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STRENGTH OF MATERIALS

Strength of Materials

Strength of materials deals with the relations between the external forces applied to elas
tic bodies and the resulting deformations and stresses. In the design of structures ani
machines, the application of the principles of strength of materials is necessary if satisfac-
tory materials are to be utilized and adequate proportions obtained to resist functional
forces.

Forces are produced by the action of gravity, by accelerations and impacts of moving
parts, by gasses and fluids under pressure, by the transmission of mechanical power, etc. |
order to analyze the stresses and deflections of a body, the magnitudes, directions an
points of application of forces acting on the body must be known. Information given in the
Mechanics section provides the basis for evaluating force systems.

The time element in the application of a force on a body is an important consideration.
Thus a force may be static or change so slowly that its maximum value can be treated as |
it were static; it may be suddenly applied, as with an impact; or it may have a repetitive or
cyclic behavior.

The environment in which forces act on a machine or part is also important. Such factors
as high and low temperatures; the presence of corrosive gases, vapors and liquids; radi
tion, etc. may have a marked effect on how well parts are able to resist stresses.

Throughout the Strength of Materials section in this Handbook, both English and
metric Sl data and formulas are given to cover the requirements of working in either
system of measurement. Formulas and text relating exclusively to Sl units are given
in bold-face type.

Mechanical Properties of Materials.—Many mechanical properties of materials are
determined from tests, some of which give relationships between stresses and strains &
shown by the curves in the accompanying figures.

Stresss force per unit area and is usually expressed in pounds per square inch. If the
stress tends to stretch or lengthen the material, it is dalisdestress; if to compress or
shorten the material,@mpressivetress; and if to shear the materiadhaaringstress.
Tensile and compressive stresses always act at right-angles to (normal to) the area bein
considered; shearing stresses are always in the plane of the area (at right-angles to con
pressive or tensile stresses).

(1)| Yield point _ (2) —— {3
/ - -~ / /
7] Ultimate strength 9 Ultimate strength @ /
’E‘ Elastic imit ;;é Elastic limit ‘é / Yield
Z Proportional limit 2 Proportional limit 21 /7 Strength

] STRAIN
STRAIN STRAIN ] [ Offset

Fig. 1. Stress-strain curves

In the SI, the unit of stress is the pascal (Pa), the newton per meter squared (Nym
The megapascal (newtons per millimeter squared) is often an appropriate sub-multi-
ple for use in practice.

Unit strainis the amount by which a dimension of a body changes when the body is sub-
jected to a load, divided by the original value of the dimension. The simplesti@ims
often used instead of unit strain.

Proportionallimit is the point on a stress-strain curve at which it begins to deviate from
the straight-line relationship between stress and strain.



196 STRENGTH OF MATERIALS

Elastic limitis the maximum stress to which a test specimen may be subjected and still
return to its original length upon release of the load. A material is said to be stressed within
theelastic regionwhen the working stress does not exceed the elastic limit, and to be
stressed in thplastic regionwhen the working stress does exceed the elastic limit. The
elastic limit for steel is for all practical purposes the same as its proportional limit.

Yield pointis a point on the stress-strain curve at which there is a sudden increase in strair
without a corresponding increase in stress. Not all materials have a yield point. Some rep-
resentative values of the yield point (in ksi) are as follows:

Aluminum, wrought, 2014-T6 60 Titanium, pure 55-70
Aluminum, wrought, 6061-T6 35 Titanium, alloy, 5Al, 2.5Sn 110
Beryllium copper 140 Steel for bridges and buildings, 33
Brass, naval 25-50 ASTMAT7-61T, all shapes

Castiron, malleable 32-45  Steel, castings, high strength, for structdtat145
Castiron, nodular 45-65 purposes, ASTM A148.60 (seven grades)
Magnesium, AZ80A-T5 38  Steel, stainless (0.08-0.2C, 17Cr, 7Xli) 78

Yield strength, Sis the maximum stress that can be applied without permanent deforma-
tion of the test specimen. This is the value of the stress at the elastic limit for materials for
which there is an elastic limit. Because of the difficulty in determining the elastic limit, and
because many materials do not have an elastic region, yield strength is often determined b
the offset method as illustrated by the accompanying figure at (3). Yield strength in such a
case is the stress value on the stress-strain curve corresponding to a definite amount of pe
manent set or strain, usually 0.1 or 0.2 per cent of the original dimension.

Ultimate strength, $ (also calledensile strengthis the maximum stress value obtained
on a stress-strain curve.

Modulus of elasticity, Halso calledroung's modulysds the ratio of unit stress to unit
strain within the proportional limit of a material in tension or compression. Some represen-
tative values of Young's modulus (in%ii) are as follows:

Aluminum, cast, pure 9 Magnesium, AZ80A-T5S 6.5
Aluminum, wrought, 2014-T6 10.6 Titanium, pure 15.5
Beryllium copper 19 Titanium, alloy, 5 Al, 2.5 Sn 17
Brass, naval 15 Steel for bridges and buildings, 29
Bronze, phosphor, ASTMB159 15 ASTM A7-61T, all shapes

Castiron, malleable 26 Steel, castings, high strength, for structu29
Cast iron, nodular 235 purposes, ASTM A148-60 (seven grades)

Modulus of elasticity in shear, @ the ratio of unit stress to unit strain within the propor-
tional limit of a material in shear.

Poisson's ratioy, is the ratio of lateral strain to longitudinal strain for a given material
subjected to uniform longitudinal stresses within the proportional limit. The term is found
in certain equations associated with strength of materials. Values of Poisson's ratio for
common materials are as follows:

Aluminum 0.334 Nickel silver 0.322
Beryllium copper 0.285 Phosphor bronze 0.349
Brass 0.340 Rubber 0.500
Castiron, gray 0.211 Steel, cast 0.265
Copper 0.340 high carbon 0.295
Inconel 0.290 mild 0.303
Lead 0.431 nickel 0.291
Magnesium 0.350 Wrought iron 0.278
Monel metal 0.320 Zinc 0.331

Compressive Properties.—From compression testmpressive yield strengt,, and
compressive ultimate streng®,,, are determined. Ductile materials under compression
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loading merely swell or buckle without fracture, hence do not have a compressive ultimate
strength.

Shear Properties.—The properties ofhear yield strengtls,, shear ultimate strength

S, and themodulus of rigidityG, are determined by direct shear and torsional tests. The
modulus of rigidity is also known as the modulus of elasticity in shear. It is the ratio of the
shear stress, to the shear straig, in radians, within the proportional lim{& =1/y.

Fatigue Properties.—When a material is subjected to many cycles of stress reversal or
fluctuation (variation in magnitude without reversal), failure may occur, even though the
maximum stress at any cycle is considerably less than the value at which failure would
occur if the stress were constant. Fatigue properties are determined by subjecting test spe:
imens to stress cycles and counting the number of cycles to failure. From a series of sucl
tests in which maximum stress values are progressively reduced, S-N diagrams can b
plotted as illustrated by the accompanying figures. The S-N diagigii2ashows the
behavior of a material for which there isemdurance limitS,, Endurance limit is the
stress value at which the number of cycles to failure is infinite. Steels have endurance lim-
its that vary according to hardness, composition, and quality; but many non-ferrous metals
do not. The S-N diagrafig. 2bdoes not have an endurance limit. For a metal that does not
have an endurance limit, it is standard practice to specify fatigue strength as the stress valu
corresponding to a specific number of stress reversals, usually 100,000,000 or
500,000,000.

L\ s
2
-
7
2] Sen
I
N-number of cycles to failure N
Fig. 2a. S-N endurance limit Fig. 2b. S-N no endurance limit

The Influence of Mean Stress on Fatigue.-Most published data on the fatigue proper-
ties of metals are for completely reversed alternating stresses, that is, the mean stress of tt
cycle is equal to zero. However, if a structure is subjected to stresses that fluctuate betwee
different values of tension and compression, then the mean stress is not zero.

When fatigue data for a specified mean stress and design life are not available for a mate
rial, the influence of nonzero mean stress can be estimated from empirical relationships
that relate failure at a given life, under zero mean stress, to failure at the same life undel
zero mean cyclic stress. One widely used formula is Goodman's linear relationship, which
is

S, = S(1-S/S)
whereS, is the alternating stress associated with some nonzero meanSiré&ss,the
alternating fatigue strength at zero mean st&gs the ultimate tensile strength.

Goodman's linear relationship is usually represented graphically on a socadidel
man Diagramas shown below. The alternating fatigue strength or the alternating stress for
a given number of endurance cycles is plotted on the ordinatés) and the static tensile
strength is plotted on the abscissaxis). The straight line joining the alternating fatigue
strengthS, and the tensile strengt, is the Goodman line.

The value of an alternating str&sat a known value of mean str&gis determined as
shown by the dashed lines on the diagram.
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Alternating Fatigue Strength, S

Goodman Line

Alternating Stress, 5,

Smx

Mean Tensile Stress, S,, ZTl'ensile Strength, S,

Goodman Diagram
For ductile materials, the Goodman law is usually conservative, since approximately 90
per cent of actual test data for most ferrous and nonferrous alloys fall above the Goodmar
line, even at low endurance values where the yield strength is exceeded. For many brittle
materials, however, actual test values can fall below the Goodman line, as illustrated
below:

— —~— N <Duc!ile Metal

Goodman Line

Altemating Stress, S,

Brittle Metal

Mean Tensile Stress

As a rule of thumb, materials having an elongation of less than 5 per cent in a tensile tes
may be regarded as brittle. Those having an elongation of 5 per cent or more may be
regarded as ductile.

Cumulative Fatigue Damage.—Most data are determined from tests at a constant stress
amplitude. This is easy to do experimentally, and the data can be presented in a straightfor
ward manner. In actual engineering applications, however, the alternating stress amplitude
usually changes in some way during service operation. Such changes, referred to as “spe
trum loading,” make the direct use of standard S-N fatigue curves inappropriate. A prob-
lem exists, therefore, in predicting the fatigue life under varying stress amplitude from
conventional, constant-amplitude S-N fatigue data.

The assumption in predicting spectrum loading effects is that operation at a given stress
amplitude and number of cycles will produce a certain amount of permanent fatigue dam-
age and that subsequent operation at different stress amplitude and number of cycles wil
produce additional fatigue damage and a sequential accumulation of total damage, whict
at a critical value will cause fatigue failure. Although the assumption appears simple, the
amount of damage incurred at any stress amplitude and number of cycles has proven diffi
cult to determine, and several “cumulative damage” theories have been advanced.

One of the first and simplest methods for evaluating cumulative damage is known as
Miner's law or the linear damage rule, where it is assumen,tbytles at a stress 8f, for
which the average number of cycles to failurBljscause an amount of damag#éN,.

Failure is predicted to occur when

>n/N=1
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The termn/N is known as the “cycle ratio” or the damage fraction.

The greatest advantages of the Miner rule are its simplicity and prediction reliability,
which approximates that of more complex theories. For these reasons the rule is widely
used. It should be noted, however, that it does not account for all influences, and errors ar
to be expected in failure prediction ability.

Modes of Fatigue Failure.—Several modes of fatigue failure are:

Low/High-Cycle FatigueThis fatigue process covers cyclic loading in two significantly
different domains, with different physical mechanisms of failure. One domain is charac-
terized by relatively low cyclic loads, strain cycles confined largely to the elastic range,
and long lives or a high number of cycles to failure; traditionally, this has been called
“high-cycle fatigue.” The other domain has cyclic loads that are relatively high, significant
amounts of plastic strain induced during each cycle, and short lives or a low number of
cycles to failure. This domain has commonly been called “low-cycle fatigue” or cyclic
strain-controlled fatigue.

The transition from low- to high-cycle fatigue behavior occurs in the range from approx-
imately 10,000 to 100,000 cycles. Many define low-cycle fatigue as failure that occurs in
50,000 cycles or less.

Thermal FatigueCyclic temperature changes in a machine part will produce cyclic
stresses and strains if natural thermal expansions and contractions are either wholly or pat
tially constrained. These cyclic strains produce fatigue failure just as though they were
produced by external mechanical loading. When strain cycling is produced by a fluctuat-
ing temperature field, the failure process is termed “thermal fatigue.”

While thermal fatigue and mechanical fatigue phenomena are very similar, and can be
mathematically expressed by the same types of equations, the use of mechanical fatigu
results to predict thermal fatigue performance must be done with care. For equal values o
plastic strain range, the number of cycles to failure is usually up to 2.5 times lower for ther-
mally cycled than for mechanically cycled samples.

Corrosion FatigueCorrosion fatigue is a failure mode where cyclic stresses and a corro-
sion-producing environment combine to initiate and propagate cracks in fewer stress
cycles and at lower stress amplitudes than would be required in a more inert environment
The corrosion process forms pits and surface discontinuities that act as stress raisers t
accelerate fatigue cracking. The cyclic loads may also cause cracking and flaking of the
corrosion layer, baring fresh metal to the corrosive environment. Each process accelerate
the other, making the cumulative result more serious.

Surface or Contact Fatigu&urface fatigue failure is usually associated with rolling
surfaces in contact, and results in pitting, cracking, and spalling of the contacting surfaces
from cyclic Hertz contact stresses that cause the maximum values of cyclic shear stresse
to be slightly below the surface. The cyclic subsurface shear stresses generate cracks th
propagate to the contacting surface, dislodging particles in the process.

Combined Creep and Fatigule: this failure mode, all of the conditions for both creep
failure and fatigue failure exist simultaneously. Each process influences the other in pro-
ducing failure, but this interaction is not well understood.

Factors of Safety.—There is always a risk that the working stress to which a member is
subjected will exceed the strength of its material. The purpose of a factor of safety is to
minimize this risk.

Factors of safety can be incorporated into design calculations in many ways. For most
calculations the following equation is used:

Su = Su'fs @
wherefis the factor of safetyy, is the strength of the material in pounds per square inch,
ands, is the allowable working stress, also in pounds per square inch. Since the factor of
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safety is greater than 1, the allowable working stress will be less than the strength of the
material.

In generalS,,is based on yield strength for ductile materials, ultimate strength for brittle
materials, and fatigue strength for parts subjected to cyclic stressing. Most strength value:
are obtained by testing standard specimens°at @8 normal atmospheres. If, however,
the character of the stress or environment differs significantly from that used in obtaining
standard strength data, then special data must be obtained. If special data are not availabl
standard data must be suitably modified.

General recommendations for values of factors of safety are given in the following list.

fs Application
1.3-1.5 For use with highly reliable materials where loading and environmental conditions are not
severe, and where weight is an important consideration.

1.5-2 For applications using reliable materials where loading and environmental conditions are not

severe.

2-2.5 For use with ordinary materials where loading and environmental conditions are not severe.

2.5-3 For less tried and for brittle materials where loading and environmental conditions are not

severe.

3-4  For applications in which material properties are not reliable and where loading and environ-

mental conditions are not severe, or where reliable materials are to be used under difficult
loading and environmental conditions.

Working Stress.—Calculated working stresses are the products of calculated nominal
stress values and stress concentration factors. Calculated nominal stress values are bas
on the assumption of idealized stress distributions. Such nominal stresses may be simpl
stresses, combined stresses, or cyclic stresses. Depending on the nature of the nomin
stress, one of the following equations applies:

sy =Ko @ sy=Ko' Q) sv=Kog,  (6)

sv=KT (©)) Sy =KT ®) =Kty (7))
whereK is a stress concentration factogndr are, respectively, simple normal (tensile or
compressive) and shear stresséandt’ are combined normal and shear stresggsind
1., are cyclic normal and shear stresses.

Where there is uneven stress distribution, as illustrated in the table (c2Q#xgésim-
ple stresses for Cases 3, 4 and 6, the maximum stress is the one to which the stress conce
tration factor is applied in computing working stresses. The location of the maximum
stress in each case is discussed under the s8atiphe Stressesd the formulas for these
maximum stresses are given in Trable of Simple Stresses page204.

Stress Concentration Factors.—Stress concentration is related to type of material, the
nature of the stress, environmental conditions, and the geometry of parts. When stress cor
centration factors that specifically match all of the foregoing conditions are not available,
the following equation may be used:

K = 1+q(K,~1) ()]

K. is a theoretical stress concentration factor that is a function only of the geometry of a
part and the nature of the strespis theindex of sensitivitgf the material. If the geometry
is such as to provide no theoretical stress concentrijert,.

Curves for evaluatinly, are on page201through204 For constant stresses in cast iron
and in ductile materialg,= 0 (hence& = 1). For constant stresses in brittle materials such
as hardened steglmay be taken as 0.15; for very brittle materials such as steels that have
been quenched but not drawmmay be taken as 0.25. When stresses are suddenly applied
(impact stressesg)ranges from 0.4 to 0.6 for ductile materials; for cast iron it is taken as
0.5; and, for brittle materials, 1.
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For other stress concentration charts, see Lipson and Juvimalandbook of Stress and Strength

The Macmillan Co., 1963.
Simple Stresses.-Simple stresses are produced by constant conditions of loading on ele-
ments that can be represented as beams, rods, or bars. The table2fgaganarizes
information pertaining to the calculation of simple stresses. Following is an explanation of
the symbols used in simple stress formutae: simple normal (tensile or compressive)
stress in pounds per square incth; simple shear stress in pounds per square eh;
external force in pound¥, = shearing force in poundst = bending moment in inch-
poundsT = torsional moment in inch-poundss cross-sectional area in square inces;
= section modulus in inch%:ip = polar section modulus in inclieb= moment of inertia
in inched; J = polar moment of inertia in inctes = area of the web of wide flange and |
beams in square inchgs: perpendicular distance from axis through center of gravity of
cross-sectional area to stressed fiber in inatresadial distance from center of gravity to
stressed fiber in inches.

Table of Simple Stresses

Type of ! Stress Stress
Loading lllustration Distribution Equations

Direct F F . _F
1 tension 4—5 Uniform o= i ()
Direct F F ] _F
2 | compression E._ Uniform o=— (10)

-0
A
3 Bending M ' o= i% = i@ (11)
X +0

Bending moment diagram neytral plane

Case
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Table of Simple StressefContinued)

Type of - Stress Stress
Case Loading lllustration Distribution Equations
For beams of rectangular|
cross-section:
Fy F 1= (12)
A_{ T 2A
For beams of solid circular,
cross-section:
4 Bending R
% = ﬂ/ (13)
3A
For wide flange and | beamis
Neutral plane (approximately):
\
T== 14
a (14)
Direct . _F
5 shear Uniform 1= A (15)
u T T _Tc
6 Torsion T1T=5= = — 16

S| metric units can be applied in the calculations in place of the English units of
measurement without changes to the formulas. The Sl units are the newton (N),
which is the unit of force; the meter; the meter squared; the pascal (Pa) which is the
newton per meter squared (N/M); and the newton-meter (N - m) for moment of
force. Often in design work using the metric system, the millimeter is employed
rather than the meter. In such instances, the dimensions can be converted to meters
before the stress calculations are begun. Alternatively, the same formulas can be
applied using millimeters in place of the meter, providing the treatment is consistent
throughout. In such instances, stress and strength properties must be expressed in
megapascals (MPa), which is the same as newtons per millimeter squared (N/fym
and moments in newton-millimeters (N - mr#). Note 1 N/mm?2 = 1 N/10%m?2 = 1¢°
N/m? = 1 meganewton/i= 1 megapascal.

For direct tension and direct compression loading, Cases 1 and 2 in the table20vpage
the forceF must act along a line through the center of gravity of the section at which the
stress is calculated. The equation for direct compression loading applies only to members
for which the ratio of length to least radius of gyration is relatively small, approximately
20, otherwise the member must be treated as a column.

The tableStresses and Deflections in Beastesting on page 237 give equations for cal-
culating stresses due to bending for common types of beams and conditions of loading
Where these tables are not applicable, stress may be calculateHaqsitign (11)n the
table on pag@04. In using this equation it is necessary to determine the value of the bend-
ing moment at the point where the stress is to be calculated. For beams of constant cros:
section, stress is ordinarily calculated at the point coinciding with the maximum value of
bending moment. Bending loading results in the characteristic stress distribution shown in
the table for Case 3. It will be noted that the maximum stress values are at the surfaces fau
thest from the neutral plane. One of the surfaces is stressed in tension and the other in con
pression. Itis for this reason that theign is used ifEquation (11)Numerous tables for
evaluating section moduli are given in the section starting on3igge
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Shear stresses caused by bending have maximum values at neutral planes and zero valu
at the surfaces farthest from the neutral axis, as indicated by the stress distribution diagrar
shown for Case 4 in the . Values Y¥6in Equations (12) (13)and (14) can be determined
from shearing force diagrams. The shearing force diagram shown in Case 4 corresponds t
the bending moment diagram for Case 3. As shown in this diagram, the value takisn for
represented by the greatest vertical distance from &xés. The shear stress caused by
direct shear loading, Case 5, has a uniform distribution. However, the shear stress cause
by torsion loading, Case 6, has a zero value at the axis and a maximum value at the surfac
farthest from the axis.

Deflections.—For direct tension and direct compression loading on members with uni-
form cross sections, deflection can be calculated usipgtion (17)For direct tension
loading,eis an elongation; for direct compression loadéig,a contraction. Deflection is

in inches when the load is in pounds, the length over which deflection occurs is in
inches, the cross-sectional afes in square inches, and the modulus of elasti€it/in
pounds per square inch. The angular deflection of members with uniform circular cross
sections subject to torsion loading can be calculatecBaittation (18)

e = FIVAE 17) 6 =TL/GJ (18)

The angular deflectioBis in radians when the torsional mom@&ig in inch-pounds, the
lengthL over which the member is twisted is in inches, the modulus of rigglisyin
pounds per square inch, and the polar moment of idégtia inche4.

Metric Sl units can be used irEquations (17)and (18), whereF = force in newtons
(N); L =length over which deflection or twisting occurs in metersA = cross-sectional
area in meters squaredE = the modulus of elasticity in (newtons per meter squared);

0 =radians; T = the torsional moment in newton-meters (N-m)& = modulus of rigid-

ity, in pascals; andJ = the polar moment of inertia in meters. If the load (F) is applied

as a weight, it should be noted that the weight of a mabtkilograms is Mg newtons,
where g = 9.81 m/3. Millimeters can be used in the calculations in place of meters,
providing the treatment is consistent throughout.

Combined Stresses.—A member may be loaded in such a way that a combination of sim-
ple stresses acts at a point. Three general cases occur, examples of which are shown in t
accompanying illustratioRig. 1Q

Superposition of stressdsig. 10at (1) illustrates a common situation that results in sim-
ple stresses combining by superposition at paiatgb. The equal and opposite fordgs
will cause a compressive stress= — F,/A. ForceF, will cause a bending momelit to
exist in the plane of pointsandb. The resulting stress, =+ M/Z. The combined stress at
pointa,

. Fi ™ , Fi ™
0, = A7 (19) and ab, O, =—5+35 (20)
where the minus sign indicates a compressive stress and the plus sign a tensile stress. Tht
the stress & will be compressive and hteither tensile or compressive depending on
which term in the equation for,' has the greatest value.

Normal stresses at right angl€Ehis is shown irFFig. 10at (2). This combination of
stresses occurs, for example, in tanks subjected to internal or external pressure. The princ
ple normal stresses asg=F,/A;, 6, =F,/A,, ando,= 0 in this plane stress problem. Deter-
mine the values of these three stresses with their signs, order them algebraically, and the
calculate the maximum shear stress:

T= (clargest_ osmalles)/z (21)
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Normal and shear stresse€khe example ifrig. 10at (3) shows a member subjected to a
torsional shear stress= T/Zp, and a direct compressive stress,— F/A. At some poin&
on the member the principal normal stresses are calculated using the equation,

2
PR« R [N
o =3% [ *T (22)

The maximum shear stress is calculated by using the equation,

2
T = % +12 (23)

The pointa should ordinarily be selected where stress is a maximum value. For the exam-
ple shown in the figure at (3), the pomtan be anywhere on the cylindrical surface
because the combined stress has the same value anywhere on that surface.

Fa fre Oy
R “n AL
i
b Fp
(1 (2) (3)

Fig. 10. Types of Combined Loading

Tables of Combined Stresses.-Beginning on pag208 these tables list equations for
maximum nominal tensile or compressive (normal) stresses, and maximum nominal sheal
stresses for common machine elements. These equations were derived usinggeaeral
tions (19) (20), (22), and (23). The equations apply to the critical points indicated on the
figures. Cases 1 through 4 are cantilever beams. These may be loaded with a combinatio
of a vertical and horizontal force, or by a single oblique force. If the single obliqué-force
and the angl® are given, then horizontal and vertical forces can be calculated using the
equations=, =F cosB andF, =F sin6. In cases 9 and 10 of the table, the equatiors,for

can give a tensile and a compressive stress becauseto§itirein front of the radical.
Equations involving direct compression are valid only if machine elements have relatively
short lengths with respect to their sections, otherwise column equations apply.

Calculation of worst stress conditioBtress failure can occur at any critical point if
either the tensile, compressive, or shear stress properties of the material are exceeded |
the corresponding working stress. It is necessary to evaluate the factor of safety for eacl
possible failure condition.

The following rules apply to calculations using equations in the , and to calculations
based ofcquations (19%nd (20). Rule 1:For every calculated normal stress there is a cor-
responding induced shear stress; the value of the shear stress is equal to half that of the nc
mal stressRule 2:For every calculated shear stress there is a corresponding induced
normal stress; the value of the normal stress is equal to that of the shear stress. The tables
combined stresses includes equations for calculating both maximum nominal tensile or
compressive stresses, and maximum nominal shear stresses.
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Formulas for Combined Stresses

(1) Circular cantilever beam in direct compression and bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
a4 By, F 1.2738LFy - .
/:*‘/'OEP a7 04d o Ta = 050,
7 Fx
b o _L2r3fLhy " 050,
’-—L-._J,ld L o '_?DT+FG 1, = 0.50,

(2) Circular cantilever beam in direct tension and bending:

Type of Beam
and Loading

Maximum Nominal
Tens. or Comp. Stress

Maximum Nominal
Shear Stress

a

b FyF
R fa

. 1.27332 8LF
0y = =5 + 3 %
. 1.27 8LF

1, = 0.50,

1, = 0.50,

(3) Rectangular cantilever beam in direct compression and bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
/i"’ Fyl /F o 18Ry o T, = 0.50,
H¥— 4—0D_l‘1— g, = oh h F>D a a
F
b T e =2y, n 1, = 0.50,
[ b b~ bl h 0

(4) Rectangular cantilever beam in direct tension and bending:

i

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens or Comp. Stress Shear Stress
2 e = 6LF>D T, = 050,
—a o S
Z
\0
6LF , .
b o M] =0.
op = th: 1, = 0.50,

(5) Circular beam or shaft in direct compression and bending:

2 Od ]

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
N o = r2rafthy n T = 050,

e e I T
L2 b _Ll2r?lRy g 1, = 0.50,
[:’L__‘ d o, ==Y F p = 0.50,

(6) Circular beam or shaft in direct tension and bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
N o, = Lerag 2P T, = 050,
==l L
L/2fewl'b o = L2ray  2LRp 1, = 0.50,
L d b d2 X d O




STRENGTH OF MATERIALS

(7) Rectangular beam or shaft in direct compression and bending:

209

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
F §LF . .
ally __1 y = 0.50
Fy = +F T
g [T | R
L2 vy T G = _1_D_3LFy_FD 1, = 0.50,
L—{b—s] |- b~ phO 2h " ©

(8) Rectangular beam o

r shaft in direct tension and bending:

Type of Beam
and Loading

Maximum Nominal
Tens. or Comp. Stress

Maximum Nominal
Shear Stress

Py ° yFJ_
el

"Lk J

T 1n 3R,
% = prx Tz
15 8LF,
PR <+

% = 2h O

1, = 0.50,

1, = 0.50,

(9) Circular shaft in direct compression and torsion:

Type of Beam
and Loading

Maximum Nominal
Tens. or Comp. Stress

Maximum Nominal
Shear Stress

=g |

a anywhere on surface

063 2 [BTD
F+ [F<+ d|:|

T, =

_0.637 |5, BT?

d2 Og0

(20) Circular shaftin direct tension and torsion:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
T, F o -
‘%E}Q} Oa = Ta =
Fd il

a anywhere on surface

0637, |y, BT7
——d—z—]l:':i F +Dd|:|

0637 [, , (8T7
d2 Ogbo

(11) Offset link, circular

cross section, in direct tension:

Type of Beam
and Loading

Maximum Nominal
Tens. or Comp. Stress

Maximum Nominal
Shear Stress

. _127F0 8]

% = 7 %_ED
o 1273:

Op

1, = 050,

1, = 0.50,

(12) Offset link, circular

cross section, in direct compression:

Type of Beam
and Loading

Maximum Nominal
Tens. or Comp. Stress

Maximum Nominal
Shear Stress

o = 1.273:[8_8_1%

a~ 42 Od
., _ 127F8e.
% =3 Og * 1o

1, = 0.50,

1, = 0.50,
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(13) Offset link, rectangular section, in direct tension:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
F 6] - '
[EERENE 1, = 0.50
%a = ph0 " hO a a
F 67 - '
r= =5 1, = 0.50
o = prik* hO b b

(14) Offset link, rectangular section, in direct compression:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tens. or Comp. Stress Shear Stress
F 67 - '
IE RS L 1, = 0.50
%a = ph0 " hO a a
F 67 - '
r= =5 T, = 0.50
% = pa0 T hO b b

Formulas from the simple and combined stress tables, as well as tension and shear
factors, can be applied without change in calculations using metric Sl units. Stresses
are given in newtons per meter squared (N/8 or in N/mm?2.

Three-Dimensional Stress.—Fhree-dimensional or triaxial stress occurs in assemblies
such as a shaft press-fitted into a gear bore or in pipes and cylinders subjected to internal c
external fluid pressure. Triaxial stress also occurs in two-dimensional stress problems if
the loads produce normal stresses that are either both tensile or both compressive. In eith
case the calculated maximum shear stress, based on the corresponding two-dimension.
theory, will be less than the true maximum value because of three-dimensional effects.
Therefore, if the stress analysis is to be based on the maximum-shear-stress theory of fai
ure, the triaxial stress cubic equation should first be used to calculate the three principa
stresses and from these the true maximum shear stress. The following procedure provide
the principal maximum normal tensile and compressive stresses and the true maximurn
shear stress at any point on a body subjected to any combination of loads.

The basis for the procedure is the stress cubic equation

S$-AS+BS-C=0
in which:
A=§+§+S
B=SS§+§S+S5-S2-S7-S¢
C= SAS/SZ"' 23(y$/zszx_ SAS/Z - %/Szxz - SzS(yz
ands, SS,, etc., are as shownlig. 1

The coordinate systeXYZin Fig. 1shows the positive directions of the normal and
shear stress components on an elementary cube of material. Only six of the nine compo
nents shown are needed for the calculations: the normal st&s3g&nds, on three of
the faces of the cube; and the three shear sti8gsgg andS,, The remaining three shear
stresses are known beca@ge=S, S, =S, andS,, =S, The normal stress&; S, and
S, are shown as positive (tensile) stresses; the opposite direction is negative (compressive
The first subscript of each shear stress identifies the coordinate axis perpendicular to the
plane of the shear stress; the second subscript identifies the axis to which the stress is pa
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allel. Thus S, is the shear stress in tig plane to which th& axis is perpendicular, and
the stress is parallel to tNeaxis.

Fig. 1.XYZCoordinate System Showing Positive Directions of Stresses
Step 1. Draw a diagram of the hardware to be analyzed, such as the shaft $figw) in
and show the applied loaBsT, and any others.

Step 2. For any point at which the stresses are to be analyzed, draw a coordinate diagral
similar toFig. 1and show the magnitudes of the stresses resulting from the applied loads
(these stresses may be calculated by using standard basic equations from strength of mat
rials, and should include any stress concentration factors).

Step 3. Substitute the values of the six streSs&;, S, S, S, andS,,, including zero
values, into the formulas for the quantitfethroughk. The quantitief J, andK represent
the principal normal stresses at the point analyzed. As a check, if the algebrhiclktm
K equalsA, within rounding errors, then the calculations up to this point should be correct.

D=A%3-B
E=AxB/3-C-2xA327
F= (D% 27)
G =arccost E/(2xF))
H=./(D/3)
I=2xHxcos@G/3)+A/3
J=2xHx[cosG/3+120)] +A/3
K=2xH x[cosG/3+24C)] +A/3
Step 4. Calculate the true maximum shear stggs,, using the formula

Ss(max) = 0.5x (Sﬂarge_ Ssmelll)
in whichS,4eis equal to the algebraically largest of the calculated principal stfe3sars
K andS,,is algebraically the smallest.

The maximum principal normal stresses and the maximum true shear stress calculatec
above may be used with any of the various theories of failure.
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Element g

Fig. 2. Example of Triaxial Stress on an Elenseot Shaft Surface Caused by LdadTorqueT, and
5000 psi Hydraulic Pressure

ExampleA torqueT on the shaft ifFig. 2causes a shearing str&gof 8000 psi in the
outer fibers of the shaft; and the lo&dst the ends of the shaft produce a tensile sBess
4000 psi. The shaft passes through a hydraulic cylinder so that the shaft circumference i
subjected to the hydraulic pressure of 5000 psi in the cylinder, causing compressive
stresses§, andS, of — 5000 psi on the surface of the shaft. Find the maximum shear stress
at any poinf on the surface of the shaft.
From the statement of the probl&y+ + 4000 psi§, = - 5000 psiS, = - 5000 psiS,, =
+8000 psi5, = 0 psi, and,, = 0 psi.
A =4000- 5000~ 5000 =- 6000
B =(4000x - 5000)+ (- 5000x — 5000)+ (- 5000x 4000)- 800G — O? - (P =~
7.9x 10
C =(4000x — 5000x — 5000)+ 2 x 8000x 0 x 0— (4000x 0?) — (— 5000x ?) - (=
5000x 800CF) = 4.2x 1011
D=A%3-B=9.1x 10/
E=AxB/3-C-2xA327 =—2.46x 1011

F=4(D%/27) =1.6706< 104

G =arccosf E/(2 xF)) = 42.586 degreekl = ./(D/3) =5507.57
I=2xH xcosG/3+A/3=8678.8, say, 8680 psi

J=2xH x[cos(G/3+120C)] + A/3 =-9678.78, say; 9680 psi

K=2xH [cos(G/3+24C)] + A/3 =-5000 psi

Check:8680+ (- 9680)+ (— 5000) =— 6000 within rounding error.

Symaxy= 0.5% (8680 (- 9680)) = 9180 psi
Sample Calculations.—The following examples illustrate some typical strength of
materials calculations, using both English and metric Sl units of measurement.

Example 1(a)A round bar made from SAE 1025 low carbon steel is to support a direct
tension load of 50,000 pounds. Using a factor of safety of 4, and assuming that the stres:
concentration factdk = 1, a suitable standard diameter is to be determined. Calculations
are to be based on a yield strength of 40,000 psi.

Because the factor of safety and strength of the material are known, the allowable work-
ing stress,, may be calculated usirfigjuation (1)40,0004 = 10,000 psi. The relationship
between working stresg and nominal stressis given byEquation (2)SinceK = 1,0 =
10,000 psi. Applying=quation (9)in the , the area of the bar can be solved for: A =
50,00010,000 or 5 square inches. The next largest standard diameter corresponding to thit
area s 2ginches.
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Example 1(b)A similar example to that given in 1(a), using metric Sl units is as fol-
lows. A round steel bar of 300 meganewtons/met@wield strength, is to withstand a
direct tension of 200 kilonewtons. Using a safety factor of 4, and assuming that the
stress concentration factoK = 1, a suitable diameter is to be determined.

Because the factor of safety and the strength of the material are known, the allow-
able working stresss,, may be calculated usindg=quation (1): 300’4 = 75 mega-new-
tons/meter. The relationship between working stress and nominal stressis given
by Equation (2). SinceK = 1,0 = 75 MN/n?. Applying Equation (9)in the , the area of
the bar can be determined from:

200 kN _ 200,000 N

75 MN/m? 75,000 000 M A

The diameter corresponding to this area is 0.058 meters, or approximately 0.06 m.
Millimeters can be employed in the calculations in place of meters, providing the
treatment is consistent throughout. In this instance the diameter would be 60 mm.
Note: If the tension in the bar is produced by hanging a mass & kilograms from
its end, the value isig newtons, whereg = approximately 9.81 meters per secorid
Example 2(a)What would the total elongation of the baExample 1(ape if its length
were 60 inches? Applyingquation (17)

_ 50,000% 60 _ .
© = 5157x 3q00p 000 019 inch

Example 2(b)What would be the total elongation of the bar irExample 1(b)if its
length were 1.5 meters? The problem is solved by applyirgquation (17)in which F
=200 kilonewtons;L = 1.5 metersA =10.06%/4 = 0.00283 rA Assuming a modulus of
elasticity E of 200 giganewtons/mete then the calculation is:

200,000x 1.5 _
© = 5:00283% 200 00p 0q0 00p 2000530 m

The calculation is less unwieldy if carried out using millimeters in place of meters;
thenF =200 kN;L = 1500 mm;A = 2830 mn?, and E = 200,000 N/mm. Thus:

_ 200,000% 1500 _
= 2830% 200 000 2530 mm

Example 3(a)Determine the size for the section of a square bar which is to be held firmly
atone end and is to support a load of 3000 pounds at the outer end. The bar is to be 30 inch
long and is to be made from SAE 1045 medium carbon steel with a yield point of 60,000
psi. A factor of safety of 3 and a stress concentration factor of 1.3 are to be used.

FromEquation (1the allowable working stresg= 60,0003 = 20,000 psi. The applica-
ble equation relating working stress and nominal stregsjigtion (2) henceo =
20,0001.3 = 15,400 psi. The member must be treated as a cantilever beam subject to
bending moment of 383000 or 90,000 inch-pounds. Solviaguation (11)n the for sec-
tion modulusZ = 90,00015,400 = 5.85 inch The section modulus for a square section
with neutral axis equidistant from either side¥6, wherea is the dimension of the

square, s@ = 3/35.1 = 3.27 inches. The size of the bar can therefofg;becBes.

Example 3(b)A similar example to that given inExample 3(a) using metric Sl units
is as follows. Determine the size for the section of a square bar which is to be held
firmly at one end and is to support a load of 1600 kilograms at the outer end. The bar
is to be 1 meter long, and is to be made from steel with a yield strength of 500 new-
tons/mme. A factor of safety of 3, and a stress concentration factor of 1.3 are to be
used. The calculation can be performed using millimeters throughout.

A= = 0.00267n%
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From Equation (1) the allowable working stresss, = 500 N/mn#/3 = 167 N/mn3.
The formula relating working stress and nominal stress isEquation (2); henceo =
1671.3 = 128 N/mm. Since a mass of 1600 kg equals a weight of 1@pBewtons,
where g = 9.81 meters/secorf the force acting on the bar is 15,700 newtons. The
bending moment on the bar, which must be treated as a cantilever beam, is thus 1000
mm x 15,700 N = 15,700,000 N - mm. Solviggjuation (11)in the for section modu-
lus: Z =M/o = 15,700,000.28 = 123,000 mrh Since the section modulus for a square
section with neutral axis equidistant from either side i®®/6, wherea is the dimension
of the square,

a = 3/6x 123 000= 90.4 mm

Example 4(a)Find the working stress in a 2-inch diameter shaft through which a trans-
verse holdjinch in diameter has been drilled. The shaft is subject to a torsional moment of
80,000 inch-pounds and is made from hardened steel so that the index of semsitvty

The polar section modulus is calculated using the equation shown in the stress concentre
tion curve for a Round Shaft in Torsion with Transverse Hole, pége

l] =Z7Z = T[XZ3__—_22

c P 16 4x6

The nominal shear stress due to the torsion loading is computed=ggiation (16)n
the:

= 1.4 inched

T = 80,000/1.4 = 57,200 psi
Referring to the previously mentioned stress concentration curve 02@2dg is 2.82
sinced/D is 0.125. The stress concentration factor may now be calculated by means of
Equation (8)K = 1+ 0.2(2.82- 1) = 1.36. Working stress calculated wituation (3)s
Sy = 1.36x 57,200 = 77,800 psi.

Example 4(b)A similar example to that given in 4(a), using metric Sl units is as fol-
lows. Find the working stress in a 50 mm diameter shaft through which a transverse
hole 6 mm in diameter has been drilled. The shaft is subject to a torsional moment of
8000 newton-meters, and has an index of sensitivity qf= 0.2. If the calculation is
made in millimeters, the torsional moment is 8,000,000 N - mm.

The polar section modulus is calculated using the equation shown in the stress con-
centration curve for a Round Shaft with Transverse Hole, pag202

J _ _ Tx50% 6x50

c “p 16 6
24,544— 2500= 22,044mm3

The nominal shear stress due to torsion loading is computed usiggjuation (16)in
the:

T = 8,000,000°22,000= 363 N/ mm? = 363 megapascals

Referring to the previously mentioned stress concentration curve on pag@2, K is
2.85, since/d = 6/50 = 0.12. The stress concentration factor may now be calculated by
means ofEquation (8): K=1+0.2(2.85- 1) = 1.37. FromEquation (3), working stress
sy = 1.37x 363 = 497 N/mm = 497 megapascals.

Example 5(a)For Case 3 in th€ables of Combined Stressealculate the least factor of
safety for a 5052-H32 aluminum beam is 10 inches long, one inch wide, and 2 inches high.
Yield strengths are 23,000 psi tension; 21,000 psi compression; 13,000 psi shear. The
stress concentration factor is 1F§js 600 IbsF, 500 Ibs.

FromTables of Combined Stress€sise 3:
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, 1 Bx 10>< 6x 10x 600, 500] = ~9250 psi (in compression)

O = Tx20
The other formulas for Case 3 giwg = 8750 psi (in tension},' + 4375 psi, and,’ +
4625 psi. Using equation (4) for the nominal compressive stress of 925) psl.5x
9250 = 13,900 psi. Fromquation (1)f=21,00013,900 = 1.51. Applyingquations (1)
(4) and (5) in appropriate fashion to the other calculated nominal stress values for tension
and shear will show that the factor of safety of 1.51, governed by the compressive stress a
b on the beam, is minimum.
Example 5(b)What maximum F can be applied in Case 3 if the aluminum beam is
200 mm long; 20 mm wide; 40 mm high@ = 3C°; fs= 2, governing for compressionk
=1.5, andS,, = 144N/mn# for compression.
From Equation (1) S, = - 144N/mn¥. Therefore, from Equation (4), o, =-72/1.5=
— 48N/mmr?. SinceF, =F cos 30 = 0.866-, andF, =F sin 30" = 0.5F:

_ 1 6 x 200x 0.5F
—48 = Z—OX4OB).866F 22—y

F = 2420 N

Stresses and Deflections in a Loaded Ring.Ferthin rings, that is, rings in which the
dimensiord shown in the accompanying diagram is small comparedyitie maximum
stress in the ring is due primarily to bending moments produced by theRofides max-
imum stress due to bending is:

_ PDd
T 4m @

For a ring of circular cross section whelis the diame-
ter of the bar from which the ring is made,

1.621PD _ 0.617ScB
e or P= S 2
The increase in the vertical diameter of the ring due
loadPis:

S =

0.0186P D3
El
Thedecreaseén the horizontal diameter will be about 92% of the increase in the vertical
diameter given byormula (3) In the above formula®, = load on ring in pound® =
mean diameter of ring in inche&&+ tensile stress in pounds per square ihslmoment of
inertia of section in inchésandE = modulus of elasticity of material in pounds per square
inch.
Strength of Taper Pins.—The mean diameter of taper pin required to safely transmit a
known torque, may be found from the formulas:

= — d = —
d=113 DS 1) an d =283 NDS )

in which formulasT = torque in inch-pound§= safe unit stress in pounds per square inch;
HP = horsepower transmitteld;= number of revolutions per minute; asheindD denote
dimensions shown in the figure.

Increase in vertical diameter inches(3)
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Formula (1) can be used with metric Sl units wherel and D denote dimensions
shown in the figure in millimeters; T = torque in newton-millimeters (N - mm); andS
= safe unit stress in newtons per millimeter(N/mm?). Formula (2) is replaced by:

Power
NDS
where d and D denote dimensions shown in the figure in millimetersS = safe unit

stress in N/mn#; N = number of revolutions per minute, and Power = power transmit-
ted in watts.

ExamplesA lever secured to a 2-inch round shaft by a steel tapered pin (dimérsipn

inch) has a pull of 50 pounds at a 30-inch radius from shaft centeS Firedunit working
stress on the pin. By rearrangifgrmula (1)

_1.27T _ 1.27x 50x 30
ST o@ . @z
2x g

d = 110.3

= 6770

pounds per square inch (nearly), which is a safe unit working
stress for machine steel in shear.

Let P = 50 poundsR = 30 inchespP = 2 inches, an&= 6000
pounds unit working stress. UsiRgrmula (1)o findd:

- T 50% 30 _ T _ s
d =113 |02 = 113 |20 = 1.13[8 0.4 inch

A similar example using Sl units is as follows: A lever secured to a 50 mm round
shaft by a steel tapered pind = 10 mm) has a pull of 200 newtons at a radius of 800
mm. Find S, the working stress on the pin. By rearrangingFormula (1):

S = 1271 _ 1.27x 200800 _ 40.6 v/ mnt = 40.6 megapascals

If a shaft of 50 mm diameter is to transmit power of 12 kilowatts at a speed of 500
rpm, find the mean diameter of the pin for a material having a safe unit stress of 40
N/mm?2, Using the formula:

_ Power _ 12,000
d = 110.3 NDS thend = 110.3/570Ox =0x 40

110.3x 0.1096= 12.09 mm




MOMENT OF INERTIA 217

MOMENT OF INERTIA

Calculating Moment of Inertia

Moment of Inertia of Built-up Sections.—The usual method of calculating the moment

of inertia of a built-up section involves the calculations of the moment of inertia for each
element of the section about its own neutral axis, and the transferring of this moment of
inertia to the previously found neutral axis of the whole built-up section. A much simpler
method that can be used in the case of any section which can be divided into rectangula
elements bounded by lines parallel and perpendicular to the neutral axis is the so-callec
tabular method based upon the formukab(h,2 - h%)/3 in whichl = the moment of inertia
about axiDE, Fig. 1, andb, h andh, are dimensions as given in the same illustration.

The method may be illustrated by applying it to the section shofig.i2, and for sim-
plicity of calculation shown “massed” Fig. 3 The calculation may then be tabulated as
shown in the accompanying table. The distance from theDdxi® the neutral axisx
(which will be designated a8 is found by dividing the sum of the geometrical moments
by the area. The moment of inertia about the neutral axis is then found in the usual way by
subtracting the area multiplied B%from the moment of inertia about the aRi.

2
~
7 zZ I
C -
.; RY 53 X
] T - > | 0625 0.49
- < ~ It A 1e
p— 1t . K oa2s D s
Fig. 1. Fig. 2. Fig. 3.
Tabulated Calculation of Moment of Inertia
| about axis
Moment DE
2_h2 3_ph3
Breadth Height Area M M
Section b hy b(h, - h) h,2 2 h? 3
A 1.500 0.125 0.187 0.016 0.012 0.002 0.001
B 0.531 0.625 0.266 0.391 0.100 0.244 0.043
c 0.219 1.500 0.191 2.250 0.203 3.375 0.228
A=0.644 M=0.315 Tpe = 0.272

The distance from DE, the axis through the base of the configuration, to the neutral axis
XXis:

The moment of inertia of the entire section with reference to the neutrakaxis
Iy = lpg—Ad”
0.272— 0.644 0.49

= 0.117

Formulas for Moments of Inertia, Section Moduli, etc.—On the following pages are
given formulas for the moments of inertia and other properties of forty-two different cross-
sections. The formulas give the area of the seétj@and the distancgefrom the neutral
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axis to the extreme fiber, for each example. Where the formulas for the section modulus
and radius of gyration are very lengthy, the formula for the section modulus, for example,

has been simply given ds-y . The radius of gyration is sometimes givAn:as

save space.

