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PREFACE

We are proud to present this volume to all programmers, computer scientists, historians of science and 
technology, and the general public interested in the details and circumstances surrounding the most 
important technological invention of the twentieth century — the computer. This book consists of the papers 
presented at the International Conference on the History of Computing, held at the Heinz Nixdorf 
MuseumsForum in Paderborn, Germany, in August 1998. This event was a satellite conference of the 
International Congress of Mathematicians, held in Berlin a week later. Using electronic communication, the 
contributions for this volume were discussed before, during, and after the conference. Therefore, this is a 
collective effort to put together an informative and readable text about the architecture of the first computers 
ever built.

While other books about the history of computing do not discuss extensively the structure of the early 
computers, we made a conscious effort to deal thoroughly with the architecture of these machines. It is 
interesting to see how modern concepts of computer architecture were being invented simultaneously in 
different countries. It is also fascinating to realize that, in those early times, many more architectural 
alternatives were competing neck and neck than in the years that followed. A thousand flowers were indeed 
blooming — data-flow, bit-serial, and bit-parallel architectures were all being used, as well as tubes, relays, 
CRTs, and even mechanical components. It was an era of Sturm und Drang, the years preceding the 
uniformity introduced by the canonical von Neumann architecture.

The title of this book is self-explanatory. As the reader is about to discover, attaching the name "world's first 
computer" to any single machine would be an over-simplification. Michael R. Williams makes clear, in the 
first chapter in this volume, that any of these early machines could stake a claim to being a first in some 
sense. Speaking in the plural of the first computers is therefore not only a diplomatic way around any 
discussion about claims to priority, it is also historically correct. However, this does not mean that our 
authors do not strongly push their case forward. Every one of them is rightly proud of the intellectual 
achievement materialized in the machines they have studied as historians, rebuilt as engineers, or even 
designed as pioneers. And this volume has its share of all three kinds of writers. This might well be one of 
the strengths of this compilation.
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Why Study Old Architectures?

Some colleagues may have the impression that nothing new can be said about the first computers, that 
everything worth knowing has already been published somewhere else. In our opinion, this is not the case; 
there is still much to be learned from architectural comparisons of the early computers. A good example is 
the reconstruction of Colossus, a machine that remained classified for many years, and whose actual design 
was known to only a small circle of insiders. Thanks to Tony Sale, a working replica of Colossus now exists, 
and full diagrams of the machine have been drawn. However, even when a replica has been built, the 
internal structure of the machine has sometimes remained undocumented. This was the case with Konrad 
Zuse's Z1 and Z3, reconstructed for German museums by Zuse himself. Since he did not document the 
machines in a form accessible to others, we had the paradox in Germany of having the machines but not 
knowing exactly how they worked. This deficit has been corrected only in recent years by several papers that 
have dissected Zuse's machines.

Another example worth analyzing is the case of the Harvard Mark I computer. Every instruction supplies a 
source and a destination: numbers are moved from one accumulator to another, and when they arrive they 
are added to the contents of the accumulator (normal case). The operation can be modified using some extra 
bits in the opcode. This architecture can be streamlined by defining different kinds of accumulators, which 
perform a different operation on the numbers arriving. Thus, one accumulator could add, the other subtract, 
and yet another just shift a number. This is exactly the kind of architecture proposed by Alan Turing for the 
ACE, a computer based on the single instruction MOVE. We notice only the similarity between both 
machines when we study their internal organization in greater depth.

It is safe to say that there are few comparative architectural studies of the first computers. This volume is a 
first step in this direction. Moreover, we think that this book can help motivate students of computer science 
to look at the history of their chosen field of study. Courses on the history of computing can be made more 
interesting for these students, not always interested in the humanities or history in itself, by showing them 
that there is actually much to be learned from the successes and failures of the pioneers. Some kinds of 
computer architectures even reappear when the architectural constraints make a comeback. The Connection 
Machine, a supercomputer of the 1980s, was based on bit-serial processors, because they were cheap and 
could be networked in massive amounts. Reconfigurable hardware is a new buzzword among the computer 
science community, and the approach promises to speed up computations by an order of magnitude. Could it 
be that the microchips of the future will look like the ENIAC, like problem-dependent rewireable machines?
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Those who do not know the past are condemned to live it anew, but the history of computing shows us that 
those who know the past can even put this knowledge to good use!

Structure of the Book

Part I deals with questions of method and historiography. Mike Mahoney shows that computer science arose 
in many places simultaneously. He explains how different theoretical schools met at the crossroads leading 
to the fundamental concepts of the discipline. Robert Seidel then discusses the relevance of reconstructions 
and simulations of historical machines for the history of science. New insights can be gained from those 
reconstruction efforts. In the next chapter, Andreas Brennecke attempts to bring some order to the discussion 
about the invention of the first computers, by proposing a hierarchical scheme of increasingly flexible 
machines, culminating in the stored program computer. Finally, Harry Huskey, one of the pioneers at the 
conference, looks at the constraints imposed on computer architectures by the kind of materials and logical 
elements available during the first decades following World War II.

Part II of the book deals with the first American computers. John Gustafson, who led the reconstruction of 
Atanasoff's machine, describes the detective work that was necessary in order to recreate this invention, 
destroyed during the war and considered by some, including a federal judge, to be the first computer built in 
the U.S. He addresses the limitations of the machine but also explains how it could have been used as a 
calculator. I. Bernard Cohen, whose Aiken biography is the best study of a computer pioneer published up to 
now, contributed a chapter which sheds light on the architectural solutions adopted by Aiken and clarifies 
why he did not build an electronic machine. Professor Jan Van der Spiegel and his team of students 
performed the feat of putting the ENIAC on a single chip. Their paper provides many details about the 
operation of the machine and discusses its circuits in depth. Their description is the best and most 
comprehensive summary of ENIAC's architecture ever written. William Aspray and Paul Ceruzzi review 
later developments in the computer arena in their contributions and show us how the historian of computing 
can bring some order in this apparent chaos.

Part III looks at the other side of the Atlantic. For the first time, a single book written for the international 
public discusses the most important early German computers: the Z1, Z3, and Z4, as well as the electronic 
machines built in Göttingen. Raúl Rojas, Ambros Speiser, and Wilhelm Hopmann review all these different 
machines, discussing their internal operation. In his contribution Hartmut Petzold looks at the emergence of 
a computer industry in Germany and the role played by Konrad Zuse. Friedrich L. Bauer, a well-known 
German pioneer, looks again at the high-level programming language invented by Zuse, the Plankalkül 
(calculus of programs), which he considers his greatest achievement. Friedrich Kistermann and Thomas 
Lange analyze
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the structure of two almost forgotten, yet very important machines, the DEHOMAG tabulator and the first 
general-purpose analog computer, built by Helmut Hoelzer in Germany. Hoelzer's analog machines were 
used as onboard computers during the war.

The first British computers are explained in Part IV. Tony Sale describes the reconstruction of Colossus, 
which we mentioned above. Brian Napper and Chris Burton analyze the architecture and reconstruction of 
the Manchester Mark I, the world's first stored-program computer. Frank Sumner reviews the Atlas, a real 
commercial spin-off of the technological developments that took place in Manchester during those years. In 
the final chapter of this section, Martin Campbell-Kelly, editor of Babbage's Collected Works, takes a look 
at the EDSAC, the computer built in Cambridge, and tells us how much can be learned from a software 
simulation of a historical machine.

Finally, Part V makes information available about the first Japanese computers. Seiichi Okoma reviews the 
general characteristics of the early Japanese machines and Eiiti Wada describes the PC-1 in more depth, a 
computer that is very interesting from a historical viewpoint, since it worked using majority logic. The same 
kind of circuits had been studied in the U.S. by McCulloch and Pitts, and also had been used by Alan Turing 
in his written proposal for the ACE machine. Apparently, the only hardware realization was manufactured in 
Japan and used for the PC-1.
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A Preview of Things to Come: 
Some Remarks on the First Generation of Computers

Michael R. Williams

Abstract. The editors of this volume have asked me to prepare this introduction in order to ''set the scene" 
for the other papers. It is often difficult to know just how much knowledge people have about the early days 
of computing – however you define that term. If one reads a sophisticated description which details some 
small aspect of a topic, it is impossible to follow if your intention was simply to learn some basic 
information. On the other hand, if you are an historian that has spent your entire working life immersed in 
the details of a subject, it is rather a waste of time to carefully examine something which presents the well 
known facts to you, yet again. This means that, no matter what I include here, I will almost certainly discuss 
things of no interest to many of you! What I do intend to do is to review the basics of early computer 
architecture for the uninitiated, but to try and do it in a way that might shed some light on aspects that are 
often not fully appreciated – this means that I run the risk of boring everyone.

1— 
Classifications of Computing Machines

As a start, let us consider the word "computer." It is an old word that has changed its meaning several times 
in the last few hundred years. Coming, originally, from the Latin, by the mid-1600s it meant "someone who 
computes." It remained associated with human activity until about the middle of this century when it became 
applied to "a programmable electronic device that can store, retrieve, and process data" as Webster's 
Dictionary defines it. That, however, is misleading because, in the context of this volume, it includes all 
types of computing devices, whether or not they were electronic, programmable, or capable of "storing and 
retrieving" data. Thus I think that I will start by looking at a basic classification of "computing" machines.

One can classify computing machines by the technology from which they were constructed, the uses to 
which they were put, the era in which they were used, their basic operating principle, analog or digital, and 
whether they were designed to process numbers or more general kinds of data.
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Perhaps the simplest is to consider the technology of the machine. To use a classification which was first 
suggested to me by Jon Eklund of the Smithsonian, you can consider devices made from five different 
categories:

• Flesh: fingers, people who compute–and there have been many famous examples of "idiot savants" who 
did remarkable calculations in their head, including one that worked for the Mathematics Center in 
Amsterdam for many years;

• Wood: devices such as the abacus, some early attempts at calculating machines such as those designed by 
Schickard in 1621 and Poleni in 1709;

• Metal: the early machines of Pascal, Thomas, and the production versions from firms such as Brunsviga, 
Monroe, etc.;

• Electromechanical devices: differential analyzers, the early machines of Zuse, Aiken, Stibitz, and many 
others;

• Electronic elements: Colossus, ABC, ENIAC, and the stored program computers.

This classification, while being useful as an overall scheme for computing devices, does not serve us well 
when we are talking about developments in the last 60 or 70 years.

Similarly, any compact scheme used for trying to "pigeon-hole" these technological devices will fail to 
differentiate various activities that we would like to emphasize. Thus, I think, we have to consider any 
elementary classification scheme as suspect. Later in this volume there is a presentation of a classification 
scheme for "program controlled calculators" which puts forward a different view.1

2— 
Who, or What, Was "First"

Many people, particularly those new to historical studies, like to ask the question of "who was really first?" 
This is a question that historians will usually go to great lengths to avoid. The title of this volume (The First 
Computers – History and Architectures) is certainly correct in its use of the word first – in this case it 
implies that the contents will discuss a large number of the early machines. However, even the subtitle of 
this introduction – "Some Remarks on the First Generation of Computers" – is a set of words full of 
problems. First, the use of the word "computer" is a problem as explained above. Second, the words "first 
generation" have many different interpretations – do I include the electromechanical machines of Zuse, 
Stibitz, and

1 See in this volume: A. Brennecke, "A Classification Scheme for Program Controlled Calculators."
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Aiken (which were certainly "programmed") or am I limiting myself to the modern "stored program" 
computer–and even then, do I consider the first generation to begin with the mass production of machines by 
Ferranti, UNIVAC, and others, or do I also consider the claims of "we were first" put forward by the 
Atanasoff-Berry Computer (ABC), Colossus, ENIAC, the Manchester Baby Machine, the EDSAC, and 
many more?

Let me emphasize that there is no such thing as "first" in any activity associated with human invention. If 
you add enough adjectives to a description you can always claim your own favorite. For example the ENIAC 
is often claimed to be the "first electronic, general purpose, large scale, digital computer" and you certainly 
have to add all those adjectives before you have a correct statement. If you leave any of them off, then 
machines such as the ABC, the Colossus, Zuse's Z3, and many others (some not even constructed such as 
Babbage's Analytical Engine) become candidates for being "first."

Thus, let us agree, at least among ourselves, that we will not use the word "first" – there is more than enough 
glory in the creation of the modern computer to satisfy all of the early pioneers, most of whom are no longer 
in a position to care anyway. I certainly recognize the push from various institutions to have their people 
declared "first" – and "who was first?" is one of the usual questions that I get asked by the media, 
particularly when they are researching a story for a newspaper or magazine.

In order to establish the ground rules, let us say that there are two basic classes of machines: the modern 
stored program, digital, electronic computer, and the other machines (either analog or digital) that preceded, 
or were developed and used after the invention of the stored program concept.

During the recent celebrations of the 50th anniversary of the creation of the Manchester Baby Machine, one 
of the speakers remarked that "You don't go into a pet store and ask to buy a cat and then specify 'I would 
like one with blood please' – similarly, you don't buy a computer and ask for it to have a memory, you just 
assume that it will be part of the machine." The possession of a large memory for both instructions and data 
is a defining characteristic of the modern computer. It is certainly the case that the developers of the modem 
computer had a great deal of trouble finding devices that would make a suitable memory for a stored 
program computer, so it is with this topic that I would like to begin my more detailed remarks.

3— 
Memory Systems

It is quite clear where the concept of the stored program computer originated. It was at the Moore School of 
Electrical Engineering, part of the University of Pennsylvania, in the United States. What is not so clear is 
who invented the concept. It was formulated by the group of people who were, then, in the middle of the 
construction of the ENIAC and was a response to the problems
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they were beginning to see in the design of that machine – principally the very awkward control system 
which required the user to essentially "rewire" the computer to change its operation. It is clear that the 
concept had been discussed before John von Neumann (who is often thought of as its inventor) was even 
aware of the ENIAC's existence, but which of the ENIAC team members first suggested it as a potential 
solution is unknown. This embryonic concept required several years of research and development before it 
could be tested in practice–and it was even later before the implications of its power were fully appreciated. 
Von Neumann, and others, certainly took part in this aspect of the concept's development.

While many people appreciated the elegance of a "stored program" design, few had the technological 
expertise to create a memory device which would be:

• inexpensive

• capable of being mass produced in large quantities

• had low power consumption

• was capable of storing and retrieving information rapidly

Indeed, these criteria were not all to be satisfied until the commercial development of the VLSI memory 
chip. It was certainly impractical to attempt to construct a large memory from the types of technology (relays 
and vacuum tubes) that had been the memory elements in the earlier computing machines.

Many different memory schemes were suggested – one pioneer even describing his approach to the problem 
as "I examined a textbook on the physical properties of matter in an attempt to find something that would 
work." Obvious candidates were various schemes based on magnetism, electrical or heat conductance, and 
the properties of sound waves in different media. The ones used for the first computers were modifications 
of work that had been done to aid in the interpretation of radar signals during World War II. The most 
successful memory schemes fall into two different categories: delay line mechanisms, like those used for 
Turing's Pilot ACE (Fig. 1),2 and electrostatic devices, like those used for the Manchester "Baby" (Fig. 2).3 
For a complete description of the mechanisms of each of these, the interested reader should refer to texts on 
the history of computing.4

2 See in this volume: Harry D. Huskey, "Hardware Components and Computer Design."
3 See in this volume: R.B.E. Napper, "The Manchester Mark 1 Computers."
4 See, for example, Michael R. Williams, A History of Computing Technology, second edition, (IEEE Computer Science 
Press, 1997); or, for a more detailed treatment of early memory systems, see J. P. Eckert, "A Survey of Digital Computer 
Memory Systems," Proceedings of the IRE, October, 1953, to be reprinted in the 20-4 issue of Annals of the History of 
Computing.
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Figure 1 
Diagram of the operation of a typical 

mercury delay line

Figure 2 
Diagram of the operation of a typical electrostatic 

memory tube, in this case a "Williams tube"

These two different memory schemes were intimately connected with the basic computer architecture of the 
first machines and it is now time to briefly examine a few aspects of that topic before we progress further.

4— 
Elementary Architecture of the First Machines

The first of the modern computers can be considered to be divided into two different classes depending on 
how they transferred information around inside the machine. The idea for the stored program computer 
originated, as
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stated earlier, from the work done on the ENIAC project in the United States. The ENIAC sent information 
from one unit to another via a series of wires that ran around the outside of the machine (changing the job 
the ENIAC was doing essentially involved changing the connections between these "data bus" and "control 
bus" wires and the various units of ENIAC). Numbers were transmitted as a series of pulses for each decimal 
digit being moved, for example, 5 pulses sent serially down a wire would represent the digit 5, etc. This 
"serial data transmission" philosophy was adopted in the design of the EDVAC (the "stored program" 
proposal first put forward by the ENIAC team). Even though the machine was binary, rather than decimal 
like the ENIAC, the individual "words'' of data were moved between various parts of the machine by 
sending either a pulse ("1") or no pulse ("0") down a single wire (Fig. 3).5

Many of the early computers used this form of data transmission because of two factors: a) it required fewer 
electronic components to control the signals, and b) it was already known how to design circuits to 
accomplish this task.

Figure 3 
The number 29 (11101) sent serially down a wire

Figure 4 
The number 29 (11101) 

sent down a number 
of parallel wires

5 See in this volume: Jan Van der Spiegel et al., "The ENIAC: History, Operation, and Reconstruction in VLSI."
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The problem with serial transmission is that it is slower than attempting to transmit data via a number of 
parallel wires – to transmit n bits in a word usually took n clock pulses. When some groups were attempting 
to create a very high performance machine, they wanted to take advantage of the increase in speed given by 
transmitting all the data pulses in parallel – a mechanism which would allow n bits to be transmitted in only 
one clock pulse (Fig. 4).

The first stored program computer project to adopt a parallel transmission scheme was the IAS computer 
being developed at the Institute of Advanced Study by the team led by von Neumann. This project took 
much longer to become operational than most of the early machines, simply because the parallel nature of 
the architecture required the electronic circuits to be much more precise as to the timing of pulses. The 
additional problem with parallel data paths is that the memory must be able to provide all n data bits of a 
word at one time.

Delay lines, by their very nature, are serial memory devices–the bits emerge from the delay line one at a 
time. If you were to incorporate a delay line memory into an, otherwise, parallel machine, you would have to 
store all 40 bits of a word (in the case of the IAS machine) in 40 different delay lines. Even then it would be 
awkward because delay lines do not have accurate enough timing characteristics to allow this to be easily 
engineered. What was needed was the more exact (and higher speed) electronic system of an electrostatic 
memory. It was still necessary to store one bit of each word in a different electrostatic tube, but at least it 
was a solution to the problem.

Figure 5 
John von Neumann and the IAS computer
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The illustration above, of von Neumann standing beside the IAS machine, clearly shows 20 cylindrical 
devices in the lower portion of the machine – these were one half of the 40 tubes that made up the memory 
(the other half were on the other side of the machine). Each tube stored 1,024 bits – the first tube stored the 
first bit of each of the 1,024 words, the second tube contained the second bit, etc.

Of course, it was still possible to use the electrostatic storage tubes in a serial machine as was done with the 
first machine at Manchester University and the subsequent commercial versions produced by Ferranti. In 
this case a single word would be stored on one "line" of dots on one tube and the individual bits would be 
simply sent serially to a computer when required.

When one looks at the history of the early computers, it is often the case that the famous "family tree" 
diagram (first produced in a document from the U.S. Army) is mentioned (Fig. 6). If you examine that 
classification scheme you will note that a number of factors are missing.

This categorization of computers obviously takes a very American view of the situation and also leaves out 
any of the pre-electronic developments that led up the creation of the ENIAC. A better, but still flawed, 
version was created by Gordon Bell and Allen Newell6 (Fig. 7). Here, at least, some of the precursors to the 
modern computer are acknowledged and the major difference between serial and parallel machines are 
noted. They also include the early British developments at Cambridge, Manchester, the National Physical 
Laboratory, and have an acknowledgement of the work of Konrad Zuse.

Figure 6 
The original U.S. Army "family tree"

6 Gordon Bell and Allen Newell, Computer Structures, Reading and Examples (McGraw-Hill, 1971).
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Figure 7 
The Bell and Newell "family tree"

A more practical approach to listing the early machines might be to group them in some form that will 
illustrate the times during which they were developed and used. For this task the usual "timeline" is perhaps 
the best choice of visual device (Fig. 8). There were, however, about a thousand machines created between 
the years 1930 and 1970 which deserve some consideration in a chart like this and that number prohibits a 
reasonable representation on anything that will fit into a page. Thus I will suggest that only a few of the most 
important early machines can be noted in this way – even so, the diagram soon becomes so crowded that it is 
difficult to see.

There are still a number of thing that can be easily gained from that diagram. It is possible, for example, to 
understand at a glance that a great deal of very inventive work was done just about the time of the Second 
World War – most of it, of course, inspired and paid for by the military. The timeline is approximately (but 
not completely) arranged so that increasing technical sophistication goes from the lower projects to the 
upper ones. While not a surprise, it certainly does indicate that the faster, more complex, devices were based 
on the experience gained in earlier experiments.

Another interesting chart, but unfortunately one too complex to show here, would be this timeline with 
arrows between the projects showing the sources of inspiration, technical advice, and even the exchange of 
technical personal – the chart would be too complex because almost all the events shown (with the exception 
of the work of Zuse) relied heavily on one another in these matters.



   

Figure 8 
A timeline of major early computer projects
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The machines in this timeline are the subject of many of the papers in this volume – some discuss the 
technical details, some the uses to which they were put, and others refer to the "down stream" effects these 
developments had on other machines and people. I hope this timeline will provide a handy reference to help 
you keep the temporal order straight.

Another guide to the novice might well be some of the technical details of the machines themselves. Rather 
than go into a lengthy description of the different architectures, I propose to offer the chart in Fig. 9 which, I 
hope, will help to do the job. It would certainly be wrong for anyone to rely on the information contained in 
this table because it was mostly constructed from my memory – other papers in this volume will offer more 
detailed information on individual projects.

A glance down any column will show the very wide range of projects and the tremendous increase in 
complexity as the teams gained experience. For example, the 3 years between the creation of the Bell Labs 
Model 2 and the Model 5 (1943-1946) saw an increase of complexity from 500 relays to over 9,000; the 
control systems expand from a simple paper tape reader to one containing 4 problem input/output stations, 
each with 12 paper tape readers; the control language developing from an elementary "machine language" to 
one in which instructions were given in a form recognizable today ("BC + GC = A"); and the physical size 
of each machine increases to the point where the Model 5 required two rooms to house its 10 tons of 
equipment.



   

Figure 9 
Some technical details of early computer projects
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5— 
Conclusions

The distinction between "programmable calculators" and "stored program computers" is seen to be one 
which can not be readily made on any technological basis. For example, the memory size of the Zuse Z4 
machine (a ''calculator") is many times larger than either the first (the Manchester "Baby") or second 
(Cambridge EDSAC) stored program computers. Similarly the massive amounts of technology used on 
either the IBM SSEC or the ENIAC were far in excess of that used on any of the early stored program 
computers. The distinction also can not be made on the basis of a date by which any particular project was 
started or finished – many different machines controlled by punched paper tape were begun after the first 
stored program computers were created. Any one attempting to casually indicate that project X was 
"obviously" the first computer on the basis of only a few considerations can be easily proved wrong. As I 
indicated in my opening remarks: there is more than enough glory in the creation of this technology to be 
spread around all the very innovative pioneers.

About the only simple conclusion that can be noted is that the problem of creating a memory for the 
different types of machines was the main stumbling block to the development of computing technology. 
Until this problem had been solved the computer remained a device which was only available to a few. Now 
that we have the size and the cost of all the components reduced to almost unimaginable levels, the computer 
has become a universal instrument that is making bigger and faster changes to our civilization than any other 
such development – it is well worthwhile knowing where, and by whom, these advances were first made and 
this volume will certainly help in telling this story.
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PART I— 
HISTORY, RECONSTRUCTIONS, ARCHITECTURES
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The Structures of Computation

Michael S. Mahoney

Abstract. In 1948 John von Neumann decried the lack of "a properly mathematical-logical" theory of 
automata. Between the mid-1950s and the early 1970s such a theory took shape through the interaction of a 
variety of disciplines, as their agendas converged on the new electronic digital computer and gave rise to 
theoretical computer science as a mathematical discipline. Automata and formal languages, computational 
complexity, and mathematical semantics emerged from shifting collaborations among mathematical 
logicians, electrical engineers, linguists, mathematicians, and computer programmers, who created a new 
field while pursuing their own. As the application of abstract modern algebra to our dominant technology, 
theoretical computer science has given new form to the continuing question of the relation between 
mathematics and the world it purports to model.

1— 
History and Computation

The focus of this conference lies squarely on the first generation of machines that made electronic, digital, 
stored-program computing a practical reality. It is a conference about hardware: about "big iron," about 
architecture, circuitry, storage media, and strategies of computation in a period when circuits were slow, 
memory expensive, vacuum tubes of limited life-span, and the trade-off between computation and I/O a 
pressing concern. That is where the focus of the nascent field and industry lay at the time. But, since this 
conference is a satellite conference of the International Congress of Mathematicians, it seems fitting to 
consider too how the computer became not only a means of doing mathematics but also itself a subject of 
mathematics in the form of theoretical computer science. By 1955, most of the machines under consideration 
here were up and running; indeed one at least was nearing the end of its productive career. Yet, as of 1955 
there was no theory of computation that took account of the structure of those machines as finite automata 
with finite, random-access storage. Indeed, it was not clear what a mathematical theory of computation 
should be about. Although the theory that emerged ultimately responded to the internal needs of the 
computing com-
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munity, it drew inspiration and impetus from well beyond that community. The theory of computation not 
only gave mathematical structure to the computer but also gave computational structure to a variety of 
disciplines and in so doing implicated the computer in their pursuit.

As many of the papers show, this volume is also concerned with how to do the history of computing, and I 
want to address that theme, too. The multidisciplinary origins and applications of theoretical computer 
science provide a case study of how something essentially new acquires a history by entering the histories of 
the activities with which it interacts. None of the fields from which theoretical computer science emerged 
was directed toward a theory of computation per se, yet all became part of its history as it became part of 
theirs. Something similar holds for computing in general. Like the Turing Machine that became the 
fundamental abstract model of computation, the computer is not a single device but a schema. It is indefinite. 
It can do anything for which we can give it instructions, but in itself it does nothing. It requires at least the 
basic components laid out by von Neumann, but each of those components can have many different forms 
and configurations, leading to computers of very different capacities. The kinds of computers we have 
designed since 1945 and the kinds of programs we have written for them reflect not the nature of the 
computer but the purposes and aspirations of the groups of people who made those designs and wrote those 
programs, and the product of their work reflects not the history of the computer but the histories of those 
groups, even as the computer in many cases fundamentally redirected the course of those histories.

In telling the story of the computer, it is common to mix those histories together, choosing from each of 
them the strands that seem to anticipate or to lead to the computer. Quite apart from suggesting connections 
and interactions where in most cases none existed, that retrospective construction of a history of the 
computer makes its subsequent adoption and application relatively unproblematic. If, for example, electrical 
accounting machinery is viewed as a forerunner of the computer, then the application of the computer to 
accounting needs little explanation. But the hesitation of IBM and other manufacturers of electrical 
accounting machines to move over to the electronic computer suggests that, on the contrary, its application 
to business needs a lot of explanation. Introducing the computer into the history of business data processing, 
rather than having the computer emerge from it, brings the questions out more clearly.

The same is true of theoretical computer science as a mathematical discipline. As the computer left the 
laboratory in the mid-1950s and entered both the defense industry and the business world as a tool for data 
processing, for real-time command and control systems, and for operations research, practitioners 
encountered new problems of non-numerical computation posed by the need to search and sort large bodies 
of data, to make efficient use of limited (and expensive) computing resources by distributing tasks over 
several processors, and to automate the work of programmers who, despite
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rapid growth in numbers, were falling behind the even more quickly growing demand for systems and 
application software. The emergence during the 1960s of high-level languages, of time-sharing operating 
systems, of computer graphics, of communications between computers, and of artificial intelligence 
increasingly refocused attention from the physical machine to abstract models of computation as a dynamic 
process.

Most practitioners viewed those models as mathematical in nature and hence computer science as a 
mathematical discipline. But it was mathematics with a difference. While insisting that computer science 
deals with the structures and transformations of information analyzed mathematically, the first Curriculum 
Committee on Computer Science of the Association for Computing Machinery (ACM) in 1965 emphasized 
the computer scientists' concern with effective procedures:

The computer scientist is interested in discovering the pragmatic means by which information can be transformed to 
model and analyze the information transformations in the real world. The pragmatic aspect of this interest leads to inquiry 
into effective ways to accomplish these at reasonable cost.1

A report on the state of the field in 1980 reiterated both the comparison with mathematics and the distinction 
from it:

Mathematics deals with theorems, infinite processes, and static relationships, while computer science emphasizes 
algorithms, finitary constructions, and dynamic relationships. If accepted, the frequently quoted mathematical aphorism, 
'the system is finite, therefore trivial,' dismisses much of computer science.2

Computer people knew from experience that "finite" does not mean "feasible" and hence that the study of 
algorithms required its own body of principles and techniques, leading in the mid-1960s to the new field of 
computational complexity. Talk of costs, traditionally associated with engineering rather than science, 
involved more than money. The currency was time and space, as practitioners strove to identify and contain 
the exponential demand on both as even seemingly simple algorithms were applied to ever larger bodies of 
data. Yet, as central as algorithms were to computer science, the report continued, they did not exhaust the 
field, "since there are important organizational, policy, and nondeterministic aspects of computing that do 
not fit the algorithmic mold."

1 "An Undergraduate Program in Computer Science–Preliminary Recommendations," Communications of the ACM, 8, 9 
(1965), 543–552; at 544.
2 Bruce W. Arden (ed.), What Can Be Automated?: The Computer Science and Engineering Research Study (COSERS) 
(Cambridge, MA: MIT Press, 1980), 9.
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Thus, in striving toward theoretical autonomy, computer science has always maintained contact with 
practical applications, blurring commonly made distinctions among science, engineering, and craft practice, 
or between mathematics and its applications. Theoretical computer science offers an unusual opportunity to 
explore these questions because it came into being at a specific time and over a short period. It did not exist 
in 1955, nor with one exception did any of the fields it eventually comprised. In 1970, all those fields were 
underway, and theoretical computer science had its own main heading in Mathematical Reviews.

2— 
Agendas

In tracing its emergence and development as a mathematical discipline, I have found it useful to think in 
terms of agendas. The agenda3 of a field consists of what its practitioners agree ought to be done, a 
consensus concerning the problems of the field, their order of importance or priority, the means of solving 
them, and perhaps most importantly, what constitutes a solution. Becoming a recognized practitioner means 
learning the agenda and then helping to carry it out. Knowing what questions to ask is the mark of a full-
fledged practitioner, as is the capacity to distinguish between trivial and profound problems; "profound" 
means moving the agenda forward. One acquires standing in the field by solving the problems with high 
priority, and especially by doing so in a way that extends or reshapes the agenda, or by posing profound 
problems. The standing of the field may be measured by its capacity to set its own agenda. New disciplines 
emerge by acquiring that autonomy. Conflicts within a discipline often come down to disagreements over 
the agenda: what are the really important problems?

As the shared Latin root indicates, agendas are about action: what is to be done?4 Since what practitioners do 
is all but indistinguishable from the way they go about doing it, it follows that the tools and techniques of a 
field

3 To get the issue out of the way at the beginning, a word about the grammatical number of agenda. It is a Latin plural 
gerund, meaning "things to be done." In English, however, it is used as a singular in the sense of "list of things to do." 
Since I am talking here about multiple and often conflicting sets of things to be done, I shall follow the English usage, 
thus creating room for a non-classical plural, agendas.
4 Emphasizing action directs attention from a body of knowledge to a complex of practices. It is the key, for example, to 
understanding the nature of Greek geometrical analysis as presented in particular in Pappus of Alexandria's Mathematical 
Collection, which is best viewed as a mathematician's toolbox. See my "Another Look at Greek Geometrical Analysis," 
Archive for History of Exact Sciences 5 (1968), 318–348.
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embody its agenda. When those tools are employed outside the field, either by a practitioner or by an 
outsider borrowing them, they bring the agenda of the field with them. Using those tools to address another 
agenda means reshaping the latter to fit the tools, even if it may also lead to a redesign of the tools, with 
resulting feedback when the tool is brought home. What gets reshaped and to what extent depends on the 
relative strengths of the agendas of borrower and borrowed.

There are various examples of this from the history of mathematics, especially in its interaction with the 
natural sciences. Historians speak of Plato's agenda for astronomy, namely to save the phenomena by 
compounding uniformly rotating circles. One can derive that agenda from Plato's metaphysics and thus see it 
as a challenge to the mathematicians. However, one can also – and, I think, more plausibly – view it as an 
agenda embodied in the geometry of the circle and the Eudoxean theory of ratio. Similarly, scientific 
folklore would have it that Newton created the calculus to address questions of motion. Yet, it is clear from 
the historical record, first, that Newton's own geometrical tools shaped the structure and form of his 
Principia and, second, that once the system of the Principia had been reformulated in terms of the calculus 
(Leibniz', not Newton's), the mathematical resources of central-force mechanics shaped, if indeed it did not 
dictate, the agenda of physics down to the early nineteenth century.

Computer science had no agenda of its own to start with. As a physical device it was not the product of a 
scientific theory and hence inherited no agenda. Rather it posed a constellation of problems that intersected 
with the agendas of various fields. As practitioners of those fields took up the problems, applying to them 
the tools and techniques familiar to them, they defined an agenda for computer science. Or, rather, they 
defined a variety of agendas, some mutually supportive, some orthogonal to one another. Theories are about 
questions, and where the nascent subject of computing could not supply the next question, the agenda of the 
outside field provided its own. Thus the semigroup theory of automata headed on the one hand toward the 
decomposition of machines into the equivalent of ideals and on the other toward a ring theory of formal 
power series aimed at classifying formal languages. Although both directions led to well defined agendas, it 
became increasingly unclear what those agendas had to do with computing.

3— 
Theory of Automata

Since time is limited, and I have set out the details elsewhere, a diagram will help to illustrate what I mean 
by a convergence of agendas, in this case
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leading to the formation of the theory of automata and formal languages.5 The core of the field, its paradigm 
if you will, came to lie in the correlation between four classes of finite automata ranging from the sequential 
circuit to the Turing machine and the four classes of phrase structure grammars set forth by Noam Chomsky 
in his classic paper of 1959.6 With each class goes a particular body of mathematical structures and 
techniques, ranging from monoids to recursive function theory.

As the diagram shows by means of the arrows, that core resulted from the confluence of a wide range of 
quite separate agendas. Initially, it was a shared interest of electrical engineers concerned with the analysis 
and design of sequential switching circuits and of mathematical logicians interested in the logical 
possibilities and limits of nerve nets as set forth in 1943 by Warren McCulloch and Walter Pitts, themselves 
in pursuit of a neurophysiological agenda.7 In some cases, it is a matter of passing interest and short-term 
collaborations, as in the case of Chomsky, who was seeking a mathematical theory of grammatical 
competence, by which native speakers of a language extract its grammar from a finite number of 
experienced utterances and use it to construct new sentences, all of them grammatical, while readily 
rejecting ungrammatical sequences.8 His collaborations, first with mathematical psychologist George Miller 
and then with Bourbaki-trained mathematician Marcel P. Schützenberger, lasted for the few years it took to 
determine that phrase-structure grammars and their automata would not suffice for the grammatical 
structures of natural language.

5 For more detail see my "Computers and Mathematics: The Search for a Discipline of Computer Science," in J. 
Echeverría, A. Ibarra and T. Mormann (eds.), The Space of Mathematics (Berlin/New York: De Gruyter, 1992), 347–61, 
and "Computer Science: The Search for a Mathematical Theory," in John Krige and Dominique Pestre (eds.), Science in 
the 20th Century (Amsterdam: Harwood Academic Publishers, 1997), Chap. 31.
6 Noam Chomsky, "On Certain Formal Properties of Grammars," Information an Control 2, 2 (1959), 137–167.
7 Warren S. McCulloch and Walter Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," Bulletin of 
Mathematical Biophysics 5 (1943), 115–33; repr. in Warren S. McCulloch, Embodiments of Mind (MIT, 1965), 19–39.
8 "The grammar of a language can be viewed as a theory of the structure of this language. Any scientific theory is based on a 
certain finite set of observations and, by establishing general laws stated in terms of certain hypothetical constructs, it 
attempts to account for these observations, to show how they are interrelated, and to predict an indefinite number of new 
phenomena. A mathematical theory has the additional property that predictions follow rigorously from the body of theory." 
Noam Chomsky, "Three Models of Language," IRE Transactions in Information Theory 2, 3 (1956), 113–24; at 113.
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Figure 1 
The Agendas of Computer Science

Schützenberger, for his part, came to the subject from algebra and number theory (the seminar of Bourbakist 
Pierre Dubreil) by way of coding theory, an agenda in which Benoit Mandelbrot was also engaged at the 
time. It was the tools that directed his attention. Semigroups, the fundamental structures of Bourbaki's 
mathematics, had proved unexpectedly fruitful for the mathematical analysis of problems of coding, and 
those problems in turn turned out to be related to finite automata, once attention turned from sequential 
circuits to the tapes they recognized. Pursuing his mathematical agenda led Schützenberger to generalize his 
original problem and thereby to establish an intersection point, not only with Chomsky's linguistic agenda, 
but also with the agenda of machine translation and with that of algebraic programming languages. The 
result was the equivalence of "algebraic" formal power series, context-free languages, and the pushdown (or 
stack)
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automaton.9 The latter identification became fundamental to computer science when it became clear that 
major portions of Algol 60 constituted a context-free language.10 Finally for now, Chomsky's context-
sensitive grammars were linked to linear-bounded automata through investigations into computational 
complexity, inspired in part by Shannon's measure of information.

4— 
Formal Semantics

The network of agendas was far denser and more intricate than either the diagram or the sketch above 
conveys. Moreover, one can draw a similar network for the development of formal semantics as the interplay 
among algebra (especially universal algebra), mathematical logic, programming languages, and artificial 
intelligence. Central to the story is the remarkable resurgence of the lambda calculus, initially created by 
Alonzo Church to enable the "complete abandonment of the free variable as a part of the symbolism of 
formal logic," whereby propositions would stand on their own, without the need for explaining the nature of, 
or conditions on, their free variables and would thus emphasize the "abstract character of formal logic."11 
Lambda calculus was not mathematics to start with, but a system of logical notation, and was abandoned 
when it failed to realize the purposes for which Church had created it. In the late 1950s John McCarthy 
revived it, first as a metalanguage for LISP, which he had devised for writing programs emulating common-
sense reasoning and for mechanical theorem-proving, and then in the early 1960s as the basis of a 
mathematical theory of computation focused on semantics rather than syntax.

"Computer science," McCarthy insisted, "must study the various ways elements of data spaces are 
represented in the memory of the computer and how procedures are represented by computer programs. 
From this point of view, most of the work on automata theory is beside the point."12 In

9 At about the same time, but apparently quite independently, Robert Rosen brought the semigroup model of coding into 
the agenda of mathematical biophysics at the University of Chicago in "The DNA-Protein Coding Problem," Bulletin of 
Mathematical Biophysics 21(1959), 71–95.
10 Seymour Ginsburg and H. Gordon Rice, "Two Families of Languages Related to ALGOL," Journal of the ACM 9 (1962), 
350–371.
11 Alonzo Church, "A Set of Postulates for the Foundation of Logic," Annals of Mathematics, 2nd ser., 33 (1932), 346–66.
12 "Towards a Mathematical Science of Computation," Proc. IFIP Congress 62 (Amsterdam: North-Holland, 1963), 21–28; 
at 21. Automata theory stayed too close to the machine, he explained: " . . . the fact of finiteness is used to show that the 
automaton will eventually repeat a state. However, anyone who waits for an
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McCarthy's view, programs consisted of chains of functions that transform data spaces. Automata theory 
viewed functions as sets of ordered pairs mapping the elements of two sets and was concerned with whether 
the mapping preserved the structures of the sets. McCarthy was interested in the functions themselves as 
abstract structures, not only with their equivalence but also their efficiency. A suitable mathematical theory 
of computation, he proposed, would provide, first, a universal programming language along the lines of 
Algol but with richer data descriptions;13 second, a theory of the equivalence of computational processes, by 
which equivalence-preserving transformations would allow a choice among various forms of an algorithm, 
adapted to particular circumstances; third, a form of symbolic representation of algorithms that could 
accommodate significant changes in behavior by simple changes in the symbolic expressions; fourth, a 
formal way of representing computers along with computation; and finally a quantitative theory of 
computation along the lines of Shannon's measure of information.

Except for the last item, which in the mid-1960s became the focus of the rapidly developing field of 
computational complexity, McCarthy's agenda for a formal semantics initially attracted little support in the 
United States. It did catch on in England, however, where under Christopher Strachey's leadership P.J. 
Landin pursued the lambda calculus approach to programming language semantics and, where R.M. 
Burstall, seconded by Donald Michie's Machine Intelligence Unit at Edinburgh, attempted to link it to 
universal algebra as a means of proving the correctness of programs. Strachey himself pursued the peculiar 
problem posed by the storage of program and data in a common memory, which in principle allowed 
unrestricted procedures which could have unrestricted procedures as values; in particular a procedure could 
be applied to itself.

To see the problem, consider the structure of computer memory, represented mathematically as a mapping of 
contents to locations. That is, state s is a function mapping each element l of the set L of locations to its 
value s(1) in V, the set of allowable values. A command effects a change of state; it is a function g from the 
set of states S into S. Storing a command means that g can take the form s(l), and hence s(l)(s) should be well 
defined. Yet, as Dana Scott insisted in his ''Outline of a mathematical theory of computation" in 1970, "[t]his 
is just an insignificant step away from the self-application problem p(p) for 'unrestricted' procedures p, and it 
is just as hard to justify mathematically."

IBM 7090 to repeat a state, solely because it is a finite automaton, is in for a very long wait." (Ibid., 22).
13 Cobol, he noted, suffered from its attachment to English, and Uncol was "an exercise in group wishful thinking" (Ibid, 34).
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Figure 2 
Machines and Languages

The fixpoint operator of the lambda calculus seemed to point a way around the problem, but that made it 
clear that the lack of a mathematical model for the lambda calculus threatened to undermine the enterprise.

To date, no mathematical theory of functions has ever been able to supply conveniently such a freewheeling notion of 
function except at the cost of
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being inconsistent. The main mathematical novelty of the present study is the creation of a proper mathematical theory of 
functions which accomplishes these aims (consistently!) and which can be used as the basis for the metamathematical 
project of providing the "correct" approach to semantics.14

By creating a model in the form of continuous lattices with fixpoints, Scott not only made the lambda 
calculus the foundation for denotational, or mathematical, semantics, but also added a new item to the 
agenda of abstract lattice theory. How did lambda calculus become mathematics? It is a question of interest, 
of getting onto the mathematical agenda. Computers gave the lambda calculus mathematical meaning, 
because it served to give a mathematical account of computation.

But giving mathematical structure to the lambda calculus in turn pushed mathematical semantics toward a 
focus on abstract functions and hence toward a recent branch of mathematics that had seemed, even to one 
of its creators, Samuel Eilenberg, of limited applicability to theoretical computer science, namely category 
theory. The interaction in the 1970s and 1980s of semantics with universal algebra, in particular Omega-
algebras, and then categories parallels that of algebra and automata in the 1960s. By 1988, Saunders 
Maclane's Categories for the Working Mathematician had a counterpart in Andrea Asperti's and Giuseppe 
Longo's Categories, Types, and Structures: An Introduction to Category Theory for the Working Computer 
Scientist.

5— 
Computers and Mathematics

What does this all add up to? It is in part a story of how a subject becomes mathematical, and one can tell it 
as an example of the traditional view of the relation of mathematics to its applications. The concepts are 
created for "internal" reasons and then applied. But there is intriguing evidence to suggest a more complex 
interaction. Let me turn to three mathematicians to help me make the point. In 1948, John von Neumann said 
concerning the theory of automata:

There exists today a very elaborate system of formal logic, and, specifically, of logic as applied to mathematics. This is a 
discipline with many good sides, but also with certain serious weaknesses. This is not the occasion to enlarge upon the 
good sides, which I certainly have no intention to belittle. About the inadequacies, however, this may be said:

14 Ibid., 4–5.
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Everybody who has worked in formal logic will confirm that it is one of the technically most refractory parts of 
mathematics. The reason for this is that it deals with rigid, all-or-none concepts, and has very little contact with the 
continuous concept of the real or of the complex number, that is, with mathematical analysis. Yet analysis is the 
technically most successful and best-elaborated part of mathematics. Thus formal logic is, by the nature of its approach, 
cut off from the best cultivated portions of mathematics, and forced onto the most difficult part of the mathematical 
terrain, into combinatorics.

The theory of automata, of the digital, all-or-none type, as discussed up to now, is certainly a chapter in formal logic. It 
will have to be, from the mathematical point of view, combinatory rather than analytical.15

Von Neumann subsequently made it clear he wanted to pull the theory back toward the realm of analysis, 
and he did not expand upon the nature of the combinatory mathematics that might be applicable to it.

In reviewing the role of algebra in the development of computer science in 1969, Garrett Birkhoff, whose 
lattice theory, once thought useless, was proving a fundamental tool of the new field, remarked that finite 
Boolean algebras had held no interest for him as a mathematician because they were all equivalent up to 
isomorphism. But as Boolean algebra was applied to the analysis and design of circuits, it led to problems of 
minimization and optimization that proved both difficult and interesting. The same held true of the 
optimization of error-correcting binary codes. Together,

[these] two unsolved problem in binary algebra . . . illustrate the fact that genuine applications can suggest simple and 
natural but extremely difficult problems, which are overlooked by pure theorists. Thus, while working for 30 years (1935-
1965) on generalizing Boolean algebra to lattice theory, I regarded finite Boolean algebras as trivial because they could 
all be described up to isomorphism, and completely ignored the basic "shortest form" and "optimal packing" problems 
described above.16

15 John von Neumann, "On a Logical and General Theory of Automata" in Cerebral Mechanisms in Behavior – The 
Hixon Symposium, ed. L.A. Jeffries (New York: Wiley, 1951), 1–31; repr. in Papers of John von Neumann on Computing 
and Computer Theory, ed. William Aspray and Arthur Burks (Cambridge, MA/London: MIT Press; Los Angeles/San 
Francisco: Tomash Publishers, 1987), 391–431; at 406.
16 Garrett Birkhoff, "The Role of Modern Algebra in Computing," Computers in Algebra in Number Theory (American 
Mathematical Society, 1971), 1–47, repr. in his Selected Papers on Algebra and Topology (Boston: Birkhäuser, 1987), 513–
559; at 517; emphasis in the original.
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Earlier in the article, Birkhoff had pointed to other ways in which "the problems of computing are 
influencing algebra." To make the point, he compared the current situation with the Greek agenda of 
"rationalizing geometry through constructions with ruler and compass (as analog computers)."

By considering such constructions and their optimization in depth, they were led to the existence of irrational numbers, 
and to the problems of constructing regular polygons, trisecting angles, duplicating cubes, and squaring circles. These 
problems, though of minor technological significance, profoundly influenced the development of number theory. I think 
that our understanding of the potentialities and limitations of algebraic symbol manipulation will be similarly deepened 
by attempts to solve problems of optimization and computational complexity arising from digital computing.

Birkhoff's judgment, rendered at just about the time that theoretical computer science was assigned its own 
main heading in Mathematical Reviews, points to just one way in which computer science was opening up a 
new realm of mathematical interest in the finite but very large. Computational complexity was another way.

Several years later, Samuel Eilenberg, who had collaborated with Saunders Maclane in the creation of 
category theory, decided that automata and formal languages had progressed individually and in tandem to 
the point where they could be placed on a common mathematical foundation. The current literature, though 
algebraic in content and approach, reflected the specific interests that had motivated them. "It appeared to 
me," wrote Eilenberg in the preface of his intended four-volume Automata, Languages, and Machines,

that the time is ripe to try and give the subject a coherent mathematical presentation that will bring out its intrinsic 
aesthetic qualities and bring to the surface many deep results which merit becoming part of mathematics, regardless of 
any external motivation.17

Yet, in becoming part of mathematics the results would retain the mark characteristic of their origins. All of 
Eilenberg's proofs were constructive in the sense of constituting algorithms.

A statement asserting that something exists is of no interest unless it is accompanied by an algorithm (i.e., an explicit or 
effective procedure) for producing this "something."

17 Automata, Languages, and Machines (2 vols., NY: Columbia University Press, 1974), Vol. A, xiii.
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In addition, Eilenberg held back from the full generality to which abstract mathematicians usually aspired. 
Aiming at a "restructuring of the material along lines normally practiced in algebra," he sought to reinforce 
the original motivations rather than to eradicate them.

Both mathematics and computer science would benefit from his approach, he argued:

To the pure mathematician, I tried to reveal a body of new algebra, which, despite its external motivation (or perhaps 
because of it) contains methods and results that are deep and elegant. I believe that eventually some of them will be 
regarded as a standard part of algebra. To the computer scientist I tried to show a correct conceptual setting for many of 
the facts known to him (and some new ones). This should help him to obtain a better and sharper mathematical 
perspective on the theoretical aspects of his researches.

Coming from a member of Bourbaki, who insisted on the purity of mathematics, Eilenberg's statement is all 
the more striking in its recognition of the applied origins of "deep and elegant" mathematical results.

What is particularly important about the formation of theoretical computer science as a mathematical 
discipline is that in the application of mathematics to computation the traffic traveled both ways. While 
providing mathematical grounding for the powerful techniques embedded in current programming tools, 
theoretical computer science gave "physical" meaning to semigroups, lattices, Omega-algebras, categories, 
thus placing some of the most abstract, "useless" concepts of modern mathematics at the heart of modern 
technology. In doing so, it motivated their further analysis as mathematical entities, bringing out unexpected 
properties and relationships among them.

What has it done for computing? That is a trickier question. Despite the elegant theory and the powerful 
tools based on it, computer science is still a long way from possessing the sort of mathematical theory 
McCarthy envisioned, and certainly from the practical goal he set for it. In a discussion on the last day of the 
second NATO Conference on Software Engineering held in Rome in October 1969, Christopher Strachey, 
Director of the Programming Research Group at Oxford University, lamented that "one of the difficulties 
about computing science at the moment is that it can't demonstrate any of the things that it has in mind; it 
can't demonstrate to the software engineering people on a sufficiently large scale that what it is doing is of 
interest or importance to them."18 Almost two decades later, the situation had not changed much. C.A.R. 
Hoare, in his inaugural lecture as Professor of Computation at Oxford in 1985 told his audience that he 
supposed as a matter

18 Peter Naur, Brian Randell, and J.N. Buxton (eds.), Software Engineering: Concepts and Techniques. Proceedings of 
the NATO Conferences (NY: Petrocelli, 1976), 147.
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of principle that computers are mathematical machines, computer programs are mathematical expressions, a 
programming language is a mathematical theory, and programming is a mathematical activity. "These are 
general philosophical and moral principles, and I hold them to be self-evident – which is just as well, 
because all the actual evidence is against them. Nothing is really as I have described it, neither computers 
nor programs nor programming languages nor even programmers."19 Given the mathematical sophistication 
of theoretical computer science by 1985, that seems a remarkable statement. Given the traditional role of 
mathematics in modern science, it is a statement worthy of the attention of historians and one rich in 
historiographical possibilities.

To see why brings us around to a historiographical theme of this conference. The history of science has until 
recently tended to ignore the role of technology in scientific thought, though perhaps less so in Germany 
than elsewhere, as indeed this conference testifies. The situation has begun to change with recent work on 
the role and nature of the instruments that have mediated between scientists and the objects of their study, 
ranging from telescopes and microscopes in the 17th century to bubble chambers in the 20th. But, outside of 
the narrow circle of people who think of themselves as historians of computing, historians of science (and 
indeed of technology) have ignored the instrument that by now so pervades science and technology as to be 
indispensable to their practice. Increasingly, computers not only mediate between practitioners and their 
subjects but also replace the subjects with computed models. One might argue that no instrument since the 
17th century has shaped the practice of science to the extent that the computer has done. Some time soon, 
historians are going to have to take the computer seriously as an object of study, and it will be important, 
when they do, that they understand the ambiguous status of the computer itself.

<><><><><><><><><><><><>
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19 C.A.R. Hoare, "The Mathematics of Programming," in his Essays in Computing Science (Hemel Hempstead: Prentice 
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Reconstructions, Historical and Otherwise:
The Challenge of High-Tech Artifacts

Robert W. Seidel

Abstract. I examine the reconstruction of artifacts by museums, the use of artifacts in reconstructions of 
history by historians, and the potential of virtual reconstruction for historical purposes based upon past 
efforts to display and to explain the development of high-technology objects like the particle accelerator, 
laser, and computer at the University of California's Lawrence Hall of Science, Los Alamos National 
Laboratory, the Smithsonian Institution. The historical reconstruction of the development of the cyclotron 
and of the laser shows the importance of teamwork between historians, scientists, and engineers in 
formulating accurate historical reconstructions.

1— 
Introduction

The current interest in the simulation, reconstruction and reactivating of early computers reflects an 
enthusiasm on the part of the practitioners. The historian's interest in artifacts is different from the 
practitioner's. The difference between their perspectives creates a tension between the historian's use of 
artifacts and the practitioner's reconstruction of them that should be reconciled if both are to profit from such 
reconstructions. I would like to reflect on the nature of such a reconciliation, not least because it goes to the 
heart of the nature of the museum and of the history of technology.

A brief review of the history of science museums and the disciplinary construction of the history of 
technology indicates some of the major difficulties historians, scientists, and museum professionals have had 
in interpreting artifacts. Although artifacts exist, and can be validated using historical techniques, the task of 
the historian/curator in interpreting their meaning is fraught with pitfalls.1 The historian's interpretation is no 
longer (if it ever was) privileged, but it is "authoritative" in a constrained sense.

1 Cf., inter alia, Steven Lubar and W. David Kingery, History from Things: Essays on Material Culture (Washington & 
London: Smithsonian Institution Press, 1993).
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As Paul Forman2 has argued, the task of the historian requires critical independence, but an exchange of 
views between historians and their subjects can be mutually instructive.3 Historians of science and 
technology have deferred to their subjects as the valuators of "historic" accomplishments, and have used 
their representations of historical reality, although their interpretations involve critical assessment of 
historical testimony, text and artifact. It is in the careful use of his critical tools that the historian discovers 
history.

This is evident in museums, where historians have interpreted technology for centuries. Such colossi as the 
Deutsches Museum, the Chicago Museum of Science and Industry, the National Air and Space Museum, and 
the Science Museum of London are testimonies to the accomplishments of modern technology, richly 
funded by government and industry, overflowing with artifacts, only a small percentage of which can be 
displayed, and staffed by museum curators whose expertise ranges from undergraduate study to advanced 
degrees in history. Their disciplinary interests, when blended in the crucible of exhibit development with the 
institutional interests of museum administrators in patronage and popularity, are often diluted. However, 
when the artifact is subjected to an interpretation that takes into account not only its construction, function, 
and the details of its invention and development, but also its political, social, and economic contexts, both 
the historian and the participant can take pride in the accomplishment.4

In historical publication, as opposed to display, the three-dimensional aspect of the artifact must give way to 
a two-dimensional graphic representation or a verbal description. In such research, particularly in the mature 
areas of the history of technology, the artifact seems to recede into the background as the context within 
which it developed swells to fill the mental picture that the historian paints. The use of the artifact as a 
primary source, however, may answer crucial questions about that development, and new media, like virtual 
reconstructions in cyberspace, may enhance the historian's use of that information.

Although some historians portray the business, military, and scientific contexts of computers, most history 
of computing still focuses on artifacts and their makers. As in the case of other artifacts, large sums are still 
available for their celebration and display, often from the makers themselves. Hence, the Computer Museum 
in Boston is the work of the same individuals who built Digital Equipment Corporation. The Microsoft, 
Intel, Magnavox, and DEC museums represent and celebrate the accomplishments of these

2 Paul Forman, "Independence, Not Transcendence, for the Historian of Science," Isis 82 (1991), 71–86.
3 Cf., e.g. Roger Stuewer, ed., Nuclear Physics in Retrospect: Proceedings of a Symposium on the 1930s (Minneapolis: 
University of Minnesota Press, 1979), 318–322.
4 Edward Tenner, "Information Age at the National Museum of American History," Technology and Culture 33 (Oct. 1992), 
780–87.
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corporations. The Smithsonian Institution relies heavily on the private sector for funding and the raw 
materials of their exhibits. As in other forms of patronage, questions of autonomy and emphasis arise.

Recent controversies between scientists, veterans, congress, and the curators of Smithsonian exhibits have 
cast a pall over historical interpretation of science and technology. The disputes over the Enola Gay and 
''Science in American Life" exhibits have made it clear that historians employed by museums do not enjoy 
the academic freedom guaranteed to their academic colleagues, and that the director who relies too heavily 
on revisionist history will be toppled by the powers that be. More traditional historians may face the 
criticism of postmodernists, feminists, animal rights advocates, political activists, and other "politically 
correct" special interest groups in their attempts to reconstruct the past. The historian may well feel safer 
writing a monograph than facing the political consequences of building a museum exhibit that expresses the 
same interpretations.

Within the museum, moreover, artifacts dominate the representation of history. Text, when used, serves 
primarily to describe the artifact. While the broader contexts of development may be suggested by the 
grouping of artifacts in exhibits or displays with thematic unities which, like those of the dramatic arts, 
suggest the time, place, and circumstance within which their construction took place, but, as one might 
imagine, the suggestion of technological determinism by the dominance of the artifact is seldom balanced by 
an account of the determination of the technology by its environment. As historians of technology have 
moved toward an understanding of the sociological, economic, and other environmental determinants, 
practitioners and possessors of artifacts have often refused to follow.

The historical reconstruction of computers by practitioners also privileges the artifact, although often in 
virtual form. In the past twenty years, the volume of "hardware" history has grown as the computer itself 
shrank from gigantic proportions to the desktop and the microchip processor. As the artifacts of modern 
computing become invisible, older, larger computers supply a symbol of computing to practitioners, the 
public, and patrons which is not only visible, but comprehensible.

The inherent lack of interesting visual clues has plagued the interpretation of the computer from ENIAC to 
the present. The visual presentation of computers has required "special effects" enhancements ranging from 
the PingPong ball hemispheres used to magnify the blinking lights of the ENIAC, to the gigantic and 
elaborate movie computers of Colossus: The Forbin Project, and other films. While simulation of the 
operation of actual computers can represent the functionality in more significant ways, substituting software 
representations for glorified hardware, it is unclear how this serves the purposes of display, the act of 
historical interpretation, or the antiquarian passions that have fueled interest in artifacts in the past.

The reconstruction of the artifact can help the reconstruction of the past. However, the use of artifacts for 
historical reconstruction requires the same
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critical apparatus that has informed the study of texts. Critical questions should be posed in the design of 
projects to reconstruct artifacts, but seldom are. In what follows, I compare museum, historical, and virtual 
reconstructions to illuminate this process.

2— 
Museum Reconstructions

The museum was once, for the professional scientist, the laboratory within which he conducted his 
experiments and, quite literally, sought his "Muse." Museums deconstructed reality. The identification, 
classification, and organization of nature were their scientific raison d'être.5 Whatever assistance the 
carefully arranged and labeled collections of museums gave to memory, it was not through the 
reconstruction of the reality they purported to represent. The act of classification itself does violence to 
reality in order to make it accessible to reason. Indeed, most reconstructions of memory were literary, from 
journals and diaries of observant travelers who brought their own impressions of the noble savage and the 
heart of darkness to their readers in the form of structured narrative.6

Historians built their discipline on textual criticism. In formulating their narratives of the past, they seek to 
interpret the evidence of the past to construct an intelligible story for the present. The physical analogue of 
this effort is the restoration of historic sites. The ruins of ancient Anasazi pueblos in the southwest, industrial 
cities like Lowell in the northeast, and historical Williamsburg in the mid-Atlantic United States provide an 
experience of the past that is more "authentic" than outdoor museums that assemble buildings from other 
locales. These reconstructions limited by the imagination and knowledge of the curators and exhibit staff, 
the materials available, and the interpretation by guides.

Indoor museums present a different sort of problem for those interested in reconstructing the past. A focus 
on the design, function, performance, or operating characteristics of an artifact, without regard for 
intellectual, economic, social, political, technical, and other influences or effects, may help visitors to 
understand a machine and appreciate its technical evolution but not why it came into being when it did, 
looked like it did, or was used as it was. Similarly, celebratory exhibits that present the "myth of progress" 
and the "heroic inventor" as sufficient explanation for the origins, development, and

5 Pickstone, John V., "Museological Science? The Place of the Analytical Comparative in 19th-Century Science, 
Technology and Medicine," History of Science 32 (1994), 111–138.
6 Justin Stagl, A History of Curiosity: The Theory of Travel, 1550–1800, (Chur, Switzerland: Harwood Academic Publishers, 
1995).
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impact of technology give short shrift to the underlying historical forces that determine them. 7

In an effort to go beyond this stage, historians of technology, whose sympathy for internal history of 
artificial devices is greater than many of their colleagues, have undertaken to review museum exhibits to 
answer questions such as "whether the exhibit has a unifying theme of purpose. If it does, is it clearly 
stated, . . . valid in the context of other historical work [and] innovative? . . . Is the theme argued 
effectively? . . . Is there a structure to the exhibit that leads the visitor through the development of the 
theme?"8

Within this framework, artifacts may be used as evidence of scale, of use, of origins, of inventive style, and 
of cultural and social context. "Academic historians," one curator warns, "are not familiar with the study of 
three-dimensional objects and have seldom if ever used museum exhibits as sources for research." Reviews 
in Technology and Culture and American Heritage of Invention and Technology suggest that the best 
sources for such research are the records of research conducted by curators in the construction of the exhibit. 
These should be saved and made accessible to scholars, and, "at the very least, there should be an annotated 
copy of the exhibit script – including a list of artifacts."9

Yet, the reconstruction of history should include involvement with the material culture of the past, just as the 
reconstruction of the artifact should include an understanding of history. In order to understand why this is 
not yet a common practice, I want to turn now to an exploration of the kind of reconstructions historians 
have done.

