0} \tag{4.24}
\end{equation*}
\]
\(g c_{2}\), the carry out of group 2 ,
\[
\begin{equation*}
g c_{2}=g g_{2}+g p_{2} g g_{1}+g p_{2} g p_{1} g g_{0} \tag{4.25}
\end{equation*}
\]
\(g c_{3}\), the carry out of group 3,
\[
\begin{equation*}
g c_{3}=g g_{3}+g p_{3} g g_{2}+g p_{3} g p_{2} g g_{1}+g p_{3} g p_{2} g p_{1} g p_{0} \tag{4.26}
\end{equation*}
\]

The group carries become the carry-in to each of the CLA-4 modules. Each CLA-4 module can calculate the individual carries within 2 " after the group carries are known.

Code List 4.5 CLA Addition

\section*{C++ Source}
/*This code simulates a 64-bit CLA adder with 4 Sections, 16 Groups 64 Full Adders */
\#include <stdio.h>
\#include <iostream.h>
```

\#define ADDER_SIZE 64
\#define NUMBER_OF_GROUPS 16
\#define NUMBER_OF_SECTIONS 4
\#define SECTION_SIZE NUMBER_OF_GROUPS/NUMBER_OF_SECTIONS
\#define GROUP_SIZE ADDER_SIZE/NUMBER_OF_GROUPS
\#define ZERO 0
\#define ONE 1

```
void get_data();
void print_signal();
void calc_gen_prop();
void calc_group_gen_prop();
void calc_section_carries();
void main();
typedef int SIGNAL;

\section*{C++ Source}

I
```

unsigned long a_nign, a_low, D_nign, D_low;

```
unsigned int mask;
int \(i\);
a_high \(=0 x f 0 f 0 f 0 f 0\);
a_low=0xf0f0f0f0;
b_high \(=0 \times 0000000\);
b_low=0xfffffffff;
for \((\mathrm{i}=0 ; \mathrm{i}<64 ; \mathrm{i}++\) )
    1
    \(\mathrm{a}[\mathrm{i}]=\) ZERO;
    b[i]=ZERO;
    )
mask=1;
for \((i=0 ; i<32 ; i++)\)
    1
    if(mask\&a_low) a[i]=ONE;
    if(mask\&b_low) b[i]=ONE;
    mask=mask \(\ll 1\);
    )
mask=1;
for \((i=32 ; i<64 ; i++)\)
    \{
    if(mask\&a_high) a[i]=ONE;
    if(mask\&b_high) b[i]=ONE;
    mask=mask \(\ll 1\);
    \}
)
void print_signal(SIGNAL * a,int len)
1
int \(i\);
```

C++ Source
for(i=len-1;i>=0;i- -) cout << (a[i]==ZERO)?"0":"l";
}
void calc_gen_prop(SIGNAL *a,SIGNAL *b,
SIGNAL *generate,SIGNAL *propagate)
{
int i;
for(i=0;i<ADDER_SIZE;i++)
|
generate[i]=a[i]\&\&b[i];
propagate[i]=a[i]|b[i];
}
}
void calc_group_gen_prop(SIGNAL * generate, SIGNAL * propagate,
SIGNAL* group_generate, SIGNAL* group_propagate)
{
int i,j,k;
SIGNAL partial_product, sum;
for(i=0;i<NUMBER_OF_GROUPS;i++)
{
group_generate[i]=ZERO;
for(j=0;j<GROUP_SIZE;j++)
I
partial_product=generate[GROUP_SIZE*i+j];
for(k=1; k< GROUP_SIZE-j; k++)
{
partial_product=partial_product
\&\&propagate[GROUP_SIZE*i+j+k];
|

```
group_generate[i] = group_generate[i]llpartial_product; )

\section*{C++ Source}
```

 for(i=0;i<NUMBER_OF_GROUPS;i++)
    ```
    1
    group_propagate[i]=ONE;
        for( \(\mathrm{j}=0\) :j<GROUP_SIZE \(\mathrm{j}++\) )
        group_propagate[i]=group_propagate
            \&\&propagate[GROUP_SIZE*i+j];
    I
    \}
void calc_section_gen_prop(SIGNAL * group_gen, SIGNAL * group_prop, SIGNAL *section_gen, SIGNAL *section_prop)
1
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\);

SIGNAL partial_product;
for \(\left(\mathrm{i}=0 ; \mathrm{i}<\mathrm{NUMBER} \_O F \_S E C T I O N S ; i++\right)\)
```

 {
    ```
    section_gen[i]=ZERO;
    for( \(\mathrm{j}=0 ; \mathrm{j}<\) SECTION_SIZE; \(\mathrm{j}++\) +
        1
        partial_product=group_gen[SECTION_SIZE*i+j];
        for \((\mathrm{k}=1 ; \mathrm{k}<\) SECTION_SIZE-j; \(\mathrm{k}++\) )
        ।
        partial_product=
```

 }
 for(i=0;i<NUMBER_OF_SECTIONS;i++)

```

\section*{C++ Source}

।
।
void calc_section_carries(SIGNAL * sec_carry,SIGNAL* sec_gen,
SIGNAL*sec_prop)
\{
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\);
SIGNAL partial_product;
sec_carry[0]=sec_gen[0];
for \((\mathrm{i}=1 ; \mathrm{i}<\) NUMBER_OF_SECTIONS; \(i++\) )
\{
sec_carry[i]=sec_gen[i]ll(sec_prop[i]\&\&sec_carry[i-1]);
)
)
void calc_group_carries(SIGNAL * group_carries, SIGNAL * group_gen,
int \(\mathrm{i}, \mathrm{j}\);
for ( \(\mathrm{i}=0 ; \mathrm{i}<\) NUMBER_OF_SECTIONS; \(\mathrm{i}++\) )
1
i?(group_carries[i*SECTION_SIZE]=group_gen[i*SECTION_SIZE]II group_prop[i*SECTION_SIZE]\&\&sec_carries[i-1]):
(group_carries[0]=group_gen[0]);

\section*{C++ Source}

```

i?(carry[i*GROUP_SIZE]=gen[i*GROUP_SIZE]|
prop[i*GROUP_SIZE]
\&\&group_carry[i-1]):(carry[0]=gen[0]);
for(j=1;j<GROUP_SIZE;j++)
|
carry[i*GROUP_SIZE+j]=
gen[i*GROUP_SIZE+j]|l
prop[i*GROUP_SIZE+j]
\&\&carry[i*GROUP_SIZE+j-1];
}
}

```

\section*{C++ Source}
\{
\(\left(\mathrm{a}^{\wedge} \mathrm{b}^{\wedge} \mathrm{c}\right)\) ? \(\left({ }^{*}\right.\) sum=ONE):(*sum=ZERO);
\}
void calc_sum(SIGNAL * SUM,SIGNAL *A,SIGNAL *B,SIGNAL *CARRY)
\{
int i ;
adder(SUM,A[0],B[0],0);
for(i=1;i<ADDER_SIZE; \(i++\) )
adder(SUM \(+\mathrm{i}, \mathrm{A}[\mathrm{i}], \mathrm{B}[\mathrm{i}], \mathrm{CARRY}[\mathrm{i}-1]\) );
\}

> SIGNAL *PROPAGATE,SIGNAL*GROUP_GENERATE, SIGNAL *GROUP_PROPAGATE,SIGNAL *SECTION_GENERATE, SIGNAL *SECTION_PROPAGATE,SIGNAL *SECTION_CARRY, SIGNAL *GROUP_CARRY,SIGNAL *CARRY,SIGNAL *SUM)
```

{

```
cout <<"A = ";
print_signal(A,64);
cout << endl << "B = ";
print_signal(B,64);
cout << endl << "SUM = ";
print_signal(SUM,64);
cout << endl << "CARRY = ";
print_signal(CARRY,64);
cout << endl << "GENERATE = ";
print_signal(GENERATE,64);
cout << endl << "PROPAGATE = ";
print_signal(PROPAGATE,64);