MOMENT OF INERTIA, SECTION MODULUS

Moments of Inertia, Section Moduli, and Radii of Gyration

Section Section Modulus Radius of Gyration
A=area Moment of | ]
y = distance from axis t Inertia = - k = /\/:
extreme fiber | y A
Square and Rectangular Sections
4 3 a
a a — = 0.28%
12 6 J12
4 3
a a 2 - 0577
3 3 J3
4 3
a 2 _ - o118° & - 0.28;m
12 6./2 12
2 2
a +b
a41—2b4 a4 — b4 12
6a
= 0.289/a” + b’
J2&%—bh 2, 2
4_pt 12a a
a —b 12
12

4_pd
= 0.1185"T

0.289/a” + b2
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Moments of Inertia, Section Moduli, and Radii of Gyration(Continued)

Section
A=area

y = distance from axis t
extreme fiber

Moment of
Inertia
|

Section Modulus

Z:I_
y

Radius of Gyration

-

Square and Rectangular Secti¢@sntinued)

e

bd

: bd. bd” — =0.28d
n 12 6 J12
b
A=bd y=9%
~ B
bd? ba? 4 - o571
3 3 J3
b—b-~
A=bd y=d
bd
b3d3 b2d2 J6(b2 + d2)
(b2 + d?) 6./b2 +d? - 0.4082d
b2+ d?
d2 cos? b2sin2
%g(dzco§o( %dx A-”Oifz”-sn”(‘x
2si Wcofa + bZsiPan = 0.280x
+b sza) O dcosa + bsina O J2coRa + b2sirol
y=%(d cosa +bsina)
l k b —hid
L _i_ é_% bd? — hik3 b —hk3 \12(bd— hR
12 6d _ bd®—hk3
f—b—] = 0.289 5 a—hk
A=bd-hk

< I
1"
S




Moments of Inertia, Section Moduli, and Radii of Gyration

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sect on_ModuI S _ Y
Section A Axisto Extreme Fiber, y 1 Z=1y k= JI/A
Triangular Sections
1§
5 bd? bd? 4 - 02364
- . l Ybd %d " e Wi
fo—b—
l ~ bd3 bd? d _
Y bd d = = — = 0.4084
| 1 2 2 12 V6
l—p—]
Polygon Sections
—a—f
< n d(a+b) d(a+2b) &%+ dab + b2 (% + dab + b2 4> (a® + 4ab + b?)
L 2 3(a+b) 36(a+b) 12(a + 2b) 18(a + b)?
—b—+
T 3d212n30° 4 f*_[dz(l + 2003230")] é[d(l + 2008230")] (1 + 2005°30°)
~ , 5 12 4c0s230° 6 400s230° 1800230°
l = 0.866d = 0.06d" = 0.124° = 02644

0ce
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sectl OrlMOdL" us, _
A Axis to Extreme Fiber, y I Z=1y k = JI/A
2 .
34 tanO ., ﬁ[dz(l + 2cos230°>] i[d(l + 2;03230")] 42(1 + 200s230°)
4 __ - 12 o 6.9 4c0s?30° e 2amo
2 2c0s30° 0577d 400530 5 48cos"30
= 0.866d = 0.06d" = 0.104d = 0.264d
4 ﬁ[(lz(l + 2cos,2221/°>] f_x[d(l + 2008222’/")] [2(1+ 200520%°)
2d%tan 22% = 0.82842 5 12| 4cos?22ly’ 6| acos?22y° 48022y
= 0.0554* - 010943 = 0.257d
Circular, Elliptical, and Circular Arc Sections
2 d 4 3 d
nd” _ 2 d nd” _ 4 nd _ 3 ¢
T = 07854d 5 & = 00494 %5 = 0098d i
o , (3n-4)d (or’—64)d* (9r° - 64)d’ [0 — 6ty
5 0.393d 61 1152n 192(3n—-4) 121
= 0.288d = 0.0074* = 0.024d° = 0132d
4 4
2 2 4 4 (D -d)
(D’ =d*) n(D*=d") e —g)
4 D ~a 32D D%+ &
2 4_ 4 7
= 0.7854(D— d?) = 0049(D* — % = 0.0981%

SNINAON NOILO3S 'VILYANI 40 LNINOWN
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sectl orlModuI us, _
Section A Axis to Extreme Fiber, y I Z=1y k = JI/A
3 3
4R°-r)
2 2 i S 4_ 4
- - _i_ E(_R_Z_—_r_) B 0.1098(2R2 ) I i
PN 3_3 _0.283Rr"(R-r) y A
\e OP\JT = 15708(R* =12 = 0.4241—62—1—2 R+r
4 R —r
N T
] >
3, 2,
Tab = 3.1416ab a R4l - 078540% Ta%h - 0785442 g
b
b
o d |
h r n(a3h —c3d)
'T n(ab — cd) p Z(ﬂab—fad) 4a N [a3b—c3d
=3.1416(ab — cd 3p 03 2 —c
T ﬁ (@b~ cd) = 0.7854(a3b - c3d) = 0.7854“"1—-——‘—" ab=cd
<
1 X
|-Sections
—~|5 f—h—
T b 25b3+ i3 25b3+ hid / 25b% + hi3
bd-h(b-t = e e —
1 N b-1 2 12 6b 12[bd—h(b-1)]

(444
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Secti OrlMOdl‘" us, ~ y!
A Axis to Extreme Fiber, y I Z=1Yy k= JI/A
a_ L pa_ps
., %z[bd Gothi1 )] . . WS
dr +2a(s +n) 2 inwhich ¢ = slope of @[”dg‘z,("“‘la)] 12[ %" ]
flange=(h- DI(b-1) =% ’ di+ 2a(s +n)
for standard 1-beams.
d bd3—h3(b—1) bd®—h3(b—1) Jm
ba-H(e-1) 2 12 6d 12[bd —h(b-1)]
1/12[193(11—11) +13
1
E(ph_14 = b3(d—h)+ 113
di + 2a(s + n) g +4w t)] eh[ %
inwhich g = slope of +§<b4—t4)]
flange=(h-DI(b-1) =%
for standard 1-beams.
DB+l
bs + ht + as d-[d?+ 52 (b- 1) %4(:(_(1,)(;)_ +_a:)3 = 1
+s(a-1)(2d-s)] 24 Y y A

“(a-n0-97
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sectl orlModuI us, _ i
Section A Axisto Extreme Fiber, y 1 Z=1y k = JI/A
C-Sections
3,i 4 _ 14
J/lz[bd g )]
1
- 3 _ —(h4_]4
dt + a(s + n) (—1 g =slopeof flange —J'—I:hd3——:|'-(h“—l4)j| [bd 8g(h £ )]
2 = _h-l =¥ &d 8 dt+a(s+n)
T 2b-1 ’
for standard channels.
2
b— [bzs + }'—2[-

+§(/;—z)2

1/3[2.#;3 +13+ %’(b" - t“)]

¥ —A(b—y)? I 7
45 .j dt + 2a(s + n) x(l;+2t)]+A g:d;),iezlofflange )'/ A
-ln ] ¢ =dopeof flange R TTEnIC
d = h=l for standard channels.
2(b-1)
bl §
»@T b~ (b~ 1) d bd3=h3(b—1) bd3=h3(b—1) bd®—h3(b—1)
R 7 M, 2 12 6d 2[bd—h(b—1)]
i
¥ bz

e
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sectl orlModuI us, _ i
Section A Axisto Extreme Fiber, y 1 Z=1y k = JI/A
X h*l S'tf
> 2b2s + hi? 2s5b3+ hid 2 ! 1
TS bd - h(b - 1) T T T T —Ab-Y) 5 I
—d
T-Sections
1
bs + ht d_d21+s2(l7—t) YnB+b(d - y)3 1 'm[ﬂ'hb(d—yﬁ
’ 2(bs +ht) (b-0)(d-y-s oo
(b-9d-y-s)3 y TSy E——
2
d-[35°(b=T) 3 3
I(T+1) YAPB(T + 30) + 4bn® - 1 1
T HTnralEm | s 2am(m +3s) + 377 2am®] - A (d-y-n)? y A
—I(T—1)(3d—1)] +6A
ps+ MTHD d - [3bs?+3ht (d +s) Y J4bs® + 13(3t + T)) I 1
2 +h(T-1)(h+3s5)] 64 “A(d-y-s)? y A

SNINAON NOILO3S 'VILYANI 40 LNINOWN
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Sectl orlModuI us, _ i
Section A Axisto Extreme Fiber, y 1 Z=1y k = JI/A
i
Ry a sb3+mT3+ 113
2 1‘% 4 @ *+Tn b 12 I i
5 am[2a?+ (2a +37)?] - =
l ¥ T +a(s+n) 2 e — y A
m +1(T—t)[(T—z)2+2(T+ 21)2]
ﬁ"{l [ 144
~—d
L-, Z-, and X-Sections
2+at—1? YnB +a(a-y)3 1 1
2 - _arar—irr - -
e NEIETED (- a-y- 1) v A
[ 1 e _)3
{a+b-1) b_t(2d+a)+(12 oy +ab - y)3 I 3[(a+b_[)[1,\ +ta(b-y)
2(d+a) (- )by -1y y en
~a-0(b-y-0?3
; 3 —v)3
Ha+b-1) _H2ctb)vc Hiy? + bla-y)° 1 A}3t(q+b—/)m *hta=y)
2(c+b) ~(b-n)(a-y-13 y

~b-1(a-y-1?3]

9¢¢
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

i Radius of Gyration,
Areaof Section, Distance from Neutral Moment of Inertia, Secti orlModuI us _ (—y
A Axis to Extreme Fiber, y I Z=1y k= JI/A
A 17(a2+52) - 12y2)
1(2a - 1) _aira-i?_ 2 ' : ¢
2(2a —t) cos45° —2ab?(a—b) y A

inwhichb = (a - 1)

=,
[ e 7 B b ab3—c(b—21)3 ab3—c(b-21)3 [ab3—c(b =213
T T e b+ 2a-1)] 2 12 6b 12106 + 2(a—1)]
f—a—]
e Ling
13 ¢
S
~ = 2a—t b(a+¢)3=2c3d—6a2cd | b(a+c)3—2c3d—6acd b(a+c)3—2c3d —6a2cd
= %i 1 b +2(a-1] 2 [ 6(2a-1) N T2b+ 2]
Lt
re—od
4
-t
4 < di+s(b-1) d td3+ s3(b—1) td3—s3(b—1) td®+s3(b—1)
_?. : 2 12 6d T ECED)
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MOMENT OF INERTIA, SECTION MODULUS

Tabulated Moments of Inertia and Section Moduli for Rectangles and Round Shafts

Moments of Inertia and Section Moduli for Rectangles (Metric Units)

Moments of inertia and section modulus values shown here are for rectangles 1 millimeter wide. To obtain mpment of
inertia or section modulus for rectangle of given side length, multiply appropriate table value by given width. {See the
text starting on page17 for basic formulas.)
Length| Moment Length | Moment Length| Moment
of Side of Section of Side of Section of Side of Section
(mm) Inertia Modulus (mm) Inertia Modulus (mm) Inertia Modulus
5 10.4167 4.16667 56 14634.7 522.66} 10 102087 1908.1L7
6 18.0000 6.00000 57 15432.9 541.50 10] 104976 1944.00
7 28.5833 8.16667 58 16259.3 560.66} 10 107919 1980.1L7
8 42.6667 10.6667 59 17114.9 580.16} 11 110917 2016.p7
9 60.7500 13.5000 60 18000.9 600.00 1 1139609 2053.50
10 83.3333 16.6667 61 18915.1 620.16¥] 1 117077 2090.67
11 110.917 20.1667 62 19860.7 640.66¥| 1 120241 2128.17
12 144.000 24.0000 63 20837.3 661.500) 1 123462 2166.p0
13 183.083 28.1667 64 21845.3 682.66¥| 1 126740 2204.17
14 228.667 32.6667 65 22885.4 704.16¥ 1 130075 224267
15 281.250 37.5000 66 23958.G 726.000)] 1 133468 2281.50
16 341.333 42.6667 67 25063.4 748.16¥ 1 136919 2320.p7
17 409.417 48.1667 68 26202.7 770.66¥ 1 140430 2360.1L7
18 486.000 54.0000 69 27375.9 793.500) 1 144040 2400.po
19 571.583 60.1667 70 28583.3 816.66Y) 1 147630 244007
20 666.667 66.6667 71 29825.9 840.16Y) 1 151321 2480.67
21 771.750 73.5000 72 31104.9 864.000) 1 155072 2521.50
22 887.333 80.6667 73 32418.1 888.16Y) 124 158845 2562.67
23 1013.92 88.1667 74 33768.7 912.66¥] 12 162760 2604.17
24 1152.00 96.0000 75 35156.3 937.500) 126 166698 2646.p0
25 1302.08 104.1667 76 36581.9 962.66 127 170699 268817
26 1464.67 112.6667 77 38044 .4 988.16 1 174743 273067
27 1640.25 121.5000 78 39546.( 1014.0p| 1 183043 281667
28 1829.33 130.6667 79 41086.4 1040.1y 1 191664 290400
29 2032.42 140.167 80 42666.7 1066.6f]| 1 205031 3037.50
30 2250.00 150.000 81 44286.9 1093.50) 1 219006 3174.p0
31 2482.58 160.167 82 45947.9 1120.6¥] 140 228647 3266.67
32 2730.67 170.667 83 47648.9 1148.1} 143 243684 3408.17
33 2994.75 181.500 84 49392.4 1176.00] 14 264710 3601.50
34 3275.33 192.667 85 51177.1 1204.1} 1 281250 3750.po
35 3572.92 204.167 86 53004.7 1232.6¥ 15 310323 4004.17
36 3888.00 216.000 87 54875.3 1261.50] 1 341333 4266.67
37 4221.08 228.167 88 56789.3 1290.6¥ 1 374344 4537.50
38 4572.67 240.667 89 58747.4 1320.1}] 170 409417 4816.67
39 4943.25 253.500 90 60750.9 1350.00 1 446615 5104.17
40 5333.33 266.667 91 62797.9 1380.1}] 180 486000 5400.po
41 5743.42 280.167 92 64890.7 1410.6¥ 527635 5704.17
42 6174.00 294.000 93 67029.9 1441.50) 190 571583 6016.67
43 6625.58 308.167 94 69215.3 1472.6¥ 19 617906 6337.50
44 7098.67 322.667 95 71447.9 1504.1} 200 666647 6666.67
45 7593.75 337.500 96 73728.9 1536.00)] 210 771750 7350.p0
46 8111.33 352.667 97 76056.1 1568.1}] 220 887333 8066.57
a7 8651.92 368.167 98 78432.7 1600.6¥]| 230 1013917 881667
48 9216.00 384.000 99 80858.3 1633.50) 24 1152000 9600.00
49 9804.08 400.167 100 83333.9 1666.6}7 2 1302083 10416.7
50 10416.7 416.667 101 85858.4 1700.1}] 2 1464667 11266.7
51 11054.3 433.500 102 88434.4 1734.0p 2 1640250 12150.0
52 11717.3 450.667 103 91060.4 1768.1J 2 1829333 13066.7
53 12406.4 468.167 104 93738.7 1802.67 2 2032417 14016.7
54 13122.0 486.000 105 96468.94 1837.5p) 3 2250000 15000.0
55 13864.6 504.167 106 99251.4 1872.6[
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Section Moduli for Rectangles

Length of Section Length of Section Length of Section Length of Section
Side Modulus Side Modulus Side Modulus Side Modulus
% 0.0026 23, 1.26 12 24.00 25 104.2
Y6 0.0059 3 1.50 12%, 26.04 26 112.7
A 0.0104 3% 1.76 13 28.17 27 121.5
%16 0.0163|| 3% 2.04 13% 30.38 28 130.7
% 0.0234 37, 2.34 14 32.67 29 140.2
T 0.032 4 2.67 14%, 35.04 30 150.0
% 0.042 A 3.38 15 37.5 32 170.7
% 0.065 5 4.17 15% 40.0 34 192.7
% 0.094 5% 5.04 16 42.7 36 216.0
A 0.128 6 6.00 16% 45.4 38 240.7
1 0.167 6% 7.04 17 48.2 40 266.7

1% 0.211 7 8.17 17% 51.0 42 294.0
1, 0.260 KA 9.38 18 54.0 44 322.7
1% 0.315 8 10.67 18%, 57.0 46 352.7
1% 0.375 8y, 12.04 19 60.2 48 384.0
1% 0.440 9 13.50 19, 63.4 50 416.7
19, 0.510 9% 15.04 20 66.7 52 450.7
1% 0.586 10 16.67 21 735 54 486.0
2 0.67 10% 18.38 22 80.7 56 522.7
A 0.84 11 20.17 23 88.2 58 560.7
2 1.04 11% 22.04 24 96.0 60 600.0

Section modulus values are shown for rectangles 1 inch wide. To obtain section modulus for rect-
angle of given side length, multiply value in table by given width.

Section Moduli and Moments of Inertia for Round Shafts

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus of Inertia Dia. Modulus of Inertia
% 0.00019 0.00001 /5 0.00737 0.00155 2% 0.03645 0.01310
Ya 0.00027 0.00002 T 0.00822 0.00180 Fea 0.03888 0.01428
Y 0.00037 0.00003 ES 0.00913 0.00207 % 0.04142 0.01553
N 0.00050 0.00004 A 0.01011 0.00237 s 0.04406 0.01687
Y6 0.00065 0.00006 E5 0.01116 0.00270 P 0.04681 0.01829
Bn 0.00082 0.00008 A 0.01227 0.00307 ES 0.04968 0.01979
Yo 0.00103 0.00011 E% 0.01346 0.00347 Y 0.05266 0.02139
A 0.00126 0.00015 Yo 0.01472 0.00391 A 0.05576 0.02309
% 0.00153 0.00019 a 0.01606 0.00439 /% 0.05897 0.02488
Yea 0.00184 0.00024 %6 0.01747 0.00491 s 0.06231 0.02677
Y20 0.00218 0.00031 /5 0.01897 0.00548 A 0.06577 0.02877
kA 0.00257 0.00038 Yo 0.02055 0.00610 n 0.06936 0.03089
i 0.00300 0.00047 £ 0.02222 0.00677 2 0.07307 0.03311
EN 0.00347 0.00057 % 0.02397 0.00749 A 0.07692 0.03545
% 0.00399 0.00069 Yer 0.02581 0.00827 B 0.08089 0.03792
ES 0.00456 0.00082 %, 0.02775 0.00910 % 0.08501 0.04051
% 0.00518 0.00097 Fa 0.02978 0.01000 % 0.08926 0.04323
EN 0.00585 0.00114 Y 0.03190 0.01097 s 0.09364 0.04609
B 0.00658 0.00134 R 0.03413 0.01200

In this and succeeding tables, fhelar Section Modulufor a shaft of given diameter can be
obtained by multiplying its section modulus by 2. Similarly Atdar Moment of Inertiazan be
obtained by multiplying its moment of inertia by 2.
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MOMENT OF INERTIA, SECTION MODULUS

Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
1.00 0.0982 0.0491 1.50 0.3313] 0.248} 2.0 0.78%4 0.7§
1.01 0.1011 0.0511 1.51 0.3380 0.255] 2.0 0.7972 0.8¢
1.02 0.1042 0.0531 1.52 0.3448| 0.262] 2.0 0.8092 0.81
1.03 0.1073 0.0552 153 0.3516| 0.269 2.0 0.8213 0.83
1.04 0.1104 0.0574 1.54 0.3586| 0.2761 2.0 0.8335 0.8§
1.05 0.1136 0.0597 1.55 0.3656| 0.2833 2.0 0.8458 0.8¢
1.06 0.1169 0.0620 1.56 0.3727| 0.290 2.0 0.8582 0.8§
1.07 0.1203 0.0643 157 0.3799 0.298] 2.0 0.8708 0.90
1.08 0.1237 0.0668 1.58 0.3872 0.305} 2.0 0.8835 0.91
1.09 0.1271 0.0693 1.59 0.3946| 0.313| 2.0 0.8963 0.93
1.10 0.1307 0.0719 1.60 0.4021 0.321] 2.1 0.9092 0.95
111 0.1343 0.0745 1.61 0.4097| 0.329 2.1 0.9222 0.97
112 0.1379 0.0772 1.62 0.4174 0.338] 2.1 0.93%4 0.99
113 0.1417 0.0800 1.63 0.4252 0.346 2.1 0.9487 1.01
1.14 0.1455 0.0829 1.64 0.4330 0.355 2.1 0.9621 1.0
115 0.1493 0.0859 1.65 0.4410| 0.363] 2.1 0.9787 1.04
1.16 0.1532 0.0889 1.66 0.4491 0.372 2.1 0.9894 1.06
117 0.1572 0.0920 1.67 0.4572 0.381] 2.1 1.0032 1.04
1.18 0.1613 0.0952 1.68 0.4655| 0.391p 2.1 1.0171 1.1q
1.19 0.1654 0.0984 1.69 0.4739 0.400] 2.1 1.0312 1.14
1.20 0.1696 0.1018 1.70 0.4823| 0.410] 2.2 1.0434 1.14
121 0.1739 0.1052 1.71 0.4909 0.419] 2.2 1.0597 1.17
1.22 0.1783 0.1087 1.72 0.4996| 0.429] 2.2 1.0741 1.19
1.23 0.1827 0.1124 1.73 0.5083 0.439 2.2 1.0887 1.21
1.24 0.1872 0.1161 1.74 0.5172f 0.450(0 2.2 1.1034 1.23
1.25 0.1917 0.1198 1.75 0.5262 0.460f 2.2 1.1183 1.29
1.26 0.1964 0.1237 1.76 0.5352 0.471 2.2 1.1332 1.24
1.27 0.2011 0.1277 1.77 0.5444 0.481] 2.2 1.1484 1.3(
1.28 0.2059 0.1318 1.78 0.5537| 0.492] 2.2 1.1636 1.34
1.29 0.2108 0.1359 1.79 0.5631 0.503} 2.2 1.1790 1.34
1.30 0.2157 0.1402 1.80 0.5726 0.515 2.3 1.1945 1.3
1.31 0.2207 0.1446 1.81 0.5822 0.526 23 1.2101 1.34
1.32 0.2258 0.1490 1.82 0.5919 0.538] 23 1.2239 1.43
1.33 0.2310 0.1536 1.83 0.6017| 0.550 23 1.2418 1.44
1.34 0.2362 0.1583 1.84 0.6116| 0.562 2.3 1.2579 1.47
1.35 0.2415 0.1630 1.85 0.6216| 0.5750 23 1.2741 1.49
1.36 0.2470 0.1679 1.86 0.6317| 0.587] 2.3 1.2904 1.54
1.37 0.2524 0.1729 1.87 0.6420| 0.600] 23 1.3069 1.54
1.38 0.2580 0.1780 1.88 0.6523 0.613p1 2.3 1.3235 1.57
1.39 0.2637 0.1832 1.89 0.6628| 0.626 2.3 1.3403 1.6q
1.40 0.2694 0.1886 1.90 0.6734 0.639 2.4 1.3572 1.69
141 0.2752 0.1940 1.91 0.6841 0.6533 2.4] 1.3742 1.65
1.42 0.2811 0.1996 1.92 0.6949| 0.667 2.4] 1.3914 1.64
143 0.2871 0.2053 1.93 0.7058| 0.681] 2.4 1.4087 1.71
1.44 0.2931 0.2111 1.94 0.7168| 0.6953 2.4 1.4262 1.79
1.45 0.2993 0.2170 1.95 0.7280| 0.709] 2.4 1.4438 1.76
1.46 0.3055 0.2230 1.96 0.7392 0.724 2.4 1.4615 1.79
147 0.3119 0.2292 1.97 0.7506 0.739] 2.4 1.4794 1.84
1.48 0.3183 0.2355 1.98 0.7621 0.754] 2.4 1.4975 1.8
1.49 0.3248 0.2419 1.99 0.7737| 0.769] 2.4 1.5136 1.84
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
2.50 1.5340 1.9175 3.00 2.6507 3.974 3.5 4.2092 7.36
251 1.5525 1.9483 3.01 2.6773 4.0294 35 4.2454 7.49
2.52 15711 1.9796 3.02 2.7041 4.083 3.5 4.2818 7.53
2.53 1.5899 2.0112 3.03 2.731Q 4.13 35 4.3184 7.64
254 1.6088 2.0432 3.04 2.7581 4.19%1 35 4.35p2 7.70
2.55 1.6279 2.0755 3.05 2.7859 4.24 3.5 4.39p2 7.79
2.56 1.6471 2.1083 3.06 2.813( 4.303 3.5 4.4295 7.84
257 1.6665 2.1414 3.07 2.8404 4.3604 3.5 4.4669 7.9
2.58 1.6860 2.1749 3.08 2.8684 4.417% 3.5 4.50p4 8.06
2.59 1.7057 2.2089 3.09 2.8969 4.479 3.5 4.54p4 8.1§
2.60 1.7255 2.2432 3.10 2.9241 4.533 3.6 4.58p4 8.24
2.61 1.7455 2.2779 3.11 2.9531 4.592 3.6 4.6187 8.3
2.62 1.7656 2.3130 3.12 2.9811 4.6514 3.6 4.65f2 8.41
2.63 1.7859 2.3485 3.13 3.0109 4.7114 3.6 4.6959 8.5
2.64 1.8064 2.3844 3.14 3.0394 4.771 3.6 4.7348 8.61
2.65 1.8270 2.4208 3.15 3.0684 4.8329 3.6 4.7740 8.71
2.66 1.8478 2.4575 3.16 3.0979 4.894 3.6 4.8183 8.8(
2.67 1.8687 2.4947 3.17 3.1274 4.95¢ 3.6 4.85p9 8.9(
2.68 1.8897 2.5323 3.18 3.157( 5.014 3.6 4.89P6 9.0q
2.69 1.9110 2.5703 3.19 3.1869 5.083 3.6 4.93p6 9.14
2.70 1.9324 2.6087 3.20 3.217( 5.147 3.7 4.97P8 9.19
271 1.9539 2.6476 3.21 3.2471 5.211 3.7 5.0183 9.29
2.72 1.9756 2.6869 3.22 3.2771 5.271 3.7 5.0589 9.4(
273 1.9975 2.7266 3.23 3.308% 5.3429 3.7 5.0948 9.5(
274 2.0195 2.7668 3.24 3.3391] 5.4094 3.7 5.13p9 9.6(
2.75 2.0417 2.8074 3.25 3.3704 5.47¢ 3.7 5.17f2 9.7(
2.76 2.0641 2.8484| 3.26 3.4014 5.544 3.7 5.2187 9.81
2.77 2.0866 2.8899 3.27 3.4324 5.617 3.7 5.26p5 9.91
2.78 2.1093 2.9319 3.28 3.4643 5.681% 3.7 5.30p4 10.02
2.79 21321 2.9743 3.29 3.4961 5.751 3.7 5.34416 10.12
2.80 2.1551 3.0172 3.30 3.5281] 5.8214 3.8 5.38f0 10.2
281 2.1783 3.0605 3.31 3.5603 5.897 3.8 5.4297 10.34
2.82 2.2016 3.1043 3.32 3.5926 5.964 3.8 5.47P6 10.45
2.83 2.2251 3.1486 3.33 3.6254 6.034 3.8 5.5156 10.5
2.84 2.2488 3.1933 3.34 3.658( 6.104 3.8 5.55P0 10.67
2.85 2.2727 3.2385 3.35 3.6909 6.187 3.8 5.60p5 10.7:
2.86 2.2967 3.2842 3.36 3.7241 6.2564 3.8 5.6463 10.8
2.87 2.3208 3.3304 3.37 3.7574 6.331 3.8 5.69p3 11.0
2.88 2.3452 3.3771 3.38 3.791q 6.404 3.8 5.7345 11.12
2.89 2.3697 3.4242 3.39 3.8241 6.484 3.8 5.7789 11.24
2.90 2.3944 3.4719 3.40 3.8587 6.559 3.9 5.8286 11.35
291 2.4192 3.5200 3.41 3.8924 6.637 3.9 5.8685 11.47%
2.92 2.4443 3.5686 3.42 3.9274 6.7184 3.9 5.9187 11.5
2.93 2.4695 3.6178 3.43 3.9611 6.794 3.9 5.95p1 11.7
2.94 2.4948 3.6674 3.44 3.9964 6.8739 3.9 6.0047 11.8%
2.95 2.5204 3.7176 3.45 4.0314 6.954 3.9 6.05p5 11.94
2.96 2.5461 3.7682 3.46 4.06664 7.034 3.9 6.0966 12.07
2.97 2.5720 3.8194| 3.47 4.1019 7.114 3.9 6.14P9 12.1
2.98 2.5981 3.8711 3.48 4.1374 7.199 3.9 6.18p4 12.31
2.99 2.6243 3.9233 3.49 4.1733 7.2824 3.9 6.23p2 12.44
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
4.00 6.2832 12.566 4.50 8.94 20.129 5.0 12.272 30.6B0
4.01 6.3304 12.693 451 9.00 20.30B 5.0 12.346 30.9p6
4.02 6.3779 12.820 4.52 9.06 20.48p 5.0 12.420 31.173
4.03 6.4256 12.948 4.53 9.12i 20.67(1 5.0 12.404 31.4p3
4.04 6.4736 13.077 4.54 9.18 20.85¢4 5.0 12.569 31.6[73
4.05 6.5218 13.207 4.55 9.24 21.03p 5.0 12.644 31.9p5
4.06 6.5702 13.337 4.56 9.30! 21.224 5.0 12.719 32.1j79
4.07 6.6189 13.469 4.57 9.37 21.4141 5.0 12.795 32.4B4
4.08 6.6678 13.602 4.58 9.43 21.599 5.0 12.870
4.09 6.7169 13.736 4.59 9.49 21.78B 5.0 12.947
4.10 6.7663 13.871 4.60 9.55 B 5.1 13.023
411 6.8159 14.007 4.61 9.61 0 5.1 13.100
4.12 6.8658 14.144 4.62 9.68 B 5.1 13.1477
4.13 6.9159 14.281 4.63 9.74 ! 5.1
4.14 6.9663 14.420 4.64 9.80 ! 5.1
4.15 7.0169 14.560 4.65 9.87 5.1
4.16 7.0677 14.701 4.66 9.93 5.1
4.17 7.1188 14.843 4.67 9.99 5.1
4.18 7.1702 14.986 4.68 10.06: 5.1
4.19 7.2217 15.130 4.69 10.12 5.19
4.20 7.2736 15.275 4.70 10.19: 5.2
421 7.3257 15.420 4.71 10.25: 5.21
4.22 7.3780 15.568 4.72 10.32! 5.2p
4.23 7.4306 15.716 4.73 10.38! 5.2
4.24 7.4834 15.865 4.74 10.45! 5.24
4.25 7.5364 16.015 4.75 10.52; 5.2
4.26 7.5898 16.166 4.76 10.58: 5.2
4.27 7.6433 16.319 4.77 10.65! 5.2y
4.28 7.6972 16.472 4.78 10.72; 5.2
4.29 7.7513 16.626 4.79 10.79 5.2
4.30 7.8056 16.782 4.80 10.85 5.3
4.31 7.8602 16.939 4.81 10.92! 531
4.32 7.9150 17.096 4.82 10.99: 5.32
4.33 7.9701 17.255 4.83 11.06: 5.3
4.34 8.0254 17.415 4.84 11.13 5.3¢4
4.35 8.0810 17.576 4.85 11.20 53
4.36 8.1369 17.738 4.86 11.271 5.3
4.37 8.1930 17.902 4.87 11.33 5.3f
4.38 8.2494 18.066 4.88 11.40! 5.3
4.39 8.3060 18.232 4.89 11.48; 5.39
4.40 8.3629 18.398 4.90 11.55( 5.4
4.41 8.4201 18.566 4.91 11.62 5.41
4.42 8.4775 18.735 4.92 11.69:; 5.4p
4.43 8.5351 18.905 4.93 11.76: 5.4
4.44 8.5931 19.077 4.94 11.83! 5.44
4.45 8.6513 19.249 4.95 11.90 5.4
4.46 8.7097 19.423 4.96 11.98 5.4
4.47 8.7684 19.597 4.97 12.05 5.4
4.48 8.8274 19.773 4.98 12.12! 5.4
4.49 8.8867 19.951 4.99 12.19: 5.4
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)
Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
55 16.333§ 4491 30 2650.7. 39760 54.5 1589p.4 433068
6 21.2058] 63.61 30.5 2785.4 42478 55 16333.8 449180
6.5 26.9612 87.62: 31 2924.7 45333 55.5 1678B.4 4659738
7 33.6739 117.85 31.5 3068.5. 48329 56 172411 482750
75 414179  155.31 32 3216.9 51471 56.5 1770§.0 500223
8 50.2655] 201.06 325 3370.1 54765 57 18181.3 518166
8.5 60.2916 256.23] 33 3528.1. 58213 57.5 18668.9 536588
9 71.5694 322.06 33.5 3690.9. 61822 58 1915%.1 5550497
95 84.1726 399.82) 34 3858.6 65597 58.5 1965¢4.7 574901
10 98.1744 490.87| 34.5 4031.4; 69541 59 20168.0 594810
105 113.650 596.6 35 4209.2 73661 59.5 2068D.0 615230
11 130.671 718.68] 355 4392.2 77962 60 2120%.8 636173
115 149.312 858.5: 36 4580.4 82448 60.9 2174p.3 6571645
12 169.646 1017.8: 36.5 4773.9 87124 61 22288.8 679656
125 191.748 1198.4p 37 4972.8 91997 61.5 22836.3 704215
13 215.690 1401.9 375 5177.1 97072 62 23391.8 725332
135 241.547 1630.44 38 5387.0 102354 62.5 23968.4 749014
14 269.392 1885.74 38.5 5602.5 107848 63 24548.3 773272
145 299.298 2169.9(f 39 5823.6. 113561 63.5 2513).4 799114
15 331.340 2485.0! 39.5 6050.5( 119497 64 25735%.9 823550
155 365.591 2833.38| 40 6283.19 125664 64.5 26348.8 849589
16 402.124 3216.9 40.5 6521.7! 132066 65 26961.2 876pR41
16.5 441.013 3638.3p| 41 6766.3! 138709 65.5 27588.2 903514
17 482.333 4099.8 415 7016.8: 145600 66 28224.9 931420
175 526.155 4603.8p 42 7273.5 152745 66.5 2887[L.2 959967
18 572.555 5153.0 42.5 7536.4' 160150 67 295271.3 989166
185 621.606 5749.85| 43 7805.5: 167820 67.5 30198.3 1019025
19 673.381 6397.1. 43.5 8081.0! 175763 68 30869.3 1049556
195 727.954 7097.5p| 44 8362.92 183984 68.5) 31555.2 1080767
20 785.398 7853.9 44.5 8651.2 192491 69 32251.3 1112670
20.5 845.788 8669.38 45 8946.1 201289 69.5 3295(.5 1145273
21 909.197 9546.5 45.5 9247.7 210385 70 33673.9 1178588
215 975.698 10488.8| 46 9555.94 219787 70.5 3440p.7 1212625
22 1045.36 11499.0 46.5 9870.9 229499 71 35137.8 1247393
225 1118.27 12580.6| 47 10192.8 239531 71.9 35885.4 1283904
23 1194.49 13736.7 47.5 10521.6 249887 72 36648.5 1319167
235 1274.10 14970.7| 48 10857.3 260576 72.5 3741R.3 1356194
24 1357.17 16286.0 48.5 11200.2 271604 73 38191.7 1393995
245 1443.77 17686.2 49 11550.2 282979 73.5 38988 1432581
25 1533.98 19174.8 49.5 11907.4 294707 74 39782.8 1471963
255 1627.87 20755.4 50 12271.8 306796 74.5 40594.6 1514150
26 1725.52 22431.8 50.5 12643.7 319253 75 41417.5 1553156
26.5 1827.00 24207.7| 51 13023.0 332086 75.5 4225]1.4 1594989
27 1932.37 26087.0 51.5 13409.8 345302 76 43096.4 1637662
275 2041.73 28073.8 52 13804.2 358908 76.5 4395p.6 1681186
28 2155.13 30171.9 52.5 14206.2 372913 77 44820.0 1729571
28.5 2272.66 32385.4 53 14616.0 387323 77.9 45698.8 1770829
29 2394.38 34718.6 53.5 15033.5 402147 78 46589.0 1816972
295 2520.38 37175.6) 54 15459.0 417393 78.5 47490.7 1864011
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment

Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
79 48404.0 1911958 103.5 10884 5632890 128 205887 13176795
79.5 49328.9 1960829 104 11043 5742530 128 208310 13388892
80 50265.5 2010619 104.5 112034 5853762 129 210751 13593420
80.5 51213.9 2061359 105 11365 5966602 129 213211 1380%399
81 52174.1 2113051 105.5 11528 6081066 130 215600 14019848
815 53146.3 2165714 106 11692 6197189 130, 218188 1423786
82 54130.4 2219347 106.5 11859 6314927 131 220706 14456231
82.5 55126.7 2273975 107 12026 6434335 131 223243 14678204
83 56135.1 2329609 107.5 121962 6555449 132 225799 14902723
83.5 57155.7 2386249 108 123672 6678285 132 228374 15129808
84 58188.6 | 2443920 108.5 12539 6802418 133 230970 15359478
845 59233.9 2502631 109 12713 6929085 133, 233584 15591754
85 60291.6 2562392 109.5 128897 7057102 134 236219 15826653
85.5 61361.8 2623219 110 13067 7186884 134 238473 16064198
86 62444.7 2685120 110.5 13246 7318448 135 241547 16304406
86.5 63540.1 2748111 111 134267 7451811 135 244241 16541298
87 64648.4 2812204 1115 13608 7586987 136 246954 16792893
875 65769.4 2877417 112 13792 7723995 136, 249688 17041213
88 66903.4 2943748 112.5 139784 7862830 137 252442 17292276
88.5 68050.2 3011223 113 14165 8003549 137/ 255216 17546104
89 69210.2 3079853 113.5 14354 8146168 138 258010 17802715
89.5 70383.2 3149649 114 14545 8290664 138, 260925 18062131
90 71569.4 3220623 1145 147371 8437014 139 263660 18324372
90.5 72768.9 3292791 115 1493117 8585414 139, 266416 18589458
91 73981.7 3366166 1155 15126 8735703 140 269392 18857410
915 75207.9 3440759 116 15324 8887 35 140, 272288 19128248
92 76447.5 3516586 116.5 15523 90421189 141 275206 19401993
925 77700.7 3593659 117 15723 9198422 141 278144 19678666
93 78967.6 [ 3671992 1175 159261 9356411 142 281103 19953288
93.5 80248.1 3751594 118 161304 9516933 142, 284083 20240878
94 81542.4 3832492 118.5 16336 9679286 143 287083 20524460
94.5 82850.5 3914689 119 16544 9843646 143 290105 20815052
95 84172.6 3998198 119.5 167534 10010172 144 293148 21106677
95.5 85508.6 4083039 120 169646 10178760 144. 296413 21401356
96 86858.8 [ 416922 120.5 17177 10349469 145 299298 21699109
96.5 88223.0 | 425676( 121 17392 10522317 145 302405 21999959
97 89601.5 4345671 1215 17608 10697321 146 3055933 22303926
97.5 90994.2 4435969 122 17827 10874498 146 308683 22611033
98 92401.3 4527664 122.5 18047 11053467 147 311854 22921300
98.5 93822.8 4620779 123 18269 11235447 147 315047 23234749
99 95258.9 4715314 1235 184927 114193%4 148 318262 23551402
99.5 96709.5 4811294 124 187182 11605307 148 321499 23871280
100 98174.8 4908739 1245 18945 11793625 149 3247157 24194406
100.5 99654.8 5007657 125 19174 11984225 149 328037 2452p802
101 101150 5108053 125.5 19405 12177126 150 331340 24850489
101.5 102659 5209954 126 19638 12372347

102 104184 5313374 126.5 198734 2569905

102.5 105723 5418324 127 20110¢ 12769820

103 107278 5524824 127.5 203484 12972110
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Strength and Stiffness of Perforated Metals.— is common practice to use perforated
metals in equipment enclosures to provide cooling by the flow of air or fluids. If the perfo-
rated material is to serve also as a structural member, then calculations of stiffness an
strength must be made that take into account the effect of the perforations on the strengtl
of the panels.

The accompanying table provides equivalent or effective values of the yield sBgngth
modulus of elasticitf*; and Poisson's ratiof of perforated metals in terms of the values
for solid material. Th&/SandE*/E ratios, given in the accompanying table for the stan-
dard round hole staggered pattern, can be used to determine the safety margins or defles
tions for perforated metal use as compared to the unperforated metal for any geometry o
loading condition.

Perforated material has different strengths depending on the direction of loading; there-
fore, values 08"/ Sin the table are given for the width (strongest) and length (weakest)
directions. Also, the effective elastic constants are for plane stress conditions and apply tc
the in-plane loading of thin perforated sheets; the bending stiffness is greater. However,
since most loading conditions involve a combination of bending and stretching, it is more
convenient to use the same effective elastic constants for these combined loading condi
tions. The plane stress effective elastic constants given in the table can be conservativel
used for all loading conditions.

Mechanical Properties of Materials Perforated with Round Holes in
IPA Standard Staggered Hole Pattern

fe———— Length of Sheet .|

sl

s % STANDARD 60°

k1 & STAGGERED

= _L PATTERN
IPA Perforation Center Open EiS
No. Diam. (in.) Distance (in.) Area (%) Width (in.) Length (in.) E*E A
100 0.020 (625) 20 0.530 0.465 0.565 0.32
106 Y6 % 23 0.500 0.435 0.529 0.33
107 Fea Tea 46 0.286 0.225 0.246 0.38
108 Fea % 36 0.375 0.310 0.362 0.35
109 Yo Y 32 0.400 0.334 0.395 0.34
110 ¥ e 23 0.500 0.435 0.529 0.33
112 Yo Yo 36 0.360 0.296 0.342 0.35
113 % e 40 0.333 0.270 0.310 0.36
114 % T 29 0.428 0.363 0.436 0.33
115 % % 23 0.500 0.435 0.529 0.33
116 Y T 46 0.288 0.225 0.249 0.38
117 Yo A 36 0.375 0.310 0.362 0.35
118 i % 51 0.250 0.192 0.205 0.42
119 kS kS 33 0.400 0.334 0.395 0.34
120 % i 58 0.200 0.147 0.146 0.47
121 % % 40 0.333 0.270 0.310 0.36
122 A The 30 0.428 0.363 0.436 0.33
123 A % 23 0.500 0.435 0.529 0.33
124 % % 51 0.250 0.192 0.205 0.42
125 % kN 40 0.333 0.270 0.310 0.36
126 % % 33 0.400 0.334 0.395 0.34
127 The % 45 0.300 0.239 0.265 0.38
128 ¥ Ye a7 0.273 0.214 0.230 0.39
129 %6 % 51 0.250 0.192 0.205 0.42

Value in parentheses specifies holes per square inch instead of center dit8ramtio of yield
strength of perforated to unperforated mateB#&lE = ratio of modulus of elasticity of perforated to
unperforated material¥ = Poisson's ratio for given percentage of open area.

IPA is Industrial Perforators Association.
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BEAMS
Beam Calculations

Reaction at the Supports.—When a beam is loaded by vertical loads or forces, the sum of
the reactions at the supports equals the sum of the loads. In a simple beam, when the loa
are symmetrically placed with reference to the supports, or when the load is uniformly dis-
tributed, the reaction at each end will equal one-half of the sum of the loads. When the
loads are not symmetrically placed, the reaction at each support may be ascertained fror
the fact that the algebraic sum of the moments must equal zero. In the accompanying illus:
tration, if moments are taken about the support to the left, Ryen40— 8000x 10—
10,000x 16— 20,000% 20 = O;R, = 16,000 pounds. In the same way, moments taken about
the support at the right giv® = 22,000 pounds.

(=3 [=1

g g8

Q0 [~ (=3

— o~
| J
& v |4 %
— v |
R, R,

The sum of the reactions equals 38,000 pounds, which is also the sum of the loads. If par
of the load is uniformly distributed over the beam, this part is first equally divided between
the two supports, or the uniform load may be considered as concentrated at its center o
gravity.

If metric Sl units are used for the calculations, distances may be expressed in meters
or millimeters, providing the treatment is consistent, and loads in newtonsNote: If
the load is given in kilograms, the value referred to is the mass. A masswkilograms
has a weight (applies a force) dfig newtons, whereg = approximately 9.81 meters
per second.

Stresses and Deflections in Beams.©n the following pages are given an extensive
table of formulas for stresses and deflections in beams, shafts, etc. It is assumed that all th
dimensions are in inches, all loads in pounds, and all stresses in pounds per square incl
The formulas are also valid using metric Sl units, with all dimensions in millimeters,
all loads in newtons, and stresses and moduli in newtons per millimefeiN/mm?).
Note: A load due to the weight of a mass d¥l kilograms is Mg newtons, whereg =
approximately 9.81 meters per secorfdin the tables:
E =modulus of elasticity of the material
I = moment of inertia of the cross-section of the beam
Z =section modulus of the cross-section of the bedm distance from neutral
axis to extreme fiber
W =load on beam
s =stress in extreme fiber, or maximum stress in the cross-section considered, due
to loadW. A positive value of denotes tension in the upper fibers and com-
pression in the lower ones (as in a cantilever). A negative vadukenbtes the
reverse (as in a beam supported at the ends). The greatest safe load is that valu
of Wwhich causes a maximum stress equal to, but not exceeding, the greatest
safe value o$
y =deflection measured from the position occupied if the load causing the deflec-
tion were removed. A positive value ptlenotes deflection below this posi-
tion; a negative value, deflection upward
u,Vv,w, x =variable distances along the beam from a given support to any point



Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 1. — Supported at Both Ends, Uniform Load

i Stress at center,
TOTAL LOAD W wi Maximum deflection, at center,
R IR s =X i-n 8 y= U9 oy gy 5 Wi
w r— f % 271 24EIl 384 ET
5 | / {5 If cross-sectionis constant,
2 2 thisis the maximum stress.
Case 2. — Supported at Both Ends, Load at Center
. Stress at center,
\_W_’/ Between each support and load, wi Between each support and load, Maximum deflection, at load,
- Wx T4z Wx wi3
wl~*-, —x—lw 5 = —o y = (312-4x2) e
E [ /) T— I/Z 2z If cross-section is constant, 48E1 48E1
[————— thisis the maximum stress.
Case 3. — Supported at Both Ends, Load at any Point
Deflection at load,
Wa2b?
For segment of length a, For segment of length a, 3EIll

§ = ——=

Zl
For segment of length b,
5= _Wav
Zl

Stress at load,
_Wab
Zl

If cross-sectionis constant,
thisis the maximum stress.

Wbx

. 2_2_p2
Y= gEnt b0
For segment of length b,
s Wav o o 2
Y= gEn Vi

Let a be the length of the shorter
segment and b of the longer one.
The maximum deflection

Wav3
3EIl

isin thelonger segment, at
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Stresses and Deflections in Beams (Continued)

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 4. — Supported at Both Ends, Two Symmetrical Loads

Between each support and

Between each support and adjacent load,

Maximum deflection at center,

adjacent load,
Wx
Wx ; - 3/2_442
- — Sr&sa{eﬁchlo@d,‘i/ndal y 6E1[3a(l a) x2 24E1( a“)
’ a
Between loads, all points between, - Between |oads, Deflection at loads
W
5= _% y = "|3v(1—v>—a2| 651(3174@
Case 5. — Both Ends Overhanging Supports Symmetrically, Uniform Load
Stress at each support,
w2
2ZL Deflection at ends,
Stress at center,
———[3c2(c +21)-13]
i i 24E1L
* TOTAL LOAD W Between each support and 2ZL( - %12 Between each support and adjacent end,
* adjacent end, . Deflection at center,
¥ If cross-sectionis constant, y = =—=—[6c2(1+u)
2 the greater of theseisthe 24EIL (5]2 24¢2)
—Uwf— x—— el S ZZI(L*M) maximum stress. —112(4(‘—14)—13] 38451L
C 1 C If I isgreater than 2c, the 1f 1 is between 2 and 2.449¢.
L Between supports, stressis zero at points Between supports, there are maximum upward deflec-
2 [v12—c2 ! :

w L =1+2¢ w s ZZL(C —x(l—x)) Y412 ¢ onboth sides y= Wax(l— X)[x(l—x)+12—602| tionsaat points o/3(3,/2 — ¢2) on
2 2 of the center. 24EIL both sides of the center, which are,

If cross-section is constant
and if 1 = 2.828c, the stresses
at supports and center are
equal and opposite, and are

WL
T46.62Z

2 _j2y2
9651L(6' #

8¢
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Stresses and Deflections in Beams (Continued)

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 6. — Both Ends Overhanging Supports Unsymmetricall

y, Uniform Load

of
For overhanging end of length ¢,

Stress at support next end

length ¢, W—L
270

For overhanging end of length c,

Critical stress between y= 24E1L[ 2i(d?+2¢?) Deflectionat end c,
s c—u)2 supportsisat We
ZZL( ) 24c2_g? +6c2u—u?(4c—u)—13] 24E[L[2[(d2+2c2)
TOTAL LOAD W Betw It X= —pr—— =x
{ ‘ + } GO SLPPOTES: 21 1 Between supports, + 3c3—13]
AR B LS o = W ofl=x Wil =x) .
u x— ; n-':v = 27L "( 7 ) andis m(c —x?) Y = 5AFIL A ix(l-x) Izveflectlonatmdd
™ L “ y Str&sasjppcz)rtna(tend +12-2(d?+c?) 24E[L[2[(82+2d2)
+d%= —x(1-x) } wd 2 313
4 of lengthd, 55+ —S1d2x + c2(1—x +3d3-13]
¥ -d+o Wi+d-o ! 271 2[d2x + c2(1-2)]} o |
2 For Ovefhanging end of length ¢, |  If cross-sectionisconstant, | For overhanging end of length d, This case is so complicated that
the greatest of thesethreeis convenient general expressions for
B (zl' w)2 the maximum stress. y = Ww [21(c2 +2d2) the critical deflections between
ZZL If x; > ¢, the stress is zero 24EIL supports cannot be obtained.
at points ,/x? —c? on both +6d%w —w2(4d —w) - I3]
sides of x = x,.
Case 7. — Both Ends Overhanging Supports, Load at any Point Between
Betw rts:
For s:;ln:?z?l ;gth a Between mpports same as Case 3. ) Between supports, same as Case
w Wha Stress at load, For overhanging end of length , Deflection at end ¢,
. ] = == Wab
u V-olew s zZl _Wab y = —GEI;‘(]+b) _Wabc(“_b)
C a— b ~ed For segment of length b, Tz F hanging end of lendth d. 6E1l
Wbl / m Wav If cross-sectionis constant, oroverhanging end of fength d, Deflection at end d,
T (a+b=1) It s == thisis the maximum stress. V= —Wabw(l+a) Wabd
: 6EIl ~eEnr !t

Beyond supportss = 0.
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Stresses and Deflections in Beams (Continued)

Type of Beam

Str

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 8. — Both Ends Overhanging Supports, Single Overhanging Load

Between load and adjacent sup-|
port,

s = g(c—u)
Between supports,
_ We
5= (I-x)

Between unloaded end and
adjacent supports, s = 0.

Stress at support adjacent
to load,
Wwe
Z

If cross-sectionis constant,
thisis the maximum stress.

Stressis zero at other sup-
port.

Between load and adjacent support,

y = (3ru—u2+2cl)

6E1
Between supports,
Wex
T6EIl
Between unloaded end and adjacent sup-
Welw
"6EI

y= (I-x)(21-x)

port, y =

Deflection at load,
+1
3151(r )
Maximum upward deflection is
Wel?
at x = 42265/, and is —s—————
* oS 15 B5ET
Deflection at unloaded end,
Weld
6EI

Case 9. — Both Ends Overhanging Supports, Symmetrical Overhanging L oads

Between each |oad and adjacent
support,

s = V?V(c—u)
Between supports,
z

Stressat supportsand at all
points between,
e
z

If cross-sectionis constant,
thisis the maximum stress.

Between each load and adjacent support,
Wu

y = BEI [3c(l+u) —u?]
Between supports,
y = —'ZE;(/—’O

Deflections at loads,

+
6E1(2r 3
Deflection at center,

_W('l2
8EI

The above expressions involve the usual approximations of the theory of flexure,
and hold only for small deflections. Exact expressions for deflections of any magni-

tude are as follows:

Between supports the curve isacircle of radius

r= —E—I-; y = ,‘)rzszf,lz
We
Deflection at center, o/r2—¥,12—r

ove
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Stresses and Deflections in Beams (Continued)

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 10. — Fixed at One End, Uniform Load

TOTAL LOAD W

fe—— ¥ ——

s 2Zl(l x)2

Stress at support,
wi
2Z

If cross-sectionis constant,
thisis the maximum stress.

Wx2
= 2EnN

X 1224 (21— x)2]

Maximum deflection, at end,
wie
8EI

Case 11. — Fixed at One End, Load at Other

Stress at support,
Wi Maximum deflection, at end,
w s
s = =(l-x y 31— wi3
AUREY Z Y= 8E 1( x) =
If cross-sectionis constant,
this is the maximum stress.
Case 12. — Fixed at One End, Intermediate Load
Between support and load, Deflection at load,
7 W Stress at support, 3
Wi (é Between support and load, Wi y = (3[ X wre
-—x—\ W . we 6E 1 3EI
5= Z( - Z Beyond load, Maximum deflection, at end,
e - _ If cross-sectionis constant, 2
! < Beyond load, s = 0. this is the maximum stress. y = M—(3v—l) (21+3b)
w B8EI 6E1
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Stresses and Deflections in Beams (Continued)

Stresses

Deflections

General Formulafor Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points®
Case 13. — Fixed at One End, Supported at the Other, Load at Center
3 w Between point of fixture and load, Maximum stress at point Between point of fixture and load, Maximum deflectionisat v =

s 162(31—11x)
Between support and load,
Wy
= e

of fixture, %5%]

Stressis zero at x = ¥/
Greatest negative stress at

center, 75732%1

y = 96 - I( 9/-11x)
Between support and load,
y = ?)

