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Preface

This book is intended to survey the most important computer algorithms in use
today and to teach fundamental techniques to the growing number of people in need
of knowing them. It can be used as a textbook for a second, third, or fourth course
in computer science, after students have acquired some programming skills and
familiarity with computer systems, but before they have taken specialized courses
in advanced areas of computer science or computer applications. Additionally,
the book may be useful for self-study or as a reference for those engaged in the
development of computer systems or applications programs, since it contains a
number of implementations of useful algorithms and detailed information on their
performance characteristics. The broad perspective taken in the book makes it an
appropriate introduction to the field.

Scope

The book contains forty-five chapters grouped into eight major parts: fundamen-
tals, sorting, searching, string processing, geometric algorithms, graph algorithms,
mathematical algorithms and advanced topics. A major goal in developing this
book has been to bring together the fundamental methods from these diverse areas,
in order to provide access to the best methods known for solving problems by
computer. Some of the chapters give introductory treatments of advanced mate-
rial. It is hoped that the descriptions here can give readers some understanding of
the basic properties of fundamental algorithms ranging from priority queues and
hashing to simplex and the fast Fourier transform.

One or two previous courses in computer science or equivalent programming
experience are recommended for a reader to be able to appreciate the material in
this book: one course in programming in a high-level language such as C or Pascal,
and perhaps another course which teaches fundamental concepts of programming
systems. This book is thus intended for anyone conversant with a modern program-
ming language and with the basic features of modern computer systems. References
that might help fill in gaps in one’s background are suggested in the text.

Most of the mathematical material supporting the analytic results is self-
contained (or labeled as “beyond the scope™ of this book), so little specific prepa-
ration in mathematics is required for the bulk of the book, though a certain amount
of mathematical maturity is definitely helpful. A number of the later chapters
deal with algorithms related to more advanced mathematical material—these are
intended to place the algorithms in context with other methods throughout the
book, not to teach the mathematical material. Thus the discussion of advanced
mathematical concepts is brief, general, and descriptive.
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Use in the Curriculum

There is a great deal of flexibility in how the material here can be taught. To a
large extent, the individual chapters in the book can be read independently of the
others, though in some cases algorithms in one chapter make use of methods from
a previous chapter. The material can be adapted for use for various courses by
selecting perhaps twenty-five or thirty of the forty-five chapters, according to the
taste of the instructor and the preparation of the students.

The book begins with an introductory section on data structures and the design
and analysis of algorithms. This sets the tone for the rest of the book and provides
a framework within which more advanced algorithms are treated. Some readers
may skip or skim this section; others may learn the basics there.

An elementary course on “data structures and algorithms” might omit some of
the mathematical algorithms and some of the advanced topics, then emphasize how
various data structures are used in the implementations. An intermediate course
on “design and analysis of algorithms” might omit some of the more practically
oriented sections, then emphasize the identification and study of the ways in which
algorithms achieve good asymptotic performance. A course on “software tools”
might omit the mathematical and advanced algorithmic material, then emphasize
how to integrate the implementations given here into large programs or systems. A
course on “algorithms” might take a survey approach and introduce concepts from
all these areas.

" Some instructors may wish to add supplementary material to the courses de-
scribed above to reflect their particular orientation. For “data structures and algo-
rithms,” extra material on basic data structures could be taught; for “design and
analysis of algorithms,” more mathematical analysis could be added; and for “soft-
ware tools,” software engineering techniques could be covered in more depth. In
this book, attention is paid to all these areas, but the emphasis is on the algorithms
themselves.

Earlier versions of this book have been used in recent years at scores of
colleges and universities around the country as a text for the second or third course
in computer science and as supplemental reading for other courses. At Princeton,
our experience has been that the breadth of coverage of material in this book
provides our majors with an introduction to computer science that can later be
expanded upon in later courses on analysis of algorithms, systems programming
and theoretical computer science, while at the same time providing all the students
with a large set of techniques that they can immediately put to good use.

There are 450 exercises, ten following each chapter, that generally divide into
one of two typés. Most are intended to test students’ understanding of material in
the text, and ask students to work through an example or apply concepts described
in the text. A few of them, however, involve implementing and putting together
some of the algorithms, perhaps running empirical studies to compare algorithms
and to learn their properties.
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Algorithms of Practical Use

The orientation of the book is toward algorithms likely to be of practical use. The
emphasis is on teaching students the tools of their trade to the point that they
can confidently implement, run and debug useful algorithms. Full implementations
of the methods discussed are included in the text, along with descriptions of the
operations of these programs on a consistent set of examples. Indeed, as discussed
in the epilog, hundreds of figures are included in the book that have been created
by the algorithms themselves. Many algorithms are brought to light on an intuitive
level through the visnal dimension provided by these figures.

Characteristics of the algorithms and situatjons in which they might be useful
are discussed in detail. Though not emphasized, connections to the analysis of
algorithms and theoretical computer science are not ignored. When appropriate,
empirical and analytic results are discussed to illustrate why certain algorithms
are preferred. When interesting, the relationship of the practlcal algorithms being
discussed to purely theoretical results is described. Specific mformatxon on per-
formance characteristics of algorithms is encapsulated throughout in “properties,”
important facts about the algorithms that deserve further study.

While there is little direct treatment of specific uses of the algorithms in sci-
ence and engineering applications, the potential for such use is mentioned when
appropriate. -Our experience has been that when students learn good algorithms in
a computer science context early in their education, they are able to apply them to
solve problems when warranted later on.

Programining Language

The programming language used throughout the book is C (a Pascal version of the
book is also available). Any particular language has advantages and disadvantages;
we use C because it is. widely available and provides the features needed for our
implementations. The programs can easily be translated to other modern program-
ming languages, since relatively few C constructs are used. Indeed, many of the
programs have been translated from Pascal and other languages, though we try to
use standard C idioms when appropriate.

Some of the programs can be simplified by using more advanced language
features, but this is true less often than one might think. Although language features
are discussed when appropriate, this book is not intended to be a reference work on
C programming. When forced to make a choice, we concentrate on the algorithms,
not implementation details.

A goal of this book is to present the algorithms in as simple and direct a
form\as possible.- The programs are intended to be read not by themselves, but as
part of the surrounding text. This style was chosen as an alternative, for example,
to having inline comments. The style is consistent whenever p0551b1e so that
programs that are similar look similar.
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Epilog

The algorithms in this book have already been used for at least one application:
producing the book itself. In large measure, when the text says “the above program
generates the figure below,” this is literally so. The book was produced on a
computer-driven phototypsetting device, and most of the artwork was generated
automatically by the programs that appear here. The primary reason for organizing
things in this way is that it allows complex artwork to be produced easily; an
important side benefit is that it gives some confidence that the programs will work
as promised for other applications. This approach was made possible by recent
advances in the printing industry, and by judicious use of modern typesetting and
systems software. ' :

The book consists of over two thousand computer files, at least one for each
figure and each program, and one for the text of each chapter. Typesetting the
book involves not only the normal work of positioning the characters in the text,
but also running the programs, under control of the figure files, to produce high-
level descriptions of the figures that can later be printed. This process is briefly
described here. ' , '

Each algorithm is implemented both in C and Pascal. Programs are individual
files, written so that they can be bound into driver programs for debugging or
bound into the text for printing. In the text, a program may be referenced directly
for its text, in which case it is run through a formatting filter; or indirectly (through
a figure file) for its output, in which case it is executed and its output directed to
imaging software that draws a figure. During debugging, the program output was
usually simplified, as described below, though sometimes bugs were easiest to see
in the figures themselves. , '

The interface between the programs and the imaging software is a high-level
one modeled on the method developed by Marc Brown and the author for an inter-
active system to provide dynamic views of algorithms in execution for educational
and other applications. The algorithms are instrumented to produce “interesting
events” at important points during execution that provide information about changes
in underlying data structures. - Associated with each figure is a program called a
“view” that reacts to interesting events and produces descriptions for use by the
imaging software. This arrangement allows each algorithm to be used to produce
several different figures, since different views can react differently to the same set
of interesting events. (In particular, debugging views that trace the progress of an
algorithm are simple to build.) The procedure calls in the algorithms that signal
interesting events do not appear in the text because they are filtered-out in the for-
inatting step. Since the Pascal version of the book was written first, it is the Pascal
versions of the algorithms that do most of the figure drawing—the detailed work



of interfacing to the figure views was not duplicated for the C implementations that
appear here. But our original imaging software was implemented in C, so some of
these Pascal interfaces were translated from original C implementations!

The imaging package that produces the artwork itself was written specifically
for the purpose of producing this book; it again was modeled on many of the visual
designs that we developed for our interactive system, but was redone to exploit
the high resolution available on the phototypeseiting device used to print the book.
This package actually resides on the printing device and takes as input rather high-
level representations of data structures. Thus the printer arranges characters to form
a paragraph at one moment; lines, characters and shading to form a tree, graph or
geometric figure at the next. Typically, a figure file consists of the name of a view
and a small amount of descriptive information about the size of the picture and the
styles of picture elements. A view typically produces direct representations of data
structures (permutations are lists of integers, trees are “parent-link arrays,” efc.).
The imaging software uses all this information to arrange major- picture elements
and attend to details of drawing.

In the first edition of this book, the figures were pen-and- 1nk drawmgs because
at that time it was difficult if not impossible to produce comparable drawings
by computer. Now, it is difficult to imagine proceeding without the aid of the
computer. Creating these figures with pen and ink would be a daunting task; it
would even be difficult to write “by hand” the low-level graphic orders to create the
images (recall that the algorithms in the book did most of that work). However,
the most important contribution of the computer was not the production of the
final images (perhaps that could be done some other way, somehow), but the quick
production of interim versions for the design of the figures. Most of the figures
are the product of a lengthy design cycle including perhaps dozens of versions.

An elusive goal for computer scientists in recent decades has been'the devel-
opment of an “electronic book™ that brings the power of the computer to bear i in
the development of new communications media. On the one hand, this book may
be viewed as a step back from interactive computer-based media into a traditional
form; on the other hand, it perhaps may be viewed as one small step towards that
goal.
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Introduction

The objective of this book is to study a broad varie'ty of important and useful
algorithms: methods for solving problems which are suited for computer im-
plementation. We’ll deal with many different areas of application, always trying to
concentrate on “fundamental” algorithms that are important to know and interesting
to study. Because of the large number of areas and algorithms to be covered, we
won’t be able to study many of the methods in great depth. However, we will try
to spend enough time on each algorithm to understand its essential characteristics
and to respect its subtleties. In short, our goal is to learn a large number of the
most important algorithms used on computers today, well enough to be able to use
and appreciate them.

To learn an algorithm well, one must implement and run it. Accordingly, the
recommended strategy for understanding the programs presented in this book is
to implement and test them, experiment with variants, and try them out on real
problems.. We will use the C programming language to discuss and implement
most of the algorithms; since, however, we use a relatively small subset of the lan-
guage, our programs can easily be translated into many other modern programming
languages.

Readers of this book are expected to have at least a year’s experience in pro-
gramming in high- and low-level languages. Also, some exposure to elementary
algorithms on simple data structures such as arrays, stacks, queues, and trees might
be helpful, though this material is-reviewed in some detail in Chapters 3 and 4.
An elementary acquaintance with machine organization, programming languages,
and other basic computer science concepts is also assumed. (We’ll review such
material briefly when appropriate, but always within the context of solving partic-
ular problems.) A few of the applications areas we deal with require knowledge of
elementary calculus. We’ll also be using some very basic material involving lin-
ear algebra, geometry, and discrete mathematics, but previous knowledge of these
topics is not necessary.
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Algorithms

In writing a computer program, one is generally implementing a method of solving
‘a problem that has been devised previously. This method is often independent of
the particular computer to be used: it’s likely to be equally appropriate for many
computers. In any case, it is the method, not the computer program itself, which
must be studied to learn how the problem is being attacked. The term algorithm
is used in computer science to describe a problem-solving method suitable for
implementation as computer programs. Algorithms are the “stuff” of computer
science: they are central objects of study in many, if not most, areas of the field.

Most algorithms of interest involve complicated methods of organizing the
data involved in the computation. Objects created in this way are called data
structures, and they also are central objects of study in computer science. Thus
algorithms and data structures go hand in hand; in this book we take the view that
data structures exist as the byproducts or endproducts of algorithms, and thus need
to be studied in order to understand the algorithms. Simple algorithms can give
rise to complicated data structures and, conversely, complicated algorithms can use
simple data structures. We will study the properties of many data structures in this
book; indeed, it might well have been called Algorithms and Data Structures in C.

When a very large computer program is to be developed, a great deal of ef-
fort must go into understanding and defining the problem to be solved, anaging
its complexity, and decomposing it into smaller subtasks that can be easily imple-
mented. It is often true that many of the algorithms required after the decomposition
are trivial to implement. However, in most cases there are a few algorithms whose
choice is critical because most of the system resources will be spent running those
algorithms. In this book we will study a variety of fundamental algorithms basic
to large programs in many applications areas.

The sharing of programs in computer systems is becoming more widespread,
so that while serious computer users will use a large fraction of the algorithms in
this book, they may need to implement only a somewhat smaller fraction of them.
However, implementing simple versions of basic algorithms helps us to understand
them better and thus use advanced versions more effectively. Also, mechanisms
for sharing software on many computer systems often make it difficult to tailor
standard programs to perform effectively on specific tasks, so that the opportunity
to reimplement basic algorithms frequently arises.

Computer programs are often over-optimized. It may not be worthwhile to
take pains to ensure that an implementation is the most efficient possible unless
an algorithm is to be used for a very large task or is to be used many times.
Otherwise, a careful, relatively simple implementation will suffice: one can have
some confidence that it will work, and it is likely to run perhaps five or ten times
slower than the best possible version, which means that it may run for an extra few
seconds. By contrast, the*proper choice of algorithm in the first place can make a
difference of a factor of a hundred or a thousand or more, which might translate
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to minutes, hours, or even more in running time. In this book, we concentrate on
the simplest reasonable implementations of the best algorithms.

Often several different algorithms (or implementations) are available to solve
the same problem. The choice of the very best algorithm for a particular task can
be a very complicated process, often involving sophisticated mathematical analysis.
The branch of computer science which studies such questions is called analysis of
algorithms. Many of the algorithms that we will study have been shown through
analysis to have very good performance, while others are simply known to work
well through experience. We will not dwell on comparative performance issues:
our goal is to learn some reasonable algorithms for important tasks. But one should
not use an algorithm without having some idea of what resources it might consume,
so we will be aware of how our algorithms might be expected to perform.

Outline of Topics

Below are brief descriptions of the major parts of the book, giving some of the
specifie topics covered as well as some indication of our general orientation towards
the material. This set of topics is intended to touch on as many fundamental
algorithms as possible. Some of the areas covered are “core” computer science
areas we’ll study in some depth to learn basic algorithms of wide applicability.
Other areas are advanced fields of study within computer science and related fields,
such as numerical analysis, operations research, compiler construction, and the
theory of algorithms—in these cases our treatment will serve as an introduction to
these fields through examination of some basic methods.

FUNDAMENTALS in the context of this book are the tools and methods used
throughout the later chapters. A short discussion of C is included, followed by an
introduction to basic data structures, including arrays, linked lists, stacks, queues,
and trees. We discuss practical uses of recursion, and cover our basic approach
towards analyzing and implementing algorithms.

SORTING methods for rearranging files into order are of fundamental im-
portance and are covered in some depth. A variety of methods are developed,
described, and compared. Algorithms for several related problems are treated, in-
cluding priority queues, selection, and merging. Some of these algorithms are used
as the basis for other algorithms later in the book. _

SEARCHING methods for finding things in files are also of fundamental im-
portance. We discuss basic and advanced methods for searching using trees and
digital key transformations, including binary search trees, balanced trees, hashing,
digital search trees and tries, and methods appropriate for very large files. Rela-
tionships among these methods are discussed, and similarities to sorting methods
are pointed out.

STRING PROCESSING algorithms include a range of methods for dealing with
(long) sequences of characters. String searching leads to pattern matching which
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leads to parsing. File compress1on techniques and cryptology are also considered.
Again, an introduction to' advanced topics is given through treatment of some
elementary. problems that are important in their own right.

GEOMETRIC ALGORITHMS are a collection of methods for solving problems
involving points and lines (and other simple' geometric objects) that have only
recently come into use. We consider algorithms for finding the convex hull of ‘a set
of points, for finding intersections among geometric objects, for solving closest-
point problems, and for multidimensional searching. Many of these methods mcely
complement more elementary sorting and searching methods.

GRAPH ALGORITHMS are useful for a variety of difficult and important prob-
lems. A general strategy for searching in graphs is developed and applied to fun-
damental connectivity problems, including shortest path, minimum spannirg tree,
network flow, and matching. A unified treatment of these algorithms shows that
they are all based on the same procedure, and th1s procedure depends on a basic
data structure developed earlier.

' MATHEMATICAL ALGORITHMS include fundamental methods from arith-
metic and numerical analysis. We study methods for arithmetic with integers,
polynomials, and matrices as well as algorithms for solving a variety of mathemat-
ical problems that arise in many contexts: random number generation, solution of
simultaneous equations, data fitting, and integration. The emphasis is on algorlth-
mic aspects of the methods, not the mathematical basis.

* ADVANCED TOPICS are discussed for the purpose of relating the material in
the book to several other advanced fields of study. Special-purpose hardware, dy-
namic programming, linear programming, exhaustive search, and NP-completeness
are surveyed from an elementary viewpoint to give the reader some appreciation
for the interesting advanced fields of study suggested by the elementary problems
confronted in this book.

The study of algorithms is interesting because it is a new field (almost all of the
algorithms we will study are less than twenty-five years old) with a rich tradition
(a few algorithms have been known for thousands of years). New discoveries are
constantly being made, and few algorithms are completely understood. In this
book we will consider intricate, complicated, and difficult algorithms as well as
elegant, simple, and easy algorithms. Our challenge is to understand the former and
appreciate the latter in the context of many different potential applications. In doing
so, we will explore a variety of useful tools and develop a way of “algorithmic
thinking” that will serve us well in computational challenges to come.




The programming language used throughout this book is C. All langunages
have their good and bad points, and thus the choice of any particular lan-
guage for a book like this has advantages and disadvantages. But many modern
programming languages are similar, so by using relatively few language constructs
and avoiding implementation decisions based on peculiarities of C, we develop
programs that are easily translatable into other languages. Our goal is to present
the algorithms in as simple and direct form as possible; C allows us to do this.

* Algorithms are often described in textbooks and research reports in terms of
imaginary languages—unfortunately, this often allows details to be omitted and
leaves the reader rather far from a useful implementation. In this book we take
the view that the best way to understand an algorithm and to validate its util-
ity is through experience with an actual implementation. Modern languages are
sufficiently expressive that real implementations can be as concise and elegant as
imaginary ones. The reader is encouraged to become conversant with a local C
programming environment, because the implementations in this book are working
programs that are intended to be run, experimented with, modified, and used.

The advantage of using C in this book is that it is widely used and has all
the basic features that we need in our various implementations; the disadvantage is
that it has features not available in some other widely used modern languages, and
we must take care to be cognizant of true language dependencies in our programs.
Some of our programs are simplified because of advanced language features, but
this is true less often than one might think. When appropriate, the discussion of
such programs will cover relevant language issues.

A concise description of the C language is given in the Kernighan and Ritchie
The C Programming Language (second edition) that serves as the definition for the
language. Our purpose in this chapter is not to repeat information from that book
but rather to examine the implementation of a simple (but classic) algorithm that
illustrates some of the basic features of the language and style we’ll be using.
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Example: Euclid’s Algorithm

To begin, we’ll consider a C program to solve a classic elementary problem: “Re-
duce a given fraction to its lowest terms.” We want to write 2/3, not 4/6, 200/300,
or 178468/267702. Solving this problem is equivalent to finding the greatest com-
mon divisor (gcd) of the numerator and the denominator: the largest integer which
divides them both. A fraction is reduced to lowest terms by dividing both numer-
ator and denominator by their greatest common divisor. An efficient method for
finding the greatest common divisor was discovered by the ancient Greeks over
two thousand years ago: it is called Euclid’s algorithm because it is spelled out in
detail in Buclid’s famous treatise Elements.

Euclid’s method is based on the fact that if u is greater than v then the greatest
common divisor of u and v is the same as the greatest common divisor of v and
u — v. This observation leads to the following implementation in C:

#include <stdio.h>
int ged{int u, int v)
{
int t;
while (u > 0)

int x, y;
while (scanf("%d %d", &x, &y) != EOF)
if (x>0 && y>0)
printf ("%d %d %d\n", x, y, gcd(x,y));

First, we consider the properties of the language exhibited by this code. C has a
rigorous high-level syntax that allows easy identification of the main features of the
program. The program consists of a list of functions, one of which is named main,
the body of the program. Functions return a value with the return statement.
The built-in function scanf reads a line from the input and assigns the values
found to the variables given as arguments; printf is similar. The string within
quotes is the “format,” indicating in this case that two decimal integers are to be
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read in and three to be printed out (followed by a \n “newline” character). The
scanf function refers to its arguments “indirectly”; hence the & characters. A
built-in predicate in the standard input-output library, EOF, is set to true when
there is no more input. The include statement enables reference to the library.
We use “ANSI standard C” consistently throughout the book: the most important
difference from earlier versions of C is the way that functions and their arguments
are declared.