\section*{C++ Source}
cout << endl << "GROUP_GENERATE = ";
print_signal(GROUP_GENERATE,16);
cout << endl << "GROUP_PROPAGATE = ";
print_signal(GROUP_PROPAGATE,16);
cout << endl << "SECTION_GENERATE = ";
print_signal(SECTION_GENERATE,4);
cout << endl << "SECTION_PROPAGATE = ";
print_signal(SECTION_PROPAGATE,4);
cout << endl << "SECTION_CARRY = ";
print_signal(SECTION_CARRY,4);
cout << endl <<"GROUP_CARRY = ";
```

print_signal(GROUP_CARRY,16);
cout << endl;
}
void main()
I
/* declare data*/
SIGNAL A[ADDER_SIZE], B[ADDER_SIZE];
SIGNAL GENERATE[ADDER_SIZE], PROPAGATE[ADDER_SIZE];
SIGNAL GROUP_GENERATE[NUMBER_OF_GROUPS],
GROUP_PROPAGATE[NUMBER_OF_GROUPS];
SIGNAL SECTION_GENERATE[NUMBER_OF_SECTIONS];
SIGNAL SECTION_PROPAGATE[NUMBER_OF_SECTIONS];
SIGNAL SECTION_CARRY[NUMBER_OF_SECTIONS];
SIGNAL GROUP_CARRY[NUMBER_OF_GROUPS];
SIGNAL CARRY[ADDER_SIZE];
SIGNAL SUM[ADDER_SIZE];
get_data(A,B);

```

\section*{C++ Source}
```

calc_gen_prop(A,B,GENERATE,PROPAGATE);
calc_group_gen_prop(GENERATE,PROPAGATE, GROUP_GENERATE,GROUP_PROPAGATE);

```
calc_section_gen_prop(GROUP_GENERATE, GROUP_PROPAGATE, SECTION_GENERATE, SECTION_PROPAGATE);
calc_section_carries(SECTION_CARRY, SECTION_GENERATE,SECTION_PROPAGATE);
calc_group_carries(GROUP_CARRY,GROUP_GENERATE, GROUP_PROPAGATE,SECTION_CARRY);
calc_carries(CARRY,GENERATE,PROPAGATE,GROUP_CARRY);
calc_sum(SUM,A,B,CARRY);
print_results(A,B,GENERATE,PROPAGATE, GROUP_GENERATE,GROUP_PROPAGATE, SECTION_GENERATE, SECTION_PROPAGATE, SECTION_CARRY,GROUP_CARRY,CARRY,SUM);
\}
Code List 4.6 Output of Program in Code List 4.5

\section*{C++ Output}
\(\mathrm{A}=\)
1111111111111111000011110000111111111111111111110000111100001111
\(B=\)
111111111111111111111111111111111111111111111111000000000000000
\begin{tabular}{|l|}
\hline C++ Output \\
\hline \hline SUM \(=\) \\
CARRY \(=\) \\
\(\quad 11111111111111110000111100001111111111111111111100000111100010000\) \\
GENERATE \(=\) \\
\(\quad 1111111111111111111111111111111111111111111111110000111100001111\) \\
PROPAGATE \(=\) \\
\\
11111111111111110000111100001111111111111111111110000000000000000 \\
GROUP_GENERATE \(=1111111111110101\) \\
GROUP_PROPAGATE \(=1111010111110000\) \\
SECTION_GENERATE \(=1110\) \\
SECTION_PROPAGATE \(=1110\) \\
SECTION_CARRY = 1110 \\
GROUP_CARRY = 1111111111110001 \\
\hline
\end{tabular}

\subsection*{4.2 A Simple Hardware Simulator in C++}

This section starts the implementation of a simple hardware simulator in \(\mathrm{C}++\). The simulator will be used to simulate the hardware required to implement the algorithms in the previous sections.

> Previous Table of Contents Next
\begin{tabular}{|l|l|l|}
\hline Previous & Table of Contents & Next \\
\hline
\end{tabular}

A simple boolean logic simulator is shown in Code List 4.7. The output of the program is shown in Code List 4.8. The program simulates the interconnection of gates and is used to demonstrate the behavior of a clocked D flip-flop.

The program simulates the behavior of the circuit by calculating new values in the simulation in terms of the old values. The old values are then updated and the process is performed again. The process continues until the new and old values are identical or until a terminal count has been reached. For this program a terminal count of 50 is used but it is never reached in this example.

The circuit that is implemented is shown in Figure 4.11. The program allows each net to have one of three values: 0,1 , or 2 . The values are as follows:
- 0: Logical 0
- 1: Logical 1
- 2: Cannot be determined, printed out as x

All the values in the NET structure are initialized to the unknown state 2 . As the inputs, clock, and data propagate through the circuit the values are changed as they become determined.

The behavior of each gate is modelled by its associated function within the program. The gates input one of the three states. The output is determined according to the logical function. This is illustrated in Table 4.4 for the 2 -input NAND gate for all nine possibilities of the inputs.

Table 4.4 2-Input NAND behavior.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ NAND behavior } \\
\hline \(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathbf{f}(\mathbf{x}, \mathbf{y})\) \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 1 \\
\hline 0 & x & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline 1 & x & x \\
\hline x & 0 & 1 \\
\hline x & 1 & x \\
\hline x & x & x \\
\hline
\end{tabular}

The output data is shown in the timing diagram in Figure 4.13. As can be seen in the figure the circuit
behaves as expected. The Q and QBAR outputs remain unknown until the first rising edge of the clock and at that point the output Q reflects the value of DATA at the clock edge. Only subsequent rising edges of the clock cause the outputs to change. It is important to note that this specific test does not demonstrate the validity of the device as a D flip-flop. In the absence of a theoretical proof a considerable amount of additional testing is necessary.

There is another interesting point about the simulation which can cause problems in circuit design. By looking at the last clock rise in Code List 4.8 one notes that QBAR makes a zero to one transition one gate delay quicker than Q making the corresponding one to zero transition. This is illustrated in Figure 4.12. As a result, it is important to let the data stabilize prior to its use.


Figure 4.11 D Flip-Flop Circuit for Simulation


Q

\section*{QBAR}


Figure 4.12 Transition Timing

\subsection*{4.3 2's Complement Multiplication}

The goal of this section is to investigate algorithms for fast multiplication of two n-bit numbers to form a product. If two's complement notation is used


Figure 4.13 Timing Diagram for Simulation
Code List 4.7 Boolean Logic Simulator

\section*{C++ Simulator}
/* This program implements a simple simulator for boolean logic */ \#include <iostream.h>
```

class NET
{
public:
int new_value;
int old;
NET (int x=2, int y=2) { new_value=x; old=x;}
char print();
};
char NET::print()

```

\section*{C++ Simulator}
I
return (old? (old-1? 'x' : ‘1'):'0');
);
class NET clock, data, s, r, out1, out2, q, qbar;
int nand(int \(x\), int \(y\) )
\{
if( \((x==0) \|(y==0))\) return(1); else
    \{
    if( \((x==1) \& \&(y==1))\) return( 0\()\);
    ales return(9).
\[
\text { if( }(x==0)\|(y==0)\|(z==0)) \text { return }(1) \text {; else }
\]
\[
1
\]
\[
\text { if }((\mathrm{x}==1) \& \&(\mathrm{y}==1) \& \&(\mathrm{z}==1)) \text { return }(0) ;
\]
else return(2);
\[
\text { \} }
\]
```

}

```
void update()
    \{
    s.old=s.new_value;
    r.old=r.new_value;
    q.old=q.new_value;
    qbar.old=qbar.new_value;
    out1.old=out1.new_value;
    out2.old=out2.new_value;
    \}
```

C++ Simulator
void print_result()
I
cout << "Clock " << clock.print() << " Data " << data.print()
<<"Q" << q.print() <<"QBAR" << qbar.print() << endl;
|
void simulate(int cl,int da)
|
int stable=0,count=0;
clock.old=cl; data.old=da;
cout << "Clock = " << clock.print() << " Data = " << data.print() << endl;
while((!stable)\&\&(count<50))
I
stable=1;
s.new_value=nand(out l.old,clock.old):
r.new_value=nand3(s.old,clock.old,out2.old):
out1.new_value=nand(s.old,out2.old):
out2.new_value=nand(data.old,r.old);
q.new_value=nand(qbar.old.s.old):
qbar.new_value=nand(r.old.q.old):
if(q.old != q.new_value) stable=0;
if(qbar.old != qbar.new_value) stable=0;
if(outl.old != outl.new_value) stable=0;
if(out2.old != out2.new_value) stable=0;
if(s.old != s.new_value) stable=0;
if(r.old != r.new_value) stable=0;
update():
if((!stable)ll(count==0)) print_result():
count++:
|
cout <<"**********************************" << end;;