9GEI

w3
107.33E1
Deflection at load,
e
768 EI

0.44721, and is

Case 14. — Fixed at One End, Supported at the Other, Load at any Point

Wab(l+b)

m=(+a)(l+b)+al

n=al(I+b)

20 (2\ w _
=
]

wil- 7(11 a)l

2B

Between point of fixture and load,

s = 2‘];}1)3(’7 mx)
Between support and load,
Wa?v
s = — 31—
Y7o

Greatest positive stress, at
point of fixture,

Wab

2712

(1+b)

Greatest negative stress, at
load,

_Wa?b
2713

If a <0.5858/, thefirst is
the maximum stress. If a =
0.5858/, the two are equal

(3l-a)

wi
+ If
583z 7
0.5858/, the second isthe
maximum stress.

andare

. n
Stressiszeroat x = —
m

Between point of fixture and load,
Wx2b
y = 3n—mx

’ 12Ell3( )

Between support and load,
Wa2vy
y= =2
12E13

[312b —v3(3l—a)]

Deflection at load,
Wa3h?
12E113

If a < 0.5858/, maximum deflec-

Wa2b b and

6EI N2+ b
located between load and support,

_ [
av =150

If a = 0.58581, maximum deflec-

(31+b)

tionis

wi3
tionisat load and is ————
ionisat load and is 75707
If a > 0.58581, maximum deflec-

Wbn3
tionis ———=— and located
3EIm2[3
between load and point of fixture,
a

=¥

e
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Stresses and Deflections in Beams (Continued)

Stresses Deflections
General Formulafor Stress
Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points®
Case 15. — Fixed at One End, Supported at the Other, Uniform Load
Maximum deflectionisat x =
Maximum stress at point Wi
TOTAL LOAD W » Wi 057851, andis 7ae7
‘ of fixture, o=
W (4 t ¥y [ 8z , Wi
8 le— x —— T 3 s = W(zz_lx)(%l—x) Stressiszero at x = ¥J. y = —W’ZB(EI_I_IX)GI—ZX) Deflection a center, 192E1
! I 8 W Greatest negative stressis Deflection at point of greatest
5 ow negative stress, at x = %/ is
=W atx =% andis — '
8 4 287 Wi
187E1
Case 16. — Fixed at One End, Free but Guided at the Other, Uniform Load
Maxi St a
TOTAL LOAD W e
Wi /7 ‘ ‘ port, 37 Maximum deflection, at free end,
3 |\ Wi _wi X x)? ) _ 2 3
3 e v ’77 s== 1/3—7+1/2 ] Stressis zeroat x = 0.4227/ y = (2[—!() Wi
! 6 Greatest negative stress, at 245 1 24E]
wi
f d, ——=
w recend, —=
Case 17. — Fixed at One End, Free but Guided at the Other, with Load
St at t,
ress at suppor 2 Z
Wi ) Maximum deflection, at free end,
w 2
s = Yron Stressat freeend —— y= J‘-"Z/El( —2%) wi3
These are the maximum 12E1
stresses and are equal and
opposite.
Stressis zero at center.

SNVv34d
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Stresses and Deflections in Beams (Continued)

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 18. — Fixed a Both Ends, Load at Center

wi
Stressat ends 5
ressatends o
Between each end and load, Maximum deflection, at load,
wi
atload —=—= Wx2
5= —W—(%l—x) 8Z y = 48EI(3/—4X) w3
2z These are the maximum 192E1
stresses and are equal and
opposite.
Stressiszeroatx =¥/
Case 19. — Fixed at Both Ends, Load at any Point
Stress at end next segment
Wab?
of lengtha, ———
ez
Stress at end next segment 33
Wa2b Deflection at load, 242
of length b, =5 3EIB
27, F it of length a, For segment of length a,
Wab (, w Wa’h or segment ot fengfh Maxi d i 22 o Let b be the length of the longer
I8 T~ —] P _ Wb? admum stressis &t en o _ Wx4h segment and « of the shorter one.
e X —_——] s = —=[al—x(l+2a)] |nextshorter segment. y = [2a(l—x) +1l(a—x)] N L
b zZB3 Stressi 6EII3 The maximum deflection isin
] e ressiszeroat the longer segment, at
. For segment of length b, al For segment of length b, 251
X = _ .
wi . 1+2a Wv2a? = T+25 andis
? a? 25 ) = [2b(1=v) +1(b-V)]
W t+20) a2 8z - TR l
_ _bl x = —Wl(Wl—Rl)
1+2b 1
Greatest negative stress, at
22
load, _2Wa?b

zB

e
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Stresses and Deflections in Beams (Continued)

Stresses

Deflections
General Formulafor Stress
Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points®
Case 20. — Fixed at Both Ends, Uniform Load
Maximum stress, at ends,
3
TOTAL LOAD W x = 2 andis 220
m 3EIm?13

Stressis zero at
x=0.7887/ and at
x=0.2113/

Greatest negative stress, at

center, —;

Wi
247

_ Wa? 2
Y= zagpt—

Maximum deflection, at center,
wis
384E1

Case 21. — Continuous Beam, with Two Unequal Spans, Unequal, Uniform Loads

TOTAL LOAD W,

R LY

—x-+]
1, %7

1,W,31,+41,) - W,1;

TOTAL LOAD W,
R

AEEEEY X
o g,

LW, +41) - WP

84,1, +1,) 8L(,+1,)
wi, ; Wl )\
lz [l

s

Between R, and R,

_ ll—)c{(ll—x)w1 R }
2 T

z 21y
Between R, and R,
Rz}

_ L—u[(l—u)W,
== 2—12,

Stress at support R,
W13+ W,l5
8Z(ly+1y)

Greatest stressin thefirst
spanisat

[1

x= W—l<wl—R1)
2b1
T+2b

Greatest stressin the sec-
ond spanisat

andis v =

l2
u = WZ(WZ_Rz)

Between R; and R,
x(l;—x)
= 241151 {(211—,\’)(4R1—W1)
Wy(ly —x)?
——
Between R, an R,
u(l,—u)
= ﬁ{(le—u)MRz—Wz)
Wo(ly—u)?
e

This caseis so complicated that
convenient general expressions for
the critical deflections cannot be
obtained.
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Stresses and Deflections in Beams (Continued)

Type of Beam

Stresses

Deflections

General Formulafor Stress
at any Point

Stresses at Critical Points

General Formulafor Deflection at any Point?

Deflections at Critical Points*

Case 22. — Continuous Beam, with Two Equal Spans, Uniform Load

TOTAL LOAD ON EACH SPAN, W
A

s (l ")(i/l—x)

Maximum stress at point
[2
= W;(szRz)

Stressiszero atx =%
Greatest negative stressis
atx =% andis,
9 Wi

128 Z

Maximum deflectionisat x =

o wB
0.5785/, and is 185E1
Deflection at center of span,
o Wx2(l—x) wi3
Y= e G0 192E1

Deflection at point of greatest

negative stress, at x = %/ is

w3
187E1

Case 23. — Continuous Beam, with Two Equal Spans, Equal Loads at Center of Each

Between point A and load,

s 162(31—11x)
Between point B and load,
g=_2Wy
16 zZ

Maximum stress at point
A,
3w
16 Z
Stressis zero at

3
x ==l
STl
Greatest negative stress at
center of span,
5 Wi

3227

Between point A and load,

Maximum deflectionisat v =

y = —(91—11.):) i wi3 _
96E] 044721, and is 107.33E1
Between point B and load,
Deflection at load, —7 —13
) 2
y 9651(31 —512) 768 EI

174

SNVv34d



Stresses and Deflections in Beams (Continued)

Stre Deflections

General Formulafor Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points®

Case 24. — Continuous Beam, with Two Unegual Spans, Unequal Loads at any Point of Each

Between R, and Wy,

=

_w Wb
Between R, and Wy, = 5E1 (ly=w)(Iy+wyry— I Deflection at load W;,

Stress at load W, asb
b (Mab Wz ) s = e ! Between R and Wi, = [2a,b,W,
T i y+ap+ (+ay) 7 apry 6EIl,
1752 1 —_— -
- y Wiab(ly+a
Between R and Wy, s = z 7 6E11 gEr, [ W1abil*ay) —m(ly+ay)]
1 Stress at support R,
rztm( =) = Wyayu) m = Waagu? =m(2ly =)l ~u)] Deflection at load W,
= z Between R and W, azb,
Between R and W,, s = 2
1 Stressat load W, BEIL, §ETT, 2022 W2
Wiby—m /Wiay +m Wby —m\ Wyby —m i Z[m(lz x) —Waayx] ayr, r= 6EII 6ir, | W2deballz * a2)
[ [ [ 2 —m(ly+ay)]
! ! 2 2 Between R, and W, z = Wayx?—m(2l,—x)(l,—x)] ! :
o o - i The greatest of theseisthe Thi Scaseisso oompllca;ed that
=ry = =r _ maximum Stress. Between R, and W,, convenient general expressions for
s = — 7 the maximum deflections cannot be

b3 obtained.
y = GEI{(IZ—L)(IZ+L)r2———’;——}

aThe deflectionsapply only to cases wherethe cross section of the beam is constant for itsentirelength.

In the diagrammatical illustrations of the beams and their loading, the valuesindicated near, but below, the supports are the “reactions’ or upward forces at the sup-
ports. For Cases 1t0 12, inclusive, thereactions, aswell asthe formulasfor the stresses, are the same whether the beamis of constant or variable cross-section. For the
other cases, the reactions and the stresses given are for constant cross-section beamsonly.

The bending moment at any point ininch-poundsiss x Z and can be found by omitting the divisor Z intheformulafor the stressgivenin thetables. A positive value
of the bending moment denotestension in the upper fibersand compression in the lower ones. A negative value denotesthereverse, Thevalue of W correspondingtoa
given stressisfound by transposition of theformula. For example, in Case 1, the stress at the critical pointiss =— Wi+ 8Z. Fromthisformulawefind W =—8Zs + 1. Of
course, the negative sign of W may beignored.
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248 BEAMS

If there are several kinds of loads, as, for instance, a uniform load and a load at any point
or separate loads at different points, the total stress and the total deflection at any point i:
found by adding together the various stresses or deflections at the point considered due t
each load acting by itself. If the stress or deflection due to any one of the loads is negative
it must be subtracted instead of added.

Deflection of Beam Uniformly Loaded for Part of Its Length.—In the following for-
mulas, lengths are in inches, weights in poudds. total load;L = total length between
supportsE = modulus of elasticity;= moment of inertia of beam secti@ fraction of
length of beam at each end, that is not loades E; f = deflection.

- we’ 2432 4
f= 384EI(1—2a)(5 24a2 + 16a%)

The expression for maximum bending moment ig; M %WL (1+ 2a).

These formulas apply to simple beams resting on supports at the ends.

|+—b—+] b
W

L

If the formulas are used with metric S| units,W = total load in newtons;L = total
length between supports in millimeters;E = modulus of elasticity in newtons per
millimeter 2, | = moment of inertia of beam section in millimeter4; a = fraction of
length of beam at each end, that is not loadecb + L; and f = deflection in millimeters.
The bending momeniM,,,, is in newton-millimeters (N - mm).

Note: A load due to the weight of a mass (M kilograms is Mg newtons, whereg =
approximately 9.81 meters per secon?.

Bending Stress Due to an Oblique Transverse Force.The following illustration
shows a beam and a channel being subjected to a transverse force acting a¢ to thegle
center of gravity. To find the bending stress, the moments of il around axes 3-3 and
4-4 are computed from the following equatiol3 = I,sir’q + 1,coZ¢, andl, = l,cog¢ +

I Sirég.

The computed bending stref; is then found fronf, = M EIM sing + lécosqg wheM
x y

is the bending moment due to foF e




BEAMS 249
Rectangular Solid Beams
Stress in
Diameter of Extreme
Style of Loading Beamd Beam Height, Fibers,f Beam Lengthl, | Total LoadW
and Support inch (mm) hinch (mm) | Ib/in2 (N/mm?) | inch (mm) 1b (N)
Beam fixed at one end, loaded at the other
BIW _ sIW _ bfh? _ bfh2 _
i w o | e W
Beam fixed at one end, uniformly loaded
bf ~ bh? 3W 3l

Beam supported at both ends, single load in middle

W _y | W, | 3W 2bfte _ || 26?2 _
2fh? 2bf 2bh? 3w 3l
Beam supported at both ends, uniformly loaded
3w _ BIW 3w _ 4bfh? 4bfh?
2 -p PIW = =f = =
athe aof - | pre w o oW
Beam supported at both ends, single unsymmetrical load
6wac _ 6Wac _ 6Wac _ _ bh2fl _
hel S Y are=l | Bac ©
Beam supported at both ends, two symmetrical loads
3w 3w I, any length ,
a_ 'SWa a_ bh2f
= =b — =h — =f bh2f — =W
2 2 = =
fh bf bh W 3a
Round Solid Beams
Stress in Extremq
Style of Loading Diameter of Beamd Fibers, Beam Lengthl Total Load Wb

and Support inch (mm) flb/in2 (N/mm?) inch (mm) (N)
Beam fixed at one end, loaded at the other
10.18W _ 10.18W _ f a3f d3f
?/ .- d d3 RET o~ W
Beam fixed at one end, uniformly loaded
5.092WI _ d3f dsf
= =f = =
d d3 5.092W ! 5.092 w




250 BEAMS

Round Solid BeamgContinued)

Stress in Extremq
Style of Loading Diameter of Beamd Fibers, Beam Length| Total Load Wb

and Support inch (mm) flb/in? (N/mn?) inch (mm) (N)
Beam supported at both ends, single load in middle

3 2.546NI _ d 2.546N1 _ f d3f - ds3f -w
f - dd 2.546N 2.54d
Beam supported at both ends, uniformly loaded
T.273N1 _ d 1.273WI = f d3f =1 d3f -
- d3 1.273N 1273
" Beam supported at both ends, single unsymmetrical load
R ! 10.18Vac 10.18Vac _ e
i = —_— - = f = —_ =
§/ fl d & arc=l T01mc

Beam supported at both ends, two symmetrical loads

o
|, any length

—>t + 3
- 5.092Wa _ 5.09Wa _ . 3 o
[ i 3/ f =d d3 i 5.092a

E : 5.002v
)

Beams of Uniform Strength Throughout Their Length.—The bending moment in a
beam is generally not uniform throughout its length, but varies. Therefore, a beam of uni-
form cross-section which is made strong enough at its most strained section, will have ar
excess of material at every other section. Sometimes it may be desirable to have the cros:
section uniform, but at other times the metal can be more advantageously distributed if the
beam is so designed that its cross-section varies from point to point, so that it is at every
point just great enough to take care of the bending stresses at that point. A table is giver
showing beams in which the load is applied in different ways and which are supported by
different methods, and the shape of the beam required for uniform strength is indicated. It
should be noted that the shape given is the theoretical shape required to resist bending onl
It is apparent that sufficient cross-section of beam must also be added either at the points ¢
support (in beams supported at both ends), or at the point of application of the load (in
beams loaded at one end), to take care of the vertical shear.

It should be noted that the theoretical shapes of the beams given in the two tables that fol
low are based on the stated assumptions of uniformity of width or depth of cross-section,
and unless these are observed in the design, the theoretical outlines do not apply withot
modifications. For example, in a cantilever with the load at one end, the outline is a parab-
ola only when the width of the beam is uniform. It is not correct to use a strictly parabolic
shape when the thickness is not uniform, as, for instance, when the beam is made of an I- ¢
T-section. In such cases, some modification may be necessary; but it is evident that what
ever the shape adopted, the correct depth of the section can be obtained by an investigatic
of the bending moment and the shearing load at a number of points, and then a line can b
drawn through the points thus ascertained, which will provide for a beam of practically
uniform strength whether the cross-section be of uniform width or not.
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Beams of Uniform Strength Throughout Their Length

Type of Beam Description Formadla

Q: I Load at one end. Width of beam uniform.

—— — Depth of beam decreasing towards loaded end. p = Shi?

1 Outline of beam-shape, parabola with vertex|at 6l
B loaded end.
P

.& Load at one end. Width of beam uniform.
¥ Depth of beam decreasing towards loaded epd. Shi
! Outline of beam, one-half of a parabola with P ==

vertex at loaded end. Beam may be reverseq so 6l
that upper edge is parabolic.

N
w
~

} Load at one end. Depth of beam uniform.
Width of beam decreasing towards loaded efd. Shi?

d —
4 Outline of beam triangular, with apex at loadgd P= 6l
/ end.
}=
P
Beam ofapproximatelyuniform strength.
Sbi?

Load at one end. Width of beam uniform. Depth p
of beam decreasing towards loaded end, buf not 6l
tapering to a sharp point.

Uniformly distributed load. Width of beam

uniform. Depth of beam decreasing towards p = Shi?
outer end. Outline of beam, right-angled triarp- -3
gle.

Uniformly distributed load. Depth of beam

uniform. Width of beam gradually decreasing SbhiR
towards outer end. Outline of beam is formedby P = ——
TOTAL LOAD =P two parabolas which tangent each other at their 3l

NAARAAAAA/ i vertexes at the outer end of the beam.
-~

aln the formulasP = load in poundsS= safe stress in pounds per square inchagnd, h, and are
in incheslf metric Sl units are used,P is in newtons;S = safe stress in N/mrfj and a, b, ¢, h, and
| are in millimeters.



252

BEAMS

Beams of Uniform Strength Throughout Their Length

oo

TOTAL LOAD=F

half of an ellipse.

Type of Beam Description Formdla
-— - -3/ | Beam supported at both ends. Load concentrated
/. |atany point. Depth of beam uniform. Width of SbhiRI
t:[— beam maximum at point of loading. Outline of P ==
p A+l C:l beam, two triangles with apexes at points of sup- 6ac
< port.
PZ
{
t'“ Beam supported at both ends. Load concentrated
at any point. Width of beam uniform. Depth of ShRI
fe—a—te e beam maximum at point of loading. Outline of P =
beam is formed by two parabolas with their vert 6ac
% < ﬂ; F 7 | texes at points of support.
P
- a—- Beam supported at both ends. Load concentrated
in the middle. Depth of beam uniform. Width of] 2ShR
f— beam maximum at point of loading. Outline of P = ——
Q'“ beam, two triangles with apexes at points of sup- 3l
port.
tr 7
7,
Beam supported at both ends. Load concentrated 2SbR
“ |at center. Width of beam uniform. Depth of begm _
: ! - maximum at point of loading. Outline of beam, P= 3|
77| two parabolas with vertices at points of supporf.
P
Beam supported at both ends. Load uniforml
fe——[——» |distributed. Depth of beam uniform. Width of p= 4SbR?
beam maximum at center. Outline of beam, tw ]
:* parabolas with vertexes at middle of beam.
TYTYeY Z
TOTAL LOAD= P
/]
=
Beam supported at both ends. Load uniforml
“ | distributed. Width of beam uniform. Depth of p= 4Sbi?
beam maximum at center. Outline of beam ong- T3l

aFor details of English and metric Sl units used in the formulas, see footnote d¥bpage
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Deflection as a Limiting Factor in Beam Design.—~or some applications, a beam must

be stronger than required by the maximum load it is to support, in order to prevent exces-
sive deflection. Maximum allowable deflections vary widely for different classes of ser-
vice, so a general formula for determining them cannot be given. When exceptionally stiff
girders are required, one rule is to limit the deflection to 1 inch per 100 feet of span; hence,
if I =length of span in inches, deflectioh=1200. According to another formula, deflec-

tion limit =1 + 360 where beams are adjacent to materials like plaster which would be bro-
ken by excessive beam deflection. Some machine parts of the beam type must be very rigi
to maintain alignment under load. For example, the deflection of a punch press column
may be limited to 0.010 inch or less. These examples merely illustrate variations in prac-
tice. It is impracticable to give general formulas for determining the allowable deflection
in any specific application, because the allowable amount depends on the conditions gov
erning each class of work.

Procedure in Designing for DeflectioAssume that a deflection equallte 1200 is to
be the limiting factor in selecting a wide-flange (W-shape) beam having a span length of
144 inches. Supports are at both ends and load at center is 15,000 pounds. Deiection
be limited to 144- 1200 = 0.12 inch. According to the formula on p2ge (Case 2), in
whichW =load on beam in pounds; length of span in inche&,= modulus of elasticity
of material] = moment of inertia of cross section:

w3 8 _ _
Deflectiony = 18E] hence) = szE = I8%0 12X 29,000 000 268.1

A structural wide-flange beam having a depth of 12 inches and weighing 35 pounds per
foot has a moment of inerti@f 285 and a section modulusdr S) Of 45.6 (seSteel Wide-
Flange Sections—8n page 2491)). Checking now for maximum streéSase 2,
page237):

s = Wi _ 15,000x 144 _ 11,842 Ibs. per sq. in.

Although deflection is the limiting factor in this case, the maximum stress is checked to
make sure that it is within the allowable limit. As the limiting deflection is decreased, for a
given load and length of span, the beam strength and rigidity must be increased, and, con
sequently, the maximum stress is decreased. Thus, in the preceding example, if the max
mum deflection is 0.08 inch instead of 0.12 inch, then the calculated value for the moment
of inertial will be 402; hence a W 1253 beam having anvalue of 426 could be used
(nearest value above 402). The maximum stress then would be reduced to 7640 pounds p
square inch and the calculated deflection is 0.076 inch.

A similar example using metric Sl units is as follows. Assume that a deflection equal
tol+ 1000 millimeters is to be the limiting factor in selecting a W-beam having a span
length of 5 meters. Supports are at both ends and the load at the center is 30 kilonew-
tons. Deflectiony is to be limited to 5000+ 1000 = 5 millimeters. The formula on
page237(Case 2) is applied, andlV = load on beam in newtons} = length of span in
mm; E = modulus of elasticity (assume 200,000 N/n#nn this example); andl =
moment of inertia of cross-section in millimeter& Thus,

) _ Wi
Deflectiony = 88T
hence

_ WI3 _ 30,000x 5000

= N - S 4
38yE ~ 28x 5% 200,000 ' °r125000mm
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Although deflection is the limiting factor in this case, the maximum stress is
checked to make sure that it is within the allowable limit, using the formula from
page237(Case 2):

S:\A_/I
4z

The units ofsare newtons per square millimeter\W is the load in newtonsj is the
length in mm; and Z = section modulus of the cross-section of the beanh = distance
in mm from neutral axis to extreme fiber.

Curved Beams.—The formulaS=Mc/I used to compute stresses due to bending of beams
is based on the assumption that the beams are straight before any loads are applied. |
beams having initial curvature, however, the stresses may be considerably higher than pre
dicted by the ordinary straight-beam formula because the effect of initial curvature is to
shift the neutral axis of a curved member in from the gravity axis toward the center of cur-
vature (the concave side of the beam). This shiftin the position of the neutral axis causes a
increase in the stress on the concave side of the beam and decreases the stress at the out:
fibers.

Hooks, press frames, and other machine members which as a rule have a rather prc
nounced initial curvature may have a maximum stress at the inside fibers of up td/about 3
times that predicted by the ordinary straight-beam formula.

Stress Correction Factors for Curved Beatissimple method for determining the
maximum fiber stress due to bending of curved members consists of 1) calculating the
maximum stress using the straight-beam forrBsac/I; and; and 2) multiplying the
calculated stress by a stress correction factor. The table o@Ragees stress correction
factors for some of the common cross-sections and proportions used in the design of
curved members..

An example in the application of the method using English units of measurement is given
at the bottom of the tabl& similar example using metric Sl units is as follows: The
fiber stresses of a curved rectangular beam are calculated as 40 newtons per
millimeter 2, using the straight beam formula,S = Mc/I. If the beam is 150 mm deep
and its radius of curvature is 300 mm, what are the true stresse&?c = 30075 = 4.
From the table onpage255, theK factors corresponding toR/c = 4 are 1.20 and 0.85.
Thus, the inside fiber stress is 48 1.20 = 48 N/mm = 48 megapascals; and the outside
fiber stress is 40 0.85 = 34 N/mm = 34 megapascals.

Approximate Formula for Stress Correction Factbhe stress correction factors given
in the table on pagg55were determined by Wilson and Quereau and published in the Uni-
versity of lllinois Engineering Experiment Station Circular No. 16, “A Simple Method of
Determining Stress in Curved Flexural Members.” In this same publication the authors
indicate that the following empirical formula may be used to calculate the value of the
stress correction factor for tivesidefibers of sections not covered by the tabular data to
within 5 per cent accuracy except in triangular sections where up to 10 per cent deviation
may be expected. However, for most engineering calculations, this formula should prove
satisfactory for general use in determining the factor for the inside fibers.

_ lr1 .1
K = 1.00+ O'SEEZ[R—‘:)'R}
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Values of the Stress Correction FactoK for Various Curved Beam Sections

FactorK FactorK
Inside | Outside Inside | Outside
Section % | Fiber | Fiber | Yo Section % | Fiber | Fiber | Yo
) 12| 341 .54 22R 12| 3.63 .58 41R
R— | 14| 240 w60 | 158 ale 3, 14| 254 | 63 | .28
16| 1.96 .65 .108 2 16| 214 .67 228
! 18| 1.75 .68 .08R f'_| 18| 1.89 .70 18R
‘ 20| 162| .71 | o068 | } T'| 20| 73| 72| 148
¢ | | 30| 133| 70 | om |t 4t I 30| 141 | .79 | .oem
l+h+—| 40( 1.23 .84 .01R T 1 1 40| 1.29 .83 .04R
| 6.0| 1.14 .89 .007R —’Li |‘<— I'l 60| 1.18 .88 .01
8.0( 1.10 91 .003R R—| | 80| 113 91 .01R
10.0| 1.08 .93 .0028 10.0| 1.10 .92 .006%
12| 2.89 .57 .30R 12| 3.55 .67 408
14| 213 .63 .20R 3t 14| 248 72 29
16| 179 | 67 | .14 -H-—»‘ 2‘l-—{ 16| 207 | .76 | 22m
e+ | 18| 1.63| .70 | .11R t Ti| 18] 183 78 | AR
20| 152 .73 .09R k) 20| 1.69 .80 .14R
| 30| 130 | 81 | .om |4t 6t| 30| 138 | .86 | .07
_4 40( 1.20 .85 .02R 4 | i' 40| 1.26 .89 .03R
R 6.0 1.12 .90 00R P 6.0| 1.15 .92 .01R
8.0 1.09 .92 005R” l:_R_,l 8.0 1.10 .94 .01R
10.0| 1.07 .94 .00R 10.0| 1.08 .95 .006%
1.2 3.01 .54 .33 12| 252 .67 .40
b I 14| 218 .60 228 14| 1.90 71 288
cl._ 16| 1.87 .65 168 16| 1.63 .75 .20R
" | 18| 1.69 .68 _.I‘t““’i‘l‘_‘ 1.50 77 .16R
T T 20| 158 | 71 A S 141 79 | AR
b 2b ‘ 30| 1.33 .80 l 1.23 .86 .058
1 _l_ 40( 1.23 .84 1.16 .89 .03B
! 6.0 1.13 .88 1.10 .92 .01R
R 8.0( 1.10 91 1.07 .94 0078
10.0| 1.08 .93 1.05 .95 .0048
1.2 3.09 .56 3.28 .58 .268
14| 225 .62 231 .64 18R
3b—:‘ 16| 191 .66 1.89 .68 .13R
r C 18| 1.73 .70 1.70 71 .10R
T 20| 161 .73 1.57 .73 .08
bI 2bl| 30| 1.37 81 131 81 | .03
_L 40 1.26 .86 1.21 .85 .02B
R 6.0 1.17 91 1.13 .90 008R
8.0 1.13 .94 1.10 .92 004R
10.0| 1.11 .95 1.07 .93 00R
12| 314 .52 2.63 .68 .398
5b 14| 229 .54 1.97 .73 28R
r _c:] | 16| 193 | .62 166 | .76 | 208
|| 18| 174 .65 1.51 .78 158
i —f 20| 161 .68 1.43 .80 A2R
b 4b| 30| 134 | 76 123 | .86 | .08
'f l | 40( 1.24 .82 1.15 .89 .03R
6.0 1.15 .87 X 1.09 .92 .01R
rR=|| 80| 112| o1 | oom| Lt I:C'{_’I 80| 107 | .94 | .007®
10.0| 1.10 .93 .00 R 10.0| 1.06 .95 .0048
N 12| 3.26 44 .36R
5 b ig igg gg ig Example:The fiber stresses of a curved rectangular b
¢ | 1.8 1l78 '57 l14R are calculated as 5000 psi using the straight beam fq
| 2‘0 1l66 l60 lllB mula,S=Mc/I. If the beam is 8 inches deep and its ra
T 3'0 1'37 '70 .058 of curvature is 12 inch_es, what are the true st_reﬁe;?
b ’ 4'0 1'27 '75 .028 12/4 = 3. The factors in the tat_)le corresponding/to=
. : : . 3 are 0.81 and 1.30. Outside fiber stress = 50081 =
l ! 6.0 116 | .82 | .01B |4050 psi; inside fiber stress = 508030 = 6500 psi.
8.0 1.12 .86 .006R
R 100| 109 | .88 | .00R

pam
I
ius

ay, is the distance from the centroidal axis to the neutral axis of curved beams subjected to pure
bending and is measured from the centroidal axis toward the center of curvature.
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(Use 1.05 instead of 0.5 in this formula for circular and elliptical sections.)
I = Moment of inertia of section about centroidal axis
b =maximum width of section
c =distance from centroidal axis to inside fiber, i.e., to the extreme fiber nearest
the center of curvature
R =radius of curvature of centroidal axis of beam
ExampleThe accompanying diagram shows the dimensions of a clamp frame of rectan-
gular cross-section. Determine the maximum stress at poentsiB due to a clamping
force of 1000 pounds.
1 1,000 LBS

|

1,000 LBS
The cross-sectional area =2 = 8 square inches; the bending moment at se&Bds
1000 (24+ 6+ 2) = 32,000 inch pounds; the distance from the center of gravity of the sec-
tion atABto pointBisc = 2 inches; and using the formula on pae, the moment of iner-
tia of the section is 2 (4)3+ 12 = 10.667 inchés
Using the straight-beam formula, pa2f#4, the stress at poingsandB due to the bend-
ing moment is:

The stress & is a compressive stress of 6000 psi and thatsa tensile stress of 6000
psi.

These values must be corrected to account for the curvature effect. In the table on
page255for Ric = (6+ 2)/(2) = 4, the value df is found to be 1.20 and 0.85 for poiBts
andA respectively. Thus, the actual stress due to bending aBisiit20x 6000 = 7200
psi in tension and the stress at p@itg 0.85x 6000 = 5100 psi in compression.

To these stressesAaandB must be added, algebraically, the direct stress at sédiion
due to the 1000-pound clamping force. The direct stress on sé&iaiil be a tensile
stress equal to the clamping force divided by the section area. Thus 830025 psi in
tension.

The maximum unit stressAis, therefore, 5106125 = 4975 psiin compression and the
maximum unit stress &is 7200+ 125 = 7325 psi in tension.

The following is a similar calculation using metric Sl units, assuming that it is
required to determine the maximum stress at point& and B due to clamping force of
4 kilonewtons acting on the frame. The frame cross-section is 50 by 100 millimeters,
the radius R = 200 mm, and the length of the straight portions is 600 mm. Thus, the
cross-sectional area = 58 100 = 5000 mr# the bending moment atAB is 4000(60G
200) = 3,200,000 newton-millimeters; the distance from the center of gravity of the
section atAB to point B isc =50 mm; and the moment of inertia of the section is, using
the formula on page219, 50x (100 = 4,170,000 mrf

Using the straight-beam formula, page54, the stress at point#\ and B due to the
bending moment is:
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s = Mc _ 3,200,000« 50
| 4,170,000

= 38.4 newtons per millimete? = 38.4 megapascals

The stress atA is a compressive stress of 38.4 N/niwhile that at B is a tensile
stress of 38.4 N/mr These values must be corrected to account for the curvature
effect. From the table on pag®55, theK factors are 1.20 and 0.85 for point& and B
respectively, derived fromR/c = 20050 = 4. Thus, the actual stress due to bending at
point B is 1.20x 38.4 = 46.1 N/mr (46.1 megapascals) in tension; and the stress at
point A is 0.85x 38.4 = 32.6 N/mra(32.6 megapascals) in compression.

To these stresses @ and B must be added, algebraically, the direct stress at section
AB due to the 4 kN clamping force. The direct stress on sectiéB will be a tensile
stress equal to the clamping force divided by the section area. Thus, 408000 = 0.8
N/mm 2. The maximum unit stress afA is, therefore, 32.61- 0.8 = 31.8 N/mn# (31.8
megapascals) in compression, and the maximum unit stressBis 46.1+ 0.8 = 46.9
N/mm 2 (46.9 megapascals) in tension.

Stresses Produced by Shocks

Stresses in Beams Produced by ShocksAry elastic structure subjected to a shock will
deflect until the product of the average resistance, developed by the deflection, and the dis
tance through which it has been overcome, has reached a value equal to the energy of tt
shock. It follows that for a given shock, the average resisting stresses are inversely propor
tional to the deflection. If the structure were perfectly rigid, the deflection would be zero,
and the stress infinite. The effect of a shock is, therefore, to a great extent dependent upo
the elastic property (the springiness) of the structure subjected to the impact.

The energy of a body in motion, such as a falling body, may be spentin each of four ways:

1) In deforming the body struck as a whole.

2) In deforming the falling body as a whole.

3) In partial deformation of both bodies on the surface of contact (most of this energy will
be transformed into heat).

4) Part of the energy will be taken up by the supports, if these are not perfectly rigid and
inelastic.

How much energy is spent in the last three ways it is usually difficult to determine, and
for this reason it is safest to figure as if the whole amount were spent as in Case 1. If a reli-
able judgmentis possible as to what percentage of the energy is spentin other ways than tf
first, a corresponding fraction of the total energy can be assumed as developing stresses |
the body subjected to shocks.

One investigation into the stresses produced by shocks led to the following conclusions:

1) A suddenly applied load will produce the same deflection, and, therefore, the same
stress as a static load twice as great; and 2) The unit pt¢ese formulas in the table
"Stresses Produced in Beams by Shdks a given load producing a shock, varies
directly as the square root of the modulus of elastiignd inversely as the square root of
the length_ of the beam and the area of the section.

Thus, for instance, if the sectional area of a beam is increased by four times, the unit
stress will diminish only by half. This result is entirely different from those produced by
static loads where the stress would vary inversely with the area, and within certain limits be
practically independent of the modulus of elasticity.

In the table, the expression for the approximate valpewich is applicable whenever
the deflection of the beam is small as compared with the total lefigidugh which the
body producing the shock is dropped, is always the same for beams supported at both enc
and subjected to shockaaty point between the supports. In the formulas all dimensions
are in inches and weights in pounds.



258 STRESSES PRODUCED BY SHOCKS

If metric Sl units are used,pis in newtons per square millimeterQis in newtons; E
=modulus of elasticity in N/mn¥; | = moment of inertia of section in millimeterd; and
h, a, andL in millimeters. Note: If Q is given in kilograms, the value referred to is
mass. The weighQQ of a massM kilograms isMg newtons, whereg = approximately
9.81 meters per secorid

Stresses Produced in Beams by Shocks

Method of
Support and Fiber (Unit) Stresg produced by
Point Struck by WeightQ Dropped Through a Approximate Value
Falling Body Distanceh ofp

Supported at
both ends; struck

_Qaln, [, %hED
p= 41 EH 1+ QL3D

_ _ [6QhE
P=al=n

in center.
Fixed at one QaL 6hEH 6OhE
end; struck at the p= —SI_ + |1+ —30 p=a
other. | QL3 N LI

Fixed at both
ends; struck in
center.

_ QaL 384hE
P e Ot o O

_ _ [6OhE
P=a/=

| = moment of inertia of sectior;= distance of extreme fiber from neutral akis; length of beam
E = modulus of elasticity.

Examples of How Formulas for Stresses Produced by Shocks are D&lieedeneral
formula from which specific formulas for shock stresses in beams, springs, and other
machine and structural members are derived is:

p=pH+ 1+27h§ @

In this formulap = stress in pounds per square inch due to shock caused by impact of a
moving loadp, = stress in pounds per square inch resulting when moving load is applied
statically;h = distance in inches that load falls before striking beam, spring, or other mem-
ber;y = deflection, in inches, resulting from static load.

As an example of howormula (1)may be used to obtain a formula for a specific appli-
cation, suppose that the lo#lshown applied to the beam in Case 2 on [28Javere
dropped on the beam from a heighhafches instead of being gradually applied (static
loading). The maximum strepsdue to loadVfor Case 2 is given &¥1+ 4 Z and the max-

imum deflectiory is given asV + 48El. Substituting these valuesformula (1)

_Wig L, 2h _ Wi 96hE
P= 42%H Y WP asEl - 429Tl+ T We o @

If in Formula (2)the letterQ is used in place oV and ifZ, the section modulus, is
replaced by its equivalerit; distancea from neutral axis to extreme fiber of beam, then
Formula (2)becomes the first formula given in the accompanying fiésses Produced
in Beams by Shocks

Stresses in Helical Springs Produced by Shocks Adoad suddenly applied on a spring

will produce the same deflection, and, therefore, also the same unit stress, as a static loa
twice as great. When the load drops from a héigthte stresses are as given in the accom-
panying table. The approximate values are applicable when the deflection is small as com:
pared with the height. The formulas show that the fiber stress for a given shock will be
greater in a spring made from a square bar than in one made from a round bar, if the diam
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eter of coil be the same and the side of the square bar equals the diameter of the round be
It is, therefore, more economical to use round stock for springs which must withstand
shocks, due to the fact that the deflection for the same fiber stress for a square bar spring |
smaller than that for a round bar spring, the ratio being as 4 to 5. The round bar spring is
therefore capable of storing more energy than a square bar spring for the same stress.

Stresses Produced in Springs by Shocks

Form of Bar from Fiber (Unit) Stres$ Produced by
Which Spring is WeightQ Dropped a Height Approximate Value
Made on a Helical Spring of f
Round f= §99%+ 1+ Ghd' [y f =127 QhG
i3 4QD3 Dd2n

_9QD Ght* [ _ QhG
Square ==Y+ 1+ —— f=134|=—
43 %l N~ 0.9m(QD)3H] NDd2n

G = modulus of elasticity for torsion;= diameter or side of ba, = mean diameter of spring;=
number of coils in spring.

Shocks from Bodies in Motion.—The formulas given can be applied, in general, to
shocks from bodies in motion. A body of weiglimoving horizontally with the velocity
of vfeet per second, has a stored-up energy:

= % x VL’Z foot-pounds or 6%’2 inch-po

This expression may be substituted@irin the tables in the equations for unit stresses
containing this quantity, and the stresses produced by the energy of the moving body
thereby determined.

The formulas in the tables give the maximum value of the stresses, providing the designe
with some definitive guidance even where there may be justification for assuming that
only a part of the energy of the shock is taken up by the member under stress.

The formulas can also be applied using metric Sl units. The stored-up energy of a
body of massM kilograms moving horizontally with the velocity ofv meters per sec-
ond is:

Ex

Ex = %Mv2newton-meters

This expression may be substituted fofQh in the appropriate equations in the
tables. For calculation in millimeters,Qh = 1000 newton-millimeters.

Size of Rail Necessary to Carry a Given Load.—Fhe following formulas may be
employed for determining the size of rail and wheel suitable for carrying a given load. Let,
A= the width of the head of the rail in inchBss; width of the tread of the rail in inches;

=the wheel-load in poundB;= the diameter of the wheel in inches.




260 STRESSES PRODUCED BY SHOCKS

Then the width of the tread of the rail in inches is found from the formula:
_ C
B= 5o @
The widthA of the head equaBs+ %inch. The diameted of the smallest track wheel that
will safely carry the load is found from the formula:
C
Ax K @
in whichK = 600 to 800 for steel castingg= 300 to 400 for cast iron.
As an example, assume that the wheel-load is 10,000 pounds; the diameter of the whee

is 20 inches; and the material is cast steel. Determine the size of rail necessary to carry thi
load. FromFormula (1)

_ 10,000 _ .
B = T250% 20~ 0.4 inch
Hence the width of the rail required equals ©% inch = 1.025 inch. Determine also
whether a wheel 20 inches in diameter is large enough to safely carry the loa&olFrom

mula (2)

D= 10000 16Y%, inches

1.025x 600
This is the smallest diameter of track wheel that will safely carry the load; hence a 20-

inch wheel is ample.

American Railway Engineering Association Formulas.—Fhe American Railway

Engineering Association recommends for safe operation of steel cylinders rolling on steel

plates that the allowable lo@dn pounds per inch of length of the cylinder should not

exceed the value calculated from the formula

_ y.s.— 13000, . .
p= 50,000 600 d for diameted less than 25 inches

This formula is based on steel having a yield strength, y.s., of 32,000 pounds per squar
inch. For roller or wheel diameters of up to 25 inches, the Hertz stress (contact stress
resulting from the calculated loadvill be approximately 76,000 pounds per square inch.

For a 10-inch diameter roller the safe load per inch of roller length is

_ 32,000-13,000
- 20,000

Therefore, to support a 10,000 pound load the roller or wheel would need to be
10,0005700 = 1.75 inches wide.

600x 10 = 5700 Ibs per inch of length
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COLUMNS

Columns

Strength of Columns or Struts.—Structural members which are subject to compression
may be so long in proportion to the diameter or lateral dimensions that failure may be the
result 1) of both compression and bending; and 2) of bending or buckling to such a degree
that compression stress may be ignored.

In such cases, tdenderness ratits important. This ratio equals the lengtt the col-
umn in inches divided by the least radius of gyratiofithe cross-section. Various formu-
las have been used for designing columns which are too slender to be designed fo
compression only.
Rankine or Gordon Formula.—This formula is generally applied when slenderness
ratios range between 20 and 100, and sometimes for ratios up to 120. The notation, ir
English and metric Sl units of measurement, is given on pége

p= % = ultimate load, Ibs. per sq. in.

0o
1+K 6o
Factork may be established by tests with a given material and end condition, and for the
probable range ofr. If determined by calculatiol,= SCTeE. FactoIC equals 1 for either
rounded or pivoted column ends, 4 for fixed ends, and 1 to 4 for square flat ends. The fac-
tors 25,000, 12,500, etc., in the Rankine formulas, arranged as o2§%gqual 1K, and
have been used extensively.
Straight-line Formula.— This general type of formula is often used in designing com-
pression members for buildings, bridges, or similar structural work. It is convenient espe-
cially in designing a number of columns that are made of the same material but vary in size,
assuming that fact@ is known. This factor is determined by tests.

p= %,—BB'—S = ultimate load, Ibs. per sq. in.

S, equals yield point, Ibs. per square inch, and fe@tanges from 50 to 100. Safe unit
stress 3 + factor of safety.
Formulas of American Railway Engineering Association.—Fhe formulas that follow

apply to structural steel having an ultimate strength of 60,000 to 72,000 pounds per square
inch.

For building columns havingr ratios not greater than 120, allowable unit stress =
17,000~ 0.485I2/r2, For columns havingr ratios greater than 120, allowable unit stress
18,000
1+12/18,0002

For bridge compression members centrally loaded and with vallesof greater than
140:

allowable unit stress

2
Allowable unit stress, riveted ends ,15 Ooél—2
r

2
Allowable unit stress, pinends 15 09%:—2

Euler Formula.— This formula is for columns that are so slender that bending or buckling
action predominates and compressive stresses are not taken into account.
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2
P = CrlE = total ultimate load, in pounds

The notation, in English and metric Sl units of measurement, is given in th&®&aide
ine's and Euler's Formulas for Columas page 263. Facto€sfor different end condi-
tions are included in the Euler formulas at the bottom of the table. According to a series of
experiments, Euler formulas should be used if the valuéseofceed the following ratios:
Structural steel and flat ends, 195; hinged ends, 155; round ends, 120; cast iron with fla
ends, 120; hinged ends, 100; round ends, 75; oak with flat ends, 130itithéslender-
ness ratig which marks the dividing line between the shorter columns and those slender
enough to warrant using the Euler formula, depends upon the column material and its enc
conditions. If the Euler formula is applied when the slenderness ratio is too snmal; the
culatedultimate strength will exceed the yield point of the material and, obviously, will be
incorrect.

Eccentrically Loaded Columns.—in the application of the column formulas previously
referred to, it is assumed that the action of the load coincides with the axis of the column. If
the load is offset relative to the column axis, the column is said to be eccentrically loaded,
and its strength is then calculated by using a modification of the Rankine formula, the
quantityczr2 being added to the denominator, as shown in the table on the next page. This
modified formula is applicable to columns having a slenderness ratio varying from 20 or
30 to about 100.

Machine Elements Subjected to Compressive Loads.As in structural compression
members, an unbraced machine member that is relatively slender (i.e., its length is more
than, say, six times the least dimension perpendicular to its longitudinal axis) is usually
designed as a column, because failure due to overloading (assuming a compressive loa
centrally applied in an axial direction) may occur by buckling or a combination of buckling
and compression rather than by direct compression alone. In the design of unbraced stee
machine “columns” which are to carry compressive loads applied along their longitudinal
axes, two formulas are in general use:

(Euler)

Ar2
Per = syT @)
|2
(3. B. Johnson) Per = AS/% - 4%25 @) where  Q = n—syT[—ZE 3)

In these formulasy,, = critical load in pounds that would result in failure of the column;
A = cross-sectional area, square incl&s; yield point of material, pounds per square
inch;r = least radius of gyration of cross-section, incBesmodulus of elasticity, pounds
per square inchi;= column length, inches; and= coefficient for end conditions. For both
ends fixedn = 4; for one end fixed, one end free; 0.25; for one end fixed and the other
end free but guided,= 2; for round or pinned ends, free but guidesd 1; and for flat ends,
n=1to 4. Itshould be noted that these valuesepresent ideal conditions that are seldom
attained in practice; for example, for both ends fixed, a valoe=§ to 3.5 may be more
realistic tham = 4.

If metric Sl units are used in these formulasP,, = critical load in newtons that
would result in failure of the column; A = cross-sectional area, square millimeter§y
=yield point of the material, newtons per square mmg = least radius of gyration of
cross-section, mmE = modulus of elasticity, newtons per square mmni;= column
length, mm; andn = a coefficient for end conditions. The coefficients given are valid
for calculations in metric units.
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Symbol Quantity English Unit Metric SI Units
p Ultimate unit load Lbs./sq. in. Newtons/sg. mm.
P Total ultimate load Pounds Newtons
S Ultimate compressive strength of material Lbs./sq. in. Newtons/sq. m
| Length of column or strut Inches Millimeters
r Least radius of gyration Inches Millimeters
| Least moment of inertia Inched Millimeters*
r2 Moment of inertia/area of section Incheg Millimeters?
E Modulus of elasticity of material Lbs./sq. in. Newtons/sq. mm
c Distance from neutral axis of cross-sectior) to
side under compression Inches Millimeters
z Distance from axis of load to axis coinciding
with center of gravity of cross-section Inches Millimeters
Rankine's Formulas
Both Ends of One End Fixed and
Material Column Fixed One End Rounded Both Ends Rounde
Steel _ S IS S
p= 2 p= 2 p= 2
+—_— + 1+———
25,0002 12,5002 62502
CastIron S S S
p = 2 p= 2 p= 2
+ + +
5000r2 2500r2 12502
Wrought Tron S S S
p= 2 p= 2 p= 2
1+ e 1+ 1+
35,0002 17,5002 8750r2
Timber S S S
p = 2 p= 2 p= 2
1+ 1+ —— 1+
3000r2 1500r2 750r2
Formulas Modified for Eccentrically Loaded Columns
Both Ends of One End Fixed and
Material Column Fixed One End Rounded Both Ends Rounded
Steel S S S
= 12 cz = |2 cz P= 12 cz
e ot = l+——+=
25,0002 r2 12,5002 r2 62502 r2

For materials other than steel, such as cast iron, use the Rankine formulas given in the ug

and add to the denominator the quanGg/ r2

Euler's Formulas for Slender Columns

Both Ends of One End Fixed and Both Ends One End Fixed and
Column Fixed One End Rounded Rounded One End Free
_ 4T2IE _ 212IE p= IE p= IE
B B T2 g2

per table

Allowable Working Loads for Columnigo find the total allowable working load for a given sec-
tion, divide the total ultimate loa® (or p x area), as found by the appropriate formula above, by a

suitable factor of safety.
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Allowable Concentric Loads for Steel Pipe Columns

STANDARD STEEL PIPE
Nominal Diameter of Pipe, Inches
2 [ 1 [ 8 | s [ s | 4 3 [ s
Wall Thickness of Pipe, Inch
) 0375 | 0365 | 0322 0280] 0258 0.237 0.22f 21
Effective n -
Length KL), Weight per Foot of Pipe, Pounds
Feef 4956 | 4048 | 2855 | 1897| 1462 10.79 9.11] 7.5
Allowable Concentric Loads in Thousands of Pounds
6 303 246 171 110 83 59 48 38
7 301 243 168 108 81 57 46 36
8 299 241 166 106 78 54 44 34
9 296 238 163 103 76 52 41 31
10 293 235 161 101 73 49 38 28
11 201 232 158 98 71 46 35 25
12 288 229 155 95 68 43 32 22
13 285 226 152 92 65 40 29 19
14 282 223 149 89 61 36 25 16
15 278 220 145 86 58 33 22 14
16 275 216 142 82 55 29 19 12
17 272 213 138 79 51 26 17 11
18 268 209 135 75 47 23 15 10
19 265 205 131 71 43 21 14 9
20 261 201 127 67 39 19 12
22 254 193 119 59 32 15 10
24 246 185 111 51 27 13
25 242 180 106 a7 25 12
26 238 176 102 43 23
EXTRA STRONG STEEL PIPE
Nominal Diameter of Pipe, Inches
12 [ 10 [ 8 [ 6 | 5 [ 4 | % [ 3
Wall Thickness of Pipe, Inch
Effective 0.500 I 0.500 | 0.500 | O.432| 0.375[ 0.3371 0.3143 .30
Length KL), Weight per Foot of Pipe, Pounds
Feet 6542 | 5474 | 4339 2857]  20.79] 14.99 12.5) 10.25
Allowable Concentric Loads in Thousands of Pounds
6 400 332 259 166 118 81 66 52
7 397 328 255 162 114 78 63 48
8 394 325 251 159 111 75 59 45
9 390 321 247 155 107 71 55 41
10 387 318 243 151 103 67 51 37
11 383 314 239 146 99 63 a7 33
12 379 309 234 142 95 59 43 28
13 375 305 229 137 91 54 38 24
14 371 301 224 132 86 49 33 21
15 367 296 219 127 81 44 29 18
16 363 291 214 122 76 39 25 16
18 353 281 203 111 65 31 20 12
19 349 276 197 105 59 28 18 11
20 344 271 191 99 54 25 16
21 337 265 185 92 48 22 14
22 334 260 179 86 44 21
24 323 248 166 73 37 17
26 312 236 152 62 32
28 301 224 137 54 27

aWith respect to radius of gyration. The effective length) (s the actual unbraced lengthin feet,
multiplied by the effective length factdk) which is dependent upon the restraint at the ends of the
unbraced length and the means available to resist lateral movekherdy.be determined by refer-
ring to the last portion of this table.
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Allowable Concentric Loads for Steel Pipe ColumnéContinued)
DOUBLE-EXTRA STRONG STEEL PIPE
Nominal Diameter of Pipe, Inches
8 6 [ 5 4 [ 3
Wall Thickness of Pipe, Inch
) 0.875 0864 | 0.750 0674 | 0.600
LeEnf;erl?Ki), Weight per Foot of Pipe, Pounds
Feet 72.42 5316 | 38.55 2754 | 18.58
Allowable Concentric Loads in Thousands of Pounds
6 431 306 216 147 91
7 424 299 209 140 84
8 417 292 202 133 77
9 410 284 195 126 69
10 403 275 187 118 60
11 395 266 178 109 51
12 387 257 170 100 43
13 378 247 160 91 37
14 369 237 151 81 32
15 360 227 141 70 28
16 351 216 130 62 24
17 341 205 119 55 22
18 331 193 108 49
19 321 181 97 44
20 310 168 87 40
22 288 142 72 33
24 264 119 61
26 240 102 52
28 213 88 44
EFFECTIVE LENGTH FACTORSK) FOR VARIOUS
COLUMN CONFIGURATIONS
(a) (b) (©) (d) (e ®
:V.: l j5s]
Buckled shape of column is shown by i / )
dashed line ; N !
/ 1 i
1
;
/
1 (Y t I'e
TheoreticaK value 0.7 1.0 1.0 2.0 2.0
Recommended design value whe 0.80 12 10 210 20
ideal conditions are approximated|
A= Rotation fixed and translation fixed
AV Rotation free and translation fixed
End condition code
3 Rotation fixed and translation free
? Rotation free and translation free
Coad tables are given for 36 ksi yiel d stress steel. No load values are given below the heavy hori-

zontal lines, because tKé&'r ratios (wheré is the actual unbraced length in inches misdhe gov-

erning radius of gyration in inches) would exceed 200.
Data from “Manual of Steel Construction,” 8th ed., 1980, with permission of the American Insti-

tute of Steel Construction.