The body of the program above is trivial: it reads pairs of numbers from the
input, then, if they are both positive, writes them and their greatest common divisor
on the output. (What would happen if gcd were called with u or v negative or
zero?) The gcd function implements Euclid’s algorithm itself: the program is a
loop that first ensures that u >= v by exchanging them, if necessary, and then
replaces u by u~v. The greatest common divisor of the variables u and v is always
the same as the greatest common divisor of the original values presented to the
procedure: eventually the process terminates with u equal to 0 and v equal to the
greatest common divisor of the original (and all intermediate) values of u and v.

The above example is written as a complete C program that the reader should
use to become familiar with some C programming system. The algorithm of interest
is implemented as a subroutine (gcd), and the main program is a “driver” that
exercises the subroutine. This organization is typical, and the complete example
is included here to underscore the point that the algorithms in this book are best
‘understood when they are implemented and run on some sample input values.
Depending on the quality of the debugging environment available, the reader might
wish to instrument the programs further. For example, the intermediate values taken
on by u and v in the repeat loop may be of interest in the program above,

Though our topic in the present section is the language, not the algorithm, we
must do justice to the classic Euclid’s algorithm: the implementation above can be
improved by noting that, once u > v, we continue to subtract off multiples of v
from u until reaching a number less than v. But this number is exactly the same
as the remainder left after dividing u by v, which is what the modulus operator
(%) computes: the greatest common divisor of u and v is the same as the greatest
common divisor of v and u % v. For example, the greatest common divisor of
461952 and 116298 is 18, as exhibited by the sequence

461952, 116298, 113058, 3240, 2898, 342, 162, 18.

Each item in this sequence is the remainder left after dividing the previous two: the
sequence terminates because 18 divides 162, so 18 is the greatest common divisor
of all the numbers. The reader may wish to modify the above implementation to
use the % operator and to note how much more efficient the modification is when,
for example, finding the greatest common divisor of a very large number and a
very small number. It turns out that this algorithm always uses a relatively small
number of steps.
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Types of Data

Most of the algorithms in this book operate on simple data types: integers, real
numbers, characters, or strings of characters. One of the most important features
of C is its provision for building more complex data types from these elementary
building blocks. This is one of the “advanced” features that we avoid using, to keep
our examples simple and our focus on the dynamics of the algorithms rather than
properties of their data. We strive to do this without loss of generality: indeed,
the very availability of advanced capabilities such as C provides makes it easy
to transform an algorithm from a “toy” that operates on simple data types into a
workhorse that operates on complex structures. When the basic methods are
best described in terms of user-defined types, we do so. For example, the geometric
methods in Chapters 24-28 are based on types for points, lines, polygons, etc.

It is sometimes the case that the proper low-level representation of data is the
key to performance. Ideally, the way that a program works shouldn’t depend on
how numbers are represented or how characters are packed (to pick two examples),
but the price one must pay in performance through pursuit of this ideal is often
too high. Programmers in the past responded to this situation by taking the drastic
step of moving to assembly language or machine language, where there are few
constraints on the representation. Fortunately, modern high-level languages provide
mechanisms for creating sensible representations without going to such extremes.
This allows us to do justice to some important classical algorithms. Of course,
such mechanisms are necessarily machine-dependent, and we will not consider
‘them in much detail, except to point out when they are appropriate. This issue is
discussed in more detail in Chapters 10, 17 and 22, where algorithms based on
binary representations of data are considered.

We also try to avoid dealing with machine-dependent representation issues
when considering algorithms that operate on characters and character strings. Fre-
quently, we simplify our examples by working only with the upper-case letters A
through Z, using a simple code with the ith letter of the alphabet represented by
the integer i. Representation of characters and character strings is such a funda-
mental part of the interface among the programmer, the programming language,
and the machine that one should be sure to understand it fully before implement-
ing algorithms for processing such data—the methods given in this book based on
simplified representations are then easily adapted.

We use integers whenever possible. Programs that process £1oating point
numbers fall in the domain of numerical analysis. Typically, their performance
is intimately tied to mathematical properties of the representation. We return to
this issue in Chapters 37, 38, 39, 41, and 43, where some fundamental numerical
algorithms are discussed. In the meantime, we stick to integers even when real
numbers might seem more appropriate, to avoid the inefficiency and inaccuracy
normally associated with floating point representations.
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Input/Output

Another area of significant machine dependency is the interaction between the
program and its data, normally referred to as input-output. In operating systems,
this term refers to the transfer of data between the computer and physical media
such as magnetic tape or disk: we touch on such matters only in Chapters 13 and

18. Most often, we simply seek a systematic way to get data to and derive resuits
from implementations of algorithms, such as gcd above.

When “reading” and “writing” is called for, we use standard C features but
invoke as few of the extra formatting facilities available as possible: Again, our
goal is to keep the programs concise, portable, and easily translatable: one way in
which the reader might wish to modlfy the programs is to embellish their interface
with the programmer. Few modern C or other programming environments actually
take scanf or printf to refér to an external medium; instead, they normally
refer to “logical devices” or “streams” of data. Thus, the output of one program
can be used as the input to another, without any physical reading or writing. Our
tendency to streamline the input/output in our implementations makes them more
useful in such environments. :

Actually, .in many modern programming environments it is appropriate and
rather easy to use graphical representations such as those used in the figures
throughout the book. (As described in the Epilog, these figures were actually
produced by the programs themselves, with a very srgmﬁcamly embellished inter-
face.) :

Many of the methods we will discuss are intended for use within larger ap-
plications systems, so a more appropriate way for them to get data is through
parameters. This is the method used for the gcd procedure above. Also, several
of the implementations in the later chapters of the book use programs from earlier
chapters. Again, to avoid diverting our attention from the algorithms themselves,
we resist the temptation to “package” the implementations for use as general util-
ity programs. Certainly, many of the implementations that we study are quite
appropriaté as a starting point for such utilities, but a large number of system-
and application-dependent questions that we ignore here must be satisfactorily ad-
dressed in developing such packages.

Often we write algorithms to operate on “global” data, to avoid excessive
parameter passing. For example, the gcd function could operate directly on x and
y, rather than bothering with the parameters u and v. This is not justified in this
case because gcd is a well-defined function in terms of its two inputs. On the other
hand, when several algorithms operate on the same data, or when a large amount
of data is passed, we use global variables for economy in expressing the algorithms
and to avoid moving data unnecessarily. Advanced features are available in C and
other languages and systems to allow this to be done more cleanly, but, again, our
tendency is to avoid such language dependencies when possible.
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Concluding Remarks

Many other examples similar to the program above are given in The C Program-
ming Language and in the chapters that follow. The reader is encouraged to scan
the manual, implement and test some simple programs and then read the manual
carefully to become reasonably comfortable with most of the features of C.

The C programs given in this book are intended to serve as precise descrip-
tions of algorithms, as examples of full implementations, and as starting points
for practical programs. As mentioned above, readers conversant with other lan-
guages should have little difficulty ‘reading the algorithms as presented in C and
then implementing them in another language. For example, the following is an
implementation of Euclid’s algorithm in Pascal:

program euclid (input, output);
var x, y: integer;
function gcd (u, v: integer): integer;

var ¢: integer;

begin

repeat

if u<v then
begin t:=u; u:=v; v:=t end;

u:=u-v
until u=0;
ged:=v
end;
begin
while not eof do
begin

readln (x,y); ’
if (x>0) and (y>0) then writeln(x, y, gcd(x, y))
end;

end.

For this algorithm, there is nearly a one-to-one correspondence between C and
Pascal statements, as intended, although there are more concise implementations

in both languages.
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Exercises

10.

. Implement the classical version of Euclid’s algorithm as described in the text.

. Check what values your C system computes for u % v when u and v are not

necessarily positive.

. Implement a procedure to reduce a given fraction to lowest terms, using a

struct fraction { int numerator; int denominator; }

. Write a function int convert () that reads a decimal number one character

(digit) at a time, terminated by a blank, and returns the value of that number.

. Write a function binary (int x) that prints out the binary equivalent of a

number.

. Give all the values that u and v take on when gcd is invoked with the initial

call gcd (12345, 56789).

. Exactly how many C statements are executed for the call in the previous exer-

cise?

. Write a program to compute the greatest common divisor of three integers u,

v, and w.

. Find the largest pair of numbers representable as integers in your C system

whose greatest common divisor is 1.

Implement Euclid’s algorithm in FORTRAN or BASIC.






Elementary Data Structures

In this chapter, we discuss basic ways of organizing data for processing by
computer programs. For many applications, the choice of the proper data
structure is really the only major decision involved in the implementation: once
the choice has been made, only very simple algorithms are needed. For the same
data, some data structures require more or less space than others; for the same
operations on the data, some data structures lead to more or less efficient algorithms
than others. This theme will recur frequently throughout this book, as the choice of
algorithm and data structure is closely intertwined, and we continually seek ways
of saving time or space by making the choice properly.

A data structure is not a passive object: we also must consider the operations
to be performed on it (and the algorithms used for these operations). This concept
is formalized in the notion of an abstract data type, which we discuss at the end
of this chapter. But our primary interest is in concrete implementations, and we’ll
focus on specific representations and manipulations.

We’re going to be dealing with arrays, linked lists, stacks, queues, and other
simple variants. These are classical data structures with widespread applicabil-
ity: along with trees (see Chapter 4), they form the basis for virtually all of the
algorithms considered in this book. In this chapter, we consider basic represen-
tations and fundamental methods for manipulating these structures, work through
some specific examples of their use, and discuss related issues such as storage
management.

Arrays

Perhaps the most fundamental data structure is the array, which is defined as a
primitive in C and most other programming languages. An array is a fixed number
of data items that are stored contiguously and that are accessible by an index.
We refer to the ith element of an array a as a[i]. It is the responsibility of

15
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the programmer to store something meaningful in an array position a[i] before
referring to it; neglecting this is one of the most common programming mistakes.

A simple example of the use of an array is given by the following program,
which prints out all the prime numbers less than 1000. The method used, which
dates back to the 3rd century B.C., is called the “sieve of Eratosthenes™:

#define N 1000
main ()
{
int i, j, alN+1];
for (a[l) =0, 1 = 2; i <= N; i++) al[i] = 1;
for (i = 2; 1 <= N/2; 1i++)
for (j = 2; J <= N/i; Jj++)
afi*j] = 0;
for (1 = 1; 1 <= N; i++)
if (ali]) printf ("$4d", i);
printf ("\n");

This program uses an array consisting of the very simplest type of elements, boolean
(0-1) values. The goal of the program is to seta [1] to 1 if 1 is prime, O if it is not.
It does so by, for each i, setting the array element corresponding to each multiple
of i to 0, since any number that is a multiple of any other number cannot be prime.
Then it goes through the array once more, printing out the primes. (This program
can be made somewhat more efficient by adding the test 1£ (a[i]) before the
for loop involving 3, since if i is not prime, the array elements corresponding
to all of its multiples must already have been marked.) Note that the array is first
“initialized” to indicate that no numbers are known to be nonprime: the algorithm
sets to 0 array elements corresponding to indices that are known to be nonprime.

The sieve of Eratosthenes is typical of algorithms that exploit the fact that any
item of an array can be efficiently accessed. The algorithm also accesses the items
of the array sequentially, one after the other. In many applications, sequential
ordering is important; in other applications sequential ordering is used because it
is as good as any other. But the primary feature of arrays is that if the index is
krnown, any item can be accessed in constant time.

The size of the array must be known beforehand: to run the above program
for a different value of N, it is necessary to change the constant N, then compile
and execute. In some programming environments, it is possible to declare the size
of an array at execution time (so that one could, for example, have a user type
in the value of N, and then respond with the primesless than N without wasting
memory by declaring an array as large as any value the user is allowed to type). In
C it is possible to achieve this effect through proper use of the storage allocation
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mechanism, but it is still a fundamental property of arrays that their sizes are fixed
and must be known before they are used.

Arrays are fundamental data structures in that they have a direct correspon-
dence with memory systems on virtually all computers. To retrieve the contents of
a word from the memory in machine language, we provide an address. Thus, we
could think of the entire computer memory as an array, with the memory addresses
corresponding to array indices. Most computer language processors translate pro-
grams that involve arrays into rather efficient machine-language programs that
access memory directly.

Another familiar way to structure information is to use a two-dimensional table
of numbers organized into rows and columns. For example, a table of students’
grades in a course might have one row for each student, one column for each
assignment. On a computer, such a table would be represented as a two-dimensional
array with two indices, one for the row and one for the column. Various algorithms
on such structures are straightforward: for example, to compute the average grade
on an assignment, we sum together the elements in a column and divide by the
number of rows; to compute a particular student’s average grade in the course,
we sum together the elements in a row and divide by the number of columns.
Two-dimensional arrays are widely used in applications of this type. Actually, on
a computer, it is often convenient and rather straightforward to use more than two
dimensions: an instructor might use a third index to keep student grade tables for
a sequence of years.

Arrays also correspond directly to vectors, the mathematical term for indexed
lists of objects. Similarly, two-dimensional arrays correspond to matrices. We
study algorithms for processing these mathematical objects in Chapters 36 and 37.

Linked Lists

The second elementary data structure to consider is the linked list, which is defined
as a primitive in some programming languages (notably in Lisp) but not in C.
However, C does provide basic operations that make it easy to use linked lists.

The primary advantage of linked lists over arrays is that linked lists can grow
and shrink in size during their lifetime. In particular, their maximum size need not
be known in advance. In practical applications, this often makes it possible to have
several data structures share the same space, without paying particular attention to
their relative size at any time.

A second advantage of linked lists is that they provide flexibility in allowing
the items to be rearranged efficiently. This flexibility is gained at the expense of
quick access to any arbitrary item in the list. This will become more apparent
below, after we have examined some of the basic properties of linked lists and
some of the fundamental operations we perform on them.

A linked list is a set of items organized sequentially, just like an array. In
an array, the sequential organization is provided implicitly (by the position in the
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Figure 3.1 A linked list.

array); in a linked list, we use an explicit arrangement in which each item is part of
a “node” that also contains a “link” to the next node. Figure 3.1 shows a linked list,
with items represented by letters, nodes by circles and links by lines connecting the
nodes. We look in detail below at how lists are represented within the computer;
for now we’ll talk simply in terms of nodes and links.

Even the simple representation of Figure 3.1 exposes two details we must
consider. First, every node has a link, so the link in the last node of the list must
specify some “next” node. Our convention will be to have a “dummy” node, which
we’ll call z, for this purpose: the last node of the list will point to z, and z will
point to itself. In addition, we normally will have a dummy node at the other end
of the list, again by convention. This node, which we’ll call head, will point to
the first node in the list. The main purpose of the dummy nodes is to make certain
manipulations with the links, especially those involving the first and last nodes
on the list, more convenient. Other conventions are discussed below. Figure 3.2
shows the list structure with these dummy nodes included.

Now, this explicit representation of the ordering allows certain operations to be
performed much more efficiently than would be possible for arrays. For example,
suppose that we want to move the T from the end of the list to the beginning. In
an array, we would have to move every item to make room for the new item at the
beginning; in a linked list, we just change three links, as shown in Figure 3.3. The
two versions shown in Figure 3.3 are equivalent; they’re just drawn differently.
We make the node containing T point to A, the node containing S point to z, and
head point to T. Even if the list was very long, we could make this structural
change by changing just three links.

More important, we can talk of “inserting” an item into a linked list (which
makes it grow by one in length), an operation that is unnatural and inconvenient in
an array. Figure 3.4 shows how to insert X into our example list by putting X in
a node that points to S, then making the node containing I point to the new node.
Only two links need to be changed for this operation, no matter how long the list.

Similarly, we can speak of “deleting” an item from a linked list (which makes
it shrink by one in length). For example, the third list in Figure 3.4 shows how
to delete X from the second list simply by making the node containing I point to

Figure 3.2 A linked list with its dummy nodes.
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Figure 3.3 Rearranging a linked list.

S, skipping X. Now, the node containing X still exists (in fact it still points to S),
and perhaps should be disposed of in some way—the point is that X is no longer
part of this list, and cannot be accessed by following links from head. We will
return to this issue below.

On the other hand, there are other operations for which linked lists are not
well-suited. The most obvious of these is “find the kth item” (find an item given
its index): in an array this is done simply by accessing a [k 1, but in a list we have
to travel through & links.

Another operation that is unnatural on linked lists is “find the item before a
given item.” If all we have is the link to T in our sample list, then the only way

Figure 3.4 Insertion into and deletion from a linked list.



20 . Chapter 3

we can find the link to S is to start at head and travel through the list to find
the node that points to T. As a matter of fact, this operation is necessary if we
want to be able to delete a given node from a linked list: how else do we find the
node whose link must be changed? In many applications, we can get around this
problem by redesigning the fundamental deletion operation to be “delete the next
node”. A similar problem can be avoided for insertion by making the fundamental
insertion operation “insert a given item affer a given node” in the list.

C provides primitive operations that allow linked lists to be implemented di-
rectly. The following code fragment is a sample implementation of the basic
functions that we have discussed so far.

struct node

{ int key; struct node *next; };
struct node *head, *z, *t;
listinitialize ()

{ .
head = (struct node *) malloc(sizeof *head);
z = (struct node *) malloc(sizeof *z);
head->next = z; z->next = z;

}

~ deletenext (struct node *t)
{ t->next = t->next->next; } -
struct node *insertafter(int v, struct node *t)

{
struct node *x; :
X = (struct node *) malloc(sizeof *x);
x->key = v; x->next = t->next;
t->next = x;
return x;

The precise format of the lists is described in the st ruct declaration: the lists are
made up of nodes, each node containing an integer and a pointer to the next node
on the list. The key is an integer here only for simplicity, and could be arbitrarily
complex—the pointer is the key to the list. The variable head is a pointer to
the first node on a list: we can examine the other nodes in order by following
pointers until reaching z, the pointer to the dummy node representing the end of
the list. The “arrow” (minus sign followed by a greater-than sign) notation is used
in C to follow pointers through structures. We write a reference to a link followed
by this symbol to indicate a reference to the node pointed to by that link. For
example, the reference head->next->key refers to the first item on a list, and
head->next->next->key refers to the second.
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The struct declaration merely describes the formats of the nodes; nodes
can be created only when the built-in procedure malloc is called. For example,
thecall z = (struct node *) malloc(sizeof *z) creates a new node,
putting a pointer to it in z. The reader will become accustomed to this some-
what verbose expression of this conceptually simple operation, for we normally
invoke malloc in precisely this way. The purpose of malloc is to relieve the
programmer of the burden of “allocating” storage for the nodes as the list grows.
(We discuss this mechanism in some detail below.) There is a corresponding built-
in procedure free for deletion, which might be used by the calling routine, or
perhaps the node, though deleted from one list, is to be added to another.

The reader is encouraged to check these C implementations against the English-
language descriptions given above. In particular, it is instructive at this stage to
consider why the dummy nodes are useful. First, if the convention were to have
head point to the beginning of the list rather than having a head node, then
the insert procedure would need a special test for insertion at the beginning of
the list. Second, the convention for z protects the delete procedure from (for
example) a call to delete an item from an empty list.

Another common' convention for terminating a list is to make the last node
point to the first, rather than using either of the dummy nodes head or z. This is
called a circular list: it allows a program to go around and around the list. Using
one dummy node to mark the beginning (and the end) of the list and to help handle
the case of an empty list is sometimes convenient.

It is possible to support the operation “find the item before a given item” by
using a doubly linked list in which we maintain two links for each node, one to the
item before, one to the item after. The cost of providing this extra capability is
doubling the number of link manipulations per basic operation, so it is not normally
used unless specifically called for. As mentioned above, however, if a node is to
be deleted and only a link to the node is available (perhaps it is also part of some
other data structure), double linking may be called for.

We’ll see many examples of applications of these and other basic operations on
linked lists in later chapters. Since the operations involve only a few statements, we
normally manipulate the lists directly rather than use the precise procedures above.
As an example, we consider next a program for solving the so-called “Josephus
problem” in the spirit of the sieve of Eratosthenes. We imagine that N people have
decided to commit mass suicide by arranging themselves in a circle and killing
the Mth person around the circle, closing ranks as each person drops out of the
circle. The problem is to find out which person is the last to die (though perhaps
that person would have a change of heart at the end!), or, more generally, to find
the order in which the people are executed. For example, if N =9 and M =5, the
people are killed in the order 517 4 3 6 9 2 8. The following program reads in
N and M and prints out this ordering:
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struct node
{ int key; struct node *next; };
main ()
{
int i, N, M;
struct node *t, *x;
scanf ("%d %d", &N, &M);
t = (struct node *) malloc(sizeof *t);
t->key = 1; x = t;
for (1 = 2; 1 <= N; 1i++)
{
t->next = (struct node *) malloc(sizeof *t);
t = t->next;
t->key = i;
}
t->next = x;
while (t != t->next)
{
for (1 = 1; i < M; i++) t = t->next;
printf ("%d ", t->next->key);
X = t->next;
t->next = t->next->next;
free(x);
}
printf ("$d\n", t->key):

The program uses a circular linked list to simulate the sequence of executions
directly. First, the list is built with keys from 1 to N: the variable x holds onto the
beginning of the list as it is built, then the pointer in the last node in the list is set
to x. Then, the program proceeds through the list, counting through M — 1 items
and deleting the next, until only one is left (which then points to itself). Note the
call to free for the delete, which corresponds to an execution: this is the opposite
of malloc as mentioned above. '

Storage Allocation

C’s pointers provide a convenient way to implement lists, as shown above, but
there are alternatives. In this section we discuss how to use arrays to implement
linked lists and how this is related to the actual representation of the lists in a
C program. As mentioned above, arrays are a rather direct representation of the
memory of the computer, so that analysis of how a data structure is implemented
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as an array will give some insight into how it might be represented at a low level
in the computer. In particular, we’re interested in seeing how several lists might
be represented simultaneously.