3— 
Historical Reconstruction

I found little interest in material culture among most historians of nuclear science and technology at the 
Bradbury Science Museum. To my knowledge, in the years since it has systematically collected and 
documented artifacts of the atomic age in its warehouse, no scholar has asked to examine that collection. I 
attempted to stimulate such interest in the conventional manner by convening a symposium10 on postwar 
technology transfer. It included the first

7 Joseph J. Corn, "Interpreting the History of American Technics," in History Museums in the United States: A Critical 
Assessment, ed. Warren Leon and Roy Rosenzweig (Urbana and Chicago, 1989), 237–261.
8 Bernard S. Finn, "Exhibit Reviews: Twenty Years After," Technology and Culture. 20:4 (Oct. 1989), 996–998.
9 Ibid., p. 1002.
10 Robert W. Seidel and Paul Henriksen, Proceedings of the Symposium On The Transfer of Technology from Wartime Los 
Alamos to Peacetime Research (Los Alamos, Bradbury Science Museum, 1989). Among the attendees were David Allison, 
Bill Aspray and Peter Galison.
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public display of the neutrino detector with which Fred Reines conducted his Nobel Prize-winning detection 
of the free neutrino. Peter Galison, already engaged in the study of "the material culture of microphysics" 
made use of the occasion.11

This reluctance to use material culture seemed to change in the early 1990s when Steven Lubar and W. 
David Kingery published History from Things. A number of scholars who had used artifacts in their studies 
of history contributed to the collection.12 Further evidence of this interest could be found in monographs like 
Robert Smith's The Space Telescope.

From Homer to Hayden White, history has used and created texts. There is nothing in this procedure that 
rules out reading artifacts as texts:

In the terminology of history, artifacts are primary sources: Several scholars have observed that any artifact . . . is a 
historical event . . . An artifact is something that happened in the past, but, unlike other historical events, it continues to 
exist in our own time. Artifacts constitute the only class of historical events that occurred in the past but survive into the 
present. They can be re-experienced: they are authentic, primary, historical material available for first-hand study. 
Artifacts are historical evidence.13

What have these kinds of reconstructions to tell historians? Bern Dibner wrote of the monumental efforts 
required to move Egyptian obelisks to Rome, Paris, London, and New York. They have, he maintained, 
"been chiseled, raised, lowered and moved again by methods revealing to our engineers . . . we are fortunate 
to have clear records of the mechanics used in the moving and erection of the Vatican obelisk in 1586 . . . by 
means that must have, in some measure, resembled those used by the Roman engineers, if not by the 
Egyptians themselves."14 Although the intended audience is engineers, the intent of the study is to reveal 
what engineers have failed to do:

Not only did the Egyptian engineers not have such modern aids but the cutting and finishing of the hard granite, its 
transportation over hundreds of miles, and its erecting, were accomplished by these ancients with a modesty that has kept 
such deeds from being adequately recorded. Whereas there exist thousands of sculptures, bas-reliefs, gems, paintings, 
papyri, and models of the religious, regal, and domestic life of the Egyptians, their advanced technology is illustrated by 
extremely few known

11 Peter Galison, Image and Logic: The Material Culture of Microphysics (Chicago: University of Chicago Press, 1997), 
461.
12 Lubar, History from Things (note 1.)
13 Jules David Prown, "The Truth of Material Culture: History or Fiction," Ibid, 2–3.
14 Bern Dibner, Moving the Obelisk (Cambridge: MIT Press, 1970), 7–8.
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examples. We must therefore reconstruct their tools and methods from the results they achieved.15

Reverse engineering of past techniques provides a way to "fill in the gaps" in the text. It can also substitute 
for the text when "technological processes cannot be adequately described with words. Nonliterate peoples 
have carried out complex technological processes with such skill and sophistication that duplicating them 
has proved to be a challenging task for modern practitioners." Even literate scientists and engineers have not 
necessarily recorded their methods and techniques in forms accessible to the historian. 16

Historians of science tend to focus on scientific instruments, rather than the means of production in craft, 
manufacture, industry and government. The recent volume on instruments by Robert Bud and Deborah 
Warner shows the value of this focus, as have the earlier studies of Cohen, Daumas, E. G. R. Taylor, Gerald 
L. E. Turner, and others.17 Their use of material culture in these studies has varied. Often, the instruments 
have served as inspiration for historical research, which in turn enriches the understanding of the instrument. 
The reconstruction of these instruments is rarer, in part because of the historian's preference for texts over 
techniques as secondary sources, and in part because he or she does not have the required skills. Clearly, 
they are fascinated with machines.18 In order to indicate how this use of material culture has been successful 
in the historiography of science and technology, I will examine two familiar cases.

15 Ibid. Emphasis added.
16 Robert B. Gordon, "The Interpretation of Artifacts in the History of Technology," in Lubar (note 1), p. 74.
17 Robert Bud and Deborah Jean Warner, eds., Instruments of Science: An Historical Encyclopedia (New York: Garland, 
1998); Bud and Susan E. Cozzens, eds., Invisible Connections: Instruments, Institutions, and Science Bellingham, Wash.: 
SPIE Optical Engineering Press, 1992); Gerard L.E. Turner, Nineteenth-Century Scientific Instruments (London: Sotheby 
Publications; Berkeley: University of California Press, 1983); E. G. R. Taylor, The Mathematical Practitioners of 
Hanoverian England, 1714–1840, (London, Cambridge University Press, 1966), The Mathematical Practitioners of Tudor & 
Stuart England (Cambridge: University Press, 1954); Maurice Daumas, Les Instruments Scientifiques aux XVIIe et XVIIIe 
Siecles. (Paris: Presses universitaires de France, 1953) Trans. and ed. Mary Holbrook, Scientific Instruments of the 
Seventeenth and Eighteenth Centuries (New York, Praeger, 1972); I. B. Cohen, Some Early Tools of American Science; An 
Account of the Early Scientific Instruments and Mineralogical and Biological Collections in Harvard University (Cambridge: 
Harvard University Press, 1950).
18 Otto Mayr, Philosophers and Machines (New York: Science History Publications, 1976), 1–4.
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4— 
The Antikythera Mechanism

Derek de Solla Price's investigation of the Antikythera mechanism required over 20 years of work. The 
device, which he convincingly dates from the first quarter of the first century BC, was discovered in a ship 
wreck near the island of Antikythera at the beginning of the present century. His studies are illustrative of 
the kind of investigation a well-trained historian of science can make of an artifact. He thoroughly analyzed 
the evidence using the most modern techniques, and constructed a solid historical argument that challenges 
accepted views of the past.

Price's first step was to determine the provenance of the artifact. This process determines the chain of 
evidence that places the object in space and time. Like its legal analogue, the reconstruction of the chain of 
evidence is essential to authenticate its place in history. Price did so by determining the circumstances of the 
discovery of the pieces of the artifact by sponge divers in 1901. He included the precise location, the process 
of recovery, and the handling of the artifacts by the Athens Museum. He did this, of necessity, from accounts 
made by others, including curators and archaeologists, like Gladys David Weinberg, who dated them to 80 – 
50 B.C. Amongst these accounts he found a number of hypotheses that had to be reconsidered. None of them 
were satisfactory, in his view, after a painstaking review of the evidence presented in their support.19

Price's next step was to examine photographs of the artifact from its discovery to the 1950s. Curators had 
discovered pieces of the mechanism as the wood that had encased them dried and shrank away. The 
evidence that had appeared and disappeared due to cleaning and handling over the years enabled Price to 
identify the fragments of an early astronomic computer.20

Price traveled to Athens to examine the fragments with the assistance of the Greek epigrapher George 
Stamites, who, deciphered almost twice as many characters as had been previously read, strengthening 
Price's hypothesis that the device had been used to calculate the motion of the moon and planets. Price 
returned to Greece in June 1961 to check the inscriptions and joins for a final reconstruction, but found there 
was not enough visible of the gearing or dial work to make one. Having exhausted the bibliographic, 
iconographic, and epigraphic resources at his disposal, Price turned next to physics. In 1971, he became 
aware of Isotopic Methods of Examination and

19 Gladys Davidson, et al., The Antikythera Shipwreck Reconsidered (Philadelphia, American Philosophical Society, 
1965). Radiocarbon dating showed the ship dated from 220 ±-43 BC.

20 Price, "Clockwork before the Clock," Horological Journal (Dec. 1955, Jan. 1956); cf. Price, A History of Technology 3 
(Oxford, 1957), 618.
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Authentication in Art and Archaeology, and contacted the Greek AEC, which prepared gamma-radiographs 
and x-radiographs of the instrument.21

Price used this evidence to build, not a reconstruction of the computer, but an historical argument. He 
inferred a much higher level of technology in ancient times than had previously been recognized, and 
confuted Benjamin Farrington's assertion that the ancients had not engaged in technological pursuits because 
it was slave's work. Price suggested a new interpretation of the history of scientific instruments:

With the Antikythera mechanism, whatever its function, we are evidently concerned with the rather different 
phenomenon of High Technology, . . . specially sophisticated crafts and manufactures that are in some ways intimately 
associated with the sciences, drawing on them for theories, giving to the instruments and the techniques that enable men 
to observe and experiment and increase both knowledge and technical competence.

Price argued, that "the roots of those special skills and qualities which were balanced between the sciences 
and the crafts and were to become the crucial element in giving the world the Scientific and Industrial 
Revolutions and the recent age of High Technology" were to be found in ancient high technology: 22

Thus, though not sufficient, the tradition of clock-making can be seen to have been crucial to the emergence of our 
modern world. So much of present -day machinery derives from it that it has become commonplace to use the term 
'clockwork' for anything with gear wheels–as in clockwork toy trains for example. The timekeeping, ticking mechanical 
clock itself can be traced back only to the thirteenth or fourteenth century, but the wider history of clockwork goes back 
beyond the extraordinary emergence of the clock to a long prior period which includes the lines that lead also to such 
diverse developments as the concept of perpetual motion, the design of calculating machines and computers, to automata 
and robots, and to magnetic compasses.23 It is in this story that the Antikythera mechanism provides us with dramatic 
new evidence and the earliest relic of such a distinguished main line in technology.

21 Price, "On the Origin of Clockwork, Perpetual Motion Devices and the Compass," Contributions from the Museum of 
History and Technology (Washington, D.C.: Smithsonian Institution, 1959); "An Ancient Greek Computer," Scientific 
American (June 1959), 60. Oak Ridge National Laboratory Report IIC–21 (Oak Ridge, October 1970).
22 Price, Gears, 51–53.
23 Price, "On the Origin of Clockwork, Perpetual Motion Devices, and the Compass," Contributions from the Museum of 
History and Technology, Smithsonian Institution Bulletin 218, No. 6 (1959): 81–112.
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Was this the first computer? Price calls it "a Calendar Computer," and the "earliest relic" of the tradition 
leading to the computer, but this was before the issues arose that are the substance of technical and legal 
debates about "firsts," which have engendered a plethora of multi-adjectival ''firsts." If a computer is a 
device that computes, one would have to look further back into the past, Price suggests, for Archimedes' 
sphere, which performed a similar computation based on an earlier understanding of astronomy. The 
Antikythera device performed calculations, Price believed, that took into account the eccentric orbits of 
planets.

We may be surprised that Price did not seek to assign priority for the invention of the computer. Priority is a 
product of rise of the scientific journal in the 17th century. It is more interesting for Price to see the 
Antikythera device as further evidence of the convergence of ancient mathematical techniques from Babylon 
and Hellenic Greece to produce modern Western science. 24

The sudden efflorescence of the technology at the end of World War II also shows the confluence of two 
mathematical traditions, one related to business and the control of information in an industrial society, and 
the other relating to mathematical and scientific computation. Like the Babylonian and Greek mathematical 
traditions, these traditions were complementary, but proceeded according to different conceptions of 
calculating, of which we can, as Ceruzzi has shown, see traces in the early architecture of electronic 
computers. 25

We do not, however, have the advantage of hindsight in evaluating the historical significance of this 
confluence. Price looked back on the history of scientific technology from the modern perspective, that of 
Galileo and Newton, through the Renaissance, Middle Ages, And Late Antiquity, to a device over 2 
millennia old. We can have no idea, after only 50 years, where electronic computing technology is taking us, 
just as the anonymous maker of the Antikythera device could not foresee its impact on western civilization. 
Indeed, he had no idea that the end of the millennium in which he lived would see an eclipse of these 
techniques, to be revived only early in this millennium. Our millennium bug and the productivity paradox 
may greatly alter the future of electronic computing, even as the decline of the Roman republic and empire 
altered the development of their technology.

This leads us to yet another problem. Price was able to deduce the function and structure of the Antikythera 
mechanism with the help of modern techniques, a profound knowledge of the science of the time, and some 
inferences for ancient documents. He had no text to guide him or even to suggest a priori the existence of the 
technology. How much more pressed might our de-

24 Derek de Solla Price, Science since Babylon (New Haven: Yale University Press, 1975), 40–50.
25 Paul Ceruzzi, "Crossing the Divide: Architectural Issues and the Emergence of the Stored Program Computer," IEEE AHC 
19:1 (Jan.–Mar. 1997), 5–9.
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scendants be to discover the nature of the electronic digital computer 2000 years from now, without 
documents and only scattered artifacts to go by? No visual inspection would do. Indeed, unlike the 
mechanisms of the Antikythera device, the solid state componentry of contemporary computers would 
probably not survive with their micro-circuitry in any recognizable form, even with powerful microscopes. 
Earlier vacuum-tube computers of the type reconstructed recently, give more visual clues, but only to those 
acquainted with early 20th-century electronic technology. I think it unlikely, therefore, that the future 
archaeologist or historian could decipher the purpose of the computer without guidance from texts.

For the short-term future, however, we can expect that there will be plenty of books. Already, the popular 
market for books explaining the operation of applications software is crowded with paperbacks explaining 
the operations to everyone from dummies to systems analysts. The rapid evolution of software makes it 
unlikely, however, that most of these books will long survive. The most popular word-processing application 
of the 1980s, WordStar, is represented by some 500 entries in the INSPEC database, of which only a score 
were written after 1990. Lotus 1-2-3 is represented by about a thousand entries, 80% of which were 
published before 1990.26 How many of these will survive is anyone's guess, but certainly our landfills will be 
filled with them.

Will computer programs and data also survive? As has been amply demonstrated, old programs can be 
migrated to new platforms and operating systems. These can be in turn widely distributed via the World 
Wide Web. Whether or not this activity will survive the textual record is still in doubt. The Digital Libraries 
are still under construction, and the Web is an impermanent medium. Paper, although fragile, has survived 
the ages, as have inscriptions in stone and metal. Microfilm has shown staying power, although audio and 
video-tapes have not. In considering the preservation of computer software, it might make sense to save all 
of these forms, with an emphasis on those which are more permanent. Our reliance on such documentation is 
exemplified by studies of the Difference Engines of the 19th century.

5— 
The Babbage Engine

The various constructions and reconstructions of the Babbage engines have relied on paper more than parts, 
and here, I think, the critical resources of the historian are essential to a proper understanding of the 
machine. The sources upon which many secondary accounts have relied are other secondary accounts. The 
primary resources, however, are to be found in Babbage's papers in the British Museum, the Science 
Museum of London, and the Royal Soci-

26 The Charles Babbage Foundation has commissioned a task force to look at the history of software and suggest useful 
approaches to it.
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ety of London. These have formed the basis for historical studies of the Difference Engines and the 
Analytical Engine by both computer scientists and historians of technology.27

Lindgren's extensive comparative study of early difference engines used literary sources to describe 
Babbage's engine, and the wooden and metal model of the Scheutz difference engine that he discovered in 
the bowels of a Stockholm museum.28 The comparison of the two engines illuminated their differences in 
design, construction, and function. However, Lindgren went beyond these points to investigate the context 
provided by politics, science, society and economics.

The claims about the capacity of British industry for precision machine-building advanced by these authors 
are of particular interest to the historian of technology. The rise of the American system of manufactures in 
the first half of the 19th century surprised British politicians, especially since it had produced a technology 
for producing weapons with interchangeable parts. A number of Babbage's biographers have argued that he 
could not build his engines because British machine technology was not up to the task. Reconstruction of his 
early machines has led some to argue that the level of British technology employed was more advanced.29 
Lindgren and Bromley's analyses, based upon their historical and actual reconstructions suggest that while 
the technology was capable of producing Babbage's engines, his engineering skills were not.30

Lindgren further suggests that Babbage and his engineer, Clement, overdesigned the Difference Engine, 
making it too difficult to build. The Scheutzs; working in an older, cut-and-try tradition, succeeded because 
they were willing to accept a cruder finish to their engine. In a sense, this reflects Andrew Carnegie's maxim 
that "pioneering don't pay," as well as the strictures of modern systems engineering as to the amount of new 
technology permissible in complex constructions.

27 Bromley, Allan G., "Charles Babbage's Analytical Engine, 1838," AHC 4 (1982), 196–217; Bromley, Allan G., "The 
Evolution of Babbage's Calculating Engines," AHC v. 9, 1987, 113–36; Bruce Collier, "The Little Engines that Could've: 
The Calculating Machines of Charles Babbage," Ph.D. Thesis, Harvard University, August 1970; Michael Lindgren, 
Glory and Failure: The Difference Engines of Johann Müller, Charles Babbage and Georg and Edvard Scheutz, trans. 
Craig G. McKay (Cambridge: MIT Press, 1990).
28 Lindgren (note 27), 76 ff.; 139 ff.
29 Doron Swade, Charles Babbage and His Calculating Engines. (London: Science Museum, 1991), Bromley, "Analytical 
Engine, 1838," and " Evolution," (note 27). Lindgren Glory (note 27), 262–266; Bromley, "Evolution," (note 27), 113. The 
failure of Babbage's partnership with his engineer, Frederick Clement, was singled out as an important factor in the failure of 
the Difference Engine number I construction by Bruce Collier, "The Little Engine that Could've: The Calculating Machines 
of Charles Babbage," Ph. D. Dissertation, Harvard University, 1970), ch. 2.
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Notwithstanding these technical issues, however, Lindgren finds the principal cause of failure of the 
Difference Engine to be the lack of a market for automated table-making.31 This reminds us that technical 
virtuosity is, like other virtues, its own reward. The market may make a multi-billionaire of a Rockefeller or 
Gates, regardless of the technical excellence of their accomplishments. Xerox PARC exemplifies the lesson 
in our own time.32

This conclusion is the result of the two-stage process: the first step, which Price and Lindgren follow 
explicitly, is artifact analysis by archaeometry (the study of internal structure, formal analysis including 
reproductions and engineering interpretations, surficial marking, and physical properties). The second step is 
contextual analysis (the study of backward linkages to materials used, human and social components of 
design and manufacture as well as forward linkages to users and observers. "Although archaeometric 
analysis is essential for a complete investigation, the most significant history results from contextual 
interpretations," and "use technological artifacts to illustrate the development and application of material 
culture interpretation in a historical context."33

6— 
Challenges of High-Tech Artifacts

The historical reconstruction of high-tech artifacts might seem to require less attention to historical context 
than the examples I have cited. Yet, my investigations of accelerators and lasers and reconstructions of high-
tech artifacts for museum displays suggest otherwise. Several examples may serve to show why.

The first "atom-smasher" is replicated in the exhibit "Lawrence and his Laboratory" at the Lawrence Hall of 
Science. Ernest Rutherford's tiny brass cylindrical chamber housed the first laboratory transformation of an 
element in 1917. The LHS replication was not a reproduction of the original chamber preserved in the 
Cavendish Laboratory at Cambridge, but of a copy at the

31 Lindgren, Glory (note 27), 283–287.
32 Popular journalistic accounts have provided a number of suggestions as to why it was Steven Jobs who derived the greatest 
commercial benefit from the work at Xerox PARC, but have not addressed the institutional and social questions that are 
posed by basic research in a market-driven economy.
33 Lubar, History from Things (note 12), pp. xii–xiv. In contrast, Allan Bromley's studies of the Antikythera mechanism and 
the difference engines are internalist and presentist and present no interest whatsoever to the historian whose interests lie in 
actual rather than counterfactual history. The "logical" reconstruction according to modern engineering is particularly prone 
to error, since there is no evidence that ancient engineers held the same values or premises as modern ones. Cf. Dibner, 
Moving (note 14).
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Smithsonian.34 To simulate the experiment, an electronic analog allowed visitors to "fill the chamber" with 
air, oxygen, and nitrogen. This showed that the nuclear reaction, in which an alpha particle strikes a nitrogen 
nucleus and produces an isotope of oxygen as well as a proton, occurs in atmospheric air and nitrogen, but 
not in oxygen. This was also displayed in the formula:

The object itself gave little clue as to its use or importance, apart from displaying its miniscule size 
compared to the gigantic accelerators that succeeded it. Indeed, the most intensive study of this experiment 
of which I am aware uses Rutherford's laboratory notebooks as the basis of the reconstruction, even though 
the organization of these documents is chaotic.35 High-tech artifacts often challenge the imagination because 
their use is not evident from their form, and without textual documentation would be lost with the memories 
of their builders and users.36

At Los Alamos, in the Bradbury Science Museum a flow cytometer and a Cray IA computer are displayed. 
The flow cytometer is a working reconstruction that displays cell-sorting by laser-induced florescence and 
electro-magnetic separation. In its initial form, however, it was too authentic. Because of the very great 
sensitivity of the eye to the wavelength of the argonion laser used in the sorting, it was replaced with a 
helium-neon frequency shifted laser. Although this undermined the authenticity of the display, it increased 
its safety and preserved its functionality.37

The difficulties of interpreting artifacts in the history of computing, which Paul Ceruzzi has discussed 
elsewhere, were similar.38 The Bradbury Science Museum's exhibit, "Theoretical Design Of Nuclear 
Weapons," displayed the

34 Correspondence between P. W. Bishop and R. W. Seidel, 1971, CBI.
35 David B. Wilson, Rutherford: Simple Genius (Cambridge: MIT, 1983), 395–405.
36Cf. E.g., Ernest Rutherford, The Collected Papers of Lord Rutherford of Nelson, O.M., F.R.S. Published under the scientific 
direction of James Chadwick. (Cambridge University Press, 1962); Radiations from Radioactive Substances (Cambridge 
University Press, 1951). Laboratory notebooks are tradition manuscript sources of greatly varying quality. Among the most 
useful I have seen are those of the Lawrence Berkeley National Laboratory, especially those of Eugene Gardner, who 
manufactured pions in the 184-inch cyclotron in 1948.
37 Two nuclear rocket engines fell prey to the same concern for safety: as detectors of residual radioactivity become more 
sensitive, they reveal previously undetectable hazards of radiation exposure. Like the Harvard cyclotron that was one of the 
first to be employed at Los Alamos and radioactive glass from Trinity, they must be stored away from the public until the 
decay of radioactive isotopes outstrips the pace of detector development. The "nuclear weapons" on display are in fact 
training devices that never contained the critical assemblies.
38 Paul Ceruzzi, " 'The Minds Eye' and the Computers of Seymour Cray," paper presented at the Second Science and 
Technology Museums Forum, National Museum of American History, Washington, D.C.
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FERMIAC, parts of MANIAC, and images of several early computers that had been used to design 
successive generations of nuclear devices. In 1987, the C-Division leader donated the first Cray IA computer 
that the laboratory had acquired in 1977. Its appearance suggested a circular park bench. In order to add 
interest, we had panels removed and a section made to reveal its inner workings, which, in turn, were 
explained by labels and voice-overs. Shielded by tinted glass, it was revealed at an appropriate time and in 
appropriate places by a son-et-lumiere arrangement that leant movement and drama to what was otherwise a 
static display. The use of a stop-motion video of the construction of a Cray computer, which compressed the 
action into less than a minute, provided a hyperdynamic experience of its reconstruction.

In all of the efforts described above, objects illustrated history and history illuminated objects. High-tech 
artifacts are black boxes. Los Alamos Laboratory photographs – some 750,000 in number and increasing 
proved complete photographic documentation of many objects, but the photographers' notebooks are 
inadequate to identify many of them. Retired laboratory staff have been hired to identify these pictures, 
which are not always worth a thousand words.

The high-artifact or its reconstruction gives the museum visitor a grasp of scale. Paul Forman's exhibit 
"Atom Smashers" at the National Museum of American history used different generations of accelerators to 
showed their evolution from the cyclotron to the Tevatron.39 However, their very size worked against their 
use for research as part of the Smithsonian's collections. Indeed, they were disassembled and given away 
when "Atom Smashers" gave way to the "Information Age" Exhibit.40

When the Los Alamos Laser Fusion facility, Antares, shut down in 1987, the Bradbury Science Museum 
acquired one of the largest lasers in the world, 60 feet long and 14 feet in diameter. The Smithsonian had 
turned down as similar laser offered to them by AVCO-Everett on the grounds that they had inadequate 
space to store it. My earlier investigation of the history of military laser research and development made me 
aware of the historical importance of these lasers in the military and energy programs of the United States. 
Few museums, however, have the luxury of 43 square miles, the size of the Los Alamos National 
Laboratory. It is doubtful that large, high-tech artifacts will survive unless they are made Historic American 
Engineering Record or National or State Historical Sites and are preserved as have other recipients of this 
distinction have been. Accelerators, computers and lasers are more difficult to interpret than those artifacts, 
whose form reveals their function.41

39 "Atom Smashers . . . 50 Years," exhibit brochure. I am indebted to Michael Meo, Forman's curatorial assistant, for a 
copy of the brochure.
40 Personal communication from Paul Forman.
41 America Preserved: A Checklist of Historic Buildings, Structures, and Sites Recorded by the Historic American Buildings 
Survey and the Historic American Engineering Record (Washington: Library of Congress, 1995).
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In the case of accelerators, M. Stanley Livingston, the co-inventor of the cyclotron and strong-focusing, 
elucidated the technical design and operation of particle accelerators, using scientific papers, manuscript 
materials, and a working knowledge of these machines. This work is fundamental to the historical 
interpretation of the development of accelerators in Lawrence and his Laboratory.42 The reasons for failure 
and success in the environment of nuclear physics in the 1920s and 1930s were not only technical, however. 
Entrepreneurship, the availability of funding and cheap personnel, and accidents played a role. As an 
example, the source of inspiration for the cyclotron happened to be available to Lawrence only because of a 
coincidence. Lawrence's entrepreneurial activity secured financial support from diverse philanthropies 
interested in the medical applications of neutron and x-rays and artificially produced radioactive isotopes. 
The effort required to understand the technical development took us to two continents and through thousands 
of published and unpublished documents.43

A technical understanding of the operation and design of particle accelerators and a historical understanding 
of the context within which they were or were not used informed our answers to questions like: Why did the 
cyclotron " win" the race for high-voltages? Or did it? What environmental factors, both local and global, 
influenced its development and diffusion? Why did some resist using the cyclotron and turn to alternative 
technologies? Why were so many discoveries in nuclear physics that could have been made using the 
machine made elsewhere with simpler and smaller devices? How did the cyclotron contribute to the 
development of the technology of particle acceleration and, in particular, to the rise of the synchrotron 
concept after World War II? These questions, and others like them, enabled us to reconstruct the history of 
the particle accelerators with an understanding of the roles played by many individuals, organizations, and 
contingencies.

Although the LBL history project involved three historians and a half-dozen research assistants, the Laser 
History Project incorporated a Laser History Council, composed of three Nobel Laureates in the field and 
leaders of important industrial and academic laboratories, an Advisory Committee of historians, archivists, 
research administrators in the field and working scientists, four professional societies, two history centers, 
and the Laser Institute of America. The Advisory Committee Chairman delegated questions of historical 
interpretation and method to the historians, and charged his colleagues

42 High-energy accelerators (New York, Interscience Publishers, 1954), Particle Accelerators; A Brief History 
(Cambridge, Mass., Harvard University Press, 1969); The Development of High-Energy Accelerators (New York: Dover, 
1966); Livingston and John Blewett, Particle Accelerators (New York, McGraw-Hill, 1962)
43 J. L. Heilbron and Robert W. Seidel, Lawrence and His Laboratory: Volume I of a History of the Lawrence Berkeley 
Laboratory (Berkeley: University of California Press, 1989), 82–83.



   

Page 49

to identify and facilitate access to sources of information. Neither the Council nor the Committee exercised 
any editorial role over the products, although, of course, they were asked for advice and reviews in some, 
though not all cases. Advisory committee members also arranged funding from a number of private, 
professional, and government sources, including the Department of Defense, to support two historians and 
travel for research and interview purposes throughout the United States.

Artifacts like the laser, the computer, and the particle accelerator and detector are often the results of team 
efforts in academic, industrial, and government laboratories, and the documentation of these artifacts often 
requires also a team. The cooperation of scientists, engineers and historians is fruitful when each contributes 
his own knowledge and expertise. It is barren when the historian is regarded as a chronicler or amanuensis 
for the participant.

7— 
Virtual Reconstructions

Simulation techniques can be useful to an historical understanding of high-tech artifacts. The virtual 
reconstruction of an artifact too large for display in an ordinary museum can effectively substitute for the 
more traditional model, picture, or video. Holography can supply more reality to the visual reconstruction of 
such an artifact. The virtual worlds that are accessible to anyone owning a Nintendo 64 or Sony Playstation 
suggest more ambitious used. Computer-Aided Visual Environments (CAVES), are used by several firms 
for training of operators, just as flight simulators have been. The Ars Electronica Center in Linz, Austria, has 
a CAVE that shows computer simulations of mathematical equations and virtual universes.44

Historians have begun to use such virtual reconstructions to facilitate research and education. The Perseus 
Project links graphics, maps, and ancient texts so that the student may read the text, view the context, and 
browse hypertext links relating to the entire Greek corpus of manuscripts, modern CIA maps of Greece, and 
many photographic and historical resources. Other attempts to put primary documents on line, such as the 
papers of Robert Oppenheimer and Thomas Edison Papers have been attempted but have not succeeded for 
reasons that are seldom announced: failure is an orphan, and success has many fathers.

The high costs, fluid technology, and limited market for such resources will probably make them far less 
common than print alternatives for some

44A description of the CAVE is available on the center's website at the address http://www.aec.at/center/proj/cave.html. 
Other CAVES have been built at NCSA for the Visualization of chaotic systems, at General Motors and Catapillar for 
design studies and prototyping. Lisa Picarille "Archival Rivals," Computerworld 31:3 (Jan. 20, 1997) 83ff. Cf. Karl 
Gerbel und Hannes Leopoldseder, Die Ars Electronica Kunst im Zeitsprung (Linz: Landesverlag, 1989.)
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time to come, especially if copyright law is not amended. Our hopes of putting archival materials, rather than 
mere finding aids, on the Internet, have been deflated by the cost of scanning these materials by hand, which 
archivists find preferable to batch scanning for obvious reasons. These costs approach those of microfilming, 
which provides a more permanent archival record, but is done only in the case of major collections where 
resources are available.

The use of computer simulations in teaching history either in museums or classrooms, can assist in role-
playing and discussion of historical issues, as the Oregon Trail program and the experiences of some schools 
have demonstrated. 45 The CD-ROM market is replete with recreations of historical battles and historical 
encyclopedias, which are seldom more than pouring old wine into new bottles.46 The quality of the wine is 
not always up to the cost of the bottles, and for the most part, the term of art used to describe these items – 
"shovelware" – is appropriate: most of them are shoveled into the dumpster after sitting on shelves for many 
days.

Computers have proven to be very useful tools for historians, not in virtually reconstructing history, but in 
real historical reconstruction of texts through computer enhancement, statistical analysis through the use of 
spreadsheets, databases, and other more traditional applications like word processing. A cadre of historians 
devoted to the development of these uses of computing has been quite active over the past 18 years. Like 
other tools that have been made available by modern science and technology, such as neutron activation 
analysis and radiography, the utility of the computer is greater when it assists in answering, rather than 
posing, historical questions.

What sort of questions might be posed to virtual reconstructions of history such as we have seen at this 
conference? I can suggest a few, but, as a human, I suspect each historian would have his or her own set of 
questions for those fortunate enough to possess the technical and financial means to create reconstructions 
based upon historical data. The first of these is: Why did a given object come into existence? Why was it 
more successful in its environment than competing objects? Why does technical excellence not guarantee 
success? Great historical events, like the Industrial Revolution of the 19th century and World War II, provide 
a macrocosmic stimulus to historical change, but their effects upon technology are complex. The easy 
explanations in terms of "heroic inventors," seldom take their interactions with the wider world into

45 Jonah H. Peretti, Mark Cowett, Casey Charvet, "Historical Role Playing in Virtual Worlds: VRML in the History 
Curriculum and Beyond," Computer Graphics 31 (Aug. 1997), 64–65; www.newmand.k12.1a.us/civilwar.
46E.g. The Day after Trinity, which features the movie originally shown on the public television network in the United States, 
Critical Mass, which is based on the Los-Alamos sponsored book Critical Assembly by Lillian Hoddeson, Roger Meade, 
Catherine Westfall, and Paul Henriksen, and Einstein, which incorporates Ronald Clark's biography in full.
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account. Modern technological innovations commonly arise from teams of scientists, engineers, and patrons. 
To emphasize one set of actors while neglecting others is a flaw of the heroic inventor tradition. The 
interaction of two or more individuals in the development of a new technology like the computer introduces 
more complexity.47 Furthermore, the cultivation of financial, environmental and social resources is usually a 
part of the process, and Hughes has spoken of "systems builders" as those who organize these resources for 
technological development.48

A second question is: how? This is a dangerous question, because one must forget the obvious answers that 
spring to mind. It is very easy to read contemporary methods or technologies into the past, rather than 
finding it there. Historians are trained to make critical use of sources and to overcome projections about the 
uses of a technology into the past. For example, the question of how a technology was used is not answered 
historically by stating how it would be used today, as the examples of the cyclotron and laser show. Unless 
we adopt a very naive technological determinism, we must admit that the values of a given time will 
influence the uses it will make of its tools.49 We know, for example, that the first use of ENIAC was to make 
calculations related to thermonuclear weapon design. This was not its intended use, and the details of that 
use remain classified. We could not infer the design of the ENIAC from that use, nor could we predict the 
commercial success of the computer based upon the uses of other early computers. Yet, without that success, 
we would not be interested in the history of the computer. It would be of no interest how it worked, as the 
Babbage engines were of no great interest before the success of the Mark I moved Howard Aiken to identify 
them as a general source of inspiration. On the other hand, once the historical importance of an artifact is 
established, we may have reason to investigate how it actually worked, if only to dispel the clouds of 
hyperbole in which successful new technologies in general, and computers in particular, are enshrouded. 
Like the legend that Eli Whitney and Isaac Singer mass-produced muskets and sewing machines used 
interchangeable parts, which has been refuted by historians who have examined the artifacts and shown that 
they were not interchangeable,50 the question of how a technology did or did not

47 Cf. Lorraine Daston "Enlightenment Calculations," Critical Inquiry 21 (Autumn, 1994) 182–202, and Simon Schaffer, 
"Babbage's Intelligence: Calculating Engines and the Factory System," ibid., 203–227.
48 Thomas Parke Hughes, American Genesis: A Century of Invention and Technological Enthusiasm (Penguin, 1989).
49 For a discussion of the historiography of technological determinism, see Merritt Roe Smith and Leo Marx, Does 
Technology Drive History: The Dilemma of Technological Determinism (Cambridge: MIT, 1994).
50 See, for example, Woodbury, "Eli Whitney and the Legend of Interchangeable Parts," Technology and Culture 1:3 (1959), 
318–350. David Hounshell, From the American System to Mass Production (Baltimore and London: Johns Hopkins, 1984), 
Appendix 1.
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work may benefit from the actual physical reconstruction of the technology by knowledgeable craftsmen, if 
they do not assume that their prejudices about how it worked necessarily apply. On the other hand, attempts 
to prove those prejudices by reconstruction of artifacts can only lead to error.

8— 
Conclusion

The use of artifacts and reconstructions in museums, history, and virtual time and space can enhance and 
illuminate historical interpretations and perspectives. The use of artifacts for promotion, priority claims, 
entertainment, or antiquarian purposes should not be confused with history. Whether or not historical use of 
reconstructions, as opposed to artifacts, is possible depends on the quality of the reconstruction. If artifacts 
are primary sources, reconstructions are secondary, since they must embody the intent, interpretation, and 
interests of those who fund, conduct, and support this activity. Like any secondary source, these are subject 
to the same external and internal criticisms that historians have developed.51 The examples of Price and 
Lindgren illustrate the value of that critical methodology in application to real historical objects. 
Reproductions can result from such an analysis, just as can monographs or articles. In dealing with past 
objects, like past texts, we ignore hundreds of years of historical practice and scholarship at our peril.

<><><><><><><><><><><><>
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51 For a useful summary for non-historians, one may consult Jacques Barzun and Henry Graff, The Modern Researcher.
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A Classification Scheme for Program Controlled Calculators

Andreas Brennecke

Abstract. What constitutes a computer? This question is of interest to historians trying to decide whether a 
specific device can be called a computer or not, and to computer scientists wanting to gain a better 
understanding of the essential concepts of computer architecture. In both cases, the answer must encompass 
more than just a definition. Many concepts and features have influenced the development of the modern 
computer. But which of them are necessary to realize the computer's full capabilities and which are the most 
important ones?

When considering historical machines, it is important to pay attention to their practical use and to identify 
the human activities involved. A new classification scheme will be proposed in this contribution that is 
derived from the historical analysis of computers and which cannot be obtained from theoretical concepts 
alone.

1— 
Introduction

The history of program controlled calculators – especially the question of which concepts and features are 
essential characteristics of a computer – is not only of interest to historians but also to computer scientists 
who want to obtain a better understanding of basic concepts:

By attempting to define and classify, we come to understand more clearly the essential character of the computing 
machines with which history presents us when stripped of all technological and accidental differences and reduced to 
their fundamental logical design.1

1 Allan G. Bromley, ''What Defines a 'General-Purpose' Computer?" Annals of the History of Computing 5, no. 3 (1983): 
303–305, on 305.
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However, certain concepts seem to be so obvious today that their actual meaning remains opaque even to 
professionals of computing. Other concepts have become too complex to be easily understood today. As 
John A. N. Lee argued:

One of the other benefits of retrospection is the occasion to identify the fundamentals of concepts which have now 
become perceptually complex. 2

Hence, it came as no surprise to me that graduate students taking part in a course on the history of computers 
at our university were unable to give a proper definition of program control. They had some vague ideas but 
could not say whether Jacquard looms or analog computers are program controlled or not. Other terms such 
as von Neumann architecture, universal computer, stored program computer or general purpose computer 
were often used by them without proper understanding of the underlying ideas and mechanisms. Obviously, 
some clarification is needed.

This contribution proposes a classification scheme for program controlled calculators from the viewpoint of 
a computer scientist. It will be argued that the scheme may lead to a better understanding of fundamental 
concepts and that it may help historians to gain a better understanding of the course of events in the 
computer field.

2— 
Principles and Practice

When classifying computers it is not sufficient to consider theoretical concepts only. Theoretical computer 
science has developed notions like m-recursive functions, primitive recursive functions and the Chomsky 
hierarchy to describe the potential of computing devices. However, it was important for the constructors of 
program controlled calculators, especially in the early years, to design machines that could be implemented 
with the technology at the time. Theoretical concepts offer limited help here, because they do not sufficiently 
differentiate between what can be done in principle and what can be accomplished in practice.

Raúl Rojas has shown that Konrad Zuse's Z3 could be called a universal computing device if it is provided 
with indirect addressing.3 This means that

2John A. N. Lee, "Those Who Forget the Lessons of History Are Doomed To Repeat It–or, Why I Study the History of 
Computing," Annals of the History of Computing 18, no. 2 (1996): 54–62, on 58.



   

Page 55

with indirect addressing and with no limitation on the size of memory, the Z3 could have calculated every 
computable function. In a later publication Rojas shows how to simulate indirect addressing for a finite 
memory using only the original instruction set of the Z3, namely by using conditional executable code 
segments. Thus, the Z3 is as universal as any modern computing device. 4 However, this theoretical result 
does not fully reflect the practical power of the Z3. Although the length of the simulation program is not 
important from a theoretical point of view, it is relevant for practical purposes.

Universal computation in the sense of theoretical computer science depends on having unlimited storage, 
which real machines obviously cannot have. Modern computers have a relatively large memory so that 
results from the theoretical models can still be extrapolated. But early computing machines had very few 
memory cells to store results. Konrad Zuse's Z3, for example, could store only 64 values, the ENIAC 
(Electronic Numerical Integrator and Computer) had 20 accumulators5 and the ASCC (Automatic Sequence 
Controlled Calculator or Harvard Mark I) had 72.6 Can one view these machines as universal machines when 
they are provided with an unlimited storage?

In the early days of program controlled machines, universality did not play an important role for developers 
or users. Nevertheless, considerations about the potentials of the computers are as old as the early program 
controlled devices themselves. Charles Babbage wrote about his Analytical Engine:

These two memoirs [the memoir of General L. F. Menabrea and the notes made by Ada Augusta, Countess of Lovelace] 
taken together furnish, to those who are capable of understanding the reasoning, a complete demon-

3 See Raúl Rojas, "Conditional Branching is not Necessary for Universal Computation in von Neumann Computers," 
Journal of Universal Computer Science 2, no. 11 (1996): 756–768.
4 Rojas does not show that the Z3 is equivalent to the most powerful theoretical computing models such as the Turing 
machine, but that the computing model of the Z3 is equivalent to any existing computer which can only have a limited 
memory. Cf. Raúl Rojas, "How to Make Zuse's Z3 a Universal Computer," Annals of the History of Computing 20, no. 3 
(1998): 51–54.
5 See Herman H. Goldstine and Adele Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)," 
Mathematical Tables and Other Aids to Computation 2 (1946): 97–110. Reprint in: Brian Randell, ed., The Origins of Digital 
Computers – Selected Papers, 2nd ed. (Berlin: SpringerVerlag, 1982), 359–373. Reprint in: Annals of the History of 
Computing 18, no. 1 (1996): 10–16.
6 See Howard H. Aiken and Grace M. Hopper, "The Automatic Sequence Controlled Calculator," Electrical Engineering 65 
(1946): 384–391, 449–454, 522– 528. Reprint in: Randell, 203–222.
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stration – that the whole of the developments and operations of analysis are now capable of being executed by 
machinery.7

John V. Atanasoff, who built the ABC (Atanasoff-Berry Computer) remarked that his method of electronic 
computing could be extended to handle other tasks:

Once our prototype had proved successful, we both [John V. Atanasoff and Clifford E. Berry] knew that we could build a 
machine that could do almost anything in the way of computation.8

The machine built by Atanasoff and Berry could only be used to solve systems of linear equations. Other 
problems had to be manually reduced to linear equations.

The ENIAC was used to solve problems in different fields.9 Even assuming that the ENIAC contained all 
elements necessary for universal computation, and that it could be used for many tasks, it could not be used 
for very complex problems involving many calculations in practice. The ENIAC had to be rewired for each 
type of problem. During complex computations, the intermediate results had to be punched on cards and 
read again. The operator had to keep track of the cards and their contents and so, for very complex problems, 
the human intervention required was overwhelming – Stan Augarten remarks about the ENIAC that its 
programming was "a one-way ticket to the mad house."10 However, theoretical computer science deals with 
the formal aspects of problems and theoretical machines only and never considers human activities – an 
insufficiency also mentioned by Allan G. Bromley, when he discusses the term general purpose:

7 Charles Babbage, Passages from the Life of a Philosopher, (London, 1864). Reprint: Martin Campbell-Kelly, ed., 
Charles Babbage–Passages from the Life of a Philosopher. (New Brunswick, N.J.: Rutgers University Press, 1994), 102. 
Charles Babbage viewed analysis as a special, but in his time enormously important domain: William J. Ashworth, 
"Memory, Efficiency, and Symbolic Analysis – Charles Babbage, John Herschel, and the Industrial Mind," ISIS 87 
(1996): 629– 653. Note that the term analysis had a different meaning in the 19th century.
8 John V. Atanasoff, "Advent of Electronic Digital Computing," Annals of the History of Computing 6, no. 3 (1984): 229–
282, on 247.
9 See W. Barkley Fritz, "ENIAC – A Problem Solver," Annals of the History of Computing 16:1 (1994): 25–45.
10 Stan Augarten, Bit by Bit – An Illustrated History of Computers (New York: Ticknor & Fields, 1984), 128.
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Complexity theory gives some measure of how difficult a task is for machines of a given type, but gives no measure of 
how difficult it is to program the machine for that task – the measure that I feel is relevant here.11

In order to clarify the conceptual power of the machines and the work that must be done by human operators 
to solve certain problems, it is helpful to develop a classification scheme that considers both theoretical 
principles and practical implementations. This contribution presents such a classification, identifying several 
stages in the development of sequence controlled machines. 12

3— 
Analog and Digital

According to some dictionaries of computer science,13 analog variables are continuous and digital variables 
take discrete values only. A clock with hands is called analog, whereas a clock with a numerical display is 
referred to as digital. But the second hand of some modern analog clocks moves in discrete steps. Therefore, 
it is not correct to use the term analog as a synonym of continuous and the term digital as a synonym of 
discrete.

In most publications, the terms analog and digital are used to distinguish between the representation of 
numbers by physical quantities or by numerals. In the example of the clock, this is an adequate description. 
The angle of the hands of the analog clock represents the current time, whereas the numerical display of a 
digital clock shows numbers.

There is another interpretation which comes closer to the intuitive meaning of the term analog.14 There is a 
similarity between the rotation of the hour hand of the clock and the movement of the sun in the heavens as a 
consequence of the rotation of the earth. The clock builds a physical analogy to the rotation of the earth. 
This interpretation can be found in early papers on com-

11 Bromley (n. 1 above), on 304.
12 The history of sequence control is well described in Brian Randell, "The Origins of Computer Programming," Annals of 
the History of Computing 16, no. 4 (1994): 6– 14.
13 For example see IEEE Standard Computer Dictionary–A Compilation of IEEE Standard Computer Glossaries (New York, 
1991) or Duden Informatik–Ein Sachlexikon für Studium und Praxis (Mannheim: Duden-Verlag, 1989).
14 Analog: n. analogue . . . analogue: 1. something having analogy to something else . . . analogy: 1. a partial similarity 
between like features of two things, on which a comparison may be based: the analogy between the heart and a pump . . . 
Webster's Encyclopedic Unabridged Dictionary of the English Language (New York/Avenel, 1989).
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puting machinery, in which analog and digital computers are compared.15 In later publications, when analog 
computing devices had lost their significance, the definition based on representation by physical quantities 
was used more often. 16

Applying the term analog to computers implies that physical quantities are used to represent numbers within 
a calculation process, e.g. the angle of a shaft or a disc. Analog computers embody a physical analogy of the 
problem. For example, a system of mechanical integrators, adders, etc., connected by shafts, constitutes an 
analogy to the ballistic motion of a projectile. Digital computers represent their numbers using numerals 
(digits) and they implement an abstract method (algorithm) to solve a problem. So far, this characterization 
tells us nothing about the control of analog and digital computers.

4— 
Program Control Is More Than Sequence Control

The concepts sequence control and program control seem indistinguishable and the term sequence control is 
part of the name of early program controlled machines, e.g. the Automatic Sequence Controlled Calculator 
(ASCC) or the Selective Sequence Controlled Calculator (SSCC).17 Frequently, the term program is used to 
refer to every sort of sequence controlled machine that has been built since the earliest known automata by 
Heron of Alexandria (Fig. 1). However, this makes it impossible to underline the conceptual differences 
between Heron of Alexandria's automata, early musical automata, Jacquard looms, sequence controlled 
calculating machines, and a modern computer.

Nevertheless, there seems to be some difference in the use of the terms sequence control and program 
control. Brian Randell18 uses the term sequence control for all sorts of control mechanisms, but, when 
discussing the first

15 For example see John von Neumann, "Entwicklung und Ausnutzung neuerer mathematischer Maschinen," Lecture in 
Düsseldorf to the Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen on Sept. 9, 1954. Reprint in: 
Schuchmann, Hans-Rainer, ed., Computertechnik im Profil (Munich, 1984) or John V. Atanasoff, "Computing Machine 
for the Solution of Large Systems of Linear Algebraic Equations," Unpublished memorandum (Ames, Iowa, 1940). 
Reprint in: Randell (n. 5 above), 315-335. Atanasoff claimed "to be the first to use the word analog for computers''. 
Atanasoff (n. 8 above), on 234. In this later publication Atanasoff used the term analog in the sense of physical quantity.
16 For example see Karl Steinbuch and Wolfgang Weber, Taschenbuch der Informatik – Band 1: Grundlagen der 
Technischen Informatik (Berlin: Springer-Verlag, 1974).
17 Wallace J. Eckert, "Electrons and Computation" The Scientific Monthly 67:5, Nov. (1948): 315–323. Reprint in: Randell 
(n. 5 above), 223–232.
18 See Randell (n. 12 above).
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sequence controlled calculators, he prefers the term program control. From the author's point of view, 
program control denotes a specific quality compared to simple sequence control. This difference will be 
made clear now using the terms analog and digital as they are discussed above.

I use the term analog to characterize all sorts of control mechanisms that represent physical analogies, even 
though the representation of numbers is not analog, i.e. in the form of physical quantities. Such mechanisms 
are determined by the construction of the machine and always run the same way, although sometimes parts, 
such as a pegged cylinder, are removable. In contrast to the following definition of digital control, each bit 
of the control medium, e.g. a pegged cylinder, directly controls a mechanism which corresponds to this bit, 
e.g. to play a single tone. Analog control sequences are a part of the construction of the machine and can be 
illustrated by drawings of the controlled machine, as shown in Figs. 1, 2, 3 and 5.19

Figure 1 
The moving temple of Bacchus, an 
early automaton designed by Heron 
of Alexandria, in which a rope was 
wound around an axis with pegs.20

19 Rolf Todesco called machines semi-automata if their functionality can be fully described by drawings, in contrast to 
automata which need a symbolic description. R. Todesco, Technische Intelligenz oder Wie Ingenieure über Computer 
sprechen. (Stuttgart-Bad Cannstatt: Fromman-Holzboog, 1992)
20 W. Walter, "Die gespeicherten Programme des Heron von Alexandria," Elektronische Rechenanlagen 15:3 (1973): 113–
118.
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Table 1:Use of the terms analog and digital to specify several aspects of computing devices

 analog digital

application physical analogy to a given problem abstract method (algorithm)

representation of 
numbers

by physical quantities by numerals

sequence control determined by the construction of 
the machine which can only execute 
the same type of process

a finite set of basic functions 
that can be arranged in any 
desired sequence

description of the 
control process

with diagrams symbolic

The notion of digital control mechanisms refers to a sequence of choices from a finite set of primitive 
functions, which can be arranged in arbitrary order. Such digital machines cannot be fully represented using 
diagrams. They must be specified in a symbolic way, for example using a sequence of arbitrary symbols for 
the basic functions, in the order in which they are to be executed. I will call such machines program 
controlled. In the sequence of a program controlled machine, there are no independent functions 
corresponding to each bit of the control medium. All bits are interpreted as a common function. Table 1 
shows a summary of the distinction between analog and digital.

According to the definitions given above, the automaton built by Heron of Alexandria (Fig. 1) did not 
execute a program, because there were no individual elementary functions involved, as is necessary for 
program control. This automaton is better described as a physical analogy to the sacrificial ceremony for 
which it was designed.

Similar considerations can be applied to musical automata controlled by pegged cylinders, like the one 
shown in Fig. 2. The pegged cylinders enable the instrument concerned to play the desired melody as a 
sequence of single tones or combinations, called chords. Most of the combinations of peg positions 
correspond to disharmonies. In principle, it would be possible to describe all combinations of tones as a set 
of basic functions for a musical automaton, but in practice one would not do so.

The Jacquard loom (Fig. 3) is another example. The process of weaving does not depend on the cards that 
control the selection of the warp threads. The loom has only one state and always executes the same single 
function: raise a set of warp threads before bringing in the filling thread. Therefore the loom weaves a 
pattern corresponding to the holes in the cards. The cards can be considered an analogy to the weaving 
pattern and not a program.
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Figure 2 
A simple musical 

automaton. Each peg 
of the turning cylinder 

touches one tooth of the 
comb directly producing 

the respective tone.21

Figure 3 
The mechanism of a Jacquard 
loom, the cards on the right 

control the raising and lowering 
of the warp threads22

The cylinders of most musical automata, like the sets of cards in the Jacquard loom, are interchangeable 
parts; another melody can be played or another pattern woven quite easily. So the control sequence can be 
either an inherent part of the machine or put on an external medium. However, and this is my point here, 
pegged cylinders and Jacquard cards can be used for program

21 Ibid.
22 Almut Bohnsack, Der Jacquard-Webstuhl (München, 1993).
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control in other machines, but their use does not necessarily imply that the machines are program controlled.

5— 
A Classification of Sequence and Program Control

In this section, I present different computational models that can be summarized in a classification scheme 
for program control.

Executing a Fixed Sequence

The machines described above are sequence controlled but they do not process any input. The output will 
always remain the same, corresponding directly to the sequence, which can be a part of the machine or on an 
external medium, as shown in Fig. 4. More complex mechanisms may also be controlled by both internal 
and external sequences.

Figure 4 
The sequence S always produces the same output. 
The sequence can be fixed by construction (left) 

or it may be an interchangeable part of the machine, 
e.g. the pegged cylinder of a musical automaton (right).

Using the Output as Input

The structure of Charles Babbage's Difference Engine23 clarifies another point. The calculation of the 
machine is controlled by cams fixed on disks, whose functions are similar to those of pegged cylinders (Fig. 
5).

The Difference Engine was a special purpose machine and the cams implemented the method of finite 
differences. However, in contrast to the mechanisms described previously, the Difference Engine's 
calculation depends on previous results, while the process of the musical automata or the Jacquard loom is 
fixed and the output is always exactly the same. The output

23 See Allan G. Bromley, "The Evolution of Babbage's Calculating Engines," Annals of the History of Computing 9:2 
(1987): 113–136.
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of the Difference Engine is the input for the next step in the process of calculation.

There is no significant difference between program control without feed-back and analog sequence control, 
since the same output is always produced. For longer or more complex calculating processes, it is required 
that results already calculated be used again as input (Fig. 6). As long as the machine is unable to 
automatically feed the output back to the input, this must be done manually, as was done by human 
computers using desk calculators.

A storage facility is needed for automatic reuse of previously calculated results. The Difference Engine, for 
example, has registers to store the intermediate results. The number of intermediate results needed is limited 
by the highest order difference. Babbage designed his Difference Engine No. 2 to calculate seventh order 
differences with eight registers.

Figure 5 
The control mechanism of 
the Difference Engine24

Figure 6 
Using the output as input. The sequence S can either be fixed by 

the construction or be stored on an interchangeable external medium.

24 Doron D. Swade, "Der mechanische Computer des Charles Babbage," Spektrum der Wissenschaft, April (1993), 78–
84.
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As previously stated, the size of the storage was a crucial factor in early program controlled machines. Thus, 
scarcely relevant for today's computers, an important question for historical calculators is how the output of 
the computer can be used as input in consecutive steps.

Using the Output to Influence Control

Another very important feature, from a theoretical point of view, is conditional branching. Here the result of 
a calculating step is used to decide where the program sequence is to continue.

Conditional branching is a fundamental concept of universal computing. In theoretical computer science, 
several models for universal computing are used, such as the Turing Machine, m-recursive functions or the 
RAM (Random Access Machine).25 Among them, the RAM comes closest to a conventional computer. A few 
instructions – LOAD (load a value into the accumulator), STORE (store a value), CLR (clear the 
accumulator), INC (increment the accumulator) and BRZ (branch if the accumulator is zero) – are sufficient 
to obtain a universal computer.26 On a practical level, the conditional branch is used to build more complex 
control structures such as WHILE and FOR loops.

Without conditional branching and other extensions to simulate the conditional branch, the class of 
computable functions of the RAM is considerably reduced. In this case, the RAM can only compute outputs 
of finite length or it will never stop. This is because the length of the program has to be finite. Unconditional 
branches can only shorten the execution path in the program, otherwise they lead to an endless loop. 
However, conditional branching can be simulated with self-modifying programs or by indirect addressing, 
as shown by Rojas.27 Hence, a more general description is that the output can influence control (Fig. 7).

The Turing machine reads a symbol from its tape during each step and decides – depending on the state 
transition table – which state to assume, which symbol to write on the tape and in which direction to move 
the read-write head. The symbols on the tape can be the initial input or symbols already calculated. Within 
the theory of m-recursive functions, the m- operator offers the opportunity to execute iterative function calls 
until a desired value is reached. Other theoretical models need concepts comparable to conditional 
branching.

25 For example see John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and 
computation (Reading, Mass.: Addison-Wesley, 1979).
26 See Rojas (n. 3 above).
27 Ibid.
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Figure 7 
The output can be used to 
influence control and to 

decide where to continue 
the sequence S.

The importance of conditional branching had already been mentioned by Babbage in the context of his 
Analytical Engine,28 but he never fully described how this mechanism could be built. In general, it is 
difficult to implement conditional branching in card or tape controlled machines. Nevertheless, this has been 
achieved. One example was the Bell Laboratories' Model V. The branches in this machine were described as 
"to 'hunt' for the beginning of any desired section."29 The ASCC could not do branching, but it was able to 
execute iterations with a fixed number of loops. Additionally, it had a special register (the automatic check 
counter, register No. 72) which could be used to stop the machine if a tolerance in an iteration reached a 
given value.30 In this way, the ASCC was able to make a simple decision depending on its results, but the 
human operator had to decide where to continue the process of calculation.

Finally, in early program controlled machines, conditional branching was rarely used and cannot be 
compared with conditional branching in today's computers. If output can influence the sequence of 
instructions, e.g. in the form of conditional branching in combination with other instructions mentioned 
above, a machine can execute all computable functions. Thus, from a theoretical point of view, no additional 
machine class is necessary.31 Nevertheless, another class will be introduced which has more practical 
consequences.

28 See Babbage (n. 7 above).
29 See Franz L. Alt, "A Bell Telephone Laboratories' Computing Machine," Mathematical Tables and Other Aids to 
Computation 3 (1948): 1–13, 69–84. Reprint in: Randell (n. 5 above), 263–292, on 273.
30 See Aiken, Hopper (n. 6 above).
31 Every Turing Machine can be simulated by a GOTO-Program which uses conditional branches and only three registers 
containing natural numbers of unlimited size. Neither program modification nor indirect addressing is required for this 
theoretical simulation. Cf. Uwe Schöning, Theoretische Informatik kurz gefaßt (Mannheim: BI-Wiss.-Verlag, 1992), 102–
104.
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Using the Output for Control

For several problems solved in practice, the machine had to be able to execute the same sequence of 
instructions by using different memory locations, and the instructions had to be executed with addresses that 
had just been calculated. Therefore, the programmers of early machines, such as the EDVAC, wrote self-
modifying code that changed the addresses coded inside its own instructions. In this way, the output of the 
program was also used to control the machine (Fig. 8). For example, the execution of loops with different 
addresses was used to solve linear systems of equations. Such problems could later be solved more elegantly 
by using index registers, which were used for the first time in the Manchester MARK I.

Figure 8 
The output can be used 
as a control sequence S.

Furthermore, obtaining the output of calculations as sequences of instructions allows automatic translation of 
assembler code or high-level languages into executable programs. Therefore, it was possible to write 
programs in an easier and more natural manner. Without this capability, the computer would never be used 
for very complex problems, because programming the software becomes the crucial factor as the problem 
increases in size.

6— 
Conclusion

The classification scheme proposed here represents the view of a computer scientist. It is not the only 
possible classification, but it indicates the different stages which can be found in the history of sequence 
controlled calculators. The four classes are summarized in Table 2. The scheme can now be used to discuss 
stages in the development of the computer. Often a stored program machine is taken as synonym of 
computer. From the theoretical point of view, a stored program is not necessary for universal computation.32 
Tech-

32 Cf. Rojas (n. 3 above).
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nologically, a stored program allows fast access to the instructions and the instructions are stored in the same 
memory as the data (Table 2).

Compared with the classification scheme, the stored program concept offers an easy way for output to 
influence the calculating process, as well as for output to be taken as a new program. In the history of the 
computer, this offered new quality compared with the machines controlled by tapes or cards, and it gives an 
indication of why the stored program concept may have been such an immediate success.

Nevertheless, the possibilities of the stored program concept mentioned above were not implemented equally 
in early machines. The EDVAC, for example, was only able to modify the address field of its instructions.