```
C++ Simulator
\}
    void main()
    \{
    simulate \((0,0)\);
    simulate \((0,1)\);
    simulate(0,0);
    simulate \((0,1)\);
    simulate( 1,1 );
    simulate ( 1,0 );
    simulate ( 1,0 );
    simulate \((0,0)\);
    simulate \((1,0)\);
    \}

Code List 4.8 Output of Program in Code List 4.7

\section*{C＋＋Output}

Clock \(=0\) Data \(=0\)
Clock 0 Data 0 Q x QBAR x Clock 0 Data 0 Q x QBAR x氷水水水水水水水水水水水水水 \(* * * * * * * *\)

\section*{Clock \(=0\) Data \(=1\)}

Clock 0 Data 1 Q x QBAR x Clock 0 Data 1 Q x QBAR x ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

Clock \(=0\) Data \(=0\)
Clock 0 Data 0 Q x QBAR x Clock 0 Data 0 Q x QBAR x
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
Clock \(=0\) Data \(=1\)
Clock 0 Data 1 Q x QBAR x

\section*{C＋＋Output}

Clock 0 Data 1 Q x QBAR x
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
Clock \(=1\) Data \(=1\)
Clock 1 Data 1 Q x QBAR x Clock 1 Data 1 Q 1 QBAR x Clock 1 Data 1 Q 1 QBAR 0
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
Clock \(=1\) Data \(=0\)
Clock 1 Data 0 Q 1 QBAR 0
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
Clock \(=1\) Data \(=0\)
Clock 1 Data 0 Q 1 QBAR 0
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
Clock \(=0\) Data \(=0\)
Clock 0 Data 0 Q 1 QBAR 0
Clock 0 Data 0 Q 1 QBAR 0
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

\section*{Clock \(=1\) Data \(=0\)}

Clock 1 Data 0 Q 1 QBAR 0
Clock 1 Data 0 Q 1 QBAR 1
Clock 1 Data 0 Q 0 QBAR 1

\footnotetext{
水水水水水水水水水水水水水水水水水水
}
then when multiplying two numbers, \(A\) and \(B\),
\[
\begin{array}{r}
A=a_{n-1} a_{n-2} \ldots a_{0} \\
B=b_{n-1} b_{n-2} \ldots b_{0} \tag{4.28}
\end{array}
\]

In order to store the result one needs to calculate the number of bits required to represent the product in 2's complement form. By noting the range of 2's complement from Table 1.4 on page 11 one obtains that \(2 n\) bits are required in 2's complement form. The product is formed as
\[
\begin{equation*}
P=p_{2 n-1} p_{2 n-2} \cdots p_{0} \tag{4.29}
\end{equation*}
\]

Since \(2 n\) bits are stored in the hardware for the product then overflow is not an issue.

\subsection*{4.3.1 Shift-Add Addition}

The shift-add technique is the simple grade school technique for multiplication. In this scenario a partial product is formed by adding as appropriate repeated shifts of the multiplicand. The core statement in Code List 4.9 is
\[
\text { if(b\&0x01) prod+=a; } b=b \gg 1 ; a^{*}=2
\]

This statement forms the product by repeatedly evaluating the lsb of the multiplier and if it is set by adding the shifted multiplicand. At each iteration the multiplier is shifted right to investigate the next bit and the multiplicand is shifted left.

\section*{Code List 4.9 Shift Add Technique}

\section*{C++ Source}
//This program demonstrates 2's complement multiplication using a // shift-add technique
\#include <stdio.h>
\#include <iostream.h>
class operands \{
// private data
private:
int a,b,prod;
// public functions
public:
```

void set_a(int $x)\{a=x ;\}$
void set_b(int x) \{ b=x; \}
void print_operands(void)
\{cout << "A= " << a <<" B=" << b << endi; \}
void print_product(void)
\{cout << "Product= " << prod << endl << endl; \}
void iterate(void)

```
    \{if(b\&0x01) prod+=a; b=b>>1; \(\left.\mathrm{a}^{*}=2 ;\right\}\)
void compute_product(void);
//declare constructor to initialize a,b,prod
```

C++ Source
operands(void){a=b=prod=0;};
I;
void operands::compute_product(void)
(int i; prod=0; for(i=0;i<sizeof(int)*8;i++) iterate(0;)
int data[][2] ={{40,5}, {-20,57},{30,40},{-1,-4}};
void main()
I
operands op; // here the private data is initialize to 0
int i;
for(i=0;i<sizeof(data)/sizeof(int)/2;i++)
|
op.set_a(data[i][0]);
op.set_b(data[i][1]);
op.print_operands();
op.compute_product(); // This destroys the operands
op.print_product();
|
}

```

Code List 4.10 Output of Code List 4.9

\section*{C++ Output}
\(\mathrm{A}=40 \mathrm{~B}=5\)
Product \(=200\)
\(\mathrm{A}=-20 \mathrm{~B}=57\)
Product \(=-1140\)
\(\mathrm{A}=30 \mathrm{~B}=40\)

C++ Output
Product \(=1200\)
\(A=-1 \quad B=-4\)
Product= 4

\subsection*{4.3.2 Booth Algorithm}

The Booth algorithm is a recoding technique which attempts to recode the multiplier to speedup the scenario where there are sequences of 1's. As an example consider the multiplication in base 10 of \(9999 * 7\). One can evaluate the result rather quickly by performing \((10000-1) * 7=69993\). This can be done without the assistance of a computing device. The algorithm used is to recode the sequence of 9's and results in an operation which is much simpler. The technique can also be applied in binary. Instead of sequences of 9's however, one is interested in sequences of 1's.

The Booth algorithm is illustrated in Figure 4.14. In the figure the product is formed as the multiplication of \(A\) and \(B(A=14\) and \(B=6)\). When the result is done \(A\) remains unchanged and the product is formed in \(\mathrm{P}: \mathrm{B}\) where the : operator indicates register concatenation. Register B no longer contains its initial value. This is written as
\[
\begin{equation*}
\mathrm{P}: \mathrm{B} \leftarrow \mathrm{~A} \times \mathrm{B} \tag{4.30}
\end{equation*}
\] algorithm considers the lower order bit of register B in conjunction with the added bit which is initialized to zero. The bits determine the operation according to Table 4.6.

Previous Table of Contents Next


Algorithms and Data Structures in \(\mathrm{C}_{++}\) by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

\section*{\begin{tabular}{|l|l} 
Previous Table of Contents & Next \\
\hline
\end{tabular}}

An example of booth recoding is illustrated in Table 4.5. In the worst case the Booth algorithm requires that \(n\) operations be performed to compute the product. This is illustrated in the last entry in Table 4.5. As a result the recoding operation for this operand has not simplified the problem. The average number of operations for a random operand by the algorithm is determined in Problem 4.10. Due to the average and worst-case complexity of the Booth algorithm a better solution is sought to find the product.