In a direct-array representation of linked lists, we use indices instead of links.
One way to proceed would be to define an array of records like those above,
but using integers (for array indices) rather than pointers for the next field.
An alternative, which often turns out to be more convenient, is to use “parallel
arrays”: we keep the items in an array key and the links in an array next. Thus,
key[next [head] ] refers to the information associated with the first item on
the list, key [next [next [head]]] to the second, etc. The advantage of using
parallel arrays is that the structure can be built “on top of” the data: the array key
contains data and only data—all the structure is in the parallel array next. For
example, anothier list can be built using the same data array and a different parallel
“link” array, or more data can be added with more parallel arrays. The following
code implements the basic list operations using parallel arrays:

int key[max+2], next[max+2];
int x, head, z;
listinitialize ()
{
head = 0; z = 1; x = 2;
next [head] = z; next[z] = z;
}
deletenext (int t)
{ next[t] = next[next[t]]; }
int insertafter(int v, int t)
{
key[x] = v; next[x] = next[t];
next{t] = x;
return x++;

Each call on the storage allocation function malloc is replaced by simply incre-
menting the “pointer” x: it keeps track of the next unused position in the array.
Figure 3.5 shows how our sample list might be represented in parallel arrays,
and how this representation relates to the graphical representation that we have
been using. The key and next arrays are shown on the left, as they appear if S
L AIT are inserted into an initially empty list, with S, L, and A inserted after
head; I after L, and T after S. Position 0 is head and position 1 is z (these
are set by listinitialize)—since next [0] is 4, the first item on the list is
key[4] (A); since next [4] is 3, the second item on the list is key [3] (L), etc.
In the second diagram from the left, the indices for the next array are replaced by
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lines—instead of putting a “4” at next [0], we draw a line from node 0 down to
node 4, etc. In the third diagram, we untangle the links to arrange list elements one
after the other; then at the right, we simply draw the nodes in our usual graphical
representation.

The crux of the matter is to consider how the built-in procedures malloc
and free might be implemented. We presume that the only space for nodes and
links are the arrays we’ve been using; this presumption puts us in the situation
the system is in when it has to provide the capability to grow and shrink a data
structure with a fixed data structure (the memory itseif). For example, suppose that
the node containing A is to be deleted from the example in Figure 3.5 and then
disposed of. It is one thing to rearrange the links so that node is no longer hooked
into the list, but what do we do with the space occupied by that node? And how
do we find space for a node when new is called and more space is needed?

On reflection, the reader will see that the solution is clear: a linked list should
be used to keep track of the free space! We refer to this list as the “free list.”
Then, when we delete a node from our list we dispose of it by inserting it onto
the free list, and when we need a new node, we get it by deleting it from the free
list. This mechanism allows several different lists to occupy the same array.

A simple example with two lists (but no free list) is shown in Figure 3.6. There
are two list header nodes hdl = 0 and hd2 = 6, but both lists can share the
same z. (To build multiple lists, the 1istinitialize procedure above would
have to be modified to manage more than one head.) Now, next [0] is 4, so
the first item on the first list is key [4] (O); since next [6] is 7, the first item

Figure 3.5 Array implementation of a linked list.
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hdl

Figure 3.6 Two lists sharing the same space.

on the second list is key [7] (T), etc. The other diagrams in Figure 3.6 show
the result of replacing next values by lines, untangling the nodes, and changing
to our simple graphical representation, just as in Figure 3.5. This same technique
could be used to maintain several lists in the same array, one of which would be
a free list, as described above.

When storage management is provided by the system, as in C, there is no
reason to override it in this way. The description above is intended to indicate
how the storage management is done by the system. (If the reader’s system does
not do storage management, the description above provides a starting point for an
implementation.) The actual problem faced by the system is rather more complex,
as not all nodes are necessarily of the same size. Also, some systems relieve the
user of the need to explicitly £ree nodes by using “garbage-collection” algorithms
to remove any nodes not referenced by any link. A number of rather clever storage
management algorithms have been developed to handle these two situations.

Pushdown Stacks

We have been concentrating on structuring data in order to insert, delete, or access
items arbitrarily. Actually, it turns out that for many applications, it suffices to
consider various (rather stringent) restrictions on how the data structure is accessed.
Such restrictions are beneficial in two ways: first, they can alleviate the need for
the program using the data structure to be concerned with its details (for example,
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keeping track of links to or indices of items); second, they allow simpler and more
flexible implementations, since fewer operations need be supported.

The most important restricted-access data structure is the pushdown stack.
Only two basic operations are involved: one can push an item onto the stack
(insert it at the beginning) and pop an item (remove it from the beginning). A
stack operates somewhat like a busy executive’s “in” box: work piles up in a stack,
and whenever the executive is ready to do some work, he takes it off the top. This
might mean that something gets stuck in the bottom of the stack for some time, but
a good executive would presumably manage to get the stack emptied periodically.
It turns out that sometimes a computer program is naturally organized in this way,
postponing some tasks while doing others, and thus pushdown stacks appear as the
fundamental data structure for many algorithms.

We’ll see a great many applications of stacks in the chapters that follow: for an-
introductory example, let’s look at using stacks in evaluating arithmetic expressions.
Suppose that one wants to find the value of a simple arithmetic expression involving
multiplication and addition of integers, such as

S*(((9+8) *@4*6)) +7).

A stack is the ideal mechanism for saving intermediate results in such a calculation.
The above example might be computed with the calls:

push (5) ;
push (9);
push(8);
push (pop () +pop () ) ;
push (4
6

);
)

push (pop () *pop () ;
push p0p()*p0p())

push (7);

push (pop () +pop () ) ;

push (pop () *pop (}) ;
printf ("%d\n", pop());

(
(
{
(
(
push (
{
(
(
(

The order in which the operations are performed is dictated by the parentheses in
the expression, and by the convention that we proceed from left to right. Other
conventions are possible; for example 4*6 could be computed before 9+8 in the ex-
ample above. And in C, the order in which the two pop () operations is performed
is unspecified, so slightly more complicated code is needed for noncommutative
operators such as subtract and divide.

Some calculators and some computing languages base their method of calcu-
Jation on stack operations explicitly: every operation pops its arguments from the
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stack and returns its results to the stack. As we’ll see in Chapter 3, stacks often
arise implicitly even when not used explicitly.

The basic stack operations are easy to implement usmg linked hsts, as in the
following implementation:

static struct node
{ int key; struct node *next; };
static struct node *head, *z, *t;
stackinit ()
{
head = (struct node *) malloc(sizeof *head);
z = (struct node *) malloc(sizeof *z);
head->next = z; head->key = 0;
z->next = z;
} ,
push (int v)
{
t = (struct node *) malloc(sizeof *t);
t->key = v; t->next = head->next;
head->next = t;

“int pop ()

int x;

t = head->next; head->next = t->next;
x = t->key;

free(t):;

return x;

int stackempty ()
{ return head->next == z; }

(This implementation also includes code to initialize a stack and to test it if is
empty.) In an application in which only one stack is used, we can assume that the
global variable head is the link to the stack; otherwise, the implementations can
be modified to also pass around a link to the stack.

The order of calculation in the arithmetic example above requires that the
operands appear before the operator so that they can be on the stack when the
operator is encountered. Any arithmetic expression can be rewritten in this way—
the example above corresponds to the expression

59 8 + 4 6 % % 7 4 *
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This is called reverse Polish notation (because it was introduced by a Polish lo-
gician), or postfix. The customary way of writing arithmetic expressions is called
infix. One interesting property of postfix is that parentheses are not required;
in infix they are needed to distinguish, for example, 5*(((9+8)*(4*6))+7) from
((5%9)+8)*((4*6)+7). The following program converts a legal fully parenthesized
infix expression into a postfix expression:

char c¢;
for (stackinit(); scanf("%1s", &c) != EOF; )
{
if (¢ == 7)') printf("%lc", (char) pop()):;
if (¢ == "47) push((int) c);
if (¢ == "*7) push((int) c);
while (c>=’0' && c<='9'")

{ prlntf "$1lc",c); scanf ("$1lc",&c); }
if (¢ !'= (") printf(" ");
}
printf ("\n")

Operators are pushed on the stack, and arguments are simply passed through. Note
that arguments appear in the postfix expression in the same order as in the infix
expression. Then each right parenthesis indicates that both arguments for the last
operator have been output, so the operator itself can be popped and written out.
For simplicity, this program does not check for errors in the input and requires
spaces between operators, parentheses and operands. It is amusing to note that,
since we use only operators with exactly two operands, the left parentheses are not
needed in the infix expression (and this program skips them).

The chief reason to use postfix is that evaluation can be done in a very straight-
forward manner with a stack, as in the following program:

char c¢; int x;
for (stackinit(); scanf ("%$1s", &c)!= EOF; )
{

x = 0;
if (¢ == '+') x = pop()+pop();
if (c == ’*’) X = pop () *pop();

{ x O*x + (¢-"0"); scanf("%1lc", &c); }
push (x
}
printf ("$d\n", x);

-while (c>="0' && c<='9")
X);
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This program reads any postfix expression involving multiplication and addition
of integers, then prints the value of the expression. Blanks are ignored, and the
while loop converts integers from character format to numbers for calculation.
Otherwise, the operation of the program is straightforward. Integers (operands) are
pushed onto the stack and multiplication and addition replace the top two items on
the stack by the result of the operation.

If the maximum size of a stack can be predicted in advance, it may be appro-
priate to use an array representation rather than a linked list, as in the following
implementation:

#define max 100
static int stack[max+l],p:;
push (int v)

{ stack[p++] = v; }
int pop ()

{ return stack[--pl; }
stackinit ()

{p=20;1}
int stackempty ()

{ «return !p; }

The ‘variable p is a global variable that keeps track of the location of the top of
the stack. This is a very simple implementation that avoids the use of extra space
for links, at the cost of perhaps wasting space by reserving room for the maximum
size stack. This code does not check whether the user is trying to push onto a full
stack or pop from an empty one, though we do provide a way to check the latter.

Figure 3.7 shows how a sample stack evolves through the series of push and
pop operations represented by the sequence:

A*SA*M*P*L*ES*T***A*(CK?**,

The appearance of a letter in this list means “push” (the letter); the asterisk means
G‘pop?’.
Typically, a large number of operations will require only a small stack. If one

is confident this is the case, then an array representation is called for. Otherwise,

[S]o 1] o
[A] o [M] o [P] o [L] o [E][E][E]
(8] o [sIEIEIEIE EIEIEIEEEEEEE 0 (4] o [CE]e] o

Figure 3.7 Dynamic characteristics of a stack.
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a linked list might allow the stack to grow and shrink gracefully, especially if it is
one of many such data structures.

Queues

Another fundamental restricted-access data structure is called the queue. Again,
only two basic operations are involved: one can insert an item into the queue
at the beginning and remove an item from the end. Perhaps our busy executive’s

in” box should operate like a queue, since then work that arrives first would get
done first. In a stack, something can get buried at the bottom, but in a queue
everything is processed in the order received.

Although stacks are encountered more often than queues because of their fun-
damental relationship with recursion (see Chapter 5), we will encounter algorithms
for which the queue is the natural data structure. Stacks are sometimes referred to
as obeying a “last in, first out” (LIFO) discipline; queues obey a “first in, first out”
(FIFO) discipline. = ‘ '

‘The linked-list implementation of the queue operations is straightforward and
left as an exercise for the reader. As with stacks, an array can also be used if one
can estimate the maximum size, as in the following implementation:

#define max 100
static int queue[max+1],head,tail;

put (int v)
( .
queue [tail++] = v;
if (tail > max) tail = 0;
}
int get ()
{
int t = queuel[head++];
if (head > max) head = 0;

return t;
}
queueinit ()
{ head =10; tail = 0; }
int queueempty ()
{ return head == tail; }

It is necessary to maintain two indices, one to the beginning of the queue (head)
and one to the end (tail). The contents of the queue are all the elements in the
array between head and tail, taking into account the “wraparound” back to 0
when the end of the array is encountered. If head and tail are equal, then the
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=]
o [E
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o [9]
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[el[E]m]
o [E][m]
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[sl[s] o ]G] o
[A] o [E][E] o

Figure 3.8 Dynamic characteristics of a queue.

queue is defined to be empty; but if put would make them equal, then it is defined
to be full (though, again, we do not include this check in the code above).

Figure 3.8 shows how a sample queue evolves through the series of get and
put operations represented by the sequence:

A*SA*M*P*LE*Q***x[*EU**[E*,

The appearance of a letter in this list means “put” (the letter); the asterisk means
“get

In Chapter 20 we encounter a deque (or “double-ended queue”), which is a
combination of a stack and a queue, and in Chapters 4 and 30 we discuss rather
fundamental examples involving the application of a queue as a mechanism to
allow exploration of trees and graphs.

{1

Abstract Data Types

We’ve seen above that it is often convenient to describe algorithms and data struc-
tures in terms of the operations performed, rather than in terms of details of im-
plementation. When a data structure is defined in this way, it is called an abstract
data type. The idea is to separate the “concept” of what the data structure should
do from any particular implementation.

The defining characteristic of an abstract data type is that nothing outside of
the definitions of the data structure and the algorithms operating on it should refer
to anything inside, except through function and procedure calls for the fundamental
operations. The main motivation for the development of abstract data types has
been as a mechanism for organizing large programs. Abstract data types provide
a way to limit the size and complexity of the interface between (potentially com-
plicated) algorithms and associated data structures and (a potentially large number
of) programs that use the algorithms and data structures. This makes it easier
to understand the large program, and more convenient to change or improve the
fundamental algorithms.
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Stacks and queues are classic examples of abstract data types: most programs
need be concerned only about a few well-defined basic operations, not details of
links and indices.

Arrays and linked lists can in turn be thought of as refinements of a basic
abstract data type called the linear list. Each of them can support operations
such as insert, delete, and access on a basic underlying structure of sequentially
ordered items. These operations suffice to describe the algorithms, and the linear
list abstraction can be useful in the initial stages of algorithm development. But as
we’ve seen, it is in the programmer’s interest to define carefully which operations
will be used, for the different implementations can have quite different performance
characteristics. For example, using a linked list instead of an array for the sieve of
Eratosthenes would be costly because the algorithm’s efficiency depends on being
able to get from any array position to any other quickly, and using an array instead
of a linked list for the Josephus problem would be costly because the algorithm’s
efficiency depends on the disappearance of deleted elements.

Many more operations suggest themselves on linear lists that require much,
more sophisticated algorithms and data structures to support efficiently. The two
most important are sorting the items in increasing order of their keys (the subject
of Chapters 8-13), and searching for an item with a particular key (the subject of
Chapters 14-18).

_One abstract data type can be used to define another: we use linked lists
and arrays to define stacks and queues. Indeed, we use the “pointer” and “record”
abstractions provided by C to build linked lists, and the “array” abstraction provided
by C to build arrays. In addition, we saw above that we can build linked lists with
arrays, and we’ll see in Chapter 36 that arrays should sometimes be built with
linked lists! The real power of the abstract data type concept is that it allows us
conveniently to construct large systems on different levels of abstraction, from the
machine-language instructions provided by the computer, to the various capabilities
provided by the programming language, to sorting, searching and other higher-level
capabilities provided by algorithms as discussed in this book, to the even higher
levels of abstraction that the application may suggest.

In this book, we deal with relatively small programs that are rather tightly
integrated with their associated data structures. While it is possible to talk of
abstraction at the interface between our algorithms and their data structures, it
is really more appropriate to focus on higher levels of abstraction (closer to the
application): the concept of abstraction should not distract us from finding the most
efficient solution to a particular problem. We take the view here that performance
does matter! Programs developed with this in mind can then be used with some
confidence in developing higher levels of abstraction for large systems.

Whether or not abstract data types are explicitly used (we do use the static

mechanism provided by C to hide data structure representations when appropriate),
we are not freed from the obligation of stating precisely what our algorithms
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do. Indeed, it is often convenient to define the interfaces to the algorithms and
data structures provided here as abstract data types; examples of this are found
in Chapters 11 and 14. Moreover, the user of the algorithms and data structures
is obliged to state clearly what he expects them to do—proper communication
between the user of an algorithm and the person who implements it (even if they
are the same person) is the key to success in building large systems. Programming
environments that support the development of large systems have facilities that
allow this to be done in a systematic way.

As mentioned above, real data structures rarely consist simply of integers
and links. Nodes often contain a great deal of information and may belong to
multiple independent data structures. For example, a file of personnel data may
contain records with names, addresses, and various other pieces of information
about employees, and each record may need to belong to one data structure for
searching for particular employees, and to another data structure for answering
statistical queries, etc. It is possible to build up quite complex structures even
using just the simple data structures described in this chapter: the records may be
larger and more complex, but the algorithms are the same. Still, we need to be
careful that we do not develop algorithms good for small records only: we return
to this issue at the end of Chapter 8 and at the beginning of Chapter 14.
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Exercises
1. Write a program to fill in a two-dimensional array of boolean values by setting

10.

al[i]1[3] to 1 if the greatest common divisor of i and j is 1 and to 0
otherwise.

. Implement a routine movenexttofront (struct node *t) for a linked

list that moves the node following the node pointed to by t to the beginning
of the list. (Figure 3.3 is an example of this for the special case when t points
to the next-to-last node in the list.)

. Implement a routine exchange (struct node *t, struct node *u)

for a linked list that exchanges the positions of the nodes after the nodes pointed
to by t and u.

. Write a program to solve the Josephus problem, using an array instead of a

linked list.

. Write procedures for insertion and deletion in a doubly linked list.

. Write procedures for a linked list implementation of pushdown stacks, but using

parallel arrays.

. Give the contents of the stack after each operation in the sequence EA S * Y

¥k QUE***§T#* %% [*0QN** Here a letter means “push” (the letter)

66, 9

and “+” means “pop.”

. Give the contents of the queue after each operation in the sequence EA S * Y

¥XQUE***ST***x]* QN ** Here a letter means “put” (the letter)

<6, 9

and “x” means “get.”

. Give a sequence of calls to deletenext and insertafter that could have

produced Figure 3.5 from an initially empty list.

Using a linked list, implement the basic operations for a queue.



Trees

The structures discussed in Chapter 3 are inherently one-dimensional: one
| item follows ‘the other. In this chapter we consider two-dimensional linked
structures called trees, which lie at the heart of many of our most important al-
gorithms. A full discussion of trees could fill an entire book, for they arise in
many applications outside of computer science and have been studied extensively
as mathematical objects. Indeed, it might be said that this book is filled with a
discussion of trees, for they are present, in a fundamental way, in every one of the
book’s sections. In this chapter, we consider the basic definitions and terminol-
ogy associated with trees, examine some important properties, and look at ways
of representing trees within the computer. In later chapters, we shall see many
algorithms that operate on these fundamental data structures.

Trees are encountered frequently in everyday life, and the reader is surely rather
familiar with the basic concept. For example, many people keep track of ancestors
and/or descendants with a family tree: as we’ll see, much of our terminology is
derived from this usage. Another example is found in the organization of sports
tournaments; this usage, which we’ll encounter in Chapter 11, was studied by
Lewis Carroll. A third example is found in the organizational chart of a large
corporation; this usage is suggestive of the “hierarchical decomposition” found
in many computer science applications. A fourth example is a “parse tree” of an
English sentence into its constituent parts; this is intimately related to the processing
of computer languages, as discussed further in Chapter 21. Other examples will
be touched on throughout the book.

Glossary

We begin our discussion of trees here by defining them as abstract objects and
introducing most of the basic associated terminology. There are a number of
equivalent ways to define trees, and a number of mathematical properties that
imply this equivalence; these are discussed in more detail in the next section.

35
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A tree is a nonempty collection of vertices and edges that satisfies certain
requirements. A vertex is a simple object (also referred to as a node) that can
have a name and can carry other associated information; an edge is a connection
between two vertices. A path in a tree is a list of distinct vertices in which
successive vertices are connected by edges in the tree. One node in the tree is
designated as the roor—the defining property of a tree is that there is exactly one
path between the root and each of the other nodes in the tree. If there is more than
one path between the root and some node, or if there is no path between the root
and some node, then what we have is a graph (see Chapter 29), not a tree. Figure
4.1 shows an example of a tree.

Though the definition implies no “direction” on the edges, we normally think
of the edges as all pointing away from the root (down in Figure 4.1) or towards
the root (up in Figure 4.1) depending upon the application. We usually draw trees
with the root at the top (even though this seems unnatural at first), and we speak of
node y as being below node x (and x as above y) if x is on the path from y to the
root (that is, if y is below x as drawn on the page and is connected to x by a path
that does not pass through the root). Each node (except the root) has exactly one
node above it, which is called its parent; the nodes directly below a node are called
its children. We sometimes carry the analogy to family trees further and refer to
the “grandparent” or the “sibling” of a node: in Figure 4.1, P is the grandchild of
R and has three siblings.