Furthermore, the activities processed both by humans and machines can be discussed with regard to the 
respective levels of the classification scheme. The ABC seems to be on the second level of the scheme. The 
output can be used as input. The output of the machine had no effect on the calculation process. It is usually 
said that the ABC is a computer capable of solving systems of linear algebraic equations. A closer look 
reveals that the machine can only eliminate one variable from a system of two equations with up to 29 
unknowns. Human intervention is required to solve systems of equations

Table 2: Summary of the classification and its relation to the stored program concept. 
The arrows on the right indicate the advantage of the stored program concept for the 
practical implementation of using the output to influence control and of using output as 
a control sequence itself. Furthermore, stored program allows fast access to the 
instructions, and the same memory can be used to store data and program
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Figure 9 
When the ABC was used to solve systems of linear 

algebraic equations, the output could not automatically 
be reused for input. The cards containing the 
intermediate results had to be fed manually.

completely (Fig. 9). The output cards for the intermediate results must be fed manually. However, the ABC 
could be used for other problems if they could be reduced to systems of linear equations, e.g. special 
numerical solutions of differential equations. The ABC also introduced very popular concepts like electronic 
calculation by logical operations and binary number representation

Similar examination of other machines can be helpful for the stated objective of this volume, i.e. a fruitful 
comparison of the architectures of the first computers of the world. However, the proposed classification is 
only one aspect and it is not sufficient to capture the historical importance of the machines. Therefore, other 
factors, such as technological conditions or social circumstances, must be also taken into consideration.
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Hardware Components and Computer Design

Harry D. Huskey

Abstract. This paper explains how available components affected the design of electronic computers. Why 
were the early computers serial? Why were limited instruction sets used? What kind of input/output 
equipment was used and why?

In presenting these ideas we shall take time to look in detail at the development of the ACE computers at the 
National Physical Laboratory (NPL) under Alan Turing.

1— 
Components Available around 1940

Prior to 1940, ''relays" were available to switch electricity in circuits. These involved mechanical motion 
which took substantial amounts of time – milliseconds.

The first electron tube with grid control (Fig. 1) was developed by Lee De Forest in about 1906. Later, 
interest in radio communication, stimulated by World War I (1914–1918), led to mass production of vacuum 
tubes in the late 1930s (100 million tubes per year). Multiple control grids were introduced in the early 
1930s. These tubes promised switching times hundreds or thousands of times faster than relays. By 1940 
radio broadcasting had led to tremendous production of electron tubes. World War II further increased the 
tempo of tube production, leading to the use of pulse techniques, for example in radar.

The simplest electron tube, called a triode, is shown in Fig. 1. It has a cathode which emits electrons when 
hot – hence, a heater is needed. Next to the cathode is a structure called a grid. It controls the electric field 
near the cathode. If it is sufficiently negative relative to the cathode, the electrons cannot leave the cathode, 
but if the grid has the same potential as the cathode, then electrons do leave; some land on the grid but most 
pass through it. The grid must be able to maintain an electric field near the cathode but must not be such as 
to impede the flow of electrons. Thus, it is fragile. If the grid becomes positive relative to the cathode, it 
attracts the electrons, causing the metal to heat and melt.
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Figure 1 
A triode

Consider Fig. 1 again. At the top is the "plate," which is connected outside the tube through a resistor R to a 
steady high voltage, say 200 volts. Being positive, the plate attracts any electrons which pass through the 
grid. They flow through the resistor to the 200 volts. However, as the electrons flow through the resistor R 
the voltage at the output drops. Just how much, depends upon Ohm's law, E=IR, where E is the potential 
across the resistor and I is the current produced by the electron flow in the tube. Typical values in a 
computer might be 0.01 amperes (10 milliamperes) through a resistor of 2000 ohms (2 K); therefore the 
product IR is 20 volts. Thus, the output drops from 200 to 180 V.

Another important point about Fig. 1, or any circuit, is that although there is no explicit condenser between 
the output and ground, there is capacity between the output wires and everything else. This capacity depends 
upon the surface area of the signal wires, tube and socket components, etc. Thus, there is considerable 
incentive to use small wires and place elements close together.

Fig. 2 shows the resistor-capacitor equivalent circuit. Assume the input voltage starts at 0 volts and 
instantaneously changes to + 10 volts. The current

Figure 2 
RC circuit



   

Page 71

through the resistor I(t) and the output voltage E(t) are functions of time and obey the equation

E(t) = 10 × (1 – e –t / RC).

When t=RC the voltage reaches about 63 per cent of the final value. The product RC is called the time-
constant of the circuit; it takes about three time-constants before the output is near its final value (~95 per 
cent). This means that any time a signal passes through an electron tube there will be a delay of up to 3 time-
constants. Thus, to attain speed, the circuit designer will wish to minimize the number of tubes through 
which the signal passes. Note that the input is the output of some other circuit and cannot change 
instantaneously, further contributing to the delay.

As a logical device the triode has the following properties: i) it inverts (negates) the input, ii) with 
appropriate choice of resistance there is no loss in signal size (amplitude), iii) the output is nearly 200 volts 
above the level of the input! To cope with this change in level the ENIAC (Electronic Numerical Integrator 
and Computer, University of Pennsylvania, 1946) used many voltage levels ranging from large negative to 
high positive. Another solution to this problem is to use an output network as shown in Fig. 3. As current 
flows from the top of R1 to the –200 volts at the bottom, Ohm's law states that the output voltage changes in 
proportion to the change in the plate voltage. For example, if R1=R2 and the plate is at +200 V then the 
output is 0 volts; if the plate is at +180 V then the output will be –10 V.

What purpose does the condenser C (in Fig. 3) serve? Because of the time required to charge the condenser, 
the output voltage will initially move in step with the plate voltage. Thus, a 20 V decrease in the plate 
potential will immediately cause a drop of 20 V in the output potential, which in three time-constants will 
come close to the value determined by the resistors R1 and R2.

Figure 3 
Output network



   

Page 72

Figure 4 
A flip-flop

Flip-Flop Memory

Two circuits like those in Fig. 3 can be connected as shown in Fig. 4. The circuit (called a flip-flop) has two 
stable states; if one tube is conducting, the other is off and tends to stay that way. An input to the non-
conducting tube will cause it to conduct, turning the other tube off. This flip-flop stores one bit. Example 
voltages are shown for the left tube conducting.

If we wish the flip-flop to change its state quickly, then we must minimize the stray capacities; thus, the 
output may be via a cathode follower and the input may use extra tubes. The output capacitance load can be 
reduced by using a cathode follower (see Fig. 5). The output (cathode) is perhaps 5 to 10 volts above the 
input. The advantage is that the input may be a weak signal such as from the flip-flop, whereas the output 
signal is strong and could drive a number of circuits.

Figure 5 
Cathode follower
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The Dual Grid Tube or Gate

If the triode of Fig. 1 has a screen and a second grid added, then the output (negative) occurs only if both 
grids are at cathode potential. The first grid (input 1 of Fig. 6) determines if electrons leave the cathode. If 
they leave, then the second grid (input 2) determines if they go to the plate or the screen. Since the screen is 
less robust than the plate, designers favored supplying control signals to the second grid and pulses to the 
first grid – the arrangement was called a gate.

We now move on to consider how these components can be used in computer design.

The ENIAC Design

When the ENIAC was started in 1944, the components available to build a computer were the ones 
described above. The basic unit of the ENIAC was the accumulator, of which there were twenty. Each 
accumulator was to re-ceive, store, and transmit ten-digit signed numbers. The received number could 
replace, add to, or subtract from the contents of the accumulator.

Each decimal digit was stored in a ring of ten interconnected flip-flops. Circuitry was arranged so that each 
ring was stable with one flip-flop "on" and the others "off." Thus, storing a ten-digit decimal number 
required 100 flip-flops. Numbers were transmitted as strings of 0 to 9 pulses over each of ten lines. The sign 
of the number required more flip-flops and another transmission line. With the control circuitry the 
accumulator had about 550 tubes.

There was a multiplier, a divider, and a square rooter. Each used several accumulators to accomplish their 
tasks. Certain accumulators communicated with punched card input and output equipment. A master-
programmer initiated sequences of operations. In all there were about 18,000 tubes.1

Figure 6 
Dual-grid NAND gate

1 See in this volume: Jan Van der Spiegel et al., "The ENIAC: History, Operation and Reconstruction in VLSI."
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2— 
New Components — 1940s

Mercury Delay Line

The ENIAC had a very limited memory–twenty 10-digit numbers. Before it was completed, several ideas for 
better memory components were being explored. Some members of the ENIAC team were experimenting 
with storing numbers as pulse trains in mercury delay lines (mercury in a cylindrical tube).2 Mercury lines 
had been used for precise measurement of time intervals in radar applications. Pulse trains would be applied 
to a piezoelectric crystal at the end of a tube of mercury. The generated sound waves travel at about 5 feet 
per millisecond. Another crystal at the receiving end picked up the signal, which was amplified, standardized 
and sent back to the input crystal. Operating at one megacycle, there would be about a thousand pulses in the 
line. A 32-pulse sub-train could represent a binary number which would have approximately the same range 
of values as 10-digit decimal numbers. Less than ten electronic tubes provided the amplification and gating 
needed. Thus, a mercury line with crystals at the end, and a few tubes would store thirty-two 32-bit binary 
numbers.

In the ENIAC, units were operating in parallel, transmitting and receiving numbers over multiple lines, 
whereas the serial nature of the mercury lines led to a quite different structure. Furthermore, the complexity 
of arithmetic circuits using the components described above led to a single arithmetic unit shared by all the 
memory units.

In the summer of 1946 the ENIAC team gave a series of lectures on the ENIAC and on their plans for the 
EDVAC, their delay line computer.3

Cathode Ray Tube Memories

During World War II the military had investigated the detection of moving targets using standard cathode 
ray tubes (similar to TV tubes). The radar return from scanning a scene was "displayed" on the tube. Due to 
secondary emission the inner surface of the tube was charged by varying amounts, depending upon the 
"picture." If the scene was again scanned a short time later, there would be no difference in the charge 
pattern in the tube unless something had changed (moved). This difference in charge could be detected by a 
screen on the outside face of the tube using capacity coupling.

2 See in this volume: Michael R. Williams, "A Preview of Things to Come," Fig. 1.
3 See: The Moore School Lectures, Theory and Techniques for Design of Electronic Digital Computers, edited by Martin 
Campbell-Kelly and Michael R. Williams, MIT Press, Cambridge, 1985.
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Cathode ray tube memories were studied by the ENIAC team and by F. C. Williams at Manchester 
University in England. Williams developed a system using scan lines on the face of the tube. This led to a 
computer design in which numbers (words) were represented by serial trains of pulses, but access to words 
in memory was random. This was in contrast to delay lines, where one had to wait until the number appeared 
at the end of the line. Williams was able to have an operating computer in 1949.

At MIT special memory tubes were developed which were similar to the cathode ray tubes; these were used 
in Whirlwind I.

Magnetic Drums

Although magnetic recording had been invented in 1898, it was not until 1947 that magnetic memory for 
computers received attention. One of the first instances was a drum memory developed at the University of 
California, Berkeley. The drum consisted of an aluminum tube about eight inches in diameter by 20 inches 
long. The surface was sprayed with 3 mil coating of iron oxide, and the unit was vertically mounted and 
directly coupled to a 3600 rpm motor. Fifty heads were mounted along the cylinder so that their magnetic 
gaps were about 1.5 mils above the surface. There were 10 tracks to the inch and each track stored 90 bits 
per inch, giving a memory of about 500,000 bits.

This memory held its information during power shut-off, and was much larger than the other proposed 
alternatives; it was equivalent to about 500 acoustic delay lines.

Input/Output Equipment

The ENIAC used punched card equipment developed for business data processing for input and output, and 
the punched cards were used for shelf storage. Other computer projects used teletype equipment and 
punched paper tape.

Magnetic wire was developed by NBS (National Bureau of Standards) for the SEAC (Standards Eastern 
Automatic Computer). Magnetic tape was developed by Raytheon for a Navy computer and by Eckert and 
Mauchly for their UNIVACs.

Logic Components

Crystal diodes had been known since the 1920s. They were used as the detector in crystal radio sets. They 
consisted of a crystal and a "cat's whisker" wire touching the surface. The junction had a low forward 
resistance and a
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Figure 7 
Diode NAND gate

Figure 8 
Diode NOR gate

high back resistance. It converted (rectified) high frequency radio waves into low frequency sound waves.

The commercial version appeared in the late 1940s, using a germanium crystal, the same "cat's whisker," in 
a package smaller than a pencil and less than an inch long. It was delicate. If dropped two feet it was 
probably ruined. Heat sinks had to be used when soldering or the contact would be damaged. Forward 
resistance was perhaps 200 ohms and back resistance 50K (50,000 ohms). Ideally, one would like near zero 
forward resistance and infinite back resistance.

The crystal diode made possible more complex logic circuits. Two examples are shown in Figs. 7 and 8. If 
inputs swing from–10 V to 0 V, then the grid in Fig. 7 is high only if all inputs are high–an AND circuit. The 
tube inverts the signal giving NOT an AND, i.e. a NAND circuit. In Fig. 8 the grid is high if any or all of the 
inputs are high–an OR circuit. The plate output gives a NOR signal. The decrease in physical size and 
complexity reduced stray capacity giving faster circuitry.

3— 
Computers Based on These Components

EDVAC

The team that built the ENIAC lost some of its senior people. Eckert and Mauchly started their own 
company to build UNIVACs. Goldstine and Burks went to Princeton to work on a computer for von 
Neumann. I went to the National Physical Laboratory (NPL) in England on a one year appointment to work 
on the Automatic Computing Engine (ACE) under Turing. Sharpless
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Figure 9 
Eckert-von Neumann computer

became the leader and continued the work on the EDVAC using mercury delay lines for memory. Then he 
went into business for himself, obtained a lucrative patent on magnetic disks and built mercury delay-line 
memories for sale.

The EDVAC was divided into i) a memory, ii) an arithmetic unit, iii) a control unit, and iv) an input/output 
unit (see Fig. 9). Von Neumann wrote the "First Draft of a Report on the EDVAC" (June 1945, University of 
Pennsylvania) describing this structure. Thus, it is now called the "von Neumann computer"; perhaps a better 
name would be "Eckert-von Neumann Computer."

The delay lines were 384 microseconds long and operated at a clock frequency of one MHz. Words were 44 
bits long and an instruction consisted of a 4 bit opcode with four 10 bit addresses. Sixteen instructions kept 
the control simple and the 384 microsecond lines reduced the delay waiting for operands or instructions.

EDSAC

M. V. Wilkes of Cambridge University attended lectures at the University of Pennsylvania given by the 
ENIAC team. Following their EDVAC plans he returned to England and built the EDSAC. Using half of the 
clock frequency of the proposed EDVAC, 500 KHz, he was able to have his computer operational by May, 
1949.

Turing and the ACE

Turing used a general logical symbol shown in Fig. 10. There was an output "1" if at least m inputs were "1" 
and no inhibiting input was "1," otherwise
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Figure 10 
Turing gate

Figure 11 
Turing flip-flop

the output was "0." The motivation for this symbol comes from the study of neurons in animal nervous 
systems. It is interesting to note that von Neumann used similar symbols and ideas in his 1945 EDVAC 
report.4 Turing's notation had little relation to possible hardware realizations of the circuits. It is a challenge 
to use the components described above to accomplish the effect of this symbol. Compare the flip-flop of Fig. 
4 with that shown in Fig. 11.

We describe the work at NPL under Turing in greater detail, since it represents a major effort to cope with 
the delays caused by waiting for operands or instructions in cyclic memories.

D. W. Davies reports in a 1972 reprint (NPL, Com. Sci. 57) entitled "A. M. Turing's original proposal for the 
development of an electronic computer" that after the end of World War II, J. R. Womersley became head of 
the new Mathematics Division at NPL and, having met Turing, encouraged him to propose to Sir Charles 
Darwin (grandson of the famous Charles Darwin), director of NPL, the building of a stored program 
computer. His proposal consisted of 51 pages of single spaced text and 52 figures, and was presented to the 
NPL Executive Committee in February, 1946.5

He proposed an "electronic calculator" with: i) a memory of 50 to 500 mercury tanks holding about 1000 
binary digits each, ii) 50 quick reference storage units each holding about 32 binary digits, iii) an input organ 
capable of transferring "instructions and other material" into the computer from the outside world, iv) an 
output organ to transfer results out of the calculator, v) a logical control to interpret the instructions, and vi) 
a central arithmetic part. He also mentioned switching "trees," a megacycle clock, temperature control for 
the mercury lines, binary-decimal converters, a starting device and a power supply. The input and output 
was to be to and from punched cards.

Problems suitable for the computer might involve 5000 real numbers, would not take more than 100,000 
times that of a human to solve, and the list

4 John von Neumann, First Draft of a Report on the EDVAC, Moore School of Electrical Engineering, University of 
Pennsylvania, 1945.
5 A.M. Turing's ACE Report of 1946 and other Papers, edited by B.E. Carpenter and R.W. Doran, MIT Press, Cambridge, 
1986.
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of instructions would be comparable to an ordinary novel. He included ten sample problems, one of which 
was to compute ''winning combinations" in chess to a depth of three moves on either side.

In January of 1947 there were three people working on the project: Turing, J. R. Wilkinson and Michael 
Woodger. I joined them on a one year visiting appointment.

The group was working on the logical design of a delay line computer. The distinctive feature of the design 
was the placing of instructions and data in the delay lines so as to minimize wait times (latency). In contrast, 
other computers with cyclic memories usually obtained their instructions from consecutive addresses, which 
meant that any instruction took at least one memory cycle. Another distinctive feature of the ACE design 
was the dispersion of arithmetic and logical operations in the memory switching (this means that the 
operation units were mapped to the address space).

There was a source switch which connected any memory tank to a "highway" or "bus," which connected to a 
destination switch connecting, in turn, to the same array of memory tanks. As we shall see, some of the 
sources were logical combinations of two memory lines, and some destinations performed arithmetical 
operations. Also, some source destination combinations controlled input and output actions. This made 
control simple: set up the connections and decide when to transfer. In 1953 using the ACE principles, I 
designed a magnetic drum computer. The result was manufactured by Bendix and was called the G15. Delay 
lines were replaced by recirculating tracks on a drum. Each track held more than 100 words so the speed 
improvement by optimal location of data and instructions was more significant.

There are three ACE computers and the Bendix G15 that we shall consider. The three ACE computers are:

1. The ACE Test Assembly (ACE-TA), which I proposed that the group design and build to acquire 
experience and, perhaps, to have a usable computer. The project was approved in April, 1947.

2. In November, 1947, the computer design and construction activity was moved from the Mathematics 
Division to the Radio Division and the Test Assembly was re-designed to become the ACE Pilot Model 
(ACE-PM).

3. The ACE was the full scale computer that Turing wished to have built. The Mathematics group was 
working on this in January, 1947. It was to have two source switches supplying data to a function box, 
which, in turn, connected to a destination switch. The function box was to have 64 functions including 
logical functions, addition/subtraction, shifting, and discrimination. After the success of the ACE-PM and its 
commercial cousin the DEUCE, NPL went on to build the ACE.

The instructions for the four computers were coded using the following bits in a word:
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ACE-TA ACE-PM ACE Bendix G15

Bits Function Bits Function Bits Function Bits Function

1-2 Spare 1 Spare 1-5 Wait time W  Single/dbl

3-7 Source S 2-4 NI Source 6-11 Source A 2-6 Destination

8-12 Destination D 5-9 Source 12-17 Source B 7-11 Source

13-15 NI Source N 10-14 Destination 18-23 Function 12,13 Characteristic

16-18 Spare 15 Characteristic 24-29 Destination D 14-20 NI Time N

19-24 Trans time T 16 Spare 30 Stop bit 21 Breakpoint

25 Spare 17-21 Wait 31-35 NI Source 22-28 Trans time T

26-31 Wait time W 22-24 Spare 36-40 No effect J 29 Block/item

32 Spare 25-29 Trans time 41-45 NI Time  

 30-31 Spare 46-47 Characteristic  

32 GO digit 48 Spare

Trans: Transfer, NI: Next Instruction

The Test Assembly control circuitry was quite simple, consisting of a means to set the source S, destination 
D, and N switches, and a one-word line with a half-adder which controlled the timing.

The diagram in Fig. 12 illustrates the way the Pilot ACE and the other machines worked. The mercury delay 
lines are numbered DL1 to DL11. Each mercury line is read sequentially and the information cycles "on 
place." Information can be moved from one delay line to another by setting the source and destination 
switches. Closing S1 and changing the position of D2 for the appropriate number of cycles, for example, 
would transfer the number stored in DL1 to DL2. The TS units are used as registers. TS16 is used as an 
accumulator which can be loaded with a number (by switching D16). If D17 is accessed, the number 
arriving from another unit is added to the contents of TS16. If D18 is activated, a subtraction is computed. 
As can be seen, the main command in this machine is the "MOVE" instruction, which transfers numbers 
from a source to a destination. Even unconditional jumps can be programmed in this way by using the 
switches N1, N2, etc. If N1 is closed and the switch in the control unit too, the instruction register is loaded 
with a new address (previously incremented by one). Conditional jumps are imple-mented by using the 
destination 25. If the number transmitted is zero, then the first of the two following instructions is selected.

Other Computers

Other machines developed at the time included the following:

• Williams at Manchester University was developing a computer using cathode ray tubes (CRT). His work 
lead to the Ferranti I.
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Figure 12 
Simplified diagram of the Pilot ACE

• The Institute for Advanced Study (IAS) under von Neumann was designing a parallel computer expecting 
to use a memory tube developed by RCA.

• The National Bureau of Standards was building the SEAC (similar to the EDVAC) in Washington and the 
SWAC, a parallel CRT computer, at the Institute for Numerical Analysis (INA) on the campus at UCLA. 
MIT was building Whirlwind, a 16 bit parallel computer using special CRTs.
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• MIT was building Whirlwind, a 16 bit parallel computer using special CRTs

• Others were designing and building computers with magnetic drum memory.

The following table (derived from data in the Encyclopedia of Computer Science, 3rd Edition, 1993) 
summarizes the characteristics of the delayline and CRT computers (DL = delay line, Wms = Williams 
tube).

Computer Location Memory(wds) Wd Length Address Max Access No. Diodes

ACE-PM NPL DL 360 32 bits - 1.0 ms -

EDVAC Army DL 1024 44 4 0.38 ms 10K

EDSAC Cambridge DL 512 35 1 1.1 0

Ferranti I Manchester Wms 256 40 1 0.64 0

IAS Princeton Wms1024 40 1 0.025 0

SEAC NBS DL 512 45 3 0.38 15.8K

SWAC INA-LA Wms 256 36 4 0.016 3K

Whirlwind MIT ES 256 16 1 0.016 22K

UNIVAC E&M DL 1000 12 char 1 0.40 18K

This table shows: i) that the CRT memories were faster than the delay line memories, and ii) there were 
some doubts about using germanium diodes. The small memories led to magnetic drum auxiliary memories.

4— 
Component Development — 1950s

Memory Development

The magnetic core became the memory element of choice in the 1950s. It was a very small ring of ferrite 
which had a hysteresis curve similar to that shown in Fig. 13. If a current I flows through the horizontal and 
vertical select wires, the remanence moves to H (Fig. 13) and to F when the current ceases. Similarly, if both 
currents are –I then it moves to D then to B when current ceases. With pulse current I in one of the select 
wires the remanence moves from F to G and back to F, or from B to A and back to B, depending upon the 
initial state of the core. The point F may correspond to a "1" and point B to a "0," or conversely, F may be a 
"0" and B a "1."

The cores may be arranged in a square array, say 32 by 32, with such an array for each bit in the computer 
word. If a selected core receives current I in both select lines, it will move from F to H to F or from B-A-H-
F. The movement F-H-F represents little change in magnetism so there is no induced
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Figure 13 
Magnetic core memory

signal in the sense wire; on the other hand, B-A-H-F gives an induced signal in the sense wire. Thus, sending 
current I through particular horizontal and vertical select wires in all the planes produces a representation on 
the sense wires of the binary number at that location. Unfortunately, it erases the word, so circuitry must be 
provided to restore it.

A nice feature: memory is not lost when the power is turned off. Initially, the hysteresis loops are not as 
square as one would like. This lead to schemes requiring more than the three wires through each core. Speed 
depended upon the core being small, but this increased fabrication difficulties. Materials were improved, the 
loops became more square, but fabrication remained a problem.

Logic Components

Soon the germanium in diodes was replaced by silicon, the junction was made more rugged, back and 
forward resistances were improved. For example, in a junction diode the reverse current was less than 20 
microamperes and the forward current at 0.8 volts bias was, perhaps, 50 milliamperes. All computers made 
in the 1950s used silicon diodes.

The first transistor, a point contact using germanium, was developed in 1947. As in diodes the technology 
soon moved to silicon and to junction devices. Originally, transistors more or less replaced electronic tubes 
in similar circuit configurations (see Fig. 14). This reduced voltage swings to, perhaps, five volts and there 
was no heater structure.

Thus, there was a tremendous reduction in power, components could be closer together reducing stray 
capacity and increasing speed, and reducing the need for air conditioning.
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Figure 14 
Transistor amplifier

Printed Circuits

The cost of connecting circuit components (wiring) and the cost of checking the result led to the 
development of printed circuit boards. A circuit diagram was printed on a copper clad substrate. The board 
was then etched to remove the copper not protected by the printing. Components were placed on the board 
and it was dip soldered. The wiring on one side of the board had to be one-layer (no cross-overs). With 
through-the-board connections both sides of the board were used, giving two layers of wiring. If actual 
cross-overs were required then a wire jumper was used.

Magnetic Tapes, Magnetic Drums and Magnetic Disks

The typical magnetic tape in the 1950s was 2400 feet long and 1/2 inch wide. Information was recorded 9 
bits across the tape, perhaps using an 8 bit byte and a parity bit. At 1600 bits to the inch a tape could hold 
over 40 million bytes, in practice, inter-record gaps would substantially reduce this number. Locally, the 
tape could be started and stopped very quickly. There was a slack arrangement and servo system driving the 
reels to match (catch up) with the fast movement at the read/write station. Data transfer rates were about a 
Megabyte per second.

A drum might be 8 to 20 inches in diameter and up to 4 foot long. Data was recorded on a track around the 
drum, there was a read/write head for each track. At 3600 rpm the access time for an item might be as much 
as 17 milliseconds.

A typical disk had a number of platters, there was a pair of read/write heads for each platter, and the 
assembly of heads for all platters was moved in or out by a track seeking servo. Access might involve track 
seek time plus time until the data passed the heads. Furthermore, disks rotated slower than drums but had 
much larger capacity.



   

Page 85

5— 
Effect on Computer Design — 1950s

The low cost of magnetic drum memories led to "small" computers whose cost was in the $50,000 range.

Magnetic cores were more reliable than CRTs or mercury delay lines. There was no waiting for data as in 
the delay lines. Physically, they occupied less space, were much less sensitive to temperature than delay 
lines, and more reliable. Cores quickly became the memory component of choice for large computers. 
Magnetic core memories and transistor logic brought significant improvement in reliability. People no 
longer talked about "mean time to failure."

Magnetic tape replaced punched cards for shelf storage of data. Punched cards remained the primary input 
medium. Tape drives became the primary auxiliary memory for computer systems.

Two classes of computers were designed, those oriented toward scientific computation and those toward 
data processing. Since the main computer was expensive, organizational systems (computer centers) were 
developed to keep it busy. The user was no longer allowed to laboriously debug his program one instruction 
at a time.

The user was separated from the computer, he submitted his program and data to a queue, computer center 
staff moved it to the computer and placed printed output in the output area. The user picked it up and, if he 
was lucky, had his results. If unlucky, he hoped he had enough information to correct any errors, so he could 
resubmit it.

So-called "assembly" languages were developed which made it easier for the user to write a program. 
Particularly, programs in assembly language were easier to correct. Labels for points in the program were 
introduced and more-or-less mnemonic names could be used for variables. The language processor 
translated the program into machine language. Also, user oriented languages such as FORTRAN were 
developed – the user was further removed from the hardware details.

6— 
Component Development — 1960s

Impurities could be introduced (doping) into a sheet (substrate) of polycrystalline silicon so as to change its 
electrical characteristics. For example, arsenic introduced in the silicon matrix produces an excess of 
electrons, boron produces a deficiency of electrons (called holes). These are called, respectively, n-type and 
p-type silicon.

The next significant breakthrough was the field effect transistor (see Fig. 15). Usually the gate is made of 
metal and the insulator of silicon dioxide, which explains the name metal oxide semiconductor (MOS). 
Control of electron flow between the source and drain depended upon the field established
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Figure 15 
Field-effect transistor (Metal-Oxide-Semiconductor)

by the gate terminal. No control current was required beyond that needed to charge the condenser 
represented by the gate terminal. This reduced heat allowing components to be even closer together, giving 
more and faster logic units on a chip.

The multiple steps manufacturing process involves ion implantation, pattern transfer, etching, etc. Size of the 
individual elements depends upon purity of materials, cleanliness of environment, and stability of 
equipment.

Computer Systems — 1960s

The late 1960s saw memory chips storing 1000 bits. This was the beginning of the end for magnetic cores. 
The repetitive pattern of a memory chip simplified the mask design, naturally leading to its popularity with 
chip manufacturers.

The availability of memory chips and transistor circuitry led to cathode ray tube (CRT) displays. These were 
a welcomed replacement for printers and their stacks of paper.

The new hardware capability opened the way for new operating systems. Instead of the computer center with 
its queues, several CRTs were connected to the central computer and the operating system gave time slots to 
the active CRTs in sequence. This allowed the user to process small problems quickly. On-line storage using 
magnetic tapes or disks allowed him to submit large problems and to debug them on line. Outputs could be 
sampled and printing ordered when results were thought to be correct.

The success of FORTRAN led to other languages. COBOL (Common Business Oriented Language) for data 
processing applications was developed. BASIC, a small highly portable (easily moved to new computers) 
language, was developed on a time-sharing system. ALGOL (Algorithmic Language) was defined by an 
international committee. It was not commercially successful but is significant for introducing important 
ideas, such as block structure and explicit declaration of variable types. Other languages with more specific 
areas of application were developed.
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7— 
Computers 1970 and Beyond

The 1970s brought the beginning of refinement: the number of tracks and the number of bits per inch on 
magnetic disks grew dramatically and the number of transistors on a chip doubled every two years.

The increasing number of transistors on a chip gave the possibility of building a CPU on a chip. The first of 
these was the 4004 microprocessor. It had 2300 MOS transistors on a tenth inch square chip. Since then 
there has been continuous improvement. Clock rates have gone up and up, main memory size has increased 
dramatically. Processor speeds, memory, and transmission rates have been increasing 60% per year (Moore's 
law). Dudley Buck in the 1950s talked of vacuum triode components produced by photolithography (like 
integrated circuits). This would make possible microcomputers like we have today. They would cost 25 
cents. If they failed you threw them away! He was right about the result but wrong about the technology. 
Last year's $2000 personal computer costs less than $1000 this year.

Networking started in the 1970s. Now the majority of my correspondence is via e-mail and I buy my London 
theatre tickets via the World Wide Web (WWW). There are more computers in my car than there were in my 
state a generation ago!

<><><><><><><><><><><><>

HARRY D. HUSKEY was an Instructor in Mathematics at the University of Pennsylvania in 1944, when he 
started working part-time on the ENIAC project. He wrote a technical description of the ENIAC and 
participated in the early design of the EDVAC. In 1946 he took one-year visiting appointment at NPL (UK) 
working under Turing on the design of various ACE computers.

Prof. Huskey spent 1948 at the National Applied Mathematics Laboratories of the National Bureau of 
Standards in Washington, DC, monitoring US computer activity. In 1948 he moved to the Institute for 
Numerical Analysis, a field station of NBS located on the campus at UCLA. There he designed and led the 
team that built a parallel William's Tube computer, which was dedicated in August 1950. On leave from 
INA, he spent a year helping Wayne University (Detroit) set up a computer center, and designed a "small" 
computer using a cyclic magnetic drum memory which became the Bendix G15.

In 1954 he joined the faculty at UC Berkeley, teaching Numerical Analysis and Computer Design. He 
helped set up and direct the group that designed the Berkeley Time-Sharing System, which was marketed as 
the SDS940. Prof. Huskey was active in both ACM and the IEEE Computer Society, being President of 
ACM for 1960-1962. He is a Fellow of ACM and the IEEE Computer Society, and has received Pioneer 
Awards from both societies.
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PART II— 
THE AMERICAN SCENE
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Reconstruction of the Atanasoff-Berry Computer

John Gustafson

Abstract. The Atanasoff-Berry Computer (ABC) introduced electronic binary logic in the late 1930s. It was 
also the first to use dynamically refreshed capacitors for storage, as in current RAM. Perhaps most 
astonishing is that it was parallel, supporting up to 30 simultaneous operations. Yet, it had far fewer parts 
than the serial computers that followed in the 1940s. Atanasoff and Berry completed the computer by 1942, 
but it was later dismantled. Only a few parts of the original computer remain. In 1994, a team of engineers, 
scientists, and students at Iowa State University/Ames Laboratory began rebuilding the ABC. We 
demonstrated the functioning replica on October 8, 1997.

In this paper, I describe the computer in modern computer architectural terms to facilitate technology 
comparison. While patent applications, purchase orders, and photographs gave much information for the 
reconstruction, a number of mysteries about the computer were solved only as a result of the effort to 
reproduce it. The answers to those mysteries are presented here for the first time.

1— 
Atanasoff's Motivation

John Atanasoff was a physicist by training, whose interests included mo-lecular spectra and crystallography. 
As a graduate student, he often found it necessary to solve systems of linear equations by hand, and as a 
professor he had advisees similarly engaged in the arduous process. He noted:

Since an expert [human] computer takes about eight hours to solve a full set of eight equations in eight unknowns, k is 
about 1/64. To solve twenty equations in twenty unknowns should thus require 125 hours
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 . . . The solution of general systems of linear equations with a number of unknowns greater than ten is not often 
attempted.1

Alt made a strikingly similar remark eight years later:

. . . 13 equations, solved as a two-computer problem, require about 8 hours of computing time. The time required for 
systems of higher order varies approximately as the cube of the order. This puts a practical limitation on the size of 
systems to be solved . . . It is believed that this will limit the process used, even if used iteratively, to about 20 or 30 
unknowns.2

In the evolution of automatic computing, solving a system of linear equations was the original ''Grand 
Challenge." Trigonometric functions and logarithms could be tabled, and mechanical desktop calculators 
such as the 10-decimal Marchant could handle short sequences of the four basic arithmetic operations. 
However, Gaussian elimination requires of the order of n3 operations for n unknowns, which makes this 
manual method unscalable. Atanasoff listed his target applications, which look much like the typical 
workload at a modern supercomputer center:

• Multiple correlation,

• Curve fitting,

• Method of least squares,

• Vibration problems including the vibrational Raman effect,

• Electrical circuit analysis,

• Analysis of elastic structures,

• Approximate solution of many problems of elasticity,

• Approximate solution of problems of quantum mechanics,

• Perturbation theories of mechanics, astronomy, and the quantum theory.

Atanasoff struggled for years to find a physical way to perform arithmetic that was digital instead of analog. 
He appears to have been the first to draw the distinction between the two, and to coin the term "computer" 
for a mechanical device. He thought about parallel processing much the way we do now, in that he 
considered connecting 30 commodity devices (mechanical Monroe calculators) to attain the necessary 
speed.3 He discarded this ap-

1 J. Atanasoff, "Computing Machine for the Solution of large Systems of Linear Algebraic Equations," reprinted in: B. 
Randell, The Origins of Digital Computers, First Edition, (Springer-Verlag, New York, 1973).
2 F. Alt, "A Bell Telephone Laboratories Computing Machine," reprinted in Randell, n.l.
3 J. V. Atanasoff, "Advent of Electronic Digital Computing," Annals of the History of Computing, 6 (1984).



   

Page 93

proach as clumsy and error-prone. In late 1937,4 he suddenly made the mental leap that provided him with 
what he was seeking while at a roadhouse near the Mississippi River. He jotted four principles on a napkin,5 
paraphrased here:

• Electricity and electronics, not mechanical methods,

• Binary numbers internally,

• Separate memory made with capacitors, refreshed to maintain 0 or I state,

• Direct 0-1 logic operations, not enumeration.

On the other side of the world, the designs of Konrad Zuse were independently paralleling those of 
Atanasoff, but the Zuse designs were mechanical or relay-based.6 While the Zuse automatons were less 
advanced than the ABC in switching and storage technology, they were far ahead of their time in having full 
floating-point arithmetic and a real instruction set.

By 1940, Atanasoff and graduate student Clifford Berry had taken the above ideas to practice. I will present 
details of the design, including features not previously explained in the literature on the ABC.7

2— 
Block Diagram

Fig. I shows an overview of the ABC. It uses terminology more like that for modern computers than like that 
of the original documentation. Terms like "keyboard abacus" have little meaning for present-day computer 
engineers.

Because the add-subtract modules could be used for base conversion (both directions) as well as vector 
addition and subtraction, the total vacuum tube count was very low: about 300 for the entire machine. Much 
of this economy is the result of operating on only one bit of each number at a time, keeping the carry/borrow 
bit in a capacitor for use in the next cycle. The 60 Hz line power served as the system clock; one 50-bit 
number could be added or subtracted in 5/6 of a second, with 1/6 of a second idle time.

The separation of memory from processing is one we now take for granted. On analog computers, there is no 
such separation. Atanasoff and Zuse independently made the same profound breakthrough in realizing the

4 C. R. Mollenhoff, Atanasoff: Forgotten Father of the Computer, (Iowa State University Press, Ames, 1988).
5 A. R. and A. W. Burks, The First Electronic Computer: The Atanasoff Story, (University of Michigan Press, Ann Arbor, 
1989).
6 See in this volume: R. Rojas, "The Architecture of Konrad Zuse's Early Computing Machines."
7 A. R. Mackintosh, "Dr. Atanasoff's Computer," Scientific American, (1988). J. L. Gustafson, "First Electronic Digital 
Calculating Machine Forerunner to Cornell's FPS-164/MAX," Forefronts, (Cornell University Theory Center, October 1985).
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Figure 1 
ABC Block Diagram

need for separate "memory," as Atanasoff anthropomorphically called it. One of the few news releases of the 
Iowa State College (now Iowa State University) about the ABC used the headline, "MACHINE 'REMEMBERS'."

3— 
Physical Design

The ABC is much smaller than the other early computers. The original dimensions were 1.5 m long, 0.91 m 
high, and 0.91 m wide. The seemingly minor decision about the width had much to do with the eventual 
destruction of the original device.

It was constructed in the basement of the physics building at ISU, which at the time was an open area 
interrupted only by support pillars. The basement was later finished with poured concrete walls and standard 
doors; the standard door width is 0.84 m. Hence, the computer was boxed in. After Atanasoff left ISU for 
Maryland, the ABC was seen only as an orphaned device taking up otherwise useful space. Since its frame 
was welded angle iron, the only way to remove it from the room was to cut it apart with a hacksaw. I feel we 
have most of the answer to the question: Why was the ABC destroyed? The answer is that it was 0.07 m too 
wide to go through the door. In reconstructing the ABC, we made one practical modification: we narrowed 
the frame enough so we would be able to go through a standard door.
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Fig. 2 shows the reconstructed ABC, using a camera angle similar to that of the historical pictures of the 
original.8

The weight of the machine is about 750 pounds. It rolls on four heavy-duty casters, with the weight and 
maneuverability of an upright piano. Like a piano, the ABC must be "tuned" after moving to make sure that 
the timings of brush-triggered events are still within tolerance. The remarkable thing, of course, is that any 
such antique computer would be so portable. ABC successors such as the ENIAC and the Mark I were 
notorious for filling rooms with bulky, heavy equipment. The ABC replica has logged thousands of miles in 
its tours around the country, using a protective crate and a truck specialized for moving sensitive scientific 
equipment, and it remains functional.

We wondered about the power consumption of the system, but have found that the total power drawn does 
not exceed 1000 W. The heat generated by the tubes is barely perceptible if one stands near the computer. 
There is no need for fan-driven cooling; what heat is generated disappears by convection in the open design.

The ABC uses ordinary US line power, 117 VAC, 60 Hz. It was not designed with safety in mind; the two 
main bus voltages are +120 V and –120

Figure 2 
The ABC Replica

8 A web site with information about the ABC and the reconstruction effort can be found at www.scl.ameslab.gov/ABC.
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V, and in many places on the computer large, unshielded surfaces at these voltages are separated from 
ground by a few centimeters. With protective covers removed, the rotating memory drums could easily snag 
loose clothing. We do not expect to operate the computer on a routine demonstration basis, but to rely on 
videotapes and simulations of its operation.

The physical design is true to that of the original, with the exception of the slightly narrower width and 
slightly more modern wire (plastic coated instead of cloth coated, coaxial shielding instead of twisted pairs). 
The contact brushes are the same IBM part used in 1939. The phenolic resin cylinders that hold the memory 
appear to be the same stock as used by Atanasoff.

The total amount of wire in the ABC is about 1600 m, and almost all connections are soldered. The manual 
effort required for the wiring (and correction of wiring errors) was probably the single largest part of the cost 
of the reconstruction itself. We discovered an advantage of the original's cloth-covered wire when we found 
that the soldering irons had melted some of the replica wire's plastic sheathing enough to cause short circuits 
in shielded cables.

4— 
Finding 1939 Vintage Parts

People often ask us, "Where did you get the vacuum tubes? Weren't they difficult to find?" Several suppliers 
stock vacuum tubes of the correct type. An Army-Navy warehouse in California supplied us with enough 
tubes for the entire ABC plus a few spares. About half the tubes tested were gassy, but the remainder 
worked; most of those that worked were still within design specifications. Finding vacuum tubes was by no 
means our biggest challenge.

It was much more difficult to find a proper synchronous motor to drive the rotating drums. Modern 
synchronous AC motors can synchronize on the positive or the negative part of the AC power cycle; in 
1939, they were wound to synchronize on only the positive part. This does not affect any of the 
computational logic, but it does affect the base-2 card writer and base-2 card reader. Cards written while 
synchronized to one phase of the motor will not read properly if the machine becomes synchronized to the 
opposite phase (as can happen whenever the machine is turned off and back on).

In building add-subtract modules, we found the circuits very demanding of precise resistor values. We have 
evidence that Berry hand-selected resistors from bins until he found ones that worked, and we attempted the 
same tactic. In measuring a collection of ±10% resistors, we discovered the distribution about the nominal 
value shown in Fig. 3.
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Figure 3 
Distribution of ±10% Resistor Values

Apparently, the manufacturer had already segregated the resistors close to nominal value. Hence, we found it 
necessary to use 1% tolerance resistors.

5— 
Arithmetic and Rounding Error

The ABC arithmetic is 50-bit binary, 2's complement integer arithmetic. There are no tests for overflow. 
There is also no rounding when it divides numbers by two via shifting. While this may initially seem to pull 
values toward zero with every operation, closer examination shows that the Gaussian elimination process 
causes the data to alternate from positive to negative values, and thus the truncation of bits is balanced on the 
average. After order n iterations of the subtract-shift process, the values will be off by about Ön bits in the 
least significant place.

The simple examples in Berry's thesis describing the operation of the ABC use linear equations with integer 
coefficients, avoiding discussion of rounding error. Now that the reconstruction has allowed us to 
experiment with the computer, it is obvious that Atanasoff and Berry intended to scale all input values so 
they would occupy the most significant bits in the 50-bit words. The Ön bits of error in the least significant 
place would be negligible for well-posed problems. With the exception of circuit analysis, the physical 
applications Atanasoff had in mind tend to produce positive definite matrices for which the ABC could 
easily generate answers correct to ten or more decimal digits.

6— 
A Stumbling Block: 
The ABC Mass Storage Scheme

Atanasoff and Berry knew they would need to record intermediate results somehow. The refreshed-memory 
storage was only sufficient to hold two rows of the system of equations (up to 29 variable coefficients plus 
the right-
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hand constant coefficient). As rows are altered by the Gaussian elimination scheme, they would have to be 
stored and reloaded later.

Reading the intermediate answers manually by conversion to decimal was out of the question. It could take 
up to two minutes to convert each 50-bit binary number to a 15-decimal number on the odometer readout, 
which also had the inconvenient side effect of destroying the original 50-bit number.

A mechanical cardpunch was considered, but would have brought in all the usual disadvantages of 
mechanical computation that Atanasoff was seeking to eliminate. He wanted an electronic solution 
(magnetic storage did not evolve until after World War II.)

The solution he and Berry came up with was to use high-voltage arcs to burn holes in paper; a hole for a "1" 
and no hole for a "0." Berry refers to the paper as "dielectric material." It appears that paper was the only 
material ever used. The thyratron tubes visible on the left side of the ABC provided the high-voltage pulse to 
create the arcs. Reading the cards was done by passing the card between electrodes at a lower voltage than 
that used to burn the card, and with blunt electrodes instead of pointed ones to allow for small differences in 
alignment between reading and writing. The idea is that the arc will form in the card reader if there is a hole 
in the card, but the dielectric strength of the paper will prevent this if there is no hole.

Note that there are at least five variables to adjust for this method to work:

1. The voltage used to write

2. The voltage used to read

3. The thickness of the paper

4. The spacing of the electrodes used to write

5. The spacing of the electrodes used to read.

From telephone discussions with Clifford Berry's widow, we learned that Berry found the optimum paper to 
be Strathmore No. 2. This paper is no longer manufactured, but we know it was thicker than ordinary bond 
paper and not as thick as IBM card stock. A too-thin paper would buckle in the mechanism and would not 
prevent arbitrary arcs in the reading of the card; a too-thick paper might prevent arcs in the writing of the 
card, or snag on the electrodes. Unlike the rest of the ABC, this technology was not prescient . . . unless 
viewed as a precursor to paper tape punch or magnetic tape recording.

Berry's M.S. thesis was to find a combination of these competing design variables that worked. He found it. 
The write voltage was 3,000 V, and the read voltage 2,000 V. With it, the ABC is able to record the entire 
contents of one memory drum (1500 bits) in one second. It would be many years before there was another 
method capable of this I/O rate. The scratch paper cards were about 12 cm by 18 cm and were loaded 
individually. As they ejected from the mechanism, they were apparently caught by hand; there is no record 
of any kind of tray.
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The Burks9 cite the reliability of the arcing scheme as roughly one error in every 104 or 105 bits. This is high, 
but probably not high enough for the solution of 29 equations in 29 unknowns. The likelihood of a one-bit 
error increases rapidly beyond about five equations in five unknowns, and this may be the source of the 
debate, "Did the Atanasoff-Berry Computer ever work?" From hands-on experience, we can now give the 
answer: yes, but reliability problems prevented it from solving systems large enough to fill its memory. It 
was still much faster and more reliable than hand calculation, which is what Atanasoff had hoped to achieve.

7— 
The ABC "Instruction Set"

The operator invokes "instructions" via the buttons and switches on the control panel. A vector is a set of the 
30 numbers in either memory drum. (The vector in memory 1 is called CA in earlier descriptions of the 
ABC, and the vector in memory 2 is called KA.) A short vector is five numbers, aligned to end on a multiple 
of 5 within the vector; a decimal input card held one short vector, whereas the binary scratch cards held an 
entire vector. The possible instructions, with approximate execution times, are as follows:

1 s Set short vector to coefficients 1 to 5.
1 s Set short vector to coefficients 6 to 10.
1 s Set short vector to coefficients 11 to 15.
1 s Set short vector to coefficients 16 to 20.
1 s Set short vector to coefficients 21 to 25.
1 s Set short vector to coefficients 26 to 30.
1 s Vector clear memory 1.
1 s Vector copy memory 1 to memory 2.
16 s Read a short vector from the base-10 card reader into part of the memory I vector, 

converting to binary using table look-up and the add-subtract modules.
1 s Read a short vector from the base-2 card reader into part of the memory 1 vector.
1 s Read a short vector from the base-2 card reader into part of the memory 2 vector.
1 s Select a coefficient in memory 1 (for elimination or decimal output).
100 s Add or subtract (chosen automatically) one row from another to eliminate the 

leading bit of the chosen coefficient, shifting right when successful and stopping 
when the chosen coefficient is zero.

100 s Write a value to the decimal readout, using the lookup tables and add-subtract 
modules to convert the base-2 value to base-10.

9 A. R. and A. W. Burks, (n. 5 above).
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The timings of more than 1 second are data-dependent, and the values given represent averages for 15-
decimal numbers. By using small integers instead of the full dynamic range, the time for those long 
operations drops by an order of magnitude.

A striking omission in the design of the ABC is the concept of addressing. Binary data is not used anywhere 
to select data locations. The operator performed the selection, which is why the design has so many sizes 
that are not powers of two (such as 5, 30, 50, 1500).

8— 
Base-10 Output

Descriptions were frustratingly sketchy when describing where the answers finally appeared in human-
readable form. We knew that Berry had attempted to use a car odometer to record the output, but eventually 
custom-made what he needed. The black-and-white photographs of the machine did not reveal anything 
obviously intended for the output, and we had to solve this mystery before reconstruction could begin.

The man who took those photographs was also the man who did most of the wiring of the original ABC: Dr. 
Robert Mather. A physicist residing in Oakland, California, he is perhaps the only person still living that saw 
the ABC in operation. (Atanasoff was alive when the reconstruction project began, but had suffered several 
strokes and was unable to communicate with us). We contacted Mather, who pointed out the cylinder next to 
the base-10 card reader in the photograph, and all became clear. The same mechanism that moved the card 
reader could be used to move a solenoid past odometer-type wheels, poking them by one decimal every time 
a value on the drum with the conversion table subtracted that decimal. Unlike a car odometer, there is no 
"carry" when a wheel passes 9; the wheels are independent. The display is small, since it has the same 
spacing as columns on an IBM punch card.

Because the algorithm alternates between adding and subtracting as the solenoid moves across columns of 
the number, the wheels are numbered in alternating forward and reverse order. This simplifies the 
mechanical aspects of the conversion, since the solenoid always moves the same way but the electronics 
changes state.

One does not find clear answers to some questions in the literature on the ABC. I will attempt to answer 
those now, based on our experience with the replica and the additional sources of information we found in 
our quest for details about the original.
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9— 
Exactly When Was It Completed?

Unlike an invention such as the Wright Brothers' airplane, we do not have a precise date in history for the 
first successful electronic computation. There does not seem to be a precise date when one can say the ABC 
worked for the first time. The binary logic certainly was working by the summer of 1940, but the base-2 
scratch storage method described above became reliable enough to use in a gradual process and not a 
dramatic one. By the time World War II had taken everyone away from the project in June 1942, the ABC 
was in the state that we have reproduced, and that reproduction is a working computer.

Had the war not interfered, Atanasoff was planning to make the instruction sequencing automatic instead of 
entered manually from the control panel, and to make the computer more general-purpose. With the 
exception of Zuse's paper-tape mechanism for instruction sequences, stored instruction sequencing had to 
wait until the late 1940s.

10— 
Was the ABC Electronic or Electromechanical?

The fractional-horsepower motor and gear trains suggest that the ABC was an electromechanical computer 
and not an electronic one. This is not the case. The mechanical function was similar to the motor that turns 
the hard disk or CD-ROM drive inside a modern computer; the gears and mechanical parts were not used for 
computing or to record data in any way.

A small number of relays were used, but only for control. They more closely resemble the on-off switch on a 
modern PC than the gate elements of the Zuse Z3.

Modern electronic computers have many moving parts in the input keyboards and output printers, and so did 
the ABC. It is true that the clocking of the system was mechanical and not electronic. With an oscillatory 
circuit used to set the system clock instead of a rotating cylinder making contact with brushes, the ABC 
logic could have been made ten thousand times faster. Note, however, that this would have been a gross 
mismatch to the I/O limitations of the system. Even the later ENIAC, which used electronic clocking, 
experienced its bottleneck in the punch card input and output.

The ABC was fully electronic in its calculation and in its storage of data. For that reason, I argue that its 
mechanical aspects are no different from those of any modern computer; a motor to rotate the storage 
medium, and mechanical switches for the human interface.
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11— 
Was the ABC Ever Actually Used?

Some have claimed that no one ever used the original ABC for production computing. We have found 
evidence to the contrary. The first three applications listed by Atanasoff are all statistical, and Atanasoff 
collaborated with the well-known applied statistician Snedecor at ISU. Publicity that resulted from our 
reconstruction effort led Clara Smith, a secretary in the Mathematics Department now living in rural Iowa, to 
contact us. She said one of her tasks was to hand-verify solutions to problems that Snedecor was sending to 
Atanasoff. It appears Snedecor sent a steady stream of small linear systems to the ABC for solution, and it 
would have been very well suited to regression, least squares, curve-fitting problems. Clara Smith verified 
some of the results for Snedecor to establish his confidence that the ABC was producing correct answers.

Robert Mather also says the original machine solved problems up to size five, but more typically size three 
during testing and debugging. The experience we have had with the replica makes this recollection very 
plausible. Five is the size of a short vector that fits on one input card, and does not require any switches to be 
changed on the short vector location. It also involved about 3 × 104 bits to be sent through the base-2 mass 
storage system, which is about where the reliability of that system becomes limiting. A linear system size of 
three is very useful in testing and debugging, since one can solve a 2 by 2 system plus right-hand-side vector 
without any use of scratch storage. Since we have done nothing to improve on the technology of the original, 
I feel we have settled the question of whether the original ABC was ever operational: It was. Moreover, it 
was probably used to solve real statistical problems.

12— 
How Fast Was the ABC?

As in all computer performance measurement, it is better to take into account the time to solve an entire 
problem and not excerpt the time to do a single operation as a measure of speed. The latter is usually much 
more flattering, but seldom reflects true performance. For example, one could cite the fact that a 30-element 
vector addition on the ABC takes only one second, implying 30 arithmetic operations per second. Perhaps 
this is the ''peak performance" rating for the ABC. I instead consider "sustained performance." To measure 
that, there is no substitute for a working replica.

Because of the parallelism in the architecture, the sustained performance is maximized if all 30 add-subtract 
units are used; that is, if one solves a system of 29 equations in 29 unknowns. Burks has estimated that this 
would take about 25 hours, including human operator time. With a LINPACK-type operation count of 2/3 n3

+ 2n2, the Gaussian elimination of a system of size 29
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requires about 18,000 operations. This implies 0.2 operations per second. Because the ABC had parallelism 
greater than n, the time complexity grows as n2 and not n3.

I have noted that the ABC probably never was used for such a large system because of the very high 
reliability requirements for the scratch storage. We can look at the other extreme, two equations in two 
unknowns. The usual floating-point operation count for a 2 by 2 system (counting reciprocation as three 
operations) is 19. Our experience is that such a problem can be solved in about five minutes, somewhat less 
than the estimate in the Burks' book. This implies 0.06 operations per second. The 2 by 2 system need not 
involve scratch storage, which saves time beyond what would expect from problem scaling.

13— 
How "Special-Purpose" Was the ABC?

Some refer to the ABC as a "special-purpose" computer, perhaps to diminish its place in computer history. 
"Special-purpose" and "general-purpose" are not scientifically defined adjectives. Most computers are 
designed with a certain range of applications in mind, and the list that Atanasoff mentions above is broad. 
We already know that the ABC did not have an automatic instruction stream like the Harvard Mark I; its 
only capacity for branching was in testing zero crossings and zero results during elimination. It relied on the 
human operator to deliver commands and make decisions about what to do next.

After the ABC reconstruction began to be operational, I realized that the ABC could in fact be employed the 
way one would use a pocket calculator, and that it could be "programmed" in a sense by the choice of the 
coefficients matrix. To see this, consider what happens when one solves the system

ax + by + u 
cx + dy = v

The result of one application of the ABC row-elimination step results in

ax + by + u 
0 = (d – bc/a)y = v – uc/a)

The quantity (d–bc / a) is easily read out on the decimal display. Quantities u and v need not even be 
entered. If we want to obtain the four basic operations +,–, ×, ÷, then

b = –1, a = +1 gives c + d. 
b = +1, a = +1 gives d –c. 
d = 0a = +1 gives b × c. 
d = 0, c = –1 gives b ÷ a.
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Although this may seem clumsy, it was certainly easier and less error-prone than doing 15-digits decimal 
arithmetic by hand.

14— 
Perspective: 
Computers Now and Computers Then

The ABC illustrates two remarkable things about the history of computers: First, that Moore's law seems to 
work if extrapolated all the way to 1939, and second, that a surprising number of things have not changed 
much from the ABC.

Moore's law was first posited in 1970, using only three data points. It primarily applied to chip density, and 
by implication the cost per bit . . . but because speed tends to scale linearly with memory, it has been found 
to be a good guideline for processor speed as well: Performance doubles every 18 months. So if we 
extrapolate back to 1942 from say, late 1996, we should have doubled performance about 36 times. 236 is 
about 70,000 millions. Are current supercomputers 70 billion times more capacious and faster than the 
ABC? Does Moore's law hold even before the invention of integrated circuits?

The ABC had 0.3 kilobytes of main storage. The Intel Teraflops computer delivered to Sandia National 
Laboratories last year now has 0.3 terabytes of main memory and a terabyte of disk storage. It isn't clear 
which one we should use, because the ABC memory used refreshed capacitors like DRAM yet spun 
mechanically like a disk. The speed of the ABC was, translated to modern terms, about 0.06 "Flops" where 
we politely ignore the lack of exponent management in the ABC and look at the 50-bit precision as similar 
to a modern 52-bit IEEE mantissa. The Intel Teraflops computer, true to its name, has demonstrated a trillion 
Flops with that precision, and running the same application. That represents a factor of about 20 trillion.

With this improved baseline, we can recalibrate Moore's law – but it doesn't need much modification. It 
looks like DRAM technology doubles every 20 months, and processor speed doubles every 28 months. It's a 
little like recalculating the Hubble Constant when a telescope finds another more ancient and more distant 
quasar.

15—
Cost

If the reader will forgive my use of American units, someone once noted that computers cost about $400 per 
pound – give or take $100. This amusing statistic is surprisingly good at predicting the cost of everything 
from a pocket calculator (0.1 pound, $40) to a Cray vector mainframe (30,000 pounds including motor-
generators, $12,000,000). While we'd like to think that the cost of a computer stems from its intellectual 
content and not its
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mass, the heuristic seems to work. The ABC weighs 750 pounds, and it cost about $300,000 to reconstruct. 
This fits the $400/pound estimator despite the use of vacuum tube technology. This ABC price includes the 
engineering labor cost; some quoted prices for the original ABC list $5000, and include only the parts in 
1939 dollars. If one adjusts for inflation and estimates the cost of Atanasoff, Berry, and the several students 
that helped with the original, the cost of the reconstruction is very close to the price of the original.

16— 
Summary

Scientific computer architectures have long been designed with linear algebra in mind. The vector computers 
of the late 1970s and early 1980s (Cray-l, Cyber 205, etc.) and array processors of the same era were 
strongly optimized for the kernel operations of matrix factoring and matrix multiplication. The ABC was the 
first linear algebra computer, and its 1940 performance is very close to what Moore's law predicts. World 
War II prevented its innovations from being publicized and credited to Atanasoff and Berry via patents or 
published papers. However, the ideas of fully electronic digital logic and dynamic refresh capacitor storage 
were communicated to other early designers and were thereby added to the body of knowledge of computer 
design.
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Howard Aiken and the Dawn of the Computer Age1

Bernard Cohen

Abstract. Howard Aiken, one of the pioneers who introduced the computer age, earned his place in the 
historical record by several different sets of achievements. One was his design and completion of four giant 
calculators (or computers) at the dawn and during the first stages of the computer age, another his pioneering 
program in what we know today as computer science. He also was one of the very first explorers of the 
application of the new machines to business purposes – problems of the life insurance industry and computer 
billing in the utilities industries. He also contributed to the computer age in sponsoring new areas of 
application for computers, including machine translation of foreign languages, the use of the new machines 
in textual and historical analysis, and the application of computers to economics. He was much in demand as 
a speaker in America and in Europe, and he constantly urged the introduction of the computer into new areas 
of research and action. His contributions to the new age also include two symposiums he organized (in 1947 
and 1949) to bring together those who were pioneering the designs and construction of new computers or 
planning new applications.

1— 
Aiken's Background

Aiken's primary claim to a notable place in history is usually said to be his first machine, converted from his 
specifications into engineering reality by IBM engineers. This machine, known as Mark I (or the Harvard 
Mark I), and originally named the IBM ASCC, gave the world of scientists and engineers a visible proof that 
a complex machine could solve complicated mathematical

1 This talk is based on the writer's recently published book, Howard Aiken, Portrait of a Computer Pioneer (Cambridge: 
MIT Press, 1999); also a companion volume of essays, edited by the writer together with Gregory M. Welch and Robert 
V. D. Campbell, "Makin 'Numbers ": Howard Aiken and the Computer (Cambridge: MIT Press, 1999).
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problems by being programmed to execute a series of controlled operations in a predetermined sequence – 
and do so without error.

A strong man in both his quality of mind and his physical being, Aiken had all the strengths and weaknesses 
of successful pioneers. He forced Harvard, an essentially humanistic university, into adopting a leading role 
in the new art and science of computing. Some of his visions of the future so outran the course of events that 
his predictions were often not validated until decades later. He was strongly opposed to the new concept of 
the stored program, primarily because he feared that the mixing of program or instructions with data in the 
same store would jeopardize the integrity of the program, and he had a basic dislike of binary number 
systems.

Aiken's early life set him in a personality mold which affected his relations with students and colleagues and 
which determined his character. A daring and bold pioneer, he was self-willed, and combative. Aiken was a 
giant of a man–in his physical stature, his force of will, his originality of mind, and his achievement. 
Standing erect at six feet and some inches tall, he towered over most of his students and colleagues. Graced 
by nature with a huge dome of a head, he had piercing eyes crowned with huge beetling and somewhat 
satanic eyebrows.

Aiken related to people in extremes. When he met you, you were almost at once graded, placed at the top of 
his scale or the bottom–there was never a middle ground. On a scale from one to ten, Aiken would rate you 
as a zero or an eleven. People reacted to Aiken in the same way. His students and associates either admired 
him and established a friendly relationship or found him to be "impossible." Friends and colleagues and 
former students on the "plus" side remained loyal and devoted for the rest of their lives and Aiken himself 
cherished long-term relations. Those on the "minus" side tend to remember only those occasions when he 
was intransigent and difficult.