Factor of Safety for Machine ColumiWhen the conditions of loading and the physical
qualities of the material used are accurately known, a factor of safety as low as 1.25 is
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sometimes used when minimum weight is important. Usually, however, a factor of safety
of 2to 2.5 is applied for steady loads. The factor of safety represents the ratio of the critical
loadP,, to the working load.

Application of Euler and Johnson Formuld® determine whether the Euler or
Johnson formula is applicable in any particular case, it is necessary to determine the value
of the quantityQ + r2. If Q +r2is greater than 2, then the EUfermula (1)should be used;
if Q+r2is less than 2, then the J. B. Johnson formula is applicable. Most compression
members in machine design are in the range of proportions covered by the Johnson for
mula. For this reason a good procedure is to design machine elements on the basis of th
Johnson formula and then as a check calcQ@ate? to determine whether the Johnson for-
mula applies or the Euler formula should have been used.

Example 1, Compression Member Desfgmectangular machine member 24 inches
long and, x 1 inch in cross-section is to carry a compressive load of 4000 pounds along its
axis. What is the factor of safety for this load if the material is machinery steel having a
yield point of 40,000 pounds per square inch, the load is steady, and each end of the rod he
a ball connection so that= 1?

FromFormula (3)

40,000x 24 x 24 _
Q = TX31416x3.1416x 30,000 000 078

(The values 40,000 and 30,000,000 were obtained from theStmblegth Data for Iron
and Steebn paget76)

The radius of gyrationfor a rectangular section (page9) is 0.289x the dimension in
the direction of bending. In columns, bending is most apt to occur in the direction in which
the section is the weakest, theénch dimension in this example. Hence, least radius of
gyrationr = 0.289x %, = 0.145 inch.

Q _ 0.0778 _ 3.70
r2  (0.1452
which is more than 2 so that the Euler formula will be used.

p - YA _ 40,000x%x1
cr Q 3.70

5400 pounds so that the factor of safety is 5400 40Q(B5

Example 2, Compression Member Deslgithe preceding example, the column formu-
las were used to check the adequacy of a column of known dimensions. The more usua
problem involves determining what the dimensions should be to resist a specified load. For
example,:

A 24-inch long bar of rectangular cross-section with widttvice its depth is to carry
a load of 4000 pounds. What must the width and depth be if a factor of safety of 1.35 is to
be used?

First determine the critical lod},:

P.; = working loadx factor of safety

= 4000x 1.35= 5400 pounds

Next determin® which, as before, will be 0.0778.
Assume~ormula (2)applies:

Per = Ayl 2]
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5400 = w x dx 40, OO(Hl 0077@
0.01945
= 2 Pbebnbudiilh
= 2d ><4o,ood§1 1]
5400 _ o 0.01045
40,000% 2 2 0

As mentioned ifExample lthe least radius of gyratigrof a rectangle is equal to 0.289
times the least dimensioah,in this case. Therefore, substitutingddhe value + 0.289,

5400  _ [ r [P 0.01945

20,000x2 028910~ (2 O
5400x 0.28%<0.289 _ , _
20000x 2 - '2-001945
0.005638= r2—0.01945

r2

0.0251

Checking to determine @ + r2is greater or less than 2,

Q _ 00778 _

r2  0.0251
thereford=ormula (1)should have been used to determiard dimensions andd. Using
Formula (1)

2
or o
40,000x% 2 x (0288 r

40,000x 2d2 xr2 _

5400= Q = 0.0778
(4 _ 5400 0.0778¢0.289x 0.289
20,000% 2
0145 _ _
d= 0289 = 0.50 inch

andw=2d = 1 inch as in the previous example.

American Institute of Steel Construction.—For main or secondary compression mem-
bers withl/r ratios up to 120, safe unit stress = 17,8@0483%r2. For columns and brac-
ing or other secondary members wittratios above 120,

18000 bracing and secondary members. For main
1+12/18,000r2

. ) 18,000 I/rg
members, safe unit stregsi = ————— X
5 1+12/18,0002 ET]' ~200]

Safe unit stresgsi =

Pipe ColumnsAllowable concentric loads for steel pipe columns based on the above
formulas are given in the table on p&ge!.
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PLATES, SHELLS, AND CYLINDERS

Flat Stayed Surfaces.—targe flat areas are often held against pressure by stays distrib-
uted at regular intervals over the surface. In boiler work, these stays are usually screwec
into the plate and the projecting end riveted over to insure steam tightness. The U.S. Boar
of Supervising Inspectors and the American Boiler Makers Association rules give the fol-
lowing formula for flat stayed surfaces:
_Cxt?
2
in whichP =pressure in pounds per square inch
C =a constant, which equals 112 for plagich and under; 120, for plates over
#sinch thick; 140, for plates with stays having a nut and bolt on the inside and
outside; and 160, for plates with stays having washers of at least one-half the
thickness of the plate, and with a diameter at least one-half of the greatest pitch.
t=thickness of plate in 16ths of an inch (thicknegg,t = 7)
S =greatest pitch of stays in inches
Strength and Deflection of Flat Plates.—Generally, the formulas used to determine
stresses and deflections in flat plates are based on certain assumptions that can be close
approximated in practice. These assumptions are:

1) the thickness of the plate is not greater than one-quarter the least width of the plate;

2) the greatest deflection when the plate is loaded is less than one-half the plate thicknes:

3) the maximum tensile stress resulting from the load does not exceed the elastic limit of
the material; and

4) all loads are perpendicular to the plane of the plate.

Plates of ductile materials fail when the maximum stress resulting from deflection under
load exceeds the yield strength; for brittle materials, failure occurs when the maximum
stress reaches the ultimate tensile strength of the material involved.

Square and Rectangular Flat Plates.—Fhe formulas that follow give the maximum
stress and deflection of flat steel plates supported in various ways and subjected to the
loading indicated. These formulas are based upon a modulus of elasticity for steel of
30,000,000 pounds per square inch and a value of Poisson's ratio of 0.3. If the formulas fol
maximum stressS, are applied without modification to other materials such as cast iron,
aluminum, and brass for which the range of Poisson's ratio is about 0.26 to 0.34, the maxi-
mum stress calculations will be in error by not more than about 3 per cent. The deflection
formulas may also be applied to materials other than steel by substituting in these formulas
the appropriate value fd@, the modulus of elasticity of the material (see pag&sand
477). The deflections thus obtained will not be in error by more than about 3 per cent.
In the stress and deflection formulas that follow,
p =uniformly distributed load acting on plate, pounds per square inch
W =total load on plate, poundé/=p x area of plate
L =distance between supports (length of plate), inches. For rectangularipfates,
long side] = short side

t=thickness of plate, inches

S =maximum tensile stress in plate, pounds per square inch

d =maximum deflection of plate, inches

E =modulus of elasticity in tensiof = 30,000,000 pounds per square inch for

steel
If metric Sl units are used in the formulas, then,
W =total load on plate, newtons
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L =distance between supports (length of plate), millimeters. For rectangular
plates,L = long side] = short side

t=thickness of plate, millimeters

S =maximum tensile stress in plate, newtons per mm squared

d =maximum deflection of plate, mm

E =modulus of elasticity, newtons per mm squared

A) Square flat plate supported at top and bottom of all four edges and a uniformly distrib-
uted load over the surface of the plate.

S

0.29W 0.0443N2
= 1 = T
2 ) TS (@)
B) Square flat plate supported at the bottom only of all four edges and a uniformly distrib-
uted load over the surface of the plate.

_ 0.28W 0.0443N1?

S= 3 = Lt

2 ® d ce (4)

C) Square flat plate with all edges firmly fixed and a uniformly distributed load over the
surface of the plate.

0.31W 0.0138VL2
S= 5 =
2 ®) d TS (6)
D) Square flat plate with all edges firmly fixed and a uniform load over small circular
area at the center. Eguations (7and (9), ry = radius of area to which load is applied. If

ro < 1.7, usergwherer, = [1.6r2+t2-0.67% .

_ 0.62\NI oLno

2
s _ 0.0568WL

7] ) d= == ®

E) Square flat plate with all edges supported above and below, or below only, and a con-
centrated load at the center. (See Case 4, above, for definitin of

_062Wr, Lp _ 0.1268NL2
s= 25 oufpfl+ 0877 @ d=2225— o

F) Rectangular plate with all edges supported at top and bottom and a uniformly distrib-
uted load over the surface of the plate.

S= [LO.75W 5 1) d= 0;42?\/21] 12)
2Lk N 3LE 4 £:44
t o +l'61|_2[] Et [i3+ 20

G) Rectangular plate with all edges fixed and a uniformly distributed load over the sur-
face of the plate.

0.5W 0.0284N
S = ————— (13) d = —— (14)
tz[l,__+0.623ﬁ] Et‘?’[': + 1.0587%
O L5 O 0s L4 0O

Circular Flat Plates.—In the following formulasR = radius of plate to supporting edge
in inchesW = total load in pounds; and other symbols are the same as used for square an
rectangular plates.



270 PLATES, SHELLS, AND CYLINDERS

If metric Sl units are used,R = radius of plate to supporting edge in millimeters, and
the values of other symbols are the same as those used for square and rectangular
plates.

A) Edge supported around the circumference and a uniformly distributed load over the
surface of the plate.

_ 0.39wW 0.22IWRR
S= 1 = L2 R
2 (Y] d =9 (2
B) Edge fixed around circumference and a uniformly distributed load over the surface of
the plate.

_ 0.24w 0.0543VR2
S - 3 = ——
2 ®3) d e (4)
C) Edge supported around the circumference and a concentrated load at the center.
0.48W R t2 0.55WR2
= . ———0. d= ——o 6
5= 23 [1 + 13005z~ 0 0185R—2} 5) e ®

D) Edge fixed around circumference and a concentrated load at the center.

_ 0.62W

R {2 0.22WR
. d = L22VR 8
5= 3 [ +0 0264R—2} @ ®)

l0%e5375 EQ

Strength of Cylinders Subjected to Internal Pressure.—n designing a cylinder to
withstand internal pressure, the choice of formula to be used depends on 1) the kind of
material of which the cylinder is made (whether brittle or ductile); 2) the construction of
the cylinder ends (whether open or closed); and 3) whether the cylinder is classed as
thin- or a thick-walled cylinder.

Acylinder is considered to be thin-walled when the ratio of wall thickness to inside diam-
eteris 0.1 or less and thick-walled when this ratio is greater than 0.1. Materials such as cas
iron, hard steel, cast aluminum are considered to be brittle materials; low-carbon steel,
brass, bronze, etc. are considered to be ductile.

In the formulas that followp = internal pressure, pounds per square ifch;inside
diameter of cylinder, inchesz= wall thickness of cylinder, inchgs;= Poisson's ratio, =
0.3 for steel, 0.26 for cast iron, 0.34 for aluminum and brassSanallowable tensile
stress, pounds per square inch.

Metric Sl units can be used irFormulas (1), (3), (4), and(5), wherep = internal pres-
sure in newtons per square millimeterD = inside diameter of cylinder, millimeters;t
=wall thickness, mm;u = Poisson's ratio, = 0.3 for steel, 0.26 for castiron, and 0.34 for
aluminum and brass; andS= allowable tensile stress, N/mfFor the use of metric S|
units in Formula (2), see below.

Thin-walled cylinders: = [2)_‘83 1)
For low-pressure cylinders of cast iron such as are used for certain engine and pres
applications, a formula in common use is
Dp
= == +0.
t 2500 0.3 )
This formula is based on allowable stress of 1250 pounds per square inch and will give &
wall thickness 0.3 inch greater thdarmula (1)to allow for variations in metal thickness
that may result from the casting process.
If metric Sl units are used inFormula (2), t = cylinder wall thickness in millimeters;
D =inside diameter of cylinder, mm; and the allowable stress is in newtons per square
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millimeter. The value of 0.3 inches additional wall thickness is 7.62 mm, and the next
highest number in preferred metric basic sizes is 8 mm.

Thick-walled cylinders of brittle material, ends open or closeané's equation is used
when cylinders of this type are subjected to internal pressure.

= D[ stp_
t= 2[ S-p 1} @
The tableRatio of Outside Radius to Inside Radius, Thick CylindersAllowable Stress in
Metal per Sq. In. of Sectian page272is for convenience in calculating the dimensions
of cylinders under high internal pressure without the useofiula (3)

Example, Use of the Tabkessume that a cylinder of 10 inches inside diameter is to
withstand a pressure of 2500 pounds per square inch; the material is cast iron and the allow
able stress is 6000 pounds per square inch. To solve the problem, locate the allowabl
stress per square inch in the left-hand column of the table and the working pressure at th
top of the columns. Then find the ratio between the outside and inside radii in the body of
the table. In this example, the ratio is 1.558, and hence the outside diameter of the cylinde
should be 18 1.558, or about Fginches. The thickness of the cylinder wall will therefore
be (15.558-10)/2 =2.779 inches.

Unless very high-grade material is used and sound castings assured, cast iron should n
be used for pressures exceeding 2000 pounds per square inch. It is well to leave more met
in the bottom of a hydraulic cylinder than is indicated by the results of calculations,
because a hole of some size must be cored in the bottom to permit the entrance of a borin
bar when finishing the cylinder, and when this hole is subsequently tapped and plugged it
often gives trouble if there is too little thickness.

For steady or gradually applied stresses, the maximum allowable fiber stress S may be
assumed to be from 3500 to 4000 pounds per square inch for cast iron; from 6000 to 700
pounds per square inch for brass; and 12,000 pounds per square inch for steel castings. F
intermittent stresses, such as in cylinders for steam and hydraulic work, 3000 pounds pe
square inch for cast iron; 5000 pounds per square inch for brass; and 10,000 pounds pe
square inch for steel castings, is ordinarily used. These values give ample factors of safety

Note: In metric Sl units, 1000 pounds per square inch equals 6.895 newtons per
square millimeter.

Thick-walled cylinders of ductile material, closed er@swvarino's equation is used:

= e @

Spherical Shells Subjected to Internal Pressure.tet:
D =internal diameter of shell in inches
p =internal pressure in pounds per square inch
S =safe tensile stress per square inch pD

t=thickness of metal in the shell, in inches. Thier: 7S

This formula also applies to hemi-spherical shells, such as the hemi-spherical head of
cylindrical container subjected to internal pressure, etc.
If metric Sl units are used, then:
D =internal diameter of shell in millimeters
p =internal pressure in newtons per square millimeter
S =safe tensile stress in newtons per square millimeter
t=thickness of metal in the shell in millimeters
Meters can be used in the formula in place of millimeters, providing the treatment
is consistent throughout.
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Ratio of Outside Radius to Inside Radius, Thick Cylinders

Allowable Working Pressure in Cylinder, Pounds per Square Inch
Stress in
meg' ggé t%r‘{ 1000 2000 3000 4000 5000 6000 700

2,000 1.732

2,500 1.527

3,000 1.414 2.236

3,500 1.341 1.915

4,000 1.291 1.732 2.645

4,500 1.253 1.612 2.236

5000 1.224 1.527 2.000 3.000)

5,500 1.201 1.464 1.844 2516

6,000 1.183 1.414 1.732 2.236 3.314

6,500 1.374 1.647 2.049 2.768

7,000 1.341 1.581 1.914 2.449 3.605)

7,500 1.314 1.527 1.813 2.236 3.000)

8,000 1.291 1.483 1.732 2.081 2.645) 3.872
8,500 1.271 1.446 1.666 1.963 2.408 3.214
9,000 1.253 1.414 1.612 1.871 2.236) 2.82
9,500 1.235 1.386 1.566 1.795 2.104 2.56
10,000 1.224 1.362 1.527 1.732 2.000 2.38
10,500 1.212 1.341 1.493 1.678 1.915) 2.23¢
11,000 1.201 1.322 1.464 1.633 1.844) 2.12
11,500 1.193 1.306 1.437 1.593 1.784) 2.021
12,000 1.183 1.291 1.414 1.558 1.732 1.94
12,500 1.277 1.393 1.527 1.687 1.878
13,000 1.264 1.374 1.500 1.647 1.825
13,500 1.253 1.357 1.475 1.612 1.775
14,000 1.243 1.341 1.453 1.581 1.732
14,500 1.233 1.327 1.432 1.553 1.693
15,000 1.224 1.314 1.414 1.527 1.658
16,000 1.209 1.291 1.381 1.483 1.599

Thick-walled cylinders of ductile material; open enBsnie's equation is used:

- Drs+(1-wp_ }
t 2[ S—(1+u)p ! ©
ExampleFind the thickness of metal required in the hemi-spherical end of a cylindrical

vessel, 2 feet in diameter, subjected to an internal pressure of 500 pounds per square incl
The material is mild steel and a tensile stress of 10,000 pounds per square inch is allowable
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_ 500x 2x12 _ .
t= 7% 10,000 0.3 inch
A similar example using metric Sl units is as follows: find the thickness of metal
required in the hemi-spherical end of a cylindrical vessel, 750 mm in diameter, sub-
jected to an internal pressure of 3 newtons/mAThe material is mild steel and a ten-
sile stress of 70 newtons/m#is allowable.
_ 3x750 _
t= %70 - 8.04 mm
If the radius of curvature of the domed head of a boiler or container subjected to internal
pressure is made equal to the diameter of the boiler, the thickness of the cylindrical shell
and of the spherical head should be made the same. For example, if a boiler is 3 feet ir
diameter, the radius of curvature of its head should also be 3 feet, if material of the same
thickness is to be used and the stresses are to be equal in both the head and cylindrical pc
tion.

Collapsing Pressure of Cylinders and Tubes Subjected to External PressuresFae
following formulas may be used for finding the collapsing pressures of lap-welded Besse-
mer steel tubes:

P= 86,670%—1386 @
3
P = 50,210 oo%% @)

in whichP = collapsing pressure in pounds per square Dehoutside diameter of tube or
cylinder in inchest = thickness of wall in inches.

Formula (1)s for values oP greater than 580 pounds per square inchfFamthula (2)s
for values oP less than 580 pounds per square inch. These formulas are substantially cor-
rect for all lengths of pipe greater than six diameters between transverse joints that tend tc
hold the pipe to a circular form. The presdRfeund is the actual collapsing pressure, and
a suitable factor of safety must be used. Ordinarily, a factor of safety of 5 is sufficient. In
cases where there are repeated fluctuations of the pressure, vibration, shocks and oth
stresses, a factor of safety of from 6 to 12 should be used.

If metric Sl units are used the formulas are:

P= 597.6%—9.556 ®)
_ t
P = 346, zoc%] @)

where P = collapsing pressure in newtons per square millimeteD = outside diame-
ter of tube or cylinder in millimeters; and t = thickness of wall in millimeters. For-

mula (3) is for values ofP greater than 4 N/mn?, and Formula (4) is for values ofP

less than 4 N/mm.

The table “Tubes Subjected to External Pressure” is based upon the requirements of th
Steam Boat Inspection Service of the Department of Commerce and Labor and gives the
permissible working pressures and corresponding minimum wall thickness for long, plain,
lap-welded and seamless steel flues subjected to external pressure only. The table thick
nesses have been calculated from the formula:

¢ = (Fxp)+1384D
86,670
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in whichD = outside diameter of flue or tube in inchiesthickness of wall in inchep;=

working pressure in pounds per square iftGhfactor of safety. The formulais applicable
to working pressures greater than 100 pounds per square inch, to outside diameters from

to 18 inches, and to temperatures less thaPF650

The precedingormulas (1pnd(2) were determined by Prof. R. T. Stewart, Dean of the
Mechanical Engineering Department of the University of Pittsburgh, in a series of experi-

ments carried out at the plant of the National Tube Co., McKeesport, Pa.

The apparent fiber stress under which the different tubes failed varied from about 7000
pounds per square inch for the relatively thinnest to 35,000 pounds per square inch for the
relatively thickest walls. The average yield point of the material tested was 37,000 pounds
and the tensile strength 58,000 pounds per square inch, so it is evident that the strength of
tube subjected to external fluid collapsing pressure is not dependent alone upon the elasti

limit or ultimate strength of the material from which it is made.

Tubes Subjected to External Pressure

Outside Working Pressure in Pounds per Square Inch
Diameterof | 100 | 120 | 140 | 160 | 180 | 200 | 220
Inches Thickness of Tube in Inches. Safety Factor, 5
7 0.152 0.160 0.168 0.177 0.185| 0.19 0.201L
8 0.174 0.183 0.193 0.202 0.211 0.22 0.229
9 0.196 0.206 0.217 0.227 0.237| 0.24 0.258
10 0.218 0.229 0.241 0.252 0.264 0.27 0.287
11 0.239 0.252 0.265 0.277 0.29¢ 0.30: 0.316
12 0.261 0.275 0.289 0.303 0.317 0.33 0.344
13 0.283 0.298 0.313 0.328 0.343 0.35 0.373
14 0.301 0.320 0.337 0.353 0.369 0.38! 0.402
15 0.323 0.343 0.361 0.378 0.396 0.41. 0.430
16 0.344 0.366 0.385 0.404 0.422 0.44 0.459
16 0.366 0.389 0.409 0.429 0.448 0.468 0.488
18 0.387 0.412 0.433 0.454 0.475 0.49 0.516
Dimensions and Maximum Allowable Pressure of Tubes
Subjected to External Pressure
Thickness| Maximum Thickness| Maximum Thickness| Maximum
Outside of Pressure | Outside of Pressure [ Outside of Pressure
Diam., Material, | Allowed, Diam., Material, | Allowed, Diam., Material, | Allowed,
Inches Inches psi Inches Inches psi Inches Inches psi
2 0.095 427 3 0.109 327 4 0.134 303
2y, 0.095 380 3y, 0.120 332 4% 0.134 238
2% 0.109 392 3% 0.120 308 5 0.148 235
A 0.109 356 3%, 0.120 282 6 0.165 199
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SHAFTS
Shaft Calculations
Torsional Strength of Shafting.—n the formulas that follow,

o =angular deflection of shaft in degrees

c =distance from center of gravity to extreme fiber

D =diameter of shaftin inches

G =torsional modulus of elasticity = 11,500,000 pounds per square inch for steel
J=polar moment of inertia of shaft cross-section (see table)

| = length of shaftin inches

N =angular velocity of shaft in revolutions per minute

P =power transmitted in horsepower

S =allowable torsional shearing stress in pounds per square inch
T =torsional or twisting moment in inch-pounds
Z,=polar section modulus (see table page)

The allowable twisting moment for a shaft of any cross-section such as circular, square,
etc., is:

T=5§xZ, @

For a shaft deliverin® horsepower &\l revolutions per minute the twisting momant
being transmitted is:

= 63,%003 @

The twisting momerit as determined by this formula should be less than the value deter-
mined by usingrormula (1)f the maximum allowable streSsis not to be exceeded.

The diameter of a solid circular shaft required to transmit a given tdrigue

D = 3/5'—51: (3a) or D = 3/3—2h(§@ (3b)

The allowable stresses that are generally used in practice are: 4000 pounds per squal
inch for main power-transmitting shafts; 6000 pounds per square inch for lineshafts carry-
ing pulleys; and 8500 pounds per square inch for small, short shafts, countershafts, etc
Using these allowable stresses, the horsepBsremsmitted by a shaft of diameferor
the diameteb of a shaft to transmit a given horsepoRenay be determined from the fol-
lowing formulas:

For main power-transmitting shafts:
p = DN 4 or D = 3/ (4b)
780 (4a) N

_D'N _ .|53.5P
P=== (5a) or D = N (5b)
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For small, short shafts:

3
_ DN _ .|38P
=35 (6a) or D=3 ~N (6b)

Shafts that are subjected to shocks, such as sudden starting and stopping, should be give
a greater factor of safety resulting in the use of lower allowable stresses than those jus
mentioned.

ExampleWhat should be the diameter of a lineshaft to transmit 10 horsepower if the
shaft is to make 150 revolutions per minute? USiaignula (5b)

_ .[53.5x 10 _ .
D = 3 150 - 1.53 or, say, %4 inches

ExampleWhat horsepower would be transmitted by a short shaft, 2 inches in diameter,
carrying two pulleys close to the bearings, if the shaft makes 300 revolutions per minute?
UsingFormula (6a)

3
2 ;8300 = 63 horsepower

Torsional Strength of Shafting, Calculations in Metric Sl Units.—The allowable
twisting moment for a shaft of any cross-section such as circular, square, etc., can be
calculated from:

P =

T=S§xZ, (1)
where T = torsional or twisting moment in newton-millimeters; S, = allowable tor-
sional shearing stress in newtons per square millimeter; ang, = polar section mod-
ulus in millimeters2.

For a shaft delivering power ofP kilowatts at N revolutions per minute, the twisting
momentT being transmitted is:

9.55x 10P 10°p

= or = =
T N 2) T P (2a)
whereT is in newton-millimeters, andw = angular velocity in radians per second.

The diameterD of a solid circular shaft required to transmit a given torqueT is:

BT §
D = g/=— (3a) or _ .[48.7x 10P 3b
Ss D=3 NS, — (3b)
[5.1x 18P
or = =
D=3 @S, (3c)

whereD is in millimeters; T is in newton-millimeters; P is power in kilowatts; N = rev-
olutions per minute; S; = allowable torsional shearing stress in newtons per square
millimeter, and w = angular velocity in radians per second.

If 28 newtons/mn¥ and 59 newtons/mrmare taken as the generally allowed stresses
for main power-transmitting shafts and small short shafts, respectively, then using
these allowable stresses, the powertransmitted by a shaft of diameterD, or the
diameter D of a shaft to transmit a given poweP may be determined from the follow-
ing formulas:

For main power-transmitting shafts:
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3
D°N | dp
P=— (4a) or D = 3/177x 1 4b
1.77x 16 N (4b)

For small, short shafts:

3
o losax 10p

P = (5a) or D = 3/0.83x 10P 5b

0.83x 10 N ()

whereP is in kilowatts, D is in millimeters, andN = revolutions per minute.

ExampleWhat should be the diameter of a power-transmitting shaft to transmit
150 kW at 500 rpm?

1.77x 16)(15() .
=3 == =
D 500 81 millimeters

ExampleWhat power would a short shaft, 50 millimeters in diameter, transmit at
400 rpm?

_ 50°x400
0.83x 10

Polar Moment of Inertia and Section Modulus.—The polar moment of inertial, of a
cross-section with respect to a polar axis, that is, an axis at right angles to the plane of th
cross-section, is defined as the moment of inertia of the cross-section with respect to the
point of intersection of the axis and the plane. The polar moment of inertia may be found by
taking the sum of the moments of inertia about two perpendicular axes lying in the plane of
the cross-section and passing through this point. Thus, for example, the polar moment o
inertia of a circular or a square area with respect to a polar axis through the center of gravity
is equal to two times the moment of inertia with respect to an axis lying in the plane of the
cross-section and passing through the center of gravity.

The polar moment of inertia with respect to a polar axis through the center of gravity is
required for problems involving the torsional strength of shafts since this axis is usually the
axis about which twisting of the shaft takes place.

Thepolar section modulu@lso called section modulus of torsiobr),, forcircular sec-
tions may be found by dividing the polar moment of inedidy the distance from the
center of gravity to the most remote fiber. This method may be used to fiagptexi-
matevalue of the polar section modulus of sections thabheagly round. For other than
circular cross-sections, however, the polar section modidas notqual the polar
moment of inertia divided by the distarwe

The accompanying table gives formulas for the polar section modulus for several differ-
ent cross-sections. The polar section modulus multiplied by the allowable torsional shear-
ing stress gives the allowable twisting moment to which a shaft may be subjected, see
Formula (1)

P = 60 kilowatts

Torsional Deflection of Circular Shafts.—Shafting must often be proportioned not only
to provide the strength required to transmit a given torque, but also to prevent torsional
deflection (twisting) through a greater angle than has been found satisfactory for a given
type of service.

For a solid circular shaft the torsional deflection in degrees is given by:

_ 584TI
o=—
DG

)
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Polar Moment of Inertia and Polar Section Modulus

Section

Polar Moment of Inertia
J

Polar Section Modulus

%

—T’

4
d a 2 _ 0.1667" 0.2083 = 0.074P
A 6
2 bd(K + d?) b d
| —1z 3+ 18
fe——b— (dis the shorter side)
4 3
mD" _ 4 nD™ _ 3
D 37 - 0.098D 6 - 0.196D

(see also footnote, page9)

(see also footnote, page9)

4 4
np -dp
M, 4 @4 n
33(D —d) 160 D O
4 4
= 4_ 4 — —d|:|
0.098D" ~d") = 0.19¢2 =<3
5434 - 1 ogoss
< 8 0.20F3
s = 0.12¢*
2
2y || mot s m®_ s
S ﬁ—g 16 3D

= 0.000" - 0.167"

4
= 0.19633—0.33%

D" _5./34

32 8
= 0.008D" —1.0825"

mD°_5./34

16 4D

4
= 0.19633—2.16%

J3.4 4
485 = 0.036s

3
s’ _ 3
2—0—0.058
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ExampleFind the torsional deflection for a solid steel shaft 4 inches in diameter and 48
inches long, subjected to a twisting moment of 24,000 inch-pound=iByula (6)

_ 584x 24 000x 48
4*x 11,500 000

Formula (6) can be used with metric Sl units, wherer = angular deflection of shaft
in degrees;T = torsional moment in newton-millimeters;| = length of shaftin millime-
ters; D = diameter of shaft in millimeters; andG = torsional modulus of elasticity in
newtons per square millimeter.

ExampleFind the torsional deflection of a solid steel shaft, 100 mm in diameter and
1300 mm long, subjected to a twisting moment of 8 106 newton-millimeters. The
torsional modulus of elasticity is 80,000 newtons/mA1 By Formula (6)

a = 0.23 degree

o = 584x 3x10°x 1300 _
100" x 80,000
The diameter of a shaft that is to have a maximum torsional deflecisagiven by:

_ Tl
D = 4.9% 4/~ @

Formula (7) can be used with metric Sl units, wher® = diameter of shaft in milli-
meters; T = torsional moment in newton-millimeters;| = length of shaft in millime-
ters; G = torsional modulus of elasticity in newtons per square millimeter; andr =
angular deflection of shaft in degrees.

According to some authorities, the allowable twist in steel transmission shafting should
not exceed 0.08 degree per foot length of the shaft. The didinetershaft that will per-
mit a maximum angular deflection of 0.08 degree per foot of length for a given Tooque
for a given horsepowét can be determined from the formulas:

0.285 degree

D = 0.294/T 8 — 46xalP
(8a) or D =46 ‘k/lil (8b)

Using metric Sl units and assuming an allowable twist in steel transmission shafting
of 0.26 degree per meter lengthi-ormulas (8a)and (8b) become:

D = 2.264T or D= 125.7,(42

whereD = diameter of shaft in millimeters; T = torsional moment in newton-millime-
ters; P = power in kilowatts; and N = revolutions per minute.

Another rule that has been generally used in mill practice limits the deflection to 1 degree
in alength equal to 20 times the shaft diameter. For a given torque or horsepower, the diam
eter of a shaft having this maximum deflection is given by:

D = 0137 (9a) or D = 4,()><3A/,El (9b)

ExampleFind the diameter of a steel lineshaft to transmit 10 horsepower at 150 revolu-
tions per minute with a torsional deflection not exceeding 0.08 degree per foot of length.

By Formula (8b)
_ [10 _ :
D =46x4 150 = 2.35 inches
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This diameter is larger than that obtained for the same horsepower and rpm in the exam
ple given forFormula (5b)in which the diameter was calculated for strength consider-
ations only. The usual procedure in the design of shafting which is to have a specified
maximum angular deflection is to compute the diameter first by medrmmiulas (7)

(8a), (8b), (9a), or(9b) and then by means Bbrmulas (3a)3b), (4b), (5b), or(6b), using

the larger of the two diameters thus found.

Linear Deflection of Shafting.—For steel lineshafting, it is considered good practice to
limit the linear deflection to a maximum of 0.010 inch per foot of length. The maximum
distance in feet between bearings, for average conditions, in order to avoid excessive linea
deflection, is determined by the formulas:

L=8.95/D? for shafting subject to no bending action except it's own weight

L= 5.231/D72 for shafting subject to bending action of pulleys, etc.

in whichD = diameter of shaft in inches abhd maximum distance between bearings in
feet. Pulleys should be placed as close to the bearings as possible.

In general, shafting up to three inches in diameter is almost always made from cold-rolled
steel. This shafting is true and straight and needs no turning, but if keyways are cut in the
shaft, it must usually be straightened afterwards, as the cutting of the keyways relieves the
tension on the surface of the shaft produced by the cold-rolling process. Sizes of shafting
from three to five inches in diameter may be either cold-rolled or turned, more frequently
the latter, and all larger sizes of shafting must be turned because cold-rolled shafting is no
available in diameters larger than 5 in.

Diameters of Finished Shafting (former American Standard ASA B17.1)

Diameters, Inches Minus Diameters, Inches Minus Diameters, Inches
- . Toler- is- . Toler- is- . Minus
Trasr?sgms Machinery | ances, Tras?osrTls Machinery | = ances Trasri\:;ms Machinery | rojerances,
Shafting Shafting Inches Shafting Shafting Inches Shafting Shafting Inchesg

A 0.002 1% 0.003 A 0.004
% 0.002 1% 0.003 3% 0.004
% 0.002 1%, 15 0.003 3%, 4 0.004
R 0.002 2 0.003 4, 0.005
% 0.002 2 0.004 W 4, 0.005
R 0.002 % 0.004 %, 0.005
% 0.002 e g 0.004 45 5 0.005

R B 0.002 2 0.004 5%, 0.005
1 0.002 295 0.004 5746 5% 0.005
e 0.003 2% 0.004 5% 0.005
% 0.003 e e 0.004 55 6 0.005

1% 1% 0.003 2% 0.004 6%, 0.006
1, 0.003 2% 0.004 6% 6%, 0.006
1% 0.003 2, 0.004 6%, 0.006
1% 0.003 2%, 2% 0.004 7 7 0.006

46 %6 0.003 3 0.004 7 0.006
1% 0.003 3 0.004 KA KA 0.006
%6 0.003 3, 0.004 A 0.006
1% 0.003 3% 0.004 8 8 0.006

1%, 1 0.003 s 3, 0.004 .
1% 0.003 3% 0.004

aNote—These tolerances anegativeor minus and represent the maximum allowable variation
belowthe exact nominal size. For instance the maximum diameter dftkiadh shaftis 1.938 inch
and its minimum allowable diameter is 1.935 inch. Stock lengths of finished transmission shafting
shall be: 16, 20 and 24 feet.

Design of Transmission Shafting.—Fhe following guidelines for the design of shafting
for transmitting a given amount of power under various conditions of loading are based
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upon formulas given in the former American Standard ASA B17c Code for the Design of
Transmission Shafting. These formulas are based enakenum-shear theoof failure

which assumes that the elastic limit afiectileferrous material in shear is practically one-
half its elastic limit in tension. This theory agrees, very nearly, with the results of tests on
ductile materials and has gained wide acceptance in practice.

The formulas given apply in all shaft designs including shafts for special machinery. The
limitation of these formulas is that they provide only for the strength of shafting and are not
concerned with the torsional or lineal deformations which may, in shafts used in machine
design, be the controlling factor (s€ersional Deflection of Circular ShaftsxdLinear
Deflection of Shaftinépr deflection considerations). In the formulas that follow,

B=31+ (1- K4) (se€Table 3

D = outside diameter of shaftin inches
D, =inside diameter of a hollow shaft in inches
K, =shock and fatigue factor to be applied in every case to the computed bending
moment (se&able )
K, =combined shock and fatigue factor to be applied in every case to the computed
torsional moment (s€kable )
M = maximum bending moment in inch-pounds
N =revolutions per minute
P =maximum power to be transmitted by the shaft in horsepower
p.=maximum allowable shearing stress under combined loading conditions in
pounds per square inch (Sesble 3

S =maximum allowable flexural (bending) stress, in either tension or compres-
sion in pounds per square inch (Seble 3

S =maximum allowable torsional shearing stress in pounds per square inch (see
Table 3

T =maximum torsional moment in inch-pounds
V =maximum transverse shearing load in pounds
For shafts subjected to pure torsional loads only,

51K, T 321, 000K,P
D=B3 5 (1a) or D=B3T (1b)

For stationary shafts subjected to bending only,

10.2K_M
D = B3/——————Sm (2

For shafts subjected to combined torsion and bending,

D=8 3/5;—'1 [k, MYZ + (K, T2 3a)
t

5.1 2 $3,000KF2
D = B?/FM/(KmM) R d (3b)
Formulas (1ajo (3b) may be used for solid shafts or for hollow shafts. For solid shafts
the factoB is equal to 1, whereas for hollow shafts the valugaépends on the value of
Kwhich, in turn, depends on the ratio of the inside diameter of the shaft to the outside diam-
eter O, + D =K). Table 3gives values dB corresponding to various valueskof

or
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For short solid shafts subjected only to heavy transverse shear, the diameter of shaf
required is:

1.7v
D= |/ 4
S (©)

Formulas (1a) (2), (3a)and (4), can be used unchanged with metric S| units-or-
mula (1b) becomes:

JABTKP
SN

55K, P2
D =gyt (KmM)z‘LHQ_tD
P N

O

and Formula (3b) becomes:

Throughout the formulas, D = outside diameter of shaft in millimeters;T = maxi-
mum torsional moment in newton-millimeters; S = maximum allowable torsional
shearing stress in newtons per millimeter squared (s@@ble 2); P = maximum power
to be transmitted in milliwatts; N = revolutions per minute; M = maximum bending
moment in newton-millimeters; S = maximum allowable flexural (bending) stress,
either in tension or compression in newtons per millimeter squared (s&able 2); p, =
maximum allowable shearing stress under combined loading conditions in newtons
per millimeter squared; and V = maximum transverse shearing load in kilograms.
The factorsK,, K;, and B are unchanged, and, = the inside diameter of a hollow
shaft in millimeters.

Table 1. Recommended Values of the Combined Shock and Fatigue Factors for

Various Types of Load
Stationary Shafts Rotating Shafts
Type of Load Km K¢ Kn K
Gradually applied and steady 1.0 1.0 15 1.0
Suddenly applied, minor shocks only 1.5-2.0] 1.5-2. 1.5-20 1.0-145
Suddenly applied, heavy shocks 2.0-3.0 1.5-3.0

Table 2. Recommended Maximum Allowable Working Stresses for Shafts Under
Various Types of Load

Type of Load
Material Simple Bending Pure Torsion Combined Strgss
“Commercial Steel” shafting without keyways S=16,000 S =28000 p, = 8000
“Commercial Steel” shafting with keyways S=12,000 §=6000 p, = 6000
Steel purchased under definite physical specs. (See noté) (See noté) (See noté)

aS= 60 per cent of the elastic limit in tension but not more than 36 per cent of the ultimate tensile
strength.

bS, andp, = 30 per cent of the elastic limit in tension but not more than 18 per cent of the ultimate
tensile strength.

If the values in the Table are converted to metric Sl units, note that 1000 pounds per square
inch = 6.895 newtons per square millimeter.

Table 3. Values of the FactoB Corresponding to Various Values oK for
Hollow Shafts

K=B = 0.95| 0.90| 0.85| 0.80 0.7% 0.7p 0.5 O.LO 055 0}50

vs)
1
w
=
-
—~
T
~
v—h

1.75| 1.43| 128 119 114 110 197 105 103 1{02
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For solid shafts8 =1 sincek = 0. [B = 31+ (1-K*) = 3T+ (1= 0) = 1]

Effect of Keyways on Shaft Strength.—Keyways cut into a shaft reduce its load carry-

ing ability, particularly when impact loads or stress reversals are involved. To ensure an
adequate factor of safety in the design of a shaft with standard keyway (width, one-quarter,
and depth, one-eighth of shaft diameter), the former Code for Transmission Shafting tenta-
tively recommended that shafts with keyways be designed on the basis of a solid circular
shaft using not more than 75 per cent of the working stress recommended for the solid
shaft. See also pa@d42

Formula for Shafts of Brittle Materials.— The preceding formulas are applicable to
ductile materials and are based on the maximum-shear theory of failure which assume:
that the elastic limit of ductilematerial in shear is one-half its elastic limit in tension.

Brittle materials are generally stronger in shear than in tension; therefore, the maximum-
shear theory is not applicable. Thaximum-normal-stress theasf/failure is now gener-
ally accepted for the design of shafts made from brittle materials. A material may be con-
sidered to be brittle if its elongation in a 2-inch gage length is less than 5 per cent. Materials
such as cast iron, hardened tool steel, hard bronze, etc., conform to this rule. The diamete
of a shaft made of a brittle material may be determined from the following formula which
is based on the maximum-normal-stress theory of failure:

D= Bf/%l[(KmM)+ J(K M)+ (K,T)]

where§ is the maximum allowable tensile stress in pounds per square inch and the other
quantities are as previously defined.

The formula can be used unchanged with metric Sl units, whef@ = outside diame-
ter of shaft in millimeters; S = the maximum allowable tensile stress in newtons per
millimeter squared; M = maximum bending moment in newton-millimeters; andr =
maximum torsional moment in newton-millimeters. The factorsK,,, K;, and B are
unchanged.

Critical Speed of Rotating Shafts.—At certain speeds, a rotating shaft will become
dynamically unstable and the resulting vibrations and deflections can result in damage not
only to the shaft but to the machine of which it is a part. The speeds at which such dynamic
instability occurs are called the critical speeds of the shaft. Oriljg&gee given formulas

for the critical speeds of shafts subject to various conditions of loading and support. A shaft
may be safely operated either above or below its critical speed, good practice indicating
that the operating speed be at least 20 per cent above or below the critical.

The formulas commonly used to determine critical speeds are sufficiently accurate for
general purposes. However, the torque applied to a shaft has an important effect on its crit
ical speed. Investigations have shown that the critical speeds of a uniform shaft are
decreased as the applied torque is increased, and that there exist critical torques which wi
reduce the corresponding critical speed of the shaft to zero. A detailed analysis of the
effects of applied torques on critical speeds may be found in a paper. “Critical Speeds of
Uniform Shafts under Axial Torque,” by Golomb and Rosenberg presented at the First
U.S. National Congress of Applied Mechanics in 1951.

Comparison of Hollow and Solid Shafting with Same Outside Diameter.Fhe table

that follows gives the per cent decrease in strength and weight of a hollow shaft relative to
the strength and weight of a solid shaft of the same diameter. The upper figures in each line
give the per cent decrease in strength and the lower figures give the per cent decrease |
weight.
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ExampleA 4-inch shaft, with a 2-inch hole through it, has a weight 25 per cent less than

SHAFTS

a solid 4-inch shaft, but its strength is decreased only 6.25 per cent.

Comparative Torsional Strengths and Weights of Hollow and Solid Shafting with
Same Outside Diameter

56
.75
61
.00
82
.94
65
25
98
93
08
33
96
00
02

Diam. of Diameter of Axial Hole in Hollow Shaft, Inches
Solid and
Hollow
Shaft,
Inches 1 %, % 17 2 2% 3 3% 4%
% 19.76 48.23
44.44 69.44
3 10.67 26.04 53.98]
32.66 51.02 7349 ..
2 6.25 15.26 31.65] 58.64
25.00 39.07 56.25| 76.54 ...
%, 3.91 9.53 19.76 36.6( 62.4
19.75 30.87 44.44 60.4¢ 79.0p
2% 2.56 6.25 12.96 24.01 40.91
16.00 25.00 36.00| 49.0 64.0p ...
%, 1.75 4.28 8.86 16.40 27.9: 68.30
13.22 20.66 29.74 40.4 52.8p 82.63
3 124 | 301 625 1159 19.7¢ 48.28
1111 17.36 25.00| 34.01 44.44 69.44
W 0.87 219 4.54 8.41] 14.3 35.0p 72.61 .
9.46 14.80 21.30 29.0q 37.8Y 59.17 85.22 .
3;/2 0.67 1.63 3.38 6.25) 10.67 26.0¢ 53.98 .
8.16 12.76 18.36 25.0( 32.66 51.42 7349 ...
¥, 0.51 124 2.56 4.75 8.09 1976 4096 7589 ..
7.11 11.11 16.00 21.71 28.45 44.44 64.00 8710 ...
0.40 0.96 1.98 3.68 6.25 15.26 31.5 58.62 ...
4 6.25 9.77 14.06 19.14 25.0 39.07 56.25 76.66 ...
w, 0.31 0.74 1.56 2.89 4.91 11.9p 24.93 46.00 7847 ...
5.54 8.65 12.45 16.95 22.1 34.41 49.85 67.83 88159 ...
& 0.25 0.70 1.24 2.29 3.91 9.5 19.76 36.60 62143 ...
4.94 7.72 11.11 15.12 19.7 30.87 44.44 60.49 79100 ...
&, 0.20 0.50 1.00 1.85 3.19 7.6 15.92 29.48 5029 80|
4.43 6.93 9.97 13.57] 17.7 27.70 39.90 54.p9 70{91 89
5 0.16 0.40 0.81 1.51] 2.56 6.25 12.96 24.01 40.06 65
4.00 6.25 8.10 12.24 16.0 25.00 36.00 49.00 64100 81
5 0.11 0.27 0.55 1.03 1.79 4.2y 8.86 16.40 27.08 44
3.30 5.17 7.43 10.12 13.2 20.66 29.76 40.48 52189 64
0.09 0.19 0.40 0.73 1.24 3.0 6.25 11.8 1976 31
6 2.77 4.34 6.25 8.50| 11.1 17.36 25.00 3402 44{44 54
& 0.06 0.14 0.29 0.59 0.9 2.19 4.54 8.41 14.85 23
2.36 3.70 5.32 7.24 9.47 14.7p 21.30 28.99 37187 47
0.05 0.11 0.22 0.40] 0.6 1.6 3.38 6.25 10.p7 17
7 2.04 3.19 4.59 6.25) 8.1 12.76 18.346 25.00 32166 41
7]/2 0.04 0.08 0.16 0.30] 0.51 1.24 2.56 475 8.p9 12
1.77 2.77 4.00 5.44| 7.11 1111  16.J0 21.y7 2845 34
0.03 0.06 0.13 0.23 0.4 0.9 1. 3.68 6.25 10
8 1.56 2.44 3.51 4.78 6.25 9.7Y 14.$3 19.14 2500 31

64

The upper figures in each line give number of per cent decrease in strength; the lower figures give
per cent decrease in weight.
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SPRINGS
Springs

Introduction.— Many advances have been made in the spring industry in recent years.
For example: developments in materials permit longer fatigue life at higher stresses; sim-
plified design procedures reduce the complexities of design, and improved methods of
manufacture help to speed up some of the complicated fabricating procedures and increas
production. New types of testing instruments and revised tolerances also permit higher
standards of accuracy. Designers should also consider the possibility of using standarc
springs now available from stock. They can be obtained from spring manufacturing com-
panies located in different areas, and small shipments usually can be made quickly.

Designers of springs require information in the following order of precedence to simplify
design procedures.

1) Spring materials and their applications

2) Allowable spring stresses

3) Spring design data with tables of spring characteristics, tables of formulas, and toler-
ances.

Only the more commonly used types of springs are covered in detail here. Special types
and designs rarely used such as torsion bars, volute springs, Belleville washers, constar
force, ring and spiral springs and those made from rectangular wire are only described
briefly.

Notation.—The following symbols are used in spring equations:
AC =Active coils
b =Widest width of rectangular wire, inches
CL =Compressed length, inches
D =Mean coil diameter, inches @D -d
d =Diameter of wire or side of square, inches
E =Modulus of elasticity in tension, pounds per square inch
F = Deflection, forN coils, inches
F° = Deflection, forN coils, rotary, degrees
f=Deflection, for one active coil
FL = Free length, unloaded spring, inches
G =Modulus of elasticity in torsion, pounds per square inch
IT = Initial tension, pounds
K = Curvature stress correction factor
L = Active length subject to deflection, inches
N =Number of active coils, total
P =Load, pounds
p =pitch, inches
R =Distance from load to central axis, inches
Sor§ = Stress, torsional, pounds per square inch
S, = Stress, bending, pounds per square inch
SH =Solid height
S = Stress, torsional, due to initial tension, pounds per square inch
T=Torque =P xR, pound-inches
TC =Total coils
t=Thickness, inches
U =Number of revolutions F °/360°

" This section was compiled by Harold Carlson, P. E., Consulting Engineer, Lakewood, N.J.
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Spring Materials

The spring materials most commonly used include high-carbon spring steels, alloy
spring steels, stainless spring steels, copper-base spring alloys, and nickel-base sprin
alloys.

High-Carbon Spring Steels in Wire Form.—These spring steels are the most com-
monly used of all spring materials because they are the least expensive, are easily workec
and are readily available. However, they are not satisfactory for springs operating at high
or low temperatures or for shock or impact loading. The following wire forms are avail-
able:

Music Wire, ASTM A228 (0.80-0.95 per cent carb®hj)s is the most widely used of
all spring materials for small springs operating at temperatures up to about 250 degrees F
Itis tough, has a high tensile strength, and can withstand high stresses under repeated loa
ing. The material is readily available in round form in diameters ranging from 0.005 to
0.125 inch and in some larger sizes ugtonch. It is not available with high tensile
strengths in square or rectangular sections. Music wire can be plated easily and is obtain
able pretinned or preplated with cadmium, but plating after spring manufacture is usually
preferred for maximum corrosion resistance.

Oil-Tempered MB Grade, ASTM A229 (0.60-0.70 per cent carbbbig:general-pur-

pose spring steel is commonly used for many types of coil springs where the cost of music
wire is prohibitive and in sizes larger than are available in music wire. Itis readily available
in diameters ranging from 0.125 to 0.500 inch, but both smaller and larger sizes may be
obtained. The material should not be used under shock and impact loading conditions, a
temperatures above 350 degrees F., or at temperatures in the sub-zero range. Square &
rectangular sections of wire are obtainable in fractional sizes. Annealed stock also can be
obtained for hardening and tempering after coiling. This material has a heat-treating scale
that must be removed before plating.

Oil-Tempered HB Grade, SAE 1080 (0.75-0.85 per cent carbbbig:material is simi-
lar to the MB Grade except that it has a higher carbon content and a higher tensile strengtt
It is obtainable in the same sizes and is used for more accurate requirements than the Ml
Grade, but is not so readily available. In lieu of using this material it may be better to use an
alloy spring steel, particularly if a long fatigue life or high endurance properties are
needed. Round and square sections are obtainable in the oil-tempered or annealed conc
tions.

Hard-Drawn MB Grade, ASTM A227 (0.60—-0.70 per cent carbbim)s grade is used
for general-purpose springs where cost is the most important factor. Although increased
use in recent years has resulted in improved quality, it is best not to use it where long life
and accuracy of loads and deflections are important. It is available in diameters ranging
from 0.031 to 0.500 inch and in some smaller and larger sizes also. The material is avail-
able in square sections but at reduced tensile strengths. It is readily plated. Applications
should be limited to those in the temperature range of O to 250 degrees F.

High-Carbon Spring Steels in Flat Strip Form.—Two types of thin, flat, high-carbon
spring steel strip are most widely used although several other types are obtainable for spe
cific applications in watches, clocks, and certain instruments. These two compositions are
used for over 95 per cent of all such applications. Thin sections of these materials undel
0.015 inch having a carbon content of over 0.85 per cent and a hardness of over 47 on th
Rockwell C scale are susceptible to hydrogen-embrittlement even though special plating
and heating operations are employed. The two types are described as follows:
Cold-Rolled Spring Steel, Blue-Tempered or Annealed, SAE 1074, also 1064, and 107C(
(0.60 to 0.80 per cent carborhis very popular spring steel is available in thicknesses
ranging from 0.005 to 0.062 inch and in some thinner and thicker sections. The material is
available in the annealed condition for forming in 4-slide machines and in presses, and car
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readily be hardened and tempered after forming. It is also available in the heat-treated o
blue-tempered condition. The steel is obtainable in several finishes such as straw color
blue color, black, or plain. Hardnesses ranging from 42 to 46 Rockwell C are recom-
mended for spring applications. Uses include spring clips, flat springs, clock springs, and
motor, power, and spiral springs.