Nodes with no children are sometimes called leaves, or terminal nodes. To
correspond to the latter usage, nodes with at least one child are sometimes called
nonterminal nodes. Terminal nodes are often different from nonterminal nodes:
for example, they may have no name or associated information. Especially in such
situations, we refer tc nonterminal nodes as internal nodes and terminal nodes as
external nodes.

Any node is the root of a subtree consisting of it and the nodes below it. In
the tree shown in Figure 4.1, there are seven one-node subtrees, one three-node
subtree, one five-node subtree, and one six-node subtree. A set of trees is called

Figure 4.1 A sample tree.
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a forest. for example, if we remove the root and the edges connecting it from the
tree in Figure 4.1, we are left with a forest consisting of three trees rooted at A,
R, and E. '

Sometimes the way in which the children of each node are ordered is signifi-
cant, sometimes it is not. An ordered tree is one in which the order of the children
at every node is specified. Of course, the children are placed in some order when
we draw a tree, and clearly there dre many different ways to draw trees that are
not ordered. As we will see below, this distinction becomes significant when we
consider representing trees in a computer, since there is much less flexibility in
how to represent ordered trees. It is usually obvious from the application which
type of tree is called for.

The nodes in a tree divide themselves into levels: the level of a node is the
number of nodes on the path from the node to the root (not including itself). Thus,
for example, in Figure 4.1, R is on level 1 and S is on level 2. The height of a
tree is the maximum level among all nodes in the tree (or the maximum distance
to the root from any node). The path length of a tree is the sum of the levels of
all the nodes in the tree (or the sum of the lengths of the paths from each node
to the root). The tree in Figure 4.1 is of height 3 and path length 21. If internal
nodes are distinguished from external nodes, we speak of internal path length and
external path length. .

If each node must have a specific number of children appearing in a specific
order, then we have a multiway tree. In such a tree, it is appropriate to define special
external nodes which have no children (and usuvally no name or other associated
information). Then, external nodes act as “dummy” nodes for reference by nodes
that do not have the specified number of children,

In particular, the simplest type of multiway tree is the binary tree. A binary
tree is an ordered tree consisting of two types of nodes: external nodes with no
children and internal nodes with exactly two children. An example of a binary tree
is shown in Figure 4.2. Since the two children of each internal node are ordered,
we refer to the left child and the right child of internal nodes: every internal node

Figure 4.2 A sample binary tree.
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Figure 4.3 A complete binary tree.

must have both a left and a right child, though one or both of them might be an
external node. ' ,

The purpose of the binary tree is to structure the internal nodes; the external
nodes serve only as placeholders. We include them in the definition because the
most commonly used representations for binary trees must account for each external
node. A binary tree could be “empty,” consisting of no internal nodes and one
external node. ' ' .

A full binary tree is one in which internal nodes completely fill every level,
except possibly the last. A complete binary tree is a full binary tree where the
internal nodes on the boitom level all appear to the left of the external nodes on
that level. Figure 4.3 shows an example of a complete binary tree. As we shall
see, binary trees appear extensively in computer applications, and performance is
best when the binary trees are full (or nearly full). In Chapter 11, we will examine
an important data structure based on complete binary trees.

The reader should note carefully that, while every binary. tree is a tree, not
every tree is a binary tree. Even considering only ordered trees in which every
node has 0, 1, or 2 children, each such tree might correspond to many binary trees,
because nodes with 1 child could be either left or right in a binary tree.

Trees are intimately connected with recursion, as we will see in the next
chapter. In fact, perhaps the simplest way to define trees is recursively, as follows:
“a tree is either a single node or a root node connected to a set of trees” and “a
binary tree is either an external node or a root (internal) node connected to a left
binary tree and a right binary tree.”

Properties

Before considering representations, we continue in a mathematical vein by consid-
ering a number of important properties of trees. Again, there are a vast number
of possible properties to consider—our purpose is to consider those which are
particularly relevant to the algorithms to be considered later in this book.

Property 4.1 There is exactly one path connecting any two nodes in a tree.
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Any two nodes have a least common ancestor: a node that is on the path from
both nodes to the root, but with none of its children having the same property.
For example, O is the least common ancestor of C and L in the tree of Figure
4.3. The least common ancestor must always exist because either the root is the
least common ancestor, or both of the nodes are in the subtree rooted at one of the
children of the root; in the latter case either that node is the least common ancestor,
or both of the nodes are in the subtree rooted at one of its children, etc. There is
a path from each of the nodes to the least common ancestor—patching these two
paths together gives a path connecting the two nodes. =

An important implication of Property 1 is that any node can be the root: each
node in a tree has the property that there is exactly one path connecting that node
with every other node in the tree. Technically, our definition, in which the root is
identified, pertains to a rooted tree or oriented tree; a tree in which the root is not
identified is called a free tree. The reader need not be concerned about making this
distinction: either the root is identified, or it is not.

Property 4.2 A tree with N nodes has N — 1 edges.

This property follows directly from the observations that each node, except the
root, has a unique parent, and every edge connects a node to its parent. We can
also prove this fact by induction from the recursive definition. w

The next two properties that we consider pertain to binary trees. As mentioned
above, these structures occur quite frequently throughout this book, so it is worth-
while to devote some attention to their characteristics, This lays the groundwork
. for understanding the performance characteristics of various algorithms we will
encounter.

Property 4.3 A binary tree with N internal nodes has N + 1 external nodes.

This property can be proven by induction. A binary tree with no internal nodes
‘has one external node, so the property holds for N = 0. For N > 0, any binary
tree with N internal nodes has k internal nodes in its left subtree and N — 1 — &
internal nodes in its right subtree for some k between 0 and N — 1, since the root
is an internal node. By the inductive hypothesis, the left subtree has k + 1 external
nodes and the right subtree has N — & external nodes, for a total of N + 1. =

Property 4.4 The external path length of any binary tree with N internal nodes
is 2N greater than the internal path length.

This property can also be proven by induction, but an alternate proof is also in-
structive. Observe that any binary tree can be constructed by the following process:
start with the binary tree consisting of one external node. Then repeat the following
N times: pick an external node and replace it by a new internal node with two
external nodes as children. If the external node chosen is at level &, the internal
path length is increased by k&, but the external path length is increased by k +2 (one
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external node at level & is removed, but two at level k +1 are added). The process
starts with a tree with internal and external path length both 0 and, for each of N
steps, increases the external path length by 2 more than the internal path length. w

Finally, we consider simple properties of the “best” kind of binary trees—full
trees. These trees are of interest because their height is guaranteed to be low, so
we never have to do much work to get from the root to any node or vice versa.

Property 4.5 The height of a full binary tree with N internal nodes is about
lOgZ N.

Referring to Figure 4.3, if the height is #, then we must have
21N +1<2",

since there are N + 1 external nodes. This implies the property stated. (Actually,
the height is exactly equal to log, N rounded up to the nearest integer, but we will
refrain from being quite so precise, as discussed in Chapter 6.) =

Further mathematical properties of trees will be discussed as needed in the
chapters which follow. At this point, we’re ready to move on to the practical
matter of representing trees in the computer and manipulating them in an efficient
fashion. ‘

Répresenting Binary Trees

The most prevalent representation of binary trees is a straightforward use of records
with two links per node. Normally, we will use the link names 1 and r (abbrevia-
tions for “left” and “right™) to indicate that the ordering chosen for the representa-
tion corresponds to the way the tree is drawn on the page. For some applications,
it may be appropriate to have two different types of records, one for internal nodes,
one for external nodes; for others, it may be appropriate to use just one type of
node and to use the links in external nodes for some other purpose.

As an example in using and constructing binary trees, we’ll continue with
the simple example from the previous chapter, processing arithmetic expressions.
There is a fundamental correspondence between arithmetic expressions and trees,
as shown in Figure 4.4.

We use single-character identifiers rather than numbers for the arguments; the
reason for this will become plain below. The parse tree for an expression is
defined by the simple recursive rule: “put the operator at the root and then put the
tree for the expression corresponding to the first operand on the left and the tree
corresponding to the expression for the second operand on the right.” Figure 4.4 is
also the parse tree for ABC + D E * * F + * (the same expression in postfix)—
infix and postfix are two ways to represent arithmetic expressions, parse trees are
a third.
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Figure 4.4 Parse tree for A*(((B+C)*(D'*E))+F).

Since the operators take exactly (wo operands, a binary tree is appropriate for
this kind of expression. More complicated expressions might require a different
type of tree. We will revisit this issue in greater detail in Chapter 21; our purpose
here is simply to construct a tree representation of an arithmetic expression.

The following code builds a parse tree for an arithmetic expression from a
postfix input representation. It is a simple modification of the program given in
the previous chapter for evaluating postfix expressions using a stack. Rather than
saving the results of intermediate calculations on the stack, we save the expression
trees, as in the following implementation:

struct node
{ char info; struct node *1, *r; };
struct -node *x, *z;

char c; _
z = (struct node *) malloc (sizeof *z);
z->1 = z; 2->r = z;
for (stackinit(); scanf("%ls", &c)!= ECF; )
{
x = (struct node *) malloc (sizeof *x);
x->info = ¢; x~->1 = 2z} X->r = 2;
if (c=="+" || .c=="*")
{ x=>r = pop(); x->1 = pop(); }
push (x) ;

The procedures stackinit, push, and pop here refer to the pushdown stack
code from Chapter 3, modified to put pointers on the stack rather than integers.
The code for these is omitted here. Every node has a character and two links to
other nodes. Each time a new nonblank character is encountered, a node is created
for it using the standard storage allocation function malloc. If it is an operator,
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subtrees for its operands are at the top of the stack, just as for postfix evaluation.
If it is an operand, then its links are null. Rather than using null links, as with lists,
we use a dummy node z whose links point to itself. In Chapter 14, we examine
in detail how this makes certain operations on trees more convenient. Figure 4.5
shows the intermediate stages in the construction of the tree in Figure 4.4,

This rather simple program can be modified to handle more complicated ex-
pressions involving single-argument operators such as exponentiation. But the
mechanism is very general; exactly the same mechanism is used, for example, to
parse and compile C programs. Once the parse tree has been created, then it can
be used for many things, such as evaluating the expression or creating computer
programs to evaluate the expression. Chapter 21 discusses general procedures for
building parse trees. Below we shall see how the tree itself can be used to evaluate
the expression. For the purposes of this chapter, however, we are most interested
in the mechanics of the construction of the tree.

As with linked lists, there is always the alternative of using paralle]l arrays
rather than pointers and records to implement the binary tree data structure. As
before, this is especially useful when the number of nodes is known in advance.
Also as before, the particular special case where the nodes need to occupy an array
for some other purpose calls for this alternative.

The two-link representation for binary trees used above allows going down
the tree but provides no way to move up the tree. The situation is analogous to
singly-linked lists versus doubly-linked lists: one can add another link to each
node to allow more freedom of movement, but at the cost of a more complicated
implementation. Various other options are available in advanced data’ structures
to facilitate moving around in the tree, but for the algorithms in this book, the
two-link representation generally suffices. '

In the program above, we used a “dummy” node in lieu of external nodes.
As with linked lists, this turns out to be convenient in most situations, but is not

Figure 4.5 Building the parse tree for ABC + D E* * F + *,
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always appropriate, and there are two other cominonly used solutions. One option
is to use a different type of node for external nodes, one with no links. Another
option is to mark the links in some way (to distinguish them from other links in
the tree), then have them point elsewhere in the tree; one such method is discussed
below. We will revisit this issue in Chapters 14 and 17.

Representing Forests

Binary trees have two links below each internal node, so the representation used
above for them is immediate. But what do we do for general trees, or forests, in
which each node might require any number of links to the nodes below? It turns
out that there are two relatively simple ways out of this dilemma.

First, in many applications, we don’t need to go down the tree, only up! In
such cases, we only need one link for each node, to its parent. Figure 4.6 shows
this representation for the tree in Figure 4.1: the array a contains the information
associated with each record and the array dad contains the parent links. Thus
the information associated with the parent of a[1] is in a[dad [i]], etc. By
convention, the root is set to point to itself. This is a rather compact representation
that is definitely recommended if working up the tree is appropriate. We’ll see
examples of the use of this representation in Chapters 22 and 30.

To represent a forest for top-down processing, we need a way to handle the
children of each node without preallocating a specific number for any node. But this
is exactly the type of constraint that linked lists are designed to remove. Clearly,
we should use a linked list for the children of each node. Each node then contairnis
two links, one for the linked list connecting it to its siblings, the other for the linked
list of its children. Figure 4.7 shows this representation for the tree of Figure 4.1.
Rather than use a dummy node to términate each list, we simply make the last node
point back to the parent; this gives a way to move up the tree as well as down.
(These links may be marked to distinguish them from “sibling” links; alternatively,
we can scan through the children of a node by marking or saving the name of the
parent so that the scan can be stopped when the parent is revisited.)

But in this representation, each node has exactly two links (one to'its sibling
on the right, the other to its leftmost child) One might then wonder whether there
is a difference between this data structure and a binary tree. The answer is that
there is not, as shown in Figure 4.8 (the binary tree representation of the tree in

k 1 2 3 4 5 6 7 8 910 11

:x1 @OOOEPOEOR®O®®

dad[k] 3 3 10 8 8 8 8 9 10 10 10

Figure 4.6 Parent link representation of a tree.
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Figure 4.7 Leftmost child, right sibling representation of a tree.

Figure 4.1). That is, any forest can be represented as a binary tree by making the
left link of each node point to its leftmost child, and the right link of each node
point to its sibling on the right. (This fact is often surprising to the novice.)

Thus, we may as well use forests whenever convenient in algorithm design.
When working from the bottom up, the parent link representation makes forests
easier to deal with than nearly any other kind of tree, and when working from the
top down, they are essentially equivalent to binary trees.

Traversing Trees

Once a tree has been constructed, the first thing one needs to know is how to
traverse it: how to systematically visit every node. This operation is trivial for
linear lists by their definition, but for trees, there are a number of different ways to
proceed. The methods differ primarily in the order in which they visit the nodes.
As we’ll see, different node orderings are appropriate for different applications.

For the moment, we’ll concentrate on traversing binary trees. Because of the
equivalence between forests and binary trees, the methods are useful for forests as
well, but we also mention later how the methods apply directly to forests.

The first method to consider is preorder traversal, which can be used, for
example, to write out the expression represented by the tree in Figure 4.4 in prefix.

Figure 4.8 Binary tree representation of a tree.
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Figure 4.9 Preorder traversal.

The method is defined by the simple recursive rule: “visit the root, then visit
the left subtree, then visit the right subtree.” The simplest implementation of this
method, a recursive one, is shown in the next chapter to be closely related to the
following stack-based implementation:

traverse (struct node *t)
{
push (t);
while (!stackempty())
{

t = pop(); visit(t);
if (t->r != z) push(t->r);
if (t->1 !'= z) push(t->1);
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(The stack is assumed to be initialized outside this procedure.) Following the rule,
we “visit a subtree” by visiting the root first. Then, since we can’t visit both
subtrees at once, we save the right subtree on a stack and visit the left subtree.
When the left subtree has been visited, the right subtree will be at the top of the
stack; it can then be visited. Figure 4.9 shows this program in operation when
applied to the binary tree in Figure 4.2: the order in which the nodes are visited is
PMSAALERTEE.

To prove that this program actually visits the nodes of the tree in preorder,
one can use induction with the inductive hypothesis that the subtrees are visited
in preorder and that the contents of the stack just before visiting a subtree are the
same as the contents of the stack just after. _ ‘

Second, we consider inorder traversal, which can be used, for example, to
write out arithmetic expressions corresponding to parse trees in infix (with some
extra work to get the parentheses right). In a manner similar to preorder, inorder is
defined with the recursive rule “visit the left subtree, then visit the root, then visit the
right subtree.” This is also sometimes called symmetric order, for obvious reasons.
The implementation of a stack-based program for inorder is almost identical to

Figure 4.10 Inorder traversal.
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the above program; we will omit it here because it is a main topic of the next
chapter. Figure 4.10 shows how the nodes in the tree in Figure 4.2 are visited in
inorder: the nodes are visited in the order AS AMPL E T R E E. This method
of traversal is probably the most widely used: for example, it plays a central role
in the applications of Chapters 14 and 15.

The third type of recursive traversal, called postorder, is defined, of course,
by the recursive rule “visit the left subtree, then visit the right subtree, then visit
the root.” Figure 4.11 shows how the nodes of the tree in Figure 4.2 are vis-
ited in postorder: the nodes are visited in the order AASMTEEREL
P. Visiting the expression tree of Figure 4.4 in postorder gives the expression
ABC +DE**F + * as expected. Implementation of a stack-based program
for postorder is more complicated than for the other two because one must arrange
for the root and the right subtree to be saved while the left subtree is visited and
for the root to be saved while the right subtree is visited. The details of this
implementation are left as an exercise for the reader.

The fourth traversal strategy that we consider is not recursive at all—we simply
visit the nodes as they appear on the page, reading down from top to bottom and

Figure 4.11 Postorder traversal.
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Figure 4.12 Level order traversal.

from left to right. This is called /evel-order traversal because all the nodes on each
level appear together, in order. Figure 4.12 shows how the nodes of the tree in
Figure 4.2 are visited in level order.

Remarkably, level-order traversal can be achieved by using the program above
for preorder, with a queue instead of a stack:

traverse (struct node *t)
{
put (t);
while (!queueempty())
{

t = get(); visit(t);
if (£->1 != z) put(t->1);
if (t->r != z) put (t~->r);
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On the one hand, this program is virtually identical to the one above—the only
difference is its use of a FIFO data structure where the other uses a LIFO data
structure. On the other hand, these programs process trees in fundamentally differ-
ent ways. These programs merit careful study, for they expose the essence of the
difference between stacks and queues. We shall return to this issue in Chapter 30.

Preorder, postorder and level order are well defined for forests as well. To
make the definitions consistent, think of a forest as a tree with an imaginary root.
Then the preorder rule is “visit the root, then visit each of the subtrees,” the
postorder rule is “visit each of the subtrees, then visit the root.” The level-order
rule is the same as for binary trees. Note that preorder for a forest is the same
as preorder for the corresponding binary tree as defined above, and that postorder
for a forest is the same as inorder for the binary tree, but the level orders are
not the same. Direct implementations using stacks and queues are straightforward
generalizations of the programs given above for binary trees.
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Exercises

. Give the order in which the nodes are visited when the tree in Figure 4.3 is

visited in preorder, inorder, postorder, and level order.

. What is the height of a complete 4-way tree with N nodes?
. Draw the parse tree for the expression (A+B)*C+(D+E).

. Consider the tree of Figure 4.2 as a forest that is to be represented as a binary

tree. Draw that representation.

. Give the contents of the stack each time a node is visited during the preorder

traversal depicted in Figure 4.9,

. Give the contents of the queue each time a node is visited during the level

order traversal depicted in Figure 4.12.

. Give an example of a tree for which the stack in a preorder traversal uses more

space than the queue in a level-order traversal.

. Give an example of a tree for which the stack in a preorder traversal uses less

space than the queue in a level-order traversal.

. Give a stack-based implementation of postorder traversal of a binary tree.

10..Write a program to implement level-order traversal of a forest represented as

a binary tree.



Recursion

Recursion is a fundamental concept in mathematics and computer science.
The simple definition is that a recursive program is one that calls itself (and a
recursive function is one that is defined in terms of itself). Yet a recursive program
“can’t call itself always, or it would never stop (and a recursive function can’t
be defined in terms of itself always, or the definition would be circular); another
essential ingredient is that there must be a termination condition when the program
can cease to call itself (and when the function is not defined in terms of itself). All
practical computations can be couched in a recursive framework.

Our primary purpose in this chapter is to examine recursion as a practical tool.
First, we show some examples in which recursion is nor practical, while showing
the relationship between simple mathematical recurrences and simple recursive
programs. Next, we show a prototype example of a “divide-and-conquer” recursive
program of the type that we use to solve fundamental problems in several later
sections of this book. Finally, we discuss how recursion can be removed from
any recursive program, and show a detailed example of removing recursion from a
simple recursive tree traversal algorithm to get a simple nonrecursive stack-based
algorithm, ’

As we shall see, many interesting algorithms are quite simply expressed with
. recursive programs, and many algorithm designers prefer to express methods re-
cursively. But it is also very often the case that an equally interesting algorithm
lies hidden in the details of a(necessarily) nonrecursive implementation—in this
chapter we discuss techniques for finding such algorithms.

Recurrences

Recursive definitions of functions are quite common in mathematics—the simplest
type, involving integer arguments, are called recurrence relations. Perhaps the
most familiar such function is the factorial function, defined by the formula

Nl=N-(N - D!, for N > 1 with 0! =1,

51
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This corresponds directly to the following simple recursive program:

int factorial (int N)
{
if (N == 0) return 1;
return N * factorial (N-1);

On the one hand, this program illustrates the basic features of a recursive program:
it calls itself (with a smaller value of its argument), and it has a termination
condition in which it directly computes its result. On the other hand, there is no
masking the fact that this program is nothing more than a glorified £or loop, so it
is hardly a convincing example of the power of recursion. Also, it is important to
remember that it is a program, not an equation: for example, neither the equation
nor the program above “works” for negative N, but the negative effects of this
oversight are perhaps more noticeable with the program than with the equation.
The call factorial (-1) results in an infinite recursive loop; this is in fact a
common bug that can appear in more subtle forms in more complicated recursive
programs.