Howard Hathaway Aiken was born in Hoboken, New Jersey, in 1901 and was educated in the public school 
system of Indianapolis. Throughout his four years of high school, he held a full-time job, working a twelve-
hour shift at night, in order to support his mother and grandmother who had no other source of income. On 
graduation, he enrolled as an undergraduate in the University of Wisconsin, where he continued to work at 
nights in order to support himself and his family. During an oral-history interview which Henry Tropp and I 
conducted with Aiken shortly before his death, on 24 February 1973, he explained that Wisconsin had 
adopted "the eight hour day" and so he "had to work from four to midnight on that job" which "was much 
easier" than the twelve-hour shift at Indianapolis.

Aiken graduated from the University with a bachelor's degree in electrical engineering. After a decade as a 
successful electrical engineer, he found himself elevated to a managerial position without contact with daily 
problems of engineering practice. He resigned his business post and decided to go back to the university for 
higher training in the sciences. His first choice was the University of Chicago, but he didn't like Chicago and 
transferred to Harvard, where he
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entered the graduate program in physics in 1931. At that time, Aiken was thirty years of age, much older 
than his fellow graduate students.

At Harvard Aiken became a member of a small group of faculty members and students associated with the 
Physics Department and known by the subject name of "communication engineering." Basically, the 
members of this group were concerned with the physics of electromagnetic waves (their transmission, 
reflection, reception, and so on), the study of radio transmission problems, and the physics of the operating 
units of radio transmission. Thus, one member of the group investigated the way in which radio waves 
bounce off the ionospheric layer, another the design of antennas and antenna theory generally. The head of 
the group, the person with whom Aiken did his research, E. L. Chaffee, was primarily interested in the 
physics of vacuum tubes.

2— 
Computing Machines

As was the custom of those days, Aiken was assigned a problem for his doctoral research and eventual 
dissertation. His problem was the conductivity of space charge, "a field where one runs into [partial] 
differential equations in cylindrical co-ordinates . . . in nonlinear terms, of course." Before long his thesis 
research came to consist primarily of "solving nonlinear [differential] equations."

The only methods then available for numerical solutions of problems like his made use of electromechanical 
desk calculators, of about the size of today's cash registers, so that calculations like those he needed were 
"extremely time consuming." It became apparent–"at once," according to Aiken–that the labor of calculating 
"could be mechanized and programmed and that an individual didn't have to do this." He was also aware that 
a computing machine would also be of great use in solving pressing problems in many sciences and in 
engineering and even in the social sciences.

By April 1937, he had progressed sufficiently far in his general thinking and design to be ready to seek 
support from industry. In preparation, Aiken drew up a proposal stating the need for such a machine, 
together with the principal features of its mode of operation and its general method of solving problems. His 
philosophy was later expressed in a student's assignment, drawn up for one of his Harvard classes in 
computer science. "The 'design' of a computing machine," the students were informed, "is understood to 
consist in the outlining of its general specifications and the carrying through of a rational determination of its 
functions, but does not include the actual engineering design of component units."

In this clear statement, as was often the case for Aiken, the primary concerns were the logic of the machine, 
the mathematical operations, and the general architecture, while the actual technological specifications or the 
choice of components was secondary. To judge from all the information available, Aiken's design would not 
have specified what particular components (nor even
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what types of components – mechanical, electromechanical, electronic) would be used, nor how the various 
components of the machine would be linked. He would have specified the need for performing certain types 
of mathematical operations and a means of programming them so that they would be performed in a certain 
predetermined sequence. He also would have indicated the need for storing certain tables of numerical data. 
These specifications would have been definite but not necessarily confined to any particular type of 
functioning elements. Thus the design would apply equally to a machine that would be constructed of 
mechanical, electromechanical, or electronic components, or any combination of them.

Once Aiken had completed the general design of his proposed machine, his next step was to find some 
company willing to build it. During the course of our interview, Aiken explained that because of the size and 
complexity of his proposed machine, only a large manufacturer of calculators or business machines could 
possibly have been induced to produce it. Accordingly, he turned first to America's foremost manufacturer 
of calculators, the Monroe Calculating Machine Company. Armed with his document of specifications, 
Aiken obtained an interview, which took place on 22 April 1937, with George C. Chase, a distinguished 
inventor in the calculator field who was then Monroe's director of research.

Chase later reported how Aiken outlined his conception of the machine and "explained what it could 
accomplish in the fields of mathematics, science, and sociology." Aiken told Chase that "certain branches of 
science had reached a barrier that could not be passed until means could be found to solve mathematical 
problems too large to be undertaken with the then-known computing equipment." Although Aiken referred 
to "the construction of an electromechanical machine," he had not as yet specified what kind of actual 
components were to be used. Chase was quite emphatic on this point. The "plan he outlined," Chase wrote, 
"was not restricted to any specific type of mechanism.'' Rather, his design "embraced a broad coordination of 
components that could be resolved by various constructive mediums."

Aiken's attempt to elicit the support of Monroe came up rather early during the interview, when I pressed 
him to explain why he had chosen to build Mark I out of electromechanical parts. After all, his thesis was on 
vacuum tubes, on space charge, and his own graduate specialty was the field of electronics. Why, I wanted 
to know, did he even consider electromechanical systems rather than electronic systems? Why had he not 
contemplated using vacuum tubes? I must confess that I expected Aiken to frame his reply in terms of his 
great often-expressed ideal: reliability! I will even confess that I asked the question less as a means of 
obtaining information than as an opportunity to record on tape – direct from Aiken's mouth – his thundering 
condemnation of unreliable vacuum tubes and his preference for slower and more reliable relays.

It was only much later that, thanks primarily to a little tutorial given to me by Bob Campbell and to the 
insightful comments of Maurice Wilkes, I came to understand that Aiken's study of the physics of vacuum 
tubes was only
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indirectly related to the use of vacuum tubes in designing electronic circuits. In fact, in a statement written 
by Aiken toward the end of the war, in 1945, he reviewed the goals of education in the Cruft Laboratory, 
where the "plan for instruction" had been designed around "basic scientific material of communication 
engineering," together with "much of the allied branches of science." There was "no attempt to apply this 
material to specific engineering problems." Instead, the program had been directed exclusively to ''the 
elucidation of fundamental scientific principles." For the purposes of computation, however, what was 
needed was not the scientific principles underlying circuitry, not a knowledge of the physics of space charge, 
but rather some experience in the design of high speed pulse circuitry. In this latter area Aiken had little or 
no experience.

In a talk given in Sweden and in Germany in 1956, Aiken recalled that, in his undergraduate days at the 
University of Wisconsin, in his senior year, when he was a student of electrical engineering, "there was 
offered for the first time a course called 'thermionic vacuum tubes.' " He didn't explore this new field, 
however, because his professors advised him that he "would do far better" if he "took the course in 
transformer design rather than this new and untried subject."

Once started, Aiken continued his recollections of Chase. He was "Chief Engineer at Monroe," he said, "and 
a very, very, scholarly gentleman. He took an almost immediate interest, and we kept up an association for 
quite a few years thereafter. He wanted, in the worst way, to build Mark I. He would supply me with the 
parts and we would collaborate and do it together, that's what he wanted to do."

Chase was enthusiastic about Aiken's project. According to Aiken, Chase "went to his management at 
Monroe and he did everything within his power to convince them that they should go ahead with this 
machine because, although it would be an expensive development." Chase had the vision and foresight to 
recognize that the proposed machine "would be invaluable in the company's business in later years." But, 
although "Chase could see this," his "management, however, after some months of discussion turned him 
down completely."

Aiken's remarks about his not having been wed to a single type of components for his dream machine was 
very revealing, but I was not completely satisfied by Aiken's presentation. I wanted him to discuss what he 
remembered about the relative advantages and disadvantages of mechanical systems, electromagnetic 
devices, and vacuum tube circuits. Accordingly, a little later in the interview, I returned to the subject of why 
Aiken had chosen to have his machine built of electromechanical components such as relays–why he had not 
made use of vacuum tubes. This time I stressed the fact that this choice of relays had always seemed 
astonishing to me in view of the fact that Aiken had been a student at Harvard of E. L. Chaffee, under whose 
direction he had written his doctoral dissertation; Chaffee's specialty was vacuum tubes and vacuum tube 
circuits. To be specific, I asked whether at one time there hadn't been some thought given to having 
quenching circuits in that first machine, using vacuum tubes. Aiken replied, "Yes. But your question really 
is: since I had grown up in
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'space charge' in a laboratory like Cruft [at Harvard], why wasn't Mark I an electronic device? Again the 
answer is money. It was going to take a lot of money. Thousands and thousands of parts!"

Then he explained: "It was clear that this thing could be done with electronic parts, too, using the techniques 
of the digital counters that had been made with vacuum tubes, just a few years before I started, for counting 
cosmic rays." And then he concluded with the following dramatic assertion: "But what it comes down to is 
this: if Monroe had decided to pay the bill, this thing would have been made out of mechanical parts. If RCA 
had been interested, it might have been electronic. And it was made out of tabulating machine parts because 
IBM was willing to pay the bill."

Clearly, at this time, Aiken was not wedded to any particular technology, his top priority was not the choice 
of relays.

To most historians and computer specialists, it will seem just as astonishing as it was to us to learn that the 
choice of the kind of machine to be built was determined solely by financial considerations, by the 
willingness of one or another company to put up money for the machine. This disdain for the technological 
components was, I believe, a very significant part of Aiken's intellectual make-up. We shall see in a moment 
how this aspect of Aiken's system of values was a major factor in producing the eventual rift between him 
and IBM. Aiken never appreciated the degree to which the technology of IBM's product line may have made 
IBM the only company that at that time would have undertaken to build Aiken's machine. It is to be noted 
that when Eckert and Mauchly designed the ENIAC, constructed at the Moore School at the University of 
Pennsylvania, they did not base the machine on any company's off-the-shelf technology but rather developed 
new types of circuitry and design for the special purpose they had in mind.

3— 
The Role of IBM

When Chase found that his company would not undertake to build Aiken's dream machine, he advised Aiken 
to try IBM. At IBM, Aiken's project won the immediate support of James Wares Bryce, IBM's chief 
engineer, then known affectionately within IBM as "the Father Engineer." Bryce was the holder of more 
than 400 patents, making an average of about one per month. In 1936, on the centenary of the U. S. Patent 
Office, Bryce was honored as one of the ten "greatest living inventors." Aiken's meetings with Bryce were 
the inaugural steps toward the construction of the Automatic Sequence Controlled Calculator.

As all histories of IBM make clear, no important decision was ever made at IBM without the explicit 
approval of IBM's president, Thomas J. Watson, senior. Watson was a powerful figure, a titan in his sphere 
and endowed with just as forceful a personality as Howard Aiken. Anyone who has read anything at all 
about these two figures will know that there would be an eventual
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collision, a terrible clash. And, after IBM built Aiken's dream machine, there was just such an inevitable 
conflict, also supported by Thomas J. Watson (Jr.), IBM's CEO.

Bryce wanted to be certain that Aiken would know about the different technologies used in IBM business 
machines, accumulators, sorters, and printers. And so Bryce arranged for Aiken to attend IBM's training 
school for technicians and then go out on the job of repair and maintenance of IBM machines. Only after 
Aiken had become familiar with the potentialities and limitations of IBM's product line did Bryce advance to 
the next step of getting the machine built.

At first it was envisaged that IBM would supply the parts and that, under Aiken's supervision and with some 
assistance from IBM engineers, the giant machine would be built at Harvard by mechanics in Harvard's own 
machine shops. Eventually, this proved to be impractical, and all of the work was done at IBM's facility in 
Endicott, New York. Bryce appointed Clair Lake to be the engineer in charge of the project. Francis 
("Frank") Hamilton was the immediate supervisor, and Ben Durfee was actually in charge of day-to-day 
construction of the circuits and the design of the controls. These three engineers were skilled technicians of 
extremely high ability, but they were not trained in college level mathematics and really didn't understand 
the nature of the mathematical problems that the machine they were designing was to perform.

Aiken spent the whole summer of 1939 in Endicott with the IBM engineers. He set forth the mathematical 
requirements, listed the constants that had to be in the store, and helped design the circuits. During the next 
twelve months, while Aiken was busy teaching at Harvard, he nevertheless got to Endicott most weekends 
and again spent the whole summer (1940) working with the IBM engineers at Endicott. During the following 
autumn and spring, Aiken continued to visit Endicott. On 6 March 1941, Aiken sent Hamilton 36 logarithms 
and 21 sine values to be stored in the machine for use in calculating values of those two functions. He also 
made specific his requirements for interpolation. One month later, Aiken was called to active duty as an 
officer in the U.S. Naval Reserve. He had enlisted in the Reserves some time earlier but was not called to 
active duty until April 1941, eight months before Pearl Harbor. Resplendent in his new uniform, he visited 
the Endicott laboratory on 24 May and announced that he would have "very little time to spend on this 
machine from that time on."

In order to ensure that the machine would be completed, Aiken appointed as his deputy a Harvard graduate 
student in physics, Robert Campbell. Campbell not only visited Endicott in the last phases of design and 
construction, he also became the chief operator and programmer of the machine after it had been delivered to 
Harvard in February 1944. During the spring of 1944, Aiken and his supporters succeeded in getting the 
Navy to appreciate the importance of the new machine in the war effort, with the result that the operation of 
the calculator became a Navy project. In the spring of 1944 Aiken received orders transferring him to 
Cambridge to take charge of his computer. He once remarked that he was
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the first officer in the history of the U.S. Navy to be put in command of a computer.

In the summer of 1944, with the computer in full operation as a Navy installation, Harvard's President James 
B. Conant decided that the time had come to have a formal dedication of the new machine. With the consent 
of the Navy, a ceremony was planned at which Aiken and Watson would give talks, to be followed by an 
inspection of the giant machine. A distinguished company of guests – including admirals, government 
officials, leaders of business and technology, and members of the Harvard faculty would attend. The date 
was 7 August 1944.

Watson arrived in Boston the day before the ceremony and was shown a copy of the news release prepared 
by Harvard for the press. This story stressed the contributions of Aiken as THE inventor, down played the 
contribution of the IBM engineers and barely mentioned the role of IBM as the constructor. Watson was so 
angry – and with good reason–that he threatened to boycott the ceremony altogether. Harvard's President 
Conant, Aiken himself, and several other members of the faculty and of IBM rushed to Watson's hotel and 
succeeded in calming his rage, promising to issue an emended news release that would give credit to IBM 
and its engineers.

This episode reveals a difference in philosophies. Aiken's philosophy of what we would call "architecture" 
centered around the functions that the machine would perform, the sequencing of the operations and the way 
in which the sequence of operations would be programmed. From his point of view, he was THE inventor, 
or at least the primary inventor, for without him there would have been no machine. Watson and the staff of 
IBM thought in more practical terms. An inventor was the person (or group of persons) who designed and 
built an actual working machine. From IBM's point of view, the three engineers–Lake, Hamilton, and 
Durfee–who had built the machine were the inventors. Here was an intellectual impasse that could not be 
bridged.

In any event, Watson did attend the ceremony the next day and magnanimously made a gift to Harvard of 
$100,000. The equivalent in today's money of about a million dollars. The news coverage of the dedication 
was worldwide. What impressed scientists, engineers, philosophers, and ordinary mortals was the fact that 
this giant machine could perform a complex sequence of operations (or commands) automatically according 
to a program and do so without error. Pascal, Leibniz, Babbage and others had dreamed of such a machine 
that might emulate functions of the human brain, but Aiken and the IBM engineers had done it.

4— 
Mark I

The IBM Automatic Sequence Controlled Calculator or Harvard Mark I, as it was soon called, was so large 
and so complex that most accounts stress the huge
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size and the enormous number of parts rather than its functioning. The completed machine was the largest 
and most complex electromagnetic device ever constructed. Mark I was an imposing sight, sheathed in 
stainless steel.

The news spread rapidly throughout the world, carried by newspapers, magazines, radio, and word of mouth. 
The news was that a new world was dawning, heralded by Aiken's machine. Let me give you a single 
example to show how the news spread.

Konrad Zuse told me an amusing anecdote about how he first encountered the work of Aiken. The occasion 
of our conversation was a luncheon in Zuse's honor, hosted by Ralph Gomory at the Watson Research 
Laboratory of IBM before a lecture given by Zuse to the staff of the lab. When Zuse learned that I was 
gathering materials for a book on Aiken, he told me that he had come across Aiken and Mark I in an indirect 
manner, through the daughter of his bookkeeper. She was working for the German Secret Service 
(Geheimdienst) and knew through her father of Zuse's work on a large scale calculator. According to Zuse, 
the young woman never learned any details about his machine, which was shrouded in war-time secrecy. But 
she knew enough about Zuse's machine to recognize that the material filed in a certain drawer related to a 
device that seemed somewhat like Zuse's. She reported this event to her father, giving the file number of the 
drawer, and the father at once informed Zuse of her discovery.

Zuse, of course, could not go to the Secret Service and ask for the document since that would give away the 
illegal source of his information. Zuse was well connected, however, and was able to send two of his 
assistants to the Secret Service, armed with an official demand for information from the Air Ministry, 
requesting any information that might be in the files concerning a device or machine in any way similar to 
Zuse's.

Zuse's assistants were at first informed that no such material existed in the files, but they persisted and 
eventually got to the right drawer. There they found a newspaper clipping (most likely from a Swiss 
newspaper), containing a picture of Mark I and a brief description about Aiken and the new machine. But 
there was not enough technical information to enable Zuse to learn the machine's architecture.

The importance of Mark I is primarily its role in making known to the world at large that a machine could 
successfully perform a programmed sequence of operations and do so automatically without error. As 
mentioned above, the Mark I was thus the herald of the computer age. We have adequate testimony to this 
role in history. In a widely used and standard reference work, the Encyclopedia of Computer Science and 
Engineering, edited by Anthony Ralston & Edwin D. Reilly, Jr. (1983), Maurice Wilkes declares that "the 
digital computer age began when the Automatic Sequence Control Calculator started working in April 
1944." In the same encyclopedia, another article (by E. L. Stoll) begins: "the Harvard Mark I, also called the 
IBM Automatic Sequence Control Calculator . . . marked the beginning of the era of the modern computer." 
In a volume of Perspectives on the Computer Revolution, Aiken and his "Automatic Sequence
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Controlled Calculator, or Harvard Mark I," are given credit by the editor for the "real dawn of the computer 
age," which occurred with "the construction of a machine" which ''could control the entire sequence of its 
calculations, reading in data and instructions at one point and printing results at another."

Aiken's commanding place in the unfolding world of the computer was recognized in 1964, when AFIPS 
(the American Federation of Information Processing Societies) established the Harry Goode Memorial 
Award to honor its second president, Harry H. Goode, by recognizing "outstanding achievement in the field 
of information processing." The inaugural award in 1964 went to the recognized pioneer, the inventor whose 
giant machine had inaugurated the computer age: Howard H. Aiken. I need not rehearse here the many 
honors and awards bestowed on Aiken during his life-time.

During the war years 1944–45, Mark I ran almost continuously, twenty-four hours a day and seven days a 
week. The war-time problems the machine was asked to solve included studies of magnetic fields associated 
with the protection of ships from the destructive action of magnetic mines, and mathematical aspects of the 
design and use of radar. No doubt the most important war-time problem was a set of calculations for 
implosions, brought from Los Alamos to the Harvard Navy installation by John Von Neumann. These were 
programmed for the machine by Dick Bloch. Only a year or more later did Bloch and the rest of the staff 
learned that these calculations had been made in connection with the design of the atomic bomb.

Mark I was gigantic, an imposing sight, standing 8 feet high and extending in length to 51 feet and almost 3 
feet in depth. The portion of it on permanent exhibit in the main lobby of the Science Center gives only a 
partial notion of its original grandeur. It weighed 5 tons and used 530 miles of wire and was composed of 
760,000 individual parts. Making use of IBM technology, as developed by IBM in its statistical and 
accounting (business) machines, it used traditional IBM types of parts such as electro-magnetic relays, 
counters, cam contacts, card punches, and electric typewriters (for the output); it did not make use of 
vacuum tubes and other elements of electronic circuits which were then foreign to IBM practice. But it is 
important to note that the new machine also incorporated functional elements of a new design, including – 
among other – new forms of relays and counters never before used in IBM machines. These were smaller in 
size and faster in operation than the ones then in use. The relays, the invention of Clair D. Lake, also had the 
advantage of being pluggable, so that they could easily be replaced as needed. The advantage of smaller 
elements was that the over-all size of the machine – gigantic as it was – was yet small enough to be 
functional or practical. With larger traditional (off the shelf) elements, a machine with the same computing 
power would have been impossibly large, perhaps too large to function effectively. Similarly, the availability 
of the new high-speed elements reduced the times required for such operations as multiplication or division. 
These were long enough, but they would have been impossibly long without the new high-speed elements.
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The operation of the separate parts was powered by a long horizontal rotating shaft. This shaft rotated 
continuously, making a hum that has been described as like that of a gigantic sewing machine. There were 
2200 counter wheels and 3300 relay components.

In later language, Mark I would be described as a parallel synchronous calculator. It had a word length of 23 
decimal digits, with a 24th place reserved for algebraic sign. Calculations were done in decimal numbers 
with a fixed decimal point. There were 60 registers for the input of numerical data (the constants that appear 
in any algebraic or differential equation), each one containing 24 dial switches corresponding to 24 digits. 
For any problem, these had to be set by hand.

The location of each of these sixty registers was assigned a number, so that the instructions could use the 
location to identify a number being called up in the course of a calculation. The operative portion of the 
machine was composed of seventy-two registers, each of which was an "accumulator." Each such register 
was made up of twenty-four electromagnetic counter wheels – again providing the capacity for twenty-three 
digit numbers, with one place reserved for sign. This second set of panels comprised both the store or 
storage and the processing unit.

A typical line of coding in the program would instruct the machine to take the number in a given register 
(either a constant or a number in the store) and enter it in some designated register in the store. If there 
already was a number in that register, the new number would be added to it. The programmer had a code 
book, stating the designation of each location and each operation.

There were separate devices for multiplication and division and four tape readers. One was used to feed the 
instructions into the machine. The other three held tables of functions and could supply values as needed. 
There were internally stored programs (called "sub-routines") for interpolation and for sines, exponentials, 
logarithms, and for raising a number to some power. Programs were fed into the machine by punched paper 
tape. The programmer first reduced the problem to a sequence of mathematical steps and then used the "code 
book" to translate each step into the necessary coding or instructions for the machine. Mark I's instructions 
were essentially single-address instructions. Those who wrote programs for Mark I later recalled that the 
process was very much like programming later computers in machine language.

The chief programmer of Mark I, Richard M. Bloch, kept a notebook in which he wrote out pieces of code 
that had been checked out and were known to be correct. One of Bloch's routines computed sines for 
positive angles less that 45 degrees to only ten digits. Rather than use the slow sine unit built into the 
machine, Grace Hopper simply copied Dick's routine into her own program whenever she knew it would suit 
her requirements. This practice ultimately allowed the programmers to dispense with the sine, logarithm, and 
exponential units altogether. Both Bloch and Bob Campbell had notebooks full of such pieces of code. Years 
later, the programmers realized that they were pioneering the art of subroutines and actually developing the 
possibility of building
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compilers. A short time later, this approach was formalized in the book by Wheeler, Wilkes, and Gill.

Although Mark I produced results faster than conventional methods of computing, it was very slow 
compared to the machines to be constructed or unveiled soon afterwards, such as ENIAC or the Colossus 
machines. Addition or subtraction required one machine cycle or took 0.3 seconds. Multiplication required 
20 cycles and took 6 seconds. But division could require as much as 51 cycles and take as long as 15.3 
seconds. Accordingly, division was later performed on the Mark I by the method of reciprocals.

Although Mark I was slow, as compared to the ENIAC, completed and put into operation a few years later, 
Mark I was versatile. Not only was Mark I programmed, rather than being hard-wired for each problem, but 
it was an extremely versatile machine. Whereas ENIAC was restricted in its original design by the mission 
of computing ballistic tables, Mark I could be programmed to solve a large variety of different types of 
programs as well as being very efficient in producing tables of functions, such as Hankel or Bessel 
functions.

Mark I continued to function at Harvard for 14 years after the war, continuing to produce useful work until it 
was finally retired in 1959. During that time, Mark I also served generations of students at Harvard, where 
Aiken had established a pioneering program in what was later to be called computer science – with courses 
for undergraduates and graduate students leading to a master's degree or a Ph.D. Many important figures in 
the developing world of computers were introduced to the subject on the Harvard Mark I.

5— 
After Mark I

In the last months of World War I, Aiken was asked by the Navy to design and construct a second machine. 
The product was Mark II, similar in many ways to Mark I, also a relay machine, but based on improved 
types of components. Aiken and his staff went on to build two more machines. Mark III went to Dahlgren to 
join Mark II, but Mark IV was built for the Air Force and remained at Harvard. Mark I and Mark II were 
relay machines, but Mark III used some vacuum tubes and solid-state devices. Mark IV was all-electronic, 
using selenium solid-state devices, later replaced by ones made of germanium. Both Mark III and Mark IV 
introduced some important novel features, primarily the use of magnetic drum storage and (in Mark IV) the 
use of solid core magnetic memories. One of the truly innovative elements in Mark III was an automatic 
coding machine to simplify the work of the programmer and avoid human error in writing programs. 
Although Aiken's designs included some conditional branching, none of these machines used the stored 
program. Aiken's philosophy in these matters was narrow and strict: he insisted on maintaining the separate 
identity of data and instructions.
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Technologically, Mark I can be considered an important breakthrough because it embodied a convincing 
demonstration of the possibility of large-scale error-free complex calculations in a programmed sequence. 
The public announcements concerning the new machine made known to the scientific and engineering 
worlds at large that the new computer age was dawning. At this time, 1944, ENIAC had not as yet been 
completed and tried, while war-time secrecy and ignorance veiled the Colossus machines and those designed 
in Germany by Konrad Zuse. But the degree of "state of the art" represented by Mark I did not extend to the 
later machines, even though Mark III and Mark IV had very innovative features. Although Mark II did 
useful work, it represented a relay technology being made obsolete by the advent of ENIAC, the all-
electronic machine constructed at the Moore School of the University of Pennsylvania. By and large, Aiken's 
four machines did not greatly influence the on-rushing main stream of developing computer technology.

In retrospect, therefore, Aiken's most important and lasting contribution to the computer age may have been 
his pioneering applications of computers to data processing, notably, computer billing, and his development 
of an educational program in the area we know as computer science. Inaugurated in 1947, Aiken's program 
at Harvard was – so far as I know – the first full-scale program in this area, including courses for 
undergraduates and graduates and degrees at both the master and doctor level.2 In retrospect, some old 
computer hands consider that his greatest contribution may have been the pupils he trained, who then went 
on to advance the art and science of the computer and to direct the new departments of computer science in 
different universities.

In 1961, Aiken took advantage of Harvard's policy of allowing faculty members to retire early-that is, to 
retire at age 60 with full benefits, without having to wait until he was 66. By then, in certain respects, Aiken 
had become a conservative figure in the world of computing. In the 1950s, at the age of fifty-plus, he was 
already "old" by the standards of this rapidly advancing science, art, and technology. Computer science and 
invention had become a young man's game. Even in the years just after the war, many of the major advances 
had come from young men, trained in the new electronics of radar rather than in classical electrical 
engineering, as was the case with Aiken. In Maurice Wilkes's words, the new computer innovators were 
young men with "green fingers for electronic circuits," many of whom in the early days had come from 
experience with radar and "were used to wide band widths and short pulses."

After retirement, Aiken moved to Fort Lauderdale, Florida, where he was given an appointment at the 
University of Miami. This did not require any

2 Although Aiken's Harvard program seems to have been the first to offer full-scale graduate instruction leading to both a 
Master's and Doctor's degree, it should be noted that a year before the Harvard program was put into operation, Columbia 
was already offering instruction in this new area– courses being offered by Wallace Eckert, Herbert Grosch, and others.
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teaching responsibilities but gave him an office. He then became a business entrepreneur, taking over ailing 
businesses and nursing them back to financial good health, whereupon they were sold. He also kept up his 
computer activity, serving as a consultant to Lockheed Missiles and Monsanto (who were exploring the 
potentialities of magnetic bubbles for computer technology). His final contribution in the computer domain 
was a means of encryption of data to provide security of information. He died in 1983 in St. Louis, while on 
a consulting trip to Monsanto.

<><><><><><><><><><><><>
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The ENIAC: 
History, Operation and Reconstruction in VLSI

Jan Van der Spiegel, James F. Tau, Titiimaea F. Ala'ilima, and Lin Ping Ang

Abstract. This contribution gives a brief historical overview of the ENIAC and continues with a description 
of its architecture. The 40 units of the ENIAC are grouped in five broad categories: arithmetic, control, 
memory, I/O and interconnections (busses). The overall operation of the ENIAC and of the individual 
modules is described next in order to give the reader an appreciation of the capabilities and limitations of the 
machine, including conditional branching. The last part of the paper deals with the reconstruction of the 
ENIAC in silicon using CMOS technology. A description of the key building blocks of the ENIAC-On-A-
Chip is given. The reconstruction resulted in a 7.4 × 5.3 square mm silicon chip that contains over 174 
thousand transistors. The paper concludes with a discussion of the relative computational power of the 
ENIAC.

1— 
Introduction: 
Rediscovering the ENIAC

The ENIAC (Electronic Numerical Integrator and Computer) was unveiled to the public on February 14, 
1946, at the Moore School of Electrical Engineering at the University of Pennsylvania. Half a century later, 
a team of students and faculty started the reconstruction of the ENIAC as part of its 50th anniversary 
celebration. The goal of the project was to re-create the ENIAC using state-of-the-art solid-state CMOS 
technology. The project was a journey back into the history of computing. It illustrated, in a rather dramatic 
way the evolution of computers in terms of architecture, technology, size, power and performance. The 
journey was at times tedious but it was also exciting and rewarding. The end result is a 7.4 × 5.3 square mm 
sliver of silicon that houses the components of the 18,000-vacuum-tubes, 30-ton ENIAC.

In order to give full tribute to the ENIAC, the design team decided to reimplement the machine using a full-
custom design approach. Rather than using standard cells and pre-designed logic and functional units to 
design the ENIAC-On-A-Chip, the team wanted to recreate the experience of building the ENIAC from its 
basic and primitive building blocks. For the ENIAC,
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these were vacuum tubes, whereas for the chip, they are transistors. This approach has ensured the most 
faithful reproduction and enhanced the educational experience for each member involved.

The full-custom design strategy adopted for the project required a detailed understanding of the original 
ENIAC, well beyond the behavioral and functional level. Substantial effort was put into reading the reports 
and blueprints, which contained circuit schematics of each unit of the ENIAC. The archives of the 
University of Pennsylvania and the Smithsonian museum in Washington DC, were consulted for original 
manuscripts and blueprints. Vacuum tube circuits were analyzed and several of them were reconstructed in 
order to gain a better understanding of their operation.

2— 
Designing the ENIAC-On-A-Chip

After gaining sufficient insight into the operation of the ENIAC, the team proceeded with the actual design 
process. We generally followed a top-down, hierarchical design methodology, using Cadence VLSI tools. 
This resulted in a relatively small number of different basic cells that were used as building blocks in the 
larger units, an approach already used in the original machine.

We decided to preserve as much as was possible of the architecture, the functional and logic blocks of the 
original ENIAC, in the current technology. This implies that each of the original vacuum tube circuits have 
direct counterparts in the ENIAC-On-A-Chip implementation. The realization of these circuits is somewhat 
different from the original ones, mainly as a result of the differences between the vacuum tube and the MOS 
transistor and the lack of availability of on-chip capacitors and resistors.

The design process started, in many cases, with the creation of a behavioral /functional description of the 
major units of the ENIAC in order to verify their operation. Verilog-XL* was used as the hardware 
description language. This was followed by the design of the logic and the transistor circuits of the 
individual cells. These cells were simulated with the Hspice** circuit simulator. The results of the simulation 
were used to annotate the behavioral and logic models in order to approximate the actual operation of the 
larger units of the ENIAC more accurately. Next, the layout of each cell was handcrafted. Although this 
design method was time-consuming, it was an inherent part of the recreation process and also ensured 
optimal utilization of chip area. Each of these cells was checked for electrical and design rule errors and 
resimulated with Hspice. The cells were then connected together into larger functional units, which were 
simulated once again to verify their operation.

In the end, all the different blocks were put together onto the final chip. Extensive verification was carried 
out before the project was submitted for

*Verilog-XL is a trademark of Cadence Design Systems.
**Hspice is a trademark of Avant! Corp.
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fabrication. The ENIAC-On-A-Chip was fabricated in a 0.5 µm single polysilicon, triple metal, nwell 
CMOS process. It measures 7.44 mm by 5.29 mm and contains 174,569 transistors. The difference in the 
number of transistors and vacuum tubes is mainly due to the fact that transistors are not only used to replace 
the 17,468 vacuum tubes, many of which are dual tubes, but also to implement the 70,000 resistors, 6000 
switches, 7200 diodes and 10,000 capacitors. Fig. 1 shows a photograph of the ENIAC chip mounted in a 
132-pin grid array package.

3— 
A Brief Historical Overview

The ENIAC was designed and built between July 1943 and November 1945 at the Moore School of 
Electrical Engineering at the University of Pennsylvania. The project was carried out for the U.S. Ordnance 
Department of the War Department under contract No. W-670-ORD-4926 and cost approximately 
$486,000.1 Mr. J. Presper Eckert was the chief engineer, Dr. John W. Mauchly the consulting engineer, Dr. 
John G. Brainerd the administrative supervisor and Dr. Herman H. Goldstine the representative of the 
Ballistic Research Laboratory. The project's primary objective was to build a machine

Figure 1 
Photo of the ENIAC-On-A-Chip mounted in a 132 PGA. The chip measures 

7.4 mm × 5.3 mm and contains 174, 569 transistors 
(courtesy Univ. of Pennsylvania).

1 H. H. Goldstine, The Computer from Pascal to von Neumann, Princeton University Press (Princeton, 1972).
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Figure 2 
Floor plan of the ENIAC. The 40 panels, each 0.6 m 
wide, 2.7 m high and 0.7 m deep, are arranged in U 

shape occupying an area of about 10 m by 17 m.

that would speed up the calculations for the Ballistic Research Laboratory.

However, the inventors wanted to make the ENIAC as flexible as possible, so that it could serve as a general 
purpose machine. As its name implies, the ENIAC performs not only numerical integration, but is capable of 
solving a wide range of problems that involve various numerical operations, as well as storing and retrieving 
intermediate results. In addition, the ENIAC was designed " to perform these operations consecutively or 
concurrently, with automatic transfer of data from one step to the next."2

2 "The ENIAC – Vol. I, A Report Covering Work until December 1943," University of Pennsylvania, Moore School of 
Electrical Engineering (Philadelphia, 1943).
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The ENIAC's architecture was, to a large extent, shaped by the earlier calculating machines, the technology 
available, advances made in numerical analysis methods, and the circumstances under which the ENIAC 
was developed. The inventors, Eckert and Mauchly, were familiar with desktop calculators (such as the 
Friden, Marchant, and Monroe type machines), punched card and punched tape machines (from IBM and 
BTL – Bell Telephone Labs), and the differential analyzer. Although the differential analyzer was 
particularly well suited to solving ballistic equations, the goal of the inventors, i.e. to develop a more general 
and accurate device, meant that the differential analyzer was not a suitable candidate on which they could 
model their machine. In order to achieve high speed, accuracy and flexibility, it is more likely that the 
ENIAC was conceived in the tradition of the mechanical adding, multiplying and dividing machines of that 
time.3 In addition, a considerable amount of work on electronic ring counters and scalers for experimental 
physics had been done by tube manufacturers and several research institutions. These developments were 
known to the ENIAC engineers. It is also

Figure 3 
View of the U-shaped ENIAC at the Moore School of Electrical 
Engineering in 1946, showing J. P. Eckert (left) and J. Mauchly 

(right) in the foreground 
(courtesy Univ. of Pennsylvania).

3 A. W. Burks, "From ENIAC to the Stored-Program Computer: Two Revolutions in Computers," in A History of 
Computing in the Twentieth Century, Academic Press (1980). M. Marcus and A. Akera, "Exploring the Architecture of 
an Early Machine: The Historical Relevance of the ENIAC Machine Architecture," IEEE Annals of the History of 
Computing, 18 (1996): 17–24.
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said that Mauchly's thinking was stimulated by Atanasoff's work on digital computation. In 1941, Mauchly 
visited Atanasoff, who had built a small prototype of a special-purpose digital machine (for solving a set of 
linear equations through Gaussian elimination) that made use of vacuum tubes.4 To what extent the ENIAC's 
architecture was influenced by Atanasoff's work has been the topic of considerable controversy.

Although present day computers dwarf the ENIAC in computational power, it was indisputably the fastest 
and largest machine of its time. It consisted of 40 panels, 3 portable function tables, a card reader and card 
punch. Each panel was about 0.6 m wide and 2.7 m high, organized in a U-shape occupying a 10 × 17 m 
room, shown schematically in Fig. 2. A photograph of the ENIAC, as it was set up in the Moore School of 
Electrical Engineering, is shown in Fig. 3.

Building such a machine required several innovations in construction and design methods. The machine 
consisted of a relatively small number of basic electronic elements organized as interchangeable modules, 
which could be easily plugged into the backside of the panels, similar to plugging a daughter card into a slot 
on a motherboard in today's computers. Reliability was always a major concern for the engineers. They took 
several measures to reduce the risk of breakdown or faulty operation, such as designing circuits that were 
insensitive to component variations, running-in the vacuum tubes and using carefully selected tubes well 
below their ratings.5 The end results surprised even the most adamant of skeptics: the completed ENIAC 
failed only two or three times per week. Special test procedures were in place to identify the failed unit 
within a matter of minutes, which resulted in a down time of only a few hours per week.6 This was an 
extraordinary accomplishment, considering that the machine was one of the most complex ever built under 
the constraint of operations with such a high degree of reliability.7

When the ENIAC was unveiled in February 1946, less than three years after its inception, it stunned the 
scientific, military and industrial community. The ENIAC captured the imagination of the public, not only 
because of its sheer size, but, more importantly, because of its lightning speed. Addition (or subtraction) of 
two 10-digit numbers was accomplished at an unprecedented rate of 5000 per second. This was about 1000 
times faster than any other computing machine was capable of up to that point, with similar accuracy.

The ENIAC was a much more flexible and powerful machine than the individual mechanical adding 
machines on which it was originally modeled. The ENIAC could not only perform a programmed sequence 
of additions,

4 Goldstine, n. 1 above.
5 N. Stern, From ENIAC to UNIVAC – An Appraisal of the Eckert-Mauchly Computers, Digital Press (Boston, 1981).
6A. W. Burks, ''Electronic Computing Circuits of the ENIAC," Proc. I.R.E., (August 1947): 756–767.
7 Goldstine, n. 1 above.
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subtractions, multiplication, divisions and square-roots, but also had the capability to store intermediate 
results, and to communicate them among various units. Furthermore, it was possible to execute nested loops 
and conditional branching, as well as reading in and printing out numbers. The end product was a general 
purpose, highly parallel, digital electronic computer that allowed the calculations of solutions to a large class 
of numerical problems.

Despite similarities to modern computers, the ENIAC differed from them in one fundamental aspect: it was 
not a stored-program computer. As such, programming was done locally on the individual units by setting 
program switches and connecting the units to each other via digit and program trunks. A program pulse then 
stimulated the action of those units receiving it, and they emitted subsequent program pulses to activate 
other units. In this way, a sequence of operations could be carried out. Set-up was done manually and was 
highly time-consuming. The inventors were aware of this downside from the outset of the project, but it was 
thought to be acceptable because the ENIAC was intended to perform highly repetitive computations that 
used the same set-up. Ultimately, it was the time constraint facing the inventors that determined the 
architecture of the ENIAC, not allowing them to carry out research on more programmer-friendly 
architectures.8

4— 
Architectural and Operational Overview of the ENIAC

The goal of this section is to give the reader an understanding of the overall operation of the ENIAC in order 
to gain a better appreciation of the scope of its silicon reconstruction. A description of each unit is given in 
section 5, or can be found in the references below.9

8 J. P. Eckert, J. W. Mauchly, H. H. Goldstine, J. G. Brainerd, "Description of the ENIAC and Comments on Electronic 
Digital Computing Machines," Moore School of Electrical Engineering, University of Pennsylvania (Philadelphia, Nov. 
30, 1945).
9 H. D. Huskey, "A Report on the ENIAC, Part II, Technical Description of the ENIAC," Moore School of Electrical 
Engineering, University of Pennsylvania (Philadelphia, 1946). J. F. Tau, "ENIAC-On-A-Chip: The Monolithic ENIAC," 
Masters Thesis, Department of Electrical Engineering, Moore School of Electrical Engineering, University of Pennsylvania 
(Philadelphia, 1996). T. F. Ala'ilima, "Recreation of the ENIAC using CMOS Technology," Masters Thesis, Department of 
Electrical Engineering, Moore School of Electrical Engineering, University of Pennsylvania (Philadelphia, 1996).
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4.1— 
Architectural Overview

The units of the ENIAC can be loosely grouped into five categories: arithmetic (general purpose and 
dedicated units), global control units, memory, I/O units and busses (trunks). Fig. 4 shows a functional 
organization diagram of the ENIAC. Of the 40 panels, 20 are accumulators, considered the main 
computational components around which the ENIAC is built. Other arithmetic units include a high-speed 
multiplier, and a combination divider/square-rooter. As multiplication is the second most frequently used 
operation after addition/subtraction, dedicated hardware (multiplication tables) is used to speed up the 
process. The master programmer is used for coordinating the operation of the accumulators and the 
execution of a sequence of operations and nested loops. Fast programmable, read-only memory is provided 
by 3 function tables. The constant transmitter in conjunction with a card reader constitutes the external input 
device. Finally, global control units include the Initiating and Cycling units that govern the overall 
operations of the ENIAC and take care of initiating computations, by providing digit and program, as well as 
reset pulses.

Various units of the ENIAC communicate with each other over the data, program, and synchronization 
busses (also called trunks). Digit trunks are carried in trays that are stacked on top of each other, allowing 
for multiple connections. Digit trays can also be used over again in the course of a program. Only one 
accumulator can transmit data on a digit trunk at any one time, but multiple accumulators can listen in. In 
addition to the regular transmission of digits over digit cables/trunks, adapters can be used to change the 
digit place between the transmitting and receiving accumulator. As an example, a shifter adapter is used to 
multiply a number by a power of 10, while a delete adapter is used to eliminate the pulses of one or more 
places of

Figure 4 
Schematic functional diagram of the ENIAC
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the transmitting number.

Program pulses are transmitted over program trunks, carried in programming trays. A third bus is the 
synchronizing bus (trunk), which carries the fundamental pulse train from the cycling unit to all other units 
and ensures that all units operate properly and in synchrony with each other. A description of the 
fundamental pulse train is given in the section on the Cycling Unit. The availability of multiple digit and 
programming trunks as well as the synchronizing pulses allow the execution of parallel operations. 
However, as was pointed out by Marcus and Akera, the ENIAC lacked an explicit mechanism to 
resynchronize parallel branches of a program, making programming for parallel operations tricky.10

The ENIAC is an accumulator-based computer. As such, the main arithmetic and data storage units are 
accumulators. A simplified diagram of an accumulator is shown in Fig. 5. It consists of arithmetic, local 
control and I/O circuits. The arithmetic unit receives a signed 10-digit number and adds this number to the 
one already stored. Whenever a decade counter overflows, a carry-over digit is generated and given off to 
the decade of the next signifi-

Figure 5 
Simplified functional block diagram of an accumulator

10 Cf. Marcus and Akera, n. 3 above.
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cant digit (on its left), as is schematically shown in Fig. 5. A binary counter (Plus/Minus) on the far left of 
the most significant digit is used for the sign information.

The control unit of each accumulator determines which operation the accumulator performs (receive or 
transmit, additively or subtractively). From the user's point of view, the controls are simply settable switches 
(called Program Control Switches). There are 12 such program controls per accumulator, allowing each 
accumulator to perform up to twelve separate operations during the course of a program. Eight of these are 
capable of repeating their operation up to 9 times. Fig. 6 shows a photograph and a corresponding schematic 
representation of an accumulator's front panel.

Each accumulator has two Input/Output blocks. One is the data-I/O which transmits or receives a decimal 
number over the digit trunk (an 11-lead bus, 10 leads for digits and 1 lead for the sign). The accumulator has 
five input ports, labeled a through e. The data outputs have two terminals, one called the A-port for 
transmitting the number as stored in the accumulator, and another called the S-port for transmitting the 10's 
complement of the stored number. The output port is tri-stated when the accumulator is inactive, allowing 
other accumulators to share the same trunk. The program control block communicates with other units 
through its program-I/O terminals, connected to the program trunk. A pulse applied to the program input 
terminal starts a particular operation. At the end of the operation, an output pulse (called Central 
Programming Pulse or CPP) is emitted from the finishing program control that stimulates (triggers) a 
subsequent program. The sequence of operations is thus determined by the order in which the program pulse 
enters the program input port, as established by the interconnections, and the type of operation is determined 
by the Operation switches.

4.2— 
Number Representation: 
Decimal System and 10's Complement

Numbers in the ENIAC are represented in decimal and have a maximum width of 20 digits (numbers greater 
than ten digits can be formed by chaining two accumulators together). The decimal number system was 
chosen after careful comparison between the binary and the decimal implementation in terms of number of 
vacuum tubes and the interconnection complexity. It was found that the number of tubes required for a 
decimal system was considerably smaller than for a binary one. For example, a unit consisting of decade 
counters, pulse shapers and carry-over circuitry for a 10-digit number would require 280 vacuum tubes in a 
decimal system as compared to 450 tubes in a binary system (using 30 bits to represent the same range of 
numbers).11

11 "The ENIAC," n. 2 above.
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Figure 6 
(a) Photograph of the front panel of an accumulator showing the 

Program Control and Repeat switches; (b) schematic representation.

The complement number system is used to represent negative numbers. Both the 9's and 10's complements 
were considered, but the designers found that the 10's complement would cause fewer problems regarding 
rounding off and deleting insignificant figures. Also the 10's complement system simplified the structure of 
the multiplier.12 Whether a number is positive or negative is indicated by the state of the PM (Plus/Minus) 
unit. The PM unit is simply a binary ring-counter. An alternative method to indicate the sign would have 
been to use an additional decade to the left of the others, which would give a zero for a positive number and 
a nine for a negative number. This is the method used in modern digital systems working with binary 
numbers. However, using a full decade would be wasteful as only two states are possible (P and M). The 
10's complement can be easily obtained by first subtracting each digit from 9 and then adding a 1 to the 
result, as illustrated for the complement of the number N=124 (where P means positive and M negative),

– N = 1010 – PN = [(1010 – 1 – PN] + 1

– 124 = M9 999 999 876.

The ENIAC makes it possible to use fewer than 10 digits by setting a Significant Figure switch, located on 
the accumulator front panel. Every time the accumulator is cleared to zero, the place below the last 
significant digit is set to 5. For example, for seven significant digits, the accumulator clears to P 0 000 000 
500. When a number is then added to the accumulator of which the 8th digit is greater than or equal to 5, the 
7th digit will be increased by one;

12 Ibid.
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otherwise it remains the same. The ENIAC uses the first seven digits and ignores the remaining ones during 
subsequent operations.

4.3— 
Communication between Units: 
Pulse Transmission

One additional choice that had to be made early on in the design phase is the method of transmitting 
numbers: statically (i.e. using steady-state signals) or serially in the form of pulses. The latter was chosen for 
general purpose connections, because it was believed that the pulse system was considerably faster and 
required less vacuum tubes and interconnections than the static system. The choice between the two systems 
was also related to the choice between the binary and decimal number system. In the pulse system, the 
transmission of a digit needed only one wire by sending as many pulses as required in series. On the other 
hand, in the static decimal system, at least four wires would have been required to represent the ten possible 
values of a digit. However, the static outputs (outputs of each flip-flop of a decade counter) were used for 
dedicated connections between specific accumulators and special units, namely the multiplier, the 
divider/square-rooter, the printer, and the function tables.

To illustrate how the transmission of numbers is done, let us consider a simple example. We will transmit a 
number N consisting of a single digit (e.g. "4") stored in a decade circuit of one accumulator to a decade 
counter in another accumulator.13 Fig. 7 gives a simplified block diagram of a decade circuit in an 
accumulator consisting of a 10-stage counter and control circuitry. Each stage of the counter corresponds to 
one of the digits, from 0 to 9. In our example the digit "4" is stored in the decade counter and is represented 
by a "1" in the fifth flip-flop and "0'' in all others (see Fig. 7).

Figure 7 
Simplified schematic of a decade counter illustrating the transmission of a digit

13 Burks, n. 6 above.
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The data (" 1" or "0") in a flip-flop will be shifted from one stage to the next every time a pulse is applied at 
its P input. The output of the flip-flop changes at the falling edge of the input pulse. During the transmission 
of a digit, 10 consecutive pulses, called 10P, are applied to completely shift the decade counter around, 
ending where it started. The 10P pulses, shown in Fig. 7, are supplied by the cycling unit. When the "1'' in 
the counter reaches the last stage (i.e., 9) the decade gate will open at the falling edge of the P pulse. The 
next input pulse will thus pass through this gate and set the decade flip-flop (i.e., when counting from 9 to 
0). In our example, this will happen after 5 pulses. The decade flip-flop controls two gates, i.e., a "Subtract" 
gate and an "Add" gate. The Subtract gate is normally open, and will be transmitting a number of 9P pulses 
on the S-port. However, as soon as the decade flip-flop is set, the Add gate opens and the remaining 9P 
pulses will be transmitted on the A-port. In the example discussed here, 5 pulses are transmitted through the 
subtract output and 4 through the add output. In this way, the digit N stored in the counter or the complement 
(i.e., 9 – N) can be transmitted. Which of the two is transmitted will be determined by the setting of the 
Program Control switch (A, S or AS). On the receiving accumulator, the program control is set to receive, 
leading the counter to ignore the 10P pulses. The counter will now be clocked by the digit pulses (i.e. gated 
9P) coming from the transmitting accumulator.

It should be noted that in order to obtain the 10's complement a "1" needs to be added to the 9's complement. 
This is done by an additional pulse, called I'P, supplied by the cycling unit on the wire that carries the least 
significant digit. The decade and PM counters of an accumulator are connected in such a fashion that proper 
carry-over occurs from one decade to the next as well as to the PM counter. The carry-over circuit has been 
omitted in Fig. 7 for clarity. A more detailed circuit will be given in section 6.2 of the chip implementation. 
The transmission of the sign information is somewhat different from that for a digit. For a positive sign, no 
pulses are transmitted to the PM counter and for a negative sign nine pulses are sent. The reception of an odd 
number of pulses cycles the PM counter to the opposite sign.

It is interesting to note that pulses are not transmitted directly by the decade counter. Instead a set of pulses 
is provided by the cycling unit to the accumulator over the synchronization trunk at a rate of 100 kHz. The 
accumulator then emits (through gating) a group of pulses on each of its digit lines, equal in number to the 
value it represents. This method of transmission not only prevents the pulses from being constantly 
degenerated, but also makes the operation of the ENIAC synchronous. Both the 10 digits and the sign 
information are transmitted simultaneously over the 11 lines of the digit trunk.
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4.4— 
Instructions and Number of Cycles

The ENIAC can execute a variety of instructions. Some of these operations, such as an addition (transmit-
receive), are built into the hardware, while others require more elaborate steps, involving different units. 
What and when an instruction is to be executed depends on the program control switch setting and the 
connections between the program input and output terminals, as was mentioned earlier.

The basic operation in the ENIAC is an addition/subtraction (or transmit-receive operation). The time period 
needed for this operation is called "Addition Time" and requires a total of 20 pulse times (200 µs). We will 
express the time that other operations require in units of the "Addition Times." Table 1 gives a list of the 
various operations that can be programmed in the ENIAC together with the number of required "Addition 
Time" cycles.

Table 1: Operations of the ENIAC and times required in terms of the Addition Time (0.2 ms). 

Type Operation Description Cycles (0.2 ms)

Arithmetic Add  1

 Subtract  1

 Multiply 10-digit by p-digit p+4

 Divide Quotient of p digits 13(p+1)*

 Square Root Result of p digits 13(p+1)*

Memory Write to register 
(normal or complement)

Store in accumulator 1

 Read from register Load from accumulator 1

 Read from table 
(up to r times)

Normal or complement 
number

r + 4

Control For loop Nested loops possibly 
involving Master 
Programmer

Depending on operation

 If . . . then . . . else Based on digit 
discrimination, involving 
several units

 

I/O Read from external 
memory

Punch card reader and 
constant transmitter

62 ms per 10-digit 
number (or 120 80- 
digits cards/min)

 Print result Printer 75 ms per 10-digit

* On average. The exact time depends on the number of places required in the ans-wers, as well as on the digits in each 
place of the answer.
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It should be mentioned that some of the operations listed in the table were not called by the same name 
originally. Often there is no dedicated hardware available to execute some of these operations. As an 
example, the execution of the "if . . . then . . . else" statement requires an elaborate set of operations and 
connections among several units.

4.5— 
Programming

Programming the ENIAC is very different from what we consider programming on a modern-day, stored-
program computer. The data-flow architecture of the ENIAC requires setting switches on and making 
connections between units. Programming consists of the following steps. First, the problem to be solved 
needs to be described by a set of mathematical equations, such as total or partial differential equations. Then, 
the equations are broken down into basic mathematical operations that the ENIAC is capable of executing. 
Also, one needs to plan for the storage of the numerical data. For each arithmetical operation one needs to 
set up a program control and make connections between the program control I/Os. Finally, the individual 
programs are tied together into a program sequence, so that a collection of programs is automatically 
stimulated upon completion of another set of programs.14

To illustrate the operation and setting up of the ENIAC, we discuss a simple program that involves 
subtracting and adding two numbers, using three accumulators. To start with, accumulator 4 stores some 
number a, accumulator 5 stores the number b, and accumulator 6 stores the number c. We will set up a 
program that calculates (a–b) and stores the result in accumulator 4 and also calculates (c+2b +359) and 
stores it in accumulator 6. In addition, the contents of accumulator 5 need to be increased by 359. Let us 
assume that the numbers a, b and c are already present in the accumulators (as results of a previous 
calculation).

Fig. 8 shows the three accumulators and their settings. Accumulator 4 needs to be instructed to receive the 
number b from accumulator 5. This is done on Program control 1 (non-repeat control) by setting the 
Operation switch to a to indicate that the number will be received on input terminal a. A digit cable connects 
the input terminal a to one of the digit trunks that we shall call trunk I. Accumulator 5 has to transmit its 
digits in two ways: once as the complement (for subtraction) and twice as they are stored. This is done by 
using a Repeat program control, e.g. control 5. The Operation switch is set to AS (indicating that both the 
positive and negative numbers will be transmitted), while the Repeat switch is set to 2. The "S" output port 
needs to be connected to digit trunk I to establish the desired connection between accumulators 4 and 5. 
Next, accumulator 6 has to receive the number b stored in

14 A. K. Goldstine, "A Report on the ENIAC, Part I, Vol. I and II, Technical Description of the ENIAC," Moore School 
of Electrical Engineering, University of Pennsylvania (Philadelphia, 1946).
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accumulator 5 twice. This is done by setting the Repeat switch of program control 5 to 2 on accumulator 6, 
and the Operation switch to a (or any of the other input terminals one wishes to use). Connect input terminal 
a of accumulator 6 to the output port "A" of accumulator 5 through digit trunk II, as shown in Fig. 8. In the 
final step of the operation, the number "359" (or any other number, e.g. received from the card reader) needs 
to be transmitted from the Constant Transmitter and added to the contents of accumulators 5 and 6. We shall 
use program control 6 and 1 on accumulators 5 and 6, respectively, as is shown in Fig. 8. Connect the output 
of the constant transmitter to the input terminals a and b of accumulators 5 and 6, respectively, over digit 
trunk III.

Finally, one must specify the start as well as the sequence of the operations. This is done by connecting the 
input and output program terminals in the proper way. The start pulse comes from the initiating unit's output 
terminal which will emit the "Initiating Pulse." Let us use program line A-1 of program trunk A to connect 
the initiating pulse to the input terminal of program control 1 of accumulator 4, and to the program input 
terminal 5 of both accumulator 5 and 6. When accumulator 5 has transmitted its number twice, it will 
generate a program output pulse on program control 5. This pulse needs to be connected to the program 
input terminals of control 1 of accumulator 6, and of control 6 of accumulator 5, as well as to the program 
input terminal of the constant transmitter. We have used program line A-2 for this purpose.

Thus, upon receiving the initiating pulse, the three accumulators start to work in parallel. After one addition 
cycle, accumulator 4 will store the number (a–b) and stop, while accumulators 5 and 6 continue sending and 
receiv-

Figure 8 
Example of the accumulator set-up. Accumulators 4, 5 and 6 initially store 

the numbers a, b and c, respectively. After executing the program they 
will store the numbers (a–b), (b+359) and (a+2b+359).
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ing. After the second cycle, accumulator 6 will store the number (c+2b), and accumulator 5 will generate a 
program pulse that will initiate the transmission of the number between the constant transmitter and 
accumulators 5 and 6. At this point, the output terminal of program control 6 of accumulator 5 will generate 
a program pulse. This can be used to initiate another operation, or can be left unconnected so that the 
ENIAC will come to a halt until another initiation pulse is generated.

5— 
Units of the ENIAC

This section is intended to make the reader familiar with the main features and operation of the different 
units of the ENIAC. Details of the circuits will not be discussed. It should be mentioned that the descriptions 
are not intended to be complete, as space limitation does not allow us to cover every aspect of the original 
ENIAC. For a more complete description of the ENIAC, the reader should consult the original reports.15

5.1— 
Control Units: 
Initiating and Cycling Units

The division between arithmetic and control units may be somewhat deceiving, as each accumulator itself 
consists of arithmetic circuits and control circuits. However, the main function of the two units described 
here, the initiating and cycling units, is to govern the operations of all other units.

The initiating unit's task is turning the power on and off, initiating a computation, initial clearing, selective 
clearing of a group of accumulators and generating control signals for the reader and printer. Pressing the 
"Initiating Pulse" button starts off a programmed sequence of operations as determined by the accumulators 
and master programmer controls. Also, the operator can clear the contents of all accumulators before starting 
a computation by pressing the "Initial Clear" button.

The cycling unit provides the fundamental signals (pulses) to all other units which act upon them for the 
transmission of numbers. This unit is connected to other ones over the synchronizing trunk. The cycling unit 
allows the operator to choose among two debugging modes by pressing the proper buttons: " Addition 
Mode" and "Pulse Mode." When the Addition Mode is pressed, the machine cycles through one full addition 
cycle, and upon pressing the Pulse Mode button, it progresses one pulse at a time.

15 A.K. Goldstine, n. 14 above, H. D. Huskey, n. 9 above.
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Figure 9 
Fundamental pulse train (one Addition cycle) supplied by the cycling unit. 

10P is for digit transmission while 9P is for both digit and sign 
transmission. IP-4P are used for digit transmission by the Constant 

Transmitter and the Multiplication Tables. 1'P is used for complementary 
number correction. CPP synchronizes the program flow while CCG 

and RP take careof the carry-over and resetting the accumulator.

The Cycling Unit generates 10 types of pulse trains that govern the transmission and generation of numbers, 
program control (or data flow), number correction, and decade flip-flop reset. These pulse trains occur once 
every Addition Time, which is equal to 200 µs, based on the 100 kHz clock rate of the ENIAC. Each 
Addition Time is made up of 20 smaller time slices, in which the pulses are about 2 µs in duration. The first 
half of the pulse train is u. ed for digit pulses, while the second half is used for program control. These pulse 
trains (Fig. 9) and their purposes are explained below:

• 10P: Cycles the decade counter of the Accumulator during digit transmission (see also section 4.3, Fig. 7).

• 9P: Pulses that are propagated on to receiving units (see also Fig. 7). Which of the 9P pulses are 
transmitted depends on whether the number is going through the A or S port, and are gated appropriately by 
the decade flip-flop. At the same time, the 9P pulse train cycles the Plus/Minus circuit of the Accumulator.



   

Page 139

• 1P, 2P, 2'P, 4P: Digit pulses gated by the Constant Transmitter to initialize Accumulators. The 
multiplication tables also use these pulses. By combining various pulse trains, any 0-9 number can be 
formed, as illustrated in Fig. 10.

• 1'P: Used as a correction factor in subtractive transmissions to change from 9's complement to 10's 
complement.

• CPP: (Central Programming Pulse) Used to synchronize program flow. It demarcates the beginning of the 
next Addition Cycle and the end of the current Addition Cycle. An inactive program control in an 
Accumulator is induced to perform its programmed function when a CPP enters it, while an active program 
control ends its operation by clearing a flip-flop upon receiving the CPP.

• CCG: (Carry Clear Gate) Allows carry-over to occur by turning on the appropriate gates in the carry block 
of the decade counter. This pulse is called a gate because of its length, which is 70 µs, and function, i.e., to 
gate the Reset Pulse (RP). This pulse is also used for clearing the accumulators, provided the clear correct 
switch is set.

• RP: (Reset Pulse) Has two functions: first, whenever the decade counter counts beyond 10 to indicate that 
a carry-over should take place, the RP will be passed on to the next decade counter as the carry-out pulse; 
second, the RP will clear the decade flip-flop in the decade counter as soon as the carry-out pulse has been 
transmitted.

The Cycling Unit is implemented as a 20-stage ring-counter. By appropriately gating the pulses coming from 
the ring-counter, all the pulse trains described above can be created.