Cold-Rolled Spring Steel, Blue-Tempered Clock Steel, SAE 1095 (0.90 to 1.05 per cen
carbon):This popular type should be used principally in the blue-tempered condition.
Although obtainable in the annealed condition, it does not always harden properly during
heat-treatment as it is a “shallow” hardening type. Itis used principally in clocks and motor
springs. End sections of springs made from this steel are annealed for bending or piercing
operations. Hardnesses usually range from 47 to 51 Rockwell C.

Other materials available in strip form and used for flat springs are brass, phosphor-
bronze, beryllium-copper, stainless steels, and nickel alloys.

Alloy Spring Steels.—These spring steels are used for conditions of high stress, and
shock or impact loadings. They can withstand both higher and lower temperatures than the
high-carbon steels and are obtainable in either the annealed or pretempered conditions.

Chromium Vanadium, ASTM A23This very popular spring steel is used under condi-
tions involving higher stresses than those for which the high-carbon spring steels are rec:
ommended and is also used where good fatigue strength and endurance are needed.
behaves well under shock and impact loading. The material is available in diameters rang:
ing from 0.031 to 0.500 inch and in some larger sizes also. In square sections it is available
in fractional sizes. Both the annealed and pretempered types are available in round, squar
and rectangular sections. It is used extensively in aircraft-engine valve springs and for
springs operating at temperatures up to 425 degrees F.

Silicon Manganesethis alloy steel is quite popular in Great Britain. It is less expensive
than chromium-vanadium steel and is available in round, square, and rectangular section:
in both annealed and pretempered conditions in sizes ranging from 0.031 to 0.500 inch. I
was formerly used for knee-action springs in automobiles. Itis used in flat leaf springs for
trucks and as a substitute for more expensive spring steels.

Chromium Silicon, ASTM A40This alloy is used for highly stressed springs that
require long life and are subjected to shock loading. It can be heat-treated to higher hard
nesses than other spring steels so that high tensile strengths are obtainable. The most pc
ular sizes range from 0.031 to 0.500 inch in diameter. Very rarely are square, flat, or
rectangular sections used. Hardnesses ranging from 50 to 53 Rockwell C are quite com
mon and the alloy may be used at temperatures up to 475 degrees F. This material is usual
ordered specially for each job.

Stainless Spring Steels.-Fhe use of stainless spring steels has increased and several
compositions are available all of which may be used for temperatures up to 550 degrees F
They are all corrosion resistant. Only the stainless 18-8 compositions should be used a
sub-zero temperatures.

Stainless Type 302, ASTM A313 (18 per cent chromium, 8 per cent Ai¢kel)stain-

less spring steel is very popular because it has the highest tensile strength and quite un
form properties. It is cold-drawn to obtain its mechanical properties and cannot be

hardened by heat treatment. This material is nonmagnetic only when fully annealed anc
becomes slightly magnetic due to the cold-working performed to produce spring proper-

ties. It is suitable for use at temperatures up to 550 degrees F. and for sub-zero temper
tures. It is very corrosion resistant. The material best exhibits its desirable mechanical
properties in diameters ranging from 0.005 to 0.1875 inch although some larger diameters
are available. It is also available as hard-rolled flat strip. Square and rectangular sections
are available but are infrequently used.
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Stainless Type 304, ASTM A313 (18 per cent chromium, 8 per cent Aitksl)mate-
rial is quite similar to Type 302, but has better bending properties and about 5 per cent
lower tensile strength. Itis a little easier to draw, due to the slightly lower carbon content.

Stainless Type 316, ASTM A313 (18 per cent chromium, 12 per cent nickel, 2 per cen
molybdenum)This material is quite similar to Type 302 but is slightly more corrosion
resistant because of its higher nickel content. Its tensile strength is 10 to 15 per cent lowe
than Type 302. Itis used for aircraft springs.

Stainless Type 17-7 PH ASTM A313 (17 per cent chromium, 7 per cent Aitksl):
alloy, which also contains small amounts of aluminum and titanium, is formed in a moder-
ately hard state and then precipitation hardened at relatively low temperatures for severa
hours to produce tensile strengths nearly comparable to music wire. This material is not
readily available in all sizes, and has limited applications due to its high manufacturing
cost.

Stainless Type 414, SAE 51414 (12 per cent chromium, 2 per cent flibiegtioy has
tensile strengths about 15 per cent lower than Type 302 and can be hardened by heat-tree
ment. For best corrosion resistance it should be highly polished or kept clean. It can be
obtained hard drawn in diameters up to 0.1875 inch and is commonly used in flat cold-
rolled strip for stampings. The material is not satisfactory for use at low temperatures.

Stainless Type 420, SAE 51420 (13 per cent chromitmg:is the best stainless steel
for use in large diameters above 0.1875 inch and is frequently used in smaller sizes. It is
formed in the annealed condition and then hardened and tempered. It does not exhibit it:
stainless properties until after it is hardened. Clean bright surfaces provide the best corro.
sion resistance, therefore the heat-treating scale must be removed. Bright hardening mett
ods are preferred.

Stainless Type 431, SAE 51431 (16 per cent chromium, 2 per cent fiitksl)spring
alloy acquires high tensile properties (nearly the same as music wire) by a combination of
heat-treatment to harden the wire plus cold-drawing after heat-treatment. Its corrosion
resistance is not equal to Type 302.

Copper-Base Spring Alloys.—€opper-base alloys are important spring materials
because of their good electrical properties combined with their good resistance to corro-
sion. Although these materials are more expensive than the high-carbon and the alloy
steels, they nevertheless are frequently used in electrical components and in sub-zero ten
peratures.

Spring Brass, ASTM B 134 (70 per cent copper, 30 per centZims)material is the
least expensive and has the highest electrical conductivity of the copper-base alloys. It ha
a low tensile strength and poor spring qualities, but is extensively used in flat stampings
and where sharp bends are needed. It cannot be hardened by heat-treatment and should |
be used at temperatures above 150 degrees F., but is especially good at sub-zero tempe
tures. Available in round sections and flat strips, this hard-drawn material is usually used
in the “spring hard” temper.

Phosphor Bronze, ASTM B 159 (95 per cent copper, 5 per cerhirg:alloy is the
most popular of this group because it combines the best qualities of tensile strength, hard
ness, electrical conductivity, and corrosion resistance with the least cost. It is more expen:
sive than brass, but can withstand stresses 50 per cent higher.The material cannot b
hardened by heat-treatment. It can be used at temperatures up to 212 degrees F. and at s
zero temperatures. Itis available in round sections and flat strip, usually in the “extra-hard”
or “spring hard” tempers. Itis frequently used for contact fingers in switches because of its
low arcing properties. An 8 per cent tin composition is used for flat springs and a superfine
grain composition called “Duraflex,” has good endurance properties.

Beryllium Copper, ASTM B 197 (98 per cent copper, 2 per cent berylliumg: alloy
can be formed in the annealed condition and then precipitation hardened after forming at
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temperatures around 600 degrees F, for 2 to 3 hours. This treatment produces a high har
ness combined with a high tensile strength. After hardening, the material becomes quite
brittle and can withstand very little or no forming. It is the most expensive alloy in the
group and heat-treating is expensive due to the need for holding the parts in fixtures to pre:
vent distortion. The principal use of this alloy is for carrying electric current in switches
and in electrical components. Flat strip is frequently used for contact fingers.

Nickel-Base Spring Alloys.—Nickel-base alloys are corrosion resistant, withstand both
elevated and sub-zero temperatures, and their non-magnetic characteristic makes ther
useful for such applications as gyroscopes, chronoscopes, and indicating instruments
These materials have a high electrical resistance and therefore should not be used for cot
ductors of electrical current.

Monel (67 per cent nickel, 30 per cent coppdifiis material is the least expensive of
the nickel-base alloys. It also has the lowest tensile strength but is useful due to its resis
tance to the corrosive effects of sea water and because it is nearly non-magnetic. The allo
can be subjected to stresses slightly higher than phosphor bronze and nearly as high ¢
beryllium copper. Its high tensile strength and hardness are obtained as a result of cold
drawing and cold-rolling only, since it can not be hardened by heat-treatment. It can be
used at temperatures ranging frerf00 to+425 degrees F. at normal operating stresses
and is available in round wires up¥ginch in diameter with quite high tensile strengths.
Larger diameters and flat strip are available with lower tensile strengths.

“K” Monel * (66 per cent nickel, 29 per cent copper, 3 per cent aluminlimy mate-

rial is quite similar to Monel except that the addition of the aluminum makes it a precipita-
tion-hardening alloy. It may be formed in the soft or fairly hard condition and then
hardened by a long-time age-hardening heat-treatment to obtain a tensile strength an
hardness above Monel and nearly as high as stainless steel. It is used in sizes larger th:
those usually used with Monel, is non-magnetic and can be used in temperatures rangin
from— 100 to+ 450 degrees F. at normal working stresses under 45,000 pounds per square
inch.

Inconel (78 per cent nickel, 14 per cent chromium, 7 per cent ifbimjs is one of the
most popular of the non-magnetic nickel-base alloys because of its corrosion resistance
and because it can be used at temperatures up to 700 degrees F. It is more expensive th
stainless steel but less expensive than beryllium copper. Its hardness and tensile strength
higher than that of “K” Monel and is obtained as a result of cold-drawing and cold-rolling
only. It cannot be hardened by heat treatment. Wire diametergjiptb have the best
tensile properties. Itis often used in steam valves, regulating valves, and for springs in boil-
ers, compressors, turbines, and jet engines.

Inconel “X”* (70 per cent nickel, 16 per cent chromium, 7 per cent ifbinls material
is quite similar to Inconel but the small amounts of titanium, columbium and aluminum in
its composition make it a precipitation-hardening alloy. It can be formed in the soft or par-
tially hard condition and then hardened by holding it at 1200 degrees F. for 4 hours. It is
non-magnetic and is used in larger sections than Inconel. This alloy is used at temperature
up to 850 degrees F. and at stresses up to 55,000 pounds per square inch.

Duranickel (“Z” Nickel) (98 per cent nickel)This alloy is non-magnetic, corrosion
resistant, has a high tensile strength and is hardenable by precipitation hardening at 90
degrees F. for 6 hours. It may be used at the same stresses as Inconel but should not be us
at temperatures above 500 degrees F.

Nickel-Base Spring Alloys with Constant Moduli of Elasticity.—Some special nickel

alloys have a constant modulus of elasticity over a wide temperature range. These materi
als are especially useful where springs undergo temperature changes and must exhibit un
form spring characteristics. These materials have a low or zero thermo-elastic coefficient

*Trade name of the International Nickel Company.
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and therefore do not undergo variations in spring stiffness because of modulus changes du
to temperature differentials. They also have low hysteresis and creep values which make:
them preferred for use in food-weighing scales, precision instruments, gyroscopes, mea:
suring devices, recording instruments and computing scales where the temperature range
from - 50 to+ 150 degrees F. These materials are expensive, none being regularly stockec
in awide variety of sizes. They should not be specified without prior discussion with spring
manufacturers because some suppliers may not fabricate springs from these alloys due
the special manufacturing processes required. All of these alloys are used in small wire
diameters and in thin strip only and are covered by U.S. patents. They are more specifically
described as follows:

Elinvar* (nickel, iron, chromium)This alloy, the first constant-modulus alloy used for
hairsprings in watches, is an austenitic alloy hardened only by cold-drawing and cold-roll-
ing. Additions of titanium, tungsten, molybdenum and other alloying elements have
brought about improved characteristics and precipitation-hardening abilities. These
improved alloys are known by the following trade names: Elinvar Extra, Durinval, Modul-
var and Nivarox.

Ni-Span C (nickel, iron, chromium, titanium)This very popular constant-modulus
alloy is usually formed in the 50 per cent cold-worked condition and precipitation-hard-
ened at 900 degrees F. for 8 hours, although heating up to 1250 degrees F. for 3 hours prt
duces hardnesses of 40 to 44 Rockwell C, permitting safe torsional stresses of 60,000 t
80,000 pounds per square inch. This material is ferromagnetic up to 400 degrees F; abov
that temperature it becomes non-magnetic.

Iso-Elastid (nickel, iron, chromium, molybdenuni)his popular alloy is relatively easy
to fabricate and is used at safe torsional stresses of 40,000 to 60,000 pounds per square in
and hardnesses of 30 to 36 Rockwell C. It is used principally in dynamometers, instru-
ments, and food-weighing scales.

Elgiloy* (nickel, iron, chromium, cobalt}his alloy, also known by the trade names 8J
Alloy, Durapower, and Cobenium, is a non-magnetic alloy suitable for sub-zero tempera-
tures and temperatures up to about 1000 degrees F., provided that torsional stresses a
kept under 75,000 pounds per square inch. Itis precipitation-hardened at 900 degrees F. fc
8 hours to produce hardnesses of 48 to 50 Rockwell C. The alloy is used in watch and
instrument springs.

Dynavai” (nickel, iron, chromium, cobalt}his alloy is a non-magnetic, corrosion-
resistant material suitable for sub-zero temperatures and temperatures up to about 75
degrees F., provided that torsional stresses are kept below 75,000 pounds per square inc
It is precipitation-hardened to produce hardnesses of 48 to 50 Rockwell C and is used ir
watch and instrument springs.

Spring Stresses

Allowable Working Stresses for Springs.—Fhe safe working stress for any particular
spring depends to a large extent on the following items:

1) Type of spring — whether compression, extension, torsion, etc.;

2) Size of spring — small or large, long or short;

3) Spring material;

4) Size of spring material;

5) Type of service — light, average, or severe;

6) Stress range — low, average, or high;
* Trade name of Soc. Anon. de Commentry Fourchambault et Decazeville, Paris, France.
*Trade name of John Chatillon & Sons.
*Trade name of Elgin National Watch Company.
™ Trade name of Hamilton Watch Company.
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7) Loading — static, dynamic, or shock;
8) Operating temperature;
9) Design of spring — spring indeX, sharp bends, hooks.

Consideration should also be given to other factors that affect spring life: corrosion,
buckling, friction, and hydrogen embrittlement decrease spring life; manufacturing opera-
tions such as high-heat stress-equalizing, presetting, and shot-peening increase spring life

Item 5, the type of service to which a spring is subjected, is a major factor in determining
a safe working stress once consideration has been given to type of spring, kind and size c
material, temperature, type of loading, and so on. The types of service are:

Light ServiceThis includes springs subjected to static loads or small deflections and sel-
dom-used springs such as those in bomb fuses, projectiles, and safety devices. This servic
is for 1,000 to 10,000 deflections.

Average Servicefhis includes springs in general use in machine tools, mechanical
products, and electrical components. Normal frequency of deflections not exceeding
18,000 per hour permit such springs to withstand 100,000 to 1,000,000 deflections.

Severe Servic&his includes springs subjected to rapid deflections over long periods of
time and to shock loading such as in pneumatic hammers, hydraulic controls and valves
This service is for 1,000,000 deflections, and above. Lowering the values 10 per cent per-
mits 10,000,000 deflections.

Figs. 1through 6 show curves that relate the three types of service conditions to allow-

able working stresses and wire sizes for compression and extension springs, and safe va
ues are providedrigs. 7throughl0provide similar information for helical torsion springs.
In each chart, the values obtained from the curves may be increased by 20 per cent (but nc
beyond the top curves on the charts if permanent set is to be avoided) for springs that ar
baked, and shot-peened, and compression springs that are pressed. Springs stress
slightly above the Light Service curves will take a permanent set.

A curvature correction factor is included in all curves, and is used in spring design calcu-
lations (see examples beginning p8®€). The curves may be used for materials other
than those designatedHigs. 1throughl0, by applying multiplication factors as given in
Table 1

\ Hard Drawn Steel Wire QQ-W-428, Type II;
15 ASTM A227, Class Il
5
JR-ET \ \
S8 . .
23 Light Service
3< 13
86
TE 12 .
s
ﬁ% \ /Average Service
Nz 11
4 N\ e fSevere Service
22 10 N ™~ I~
8 N ~ ~
Fs ™N T~ ———
g 90 ™~ | —
™~ | ——
80| vy
7 -
COO0O0O T rd o ANANNNNMNMMOHOMNITIT T ITW0N

Wire Diameter (inch)
Fig. 1. Allowable Working Stresses for Compression Springs — Hard Drawn Ste@| Wire



292 SPRINGS

NN
[EN]
oo

MUSIC WIRE QQ-Q-470, ASTM A228

)
® © 9
S oo
L~

Light Service
Vo 9
\\( Average Service

-
~
=}

.
=
=3

T

N Severe Service

i

[

S
!

e
@ B
S S
/1
y

H
8
/

™~

-
=
o

—

—

~7] —

=
o
=}

Torsional Stress (Corrected)
Pounds per Square Inch (thousands)
&

o

]
|

3
o

[ER=N=N=N=] O 0O OO OO
AN M H ON~0DO N
Secdccggeadd

Wire Diameter (inch)

S o o o
® 3 oo
Anlia e s}

.170]

S o o
RN
- N

.210]

S ooo
INE< ]
NN NN

Fig. 2. Allowable Working Stresses for Compression Springs — MusicWire

160
\ Oil-tempered Steel Wire QQ-W-428, Type |;
150 ASTM A229, Class Il
w
°
=5 10 \
RN’ . N
23 Light Service
o
25 130 N
sc N, Average Service
oo
‘0= 120 NN
g g A N Severe
=@
0 3110 ™N ‘Z\ Service
=0 < ~ |
C = —
28 100
il .| —]
59 ~ =
e ) B L
2 N =
™~
o T
7 -

T SO =3 (=] (o=
N T OO NITOXRONITIONONTOORONT ©® S
[SIRSIR=IS ISR B IR IR IR IR NIRNIR N mmMmHmIIIIID

Wire Diameter (int':h)v
Fig. 3. Allowable Working Stresses for Compression Springs — Oil-Tempered

Chrome-silicon Alloy Steel Wire QQ-W-412,
™~ comp 2, Type II; ASTM A401

a Light Service )
N Z| Average Service

16 N gy Severe Servicg
~ T~

—

Torsional Stress (corrected)
Pounds per Square Inch (thousands)
/
|

——
——
11
S§SEIg8S8TICergNTeeeNIggegIeeg
S S0 S H I HadNNANNmOm®mMIIIIID

) Wiré Diarﬁefer (inc.h)A
Fig. 4. Allowable Working Stresses for Compression Springs — Chrome-Silicon Alloy Ste&l Wire



SPRINGS 293

160
Corrosion-resisting Steel Wire QQ-W-423,
150 ASTM A313
(%)
2
= 8 140 A .
g 3 Light service
2 £ 130 Average service
85 N
o = 120
S Severe service
@ 3 110
= N
[oite
S @
S & 100
gy ™~ A
FE 9 ™ ™~ ™~
3 N ™ I
a N ~
80 g —
T~~~
700000(_‘)ODDDOC)C’OODOOC}OODDOC)C}O
NS OVONTOOVONTOOVONTOVONT ©0O
OCO00O0AdAdrAAANNANNNOMMMMMITITT TN

Wire Diameter (inch)
Fig. 5. Allowable Working Stresses for Compression Springs — Corrosion-Resisting Stéel Wire

£ 100 v :
=8 180 Chrome-vanadium Alloy Steel Wire,
23 ASTM A231
RS 170
S5 160 Light service
g 150 .
- = N A Average service X
S N < Severe service
=8 130
28 120 =~ =
< T~ T ——
58 110 = =
29 100 S T
=] ™~
Fe 9 = =
=1 T T——
& 80000OOOOOOOOOOOOOOOOOOOOOOO
NTFTODONTONONTOVONTORDONT ©XO
0000 AddddaddANNNNNTONONNMIIIIIN
Wire Diameter (inch)

Fig. 6. Allowable Working Stresses for Compression Springs — Chrome-Vanadium Alloy Stefel Wire

270 —
- 260 Music Wire,
E 250 ASTM A228
o 240
< 230 N
5-)-,\ 220NN Light service
5B 210 Average service
=4 .
o 200 Severe service
n D
- 3 190
S 2 180 [~
3= N N ~+4
£ 170 N A .
g 160 < <]
o 150 \ ]
@ 140 T~ =
130 T
HTANMTLONOVNDOANNITLOMNONIO ANM T O

Wire Diameter (|nch)
Fig. 7. Recommended Design Stresses in Bending for Helical Torsion Springs — Round Music Wire



294

aAlthough Figs. 1through 6 are for compression springs, they may also be used for extension
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springs; for extension springeducethe values obtained from the curves by 10 to 15 per cent.
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Table 1. Correction Factors for Other Materials

Compression and Tension Springs
Material Factor Material Factor
Silicon-manganese Multiply the values in the| Stainless Steel, 316 Multiply the values in th
chromium-vanadium curve corrosion-resisting steel
(Fig. 6 by 0.90 curves Fig. 5 by 0.90
Valve-spring quality wire | Use the values in the chi
mium-vanadium curves
(Fig. §
Stainless Steel, 304 and | Multiply the values in the Stainless Steel, 431 and| Multiply the values in the
420 corrosion-resisting steel 17-7PH music wire curvesHig. 2
curves Fig. 5 by 0.95 by 0.90
Helical Torsion Springs
Material Factot Material Factot
Hard Drawn MB 0.70 Stainless Steel, 431
Stainless Steel, 316 Up to%,inch diameter 0.80
Up to¥%,inch diameter 0.75 Over¥,to¥ginch 0.85
Over¥,to¥ginch 0.70 OverYgto %inch 0.95
Over¥gto¥inch 0.65 Over¥inch 1.00
Over%,inch 0.50 Chromium-Vanadium
Stainless Steel, 17-7 PH Up to¥ginch diameter 1.05
Up to%inch diameter 1.00 Over¥ginch 110
Over¥to¥ginch 1.07 Phosphor Bronze
Over¥ginch 112 Up to%inch diameter 0.45
Stainless Steel, 420 Over¥inch 0.55
Up to¥%,inch diameter 0.70 Beryllium Coppe?
Over¥,to ¥ginch 0.75 Up to¥%,inch diameter 0.55
Over¥gto %inch 0.80 Over¥,to ¥ginch 0.60
Over¥to%ginch 0.90 Over¥sto %inch 0.70
Over¥ginch 1.00 Over¥inch 0.80

aMultiply the values in the curves for oil-tempered MB grade ASTM A229 Type 1 SigeB by
these factors to obtain required values.
bHard drawn and heat treated after coiling.

For use with design stress curves showFigs. 2 5, 6, and 8.

Endurance Limit for Spring Materials.— When a spring is deflected continually it will
become “tired” and fail at a stress far below its elastic limit. This type of failure is called
fatigue failureand usually occurs without warnirgndurance limits the highest stress, or
range of stress, in pounds per square inch that can be repeated indefinitely without failure
of the spring. Usually ten million cycles of deflection is called “infinite life” and is satisfac-
tory for determining this limit.

For severely worked springs of long life, such as those used in automobile or aircraft
engines and in similar applications, it is best to determine the allowable working stresses
by referring to the endurance limit curves seelign 11 These curves are based princi-
pally upon the range or difference between the stress caused by the first or initial load anc
the stress caused by the final load. Experience with springs designed to stresses within th
limits of these curves indicates that they should have infinite or unlimited fatigue life. All
values include Wahl curvature correction factor. The stress ranges shown may be
increased 20 to 30 per cent for springs that have been properly heated, pressed to remo
set, and then shot peened, provided that the increased values are lower than the torsion
elastic limit by at least 10 per cent.
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Fig. 11. Endurance Limit Curves for Compression Springs

Notes:For commercial spring materials with wire diameters ufj itach except as noted. Stress
ranges may be increased by approximately 30 per cent for properly heated, preset, shot-peened
springs.

Materials preceeded by * are not ordinarily recommended for long continued service under severe
operating conditions.

Working Stresses at Elevated Temperatures.-Since modulus of elasticity decreases
with increase in temperature, springs used at high temperatures exert less load and hax
larger deflections under load than at room temperature. The torsional modulus of elasticity
for steel may be 11,200,000 pounds per square inch at room temperature, but it will drop tc
10,600,000 pounds per square inch at®#0@nd will be only 10,000,000 pounds per
square inch at 606. Also, the elastic limit is reduced, thereby lowering the permissible
working stress.

Design stresses should be as low as possible for all springs used at elevated temperature
In addition, corrosive conditions that usually exist at high temperatures, especially with
steam, may require the use of corrosion-resistant mafeaiale 2shows the permissible
elevated temperatures at which various spring materials may be operated, together with th
maximum recommended working stresses at these temperatures. The loss in load at th
temperatures shown is less than 5 per cent in 48 hours; however, if the temperatures liste
are increased by 20 to 40 degrees, the loss of load may be nearer 10 per cent. Maximur
stresses shown in the table are for compression and extension springs and may be increas
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by 75 per cent for torsion and flat springs. In using the d@iakife 2it should be noted that
the values given are for materials in the heat-treated or spring temper condition.

Table 2. Recommended Maximum Working Temperatures and Corresponding
Maximum Working Stresses for Springs

Maximum Working Tem- | Maximum Working Stress|
Spring Material perature, Degrees, F. Pounds per Square Incl

Brass Spring Wire 150 30,000
Phosphor Bronze 225 35,000

Music Wire 250 75,000
Beryllium-Copper 300 40,000

Hard Drawn Steel Wire 325 50,000
Carbon Spring Steels 375 55,000

Alloy Spring Steels 400 65,000

Monel 425 40,000

K-Monel 450 45,000
Permanickeél 500 50,000
Stainless Steel 18-8 550 55,000
Stainless Chromium 431 600 50,000
Inconel 700 50,000

High Speed Steel 775 70,000
Inconel X 850 55,000
Chromium-Molybdenum-Vanadium 900 55,000
Cobenium, Elgiloy 1000 75,000

aFormerly called Z-Nickel, Type B.
Loss of load at temperatures shown is less than 5 per cent in 48 hours.

Spring Design Data

Spring Characteristics.—This section provides tables of spring characteristics, tables of
principal formulas, and other information of a practical nature for designing the more com-
monly used types of springs.

Standard wire gages for springsiformation on wire gages is given in the section
beginning on pag2499 and gages in decimals of an inch are given in the table on
page2500Q It should be noted that the range in this table extends from Nuritdargugh
Number 80. However, in spring design, the range most commonly used extends only from
Gage Number4 through Number 40. When selecting wire use Steel Wire Gage or Wash-
burn and Moen gage for all carbon steels and alloy steels except music wire; use Brown &
Sharpe gage for brass and phosphor bronze wire; use Birmingham gage for flat spring
steels, and cold rolled strip; and use piano or music wire gage for music wire.

Spring indexThe spring index is the ratio of the mean coil diameter of a spring to the
wire diameterD/d). This ratio is one of the most important considerations in spring design
because the deflection, stress, number of coils, and selection of either annealed or tem
pered material depend to a considerable extent on this ratio. The best proportioned spring
have an index of 7 through 9. Indexes of 4 through 7, and 9 through 16 are often used
Springs with values larger than 16 require tolerances wider than standard for manufactur-
ing; those with values less than 5 are difficult to coil on automatic coiling machines.

Direction of helix:Unless functional requirements call for a definite hand, the helix of
compression and extension springs should be specified as optional. When springs art
designed to operate, one inside the other, the helices should be opposite hand to prevel
intermeshing. For the same reason, a spring that is to operate freely over a threaded men
ber should have a helix of opposite hand to that of the thread. When a spring is to engag
with a screw or bolt, it should, of course, have the same helix as that of the thread.

Helical Compression Spring Design.-After selecting a suitable material and a safe
stress value for a given spring, designers should next determine the type of end coil forma:
tion best suited for the particular application. Springs with unground ends are less expen-
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sive but they do not stand perfectly upright; if this requirement has to be met, closed ground
ends are used. Helical compression springs with different types of ends are skavn in
12

OPEN ENDS NOT GROUND, CLOSED ENDS NOT GROUND,
RIGHT HAND HELIX RIGHT HAND HELIX

CLOSED ENDS GROUND, OPEN ENDS GROUND,
LEFT HAND HELIX LEFT HAND HELIX
Fig. 12. Types of Helical Compression Spring Ends
Spring design formulagiable 3gives formulas for compression spring dimensional
characteristics, arifiable 4gives design formulas for compression and extension springs.

Curvature correctionln addition to the stress obtained from the formulas for load or
deflection, there is a direct shearing stress and an increased stress on the inside of the se
tion due to curvature. Therefore, the stress obtained by the usual formulas should be multi
plied by a factoK taken from the curve iRig. 13 The corrected stress thus obtained is
used only for comparison with the allowable working stress (fatigue strength) curves to
determine if it is a safe stress and should not be used in formulas for deflection. The curva:
ture correction factdK is for compression and extension springs made from round wire.
For square wire reduce tHevalue by approximately 4 per cent.

Design procedureThe limiting dimensions of a spring are often determined by the
available space in the product or assembly in which it is to be used. The loads and deflec
tions on a spring may also be known or can be estimated, but the wire size and number o
coils are usually unknown. Design can be carried out with the aid of the tabular data that
appears later in this section (Sexble, which is a simple method, or by calculation alone
using the formulas imables 3and4.
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Table 3. Formulas for Compression Springs

Type of End
Open Open or Plain Squared or Closed
or Plain (with ends Closed and
(not ground) ground) (not ground) Ground
Feature Formula
Pitch FL-d FL FL-3d FL-2d
P N TC N N
So“(ds'l'_'oeight (Tc+1d TCxd (TC+nyd TCxd
Number of N=TC N=TC-1 N=TC-2 N=TC-2
Active Coils _FL-d FL_, _FL-3d _FL-2d
(N) p p p p
Total Coils FL-d FL FL-3d FL—2d
=_c = =222 =22
(T9) p p p p
Freelsnah | (px10+d pxTC (PxN)+3d | (pxN)+2d

The symbol notation is given on pa2gs

Table 4. Formulas for Compression and Extension Springs

Formula&
Feature Springs made from round wire  Springs made from square|wire
Load,P p = 0.395F _ Gd'F p - 04168¢ _ Gd'F
Pounds D 8ND3 D 5.58ND3
Strepsghlggs;)oer:as = GdF _ _PD g-_GdF _,_D
2 3 2 3
square inch TIND 0.393 2.3ND 0.416d
Deflection,F F- 8PND® _ mSND? F= 5.58PND3 _ 2.32SND?
Inch Gd4 Gd Gd4 Gd
Number of N = Gd'F _ GdF _ _Gd*F _ _GdF
Active Coils,N 8PD3  mSD? 5.58PD3  2.32SD?
Wire Diameterd g = TSND? _ [2.55°D 4= 238ND _ [ PD
Inch GF S GF 0.4165
Stress due to _S _S
Initial Tension,S Se=pxIT Se = pxIT

aTwo formulas are given for each feature, and designers can use the one found to be appropriate for
a given design. The end result from either of any two formulas is the same.

The symbol notation is given on pa2g5
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Fig. 13. Compression and Extension Spring-Stress Correction for Cufvature

ExampleA compression spring with closed and ground ends is to be made from ASTM
A229 high carbon steel wire, as showrrig. 14 Determine the wire size and number of
coils.

I 16 36 Pounds (P)

|
1o 1"
14 (D) o 15 (P

1"
| 25 (FL)

Fig. 14. Compression Spring Design Example
Method 1, using tabldReferring toTable, starting on pag802, locate the spring out-
side diameter'fginches, fronFig. 14 in the left-hand column. Note from the drawing
that the spring load is 36 pounds. Move to the right in the table to the figure nearest this
value, which is 41.7 pounds. This is somewhat above the required value but safe. Immedi-
ately above the load value, the deflecfiagiven, which in this instance is 0.1594 inch.

* For springs made from round wire. For springs made from square wire, redéciather values by
approximately 4 per cent.
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This is the deflection of one coil under a load of 41.7 pounds with an uncorrected torsional
stressS of 100,000 pounds per square inch (for ASTM A229 oil-tempered MB steel, see
table on pag820). Moving vertically in the table from the load entry, the wire diameter is
found to be 0.0915 inch.

The remaining spring design calculations are completed as follows:

Step 1The stress with a load of 36 pounds is obtained by proportion, as follows: The 36
pound load is 86.3 per cent of the 41.7 pound load; therefore, theZate38 pounds =
0.863x 100,000 = 86,300 pounds per square inch.

Step 2:The 86.3 per cent figure is also used to determine the deflection peatcds
pounds load: 0.8680.1594 = 0.1375 inch.

Step 4Total CoilsTC=AC+2 (Table3=9+2=11
Therefore, a quick answer is: 11 coils of 0.0915 inch diameter wire. However, the design
procedure should be completed by carrying out these remaining steps:

Step 5FromTable 3 Solid Height =SH=TCxd =11x 0.091511 inch
Therefore, Total DeflectionEL — SH= 1.5 inches
86,300

Step 6:Stress Solid= o5 x 1.5 = 103,500 pounds per square inch
e _0OD. , _08125 . _
Step 7:Spring Index= e 1 00915 1=79

Step 8FromFig. 13 the curvature correction factér=1.185

Step 9:Total Stress at 36 pounds loa®= K = 86,300x 1.185 = 102,300 pounds per
square inch. This stress is below the 117,000 pounds per square inch permitted for 0.091.
inch wire shown on the middle curvefiig. 3 so it is a safe working stress.

Step 10Total Stress at Solid = 103,580.185 = 122,800 pounds per square inch. This
stress is also safe, as it is below the 131,000 pounds per square inch shown on the top cun
Fig. 3 and therefore the spring will not set.

Method 2, using formula3he procedure for design using formulas is as follows (the
design example is the same as in Method I, and the spring is shBigni#):

Step 1:Select a safe streSdbelow the middle fatigue strength cuifvig. 8for ASTM
A229 steel wire, say 90,000 pounds per square inch. Assume a mean dizsiiefetly
below the%sinchO.D., say 0.7 inch. Note that the valueGfs 11,200,000 pounds per
square inchTable20).

Step 2:A trial wire diameted and other values are found by formulas fibable 4as

. 2.55PD _ %/Z.SSX 36x 0.7
follows: S 90,000

= 2/0.000714= 0.0894 inch
Note:Table 21can be used to avoid solving the cube root.

Step 3From the table on pag50Q select the nearest wire gauge size, which is 0.0915
inch diameter. Using this value, the mean diante#?ginch—0.0915 = 0.721 inch.



Table 5. Compression and Extension Spring Deflections

Wire Size or Washburn and Moen Gauge, and Decimal Equivalent?

Outside | | [ | | | 19 [ 18 | v ] 16
Diam. 010 | 012 [ 014 [ 016 [ 018 | 020 | 022 | 024 | 026 | 028 | 030 [ 032 [ 034 | 036 [ 038 | o041 [ 0475 | 054 | 0625
Nom. | Dec. Deflection f (inch) per coil, at Load P (pounds)®
7 | 100 0277 | 0222 | .01824 | .01529 | .01302 | .01121 | .00974 | .00853 | .00751 | .00664 | .00589
305 | 697 | 1130 | 1722 | 251 352 479 6.36 828 | 1059 | 1335 . . -
w | a2 0371 | 0299 | .0247 | .0208 | .01784 | .01548 | .01353 | .01192 | .01058 | .00943 | .00844 | .00758 | .00683 | .00617
342 | 600 | 971 | 1475 | 214 299 | 406 537 6.97 889 | 1116 | 1383 | 1695 | 206
% | 1406 0478 | 0387 | 0321 | 0272 | .0234 | .0204 | .01794 | .01500 | .01417 | .01271 | .01144 | .01034 | .00937 | .00852 | .00777
301 | 528 | 852 | 1201 | 1868 | 261 353 465 6.02 7.66 958 | 1184 | 1447 | 1751 | 210
5 | ase 0600 | .0487 | .0406 | 0345 | .0208 | .0261 | .0230 | .0205 | .01832 | 0.1649 | .01491 | .01354 | .01234 | .01128 | .01033 | .00909
268 | 470 | 758 | 1146 | 1656 | 231 311 410 530 6.72 839 | 1035 | 1262 | 1523 | 1822 | 235
y, | 4710 0735 | 0598 | 0500 | 0426 | .0369 | .0324 | .0287 | .0256 | .0230 | .0208 | .01883 | .01716 | .01569 | .01439 | .01324 | .01172 | .00914
243 | 424 | 683 | 1031 | 1488 | 207 2.79 367 473 5.99 7.47 919 | 1119 | 1348 | 1609 | 218 338
3 | 1878 0884 | 0720 | 0603 | .0516 | .0448 | .0394 | 0349 | .0313 | .0281 | .0285 | .0232 | .0212 | .01944 | .01783 | .01650 | .01468 | .01157 | .00926
221 | 387 | 621 | 938 | 1351 | 1876 | 253 332 427 5.40 6.73 827 | 1005 | 1200 | 1441 | 1847 | 3007 | 463
g, | 20 1046 | .0854 | .0717 | 0614 | .0534 | .0470 | 0418 | .0375 | .0338 | .0307 | .0280 | .0257 | .0236 | .0218 | .0201 | .01798 | .01430 | .01155
203 | 355 | 570 | 859 | 1237 | 1716 | 231 303 3.90 492 6.12 752 913 | 1096 | 1305 | 1669 | 27.1 a5
7 | 2188 1000 | 0841 | .0721 | .0628 | .0555 | .0494 | 0444 | 0401 | .0365 | .0333 | .0306 | .0282 | .0260 | .0241 | .0216 | .01733 | .01411 | .0109
328 | 526 | 793 | 1140 | 1580 | 213 2.79 358 452 5.61 6.88 835 | 1002 | 1192 | 1522 | 246 375 613
5| oz 1156 | 0974 | .0836 | .0730 | .0845 | .0575 | 0518 | .0469 | .0427 | .0391 | .0359 | .0331 | .0307 | .0285 | .0256 | .0206 | .01690 | .01326
- 305 | 48 | 736 | 1058 | 1465 | 1969 | 258 321 418 5.19 6.35 7.70 923 | 1097 | 1399 | 225 343 55.8
y 20 1116 | 0960 | .0839 | .0742 | .0663 | .0597 | .0541 | .0494 | .0453 | .0417 | .0385 | 0357 | .0332 | .0209 | .0242 | .01996 | .01578
A 457 | 687 | 987 | 1366 | 1834 | 240 3.08 388 4.82 5.90 7.14 856 | 1017 | 1295 | 208 316 511
% | 2813 1432 | 1234 | 1080 | .0958 | .0857 | 0774 | 0703 | 0643 | .0591 | .0545 | .0505 | 0469 | .0437 | .0395 | .0323 | .0268 | .0215
403 | 606 | 870 | 1202 | 1613 [ 211 2.70 340 422 5.16 6.24 7.47 886 | 1126 | 1801 | 27.2 438
5% | 215 1541 | 1351 | 1200 | 1076 | .0973 | .0886 | .0811 | .0746 | .0690 | .0640 | .0596 | .0556 | .0504 | .0415 | .0347 | .0281
542 | 778 | 1074 | 1440 | 1881 | 241 303 375 458 554 6.63 7.85 997 | 1589 | 239 383
w, | a0 1633 | 1470 | 1321 | 1196 | .1090 | .0999 | .0921 | .0852 | .0792 | .0733 | .0690 | .0627 | .0518 | .0436 | .0355
703 970 | 1300 | 1697 | 217 273 3.38 412 498 5.95 7.05 894 | 1421 | 213 341
5 | 1768 | 1580 | .1440 | 1314 | .1206 | .1113 | .1031 | .0960 | .0895 | .0839 | .0764 | .0634 | .0535 | .0438
885 | 1185 | 1546 | 1978 | 248 3,07 375 453 5.40 6.40 810 | 1285 | 1927 | 307

aRound wire. For squarewire, multiply fby 0.707, and p, by 1.2

bThe upper figureisthe deflection and the lower figure the load as read against each spring size.
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Table 5. (Continued) Compression and Extension Spring Deflections

Wire Size or Washburn and Moen Gauge, and Decimal Equivalent

Outside 19 18 17 16 15 14 13 % 12 11 %
Diam. .026 .028 .030 .032 .034 .036 .038 .041 .0475 .054 .0625 .072 .080 .0915 .0938 .1055 .1205 125
Nom. | Dec. Deflection f (inch) per coil, at Load P (pounds)
5, | 4063 .1560 1434 1324 1228 1143 .1068 .1001 .0913 .0760 .0645 .0531 .0436 .0373 .0304 .0292 .0241
1.815 228 2.82 3.44 415 4.95 5.85 741 1173 17.56 279 439 61.6 95.6 103.7 153.3 . .
% | 4375 .1827 .1680 .1553 .1441 .1343 .1256 1178 .1075 .0898 .0764 .0631 .0521 .0448 .0367 .0353 .0293 .0234 .0219
1.678 211 2.60 317 3.82 4.56 5.39 6.82 10.79 16.13 25.6 40.1 56.3 86.9 94.3 138.9 217. 245,
212 1947 .1800 .1673 .1560 .1459 1370 1252 .1048 .0894 0741 .0614 .0530 .0437 .0420 .0351 .0282 .0265
o | 4638 1.559 1.956 242 2.94 355 423 5.00 6.33 9.99 14.91 236 37.0 517 797 86.4 126.9 197.3 223,
% 500 243 .223 207 1920 1792 .1678 1575 .1441 1209 .1033 .0859 .0714 .0619 .0512 .0494 .0414 .0335 .0316
1.456 1.826 226 275 331 3.95 4.67 5.90 9.30 13.87 219 343 47.9 736 80.0 116.9 1811 205.
1, | sas 276 .254 235 219 204 1911 1796 .1645 .1382 .1183 .0987 .0822 0714 .0593 .0572 .0482 .0393 .0371
1.366 1.713 212 258 3.10 3.70 437 5.52 8.70 12.96 205 319 44.6 68.4 741 108.3 167.3 188.8
% | 5025 .286 .265 247 .230 216 .203 .1861 .1566 .1343 1122 .0937 .0816 .0680 .0857 .0555 .0455 .0430
1.613 1.991 242 292 348 411 5.19 818 12.16 19.17 29.9 417 639 69.1 100.9 1555 175.3
297 277 259 242 .228 209 1762 .1514 1267 .1061 .0926 .0774 .0748 .0634 .0522 .0493
% [ 598 1.880 229 2.76 328 3.88 4.90 771 11.46 18.04 28.1 39.1 60.0 64.8 94.4 1452 163.6
.331 .308 .288 270 254 .233 1969 .1693 1420 1191 .1041 .0873 .0844 .0718 .0593 0561
% 625 1.782 217 261 311 3.67 4.63 7.29 10.83 17.04 26.5 36.9 56.4 61.0 88.7 136.2 153.4
342 .320 .300 .282 .259 219 .1884 .1582 .1330 1164 .0978 .0946 .0807 .0668 0634
P [ 6563 2,06 248 295 349 4.40 6.92 10.27 16.14 251 349 533 57.6 837 1283 1443
| 6875 .352 331 311 .286 .242 .208 1753 .1476 1294 .1089 .1054 .0901 .0748 .0710
2.36 281 332 4.19 6.58 9.76 1534 238 331 505 54.6 79.2 1212 136.3
=, | 7188 .363 .342 314 .266 .230 .1933 .1630 11431 .1206 .1168 .1000 .0833 .0791
268 317 3.99 6.27 9.31 14.61 227 315 480 519 75.2 1149 129.2
% 750 .374 344 291 252 212 1791 1574 1329 .1288 .1105 .0923 .0877
3.03 382 599 8.89 13.94 216 30.0 45.7 49.4 715 109.2 122.7
375 .318 275 232 .1960 1724 .1459 11413 1214 .1017 .0967
o | 7813 3.66 5.74 850 1334 207 287 43.6 47.1 68.2 104.0 116.9
407 .346 .299 253 214 .1881 1594 .1545 1329 1115 .1061
o [ 8125 351 5.50 8.15 12.78 19.80 275 417 45.1 65.2 99.3 1115
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Table 5. (Continued) Compression and Extension Spring Deflections

Wire Size or Washburn and Moen Gauge, and Decimal Equivalent

Outside 15 14 13 % 12 1 % 10 9 % 8 7 % 6 5 % 4
Diam. o072 | 080 | .0915 | .0938 [ .1055 | .1205 125 135 1483 | .1563 162 77 1875 192 207 2188 | .2253
Nom. | Dec. Deflection f (inch) per coil, at Load P (pounds)
% s | B | 22 [ ase2 | ass | asma | aas | azee | a3 | o [ o8 [ os0 [ o7z [ oro7 | oes2 [ oeos [ 0ss2 | 052
1826 | 253 39.4 415 59.9 911 1023 | 1305 | 1763 209, 234, 312, 377. 407. 521, 626. 691.
3, oosa| | 204 974 | 1705 | 1438 | 1370 | 1236 | .1087 | 1010 | 0959 | .0843 | o772 | o746 | .0663 | .0606 | .0577
1757 | 243 36.9 399 57.6 87.5 %82 1252 | 1690 | 1999 224, 299, 360. 380, 498, 598, 660.
5 202 | 258 219 213 1841 | 554 | 1479 | 1338 | 1178 | 096 | 1041 | 0917 | 0842 | 0812 | 0723 | .0662 | .0632
* BT eos | 235 356 384 55.4 84.1 94.4 1204 | 1623 | 1919 215. 286. 345, 373, 477, 572. 631,
a o 236 229 1982 | 675 | .1s98 | 1445 | 1273 | 1183 | 1127 | 0994 | .0013 | .0882 | .0786 | .0721 | .0688
1635 | 226 343 37.0 534 810 9.9 1159 | 1561 | 1845 207. 278. 332, 358, 457, 548, 604,
336 | 297 253 246 213 801 | 1718 | 555 | 372 | 1278 | 1216 | 1074 | o986 | .0954 | .0852 | .0783 | .0747
TR0 ee | aue 331 358 515 781 87.6 1117 | 1504 | 1776 | 1988 264, 319, 344, 439, 526. 580.
1w | 10m 359 | 317 27 263 228 1931 | 1843 | 1669 | 1474 | 1374 | 1308 | 1157 | 1065 | .1020 | .0021 | .0845 | .0809
1528 | 211 320 346 498 755 84.6 1078 | 1451 | 1703 | 1916 255. 307. 3L 423, 506. 557.
1 | 108 382 | .338 289 281 244 207 972 | a7es | 1580 | 1474 | 1404 | 1243 | 1145 | 1107 | 0993 | 0013 | .0873
1480 | 205 310 35 482 730 818 1042 | 1401 | 1654 | 1850 246. 296. 319, 407. 487, 537.
407 | 360 308 299 260 221 211 1910 | 1691 | 578 | 503 | 1332 | 1229 | 1188 | 1066 | .0982 | .0939
Vo | 20941 15 | 1088 | 200 324 467 706 79.2 1008 | 1355 | 1509 | 1788 238, 286. 308, 393, 470, 517.
432 | 383 328 318 277 235 224 204 1804 | e85 | 1604 | 1424 | 1315 | 1272 | 1142 | 1053 | .1008
o | M5 | 130 | 1024 | 201 314 452 684 76.7 97.6 1312 | 1547 | 1730 230, 276. 298, 379, 454, 499,
v, | 118 485 | 431 368 358 311 265 254 231 204 1908 | 1812 | .1620 | .1496 | .1448 | 1303 | 1203 | .1153
1314 | 1815 | 275 296 426 64.4 721 91.7 1233 | 1454 | 1624 215, 259 279, 355, 424, 467,
| 1250 541 | 480 412 400 349 207 284 258 230 215 205 1824 | 1690 | .1635 | .1474 | 1363 | .1308
1244 | 1719 | 260 280 403 60.8 68.2 86.6 1162 | 1370 | 1531 203, 244, 263, 334, 399, 438,
600 | .533 457 444 387 331 317 288 256 240 229 205 1894 | 1836 | .1657 | .1535 | .1472
Bis | 1313 1 g | 631 | 246 26.6 38.2 57.7 64.6 820 1101 | 1207 | 1447 | 1916 230. 248, 315. 376. 413,
662 | .588 506 491 429 367 351 320 285 267 255 227 211 204 848 | 1713 | .1650
Bo | 1375 | 1156 | 1553 | 224 253 36.3 54.8 614 77.9 1044 | 1230 | 1373 | 1817 218, 235, 298. 356. 391
v, | 14 721 | 647 556 540 472 404 387 353 314 295 282 252 234 227 205 1905 | .1829
1073 | 1481 | 223 241 346 522 584 74.1 99.4 1170 | 1306 | 1726 207. 223, 283, 337. 371
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Table 5. (Continued) Compression and Extension Spring Deflections

Wire Size or Washburn and Moen Gauge, and Decimal Equivaent

Outside 11 % 0 | o % 8 | 7 [ % [ 6 [ 5 [ % [ 4 ] 3 % ] 2 % 0 %
Diam. 1205 | 125 | 135 | 1483 | 1563 | 162 | 177 | 875 | 102 | 207 | 2188 | 2253 | 2437 [ 250 | 2625 [ 2813 | 3065 | 3125

Nom. Dec. Deflection f (inch) per coil, at Load P (pounds)
1 100 | M3 | 424 ] 387 ] 0 [ s | a0 [ 27 [ o2ss | 2s0 [ 227 [ 210 [ 202 | 1815 | a754 | d6l2 | 1482 | 1305 | 1267
498 | 558 | 708 | o948 | 1115 | 1245 | 1646 | 1071 | 213 [ 269 | 321 | 352 [ 452 [ 409 | s74. | 717. [ 47 | 1008,
15 teos | 527 | s05 | ae1 | 413 | 387 | 370 | 3% | 300 | 300 | 273 | 254 | 244 | 220 | 212 | 1986 | 1801 | 1502 | 1547
457 | 511 | 648 | 867 | 1020 | 1139 | 1503 | 1800 | 1939 | 246 | 202 | 321 | 411 | 446 | 521 [ es0. | ss8 | 912
3, 1750 | 619 | 593 | 542 | 485 | 4se | 437 | 32 | 366 | 355 | 33 | 300 | 200 | 261 | 253 | 237 | 215 | 1908 | 1856
422 | 472 | 508 | 800 | 940 | 1049 | 1385 | 1656 | 1784 | 226. | 269. | 205 | 377. | 409. | 477. | s05. [ 783 | 833
% 1g7s | A7 | 687 | 620 | se4 | 530 | 508 | 457 | 426 | 414 | 377 | 31| 339 | 306 | 206 | 278 | 253 | 225 | 219
302 | 438 | 555 | 742 | 872 | o973 | 1282 | 1534 | 1651 | 209 | 248 | 272 | 348 | 378 | 440 | s48 | 720 | 767.
15, | 108 | 769 | 7% | 676 | 605 [ 560 | 546 | do2 | 458 | 46 | 405 | 379 [ 35 [ 381 | 320 | 300 | 23 | 243 | 27
378 | 423 | 536 | 716 | 842 | 938 | 1236 | 1479 | 1502 | 201 | 239. | 262 | 335 | 364 | 425 | s8 | 693 | 737
» 2000 | BB | 78 | 723 | 649 | 610 | 585 | 527 | 4o | 478 | 43 | 407 | 3% | 355 | 34 | 323 | 205 | 263 | 256
366 | 409 | 518 | 692 | 813 | 906 | 1194 | 1428 | 1537 | 1943 | 231 | 253 | 324 | 351 | 409. | s09. | 668 | 710.
o | 20es | 78 | 84 | 7e8 | e | 52 | 626 | se4 | 26 | 512 | 467 | 4% | 421 | 3L [ 39 [ 6 [ 316 | 282 | 275
354 | 396 | 501 | 669 | 787 | 876 | 1154 | 1381 | 1485 | 1877 | 223 | 245 | 312 | 339. | 395 | 491 | 644 | 685
% o5 | 936 | 88 | 823 | 730 | 696 | 667 | 602 | 562 | 546 | 499 | 466 | 449 | 407 | 35 | 371 | 339 | 303 | 295
43 | 383 | 485 | 648 | 761 | 849 | 1118 | 1336 | 1438 | 1816 | 216, | 236 | 302 | 327. | 38L | 474 | 622 | e6L
2 | 21ss | 9 | %5 | 86 | e | a0 | 71 f o4 | s | se2 | oS3 | do7 | 479 | 435 [ 421 f 396 [ 362 | 324 | 316
333 | 372 | 471 | 628 | 738 | 822 | 1083 | 1205 | 1392 | 1758 | 209. | 220. | 202 | 317. | 369. | 4s0. | 601 | 639.
2% gosp | 1056 | 1013 | 930 | 835 | 787 | 755 | 681 | 637 | 619 | 566 | 529 | 511 | 463 | 449 | 423 | 387 | 346 | 3%
323 | 361 | 457 | 609 | 716 | 798 | 1057 | 1255 | 1350 | 1705 | 202 | 222 | 283 | 307. | 357 | 444 | s82 | 618
5 | oms | LUO | 1074 | ose | 8se | e | o1 | 723 | 76 | 657 | 601 | S62 | 52 | 48 [ 478 f 449 f a1 | 368 | 3590
314 | 351 | 444 | s02 | 695 | 775 | 1009 | 1218 | 1310 | 1654 | 1963 | 215 | 275. | 208 | 347. | 430. | 564 | 599.
% o7 | 1184 | 1136 | 1043 | 938 | 834 | 848 | 763 | 716 | 696 | 637 | 59 | 576 | 523 | 507 | 477 | 437 | 392 | 382
305 | 341 | 431 | 575 | 676 | 753 | 991 | 1183 | 1273 | 1607 | 1907 | 209. | 267. | 289. | 336 | 417. | 547. | 8L
| 24z 1200 | 2102 | 991 | 934 | 897 [ 80 | 757 | 737 | 674 | 631 | 609 | 554 [ 537 | 506 | 464 | 416 | 405
332 | 420 | seo0 | 657 | 732 | 963 | 1151 | 1237 | 1561 | 1853 | 203 | 2s0. | 281 | 327 | 405 | 3L [ s64.
2 2500 1266 | 1162 | 1046 | 986 | 946 [ 855 | 800 | 778 [ 713 | e67 | 644 | 586 [ 568 | 536 | 491 [ 441 | 430
323 | 409 [ s45 | 640 | 713 | 937 | 1116 | 1204 | 1519 | 1802 | 1975 | 252 | 273 [ 317 | 304 | 516 [ 548

Note: TRtermediaie valUeS can be obtained WIthin reasonable accuracy Dy Tnierpolation.