\section*{\begin{tabular}{|llllll|llllll|}
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular} \\ Product \(=84\) \\ Done}

Figure 4.14 Booth Algorithm
Table 4.5 Booth Recoding 8-Bit Example
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Original Number} & \multicolumn{8}{|l|}{Booth Recode} \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -1 & 1 & -1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline
\end{tabular}

Table 4.6 Booth Recoding
\begin{tabular}{|c|c|l|}
\hline \multicolumn{2}{|l|}{ Bit Pattern } & Operation \\
\hline \hline 0 & 0 & product unchanged \\
\hline 0 & 1 & product \(+=\mathrm{a}\) \\
\hline 1 & 0 & product -a \\
\hline
\end{tabular}
\(\square\)
Code List 4.11 Booth Algorithm

\section*{C++ Source}
//This program demonstrates 2's complement multiplication using a // booth recoding technique

\section*{C++ Source}
\#include <iostream.h>
class operands \{
// private data
private:
int a,b,prod;
// public functions
public:

> void set_a(int x) \{a=x;\}
> void set_b(int x) \{ \(\mathrm{b}=\mathrm{x} ;\}\)
> void print_operands(void)
> \{cout <<"A=" << a <<" \(\mathrm{B}=" \ll \mathrm{~b} \ll\) endl; \}
> void print_product(void)
\{cout << "Product=" << prod << endl << endl; \}
void iterate(void);
void compute_product(void);
//declare constructor to initialize a,b,prod operands(void) \(\{\mathrm{a}=\mathrm{b}=\) prod \(=0 ;\}\);
\};
void operands::iterate(void)
case 1: prod+=a; break;
case 2: prod-=a; break;
default: break;
)
\[
\mathrm{b}=\mathrm{b} \gg 1 ; \mathrm{a}^{*}=2 ;
\]
\}
void operands::compute_product(void)
1

\section*{C++ Source}
int i ; prod=0;
if(b\&0x1) prod-=a; \(\mathrm{a}^{*}=2\);
for( \(\mathrm{i}=1 ; \mathrm{i}<\) sizeof(int)*8;i++) iterate();
\}
int data \(][2]=\{\{2,1\},\{-20,57\},\{30,40\},\{-1,-4\}\}\);
void main()
\{
operands op; // here the private data is initialized to 0 int \(i\);
for(i=0;i<sizeof(data)/sizeof(int)/2;i++)
1
op.set_a(data[i][0]);
op.set_b(data[i][1]);
op.print_operands();
op.compute_product(); // This changes the operands a and b op.print_product();
)

Code List 4.12 Output of Program in Code List 4.11

\section*{C++ Program Output}
\(\mathrm{A}=2 \mathrm{~B}=1\)
Product \(=2\)
\(A=-20 B=57\)
Product \(=-1140\)
\(\mathrm{A}=30 \mathrm{~B}=40\)
Product \(=1200\)

\section*{C++ Program Output}
\(\mathrm{A}=-1 \mathrm{~B}=-4\)
Product \(=4\)

\subsection*{4.3.3 Bit-Pair Recoding}

The Bit-Pair recoding technique is a technique which recodes the bits by considering three bits at a time. This technique will require \(n / 2\) additions or subtractions to compute the product. The recoding is illustrated in Table 4.7. The bits after recoding are looked at two at a time and the respective operations are performed. The higher order bit is weighted twice as much as the lower order bit. The C++ program to perform bit-pair recoding is illustrated in Code List 4.13. The output is shown in Code List 4.14.

The bit pair recoding algorithm is shown in Figure 4.14. The algorithm is analogous to the Booth recoding except that it investigates three bits at a time while the Booth algorithm looks at two bits at a time. The bit-pair recoding algorithm needs to have access to \(\mathrm{A},-\mathrm{A}, 2 \mathrm{~A}\), and -2 A and as a result needs another additional 1-bit register to the left of P which is initialized to zero.

Table 4.7 Bit-Pair Recoding
\begin{tabular}{|l|l|l|ll|}
\hline 0 & 0 & 0 & no operation & \\
0 & 0 & 1 & \(1 \times a\) & prod \(=\operatorname{prod}+a ;\) \\
0 & 1 & 0 & \(2 \times a-a\) & \\
0 & 1 & 1 & \(2 \times a\) & prod \(=\operatorname{prod}+2 a\) \\
1 & 0 & 0 & \(-2 \times a\) & \(\operatorname{prod}=\operatorname{prod}+a\) \\
1 & 0 & 1 & \(-2 \times a+a\) & \\
1 & 1 & 0 & \(-1 \times a\) & \(\operatorname{prod}-2 a\) \\
1 & 1 & 1 & prod \(=\operatorname{prod}-a\) & \\
1 & 1 & & \\
\hline
\end{tabular}

\section*{Initially}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{register A} \\
\hline \multirow[t]{2}{*}{} & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline & \multicolumn{6}{|c|}{2A} \\
\hline 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}
register \(P\)
0 \begin{tabular}{|llllll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\(1 \begin{array}{lllllll}1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\)

shift twice

\(\begin{array}{lllllll}0 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\)

\begin{tabular}{|llllll|llll|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}

Done

Figure 4.15 Bit Pair Recoding Algorithm
Code List 4.13 Bit-Pair Recoding Program

\section*{C++ Source}
//This program demonstrates 2's complement multiplication using a // bit pair recoding technique
\#include <iostream.h>
class operands \{
// private data
private:
int a,b,prod;
// public functions
public:
void set_a(int x) \{ \(a=x\); \}
void set_b(int \(x)\) \{ \(b=x ;\}\)
void print_operands(void)
\{cout \(\ll\) "A=" << a <<" B=" << b << endl;
void print_product(void)
cout << "Product \(=\) " << prod << endl << endl; \}
void iterate(void);
void compute_product(void);
//declare constructor to initialize a,b,prod
operands(void) \(\{\mathrm{a}=\mathrm{b}=\) prod \(=0 ;\}\);

\section*{J;}
void operands::iterate(void)
\[
\begin{aligned}
& \text { switch(b\&0x7) } 1 \\
& \text { case 0: break; } \\
& \text { case 1: prod+=a; break; } \\
& \text { case 2: prod+=a; break; } \\
& \text { case 3: prod+=2*a; break; } \\
& \text { case 4: prod-=2*a; break; } \\
& \text { case 5: prod-=a; break; } \\
& \text { case 6: prod-=a; break; } \\
& \text { case 7: break; }
\end{aligned}
\]

\section*{C++ Source}

\section*{default: break;}

\section*{\}}
\[
b=b \gg 2 ; a^{*}=4 ;
\]
)
void operands::compute_product(void)
1
int \(i\); prod \(=0\);
// Take care of the first case which is special

> switch(b\&0x3)

I
case 0: break;
case 1: prod+=a; break;
case 2 : prod-=2*a; break;
case 3: break;
default: break;
)
```

a*=4; b=b>>1;
for(i=1;i<sizeof(int)*4;i++) iterate();
}
int data[][2] = {{2,1},{-20,57},{30,40},{-1,-4},{178,-178}};
void main()
{
operands op; // here the private data is initialized to 0
int i;
for(i=0;i<sizeof(data)/sizeof(int)/2;i++)
{
op.set_a(data[i][0]);
op.set_b(data[i][1]);

```
\begin{tabular}{ll}
\hline C++ Source & \\
& \begin{tabular}{l} 
op.print_operands(); \\
op.compute_product(); // This changes the operands a and b \\
op.print_product();
\end{tabular} \\
1
\end{tabular}

Code List 4.14 Output of Program in Code List 4.13

\section*{C++ Output}
\(\mathrm{A}=2 \mathrm{~B}=1\)
Product \(=2\)
\(A=-20 \quad B=57\)
Product \(=-1140\)
\(\mathrm{A}=30 \mathrm{~B}=40\)
Product \(=1200\)
\(A=-1 \quad B=-4\)
Product \(=4\)
\(\mathrm{A}=178 \mathrm{~B}=-178\)
Product \(=-31684\)
\begin{tabular}{|l|l|}
\hline Previous Table of Contents & Next \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Previous Table of Contents & Next \\
\hline
\end{tabular}

\subsection*{4.4 Fixed Point Division}

This section presents algorithms for fixed point division. For fixed point division a \(2 n\) bit number, the dividend, is divided by an \(n\) bit number, the divisor, to yield an \(n\) bit quotient and an \(n\) bit remainder. Overflow can occur in the division process (see Problem 4.7).

\subsection*{4.4.1 Restoring Division}

Restoring division is similar to the process of grade school addition. After aligning the bits appropriately the pseudocode is shown in Table 4.8.