Figure 10 
Combining the 1P, 2P, 2'P and 4P 

pulses to form any number from 0-9
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5.2— 
Accumulator

The Accumulator of the ENIAC is analogous to an ALU plus a register in a modern microprocessor. As its 
name suggests the Accumulator "accumulates" by keeping its addend in memory, i.e., host Accumulator, and 
incrementing by the addend it receives from another transmitting unit, such as a Function Table or another 
Accumulator. As illustrated earlier, increments are carried out on a per digit basis, with each pulse adding 
one to the existing figure during the addition cycle. Subtraction is carried out like that in a modem 
microprocessor, by adding the complement of a number to the addend, but with an additional signal 
indicating the sign of the number transmitted, rather than using the instruction to determine how the number 
should be interpreted. This is a direct consequence of the data-flow architecture of the ENIAC.

As is shown in Fig. 5, the Accumulator can be divided into two functionally, as well as structurally, distinct 
sub-components: the arithmetic/storage unit and the program control unit. Physically, the arithmetic or 
storage unit is located directly above the control unit, and consists of ten of what look like long slabs of 
wood. Each slab's chief function is to represent a digit, which is indicated by the position of the lit neon bulb 
in one of the ten serially connected stages. Functionally, it is essentially a walking-one ring-counter, and 
since it counts to 10, it is called the decade counter by the inventors. In transistor technology this behavior is 
perfectly modeled by a closed loop tenstage shift-register, in which all but one stage is initialized to a "0." 
The decade counter is meant to be easily removable from the whole component and replaced by a substitute. 
In this way, the inventors made the Accumulator modular so that when vacuum tubes, which are 
concentrated in the decade counters, failed in one decade counter, simply replacing it would quickly 
reenable the Accumulator to work. Decade counters receive their inputs from one of five input channels 
(a,b,g,d,e,), and the numbers are transmitted through two output channels, called the A (Add) and S 
(Subtract) ports. What the accumulator actually does depends on the program switch setting. A view of the 
accumulator's front panel is shown in Figs. 6 and 11.

The Operation switches on the Program Control Unit determine which of the five possible operations the 
Accumulator is to perform: receive (on 1 of 5 channels, i.e. a through e); transmit additively (A); transmit 
subtractively (S); transmit additively and subtractively (AS); or do nothing (O). There are twelve such 
switches (one per program control) which determine the action of the Accumulator, but only one is active in 
one Addition Cycle. Each of the twelve operation switches is linked to a program input terminal. When a 
program pulse is received on an input terminal, the corresponding Program control will be turned on. It 
would be a "bug" in the wiring to have two input terminals of the same Accumulator receiving trigger pulses 
simultaneously. Eight of the twelve include Repeat switches which enable the Accumulator to repeat a 
certain action a number of times (1–9) without receiving triggering pulses every time. Only one program 
output pulse is emitted at the end of r
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Figure 11 
(a) View of an Accumulator's front panel. 

The operation switch's settings are a, b, g, d, e , 
O, A, S and AS. The repeat switch's settings 
are 1 through 9. (b) Simplified front panel.

additions. A clear-correct switch corrects for the dropped unit pulse in complemented numbers during 
operations that require shifting such as in multiplication, division, or square-rooting. Moreover, each 
accumulator has one
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significant number switch which sets the number of digits used in the calculation. We mentioned in section 
4.4 that the ENIAC was capable of implementing conditional branching instructions (if . . . then . . . else). 
We will now explain how this was realized.16 Let us start with a simple "if x is zero halt" statement. This is 
done by using a special adapter cable that connects one of the digit lines (of the number x) to a program 
input terminal. If the transmitted digit is non-zero, the program input circuit will be stimulated by the digit 
pulses, or else the program will stop. However, due to timing differences between the digit pulses and the 
program control pulse (CPP – see Fig. 9), digit pulses cannot be directly connected to a program input 
terminal. A dummy program has to be used which converts digit pulses into a true programming pulse. A 
dummy program is a repeat Program Control whose Operation Switch is set to O ("no operation") and the 
Repeat switch is set to a number greater than or equal to 1. Thus, this dummy program derives its program 
input pulse from the digit pulse and transmits a program output pulse, CPP, which can be used to stimulate 
the next program.

The implementation of the more useful "if . . . then . . . else" statement is based on magnitude discrimination 
of a quantity x. When for instance x < b, program P1 should be stimulated, and when x ≥ b, program P2 
needs to be stimulated. This is done by checking the sign of the quantity x – b. When the number is negative, 
9 digit pulses will be transmitted to the sign lead (PM), while none are transmitted for a positive number. 
Thus, if x ≥ b, a positive number will be emitted from the A output terminal and a negative number from the 
S terminal of the accumulator storing the quantity x – b. On the other hand, if x < b, a positive number is 
transmitted to the S terminal and a negative one to the A terminal. One can now use a special adapter cable 
to connect the PM lead of the A output terminal to the program input terminal of one dummy program 
control whose program output pulse stimulates program P1. Similarly, the PM lead of the S output terminal 
is connected by an adapter cable to the program input terminal of a second dummy program control that 
stimulates program P2. An alternative way to implement the branching instruction is to use the master 
programmer. This has the advantage that one does not tie up an accumulator.17

5.3— 
Master Programmer

The Master Programmer coordinates between the operations of 20 Accumulators and simplifies looping to 
include nested loops. It is basically a pulse counter which emits a program pulse every time it receives one 
(followed by one Addition Cycle delay), and at the same time increments its own counter. The program 
pulse it emits is used to trigger operations in Accumulators which receive the program pulse. When the 
number of input pulses it receives

16 Markus and Akera, n. 3 above, A.K. Goldstine n. 14 above.
17 A. K. Goldstine, n. 14 above.
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matches the number set on the switches, no further program pulse will be emitted, thus stopping the program 
flow.

The Master Programmer consists of two panels that have 10 pulse counting channels, 5 on each panel. Each 
stepper is capable of receiving program pulses from one another, allowing the execution of nested loops. A 
schematic front panel diagram of the master programmer is shown in Fig. 12.

A unit of the Master Programmer has ten decade counters and five 6-stage stepper counters. Each stepper 
has a Stepper Clear switch and input channels. Each decade counter is grouped into separate ''number-units" 
by the decade associator switch on the top of the Master Programmer, whereby those decade counters in the 
same group form an n-digit number belonging to a particular stepper (see Fig. 12). When the number of 
pulses going into a stepper input matches the number set by the decade switches in the same stepper group, 
the stepper counter will increment by one, at the same time clearing the content of the decade counters. 
There is a switch for each decade counter setting corresponding to each stepper stage. When the stepper 
counter reaches the stage indicated by the stepper clear switch, the stepper counter will be cleared, while 
emitting a final program pulse from that stage's program output port. Individual decade counters can be 
incremented directly, as can the stepper counters, through the decade direct input port and the stepper direct 
input port, respectively. The operation of the master programmer is summarized by the algorithmic state 
diagram of Fig. 13.

To illustrate the operation of the Master Programmer, let us discuss the following example, in which stepper 
C will be used to execute a sequence of two different operations. The first operation needs to be performed 
21,509 times, while the second one will be executed two times. The stepper clear switch (C) will be set to 2 
as illustrated in Fig. 12. One needs to use 5 of the 10 decade counters in order to set the number "21509," 
which requires that the 2nd and 3rd Decade Associator Switch be set in the position "C." The switches in the 
first stage will then be set to "21509" and the ones in the second stage to "00002." Upon receiving a pulse at 
the stepper input, the decade counter will increment by 1 and an output pulse will be emitted at the first 
output of stepper C one addition cycle later. This will continue until 21,509 pulses have been received. At 
this point, the decade counter is reset and the stepper counter C advances to stage 2. When the stepper has 
received 2 input pulses, both the stepper and the decade counters will be reset and the process halts.
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Figure 12 
Front panel schematic of the master programmer. 

The Decade switch settings are 0 through 9, 
and the Stepper Clear switch settings are 1 through 6.

The Master Programmer can also be used to synchronize parallel operations and for digit discrimination. It 
should be mentioned that no special hardware was provided in the ENIAC to synchronize parallel branches, 
which made it hard to fully explore the ENIAC's parallel architecture. As mentioned by Marcus and Akera, 
one of the reasons why the inventors did not make use of the parallelism of the ENIAC, may have been their 
concern for reliability. By using as little of the ENIAC's hardware as possible at any one time, the chances of 
a tube breaking down are minimized.
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Figure 13 
Algorithmic state diagram describing the operation of one of the 10 steppers 

of the master programmer. ND (max is function of the decade associator switch 
setting) is the setting on the decade counter in stage j; NS is the setting of the 
stepper counter (max 6); 0 is the output of the stepper stage j; i is the current 
count of the decade counter and j the count of the stepper counter. The above 

diagram can be looped inside another state diagram to implement nested loops.

5.4— 
High-Speed Multiplier

The high-speed multiplier is used to multiply two signed, ten-digit numbers. It works in conjunction with 
four accumulators (or six in case twenty-digit products are required). Two of the accumulators are used for 
storing the multiplier ('Ier) and the multiplicand ('Icand). Multiplication is performed by multiplying the 
entire multiplicand by consecutive digits of the multiplier, and accumulating the partial products. The 
multiplication of a ten-digit multiplicand with a p-digit multiplier takes (p+4) addition times. The high-
speed multiplier consists of large tables that map digits of the 'Ier against the digits of the 'Icand. Fig. 14 
gives a schematic block diagram of the multiplier. The 'Ier select table is used to step through the various 
digits of the multiplier, one per addition time. This is followed by two multiplication tables, which output in 
pulse trains all the possible results of multiplying a digit by the selected 'ler digit. One table is used for the 
tens results and one for the unit results. From this point on, the data path is split into two parts, for tens and 
units, including the accumulators which store and accumulate the partial products. The outputs of these 
tables are passed into the 'Icand select tables, which select the appropriate results from the possibilities 
according to the actual contents of the 'Icand accumulator.
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Figure 14 
Block diagram of the high speed multiplier. The numbers in italics correspond 

to the example of the multiplication of 476 ('Icand) by the number 4 ('Ier).

The last pair of tables are called shift tables, and are responsible for making sure the partial products are 
transmitted to the correct places of the result accumulators. The tens digit goes to the left-hand partial 
product (LHPP) accumulator and the unit digits to the right-hand partial product (RHPP) accumulator. The 
tens results are transmitted to the LHPP accumulator shifted one place to the left of the corresponding units 
of the RHPP accumulator. Once all the p digits of the 'Ier are taken care of, the two partial product result 
accumulators are combined into the final result.

If one or both of the operands are negative, a correction factor for both the sign and the product needs to be 
applied. After the correction factor is applied, the two partial products are added together to produce the 
final product
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that is stored in one of the two partial product accumulators. So far, the multiplication requires (p+2) 
addition times. The remaining two are needed for the reception of the arguments and for setting up the 
selector tables and round-off in the LHPP accumulator. It should be noted that when twenty-digit results are 
used, the upper and lower digit of the left- and right-hand partial products are stored in two accumulators, 
denoted LHPP I&II and RHPP I&II.

The use of multiplication tables allows the ENIAC to multiply two 10-digit numbers at high speed by 
eliminating the need for successive additions. These tables are like ROM storing the 0-9 multiplication 
matrix. The tables consist of an array of resistors in which each column functions as a logic OR gate whose 
inputs are supplied by the 'Ier select table, as shown in Fig. 15. The output of the resistive network feeds into 
the gating circuit which generates a pulse train corresponding to the actual number. The control of the gating 
circuit is done in an inhibitory fashion: the gates pass a pulse, unless explicitly directed not to by the table. 
To illustrate the operation, assume the number 4 is presented to the multiplication tables by activating the 
horizontal line, (labeled 4 in Fig. 15). The first column (labeled l on top) in the Units Table (right side matrix 
in Fig. 15) will generate control signals which produce the number 4 by combining the pulses 2P and 2'P. 
Similarly, column two will produce 8 (= 2×4) or (= 2P+2'P+4P) in the Units Table and 0 in the Tens Table 
(see left side matrix in Fig. 15); line 3 will give 2 (= 2P) and 1 (= 1P) in the Units and Tens Table, 
respectively, to produce the number 12 (= 3×4).

The 'Icand select table will then choose the actual (partial) product among all the potential partial products 
issued by the multiplication table. Both the 'Ier and 'Icand select tables use static connections to all ten states 
of all ten decade counters of their respective accumulators, as well as the PM (Sign) units. This requires 101 
lines between each accumulator ('Ier and 'Icand) and the select tables of the high-speed multiplier.

Figure 15 
Multiplication table. The left matrix is the 
tens and the right matrix is the units table.
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Program Controls

The Multiplier has 24 Program Controls, allowing one to perform up to 24 different types of multiplications 
during one program. One program control can be used several times, but each time the settings will be the 
same. The only difference is the actual operands. Each program control consists of a transceiver, with input 
and output terminals for program pulses, 'Ier and 'Icand accumulator receive switches, 'Ier and 'Icand 
accumulator clear switches, a significant figures switch, a places switch, and a product disposal switch.

• Receive Switches: Used to allow the program control to stimulate the accumulators to receive their 
respective arguments. The switches have six positions, five corresponding to the five digit inputs of the 
accumulators (a through e) and one off position. The first addition time is devoted to this process of 
receiving arguments.

• Clear Switches: Determine whether or not the argument accumulators are cleared at the end of the 
multiplication. This takes place during the p+4th addition time.

• Significant Figures Switch: Used for rounding off the final product.

• Places Switch: Determines how many places of the 'ler are multiplied by the 'Icand. The possible settings 
are 2 through 10.

• Product Disposal Switch: Provides options for transmitting the final product at the end of the 
multiplication. If set to Off, the final product will be retrieved from the accumulator by explicitly stimulating 
a program control on the accumulator. The product can be transmitted additively (A), subtractively (S) or 
both (AS). If set to On, the product accumulator is instructed to clear as soon as the product is transmitted, 
again with the same three possible modes of transmission.

5.5— 
Divider/Square-Rooter

The divider/square-rooter unit of the ENIAC does not so much perform arithmetic as act as a controller for 
its associated accumulators to follow certain algorithms to perform division or square-rooting. The unit 
consists internally of ring counters, several receivers, and numerous pulse-gating paths.

Division requires four accumulators, one for the dividend (numerator), one for the divisor (denominator), 
one for the quotient, and one for shifting. Square-rooting, which actually computes twice the root, uses one 
accumulator for the radicand (numerator), one for twice the root (denominator), and one for shifting. 
Operations can be divided into four periods: I, for initial set-up; II, for the main calculation; III, for rounding 
off; IV, for interlocking and
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clearing. The algorithms used for division and square-root will be explained next.

The Division Algorithm

Division is performed by repeated subtractions and additions. When the numerator and the denominator 
have the same sign, the denominator is subtracted from the numerator until the sign of the numerator 
changes. When the signs of the numerator and the denominator are different, the denominator is added to the 
numerator until the sign changes. Every subtraction causes an increment in a decade of the quotient 
accumulator, and every addition causes a decrement. The place (decade) in which this increment or 
decrement occurs is moved one place further to the right after every sign change.

Assume, at first, that both numerator and denominator are positive. The first set of subtractions leaves in the 
leftmost place of the quotient accumulator the integral number of times the contents of the denominator 
accumulator divides into the numerator, plus one. This is essentially a very rough estimate of the quotient. 
The sign change indicates that the division has overdrafted by, at most, one in this decade. After shifting the 
numerator to the left (thus multiplying it by 10), the magnified overdraft is then divided by the denominator. 
Thus, the estimate can be further refined to one more place of accuracy, until another sign change takes 
place. This process can be repeated for as much precision as is desired.

Rounding off is accomplished by shifting the numerator one more place to the left and subtracting or adding 
the denominator (depending on whether or not the signs of the two are matched) five times. If this does not 
cause an overdraft, then the quotient is decremented or incremented by one in the last place calculated.

In order to prevent loss of a significant figure during the shift of the overdraft accumulator, the denominator 
has to contain a 0 in its tenth place (or 9 for a negative number). Also, the first non-zero denominator digit 
can not be more than one decade to the right of the first non-zero digit of the numerator accumulator to 
prevent a left-side overflow in the quotient accumulator.

The time required to complete a division (and similarly a square-root) depends on the number of places 
required in the answers, as well as on the digits in each place of the answer. If one assumes that the average 
digit in the answer is 5 and if p is the number of digits, the time required for a division (and square-root) 
operation is approximately 13p. This time is much greater than that required for a multiplication which made 
use of the multiplication tables.
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The Square-Root Algorithm

Similar to division, the process of square-rooting involves repeated subtractions, additions and shifts. The 
square-root algorithm is based on the fact that the square of the integer a is the sum of the first a odd 
integers:

This method was often used in electric or manual desk computing machines at the time of the ENIAC. To 
find a rough estimate of the square root of M, one can subtract progressively larger odd numbers until a 
negative result is produced. The last odd number used is (2a – 1) where a2 is the first perfect square greater 
than M. Adding one and dividing by two provides an estimate of ÖM that is no more than one greater than 
the actual value. However, for a ten-digit number, the process of subtracting larger and larger odd numbers 
is prohibitively time-consuming. Moreover, it is useful to refine this estimate using decimal places rather 
than just integers since more often than not, square-root calculations do not involve perfect squares.

Using the above equation, it is apparent that 100 is the sum of the first ten odd integers, 1 through 19. 
Adding 20 to each of these provides the next ten odd integers, i.e. 21 through 39. The sum of these 10 odd 
integers is 100 + 10(20) = 300. Continuing in this way, it becomes obvious that the sum of the (10n – 9)th 
through 10nth odd integers is (2n – l)×100, and the values of these integers are 20(n – 1)+1 through 20×(n – 
1) + 19, or 20n – 19 through the value 20n – 1.

This leads to a method of making a very rough estimate of the square root. First, subtract successively 
increasing odd hundreds (100, 300, 500, . . . (2n–1)×100 . . .) until a sign change is achieved. At this point, it 
has been determined that M is greater than (or equal to) the sum of the first 10×(n- 1) odd integers, but less 
than the sum of the first 10n odd integers (the last of which is 20n – 1). Hence, 10×(n – 1) £ ÖM < 10n.

Since the last number used to subtract is N = 200n – 100, and the last of the 10n integers is l =(20n–1), l can 
be calculated to be, l = N /10 + 9. The rough estimate can be refined by "un-subtracting" (i.e., adding) 
successively smaller odd numbers from the overdraft starting with l until a sign change. If the last odd 
integer added is b, it is now known from Eq. (1) that b – 1< 2Ö M £ b + 1. A good estimate is, therefore, b » 
2Ö M . The same algorithm can be expanded by noting that 104 is the sum of the first 102 odd integers, 106 is 
the sum of the first 103 odd integers, and so on.

The ENIAC begins with 108 in the denominator ("two-root") accumulator (i.e., a I in the ninth decade) with 
the radicand stored in the numerator accumulator. The contents of the denominator accumulator are 
subtracted from the numerator accumulator, after which the denominator is incremented by 2 in the ninth 
place. This subtraction and increment is repeated until the sign
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changes. At this point, the denominator accumulator has already been incremented beyond the last number 
subtracted. The division by 10 is accomplished by shifting the numerator one place to the left. Then, instead 
of adding nine in the next place down in the denominator accumulator, an effective 20 has already been 
added, so 11 is subtracted.

The new number is added to the numerator, and the quotient is decremented by two in that next place down. 
After a sign change, the numerator is shifted, and the correction factor of 11 is added one more place down. 
Then, the process continues, alternating subtraction and incrementing with subtraction and decrementing at 
every sign-change, until the desired accuracy is achieved.

Rounding off in square-rooting is an approximate method. As in division, the residue of the numerator is 
shifted to the left again, and the denominator is subtracted from this five times. If no overdraft results, the 
last place of the doubled root will be incremented or decremented by two.

Again, because of shifting, significant figures in the numerator accumulator can potentially be lost. Since the 
denominator is initially incremented in the ninth place, any radicand greater than or equal to 25 × 108 will 
cause the tenth place of the denominator accumulator to be non-zero, and thus cause shift errors. To ensure 
that no such shift errors can occur, the general rule is to keep at least one zero preceding the radicand in the 
numerator accumulator.

Program Controls

The divider/square-rooter has eight program controls. Each of these consists of a transceiver with input and 
output terminals, an interlock pulse input terminal, numerator and denominator accumulator receive 
switches, numerator and denominator accumulator clear switches, a divide/square-root and places switch, a 
round-off switch, an answer disposal switch, and an interlock switch. A brief description follows:

• Receive Switches: Used to stimulate the argument accumulators to receive their respective values. Each 
switch has three positions: a and b, to indicate on which input to receive, and Off.

• Clear Switches: Cause the argument accumulators to be cleared at the end of an operation.

• Divide/square-root and Places Switches: Specifies whether a division or square-root operation needs to be 
performed. It also controls the number of places the operation needs to be carried out.

• Round-off Switch: Used to determine whether or not a round-off operation is to be performed during 
period III.

• Answer Disposal Switch: Settings 1 and 2 are used for quotient disposal, and 3 and 4 are used for disposal 
of the doubled root. The interpretation
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of these switch settings depends on how the interconnectors are wired to the accumulator terminals.

• Interlock Switch: Is used to synchronize the end of a division with any other operations, which have been 
occurring in parallel. Divisions and square roots take so long that other operations are normally scheduled in 
parallel. In order to keep the program from continuing before either operation is completed, each program 
control includes an interlock input. If the interlock switch is set, the divider/square-rooter can not progress 
beyond period III until an interlock pulse has been received.

5.6— 
Programmable Read Only Memory:
Function Tables

In those days memory was sparse and expensive by today's standards. The ENIAC's memory consisted of 
internal and external storage. Internal memory is present in each accumulator's decade counter which stores 
the number during computation, and in the three function tables. External memory consists of punch cards 
that are used in conjunction with the constant transmitter for reading and writing numbers during the course 
of a computation.

The Function Table of the ENIAC finds its modern equivalent in the programmable ROM. It is required 
during the course of calculating the solution to difference equations, which require multiplying coefficients 
to variable values. These constants are looked up via the Function Table, which provides a quick way to read 
and transmit them (within 5 addition cycles per look-up). The values of the numbers are set on a panel of 
switches, which contains in total 104 entries. The position (argument) of the entry is referred to by a number 
ranging from –2 to 101. For each value of the argument there is a corresponding entry of 20 digits which can 
be divided into two groups of 10 digits each, called A and B. Each 10-digit number consists of 6 digits 
which are variable from entry to entry and are set by the switches on the portable function table. The 
remaining 4 digits are constant throughout the range of the table and are set by the Master Digit Switches on 
panel 2 of the Function Table. In addition, the sign can be variable or constant depending on the setting of 
the Master PM switch (see panel 2 below). Fig. 16 illustrates the composition of the 20-digit numbers 
available on terminals A and B on panel 2. The function table allows the 20 digit number to be used in a 
variety of ways: one signed 20-digit number or 2 signed numbers, one consisting of k digits and the other of 
(20 – k) digits for 2 functions.

Using programming nomenclature, the Function Table can be said to be an array of signed 10-digit numbers 
of length 104. This is, indeed, miniscule compared to modern storage capacity, considering the size of the 
components necessary to realize it.
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Figure 16 
Formation of a 20-digit number and corresponding switches

The ENIAC contains three Function Table units, each independently accessible. Each of them consists of 
two stationary panels and a portable module that plugs into the stationary one. Figs. 17 and 18 show the 
panels of the Function Table. The Function Table is controlled by the output of two decades of an associated 
accumulator in which the argument is stored. The argument values–02,–01, 100 and 101 are included, even 
though the argument accumulator holds only the values 00 to 99 (see panel 1 below).

Figure 17 
Panel I of the Function Table Module
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Panel 1 of the function table unit has 11 program controls. Each consists of a program input terminal, a 
program output terminal, an operation switch, an argument clear switch and a repeat switch. A pulse 
received at one of the 11 program input terminals stimulates the function table to carry out the program 
which has been set up on the corresponding switches. The function of each switch and port on panel 1 is as 
follows:

• Operation Switch: Determines how many places to shift the input argument. Displacement values are 
limited to the range –2 to 2. For example, when argument ''a" (in the range 0–99) is transmitted to the 
Function Table for look-up, depending on which Operation Switch is activated, the effective look-up value 
is "a + d," where d is in [–2,2]. Furthermore, depending on which side the dial points, the number 
transmitted is either the actual number itself, or its 9's complement. The 'P which completes the 10's 
complement is picked up in the digit set in the Subtract Pulse Switch in panel 2.

• Argument Clear Switch: Used to determine from which of the two outputs a program pulse is to be emitted 
to stimulate the transmission from an argument Accumulator, and whether the argument counter is to be 
cleared at the end of the table look-up. When set to NC (No Clear), a program output pulse will be emitted 
from the NC port, and the argument counter maintains its state, so that the next argument value adds to the 
current one; when set to C (Clear), a program output pulse will be emitted from the C port and the argument 
counter is cleared at the end of the operation. If it is set to 0 (nO pulse), then no stimulating pulse will be 
sent. In this case, it is assumed that other means of stimulating an argument Accumulator are at hand.

• Repeat Switch: Determines how many times the Function Table is to perform the look-up.

• NC/C Output Port: The program output port that connects to the program input port of an Accumulator 
used to transmit the argument value.

• Program I/O Ports: Consist of transceivers which are identical to the ones used in the accumulators. Upon 
receiving a program input pulse the Function Table prepares for operation starting in the next Addition 
Cycle. Upon completing the operation, a program output pulse is emitted from this port.

• Argument Input Terminal: Receives the value of the argument from an Accumulator. Since the argument 
counter is only two digits wide, only two digit lines are needed. Special argument flip-flops are used for 
numbers that require more than two digits.

• IBM Plug: Plugged in from the portable unit of the Function Table. The cable consists of 104 leads, each 
corresponding to one of the 104 entries in the portable function table.
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Panel 2 is used to specify the 4 digits which remain unchanged throughout the range of the table. It has the 
following switches:

• Master PM Switch: Sets the sign value to P, M, or to be read from the portable Function Table module. If 
the sign to be emitted is constant throughout the range of the table, the PM switch is set to "P" or "M," 
depending on the desired sign. If the sign varies from entry to entry, the PM switch is set to "Table."

• Constant Digit Switch: Sets the value of the constant digits to be transmitted either as a fixed value or 
dependent on the sign of the variable digits: zeros (P) or nines (M). The Constant Digit Switches form the 
upper 4 digits of the number transmitted (see Fig. 16). PMl indicates that Master PM Switch 1 is in effect, 
and PM2 indicates that Master PM Switch 2 is in effect.

• Digit Delete Switch: If set to delete, then the Constant Digit Switch is nullified and no digit pulses are 
transmitted.

• Subtract Pulse Switch: If the transmission is done subtractively, then the digit (A5, . . ., or A10) that has 
this switch set to S will pick up the 1'P. In practice, only one of the A and B switches should be set to S.

• Function Output Terminals (A/B): Two terminals from which the table values can be transmitted. Each 
terminal has 11 leads, one to carry the sign and ten for the 10 digits. Transmission is done in pulse form.

The portable module of the Function Table is the variable part of the unit. By variable it is meant that values 
in these digits change across the argument range independently of the sign and Constant Digit Switch. It 
consists of switches on both sides of the rectangular module which, on either side, contains a two 
dimensional array of switches, 26 rows by 28 columns, divided into two halves.

Fig. 19 shows one half of the arrangement of switches on this unit. These switches form the lower 6 digits of 
the numbers A and B, transmitted as is shown in Fig. 16. The pattern of arrangement repeats for the other 
half of the function table and the whole facade is repeated on the other side. Starting at the left top corner on 
one side is the value for argument –2 and at the bottom left corner is argument 23. The top of right half is 
argument 24, reaching argument 49 at the bottom right. The argument then continues on the other side with 
the top left corner at argument value 50, then 75 at the bottom left; and 76 and 101 at the top right and 
bottom right, respectively.
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Figure 18 
Panel 2 of the Function Table Module

Figure 19 
Switches on the portable function table module. The module 

contains 26 rows of 28 switches. Only one half of a row is shown. 
The switch settings for the number switches are 0 through 9.

When a program pulse enters one of eleven program input ports on panel 1 in Addition Cycle "t," the 
corresponding operation switch is armed. Table 2 below shows the procedure the Function Table follows to 
look-up an entry.
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The transmission of the digit pulses via the function table is done by appropriately gating the pulses IP, 2P, 
2'P, and 4P from the cycling unit. The gates are set to allow digit pulse passage by mechanical switches on 
the portable function unit. Upon receiving a program input pulse, at Addition Cycle "t," which initiates 
Function Table action, a program output pulse is emitted from the appropriate port "N" or "NC," in the 
following Addition Cycle, and the receiving Accumulator is stimulated to transmit its value. Only the two 
lowest digits are used from the Accumulator. Then, this value is further incremented (the argument counter 
starts at minus 2 so that only increments need to be performed) and decoded so that only one of 104 lines is 
activated. The argument counter is implemented as a 10-stage ring counter, similar to that of the decade 
counter of the Accumulator and Master Programmer. Finally digit pulses are gated according to the switch 
settings on the portable Function Table and emitted from function output terminals A and B on panel 
number 2.

For example, if the values in lines "x + 1" and "x + 2" are to be looked up once, then the argument 
Accumulator should store the argument x, and an Operation and the corresponding Repeat switches are both 
set to 1. A second Operation Switch is also set to 1. The argument counter should not be cleared for the first 
Operation Switch, so the Argument Clear Switch is set to "NC." However, the counter should be cleared at 
the end of the second operation, so the corresponding Argument Clear Switch is set to "C." The program 
output for the first Operation Switch is connected to the program input of the argument Accumulator, while 
the program output of the second Operation Switch is not connected to anything. Since the first argument is 
not cleared, all that needs to be done to obtain the correct argument value is to add one to "x + 1.'' The switch 
settings and the numbers transmitted across Function Output Terminals A and B are shown in Table 3.

Table 2: Operations involved in reading a number from the Function Table Unit

Cycle Operation

t + 1 Function table emits a program output pulse on C or NC output port on 
panel 1 to stimulate transmission of argument by the argument Accumulator.

t + 2 Function table (panel 1) receives 2 digit pulses for the argument from an 
argument Accumulator.

t + 3 Argument stored in the argument counters on panel 1 of the function table is 
adjusted to the value specified on the operation switch.

t + 4 One of the 104 lines corresponding to the appropriate argument row of the 
portable unit is activated, based on the value received at t + 3

t + 5 Function value is transmitted

t + r If the repeat switch is set to a value r greater than 1, then function value is 
transmitted again. A program output pulse transmitted from one of the 11 
program output terminals at the end of the repeat switch value.
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Table 3: Examples of settings and transmission of digits from the function Table18

18 Goldstine, n. 14 above.
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Keep in mind that the values stored in the function tables are transmitted in pulse form. Hence, the number 
stored in the function table could also be used as program pulses. In that case the pulse emitted by the 
function table would be directed to the program input terminals of target units.

5.7— 
Input/Output Devices: 
Constant Transmitter, IBM Card Reader, Neon Lights

The Constant Transmitter, together with the IBM card reader, is the external input device of the ENIAC. 
Like modern external storage devices, the constant transmitter is a hybrid of mechanical and electronic 
components. It enables arbitrary numbers to be loaded into Accumulators for computation. The IBM card 
reader is the mechanical device that reads punch cards (IBM cards), which contain values that are used to set 
relay switches, in the Constant Transmitter. These switches gate digit pulses which are transmitted to 
Accumulators. An IBM card can store 80 digits, which are to be grouped into either 5-or 10-digit signed 
numbers. The Constant Transmitter itself has manual switches which allow 20 digits and 4 signs to be 
stored, in addition to the 80-digit read in from an IBM card. Like the digits on the IBM card, these digits are 
grouped into either 5- or 10-digit signed numbers. The rate at which IBM cards can be read ranges from 120 
to 160 cards per minute. This rate is considerably slower than that at which the ENIAC performs 
calculations. This is not a serious problem as long as the number of calculations (iterations) per I/O is large, 
which is the case for most of the calculations for which the ENIAC is designed.

The IBM card contains 80 columns which span the length of the card, and the columns are divided into 8 
groups of 10 digits or 16 groups of 5 digits (labeled A[LR] through H[LR]). In each column there are 12 
positions, going from top to bottom, which indicate the sign and value of a number. Position 11 indicates the 
sign of the number, while positions 10 through I correspond to digits 0 through 9. Although there is a sign 
position in every column, only the sign in the most significant digit column matters. Negative numbers on 
the card are converted into 9's complement during the reading process, and into 10's complement during the 
transmission process.

The Constant Transmitter itself consists of two panels, shown in Figs. 20 and 21. Panel 1 houses Constant 
Selector Switches, which are used to select the grouping of the digits on the IBM card. The letters on the 
switches, A-H, correspond to 8 groups of 10 digits stored on the IBM punch card, while letters J and K 
correspond to the 2 groups of 10 digits on Panel 2 of the Constant Transmitter. Within each letter, the 10-
digit group can be further broken down into two groups of 5 digits, or be used as it is. There are 6 switches 
for a two-letter pair, each corresponding to one of the six program controls that can be activated during a 
computation. The first 24 switches are used to interpret the IBM card. In computations where only 5 digits 
are needed, setting the constant selector switch to L or R will limit the number of digits trans-



   

Page 160

mitted from the IBM card to those in the L or R group. When a constant selector switch, say A1, is set to L, 
one of the other 5 switches in the A group, say A2, is usually (but not necessarily) set to R. The redundancy 
in the switches allows the same group, L or R, to be transmitted to more than one destination. Organizing the 
numbers into 5-digit L and R groups effectively doubles the number of different values that can be stored on 
the IBM card. On the other hand, when the computation demands a 10-digit number, the constant selector 
switch is set to LR. Two rules on how the Constant Selector Switch can be set must be followed. In a group 
of six, if a switch is set to transmit 5 digits, no other switches in the group of six can be set to transmit 10 
digits. Conversely, if a switch is set to transmit 10 digits, no other switch in the same group is allowed to be 
set to transmit 5-digits.

Figure 20 
Panel 1 of the Constant Transmitter, used to select 

the grouping of the digits on the IBM card



   

Page 161

The last 6 switches, letters J and K, are used to group the 20-digit switches settable directly on the Constant 
Transmitter. Panel 2 (Fig. 21) of the constant transmitter contains two rows of 10 Constant Switches. The 
top row is lettered J, while the bottom row is lettered K. There are four PM switches (JL, JR, KL, KR), each 
corresponds to one of the 4 possible groups of 5 digits. If a 10-digit group is selected, only the L PM switch 
is used. Each switch is associated with a transceiver, which communicates with the rest of the ENIAC 
through a pair of input and output ports. A program pulse through the input port will start constant 
transmission, while one will be emitted from the corresponding output port when the operation is finished. 
The number transmitted is from any of the groups chosen from the 80 digits stored in the Constant 
Transmitter relays. The IBM card reader translates the card punches into relay settings which, ultimately, 
gate the passing of 1P, 2P, 2'P, and 4P from the Cycling Unit. Each of the 80 columns on the IBM card will 
set 4 relays that control the gates that will pass a combination of the pulse trains supplied by the Cycling 
Unit to produce the correct number. Therefore, there are 80 groups of 4 relays, or 320 in all, in the Constant 
Transmitter responsible for number storage.

The IBM card reader is a mechanical device attached to the Constant Transmitter and sets the Constant 
Transmitter's relay switches from information stored on the IBM card. Card punches are translated into relay 
switch settings through the wiring of the plug board, which was characteristic of the IBM card reader. The 
plug board is a detachable unit containing numerous single-hole terminals, called hubs, which allow wires to 
be plugged into

Figure 21 
Panel 2 of the Constant Transmitter, used 

to set the constant part of the number
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them. They are internally connected to read brushes in the card reader and coding relays in the Constant 
Transmitter. By connecting hubs to each other, connections are established among the card punch positions 
and relay switches. The IBM card reader's reading unit consists of 80 wire brushes that are in contact with 
the punch card as it is rolled in from top to bottom between two drums. As the card rolls between the read 
brushes, contact is made on the coding cams whenever a hole in the column is encountered. While the 
coding cams and the read brushes are in contact, a pulse is emitted to set the corresponding relay.

The card reader can be activated in two ways, via the Initiation Unit, which emits a pulse to the Ri input port 
on the card reader, or by pushing the emergency start button on the card reader itself. The latter method is 
intended to be used for testing purposes. Once started, the card reader will pick a card for reading from a 
stack of cards contained in the card tray. Because the card reading process is much slower than the 
transmitting process, the Constant Transmitter has an interlocking flip-flop which the card reader will set 
once it finishes reading a card. The Constant Transmitter will not begin operation until this flip-flop is set.

Neon Lights as Visual Output

The numbers stored in each accumulator are visually displayed on neon tubes which are connected to the 
static outputs of the decade counter and the sign counter (binary PM counter). This makes it possible for the 
operator to see the numbers "rushing" through the accumulators during an operation. The changes are of 
course too fast to follow during an operation. However, the neon lights are of great help to track a 
computation or to identify which unit is defective when the ENIAC is operated in the "Addition Mode" or 
"Pulse Mode."

6— 
Implementation of the ENIAC-On-A-Chip

The ENIAC-On-A-Chip is an architecturally faithful reproduction of the ENIAC, implemented with CMOS 
VLSI technology rather than vacuum tubes. The various units of the ENIAC are reconstructed mostly to the 
level of functional blocks, such as gates, flip-flops, and counters. Some aspects of the original machine, in 
particular the portable function tables and the IBM card reader, cannot be effectively reproduced on the chip. 
A direct implementation of the ENIAC means of interconnecting the units on the digit trays and program 
lines would also prove unfeasible.

It should be noted that keeping the original ENIAC architecture often resulted in inefficient use of 
components and silicon area. An example of this inefficiency is that in order to represent numbers 0 through 
9, the original ENIAC has ten stages of serially connected flip-flops forming the decade
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counter. This is equivalent to using ten bits to represent ten numbers! As there are ten decade counters per 
Accumulator, making a grand total of 100 bits, the range of numbers represented is 0 through 1010 – 1. The 
same range of numbers can be represented by only 34 bits using the binary number system. In today's 
technology, there is an unwritten law that the binary number representation be used. However, as was 
explained in section 4.2 and 4.3, the choice of decimal number system and the use of pulse transmission 
resulted in fewer vacuum tubes and interconnections. The communication of a signed ten-digit number 
requires only eleven wires in the decimal pulsed system, while the static transmission of the same number in 
binary would have required 34 lines. Considering that communication was done over several long cables and 
trunks, all around the ENIAC, it is understandable that the inventors chose the pulsed decimal system. This 
allowed them to trade-off wiring complexity for speed of transmission (i.e. serial transmission on a per digit 
basis). The chip implementation adheres to the original design.

Another aspect of the ENIAC that presented an obstacle in the silicon version is its parallelism. Various 
units of the ENIAC could communicate with each other without restraint through manually programmable 
communication channels, and groups of such units could do so simultaneously. Not only did an Accumulator 
transmit pulses to other Accumulators via digit trunks, but it also statically transmitted its contents to the 
multiplier on dedicated static leads. Furthermore, the manual switches in the program control sub-units find 
their silicon incarnation in many 4-bit shift-registers. What these aspects of the ENIAC mean for the silicon 
version is that programmable data paths and a large number of wires are required, and these proved to be, as 
in all such designs, the most unwieldy parts of our project. How these were implemented on the chip will be 
described later.

The vacuum tube circuits of the ENIAC are fairly easily translated into CMOS transistor logic. However, 
there are a few differences that need to be pointed out. Vacuum tube circuits take advantage of the wired-OR
logic. The output of gates and flip-flops could usually be simply wired together and the effect would be a 
logical OR. In such circumstances, the CMOS implementation requires an explicit OR-gate. In general, the 
logic gates are realized as traditional CMOS circuits composed of nMOS and pMOS transistors. Thus low 
static power consumption and strong logic levels are maintained. However, fully complementary NOR and 
AND-NOR gates with several inputs require large areas, due to the large pMOS transistors.

The following sections give a brief summary of some of the circuits used in the Silicon ENIAC. Not all 
circuit blocks will be described due to space limitations. The interested reader is referred to the thesis written 
by Tau and Ala'ilima.
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6.1— 
Interconnection between Units

As described earlier, the units of the ENIAC were connected to each other by a set of program and data 
lines. Replicating the complete flexibility with which the ENIAC could be interconnected and programmed 
proved nearly impossible. Reproducing even a minimal set of program lines on-chip would be too costly in 
terms of space, and the number of possible connections that would have to be somehow programmed would 
quickly become untenable. Therefore, a scheme was decided upon, which would allow a single physical line 
to implement all the program lines of the ENIAC. Likewise, two digit buses, each 11 lines wide, are used to 
implement all the digit lines. This limits the chip version to programs which only require two parallel data 
transmissions by way of the digit lines, but this was seen as an acceptable limitation, given the type of 
programs one would expect to run.

The scheme involves rapidly reprogramming the interconnections between the units every time a program 
pulse is passed. Since CMOS circuits can run much faster than the tube circuits of the ENIAC, large streams 
of setting data can be loaded into shift registers across the chip, within the scope of a single addition time. 
Each bit controls a connection between a unit's program controls and the program line, or its data ports and 
the digit lines. In order to keep connections intact while the new settings are being loaded, two parallel shift 
registers are used, one maintaining the current connections while the other is being re-loaded. Every time a 
program pulse is passed along the program line, the newly re-loaded shift register is activated and the re-load 
process for the other shift register is initiated.

6.2— 
Accumulator

Decade Counter

The same decade counter design is used both in the Accumulator and the Master Programmer. As mentioned 
earlier, it is modeled by a ten-stage shift-register ring with one stage set to "1" at the start. Fig. 22 shows a 
simplified schematic diagram of the decade counter. The flip-flop uses a 12-transistor 2-phase master-slave 
design that can be compactly laid-out. The signal in the decade counter is propagated on the falling edge of 
phase I of the clock (generated by the d, Cin or 10P input pulses).

Each stage in the decade counter represents a number from 0-9. Digit pulses will cycle the decade counter a 
number of stages from its original place. When the decade counter moves from stage 10 to stage 1, or from 9 
to 0, the decade flip-flop in the Carry circuit (see Fig. 23) is set. Thus, the decade flip-flop "registers" that a 
carry-over has occurred and opens the transmission gate T2. When the reset pulse (RP) arrives a few clock 
pulses later (at clock period 13 of the addition cycle – see Fig. 9), it will pass through
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Figure 22 
Simplified schematic of the decade counter. The signal in the decade 

counter is propagated on the falling edge of the input clock input.

Figure 23 
Carry circuit. The d-input is derived from the digit input 

(is connected to phase 1 of the clock, f1), d-nine is the output 
of the 10th flip-flop (storing the number 9) of the decade counter.

gate T2 and generate a Carry-out pulse Cout, because the Carry Clear Gate (CCG) has opened the NAND-
gates 1 and 3. At the same time, the RP will reset the decade flip-flop on its negative going edge, which 
occurs after the RP has passed through the circuit and become the carry-out pulse.

If a carry-out pulse from a previous decade-counter (n – 1) arrives (during period 13-17) at Cin, now the 
carry-in pulse of decade-counter (n), and if this decade-counter is at stage 10, the carry-in pulse will pass 
through transmission gate T1 and, since the CCG pulse is still on, continue through NAND-gates 2 and 3, 
thus generating another carry-out pulse feeding into the next decade-counter. Decade-counter (n) will also 
move to stage 0 by the carry-in pulse. The decade flip-flop of decade-counter (n) will also be set and the 
second RP will reset it (Fig. 9). It is possible that several such carry-overs take place, in the worst case, 
twenty. In the original ENIAC, the total propagation time through the twenty decade counters could be as 
long as 25 µs. To allow the safe rippling through of all possible carry-out pulses, it was deemed sufficiently 
safe to have CCG extend 40 µs beyond the initial carry-out pulse. However, in the silicon ENIAC this is not 
a problem as propagation delay from one stage to another, even in the 20-stage case, cannot be more than, at 
most, a few hundred nanoseconds. Compared to the 100 kHz at which the
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Figure 24 
Schematic of the transmit circuit: (a) logic circuit 
and (b) the actual circuit implemented on the chip

Silicon ENIAC is intended to be run, this "safety precaution" amounts to nothing more than a curious 
feature.

During transmission the 1OP pulses cycle the decade counter ten times so that the digit ends where it starts. 
Carry-overs are not allowed to take place during the transmission of digits. As 10P cycles through the 
decade counter, 9P is gated by the Transmit Block (see Fig. 22), which is basically a multi-plexer (Fig. 24) 
with the select signal, dff, coming from the decade flip-flop in the Carry Block (see Fig. 23). When the 
decade flip-flop is not yet set (i.e. dff is low), the MUX is selected to pass the 9Psub pulses (which is 9P when 
the program control is set to S, i.e. to transmit the complement of the content). When the decade flip-flop is 
set, the MUX will pass 9Padd (which is 9P when the program control is set to A, i.e. to transmit the number). 
The number that is passed through the S port will thus be 9-n, and the number through the A port will be n, 
where n is the original number in the decade counter.

Program Control

The settings of the program control and repeat switches are implemented as a shift-register with 20 (twelve 
for program control setting, eight for repeat) four-bit registers. The switches are encoded in binary in order 
to minimize the number of bits needed to load in the program settings. The data in the registers are meant to 
be shifted-in serially at the start of the ENIAC operation.

Figs. 25(a) and 25(b) show the program control block. When a program pulse enters an Accumulator via one 
of the inputs (1-12), Fig. 25a, the corresponding SR latch is set. These latches are cleared at startup by the 
icg pulse. The output of the set latch will enter the "Program Control Switch MUX" block, which contains 
12 "program switches"' of 4-bits each, and selects one of the 12 program switches. The output of the selected 
program switch (program select code stored in the 4-bit register) will then be decoded by the "Program 
Action Decode" block to perform one of the nine possible operations (a,b,g,d,e, A, S, AS,O). If the latch set 
is in Group 1, then the Accumulator simply performs the operation once, as the latches in group 1 will be
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Figure 25 
Simplified schematic diagram of the Program Controls in an Accumulator

reset in the following Addition Cycle when CPP arrives. On the other hand, if the program input pulse sets 
one of the latches in group 2, the repeat decade-
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counter will be activated. The repeat-counter (see Fig. 25(b)) counts CPPs when activated and is nothing 
more than a decade-counter whose static outputs will be passed through one of the 9 pass-gates 
corresponding to the SR latch set. The signals turning on one of the nine pass-gates come from the ''Repeat 
Switch MUX," which is similar to the "Program Control Switch MUX" above, but contains only eight four-
bit program switches. The output of the switch is decoded to open one of nine pass-gates. Each time a CPP 
enters the repeat-counter, it advances one stage until it reaches the stage which has an open pass-gate. The 
output of the open pass-gate will then reset the activated SR-latch, and together with CPP it will also reset 
the repeat-counter itself. Recall that for program controls 4-12 (group 2 latches), a program output pulse will 
be emitted at the end of the program execution. This is accomplished by having the activated SR-latch open 
a pass-gate which passes the logic product of CPP and the SR-latch reset pulse.

The Program Control-and Repeat-Switches are effectively one long series of shift-registers, since the output 
(data_out) of the last register in one block is connected to the input (data_in) of the other. In fact, this 
connection is continued between all units of the ENIAC containing switches (that is, all of them) and make 
the switch elements one giant shift-register unit.

The ENIAC has five input ports, a, b, g, d, e, which allow the Accumulator to receive digit pulses from five 
separate sources at different times during computation. Because only one program control can be activated 
during one Addition cycle, these ports are equivalent to a 5:1 multiplexer. The program control settings 
determine which of the five input ports is selected. As soon as a program input pulse arrives, the switches in 
the multiplexer are enabled and steer the signals to the input of the decade counter (port d in Fig. 22).

Fig. 26 shows the layout of an accumulator. The registers are physically situated below the rest of the 
Accumulator, with wires running on top of the components. The floorplan is divided into a datapath and a 
control block. The decade counters, program control, and switch elements are all part of the datapath. The 
control block consists of random logic components such as the Plus/Minus unit, digit receiver MUX, 
significant digit control, and the 1'P path control. The size of the Accumulator measures 550 µm × 800 µm.
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Figure 26 
Layout of one of the twenty Accumulators. The size is 

550µm × 800µm. Floor Plan and Layout of an Accumulator.

6.3— 
Multiplier

Similar to the Accumulator, the settings of the program controls and switches in the multiplier are stored in 
shift registers. The Significant Figures switch and Places Switch have ten and nine settings, respectively, so 
that their settings are encoded in four bits. The Argument Accumulator Receive switches and Product 
Disposal Switch have six and seven settings, respectively, and
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their settings are encoded in three bits. The Argument Accumulator Clear Switches are controlled with a 
single bit.

Both the 'Ier and 'Icand Select Tables require static connections to all ten states of all ten digits of their 
respective accumulators, as well as the PM units. Routing 101 lines from two separate accumulators to the 
high-speed multiplier on the chip would have proved too cumbersome. In order to reduce the number of 
lines, the state of each decade is transmitted in binary coded decimal. A four-bit encoder is included on each 
decade of the accumulator, with corresponding decoders on the high-speed multiplier. This reduces the 
number of lines needed to 41 for each accumulator.

The 'Ier select table of the ENIAC uses columns of gate tubes activated by the program ring. As in other 
parts of the chip, the ring counter is replicated using a ring of D flip-flops. The gate tubes are replaced by 
CMOS transmission gates, activated by the complementary outputs of the corresponding stage of the 
program ring.

The Multiplication Tables in the ENIAC consist of a network of resistors which formed column-wise OR-
gates, the outputs of which inhibited some subset of the possible output pulses for that column (see Fig. 15). 
On the chip, column-wise pseudo-nMOS NOR-gates are used, whose inputs are driven by the outputs from 
the 'Ier Select Table. The output of each NOR gate controls the passage of a subset of the 1P,2P, 2'P and 4P 
pulses to make up the actual pulse train that is passed on to the 'Icand Select Tables as inverted pulses.

The ENIAC's 'Icand Select Tables are arrayed in columns, each corresponding to a decade of the multiplier 
and consisting of tubes gated by the decoded static connection to the 'Icand Accumulator. On the chip, they 
are organized by column into pseudo-nMOS AND-NOR gates, each followed by an inverter to drive the 
shift tables, leaving the pulses inverted.

The Shift Tables for the ENIAC are arrays of gates, with columns corresponding to the outputs of the 'Icand 
Select Tables, and rows selected by the program ring to correspond to the selected decade of the multiplier. 
Their outputs are connected in diagonal lines corresponding to the decades of the partial product 
accumulators. The gate tubes are replaced by CMOS transmission gates, with each diagonal line loaded by a 
weak pMOS pull-up to prevent drift in standby. One last inverter rectifies the pulses, producing the final 
output which is connected to the digit lines for transmission to the Product Accumulators. The entire chain, 
from Multiplier Select to Shifter, is shown in Fig. 27.
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Figure 27 
Cross-section of the data path from Multiplier Select through Shifter Tables

6.4— 
Divider/Square-Rooter

The divider/square-rooter was converted fairly simply from ENIAC to the chip, given the standard receiver 
to flip-flop translation, and the use of gates to implement wired-OR logic. Pulse-gating in the divider/square-
rooter on chip is accomplished variously, both with logic gates and transmission gates, depending on which 
requires the fewest transistors to accomplish the given task. In many cases, the pulses are passed inverted in 
order to minimize the number of inversions along the way.

The receivers were statically connected to the common programming circuits of the argument and result 
accumulators for a given operation, so that they could stimulate the necessary actions directly, without 
program controls. As in the case of program and digit line connections, the full flexibility of the original 
ENIAC cannot be reproduced on-chip. So these connections to the common programming circuits are hard-
wired on the chip, allowing a limited number of possible configurations, but, at the same time, a selection 
which represents the majority of configurations that are needed.

6.5— 
Cycling Unit

The silicon Cycling Unit is divided into two parts: a pulse generator and a 20-stage ring-counter. The pulse 
generator block divides an input clock of 500 kHz into five time periods of 10 µs each, which creates the 
desired 100 kHz clock that the ENIAC used. In the original Cycling Unit the 2 µs pulse in each Addition 
Time period was generated using delay lines operating on the 100 kHz input clock. For the silicon version 
we take the all-digital approach and divide down a 500 kHz master clock to create the 2 µs pulse for the 10 
µs period. The pulse generator consists of a five-stage ring-counter, which appropriately lengthens the 2 µs 
period to 10 µs. The first stage in the ring-counter is set to 1, while the rest is set to 0 during reset. When the 
ring-
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counter is at stage 0, the first stage, the On-beat pulse "OnBP" is generated by a 2-input MUX, whose 
control signal is the output of the first stage. When the control signal is high, the MUX will pass the clock 
signal, resulting in the On-beat pulse. Then, as the ring-counter advances, the MUX will output a 0, pulling 
the "OnBP" to ground. The ''OnBP" has, thus, a period of 10 µs and a pulse width of 2 µs. The same 
mechanism applies to the Off-beat pulse "OffBP," which uses stage 1 of the five-stage ring-counter. "OffBP" 
is needed to observe the pulse-phase difference between 10P and the rest of the pulse trains. The need for 
10P pulses to be of different phase from the others is that since 10P cycles the decade-counters (see section 
VI-b) whose flip-flops are used to gate the transmittance of 9P, the flip-flops must not change until their 
outputs have allowed 9P to pass through properly. Besides the normal, continuous mode, the pulse generator 
has two additional inputs "Am" and "Pm," which stand for "Addition Mode" and "Pulse Mode," referring to 
the two debugging modes in the ENIAC. These signals are created externally by a push during debug. 
"Addition Mode" is a signal intended to allow only one Addition Cycle's worth of pulse trains to be 
generated, thus stepping through the program one Addition Cycle at a time, and "Pulse Mode" is intended to 
allow only one pulse to be generated at a time.

The 100 kHz, 2 µs "OnBP" pulse is gated by the outputs of a 20-stage ring-counter block to generate all the 
pulse trains of the cycling unit (Fig. 9). Fig. 28 shows the simplified schematic diagram of this block. The 
pulse train 1P is generated by enabling a 2-input MUX, "G1," which passes "OnBP" while stage-1 of the 
ring-counter is asserted. 2P is generated via a similar method by using the outputs of stage-2 and stage-3 to 
select the "OnBP" input of the two-input MUX "G2." 2'P is generated similarly, using outputs of stages 4 
and 5. Pulse train 4P is generated by having the output of stage-6 setting an SR-latch, and that of stage-10 
resetting it, with the output of the latch controlling MUX "G4," which passes "OnBP." Furthermore, the 
output

Figure 28 
Simplified schematic diagram of the 20-stage ring counter 

that generates the fundamental pulse sequence of Fig. 6
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of stage-10 also controls MUX "G5" which creates 1'P. The 9P pulse train can be generated by combining 
1P, 2P, 2'P and 4P with an "OR" gate. The Central Programming Pulse, CPP, is generated by taking the 
output of stage-17 to control MUX "G6," and RP is generated using "G9" which is switched on when the 
ring-counter is at stages 13 and 19. The Carry Clear Gate, CCG, is created by setting another SR latch, "SR-
2'' during stage-11, resetting it during stage-18 and taking the output of the latch as the desired signal. 
Finally, 10P is generated by setting latch "SRI" during stage-0, thus enabling MUX "G10" and passing 
"OffBP," and resetting it at stage 10. The output of "SR-1," will remain high until the latch is reset when the 
ring-counter reaches stage 10. In this way, between the time when "SR-I" is set and reset, "G10" is turned on 
to allow "OffBP" through exactly 10 times.

To summarize, the Cycling Unit takes a 500 kHz master clock and divides it down to two 100 kHz signals, 
"OnBP" and "OffBP." These two signals are then gated by the outputs of a 20 stage ring-counter in 
conjunction with SR latches and special MUXes. In this way, all of the Cycling Unit pulse trains are created 
as shown in Fig. 6.

6.6— 
Layout of the ENIAC-On-A-Chip

The layout of the ENIAC chip is shown in Fig. 29. The chip contains all the functional units of the original 
ENIAC and a limited number of programmable digit and program lines. It was designed and fabricated in a 
0.5 mm single poly-silicon, triple metal, nwell CMOS process (HP CMOS14TB) through MOSIS.* The chip 
measures 7.44 mm by 5.29 mm and contains 174,569 transistors.

7— 
The Relative Computational Power of the ENIAC

By today's standards the ENIAC was a very slow computer. It ran at a snail's pace of 100 kHz, and took 20 
cycles to perform one addition/subtraction operation, a period known as the Addition Cycle. To multiply, the 
ENIAC needed 14 Addition Cycles. Thus, the ENIAC could do 5000 additions /subtractions and 357 
multiplications per second. A modern state-of-the-art microprocessor typically runs in the hundreds of 
megahertz range. It is interesting to note that, like the ENIAC, the clock rating on the modern 
microprocessor, depending on whether it is pipelined or not, does not necessarily mean that it is the rate at 
which a computation is carried out.

* MOSIS (Metal Oxide Semiconductor Implementation Service) is a low-cost and low-volume production service for 
VLSI circuits, supported by the National Science Foundation and DARPA.
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Figure 29 
Layout of the ENIAC-On-A-Chip (7.44 mm × 5.29 mm)

The speed with which today's computers perform calculations is an indication of just how far computer 
technology has come since the ENIAC was first introduced. We will attempt to compare the relative speed 
of a modern microprocessor with the ENIAC, but at the risk of comparing apples to oranges. The 
comparison will, therefore, focus on the most basic of commonalties between the two: fixed-point 
addition/subtraction and multiplication.* While this restriction would render the modern microprocessor less 
than useful, this is what must be done in order to make the comparison meaningful. Moreover, let us further 
idealize the situation by making the following assumptions:

1. The microprocessor runs at a sustained rate one instruction per cycle. For a pipelined machine this means 
that latency has past and all instructions are such that there are no data hazards.

2. The microprocessor has a multiplier on the same die that can perform multiplication in one clock, with or 
without pipeline.

* Although both the ENIAC and the modern microprocessor are capable of performing divisions, this operation involves 
many addition, subtraction and multiplication operations as intermediary steps and is more algorithmic than purely 
computational, hence it will be ignored in the comparison.
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3. The microprocessor is not running an operating system, and the only program it runs is our test program, 
so that it is never interrupted from execution of our test program.

4. Only one arithmetic operation is performed in one execution cycle.

It is well known that a machine's performance depends on the mix of instructions in the program. In this 
case, our performance calculation is quite simple since we only have 2 types of instructions. For a program 
with 20000 additions and 9500 multiplications, the ENIAC will run in roughly 30.61 seconds. On the other 
hand, a modern microprocessor running at, say 233 MHz, will only take 126 µs, or about 240 thousand times 
faster. Put another way, what takes the ENIAC a year to calculate will take a modern 233 MHz 
microprocessor only about 2 minutes.

It should be mentioned that programs could be parallelized to take advantage of the inherent multiplicity of 
components in the ENIAC that allows the simultaneous execution of many instructions, which will speed up 
computations. Modern superscalar microprocessors also have independent identical units which speed up 
program execution. It is not very meaningful to include this aspect in the comparison, since it does not 
increase the degree of contrast in the relative computational power more than we have already shown.

8— 
Conclusions

The reconstruction project of the ENIAC has been an interesting journey into the history of computing and 
technology. The project gave the design team a first-hand appreciation and understanding of the workings of 
the ENIAC, from the architectural level down to the functional, programming, and circuit levels. It is 
probably the first time that such a comprehensive study of the machine itself has been done since the ENIAC 
was constructed. It quickly became clear to the design team how complicated the ENIAC really was, and 
how creative and resourceful the ENIAC engineers were in putting such a large-scale machine together in 
such a short period of time. To be sure, it was the state of urgency created by World War II that provided the 
driving force for the ENIAC project. The emergency "fostered a spirit of cooperation and willingness on the 
part of the ENIAC engineers to subordinate their creative impulses."19 Without this pressing sense of 
immediacy, the vision which emerged at the Moore School of Electrical Engineering to build the ENIAC 
would have had no chance of being funded, it would have been dismissed as too risky. Even so, the ENIAC 
project had its detractors from major research institutions. Convinced of the importance to the war effort of 
an electronic calculating machine, it was the engineers and the administration who were ultimately 
responsible for the success of the ENIAC project. At the same

19 Stern, n. 5 above.
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time, the time pressure of the war constrained the ENIAC engineers to use proven ways of architectural and 
circuit design. The sponsoring agency wanted a machine that was fast, accurate and that would be 
operational in the shortest possible time. This prevented the engineers from doing research on new methods 
of design and exploring architectures that would have eliminated some of the ENIAC's shortcomings, as 
pointed out in one of the reports.20 The report addresses the desirability of automatic set-up of the program 
and preparation of the results. In addition, it is argued that in electronic machines "serial operation" is 
preferred, provided the components are fast enough. The advantages of a serial machine over a parallel one 
are the reduced hardware, increased reliability and ease of programming, as mentioned in the report.

Notwithstanding its shortcomings the ENIAC was an extraordinary accomplishment that ushered in the 
electronic computer age.21 The success of the ENIAC convinced the industrial, scientific and military 
communities that digital electronic computing was not only feasible, but also desirable from the point of 
view of speed and accuracy. The fact that the ENIAC was a large-scale, general purpose machine meant that 
it played a key role in a variety of areas and provided solutions to problems which were, up to that point, 
beyond the scope of any known method. One of the first problems programmed on the ENIAC was a series 
of calculations of thermonuclear reactions associated with a project at the Los Alamos Research lab in 1945. 
According to a Newsweek article, the project ran 2 hours on the ENIAC (2 weeks including set-up time) and 
would have taken 100 man-years.22

Although the ENIAC was not a stored-program computer, it was more than a powerful calculator. It was 
capable of performing a "wired" (in effect programmed) sequence of instructions, storing intermediate 
results, reading and printing data, and, most importantly, of changing its course of computation based on 
previous results. It is this ability to take an alternative course of action that distinguishes the ENIAC from 
just a very powerful calculator.