A second well-known recurrence relation is the one that defines the Fibonacci
numbers:

) Fy =Fn_1+Fn_2, for N > 2 with Fp=Fy =1.

This defines the sequence

1,1,2,3,5,8,13,21,34,55,89, 144,233,377,610,....

Again, the recurrence corresponds directly to the simple recursive program:

int fibonacci (int N)
{
if (N <= 1) return 1;
return fibonacci (N-1) + fibonacci (N-2);

This is an even less convincing example of the “power” of recursion; indeed, it
is a convincing example that recursion should not be used blindly, or dramatic
inefficiencies can result. The problem here is that the recursive calls indicate that
Fy_; and Fy_, should be computed independently, when, in fact, one certainly
would use Fy_, (and Fy_3) to compute Fy_;. It is actually easy to figure out
the exact number of calls on the procedure fibonacci above that are required
to compute Fy: the number of calls needed to compute Fyy is the number of calls
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needed to compute Fy _; plus the number of calls needed to compute F _, unless
N =0or N =1, when only one call is needed. But this fits the recurrence relation
defining the Fibonacci numbers exactly: the number of calls on fibonacci
to compute Fy is exactly Fy. It is well known that Fy is about ¢V, where
¢ =1.61803... is the “golden ratio”: the awful truth is that the above program is
an exponential-time algorithm for computing the Fibonacci numbers!

By contrast, it is very easy to compute Fy in linear time, as follows:

#define max 25
int fibonacci (int N)
{
int i, F[max];
F[0] = 1; F[1] 1;
for (i'= 2; 1 <= max; i++)
F[i] = F[i-1] + F[i-2];
return F[N];

1

This program computes the first max Fibonacci numbers, using an array of size
max. (Since the numbers grow exponentially, max will be small.)

In fact, this technique of using an array to store previous results is typically the
method of choice for evaluating recurrence relations, for it allows rather complex
equations to be handled in a uniform and efficient manner. Recurrence relations
often arise when we try to determine performance characteristics of recursive pro-
grams, and we’ll see several examples in this book. For example, in Chapter 9 we
encounter the equation

Cy =N - 4+ > (Cr_1+Cn_g). forN > 1 with Co=1.
N
1<k<N

The value of Cy can be rather easily computed using an array, as in the program
above. In Chapter 9, we discuss how this formula can be handled mathematically,
and several other recurrences that arise frequently in the analysis of algorithms are
discussed in Chapter 6.

Thus, the relationship between recursive programs and recursively defined
functions is often more philosophical than practical. Strictly speaking, the prob-
lems pointed out above are associated not with the concept of recursion itself, but
+ with the implementation: a (very smart) compiler might discover that the factorial
function really could be implemented with a loop and that the Fibonacci function
is better handled by storing all precomputed values in an array. Below, we’ll look
in more detail at the mechanics of implementing recursive programs.



54 , Chapter 5

Divide-and-Conquer

Most of the recursive programs we consider in this book use two recursive calls,
each operating on about half the input. This is the so-called “divide and con-
quer” paradigm for algorithm- design, which is often used to achieve significant
economies. Divide-and-conquer programs normally do not reduce to trivial loops
like the factorial program above, because they have two recursive calls; they nor-
mally do not lead to excessive recomputing as in the program for Fibonacci numbers
above, because the input is divided without overlap.

As an example, let us consider the task of drawing the markings for each
inch on a ruler; there is a mark at the 1/2” point, slightly shorter marks at 1/4”
intervals, still shorter marks at 1/8” intervals, etc., as shown (in magnified form)
in Figure 5.1. As we’ll see there are many ways to carry out this task, and it is a
prototype of simple divide-and-conquer computations.

If the desired resolution is 1/2"” we rescale so that our task is to put a mark
at every point between 0 and 2", endpoints not included. We assume that we have
at our disposal a procedure mark (x,h) to make a mark h units high at position
x. The middle mark should be # units high, the marks in the middle of the left and
right halves should be » — 1 units high, etc. The following “divide-and-conquer”
recursive program is a straightforward way to accomplish our objective:

rule(int 1, int r, int h)
{
int m = (1+r)/2;
“if (h > 0)
{

mark (m,h) ;
rule(l,m,h-1);
rule(m,r,h=-1);

}

For example, the call rule (0, 64, 6) will yield Figure 5.1, with appropriate
scaling. The idea behind the method is the following: to make the marks in an

Figure 5.1 A ruler.
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interval, first make the long mark in the middle. This divides the interval into two
equal halves. Make the (shorter) marks in each half, using the same procedure.

It is normally prudent to pay special attention to the termination condition
of a recursive program—otherwise it may not terminate! In the above program,
rule terminates (does not call itself) when the length of the mark to be made is
0. Figure 5.2 shows the process in detail, giving the list of procedure calls and
marks resulting from the call rule (0, 8, 3). We mark the middle and call rule
for the left half, then do the same for the left half, and so forth, until a mark of
length O is called for. Eventually we return from rule and mark right halves in
the same way.

For this problem, the order in which the marks are drawn is not particularly
significant. We could have just as well put the mark call between the two recursive
calls, in which case the points for our example would be simply be plotted in left-
to-right order, as shown in Figure 5.3.

. rule(0,8,3)

mark (4, 3) l I |
rule(0,4,2)
mark (2, 2) L1 | |
rule(0,2,1) I | |
mark(1,1) L

rule(0,1,0)
rule(1,2,0)
rule(2,4,1) . |
mark (3,1)
rule(2,3,0)
rule(3,4,0)
rule(4,8,2) |
mark (6, 2)
rule(4,6,1) |
mark (5, 1)
rule(4,5,0)
rule(5,6,0)
rule(6,8,1) |
mark (7, 1)
rule(6,7,0)

Figure 5.2 Drawing a ruler.
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The collection of marks drawn by these two procedures is the same, but the
ordering is quite different. This difference may be explained by the tree diagram
shown in Figure 5.4. This diagram has a node for each call to rule, labeled
with the parameters used in the call. The children of each node correspond to the
(recursive) calls to rule, along with their parameters, for that invocation. A tree
like this can be drawn to illustrate the dynamic characteristics of any collection of
procedures. Now, Figure 5.2 corresponds to traversing this tree in preorder (where
“visiting” a node corresponds to making the indicated call to mark); Figure 5.3
corresponds to traversing it in inorder.

In general, divide-and-conquer algorithms involve doing some work to split
the input into two pieces, or to merge the results of processing two independent
“solved” portions of the input, or to help things along after half of the input has
been processed. That is, there may be code before, after, or in between the two
recursive calls. We’ll see many examples of such algorithms later, especially in

rule (0,8, 3)
rule (0,4, 2)
rule(0,2,1)
rule(0,1,0)

mark (1, 1) [ }
rule(l,2,0)
mark(2,2) L, L -l

rule(2,4,1)
rule(2,3,0)

mark(3,1) N |
rule(3,4,0)
mark (4, 3) Lot d ]

rule(4,8,2)
rule(4,6,1)
rule(4,5,0)

mark (5,1) Lego by |
rule(5,6,0)
mark (6,2) lJ | | l

rule (6,8,1)
rule(6,7,0)

mark (7, 1) 1 I, | I

Figure 5.3 Drawing a ruler (inorder version).
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Figure 5.4 Recursive call tree for drawing a ruler.

Chapters 9, 12, 27, 28, and 41. We also encounter algorithms in which it is not
possible to follow the divide-and-conquer regimen compietely: perhaps the input
is split into unequal pieces or into more than two pieces, or there is some overlap
among the pieces.

It is also easy to develop nonrecursive algorithms for this task. The most
straightforward method is to simply draw the marks in order, as in Figure 5.3, but
with the direct loop for (i = 1; 1 < N; i++) mark(i,height(i));
The function height (i) needed for this turns out to be not hard to compute: it is
the number of trailing O bits in the binary representation of i. We leave to the reader
the exercise of implementing this function in C. It is actually possible to derive
this method directly from the recursive version, through a laborious “recursion
removal” process that we examine in detail below, for another problem.

Another nonrecursive algorithm, which does not correspond to any recursive
implementation, is to draw the shortest marks first, then the next shortest, etc., as
in the following rather compact program:

rule(int 1, int r, int h)
{
int 1, Jj, t;
for (i = 1,3 = 1; i <= h; i++,3+=73)
for (t = 0; t <= (l+xr)/J; t++)
mark (1+3+t* (J+3),1);

Figure 5.5 shows how this program draws the marks. This process corresponds to
traversing the tree of Figure 5.4 in level order (from the bottom up), but it is not
recursive. '

This corresponds to the general method of algorithm design where we solve
a problem by first solving trivial subproblems, then combining those solutions to
solve slightly bigger subproblems, etc., until the whole problem is solved. This
approach might be called “combine and conquer.” While it is always possible
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Figure 5.5 Drawing a ruler nonrecursively.

to get an equivalent nonrecursive implementation of any recursive program, it is
not always possible to rearrange the computations in this way—many recursive
programs depend on the subproblems being solved in a particular order. This is
a bottom-up approach as contrasted with the rop-down orientation of divide-and-
conquer. We’ll encounter several examples of this: the most important is in Chapter
12. A generalization of the method is discussed in Chapter 42.

We have treated the example of drawing a ruler in some detail because it
illustrates the essential properties of practical algorithms with similar structure that
we’ll be encountering later. With recursion, studying simple examples in detail
is justified because it’s not easy to tell when one has crossed the border from
very simple to very complicated. Figure 5.6 shows a two-dimensional pattern that
illustrates how a simple recursive description can lead to a computation that appears
to be rather complex. The pattern on the left has an easily recognized recursive
structure, while the pattern on the right would seem much more mysterious if it
were to appear alone. The program that produces the pattern on the left is actually
just a slight generalization of rule:
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star (int x, int y, int r)
{
if (r > 0)
{
star(x-r,y+r,r/2);
star (x+r,y+r,r/2);
( )
)

star (x-r,y-r,r/2);
star (x+r,y-r,r/2

box(x,y,r):

7

The drawing primitive used is simply a program which draws a square of size 2r
centered at (x,y). Thus the pattern on the left in Figure 5.6 is simple to generate
with a recursive program—the reader may be amused to try to find a recursive
method for drawing the outline of the pattern shown on the right. -The pattern on
the left is also easy to generate with a bottom-up method like the one represented
by Figure 5.5: draw the smallest squares, then the second smallest, etc. The reader
may also be amused to try to find a nonrecursive method for drawing the outline.

Recursively defined geometric patterns like Figure 5.6 are sometimes called
fractals. If more complicated drawing primitives are used, and more complicated
recursive invocations (especially including recursively-defined functions on reals
and in the complex plane), patterns of remarkable diversity and complexity can be
developed.

Figure 5.6 A fractal star, drawn with boxes (left) and outline only (right).
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Recursive Tree Traversal

As indicated in Chapter 4, perhaps the simplest way to traverse the nodes of a tree
is with a recursive implementation. For example, the following program visits the
nodes of a binary tree in inorder.

traverse (struct node *t)
{
if (¢t != 2z2)
{
traverse (t~->1);
visit (t);
traverse (t->r);

}

The implementation precisely mirrors the definition of inorder: “if the tree is
nonempty, first traverse the left subtree, then visit the root, then traverse the right
subtree.” Obviously, preorder can be implemented by putting the call to visit
before the two recursive calls, and postorder can be implemented by putting the
call to visit after the two recursive calls.

This recursive implementation of tree traversal is more natural than a stack-
based implementation both because trees are recursively defined structures and
because preorder, inorder, and postorder are recursively defined processes. By
contrast, note that there is no convenient way to implement a recursive procedure
for level-order traversal: the very nature of recursion dictates that subtrees be
processed as independent units, and level order requires that nodes in different
subtrees be mixed together. We will return to this issue in Chapters 29 and 30 when
we consider traversal algorithms for graphs, which are much more complicated
structures than trees.

Simple modifications to the recursive program above and appropriate imple-
mentation of visit can lead to programs that compute various properties of trees
in a straightforward manner. For example, the following program shows how the
coordinates for placing the binary tree nodes in the figures in this book might be
computed. Suppose that the record for nodes includes two integer fields for the x
and y coordinates of the node on the page. (To avoid details of scaling and trans-
lation, these are assumed to be relative coordinates: if the tree has N nodes and is
of height 4, the x coordinate runs left-to-right from 1 to N and the y coordinate
runs top-to-bottom from 1 to 4.) The following program fills in these fields with
appropriate values for each node:
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visit (struct node *t)
{ t-2>x = ++x; t->y = y; }
traverse (struct node *t)
{
yt++;
if (¢ !'= 2)
{
traverse (t->1);
visit (t);
traverse (t->r)

Yy——i
}

The program uses two global variables, x and y, both assumed to be initialized to
0. The variable x keeps track of the number of nodes that have been visited in
inorder; the variable y keeps the height of the tree. Each time traverse goes
down in the tree it is incremented by one, and each time it goes up in the tree it
is decremented by one.

In a similar manner, one could implement recursive programs to compute the
path length of a tree, to implement another way to draw a tree, or to evaluate an
expression represented by an expression tree, etc.

Removing Recursion

But what is the relationship between the implementation above (recursive) and the
implementation in Chapter 4 (nonrecursive) for tree traversal? Certainly these two
programs are strongly related, since, given any tree, they produce precisely the
same sequence of calls to visit. In this section, we study this question in detail
by “mechanically” removing the recursion from the preorder traversal program
given above to get a nonrecursive implementation.

This is the same task that a compiler is faced with when given the task of
translating a recursive program into machine language. Our purpose is not primarily
to study compilation techniques (though we do gain some insight into the problems
faced by a compiler), but rather to study the relationship between recursive and
nonrecursive implementations of algorithms. This theme arises again throughout
the book.

To begin, we start with a recursive implementation of preorder traversal, ex-
actly as described above:
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traverse (struct node *t)

{

if (£t != z)
{
visit (t);
traverse (t->1);
traverse (t->r);

First, the second recursive call can be easily removed because there is no code
following it. Whenever the second call is to be executed, traverse is to be
called (with the argument t->r); then, when that call is complete, the current
invocation of traverse is also complete. But this same sequence of events can
be implemented with a goto rather than a recursive call, as follows:

traverse (struct node *t)
{
1: if (t == z) goto x;
visit(t):
traverse (t->1);
t = t->r;
goto 1;
X o7

}

This is a well-known technique called end-recursion removal, which is implemented
on many . compilers. Recursive programs are less viable on systems without this
capability, because dramatic and unnecessary inefficiencies such as those arising
with factorial and fibonacci above can arise. In Chapter 9, we shall study
an important practical example.

Removing the other recursive call requires more work. In general, most com-
pilers produce code that goes through the same sequence of actions for any proce-
dure call: “push the values of local variables and the address of the next instruction
on a stack, set the values of parameters to the procedure and goto the beginning
of the procedure.” Then, when a procedure completes, it must “pop the return
address and values of local variables from the stack, reset the variables, and goto
the return address.” Of course, things are more complex for the general situation
that must be faced by a real compiler; nevertheless, in this spirit, we can remove
the second recursive call from our program as follows:
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traverse (struct node *t)

{

1l: if (t == z) goto s;
visit(t);
push(t); t = t->1; goto 1;

r: t = t->r; goto 1;

s: i1f (stackempty()) goto x;
t = pop(); goto r;

x: g

}

There is only one local variable, t, so we push that on the stack and goto the
beginning. There is only one return address, r, which is fixed, so we don’t put
it on the stack. At the end of the procedure, we set t from the stack and goto
the return address r. When the stack is empty, we return from the first call to
traverse.

Now, the recursion is removed, but we are left with a morass of gotos that
comprise a rather opaque program. But these, too, can be “mechanically” removed
to yield a more structured piece of code. First, the piece of code between the label
r and the second goto x is surrounded by gotos and can simply be moved,
eliminating the label r and associated goto. Next, note that we set t to t->r
when popping the stack; we may as well just push that value. Now, the code
between the label x and the first goto = is nothing more than a while loop.
This leaves us with:

traverse (struct node *t)
{
1l: while (t != z)
{
visit(t):
push(t->r); t = t->1;
}

if (stackempty()) goto x;
t = pop(); goto 1;
x: 7

}

Now we have another loop, which can be transformed into a while loop by adding
an extra stack push (of the initial argument t on entry to traverse), leaving us with
a goto-less program:
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traverse (struct node *t)

{
push (t) ;
while (!stackempty())

t = pop();
while (t !'= z)
{
visit (t);
push(t->r);
t = t£t->1;

This version is the “standard” nonrecursive tree traversal method. It is a worthwhile
exercise to forget for the moment how this program was derived and directly
convince oneself that this program does preorder tree traversal as advertised.

Actually, the loop-within-a-loop structure of this program can be simplified (at
the cost of some stack pushes):

traverse (struct node *t)
{
push(t);
while (!stackempty())
{
t = popl();
if (¢t != z)
{
visit (t);
push(t->r);
push (t->1);
}

This program is strikingly similar to our original recursive preorder algorithm, but
the two programs really are quite différent. One primary difference is that this
program can be run in virtually any programming environment, while the recursive
implementation obviously requires one that supports recursion. Even in such an
environment, this stack-based method is likely to be rather more efficient.
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Finally, we note that this program puts null subtrees on the stack, a direct
result of the decision in the original implementation to test whether the subtree is
null as the first act of the recursive procedure. The recursive implementation could
make the recursive call only for non-null subtrees by testing t->1 and t->r.
Reflecting this change in the above program leads to the stack-based preorder
traversal algorithm of Chapter 4. ’

traverse (struct node *t)
{
push (t);
while (!stackempty())
{ .

t = pop(); visit(t);
if (t->r != z) push(t->r);
if (t->1 != z) push(t->1);

Any recursive algorithm can be manipulated as above to remove the recursion;
indeed, this is a primary task of the compiler. “Manual” recursion removal as
described here, though complicated, often leads to both an efficient nonrecursive
implementation and a better understanding of the nature of the computation.

Perspective

It is certainly impossible to do justice to a topic as fundamental as recursion in
so brief a discussion. Many of the best examples of recursive programs appear
throughout the book—divide-and-conquer algorithms have been devised for a wide
variety of problems. For many applications, there is no reason to go beyond a
simple, direct recursive implementation; for others, we will consider the result
of recursion removal as described in this chapter or derive alternate nonrecursive
implementations directly.

Recursion lies at the heart of early theoretical studies into the very nature of
computation. Recursive functions and programs play a central role in mathematical -
studies that attempt to separate problems that can be solved by a computer from
problems which cannot.

In Chapter 44, we look at the use of recursive programs (and other techniques)
for solving difficult problems in which a large number of possible solutions must
be examined. As we shall see, recursive programming can be a quite effective
means of organizing a complicated search through the set of possibilities.
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Exercises

9.

. Write a recursive program to draw a binary tree so that the root appears at the

center of the page, the root of the left subtree is at the center of the left half
of the page, etc.

. Write a recursive program to compute the external path length of a binary tree.

. Write a recursive program to compute the external path length of a tree repre-

sented as a binary tree.

. Give the coordinates produced when the recursive tree-drawing procedure given

in the text is applied to the binary tree in Figure 4.2,

. Mechanically remove the recursion from the fibonacci program given in

the text to get a nonrecursive implementation.

. Mechanically remove the recursion from the recursive inorder tree traversal

algorithm to get a nonrecursive implementation.

. Mechanically remove the recursion from the recursive postorder tree traversal

algorithm to get a nonrecursive implementation.

. Write a recursive “divide-and-conquer” program to draw an approximation to

the line segment connecting two points (x1, y1) and (x, y2) by drawing points
using only integer coordinates. (Hint: first draw a point close to the middle.)

Write a recursive program for solving the Josephus problem (see Chapter 3).

10. Write a recursive implementation of Euclid’s algorithm (see Chapter 1).



Ahalysis of Algorithms

For most problems, many different algorithms are available. How is one
to choose the: best implementation? This is actually a well-developed area
of study in computer science. We’ll frequently have occasion to call on research
results describing the performance of fundamental algorithms. However, comparing
algorithms can be challenging indeed, and certain general guidelines will be useful.

Usually the problems we solve have a natural “size” (typically the amount of
data to be processed), which we’ll normally call N. We would like to describe the
resources used {most often the amount of time taken) as a function of N. We’re
interested in the average case, the amount of time a program might be expected to
take on “typical” input data, and in the worst case, the amount of time a program
would take on the worst possible input configuration.

Some of the algorithms in this book are very well understood, to the point
that accurate mathematical formulas are known for the average- and worst-case
running time. Such formulas are developed by carefully studying the program, to
find the running time in terms of fundamental mathematical quantities, and then
doing a mathematical analysis of the quantities involved. On the other hand, the
performance properties of other algorithms in this book are not understood at all—
perhaps their analysis leads to unsolved mathematical questions, or perhaps known
implementations are too complex for a detailed analysis to be reasonable, or (most
likely) perhaps the types of input they encounter cannot be adequately characterized.
Most algorithms fall somewhere in between these extremes: some facts are known
about their performance, but they have really not been fully analyzed.