Table 4.8 Division PsedudoCode
```

if divisor < dividend
{
dividend = dividend - divisor
place a 1 in quotient field
shift dividend over
}
else
{
place a 0 in quotient
shift dividend over
}

```

The pseudocode in Table 4.8 is repeated until the desired precision is reached. At which point the final dividend becomes the remainder. When this simple algorithm is executed on a computer in order for it to test whether divisor < dividend it performs the subtraction
\[
\begin{equation*}
\text { dividend }=\text { dividend }- \text { divisor } \tag{4.31}
\end{equation*}
\]

If the result is nonnegative then it places a 1 in the quotient field. If the result is less than zero then the subtraction should not have occurred so the computer performs
\[
\begin{equation*}
\text { dividend }=\text { dividend }+ \text { divisor } \tag{4.32}
\end{equation*}
\]
to restore the dividend to the correct result and places a zero in the quotient field. The computer then shifts the dividend and proceeds. This results in the pseudocode in Table 4.9.

Table 4.9 Restoring Division PseudoCode
```

dividend $=$ dividend - divisor
if dividend e 0
$\{$
place a 1 in quotient field
\}
else
\{
dividend $=$ dividend + divisor
place a 0 in the quotient field
\}
shift over dividend

```

Problem 4.3 develops a C++ program to simulate restoring division.

\subsection*{4.4.2 Nonrestoring Division}

Nonrestoring division is a technique which avoids the need to restore on each formation of the quotient bit. In effect, the need to restore is delayed until the final quotient bit is formed. The algorithm avoids this by noting that if a subtraction occurred that should not have then the next step in the algorithm would be to restore, then shift, then subtract.
\[
\begin{align*}
& \text { dividend }{ }^{\prime}=\text { dividend }- \text { divisor }  \tag{4.33}\\
& \text { dividend }^{\prime \prime}=2 \times\left(\text { dividend }^{\prime}+\text { divisor }\right)-\text { divisor } \tag{4.34}
\end{align*}
\]
so that
\[
\begin{equation*}
\text { dividend }{ }^{\prime \prime}=2 \times \text { dividend }{ }^{\prime}+\text { divisor } \tag{4.35}
\end{equation*}
\]

It can be seen that the (restore, shift,subtract) is equivalent to a (shift,add). This is used to avoid the restore operation and is thus called nonrestoring division. The computer does continuous shift-subtract operations until the result is negative at which point the next operation becomes a shift-add. If on the final cycle the result is negative the computer will add the divisor back to restore the dividend (which on the final cycle is the remainder).

The program to perform nonrestoring division is shown in Code List 4.15. The output of the program is shown in Code List 4.16. The program uses a similar register-saving technique to the Booth algorithm. The program performs the division of a \(2 n\) bit number by an \(n\) bit number
\[
\begin{equation*}
\frac{\mathrm{R}: \mathrm{Q}}{\mathrm{~B}} \tag{4.36}
\end{equation*}
\]

At the termination of the program the remainder is in R and the quotient is in Q . The program illustrates the division of \(37 / 14\) which yields 2 with a remainder of 9 .

The program demonstrates a number of features in C++. The program introduces a class called number
which defines the operations for the data. The class includes data and functions:
- number: this is the constructor function for the class which is called when a variable of type number is created
- get_value: the get_value function is used to return bit number \(x\) of the number. This is used to access the private data of the class which is hidden from the user.
- shift_left: the shift_left function is used to perform a logical left shift on the data. This operation is used extensively in the nonrestoring division algorithm.
- print_value: the function print_value is used to print the number and accepts a character string to be printed before prior to the value.
- ones_complement: the ones_complement function performs the ones_complement which is used to calculate the negative of a number in the addition process.
- operator \(>=\) : this overloads the greater than or equal operator in the program. When comparing two objects of type number this function is called.
- operator<: this operator overloads the less than operator when comparing objects of type number.
- operator+: this operator overloads the plus operator when comparing objects of type number.
- operator-: this operator overloads the minus operator when comparing objects of type number.

The + operator is defined first and is used in subsequent definitions of other overloaded operators. The + operator performs a ripple-carry (see Section 4.1.2) addition of the two numbers passed and returns the result as a number.

Rather than calculate the algorithm for the - operator it uses the newly overloaded + operator to calculate the subtraction by noting that \(x-y=x+(-y)\).

The \(>=\) operator uses the newly formed - operator to return the difference in x and y as a number and accesses the most significant bit (the sign) of it to see if the difference is less than zero. It returns a value according to the test.

The < operator performs in a similar fashion.
The left_shift_add function introduces a feature of \(\mathrm{C}++\) not present in C . The first parameter in the function argument list is declared as number\& \(B\). As a result \(B\) is passed to the function as a pointer and is automatically dereferenced on use. See Section 3.1 for a more detailed description of pointers in C++.

Code List 4.15 Nonrestoring Division

\section*{C++ Source Code}
\#include <iostream.h>

\section*{\#define N 32}
class number
\{
private:
char value[ N ];
public:
number(long \(x=0\) );
char get_value(int \(x\) ) \{ return value[x]; \}
void shift_left();
void print_value(char * x);
number ones_complement();
friend int operator \(>=\) (number \(x, n u m b e r y)\);
friend int operator<(number \(x\),number \(y\) );
friend number operator+(number \(x\), number \(y\) );
friend number operator-(number \(x\), number \(y\) );
\[
\text { \}; }
\]
number number::ones_complement()
int i ;

\section*{number x ; \\ for \((i=0 ; i<N ; i++)\) if(value \([i]==0) x . v a l u e[i]=1\); else \(x . v a l u e[i]=0\);} return x ;
\}
void number::number(long \(x\) )
\{
int \(i\);
unsigned long mask \(=0 \times 1\);
for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++\) )
\{ value[i]=(x\&mask?1:0);
mask<<=1;
\};
\}
void number::shift_left()
\{
int \(i\);
for \((\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++)\) value \([\mathrm{N}-\mathrm{i}]=\) value \([\mathrm{N}-1-\mathrm{i}]\);
value \([0]=0.0\);
)
void number::print_value(char * x)
I
:... :.

III 1 ;
cont \(\ll \mathrm{X}\);
for \((\mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>=0 ; \mathrm{i}--)\) \{ cut \(\ll(\) char \()(\) value \([\mathrm{i}]+0 \times 30) ;\}\)
court << end l;
।
number operator+(number \(x\), number \(y\) )

\section*{C++ Source Code}
int i ;
int carry \(=0\);
for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++)\)
|
switch (x.value[i]*4+y.value[i]*2+carry)
\(\{\)
case 3:
case 5:
case 6:
case 7:
\(x\). value \([i]=x\). value \([i]^{\wedge} y . v a l u e[i]^{\wedge}\) carry; carry \(=1\); break;
default: \(x\).value[i]=x.value[i]^y.value \([i]^{\wedge}\) carry;
carry \(=0\);

\section*{return x ;}
\}
number operator-(number x , number y )
\{
return (x+y.ones_complement()+1);
\}
int operator>=(number \(x\), number \(y\) )
\{
if \(((x-y)\).get_value \((N-1)==1)\) return 0 ; else return 1 ;
\}

C++ Source Code
int operator<(number x,number y)
\{
if \(\left((x-y) . g e t \_v a l u e(N-1)==1\right)\) return 1 ; else return 0 ;
\}
void left_shift_add(number\& B, number\& R, number\& Q)
\{
\[
\begin{aligned}
& \text { R.shift_left(); } \\
& \text { R=R+Q.get_value(N-1); } \\
& \text { Q.shift_left(); } \\
& \mathrm{R}=\mathrm{R}+\mathrm{B} ; \\
& \text { if(R>=0) } \mathrm{Q}=\mathrm{Q}+1 ;
\end{aligned}
\]
\}
void left_shift_subtract(number\& \(B\), number\& \(R\), number\& \(Q\) )
\{
R.shift_left();
\(\mathrm{R}=\mathrm{R}+\mathrm{Q}\). get_value \(\left.^{(\mathrm{N}} \mathrm{N}-1\right)\);
Q.shift_left();
\(\mathrm{R}=\mathrm{R}-\mathrm{B}\);
if( \(\mathrm{R}>=0) \mathrm{Q}=\mathrm{Q}+1\);
)
void restore(number \& \(B\), number \& \(R\) )
1
\[
\mathrm{R}=\mathrm{R}+\mathrm{B}
\]
\}
void main()
1