Thetableisfor ASTM A229 oil tempered spring steel with atorsional modulus G of 11,200,000 psi, and an uncorrected torsional stress of 100,000 psi. For other
materials use thefollowing factors: stainless steel, multiply £ by 1.067; spring brass, multiply f by 2.24; phosphor bronze, multiply f by 1.867; Monel metal, multiply f
by 1.244; beryllium copper, multiply fby 1.725; Inconel (non-magnetic), multiply /by 1.045.
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PD 36x0.721

Step 4The stressS = = = 86,300 Ib/irf
0.393% 0.393x 0.0918
Step 5The number of active coils ¥ = Gdr
nsSD?

_ 11,200 000< 0.0915x 1.25
3.1416x 86 30 0.7212

= 9.1 (say 9)

The answer is the same as before, which is to use 11 total coils of 0.0915-inch diamete
wire. The total coils, solid height, etc., are determined in the same manner as in Method 1.

ay ® < & Odl

Machine loop and machine ~ Machine loop and machine Small eye at side
hook shown in line hook shown at right angles
Hand loop and hook Full loop on side and Small eye over center
at right angles small eye from center
Double twisted Single full loop centered Reduced loop to center

full loop over center

an I @ N [

Full loop Small Machine half-hook Hand half-loop  Plain square-
at side off-set hook at side over center over center cut ends

All the Above Ends are Standard Types for Which
No Special Tools are Required

Cih CIl < cEll} mou]

Long round-end Long square-end V-hook Coned end with  Coned end with
hook over center hook over center over center short swivel eye swivel bolt

ol =i o=l <=

Extended eye from  Straight end annealed Coned end to hold Coned end
either center or side to allow forming long swivel eye  with swivel hook

This Group of Special Ends Requires Special Tools

Fig. 15. Types of Helical Extension Spring Ends



Table of Spring Characteristics.—Table 5gives characteristics for compression and
extension springs made from ASTM A229 oil-tempered MB spring steel having a tor-
sional modulus of elasticit$ of 11,200,000 pounds per square inch, and an uncorrected
torsional stresS of 100,000 pounds per square inch. The defle¢tionone coil under a
loadP is shown in the body of the table. The method of using these data is explained in the
problems for compression and extension spring design. The table may be used for othe
materials by applying factors tdThe factors are given in a footnote to the table.

Extension Springs.—About 10 per cent of all springs made by many companies are of
this type, and they frequently cause trouble because insufficient consideration is given to
stress due toinitial tension, stress and deflection of hooks, special manufacturing methods
secondary operations and overstretching at asseRiglyl5shows types of ends used on

these springs.

AT T T T T T T T T 01711
42— The values in the curves in the chart are for springs made]
40 | from spring steel. They should be reduced 15 per cent for |
stainless steel. 20 per cent for copper-nickel alloys and
- 38 — 50 per cent for phosphor bronze. —
e}
S 36
2 34
£ ¥\
= 32
g I I\
()
5 28\ \
S \ N e S )
=z N \ + Initial tension in this area
@26 AN is readily obtainable.
g 24 A, >\ Use whenever possible.
2 N |\ 11
S 22 \ \ [ Maximum initial
g \, \_/|__tension
. 20 N
9 1s N, N
2 N[N
[42] 'os N N
5 16 N g, | N
g 14 \\ ‘s‘/b/s, \ \
g 1 \\ Ors/b/)‘? \\ \\\
[
10 N /sz,é,s \\ N
~ S| N
| N
6l Inital tension in this area is difficult to
maintain with accurate and uniform results. \\
4 I I I I I I I 1 I T —
3 4 5 6 7 8 9 1011 12 13 14 15 16
Spring Index

Fig. 16. Permissible Torsional Stress Caused by Initial Tension in Coiled Extension

Initial tension:In the spring industry, the term “Initial tension” is used to define a force or
load, measurable in pounds or ounces, which presses the coils of a close wound extensic
spring against one another. This force must be overcome before the coils of a spring begil

to open up.

SPRINGS

Springs for Differe

nt Spring Indexes
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Initial tension is wound into extension springs by bending each coil as it is wound away
from its normal plane, thereby producing a slight twist in the wire which causes the coil to
spring back tightly against the adjacent coil. Initial tension can be wound into cold-coiled
extension springs only. Hot-wound springs and springs made from annealed steel are harc
ened and tempered after coiling, and therefore initial tension cannot be produced. Itis pos
sible to make a spring having initial tension only when a high tensile strength, obtained by
cold drawing or by heat-treatment, is possessed by the material as it is being wound intc
springs. Materials that possess the required characteristics for the manufacture of sucl
springs include hard-drawn wire, music wire, pre-tempered wire, 18-8 stainless steel,
phosphor-bronze, and many of the hard-drawn copper-nickel, and nonferrous alloys. Per-
missible torsional stresses resulting from initial tension for different spring indexes are
shown inFig. 16

Hook failure:The great majority of breakages in extension springs occurs in the hooks.
Hooks are subjected to both bending and torsional stresses and have higher stresses th
the coils in the spring.

Stresses in regular hooKshe calculations for the stresses in hooks are quite compli-
cated and lengthy. Also, the radii of the bends are difficult to determine and frequently vary
between specifications and actual production samples. However, regular hooks are mor
highly stressed than the coils in the body and are subjected to a bending stress at section
(seeTable 6) The bending stres} at section B should be compared with allowable
stresses for torsion springs and with the elastic limit of the material in tensidrigSee
through 10,

Stresses in cross over hooResults of tests on springs having a normal average index
show that the cross over hooks last longer than regular hooks. These results may not occt
on springs of small index or if the cross over bend is made too sharply.

Inasmuch as both types of hooks have the same bending stress, it would appear that tt
fatigue life would be the same. However, the large bend radius of the regular hooks cause
some torsional stresses to coincide with the bending stresses, thus explaining the earlie
breakages. If sharper bends were made on the regular hooks, the life should then be th
same as for cross over hooks.

Table 6. Formula for Bending Stress at Section B

Type of Hook Stress in Bending
P Hep
d
l"l[)i]
D
Regular Hook s, = 5PD2
I.D.d3
d
P B
D
Cross-over Hook
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75 to 85 Percent
of Inside Diameter

2 Pounds (Initial Tension)

9 Pounds (P)
‘T‘, E\\
3 \l

I )

7n
14 (FL) 1§ (P

1" (to Inside Diameter
16 of Hooks)

2

Fig. 17. Extension Spring Design Example

Stresses in half hook§he formulas for regular hooks can also be used for half hooks,
because the smaller bend radius allows for the increase in stress. It will therefore be
observed that half hooks have the same stress in bending as regular hooks.

Frequently overlooked facts by many designers are that one full hook deflects an amount
equal to one half a coil and each half hook deflects an amount equal to one tenth of a coil
Allowances for these deflections should be made when designing springs. Thus, an exten
sion spring, with regular full hooks and having 10 coils, will have a deflection equal to 11
coils, or 10 per cent more than the calculated deflection.

Extension Spring Design.—The available space in a product or assembly usually deter-
mines the limiting dimensions of a spring, but the wire size, number of coils, and initial ten-
sion are often unknown.

ExampleAn extension spring is to be made from spring steel ASTM A229, with regular
hooks as shown ifig. 17 Calculate the wire size, number of coils and initial tension.

Note:Allow about 20 to 25 per cent of the 9 pound load for initial tension, say 2 pounds,
and then design for a 7 pound load (not 9 poundg)iath deflection. Also use lower
stresses than for a compression spring to allow for overstretching during assembly and tc
obtain a safe stress on the hooks. Proceed as for compression springs, but locate a load
the tables somewhat higher than the 9 pound load.

Method 1, using tabldzromTable locate?, inch outside diameter in the left column and
move to the right to locate a loBbf 13.94 pounds. A deflectidrof 0.212 inch appears
above this figure. Moving vertically from this position to the top of the column a suitable
wire diameter of 0.0625 inch is found.

The remaining design calculations are completed as follows:

Step 1The stress with a load of 7 pounds is obtained as follows:

The 7 pound load is 50.2 per cent of the 13.94 pound load. Therefore, th&Sstrdss
pounds = 0.502 per centL00,000 = 50,200 pounds per square inch.

Step 2The 50.2 per cent figure is also used to determine the deflection peil0csd2
per cen 0.212 =0.1062 inch.

Step 3The number of active coils. (say 6)

_F _ 0625 _
AC = T = 7 = 586

This result should be reduced by 1 to allow for deflection of 2 hooks (see notes 1 and 2 tha
follow these calculations.) Therefore, a quick answer is: 5 coils of 0.0625 inch diameter
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wire. However, the design procedure should be completed by carrying out the following
steps:

Step 4The body length =T[C+ 1) xd = (5+ 1) x 0.0625 inch.
Step 5The length from the body to inside hook

_ FL-Body _ 1.4375- 0.375_ 0.531 inch
2 2
_ 0.531 _ 0.531 _
Percentage of I.D= D - 06 85 per cent
This length is satisfactory, see Note 3 following this proceedure.
Step 6:
- 0.D. _ 075 _
The spring index= T_l = 0.0625_1 =11

Step 7The initial tension stress is

5, = SXIT_ 50,200x2
TP 7

= 14,340 pounds per square inch
This stress is satisfactory, as checked against cuRig.it6
Step 8The curvature correction factiir=1.12 Fig. 13.
Step 9The total stress = (50,20014,340)x 1.12 = 72.285 pounds per square inch
This resultis less than 106,250 pounds per square inch permitted by the middle curve fol

0.0625 inch wire irFig. 3and therefore is a safe working stress that permits some addi-
tional deflection that is usually necessary for assembly purposes.

Step 10The large majority of hook breakage is due to high stress in bending and should
be checked as follows:

FromTable 6 stress on hook in bending is:

_ 5PD?
S = 1.D.d3

= 5x9x0687% = 139,200 pounds per square inch
0.625x 0.0625

This result is less than the top curve vakig, 8 for 0.0625 inch diameter wire, and is
therefore safe. Also see Note 5 that follows.

Notes:The following points should be noted when designing extension springs:

1) All coils are active and thysC=TC.

2) Each full hook deflection is approximately equakitooil. Therefore for 2 hooks,
reduce the total coils by 1. (Each half hook deflection is nearly egygbta coil.)
3) The distance from the body to the inside of a regular full hook equals 75 to 85 per cent
(90 per cent maximum) of the I.D. For a cross over center hook, this distance equals the I.D
4) Some initial tension should usually be used to hold the spring together. Try not to
exceed the maximum curve shownkig. 16 Without initial tension, a long spring with
many coils will have a differentlength in the horizontal position than it will when hung ver-
tically.

5) The hooks are stressed in bending, therefore their stress should be less than the max
mum bending stress as used for torsion springs — use top fatigue strengtiF@msveés
through 10.
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Method 2, using formula3he sequence of steps for designing extension springs by for-
mulas is similar to that for compression springs. The formulas for this method are given in
Table 3
Tolerances for Compression and Extension Springs.Felerances for coil diameter,
free length, squareness, load, and the angle between loop planes for compression ar
extension springs are givenTiables throughl2. To meet the requirements of load, rate,
free length, and solid height, it is necessary to vary the number of coils for compression
springs byt 5 per cent. For extension springs, the tolerances on the numbers of coils are:
for 3to 5 coils;t 20 per cent; for 6 to 8 coils,30 per cent; for 9 to 12 coils40 per cent.

For each additional coil, a furthei,per cent tolerance is added to the extension spring val-
ues. Closer tolerances on the number of coils for either type of spring lead to the need fo
trimming after coiling, and manufacturing time and cost are increBiged.8shows devi-

ations allowed on the ends of extension springs, and variations in end alignments.

.05 inchx —+.05inchx |
Outside || Outside ‘ k\ 5 degrees

diameter ‘ diameter

L.OS inchx

Outside diameter

d 1
- Or & inch. t -
j Whlchever is greater 45 degrees

Maximum Opening Maximum Overlap
for Closed Loop for Closed Loop

Fig. 18. Maximum Deviations Allowed on Ends and Variation in Alignment of Ends (Loops) for
Extension Springs
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Table 7. Compression and Extension Spring Coil Diameter Tolerances

Spring Index
wire 4 | 6 | 8 [ 10 [ 12 | 14 | 16
Diameter,
Inch Tolerances inch
0.015 0.002 0.002 0.003 0.004 0.00 0.00p 0.007
0.023 0.002 0.003 0.004 0.006 0.007 0.00B 0.010
0.035 0.002 0.004 0.006 0.007| 0.00 0.011L 0.013
0.051 0.003 0.005 0.007 0.010y 0.01% 0.01p 0.017
0.076 0.004 0.007 0.010 0.013 0.01¢ 0.01p 0.022
0.114 0.006 0.009 0.013 0.018 0.02 0.02p 0.029
0.171 0.008 0.012 0.017 0.023 0.02 0.03B 0.038
0.250 0.011 0.015 0.021 0.028 0.03 0.04p 0.049
0.375 0.016 0.020 0.026 0.037| 0.04¢ 0.05¢ 0.064
0.500 0.021 0.030 0.040 0.062 0.08 0.10p 0.125
Courtesy of the Spring Manufacturers Institute
Table 8. Compression Spring Normal Free-Length
Tolerances, Squared and Ground Ends
Number Spring Index
of fctive 4 | 6 | 8 [ 10 | 12 [ 14 | 16
per Inch Tolerance; Inch per Inch of Free Length
0.5 0.010 0.011 0.012 0.013] 0.01§ 0.01 0.016
1 0.011 0.013 0.015 0.016 0.017 0.01. 0.019
2 0.013 0.015 0.017 0.019 0.029 0.02 0.028
4 0.016 0.018 0.021 0.023 0.024 0.02 0.027
8 0.019 0.022 0.024 0.026 0.028§ 0.03 0.032
12 0.021 0.024 0.027 0.030 0.037 0.03: 0.036
16 0.022 0.026 0.029 0.032 0.034 0.03! 0.038
20 0.023 0.027 0.031 0.034 0.034 0.03: 0.040

aFor springs less than 0.5 inch long, use the tolerances for 0.5 inch long springs. For springs with
unground closed ends, multiply the tolerances by 1.7.

Courtesy of the Spring Manufacturers Institute

Table 9. Extension Spring Normal Free-Length and End Tolerances

Free-Length Tolerances End Tolerances
Angle Between
Spring Free-Length Tolerance Total Number Loop Planes
(inch) (inch) of Coils (degrees)
Up to 0.5 +0.020
Over 0.5t0 1.0 +0.030 3to6 +25
Over 1.0 to 2.0 +0.040 7t09 +35
Over 2.0 to 4.0 +0.060 10to 12 +45
Over 4.0 to 8.0 +0.093 13to0 16 +60
Over 8.0 t0 16.0 +0.156 Over 16 Random
Over 16.0 to 24.0 +0.218

Courtesy of the Spring Manufacturers Institute
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Table 10. Compression Spring Squareness Tolerances

Slenderness Spring Index

Ratio 4 [ 6 [ 8 [ 10 | 12 ] 14 [ 16

FL/D2 Squareness Tolerancesdegrees)
0.5 3.0 3.0 35 35 35 35 4.0
1.0 2.5 3.0 3.0 3.0 3.0 3.5 3.5
1.5 2.5 25 25 3.0 3.0 3.0 3.0
2.0 2.5 25 25 2.5 3.0 3.0 3.0
3.0 2.0 25 25 25 25 25 3.0
4.0 2.0 2.0 25 25 25 25 2.5
6.0 2.0 2.0 2.0 25 25 25 2.5
8.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5
10.0 2.0 2.0 2.0 2.0 2.0 25 25
12.0 2.0 2.0 2.0 2.0 2.0 2.0 25

aSlenderness RatioEL+D

Springs with closed and ground ends, in the free position. Squareness tolerances closer than those
shown require special process techniques which increase cost. Springs made from fine wire sizes,
and with high spring indices, irregular shapes or long free lengths, require special attention in deter-
mining appropriate tolerance and feasibility of grinding ends.

Table 11. Compression Spring Normal Load Tolerances

Length Deflection (inch}
Tolerance, 005 [ 010 [ 015 ] 020] 025] 0.30] 0.40] 0.50
+inch Tolerance Per Cent of Load

0.005 12 7 6 5
0.010 12 8.5 7 6.5 55 5
0.020 22 155 12 10 8.5 7 6
0.030 22 17 14 12 9.5 8
0.040 22 18 155 12 10
0.050 22 19 145 12
0.060 25 22 17 14
0.070 25 195 16
0.080 22 18

0.090 25 20

0.100 22

0.200
0.300
0.400
0.500

Length Deflection (inch}
Tolerance, 075 1.00 150 | 200 | 300 | 400 6.00
+inch Tolerance Per Cent of Load

0.005
0.010
0.020 5
0.030 6 5
0.040 75 6 5
0.050 9 7 55
0.060 10 8
0.070 11 9 6.5 55
0.080 125 10 7.5 6 5

0.090 14 11 8 6 5

0.100 155 12 8.5 7 55
0.200 22 155 12 8.5 7 55
0.300 22 17 12 9.5 7

0.400 21 15 12 8.5
0.500 25 18.5 14.5 10.5

aFrom free length to loaded position.
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314 SPRINGS
Table 12. Extension Spring Normal Load Tolerances
Wire Diameter (inch)
FL
Spring | 0015] 0.022] 0033 004} oo o00§2 01p5 o0fs7 opso ofs7s 4.
Index Tolerancet Per Cent of Load
12 200 | 185 176] 169] 164 15§ 15, 1B 138 10 1
8 185 | 175 | 16.7| 158 150 14§ 14 13p 125 115 1
6 16.8 | 16.1 | 155| 147 138 133 12 18 1112 99 9
4 45 | 150 | 147 | 141| 135 124 12 15 108 97 44 7
25 | 131 | 124| 121| 118 104 10 9. 86 80 68 4§
15 | 102 | 99| 93| 89| 80 75 74 6. 61 5B 4
05 | 62| 54| 48| 46| 43| 41 49 3 3. 38 3
12 170 | 155| 146| 141] 135 134 12§ 12p 115 142 1
8 162 | 147 | 139| 134| 126 124 11 11p 105 1do
6 152 | 140 | 129| 123 116 1094 10 100 94 g8 g
6 45 | 137 | 124| 115| 110/ 10§ 10. 9. 9ap 83 78 1
25 | 119 | 108| 102| 98| 94 94 85 7. 7P 62 6
15 | 99| 90| 83| 77| 73 70 671 64 6. ap 4
05 | 63| 55| 49| 47| 45| 43 41 4 3. 3 3
12 158 | 143 | 131| 130 124 12. 11. 10/8 102 140
8 150 | 137 | 125| 121| 114 114 10 04 94 9o g
6 142 | 130 | 11.7| 112 106 104 9. 9. 86 81 7
8 45 | 128 | 117| 107| 101 97  9dg 8. 8. 78 72§
25 | 112 | 102| 95| 88| 83 79 71 7. 6p 6 5
15| 95| 86| 78| 71| 69| 67 65 63 5. 4p 4
05 | 63| 56| 50| 48| 45/ 44 42 4] 3. 3p 3
12 148 | 133 | 120| 119] 111 1094 10. 9B 93 92 4
8 142 | 128 116| 112 105 103 9. 9p 86 83 g
6 134 | 121 | 108| 105 98 93 8 8. 8p 76 7
10 45 | 123 | 108| 100 95/ 90 8§ 8. 7. 7B 68 6
25 | 108 | 96| 90| 84| 80 77 74 7. 6. 58 5
15 | 92| 83| 75| 69| 67/ 65 63 6 5. 50 4
05 | 64| 57| 51| 49| 47| 45 43 43 4. 3 3
12 140 | 123 | 111| 108 104 94 9. 9. 86 82 7
8 132 | 11.8| 107| 102 96 93 8 8. 70 1B 7
6 126 | 11.2| 102| 97| 90/ 85 83 7. 74 6P 6
12 45 | 11.7 | 102| 94| 90| 84 809 7. 7. 68 68 5
25 | 105 | 92| 85| 80| 78] 74 74 6. 6] 5p 5
15| 89| 80| 72| e8| 65 63 61 57 5. 4B 4
05 | 65| 58| 53| 51| 49| 47 45 43 4, ap 3
12 131 | 113| 102| 97| 91 88 84 8. 76 T2 7
8 124 | 109| 98| 92| 87/ 83 84 7.6 72 6B 6
6 118 | 104 | 93| 88| 83| 77 75 7.2 6. 68 5
14 45 | 111 | 97| 87| 82| 78 72 74 6. 6. 58 5
25 | 101 | 88| 81| 76| 71 67 65 6. 5/ 5 5
15| 86| 77| 70| 67| 63 60 58 51 5. 4y 4
05 | 66| 59| 54| 52| 50 48 44 44 4, ap 4
12 123 | 103| 92| 86| 81 77 74 7. 68 6B 6
8 11.7 | 100| 89| 83| 78] 74 7.2 6. 6. 6p 5
6 120 | 96| 85| 80| 75| 71 69 65 6. 57 5
16 45 | 105 | 91| 81| 75| 72| 68 65 6. 5. 58 5
25 | 97| 84| 76| 70| 67 63 61 51 5. 4p 4
15| 83| 74| 66| 62| 60 58 56 53 5. ap 4
05| 67| 59| 55| 53| 51| 50 48 44 4. 4B 4
FL/F =the ratio of the spring free lendth to the deflectiofF.
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Torsion Spring Design.—Fig. 19shows the types of ends most commonly used on tor-
sion springs. To produce them requires only limited tooling. The straight torsion end is the
least expensive and should be used whenever possible. After determining the spring loa
or torque required and selecting the end formations, the designer usually estimates suitabl
space or size limitations. However, the space should be considered approximate until the
wire size and number of coils have been determined. The wire size is dependent principally
upon the torque. Design data can be devoloped with the aid of the tabular data, which is :
simple method, or by calculation alone, as shown in the following sections. Many other
factors affecting the design and operation of torsion springs are also covered in the section
Torsion Spring Desigh Recommendationgpage pagd25. Design formulas are shown
inTable 13.

Curvature correctiontn addition to the stress obtained from the formulas for load or
deflection, there is a direct shearing stress on the inside of the section due to curvature
Therefore, the stress obtained by the usual formulas should be multiplied by th& factor
obtained from the curve Fig. 20 The corrected stress thus obtained is used only for com-
parison with the allowable working stress (fatigue strength) curves to determine if it is a
safe value, and should not be used in the formulas for deflection.

Torque:Torque is a force applied to a moment arm and tends to produce rotation. Tor-
sion springs exert torque in a circular arc and the arms are rotated about the central axis.
should be noted that the stress produced is in bending, notin torsion. In the spring industry
it is customary to specify torque in conjunction with the deflection or with the arms of a
spring at a definite position. Formulas for torque are expressed in pound-inches. If ounce-
inches are specified, it is necessary to divide this value by 16 in order to use the formulas.

When a load is specified at a distance from a centerline, the torque is, of course, equal t
the load multiplied by the distance. The load can be in pounds or ounces with the distance:
ininches or the load can be in grams or kilograms with the distance in centimeters or milli-
meters, but to use the design formulas, all values must be converted to pounds and inche
Design formulas for torque are based on the tangent to the arc of rotation and presume the
arod is used to support the spring. The stress in bending caused by the marReast
identical in magnitude to the torqiigprovided a rod is used.

O MO

Hook Hinged
Straight Offset Straight Torsion

Fig. 19. The Most Commonly Used Types of Ends for Torsion Springs

Theoretically, it makes no difference how or where the load is applied to the arms of tor-
sion springs. Thus, iRfig. 21, the loads shown multiplied by their respective distances pro-
duce the same torque; i.e.,’”20.5 = 10 pound-inches; X0l = 10 pound-inches; anck®
=10 pound-inches. To further simplify the understanding of torsion spring torque, observe
in bothFig. 22andFig. 23that although the turning force is in a circular arc the torque is not



Table 13. Formulas for Torsion Springs

Springs made from Springs made from Springs made from Springs made from
round wire square wire round wire square wire
Feature Formula?® Feature Formula?®
10.18T7 6T 3928,ND 3925,ND
d= 3 Sy % Sy o Ed Ed
Wire diameter, Deflection
4000TND 2375TND 4000TND 2375TND
N EF N EF Ed* Ed*
10.18T7 6T 3 3
5, = e e re 0.09825,,d 0.16665,,d
Stress, bending Torque
pounds per N N Inch Ibs. o o
square inch EdF EdF (Also=P xR) Ed*F Ed*F
392ND 392ND 4000ND 2375ND
o o ID,= N(ID free) N(ID free)
EdF EdF Inside Diameter F F
3925,D 3925,D After Deflection, N+ N+
N= Inches 360 360
Active Coils
4 5° 4 5°
Ed’F Ed’F The symbol notation is given on page 285.
4000TD 2375TD

aWhere two formulas are given for one feature, the designer should use the one found to be appropriate for the given design. The end result from either of any two

formulasisthe same.

91¢
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equal tcP times the radius. The torque in both designs elP x R because the spring rests
against the support rod at pca.t

1.3
\

« N\
5 1.2 . Round Wire
8 \} Square Wire and Rectangular Wire
= Y L
ie] e
S 1.1 RS K x S= Total Stress
E ~—T— [
®] T ~t——T

1.0

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Spring Index

Fig. 20. Torsion Spring Stress Correction for Curvature

Sllls;
N
20 lbs. 10 Ibs.
17 "
7 \\1
\ -/

Fig. 21. Right-Hand Torsion Spring

Design ProcedureTorsion spring designs require more effort than other kinds because
consideration has to be given to more details such as the proper size of a supporting roc
reduction of the inside diameter, increase in length, deflection of arms, allowance for fric-
tion, and method of testing.

Example What music wire diameter and how many coils are required for the torsion
spring shown irFig. 24, which is to withstand at least 1000 cycles? Determine the cor-
rected stress and the reduced inside diameter after deflection.

Method 1, using tablé=romTable 1!, page321, locate th&; inch inside diameter for the
spring in the left-hand column. Move to the right and then vertically to locate a torque
value nearest to the required 10 pound-inches, which is 10.07 pound-inches. At the top of
the same column, the music wire diameter is found, which is Number 31 gauge (0.085
inch). Atthe bottom of the same column the deflection for one coil is found, which is 15.81
degrees. As a 90-degree deflection is required, the number of coils needi15.81 3
5.69 (say ¥ coils).
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The spring index% = %5: 6.88 and thus the curvature correction factor
K from Fig. 20= 1.13. Therefore the corrected stress equals 16%,0003 = 188,700
pounds per square inch which is below the Light Service ciiige ) and therefore
should provide a fatigue life of over 1,000 cycles. The reduced inside diameter due to
deflectionisfound from theformulain Table 13:

_ N(D freg) _ 5.75x 0.500_

F 90
N+ﬁ) 5.75+3—60

ID, 0.479 in.

This reduced diameter easily clears a suggégtiedth diameter supporting rod: 0.479
0.4375 = 0.041 inch clearance, and it also allows for the standard tolerance. The overal
length of the spring equals the total number of coils plus one, times the wire diameter.
Thus, &,x 0.085 = 0.574 inch. If a small space of abgin. is allowed between the coils

to eliminate coil friction, an overall length 8, inch results.
Although this completes the design calculations, other tolerances should be applied in

accordance with the Torsion Spring Toleramables 1&hrough18 shown at the end of
this section.

v £
PR
=)
&>
- The Torque i =P xR, NotP x
~ ] Radius, because the Spring is
a Resting Against the Support Rod
Left hand torsion springs. at Pointa

Torque T = P x R,

Ro\% not P x radius.

Fig. 22. Left-Hand Torsion Spring

As with the Spring iffrig. 22 the
Torgue isT =P x R, NotP x
Radius, Because the Support Point
Is ata

Fig. 23. Left-Hand Torsion Spring
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[ Deflection F°
90°

16 lbs. = P

f— Loaded
+ Position

1” 21"

2 32

To fit over 7/16" rod Left hand

Fig. 24. Torsion Spring Design Example. The Spring Is to be Assemblednch Support Rod

Longer fatigue lifelf a longer fatigue life is desired, use a slightly larger wire diameter.
Usually the next larger gage size is satisfactory. The larger wire will reduce the stress anc
still exert the same torque, but will require more coils and a longer overall length.

Percentage method for calculating longer lifdie spring design can be easily adjusted
for longer life as follows:

1) Select the next larger gage size, which is Number 32 (0.090 inch] &ole 15 The
torque is 11.88 pound-inches, the design stress is 166,000 pounds per square inch, and tl
deflection is 14.9 degrees per coil. As a percentage the torquéd is88x 100 = 84 per
cent.

2) The new stress is 0.84.66,000 = 139,440 pounds per square inch. This value is under
the bottom or Severe Service curlv@. 7, and thus assures longer life.

3) The new deflection per coil is 0.84.4.97 = 12.57 degrees. Therefore, the total num-
ber of coils required = 902.57 = 7.16 (say %). The new overall length =18x 0.090 =
0.73inch (say,inch). A slightincrease in the overall length and new arm location are thus
necessary.

Method 2, using formula®Vhen using this method, it is often necessary to solve the for-
mulas several times because assumptions must be made initially either for the stress or fc
a wire size. The procedure for design using formulas is as follows (the design example is
the same as in Method 1, and the spring is showigir24):

Sep 1: Notefrom Table 13, page 315 that thewirediameter formulais:

4= /18
S

Step 2Referring tdFig. 7, select a trial stress, say 150,000 pounds per square inch.
Step 3Apply the trial stress, and the 10 pound-inches torque value in the wire diameter

formula:
_ [1o.18T _ _[10.18x 10_3 - :
d=3 =3 150,000 2/0.000679= 0.0879 inch

The nearest gauge sizes are 0.085 and 0.090 inch diaNwteT.able 21 page330, can
be used to avoid solving the cube root.

Step 4Select 0.085 inch wire diameter and solve the equation for the actual stress:
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10.18T _ 10.18x 10 _

§ = F - o088 165, 764 pounds per square inch
Sep 5: Calculate the number of coil sfromtheequation, Table 13:
N = EdF
3925, D

_ 28,500 000x 0.085x 90 _
= 392 165 7640585 _ > ° (53 %)

Step 6 Calculate the total stress. The spring index is 6.88, and the correctiorkfétor
1.13, therefore total stress = 165,764.13 = 187,313 pounds per square iMbiite The
corrected stress should not be used in any of the formulas as it does not determine th
torque or the deflection.

Table of Torsion Spring Characteristics.—Table 15shows design characteristics for

the most commonly used torsion springs made from wire of standard gauge sizes. The
deflection for one coil at a specified torque and stress is shown in the body of the table. The
figures are based on music wire (ASTM A228) and oil-tempered MB grade (ASTM
A229), and can be used for several other materials which have similar values for the mod-
ulus of elasticitye. However, the design stress may be too high or too low, and the design
stress, torque, and deflection per coil should each be multiplied by the appropriate correc-
tion factor inTable 14when using any of the materials given in that table.

Table 14. Correction Factors for Other Materials

Material Factor Material Factor

Hard Drawn MB 0.75 | Stainless 316
Chrome-Vanadium 1.10| Up to¥inch diameter 0.75
Chrome-Silicon 1.20 Over¥to¥inch diameter 0.65
Stainless 302 and 304 Over¥,inch diameter 0.65

Up to%inch diameter 0.85 | Stainless 17-7 PH

Over¥to¥,inch diameter 0.75 Up to%inch diameter 1.00

Over¥,inch diameter 0.65 Over¥;to %ginch diameter 1.07
Stainless 431 0.80|  Over¥ginch diameter 112
Stainless 420 0.85

For use with values ifiable 15Note The figures inTable 15are for music wire (ASTM A228)
and oil-tempered MB grade (ASTM A229) and can be used for several other materials that have a
similar modulus of elasticitif. However, the design stress may be too high or too low, and therefore
the design stress, torque, and deflection per coil should each be multiplied by the appropriate correc-
tion factor when using any of the materials given in this tatablé 14.



Table 15. Torsion Spring Deflections
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Inside AMW Wire Gauge and Decimal Equivalent®
Diam. T | 2 | 3 | 2 | 5 | 6 | 7 | 8 | 9 | 10 1 2 | 3 | 14 | 5 | 16
.010 .011 .012 .013 .014 .016 .018 .020 .022 .024 .026 .029 .031 .033 .035 .037
Design Stress, pounds per sq. in. (thousands)
232 | 229 T 226 [ 224 | 221 | 217 | 214 [ 210 [ 207 [ 205 | 202 [ 199 [ 197 [ 196 [ 194 [ 192
Torque, pound-inch
.0228 .0299 .0383 0483 | 0596 [ 0873 | 1226 | 1650 | 2164 | 2783 3486 | 4766 | 5763 6917 | 8168 | .9550
Fractional Decima Deflection, degrees per coil
¥ 0.0625 22.35 20.33 18.64 17.29 16.05 14.15 18.72 1151 10.56 9.818 9.137 8.343 7.896
S 0.078125 27.17 24.66 22.55 20.86 19.32 16.96 15.19 13.69 12.52 11.59 10.75 9.768 9.215 e e e
% 0.09375 31.98 28.98 26.47 24.44 22.60 19.78 17.65 15.87 14.47 13.36 12.36 1119 10.53 10.18 9.646 9.171
Yo 0.109375 36.80 33.30 30.38 28.02 25.88 22.60 2012 18.05 16.43 15.14 13.98 12.62 11.85 1143 10.82 10.27
% 0.125 41.62 37.62 34.29 31.60 29.16 25.41 2259 20.23 18.38 16.91 15.59 14.04 1317 12.68 11.99 11.36
Sea 0.140625 46.44 41.94 38.20 35.17 3243 28.23 25.06 2241 20.33 18.69 17.20 15.47 14.49 13.94 13.16 12.46
S 0.15625 51.25 46.27 4211 38.75 35.71 31.04 27.53 24.59 22.29 20.46 18.82 16.89 15.81 15.19 14.33 13.56
%6 0.1875 60.89 54.91 49.93 45.91 4227 36.67 3247 28.95 26.19 24.01 22.04 19.74 18.45 17.70 16.67 15.75
"% 0.21875 70.52 63.56 57.75 53.06 48.82 42.31 37.40 3331 30.10 27.55 25.27 2259 21.09 2021 19.01 17.94
% 0.250 80.15 72.20 65.57 60.22 55.38 47.94 42.34 37.67 34.01 3110 28.49 25.44 2373 2272 21.35 2013
Inside AMW Wire Gauge and Decimal Equivalent®
Diam. 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 25 | 26 | 27 | 28 | 29 | 30 | 31
.039 .041 .043 .045 .047 .049 .051 .055 .059 .063 .067 .071 .075 .080 .085
Design Stress, pounds per sq. in. (thousands)
190 | 188 | 187 | 18 | 184 | 18 | 182 | 180 | 178 | 176 | 174 | 173 | it [ 169 | 167
Torque, pound-inch
1107 | 1272 | 1460 | 1655 | 1876 | 2014 | 2371 | 2941 | 3590 | 4322 | 5139 | 6080 | 7084 | 8497 | 1007
Fractional Decimal Deflection, degrees per coil
Tea 0.109375 9.771 9.320 8.957 . o -
% 0.125 10.80 10.29 9.876 9.447 9.102 8.784 . . .
Sea 0.140625 11.83 11.26 10.79 10.32 9.929 9572 9.244 8.654 8.141 . .
Y 0.15625 12.86 12.23 1171 1118 10.76 10.36 9.997 9.345 8.778 8.279 7.975 e e e e
A 0.1875 14.92 14.16 13.55 12.92 12.41 11.94 11.50 10.73 10.05 9.459 9.091 8.663 8.232 7772 7.364
Y 0.21875 16.97 16.10 15.39 14.66 14.06 1352 13.01 1211 1133 10.64 10.21 9.711 9.212 8.680 8.208
% 0.250 19.03 18.04 17.22 16.39 15.72 15.09 14.52 13.49 12.60 11.82 1132 10.76 10.19 9.588 9.053

aFor sizesup to 13 gauge, thetablevaluesare for music wirewith amodulus E of 29,000,000 psi; and for sizesfrom 27 to 31 guage, the valuesarefor oil-tempered MB
with amodulus of 28,500,000 psi.

Tee



Table 15. (Continued) Torsion Spring Deflections

Inside AMW Wire Gauge and Decimal Equivalent®

Diam. 8 9 | 10 | 11 | 12 | 13 | 14 15 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
020 022 024 026 029 031 033 035 .037 .039 041 043 045 047 049 051

Design Stress, pounds per sq. in. (thousands)
210 [ 207 [ 205 [ 202 [ 199 [ 197 | 196 [ 194 [ 192 [ 190 [ 188 [ 187 [ 185 [ 184 | 18 [ 182

Torque, pound-inch
1650 | 2164 | 2783 | 3486 | 4766 | 5763 | 6917 | 8168 | 9550 | 1107 [ 1272 | 1460 | 1655 | 1876 | 2114 [ 2371
Fractional Decima Deflection, degrees per coil

% 028125 4203 | 3792 | 3465 | 3172 | 2820 | 2637 | 2523 | 2369 | 2232 | 2100 | 1097 | 1906 | 1813 | 17.37 | 1667 | 1603
%% 0.3125 4639 | 4182 | 3819 | 3495 | 3114 | 2001 | 27.74 | 2604 | 2451 | 2315 | 2191 | 2090 | 1987 | 1902 | 1825 | 1753
EA 0.34375 5075 | 4573 | 4174 | 3817 | 3399 | 3165 | 3025 | 2838 | 2671 | 2521 | 2385 | 2273 | 2160 | 2068 | 198 | 1904
% 0375 5511 | 4964 | 4529 | 4140 | 3684 | 3428 | 3276 | 3072 | 2890 | 27.26 | 2578 | 2457 | 2334 | 2233 | 2140 | 2055
B 0.40625 5047 | 5354 | 4885 | 4463 | 3069 | 3692 | 3526 | 3306 | 3100 | 2932 | 2772 | 2641 | 2508 | 2399 [ 2298 | 2206
s 0.4375 6383 | 5745 | 5238 | 4785 | 4254 | 3956 | 37.77 | 3540 | 3328 | 3138 | 2966 | 2825 | 2681 | 2564 | 2456 | 2356
By 0.46875 6819 | 6136 | 5593 | 5100 | 4539 | 4220 | 4028 | 37.74 | 3547 | 3344 | 3150 | 3008 | 2855 | 27.29 | 2614 | 2507
A 0500 7255 | 6527 | 5948 | 5430 | 4824 | 4484 | 4279 | 4008 | 3767 | 3549 | 3353 | 3192 | 3029 | 2895 [ 2771 | 2658

i AMW Wire Gauge and Decimal Equivalent?
o 24 | 25 | 26 27 | 28 | 29 30 | 31 32 | 33 | 34 | 35 36 | 37 | %
055 059 063 067 071 075 .080 085 090 095 100 106 112 118 125

Design Stress, pounds per sq. in. (thousands)
180 [ 178 [ 176 [ 174 [ 173 ] a7a [ 169 | 167 | 166 | 164 [ 163 [ 161 | 160 [ 158 [ 156

Torque, pound-inch
2941 | 3590 [ 432 | 5139 | 6080 | 7084 | 8497 | 1007 | 1188 [ 1381 | 1600 | 1883 | 2207 | 2549 | 2092
Fractional Decimal Deflection, degrees per coil

% 028125 148 | 1388 | 1300 | 1244 | 1181 | 1117 | 1050 | 9897 | 9418 | 8934 [ 8547 | 8000 [ 7727 | 7353 [ 6973
%6 03125 1626 | 1515 | 1418 | 1356 | 1285 | 1215 1140 | 1074 | 1021 | 9676 | 9248 | 8743 | 8341 | 7920 | 7510
EA 0.34375 1764 | 1642 | 1536 | 1467 | 1390 | 1313 1231 | 1159 | 1200 | 1042 | 9948 | 939%6 | 8955 | 8504 | 8046
% 0375 1902 | 1770 | 1654 | 1579 | 1495 | 1411 1322 | 1243 | 1180 | 1116 | 1065 | 1005 | 9569 | 9080 | 8583
EA 0.40625 2040 | 1897 | 1772 | 1690 | 1599 [ 1509 1413 | 1328 | 1259 | 1190 [ 1135 | 1070 | 1018 | 9655 | 9119
s 04375 2179 | 2025 | 1890 1802 | 1704 | 1607 1504 | 1412 | 1338 | 1264 | 1205 | 11.35 | 1080 | 1023 | 9655
B 0.46875 2317 | 2152 | 2008 | 1914 | 1809 [ 17.05 1594 | 1496 | 1417 | 1339 [ 1275 | 1200 | 1241 1081 | 1019
1 0500 2455 | 2280 | 2126 | 2025 | 1914 | 1803 1685 | 1581 | 1497 | 1413 | 1345 | 1266 | 1203 | 11.38 | 1073

aFor sizesup to 13 gauge, thetablevaluesarefor music wirewithamodulus E of 29,000,000 psi; and for sizesfrom 27 to 31 guage, theval uesarefor oil-tempered MB
with amodulus of 28,500,000 psi.
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Table 15. (Continued) Torsion Spring Deflections

Inside AMW Wire Gauge and Decimal Equivalent®
Diam. 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
.037 .039 .041 .043 .045 .047 .049 .051 .055 .059 .063 .067 .071 .075 .080
Design Stress, pounds per sq. in. (thousands)
102 | 190 [ 188 [ 187 [ 185 [ 184 [ 183 182 180 178 | 176 [ 174 | 173 [ 171 | 169
Torque, pound-inch
9550 | 1107 [ 1272 | 1460 | 1655 | 1876 | 2114 | 2371 | 2941 | 3590 [ 4322 | 5139 | 6080 [ 7.084 | 8497
Fractional Decimal Deflection, degrees per coil
B 0.53125 39.86 37.55 35.47 33.76 32.02 30.60 29.29 28.09 25.93 24.07 22.44 2137 20.18 19.01 17.76
%6 0.5625 42.05 39.61 37.40 35.59 33.76 3225 30.87 29.59 27.32 2535 23.62 2249 21.23 19.99 18.67
9% 0.59375 44.24 41.67 39.34 3743 35.50 3391 3245 3110 28.70 26.62 24.80 23.60 22.28 20.97 19.58
% 0.625 46.43 43.73 41.28 39.27 37.23 35.56 34.02 3261 30.08 27.89 25.98 2472 2333 21.95 20.48
2 0.65625 48.63 45.78 4322 41.10 3897 37.22 35.60 34.12 31.46 29.17 27.16 25.83 2437 22.93 21.39
Ye 0.6875 50.82 47.84 45.15 42.94 40.71 38.87 37.18 35.62 32.85 30.44 2834 26.95 25.42 2391 22.30
A 0.71875 53.01 49.90 47.09 4478 42.44 40.52 38.76 37.13 34.23 31.72 29.52 28.07 26.47 24.89 23.21
% 0.750 55.20 51.96 49.03 46.62 44.18 42.18 40.33 38.64 35.61 32.99 30.70 29.18 27.52 25.87 24.12
Insde Wire Gauge and Decima Equivalent®
Diam. 31 2 | 33 | ) | 35 | 36 | 37 | % 10 9 | A | 8 | 7 | % | 6 5
.085 .090 .095 .100 .106 112 .118 125 .135 .1483 1563 .162 177 .1875 192 .207
Design Stress, pounds per sq. in. (thousands)
167 | 166 | 164 | 163 | 161 | 160 | 158 | 156 ] 161 158 | 156 | 154 | 150 | 149 | 146 143
Torque, pound-inch
1007 | 1188 | 1381 | 1600 | 1883 | 2207 | 2549 ]| 2992 | 3890 | 5060 | 5844 | 64.30 | 8168 | 9645 | 1015 | 1246
Fractional Decima Deflection, degrees per coil
% 0.53125 16.65 15.76 14.87 14.15 1331 12.64 11.96 11.26 10.93 9.958 9.441 9.064 8.256 7.856 7.565 7.015
%6 0.5625 17.50 16.55 15.61 14.85 13.97 13.25 1253 11.80 1144 10.42 9.870 9.473 8.620 8.198 7.891 7.312
Y 0.59375 1834 17.35 16.35 15.55 14.62 13.87 1311 12.34 11.95 10.87 10.30 9.882 8.984 8.539 8218 7.609
% 0.625 19.19 18.14 17.10 16.25 15.27 14.48 13.68 12.87 12.47 11.33 10.73 10.29 9.348 8.881 8.545 7.906
% 0.65625 20.03 18.93 17.84 16.95 15.92 15.10 14.26 13.41 12.98 11.79 1116 10.70 9.713 9.222 8.872 8.202
Y 0.6875 20.88 19.72 1858 17.65 16.58 1571 14.83 13.95 13.49 12.25 1159 1111 10.08 9.564 9.199 8.499
2 0.71875 2172 20.52 19.32 18.36 17.23 16.32 1541 14.48 14.00 1271 12.02 1152 10.44 9.905 9.526 8.796
% 0.750 22.56 2131 20.06 19.06 17.88 16.94 15.99 15.02 14.52 13.16 12.44 11.92 10.81 10.25 9.852 9.093

aFor sizes up to 26 gauge, the table values are for music wire with amodulus £ of 29,500,000 psi; for sizesfrom 27 to %inch diameter the table values are for music

wirewith amodulus of 28,500,000 psi; for sizesfrom 10 gauge to % inch diameter, the values are for oil-tempered M B with amodul us of 28,500,000 psi.

bGauges 31 through 37 are AMW gauges. Gauges 10 through 5 are Washburn and M oen.
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Table 15. (Continued) Torsion Spring Deflections

AMW Wire Gauge and Decimal Equivalent®

g};‘:ﬁ 24 25 | 26 27 | 28 | 29 30 | 31 32 | 33 | 34 | 35 | 36 | 37 | %
.055 059 .063 067 071 075 .080 .085 090 095 100 .106 112 118 125
Design Stress, pounds per sq. in. (thousands)
180 [ 178 [ 176 [ 174 [ 173 [ 1n 169 167 | 166 [ 164 [ 163 [ 161 | 160 [ 158 [ 156
Torque, pound-inch
2941 | 3590 | 4322 | 5139 | 6080 | 7084 | 8497 | 1007 | 1188 | 1381 | 1600 | 1883 | 2207 | 2549 | 29092
Fractional Decimal Deflection, degrees per coil
EA 0.8125 3838 35.54 33.06 3142 29.61 27.83 25.93 24.25 22.90 2155 20.46 19.19 1817 17.14 16.09
% 0.875 4114 38.09 35.42 33.65 3170 2979 27.75 25.94 24.58 23.03 21.86 2049 19.39 18.29 17.17
B 0.9375 4391 4064 37.78 3588 33.80 3175 29.56 27.63 26.07 2452 23.26 21.80 2062 19.44 18.24
1 1.000 46.67 43.19 4014 3811 35.89 3371 31.38 29.32 27.65 26.00 24.66 2311 21.85 20.59 19.31
7 1.0625 4944 | 4574 42.50 4035 37.99 35.67 33.20 31.01 29.24 27.48 26.06 24.41 23.08 21.74 20.38
1% 1125 52.20 4828 44.86 4258 | 4008 37.63 35.01 32.70 30.82 28.97 27.46 2572 2431 22.89 21.46
13 11875 54.97 50.83 47.22 4481 | 4218 39.59 36.83 34.39 3241 3045 28.86 27.02 2553 24.04 2253
1, 1.250 57.73 53.38 49.58 4704 | 4427 4155 38.64 36.08 33.99 31.94 30.27 28.33 2676 2519 23.60
. Washburn and Moen Gauge or Size and Decimal Equivalent?
Inside

Do, 10 | 9 | % | 8 | 7 | % 6 | 5 A 4 3 | % 2 | A | Yo %

135 1483 | 1563 162 77 1875 192 .207 2188 | 2253 | .2437 250 2813 | 3125 | 3438 375

Design Stress, pounds per sg. in. (thousands)
161 | 158 | 156 | 154 [ 150 [ 149 [ 146 [ 143 [ 142 141 | 140 [ 139 138 [ 137 [ 136 135
Torque, pound-inch
3890 | 5060 | 5844 | 6430 | 8168 | 9645 | 1015 | 1246 | 1460 [ 1583 | 1990 | 2133 [ 3015 [ 4106 | 5425 | 700.0
Fractional Decima Deflection, degrees per coil

B 0.8125 1554 | 1408 | 1330 | 1274 | 1153 | 1093 | 1051 | 9687 | 9208 | 8933 | 8346 | 8125 | 7382 | 6784 | 6292 | 5880
% 0.875 1657 | 1500 | 1416 | 1356 | 1226 | 11.61 | 1116 | 1028 | 9766 | 9471 | 8840 | 8603 | 7.803 | 7.161 | 6632 | 6.189
B 0.9375 1759 | 1591 | 1502 | 1438 | 1299 | 1230 | 1181 | 1087 | 1032 | 1001 | 9333 | 9081 | 8225 | 7537 | 6972 | 6.499
1 1.000 1862 | 1683 | 1588 | 1519 | 1372 | 1298 | 1247 | 1147 | 1088 | 1055 | 9827 | 9559 | 8647 | 7914 | 7312 | 6.808
e 1.0625 1964 | 1774 | 1674 | 1601 | 1445 | 1366 | 1312 | 1206 | 1144 | 1109 | 1032 | 1004 | 9069 | 8291 | 7652 | 7.118
1% 1125 2067 | 1866 | 1759 | 1683 | 1518 | 1435 | 1377 | 1266 | 1200 | 1162 | 1081 | 1052 | 9491 | 8668 | 7.993 | 7.427
1% 11875 2169 | 1957 | 1845 | 1764 | 1590 | 1503 | 1443 | 1325 | 1256 | 1216 | 1131 | 1099 | 9912 | 9045 | 8333 | 7.737
1, 1.250 2272 | 2049 | 1931 | 1846 | 1663 | 1571 | 1508 | 1384 | 1311 | 1270 | 1180 | 1147 | 1033 | 9422 | 8673 | 8046

aFor sizes up to 26 gauge, the table values are for music wire with amodulus £ of 29,500,000 psi; for sizesfrom 27 to %inch diameter the table values are for music

wirewith amodulus of 28,500,000 psi; for sizesfrom 10 gaugeto %inch diameter, the values arefor oil-tempered M B with amodul us of 28,500,000 psi.
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For an example in the use of the table, see the example starting @iljalyete: Intermediate
values may be interpolated within reasonable accuracy.