Several important factors go into this analysis that are usually outside a given
programmer’s domain of influence. First, C programs are translated into machine
code for a given computer, and it can be a challenging task to figure out exactly
how long even one C statement might take to execute (especially in an environment
where resources are being shared, so that even the same program can have varying
performance characteristics). Second, many programs are extremely sensitive to
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their input data, and performance might fluctuate wildly depending on the input.
The average case might be a mathematical fiction that is not representative of the
actual data on which the program is being used, and the worst case might be a
bizarre construction that would never occur in practice. Third, many programs
of interest are not well understood, and specific mathematical results may not be
available. Finally, it is often the case that programs are not comparable at all: one
runs much more efficiently on one particular kind of input, the other runs efficiently
under other circumstances.

The above comments notwithstanding, it is often possible to predict precisely
how long a particular program will take, or to know that one program will do
better than another in particular situations. It is the task of the algorithm analyst to
discover as much information as possible about the performance of algorithms; it
is the task of the programmer to apply such information in selecting algorithms for
particular applications. In this chapter we concentrate on the rather idealized world
of the analyst; in the next we discuss practical considerations of implementation.

Framework

The first step in the analysis of an algorithm is to characterize the data that is to be
used as input to the algorithm and to decide what type of analysis is appropriate.
Ideally, we would like to be able to derive, for any given distribution of the
probability of occurrence of the possible inputs, the corresponding distribution of
possible running times of the algorithm. We’re not able to achieve this ideal for
any nontrivial algorithm, so we normally concentrate on bounding the performance
statistic by trying to prove that the running time is always less than some “upper
bound” no matter what the input, and on trying to derive the average running time
for a “random” input. '

The second step in the analysis of an algorithm is to identify abstract opera-
tions upon which the algorithm is based, in order to separate the analysis from the
implementation. Thus, for example, we separate the study of how many compar-
isons a sorting algorithm makes from the determination of how many microseconds
a particular computer takes to execute whatever machine code a particular com-
piler produces for the code fragment if (a[i] < v).... Both these elements
are required to determine the actual running time of a program on a particular
computer. The former is determined by properties of the algorithm; the latter by
properties of the computer. This separation often allows us to make comparisons
of algorithms that are at least somewhat independent of particular implementations
or particular computers.

While the number of abstract operations involved can be in principle large,
it is usually the case that the performance of the algorithms we consider depends
on only a few quantities. In general, it is rather straightforward to identify the
relevant quantities for a particular program—one way to do so is to use a “profiling”
option (available in many C implementations) to give instruction frequency counts
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for some sample runs. In this book, we concentrate on the most important such
quantities for each program.

In the third step in the analysis of an algorithm, we proceed to the mathematical
analysis itself, with the goal of finding average- and worst-case values for each of
the fundamental quantities. It is not difficult to find an upper bound on the running
time of a program—the challenge is to find the best upper bound, one which
could actually be achieved if the worst input were encountered. This gives the
worst case: the average case normally requires a rather sophisticated mathematical
analysis. Once such analyses have been successfully performed on the fundamental
quantities, the time associated with each quantity can be determined and expressions
for the total running time obtained.

In principle, the performance of an algorithm often can be analyzed to an ex-
tremely precise level of detail, limited only by uncertainty about the performance
of the computer or by the difficulty of determining the mathematical properties of
some of the abstract quantities. However, it is rarely worthwhile to do a complete
detailed analysis, so we are always interested in estimating in order to suppress
detail. (Actually, estimates that seem very rough often turn out to be rather accu-
rate.) Such rough estimates are quite often easy to obtain via the old programming
saw “90% of the time is spent in 10% of the code.” (This has been quoted in the
past for many different values of “90%.”)

Analysis of an algorithm is a cyclic process of analyzing, estimating and refin-
ing the analysis until an answer to the desired level of detail is reached. Actually,
as discussed in the next chapter, the process should also include improvements
in the implementation, and indeed such improvements are often suggested by the
analysis.

With these caveats in mind, our modus operandi will be to look for rough
estimates for the running time of our programs for purposes of classification, secure
in the knowledge that a fuller analysis can be done for important programs when
necessary.

Classification of Algorithms

As mentioned above, most algorithms have a primary parameter N, usually the
number of data items to be processed, which affects the running time most signif-
icantly. The parameter N might be the degree of a polynomial, the size of a file
to be sorted or searched, or the number of nodes in a graph, etc. Virtually all of
the algorithms in this book have running time proportional to one of the following
functions:

1 Most instructions of most programs are executed once or at most only a
few times. If all the instructions of a program have this property, we say
that its running time is constant. This is obviously the situation to strive
for in algorithm design.
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N logN

N3

Chapter 6

When the running time of a program is logarithmic, the program gets
slightly slower as N grows. This running time commonly occurs in pro-
grams that solve a big problem by transforming it into a smaller problem,
cutting the size by some constant fraction. For our range of interest, the
running time can be. considered to be less than a “large” constant. The
base of the logarithm changes the constant, but not by much: when N is
a thousand, logN is 3 if the base is 10, about 10 if the base is 2; when
N is a million, log N is doubled. Whenever N doubles, log N increases
by a constant, but log N doesn’t double until N increases to N2.

When the running time of a program is linear, it is generally the case that
a small amount of processing is done on each input element. When N is
a million, then so is the running time. Whenever N doubles, then so does
the running time. This is the optimal situation for an algorithm that must
process N inputs (or produce N outputs).

This running time arises for algorithms that solve a problem by breaking
it up into smaller subproblems, solving them independently, and then
combining the solutions. For lack of a better adjective (linearithmic?),
we’ll say that the running time of such an algorithm is “N log N.” When
N is a million, N logN is perhaps twenty million. When N doubles, the
ruhning time more than doubles (but not much more).

When the running time of an algorithm is quadratic, it is practical for use
only on relatively small problems. Quadratic running times typically arise
in algorithms that process all pairs of data items (perhaps in a double
nested loop). When N is a thousand, the running time is a million.
Whenever N doubles, the running time increases fourfold.

Similarly, an algorithm that processes triples of data items (perhaps in a
triple-nested loop) has a cubic running time and is practical for use only
on small problems. When N is a hundred, the running time is a million.
Whenever' N doubles, the running time increases eightfold.

Few algorithms with exponential running time are likely to be appropriate
for practical use, though such algorithms arise naturally as “brute-force”
solutions to problems. When N is twenty, the running time is a million.
Whenever N doubles, the running time squares!

The running time of a particular program is likely to be some constant mul-
tiplied by one of these terms (the “leading term™) plus some smaller terms. The
values of the constant coefficient and the terms included depend on the results of
the analysis and on implementation details. Roughly, the coefficient of the leading
term has to do with the number of instructions in the. inner loop: at any level of
algorithm design it’s prudent to limit the number of such instructions. For large N
the effect of the leading term dominates; for small N or for carefully engineered
algorithms, more terms may contribute and comparisons of algorithms are more
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IgN 1g°N N N NIgN NIgN N3/2 N2
39 3 10 30 90 30 100
6 36 10 100 600 3,600 1,000 10,000
9 81 31 1,000 9,000 81,000 31,000 1,000,000

13 169 100 10,000 130,000 1,690,000 1,000,000 100,000,000
16 256 316 100,000 1,600,000 25,600,000 31,600,000 ter billion
19 361 1,000 1,000,000 19,000,000 361,000,000 one billion one trillion

Figure 6.1 Approximate relative values of functions.

difficult. In most cases, we’ll simply refer to the running time of programs as
“linear,” “N log N,” “cubic,” etc., with the implicit understanding that more de-
tailed analysis or empirical studies must be done in cases where efficiency is very
important.

A few other functions do arise. For example, an algorithm with N2 inputs that
has a running time cubic in N is more properly classed as an N 3/2 algorithm. Also,
some algorithms have two stages of subproblem decomposition, which leads to a
running time proportional to N log? N. Both these functions should be considered
to be much closer to N logN than to N2 for large N.

One further note on the “log” function. As mentioned above, the base of
the logarithm changes things only by a constant factor. Since we often deal with
analjltic results only to within a constant factor, it doesn’t matter much what the
base is, so we refer to “log/N,” etc. On the other hand, it is sometimes the case
that concepts can be explained more clearly when some specific base is used. In
mathematics, the natural logarithm (base e = 2.718281828.. . .) arises so frequently
that a special abbreviation is commonly used: log, N = InN . In computer science,
the binary logarithm (base 2) arises so frequently that the abbreviation log, N =
lgN is commonly used. For example, 1g/N rounded up to the nearest integer is the
number of bits required to represent N in binary.

Figure 6.1 indicates the relative size of some of these functions: approximate
values of IgN, 1g> N, v/N, N, N 1gN, N 1g> N, N3/2, N2 are given for various N.
The quadratic function- clearly dominates, especially for large N, and differences
among smaller functions may not be as expected for smail N. For example, N 3/
should be greater than N 1g? N for very large N, but not for the smaller values which
might occur in practice. This table is not intended to give a literal comparison of
the functions for all N—numbers, tables and graphs relating to specific algorithms
can do that. But it does give a realistic first impression.

Computational Complexity

One approach to studying the performance of algorithms is to study the worst-
case performance, ignoring constant factors, in order to determine the functional
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dependence of the running time (or some other measure) on the number of inputs
(or some other variable). This approach is attractive because it allows one to prove
precise mathematical statements about the running time of programs: for example,
one can say that the running time of Mergesort (see Chapter 11) is guaranteed to
be proportional to N logN.

The first step in the process is to make the notion of “proportional to” math-
ematically precise, while at the same time separating the analysis of an algorithm
from any particular implementation. The idea is to ignore constant factors in the
analysis: in most cases, if we want to know whether the running time of an al-
gorithm is proportional to N or proportional to log N, it does not matter whether
the algorithm is to be run on a microcomputer or on a supercomputer, and it does
not matter whether the inner loop has been carefully implemented with only a few
instructions or badly implemented with many instructions. From a mathematical
point of view, these two factors are equivalent.

The mathematical artifact for making this notion precise is called the O-
notation, or “big-Oh notation,” defined as follows:

Notation. A function g(N) is said to be O(f(N)) if there exist constants cp and Ny
* such that g(N ) is less than cof (N) for all N > Ny.

Informally, this encapsulates the notion of “is proportional to” and frees the analyst
from considering the details of particular machine characteristics. Furthermore, the
statement that the running time of an algorithm is O(f(V)) is independent of the
algorithm’s input. Since we’re interested in studying the algorithm, not the input
or the implementation, the O-notation is a useful way to state upper bounds on
running time that are independent of both inputs and implementation details.

The O-notation has been extremely useful in helping analysts to classify al-
gorithms by performance and in guiding algorithm designers in the search for the
“best” algorithms for important problems. The goal of the study of the computa-
tional complexity of an algorithm is to show that its running time is O(f(N)) for
some function f, and that there can be no algorithm with a running time of O (g(N))
for any “smaller” function g(N) (a function with limy_, ., gN)/f (N ) = 0). We try
to provide both an “upper bound” and a “lower bound” on the worst-case running
time. Proving upper bounds is often a matter of counting and analyzing state-
ment frequencies (we will see many examples in the chapters that follow); proving
lower bounds is a difficult matter of carefully constructing a machine model and
determining which fundamental operations must be performed by any algorithm to
solve a problem (we rarely touch upon this). When computational studies show
that the upper bound of an algorithm matches its lower bound, then we have some
confidence that it’s fruitless to try to design an algorithm that is fundamentally
faster and we can start to concentrate on the implementation. This point of view
has proven very helpful to algorithm designers in recent years.

However, one must be extremely careful of interpreting results expressed using
the O-notation, for at least four reasons: first, it is an “upper bound” and the quantity
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in question might be much lower; second, the input that causes the worst case may
be unlikely to occur in practice; third, the constant cg is unknown and need not be
small; and fourth, the constant Ny is unknown and need not be small. We consider
each of these in turn.

The statement that the running time of an algorithm is O (f (N )) does not imply
that the algorithm ever takes that long: it says only that the analyst has been able
to prove that it never takes longer. The actual running time might always be much
lower. Better notation has been developed to cover the situation where it is also
known that there exists some input for which the running time is O(f(NV)), but
there are many algorithms for which it is rather difficult to construct a worst-case
input,

Even if the worst-case input is known, it can be the case that the inputs
actually encountered in practice lead to much lower running times. Many extremely *
useful algorithms have a bad worst case. For example, perhaps the most widely
used sorting algorithm, Quicksort, has a running time of O(N?2), but it is possible
to arrange things so that the running time for inputs encountered in practice is
proportional to N logN.

The constants ¢ and Ny implicit in the O-notation often hide implementation
details that are important in practice. Obviously, to say that an algorithm has
running time O(f(N)) says nothing about the running time if N happens to be
less than Ny, and co might be hiding a large amount of “overhead” designed to
avoid a bad worst case. We would prefer an algorithm using N ? nanoseconds over
one using logN centuries, but we couldn’t make this choice on the basis of the
O-notation. Figure 6.2 shows the situation for two typical functions, with more
realistic values of the constants, in the range 0 < N < 1,000,000. The N3/2
function, which might have been mistakenly assumed to be the largest of the four
since it is asymptotically the largest, is actually among the smallest for small N, and
is less than N 1g> N until N' runs well into the tens of thousands. Programs whose

N iNIg’N  INIg?N  NIg’N N3/2

10 22 45 90 30

100 900 1,800 3,600 1,000
1,000 20,250 40,500 81,000 31,000
10,000 422,500 845,000 1,690,000 1,000,000
100,000 6,400,000 12,800,000 25,600,000 31,600,000

1,000,000 - 90,250,000 180,500,000 361,000,000  1,000,000,000

Figure 6.2 Significance of constant factors in comparing functions.
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running times depend on functions such as these can’t be intelligently compared
without careful attention to constant factors and implementation details,

One should definitely think twice before, for example, using an algorithm with
running time O (N 2y in favor of one with running time O (N), but neither should
one blindly follow the complexity result expressed in O-notation. For practical im-
plementations of algorithms of the type considered in this book, complexity proofs
often are too general and the O-notation is too imprecise to be helpful. Computa-
tional complexity must be considered the very first step in a progressive process
of refining the analysis of an algorithm to reveal more details about its properties.
In this book we concentrate on later steps, closer to actual implementations.

Average-Case Analysis

Another approach to studying the performance of algorithms is to examine the
average case. In the simplest situation, we can precisely characterize the inputs
to the algorithm: for example, a sorting algorithm might operate on an array of N
random integess, or a geometric algorithm might process a set of N random points
in the plane with coordinates between O and 1. Then, we calculate the average
number of times each instruction is executed, and calculate the average running
time of the program by multiplying each instruction frequency by the time required
for-the instruction and adding them all together. There are, however, at least three
difficulties with this approach, which we consider in turn.

First, on some computers, it may be rather difficult to determine precisely the
amount of time required for each instruction. Worse, this is subject to change, and
a great deal of detailed analysis for one computer may not be relevant at all to the
running time of the same algorithm on another computer. This is exactly the type
of problem that computational complexity studies are designed to avoid.

Second, the average-case analysis itself often is a difficult mathematical chal-
lenge requiring intricate and detailed arguments. By its nature, the mathematics -
involved in proving upper bounds is normally less complex, because it need not
be as precise. The average-case performance of many algorithms is unknown.

Third, and most serious, in average-case analysis the input model may not
accurately characterize the inputs encountered in practice, or there may be no
natural input model at all. How should one characterize the input to a program
that processes English-language text? On the other hand, few would argue against
the use of input models such as “randomly ordered file” for a sorting algorithm, or
“random point set” for a geometric algorithm, and for such models it is possible to
derive mathematical results that can accurately predict the performance of programs
running on actual applications. Though the derivation of such results is normally
beyond the scope of this book, we will give a few examples (see Chapter 9), and
cite relevant results when appropriate.
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Approximate and Asymptotic Results

Often, the results of a mathematical anaIysis are not exact but are approximate
in' a precise technical sense: the result might be an expression consisting of a
sequence of decreasing terms. Just as we are most concerned with the inner loop
of a program, we are most concerned with the leading term (the largest term) of a
mathematical expression. It was for this type of application that the O-notation was
originally developed, and, properly used, it allows one to make concise statements
that give good approximations to mathematical results. ,

For example, suppose (after some mathematical analysis) we determme that a
particular algorithm has an inner loop that is iterated N 1gN times on the average
(say), an outer section that is iterated N ti'més,‘ and some initialization code that
is executed once. Suppose further that we determine (after careful scrutiny of the
implementation) that each iteration of the inner loop requires ag microsecends, the
outer section requires a; microseconds, and the initialization part a; microseconds.
Then we know that the average running time of the program (in microseconds) is

agN lgN +aiN +a;.
But it is also true that the running time is
agN lgN‘+ ONN).

(The reader may wish to check this from the definition of O (¥).) This is significant
because, if we’re interested in an approximate answer, it says that, for large N,
we may not need to find the values of a; or @,. More important, there could well
be other terms in the exact running time that may be difficult to analyze: the O-
notation provides us with a way to get an approximate answer for large N without
bothering with such terms. o

Technically, we have no real assurance that small terms can be ignored in
this way, because the definition of the O-notation says nothing whatever about
the size of the constant co: it could be very large. But (though we don’t usually
bother) there are usually ways in such cases to put bounds on the constants that
are small when compared to N, so we normally are justified in 1gnor1ng quantities
represented by the O-notation when there is a well-specified leading (larger) term.
When we do this, we are secure in the knowledge that we could carry out such a
proof, if absolutely necessary, though we rarely do so. -

In fact, when a function f(N) is asymptotically large compared to another
function g(N), we use in this book the (decidedly nontechnical) terminology “about
FV)” to mean f(N) + O(g(N)). What we lose in mathematical precision we gain
in clarity, for we’re more interested in the performance of algorithms than in
mathematical details. In such cases, the reader can rest aSsured that, for large N (if
not for all N), the quantity in question will be rather close to f (V). For example,
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even if we know that a quantity is N (N — 1)/2, we may refer to it as being “about”
N 2/ 2. This is more quickly understood and, for example, deviates from the truth
only by a tenth of a percent for N = 1000. The precision lost in such cases pales by
comparison with the precision lost in the more common usage O (f(N)). Our goal
is to be both precise and concise when describing the performance of algorithms.

Basic Recurrences

As we’ll see in the chapters that follow, a great many algorithms are based on the
principle of recursively decomposing a large problem into smaller ones, using so-
lutions to the subproblems to solve the original problem. The running time of such
algorithms is determined by the size and number of the subproblems and the cost
of the decomposition. In this section we look at basic methods for analyzing such
algorithms and derive solutions to a few standard formulas that arise in the analy-
-sis of many of the algorithms we’ll be studying. Understanding the mathematical
properties of the formulas in this section will give insight into the performance
properties of algorithms throughout the book.

The very nature of a recursive program dictates that its running time for input
of size N will depend on its running time for smaller inputs: this brings us back
to recurrence relations, which we encountered at the beginning of the previous
chapter. Such formulas precisely describe the performance of the corresponding
algorithms: to derive the running time, we solve the recurrences. More rigorous ar-
"guments related to specific algorithms will come up when we get to the algorithms:
here we’re interested in the formulas, not the algorithms.

Formula 1. This recurrence arises for a recursive program that loops through the
input to eliminate one item:

Cny=CN_1+N, for N > 2 with Cy = 1.

Solution: Cy is about N?/2. To solve such a recurrence, we “telescope” it by
applying it to itself, as follows:
| Cy =Cy_1+N
=Cn_g+ N — D+N
=Cn_3+WN —-2+(N -1 +N

=C1+2+ - +(N -2)+(N - D+N
=142+ +(N-2)+(N - 1)+N
_ NN+
=—

Evaluating the sum 1+2+.--+(N —2)+ (N — 1)+ N is elementary: the result
given above can be established by adding the same sum, but in reverse order, term
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by term. This result, twice the value sought, consists of N terms, each of which
sums to N + 1.

Formula 2. This recurrence arises for a recursive program that halves the input in
one step:
Cy =Cyp+1, forN >2with C; =0.

Solution: Cy is about lgN. As written, this equation is meaningless unless N is
even or we assume that N /2 is an integer division: for now, assume that N = 2",
so that the recurrence is always well-defined. (Note that n = ig/N.) But then the
recurrence telescopes even more easily than our first recurrence:
Cpr =Con-1+1
=Cp-—2+1+1
= C2n -3+ 3

= C20 +n

=n.
It turns out that the precise solution for general N depends on properties of the
binary representation of N, but Cyy is about igN for all N.

Formula 3. This recurrence arises for a recursive program that halves the input,
but perhaps must examine every item in the input.
Cn =Cnjpp+N, forN > 2 with C; =0.

Solution: Cy is about 2N . This telescopes to the sum N +N /2+N /4+N /8 +. ..
(as above, this is only precisely defined when N is a power of two). If the sequence
were infinite, this is a simple geometric series that evaluates to exactly 2N. For
general N, the precise solution again involves the binary representation of N .