\section*{C++ Source Code}

\section*{number \(\mathrm{B}(14), \mathrm{R}(0), \mathrm{Q}(37)\);}
int j ;
B.print_value("B = ");
R.print_value(" \(\mathrm{R}=\) ");
Q.print_value(" \(\mathrm{Q}=\) = ");
```

for(j=0;j<N;j++)
|
if(R>=0) left_shift_subtract(B,R,Q); else
left_shift_add(B,R,Q);
|
if(R<0) restore(B,R);

```
    cout << "Calculation Done" << endl;
    R.print_value("R = ");
Q.print_value(" \(\mathrm{Q}=\) = ");
I

Code List 4.16 Output of Program in Code List 4.15

\section*{C++ Output}
\(B=00000000000000000000000000001110\)
\(\mathrm{R}=00000000000000000000000000000000\)
\(Q=00000000000000000000000000100101\)
Calculation Done
\(R=00000000000000000000000000001001\)
\(Q=00000000000000000000000000000010\)
Previous Table of Contents Next
Previous Table of Contents Next

\subsection*{4.4.3 Shifting over 1's and 0's}

If the divisor is normalized so that it begins with a 1 then the technique of the previous sections can be improved to skip over 1's and 0's. Shifting over 0's is simple to see. If 0.000010101 is divided by 0.10111 It is easy to see that the first four quotient bits are zero. So rather than performing the subtraction, the dividend is renormalized each time a string of zero's is encountered. Similarly, if after each subtraction the result is a string of 1's, then the 1 's can be skipped over placing 1 's in the quotient bit. This technique is derived in Problem 4.5.

\subsection*{4.4.4 Newton's Method}

In Newton's method the quotient to be formed is the product \(A(1 / B)\). For this case, once \(1 / B\) is determined a single multiplication cycle generates the desired result. Newton's method yields the iteration
\[
\begin{equation*}
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \tag{4.37}
\end{equation*}
\]
which for the function
\[
\begin{equation*}
f(x)=\frac{1}{x}-B \tag{4.38}
\end{equation*}
\]
gives
\[
\begin{equation*}
x_{i+1}=x_{i}\left(2-B x_{i}\right) \tag{4.39}
\end{equation*}
\]

Under suitable well known conditions \(x_{i}\) will converge to the inverse. Hence using Newton's algorithm the process of division is achieved via addition and multiplication operations. The C++ source code illustrating this technique is shown in Code List 4.17. The output of the program is shown in Code List 4.18.

\section*{Code List 4.17 Floating Point Division}

\section*{C++ Source Code}
\#include <iostream.h>
\#include <math.h>
// This program simulates Newton's method to perform
//The division \(\mathrm{A} / \mathrm{B}\)
class data
private:
double value;

\section*{C++ Source Code}

\section*{double iter;}
public:
data(double \(x=1.0)\{\) value \(=x ;\) iter \(=1.0 ;\}\)
void print() \{ cout <<"Iteration value is " << iter <<endl; \}
void iterate() \{ iter = iter*(2-iter*value); \}
double error() \{ return fabs(iter-1.0/value); \};
double inverse() \{ return 1.0/value; \};
void simulate();
\(\}\)
void data::simulate()
\{
cout << "Calculating inverse for \(x=\) " << value << endl; while(error() \(>1.0 \mathrm{e}-5\) ) \(\{\) iterate(); print(); \} cout << endl
<< "True inverse is \(1 / x=\) " << inverse() << endl;
\(\mathrm{x}=.7\);
x.simulate();
\(\mathrm{x}=.75\);
x.simulate();
\(\mathrm{x}=0.5\);
x.simulate();
\(\mathrm{x}=1.0\);

\section*{C++ Source Code}

\section*{x.simulate(); \\ \}}

Code List 4.18 Output of Program in Code List 4.17

\section*{C++ Output}

Calculating inverse for \(\mathrm{x}=0.7\)
Iteration value is 1.3
Iteration value is 1.417
Iteration value is 1.428478

\section*{Iteration value is 1.428571}

True inverse is \(1 / x=1.428571\)
Error is \(6.149532 \mathrm{e}-09\)
*******************************
Calculating inverse for \(\mathrm{x}=0.75\)
Iteration value is 1.25
Iteration value is 1.328125
Iteration value is 1.333313
Iteration value is 1.333333

True inverse is \(1 / x=1.333333\)
Error is \(3.104409 \mathrm{e}-10\)
*******************************
Calculating inverse for \(\mathrm{x}=0.5\)
Iteration value is 1.5
Iteration value is 1.875
Iteration value is 1.992187
Iteration value is 1.999969
Iteration value is 2

True inverse is \(1 / x=2\)

\section*{C++ Output}

\section*{Error is \(4.656613 \mathrm{e}-10\)}
*******************************
Calculating inverse for \(\mathrm{x}=1\)

True inverse is \(1 / x=1\)
Error is 0
*******************************

\subsection*{4.5 Residue Number System}

\subsection*{4.5.1 Representation in the Residue Number System}

The residue number systems is a system which uses an alternate way to represent numbers. For integers, in 2 's complement notation, the representation for a number was
\[
\begin{equation*}
A \equiv a_{n-1} a_{n-2} \ldots a_{0} \tag{4.40}
\end{equation*}
\]
with a value of
\[
\begin{equation*}
A=\left(\sum_{k=0}^{n-2} a_{k} 2^{k}\right)-a_{n-1} 2^{n-1} \quad a_{k} \in\{0,1\} \tag{4.41}
\end{equation*}
\]

For this case, a number \(A\) is represented with n binary bits. The value is relatively easy to calculate via Eq. 4.41. A natural problem occurred with this representation for the process of addition. When \(n\) is large the calculation of the carry-in to each stage is the dominating factor with regard to the performance of the addition operation as noted in Section 4.1.2. Using methodologies in number theory, an alternate representation can be used which reduces the problems of with regard to the carry-in calculation.

The residue number system uses a set of relatively prime numbers:
\[
\begin{equation*}
M=\left\{m_{0}, m_{1}, \ldots, m_{n-1}\right\} \tag{4.42}
\end{equation*}
\]
and represents a number \(A\) with respect to these moduli by the n-tuple:
\[
\begin{align*}
A \equiv & \left(A \bmod m_{0}, A \bmod m_{1}, \ldots, A \bmod m_{n-1}\right)  \tag{4.43}\\
& A \equiv\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \tag{4.44}
\end{align*}
\]

Two numbers are relatively prime if their greatest common divisor is one. Using the standard notation with
\[
\begin{equation*}
(x, y) \tag{4.45}
\end{equation*}
\]
to denote the greatest common divisor of \(x\) and \(y\). The requirement on the set \(M\) is that each of the members be pairwise relatively prime:
\[
\begin{equation*}
\left(m_{i}, m_{j}\right)=1 \quad 0 \leq i, j \leq n-1 \tag{4.46}
\end{equation*}
\]

For example, a representation with the moduli
\[
\begin{equation*}
M=\{2,3,5,7,11\} \tag{4.47}
\end{equation*}
\]
the number 12 is represented as
\[
\begin{equation*}
(0,0,2,5,1)=12 \tag{4.48}
\end{equation*}
\]
and 14 is represented as
\[
\begin{equation*}
0,2,4,0,3)=14 \tag{4.49}
\end{equation*}
\]

The addition of 12 and 14 can be accomplished by adding the vector representation and performing the modulus operation:
\[
\begin{gather*}
(0,0,2,5,1)+(0,2,4,0,3)=((0+0) \bmod 2,(0+2) \bmod 3, \ldots)  \tag{4.50}\\
=(0,2,1,5,4)
\end{gather*}
\]

Notice that the result is the same obtained when representing 26 in the notation.

\section*{The Range of the Residue Number Systems}

The residue number system can represent N distinct numbers with
\[
\begin{equation*}
N=\prod_{i=0}^{n-1} m_{i} \tag{4.51}
\end{equation*}
\]

For example, the moduli in Eq. 4.47,
\[
\begin{equation*}
N=2 \times 3 \times 5 \times 7 \times 11=2310 \tag{4.52}
\end{equation*}
\]

The result stated in Eq. 4.51 is established in Problem 4.15.