Torsion Spring Design Recommendations.—Fhe following recommendations should
be taken into account when designing torsion springs:

Hand:The hand or direction of coiling should be specified and the spring designed so
deflection causes the spring to wind up and to have more coils. This increase in coils anc
overall length should be allowed for during design. Deflecting the spring in an unwinding
direction produces higher stresses and may cause early failure. When a spring is sighte
down the longitudinal axis, it is “right hand” when the direction of the wire into the spring
takes a clockwise direction or if the angle of the coils follows an angle similar to the threads
of a standard bolt or screw, otherwise itis “left hand.” A spring must be coiled right-handed
to engage the threads of a standard machine screw.

Rods:Torsion springs should be supported by a rod running through the center whenever
possible. If unsupported, or if held by clamps or lugs, the spring will buckle and the torque
will be reduced or unusual stresses may occur.

Diameter Reductiorifhe inside diameter reduces during deflection. This reduction
should be computed and proper clearance provided over the supporting rod. Also, allow-
ances should be considered for normal spring diameter tolerances.

Winding:The coils of a spring may be closely or loosely wound, but they seldom should
be wound with the coils pressed tightly together. Tightly wound springs with initial tension
on the coils do not deflect uniformly and are difficult to test accurately. A small space
between the coils of about 20 to 25 per cent of the wire thickness is desirable. Square an
rectangular wire sections should be avoided whenever possible as they are difficult to
wind, expensive, and are not always readily available.

Arm LengthAll the wire in a torsion spring is active between the points where the loads
are applied. Deflection of long extended arms can be calculated by allowing one third of
the arm length, from the point of load contact to the body of the spring, to be converted into
coils. However, if the length of arm is equal to or less than one-half the length of one caoil,
it can be safely neglected in most applications.

Total Coils:Torsion springs having less than three coils frequently buckle and are diffi-
cult to test accurately. When thirty or more coils are used, light loads will not deflect all the
coils simultaneously due to friction with the supporting rod. To facilitate manufacturing it
is usually preferable to specify the total number of coils to the nearest fraction in eighths or
quarters such aslg 5%, 5%, etc.

Double TorsionThis design consists of one left-hand-wound series of coils and one
series of right-hand-wound coils connected at the center. These springs are difficult to
manufacture and are expensive, so it often is better to use two separate springs. For torqt
and stress calculations, each series is calculated separately as individual springs; then tf
torque values are added together, but the deflections are not added.

Bends:Arms should be kept as straight as possible. Bends are difficult to produce and
often are made by secondary operations, so they are therefore expensive. Sharp bends ra
stresses that cause early failure. Bend radii should be as large as practicable. Hooks tend
open during deflection; their stresses can be calculated by the same procedure as that fc
tension springs.

Spring IndexThe spring index must be used with caution. In design formulaBidis
For shop measurementitis O For arbor design itis I.3l/ Conversions are easily per-
formed by either adding or subtracting 1 frond.D/

Proportions:A spring index between 4 and 14 provides the best proportions. Larger
ratios may require more than average tolerances. Ratios of 3 or less, often cannot be coile
on automatic spring coiling machines because of arbor breakage. Also, springs with
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smaller or larger spring indexes often do not give the same results as are obtained using th
design formulas.

Torsion Spring Tolerances.—T orsion springs are coiled in a different manner from
other types of coiled springs and therefore different tolerances apply. The commercial tol-
erance on loads #510 per cent and is specified with reference to the angular deflection.
For example: 100 pound-inche40 per cent at 45 degrees deflection. One load specified
usually suffices. If two loads and two deflections are specified, the manufacturing and test-
ing times are increased. Tolerances smaller tha® per cent require each spring to be
individually tested and adjusted, which adds considerably to manufacturing time and cost.
Tables 1617, and18 give, respectively, free angle tolerances, coil diameter tolerances,
and tolerances on the number of coils.

Table 16. Torsion Spring Tolerances for Angular Relationship of Ends

Spring Index
Number
ol 4 | 6 | 8 | 0] 2] 1] 18] 18] 20
(N) Free Angle Tolerance, degrees
1 2 3 35 4 45 5 5.5 5.5 6
2 4 5 7 8 8.5 9 9.5 10
3 55 7 9.5 10.5 11 12 13 14
4 7 9 10 12 14 15 16 16.5 17
5 8 10 12 14 16 18 20 20.5 21
6 9.5 12 14.5 16 19 20.5 21 225 24
8 12 15 18 20.5 23 25 27 28 29
10 14 19 21 24 27 29 315 325 34
15 20 25 28 31 34 36 38 40 42
20 25 30 34 37 41 44 47 49 51
25 29 35 40 44 48 52 56 60 63
30 32 38 44 50 55 60 65 68 70
50 45 55 63 70 77 84 90 95 100
Table 17. Torsion Spring Coil Diameter Tolerances
Spring Index
Wire
Diameter, 4 6 | 8 10 12 14 16
Inch Coil Diameter Tolerance; inch
0.015 0.002 0.002 0.002 0.002 0.00: 0.008 0.004
0.023 0.002 0.002 0.002 0.003| 0.004 0.00p 0.006
0.035 0.002 0.002 0.003 0.004 0.00¢ 0.00[7 0.009
0.051 0.002 0.003 0.005 0.007| 0.00 0.01p 0.012
0.076 0.003 0.005 0.007 0.009 0.01% 0.01p 0.018
0.114 0.004 0.007 0.010 0.013 0.01 0.02p 0.028
0.172 0.006 0.010 0.013 0.020 0.021 0.03¢ 0.042
0.250 0.008 0.014 0.022 0.030y 0.04 0.05p 0.060
Table 18. Torsion Spring Tolerance on Number of Coils
Number of Coils Tolerance Number of Coils Tolerance
o over 10 o
upto5 +5 t0 20 +15°
over 5 over 20
to 10 107 to 40 30°
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Miscellaneous Springs.—Fhis section provides information on various springs, some in
common use, some less commonly used.

Conical compressiornthese springs taper from top to bottom and are useful where an
increasing (instead of a constant) load rate is needed, where solid height must be small, an
where vibration must be damped. Conical springs with a uniform pitch are easiest to coil.
Load and deflection formulas for compression springs can be used — using the average
mean coil diameter, and providing the deflection does not cause the largest active coil to lie

against the bottom coil. When this happens, each coil must be calculated separately, usin
the standard formulas for compression springs.

Constant force spring§hose springs are made from flat spring steel and are finding
more applications each year. Complicated design procedures can be eliminated by selec
ing a standard design from thousands now available from several spring manufacturers.

Spiral, clock, and motor springAithough often used in wind-up type motors for toys
and other products, these springs are difficult to design and results cannot be calculate

with precise accuracy. However, many useful designs have been developed and are avai
able from spring manufacturing companies.

Flat springs:These springs are often used to overcome operating space limitations in
various products such as electric switches and rélayge 19ists formulas for designing

flat springs. The formulas are based on standard beam formulas where the deflection i
small.

Table 19. Formulas for Flat Springs

P F P P P
o3 O o e o P et
Feature L ) ~F “\?/F ] *\*’F
14 . b = R
[_PLAN |b|"TPLAN b | . 3
7= T t
_pPL _ 4PL3 _ 6PL3 _ 5.20PL3
= f=2= f=2= f=
Deflect.,f 4EDb8 Ebt Ebt Ebt
Inches _§lL2 2§12 _§lL? _ 0875L2
~ BEt T TBEt T Et T TEt
25,b82 bt? bt? bt?
p-2 p = 3PC p = 2PC p=
Load,P 3L 6L 6L 6L
Pounds _ 4EDBF _ Eb®F _ Eb®F _ EbEF
L3 418 6L3 52213
STresss, - 3pL - 6PL _ 6PL - 6PL
Bending S = 2bt2 S = bt2 S = bt2 S = bt2
Pounds _ BEtF _3EtF _EfF _ EfF
per sq. =Tz TRl 1z = 2
inch L 2L L 0.87L
.o S,L2 .o 25,12 .o S,L2 ‘o 0.875,L.2
Thicknesst ~ BEF " 3EF T EF T TEF
Inches . PL3 _ 34A/FT_3 - 6PL3 - 5.22PL3
4EbF EbF N EbF N EbF

Based on standard beam formulas where the deflection is small
See page85for notation.

Note:Where two formulas are given for one feature, the designer should use the one found to be
appropriate for the given design. The result from either of any two formulas is the same.
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Belleville washersThese washer type springs can sustain relatively large loads with
small deflections, and the loads and deflections can be increased by stacking the springs ¢
shown inFig. 25

Design data is not given here because the wide variations in ratios of O.D. to I.D., height
to thickness, and other factors require too many formulas for convenient use and involve
constants obtained from more than 24 curves. It is now practicable to select required size:
from the large stocks carried by several of the larger spring manufacturing companies.
Most of these companies also stock curved and wave washers.

,4‘,

>ffx< Z N

Fig. 25. Examples of Belleville Spring Combinations
Volute springsThese springs are often used on army tanks and heavy field artillery, and
seldom find additional uses because of their high cost, long production time, difficulties in
manufacture, and unavailability of a wide range of materials and sizes. Small volute
springs are often replaced with standard compression springs.

Torsion barsAlthough the more simple types are often used on motor cars, the more
complicated types with specially forged ends are finding fewer applications as time goes
on.

Moduli of Elasticity of Spring Materials.— The modulus of elasticity in tension,
denoted by the lettét, and the modulus of elasticity in torsion, denoted by the Bttere

used in formulas relating to spring design. Values of these moduli for various ferrous and
nonferrous spring materials are giveifable.

General Heat Treating Information for Springs.—The following is general informa-

tion on the heat treatment of springs, and is applicable to pre-tempered or hard-drawn
spring materials only.

Compression springare baked after coiling (before setting) to relieve residual stresses
and thus permit larger deflections before taking a permanent set.

Extension springalso are baked, but heat removes some of the initial tension. Allow-
ance should be made for this loss. Baking at 500 degrees F for 30 minutes removes appro»
imately 50 per cent of the initial tension. The shrinkage in diameter however, will slightly
increase the load and rate.

Outside diameters shrinkhen springs of music wire, pretempered MB, and other car-
bon or alloy steels are baked. Baking also slightly increases the free length and these
changes produce a little stronger load and increase the rate.

Outside diameters expamdhen springs of stainless steel (18-8) are baked. The free
length is also reduced slightly and these changes resultin a little lighter load and a decreas
the spring rate.

Inconel, Monel, and nickel allog® not change much when baked.

Beryllium-copper shrinks and deformveen heated. Such springs usually are baked in
fixtures or supported on arbors or rods during heating.

Brass and phosphor brongprings should be given a light heat only. Baking above 450
degrees F will soften the material. Do not heat in salt pots.

Torsion springslo not require baking because coiling causes residual stresses in a direc-
tion that is helpful, but such springs frequently are baked so that jarring or handling will not
cause them to lose the position of their ends.
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Table 20. Moduli of Elasticity in Torsion and Tension of Spring Materials

Ferrous Materials Nonferrous Materials
Modulus of Elasticity, Modulus of Elasticity,
pounds per square inch pounds per square inch
Material In Torsion, In Tension, Material In Torsion, In Tension,
(Commercial Name) G E (Commercial Name) G E
Hard Drawn MB Spring Brass
Up t0 0.032 inch 11,700,000 28,800,00 Type 70-30 5,000,p00 15,000,000
0.033 to 0.063 inch 11,600,040 28,700,000 Phosphor Bronze
0.064 to 0.125 inch 11,500,040 28,600,0 5 per cent tin 6,000{000 15,000,000
0.126 to 0.625 inch 11,400,090 28,500,00( Beryllium-Copper
Music Wire Cold Drawn 4 Nos. 7,000,00 17,000,000
Up to 0.032 inch 12,000,000 29,500,00 Pretempered,
0.033 to 0.063 inch 11,850,040 29,000,0 fully hard 7,250,000 19,000,400
0.064 to 0.125 inch 11,750,040 28,500,000 Inconef 600 10,500,000 31,000,000
0.126 to 0.250 inch 11,600,040 28,000,0¢ Inconef X 750 10,500,000 31,000,000
QOil-Tempered MB 11,200,00 28,500,00
Chrome-Vanadium 11,200,090 28,500,000 MoneP 400 9,500,000 26,000,000
Chrome-Silicon 11,200,00p 29,500,000 MoneP K 500 9,500,000 26,000,000
Silicon-Manganese 10,750,090 29,000,004 Duranicket 300 11,000,000 30,000,000
Stainless Steel Permanickel 11,000,000 30,000,000
Types 302, 304, 316 10,000,000 28,000,000
Type 17-7 PH 10,500,000 29,500,000 Ni Span @902 10,000,000| 27,500,000
Type 420 11,000,000 29,000,009 | Elgiloy© 12,000,000 29,500,000
Type 431 11,400,001 29,500,000 | Iso-Elasti¢ 9,200,000 26,000,000

aTrade name of International Nickel Company.

bMay be 2,000,000 pounds per square inch less if material is not fully hard.
¢Trade name of Hamilton Watch Company.

dTrade name of John Chatillon & Sons.

Note: ModulusG (shear modulus) is used for compression and extension springs; mBdulus
(Young's modulus) is used for torsion, flat, and spiral springs.

Spring brass and phosphor brorsg&ings that are not very highly stressed and are not
subject to severe operating use may be stress relieved after coiling by immersing them ir
boiling water for a period of 1 hour.

Positions of loops withange with heat. Parallel hooks may change as much as 45
degrees during baking. Torsion spring arms will alter position considerably. These
changes should be allowed for during looping or forming.

Quick heatingafter coiling either in a high-temperature salt pot or by passing a spring
through a gas flame is not good practice. Samples heated in this way will not conform with
production runs that are properly baked. A small, controlled-temperature oven should be
used for samples and for small lot orders.

Plated springshould always be baked before plating to relieve coiling stresses and
again after plating to relieve hydrogen embrittiement.

Hardnessvalues fall with high heat—but music wire, hard drawn, and stainless steel will
increase 2 to 4 points Rockwell C.
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Table 21. Squares, Cubes, and Fourth Powers of Wire Diameters

Steel Music Diameter
Wire or Piano Section Fourth
Gage Wire Inch Area Square Cube Power
(U.S.) Gage
7-0 0.4900 0.1886 0.24010 0.11765 0.05765
6-0 0.4615 0.1673 0.21298 0.09829 0.04536
5-0 0.4305 0.1456 0.18533 0.07978 0.03435
4-0 0.3938 0.1218 0.15508 0.06107 0.02405
3-0 0.3625 0.1032 0.13141 0.04763 0.01727
2-0 0.331 0.0860 0.10956 0.03626 0.01200
1-0 0.3065 0.0738 0.09394 0.02879 0.008825
1 0.283 0.0629 0.08009 0.02267 0.006414
2 0.2625 0.0541 0.06891 0.01809 0.004748
3 0.2437 0.0466 0.05939 0.01447 0.003527
4 0.2253 0.0399 0.05076 0.01144 0.002577
5 0.207 0.0337 0.04285 0.00887 0.001836
6 0.192 0.0290 0.03686 0.00708 0.001359
45 0.180 0.0254 0.03240 0.00583 0.001050
7 0.177 0.0246 0.03133 0.00555 0.000982
44 0.170 0.0227 0.02890 0.00491 0.000835
8 43 0.162 0.0206 0.02624 0.00425 0.000689
42 0.154 0.0186 0.02372 0.00365 0.000563
9 0.1483 0.0173 0.02199 0.00326 0.000484
41 0.146 0.0167 0.02132 0.00311 0.000455
40 0.138 0.0150 0.01904 0.00263 0.000363
10 0.135 0.0143 0.01822 0.00246 0.000332
39 0.130 0.0133 0.01690 0.00220 0.000286
38 0.124 0.0121 0.01538 0.00191 0.000237
11 0.1205 0.0114 0.01452 0.00175 0.000211
37 0.118 0.0109 0.01392 0.00164 0.000194
36 0.112 0.0099 0.01254 0.00140 0.000157
35 0.106 0.0088 0.01124 0.00119 0.000126
12 0.1055 0.0087 0.01113 0.001174 0.0001239|
34 0.100 0.0078 0.0100 0.001000 0.0001000
33 0.095 0.0071 0.00902 0.000857| 0.0000815|
13 0.0915 0.0066 0.00837 0.000766 0.0000701
32 0.090 0.0064 0.00810 0.000729 0.0000656
31 0.085 0.0057 0.00722 0.000614| 0.0000522|
14 30 0.080 0.0050 0.0064 0.000512 0.0000410|
29 0.075 0.0044 0.00562 0.000422| 0.0000316
15 0.072 0.0041 0.00518 0.000373 0.0000269
28 0.071 0.0040 0.00504 0.000358 0.0000254|
27 0.067 0.0035 0.00449 0.000301 0.0000202}
26 0.063 0.0031 0.00397 0.000250]| 0.0000158
16 0.0625 0.0031 0.00391 0.000244 0.0000153|
25 0.059 0.0027 0.00348 0.000205| 0.0000121]
24 0.055 0.0024 0.00302 0.000166| 0.0000091p
17 0.054 0.0023 0.00292 0.000157 0.0000085(
23 0.051 0.0020 0.00260 0.000133| 0.0000067f
22 0.049 0.00189 0.00240 0.000118 0.0000057p
18 0.0475 0.00177 0.00226 0.000107| 0.0000050p
21 0.047 0.00173 0.00221 0.000104 0.0000048B
20 0.045 0.00159 0.00202 0.000091 0.0000041]
19 0.043 0.00145 0.00185 0.00007 0.00000342
19 18 0.041 0.00132 0.00168 0.00006% 0.00000243
17 0.039 0.00119 0.00152 0.00005 0.00000231
16 0.037 0.00108 0.00137 0.000050f7 0.00000187
15 0.035 0.00096 0.00122 0.0000420 0.00000150
20 0.0348 0.00095 0.00121 0.000042fL 0.0000014y7
14 0.033 0.00086 0.00109 0.0000350 0.00000119
21 0.0317 0.00079 0.00100 0.000031p 0.00000101L
13 0.031 0.00075 0.00096 0.0000298 0.00000094
12 0.029 0.00066 0.00084 0.0000244 0.000000707
22 0.0286 0.00064 0.00082 0.000023 0.0000006p9
11 0.026 0.00053 0.00068 0.00001 0.000000457
23 0.0258 0.00052 0.00067 0.000017| 0.0000004¢3
10 0.024 0.00045 0.00058 0.00001 0.000000332
24 0.023 0.00042 0.00053 0.000012; 0.0000002B0
9 0.022 0.00038 0.00048 0.000010 0.0000002B4
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Table 22. Causes of Spring Failure

Cause Comments and Recommendations

High The majority of spring failures are due to high stresses caused by large

stress deflections and high loads. High stresses should be used only for stdtically
loaded springs. Low stresses lengthen fatigue life.

Hvdrogen Improper electroplating methods and acid cleaning of springs, without

emgrittlgment proper baking treatment, cause spring steels to become brittle, and pre a

Group frequent cause of failure. Nonferrous springs are immune.
1 Sharp Sharp bends on extension, torsion, and flat springs, and holes or notghes in
bends and |flat springs, cause high concentrations of stress, resulting in failure. Bend
holes radii should be as large as possible, and tool marks avoided.
Fatigue Repeated deflections of springs, especially above 1,000,000 cycleg, even
with medium stresses, may cause failure. Low stresses should be used if a
spring is to be subjected to a very high number of operating cycles.
Shock Impact, shock, and rapid loading cause far higher stresses than thoge com-
loading puted by the regular spring formulas. High-carbon spring steels do rjot
withstand shock loading as well as do alloy steels.

Corrosion | Slight rusting or pitting caused by acids, alkalis, galvanic corrosion, [stress
corrosion cracking, or corrosive atmosphere weakens the material apd
causes higher stresses in the corroded area.

Group
2 Faulty Keeping spring materials at the hardening temperature for longer pgriods
heat than necessary causes an undesirable growth in grain structure, resulting
treatment |in brittleness, even though the hardness may be correct.
Faulty Poor material containing inclusions, seams, slivers, and flat material with
material rough, slit, or torn edges is a cause of early failure. Overdrawn wire,
improper hardness, and poor grain structure also cause early failure.
High High operating temperatures reduce spring temper (or hardness) andl lower
temperature | the modulus of elasticity, thereby causing lower loads, reducing the glastic
limit, and increasing corrosion. Corrosion-resisting or nickel alloys should
be used.
Low tempera- Temperatures below40 degrees F reduce the ability of carbon steels|to
turep withstand shock loads. Carbon steels become brittle at -70 degrees|F. Cor-
rosion-resisting, nickel, or nonferrous alloys should be used.
Group Friction Close fits on rods or in holes result in a wearing away of material and
3 occasional failure. The outside diameters of compression springs eXpand
during deflection but they become smaller on torsion springs.

Other causes| Enlarged hooks on extension springs increase the stress at the bgnds. Car-
rying too much electrical current will cause failure. Welding and soldgring
frequently destroy the spring temper. Tool marks, nicks, and cuts often
raise stresses. Deflecting torsion springs outwardly causes high strgsses
and winding them tightly causes binding on supporting rods. High speed
of deflection, vibration, and surging due to operation near natural periods
of vibration or their harmonics cause increased stresses.

Spring failure may be breakage, high permanent set, or loss of load. The causes are listed in groups
in this table. Group 1 covers causes that occur most frequently; Group 2 covers causes that are less

frequent; and Group 3 lists causes that occur occasionally.
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Table 23. Arbor Diameters for Springs Made from Music Wire
Spring Outside Diameter (inch)

Wire

dam | K [ B % [ %[ || 5[ %] %] % | %] %] %
(inch Arbor Diameter (inch)

0.008 0.039| 0.060 0.07: 0,0QE 0.107 0.119 0.129...

0.010 0.037| 0.060 0.080 0.099 0.115 0.1p9 0.142 0.154 0j164..

0.012 0.034| 0.059 0.08] 0.101 0.119 0.1B5 0.150 O0.[63 0{177 0189 .200

0.014 0.031| 0.057] 0.081 0.102 0.121 0.140 0.156 0.L72 0j187 0{200 1213 [0.234

0.016 0.028| 0.055 0.079 0.102 0.123 0.142 0.161 O0.L78 0194 0{209 1224 0.250 Q.271
0.018 ... |0.053 | 0.077| 0.101f 0.12 0.144 0.1¢1 0.1B2 0.200 0.315 0f231 Q.259 0.p84
0.020 ... |0.049 | 0.075| 0.09¢ 0.123 0.144 0.15 0.1B4 0.303 0.420 0§237 (268 0.p96
0.022 ... |0.046 | 0.072| 0.097] 0.122 0.146 0.15 0.1B6 0.306 0.424 0]242 (275 0.805
0.024 ... |0.043 [ 0.070| 0.095 0.12 0.144 0.1¢6 0.1B7 0.207 0.4326 0{245 (.280 0.812
0.026 ... |0.067 ( 0.093| 0.118 0.143 0.166 0.187 0.2p8 0.p48 0[285 0.318
0.028 ... |0.064 | 0.091| 0.115 0.14 O.16E 0.187 0.2p8 0.p50 0{288 0.323
0.030 ... |0.061 | 0.088| 0.113 0.138 0.168 0.1§7 0.2p9 0.51 0291 0.328
0.032 ... |0.057 [ 0.085| 0.111f 0.13¢ 0.161L 0.185 0.2p9 0.p51 0{292 0.331
0.034 ... |0.082( 0.109| 0.134 0.159 0.184 0.2¢8 0.239 0.351 0.p92 0.383
0.036 ... |0.078 [ 0.106| 0.131f 0.15¢ 0.182 0.206 0.239 0.350 0.p94 0.3B3
0.038 ... |0.075( 0.103| 0.129 0.154 0.179 0.2¢5 0.237 0.351 0.p93 0.385
0.041 ... |0.098 [ 0.125| 0.151) 0.17¢ 0.20 0.226 0.250 0.394 0.336
0.0475 ... |0.087 [ 0.115| 0.142 0.168 0.194 0.22p 0.244 0.393 0.337
0.054 . [0.103 | 0.132| 0.160 0.18 0.21: 0.245 0.2B7 0.336
0.0625 ... |0.108 | 0.146| 0.169 0.201] 0.22B 0.280 0.33
0.072 ... |0.129 | 0.158| 0.186| 0.214 0.268 0.319
0.080 ... |0.144( 0.173 | 0.20) 0.25¢ 0.308
0.0915 0.181 | 0.238| 0.293
0.1055 0.215 | 0.271
0.1205 0.215

0.125 0.239

Spring Outside Diameter (inches)

Wire

piam | % | % [ % | % [ %] % [ %] s [m]m[m]| ] n] 2

(inch) Arbor Diameter (inches)

0.022 0.332| 0.357] 0.38

0.024 0.341| 0.367] 0.39:

0.026 0.350| 0.380 0.40

0.028 0.356| 0.387] 0.41 0.467 ...

0.030 0.362| 0.395 0.42 0.481 0.5D6 ...

0.032 0.367| 0.400 0.43: 0.490 0.506 0.540...

0.034 0.370| 0.404 0.43 0.498 0.5p6 0.952 0.p57..

0.036 0.372| 0.407] 0.44. 0.506 0.5B6 0.462 0.p89..

0.038 0.375| 0.412] 0.44: 0.5]12 05¢3 0.72 0.500 0[650.

0.041 0.378| 0.416 0.45 0.522 0.5p4 0.986 0.615 0/670 0.718

0.0475 | 0.380| 0.422 0.46: 0.541 0576 0.410 043 0[706 (.763 0.812

0.054 0.381| 0.425 0.46 0.540 0.5B9 0.625 0.p61 0{727 Q.792 0.850 [0.906

0.0625 | 0.379( 0.429 0.46 0.5%6 0.597 0.439 0578 0[753 .822 .889 [0.951 (1.06 |1.17
0.072 0.370| 0.418 0.46 0.545 0.5P9 0.441 0.582 0{765 (.840 0.911 [0.980 [1.11 |[1.22
0.080 0.360| 0.411] 0.46: 0.544 05P9 0.441 0.585 0f772 (Q.851 0.930 [1.00 [1.13 |[1.26

0.0915 | 0.347( 0.399 0.44 0.547 0.5p7 0.§40 0.585 0[776 .860 1942 11.02 (1.16 |1.30

0.1055 | 0.327| 0.381 0.43: 0.535 0.5B6 0.430 0.583 0[775 Q.865 0.952 (1.04 |1.20 |1.35

0.1205 | 0.303| 0.354 0.41: 0.520 05F1 0.22 0p73 0[772 Q.864 0.955 (1.04 |1.22 |1.38
0.125 0.295| 0.351] 0.40 0515 05p7 0.417 0.671 0770 (.864 1955 (1.05 |1.23 [1.39
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STRENGTH AND PROPERTIES OF WIRE ROPE
Strength and Properties of Wire Rope

Wire Rope Construction.—Essentially, a wire rope is made up of a number of strands
laid helically about a metallic or non-metallic core. Each strand consists of a number of
wires also laid helically about a metallic or non-metallic center. Various types of wire rope
have been developed to meet a wide range of uses and operating conditions. These typ
are distinguished by the kind of core; the number of strands; the number, sizes, anc
arrangement of the wires in each strand; and the way in which the wires and strands ar
wound or laid about each other. The following descriptive material is based largely on
information supplied by the Bethlehem Steel Co.

Rope Wire MaterialsMaterials used in the manufacture of rope wire are, in order of
increasing strength: iron, phosphor bronze, traction steel, plow steel, improved plow steel,
and bridge rope steel. Iron wire rope is largely used for low-strength applications such as
elevator ropes not used for hoisting, and for stationary guy ropes.

Phosphor bronze wire rope is used occasionally for elevator governor-cable rope and fo
certain marine applications as life lines, clearing lines, wheel ropes and rigging.

Traction steel wire rope is used primarily as hoist rope for passenger and freight elevators
of the traction drive type, an application for which it was specifically designed.

Ropes made of galvanized wire or wire coated with zinc by the electrodeposition process
are used in certain applications where additional protection against rusting is required. As
will be noted from the tables of wire-rope sizes and strengths, the breaking strength of gal-
vanized wire rope is 10 per cent less than that of ungalvanized (bright) wire rope. Betha-
nized (zinc-coated) wire rope can be furnished to bright wire rope strength when so
specified.

Galvanized carbon steel, tinned carbon steel, and stainless steel are used for small corc
and strands ranging in diameter fréfgto % inch and larger.

Marline clad wire rope has each strand wrapped with a layer of tarred marline. The clad-
ding provides hand protection for workers and wear protection for the rope.

Rope CoresWire-rope cores are made of fiber, cotton, asbestos, polyvinyl plastic, a
small wire rope (independent wire-rope core), a multiple-wire strand (wire-strand core) or
a cold-drawn wire-wound spring.

Fiber: (manila or sisal) is the type of core most widely used when loads are not too great.
It supports the strands in their relative positions and acts as a cushion to prevent nicking o
the wires lying next to the core.

Cotton:is used for small ropes such as sash cord and aircraft cord.

Asbestos coresan be furnished for certain special operations where the rope is used in
oven operations.

Polyvinyl plastics coresare offered for use where exposure to moisture, acids, or caus-
tics is excessive.

A wire-strand coreoften referred to as WSC, consists of a multiple-wire strand that may
be the same as one of the strands of the rope. Itis smoother and more solid than the indepe
dent wire rope core and provides a better support for the rope strands.

Theindependent wire rope careften referred to as IWRC, is a smak & wire rope
with a wire-strand core and is used to provide greater resistance to crushing and distortior
of the wire rope. For certain applications it has the advantage over a wire-strand core in tha
it stretches at a rate closer to that of the rope itself.

Wire ropes with wire-strand cores are, in general, less flexible than wire ropes with inde-
pendent wire-rope or non-metallic cores.
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Ropes with metallic cores are ratéld er cent stronger than those with non-metallic
cores.

Wire-Rope LayThe lay of a wire rope is the direction of the helical path in which the
strands are laid and, similarly, the lay of a strand is the direction of the helical path in which
the wires are laid. If the wires in the strand or the strands in the rope form a helix similar to
the threads of a right-hand screw, i.e., they wind around to the right, the lay is called right
hand and, conversely, if they wind around to the left, the lay is called left handrégthe
ular lay, the wires in the strands are laid in the opposite direction to the lay of the strands in
the rope. In right-regular lay, the strands are laid to the right and the wires to the left. In left-
regular lay, the strands are laid to the left, the wires to the rigkéinig lay the wires and
strands are laid in the same direction, i.e., in right Lang lay, both the wires and strands are
laid to the right and in left Lang they are laid to the left.

Alternate lay ropes having alternate right and left laid strands are used to resist distortion
and prevent clamp slippage, but because other advantages are missing, have limited use.

The regular lay wire rope is most widely used and right regular lay rope is customarily
furnished. Regular lay rope has less tendency to spin or untwist when placed under loac
and is generally selected where long ropes are employed and the loads handled are fre
quently removed. Lang lay ropes have greater flexibility than regular lay ropes and are
more resistant to abrasion and fatigue.

In preformed wire ropes the wires and strands are preshaped into a helical form so tha
when laid to form the rope they tend to remain in place. In a non-preformed rope, broken
wires tend to “wicker out” or protrude from the rope and strands that are not seized tend to
spring apart. Preforming also tends to remove locked-in stresses, lengthen service life, ant
make the rope easier to handle and to spool.

Strand ConstructionVarious arrangements of wire are used in the construction of wire
rope strands. In the simplest arrangement six wires are grouped around a central wire thu
making seven wires, all of the same size. Other types of construction known as “filler-
wire,” Warrington, Seale, etc. make use of wires of different sizes. Their respective pat-
terns of arrangement are shown diagrammatically in the table of wire weights and
strengths.

Specifying Wire Rope.—In specifying wire rope the following information will be
required: length, diameter, number of strands, number of wires in each strand, type of rope
construction, grade of steel used in rope, whether preformed or not preformed, type of cen
ter, and type of lay. The manufacturer should be consulted in selecting the best type of wire
rope for a new application.

Properties of Wire Rope.—Important properties of wire rope are strength, wear resis-
tance, flexibility, and resistance to crushing and distortion.

Strength:The strength of wire rope depends upon its size, kind of material of which the
wires are made and their number, the type of core, and whether the wire is galvanized ol
not. Strengths of various types and sizes of wire ropes are given in the accompanying table
together with appropriate factors to apply for ropes with steel cores and for galvanized wire
ropes.

Wear Resistanc&hen wire rope must pass back and forth over surfaces that subject it
to unusual wear or abrasion, it must be specially constructed to give satisfactory service.

Such construction may make use of 1) relatively large outer wires; 2) Lang lay in which
wires in each strand are laid in the same direction as the strand; and 3) flattened strands.

The object in each type is to provide a greater outside surface area to take the wear o
abrasion. From the standpoint of material, improved plow steel has not only the highest
tensile strength but also the greatest resistance to abrasion in regularly stocked wire rope.
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Flexibility: Wire rope that undergoes repeated and severe bending, such as in passing
around small sheaves and drums, must have a high degree of flexibility to prevent prema:
ture breakage and failure due to fatigue. Greater flexibility in wire rope is obtained by

1) using small wires in larger numbers; 2) using Lang lay; and 3) preforming, that is,
the wires and strands of the rope are shaped during manufacture to fit the position they will
assume in the finished rope.

Resistance to Crushing and Distortiodlthere wire rope is to be subjected to transverse
loads that may crush or distort it, care should be taken to select a type of construction tha
will stand up under such treatment.

Wire rope designed for such conditions may have 1) large outer wires to spread the loac
per wire over a greater area; and 2) an independent wire core or a high-carbon cold-drawi
wound spring core.

Standard Classes of Wire Rope.-Wire rope is commonly designated by two figures,

the firstindicating the number of strands and the second, the number of wires per strand, as
6x 7, a six-strand rope having seven wires per strands d®8an eight-strand rope having

19 wires per strand. When such numbers are used as designations of standard wire roy
classes, the second figure in the designation may be purely nominal in that the number o
wires per strand for various ropes in the class may be slightly less or slightly more than the
nominal as will be seen from the following brief descriptions. (For ropes with a wire strand
core, a second group of two numbers may be used to indicate the construction of the wire
core, as k21, 1x 43, and so on.)

6x 7 Class (Standard Coarse Laid Ropéjire ropes in this class are for use where
resistance to wear, as in dragging over the ground or across rollers, is an important require
ment. Heavy hauling, rope transmissions, and well drilling are common applications.
These wire ropes are furnished in right regular lay and occasionally in Lang lay. The cores
may be of fiber, independent wire rope, or wire strand. Since this class is a relatively stiff
type of construction, these ropes should be used with large sheaves and drums. Because
the small number of wires, a larger factor of safety may be called for.

Fig. la. Fig. 1b. Fig. 1c. Fig. 1d.
6x 7 with fibercore  6x7with1x7WSC 6x 7 with 1x 19 WSC 6x 7 with IWRC

As shown irFigs. lathroughFigs. 14 this class includes a67 construction with fiber
core: a 6< 7 construction with ¥ 7 wire strand core (sometimes called7); a 6x 7 con-
struction with 1x 19 wire strand core; and &@ construction with independent wire rope
core.Table 1provides strength and weight data for this class.

Two special types of wire rope in this class are: aircraft corel,&d@ 7x 7 Bethanized
wire rope of high tensile strength and sash cords @ Bon rope used for a variety of pur-
poses where strength is not an important factor.
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Table 1. Weights and Strengths of 8 7 (Standard Coarse Laid) Wire Ropes,

Preformed and Not Preformed

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Mild Weight Impr. Mild
Diam., per Ft., Plow Plow Plow Diam., per Ft., Plow Plow Plow
Inches Pounds Steel Steel Steel Inches Pounds Steel Steel Steel
A 0.094 2.64 2.30 2.00 % 0.84 227 19.8 17.2
s 0.15 4.10 3.56 3.10 A 1.15 30.7 26.7 23.2
% 0.21 5.86 5.10 4.43 1 1.50 39.7| 34.9 30.
T 0.29 7.93 6.90 6.00 1% 1.90 49.8 43.3 37.7
¥ 0.38 103 8.96 7.79 1%, 2.34 61.0 53.0 46.1
96 0.48 13.0 11.3 9.82 1% 2.84 73.1 63.6 55.3
% 0.59 159 139 12.0 1% 3.38 86.2 75.0 65.2

For ropes with steel cores, adgfer cent to above strengths.
For galvanized ropes, deduct 10 per cent from above strengths.

Source Rope diagrams, Bethlehem Steel Co. All data, U.S. Simplified Practice Recommendation
198-50.
6 x 19 Class (Standard Hoisting Rop&his rope is the most popular and widely used
class. Ropes in this class are furnished in regular or Lang lay and may be obtained pre
formed or not preformed. Cores may be of fiber, independent wire rope, or wire strand. As

can be seen fromable 2andFigs. 2athrough 2h, there are four common typesx&5

filler wire construction with fiber core (not illustrated), independent wire core, or wire

strand core (¥ 25 or 1x 43); 6x 19 Warrington construction with fiber corex@1 filler

wire construction with fiber core; andx6l9, 6x 21, and 6« 17 Seale construction with
fiber core.

Table 2. Weights and Strengths of 8 19 (Standard Hoisting) Wire Ropes,

Preformed and Not Preformed

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Mild Weight Impr. Mild
Dia., per Ft., Plow Plow Plow Dia., per Ft., Plow Plow Plow
Inches Pounds Steel Steel Steel Inches Pounds Steel Steel Steel
A 0.10 2.74 2.39 2.07| 1, 2.50 64.6 56.2 48.8
K6 0.16 4.26 3.71 3.22 1% 3.03 77.7 67.5 58.8
% 0.23 6.10 5.31 4.62 1%, 3.60 92.0 80.0 69.6
T 0.31 8.27 7.19 6.25 1% 4.23 107 93.4 81.2
¥ 0.40 10.7 9.35 8.13 13, 4.90 124 108 93.6
%6 0.51 135 118 10.2 1% 5.63 141 123 107
% 0.63 16.7 145 12.6 2 6.40 160 | 139 121
% 0.90 238 20.7 18.0 2% 7.23 179 156
A 1.23 32.2 28.0 243 2y, 8.10 200 174
1 1.60 41.8 36.4 31.6 2% 10.00 244 212
1 2.03 52.6 45.7 39.8 23, 12.10 292 254

The 6x 25 filler wire with fiber core notiillustrated.
For ropes with steel cores, adgfer cent to above strengths.
For galvanized ropes, deduct 10 per cent from above strengths.

Source Rope diagrams, Bethlehem Steel Co. All data, U.S. Simplified Practice Recommendation
198-50.

6 x 37 Class (Extra Flexible Hoisting Rop&pr a given size of rope, the component
wires are of smaller diameter than those in the two classes previously described and henc
have less resistance to abrasion. Ropes in this class are furnished in regular and Lang I

with fiber core or independent wire rope core, preformed or not preformed.
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Fig. 2a. Fig. 2b. Fig. 2c. Fig. 2d.
6 x 25 filler wire 6 x 25 filler wire 6x19 Seale 6x 21 Seale
with WSC (1x 25) with IWRC with fiber core with fiber core

Fig. 2e. Fig. 2f. Fig. 2g. Fig. 2h.
6 x 25 filler wire 6x 19 Warrington 6x 17 Seale 6x 21 filler wire
with WSC (1x 43) with fiber core with fiber core with fiber core

Table 3. Weights and Strengths of 8 37 (Extra Flexible Hoisting) Wire Ropes,
Preformed and Not Preformed

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Weight Impr.
Dia., per Ft., Plow Plow Dia., per Ft., Plow Plow
Inches Pounds Steel Steel Inches Pounds Steel Steel
A 0.10 2.59 2.25 1% 3.49 87.9 76.4
i 0.16 4.03 3.50 1% 4.09 103 89.3
% 0.22 5.77 5.02 1% 4.75 119 103
T 0.30 7.82 6.80 1% 5.45 136 118
A 0.39 10.2 8.85 2 6.20 154 134
%6 0.49 12.9 11.2 2% 7.00 173 150
% 0.61 15.8 13.7 2y, 7.85 193 168
% 0.87 22.6 19.6 2% 9.69 236 205
% 1.19 30.6 26.6 2%, 11.72 284 247
1 1.55 39.8 34.6 3 14.0 335 291
1% 1.96 50.1 435 3, 16.4 390 339
1% 2.42 615 535 3 19.0 449 390
1% 2.93 741 64.5

For ropes with steel cores, addfier cent to above strengths.
For galvanized ropes, deduct 10 per cent from above strengths.
Source Rope diagrams, Bethlehem Steel Co. All data, U. S. Simplified Practice Recommendation
198-50.
As shown inTable 3andFigs. 3athrough 3h, there are four common typesx &9 filler
wire construction with fiber core and@6 filler wire construction with independent wire
rope core, a special rope for construction equipmen8%(two operations) construction
with fiber core and & 41 Warrington Seale construction with fiber core, a standard crane
rope in this class of rope constructiorx @1 filler wire construction with fiber core or
independent wire core, a special large shovel rope usually furnished in Lang lay;461d 6



338 WIRE ROPE

filler wire construction with fiber core orindependent wire rope core, a special large shovel
and dredge rope.

Fig. 3a. Fig. 3b. Fig. 3c. Fig. 3d.
6 x 29 filler wire 6 x 36 filler wire 6 x 35 with 6 x 41 Warrington-Seale
with fiber core with IWRC fiber core with fiber core

Fig. 3e. Fig. 3f. Fig. 3g. Fig. 3h.
6 x 41 filler wire 6 x 41 filler wire 6 x 46 filler wire 6 x 46 filler wire
with fiber core with IWRC with fiber core with IWRC

8x 19 Class (Special Flexible Hoisting RopEhis rope is stable and smooth-running,
and is especially suitable, because of its flexibility, for high speed operation with reverse
bends. Ropes in this class are available in regular lay with fiber core.

As shown inTable 4andFigs. 4ahrough 4d, there are four common typesx &5 filler
wire construction, the most flexible but the least wear resistant rope of the four types; War-
rington type in & 19 construction, less flexible than the 85; 8x 21 filler wire construc-
tion, less flexible than the Warrington; and Seale type<iti®construction, which has the
greatest wear resistance of the four types but is also the least flexible.

Table 4. Weights and Strengths of 8 19 (Special Flexible Hoisting) Wire Ropes,
Preformed and Not Preformed

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Weight Impr.

Dia., per Ft., Plow Plow Dia., per Ft., Plow Plow

Inches Pounds Steel Steel Inches Pounds Steel Steel

% 0.09 2.35 2.04 % 0.82 20.5 17.8

Y6 0.14 3.65 3.18 % 111 27.7 24.1
% 0.20 5.24 4.55 1 1.45 36.0 31.3

T 0.28 7.09 6.17 % 1.84 45.3 39.4

A 0.36 9.23 8.02 1 2.27 55.7 48.4

%6 0.46 116 10.1 1% 2.74 67.1 58.3

% 0.57 14.3 12.4 1% 3.26 79.4 69.1

For ropes with steel cores, adger cent to above strengths.
For galvanized ropes, deduct 10 per cent from above strengths.

Source Rope diagrams, Bethlehem Steel Co. All data, U. S. Simplified Practice Recommendation
198-50.
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iron.

18x 7 Non-rotating Wire Rop&his rope is specially designed for use where a mini-
mum of rotating or spinning is called for, especially in the lifting or lowering of free loads
with a single-partline. It has an inner layer composed of 6 strands of 7 wires each laid in left
Lang lay over a fiber core and an outer layer of 12 strands of 7 wires each laid in right reg-
ular lay. The combination of opposing lays tends to prevent rotation when the rope is
stretched. However, to avoid any tendency to rotate or spin, loads should be kept to at leas
one-eighth and preferably one-tenth of the breaking strength of the rope. Weights and

Fig. 4a.
8x 25 filler wire
with fiber core

8x 19 Warrington
with fiber core

Also in this class, but not shownTiable 4are elevator ropes made of traction steel and

Fig. 4b.

strengths are shownrable 5

Fig. 4c.

8 x 21 filler wire
with fiber core

Fig. 4d.

8x19 Seale
with fiber core

Table 5. Weights and Strengths of Standard 18 7 Nonrotating Wire Rope,

Preformed and Not Preformed

Fig. 5.
18x 7 Non-Rotating Rope

Recommended Sheave and Drum Diameters: Single layer on dr@@rope
diameters. Multiple layers on drum 48 rope diameters. Mine service 60

rope diameters.

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Weight Impr.
Dia., per Ft., Plow Plow Dia., per Ft., Plow Plow
Inches Pounds Steel Steel Inches Pounds Steel Steel
EN 0.061 1.42 1.24 % 1.32 29.5 25.7
A 0.108 2,51 2.18 1 1.73 38.3 333
Y6 0.169 3.90 3.39 1% 2.19 48.2 41.9
% 0.24 5.59 4.86 1%, 2.70 59.2 515
The 0.33 7.58 6.59 1% 3.27 713 62.0
A 0.43 9.85 8.57 1% 3.89 84.4 73.4
96 0.55 12.4 10.8 1% 4.57 98.4 85.6
% 0.68 15.3 133 1%, 5.30 114 98.8
% 0.97 21.8 19.0

For galvanized ropes, deduct 10 per cent from above strengths.

Source Rope diagrams, sheave and drum diameters, and déjg ¥pand?,sinch sizes, Bethle-
hem Steel Co. All other data, U. S. Simplified Practice Recommendation 198-50.

Flattened Strand Wire Rop&he wires forming the strands of this type of rope are
wound around triangular centers so that a flattened outer surface is provided with a greate
areathan in the regular round rope to withstand severe conditions of abrasion. The triangu
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lar shape of the strands also provides superior resistance to crushing. Flattened strand wir
rope is usually furnished in Lang lay and may be obtained with fiber core or independent
wire rope core. The three types showiiable 6andFigs. 6athrough 6care flexible and

are designed for hoisting work.

Fig. 6a. Fig. 6b. Fig. 6¢.
6 x 25 with fiber core 6 x 30 with fiber core 6 x 27 with fiber core

Table 6. Weights and Strengths of Flattened Strand Wire Rope,
Preformed and Not Preformed

Breaking Strength, Breaking Strength,
Approx. Tons of 2000 Lbs. Approx. Tons of 2000 Lbs.
Weight Impr. Mild Weight Impr. Mild
Dia., per Ft., Plow Plow Dia., per Ft., Plow Plow
Inches Pounds Steel Steel Inches Pounds Steel Steel
2 0.25 6.71 1% 3.40 85.5
2 0.45 118 8.94 1% 4.05 101
%2 0.57 14.9 11.2 1% 4.75 118
% 0.70 18.3 139 1%, 5.51 136
% 1.01 26.2 19.8 2 7.20 176
% 1.39 35.4 26.8 A 9.10 220
1 1.80 46.0 34.8 2% 11.2 269
1% 2.28 57.9 4358 2, 13.6 321
1, 281 71.0 53.7 .

aThese sizes in Type B only.
Type His notin U.S. Simplified Practice Recommendation.
Source Rope diagrams, Bethlehem Steel Co. All other data, U.S. Simplified Practice Recommen-

dation 198-50.

Flat Wire RopeThis type of wire rope is made up of a number of four-strand rope units
placed side by side and stitched together with soft steel sewing wire. These four-stranc
units are alternately right and left lay to resist warping, curling, or rotating in service.
Weights and strengths are showiTable 7

Simplified Practice Recommendations.—Because the total number of wire rope types is
large, manufacturers and users have agreed upon and adopted a U.S. Simplified Practic
Recommendation to provide a simplified listing of those kinds and sizes of wire rope
which are most commonly used and stocked. These, then, are the types and sizes which a
most generally available. Other types and sizes for special or limited uses also may be
found in individual manufacturer's catalogs.

Sizes and Strengths of Wire Rope.-Fhe data shown iffables 1through7 have been
taken from U.S. Simplified Practice Recommendation 198-50 but do not include those
wire ropes shown in that Simplified Practice Recommendation which are intended prima-
rily for marine use.

Wire Rope Diameteifhe diameter of a wire rope is the diameter of the circle that will
just enclose it, hence when measuring the diameter with calipers, care must be taken t
obtain the largest outside dimension, taken across the opposite strands, rather than tk
smallest dimension across opposite “valleys” or “flats.” It is standard practice for the nom-
inal diameter to be the minimum with all tolerances taken on the plus side. Limits for diam-
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eter as well as for minimum breaking strength and maximum pitch are given in Federal
Specification for Wire Rope, RR-R—571a.

Wire Rope Strength3he strength figures shown in the accompanying tables have been
obtained by a mathematical derivation based on actual breakage tests of wire rope and rey
resent from 80 to 95 per cent of the total strengths of the individual wires, depending upon
the type of rope construction.