The ENIAC implementation in VLSI highlighted some of the disadvantages associated with the ENIAC 
architecture, in particular, that of the data-flow architecture which requires many different connections and 
settings. Providing enough transistors for all possible connectivity patterns would have consumed 
prohibitively expensive silicon real-estate. It was hard to incorporate the same degree of flexibility of adding 
cables and using special adapters that the ENIAC had. In the chip implementation, we sacrificed some of the 
programming flexibility for reasons of economy and design practicability. Since parallel programming was 
not used extensively, the chip uses the sim-

20 Eckert, Mauchly, Goldstine, n. 8 above.
21 D. P. Winegrad, "The ENIAC – The Age of Information Begins . . ." in Eniac a Tribute – 40th Anniversary Booklet, 
University of Pennsylvania (Philadelphia, 1986).
22 "Answers by Eny – All-Electronic Super Calculator Is a Whizz at Super Problems," Newsweek, Feb. 18, 1946, p. 76.
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plification that only one programming line will be needed at any time. With the exception of the high-speed 
multiplier, a maximum of two 10-digit lines were needed at any one time. The chip tries to obtain a 
compromise between full programming flexibility and minimal chip area by using a rapid programming 
scheme. This reduces the number of physical lines on the chip and provides the number of "virtual" lines 
required by a program. Except for the implementation of the digit and program trunks, the portable function 
tables, the card reader and printer, the ENIAC-On-A-Chip contains all of the building blocks of the original 
ENIAC. Setting-up the ENIAC-On-A-Chip to run an application involves loading a configuration file into 
the chip's local memory that stores the setting of the switches and the interconnections. This is similar to 
what is currently done in Field-Programmable-Gate-Arrays (FPGA).

Comparing the original ENIAC with its chip implementation is hard to do, as it is not always clear what the 
frame of reference is in which to compare the two implementations. However, it is nevertheless instructive 
to compare some of the physical characteristics of the two implementations. The ENIAC contained 17,468 
vacuum tubes, 70,000 resistors, 10,000 capacitors, 7,200 crystal diodes, and 6,000 switches, it had a 
footprint of about 33 m × 1 m, occupied a room of 170 square meters, dissipated about 140-174 kW and 
weighed 30 tons. In contrast, the chip realization contains 174,569 transistors, measures 7.4 mm × 5.3 mm 
(the PGA package measures 3.6 cm by 3.6 cm), dissipates a few Watts (depending on how many units run in 
parallel and the clock speed), and weighs a few grams. Also, in terms of power requirement the comparison 
is striking. In addition to the AC power for the heaters of the tubes, the card reader and the card punch, the 
ENIAC required 78 different DC voltage levels to power 10 different types of vacuum tubes. The power 
equipment was housed in 7 panels which were separate from the ENIAC's 40 panels. Special ventilating 
equipment consisted of an elaborate system of fans and blowers to keep the temperature inside the panels 
below 46" C. In contrast, the chip needs only one power supply of 5 V (or lower). The clock frequency used 
in the ENIAC was 100 kHz, while the one on the chip can easily run at 50 MHz or higher.

The above comparison illustrates the tremendous changes in technology which have occurred over the last 
50 years. The replacement of the vacuum tubes by the transistor and the integrated circuit was the main 
reason for decrease in size, weight and power. Besides advances in technology there have also been 
fundamental changes in computer architecture. The ENIAC was a parallel, data-flow machine in which 
program memory was locally stored at each unit. Numbers were represented as fixed point decimal numbers. 
Current day computers are basically serial in nature and programs are stored in memory, separated from the 
processor. However, it is interesting to note that there has been an increased interest in parallel architectures 
as a way to further increase the operating speed. Also, the emergence of Time-Switched FPGA (this is the 
name given to FPGAs whose programmable cell-blocks can be altered), in which the configuration and 
interconnections be-
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tween hardware units can easily and quickly be changed make a data-flow architecture an interesting 
alternative for specific types of applications.
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The Institute for Advanced Study Computer: 
A Case Study in the Application of Concepts from the History of Technology

William Aspray

Abstract. This paper uses the history of the Institute for Advanced Study computer built in Princeton, New 
Jersey, between 1946 and 1952 as a case study. The case study introduces computer practitioners who might 
be interested in writing about the history of early computers to some of the concepts that have been used by 
business and other kinds of historians of technology. These concepts include organizational mission, project 
objectives, organizational buy-in, organizational capabilities, technology transfer, value and impact, 
technological and other obstacles, first-mover advantages, and organizational continuity.

1— 
Introduction

The Institute for Advanced Study computer, built in Princeton, New Jersey, in the late 1940s and early 
1950s, was one of the most important early computers. It deserves this recognition on account of the 
scientific work that was conducted on it, the people who were trained upon it, and to some extent for the 
computer design principles that it embodied. Several historical accounts of this machine already exist,1 and it 
is not the purpose of this paper to duplicate this literature.

There is a vast body of literature, written during the past twenty years by computer practitioners, historians, 
and journalists, about the computers built in the 1940s and 1950s. Indeed, more has been written about this 
aspect of computing history than any other. Despite the considerable attention these

1 See, for example, William Aspray, John von Neumann and the Origins of Modern Computing, Cambridge, MA: MIT 
Press, 1990; Julian Bigelow, "Computer Developments at the Institute for Advanced Study," in N. Metropolis, J. Howlett, 
and Gian-Carlo Rota, eds. A History of Computing in the Twetieth Century, pp. 291– 310. New York: Academic Press, 
1980; Herman Goldstine, The Computer from Pascal to von Neumann, Princeton: Princeton University Press, 1972.
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early computers have received, our understanding of them is incomplete. Raúl Rojas, for example, has 
recently contributed the first detailed analysis of the working of Konrad Zuse's early computers.2 Other 
papers in this volume have similar aspirations for other early computers. Rojas's book and these papers give 
what might be called a "technical reassessment" of early computing machines.

This paper has a somewhat different purpose. It intends to identify for computer practitioners interested in 
writing about the history of early computers some concepts that have been used by business and other kinds 
of historians of technology, and to suggest through one brief case study how these concepts can be applied to 
the study of early computers. The concepts that are discussed here include organizational mission, project 
objectives, organizational buy-in, organizational capabilities, technology transfer, value and impact, 
technological and other obstacles, first-mover advantages, and organizational continuity. Although these 
concepts were developed to understand how companies functioned, they can also be applied to other 
organizations that create technology, such as the Institute for Advanced Study.

Many existing accounts of early computers touch on one or more of the historical concepts addressed in this 
paper, but a deeper understanding of these computers might result from paying more explicit attention to 
these concepts. Thus this paper is as much about a conceptual vocabulary for rewriting the history of early 
computing machines as it is about the IAS computer. The length of this paper does not permit a more 
complete enumeration of the concepts being applied by historians of technology, nor a detailed treatment of 
any one of those concepts that are addressed. Thus this paper is intended to be merely suggestive of a way to 
think about computing machine history.

2— 
Background

Before turning to the discussion of these concepts, it is useful to give a brief history of the IAS computer 
project and a brief biography of the project director, John von Neumann. Von Neumann (1903–1957) grew 
up in Budapest, Hungary, in an upper middle class family. His formidable intellectual abilities were 
recognized at an early age, and he was given an excellent education in Hungary's best private school. His 
first love was mathematics, and he wrote his first publishable paper as a teenager. He completed a doctorate 
in mathematics at a university in Budapest, while simultaneously pursuing an undergraduate degree in 
chemical engineering at the technical university in Zurich so as to assure his family that he would learn a 
practical skill. Upon

2 R. Rojas, ed., Die Rechenmaschinen von Konrad Zuse, Berlin: Springer-Verlag, 1998.
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graduation, for several years he held postdoctoral positions in mathematics in Germany, where he came 
under the influence of the distinguished mathematician David Hilbert. During his few years in Germany he 
developed the mathematical foundations of quantum theory, wrote some early papers on game theory and 
economic theory, and worked on Hilbert's program to secure a logical foundation for mathematics.

With his international mathematical reputation already secure, a lack of professorships available in 
Germany, and looming political problems in Europe, von Neumann decided to emigrate to America in 1930. 
He first held a visiting position in the mathematics department at Princeton University. Then he became the 
most junior of the five faculty members originally appointed to the Institute for Advanced Study, a think 
tank established in Princeton in 1932, which rented space in the university's mathematics building until it 
built its own buildings across town in 1939.

Von Neumann continued his active research program in pure mathematics in Princeton, but beginning 
around 1937, through the influence of his colleague Oswald Veblen, he began to take an interest in applied 
mathematics, especially applications to war-related problems. During the war he worked for several different 
military organizations, most importantly for the national laboratory in Los Alamos, New Mexico. The 
computational problems associated with a triggering device for the atomic bombs being developed at Los 
Alamos led von Neumann to the computing projects at the University of Pennsylvania. By the time he joined 
the Penn group as a consultant in 1944, the ENIAC design had been frozen, development was advanced, and 
discussions had begun on the design of a successor computing device, the EDVAC. Von Neumann joined 
these group discussions about the design of the EDVAC and in 1945, based partly on these discussions, he 
wrote the Draft Report on EDVAC, which introduced the basic description of the stored-program computer.

By early 1945, even before the war was over, von Neumann had decided that the computer could be a 
breakthrough technology for scientific research and that he wanted to build a computer for these purposes. 
He secured permission to build a computer at the Institute for Advanced Study, with funding at first from the 
IAS, Army, and Navy (and later from the Air Force and the Atomic Energy Commission), with in-kind 
support provided by RCA and Princeton University. The project began in 1946, and the computer reached 
working order in 1952. The IAS continued to operate the computer until 1957, when it was sold to Princeton 
University. The university operated it for another three years, before donating it to the Smithsonian 
Institution for public display as an historic artifact.
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3— 
Organizational Mission

Some historical accounts of early computers unfortunately pay little or no attention to the organizations in 
which the computers were built. Computers at this time were large, capital items that consumed significant 
amounts of organizational resources (funding, space, staff). The decision to build or buy a computer was 
generally an important decision for an organization, made (or at least approved) at the highest levels of 
management. When good management practice was followed, the decision involved careful consideration of 
how the computer would fit with the mission of the organization. But no matter how good the management, 
the organizational mission typically shaped the kind of project and whether and how it succeeded.

The organizational mission of the Institute for Advanced Study was to pursue world-class research in a few 
selected areas of study. The areas selected for study in the 1930s were mathematics and theoretical physics. 
Faculty were free of all normal university duties such as committee work, administration, teaching, and 
student advising so that they could concentrate on their research. Subjects such as biology, although they 
offered promise of fundamental breakthroughs, were avoided at the Institute because they involved a large 
research support investment, such as laboratories and technicians, which were both costly and thought to 
detract from the protected environment in which the elite faculty did its scientific thinking. Thus it was not 
at all clear that a computer project, which required laboratories, technicians, programmers, and operators, 
and which led to the building of an artifact that could be used for business and military purposes, would be 
welcome at the Institute. Von Neumann politicked assiduously to convince the director and trustees of the 
institute that the computer would be a breakthrough technology for science, especially in the study of 
nonlinear physical phenomena–an area of scientific research that he noted had been largely stagnant since 
the nineteenth century.

4— 
Project Objectives

It is useful to examine not only the objectives of the organization, but also the objectives of the computer 
project itself. In an entrepreneurial start-up, there are typically only a small number of projects, and they 
tend to have objectives that are closely aligned with the mission of the organization. But in larger, more 
established organizations a project might have many different possible objectives, not necessarily closely 
tied to the organization's mission. The commitment to a project and the resources assigned to it will depend 
on the project objectives. A computer manufacturer is likely, for example, to provide greater support to a 
project that results in a product that is a key of-
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fering than it is to satisfy the intellectual interests of a staff member. The objectives of the project also set 
the standards for success.

The main objective of the IAS computer project was to explore the value of the computer as a scientific 
instrument. This objective shaped both the machinery that was built and the way in which it was used. In the 
Draft Report on EDVAC von Neumann had advocated building synchronous computers with serial 
architecture and no floating-point. These choices were believed to simplify the overall design and 
construction of the hardware at a time when nobody had yet built a stored program computer.

But in the IAS computer project, von Neumann did not follow his own advice.3 He returned to first 
principles to decide what kind of machine would be most suitable for scientific research. He chose to use 
parallel memory and parallel arithmetic, and to make the machine asynchronous. All of these choices were 
made to increase the speed of the machine. It proved to be a major task to work out the circuitry for this 
design, but once it was done, the machine was indeed fast (so long as it was supported by a fast random-
access memory). The computing community was somewhat surprised that this design led to a physically 
small machine (by standards of those days), with fewer tubes and a simpler control mechanism than in the 
EDVAC. Speed of basic operations and size of the memory were determined both by the available 
components and by von Neumann's calculations about the capacity a computer would need to have in order 
to solve certain classes of scientific problems.4

5— 
Organizational Buy-In

An organization might allow a project to be carried out without committing itself to the project fully – 
intellectually, emotionally, or in terms of the resources that are allocated to it. Such a project might be 
tolerated because it seemed as though it had potential to be important to the organization, or it was strongly 
desired by some sector or key individuals in the organization; but it was not yet seen as core to the mission 
of the organization. Projects without strong organizational buy-in often have difficulty in succeeding. 
Resources for carrying out the project are likely to be meager. Almost every project has some stage at which 
it experiences problems, and it is difficult to acquire the extra resources or time to overcome these problems 
if the management does not have faith in the proposal. Management is quick to terminate such projects, and 
the proponents are likely to be disappointed and may even become bitter.

3 A good account of this is given in Michael R. Williams, A History of Computing Technology, Englewood Cliffs, 
NJ:Prentice Hall, 1985, pp. 353–359.
4 This issue is discussed at length in Aspray (1990), chapter 3.
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In order to succeed, von Neumann needed to have organizational buy-in at four places: from the IAS board 
of trustees, the IAS director, the other faculty, and the financial and technical partners. Von Neumann 
worked first on the director, Frank Aydelotte. Von Neumann was a productive and valued member of the 
faculty (of which there were then only six), and Aydelotte worked hard to see that the faculty was happy and 
well supported. There was a strong belief that, as some of the best scientists in the world, the faculty should 
be given great freedom in choosing the projects they wished to conduct. Thus, the culture was supportive of 
von Neumann's decision to pursue a study far removed from that typical in mathematics. However, von 
Neumann recognized that his computer project would seriously disturb the think-tank atmosphere of the 
Institute. He solicited support from his colleague Oswald Veblen, who had been instrumental in locating the 
Institute in Princeton and focusing it on scientific rather than medical research.

Von Neumann himself used a ''carrot and stick" approach. Aydelotte and the trustees were seeking a 
breakthrough to more firmly establish the Institute as a world-class operation. While the Institute did have 
the world-renown Albert Einstein and other distinguished mathematicians on its faculty, it was still a young 
organization and Aydelotte believed that it needed some new achievements to secure its reputation. Von 
Neumann convinced Aydelotte that the computer might have this effect. He also made it clear that he was 
determined to build a computer, emphasizing this point by soliciting offers of faculty positions from 
Chicago, Columbia, and MIT. With Veblen and Aydelotte's encouragement, the Trustees voted to approve 
the project and provide $100,000 of initial funding.

During the course of the project, Robert Oppenheimer succeeded Aydelotte as director of the Institute. 
Oppenheimer was familiar with the importance of advanced scientific tools from both his university research 
as a physicist and his Los Alamos experience during the war. Not surprisingly, he seems to have had no 
major objections to the presence of a computer project at the Institute. His objection was instead to some of 
the uses of the computer. Having renounced at the end of the war any further personal role in the creation of 
weapons of mass destruction, he was distressed by the heavy use the Institute computer was receiving from 
weapons designers at Los Alamos, as well as by von Neumann's involvement in this work. But Oppenheimer 
adhered to the laissez faire practice that let Institute faculty decide for themselves what work they would 
pursue. Although Oppenheimer and von Neumann were not friends, and although they were diametrically 
opposed politically, they displayed strong mutual respect for one another as professionals. For example, von 
Neumann set aside his political beliefs in order to testify in Congress on Oppenheimer's behalf, when 
Oppenheimer was in danger of losing his security clearance.

Veblen and perhaps one or two of the other Institute faculty were supportive of the computer project. 
However, that support was mainly vested in support for von Neumann, not in the intellectual merits of the 
project itself.
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This became clear in the later years of the project. Beginning around 1952, von Neumann began to spend 
more time in Washington, D.C. than in Princeton. He was working closely with the Atomic Energy 
Commission and eventually became one of its five commissioners. He was also doing active consulting for 
the Air Force on intercontinental ballistic missiles and for the predecessor organizations of the National 
Security Agency on cryptanalysis. He eventually decided to resign his faculty position at the Institute 
because he believed the intellectual climate was not conducive for his research on scientific computing and 
because he was eager to escape from a town he had always regarded as provincial. He signed a faculty 
contract with the University of California, Los Angeles, to become effective once his term at the AEC had 
ended. He believed that UCLA would be more accommodating to his research. This move would also locate 
him in his beloved southwestern United States, where the weather, cuisine, and geography were all to his 
liking. While in Washington, however, he became gravely ill with cancer. He died in 1957, before he could 
move to California.

As soon as it became clear that von Neumann was not going to return to the Institute, support within IAS for 
the computer project evaporated. Staff began to leave for other research organizations, and the computer was 
sold to Princeton University. This computer was rapidly becoming obsolete, but no serious consideration 
was given to building or buying another computer for the Institute or to continuing the research program in 
scientific computation.

Von Neumann also had to obtain institutional buy-in from his financial and intellectual partners in the 
project. The support from the military services and the Atomic Energy Commission was quite strong. It was 
not at all clear at the end of the war that the federal government would be willing to support a computer 
project at the Institute. The military was already supporting projects at the University of Pennsylvania, 
nobody knew how much of a need there was for high-powered computers, and one could question why the 
government should support a computer devoted to scientific research rather than to military objectives. 
However, the military leadership had great respect for von Neumann on account of his contributions during 
the war, his obvious intellectual abilities, his congenial hawkish political views, and his willingness to 
continue in peace-time to make his extraordinary talents available to the military. It should be remembered 
that von Neumann was virtually alone among the early computer designers in having already achieved a 
strong, international scientific reputation, and this no doubt helped in both giving scientific legitimacy to 
computers generally as well as in gaining support for his own project.

Von Neumann designed a plan whereby the IAS computer would receive substantial financial support from 
the armed services but would nevertheless be free from doing operational calculations for them. This was 
accomplished by positioning the IAS computer as the testbed for computer design for machines that the 
military and energy laboratories would build for their own use in the Cold War. This plan was fully endorsed 
by the military, and later by
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the Atomic Energy Commission, and the project was adequately funded throughout its lifetime, even during 
the early years when progress on the construction of the machine was slow.

The organizational buy-in from the other partners was less strong. This was certainly true of Princeton 
University. Several Princeton faculty members were supportive of the computer project, notably John 
Wheeler in physics and Martin Schwarzschild in astronomy. However, the physics department did not 
supply the electronics expertise that had been called for in the early negotiations. Other Princeton faculty 
members who had no particular standing at the Institute were not made particularly welcome when they tried 
to use the machine. When the Institute sold the computer to the university, the university believed that it had 
received less than full disclosure about the state of the computer and the costs of maintenance and operation. 
In fact, these costs proved to be so great that several years later, when an electrical storm temporarily 
disabled the computer, the university used this event as an excuse to decommission the machine.5

RCA's buy-in was also weak. The company was supposed to build the main memory device for the project. 
Work proceeded slowly, and RCA management was unwilling to take away resources from its core 
businesses to support the memory development effort. As a result, the Institute staff had to scramble to find 
an alternate memory, settling on the Williams tube that had been first developed at the University of 
Manchester. RCA's Selectron memory ended up being used in only one computer, the Johnniac, a copy of 
the IAS computer that was built at the Rand Corporation.

6— 
Organizational Capabilities

Much of the literature on early computer developments does not give direct consideration to the capabilities 
of the organization in which the computer was built. Yet each organization has strengths and weaknesses, 
which have an effect on both what the organization tries to do and how well it succeeds. One common 
exercise I give to my students whenever I teach a course on the history of computing is a prosopographical 
analysis of the computer industry. Rather than looking at individual firms, we create a prosopography (a 
kind of group portrait) to uncover the strengths and weaknesses – marketing, customer base, technical 
knowledge, industry knowledge, technical management, capital, research facilities, etc. – of types of entrants 
to the computer industry – startups, defense contractors, electrical manufacturers, and business equipment 
manufacturers. While there are certainly important differences between NCR and Burroughs, for example, 
they share many similari-

5 See Acton, Forman. Oral History Interview. Conducted by Richard Mertz, 21 January 1971, Princeton, NJ. Smithsonian 
Archives.
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ties, such as strong customer bases but weak electronics knowledge, as business equipment manufacturers; 
and these similarities led them to have somewhat similar experiences as they entered the computer era.

Organizational capabilities to carry out a computer development project were weak at the Institute for 
Advanced Study. The Institute had to hire an entire staff of engineers, technicians, and programmers. 
Although there were some talented engineers available at the end of the war who had had experience with 
electronics, very few people experienced with building electronic or electromechanical computing 
equipment were available. The shortage of experienced engineers meant that the development phase 
proceeded more slowly and that all of the craft knowledge of building computers had to be learned as they 
went along.

There was also a problem with project management. Von Neumann had experience with the EDVAC, as did 
Herman Goldstine, who was hired as von Neumann's second-in-command to direct the daily operations. But 
they were both mathematicians, not engineers. Presper Eckert, the principal engineer on the ENIAC and 
EDVAC projects, was originally offered the job as IAS chief engineer. But the offer was rescinded because 
Eckert wanted to retain patent rights to the intellectual property he developed, whereas von Neumann 
insisted on placing the project's intellectual property developments in the public domain. Instead, Julian 
Bigelow, who had had some limited relevant experience at MIT, was hired as chief engineer at the 
recommendation of Norbert Wiener. Bigelow did not get along with Goldstine, and Bigelow's perfectionist 
tendencies slowed progress so much that von Neumann had to replace him with James Pomerene in the 
midst of construction.

Funding proved to be adequate, but it was a patchwork from various sources, with several periods of 
uncertain funding during the course of the project. Space of all kinds was inadequate until a new building 
was constructed. Even then, there were no well-equipped laboratories. This forced a strategy of using off-
the-shelf components for in-house construction and contracting out all work on hardware that required 
development, most notably the main storage unit to be developed by RCA. In the end, IAS staff did have to 
do on-site research on both storage and input-output equipment. The Institute's buildings were located in an 
upscale residential community, and the project management was faced with answering public outcries about 
the safety of having a machine that consumed so much power in their neighborhood.

7— 
Technology Transfer

While historians today know what was going on at each of the various computer projects that were scattered 
around North America and Europe in the decade following the war, it does not mean that the computer 
pioneers them-
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selves were aware of what was going on at other sites. Indeed, communication was weak and technology 
transfer was fairly difficult at the time. At the end of the war, there were no regular professional computing 
societies, conferences, journals, or formal training programs. Special conferences and sessions on computing 
at the meetings of other professional groups, such as the Institute of Radio Engineers, began to be held soon 
after the war ended; and in the early 1950s the first computer journals were formed.6

The IAS computer project was an important source of information for the European and North American 
communities about computer design and usage. Von Neumann and his colleagues Herman Goldstine and 
Arthur Burks wrote reports on the logical design and programming of computers, which were distributed to 
all the major computer projects. Progress reports, circuit diagrams, and blueprints from the IAS project also 
circulated widely. Von Neumann was a frequent speaker about his computer project at professional 
conferences, and Goldstine and Bigelow occasionally made presentations.

A number of people also came to visit the project. Scientists came from all over the world to spend a few 
months or a year as visiting scholars doing scientific computations or research on numerical methods. The 
military services and the U.S. Weather Bureau seconded scientific personnel to the Institute in order to learn 
about numerical weather prediction practices. A steady stream of scientists, engineers, military personnel, 
and others briefly visited the Institute to learn more about the project. As the project neared its end date, the 
staff scattered to various research organizations around the

6 See, for example, William Aspray's introduction to Proceedings of a Symposium on Large-Scale Digital Calculating 
Machinery (1947), jointly sponsored by The Navy Department Bureau of Ordnance and The Harvard University 
Computation Laboratory, Charles Babbage Institute Reprint Series in the History of Computing, Volume 7, Cambridge, 
MA: MIT Press and Tomash Publishers, 1985; Eric A. Weiss, Publications in Computing: An Informal Review", 
Communications of the ACM 15 (July 1972), pp. 492–497; Anon., A World List of Computer Periodicals, The National 
Computing Centre Limited, 1970, Manchester, England; Harry Polachek, "History of the Journal Mathematical Tables 
and Other Aids to Computation, 1959–1965", IEEE Annals of the History of Computing, Vol. 17, No.3, 1995, pp. 67–74; 
Charles Concordia, "In the Beginning There Was the AIEE Committee on Computing Devices," Computer 1976, pp. 42, 
44; Franz L. Alt, "Fifteen Years ACM," Communications of the ACM 30 (October 1987), pp. 850–859; Lee Revens, "The 
First 25 Years: ACM 1947–1962,'' Communications of the ACM 30 (October 1987), pp. 860–865; Anita Cochran, "ACM: 
The Past 15 Years, 1972–1987," Communications of the ACM 30 (October 1987), pp. 866–872; Eric A. Weiss, 
"Commentaries on the Past 15 Years," Communications of the ACM 30 (October 1987), pp. 880–883; Eric A. Weiss, 
"Publications in Computing: An Informal Review," Communications of the ACM 15 (July 1972), pp. 491–497; Morton 
M. Astrahan, " In the Beginning There Was the IRE Professional Group on Electronic Computers," Computer, December 
1976, pp. 43–44; Walter Anderson, "The Middle Years," Computer (December 1976), pp. 45–53.
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world. For example, Jule Charney joined the MIT faculty and formed its numerical meteorology program. 
Goldstine left to become director of IBM's new T.J. Watson Research Laboratories, and Pomerene went with 
him to become one of IBM's leading computer engineers and a future IBM Fellow. Burks formed an 
academic program in computing at the University of Michigan. Gerald Estrin moved to Israel, where he built 
that country's first computer. These are only a few examples. Together with Penn, Harvard, and MIT, the 
Institute became one of the leading sources of early computing personnel.

8— 
Values and Impacts

Any particular computer has little value in and of itself. Its value comes instead from its uses, the proof of 
principles that it demonstrates, the design ideas that it embodies, the theory that is developed in connection 
with the machine, the people who are trained upon it, and its role as a cultural icon. For example, the ENIAC 
was perhaps most important as a proof of principle that a large-scale electronic calculating machine could be 
built and operated successfully, and the UNIVAC may have had its greatest value as a cultural icon, as 
indicated by the popular use of the word "Univac" to refer to all computers in the 1950s, much like some 
people speak today of "Xerox machines" instead of "photocopiers." Of course, the meaning of an artifact 
varies from individual to individual and from organization to organization. The ENIAC was an important 
tool to the weapons designers at Los Alamos, not just a proof of principle; and the UNIVAC was an 
important business commodity for Sperry Rand, not just a cultural icon.

The IAS computer was valuable in several ways. The numerical analysts, computer engineers, and 
computational scientists (to use modern terminology) who were trained on the IAS computer project and 
who became early leaders in the computing field have already been discussed. Various scientific 
computations and theories were developed based upon use of the IAS computer. Martin Schwarzschild, for 
example, did important work on the internal composition of stars. But numerical meteorology was regarded 
by von Neumann as the crucial test of the scientific value of the IAS computer, and the results were 
extraordinary. While the IAS computer was barely powerful enough to calculate a numerical weather 
forecast, the team of meteorologists and mathematicians working on the IAS computer project developed 
both a theory of numerical meteorology and a practice of numerical weather forecasting. These rapidly 
spread around the world – to universities and research centers for further study and to the military weather 
bureaus and U.S. Weather Service, where numerical forecasting techniques were rapidly put into practice. 
Some interesting early work was done on numerical analysis, but the IAS was only one of several places 
redefining this discipline for use
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with the computer. Von Neumann's own work on automata theory showed considerable promise, but it was 
incomplete at the time of his early death. The parallel arithmetic and storage architecture used in the IAS 
machine was copied on many computers of the 1950s, although the contributions to computer engineering 
were undoubtedly greater at some other places, notably MIT. It is not surprising that the IAS project 
contributed more to scientific computing than to computer engineering because that is how von Neumann 
defined the project.

9— 
Technological and Other Obstacles

The current way in which many historians understand technology is in terms of systems that include not only 
technological artifacts and knowledge, but also – seamlessly – the people and social organizations that are 
associated with them. Thus it is appropriate not only to consider technological obstacles to the achievement 
of some project mission, but other human and institutional factors.

What were the main obstacles to achieving the objective of the IAS computer project, of demonstrating the 
value of the computer as a scientific instrument? One was to find an adequate device to serve as the main 
memory of the computer. This was a problem that all early computer designers faced. The problem was 
perhaps more difficult at the IAS because of the desired speed characteristics and the parallel architecture 
that had been chosen to accommodate scientific computation. It was also more difficult because of the lack 
of adequate laboratory facilities and experienced technical staff at the Institute, and the limited buy-in from 
RCA. The storage problem was overcome, as indicated above, by adopting the Williams tube technology 
first developed in Manchester.

A second obstacle was the reliability and the maintainability of the computer. It was a struggle to get a 
computer working at all. The IAS staff did not have the time, the funding, the facilities, the expertise, or the 
motivation to build a computer that was highly reliable and easily maintained. Many of the one-of-a-kind 
computers of the early years had reliability and maintainability problems, and the IAS computer was no 
exception. Once it was regarded as finished and had been placed in full-time operation, the IAS computer 
was operable about 70 percent of the time. Maintenance remained a problem. The tool most commonly used 
by the engineering staff after the computer was commissioned was wire-cutters. The computer was not laid 
out in a way that made maintenance easy, and generally when a vacuum tube or some unit failed, the 
engineers had to cut away wires from some units to gain access to the inoperable equipment.

A third obstacle was adequate numerical methods and algorithms. Numerical methods had traditionally 
focused on issues that were of concern to
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calculators using pencil and paper or desk calculators. These included methods for solving small systems of 
linear equations and inverting small matrices, approximating roots of polynomials, and solving a few kinds 
of ordinary differential equations. Concern was traditionally given to truncation errors in numerical methods 
because of the inability to carry out large numbers of calculations. The numerical issues the IAS scientists 
addressed had a different emphasis: finding methods of inverting matrices and solving linear systems that 
were efficient for large systems, methods for solving partial rather than ordinary differential equations 
(especially nonlinear PDEs), accumulation of round-off errors instead of truncation errors, and generating an 
adequate supply of random numbers for Monte Carlo methods.

A fourth obstacle was producing an adequate theoretical understanding of the capabilities and possible 
organizational structures of computing equipment. Presper Eckert was the first of a long line of engineers 
who have questioned the value added by von Neumann's use of the McCulloch-Pitts neural net concepts in 
the description of the stored program concept, as given in the Draft Report on EDVAC. Von Neumann used 
this terminology to focus on the logical design elements of computers, separated from any engineering 
implementation. He continued this line of inquiry on the IAS computer project in a series of studies on the 
theory of automata. These studies compared the computing process and power of the computer with the 
human nervous system, and explored such questions as how complex an automaton must be in order to learn 
or self-replicate. Von Neumann achieved promising but not extraordinary results in this area before his 
death, and for many years these theoretical studies had only limited significance for computer design. In 
recent years, one line of theoretical inquiry begun by von Neumann (cellular automata) has been relevant to 
the construction of neural nets and massively parallel computers.

10— 
First-Mover Advantages and Organizational Continuity

Business historians have noted the considerable advantage a firm has in being an early entrant to a market. 
These "first movers" have the opportunity to define the characteristics of the products that are offered in this 
market, build a customer base, hire the most talented employees, build a supplier network, and take 
marketing advantage of the absence of other competitors. In order to build upon first-mover advantages, 
organizations need organizational continuity, a willingness to commit to building on their early start.

How do the concepts of early entry, first-mover advantages, and organizational continuity apply to the 
Institute for Advanced Study? It is clear that the Institute was not organizationally committed to computers 
and that it terminated the computer project soon after von Neumann's departure, never to
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enter this field again. Although the Institute and Princeton University are two separate institutions, there 
were many ties between them. The Institute was housed on the university campus for most of its first decade 
of existence and then moved to premises only a half-mile from campus. Three of the five original Institute 
faculty members were drawn from the university mathematics department. Colloquia and facilities were 
open to graduate students and faculty from both institutions. Original plans had called for the university 
physics department to have a hand in building the computer (although there is little evidence that this 
happened). A few university faculty members were active users of the Institute computer. The university 
purchased the computer from the Institute and operated it for its final three years (without moving it from the 
Institute premises). Thus it is reasonable to ask what advantages Princeton University, which did have a 
continuing interest in computing and which is today moderately strong in computer science, gain from the 
early activities at the Institute for Advanced Study.

The answer is that Princeton is much like the other major research universities in the United States that 
became involved with computing in the 1940s: Harvard, MIT, Columbia, and Pennsylvania.7 With the 
exception of MIT, none of these institutions took advantage of its early lead to become and continue to be a 
leading school in computer science. Even MIT, which has been a leading institution in the computing field 
since the 1920s, had a sharp discontinuity in its computing programs just after the war ended, abandoning its 
support for Samuel Caldwell and his operation in favor of work by Jay Forrester on real-time digital 
computing.

In Princeton, once the IAS computer project was terminated, almost the entire computer staff left to build up 
computer programs at other institutions. The only principal remaining at the Institute was Julian Bigelow, 
the original chief engineer, but he did little substantial work on computers after the project was terminated. 
Princeton University hired none of the people who had worked on the IAS computer project. Instead, the 
university left the development of its computing program to Forman Acton, a junior faculty member in 
applied mathematics. Acton had tried to use the IAS computer during its hey-day. While he had not been 
prevented from doing so, he had been discouraged by the fact that nobody at the Institute would give him the 
extra assistance they gave to the preferred users in learning the craft knowledge that is essential in operating 
an experimental machine.

Acton moved into the electrical engineering department at the university to build up a computer science 
program, but it did not have its first real strength until Edward McCluskey was hired from Bell Laboratories. 
In the 1960s and 1970s Princeton attracted a number of strong computer scientists, including John Hopcroft, 
Jeff Ullman, and Peter Denning. But McCluskey and Ullman

7 The issue of early entry of universities in the United States into computer science is explored in depth in a forthcoming 
book by this author on the history of academic computer science.
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left for Stanford, Hopcroft for Cornell, and Denning for Purdue because computer science could not seem to 
grow strong for a variety of reasons, including the hostile environment of the electrical engineering 
department. It was not until the 1980s that Princeton was able to build up a strong and stable computer 
science program.

11— 
Conclusions

This paper is not intended to be a history of the computer project at the Institute for Advanced Study in 
Princeton. Instead it uses this computer project as a case study to illustrate concepts employed by historians 
of technology which this author believes can be profitably employed in writing the history of computing. 
The list of concepts described in this paper is by no means complete. It barely touches, for example, on 
many of the concepts that have been employed by the social constructionist school. Some concepts are of 
course more applicable than others in a given situation, but a judicious application of these concepts would 
undoubtedly enrich the scholarship on the history of computing. It will also build connections between the 
study of the history of computing and the study of the history of technology more generally. Computer 
history has been studied in a somewhat insular manner. This has meant it has not attracted as much historical 
talent as the subject merits, and also that the history of computing has not been integrated as much into the 
teaching and research in the history of technology or general history as it might have. Scholars of the history 
of computing have an opportunity to change this, if they choose to do so.
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"Nothing New since von Neumann": 
A Historian Looks at Computer Architecture, 1945–1995

Paul Ceruzzi

Abstract. It is sometimes said that computer architecture has hardly changed since the publication of the 
"First Draft of a Report on the EDVAC" by John von Neumann in 1945. Obviously computing has advanced 
by great strides since 1945, a fact that might call that statement into question. Or perhaps not. This paper 
examines to what extent such a statement is true, and to what extent its assertion blinds one to genuine 
advances in computer architecture since 1945. It concentrates on a few selected events and developments, 
and therefore is not a comprehensive history of the evolution of computer architecture since 1945. These 
events include: a) the emergence of a stabile, "mainframe" architecture by 1960, b) the IBM System/360 and 
its architectural innovations, c) the development of the minicomputer, d) the microprocessor, e) RISC.

1— 
Introduction

What follows is a history of the evolution of computer architecture, and a "road map" for historians who may 
at times feel lost in the "trackless jungle," to use Mike Mahoney's phrase, of all that has happened in 
computing since 1945. This history will be familiar to many of you. I propose it as a middle ground between 
the two contradictory truths in the history of computing. These are, on the one hand, that computing has 
progressed by orders of magnitude since 1945–a progress unmatched by nearly any other technology in 
human history. On the other hand, that computer architecture continues to feel the influence of the 1945 
report on the EDVAC, by von Neumann, and the 1946–47 reports on the Institute for Advanced Studies 
Computer (IAS), by Burks, Goldstine, and von Neumann.
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2— 
First Plateau:
1955–1965

By the end of 1960 there were about 6,000 general-purpose electronic computers installed in the United 
States. Nearly all of them were descendents of the EDVAC and IAS computer projects of the 1940s, where 
the concept of the stored program first appeared. But in many ways there were significant modifications to 
those designs. Some of these innovations became selling points as different vendors sought to establish their 
products in the marketplace. The most important of them are summarized here.

Word Length — Core Memory

The introduction of reliable core memory made it practical to fetch data in sets of bits, rather than one bit at 
a time as required by a delay line. For a computer doing scientific work, it seemed natural to have this set 
correspond to the number of digits required for a typical computation–say, from seven to twelve decimal 
digits. That meant a block size, or word length, of 30 to 50 bits. Longer word lengths were preferred for 
scientific calculations but increased the complexity and cost of the design.

Computers intended for commercial use did not require handling numbers with many digits. Quantities of 
money handled in the 1950s seldom exceeded a million dollars, and two digits to the right of the decimal 
place were sufficient. Business-oriented computers could therefore use a shorter word length, or they could 
use a variable word length, if there was a way to tell the processor when the end of a word was reached. The 
IBM 702, IBM 1401, RCA 301 and RCA 501 all had variable word lengths, with the end of a word set by a 
variety of means. The 1401 used an extra bit appended to each coded character indicating whether it was the 
last one of a word or not, the 702 used a special character that signified that the end was reached. Although 
popular in the 1950s, computers with variable word lengths fell from favor in the following decades and are 
no longer common.

Register Structure

Processing units of early computers contained a set of circuits that could hold a numeric value and perform 
rudimentary arithmetic on it – usually nothing more than simple addition. This became known as an 
accumulator, since sums could be built up or "accumulated" in it. Another set of circuits made up the 
program counter, which stored the location of the program instruction that the processor was to fetch from 
memory and execute.

The typical cycle of a processor was to fetch an instruction from memory, carry out that instruction on data 
in the accumulator, and update the program counter with the address of the next instruction. In the simplest 
case the pro-
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gram counter was automatically incremented by one (hence the term "counter"), but branch instructions 
could specify that the counter point to a different memory location.

A computer program orders the processor to perform arithmetic or logic (e.g. add, compare, etc.), tells the 
processor where the relevant data are to be found, and tells it where to store results. As with the sequential 
fetching of instructions, the processor often requires pieces of data that are stored close to one another in 
memory. A program that performs the same operation on such a list of data might therefore consist of a long 
list of the same operation, followed by only a slight change in the address. Or the program could modify 
itself and change the address each time an operation is executed. Neither process is elegant.

Beginning with an experimental computer at the University of Manchester in 1948, designers added to the 
processor an extra index register to simplify working with arrays of data. In early descriptions of the 
Manchester computer, the designers called this register a "B-line," the symbol "A" was used for 
accumulator, and "C" for control. This term persisted into the 1950s. By specifying a value to increment the 
address field of an instruction, programs no longer had to modify themselves as envisioned by von Neumann 
and other pioneers. That greatly simplified the already difficult process of programming.

These three types of registers: accumulator, program counter, and B-line or index register, made up the 
processing units of most large computers of the 1950s. For example, the IBM 704, announced in 1954, had a 
36-bit word length, a core memory holding 4,096 words, and a processor with an accumulator, program 
counter, and three index registers. Another register was coupled to the accumulator and dedicated to 
multiplication and division (e.g., to store the extra bits that are generated when two 36-bit numbers are 
multiplied together).

In 1956 the British firm Ferranti, Ltd. announced a machine, called Pegasus, whose processor contained a set 
of eight registers, seven of which could be used as accumulators or as index registers. That inaugurated the 
notion of providing general-purpose registers that a program could use for any of the above functions, as 
needed by a specific program. Other companies were slow to adopt this philosophy, but by the end of the 
next decade it became the most favored design.

Number of Addresses

Instructions for an accumulator-based machine had two parts: the first speci-fied the operation (add, subtract, 
compare, etc.), the second the address of the data to be operated on. If an operation required two pieces of 
data, the other operand needed to be present in the accumulator. It could be there as the result of the previous 
operation, or as a result of an explicit instruction to load
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it into the accumulator from memory. Because each instruction contained one memory reference, this was 
called a single-address scheme. Its virtue was its simplicity; it also allowed the address field of an 
instruction to be long enough to specify large portions of memory. Many computers built in the 1950s used 
it, including the original UNIVAC and IBM's series of large scientific computers, the 701, 704, 709, and 
7090.

There were alternatives to the single-address scheme. One was to have an operation followed by two 
addresses, for both operands. A third address field could be added, to store the results of an operation in 
memory rather than assume they would remain in the accumulator. The UNIVAC 1103, RCA 601, and IBM 
1401 used a two-address scheme, while the UNIVAC File Computer and the Honeywell H-800 used a three-
address scheme.

These schemes all had address fields that told where data were located. One could also include the address 
of the next instruction, instead of going to the program counter for it. Drum computers like the IBM 650 and 
Librascope LGP-30 minimized the time spent searching the drum for the next instruction – each instruction 
could direct the computer to the place on the drum where the desired data would be, after executing the 
previous instruction. Programming this way was difficult, but it got around the inherently slow speeds of 
drum machinery. With the advent of magnetic core, this scheme fell from necessity.

Finally, one could design an instruction that specified no addresses at all: both operands were always kept in 
a specified set of registers, in the correct order. Results likewise went into that place, in the proper order for 
further processing. That required organizing a set of registers (or memory locations) in a structure called a 
stack, which presented data to the processor as Last-In, First-Out. Computers with this scheme first appeared 
in the 1960s, but they never seriously challenged the single-address design. The stack did not prevail as a 
method of designing large system processors. However, it would have its day in the sun, as it reappeared 
first of all in minicomputers, and then most dramatically in the design of the first microprocessors, which 
will be discussed later.

I/O Channels

One of the UNIVAC's innovations was its use of a storage area that served as a "buffer" between the slow 
input and output equipment, such as card readers and electric typewriters, and the much faster central 
processor. Likewise the UNIVAC 1103A introduced the concept of the "interrupt," which allowed the 
machine's processor to work on a problem, stopping to handle the transfer of data to or from the outside 
world only when necessary. These concepts became well established, and further extended, for large 
commercial machines of the 1950s.
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As the requirements for matching the speeds of input/output with the central processor grew more complex, 
so too did the devices designed to handle this transfer. With the introduction of the IBM 709, IBM engineers 
designed a separate processor, called a ''channel," to handle input and output. This channel was in effect a 
small computer of its own, dedicated to the specific problem of managing a variety of I/O equipment 
operating at different data rates. Sometimes, as designers brought out improved models of a computer, they 
would add to the capabilities of this channel until it was as complex and powerful as the main processor–and 
one now had a two-processor system. At that point the elegant simplicity of the von Neumann architecture 
was in danger of being lost, possibly leading to a baroque and cumbersome system.

The complexity of I/O channels drove up the cost of systems that used them. For customers who used a 
computer for problems that handled large quantities of data, they were necessary. In time, the use of 
channels became a defining characteristic of what became known as the mainframe computer: one that was 
physically large and expensive, and which contained enough memory, flexibility, I/O facilities, and 
processing speed to handle the needs of large customers. The mainframe computer became the standard of 
the 1960s, although other classes would arise both at the higher end, where faster processing but simpler I/O 
was required, and at the lower end, where low cost was a major design goal.

Floating-Point Hardware

One final design feature needs to be mentioned. Although it was of concern primarily to scientific 
applications, it had an impact on commercial customers as well. In the words of one computer designer, it is 
the "biggest and perhaps only factor that separates a small computer from a large computer," that is, whether 
or not a machine handles floating-point arithmetic in its hardware.

One can program any computer to operate as a floating-point machine. But the programming is complex, 
and it slows the machine down. Or one can design the electronic circuits of the machine to handle floating-
point in hardware. Such a design will calculate much faster but it makes the processor more complicated and 
expensive. As electronic engineering advanced to a point where circuits became more reliable, and as 
memory capacities and access times improved, the balance tilted in favor of hard-wiring floating-point 
arithmetic into the processor. The IBM 704, delivered in 1956, included it, and that feature played a major 
role in propelling IBM ahead of UNIVAC in sales of large machines.

Manufacturers felt that commercial customers did not need floating-point and would be unwilling to pay for 
it. They typically offered two separate lines of machines, one for commercial customers and the other for 
scientific or engineering applications. The former, which included the UNIVAC, the UNIVAC File, and 
IBM 702 and 705, had only fixed-point arithmetic, and
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often a variable word length. The latter, like the 704 and 709, had floating-point and a relatively long, fixed 
word length. Input/output facilities were often more elaborate for the business-oriented machines.

This parallel development of two, almost similar lines of equipment persisted through the late 1950s into the 
next decade. For many customers the distinction was not that clear. For example the IBM 650, intended for 
commercial customers, was often installed in university centers, where professors and students often labored 
to develop floating-point software for it. Likewise, the IBM 704 had better performance over the 705, 
because of what many felt was a superior architecture, and customers who ordered a 704 for scientific work 
soon found themselves using it for commercial applications as well. The preference for the 704 increased 
even more as the programming language FORTRAN became available on it.

3– 
IBM 7094: 
The Canonical Architecture

Introduction of the 7090

The 7090 had the same architecture as the vacuum tube-based 709 and was introduced only a year after 
deliveries of the 709 had begun (ca. 1960). That was an admission by IBM that vacuum tube technology was 
obsolete, and it had to take a financial loss on the 709 product line. Other, smaller companies had already 
introduced transistorized products that were getting praise from the trade press. According to folklore, IBM 
submitted a bid to the U.S. Air Force to supply solid state computers for the Ballistic Missile Early Warning 
System (BMEWS) around the Arctic Circle. At the time IBM had just announced the 709, but the Air Force 
insisted on transistorized machines.

IBM designers planned to meet the deadline by designing a computer that was architecturally identical to the 
709, only using transistors. They were thus able to use a 709 to develop and test the software that the new 
computer would need. The 709 could be programmed to make it behave as if it were the new computer. 
Even that technique did not guarantee that IBM would meet the deadline. IBM delivered computers to a site 
in Greenland in late 1959, but "IBM-watchers" claimed that the machines, as delivered, were not finished. 
According to them, the company dispatched a cadre of up to 200 engineers to Greenland to finish the 
machine as it was being installed.

Whether or not that story is true, the company did deliver a transistorized computer, which it marketed 
commercially as the Model 7090. The 7090 (and a later upgrade called the 7094, which had four additional 
index registers) is regarded as the "classic" mainframe, from its combination of archi-
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tecture, performance, and from its success: hundreds of machines were installed at an equivalent price of 
over $3 million each.

A Description of a 7094 Installation

The term "mainframe" probably comes from the fact the circuits of a mainframe computer were mounted on 
large metal frames, housed in the cabinets. The frames were on hinges and could swing out for maintenance. 
A typical installation consisted of a number of these cabinets standing on a tiled floor. The floor was a 
"false-floor" – the tiles were raised a few inches above the real floor, leaving room for the numerous, thick 
connecting cables that snaked from one cabinet to another, and for the circulation of conditioned air. A 
cabinet near the operator's console housed the main processor circuits. These were made up of discrete 
transistors, mounted and soldered along with resistors, diodes, jumper wires, inductors, and capacitors, onto 
printed circuit boards. The boards in turn were plugged into a "backplane," where a complex web of wires 
carried signals from one circuit board to another. Some mainframes were laboriously wired by hand, but 
most used a technique called "wire wrap": it required no soldering, and for production machines the wiring 
could be done by a machine, thus eliminating errors. In practice there would always be occasional pieces of 
jumper wire soldered by hand to correct a design error or otherwise modify the circuits. The density of these 
circuits was about 10 components per cubic inch.

The 7094 was delivered with a maximum of 32,768 words of core memory. In modern terms, that 
corresponds to about 150 Kilobytes: about what came with the IBM Personal Computer when it first 
appeared in the early 1980s. Although marketed as a machine for science and engineering, many customers 
found it well suited for a variety of tasks. It could carry out about 50 to 100 thousand floating-point 
operations per second, making it among the fastest of its day. Comparisons with modern computers are 
difficult, as the yardsticks have changed, but it was about as fast as a personal computer of the late 1980s 
vintage. Its 36-bit word length made it well-suited for scientific calculations that require many digits of 
precision, and it had the further advantage of allowing the processor to address a lot of memory directly.

The console itself was festooned with an impressive array of blinking lights, dials, gauges, and switches. It 
looked like what people thought a computer should look like. The rows of small lights indicate the status of 
each bit of the various registers that make up the computer's central processor. In the event of a hardware 
malfunction or programming error, the operator could read the contents of each register directly in binary 
numbers. He or she could also execute a program one step at a time, noting the contents of the registers at 
each step. If desired, he could directly alter the bits of a register by flipping switches. Such "bit twiddling" 
was exceedingly tedious, but it gave the op-
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Figure 1 
"Computing" at North American Aviation, Los Angeles, California, ca. 
1952. It was this room, and the flow of information that went through it, 

that was replicated by the architecture of the stored program digital computer. 
Photo credit: National Air and Space Museum

erator an intimate command over the machine that few since that time have enjoyed.

Most of the time, the operator had no need to do those kinds of things. The real controlling of the computer 
was done by its programmers, few of whom were ever allowed into the computer room. Programmers 
developed their work on decks of punched cards. These in turn were read by a small IBM 1401 computer 
and transferred to a reel of tape. The operator took this tape and mounted it on a tape drive connected to the 
mainframe (although there was a card reader directly attached for occasional use). Many programmers 
seldom saw the machine that actually ran the programs. In fact, many programmers did not even use a 
keypunch, but rather wrote out their programs on special coding sheets, which they gave to keypunch 
operators. The operator's job consisted of mounting and unmounting tapes, pressing a button to start a job 
every now and then, occasionally inserting decks of cards into a reader, and reading status information from 
a printer. It was not that interesting or high-status a job, though to the uninitiated it looked impressive.

A 7094 installation rented for about $30,000 a month, or an equivalent purchase price of from $1.6 to $3 
million. With that cost it was imperative
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that the machine never be left idle. In later decades one might have one's personal computer run a "screen 
saver" while going to a meeting or to lunch; the number of computer cycles wasted by this practice would 
have been scandalous in 1963. On the 7094, programs were gathered onto reels of tape and run in batches. 
The programmer (whose monthly salary might be $400) had to wait until a batch was run to get his results, 
and if he then found that he had made a mistake or needed to further refine his problem, he had to submit a 
new deck and wait once more. However tempting, the idea of gaining direct access to the machine – to 
submit a program to it and wait a few seconds while it ran – was out of the question, given the high costs of 
letting the processor sit idle for even a few minutes. That method of operations was a defining characteristic 
of the mainframe era.

Besides the processor circuit cabinets, magnetic tape drives dominated a mainframe installation. These tapes 
were the medium that connected a mainframe computer to the outside world. Programs and data were fed 
into the computer through tapes; the results of a job were likewise sent to a tape. If a program ran 
successfully, an operator took the tape and moved it to the drive connected to a 1401 computer, which 
handled the slower process of printing out results on a chain printer (unlike a modern printer, there was 
typically no direct connection). Results were printed, in all capital letters, on 15" wide, fan-folded paper.

A few mainframes had a video console, but there was none on the 7094's main control panel. Such a console 
would have been useful only for control purposes, since the sequential storage on tapes prevented direct 
access to data anyway. In general they were not used because of their voracious appetite for core memory.

4— 
IBM 360: 
Shift to Sets of General Purpose Registers

Origins

In early 1965, IBM delivered the first of a series of mainframes that would propel that company into an even 
more commanding position in the industry. That was the System/360, announced in April 1964. It was so 
named because it was aimed at the full circle of customers, from business to science, for customers who did 
a lot of mathematical calculation and for those who did simpler arithmetic on large sets of data. System/360's 
primary selling point was that IBM was offering not one but a whole line of computers, with a promise that 
programs written for one model would work on larger models, thus saving a customer's investment in 
software as business grew. IBM announced six models on April 7, 1964. Later on it announced others, while
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dropping some of the original six by the time deliveries began. The idea was not entirely new: computer 
companies had tried to preserve software compatibility as they introduced newer models, as IBM had done 
with their 704, 709, and 7090 machines. But the 360 was a series of computers, all announced at the same 
time, offering about a 25:1 performance range. Except for a small run of machines delivered to the Army in 
the late 1950s, that had never been attempted before.

In an often-repeated phrase, first used in a Fortune magazine article, an IBM employee said, "you bet your 
company" on this line of computers. Besides the six computer models, IBM introduced "over 150 different 
things–new tapes, new disks, the 029 card punch" on the same day. Had the 360 failed, it would have been a 
devastating blow, although IBM would still have survived as a major player in the business. The company 
could have introduced newer versions of its venerable 1401 and 7090-series machines, and it still had a 
steady stream of revenue from pre-computer punched card installations. But such a failure would have 
restructured the computer industry.

System/360 did not fail. Within weeks of the product announcement in April 1964 orders began coming in: 
"Orders for System/360 computers promptly exceeded forecasts: over 1100 were received in the first month. 
After five months the quantity had doubled, making it equal to a fifth of the number of IBM computers 
installed in the U.S." The basic architecture served as the anchor for IBM's product line into the 1990s.

Manufacturing and delivering the line of computers required enormous resources. The company expanded 
its production facilities, but delivery schedules slipped, and shortages of key components arose. The success 
of the 360 threatened the company's existence almost as much as a failure might have. For those employees 
driven to the breaking point – and there were many – the jump in revenues for IBM may not have been 
worth the physical and mental stress. From 1965 to 1970, thanks mostly to System/360, IBM's gross income 
more than doubled. Net earnings also doubled, surpassing $1 billion by 1971. IBM had led the U.S. 
computer industry since the mid 1950s. By 1970 it had an installed base of 35,000 computers, and by the 
mid-1970s it made sense to describe the U.S. computer industry as having two equal parts: IBM on one side 
and everyone else combined on the other.

The problems IBM faced in trying to meet the demand – employee burnout, missed shipping dates, quality 
control on the production lines – were problems its competitors might have wished for. Obviously many 
customers found this line of machines to their liking. Most NASA centers, for example, quickly switched 
over to 360 (Model 65 or higher) from their 7090 installations to meet the demands of putting a man on the 
Moon. Commercial firms, who used computers for business data processing, likewise replaced their 7030s 
and other systems with models of the System/360. There was some resistance to replacing the venerable 
1401 with the low-end 360 intended to replace it, but in general the marketplace gave overwhelming 
approval to the
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notion of a compatible family of machines suitable for scientific as well as business applications.

The decisions that led to System/360 came from an IBM committee known as "SPREAD," which met daily 
in a motel in Cos Cob, Connecticut for two months in late 1961. Their report, issued internally on December 
28, 1961 and published 22 years later, reveals much about the state of computing, as it then existed and as 
key engineers and executives at IBM thought it would become.

Their deliberations began with a survey of the company's existing products. In 1961 IBM was fielding a 
confusing tangle of machines, few of which were compatible with one another. The SPREAD Committee, 
composed of members from both of IBM's product lines, did not agree at first on a unified product line, but 
eventually they recognized its advantages and incorporated that as a recommendation in their final report. As 
with many great ideas, the notion of having a unified product line seems obvious in retrospect, but that was 
not the way it seemed at first to those assembled in the rooms of the motel.

Less obvious was scalability. Though the SPREAD Committee agreed that this was needed, at the early 
stages both Fred Brooks and Gene Amdahl – later two of the 360's principal architects – argued that "it 
couldn't be done." Few other technologies, if any, scale simply. Civil engineers use different criteria when 
designing large dams than they use for small ones. The engine, transmission, power train, and frame of a 
large sedan are not simply bigger versions of those designed for a subcompact. What the SPREAD 
Committee was proposing was a range of 25:1 in computing – more like comparing a subcompact to an 18-
wheeler. By 1970, after IBM had announced an upgrade to the 360 line, they were offering compatible 
computers with a 200:1 range.

Microprogramming

What changed Brooks's and Amdahl's mind was the rediscovery of a concept almost as old as the stored 
program computer itself. In 1951, at a lecture given at a ceremony inaugurating the Manchester University 
digital computer, Maurice Wilkes argued that "the best way to design an automatic calculating machine" was 
to build its control section as a little stored program computer of its own, wherein each control operation is 
broken down into series of "micro-operations" directed by a matrix of components that stored a "micro-
programme [sic]." By adding a layer of complexity to the design, one in fact simplified it. The design of the 
control unit, typically the most difficult, could now be made up of an array of simpler circuits, like those for 
the computer's memory unit. Wilkes made the bold assertion that this was the "best way" because he felt it 
would give the design more logical regularity and simplicity; almost as an afterthought he mentioned that 
''the order code need not be decided on finally until a late stage in the construction of the
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machine." He did not say anything about a series of machines or computers having a range of power.

The idea was kept alive in later activity at Manchester, where John Fair-clough, a member of the SPREAD 
Committee, studied electrical engineering. Through him came the notion of using microprogramming as a 
way of implementing a common set of instructions across the line of 360s, while allowing the engineers 
charged with the detailed design of each specific model to optimize the design for low cost and adequate 
performance. The microprogram, in the form of a small read-only memory built into the control unit of each 
model's processor, would be written to ensure compatibility. Microprogramming gave the 360's designers 
" . . .the ability to separate the design process . . . from the control logic that effectively embodied the 
instruction-set characteristics of the machine we were trying to develop."

IBM's adoption of this concept extended Wilkes's original insight. In essence it is a restatement of the 
fundamental property of a general-purpose, stored program computer – that by accepting complexity at one 
level (computers require very large numbers of components), one gains power and simplicity at another level 
(the components are in the form of regular arrays that can be analyzed by tools of mathematics and logic). 
Some understanding of it appears inchoate in the earliest of the digital machines. Wilkes himself may have 
been inspired by the Bell Labs relay computer Model VI, which he probably inspected during a visit to 
America in 1950. On the Model VI a set of coils of wire stored information that allowed the machine to 
execute complex subsequences upon receiving one simple instruction from a paper tape.

By adopting microprogramming IBM gained one further advantage, which some regard as the key to the 
360's initial success. That was the ability to install a microprogram that would allow the processor to 
understand instructions written for an earlier IBM computer. In this way IBM salesmen could convince a 
customer to go with the new technology without fear of suddenly rendering an investment in applications 
software obsolete. Larry Moss of IBM called this ability emulation, implying that it was "as good as" (or 
even better than) the original, rather than mere "simulation" or worse, "imitation." The 360 Model 65 sold 
especially well because of its ability to emulate the large business computer 7070, and IBM devoted extra 
resources to the low-end models 30 and 40 to emulate the 1401.

In theory any stored program computer can be programmed to act as if it were another – a consequence of its 
being a "Universal Turing Machine," after the mathematician Alan M. Turing, who published on this 
concept in the 1930s. In practice that usually implies an unacceptable loss of performance, as the extra layers 
of code slow things down. Trying to emulate one computer with another usually lands the hapless designer 
in the "Turing Tar-Pit," where anything is possible but nothing is practical. The 360 avoided that pit because 
its emulation used a combination of software and the microprogram of each machine's control unit. When 
combined with the faster circuits it also used, the combination permitted the new machines to run the old 
programs as
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much as 10 times faster than the same program would have run on, say, a 1401. By 1967, according to some 
estimates, over half of all 360 applications were emulations of older hardware.

1401 emulation was especially crucial to IBM's 'bet the company' gamble: in December 1963 Honeywell 
introduced the H-200 computer, with a program they called "Liberator" that allowed it to run 1401 
programs. H-200 sales were immediately brisk, just as IBM announcing the 360 line with its implied 
incompatibility with the 1401. The IBM division that sold the 1401 went through a Slough of Despond in 
early 1964, but it climbed out after orders for the lower-end models of the 360 came rolling in. The success 
of emulation demonstrated a paradox of computer terminology: software, despite its name, is more 
permanent and harder to modify than hardware. To this day there are 1401 programs running routine payroll 
and other data processing jobs on modern computers from a variety of suppliers. When programmers coded 
these jobs in the early 1960s, using keypunch machines, they had no idea how long-lived their work would 
be. (The longevity of 1401 software is a major cause of the "Year-2000" bug.)

Every System/360 except for the smallest Model 20 contained 16 general-purpose registers in its central 
processor. In the 360 any of the 16 registers could be used for any operation (with a few exceptions, i.e. 
extra registers for floating-point numbers).