\subsection*{4.5.2 Data Conversion - Calculating the Value of a Number}

This section derives a method for calculating the value of a number given only its representation in terms of the moduli. It is necessary to introduce some quantities in number theory. The Euler totient function, \(\notin(n)\), is defined for a number, \(n\), as the number of positive integers satisfying
\[
\begin{equation*}
(n, k)=1 \quad 1 \leq k \leq n \tag{4.53}
\end{equation*}
\]

For example,
\[
\begin{align*}
& \varphi(1)=1 \\
& \varphi(2)=1  \tag{4.54}\\
& \varphi(3)=2
\end{align*}
\]

If \(n\) is a prime number then
\[
\begin{equation*}
\varphi(n)=n-1 \tag{4.55}
\end{equation*}
\]
defining the weights, \(w_{i}\), as
\[
\begin{equation*}
w_{i}=\left(\frac{N}{m_{i}}\right)^{\varphi\left(m_{i}\right)} \tag{4.56}
\end{equation*}
\]

The vector \(W\) as
\[
\begin{equation*}
W=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right) \tag{4.57}
\end{equation*}
\]
and a number \(A\), as
\[
\begin{equation*}
A=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \tag{4.58}
\end{equation*}
\]

The value of \(A\) is given as
\[
\begin{equation*}
\text { value }(A)=(W \cdot A) \bmod N=\left(\sum_{i=0}^{n-1} W_{i} m_{i}\right) \bmod N \tag{4.59}
\end{equation*}
\]

This result is established in Problem 4.17. Consider the example in Eq. 4.47. For this case:
\[
\begin{equation*}
w_{0}=\frac{N}{m_{0}}=\frac{N}{2}=1155 \tag{4.60}
\end{equation*}
\]

Similarly, \(W\) becomes
\[
\begin{equation*}
W=(1155,1540,1386,330,210) \tag{4.61}
\end{equation*}
\]

To calculate the number 26 from its representation in Eq. 4.50 one has
\[
\begin{gather*}
\text { Value }(A)=(1155,1540,1386,330,210) \cdot(0,2,1,5,4) \\
=(2 \cdot 1540+1386+5 \cdot 330+4 \cdot 210) \bmod 2310  \tag{4.62}\\
=6956 \bmod 2310=26
\end{gather*}
\]

\subsection*{4.5.3 C++ Implementation}

A program to simulate the Residue Number System is shown in Code List 4.19. The output of the program is shown in Code List 4.20.

In the program a class data is declared which has the following data and functions:
- unsigned moduli[N]: this data item is used to hold the representation of each of the moduli.
- data: this is the constructor function for data which is called any time a variable is declared.
- set: this function is used to set the data's value.
- print: this function is used to print out the moduli and the value by calling the value function.
- value: this function calculates the value of the number from its residue representation.
- operator+: the + operator has been overloaded to perform the required addition in the residue number system.
- operator*: the * operator has been overloaded to perform multiplication in the residue number system.

This program is a natural example for the use of the overloading operators in C++. Since the addition of the two numbers in the residue systems consists of the respective additions of their moduli it is natural to replace this operator for addition.

The output supplies all the moduli and prints out the relatively prime numbers at the top. Notice that the print function takes in an optional char * to print out a small string. If the string is not supplied it defaults to an empty string.
Code List 4.19 Residue Number System

\section*{C++ Source}
// This program simulates addition and multiplication in the residue number system \#include <iostream.h>
\#include <iomanip.h>
\#include <stdlib.h>
\#include < string.h>
unsigned long rprime []\(=\{7,15,31,32\}\);
unsigned long eul []\(=\{6,8,30,16\}\);
unsigned long weights[4];
\#define N sizeof(rprime)/sizeof(long)
```

class data
{
unsigned int moduli[N];
public:
data(unsigned long x=0);
void set(unsigned long x=0);
void print(char * x = '"');
unsigned long value();
friend data operator+(data x,data y);
friend data operator*(data x,data y);
};
// constructor function
data::data(unsigned long x)
{
int i;
for(i=0;i<N;i++) moduli[i]=x%rprime[i];
}
void data::set(unsigned long x)
{
int i;
for(i=0;i<N;i++) moduli[i]=x%rprime[i];
}

```

\section*{C++ Source}
void data::print(char * x)
I
int i ;
cout << setw(7) << x;
for (i=0;i<N;i++) cout <<" " \ll setw(2) << moduli[i];
cout <<" * " << value() << endl;
```

unsigned long data::value()
{
int i;
unsigned long x=0;
unsigned long prod=1;
for(i=0;i<N;i++) prod*=rprime[i];
for(i=0;i<N;i++) x=(x+moduli[i]*}\mathrm{ weights[i])%prod;
return x;
|
//overload addition operator
data operator+(data a, data b)
|
data c;
int i;
for(i=0;i<N;i++) c.moduli[i] = (a.moduli[i]+b.moduli[i])%rprime[i];
return c;
J
//overload multiplication operator
data operator*(data a, data b)
I
data c;
int i;
for(i=0;i<N;i++) c.moduli[i] = (a.moduli[i]*b.moduli[i])%rprime[i];
return c;
J

```

\section*{C++ Source}
void header()
1
int i ;
lana nmod- 1 .
```

ring picu-1,
cout << setiosflags(ios::left);
for(i=0;i<N;i++) prod*=rprime[i]; cout << "Range Handled 0 to "
<< prod-1 << endl << endl;
cout << setw(7) << "Comment";
for(i=0;i<N;i++) cout<< " " << setw(2) << rprime[i];
cout << " * Value" << endl;
for(i=0;i<34;i++) cout << "*"; cout << endl;
// Caclulate weights
for(i=0;i<N;i++)
I
unsigned long k;
k=prod/rprime[i];
weights[i]=1;
int j;
for(j=0;j<eul[i];j++) weights[i]=(weights[i]*k)%prod;
}
}
void main()
{
header();
data x(29),y(30);
x.print("x=29");
y.print("y=30");
x=x+y;
x.print("x=x+y");
x=x+2;
x.print("x=x+2");
x=x*3;

```

\section*{C++ Source}
```

x.print("x=x*3");
// Let's look at the weights
I
int i;
char s[8], num[2];
for(i=0;i<N;i++) { strepy(s,"weight"); x.set(weights[i]);
x.print(strcat(s,itoa(i,num,10))); }
|
}

```

Code List 4.20 Output of Program in Code List 4.19

\section*{C++ Output}
Range Handled 0 to 104159
Comment \(7 \quad 153132\) * Value
\begin{tabular}{lllllll}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\) \\
\(\mathrm{x}=29\) & 1 & 14 & 29 & 29 & \(*\) & 29 \\
\(\mathrm{y}=30\) & 2 & 0 & 30 & 30 & \(*\) & 30 \\
\(\mathrm{x}=\mathrm{x}+\mathrm{y}\) & 3 & 14 & 28 & 27 & \(*\) & 59 \\
\(\mathrm{x}=\mathrm{x}+2\) & 5 & 1 & 30 & 29 & \(*\) & 61 \\
\(\mathrm{x}=\mathrm{x} * 3\) & 1 & 3 & 28 & 23 & \(*\) & 183 \\
weight 0 & 1 & 0 & 0 & 0 & \(\star\) & 44640 \\
weight 1 & 0 & 1 & 0 & 0 & \(*\) & 97216 \\
weight2 & 0 & 0 & 1 & 0 & \(*\) & 43680 \\
weight 3 & 0 & 0 & 0 & 1 & \(*\) & 22785
\end{tabular}

Code List 4.21 Euler Totient Function

\section*{C++ Source}
```

\#include <iostream.h>
// This program determines the Euler totient function
unsigned long rprime[]={7,15,31,32};
\#define N sizeof(rprime)/sizeof(long)
unsigned long gcd(unsigned long x, unsigned long y)
I
while(y!=0) {
unsigned temp=y;
y=x%y;
x=temp;
}
return x;
|
void main()
{
unsigned long i,j,value;
for(i=0;i<N;i++)
I
value=0;
for(j=1;j<rprime[i];j++) if(gcd(j,rprime[i])==1) value++;
cout << "The value for " << rprime[i] << " is " << value << endl;
|
}