Table 7. Weights and Strengths of Standard Flat Wire Rope, Not Preformed

S This rope consists of a number of 4-strand rope units
placed side by side and stitched together with soft sfeel
Flat Wire Rope sewing wire.
Breaking Strengtfj Breaking Strengthf
Width Approx. | Tons of 2000 Lbg Width Approx. | Tons of 2000 Lbs
and No. Weight Mild and No. Weight Mild
Thickness, of per Ft., [ Plow Plow- Thickness, of per Ft., [ Plow Plow
Inches Ropes| Pounds | Steel Steel Inches Ropes| Pounds | Steel Steel
Y x 1, 7 0.69 16.8 14.6 x4 9 3.16 81.8 71.2
Yx2 9 0.88 217 18.8 ¥, x 4%, 10 3.82 90.9 79.1
Y,x 2%, 11 1.15 26.5 23.0 ¥%x5 12 4.16 109 94.9
¥%x3 13 1.34 313 27.2 %X 5% 13 450 | 118 103
¥%x6 14 4.85 127 111
Hex 1y 5 0.77 185 16.0 K% 7 16 5.85 145 126
Hex 2 7 1.05 25.8 22.4
6% 2% 9 1.33 332 | 288 %x 3% 6 3.40 858 | 746
Fe* 3 11 1.61 40.5 35.3 x4 7 3.95 100 87.1
1% 3 13 1.89 479 | 417 9% 4%, 8 450 | 114 99.5
5% 4 15 217 553 | 481 %%5 9 5.04 | 129 112
% % 5% 10 5.59 143 124
Fx2 6 1.25 314 27.3 %x 6 11 6.14 157 137
Y x 2, 8 1.64 41.8 36.4 Fx 7 13 7.23 186 162
¥%x3 9 1.84 47.1 40.9 %x8 15 8.32 214 186
¥ x 3Y, 11 2.23 57.5 50.0
¥%x 4 12 244 62.7 54.6 ¥%x5 8 6.50 165 143
%% 4, 14 2.83 73.2 63.7 %%6 9 731 | 185 161
¥ x5 15 3.03 78.4 68.2 Hx7 10 8.13 206 179
% x 5%, 17 3.42 88.9 77.3 %x8 11 9.70 227 197
¥%x6 18 3.63 94.1 81.9
%x5 7 7.50 190 165
¥, x 2%, 6 213 54.5 47.4 7% 6 8 8.56 217 188
¥%x3 7 247 63.6 55.4 Tx 7 9 9.63 244 212
¥%x 3% 8 2.82 727 | 633 %x8 10 | 107 271 236

Source Rope diagram, Bethlehem Steel Co.; all data, U.S. Simplified Practice Recommendation

198-50.
Safe Working Loads and Factors of Safety.-Fhe maximum load for which a wire rope
is to be used should take into account such associated factors as friction, load caused b
bending around each sheave, acceleration and deceleration, and, if a long length of rope |
to be used for hoisting, the weight of the rope at its maximum extension. The condition of
the rope — whether new or old, worn or corroded — and type of attachments should also
be considered.

Factors of safety for standing rope usually range from 3 to 4; for operating rope, from 5 to
12. Where there is the element of hazard to life or property, higher values are used.

Installing Wire Rope.—The main precaution to be taken in removing and installing wire

rope is to avoid kinking which greatly lessens the strength and useful life. Thus, it is pref-
erable when removing wire rope from the reel to have the reel with its axis in a horizontal
position and, if possible, mounted so that it will revolve and the wire rope can be taken off
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straight. If the rope is in a coil, it should be unwound with the coil in a vertical position as
by rolling the coil along the ground. Where a drum is to be used, the rope should be run
directly onto it from the reel, taking care to see that it is not bent around the drum in a direc-
tion opposite to that on the reel, thus causing it to be subject to reverse bending. On flat o
smooth-faced drums itis important that the rope be started from the proper end of the drum
A right lay rope that is being overwound on the drum, that is, it passes over the top of the
drum as it is wound on, should be started from the right flange of the drum (looking at the
drum from the side that the rope is to come) and a left lay rope from the left flange.

When the rope is underwound on the drum, a right lay rope should be started from the left
flange and a left lay rope from the right flange, so that the rope will spool evenly and the
turns will lie snugly together.

CENTER FLEET =
‘ LINE ANGLE
i - / -
! v
WIRE ROPE o

|

Sheaves and drums should be properly aligned to prevent undue wear. The proper pos
tion of the main or lead sheave for the rope as it comes off the drum is governed by what is
called the fleet angle or angle between the rope as it stretches from drum to sheave and ¢
imaginary center-line passing through the center of the sheave groove and a point halfway
between the ends of the drum. When the rope is at one end of the drum, this angle shoul
not exceed one and a half to two degrees. With the lead sheave mounted with its groove o
this center-line, a safe fleet angle is obtained by allowing 30 feet of lead for each two feet
of drum width.

Sheave and Drum Dimensioigheaves and drums should be as large as possible to
obtain maximum rope life. However, factors such as the need for lightweight equipment
for easy transport and use at high speeds, may call for relatively small sheaves with conse
quent sacrifice in rope life in the interest of overall economy. No hard and fast rules can be
laid down for any particular rope if the utmost in economical performance is to be
obtained. Where maximum rope life is of prime importance, the following recommenda-
tions of Federal Specification RR-R-571a for minimum sheave or drum diarDeiters
terms of rope diametelwill be of interest. For 8 7 rope (six strands of 7 wires eathy
72d; for 6x 19 ropeD = 45d; for 6 x 25 ropepP = 45; for 6 x 29 ropeD = 30d; for 6x 37
rope,D = 27d; and for 8< 19 ropeD = 31d.

Too small a groove for the rope it is to carry will prevent proper seating of the rope in the
bottom of the groove and result in uneven distribution of load on the rope. Too large a
groove will not give the rope sufficient side support. Federal specification RR-R-571a rec-
ommends that sheave groove diameters be larger than the nominal rope diameters by th
following minimum amounts: For ropesXfto%sinch diameterdg,inch larger; foé- to
,inch diameter rope¥,inch larger; fof7 to B4-inch diameter rope%,inch larger; for
1% to Birinch ropesy;ginch larger; for % to Z/-inch ropes,inch larger; and for%g
and larger diameter ropéginch larger. For new or regrooved sheaves these values should
be doubled; in other words figf to%sinch diameter ropes, the groove diameter should be
¥,inch larger, and so on.

Drum or Reel Capacityt he length of wire rope, in feet, that can be spooled onto a drum
or reel, is computed by the following formula, where
A =depth of rope space on drum, inches:(H - D - 2Y) + 2
B =width between drum flanges, inches
D =diameter of drum barrel, inches
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H =diameter of drum flanges, inches
K =factor fromTable 8for size of line selected
Y =depth not filled on drum or reel where winding is to be less than full capacity

L =length of wire rope on drum or reel, feet.

L = (A+D)xAxBxK

Table 8.Table 8Factors K Used in Calculating Wire Rope Drum and Reel Capacities

Rope Rope Rope
Dia., Factor Dia., Factor Dia., Factor
In. K In. K In. K
% 234 A 0.925 1% 0.127
% 13.6 96 0.741 1 0.107
Ya 10.8 % 0.607 1% 0.0886
%o 8.72 e 0.506 1% 0.0770
%6 6.14 % 0.428 1% 0.0675
% 459 Bie 0.354 2 0.0597
% 3.29 % 0.308 2% 0.0532
%6 221 1 0.239 A 0.0476
% 1.58 1% 0.191 2% 0.0419
T 1.19 1, 0.152 2% 0.0380

Note The values of “K” allow for normal oversize of ropes, and the fact that it is practically impos-
sible to “thread-wind” ropes of small diameter. However, the formula is based on uniform rope wind-
ing and will not give correct figures if rope is wound non-uniformly on the reel. The amount of
tension applied when spooling the rope will also affect the length. The formula is based on the same
number of wraps of rope in each layer, which is not strictly correct, but which does not result in
appreciable error unless the width (B) of the reel is quite small compared with the flange diameter
(H).

ExampleFind the length in feet &sinch diameter rope required to fill a drum having
the following dimensiondB = 24 inchesD = 18 inchesH = 30 inches,

A = (30— 18-0)+2 = 6 inches
L = (6+ 18) x6x24x0.741 = 2560.0 or 2560 feet

The above formula and factdfsallow for normal oversize of ropes but will not give cor-
rect figures if rope is wound non-uniformly on the reel.

Load Capacity of Sheave or Druifp avoid excessive wear and groove corrugation, the
radial pressure exerted by the wire rope on the sheave or drum must be kept within certair
maximum limits. The radial pressure of the rope is a function of the rope tension, rope
diameter, and tread diameter of the sheave and can be determined by the following eque
tion:

2T
Dxd

where P =Radial pressure in pounds per square inch{abke 9
T =Rope tension in pounds
D =Tread diameter of sheave or drum in inches

d=Rope diameter in inches
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Table 9. Maximum Radial Pressures for Drums and Sheaves

Drum or Sheave Material
Cast Cast Manganese
Iron Steel Steet
Recommended Maximum Radial Pressures,
Type of Wire Rope Pounds per Square Inch
6x7 300 550 1500
6x19 500 900P 25000
6x37 600 1075 3000
6 x 8 Flattened Strand 450 850 2200
6 x 25 Flattened Strand 800 1450 4000
6 x 30 Flattened Strand 800 1450 4000

a11 to 13 per cent manganese.
bThese values are for regular lay rope. For Lang lay rope these values may be increased by 15 pel
cent.
According to the Bethlehem Steel Co. the radial pressures shdwablie 9are recom-
mended as maximums according to the material of which the sheave or drum is made.
Rope Loads due to Bendinghen a wire rope is bent around a sheave, the resulting
bending stress, in the outer wire, and equivalent bending IBgdamount that direct ten-
sion load on rope is increased by bending) may be computed by the following fospulas:
=Ed, + D; P,=s,A, whereA =d?Q. E is the modulus of elasticity of the wire rope (varies
with the type and condition of rope from 10,000,000 to 14,000,000. An average value of
12,000,000 is frequently used)is the diameter of the wire rop, is the diameter of the
component wire (for & 7 rope,d,, = 0.108!; for 6 x 19 rope, 0.06& for 6 x 37 rope,
0.045; and for 8< 19 ropegd,, = 0.05@l). D is the pitch diameter of the sheave in incles,
is the metal cross-sectional area of the ropeisd constant, values for which are< B
(Fiber Core) rope, 0.380,67 (IWRC or WSC), 0.437; 819 (Fiber Core), 0.405;%619
(IWRC or WSC), 0.475; & 37 (Fiber Core), 0.400;%37 (IWRC), 0.470; & 19 (Fiber
Core), 0.370; and Flattened Strand Rope, 0.440.
ExampleFind the bending stress and equivalent bending load due to the bending of a 6
19 (Fiber Core) wire rope & inch diameter around a 24-inch pitch diameter sheave.

d, = 0.063x 0.5= 0.0315in. A = 0.5°x0.405 = 0.101 sq. in.
s, = 12,000 000x 0.0315+ 24= 15,750 lbs. per sq. in.
P, = 15,750x 0.101 = 1590 Ibs.

Cutting and Seizing of Wire Rope.—Wire rope can be cut with mechanical wire rope
shears, an abrasive wheel, an electric resistance cutter (used for ropes of smaller diamet
only), or an acetylene torch. This last method fuses the ends of the wires in the strands. It i
important that the rope be seized on either side of where the cut is to be made. Any anneale
low carbon steel wire may be used for seizing, the recommended sizes being as follows
For a wire rope of; to ¥ginch diameter, use a seizing wire of 0.054-inch (No. 17 Steel
Wire Gage); for a rope of 1- t&ginch diameter, use a 0.105-inch wire (No. 12); and for
rope of & to 3-inch diameter, use a 0.135-inch wire (No. 10). Except for preformed wire
ropes, a minimum of two seizings on either side of a cut is recommended. Four seizings
should be used on either side of a cut for Lang lay rope, a rope with a steel core, or a non
spinning type of rope.

The following method of seizing is given in Federal specification for wire rope, RR-R-
571a. Lay one end of the seizing wire in the groove between two strands of wire rope anc
wrap the other end tightly in a close helix over the portion in the groove. A seizing iron
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(round bar to % inch diameter by 18 inches long) should be used to wrap the seizing
tightly. This bar is placed at right angles to the rope next to the first turn or two of the seiz-
ing wire. The seizing wire is brought around the back of the seizing iron so that it can be
wrapped loosely around the wire rope in the opposite direction to that of the seizing coil.
As the seizing iron is now rotated around the rope it will carry the seizing wire snugly and
tightly into place. When completed, both ends of the seizing should be twisted together
tightly.

Maintenance of Wire Rope.—Heavy abrasion, overloading, and bending around
sheaves or drums that are too small in diameter are the principal reasons for the rapid dete
rioration of wire rope. Wire rope in use should be inspected periodically for evidence of
wear and damage by corrosion. Such inspections should take place at progressively shorte
intervals over the useful life of the rope as wear tends to accelerate with use. Where wear i
rapid, the outside of a wire rope will show flattened surfaces in a short time.

If there is any hazard involved in the use of the rope, it may be prudent to estimate the
remaining strength and service life. This assessment should be done for the weakest poir
where the most wear or largest number of broken wires are in evidence. One way to arrive
at a conclusion is to set an arbitrary number of broken wires in a given strand as an indica
tion that the rope should be removed from service and an ultimate strength test run on the
worn sample. The arbitrary figure can then be revised and rechecked until a practical work-
ing formula is arrived at. A piece of waste rubbed along the wire rope will help to reveal
broken wires. The effects of corrosion are not easy to detect because the exterior wires ma
appear to be only slightly rusty, and the damaging effects of corrosion may be confined to
the hidden inner wires where it cannot be seen. To prevent damage by corrosion, the rop
should be kept well lubricated. Use of zinc coated wire rope may be indicated for some
applications.

Periodic cleaning of wire rope by using a stiff brush and kerosene or with compressed air
or live steam and relubricating will help to lengthen rope life and reduce abrasion and wear
on sheaves and drums. Before storing after use, wire rope should be cleaned and lubricate:

Lubrication of Wire Rope.— Although wire rope is thoroughly lubricated during manu-
facture to protect it against corrosion and to reduce friction and wear, this lubrication
should be supplemented from time to time. Special lubricants are supplied by wire rope
manufacturers. These lubricants vary somewhat with the type of rope application and
operating condition. Where the preferred lubricant can not be obtained from the wire rope
manufacturer, an adhesive type of lubricant similar to that used for open gearing will often
be found suitable. At normal temperatures, some wire rope lubricants may be practically
solid and will require thinning before application. Thinning may be done by heating to 160
to 200 degrees F. or by diluting with gasoline or some other fluid that will allow the lubri-
cant to penetrate the rope. The lubricant may be painted on the rope or the rope may b
passed through a box or tank filled with the lubricant.

Replacement of Wire Rope.—When an old wire rope is to be replaced, all drums and
sheaves should be examined for wear. All evidence of scoring or imprinting of grooves
from previous use should be removed and sheaves with flat spots, defective bearings, an
broken flanges, should be repaired or replaced. It will frequently be found that the area of
maximum wear is located relatively near one end of the rope. By cutting off that portion,
the remainder of the rope may be salvaged for continued use. Sometimes the life of a rop
can be increased by simply changing it end for end at about one-half the estimated norma
life. The worn sections will then no longer come at the points that cause the greatest wear.

Wire Rope Slings and Fittings.—A few of the simpler sling arrangements or hitches as
they are called, are shown in the accompanying illustration. Normally%6Class wire
rope is recommended where a diameter if#irech to Z-inch range is to be used and 6
37 Class wire rope where a diameter in térich and larger range is to be used. However,
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the 6x 19 Class may be used even in the larger sizes if resistance to abrasion is of primary
importance and the»37 Class in the smaller sizes if greater flexibility is desired.

Wire Rope Slings and Fittings

~— 1000 1b

N
-~ 1000 Ih
Qe

2000 Ib
Legs Vertical

Straight Leg Vertical

Straight Lift Basket Hitch Basket Hitch
One leg Vertical. Load capacityTwo legs vertical. Load capacifyfwo Legs at 30 deg with the ver-
is 100 pct of a single rope. is 200 pct of the single rope in thecal. Load capacity is 174 pct of
Straight Lift Hitch (A). the single rope in the Straight
Lift Hitch (A).

Basket Hitch Basket Hitch Choker Hitch

Two legs at 45 deg with the vertifwo legs at 60 deg with the vertione leg vertical, with slip-
cal. Load capacity is 141 pct of cal. Load capacity is 100 pct of through loop. Rated capacity i
the single rope in the Straight | the single rope in the Stright Lift75 pct of the single rope in the
Lift Hitch (A). Hitch (A). Straight Lift Hitch (A).

Thestraight lift hitch shown at A, is a straight connector between crane hook and load.

Thebasket hitchmay be used with two hooks so that the sides are vertical as shown at B
or with a single hook with sides at various angles with the vertical as shown at C, D, and E.
As the angle with the vertical increases, a greater tension is placed on the rope so that fc
any given load, a sling of greater lifting capacity must be used.
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Thechoker hitch shown at F, is widely used for lifting bundles of items such as bars,
poles, pipe, and similar objects. The choker hitch holds these items firmly

but the load must be balanced so that it rides safely. Since additional stress is imposed o
the rope due to the choking action, the capacity of this type of hitch is 25 per cent less thar
that of the comparable straight lift. If two choker hitches are used at an angle, these angle:
must also be taken into consideration as with the basket hitches.

Industrial Types

l/////
Round Eye Rod Eye
Clevis E Hoist-Hook
Button -Stop Threaded Stud

\\\\'
Swaged Closed Socket
Swaged Open Socket
Aircraft Types

SSSSSsssssssssY_ () 2 sSsssY [ 5SSSs

Single-Shank Ball Double-Shank Ball
G —
Eye Fork
Strap-Eye Strap-Fork

Wire Rope Fittings
Wire Rope Fittings.—Many varieties of swaged fittings are available for use with wire
rope and several industrial and aircraft types are shown in the accompanying illustration.
Swaged fittings on wire rope have an efficiency (ability to hold the wire rope) of approxi-
mately 100 per cent of the catalogue rope strength. These fittings are attached to the end «
body of the wire rope by the application of high pressure through special dies that cause the
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material of the fitting to “flow” around the wires and strands of the rope to form a union that
is as strong as the rope itself. The more commonly used types, of swaged fittings range
from ¥ to%inch diameter sizes in industrial types and fron¥f¢o %:-inch sizes in air-

craft types. These fittings are furnished attached to the wire strand, rope, or cable.

Applying Clips and Attaching Sockets.—n attaching U-bolt clips for fastening the end

of a wire rope to form a loop, it is essential that the saddle or base of the clip bears agains
the longer or “live” end of the rope loop and the U-bolt against the shorter or “dead” end.
The “U” of the clips should never bear against the live end of the rope because the rope may
be cut or kinked. A wire-rope thimble should be used in the loop eye of the rope to prevent
kinking when rope clips are used. The strength of a clip fastening is usually less than 80
percent of the strength of the ropable 10gives the proper size, number, and spacing for
each size of wire rope.

Table 10. Clips Required for Fastening Wire Rope End

Rope U-Bolt Min. Clip Rope U-Bolt Min. Clip
Dia., Dia., No. of Spacing, Dia., Dia., No. of Spacing,
In. In. Clips In. In. In. Clips In.
%o Yy 2 3 1 1, 5 %,
% To 2 ¥, , s 5 10%,
56 % 2 ¥, % , 6 119,
% %6 2 4 % 1%, 6 1%
Ts % 2 a 13, 3, 6 13,
A Y 3 5 19 1% 7 14%,
% % 3 5%, 2 2% 8 16%
% % 4 6% 2, 2% 8 16%
% 1 4 8 2% 2% 8 17,
1 % 4 8%,

In attaching commercial sockets of forged steel to wire rope ends, the following proce-
dure is recommended. The wire rope is seized at the end and another seizing is applied at
distance from the end equal to the length of the basket of the socket. As explained in a pre
vious section, soft iron wire is used and particularly for the larger sizes of wire rope, it is
important to use a seizing iron to secure a tight winding. For large ropes, the seizing shoulc
be several inches long.

The end seizing is now removed and the strands are separated so that the fiber core can
cut back to the next seizing. The individual wires are then untwisted and “broomed out”
and for the distance they are to be inserted in the socket are carefully cleaned with benzine
naphtha, or unleaded gasoline. The wires are then dipped into commercial muriatic (hydro-
chloric) acid and left (usually one to three minutes) until the wires are bright and clean or,
if zinc coated, until the zinc is removed. After cleaning, the wires are dipped into a hot soda
solution (1 pound of soda to 4 gallons of water at 175 degrees F. minimum) to neutralize
the acid. The rope is now placed in a vise. A temporary seizing is used to hold the wire end:s
together until the socket is placed over the rope end. The temporary seizing is then
removed and the socket located so that the ends of the wires are about even with the upp
end of the basket. The opening around the rope at the bottom of the socket is now seale
with putty.

A special high grade pure zinc is used to fill the socket. Babbit metal should not be used
as it will not hold properly. For proper fluidity and penetration, the zinc is heated to a tem-
perature in the 830- to 900-degree F. range. If a pyrometer is not available to measure th
temperature of the molten zinc, a dry soft pine stick dipped into the zinc and quickly with-
drawn will show only a slight discoloration and no zinc will adhere to it. If the wood chars,
the zinc is too hot. The socket is now permitted to cool and the resulting joint is ready for
use. When properly prepared, the strength of the joint should be approximately equal to
that of the rope itself.



Rated Capacities for Improved Plow Steel Wire Rope and Wire Rope Slings (in tons of 2,000 Ibs)—Independent Wire Rope Core

Rope Vertical Choker 60° Bridle 45°Bridle 30°Bridle
Diameter
(in) A B C A B | C A | B | C A | B | C A B C
Single Leg, 6 x 19 Wire Rope
% 0.59 0.56 0.53 0.44 0.42 0.40
% 13 12 11 0.98 0.93 0.86
% 23 22 20 17 16 15
% 3.6 34 3.0 27 25 22
% 51 4.9 4.2 38 3.6 31
% 6.9 6.6 55 52 4.9 4.1
1 9.0 85 72 6.7 6.4 54
1% 1 10 9.0 85 78 6.8
Single Leg, 6 x 37 Wire Rope
1% 3 12 10 9.9 9.2 79
1% 16 15 13 12 1 9.6
1% 19 17 15 14 13 1
1%, 26 24 20 19 18 15
2 33 30 26 25 23 20
A 41 38 33 31 29 25
Two-Leg Bridle or Basket Hitch, 6 x 19 Wire Rope Sling
A 12 11 10 10 0.97 0.92 0.83 0.79 0.75 0.59 0.56 0.53
% 20 25 23 23 21 20 18 18 18 13 12 11
Y 4.0 4.4 39 4.0 36 34 32 31 28 23 22 20
% 7.2 6.6 6.0 6.2 59 52 51 4.8 42 36 34 3.0
% 10 97 8.4 89 8.4 73 72 6.9 59 5.1 49 42
% 14 13 11 12 11 9.6 9.8 9.3 78 6.9 6.6 55
1 18 17 14 15 15 12 13 12 10 9.0 85 72
1% 23 21 18 v 19 18 16 16 15 13 11 10 9.0
Two-Leg Bridle or Basket Hitch, 6 x 37 Wire Rope Sling
A 26 24 21 23 21 18 19 17 15 13 12 10
1% 32 29 25 28 25 22 22 21 18 16 15 13
1% 38 35 30 33 30 26 27 25 21 19 17 15
1% 51 a7 41 44 41 35 36 33 29 26 24 20
2 66 61 53 57 53 46 a7 43 37 33 30 26
A 83 76 66 72 66 67 58 54 47 41 38 33
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Rated Capacities for Improved Plow Steel Wire Rope and Wire Rope Slings (in tons of 2,000 Ibs)—Fiber Core

Rope Vertical Choker 60° Bridle 45° Bridle 30° Bridle
Diameter
(in) A B c A B | C A | B | c A | B | C A | B | C
Single Leg, 6 x 19 Wire Rope
A 055 051 0.49 041 0.38 0.37
% 12 11 11 0.91 0.85 0.80
% 21 20 18 16 15 14
% 33 31 238 25 23 21
% 48 44 39 36 33 29
% 6.4 59 5.1 4.8 45 39
1 8.4 77 6.7 6.3 5.8 50
1% 10 95 8.4 7.9 71 6.3
Single Leg, 6 x 37 Wire Rope
17, 12 1T 9.8 9. 83 74
1% 15 13 12 11 10 8.9
1% 17 16 14 13 12 10
1% 24 21 19 18 16 14
2 31 28 25 23 21 18
Two-Leg Bridle or Basket Hitch, 6 x 19 Wire Rope Sling
T TT 10 099 095 088 085 0.77 0.72 0.70 055 05T 04|
% 24 22 21 21 19 18 17 16 15 12 11 11
% 43 39 37 37 34 32 3.0 238 26 21 2.0 18
% 6.7 6.2 5.6 6.2 53 4.8 a7 4.4 4.0 33 31 28
% 9.5 8.8 78 82 76 6.8 6.7 6.2 55 438 4.4 39
% 13 12 10 11 10 89 9.1 8.4 73 6.4 59 51
1 17 15 13 14 13 11 12 11 9.4 8.4 77 6.7
1% 21 19 17 v 18 16 14 15 13 12 10 9.5 84
Two-Leg Bridle or Basket Hitch, 6 x 37 Wire Rope Sling
1% 25 22 20 21 19 17 17 16 14 12 11 9.8
1% 30 27 24 26 23 20 21 19 17 15 13 12
1% 35 32 28 30 27 24 25 22 20 17 16 14
1%, 46 43 39 41 37 33 34 30 27 24 21 19
2 62 55 49 53 43 43 43 39 35 31 26 25

A—socket or swaged terminal attachment; B—mechanical sleeve attachment; C—hand-tucked splice attachment.
Datataken from Longshoring Industry, OSHA Safety and Health Standards Digest, OSHA 2232, 1985.

0Se

3d0d 3HIM



CRANE CHAIN AND HOOKS 351

CRANE CHAIN AND HOOKS

Material for Crane Chains.—The best material for crane and hoisting chains is a good
grade of wrought iron, in which the percentage of phosphorus, sulfur, silicon, and other
impurities is comparatively low. The tensile strength of the best grades of wrought iron
does not exceed 46,000 pounds per square inch, whereas mild steel with about 0.15 pe
cent carbon has a tensile strength nearly double this amount. The ductility and toughness c
wrought iron, however, is greater than that of ordinary commercial steel, and for this rea-
son itis preferable for chains subjected to heavy intermittent strains, because wrought iror
will always give warning by bending or stretching, before breaking. Another important
reason for using wrought iron in preference to steel is that a perfect weld can be effectec
more easily. Heat-treated alloy steel is also widely used for chains. This steel contains car
bon, 0.30 per cent, max; phosphorus, 0.045 per cent, max; and sulfur, 0.045 per cent, ma
The selection and amounts of alloying elements are left to the individual manufacturers.

Strength of Chains.—When calculating the strength of chains it should be observed that
the strength of a link subjected to tensile stresses is not equal to twice the strength of aniro
bar of the same diameter as the link stock, but is a certain amount less, owing to the bendin
action caused by the manner in which the load is applied to the link. The strength is alsc
reduced somewhat by the weld. The following empirical formula is commonly used for
calculating the breaking load, in pounds, of wrought-iron crane chains:

W = 54,00(D2

in whichW=breaking load in pounds aBd= diameter of bar (in inches) from which links

are made. The working load for chains should not exceed one-third the Vluaraf, it

is often one-fourth or one-fifth of the breaking load. When a chain is wound around a cast-
ing and severe bending stresses are introduced, a greater factor of safety should be used.

Care of Hoisting and Crane Chains.—€hains used for hoisting heavy loads are subject

to deterioration, both apparent and invisible. The links wear, and repeated loading cause:
localized deformations to form cracks that spread until the links fail. Chain wear can be
reduced by occasional lubrication. The life of a wrought-iron chain can be prolonged by
frequent annealing or normalizing unless it has been so highly or frequently stressed tha
small cracks have formed. If this condition is present, annealing or normalizing will not
“heal” the material, and the links will eventually fracture. To anneal a wrought-iron chain,
heat it to cherry-red and allow it to cool slowly. Annealing should be done every six
months, and oftener if the chain is subjected to unusually severe service.

Maximum Allowable Wear at Any Point of Link

Maximum Allowable Maximum Allowable
Chain Size (in.) Wear (in.) Chain Size (in.) Wear (in.)

%0 Yot 1 %
% %ot % T
% Toa , %

% %ot 1% %
% T 1’/2 s
% %, %, Y

Source:Longshoring IndustrfSHA 2232, 1985.

Chains should be examined periodically for twists, as a twisted chain will wear rapidly.
Any links that have worn excessively should be replaced with new ones, so that every link
will do its full share of work during the life of the chain, without exceeding the limit of
safety. Chains for hoisting purposes should be made with short links, so that they will wrap
closely around the sheaves or drums without bending. The diameter of the winding drums
should be not less than 25 or 30 times the diameter of the iron used for the links. The
accompanying table lists the maximum allowable wear for various sizes of chains.



352 CRANE CHAIN AND HOOKS

Safe Loads for Ropes and Chains.-Safe loads recommended for wire rope or chain
slings depend not only upon the strength of the sling but also upon the method of applying
itto the load, as shown by the accompanying table giving safe loads as prepared by OSHA
The loads recommended in this table are more conservative than those usually specified, i
order to provide ample allowance for some unobserved weakness in the sling, or the possi
bility of excessive strains due to misjudgment or accident.

The working load limit is defined as the maximum load in pounds that should ever be
applied to chain, when the chain is new or in “as new” condition, and when the load is uni-
formly applied in direct tension to a straight length of chain. This limit is also affected by
the number of chains used and their configuration. The accompanying table shows the
working load limit for various configurations of heat-treated alloy steel chain using a 4 to
1 design factor, which conforms to ISO practice.

Protection from Sharp Cornergvhen the load to be lifted has sharp corners or edges, as
are often encountered with castings, and with structural steel and other similar objects,
pads or wooden protective pieces should be applied at the corners, to prevent the sling
from being abraded or otherwise damaged where they come in contact with the load. Thes
precautions are especially important when the slings consist of wire cable or fiber rope,
although they should also be used even when slings are made of chain. Wooden cornel
pieces are often provided for use in hoisting loads with sharp angles. If pads of burlap or
other soft material are used, they should be thick and heavy enough to sustain the pressur
and distribute it over a considerable area, instead of allowing it to be concentrated directly
at the edges of the part to be lifted.

Strength of Manila Rope

Weight New Weight New
of 100 Rope of 100 Rope
Circum- | feet of Tensile | Working Circum- | feet of Tensile | Working

Dia. ference | Ropé | Strength Load® Dia. ference | Ropé | Strength Load
(in.) (in.) (Ib) (Ib) (Ib) (in.) (in.) (Ib) (Ib) (Ib)

kN % 1.50 406 41 1% 4 47.8 13,500 1930

A % 2.00 540 54 1% 4%, 60.0 16,700 2380

N 1 2.90 900 90 1% 5 74.5 20,200 2880

% 1% 4.10 1220 122 1%, 5% 89.5 23,800 3400

T 1Y, 5.25 1580 176 2 6 108 28,000 4000

¥ 1% 7.50 2380 264 2% 6% 125 32,400 4620

96 1%, 104 3100 388 A 7 146 37,000 5300

% 2 13.3 3960 496 2%, 7 167 41,800 5950

% 2y, 16.7 4860 695 2% 8 191 46,800 6700

Bie 2% 195 5850 835 2% 8%, 215 52,000 7450

% 2%, 22.4 6950 995 3 9 242 57,500 8204
1 3 27.0 8100 1160 3y, 10 298 69,500 9950
W 3 31.2 9450 1350 3% 11 366 82,000 11,700
1% 3% 36.0 10,800 1540 4 12 434 94,501 13,50}
1, 3, 41.6 12,200 1740

aAverage value is shown; maximum is 5 per cent higher.

bBased on tests of new and unused rope of standard construction in accordance with Cordage Insti-
tute Standard Test Methods.

¢These values are for rope in good condition with appropriate splices, in noncritical applications,
and under normal service conditions. These values should be reduced where life, limb, or valuable
propety are involved, or for exceptional service conditions such as shock loads or sustained loads.

Data from Cordage Institute Rope Specifications for three-strand laid and eight-strand plaited
manila rope (standard construction).
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Strength of Nylon and Double Braided Nylon Rope

Weight Weight New
of 100 | New Ropg] of 100 Rope
Circum- | feetof | Tensile | Working Circum- | feetof | Tensile | Working
Dia. ference | Ropé | Strength Load? Dia. ference | Ropé | Strength Load?
(in.) (in.) (Ib) (Ib) (Ib) (in.) (in.) (Ib) (Ib) (Ib)
Nylon Rope

kN % 1.00 900 75 1% 4 45.0 38,800 4,320
A % 1.50 1,490 124 1% 4, 55.0 47,800 5,320
Y6 1 2.50 2,300 192 1% 5 66.5 58,500 6,500
% 1% 3.50 3,340 278 1%, 5% 83.0 70,000 7,800
T 1¥, 5.00 4,500 410 2 6 95.0 83,00 9,20
¥ 1% 6.50 5,750 525 2% 6% 109 95,500 10,600
96 1%, 8.15 7,200 720 A 7 129 113,000 12,600
% 2 10.5 9,350 935 2% KA 149 126,000 14,000
% 2, 145 12,800 1,420 2% 8 168 146,000 16,200
Yie 2% 17.0 15,300 1,700 2% 8% 189 162,000 18,000
% 2%, 20.0 18,000 2,000 3 9 210 180,00p 20,000
1 3 26.4 22,600 2,520 3y, 10 264 226,000 25,200
W 3, 29.0 26,000 2,880 3% 11 312 270,000 30,000
iEA 3% 34.0 29,800 3,320 4 12 380 324,000 36,04qo
1, 37, 40.0 33,800 3,760

Double Braided Nylon Rope
(Nylon Cover—Nylon Core)

% % 156 1,650 T50 | Z 231 | 44,700 5,590
% 1 2.44 2,570 234 | 13 @, 473 | 49,000 6,130
% 1% 352 3,700 336 | 1 a, 56.3 | 58,300 7,290
Tis 1% 479 5,020 502 | 13 5 66.0 | 68,300 8,540
% 1 6.25 6,550 655 | 13, 5% 76.6 | 79,200 9,900
%e 13, 7.91 8,270 919 2 6 100 103,00 12,990
% 2 977 | 10,200 1130 2y o, | 113 117,000 14,600
% 2% | 141 14,700 1840 2y, 7 127 131,000| 18,700
e 2% | 165 17,200 2150 2y 7 | 156 161,000 23,000
% % | 191 19,900 2490 25 8 172 177,000| 25,300
1 3 25.0 26,000 3,250 3 9 225 231,000 33,000
e 3y, | 282 29,300 3660 3y, 10 264 271,000| 38,704
1% 3y | 316 32,800 4100 3y 11 329 338,000 48,309
1, 3, | 391 40,600 5,080 4 12 400 | 410000 58,600

aAverage value is shown. Maximum for nylon rope is 5 per cent higher; tolerance for double braided
nylon rope ist 5 per cent.

bBased on tests of new and unused rope of standard construction in accordance with Cordage Insti-
tute Standard Test Methods. For double braided nylon rope these values are minimums and are base
on a large number of tests by various manufacturers; these values represent results two standard devi
ations below the mean. The minimum tensile strength is determined by the formutg(li@&&at den-
sity)0-995

¢These values are for rope in good condition with appropriate splices, in noncritical applications,
and under normal service conditions. These values should be reduced where life, limb, or valuable
property are involved, or for exceptional service conditions such as shock loads or sustained loads.

Data from Cordage Institute Specifications for nylon rope (three-strand laid and eight-strand
plaited, standard construction) and double braided nylon rope.
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Safe Working Loads in Pounds for Manila Rope and Chains

Rope or Chain Vertical Sling at 60 Sling at 48 Sling at 30
Diameter of Q
Rope, or of Rod 60° o
or ga} for Chain 4 A
Links, Inch /‘ /
Manila Rope
% 120 204 170 120
i 200 346 282 200
% 270 467 380 270
The 350 605 493 350
B 450 775 635 450
% 530 915 798 530
96 690 1190 973 690
% 880 1520 1240 880
% 1080 1870 1520 1080
Bie 1300 2250 1830 1300
% 1540 2660 2170 1540
1 1800 3120 2540 1800
g 2000 3400 2800 2000
1% 2400 4200 3400 2400
1, 2700 4600 3800 2700
1% 3000 5200 4200 3000
1% 3600 6200 5000 3600
1% 4500 7800 6400 4500
1%, 5200 9000 7400 5200
2 6200 10,800 8800 6200
2 7200 12,400 10,200 7200
Crane Chain (Wrought Iron)
7 1060 1835 1500 1060
H 1655 2865 2340 1655
% 2385 4200 3370 2385
h@ 3250 5600 4600 3250
% 4200 7400 6000 4200
K 5400 9200 7600 5400
% 6600 11,400 9400 6600
% 9600 16,600 13,400 9600
% 13,000 22,400 18,400 13,000
1 17,000 29,400 24,000 17,000
1 20,000 34,600 28,400 20,000
1%, 24,800 42,600 35,000 24,800
1% 30,000 51,800 42,200 30,000
1% 35,600 61,600 50,400 35,600
1% 41,800 72,400 59,000 41,800
1%, 48,400 84,000 68,600 48,400
1% 55,200 95,800 78,200 55,200
2 63,200 109,600 89,600 63,200
Crane Chain (Alloy Steel)
A 3240 5640 4540 3240
% 6600 11,400 9300 6600
% 11,240 19,500 15,800 11,240
% 16,500 28,500 23,300 16,500
A 23,000 39,800 32,400 23,000
% 28,600 49,800 40,600 28,600
1 38,600 67,000 54,600 38,600
¥ 44,400 77,000 63,000 44,400
1%, 57,400 99,400 81,000 57,400
1% 67,000 116,000 94,000 67,000
1% 79,400 137,000 112,000 79,400
1% 85,000 147,000 119,000 85,000
13, 95,800 163,000 124,000 95,800

aThese sizes of wrought chain are no longer manufactured in the United States.
Data fromLongshoring IndustryOSHA Safety and Health Standards Digest, OSHA 2232, 1985.
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Working Load Limit for Heat-Treated Alloy Steel Chain, pounds

Single Leg Double Leg Triple and Quad Leg

Chain 90° 60° 45° 30° 60° 45° 30°

Size

(in) &1 é % % él &5@ E]h
A 3,600 6,200 5,050 3,600 9,300 7,600 5,40
% 6,400 11,000 9,000 6,400 16,550 13,500 9,50
¥ 11,400 19,700 16,100 11,400 29,600 24,201 17,10p
% 17,800 30,800 25,150 17,800 46,250 37,75 26,70D
A 25,650 44,400 36,250 25,650 66,650 54,401 38,45D
T 34,900 60,400 49,300 34,900 90,650 74,00 52,35D

Source The Crosby Group.

Loads Lifted by Crane Chains.—To find the approximate weight a chain will lift when

rove as a tackle, multiply the safe load given in the table by the number of parts or chains
at the movable block, and subtract one-quarter for frictional resistance. To find the size of
chain required for lifting a given weight, divide the weight by the number of chains at the
movable block, and add one-third for friction; next find in the column headed “Average
Safe Working Load” the corresponding load, and then the corresponding size of chain in
the column headed “Size.” With the heavy chain or where the chain is unusually long, the

weight of the chain itself should also be considered.

-

NN
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|

I

M/_T‘“I
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Average Average Safe
Standard Weight Outside Outside Working Proof Approximate
Pitch,P per Foot, Length,L Width, W Load, Test, Breaking Load,
Size Inches Pounds Inches Inches Pounds Pound3 Pounds
A z, %, 1% % 1,200 2,500 5,000
i 7, 1 1% [ 1,700 3,500 7,000
% 3, 1% 13, 1y, 2,500 5,000 10,000
Ths 1%, 2 W 1% 3,500 7,000 14,000
% 1Y%, 2% 2% 1 4,500 9,000 18,000
%5 1%, 3y, 2% 17 5,500 11,000 22,000
% 1%, 4 3 2% 6,700 14,000 27,000
N 19, 5 3y, 2, 8,100 17,000 32,500
% 15 6% 3% 2 10,000 20,000 40,000
EN W6 7 3%, 2 10,500 23,000 42,000
% s 8 4 2% 12,000 26,000 48,000
N 46 9 43 W 13,500 29,000 54,000
1 2% 10 4% 3, 15,200 32,000 61,000
W 2% 12 47, s 17,200 35,000 69,000
1% 23 13 5% 3%, 19,500 40,000 78,000
JEN 3 14, 5% KA 22,000 46,000 88,000
1, 3% 16 5% A 23,700 51,000 95,000
1% 3% 17% 6% 4, 26,000 54,000 104,000
1% 3% 19 6% 1% 28,500 58,000 114,000
17 3, 213 6% 4, 30,500 62,000 122,000
1% 3 23 7 5 33,500 67,000 134,000
196 4 25 A 596 35,500 70,500 142,000
1% 4, 28 7 5% 38,500 77,000 154,000
1%, 4, 30 8% 5%, 39,500 79,000 158,000
1 #, 31 8% 5% 41,500 83,000 166,000
19 5 33 8% 6% 44,500 89,000 178,000
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Average Average Safe

Standard Weight Outside Outside Working Proof Approximate

Pitch,P per Foot, Length,L Width, W Load, Test, Breaking Load,
Size Inches Pounds Inches Inches Pounds Pounds Pounds
17, GA 35 7, % 27,500 5,000 T90,000
19, 5% 38 9% 6% 50,500 101,000 202,000
2 5% 40 10 6% 54,000 108,000 216,000
2% 6 43 10% 655 57,500 115,000 230,000
2% 6% 47 10%, 7% 61,000 122,000 244,000
6 6% 50 11% T 64,500 129,000 258,000
i 6% 53 11, % 68,200 136,500 273,000
2% 6% 58 11% 8 76,000 152,000 304,000
2% 7 65 12, 8% 84,200 168,500 337,000
2% % 70 1%, 8%, 90,500 181,000 362,000
2%, 7, 73 13 9% 96,700 193,500 387,000
2% KA 76 13Y% 9%, 103,000 206,000 412,000
3 KA 86 14 9 109,000 218,000 436,000

aChains tested to U.S. Government and American Bureau of Shipping requirements.

Additional Tables

Dimensions of Forged Round Pin, Screw Pin,
and Bolt Type Chain Shackles and Bolt Type Anchor Shackles

A
(| i
C
N T T
O)» O)!
/3 i
Working
Load Nominal
Limit Shackle
(tons) Size A B C D E G H |
% % /] P16 5 e
% %5 Ve Tz % s
1 % 1 Zy e Fp
1 e U | % | % | W |
2 2 1% Y% | % B | v | % | % o
k4 % 2 Vs % s % 2 e % 116
o, % 2% Y, % Vg 295 | 2% , % 1
o % 2, | 1 | 2 o | e | 2 | e |t 2%
8% 1 A 1%, 1% 2%, 3%, s 1 i %,
9% 1% 3 1% 1%, 2% 4, 3% 1% 1%, 2%
12 1 3%, % 1% 3 4 3%, %Yy 1% 3
13 1% W | 2% | 1 | e | % | @ | 2% | 1 | %
7 1’/z s | P 1% Py 20 e | P % s
25 13, 5%, 2% 2 4% 7 5% 2% 2 4%
35 2 6% kA 2%, 5 7, 6% 3y, 2%, 5

All dimensions are in inches. Load limits are in tons of 2000 pounds.

SourceThe Crosby Group.
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Dimensions of Crane Hooks

Eye Hook With
Latch Assembled

_t
|
! Swivel Hook
Swivel Hook With Latch Assembled
| Capacity of Hook in Tons (tons of 2000 Ibs)
[ 11 [T 1es] 22 33 49 77 ] 121 165] 242] 33 [ 407 49,
Dimensions for Eye Hooks
A 1.47 1.75 2.03 2.41 2.94 3.81 4.69] 5.39 6.6 7.0 8.0 9.31
B 0.75 0.91 112 1.25 1.5 2.00 2.44 2.84 3.5 3.5 .40 4.94
D 2.88 3.19 3.62 4.09] 4.94 6.50 7.56 8.69 11.0 13.42 14.96 15484
E 0.94 1.03 1.06 1.22] 1.5( 1.88 2.2 2.5 3.3 4.00 4.35 45
G | 075 o084| 100| 112 1.44 1.81 2.24 2.5 3.0 3.4 4.6 5.p6
H | 081 094| 116] 131 1.64 2.06 2.62] 2.94 3.5 4.6p 5.40 5.50
K 0.56 0.62 0.75 0.84 1.13 1.38 1.62 1.94 2.3 3.0 3.15 412
L 4.34 4.94 5.56 6.40 7.9% 10.09 12.44 13.9 17.0p 1947 245 27138
R 3.22 3.66 4.09 4.69 5.7! 7.38 9.04 10.0 12.5p 14.46 18.19 20)12
T | o081 081| 0.84] 119 1.3 1.78 2.12] 2.5 2.8 340 3 45
o | o88| 097| 100 112 1.34 1.69 2.04 2.2 3.0 3. 315 4.p5
Dimensions for Swivel Hooks
A 2 2.50 3 3 3.50 4.50 5 5.63 7 7
B 0.94 131 1.63 1.56) 1.7 231 2.38 2.69 4.1 4.1p
[} 1.25 1.50 1.75 1.79 2 2.50 2.75| 3.13 4 4
D 2.88 3.19 3.63 4.09] 4.94 6.5 7.56 8.6 11 13.6]
E | 094] 103| 108 122 15 1.88 2.2 25 3.3! 4
L | 556 | 663| 7.63| 813 959 1241 14.50) 15.8: 21.0p 2332
R 4.47 5.28 6.02 6.38) 7.4 9.59 11.13 12.0: 16.96 18.46
S 0.38 0.50 0.63] 0.63 0.7! 1 1.13] 1.2§ 15 1.5|
T 0.81 0.81 0.84 1.19 1.3 1.78 2.13 2.5 2.8 3.44
o 0.88 0.97 1 1.13 1.34 1.69 2.06 2.2§ 3 3.6

SourceThe Crosby Group. All dimensions are in inches. Hooks are made of alloy steel, quenched
and tempered. For swivel hooks, the data are for a bail of carbon steel. The ultimate load is four times
the working load limit (capacity). The swivel hook is a positioning device and is not intended to
rotate under load; special load swiveling hooks must be used in such applications.
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Hot Dip Galvanized, Forged Steel Eye-bolts

<—~C—T ‘

=
1O

.~ C —

UL—

B A o 10
Regular j Shoulder —f
Pattern Pattern
REGULAR PATTERN

Shank DEia){:'l . L?)E:; Shank DEia){ne'l . L?)E:;
D C A B (tons) D c A B (tons)
% 2 A 1 0.25 % 4, I 3 2.6
% 4 A 1 0.25 % 6 1% 3 2.6
%16 2, % 1, 0.4 % 8 1% 3 2.6
%16 4, % 1, 0.4 % 10 1% 3 2.6
% 2% % 1% 0.6 % 10 1% 3 2.6
% A % 1% 0.6 % 10 1% 3 2.6
% 6 % 1% 0.6 % 5 13 3 36
% 3, 1 2 11 % 8 13, 3y 36
% 6 1 2 11 % 10 1% 3 36
% 8 1 2 11 1 6 2 4 5
¥ 10 1 2 11 1 9 2 4 5
A 12 1 2 11 1 10 2 4 5
% 4 1%, 2% 1.75 1 10 2 4 5
% 6 1%, 2% 175 1, 8 2% 5 7.6
% 8 1 2% 175 1w, | 10 2% 5 76
% 10 1%, 2%, 1.75 1%, 10 2%, 5 7.6
% 12 1, 2% 175

SHOULDER PATTERN

A 2 % % 0.25 % 6 1, 2, 1.75
no| 4 % % 025 | % | a, | 1w, | w | 26
%16 2%, % 1% 0.4 % 6 1% %, 26
%o | o | % i 04 A wo| o | 36
% 2% % 1% 0.6 1 6 2 3, 5
% 4, % 1% 06 1 9 2 %, 5
¥ 3, 1 13, 11 1, 8 2% 4y, 7.6
% 6 1 13, 11 1%, 12 2% 4, 7.6
% 4 1 2 175 1% 15 3 5% 10.7

aThe ultimate or breaking load is 5 times the safe working load.

All dimensions are in inches. Safe loads are in tons of 2000 pounds.
SourceThe Crosby Group.
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Eye Nuts and Lift Eyes

[ Eye Nuts
T The general function of eye nuts is similar to that of eye-
bolts. Eye nuts are utilized for a variety of applications}in
either the swivel or tapped design.
Working
Load Limit
M A C D E F S T (Ibs)*
A it/ % e e % % 1% 520
% | om| % | 1 % % Y, 1, 850
% 5 | 1 1, % %o %o % 1,250
The 2 1¥, 1% 1 Bie % 2y, 1,700
Y 2 1, 1% 1 B % 2% 2,250
% 2% 1% 2 [ER 1 % s 3,600
% 3 13, 2% 1% 1% % 3% 5,200
% ¥ | 2 % 19% 19 % % 7,200
1 4 2%, s 1% 1% % 5 10,000
1% 4 2, 3 1% 1% % 5 12,300
1, 4%, 2%, 3%, 1% 17 1 5% 15,500
1% 5 2%, 39, 2 2 1% 6%, 18,500
1% 5% 3% 4 2% 2, 1, 6% 22,500
2 7 4 6%, 4 3% 1% 10 40,000
Lifting Eyes
Working
Load Limit
Threaded
A c D E F G H L s T (Ibs)*
7 Bl Y| | B | % | e | Y| % | % 850
|1 ol % | % w | % | %] %] s 1,250
2 1, W | 1 Bl % % 1, % 3, 2,250
| owm |2 | | ot | % | m | % | % 3,600
3 13, % | 1% A % % 17, % 5% 5,200
¥ | 2 B | % | me| me| % | 2 %o | 6% 7,200
4 2, M | 1% 9 | W | 1 e % The 10,000
4, 2%, 3% | W | 1% 1, 1Y% 2% 1 8% 12,500
5% 3% 4 % 2% 1% 1% 29| 1, W 18,000

All dimensions are in inches. Data for eye nuts are for hot dip galvanized, quenched, and tempered
forged steel. Data for lifting eyes are for quenched and tempered forged steel.
SourceThe Crosby Group.
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Minimum Sheave- and Drum-Groove Dimensions for Wire Rope Applications

Nominal Groove Radius Nominal Groove Radius
Rope Rope
Diameter New Worn Diameter New Worn
A 0.135 0.129 2% 1.271 1.199
N 0.167 0.160 2% 1.338 1.279
% 0.201 0.190 2% 1.404 1.339
The 0.234 0.220 2, 1.481 1.409
% 0.271 0.256 2% 1.544 1.473
%6 0.303 0.288 3 1.607 1.538
% 0.334 0.320 3 1.664 1598
% 0.401 0.380 3%, 1.731 1.658
% 0.468 0.440 3% 1.807 1.730
1 0.543 0.513 3% 1.869 1.794
1% 0.605 0.577 37, 1.997 1.918
¥, 0.669 0.639 4 2.139 2.050
1% 0.736 0.699 49, 2.264 2.178
1% 0.803 0.759 4%, 2.396 2.298
1% 0.876 0.833 43, 2.534 2.434
13, 0.939 0.897 5 2.663 2.557
1% 1.003 0.959 5%, 2.804 2.691
2 1.085 1.025 5% 2.929 2.817
2% 1.137 1.079 A 3.074 2.947
2%, 1.210 1.153 6 3.198 3.075

All dimensions are in inches. Data taken frdfire Rope Users Manuand ed., American Iron
and Steel Institute, Washington, D. C. The values given in this table are applicable to grooves in
sheaves and drums but are not generally suitable for pitch design, since other factors may be
involved.

Winding Drum Scores for Chain

L raD. :?_E T‘E‘
16 c= 'a
= =
e ! e
= =
Chain Chain
Size A B (o} D Size A B (o} D
% 2 e % | e % 2 Yo | % | L
s W | % 5% %, e Y% | % | 1%
% % % Yo | % % A % ,
% % | % 9 Y | % 3, | % | @
5% B | 9 | % % % % | % | m
s 2 £ 7 K N s s £ 1%
3 e | % B | % A P | % % A
N %% K 1 R N 2% P K 1%
% 3% o | e | % % 2 2 | % | 2
P15 s R kEA o N 2% % R 2%
1 3, % B | % 1 o | % | % 2,

All dimensions are in inches.
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