The 360's word length was 32 bits – 4 bits shorter than word length of the 7090/7094 scientific computers, 
but because 32 was a power of 2, it simplified the design. Most early computers used sets of 6 bits to encode 
characters; System/360 IBM used 8 bits, which IBM called a "byte," (the term was coined in 1956 by 
Werner Buchholz of IBM). Eight bits allowed 256 different combinations for each character: more than 
adequate for upper and lower case letters, the decimal digits 1 to 10, punctuation, accent marks, etc. with 
room to spare. And since 4 bits were adequate to encode a single decimal digit, one could "pack" two 
decimal digits into each byte, compared to only one decimal digit in a 6-bit byte. (The 360's memory was 
addressed at the byte level; one could not fetch a sequence of bits that began in the middle of a byte.)

ASCII and EBCDIC

To encode the 256 different combinations, IBM chose an extension of a code they developed for punched 
card equipment. This "EBCDIC" (Extended Binary Coded Decimal Interchange Code) was well designed, 
complete, and offered room for future expansion. It had one unfortunate characteristic – incompatibility with 
another standard being developed at the same time. This standard, known as ASCII and supported by the 
American National Standards Institute in 1963, standardized only seven bits, not eight. One reason was that 
at the time punched paper tape was still in common use, and the
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committee felt that punching eight holes across a standard piece of tape would weaken it too much (there 
were a few other reasons as well). The lack of an 8-bit standard made it inferior to EBCDIC, but with its 
official status ASCII was adopted everywhere but at IBM. The rapid spread of minicomputers using ASCII 
and Teletypes further helped spread the code. With the dominance by IBM of mainframe installations, 
neither standard was able to prevail over the other. IBM had representatives on the committee that developed 
ASCII. The System/360 had a provision to use either code, but the ASCII mode was later dropped as it was 
little used. The simultaneous adoption of two incompatible standards within a few years of each other was 
unfortunate but probably inevitable. In ASCII, the ten decimal digits were encoded with lower numerical 
values than the letters of the alphabet; with EBCDIC it was the opposite. Therefore a sorting program would 
sort "3240" before "Charles" if the data were encoded in ASCII, but "Charles" before "3240" if EBCDIC. 
Because of its beachhead in minicomputers, ASCII would prevail in the personal computer and workstation 
environment beginning in the 1980s.

The 360's designers allowed for 4 bits of a word to address the 16 general-purpose registers and 24 bits to 
address the machine's core memory. That allowed direct access to 224, or 16 million addresses, which 
seemed adequate at the time. Like nearly every other computer design, the address space was eventually 
found to be inadequate, and in 1981 IBM extended the number of address bits to 31, allowing for access to 2 
billion addresses.

For the cheaper models, even allowing 24 bits was extravagant, as these were intended to do their work with 
a much smaller memory space. Carrying the extra address bits would impose an overhead penalty that might 
allow competitors like Honeywell to offer machines that were more cost-effective. IBM's solution was to 
carry only 12 of the possible 24 address bits in an instruction. This number would then be added to another 
number stored in a "base" address register to give the full 24-bit address. If a program required fewer than 
212 or 4 thousand bytes of memory, going to the base register was not necessary. That was the case for many 
smaller problems, especially those that the cheaper models of the 360 were installed for. For longer 
problems there was of course the additional penalty incurred when going to the base register to obtain an 
address, but in practice this was not a severe problem.

Finally, the System/360 retained the concept of having channels to handle input and output. With a standard 
interface, IBM could offer a single line of tape, card, and printing equipment that worked across the whole 
line of machines – a powerful selling point whose advantages easily offset whatever compromises had to be 
made to provide compatibility. The trade press called I/O devices "peripherals"; but they were central to the 
System/360 project: a new model keypunch, new disk and tape drives, and even the Selectric type-writer 
with its famous golf-ball print head and classic keyboard layout.

To sum up, the architectural design of the 360 was one of creative and sometimes brilliant compromises to 
achieve compatibility across the range of
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performance. Initially it had a fairly simple design, which over the years grew ever more complex, baroque, 
and cumbersome. The fact that it could grow as it did, enough to remain viable into the 1990s, is testimony 
to the strength of the initial effort.

5— 
The Minicomputer: 
Invention, Definition, Architecture

At the same time as the System/360's announcement, the minicomputer was being developed. With hindsight 
one can see that the minicomputer revealed a segment of computing not covered by the System/360, in spite 
of its name. A number of factors define the minicomputer: architecture, packaging, and the role of third 
parties in developing applications, price, and financing. It is worth discussing the first of those, architecture, 
in some detail to see how the minicomputer differed from what was prevalent at the time.

Minicomputer: 
Creative Ways to Get around Short Word Length

First of all, minicomputers used short word lengths, which lowered costs. Above all, they found ways to get 
around the drawbacks of a short word length. They did that by making the computer's instruction codes more 
complex. Besides the operation code and memory address specified in an instruction, minicomputers used 
several bits of the code to specify different "modes" that extend the memory space. One mode of operation 
might refer not directly to a memory location but to another register, in which the desired memory location 
is stored. That of course adds complexity; operating in double precision also is complicated, and both might 
slow the computer down. But with the newly-available transistors coming on the market in the late 1950s, 
one could design a processor that, even with these added complexities, remained simple, inexpensive, and 
fast.

The CDC 160 and the Origins of the Minicomputer

The Whirlwind (a computer prototype built at MIT) had a word length of only 16 bits, but the story of 
commercial minicomputers really begins with an inventor associated with very large computers: Seymour 
Cray. While at UNIVAC Cray worked on the Navy Tactical Data System (NTDS), a computer designed for 
navy ships and one of the first transistorized machines produced in quantity. Around 1960 Control Data, the 
company founded in 1957 that Cray joined, introduced its model 1604, a large computer intended for 
scientific customers. Shortly thereafter CDC introduced the 160, designed
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by Cray ("almost as an afterthought," according to a CDC employee), to handle input and output for the 
1604. For the 160, Seymour Cray carried over some key features he pioneered for the Navy system, 
especially its compact packaging. In fact, the computer was small enough to fit around an ordinary-looking 
metal desk – someone who chanced upon it would not even know it was a computer unless told beforehand.

The 160 broke new ground by using a short word length (12 bits) combined with ways of accessing memory 
beyond the limits of a short address field. It was able to directly address a primary memory of 8 thousand 
words, and it had a reasonably fast clock cycle (6.4 microseconds for a memory access). And the 160 was 
inexpensive to produce. When CDC offered a stand-alone version, the 160A, at a price of $60,000, the 
computer found a ready market. Control Data Corporation was concentrating its efforts on very high 
performance machines, for which Cray became famous, but it did not mind selling the 160A along the way. 
What Seymour Cray had invented was in fact a minicomputer.

Other architectural features defined the Mini. These include direct memory access, which handled I/O 
without resorting to the channels of the mainframe. It was remarked that a single channel for an IBM 
System/360 cost more than an entire PDP-1, an early mini from Digital Equipment Corporation. A third 
feature was the refinement of the bus. This was nothing new—it is found in the Harvard Mark I, where it 
was spelled "buss," and the Whirlwind used it. But minicomputers, especially second generation minis like 
the Data general NOVA and the PDP-11, refined this concept.

6— 
The Microprocessor

In 1964 Gordon Moore, then of Fairchild and soon a cofounder of Intel, noted that from the time of its 
invention in 1958, the number of circuits that one could place on a single integrated circuit was doubling 
every year. By simply plotting this rate on a piece of semilog graph paper, "Moore's Law" predicted that by 
the mid 1970s one could buy a chip containing the equivalent logic circuits as those used in a 1950s-era 
mainframe. By the late 1960s Transistor Transistor Logic (TTL) was well established, but a new type of 
semiconductor called "Metal-Oxide Semiconductor," (MOS), emerged as a way to place even more logic 
elements on a chip. MOS was used by Intel to produce its pioneering 1103 memory chip, and it was a key to 
the success of pocket calculators. The chip density permitted by MOS brought the concept of a computer-on-
a-chip into focus among engineers at Intel, Texas Instruments and other semiconductor firms. That did not 
mean that such a device was perceived as useful. If it was generally known that one could place enough 
transistors on a chip to make a computer, it was also generally believed that the
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market for such a chip was so low that its sales would never recoup the large development costs required.

Who Invented the Microprocessor?

The story of the microprocessor's invention at Intel has been told many times. In essence, it is a story 
encountered before: Intel was asked to design a special-purpose system for a customer. It found that by 
designing a general-purpose computer and using software to tailor it to the customer's needs, the product 
would have a larger market. It was a reversal of the approach taken by calculator (and game) makers, and it 
allowed the Intel design to initiate a new class of personal computers.

Intel's customer was Busicom, a Japanese company that was a top seller of hand-held calculators. Busicom 
sought to produce a line of products with different capabilities, each aimed at a different market segment. It 
envisioned a set of custom-designed chips that incorporated the logic for the advanced mathematical 
functions. Intel's management assigned Marcian E. Hoff, who had joined the company in 1968 (Intel's 12th 
employee), to work with Busicom.

Intel's focus had always been on semiconductor memory chips. It shied away from logic chips like those 
suggested by Busicom, since it felt that markets for them were limited. Hoff's insight was to recognize that 
by designing fewer logic chips with more general capabilities, one could satisfy Busicom's needs elegantly. 
Hoff was inspired by the PDP-8, which had a very small set of instructions, but which its thousands of users 
had programmed to do a variety of things. He also recalled using an IBM 1620, a small scientific computer 
with an extremely limited instruction set that nevertheless could be programmed to do a lot of useful work. 
The 1620 went by the informal name CADET – "Can't Add, Doesn't Even Try."

Hoff proposed a logic chip that incorporated more of the concepts of a general-purpose computer. A critical 
feature was the ability to call up a subroutine, execute it, and return to the main program as needed. He 
proposed to do that with a register that kept track of where a program was in its execution and saved that 
status when interrupted to perform a subroutine. Subroutines themselves could be interrupted, with return 
addresses stored on a "stack."

With this ability, the chip could carry out complex operations stored as subroutines in memory, and avoid 
having those functions permanently wired onto the chip. Doing it Hoff's way would be slower, but in a 
calculator that did not matter, since a person could not press keys that fast anyway. The complexity of the 
logic would now reside in software stored in the memory chips, so one was not getting something for 
nothing. But Intel was a memory company, and it knew that it could provide memory chips with enough ca-
pacity. As an added inducement, sales of the logic chips would mean more sales of its bread-and-butter 
memories.
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That flexibility meant that the set of chips could be used for many other applications besides calculators. 
Busicom was in a highly competitive and volatile market, and Intel recognized that (Busicom eventually 
went bankrupt). Robert Noyce negotiated a deal with Busicom to provide it with chips at a lower cost, giving 
Intel in return the right to market the chips to other customers for non-calculator applications. From these 
"unsophisticated" negotiations with Busicom, in Noyce's words, came a pivotal moment in the history of 
computing.

The result was a set of four chips, first advertised in a trade journal in late 1971, which included "a 
microprogrammable computer on a chip." That was the 4004, on which one found all the basic registers and 
control functions of a tiny, general purpose stored program computer. The other chips contained a Read-
Only Memory (ROM), Random-Access Memory (RAM), and a chip to handle output functions. The 4004 
became the historical milestone, but the other chips were important as well: especially the ROM chip that 
supplied the code that turned a general-purpose processor into something that could meet a customer's needs. 
Also at Intel, a team led by Dov Frohman developed a ROM chip that could be easily reprogrammed and 
erased by exposure to ultraviolet light. Called an EPROM (Erasable Programmable Read-Only Memory) and 
introduced in 1971, it made the concept of system design using a microprocessor practical.

Stan Mazor did the detailed design of the 4004. Federico Faggin also was crucial in making the concept 
practical. Masatoshi Shima, a representative from Busicom also contributed. Many histories of the invention 
give Hoff sole credit; all players, including Hoff, now agree that is not accurate. Faggin left Intel in 1974 to 
found a rival company, Zilog. Intel, in competition with Zilog, felt no need to advertise Faggin's talents in its 
promotional literature, although Intel never showed any outward hostility to its ex-employee. The issue of 
whom to credit reveals the way people think of "invention": Hoff had the idea of putting a general purpose 
computer on a chip, Faggin and the others "merely" implemented that idea in silicon. At the time, Intel was 
not sure what it had invented either: Intel's patent attorney resisted Hoff's desire at the time to patent the 
work as a "computer." Intel obtained two patents on the 4004, covering its architecture and implementation; 
Hoff's name appears on only one of them.

The Move to 8 Bits

The 4004 worked with groups of four bits at a time-enough to code decimal digits but no more. At almost 
the same time as the work with Busicom, Intel entered into a similar agreement with Computer Terminal 
Corporation (later called Datapoint) of San Antonio, Texas, to produce a set of chips for a terminal to be 
attached to mainframe computers. Again, Mazor and Hoff proposed a microprocessor to handle the 
terminal's logic. Their proposed chip
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would handle data in 8-bit chunks, enough to process a full byte at a time. By the time Intel had completed 
its design, Datapoint had decided to go with conventional TTL chips. Intel offered the chip, which they 
called the 8008, as a commercial product in April 1972.

In late 1972, a 4-bit microprocessor was offered by Rockwell, an automotive company that had merged with 
North American Aviation, maker of the Minuteman Guidance System. In 1973 a half dozen other companies 
began offering microprocessors as well. Intel responded to the competition by announcing the 8080 in April 
1974: an 8-bit chip that could address much more memory and required fewer support chips than the 8008. 
The company set the price at $360 – a somewhat arbitrary figure, as Intel had no experience selling chips 
like these, one at a time. (Folklore has it that the $360 price was set to suggest a comparison with the IBM 
System/360.) Although a significant advance over the 8008, the 8080 could execute programs written for the 
other chip: this compatibility would prove crucial to Intel's dominance of the market. The 8080 was the first 
of the microprocessors whose instruction set and memory addressing capability approached those of the 
minicomputers of the day.

Significance of This Invention

Obviously this invention has been a key to the "revolution" not just in computing but in embedded, smart 
machinery that has swept across the world in recent decades. For this study, its invention has another 
significance: The Microprocessor was the embodiment of mini concepts onto silicon. It was a significance 
that was missed by DEC and Data General, with disastrous consequences for those two companies. In short: 
architecture became a mass-produced commodity. Companies like DEC or DG, that were founded on and 
based their revenues on innovative architecture, had either to adapt to this new world, or go under.

7— 
RISC

Since the invention of the 8080 there has been a steady progression of Intel microprocessors, which have 
steadily encroached on the market to a point where they are almost synonymous with the term architecture. 
That is not quite true, though, and the following will discuss one significant parallel development.
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The VAX

Through the 1980s the dominant mainframe architecture continues to be a descendent of the IBM 
Sytem/360, while the dominant mini was the DEC VAX, which evolved as a 32 bit extension of the 16-bit 
PDP-11. Although a mini, the VAX architecture had a lot in common with the IBM System/360 and its 
descendants. Like the 360, its instruction set was contained in a micro-program, stored in a read-only 
memory. Like the 360, the VAX presented its programmers with a rich set of instructions that operated on 
data in almost every conceivable way. The 370/168 had over 200 instructions, the VAX 11/780 over 250. 
There were sets of instructions for integers, floating-point numbers, packed decimal numbers, and character 
strings; operating in a variety of modes. This philosophy had evolved in an environment dominated by 
magnetic core memory, to which access was slow relative to processor operations. Thus it made sense to 
specify in great detail what one wanted to do with a piece of data before going off to memory to get it. The 
instruction sets also reflected the state of compiler technology. If the processor could perform a lot of 
arithmetic on data with only one instruction, then the compiler would have that much less work to do. A rich 
instruction set would reduce the "semantic gap" between the English-like commands of a high-level 
programming language and the primitive and tedious commands of machine code. Cheap read-only memory 
chips meant that the designer could create these rich instruction sets at low cost if the computer was micro-
programmed.

John Cocke at IBM

Those assumptions had been long accepted. But computer science was not stagnant. In the mid-1970s John 
Cocke of IBM looked at the rapid advances in compilers and concluded that a smaller set of instructions, 
using more frequent commands to load and store data to and from memory, could operate faster than the 
System/370. Thomas Watson, Jr. once wrote a memo describing IBM's need to have "wild ducks" among its 
ranks – people who were not content to accept conventional wisdom about they way things were done. 
Cultivating such a person in the conservative culture of IBM was not easy, but Watson knew, perhaps better 
than any other computer executive, that IBM could not survive without them. John Cocke, with his then-
radical ideas about computer design, fits that description.

Cocke's ideas led to an experimental machine called the IBM 801, completed in 1979. For many reasons, 
including the success and profits of the 370 line and its successors, IBM held back introducing a commercial 
version of the design (the IBM-RT, introduced in 1986, was a commercial failure and did not exploit the 
idea very well). Still, word of the 801 project got out, along with a rumor that it could execute System/370 
programs at much faster speeds although it was a smaller computer. By the late 1970s magnetic core
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had been replaced by semiconductor memory, whose access times matched the speeds of processors. 
Frequent load and store instructions no longer exacted a speed penalty. Finally, some researchers looked at 
the VAX and concluded that one could not extend its design any further; they began looking for alternatives.

RISC: 
Hennessy & Patterson

In 1980 a group at Berkeley led by David Patterson, after hearing ''rumors of the 801," started a similar 
project called RISC – Reduced Instruction Set Computer. Another project, called MIPS, began in 1981 at 
Stanford under the leadership of John Hennessy. As they publicized their work they were met with 
skepticism: RISC looked good in a university laboratory but did not address the real needs of actual 
customers. One trade journal even worried that RISC, from the start associated with UNIX, was not well 
suited for data processing jobs written in COBOL. Meanwhile, sales of Intel-based PCs, the VAX, and the 
System/370 family – all complex instruction set processors – were booming. With a massive build up of the 
Defense Department under President Ronald Reagan, Wall Street was enjoying another round of Go-Go 
years. Those watching the trajectory of their stocks in DEC, Data General, IBM, and Wang were not worried 
about RISC.

SUN Microsystems' products initially used the Motorola 68000 micro-processor, whose design was very 
much in the spirit of the PDP-11 and VAX. Beginning in 1987 and probably owing to Bill Joy's influence, 
SUN introduced a workstation with a RISC chip based on Patterson's research at Berkeley. Called SPARC 
(Scalable Processor Architecture), this design did more than anything else to overcome skepticism about 
RISC. Hennessy and Patterson became evangelists for RISC, buttressed by some impressive quantitative 
measurements that showed how a RISC design could squeeze much more processing power out of a piece of 
silicon than conventional wisdom had thought possible. More telling, their data showed that RISC offered a 
way of improving microprocessor speeds much more rapidly than mini and mainframe speeds were 
improving – or could improve. The unmistakable implication was that the puny, cheap microprocessor, born 
of a pocket calculator, would soon surpass minicomputers, mainframes, and even supercomputers in 
performance. If true, their conclusions meant that the computer industry as it had been known for decades, 
and over which the U.S. Justice Department fought IBM throughout the 1970s, was being driven to 
extinction by its own offspring.

SUN went a step further to promote RISC: they licensed the SPARC de-sign so that other companies might 
adopt it and make SPARC a standard. The combination of a license to copy the SPARC processor, plus 
Berkeley UNIX, made it almost as easy to enter the workstation market as it was to make an IBM 
compatible PC. SUN gambled that it too would benefit by continuing to
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introduce products with high performance and a low price. They succeeded, although such a philosophy 
meant slim profit margins, since SUN could not own the architecture.

The Stanford MIPS project also spawned a commercial venture, MIPS Computer Systems, which also 
helped establish a commercial market for RISC microprocessors. Digital Equipment Corporation bought a 
chip from MIPS for one of their workstations in 1989 – even DEC now admitted that RISC was not going 
away (an internal RISC project at DEC, called "Prism," had been canceled in 1988). Silicon Graphics also 
based its newer workstations on MIPS microprocessors. Hewlett-Packard converted its line of workstations 
to a RISC design called Precision Architecture. After failing with the RT, IBM introduced a successful RISC 
workstation in 1990, the R/6000. In the early 1990s Apple and IBM joined forces with Motorola to produce 
a RISC microprocessor called Power PC, which they hoped would topple the Intel 8086 family. IBM's role 
in the design of the Power PC was a fitting vindication of the ideas of John Cocke, the "wild duck" who 
started the whole phenomenon.

8— 
Conclusion

The above brief survey reveals that much has indeed happened in computing since von Neumann. But it also 
leads one to a paradoxical conclusion that as more and more systems are built around mass-produced 
microprocessors supplied by Intel, computer architecture no longer is so important. The focus has now 
shifted to software. Architectural questions now arise in the discussion of internetworking of individual 
computer systems. Unfortunately, there is no equivalent to the EDVAC Report that serves to guide one 
through networking, as that report guided one through processor design in the past 50 years. The conclusion 
seems therefore to be that if there is ever to be something new since von Neumann, it will be in an arena that 
von Neumann did not foresee – networking.
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PART III— 
THE GERMAN SCENE
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The DEHOMAG D11 Tabulator – A Milestone in the History of Data Processing

Friedrich W. Kistermann

Abstract. The DEHOMAG D11 tabulator has been overlooked for too long in the history of data processing. 
This is due to the scarcity of literature about this machine and its usual classification as a tabulator, even 
though its internal structure corresponds to an automatic calculator. In general, very little attention has been 
paid to the time period preceding the electronic age, that is, there has been a neglect of the pre-computer era. 
The D11 tabulator, however, had a decisive influence on the diffusion of punched card data processing in 
Germany.

1— 
Setting the Stage

The development of the DEHOMAG D11 cannot be understood without looking at the development of the 
Hollerith tabulating machines in general, and at the differences in the application environment on both sides 
of the Atlantic in particular.

It is helpful to understand the purpose of a tabulator, which becomes apparent if we look at its position in the 
data processing work flow. Fig. I is an abstract representation of the processing stages. Whenever someone 
performs any kind of data processing work, for instance when a database management system is used for 
some task, the same basic steps which are outlined in Fig. 1 must be followed.

True enough, the steps have different names these days, because punched cards are no longer used, but the 
work flow is generic and independent of the equipment used. In this example, the punched card contains 
important data concerning a person, event, or product, that is to be processed by the system. The punched 
card is, therefore, the unit record required for the specific application, let's say for the computation of gross 
and net wages.1 For this process to function properly, the individual steps have to be carefully planned.

1 Friedrich W. Kistermann, "The Invention and Development of the Hollerith Punched Card: In Commemoration of the 
130th Anniversary of the Birth of Herman
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Right from the beginning the data to be processed or just stored on a card must be verified, and corrected if 
necessary. After sorting, which is the process of grouping data in the predefined order necessary to obtain a 
specific result, the tabulator can do its work. Normally, it was used to print a report and it often produced 
summary cards as an important by-product. The summary cards made further processing of the data 
possible, especially in the case of cumulative processing. Because of this logical sequence, the tabulator 
stands at the end of the processing chain.

Figure 1 
Role of the tabulator in the DP work flow

Hollerith and for the 100th Anniversary of Large Scale Data Processing," Annals of the History of Computing 13 (1991) 
No. 3, 245–259.
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The work flow diagram shows that every punched card installation needed at least one card punch, one 
verifier, one sorter and one tabulator, assuming that the customer was not contracting a service bureau.

In 1895, Herman Hollerith used his punched card system for cost accounting in the railroad industry. This 
happened in parallel to his work for the United States census bureau and census bureaus in some other 
countries.2 In 1908, after approximately ten years of development and a major change in construction, the 
Hollerith punched card system was ready to be widely used in industry and trade.

The Hollerith Punched Card System

The Hollerith punched card system consisted of a key punch, a gang punch, a vertical sorter and a tabulator.3
The Hollerith tabulator of 1908 formed the basis for the successful introduction of the punched card into 
many application areas.4 The card feeding and sensing device were on the left of this nonprinting tabulator. 
The plugboard, which allowed the machine operation to be defined by wiring, was on the front. The 
electrical impulses went from the card sensing brushes to the hubs of the plugboard, and from there by wire 
connection to a specific counter, where the amount punched into the card was added. The counters, with nine 
digits each, were located above the plugboard and were visible from the front.

The tabulator underwent some further development after its initial introduction in 1908. In 1911, a manually 
operated clutch was introduced, which allowed the counters to disengage from the counter clearing shaft and 
thus retain a result until it was recorded. This created the possibility of two-level group control. The groups 
were separated by so-called stop cards, which were not punched. If the read brushes detected a stop card, the 
tabulator would stop feeding cards. The results were read from the counter wheels and were transcribed onto 
prepared forms. Thereafter, the operator had to clear the counters and restart the machine.

2 Friedrich W. Kistermann, "Ein Kapitel Industriegeschichte: Herman Hollerith (1860–1929) - Ein Pfälzer 
Emigrantensohn gründet einen Weltkonzern," in Nach-bar Amerika: Verwandte – Feinde – Freunde in drei 
Jahrhunderten, ed. Gudrun Schäfer (Landau, 1996) 233–267.; and Friedrich W. Kistermann, "Was the Father of Herman 
Hollerith a Revolutionary?," Annals of the History of Computing 19:4 (1997) 69–70.
3 Friedrich W. Kistermann, "The Way to the First Automatic Sequence-Controlled Printing Calculator: The 1935 
DEHOMAG D11 Tabulator," Annals of the History of Computing 17:2 (1995) 33–49; and Friedrich W. Kistermann, 
"Locating the Victims: The Nonrole of Punched Card Technology and Census Work," Annals of the History of Computing 
19:2 (1997) 31–45.
4 Kistermann, The Way, Fig. 3.
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Hollerith's Printing Tabulator

The next step in the development of the Hollerith system was to add a printing device. This was also 
invented by Herman Hollerith. He was granted the patents in 1912, although he had formulated his ideas in 
1899. The engineering model was ready in 1917.5 The printing device was attached to the nonprinting 
tabulator on a pedestal extending to the right of the counters. In this model, the stop cards were replaced by 
an automatic group control. Two sets of card sensing brushes allowed two successive cards to be compared. 
If the group identifiers were not equal, the tabulator stopped feeding cards, printed the counters' contents, 
cleared the counters if they were coupled with the clearing shaft, whereafter the machine resumed card 
feeding. This provided an uninterrupted work flow at the printing tabulator.

The ability to print out the contents of every card was especially advantageous. It was necessary when 
statements of accounts, inventory lists, detailed sales analysis reports, etc., had to be processed.

With every new function on the tabulator, the plugboard increased "in size," that is, more hubs had to be 
wired.

The Hollerith printing tabulator, announced at the end of 1920, marked the transition of the tabulator from a 
"statistical" machine into a machine that could support business management in many more applications. 
However, there was still one shortcoming in the 1920 model. Negative results were shown at the counters as 
complementary numbers and were printed as such. A digit 9 in the highest counter position indicated a 
negative result. To do subtraction, the operators also had to punch complementary numbers into the cards.

Table 1: Application environment: Germany (DEHOMAG) vs. USA (IBM)

Field of application Germany USA

Banks *** Current account 
business, account statement 
Required: printing of true 

numbers, compound interest 
calculations, balancing

Check transactions

Wage accounting(gross pay 
to net pay) 5 or more wage 
fields; 10 or more deductions 
& additional charges

*** 
50 deductions per 5 workers 

Required: cross-footing

* 
1 deduction per 

5 workers

Cost accounting(since 1895 
resp. 1902)

** **

Business/factory statistics 
(since 1902)

** **

Market analysis * **

5 Kistermann, The Way, Fig. 4.
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We now come to the second half of the 1920s, which saw an increase in demand on the part of existing and 
prospective customers for more functions in the tabulator and more capacity on the punched card. There was 
a particular need for a balancing feature, which would allow account balances to be obtained, not only in the 
banking business, but also in factory accounting and other applications.

The DEHOMAG engineers in Germany became aware of the fact that the Hollerith/IBM tabulators had 
some deficiencies with regard to application environments in that country, which were quite different from 
those in the United States. Table 1 contains some examples of the differences between applications in 
Germany and the USA. The importance of the application is given by the number of stars, from one to three.

Banks wanted to be able to print out complete bank account statements which would show all transactions. 
In other words, they disliked having one form for credits, another for debits, and a third, which was 
handwritten, for the balance. Accounting in industry and trade had the same requirements. Cross-footing 
would be the answer.

If an account has a variable number of entries, which is usually the case, and the balance is to be printed in 
the last line of the form, then some type of forms control is needed. Also, banks wanted to print true 
numbers, marked by an appropriate sign, when a negative balance was present. They also wanted to avoid 
punching complementary numbers instead of negative values. And last, but not least, they wanted to avoid 
the burden of manual interest calculation by having the tabulator calculate compound interest.

The second line in the application environment table shows the demand on the part of large companies for 
help in wage accounting. This was due to the more complicated tax reduction procedure that existed in 
Germany at the time compared to the system in the United States. Cross-footing would also be the answer to 
this problem.

In wage accounting, cross-footing is cross-addition of all deductions and all additional charges to obtain two 
sums, which are added with the corresponding sign to the gross wage, printing all details and partial sums on 
one pay slip.

Some of these requirements were met by introducing additional features in the Hollerith/IBM tabulators then 
installed. This work was done by DEHOMAG engineers and technicians under the leadership of Ulrich 
Kölm, who was the most prolific inventor of the group.6 Details of his work cannot be given here, due to 
space limitations.7

Since the plugboard of the 1920 tabulator could not be extended, the engineers had to add a number of 
smaller plugboards, placing them just beneath the printing device.8

6 Kistermann, The Way, Fig. 6.
7 Kistermann, The Way, 43.
8 Kistermann, The Way, Fig. 5.
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The period between 1926 and 1931 is very interesting as far as the inventions at DEHOMAG in Berlin are 
concerned. When the summary punch was added to this tabulator in 1931, another small plugboard had to be 
added. However, the wiring of so many plugboards became something of a problem.

The important improvements in these upgraded machines were:

• the balancing device

• introduction of 9's-complement instead of the 10's complement arithmetic which had been used since 
Hollerith's time

• introduction of 9's-complement arithmetic for punching negative values

This is remarkable because it made the punching of negative numbers easier and less error-prone. From then 
on, negative numbers were flagged using an X-punch in the highest column of the card field.

To accomplish this distinction, selectors were added to the tabulator. Selectors are multicontact relays which 
allow the transfer of negative data to another counter, for example, thereby separating them from positive 
data when the responsible selector is engaged by the X-punch. That is, selectors are used especially for 
control purposes. This "field upgrade" could be installed in the tabulators at the customer's site.

Although it was not possible to install the cross-footing feature in these machines because that would have 
demanded a fundamental change in the construction of the tabulator, DEHOMAG's customers knew that 
cross-footing was possible in principle. The book-keeping machines of that time, such as the Elliott-Fisher, 
the Moon-Hopkins or the National, all had this feature.

These developments, coupled with customer demands, caused the DEHOMAG engineers to think about 
designing a new tabulator, independent of the IBM Corporation. The reasons for this were varied, but the 
driving forces were, firstly, trying to overcome the wiring intricacies of the enhanced IBM IIIA tabulator 
and, secondly, the addition of the cross-footing feature. At that time, the IBM technicians were in the 
process of developing a universal tabulator, a multiplier, and were struggling with the alphabetic printing 
feature, not to mention the introduction of the 80-column punched card in 1928. Therefore, the IBM 
colleagues had no time to deal with the requirements confronting the DEHOMAG.

The result of the construction efforts in Germany was the DEHOMAG BK tabulator, which was announced 
in March 1933.9 This machine was a break-through for punched card data processing in Germany. The long 
requested cross-footing feature finally made this tabulator capable of going automatically through the 
complex wage accounting procedure, to give just one example.

9 Kistermann, The Way, Fig. 7.
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Cross-Footing

Let me explain cross-footing. If numbers in different fields of a punched card are to be added (totaled), each 
of them must be transferred into its own counter (accumulator) during one machine cycle. The next machine 
cycle then reads the next card and the new data in each field is added only to its assigned counter. This is the 
same procedure as footing a column of numbers. Conventional tabulators were not able to transfer and add 
numbers contained in different punch fields on the same card, because reading these fields was a parallel 
process, as was the addition in the assigned counters. Once the card had been read, there was no way to alter 
the results.

Controlling the way the card was processed after it had been read, actually required additional cycles, called 
intermediate cycles (later named program steps), between the reading of two successive cards. This could 
only be achieved by temporarily stopping the card feed. Since this was caused anyway by automatic group 
control when a new group identifier was detected, this card-stop was used in the newly constructed machine 
as the ideal occasion to start intermediate cycles during which data would be transferred from one counter to 
another. The data was added when transferred. A number of these transfers, that is, cross-footing operations, 
could be done in parallel by the new machine.

More flexibility in printing was achieved by breaking up the permanent connection between the printing 
devices and the counters (which had been in existence since 1908). The printing devices could now be wired 
separately on the plugboard. It was also no longer necessary to punch negative numbers as complements. 
Cross-subtraction allowed the automatic conversion of the counter's content into its complement during the 
transfer to another counter.

The new wiring possibilities resulted in more complex wiring on the built-in plugboard. This would not have 
been efficient in the long run. Fortunately, a short time after the DEHOMAG BK tabulator was announced, 
the exchangeable plugboard was introduced. This allowed new applications to be wired apart from the 
tabulator.

The DEHOMAG BK tabulator was so great a success that DEHOMAG decided to enhance it once more. 
One year later the BK was finally able to compute the compound interest on bank accounts, previously a 
very tedious type of work for bank clerks. This machine, called DEHOMAG BKZ, also encouraged the 
company to continue with this development line, which eventually led to the DEHOMAG D11.10

10 Friedrich W. Kistermann, ''Multiplication, Division, and Printing with Punched Card Machines," Annals of the History 
of Computing 19:4 (1997) 67–69.
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2— 
The DEHOMAG D11 Tabulator

The D11 is the culmination of forty years of evolution of the Hollerith punched card system. 11

It began in 1895 with the freight account application in the New York Central and Hudson River Railroad, 
when Herman Hollerith transformed his 1890 electric tabulating system (pure counting and tabulation) into a 
business-oriented one, the Hollerith punched card system. This can also be called the Hollerith data 
processing system to emphasize that there is, in principle, no difference between using electromechanical 
and electronic devices.

The D11 is an operator-oriented machine with the printing device in front of the operator, the card feed on 
the left and some counters visible on the right side of the machine. The exchangeable plugboard, which 
holds the "program," is also on the right side of the machine. The summary punch stands on its left.

Let me turn to a man, Hans Gross, who played an important part in the construction of the D11 after he had 
worked with Ulrich Kölm on the BK. Although he was not an inventor like Kölm, he assisted him in his 
work, and complemented him during the development of the tabulator. Unfortunately, we know very little 
about Gross short life. He died at the age of 34. Because he was the manager of the circuit design department 
in 1932, it can be assumed that Gross was instrumental, not only in the construction of the BK, but also in 
the construction of the D11. At that time, Kölm was deputy manager of production and in charge of 
manufacturing the BK and later the D11. He set up a factory, which was opened in January 1934. 
Unfortunately, very few traces could be found to support our conjectures concerning Hans Gross. So they 
may be seen as "informed speculation."

In principle, the D11 was designed with commercial applications in mind.12 Only one motor drives the 
machine through the main shaft, which in turn drives the aggregates, such as the card reader, the counters, 
the print unit, and other parts. The transfer of power occurs with a gear transmission which drives the cam 
shaft, among other items. This shaft provides the timing that controls the electrical actions that can occur in 
the various cycles (card feed cycle, intermediate cycles, etc.), provided these actions have been "ordered" by 
the program on the plugboard.

The card feed is connected to the main shaft via a clutch, which provides the means to disconnect the card 
reader, if the work of the machine is to be stopped by the group control unit. Then, intermediate cycles, 
instead of card cycles, are started to execute a program, which is wired on the exchangeable plugboard. 
These intermediate cycles are mechanical as well as electrical, because relays are being switched and 
counters turned, as directed by the plugged program. During machine operation, the exchangeable plugboard 
is a

11 Kistermann, The Way, Fig. 10.
12 Kistermann, The Way, Fig. 8.
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permanent part of the machine and controls its entire operation. Consequently, this plugboard is comparable 
to a stored program.

All machine cycles (the card cycle, the intermediate cycles etc.) are mechanical motions, that is, the motor 
makes exactly one rotation during one cycle. Intricate timing mechanisms, such as cams, clutches, gears and 
other devices, ensure that all operations follow in orderly sequence, that is, a counter will not accept data 
outside of its allotted time, the printer will move only when results are available, and so on.

With the help of a sorter, the cards are grouped into an order suitable for the report to be generated. The 
feeding of the card deck is controlled by the group control. A change in the group identifier starts up to nine 
intermediate cycles, during which cross-addition and cross-subtraction can be done, even several in parallel. 
It is also possible to print intermediate results.

The tabulator can start a multiplication with up to eight digits in the multiplicand and six digits in the 
multiplier, and the result can be used in subsequent operations. Certain operations can be made dependent on 
a condition, for instance, the punching of a zero-balance can be prevented or a negative total can be printed 
in red. And a summary punch, connected via multi-wire cable, can create a record of a specific result.

The flexibility of the DEHOMAG D11 was so great that it is not possible to go into any greater detail. An 
indication of this flexibility can be seen in the number of hubs in the plugboard. In 1929, the DEHOMAG III 
B (the extended tabulator IBM III A) with its enhancements, had 286 hubs and 14 switches. By 1933, the 
DEHOMAG BK had 1258 hubs and 36 switches. This was increased to 2040 hubs and 20 switches in the 
DEHOMAG D11, in September 1935.

This wiring/programming flexibility required a radical change in the skills required of the employees at 
customers' Hollerith departments. DEHOMAG educated the customers' personnel as well as its own 
technicians. Programming manuals with complete programming examples were provided.

Right from the beginning, the DEHOMAG staff developed a means to help program the machine. Fig. 2 
shows a punched card with a three column punch field for the account number and a seven column punch 
field for credit (Soll) and debit (Haben) amounts, which are punched in the same field but differentiated by 
an X-punch for the debits.13 This is the basis for the report shown just beneath the card and which is the 
result of the tabulator's processing operation.

One customer has two credit amounts and three debit amounts on his account number 511. The credit and 
debit sums, marked with an asterisk, are printed just beneath the single entries. These credit and debit sums 
are deducted and the result, the negative balance, marked with a special sign , is

13 "Haben" (debit) is negative because this is the view of the bank clerk. From the customer's point of view it is positive, 
because he has money on his account. It simply depends on the beholder's position: behind or in front of the counter.
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Figure 2 
DEHOMAG D 11 tabulator – programming (I)

printed on the same line in a third column. This application is known as "balancing in two counters with 
balance printing."

Fig. 3 shows the printed form that was used as a planning guide to prepare the wiring (or programming) of 
the plugboard (or control panel).

Because of the great flexibility of the D11, the wiring preparation was standardized right after initial 
experience with the machine. The wiring (or programming) sheet consisted of three parts:

a) the cycle overview

b) the control area

c) the transfer field
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Figure 3 
DEHOMAG D11 I tabulator – programming (II)

Unfortunately, this is not the place to go any deeper into the programming details beyond just showing the 
programming form. Let me just add that even wired plugboards of great complexity could be documented on 
such a sheet. The wires which transferred the electrical impulses were omitted for clarity,
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because it is sufficient to know that the digit impulses are all transferred in parallel.

Though only a few details of the D11 are given, one can imagine the efforts this machine demanded from the 
customer's personnel in the way of preparing applications. Two examples from the field of business data 
processing will show the type of mathematical formula which can be processed by the D11.

The first example is a common formula for data processing in banks and public utilities (e.g. water, gas, 
electricity): C = (a-b) × c ± d ± e ± f. Variables a and b are typical meter readings, c is the unit price, while 
d, e and f are meter charges, administration fees, etc.

The second example is the formula used to calculate a mortgage loan redemption plan: B'= B - (A - ((B × Z) 
+ a + b + c)). Several cycles are required for the multiplication, their exact number depending on the 
multiplier's value, and four additional cycles are needed to process the formula. In detail: after the 
multiplication, the result is added to the value a and values b and c are added in parallel. These two sums are 
then added and the new sum is subtracted from A. The result is subtracted from B which gives B'. The results 
of each year of the redemption plan are printed as the mortgage loan capital redemption plan and are also 
punched, i.e. stored in summary cards.14 Although this is merely a small example, it demonstrates that 
several operations could be executed at the same time.

The first formula was built into the DEHOMAG BKZ, an extension of the DEHOMAG BK, for use in 
banking. The BKZ was very quickly adopted by utility companies, too. This was the first time that this 
problem was solved by electromechanical means. The D11 could be programmed to process this formula.

Customer Acceptance

What can we say about customer acceptance of the D11? Product acceptance is always welcomed by the 
manufacturer, and by the sales people in particular. A good measure of acceptance is the number of 
tabulators installed, in this case the DEHOMAG BK and the DEHOMAG D11. Although the table is self-
explanatory, a few remarks may be necessary to facilitate understanding (Table 2).

The D11 was announced in September 1935 and the number of BK installations fell dramatically two years 
later. Customers probably decided to wait for the availability of the D11. The first D11 was installed in July 
1936. By 1937, the BK model was obsolete, while installation of the D11 soared. In 1941, a total of 834 
D11s had been installed. At the beginning of 1943 the

14 Erwin Alte, "Die Anwendung des Hollerith-Verfahrens im Aktivgeschäft einer Hypothekenbank," Hollerith-
Nachrichten, Berlin, 1937, 1033–1044.
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Table 2: Number of installations per year of DEHOMAG tabulators

 DEHOMAG BK DEHOMAG D11

1934 32 -

1935 90 -

1936 93 11

1937 18 101

1938 5 138

1939 0 179

1940 1 232

1941 1 173

1942 - 140

1943 - 71

1944 - 25

1945 - 4

number of D11s installed rose to 1075. After WW II the yearly installation increased again. This means that 
the D11 saw 25 years of production, and a much longer time in use. The last Dll s were shut down at the 
beginning of the 1970s. The remarkably long life of this machine is further evidence of its usefulness and 
efficiency, which could not be provided by IBM tabulators. Some D11 Is have survived in German 
museums, e.g. in Munich, Paderborn, and Dresden. The D11 which is installed in the House for the History 
of IBM Data Processing in Sindelfingen was shut down by the customer and returned to IBM in 1972. 15

Characteristics of the DEHOMAG D11

Let me summarize the functions and characteristics of the DEHOMAG D11. The machine featured:

• Electromechanical technology

• Decimal base

• Parallel data transfer during input, processing, and output

• Parallel data processing (data-flow structure)

• 11-digit counters with algebraic sign (also used for storage)

• Zero-reset of the counters (adding the complement of the counter to itself)

15 Friedrich W. Kistermann, Karl-Otto Reimers, "The House for the History of IBM Data Processing, Sindelfingen," 
Annals of the History of Computing 19:4 (1997) 73–76.
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• Stored-program via exchangeable control panel (plugboard)

• Three-level group control

• Nine program steps, which can be repeated indefinitely

• Conditional branching by punch position and/or by processing results, e.g. zero balance, positive or 
negative sign, red/black printing, etc.

• Multiplication via special hardware or plugboard wiring (multiple multiplications in parallel operation)

• Division with special hardware or plugboard wiring or reciprocal multiplication (multiple divisions in 
parallel)

• Formula calculations

• Numerical printing of single values, intermediate results, and final sums

• Printing of forms with forms control

• Summary card punching (including group identification)

• Counting capability

• Printing possible at every program step

• Use of nine's complement system with automatic end-around carry

• Negative data input as regular numbers (with X-punch indication)

• Lasting tabulator: announced in September 1935, retired in 1960.

An appropriate, if cumbersome designation of the D11 would be the following: automatic sequence-
controlled, stored-program, forms-controlled printing and summary punching calculator. However, one 
important feature must be added to this description: the D11 is, definitely, an early type of data-flow 
machine.

So why was it called a tabulator? The DEHOMAG engineers were well aware of the fact that they had 
actually constructed a calculator. The DEHOMAG papers include a letter which shows the outcome of a 
competition for naming the new machine. The first prize was awarded for the name "Hollerith Allrechner," 
which can be translated as "Hollerith General Purpose Calculator." Another proposal was "Master 
Calculator." The final decision was to call it "Hollerith Tabelliermaschine, Type D11." This choice was 
natural for the marketing experts, because what would customers have said, had the salesmen offered them 
the new machine merely as a calculator instead of a true tabulating machine?

Whatever the definition of a "computer" may be, and at the moment there is no consensus about this, the 
DEHOMAG D 11 is a computer.

3— 
Summary

The development of the Hollerith tabulator has revealed a rather slow pace of improvement. The addition of 
new functions came if and when customers made demands based on their experience with the Hollerith data 
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system and on the expected improvement to their business. The system helped primarily to streamline the 
work flow. It made bureaucratic organiza-tions more efficient and made it easy to obtain summarized data, 
which are the basis for getting information quickly.

The DEHOMAG D11 tabulator is not comparable with any other ma-chines of this kind. The intention of 
this contribution is to present a machine which has been hitherto almost unknown, although it can be 
considered a milestone in the development of data processing.

Don't look too closely at the speed and the capacity of the D11, capacity meaning the number of counters, 
the number of program steps and the num-ber of selectors. The hardware of the machine reflects 1930s 
technology: clumsy counters and slow relays. But the ideas realized in the D11 were new and brilliant, and 
outstanding for that time.
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The Architecture of Konrad Zuse's Early Computing Machines

Raúl Rojas

Abstract. This paper provides a detailed description of the architecture of the computing machines Z1 and 
Z3 which Konrad Zuse designed in Berlin between 1936 and 1941. The necessary basic information was 
obtained from a careful evaluation of the patent application Zuse filed in 1941. Additional insight was 
gained from a software simulation of the machine's logic. The Z1 was built using purely mechanical 
components; the Z3 used electromechanical relays. However, both machines shared a common logical 
structure, and their programming model was the same. I argue that both the Z1 and the Z3 possessed features 
akin to those of modern computers: the memory and processor were separate units; the processor could 
handle floating-point numbers and compute the four basic arithmetical operations as well as the square root 
of a number. The program was stored on punched tape and was read sequentially. In the last section of this 
paper, I show that, surprisingly, the Z3 can emulate any modern computer.

1— 
The Z1 and Z3

Konrad Zuse is popularly recognized in Germany as the father of the computer, and his Z1, a programmable 
automaton built from 1936 to 1938, has been called the world's "first programmable calculating machine." 
Zuse was born in Berlin in 1910 and died in December of 1995.

While still a student at the Berlin Polytechnic, Zuse started thinking about computing machines in the 1930s. 
He realized that he could build an automaton capable of executing a sequence of arithmetical operations like 
those needed to compute mathematical tables. Coming from a civil engineering background, he had no 
formal training in electronics and was not acquainted with the technology used in conventional mechanical 
calculators. This nominal deficit worked to his advantage, however, because he had to
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rethink the whole problem of arithmetic computation and thus hit on new and original solutions.1

Zuse decided to build his first experimental calculating machine exploiting two main ideas, namely that the 
machine would work with binary numbers and that the computing and control unit would be separate from 
the storage. Years before John von Neumann explained the advantages of a computer architecture in which 
the processor is separated from the memory, Zuse had already arrived at the same conclusions. In 1936, Zuse 
completed the memory of the machine he had planned. It was a mechanical device, but not of the usual type. 
Instead of using gears (as Babbage had done in the previous century), Zuse implemented logical and 
arithmetical operations using sliding metallic bars. The bars could move only in one of two directions 
(forward or backward), making them appropriate for a binary machine. The processor of the Z1 was 
completed a few months after the storage unit, using the same kind of technology. It worked in concert with 
the memory but was never very reliable. The main problem was the precise synchronization that was needed 
in order to avoid applying excessive mechanical stress on the moving parts. It is interesting to note that in 
the same year in which Zuse completed the

Figure 1 
The reconstructed Z1

1 K. Zuse, Der Computer – mein Lebenswerk, Springer-Verlag, Berlin, 1970. K.-H. Czauderna, Konrad Zuse, der Weg zu 
seinem Computer Z3, (Oldenbourg Verlag, Munich, 1979).
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memory of the Z1, Alan Turing wrote his ground-breaking paper on computable numbers in which he 
formalized the intuitive concept of computability. Fig. 1 is a photograph of the reconstruction of the Z1 that 
can be seen today in Berlin's German Technology Museum. In the 1980s, Zuse directed the reconstruction of 
the machine (which was destroyed in a bombing raid during World War II).

The Z1, although unreliable, showed that the architectural design was sound, which compelled Zuse to start 
investigating other kinds of technology. Following the advice of his friend Helmut Schreyer, he considered 
using vacuum tubes, but gave up the idea in favor of electromechanical relays which were easier to obtain 
before and during the war. Zuse built an ''intermediate" simpler model (the Z2) using a hybrid approach (a 
processor built out of relays and a mechanical memory). In 1938, Zuse started building the Z3, a machine 
consisting purely of relays but with the same logical structure as the Z1. It was ready and operational in 
1941, four years before the ENIAC. Fig. 2 shows a photograph of the reconstructed Z3 in Munich's 
Deutsches Museum. Like the Z , the Z3 was destroyed during the war; it was reconstructed by Zuse in the 
1960s.

Figure 2 
The reconstructed Z3
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This paper offers a detailed discussion of the architecture of the Z1 and Z3. Although the Z1 was 
reconstructed for a museum, the information available describes only the design of the mechanical memory.2
Zuse documented the Z3 in his patent application Z-391 of 1941, which is rather difficult to decrypt due to 
the non-standard notation and terminology.3 Since Z1 and Z3 were practically equivalent from the logical 
and functional points of view, I will refer only to the Z3 from now on. The main architectural difference 
between the Z1 and Z3 was the fact that the square root operation was left out of the Z1. There were also 
minor differences in the number of bits used for arithmetical operations in the processor (the Z1 used one bit 
less for the mantissa of floating-point numbers) and the number of cycles needed for each instruction. With 
this minor caveat, and taking only the architectural features into account, one can speak of the Z1 and Z3 as 
nearly equivalent machines.

2— 
Architectural Overview of the Z3

This section summarizes the most relevant architectural features of the Z3. The paper goes from the simple 
to the complex: first I provide an overview of the architecture, then I go into more detail. In order to avoid 
awkward sentences, I will refer to the Z3 in the present tense.

Block Structure

The Z3 is a floating-point machine. Whereas other early computing automata like the Mark I, the ABC, and 
the ENIAC worked with fixed-point numbers, Zuse decided very early on to adopt what he called "semi-
logarithmic" notation, which corresponds to the modern floating-point representation.

Fig. 3 is an overview of the main building blocks of the Z3. The first relevant feature is the separation 
between processor and memory. The Z3 consists of a binary memory unit (capable of storing 64 floating-
point numbers), a binary floating-point processor, a control unit, and I/O devices. The memory and the 
arithmetical unit are connected by a data bus, which transmits the exponent and mantissa of the floating-
point representation. The control unit contains the microsequencers needed for each instruction. Control 
lines going from the control unit to the processor, the memory, and the I/O devices enforce the correct 
synchronization of all units. The tape reader provides the

2 U. Schweier and D. Saupe, "Funktions-und Konstruktionsprinzipien der programm-gesteuerten mechanischen 
Rechenmaschine Z1," Arbeitspapiere der GMD 321, (Bonn, 1988).
3 K. Zuse, "Patentanmeldung Z-391", in R. Rojas (ed.), Die Rechenmaschinen von Konrad Zuse, (Springer-Verlag, Berlin 
1998).
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Figure 3 
Building blocks of the Z3

opcode of each instruction as well as the address for memory access. The I/O devices are connected by a 
data bus to the computing unit.

Floating-Point Representation

Fig. 4 shows the representation used in the memory of the Z3. The first bit is used to store the sign of the 
number, the following seven bits are for the exponent, and the last 14 bits for the mantissa (only the 14 
places to the right of the binary point). The bits of the exponent are called Part A of the number and are 
denoted by a6 to a0 . The bits of the mantissa are called Part B of the number and are denoted by b0 to b–14. 
The exponent is coded as a two's complement number. The range of possible values therefore runs from–64 
to 63. The mantissa is stored in normalized form, that is, the first digit before the decimal point (b0) must 
always be a 1. This digit does not need to be stored (and therefore does not appear in Fig. 4), so that the 
effective range of the numbers in the memory unit is equivalent to a mantissa of 15 bits. However, there is a 
problem with the number zero, which cannot be expressed using a normalized mantissa. The Z3 uses the 
convention that any mantissa with exponent –64 is to be considered equal to zero. Any number with expo-
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Figure 4 
Floating-point representation in memory

nent 63 is considered infinitely large. Operations involving zero and infinity are treated as exceptions, and 
special hardware monitors the numbers loaded in the processor in order to set the exception flags (see 
Section 4).

According to this convention, the smallest number that can be stored in the memory of the Z3 is 2–63 
=1.08×10–19, and the largest number that can be represented is 1.999×262  = 9.2×1018. The arguments for 
computations can be entered as decimal numbers on the keyboard of the Z3 (four digits). Pushing the 
appropriate button in a row of 17 buttons labeled from–8 to 8 enters the exponent of the decimal 
representation. The original Z3 could only accept input between 10–8 and 108. Zuse's reconstruction of the Z3 
for the Deutsches Museum in Munich provides enough buttons for larger exponents – this arrangement 
allows the whole numerical capacity of the machine to be reflected on the acceptable input and output. 
However, the Z3 does not print the numerical results the program produces. A single number is displayed on 
an array of lamps representing the digits from 0 to 9. The largest number that can be displayed is 19,999. 
The smallest is 00001. The largest exponent that can be displayed is +8, the smallest –8.

Instruction Set

The program for the Z3 is stored on punched tape. One instruction is coded using 8 bits for each row of the 
tape. The instruction set of the Z3 consists of the nine instructions shown in Table 1. There are three types of 
instructions: I/O, memory, and arithmetical instructions. The opcode has a variable length of two or five bits. 
Memory operations encode the address of a word in the lower six bits, that is, the addressing space has a 
maximum size of 64 words, as mentioned above.
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Table 1: Instruction set and opcodes of the Z and Z3

 Instruction Description Opcode

I/O Lu read keyboard 01 110000

 Ld display result 01 111000

memory Pr z load address z 10 z6z5z4z3z2z1
 Ps z store address z 10 z6z5z4z3z2z1
arithmetic Lm multiplication 01 001000

 Li division 01 010000

 Lw square root 01 011000

 Ls1 addition 01 100000

 Ls2 subtraction 01 101000

The instructions on the punched tape can be arranged in any order. The in-structions Lu and Ld (read from 
keyboard and display result, respectively) halt the machine, so that the operator has enough time to input a 
number or write down a result. The machine is then restarted and continues processing the program.

The instruction most conspicuously absent from the instruction set of the Z3 is conditional branching. Loops 
can be implemented by the simple expedient of bringing together the two ends of the punched tape, but there 
is no straightforward way to implement conditional sequences of instructions. However, we will show later 
that conditional branching can be simulated on this machine.

Number of Cycles

The Z3 is a clocked machine. Each cycle is divided into five "stages" called I, II, III, IV, and V. The 
instruction read from the punched tape is decoded in stage I of a cycle. The two basic arithmetical operations 
carried out by the machine are the addition and subtraction of exponents and mantissas. These operations 
can be executed in the first three stages of each cycle. Stages IV and V are used to prepare arguments for the 
next operation or to write back results.

The instructions of the Z3 require the following number of cycles:

• Multiplication: 16 cycles

• Division: 18 cycles

• Square root: 20 cycles

• Addition: 3 cycles

• Subtraction: 4 or 5 cycles, depending on the result
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• Read keyboard: 9 to 41 cycles, depending on the exponent

• Display output: 9 to 41 cycles, depending on the exponent

• Load from memory: 1 cycle

• Store to memory: 0 or 1 cycle

According to Zuse, the time required for a multiplication was three seconds. Considering that a 
multiplication operation needs 16 cycles, one can estimate that the operating frequency of the Z3 was 16/3 = 
5.33 Hz.

The number of cycles needed for the read and display instructions is variable, because it depends on the 
exponent of the arguments. Since the input has to be converted from decimal to binary representation, the 
number of multiplications with the factor 10 or 0. is dictated by the decimal exponent (see Section 4).

Addition and subtraction require more than one cycle because, in the case of floating-point numbers, care 
has to be taken to set the size of the exponent of both arguments to the same value. This requires some extra 
comparisons and shifting.

A number can be stored in memory in zero cycles when the result of the last arithmetical operation can be 
redirected to the desired memory address. In this case, the cycle needed for the store instruction overlaps the 
last cycle of the arithmetical operation.

Programming Model

It is very important to describe the Z3 programming model, that is, the part of the machine visible to the 
programmer. From the point of view of the software, the Z3 consists of 64 memory words that can be loaded 
into two floating-point registers, which I simply call R1 and R2. These two registers contain the arguments 
of the arithmetical operations. The programmer can write any sequence of instructions, but has to keep in 
mind the state of the machine's registers.

The important point to remember is the following: the first load operation in a program (Pr z) transfers the 
contents of address z to R . Any other subsequent load operation transfers a word from memory to R2. The 
first read keyboard instruction loads the numerical input into register R1, a second read instruction loads 
register R2.

Arithmetical operations do not specify their arguments in the opcode. Their implicit semantics is the 
following:

Multiplication: R1:= R1×R2
Division: R1:= R1/R2
Addition: R1:= R1+R2
Subtraction: R1:= R1–R2
Square root: R1:= SQRT(R1)
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R2 is cleared after an arithmetical instruction, whereas the result is stored in R1. Load operations following 
an arithmetical instruction refer to R2. The store and display instructions always refer to R1, which also 
contains the result of the previous arithmetical operation. After a store or display operation, R1 is cleared. 
The next load operation refers to R1.

The programming model of the Z3 is best clarified by an example. Assume that we want to compute the 
following expression:

x2 + bx

Assume further that we have stored the constant b in address 2 of the memory unit. The value x is stored in 
address 1. The program that performs the desired computation is the following:

Pr load x in R1
Pr 1 load x in R2
Lm multiply R1 and R2, result in R1
Ps 3 store R1 in address 3, clear R1
Pr 1 load x in R1
Pr 2 load b in R2
Lm multiply R1 and R2, result in R1
Pr 3 load x2 in R2
Ls1 add RI and R2, result in R1
Ld display result

After the last instruction has been executed, the processor is reset to its initial state. A new program 
sequence can then be started.

3— 
The Z3 Block Diagram

In this section, I take a closer look at the structure of the Z3 and describe its main building blocks in more 
detail. The main issue is how to enforce the correct synchronization of the available components.

The Processor

Fig. 5 shows a simplified representation of the arithmetical unit of the Z3. The unit has two parts: the left 
side is used for operations with the exponents of the floating-point numbers, the right side for operations 
with the mantissas. Af and Bf are registers used to store the exponent and mantissa of register R1, seen from 
the programmer's point of view. I will refer to R1 as the register pair [Af:Bf]. The register pair [Ab:Bb] 
stores the exponent and mantissa of R2. The pair [Aa:Ba] contains the exponent and the mantissa of a third
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temporal floating-point register invisible to the programmer. The two arithmetic logical units (ALUs), A and 
B, are used to add or subtract exponents and mantissas, respectively. The result of the operation in the 
exponent part is put into Ae. In the mantissa part, the result of the operation is put into Be. The pair [Ae:Be] 
can be considered an internal register invisible to the programmer. In Part B, a multiplexer allows selection 
of Ba or the output of the ALU as the result of the operation. The multiplexer is controlled by a relay Bt (if 
Bt is equal to zero, then Be is set equal to Ba).

The small boxes labeled Ea, Eb, Ec, Ed, Ef, Fa, Fb, Fc, Fd, and Ff, are switches that open or close the data 
bus. If the content of register Af is to be transferred to Aa, for example, the box of relays Ea is set to 1 and 
the result is Aa:=Af. As can be seen in Fig. 5, the content of Af can only be transferred to Aa or Ab, whereas 
the content of Ae can be transferred to Aa, Ab, or Af, according to the states of the switches. The structure 
of Part B of the arithmetical unit is very similar, but, in addition to the multiplexer controlled by the relay Bt, 
there is also a shifter between Bf and Ba and a shifter between Bf and Bb. The first shifter can displace the 
mantissa up to two positions to the right and one position to the left. This amounts to a division of Bf by 4 or 
a multiplication by 2. The second shifter can displace the mantissa in Af between 1 and 16 positions to the 
right, and between 1 and 15 positions to the

Figure 5 
The registers and datapath
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left. These shifts are needed for addition and subtraction of floating-point numbers. Multiplication and 
division with powers of two can therefore be performed when the operands for the next arithmetical 
operation are fetched and, in this sense, do not consume time.

The number of bits used in the registers is as follows:

Af 7 bits Bf 17 bits
Aa 7 Ba 19
Ab 7 Bb 18
Ae 8 Be 18

As can be seen from this list, Ae uses one extra bit to handle the addition of the exponents of the arguments. 
Part B of the processor uses two extra bits for the mantissas (b–15, b–16 ), and makes explicit b0, which is not 
stored in memory. The extra bits at positions b–15 and b–16 are included to increase the precision of the 
computations. Therefore, the total number of bits needed to store the result of an arithmetical operation in Bf 
is 17. Registers Ba and Bb require more extra bits (ba2, ba1, and bb1 ) to handle the intermediate results of 
some of the numerical algorithms. In particular, the square root algorithm can lead to partial computations in 
Ba requiring three bits to the left of the binary point.

The basic primitive operation of the data path is the addition or subtraction of exponents or mantissas. When 
the relay As (Bs) is set, the negation of the second argument Ab (Bb) is fed into the ALU. Therefore, if the 
relay As is set to 1, the ALU in Part A subtracts its arguments, otherwise they are added. The same is true 
for Part B and the relay Bs. The constant 1 is needed to build the two's complement of a number.