```

\section*{C++ Output}

The value for 7 is 6
The value for 15 is 8
The value for 31 is 30
The value for 32 is 16

\author{
\begin{tabular}{|l|l|}
\hline Previous Table of Contents Next \\
\hline
\end{tabular}
}
\begin{tabular}{|l|l|}
\hline Previous & Table of Contents \\
\hline
\end{tabular}

\subsection*{4.6 Problems}
(4.1) Modify Code List 4.1 to simulate 16, 32 , and 64 -bit 2 's complement addition. Add a procedure to detect for overflow and indicate via output when overflow has occurred.
(4.2) Modify Code List 4.5 to simulate a CLA adder with 3 sections each with 3 groups each with 8 1-bit adders.
(4.3) Write a C++ program to simulate restoring division. Your program should support \(n\) bit inputs. Use the overload operators to perform addition and subtraction of each of the inputs.
(4.4) Modify the Code List 4.13 to support \(n\) bit inputs. Use a similar register structure as the example in Figure 4.14.
(4.5) First by example, then by proof, demonstrate the technique of shifting over 1 's and 0 's in non-restoring division.
(4.6) Write a C++ program to simulate modify Code List 4.15 to shift over 1's and 0 's.
(4.7) Derive the conditions for overflow in fixed point division.
(4.8) Add all the common logical functions to Code List 4.7.
(4.9) Rewrite Code List 4.7 to simulate a JK Flip-Flop.
(4.10) Calculate the average number of operations required in the Booth algorithm for 2's complement multiplication. How does this compare to the shift-add technique?
(4.11) Modify Code List 4.7 to simulate Carry Lookahead Addition at the gate level for an 8 -bit module.
(4.12) [Moderately Difficult] Modify Code List 4.13 to output, to a PostScript file, the timing diagram for the circuit which is simulated. Make rational assumptions about the desired interface. Use the program to generate a PostScript file for the timing diagram in Figure 4.12.
(4.13) Graphically illustrate Newton's method described in Eq. 4.37.
(4.14) Theoretically demonstrate that the \(g c d\) function in Code List 4.21 does in fact return the greatest common divisor of the inputs \(x\) and \(y\).
(4.15) [Uniqueness] Show that if a residue number system is defined with moduli
\[
M=\left\{m_{0}, m_{1}, \ldots, m_{n-1}\right\}
\]
and \(A\) and \(B\) are integers such that
\[
0 \leq A<N \quad 0 \leq B<N \quad N=\prod m_{i}
\]
and if
\[
a_{i}=b_{i} \quad 0 \leq i<N
\]
with
\[
a_{i}=A \bmod m_{i} \quad b_{i}=B \bmod m_{i}
\]
then
\[
A=B
\]
(4.16) If \(m_{i}\) and \(m_{j}\) are integers satisfying
\[
\begin{array}{ll}
\left(m_{i}, m_{j}\right)=\left(m_{i}-1\right) \delta_{i j}+1 & 0 \leq i \leq m-1 \\
& 0 \leq j \leq m-1
\end{array}
\]
with
\[
\delta_{i j}=\left\{\begin{array}{cc}
1, & (i=j) \\
0, & \text { otherwise }
\end{array}\right.
\]
and
\[
N=\prod_{i=0}^{n-1} m_{i}
\]
prove that if
\[
w_{i}=\left(\frac{N}{m_{i}}\right)^{\varphi\left(m_{j}\right)}
\]
then
\[
w_{i} \bmod m_{j}=\delta_{i j}
\]
(4.17) Prove that Eq. 4.59 is true.
\begin{tabular}{|l|l|}
\hline Previous & Table of Contents Next \\
\hline
\end{tabular}

Algorithms and Data Structures in \(\mathrm{C}_{++}\) by Alan Parker
CRC Press, CRC Press LLC
ISBN: 0849371716 Pub Date: 08/01/93

\author{
Table of Contents
}

\section*{Index}

Acyclic graph 66
Adder

CLA adder module 200
CLA adder, 16 bit 203
full 189
half 189
output delay for half adder 193
2's Complement 4 bit adder 192

Addition
carry lookahead 197
overflow 196
ripple carry 191, 193
2's complement 187

Adjacency matrix 80
Algorithm
booth 223
efficiency 71
order 37
pipelining 71
time complexity 38

\section*{Arrays 112}
class 119
example of 114

ASCII 26

B
Binary search 149
Bit operators 20
Bit-pair recoding 228
Booth algorithm 223
Bridge 67
Broadcast 78
C
Carry lookahead addition 197
Circular lists 133
CLA adder

16 bit 203

CLA adder module 200
Connected graph 65
Conversion
residue number system 246

Crossbar
topology 74

Cube-connected cycles
topology of 77

Cycle
in a graph 66

D
Data structures 101
Decimal to binary conversion 28
delete 102, 110
Directed graph 65
Division
fixed point 232
nonrestoring 234
restoring 233

Doubly linked lists 133
Dynamic memory allocation 101, 110
E
Efficiency 71, 83
Efficient hypercubes 80
Euler totient function 246

Factorial 45
Fibonacci numbers 46
FIFO 122
File formats

DOS 32
Unix 32

Fill 52
Fixed point division 232
Floating point

Floating point notation 16
free 112
G
Graph 62
acyclic 66
adjacency matrix of 80
bridge 67
connected 65
cycle 66
directed 65
neighbors 64
order 63
path 64
planar 68
size 63
subgraph 64
transitive closure 68
tree 67

Hypercube
broadcast 78
distance between processors 78
efficiency 83
efficient 83
message passing 78, 79
path length 81
topology of 76

Hypercubes
efficient 80

\title{
IEEE 754 Floating Point Standard 16
}

Induction 42
infinite descent 43

Infinite descent 43
Integers 1
L
Least-weighted path length 81
LIFO 122
Linear search 148
Linked lists 126
circular lists 133
doubly linked lists 133
operations on 134
singly linked lists 126
malloc 112
Mathematical Induction 42
Matrix
adjacency 80

Median of three 152
Message
in a hypercube 79

Message passing in a hypercube 78

Moveto 52

\section*{Multiplication}
bit-pair recoding 228
booth algorithm 223
shift-add 221
2's complement 215

N
new 102, 110
Newpath 52
Newton's method 241
Nonrestoring division 234
0
Operator
overloading 117

Order 37
of a graph 63

Overflow
in addition 196

Overloading
```

of operators 117

```

Path 64
Pipelining 71
Planar graph 68
Pointers 101, 105
as arrays 107
double pointer example 106

Postscript 52
Procedure
recursive 45

Q
Quadratic formula 48
Quicksort 150
median of three 152

R
Rectangular mesh
topology of a 76

Recurrence relation 46
Recursion 45
tower of hanoi 51

Representations

\section*{ASCII 26}
floating point 16 integer 1
signed-magnitude notation 6 unsigned notation 5
2's complement notation 7

Residue number system 244
data conversion 246
range of numbers 245
representation in 244

Restoring division 233
Ripple carry addition 191
Rlineto 52

\section*{S}

\section*{Searching}
\[
\text { binary search } 149
\]
linear search 147

Setgray 52
Setlinewidth 52
Shift-add multiplication 221
Showpage 52
Sign extension 11
signed-magnitude notation 12
2 's complement notation 12 unsigned notation 12

Signed-magnitude notation 6
Simulated annealing 165
Size
of a graph 63

Sorting
quicksort 150

Stack
fifo 122
lifo 122

Subgraph 64
T
Time complexity 38
Topology
crossbar 74
cube-connected cycles 77
hypercube 76
rectangular mesh 75

Tower of hanoi 51
Transitive closure 68, 80
Tree 67
2's complement notation 7

Unions 20, 33
Unsigned notation 5

Visualization 52

\section*{Table of Contents}```


[^0]:    Previous Table of Contents Next

[^1]:    Previous Table of Contents Next