Formula 4. This recurrence arises for a recursive program that has to make a
linear pass through the input, before, during, or after it is split into two halves:
Cy =2Cnpp+N, for N > 2 with C; =0,
Solution: Cy is about N IgN. This is our most widely cited solution, because it
is prototypical of many standard divide-and-conquer algorithms.
Cor = 2C2n—l + 27
Con _ Czn—l
on ~ pn-1

+1
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The solution is developed very much as in Formula 2, but with the additional trick
of dividing both sides of the recurrence by 2" at the second step to make the
recuirence telescope.

Formula 5. This recurrence arises for a recursive program that splits the input into
two halves with one step, such as our ruler-drawing program in Chapter 5.

Cn =2CN/2+1, for N > 2 with C; = 0.

Solution: Cy is about 2N . This is derived in the same manner as Formula 4.

. Minor variants of these formulas, involving different initial conditions or slight

differences in the additive term, can be handled using the same solution techniques,
though the reader is warned that some recurrences that seem similar actually may
be rather difficult to solve. (There are a variety of advanced general techniques
for dealing with such equations with mathematical rigor.) We will encounter a few
more complicated recurrences in later chapters, but we defer discussion of their
solution until they arise.

Perspective

Many of the algorithms in this book have been subjected to detailed mathematical
analyses anid performance studies far too complex to be discussed here. Indeed,
it is on the basis of such studies that we are able to recommend many of the
algorithms we discuss.

- Not all algorithms are worthy of such intense scrutiny; indeed, during the
design process, it is preferable to work with approximate performance indicators
to guide the design process without extraneous detail. As the design becomes
more refined, so must the analysis, and more sophisticated mathematical tools
need to be applied. Often, the design process leads to detailed complexity studies
that lead to “theoretical” algorithms rather far from any particular application.
It is a common mistake to assume that rough analyses from complexity studies
will translate immediately into efficient practical algorithms: this often leads to
unpleasant surprises. On the other hand, computational complexity is a powerful
tool for suggesting departures in design upon which important new methods can
be based.

One should not use an algorithm without some indication of how it will per-
form: the approaches described in this chapter will help provide some indication
of performance for a wide variety of algorithms, as we will see in the chapters that
follow. In the next chapter we discuss other important factors that come into play
when choosing an-algorithm.
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Exercises

. Suppose it is known that the running time of one algorithm is O (N logN) and

that the running time of another algorithm is O (NV3). What does this say about
the relative performance of the algorithms?

. Suppose it is known that the running time of one algorithm is always about

N logN and that the running time of another algorithm is O(N3). What does
this say about the relative performance of the algorithms?

. Suppose it is known that the running time of one algorithm is always about

NlogN and that the running time of another algorithm is always about N3.
What does this say about the relative performance of the algorithms?

. Explain the difference between O (1) and O(2).

5. Solve the recurrence

10.

Cn =Cnjp+N?  forN >2withC; =0

when N is a power of two.

. For what values of N is 10N IgN > 2N?2?

. Write a program to compute the exact value of Cy in Formula 2, as discussed

in Chapter 5. Compare the results to 1gN .

. Prove that the precise solution to Formula 2 is 1lgN + O (1).

- Write a recursive program to compute the largest integer less than log, N.

(Hint: for N > 1, the value of this function for N/2 is one greater than for
N.)

Write an iterative program for the problem in the previous exercise. Then write
a program that does the computation using C library subroutines. If possible
on your computer system, compare the performance of these three programs.






Implementation of Algorithms

As mentioned in Chapter 1, our focus in this book is on the algorithms
themselves—when discussing each algorithm, we treat it as if its performance
is the crucial factor in the successful completion of some larger task. This point
of view is justified both because such situations do arise for each algorithm and
because the careful attention we give to finding an efficient way to solve a problem
also often leads to a more elegant (and more efficient) algorithm. Of course, this
narrow focus is rather unrealistic, since there are many other very real factors
that must be taken into consideration when solving a complicated problem with a
computer. In this chapter, we discuss issues related to making the rather idealized
algorithms that we describe useful in practical applications.

The properties of the algorithm, after all, are only one side of the coin—a
computer can be used to solve a problem effectively only if the problem itself
is well understood. Careful consideration of properties of applications is beyond
the scope of this book; our intention is to provide enough information about basic
algorithms that one may make intelligent decisions about their use. Most of the
algorithms we consider have proven useful for a variety of applications. The range
of algorithms available to solve various problems owes to the range of needs of
various applications. There is no “best” searching algorithm (to pick one example),
but one method might be quite suitable for application in an airlines reservation
system and another might be quite useful for use in the inner loop of a code-
breaking program.

Algorithms rarely exist in a vacuum, except possibly in the minds of theo-
retical algorithm designers who invent methods without regard to any eventual
implementation, or applications systems programmers who “hack in” ad hoc meth-
ods to solve problems that are otherwise well understood. Proper algorithm design
involves putting some thought into the potential impact of design decisions on im-
plementations, and proper applications programming involves putting some thought
into performance properties of the basic methods used.

81
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Selecting an Algorithm

As we’ll see in the chapters that follow, there usually are a number of algorithms
available to solve each problem, all with differing performance characteristics,
ranging from a simple “brute-force” (but probably inefficient) solution to a complex
“well-tuned” (and maybe even optimal) solution. (In general, it is not true that the
more efficient an algorithm is, the more complicated the implementation must
be, since some of our best algorithms are rather elegant and concise, but for the
purposes of this discussion, let’s assume that this rule holds.) As argued above,
one cannot decide what algorithm to use for a problem without analyzing the
needs of the problem. How often is the program to be run? What are the general
characteristics of the computer system to be used? Is the algorithm a small part of
a large application, or vice versa?

The first rule of implementation is that one should first implement the simplest
algorithm to solve a given problem. If the particular problem instance that is
encountered turns out to be easy, then the simple algorithm may solve the problem
and nothing more need be done; if a more sophisticated algorithm is called for,
then the simple implementation provides a correctness check for small cases and
a baseline for evaluating performance characteristics.

If an algorithm is to be run only a few times on cases that are not too large,
then it is certainly preferable to have the computer take a little extra time running
a slightly less efficient algorithm than to have the programmer take a significant
amount of extra time developing a sophisticated implementation. Of course, there is
the danger that one could end up using the program more than originally envisioned,
so one should always be prepared to start over and implement a better algorithm.

If the algorithm is to be implemented as part of a large system, the “brute-
force” implementation provides the required functionality in a reliable manner, and
performance can be upgraded in a controlled way by substituting a better algorithm
later. Of course, one should take care not to foreclose options by implementing
the algorithm in such a way that it is difficult to upgrade later, and one should
take a very careful look at which algorithms are creating performance bottlenecks
when studying the performance of the system as a whole. Also, in large systems
it is often the case that design requirements of the system dictate from the start
which algorithm is best. For example, perhaps a system-wide data structure is a
particular form of linked list or tree, so that algorithms based on that particular
structure are preferable. On the other hand, one should pay some attention to the
algorithms to be used when making such system-wide decisions, because, in the
end, it very often does turn out that performance of the whole system depends on
the performance of some basic algorithm such as those discussed in this book.

If the algorithm is to be run only a few times, but on very large problems,
then one would like to have some confidence that it produces meaningful output
and some estimate of how long it will take. Again, a simple implementation can
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often be quite useful in setting up for a long run, including the development of
instrumentation for checking the output. v »

The most common mistake made in selecting an algorithm is to ignore perfor-
mance characteristics. Faster algorithms are often more complicated, and imple-
mentors are often willing to accept a slower algorithm to avoid having to deal with
added complexity. But a faster algorithm is often not much more complicated, and
dealing with slight added complexity is a small price to pay to avoid dealing with
a slow algorithm. Users of a surprising number of computer systems lose substan-
tial time waiting for simple quadratic algorithms to finish when only slightly more
complicated N log N algorithms are available that could run in a fraction the time,

The second most common mistake made in selecting an algorithm is to pay too
much attention to performance characteristics. An N logN algorithm might be only
slightly more complicated than a quadratic algorithm for the same problem, but a
better N log N algorithm might give rise to a substantial increase in complexity (and
might actually be faster only for very large values of N). Also, many programs
are really run only a few times: the time required to implement and debug an
optimized algorithm might be substantially more than the time required simply to
run a slightly slower one.

Empirical Analysis

As mentioned in Chapter 6, it is unfortunately all too often the case that mathemati-
cal analysis can shed very little light on how well a given algorithm can be expected
to perform in a given situation. In such cases, we need to rely on empirical anal-
ysis, where we carefully implement an algorithm and monitor its performance on
“typical” input. In fact, this should be done even when full mathematical results
are available, in order to check their validity. '

Given two algorithms to solve the same problem, there’s no mystery in the
method: run them both to see which one takes longer! This might seem too obvious
to mention, but it is probably the most common omission in the comparative study
of algorithms. The fact that one algorithm is ten times faster than another is very
unlikely to escape the notice of someone who waits three seconds for one to finish
and thirty seconds for the other to finish, but it is very easy to overlook as a small
constant overhead factor in a mathematical analysis.

However, it is also easy to make mistakes when comparing implementations,
especially if different machines, compilers, or systems are involved, or if very large
programs with ill-specified inputs are being compared. Indeed, a factor that led to
the development of the mathematical analysis of algorithms has been the tendency
to rely on “benchmarks” whose performance is perhaps better understood through
careful analysis.

The principal danger in comparing programs empirically is that one implemen-
tation may be more “optimized” than the other. The inventor of a proposed new



84 . _ Chapter 7

algorithm is likely to pay very careful attention to every aspect of its implementa-
tion, and not to the details of implementing a classical competing algorithm. To be
confident of the accuracy of an empirical study comparing algorithms, one must be
sure that the same amount of attention is given to the implementations. Fortunately,
this is often the case: many excellent algorithms are derived from relatively minor
modifications to other algorithms for the same problem, and comparative studies
really are valid.

An important special case arises when an algorithm is to be compared to an-
other version of itself, or different implementation approaches are to be compared.
An excellent way to check the efficacy of a particular modification or implementa-
tion idea is to run both versions on some “typical” input, then pay more attention
to the faster one. Again, this seems almost too obvious to mention, but a surprising
number of researchers involved in algorithm design never implement their designs,
so let the user beware!

As outlined above and at the beginning of Chapter 6, the view taken here
is that design, implementation, mathematical analysis, and empirical analysis all
contribute in important ways to the development of good implementations of good
algorithms. We want to use whatever tools are available to gain information about
the properties of our programs, then modify or develop new programs on the basis
of that information. On the other hand, one is not always justified in making large
numbers of small changes in hopes of slight performance improvements. Next, we
discuss this issue in more detail.

Program Optimization

The general process of making incremental changes to a program to produce another
version that runs faster, is called program optimization. This is a misnomer because
we’re unlikely to see a “best” implementation—we can’t optimize a program, but
we can hope to improve it. Normally, program optimization refers to automatic
techniques applied as part of the compilation process to improve the performance of
compiled code. Here we use the term to refer to algorithm-specific improvements.
Of course, the process is also rather dependent on the programming environment
and machine used, so we consider only general issues here, not specific techniques.

This type of activity is justified only if one is sure that the program will be
used many times or for a large input and if experimentation proves that effort
put into improving the implementation will be rewarded with better performance.
The best way to improve the performance of an algorithm is through a gradual
process of transforming the program into better and better implementations. The
recursion-removal example in Chapter 5 is an example of such a process, though
preformance improvement was not our goal in that case.

The first step in implementing an algorithm is to develop a working version
of the algorithm in its simplest form. This provides a baseline for refinements
and improvements and, as mentioned above, is very often all that is needed. Any
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mathematical results available should be checked against the implementation; for
example, if the analysis seems to say that the running time is O(logN) but the
actual running time starts to run into seconds, then something is wrong with either
the implementation or the analysis, and both should be studied more carefully.

The next step is to identify the “inner loop” and to try to minimize the number
of instructions involved. Perhaps the easiest way to find the inner loop is to run
the program and then check which instructions are executed most often. Normally,
this is an extremely good indication of where the program should be improved.
Every instruction in the inner loop should be scrutinized. Is it really necessary? Is
there a more efficient way to accomplish the same task? For example, it usually
pays to remove procedure calls from the inner loop. There are a number of other
“automatic” techniques for doing this, many of which are implemented in standard
compilers. Ultimately, the best performance is achieved by moving the inner loop
into machine or assembly language, but this is usually the last resort.

Not all “improvements” actually result in performance gains, so it is extremely
important to check the extent of the savings realized at each step. Moreover, as the
implementation becomes more and more refined, it is wise to re-examine whether
such careful attention to the details of the code is justified. In the past, computer
time was so expensive that spending programmer time to save computing cycles
was almost always justified, but the table has turned in recent years.

For example, consider the preorder tree traversal algorithm discussed in Chap-
ter 5..Actually, recursion removal is the first step in “optimizing” this algorithm,
because it focuses on the inner loop. The nonrecursive version given is actually
likely to be slower than the recursive version on many systems (the reader might
wish to test this) because the inner loop is longer and includes four (albeit non-
recursive) procedure calls (to pop, push, push and stackempty) instead of
two. If the calls to the stack procedures are replaced with the code for directly
accessing the stack (using, say, an array implementation), this program is likely to
be significantly faster than the recursive version. (One of the push operations is
overhead from the algorithm, so the standard loop-within-a-loop program should
probably be the basis for an optimized version.) Then it is plain that the inner
loop involves incrementing the stack pointer, storing a pointer ( t->r) in the stack
array, resetting the t pointer (to t->1), and comparing it to z. On many ma-
chines, this could be implemented in four machine-language instructions, though
a typical compiler is likely to produce twice as many or more. This program can
be made to run perhaps four or five times faster than the straightforward recursive
implementation without too much work.

Obviously, the issues under discussion here are extremely system- and machine-
dependent. One cannot embark on a serious attempt to speed up a program without
rather detailed knowledge of the operating system and the programming environ-
ment. The optimized version of a program can become rather fragile and difficult
to change, and a new compiler or a new operating system (not to mention a new
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computer) might completely ruin a carefully optimized implementation. On the
other hand, we do focus on efficiency in our implementations by paying attention
to the inner loop at a high level and by ensuring that overhead from the algo-
rithm is minimized. The programs in this book are tightly coded and amenable to
further improvement in a straightforward manner for any particular programmmg
environment.

Implementation of an algorithm is a cyclic process of developing a program,
debugging it, and learning its properties, then refining the implementation until a
desired level of performance is reached. As discussed in Chapter 6, mathematical
analysis can usually help in the process: first, to suggest which algorithms are
promising candidates to perform well in a careful implementation; second, to help
verify that the implementation is performing as expected. In some cases, this
process can lead to the discovery of facts about the problem that suggest a new
algorithm or substantial improvements in an old one. ‘

Algorithms and Systems

Implementations of the algorithms in this book may be found in a wide variety of
large programs, operating systems, and applications systems. Our intention is to
describe the algorithms and to encourage to the reader to focus on their dynamic
properties through experimentation with the implementations given. For some
applications, the implementations may be qulte useful exactly as given, but for
other applications more work may be required.

First, as mentioned in Chapter 2, the programs in this book use only bas1c
features of C, rather than taking advantage of more advanced capabilities that are
available in C and other programming environments. Our purpose is to study algo-
rithms, not systems programming or advanced features of programming languages.
It is hoped that the essential features of the algorithms are best exposed through
simple, direct implementations in a near-universal language. .

The programming style we use is somewhat terse, with short varlable names
and few comments, so that the control structures stand out. The “documentation”
of the algorithms is the accompanying text. It is expected that readers who use
these programs in actual applications will flesh them out somewhat in adapting
them for a particular use. A more “defensive” programming style is justified in
building real systems: the programs must be implemented so that they can be
changed easily, quickly read and understood by other programmers and interface
well with other parts of the system. .

In particular, the data structures required for appllcatlons normally contam
rather more information than those used in this book, though the algorithms that
we consider are appropriate for more.complex data structures. For example, we
speak of searching through files containing integers or short character strings, while
an application typically would require considering long character strings that are
part of large records.. But the basic methods available in both cases are the same,
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In such cases, we will discuss salient features of each algorithm and how they
might relate to various application requirements.

Many of the comments above concerning improving the performance of a
particular algorithm apply to improving performance in a large system as well.
However, on this larger scale, a technique for improving the performance of the
system might be to replace a module implementing one algorithm with a module
implementing another. A basic principle of building large systems is that such
changes should be possible. Typically, as a system evolves into being, more
precise knowledge is gained about the specific requirements for particular modules.
This more specific knowledge makes it possible to more carefully select the best
algorithm for use to satisfy those needs; then one can concentrate on improving
the performance of that algorithm, as described above. It is certainly the case that
the vast majority of system code is only executed a few times (or not at all)—
the primary concern of the system builder is to create a coherent whole. On the
other hand, it also is very likely that when a system comes into use, many of its
resources will be devoted to solving fundamental problems of the type discussed
in this book, so that it is appropriate for the system builder to be cognizant of the
basic algorithms that we discuss.
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Chapter 7

Exercises

10.

. How long does it take to count to 100,000? Estimate how long the pro-

gram j =0; for (i = 1; i < 100000; i++) J++; shouid take -
on your programming environment, then run the program to test your esti-
mate.

. Answer the previous question using repeat and while.

. By running on small values, estimate how long it would take the sieve of

Eratosthenes implementation in Chapter 3 to run with N = 1,000,000 (if enough
memory were available).

. “Optimize” the sieve of Eratosthenes implementation in Chapter 3 to find the

largest prime you can in ten seconds of computing.

. Test the assertion in the text that removing recursion from the preorder tree

traversal algorithm from Chapter 5 (with procedure calls for stack operations)
makes the program slower.

. Test the assertion in the text that removing recursion from the preorder tree

traversal algorithm from Chapter 5 (and implementing stack operations inline)
makes the program faster.

- Examine the assembly-language program produced by the C compiler in your

local programming environment for the recursive preorder tree traversal algo-
rithm for Chapter 5.

. Design an experiment to test which of the linked list or array implementation

of a pushdown stack is more efficient in your programming environment.

. Which is more efficient, the nonrecursive or the recursive method for drawing

a ruler given in Chapter 5?7

Exactly how many extraneous stack pushes are used by the nonrecursive im-
plementation given in Chapter 5 when traversing a complete tree of 2" — 1
nodes in preorder?
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SOURCES for Fundamentals

There are a large number of introductory textbooks on programming and elementary
data structures. Still, the best source for specific facts about C and examples of C
programs, in the same spirit as those found in this book, is Kernighan and Ritchie’s
book on the language. The most comprehensive collection of information about
properties of elementary data structures and trees is Knuth’s Volume 1: Chapters
3 and 4 cover only a small fraction of the information there.

The classic reference on the analysis of algorithms based on asymptotic worst-
case performance measures is Aho, Hopcroft, and Ullman’s book. Knuth’s books
cover average-case analysis more fully and are the authoritative source on specific
properties of various algorithms (for example, nearly fifty pages in Volume 2 are
devoted to Euclid’s algorithm.) Gonnet’s book does both worst- and average-case
analysis, and covers many recently-developed algorithms.

The book by Graham, Knuth and Patashnik covers the type of mathematics that
commonly arises in the analysis of algorithms. For example, this book describes
many techniques for solving recurrence relations like those given in Chapter 6 and
the many more difficult ones that we encounter later on. Such material is also
sprinkled liberally throughout Knuth’s books.

The book by Roberts covers material related to Chapter 6, and Bentley’s
books take much the same point of view as Chapter 7 and later sections of this
book. Bentley describes in detail a number of complete case studies on evaluating
various approaches to developing algorithms and implementations for solving some
interesting problems.
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Elementary Sorting Methods

As our first excursion into the area of sorting algorithms, we’ll study some
“elementary” methods that are appropriate for small files or files with some
special structure. There are several reasons for studying these simple sorting al-
gorithms in some detail. First, they provide a relatively painless way to learn
terminology and basic mechanisms for sorting algorithms so that we get an ad-
equate background for studying the more sophisticated algorithms. Second, in a
great many applications of sorting it’s better to use these simple methods than
the more powerful general-purpose methods. Finally, some of the simple methods
extend to better general-purpose methods or can be used to improve the efficiency
of more powerful methods.

As mentioned above, there are several sorting applications in which a relatively
simple algorithm may be the method of choice. Sorting programs are often used
only once (or only a few times). If the number of items to be sorted is not too large
(say, less than five hundred elements), it may well be more efficient just to run a
simple method than to implement and debug a complicated method. Elementary
methods are always suitable for small files (say, less than fifty elements); it is
unlikely that a sophisticated algorithm would be justified for a small file, unless
a very large number of such files are to be sorted. Other types of files that are
relatively easy to sort are ones that are already almost sorted (or already sorted!)
or ones that contain large numbers of equal keys. Simple methods can do much
better on such well-structured files than general-purpose methods.

As a rule, the elementary methods that we’ll be discussing take about N2
steps to sort N randomly arranged items. If N is small enough, this may not be
a problem, and if the items are not randomly arranged, some of the methods may
run much faster than more sophisticated ones. However, it must be emphasized
that these methods should #ot be used for large, randomly arranged files, with the
notable exception of Shellsort, which is actually the sorting method of choice for
a great many applications.
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Rules of the Game

Before considering some specific algorithms, it will be useful to discuss some gen-
eral terminology and basic assumptions for sorting algofithms. We’ll be considering
methods of sorting files of records containing keys. The keys, which are only part
of the records (often a small part), are used to control the sort. The objective of the
sorting method is to rearrange the records so that their keys are ordered accordlng
to some well-defined ordering rule (usually numerical or alphabetical order).

- If the file to be sorted will fit into memory (or, in our context, if it will fit
into a C array), then the sorting method is called internal. Sorting files from tape
or disk is called external sorting. The main difference between the two is that any
record can easily be accessed in an internal sort, while an external sort must access
records sequentially, or at least in large blocks. We’ll look at a few external sorts
in Chapter 13, but most of the algorithms that we’ll consider are internal sorts. ‘

As usual, the main performance parameter that we’ll be interested in is the
running time of our sorting algorithms. The first four methods that we’ll examine in
this chapter require time proportional to N2 to sort N items, while more advanced
methods can sort N items in time proportional to N logN. (It can be shown that
no sorting algorithm can use less than N log N comparisons between keys.) After
examining the simple methods, we’ll look at a more advanced method that can run
in time proportional to N3/2 or less, and we’ll see that there are methods that use
digital properties of keys to get a total running time proportional to N.

The amount of extra memory used by a sorting algorithm is the second im-
portant factor we’ll be considering. Basically, the methods divide into three types:
those that sort in place and use no extra memory except perhaps for a small stack
or table; those that use a linked-list representation and so use N extra words of
memory for list pointers; and those that need enough extra memory to hold another
copy of the array to be sorted.

A characteristic of sorting methods which is sometimes important in practlce
is stability. A sorting method is called stable if it preserves the relative order of
equal keys in the file. For example, if an alphabetized class list is sorted by grade,
then a stable method produces a list in which students with the same grade are still
in alphabetical order, but a non-stable method is likely .to produce a list with no
vestige of the or1g1nal alphabetic order. Most of the simple methods are stable, buit
most of the well-known sophisticated algorithms are not. If stability is vital, it can
be forced by appending a small index to each key before sorting or by lengthening
the sort key in some other way. It is easy to take stability for granted: people often
react to the unpleasant effects of instability with disbelief. Actually, few methods
achieve stability without using significant extra time or space.

The following program is intended to illustrate the general conventions that
we’ll be using. It consists of a main program that reads in N numbers and then
calls a subroutine to sort them. In this instance, the routine sorts only the first
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three numbers read: the point is that any sorting program could be substituted for
sort3 and called by this “driver” program.

#include <stdio.h>
sort3(int all, int N)
{
int t;
if (a[l] > a[2])

{ t =alll; all] = a[2]; a[2] = t; }
if (afll > al3])

{ t = afl]l; all] = a[3]; al3] = t; }
if (af[2] > al3])

{ t =al2]; al2] = al[3]; al3] = t; }

}
#define maxN 100
main ()
{
int N, i, a[maxN+1];
N = 0; while (scanf("%d", &a[N+1])!=EOF) N++;
al0] = 0; sort3(a, N);
for (i = 1; i <= N; i++) printf("sd ", alil);
printf ("\n");

The three assignment statements following each if in sort3 actually implement
an “exchange” operation. We’ll write out the code for such exchanges rather than
use a procedure call because they’re fundamental to many sorting programs and
often fall in the inner loop. The program actually uses an even more constrained
access to the file: it is three instructions of the form “compare two records and
exchange them if necessary to put the one with the smaller key first.” Programs
restricted to such instructions are interesting because they are well-suited for hard-
ware implementation. We’ll study this issue in more detail in Chapter 40.

In order to concentrate on algorithmic issues, we’ll work with algorithms that
simply sort arrays of integers into numerical order. It is generally straightforward
to adapt such algorithms for use in a practical application involving large keys or
records. Basically, sorting programs access records in one of two ways: either keys
are accessed for comparison, or entire records are accessed to be moved. Most
of the algorithms we will study can be recast in terms of these two operations on
arbitrary records. If the records to be sorted are large, it is normally wise to avoid
shuffling them around by doing an “indirect sort”: here the records themselves are
not necessarily rearranged, but rather an array of pointers (or indices) is rearranged
so that the first pointer points to the smallest record, etc. The keys can be kept
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either with the records (if they are large) or with the pointers (if they are small).
If necessary, the records can then be rearranged after the sort, as described later in
this chapter.

We will not dwell on “packaging problems” that can be troublesome in some
programming environments. For example, it is reasonable to pass the array to
the sorting routine as a parameter in C, but it might not be in some other lan-
guages. Should the program operate on a global array instead? Can the same
sorting routine be used to sort arrays of integers and arrays of reals (and arrays of
arbitrarily complex records)? We avoid dealing with such concerns even though
C is particularly well-suited to packaging programs together into large systems,
and future programming environments are likely to have even better tools for such
tasks. Small programs that work directly on global arrays have many uses, and
some operating systems make it quite easy to put together simple programs, like
the one above, that serve as “filters” between their input and their output. On the
other hand, such mechanisms are not really required for many applications. Obvi-
ously, these comments apply to many of the other algorithms that we will examine,
though the effects mentioned are perhaps felt most acutely for sorting algorithms.

We also do not include much “error-checking” code, though it is normally
prudent to do so in applications. For example, the driver routine should probably
check that N does not exceed maxN (and sort 3 should check that N=3). Another
useful check would be for the driver to make sure that the array is sorted. This is
no -guarantee that the sort program works (why?) but it can help expose bugs.

Some of the programs use a few other global variables. Declarations that
are not obvious will be included with the program code. Also, we’ll usually
reserve a [0] (and sometimes a [N+1]) to hold special keys used by some of the
algorithms. We’ll frequently use letters from the alphabet rather than numbers for
examples: these are handled in the obvious way using C’s standard type conversion
functions between integers and characters.

Selection Sort

One of the simplest sorting algorithms works as follows: first find the smallest
element in the array and exchange it with the element in the first position, then
find the second smallest element and exchange it with the element in the second
position, and continue in this way until the entire array is sorted. This method
is called selection sort because it works by repeatedly “selecting” the smallest
remaining element, as shown in Figure 8.1. The first pass has no effect because
there is no element in the array smaller than the A at the left. On the second pass,
the second A is the smallest remaining element, so it is exchanged with the S in
the second position. Then the first E is exchanged with the O in the third position
on the third pass, then the second E is exchanged with the R in the fourth position
on the fourth pass, etc.
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The following program is an implementation of this process. For each i from
1 to N-1, it exchanges a [1] with the minimum element in a[1i], ..., a [N]:

selection(int a[], int N)
{
int i, j, min, t;
for (i = 1; 1 < N; i++)
{
min = i;
for (J = i+1l; j <= N; j++)
if (alj] < alminl) min = j;

t = alminl; a[min] = a[i]; a[i] = t;

As the index i travels from left to right through the file, the elements to the left
of the index are in their final position in the array (and will not be touched again),
so that the array is fully sorted when the index reaches the right end.

This is among the simplest of sorting methods, and it will work very well for
small files. The “inner loop” is the comparison a [ j]<a[min] (plus the code
necessary to increment j and check that it does not exceed N), which could hardly
be’simpler. Below we discuss the number of times these instructions are likely to
be executed.

Furthermore, despite its evident “brute-force” approach, selection sort actuaily
has a quite important application: because each item is actually moved at most
once, selection sort is the method of choice for sorting files with very large records
and small keys. This is discussed in detail below.

Insertion Sort

An algorithm almost as simple as selection sort but perhaps more flexible is in-
sertion sort. This is the method people often use to sort bridge hands: consider
the elements one at a time, inserting each in its proper place among those already
considered (keeping them sorted). The element being considered is inserted merely
by moving larger elements one position to the right and then inserting the element
into the vacated position, as shown in Figure 8.2. The S in the second position is
larger than the A, so it doesn’t have to be moved. When the O in the third position
is encountered, it is exchanged with the S to put A O S in sorted order, etc.

This process is implemented in the following program. For each i from 2 to
N, the elements a[1],...,a[1] are sorted by putting a [1] into position among
the sorted list of elements ina[1],...,a[1i-1]:



Elementary Sorting Methods | 3 B 929

EREEEEEEEREEE

o

[(z]|[o]|[=]|le |i[ =]
[= ][ ]|[ =]

[o]/[e]/[=]|=]| o] 1< =

ERERERTEER ES

ERERRIER|

[ ]|[e ]|[ = ]| >

Figure 8.2 Insertion sort.



100 . Chapter 8

insertion(int a[], int N)
{
int i, 3j, v;
for (1 = 2; i <= N; i++)
{
v =alil; j = i;
while (a[j-1]1 > v)
{ aljl = al3-11; j3--: }

alil = v;

}

As in selection sort, the elements to the left of the index i are in sorted order
during the sort, but they are not in their final position, as they may have to be
moved to make room for smaller elements encountered later. However, the array
is fully sorted when the index reaches the right end.

There is one more important detail to consider: the procedure insertion
doesn’t work for most inputs! The while will run past the left end of the array
when v is the smallest element in the array. To fix this, we put a “sentinel” key in
a[0], making it at least as small as the smallest element in the array. Sentinels
are commonly used in situations like this to avoid including a test (in this case
j>1) that almost always succeeds within the inner loop.

If for some reason it is inconvenient to use a sentinel (for example, perhaps
the smallest key is not easily defined) then the test while >1 && a[j-1]1>v
could be used, This is unattractive because j=1 happens only rarely, so why should
we test frequently for it within the inner loop? Note that when j does equal 1,
the test above will not access a [ j-1] because of the way logical expressions are
evaluated in C—some other languages might do an out-of-bounds array access in
such a case. Another way to handle this situation in C is to use a break or goto
out of the while loop. (Some programmers prefer to goto some lengths to avoid
goto instructions, for example by performing an action within the loop to ensure
that the loop terminates. In this case, such a solution hardly seems justified, since
it makes the program no clearer and adds overhead every time through the loop to
guard against a rare event.)

Digression: Bubble Sort

An elementary sorting method that is often taught in introductory classes is bubble
sort: keep passing through the file, exchanging adjacent elements, if necessary;
when no exchanges are required on some pass, the file is sorted. An implementation
of this method is given below. '
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bubble (int a[], int N)
{
int i, 3, t;
for (i = N; 1 >= 1; i--)
for (3 = 2; j <= i; j++)
if (alj-1] > aiiD
{ t =alj-11; alj-1]1 = al[jl; alj]l = t; }

It takes a moment’s reflection to convince oneself that this works at ail. To do so,
note that whenever the maximum element is encountered during the first pass, it
is exchanged with each of the elements to its right, until it gets into position at the
right end of the array. Then on the second pass, the second largest element will be
put into position, etc. Thus bubble sort operates as a type of selection sort, though
it does much more work to get each element into position.

‘Performance Characteristics of Elementary Sorts

Direct illustrations of the operating characteristics of selection sort, insertion sort,
and bubble sort are given in Figures 8.3, 8.4, and 8.5. These diagrams show the
contents of the array a for each of the algorithms after the outer loop has been
iterated N /4, N /2, and 3N /4 times (starting with a random permutation of the
integers 1 to N as input). In the diagrams, a square is placed at position (i, j)
for a{i]=5. An unordered array is thus a random display of squares; in a sorted
array each square appears above the one to its left. For clarity in the diagrams, we
show permutations (rearrangements of the integers 1 to N), which, when sorted,
have the squares all aligned along the main diagonal. The diagrams show how the
different methods progress towards this goal.

Figure 8.3 shows how selection sort moves from left to right, putting elements
in their final position without looking back. What is not apparent from this diagram
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Figure 8.3 Selection sorting a random permutation.
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is the fact that selection sort spends most of its time trying to find the minimum
element in the “unsorted” part of the array.

Figure 8.4 shows how insertion sort also moves from left to rlght msertmg
newly encountered elements into posmon without looking any further forward The

left part of the array is continually changing.

Figure 8.5 shows the similarity between selection sort and bubble sort. Bubble
sort “selects” the maximum remaining element at each stage, but wastes some effort
imparting some order to the “unsorted” part of the array. '

~ All of the methods are quadratic in both the worst and the average case, and
none require extra memory. Thus, comparisons among them depend upon the
length of the inner loops or on special characteristics of the input.

Property 8.1 Selection sort uses about N 2 /2 comparisons and N exchange&.-

This property is easy to see by examining Figure 8.1, which is an N-by-N table
in which a letter corresponds to each comparison. But this is just about half the

elements, those above the diagonal.

The N — 1 elements on the diagonal (not

the last) each correspond to an exchange. More precisely: for each i from 1 to
N — 1, there is one exchange and N — i comparisons, so there is a total of N — 1
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Figure 8.5 Bubble sorting a random permutation.
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exchanges and N — )+ (N —2)+---+2+1=N(N - 1)/2 comparisons. These
observations hold no matter what the input data is: the only part of selection sort
that does depend on the input is the number of times min is updated. In the worst
case, this could also be quadratic, but in the average case, this quantity turns out
to be only O(N logN), so we can expect the running time of selection sort to be
quite insensitive to the input. =

Property 8.2 Insertion sort uses about N? |4 comparisons and N? /8 exchanges
on the average, twice as many in the worst case.

As implemented above, the number of comparisons and of “half-exchanges” (moves)
is the same. As just argued, this quantity is easy to visualize in Figure 8.2, the
N-by-N diagram which gives the details of the operation of the algorithm. Here,
the elements below the diagonal are counted, all of them in the worst case. For
random input, we expect each element to go about halfway back, on the average,
so half of the elements below the diagonal should be counted. (It is not difficult
to make these arguments more precise.)

Property 8.3 Bubble sort uses about N? /2 comparisons and N 2 /2 exchanges
on the average and in the worst case.

In the worst case (file in reverse order), it is clear that the ith bubble sort pass
requires N — i comparisons and exchanges, so the proof goes as for selection sort.
But the running time of bubble sort does depend on the input. For example, note
that only one pass is required if the file is already in order (insertion sort is also
fast in this case). It turns out that the average-case performance is not significantly
better that the worst case, as stated, though this analysis is rather more difficult. =

Property 8.4 Insertion sort is linear for “almost sorted” files.

Though the concept of an “almost sorted” file is necessarily rather imprecise, inser-
tion sort works well for some types of non-random files that often arise in practice.
General-purpose sorts are commonly misused for such applications; actually, in-
sertion sort can take advantage of the order present in the file.

For example, consider the operation of insertion sort on a file which is already
sorted. Each element is immediately determined to be in its proper place in the file,
and the total running time is linear. The same is true for bubble sort, but selection
sort is still quadratic. Even if a file is not completely sorted, insertion sort can be
quite useful because its running time depends quite heavily on the order present in
the file. The running time depends on the number of inversions: for each element
count up the number of elements to its left which are greater. This is the distance
the elements have to move when inserted into the file during insertion sort. A
file which has some order in it will have fewer inversions in it than one which is
arbitrarily scrambled.

Suppose one wants to add a few elements to a sorted file to produce a larger
sorted file. One way to do so is to append the new elements to the end of the file,
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then call a sorting algorithm. Clearly, the the number of inversions is low in such
a file: a file with only a constant number of elements out of place will have only
a linear number of inversions. Another example is a file in which each element is
only some constant distance from its final position. Files like this can be created
in the initial stages of some advanced sorting methods: at a certain point it is
worthwhile to switch over to insertion sort.

For such files, insertion sort will outperform even the sophisticated methods
described in the next few chapters. =

To compare the methods further, one needs to analyze the cost of comparisons
and exchanges, a factor which in turn depends on the size of the records and keys.
For example, if the records are one-word keys, as in the implementations above,
then an exchange (two array accesses) should be about twice as expensive as a
comparison. In such a situation, the running times of selection and insertion sort
are roughly comparable, but bubble sort is twice as slow. (In fact, bubble sort is
likely to be twice as slow as insertion sort under almost any circumstances!) But
if the records are large in comparison to the keys, then selection sort will be best.

Property 8.5 Selection sort is linear for files with large records and small keys.

Suppose that the cost of a comparison is 1 time unit and the cost of an exchange
is M time units. (For example, this might be the case with M -word records and
1-word keys.) Then selection sort takes about N2 time for comparisons and about
NM time for exchanges to sort a file of size NM. If N = O(M), this is linear in
the amount of data. =

Sorting Files with Large Records

It is actually possible (and desirable) to arrange things so that any sorting method
uses only N “exchanges” of full records, by having the algorithm operate indirectly
on the file (using an array of indices) and then do the rearrangement afterwards.

Specifically, if the array a[1], ..., a[N] consists of large records, then we
prefer to manipulate an “index array” p[1l], ..., p[N] accessing the original
array only for comparisons. If we define p[i]=1 initially, then the algorithms
above (and all the algorithms in chapters that follow) need only be modified to
refer to a[p[i]] rather than a[i] when using a{i] in a comparison, and to
refer to p rather than a when doing data movement. This produces an algorithm
that will “sort” the index array so that p[1] is the index of the smallest element
in a, p[2] is the index of the second smallest element in a, etc. and the cost of
moving large records around excessively is avoided. The following code shows
how insertion sort might be modified to work in this way.
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insertion (int al], int p[], int N)
{
int i, 3j, v;
for (i = 0;
for (i = 2;
{
v =pli]l; J = i;
while (alpl[j-1]11 > a[v])
{ pl3] = p[3-11; 3--; }
plil = v;
}

i <= N; i++) pli] = 1i;
1 <= N; i++)

In this program, the array a is accessed only to compare keys of two records. Thus,
it could be easily modified to handle files with very large records by modifying
the comparison to access only a small field of a large record, or by making the
comparison a more complicated procedure. Figure 8.6 shows how this process
produces a permutation that specifies the order in which the array elements could
be accessed to define a sorted list. For many applications, this will suffice (the
data may not need to be moved at all). For example, one could print out the data
in sorted order simply by referring to it indirectly through the index array, as in
the sort itself.

But what if the data must actually be rearranged, as at the bottom of Figure
8.67 If there is enough extra memory for another copy of the array, this is trivial,

Before Sort

k 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

atx1  [Al[s][o][R][T][1][N] [G][E][x][A] (m][P][L][E]

plk] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
After Sort

k 1 2 3 4 5 6 7 8 9 101112 13 14 15

alk] LA [N ‘
plk] 313 4 2 5 10
After Permute
k 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
atx1  [AI[A][E][€]{a][1] [L][m][N][o] [P][R][S][T] [X]
plk] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Figure 8.6 Rearranging a “sorted” array.
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but what about the more normal situation when there isn’t enough room for another
copy of the file?

In our example, the first A is in its proper position, with p[1]=1, so nothing
need be done with it. The first thing that we would like to do is to put the record
with the next smallest key (the one with index p [2]) into the second position in the
file. But before doing that, we need to save the record that is in that position, say in
t. Now, after the move, we can consider there to be a “hole” in the file at position
p[2]. But we know that the record at position p(p[2]] should eventually fili
that hole. Continuing in this way, we eventually come to the point where we need
the item originally in the second position, which we have been holding in t. In our
example, this process leads to the series of assignments t=a{2]; a{2]=a[11];
allll=a(13]: all3]=al2]); a[2]=t; . These assignments put the records
with keys A, P, and S into their proper place in the file, which can be marked
by setting p[2]=2, p[11]1=11, and p[13]1=13. (Any element with p[i]=1 is
in place and need not be touched again.) Now the process can be followed again
for the next element which is not in place, etc., and this ultimately rearranges the
entire file, moving each record only once, as in the following code:

insitu(int af], int p[], int N)
{
int i, 3, k, t;
for (i = 1; 1 <= N; i++)

if (p[i] !'= 1)
{
t = al(i]l; k = 1i;
do :
{
j = ki aljl = alplill:
k =plil; pl3l = 3;
}
while (k !'= 1);
aljl = t;
}

The viability of this technique for particular applications of course depends on the
relative size of records and keys in the file to be sorted. Certainly one would
not go to such trouble for a file consisting of small records, because of the extra
space required for the index array and the extra time required for the indirect
comparisons. But for files consisting of large records, it is almost always desirable
to use an indirect sort, and in many applications it may not be necessary to move
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the data at all. Of course, for files with- very large records, plain selection sort is
the method to use, as discussed above. B

The “index array” approach to indirection just given will work in any pro-
gramming language supporting arrays. In C it is normally convenient to develop
an implementation based on the same principle by using machine addresses of array
elements—the “true pointers” that are discussed briefly in Chapter 3. For example,
the following code implements insertion sort using an array p of pointers:

insertion(int a[], int *p[], int N)
{
int 1, j, *v;
for (1 = 0; 1 <= N; i++):pli] = &ali);
for (1 = 2; i <= N; i++)’
{
v =plil; J = i;
while (*p[j-1]1 > *v)
{ p[3] = p[3-11; J--; }
plil = v;
}

The strong relationship between pointers and arrays is one of the most distinctive
features of C. Generally, programs implemented with pointers are more efficient
but harder to understand (though for this particular application there’s not much
difference). The interested reader may wish to implement the insitu program
needed to correspond to the pointer sort given above.

In this book, we normally will directly access data in our implementations,
secure in the knowledge that pointers or index arrays could be used to avoid
excessive data movement when warranted. Because of the availability of this
indirect approach, the conclus