Assume that two numbers with the same exponent are to be added. The first exponent is stored in Af, the 
second in Ab. Since they are equal, no operation has to be performed on this side of the machine. In Part B, 
the mantissa of the first number is stored in Bf and the mantissa of the second in Bb. The first step consists 
of loading Ba with Bf by setting the relay box Fa to 1. The addition is performed next, the relay Bt is set to 
one so that the result Ba+Bb is assigned to Be. The relay box Ff is now set to 1, and the result is stored in Bf. 
As can be seen, the information can move between registers and so flow through the datapath. The computer 
architect has to provide the correct sequence of activation of the relay boxes in order to get the desired 
operation. This is done in the Z3 by using a technique very similar to microprogramming.

The Control Unit

Fig. 6 shows a more detailed diagram of the control unit and the I/O panels. The circuit Pa decodes the 
opcode of the instruction read from the punched
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>

Figure 6 
The control unit and I/O panels

tape. If it is a memory instruction, circuit Pb sets the address bus to the value of the lower six bits of the 
opcode. The control unit determines the correct microsequencing of the instructions. There are special 
circuits for each of the operations in the instruction set.

Circuit Z represents the panel of buttons used to enter a decimal number in the machine. Only one button in 
each of the four columns can be activated. The exponent is set by pressing one of the buttons labeled –8 to 8 
in circuit K. The output display is very similar to the input panel, but here lamps illuminate the appropriate 
decimal digits, the exponent of the number (circuit Q), and its sign. Note that there is a fifth digit for the 
output (which can only be one or zero).

Once a decimal number has been set, a data bus transmits the digits to register Ba and a complex series of 
operations is started. The decimal input must be transformed into a binary number. This requires a chain of 
multiplications, shorter or longer according to the absolute magnitude of the exponent. If the exponent is 
zero, the whole transformation requires nine cycles, but if it is –8, the operation requires 9+4×8 = 41 cycles.

Microcontrol of the Z3

The heart of the control unit is made up of its microsequencers. Before I describe the way they work, it is 
necessary to take a closer look at the chaining of arithmetical instructions in the Z3. Fig. 7 shows the main 
idea. Each cycle of the Z3 is divided into five stages. Stages IV and V are used to move information around 
in the machine. During stages I, II, and III, an addition /subtraction is computed in Part A and another in Part 
B of the Z3. I call this the "execute" phase of an instruction. A typical instruction fetches its
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Figure 7 
The execution pipeline of the Z3

arguments, executes, and writes back the result. Zuse took great care to save execution time by overlapping 
the fetch stage of the next instruction with the write-back stage of the current one. One can think of an 
execution cycle as consisting of just two stages, as shown in Fig. 7, where the first two cycles of a series of 
instructions have been labeled. I have adopted this convention in the tabular diagrams of the numerical 
algorithms discussed later on.

Special control wheels provide the microsequencing. There is one wheel for the multiplication algorithm, 
another to control division, and yet another for the square root instruction. The moving arm shown in Fig. 8 
starts moving clockwise as soon as the control unit decodes the corresponding instruction. In each cycle, the 
arm moves from one position to the next. The arm conducts electricity and activates the circuits with which 
it comes into contact. In the example shown in Fig. 8, the moving arm sets the relay box Ea to 1 in the first 
cycle. This leads to the transfer of the contents of register Af into Aa. In the next cycle, the relay boxes Ec 
and Fc are activated. In this way, the results of the operations in Parts A and B are written back into the 
registers Aa and Ba, respectively. As can be seen, such control wheels provide a comfort-

Figure 8 
Control wheel for microsequencing
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able platform for modifying the exact sequence of events during an operation. They correspond to the 
microsequencers used today in modern microprocessors. I stop short of calling them a form of 
microprogramming, because, in this case, the microsequence has been hardwired, but it is obvious that 
microsequencing and microprogramming are closely related.

Extensive use of microsequencing allowed Zuse to simplify the Z3. Once the basic circuits had been laid 
out, it was just a matter of refining the control until optimal sequences of events could be found. There are 
many details that the engineer designing the ''microprogram" must keep in mind, otherwise short circuits can 
destroy the hardware. The Z1, with its mechanical design, was still more sensitive in this respect than the Z3. 
Even after it was completed, there were sequences of instructions that the programmer had to avoid in order 
not to damage the hardware. One of those sequences was inadvertently tried at the Berlin Technology 
Museum in 1994 and damaged the reconstructed Z 1.

The Adders

An important feature of the Z3 is the design of the adders, which compute additions and subtractions using a 
method called carry look-ahead. If binary addition is implemented in a straightforward way, carries have to 
be passed from one bit position to the next. In the case of the mantissa, one would need

16 cycles just for transmission of the carry bits. The adders Zuse designed are much faster than that – they 
perform an addition or subtraction in stages I, II, and III of a single cycle. Subtraction is computed by 
complementing the second argument and adding an extra 1 at the lowest bit position.

Consider addition of the registers Ba and Bb. I will refer to the i-th bit of register Bb by bbi or Bb[i], as is 
convenient. I will use the same notation in the case of other registers. First of all, a partial result is computed 
which is the bitwise XOR of both registers, i.e., bci = bai XOR bbi. A second partial result is the bitwise 
AND operation applied to both registers, i.e bai AND bbi . The next operation locates the bit positions at 
which a carry is needed. The intermediate results bdi are computed using the circuit shown in Fig. 9. Please 
note that when a bit is 1, the corresponding line carries a current, otherwise the line is disconnected from the 
power source (so that no short circuit can occur). The resting positions of the relays bc1, . . . ,bc–16 are the 
ones shown in Fig. 9. If bit bci becomes equal to 1, the corresponding relay is closed. The final result is bei =
bdi XOR bci . Note that the use of relays makes the propagation of the carries up to the last bit position 
needed easier. Since all relays are activated simultaneously, the carry is not delayed going from one bit 
position to the next.
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Figure 9 
Circuit for carry-look-ahead

4— 
Numerical Algorithms

In this section, I describe the floating-point algorithms used by the Z3. They are, without exception, the 
same as those normally used in small sequential floating-point processors.4

Floating-Point Exceptions

The problem with normalized floating-point notation is that special conventions have to be used to deal with 
the number zero. The Z3 solves this problem and deals with other exceptions (overflow and underflow) by 
monitoring the value of the exponent after any arithmetical operation or a load from memory. A special 
circuit looks at the state of the bus Ae and captures exceptions. Any number with exponent–64 is flagged as 
zero: a relay denoted

4 I. Koren, Computer Arithmetic Algorithms, (Prentice Hall, Englewood Cliffs, NJ, 1993).
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Nn1 is set to 1 if the number is stored in the register pair [Af:Bf]. If the number is stored in the register pair 
[Ab:Bb], the relay Nn2 is set to 1. In this way, we always know if one or both of the arguments for an 
arithmetical operation are zero. Something similar is done for any exponent of value +63 (an infinite 
number, according to the convention). In this case, the relays Ni1 or Ni2 are set to 1, according to the register 
pair in which the number is stored.

Operations involving "exceptional" numbers (zero or infinity) are performed as usual, but the result is 
overridden by a snooping circuit. Assume, for example, that a multiplication is computed and that the first 
argument is zero (Nn1 is set to one). The computation proceeds as usual, but, in each cycle, the snooping 
circuit produces the result –64 at the output of the adder of Part A. It does not matter what operations are 
performed with the mantissas because the exponent of the result is set to –64, and therefore the final result is 
zero. Division by an infinite number can be handled in a similar manner. The Z3 can detect undefined 
operations like 0/0, ¥ – ¥ , ¥/¥ and 0×¥. In all of these cases, the corresponding exception lamp lights on the 
output panel, and the machine is stopped. The Z3 always produces the correct result when one of the 
arguments is zero or infinity and the other is a number within the allowed bounds. This was not the case for 
the Z1. Zuse considered exception handling for the Z1, but did not implement it. The machine could not 
correctly perform computations involving zero.

An additional circuit looks at the exponent of the result at the output of the exponent's adder. If the exponent 
is greater than or equal to 63, overflow has occurred and the result must be set to infinity. If the exponent is 
lower than–63, underflow has occurred and the result must be set to 0. To achieve this, the appropriate relay 
(Nn1 or Ni1) is set to one.

Zuse managed to implement exception handling using just a few relays. This feature of the Z3 is one of the 
most elegant in the whole design. Many of the early microprocessors of the 1970s did not include exception 
handling and left it to the software. Zuse's approach is sounder, since it frees programmers from the tedium 
of checking the bounds of their numbers before each operation.

Addition and Subtraction

In order to add or subtract two floating-point numbers x and y, their representation must be reduced to the 
same exponent. After this has been done, only the mantissas have to be added or subtracted. If the exponents 
are different, the mantissa of the smaller number is shifted to the right as many places as necessary (and its 
exponent is incremented correspondingly to keep the number unchanged) until both exponents are equal. It 
can, of course, happen that the smaller number becomes zero after 17 shifts to the right.
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The signs of the two numbers are compared before deciding on the type of operation to be executed. If an 
addition has been requested and the signs are the same, the addition is executed. If the signs are different, a 
subtraction is executed. If a subtraction has been requested and the signs are different, an addition is 
executed. If the signs are the same, the subtraction is executed. A special circuit sets the sign of the result 
according to the signs of the arguments and the sign of the partial result.

A chain of relays (not a control wheel) controls addition and subtraction, since the maximum number of 
cycles needed is low. Initially, the arguments for the addition are stored in the register pairs [Af:Bf] and 
[Ab:Bb]. In Cycle 1, the exponents are subtracted. In Cycle 2, the mantissa with the larger exponent is 
loaded into register Ba and the mantissa with the smaller exponent into register Bb. The mantissa in register 
Bb is shifted as many places to the right as the absolute value of the difference of the exponents (exception 
handling takes care of the case when the smaller number becomes zero after the shift). In stages I, II and III 
of Cycle 2 the mantissas are added, and finally the processor tests if the result is greater than 2. If this is the 
case, the mantissa is shifted one position to the right and the exponent is incremented by 1.

In the case of a subtraction, four or five cycles are needed. The first two cycles are almost identical to the 
first two cycles of the addition algorithm, but now the mantissas are subtracted. Cycle 3 is executed only 
when the difference of the mantissas is negative. The effect of Cycle 3 is just to make the mantissa of the 
result positive. Cycle 4 is very important: the difference of two normalized mantissas can have many zeros 
in the first bit positions to the left. Shifting Be to the left as many places as necessary (this is done with the 
shifter between the relay box Fd and register Bb) normalizes the result. The number of one-bit shifts is 
subtracted from the exponent in Part A of the processor. In Cycle 5, the result is stored in the register pair 
[Af:Bf].

Multiplication

The multiplication algorithm of the Z3 is like the one used for decimal multiplication by hand, that is, it is 
based on repeated additions of the multiplicator according to the individual digits of the multiplicand. At the 
beginning of the algorithm, the first argument is stored in the register pair [Af:Bf]. The second argument is 
stored in the register pair [Ab:Bb]. The temporary register pair, [Aa:Ba], is set to zero. The algorithm takes 
16 cycles to run. Note that only the bits of the multiplicand from position–14 to position 0 are used. The 
exponents are added in the first cycle and the result is kept in a loop in subsequent cycles in Part A of the 
arithmetical unit. The mantissas are handled in Part B of the unit. Register Ba contains the partial result of 
the computation. The basic multiplication loop has the following form:
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Note that in each iteration the partial result Be is shifted one position to the right to produce Ba:=Be/2. This 
is done with the shifter connected to Fc.

The result of the multiplication is a number r, such that 1 ≤ r < 4 (for arguments within bounds). In the last 
cycle, there is a check to see if r ≥ 2. If this is the case, the result is shifted one position to the left and a 1 is 
added to the exponent of the result.

Division

The division algorithm is similar to the multiplication algorithm, but using repetitive subtraction instead of 
addition. At the beginning of the algorithm, the dividend is stored in the register pair [Af:Bf]. The divisor is 
stored in the register pair [Ab:Bb]. The algorithm takes 18 cycles to run.

The main idea behind the algorithm is very simple. The exponent of the result is obtained by subtracting the 
exponents of dividend and divisor. Now for the mantissa: assume that we want to compute x/y for the 
mantissas x and y. Since we are dealing with normalized numbers, the first digit of the result is 1 if x ≥ y and 
zero if x < y. In the first case, we set the first digit of the result to 1 and compute the remainder, which is x – 
y. The remainder is divided recursively by y. If the result bit is zero, the remainder is just x and the recursive 
division is continued as in the first case. The basic division loop has the following form:

In each iteration, the partial result Be is shifted one position to the left to produce Ba:=2×Be. This is done 
with the shifter connected to the relay box Fc.

The result of the division of mantissas is a number r greater or equal to 1/2 and smaller than 2. If r is smaller 
than 1, a 1 is subtracted from the exponent, and the result is shifted one position to the left in order to get a 
normalized number.
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The square root algorithm works in a very similar way to division. The details of the algorithm have been 
published.5

Read and Display Instructions

The two most complex instructions of the Z3 are those related to the input and output of decimal numbers. A 
decimal number of four digits entered on the keyboard is converted into a binary integer. This is done by 
reading each digit sequentially, transforming it into a binary number, and storing it in the four bits Ba[–10], 
Ba[–11], Ba[–12], and Ba[–13] of register Ba. The number in register Ba is multiplied by 10 and the 
procedure is repeated for the other digits. After 4 iterations, the decimal input has been transformed to a 
binary number (the exponent is adjusted to the correct value). The difficult part is handling the exponent. If 
the exponent e is positive, the mantissa has to be multiplied e times by 10. If it is negative, it must be 
multiplied –e times by 0.1. Multiplying by 10 is relatively easy: The mantissa in Be can be shifted one bit to 
the left and then stored in Ba (i.e., Ba:=2×Be). At the same time Be can be shifted three places to the left and 
can be stored in Bb (i.e., Bb:=8×Be). The addition of Ba and Bb then provides the desired result: the 
multiplication of the original number in Be by the constant 10. The process takes 4 cycles for each 
multiplication, that is, 32 cycles for the decimal exponent +8. Since a read operation needs a minimum of 9 
cycles, this means that a decimal number with exponent +8 is read in 41 cycles.

In the case of negative exponents, multiplication by the constant 0.1 is performed using the shifters and the 
adders as well. This multiplication is somewhat more complex, because 0.1 is a periodic number in the 
binary system. A description of the microsequencing used would take us too far away from the main topics, 
so I will omit it here.6

The display instruction works by multiplying or dividing iteratively by 10. If the binary exponent of the 
number in register R1 is positive, the number is multiplied by 0.1 as many times as needed to make the 
binary exponent equal to 2 and until the first four bits on the left of register Bf contain a number between 0 
and 9 (0000 and 1001). This is the decimal digit that can be displayed in the next column of the output panel. 
The number is subtracted from the mantissa in Bf, and the process continues for the following digits. If the 
binary exponent of the number in register R1 is negative, the process is similar, but multiplication by the 
constant 10 is used.

5 R. Rojas, "Konrad Zuse's Legacy: The Architecture of the Z1 and Z3," IEEE Annals of the History of Computing, 19:2, 
(1997), 5–16.
6 R. Rojas (ed.), Die Rechenmaschinen von Konrad Zuse, (Springer-Verlag, Berlin, 1998).
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5— 
Complete Architecture of the Z3

We are now in a position to make sense of the detailed diagram of the Z3 shown in Fig. 10. I discussed the 
control unit and the I/O earlier. Notice that the four decimal digits of the input keyboard are transferred to 
register Ba using the relay boxes Za, Zb, Zc, and Zd, which are activated one after the other.

The relay boxes Eg and Ei are used to set some useful constants directly into the exponent registers (+13 
and–4). The shifter Ee between register Af and register Aa is used for the square root algorithm. The 
exponent of the result (Aa) becomes half the exponent (Af) of the original number.

Ah1 is a relay acting as a flip-flop. When it is set to 0, the register pair [Af:Bf] is accessed by load 
operations. When it is set to 1, the register pair [Ab:Bb] is accessed. This relay is reset to 0 by the control 
line ai. The control lines al, aj, bl, and bj are used to clear the registers Af, Ab, Bf, and Bb when needed.

The box labeled "zero, infinite" below Ae represents the circuits for exception handling. They snoop 
permanently on the data bus (results of operations and data from memory) and raise the corresponding 
exception flags when needed. The shifter below Be is used to displace the mantissa one bit to the right. This 
provides the normalization needed for the mantissa whenever Be exceeds or equals 2.0.

Fp and Fq are the relays that control the number and direction of one-bit shifts in the shifter below the relay 
boxes Fc and Fa. Fh, Fi, Fk, Fl, and Fm have the same function in relation to the other shifter. Using these 
five bits, the numbers between –16 and 15 can be represented, which is also the range of the second shifter. 
When such a shift is performed, the number represented by the relays Fh to Fm is transferred through the 
relay box Bn to register Ab, in order to modify the exponent of the result. If the number is shifted 10 
positions to the left, +10 is subtracted from the exponent of the result. Such drastic shifts are mostly needed 
after subtractions.

Look again at the diagram of the Z3. Everything makes sense now and looks as conventional as any modern 
small floating-point processor. It is indeed amazing how Konrad Zuse was able to find the adequate 
architecture right from the beginning. The Z3 processor employs just 600 relays; the memory needs three 
times as much. By having to optimize the design, by having to save hardware everywhere, Zuse was forced 
to think and rethink the logical structure of his machine. He was not allowed the luxury of the almost 
unlimited funding allocated by the U.S. military for the development of the ENIAC or by IBM for the Mark 
I. He was all alone. While this may have worked to his advantage on the conceptual side, it may also have 
worked to his disadvantage, considering the negligible impact that the Z1 and Z3 had on the emerging U.S. 
computer industry after World War II.
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Figure 10 
Complete architecture of the Z3
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6— 
Simulating Conditional Branching

The main defect of the Z3 was the absence of a conditional branch in the instruction set. It would not have 
been difficult to implement – although it is rather clumsy to do when the program is stored on punched tape, 
the necessary mechanism would have required just a few additional circuits (this was done in the Z4, the 
model that followed the Z3, at the request of the customers).

Nevertheless, it can be proved that a machine capable of executing a single loop and the basic arithmetic 
operations is equivalent to any computer with a limited addressing space. This is a rather counterintuitive 
result that needs some explanation.

The program loop can be obtained in the Z3 by just gluing together both ends of the punched tape, as was 
done in the case of Harvard's Mark I. The loop will be performed repetitively until a halting condition is 
reached.

The Z3 can execute arithmetical expressions and store the results to memory, that is, expressions of the form

a := b op c

can be "compiled" combining some primitive instructions (where a, b and c denote memory locations and 
"op" is any of the basic arithmetic operations). We want to show that conditional branching can be simulated 
by using only this kind of expressions in a program loop.

In any program containing branches, there are sections of code that are executed sequentially and which are 
terminated with a branch to another section. Let us numerate these code sections using binary numbers. 
Without loss of generality, assume that there are at most 15 sections–we can then use four bits and label the 
sections as follows: 0001, 0010, . . . , 1111. Our strategy will be to jump from one section to another by 
storing the complement of the desired section number in the four memory locations s3, s2, s1 ,s0. We can 
indicate that we desire to branch to section 3 (in binary 0011), for example, by setting

s3 = 1, s2 = 1, s1 = 0,

Since we are executing a closed loop repetitively, the desired section of code will at some point arrive at the 
reading head. However, we must ensure that all other sections of code being read until the desired section 
appears, and which are always being executed, do not store the results of their operations in memory. In this 
way, it does not matter how many operations are performed until the desired section is reached, since the 
state of the memory is not changed.

Implementing this idea requires putting a guard at the beginning of each code section. This is done by using 
the auxiliary memory location t and computing the expression
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t = ((s3 – a)(s2 – b)(s1 – c)(s0 – d))2

at the beginning of each code section with the 4-bit binary label abcd. Since this computation involves only 
basic arithmetical operations and fixed memory addresses, it can be performed by the Z3. Now, the variable 
t is zero if we are in the desired code section, and one if we are not. We can therefore rewrite all expressions 
of the form "a = b op c" as

a = at + (1 – t)(b op c)

If we are in the desired code section, memory location a is set to the new value "b op c" (since 1 – t = 1). If 
we are not, memory location a remains unchanged (since 1 – t = 0).

Of course, we must take care to put the code necessary for computing t at the beginning of each section and 
to write only programs which use expressions of the form given above. Each section of code is closed by a 
branch to another code section. Since the results of arithmetical operations can be used to set the values of 
the variables s3,s2,s1,s0, all kinds of conditional branches can be executed. It can be proved that a Turing 
machine with a tape of limited size can be simulated by the Z3 using this approach.7 Thus, the Z3 can, in 
fact, simulate any other computer.

Only one problem remains: since the program loop is executed repetitively, how do we stop the machine? 
This can done easily in the Z3 by causing an arithmetical exception. We can reserve a section of code as the 
"stop" section. When this section of code is called (by setting the locations s3,s2,s1,s0 to the appropriate 
section number), the auxiliary memory location t will be zero in this code section. The only operation that 
we include in this section is 0/t. Whenever t is zero, the machine stops and signals the arithmetical exception 
0/0. If t is not zero, the machine just goes through this computation and proceeds to the next section. Had 
Zuse not included arithmetical exceptions in his Z3, we would not be able to stop the loop and this whole 
approach would not work!

The Invention of the Computer

From the theoretical point of view, it is interesting to see that limited precision arithmetic embedded in a 
WHILE loop can compute anything that computers can. The result seems counterintuitive, until we realize 
that operations like multiplication and division are iterative computations in which branching decisions are 
taken by the hardware. The conditional branchings we need are

7 For details see: R. Rojas, "How to Make Zuse's Z3 a Universal Computer," IEEE Annals of the History of Computing, 
Vol. 20:3 (1998) 51–54.
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embedded in these arithmetical operations, and the whole purpose of the transformations used is to lift the 
branches up from the hardware in which they are buried to the software level, so that we can control the 
program flow. The whole magic of the transformation consists in making the hardware branchings visible to 
the programmer.

The approach discussed in this paper could, perhaps, be criticized because it greatly slows down the 
computations. From a purely theoretical point of view, this is irrelevant. From a practical point of view, 
nobody would program the Z3 as I have just described, in the same way that nobody solves industrial 
problems using Turing machines. Also, the large loop of punched tape needed for the program would pose 
extraordinary and most likely unsolvable mechanical difficulties.

We can therefore say that, from an abstract theoretical perspective, the computing model of the Z3 is 
equivalent to the computing model of today's computers. From a practical perspective, and in the way the Z3 
was really programmed, it is not. However, it is clear to me from the study of Zuse's unpublished 
manuscripts (held in the archives of the Heinz-Nixdorf Museum in Paderborn, Germany) that after 
completing the Z3, Zuse realized (between 1943 and 1945) that he could ''lift" the decisions taken in 
hardware to the software level, so as to give the programmer full control of the computation.

Sometimes the dividing line between calculating machines and universal computers is drawn by 
differentiating between machines with externally or internally stored programs. I have argued elsewhere8 
that this is not a valid criterion. An external program can work as an interpreter of numerical data. The 
external program becomes a fixed part of the processor, and the data becomes the program, much in the 
same way as a universal Turing machine works as an interpreter. I have argued that what is needed for 
universal computation is a minimal instruction set and indirect addressing. Self-modifying programs can 
simulate indirect addressing, so that the instruction set becomes the defining criterion. A machine with 
enough addressable memory and an accumulator, that is capable of executing the instructions CLR (clear), 
INC (increment), LOAD, STORE, and BZ (branch if zero) is a universal computer. We have seen in this 
paper that a single WHILE loop and the four basic arithmetical operations suffice to implement a universal 
computer.

To summarize: the Z1 and Z3 were not fully-fledged computers in a practical sense, but neither were any of 
the other early machines. Atanasoff's ABC was a special purpose machine for Gauss elimination, the 
Harvard Mark I lacked conditional branching, although it featured loops; the ENIAC was not even 
programmable through software – the building blocks had to be hardwired in dataflow fashion. Conditional 
branching was available in the ENIAC only in a limited way, and self-modifying programs were, of course,

8 R. Rojas, "Who invented the computer? The debate from the viewpoint of computer architecture," in W. Gautschi (ed.), 
Fifty Years Mathematics of Computation, Proceedings of Symposia in Applied Mathematics, AMS (1993) 361–366.
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out of the question. Zuse's machines, however, embody many of the concepts of today's computers and seem 
more moderm than their American counterparts – an astonishing achievement for someone working in 
relative isolation, and who was inventing and reinventing everything he needed on the way to what he called 
his life's achievement: the computer.
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Konrad Zuse's Z4: 
Architecture, Programming, and Modifications at the ETH Zurich

Ambros P. Speiser

Abstract. Konrad Zuse built the Z4, a relay computer with a mechanical memory of unique design, during 
the war years in Berlin. Eduard Stiefel, a professor at the Swiss Federal Institute of Technology (ETH), who 
was looking for a computer suitable for numerical analysis, discovered the machine in Bavaria in 1949. 
Despite considerable doubts regarding the machine's operability, he decided to acquire the Z4 for his 
Institute in Zurich. The machine had a number of unique features which were convincing evidence of Zuse's 
admirable creativity. The Z4 went into operation in September 1950. It functioned satisfactorily, and in the 
following years several significant results in numerical analysis were obtained with its help.

1— 
Discovery and Acquisition of the Z4 by the ETH

In 1948, the Eidgenössische Technische Hochschule (ETH, or Swiss Federal Institute of Technology) in 
Zurich established the Institute (Department) of Applied Mathematics, on the recommendation of Professor 
Eduard Stiefel. The declared goal of the new institute was the advancement of numerical analysis. From the 
beginning, Stiefel started looking for ways of gaining access to computing power beyond what simple 
desktop calculators could offer. He soon realized that commercial punched card machines were not adequate 
for mathematical work, and that the electronic computer projects already under way, mainly in the US, but 
also in Britain and in Germany, would not fill this gap for several years to come. He thus decided that the 
ETH should build its own electronic computer. He sent two of his assistants, Heinz Rutishauser and myself, 
to the United States with the assignment of studying the new technology in order to start a similar project at 
the ETH. We spent most of the year 1949 with Howard Aiken at Harvard and John von Neumann at 
Princeton, but we also looked at other installations, among them the ENIAC at Aberdeen and the Mark II at 
Dahlgren. We gratefully acknowledge the hospitality with which we were received and the openness with 
which we were given information.
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Before we returned, that is, in the middle of 1949, Stiefel was informed about the existence of Konrad Zuse's 
Z4. At that time Zuse was living in Hopferau, a German village near the Swiss border. Stiefel was told that 
the machine might be for sale. He visited Zuse, inspected the device, and reviewed the specifications. 
Despite the fact that the Z4 was only barely operational, he decided that the idea of transferring it to Zurich 
should by all means be considered. Stiefel wrote a letter to Rutishauser and me (we were at Harvard at the 
time), describing the situation and asking us to get Aiken's opinion. Aiken's reply was very critical – the 
future belonged to electronics and, rather than spending time on a relay calculator, we should now 
concentrate our efforts on building a computer of our own. We reported Aiken's opinion to Stiefel stating, 
however, that we did not fully agree with him and that, in our opinion, the proposition should certainly not 
be flatly rejected. Stiefel acted swiftly. He persuaded the ETH President, Hans Pallmann, to provide the 
necessary funds. A five-year rental contract was then signed. It was agreed that the rent of 50,000 Swiss 
Francs (about $12,000) would be paid in advance. Further, when the contract expired, the ETH would have 
the option of purchasing the machine for the additional amount of 20,000 Swiss Francs (about $5,000). Zuse 
used this sum to move to Neukirchen, a village about 70 Km from Göttingen. He opened a small workshop 
where he refurbished the machine and made the modifications that we had requested. Since the Z4 was 
originally built in Berlin, the question of whether Zuse was really the owner of the machine arises. And, if he 
was not the owner, who was? As far as I know, this question has never been answered.1

Stiefel must receive credit for a wise decision. There were enough uncertainties that could have made him 
shy away from acquiring the Z4. Among them were the following:

1. Relays were a technology of the past, electronics could do the job a hundred, or even thousand times 
faster, as Aiken had stated.

2. The state of the machine and its demonstration for Stiefel were not fully satisfactory. It was uncertain 
whether the small group around Zuse would be able to make the machine fully operational again.

3. The mechanical memory was most unusual, nobody had ever seen anything similar before. An informed 
assessment of its operating performance seemed impossible, although failure of the memory would have 
rendered the entire machine useless.

1 The early history of the Z4, along with the political background, is described in: Hartmut Petzold, Rechnende 
Maschinen (Düsseldorf, 1985); Konrad Zuse, Der Computer-mein Lebenswerk (Berlin, 1984). Cf. also Konrad Zuse, 
"Installation of the German Computer Z4 in Zurich in 1950," Annals of the History of Computing 2 (1980): 239–241; 
Paul E. Ceruzzi, "The early computers of Konrad Zuse, 1935 to 1945," Annals of the History of Computing 3 (1981): 
241–262.
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4. The installation and operation of the Z4 would absorb the small group around Stiefel, which really ought 
to concentrate on the design of the electronic computer. Building this computer would, of course, remain the 
institute's goal, the Z4 being only a temporary solution.

Despite these negative aspects, Stiefel decided to rent the Z4. His decision was clearly dictated by his 
priorities: His foremost desire was to have an instrument for numerical calculations at his disposal as soon as 
possible, so that he could start his research in numerical mathematics. He preferred to start working with a 
relay calculator that was available immediately than to wait for an electronic machine that would take at 
least 3 years to complete. In contrast to many other projects which were in the hands of electrical engineers, 
Stiefel's ambition was to advance mathematics, not computer technology. 2

2— 
Description of the Z4

In the following sections, expressions such as "hardware", "software", "machine language", "compiler", 
''architecture" and the like are used freely, although they were unknown in 1950. They only arrived a decade 
later, but the underlying concepts were quite familiar to us.

The architecture of the Z4, which had many similarities with the architecture of the computing machine Z3, 
can be briefly described as follows:

• It was a relay calculator built using 2200 telephone relays of pre-war design.

• It used a mechanical memory with 64 words.

• The Z4 was a binary, floating-point machine.

• The mantissa was coded using 22 bits for the memory, and 23 for the arithmetic unit. Seven bits were used 
for the exponent. The sign was coded with 1 bit, and "Sonderzeichen" ( special signs like zero or infinite) 
had a special code.

• The Z4 used efficient algorithms for decimal-binary and binary-decimal conversion.

• Programming could be done using a very convenient machine language, which was better than those used 
in most projects we had seen elsewhere. The list of instructions was extensive.

2 Ambros P. Speiser, "The Relay calculator Z4," Annals of the History of Computing 2 (1980), 242–245; Ambros P. 
Speiser, "Die Z4 an der ETH Zürich. Ein Stück Technik–und Mathematikgeschichte," Elemente der Mathematik 36 
(1981), no. 6: 145–153.
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• The program control unit had two punched tapes that could be used alternately. The ends of the tapes could 
be glued together to form a loop.

• There was an intermediate memory for numbers based on a punched tape.

• The results were printed with a typewriter. There was an extensive choice of formats for the fixed-point or 
floating-point numbers. Output was also possible by means of indicator lamps.

The following timing data give an idea of the typical execution times of some instructions of the Z4:

• Addition 0.5 seconds
• Multiplication 3 seconds
• Division 6 seconds
• Square root 6 seconds

A memory access, which could be overlapped with another instruction, took around 0.5 seconds. The overall 
performance of the machine was about 1000 instructions per hour.

Figure 1 
The architecture of the Z4
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A Partial List of Instructions

In this section, we provide a list of the instruction set of the Z4, but some preliminary remarks are necessary.

There are two operand registers, Op1 and Op2. When numbers are read from memory, the first number goes 
into Op1, the second into Op2, and the result of an operation goes into Op1. Store operations take the number 
from Op1 which is subsequently cleared, except if the store operation is preceded by the instruction Rh 
("Resultat halten", retain result). A store operation is not allowed when Op1 and Op2 are both loaded; such an 
instruction indicates a programming error and it causes the machine to stop. Multiplication with constants 
was extremely useful, because it saved memory space, and because it was very fast. Together with the 
instruction that loaded a 1 in Op1, simple constants could be built up without using the memory.

The instruction set of the Z4 contained the following operations:

• Memory instructions (n is the memory address, between 0 and 63):

• A n (read), S n (store), Rh ("Resultat halten")

• Operations with two operands: + (addition), –(subtraction), * (multiplication), : (division), y/x (division 
with inverted operands)

• Operations with one operand: Ö (square root), x2 (squaring)

• Multiplication with the constants: 2, 1/2, 1/3, 1/5, 1/7, p

• Load the number 1 into the first operand register

• Output instruction: D (print, "Drucken")

• Programming instructions: Start, Sp (jump, "Sprung"), Stop

• Conditional instructions: Sp' (conditional jump), Stop' (conditional stop)

These specifications, as seen in 1949, were very convincing. It should be borne in mind that, at that time, 
there were hardly a dozen program-controlled computers in operation, almost all of which were in the US. 
Less than a handful were being used for research in numerical mathematics, and the others performed 
routine calculations. There was no doubt that the Z4 could be used for serious mathematical research.

3— 
Konrad Zuse's Original Contribution

Konrad Zuse must be credited with seven fundamental inventions:

1. The use of the binary number system for mechanical calculation.

2. The use of floating-point arithmetic, along with the formulation of algo-rithms for conversion from 
decimal to binary and vice versa, which are
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quite complicated in the case of floating-point numbers. These algorithms were, of course, embedded in the 
hardware.

3. An algorithm for the non-restoring calculation of the square root, with which the square root can be 
calculated in n steps, where n is the number of digits. This elegant method was still unknown in the U.S. in 
1949.

4. Look-ahead execution: The program's instruction stream is read two instructions in advance, testing if 
memory instructions can be executed ahead of time.

5. Pseudo-memory: If the look-ahead mechanism determines that a number to be stored will be needed again 
within the next two instructions, the number is transferred to a register of mechanical contacts, where it is 
available without access delay. For this purpose, the memory has two registers of reading contacts.

6. Special values ("Sonderwerte"): If a result exceeds the capacity of the arithmetic unit, it is coded as a 
"Sonderwert". There are the following ''Sonderwerte":¥, << (very small), >> (very large), each of which can 
occur with or without a sign, and also 0 and ? (? means undetermined). These values can be stored and are 
used correctly in calculations; for example: 1 : 0 = ¥, 1: ¥ = 0, ¥ - ¥ = ?, 1 + ? = ?

7. The most unusual feature was undoubtedly the mechanical memory. It had 64 words with 32 bits, making 
up a total of 2048 bits. This mechanism was completely different from others used in cash registers or 
desktop calculators. The mechanical elements not only could be used for storage, but also for calculation, for 
example for address decoding. A relay memory would have required about 2500 relays, which would have 
more than doubled the size and weight of the machine.

All of these were Zuse's personal achievements. In one or two cases he was perhaps not the first inventor, 
but he certainly had no knowledge of what was being done elsewhere. Up until 1950 he lived in complete 
isolation from the world outside Germany. Creative power of this dimension, under such circumstances, 
demands the highest respect! The non-restoring square-root algorithm had not even been discovered by von 
Neumann. Anyone who competes with von Neumann deserves to be admired!

4— 
Modifications to the Z4

Early in 1950, Zuse moved the machine to Neukirchen. He used the payment from the ETH to build up his 
company and to put the machine into operating condition. He also had to make a number of modifications 
which Stiefel, in consultation with his assistants, had requested. They were:
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1. The use of punched tapes, not only for instructions, but also for numbers, in order to allow the 
intermediate storage of data beyond the capacity of the memory.

2. The addition of a second tape reader (for subroutines and for numbers).

3. The addition of a typewriter (in the original machine, the output was only from a lamp field).

4. By far the most important change, (and, at the same time, the one that was easiest to implement) was the 
inclusion of two conditional instructions: A conditional jump and a conditional stop, both to be executed 
only if the number in the first operand register was negative.

The important fact was that Zuse immediately understood the significance of these changes. He proceeded to 
implement them, although some implied considerable modifications, mainly the use of punched tapes for 
numbers.

The conditional instructions can be explained as follows: The list of instructions of the Z4, as originally 
provided by Zuse, included the instructions Start, Stop, and Jump. When a tape was inserted in the tape 
reader, the instructions were read, but not executed, until a Start instruction was found. The program then 
started executing. The Jump instruction caused the tape reader to skip all ensuing instructions until a new 
Start instruction was found. Finally, the Stop instruction caused the machine to halt, indicating the end of the 
task. At this point the operator had to intervene, for example, by inserting a new program. The newly 
introduced conditional instructions worked as follows: Conditional jump as well as conditional stop were 
executed only when the number in the 1st operand was negative.

It was obvious that the existence of conditional instructions greatly expanded the range of tasks to be 
handled, or, conversely, without these two instructions the Z4 was a computer of very limited use in 
mathematics. In this context, there was one question that we asked ourselves repeatedly: Why did Zuse not 
include conditional instructions in the first place? Is it possible that, despite his proven creative power, the 
idea had not occurred to him? Zuse himself never gave a clear answer to this question. Thus, it remains 
open, despite its importance for the history of computing.

An interesting feature was the relay circuit for the addition of binary numbers. A relay adder, like any 
mechanical adder, must be able to deal with carries, and, specifically, with the case when a carry to the n-th 
digit causes an additional carry to the n+1st digit, and so on, through many digits. Zuse's circuit required two 
stages for this process: An intermediate set of relays prepared the circuit for the carries, and the next step 
transferred the result to the final set of relays. This determined the speed of the entire machine. While we 
were at Harvard, we studied the description of Aiken's relay calculator Mark II (completed in 1947), and we 
found that he used a circuit which required only one stage. We showed the circuit to Zuse during one of our 
visits in 1950. He immediately recognized its significance, and he admitted that the
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Figure 2 
The Z4 at the ETH Zürich (1951)

thought had not occurred to him. The circuit would have made the Z4 50 percent faster. However, it was 
agreed that a change was out of the question, since it would have required the rewiring of at least half of the 
machine.3

5— 
Operation of the Z4

The machine was moved to the ETH in September 1950 and, after a relatively short period, it was operating. 
The Z4 proved to be quite reliable, and the frequency of breakdowns was well within the limits of what was 
compatible with satisfactory operation. Quite soon, the machine could be left running unattended overnight, 
which was quite unusual at the time. Zuse himself was understandably proud of this achievement. He was a 
man with a good sense of humor, and once stated that the rattling of the relays of the Z4 was the only 
interesting thing to be experienced in Zurich's night life!

To illustrate the conditions under which we were working, let me repeat that the machine's computing power 
was 1000 operations per hour. For operational reasons, problems that lasted more than 100 hours could not 
be considered. Thus, 100,000 operations and 64 places of memory were the

3 These circuits are described in Ambros P. Speiser, Digitale Rechenanlagen (Berlin, 1965).
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computational limits that were set. In the light of today's technology, where the term Giga-flops is in 
everyday use, and memory is measured in Gigabytes, it is hard to believe that useful work of any kind could 
be done with the Z4. And yet, at that time, at least on the European continent, there was no mathematical 
institute which had access to computing power comparable to ours.

Work with the Z4 was interactive in the true sense of the word. Of course the term "interactive computing" 
did not exist at the time. The mathematician was programmer and operator at the same time, and he could 
monitor the running of his program. Intermediate results were printed out, inspected, and the program could 
be modified if necessary. But the signals that the operator received from the computer were not only optical, 
they were also acoustical. The clicking of the tape reader was an indication of how fast the program was 
proceeding, or of whether it had got stuck, and the rattling of the relays signaled the type of operation in 
progress. This was a great help in spotting both hardware and programming errors.

Soon after the Z4 was put into operation, numerous users appeared on the scene. Its user-friendliness 
enabled them to learn programming within a day.

Maintenance of the machine was largely my responsibility. Although, as stated, reliability was quite good, I 
nevertheless remember many hours of searching for errors, which often originated in malfunctioning dusty 
relay contacts. We also discovered several cold soldering joints that gradually failed to conduct. Finding 
them was particularly bothersome, because they caused non-deterministic mistakes. On two occasions, I had 
to disassemble parts of the memory. This meant removing about 1000 pins and replacing them again. There 
were two kinds of pins: one was 2.5 and the other 2.6 millimeters long. If, due to a mistake, I mixed up one 
single pin, the entire memory was blocked – a very frustrating experience!

We also made some hardware changes. Rutishauser, who was exceptionally creative, devised a way of 
letting the Z4 run as a compiler, a mode of operation which Zuse had never intended. For this purpose, the 
necessary instructions were interpreted as numbers and stored in the memory. Then, a compiler program 
calculated the program and punched it out on a tape. All this required certain hardware changes. Rutishauser 
compiled a program with as many as 4000 instructions. Zuse was quite impressed when we showed him this 
achievement.

It was my job to make the necessary wiring changes. I vividly remember the hours it took me to find out 
which of the perhaps 30,000 soldering joints had to be changed to implement Rutishauser's ideas!

By the time the Z4 was moved out of Zurich in 1954, programs with about 100,000 instructions had been 
written. About 6,500 hours of computing time had been registered, during which 6 million operations had 
been performed. Academic clients could use the machine free of charge, external users were charged 1 Swiss 
cent per operation, or 10 Francs (about $2.50) per hour.
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Acquisition and operation of the Z4 is largely the consequence of an exceptionally fruitful partnership 
between Zuse and Stiefel. They were both 39 years old when they met. But their backgrounds, both cultural 
and academic, could hardly have been more different. Each had a powerfully creative mind, as well as an 
ability to intuitively grasp the essential elements of a complex situation. A lasting friendship developed 
between the two men.

6— 
Scientific Work

When the machine was installed, significant scientific work began almost immediately, and within a few 
years Zurich rose to become one of the foremost centers of numerical analysis. I cannot give a detailed 
description of the results, a representative selection of some keywords must suffice:4

• Method of conjugate gradients

• QD (quotient-difference) algorithm and its relation to continued fractions

• The concept of numerical stability in the solution of differential equations

• The concept of programming languages and the contributions to ALGOL (Heinz Rutishauser, Friedrich L. 
Bauer, Klaus Samelson)

During these years, Zurich also became one of the leading centers in applied mathematics. Even Stiefel 
would not have dared to hope for such a degree of success!

The Z4 was also used extensively in education. As early as 1951, we offered students a course in computer 
programming with practical exercises on the machine. We believe we were the first on the European 
continent to do so. This should be taken into consideration by those who often claim that Swiss universities 
were late in recognizing the importance of computer science ("sie hätten die Informatik verschlafen")!

7— 
Reactions in Germany

The situation in Germany in the early 1950s is worth commenting on. While the Z4 was operating in Zurich, 
three electronic computer projects were under way in West Germany: at Darmstadt, Munich, and Göttingen. 
We maintained close contact with our colleagues there, specially during the planning and design phase of the 
ERMETH (Elektronische Rechenmaschine an der

4 Cf. also Eduard Stiefel, "Rechenautomaten im Dienste der Technik. Erfahrungen mit dem Zuse-Rechenautomaten Z4," 
Arbeitsgemeinschaft für Forschung des Lan-des Nordrhein-Westfalen, Heft 45 (1955): 2945.
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Figure 3 
The Ermeth design team at the ETH Zurich (1953). Standing from left 

to right: Eduard Stiefel, Peter Läuchli, Alfred Schai, Appenzeller, Messerli, 
Walther, Sieberling, Engel. Sitting from left to right: Robert Stock, Ambros 

P. Speiser, Annemarie Hürlimann, Heinz Rutishauser, Hans Schlaeppi.

ETH, our electronic computer).5 But, to put it mildly, they only had a moderate interest in the Z4. To 
understand this attitude one must take the fundamental difference in priorities into account: Stiefel wanted 
computing power at his disposal as fast as possible, even if it was only modest. The three German groups, on 
the other hand, wanted to build an electronic computer with advanced technology; they were not under 
pressure from a computer-hungry mathematician.

But when the scientific results started to flow out of Zurich in 1951 and 1952, some criticism was voiced in 
Germany to the effect that the Z4 should have been kept at home rather than letting it go abroad. In 
retrospect, the explanation for what happened is quite clear to me: in 1950, universities were still suffering 
from the consequences of the war. Buildings were badly damaged, equipment was almost non-existent and, 
accordingly, the limited funds had to be spent on the urgent needs of the day in order to keep university life 
at an acceptable level. The sum of 50,000 Swiss Francs that we paid for Z4 was clearly beyond the reach of 
any of the universities. Funds of this amount could only have come from the Federal Ministry 
(Bundesministerium), a state

5 Hans-Rudolf Schwarz, "The early years of computing in Switzerland," Annals of the History of Computing 3 (1981): 
121–132.
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ministry (Länderministerium), or from the Marshall Plan. But in these circles the opinion was crystal clear: 
The future belonged to electronics, and it would be a big mistake to divert limited funds to a relay machine 
whose technology was already considered to belong to the past. (I would be interested to know how the 
guild of younger computer historians who are now at work views this question!)

But German interest in what was being done in Zurich had been awakened and our ERMETH plans, in 
particular, were closely followed. When the first industrial machines appeared in Germany, we found that a 
number of ERMETH ideas had been adopted. To us, it was a source of grief that our work was followed 
with much more interest in Germany than in our own country. To be sure, Swiss industry was polite and 
cooperative when we needed help, but they showed no interest in our results – nobody is a prophet in his 
own country!

8— 
Biographical Notes on Eduard Stiefel

To conclude, I wish to include some remarks on Eduard Stiefel and his biography. The discovery, 
acquisition and operation of the Z4, as well as the remarkable success of its operation, can only be 
understood in the light of Stiefel's personality, which was, in many respects, unusual. Stiefel was born in 
1909. He studied in Zurich, Hamburg and Göttingen. He was a topologist and group theorist, and by 1948, at 
the age of 38, he had acquired an international reputation. At that time he decided to make a complete 
change in his scientific career and to move into numerical analysis. I remember one day when he came into 
the assistants' room and told us he had just thrown away the stock of reprints of his topology publications – 
he had kept only one or two copies of each article. What prompted him to make this move, unexpected by 
most of his colleagues? Numerical analysis, or applied mathematics, was regarded with skepticism by the 
scientific establishment. It enjoyed less social regard than "pure mathematics". What prompted him to make 
the change? Of course, we will never know – but what happened was proof of Stiefel's remarkable intuitive 
insight into what was to become important in the near future, an insight to which he remained faithful for the 
rest of his life.6

6 Joerg Waldvogel, Urs Kirchgräber, Hans-Rudolf Schwarz and Peter Henrici, "Eduard Stiefel (1909 – 1978)," Zeitschrift 
für Angewandte Mathematik und Physik 30 (1979): 133 – 142.
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APPENDIX

Table 1: List of operations of the Z47

Floating-Point 
Arithmetic

Sequencing Supervision Input/Output

Load No Operation Start Execution Read Switches

Load Immediate 1 Stop On Condition Start Number Display

Store Space  Display and Keep

Keep Skip on Condition  Print

Negate Call  Print 0

Make Absolute Call on Condition  Print 2

Add Return  Print 4

Subtract   Print 6

Reverse Subtract   Carriage Return

Maximum   Tabulate

Maximum Positive   Read Tape 0

Minimum   Read Tape 1

Multiply   Punch

Multiply By Two   Punch Programm

Multiply By Three   Protocol Right

Multiply By Ten   Protocol Down

Multiply By Pi   Protocol Left

Divide   Protocol Up

Divide by Two    

Divide by Three    

Divide by Five    

Divide by Seven    

Divide by Pi    

Reciprocal    

Square    

Square Root    

Signum    

If   Indefinite    Then    

One    

Zero Test    

Positive Test    

Infinite Test    

Indefinite Test    

Non-Fraction Test    



   

 
7 Gerrit A. Blaauw and Frederick P. Brooks, Computer Architecture: Concepts and Evolution (Reading, Mass., 1997), 
551.
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AMBROS P. SPEISER graduated as an electrical engineer from the Swiss Federal Institute of Technology 
(ETH), Zurich, in 1948. Subsequently, he was involved in the transfer of Konrad Zuse's Z4 to Zurich and its 
operation. He was a member of the design team of ERMETH (Elektronische Rechen-maschine an der ETH), 
a magnetic drum computer somewhat similar to Aiken's Mark III. During this period, he earned a D.Sc. at 
the ETH. From 1955 to 1966 he was Director of the IBM Research Laboratory, located in Ruschlikon near 
Zurich, and from 1966 to 1988 he was Director of Corporate Research of BBC Brown Boveri (now ABB), 
with responsibility for laboratories in Baden (Switzerland), Heidelberg (Germany), and Paris (France). From 
1959 to 1965 Dr. Speiser was Secretary-Treasurer, and from 1965 to 1968 President of IFIP. He was 
President of the Swiss Academy of Engineering from 1987 to 1993. Dr. Speiser is the author of books on 
computers and electronic circuits, and of numerous articles in computer science and on research and science 
policy. Distinctions: Fellow of the IEEE, holder of the IFIP Silver Core, honorary member of the Zurich 
Physical Society, honorary member of the Swiss Academy of Engineering, honorary doctor of the ETH.
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The Plankalkül of Konrad Zuse — Revisited

Friedrich L. Bauer

Abstract. The ideas that finally led to creation of the Plankalkül first came to Konrad Zuse (1910–1995) 
around 1938, while working on the Z3. He wanted to build a Planfertigungsgerät, and made some progress 
in this direction in 1943. Around 1944, he prepared a draft of the Plankalkül, which was meant to become a 
doctoral dissertation some day. Zuse went back to this work when he had to stay in Hinterstein (Allgäu) after 
the end of the war. The first document from this period is dated June 14, 1945. The final manuscript was 
finished early in 1946, but was not fully published until 1972. As a result, only rudimentary information, 
scattered in a few short publications and contributions to conferences, was available up to that point.

The Plankalkül is the first fully-fledged algorithmic programming language. It was far ahead of its time, 
although not in the line of development so heavily influenced later by machines of the von Neumann type. It 
was, in fact, more a precursor of functional and object oriented programming. However, it fell into oblivion, 
and had no influence on most people studying these topics years later.

1— 
Introduction

In 1972, together with Hans Wössner, I wrote an article for Communications of the ACM1, in which Konrad 
Zuse's Plankalkül was called a "Forerunner of Today's Programming Languages." This was 26 years after 
Zuse completed his manuscript of 1946. 26 years later, I have been asked to contribute an evaluation of the 
Plankalkül for this volume. I was first inclined to reject the offer, since I thought I had said all there was to 
say. On closer inspection, I found my views had changed slightly in the meantime, partly due to the general 
development of programming languages, partly due to the fact that in

1 Bauer, F. L., Wössner, H.: "The ,Plankalkül' of Konrad Zuse: A Forerunner of Today's Programming Languages." 
Communications of the ACM 15 (1972), 678– 685.



   

Page 278

early 1972 I only had at my disposal sketchy publications by Zuse2 (Fig. 1, Fig. 2) and a short passage in his 
autobiography,3 since I was not given access to the main manuscript. In late 1972, however, the GMD, a 
German research institute, was allowed to publish the manuscript, which contained a very elaborate 
description of the Plankalkül.4 There was also a more detailed GMD publication by Zuse in 19775 and a 
short introduction in 1980.6 In 1976, at the now famous International Research Conference on the History of 
Computers, held at Los Alamos Scientific Laboratory, Donald E. Knuth and Luis Trabb Pardo presented the 
paper ''The Early Development of Programming Languages," prominently listing Zuse's Plankalkül as the 
first item in a list of twenty early 'high-level' programming languages.7 More recently, Hartmut Petzold8 and 
Wolfgang K. Giloi9 took an interest in the history of the Plankalkül. But in general, there has been little 
resonance.

Therefore, the present paper can supplement the 1972 paper to some degree; the Plankalkül can now be 
judged with more detachment since another 26 years have passed. Zuse's expectations can be discussed and, 
considering the present state of the art in programming, the Plankalkül may be placed in historical context.

Incidentally, Plan is German for 'program'. Thus, when Zuse speaks of a Plan, he means what was later 
called a program. Zuse used Kalkül as it was used in Aussagenkalkül and Prädikatenkalkül. Thus Plankalkül 
is an instrument for reasoning about programs – quite a modern point of view.

2 Zuse, K.: "Über den Allgemeinen Plankalkül als Mittel zur Formulierung schematisch-kombinativer Aufgaben." Archiv 
der Mathematik 1 (1948/49), 441-449 (submitted December 6, 1948). Zuse, K.: "Über den Plankalkül." Elektronische 
Reche-nanlagen 1 (1959), 68–71.
3 Zuse, K.: Der Computer, mein Lebenswerk. Verlag Moderne Industrie Munich 1970.
4 Zuse, K.: Der Plankalkül. BMBW-GMD-63, 1972.
5 Zuse, K.: Beschreibung des Plankalküls. BMBW-GMD-112, Oldenbourg, Munich 1977.
6 Zuse, K.: "Some Remarks on the History of Computing in Germany." In: N. Metropolis et al., A History of Computing in 
the Twentieth Century. Academic Press, New York 1980, 611–627.
7 Knuth, D.E., Pardo, Luis Trabb: "The Early Development of Programming Languages." In: N. Metropolis et al. A History of 
Computing in the twentieth Century. Academic Press, New York 1980, 202–208.
8 Petzold, Hartmut: "Eine Sprache, die jede Maschine versteht. Der Plankalkül."
9 Giloi, Wolfgang K.: "Konrad Zuse's Plankalkül: The First High-Level, 'non von Neumann' Programming Language." IEEE 
Annals of the History of Computing, Vol. 19, No. 2, 1997.



Page 279

2— 
Objects of the Plankalkül and Notation

First I shall give an introduction to the philosophy of the Plankalkül, together with an explanation of the 
somewhat peculiar notation Zuse used. The objects of the Plankalkül are not necessarily numbers, they are 
lists like the ones John McCarthy introduced independently 13 years later in LISP. In contrast to LISP, 
Zuse's lists are to be formed from a finite ordered sequence (and not pair) of lists and/or from basic 
elements; the basic elements, however, are restricted to binary values. The basic binary elements comply 
with Zuse's philosophy that binary arithmetic is the right one for mechanization, in accordance with 
Gottfried Wilhelm Leibniz.10 In his draft, Zuse gives examples of applications in which objects are 
represented using binary coding.

Thus, Zuse's are lists of lists of binary coded elements, i.e., finite trees of binary coded elements. 
Correspondingly, the operations Zuse studies on these objects are necessarily isomorphic to the operations of 
classical binary propositional calculus. This orientation could well be the result of Zuse's close contact with 
his friend Hans Lohmeyer, a mathematician at the Henkel Aircraft Plant, who was a student of the logician 
Heinrich Scholz in Munster. Surprisingly for an engineer, Zuse does not provide many graphical illustrations 
in his Plankalkül manuscript, and also neglects graphical output.

Figure 1 
Zuse's 1948 paper



   

Figure 2 
Zuse's 1959 paper

10"Wunderbarer Ursprung aller Zahlen aus 1 und 0" and "Unus ex nihilo omnia," Leibniz 1696 in a letter to the Duke 
Rudolf August of Hanover.
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Zuse, who frequently tried to build his machines from the most elementary components, did not arrive at the 
trick of working with ordered pairs of lists and/or basic elements used by McCarthy in LISP. Consequently, 
Zuse explicitly needs selectors isomorphic to finite subsets of the set of natural numbers – indeed he is 
forced to use the natural numbers from 0 to 7 to denote the components (Komponenten) K0, Kl, K2, K3, K4, 
K5, K6, K7, where he could have used three bits for selection. This, however, is not a severe theoretical 
drawback and rather a concession to widespread usage.

Needless to say, Zuse does not require the components to be of a single type; thus he uses, for example, a list 
of several four-bit numbers and a binary sign. He also frequently introduces data constraints 
(Beschränkungen), for example, using only 10 of the 16 possible four-bit code elements to represent the 10 
decimal digits.

Zuse works primarily with fixed structures, which he calls inflexible (starr). But he also considers dynamic 
(quasistarr) structures, e.g., a list of n four-bit numbers and a binary sign, where the Struktur-Variable n is 
to be calculated before the program itself, the Rechenplan. Zuse speaks of a quasistarrer Rechenplan if the 
structure can be pre-computed. This reflects his idea of building a Planfertigungsgerät, which he practically 
abandoned later on. Potentially infinite structures – infinite sequences, infinite trees – are excluded from the 
language.

Definition of Structures

The introduction of object classes is effected by "structure equations" (Strukturgleichungen). Structures are 
denoted by S followed by other characters. SO always denotes the fundamental binary set, the set formed by 
two basic elements denoted O and L (the binary digits 0 and 1). The structure equation

S 1.4 × 4 × S0

defines a structure S1.4 of four binary components. Another way of introducing it is by forming a tuple

S 1.4 = (S0,S0,S0,S0)

A new structure S2 could be defined by

S2 = n×S1.4 or equivalently S2 = n×4×S0

which would be used to represent a number with n decimal digits. For example, for n = 2, (LOOO, OOLL) 
would represent the natural number 83. Another structure S3 could be defined by

S3 = (S0,n×S1.4),
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useful to represent a number with n decimal digits and a sign. For example, in the case n = 2, (L, (LOOO, 
OOLL)) would represent the integer –83. Clearly, n×4×S0 and 4×n×S0 are different structures: the first is 
an n-tuple of quadruples, the second is a quadruple of n-tuples.

Variables and Components

Variables are denoted by letters like

V for parameters

Z for intermediate results
R for final results

followed by a numerical index. Component selectors are denoted by K followed by a natural number: KO 
selects the first component, K1 the second, K2 the third, and so on.

A Notation Peculiar to the Plankalkül

Assume Z3 to be a variable of structure

m×S1.n = m×n×S0.

For K1(Z3), the second component of Z3, Zuse uses the following notation:

Z (name of the variable)

3 (index of the variable)
1 (component index)
1.n (structure of the component)

For K1.2(Z3), the third component of the second component of Z3, the notation is:

Z (name of the variable)

3 (index of the variable)
1.2 (component index)
0 (structure of the component)

This is part of Zuse's peculiar "row representation": every (operative) construction is broken into four lines, 
and has in its left margin (strangely called Randauszug) the symbols V, K, S:
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where V refers to a "variable index," K to a "component index" and S to a ''structure." ALGOL uses the 
reverse order: Z4[2.3]:=Z3[1] Ú Z4[2.3].

This example also shows the typical Zuse notation with the Ergibtzeichen (for typographical reasons later  
, Þ), which John Backus introduced independently into FORTRAN as the symbol :=, working in the opposite 
direction. Zuse clearly explains that a construction like the one above contains a hidden sub-index i which is 
counted upwards:

The K line may be left empty if no component is to be singled out. The S line gives only additional 
information; strictly speaking it could be omitted.

Examples of the Randauszug

The following are some commented examples of the notation used by Zuse:

 

The variable V3 is a list of m pairs 
of the structure 2xSl.n 
and enters into the computation 
as a whole 
  
The i-th pair of the list of pairs V3 
(structure 2xSl.n) 
enters into the computation 
i may be a running index 
  
The first element of the i-th pair 
of the list of pairs V3 
(structure Sl.n) 
enters into the computation 
  
The binary digit no. 7 (structure SO) 
of the first element of the i-th pair 
of the list of pairs V3 
enters into the computation
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Zuse also gives examples in which the selector for a structured object is computed separately: the k-th 
component of Z3, where the number k is the value of Z1, an object of the structure S1.n is denoted by

which we would express in ALGOL as Z3[Z1]. This construction and the use of conditional branching 
(bedingte Planteile), denoted with the help of the conditional symbol as in

influences the course of the computation (Kla and Klz represent logical predicates defined by the 
programmer, see Fig. 6). Note that ALGOL uses the "if . . . then" construct for the same purpose. Zuse 
speaks here of "free programs."

3— 
Zuse's Orientation towards Symbolic ('Non-Numerical') Computations

Zuse devotes a large part of his 1972 paper to a detailed discussion of three examples of symbolic 
computations:

• logical-arithmetical operations, where he gives a partial description of his Z3 calculator in terms of the 
Plankalkül (Chapter 3)

• the problem of well-formedness and parsing of a parenthesis-free formula (Chapter 4, already sketchily 
treated in his 1948 paper, see Fig. 3)

• the description of a chess machine (Chapter 5, already mentioned in his 1959 paper, see Figs. 5, 6).

The last two were topics that interested Zuse (the parsing algorithm originated in the 1930s from the Berlin 
logician Karl Schröter) and seemed to be outside the mainstream of programming language development in 
the 1950s, which was heavily influenced by numerical calculations. This may explain why the American 
participants at the ALGOL58 conference were not interested in the Plankalkül. In fact, Zuse's way of 
building structures was a clumsy way of handling matrices, which are so important in numerical analysis. 
Efficiency, both with respect to time and storage, was considered most important when using the computers 
of the late 1950s, when a great deal of work was being invested in numerical problems.
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An Example of Syntactical Nature

The example Zuse used not only illustrates the Plankalkül notation, but also points in the direction of the 
systematic construction of a program out of its specification–quite a modern tendency. Zuse starts his 1948 
paper by saying: " Expressions formed in this way contain the following symbols: symbols for variables, for 
negation, for [binary] operations, parentheses and blanks, needed to separate individual expression for 
automatic handling. The individual symbols are encoded by sequences of True-False values."

In the Plankalkül program (Fig. 3), s denotes the structure of 8-bit words used to encode the symbols 
(Zeichen), and ms with arbitrary m ≥ 1, denotes the structure V0 of the symbol sequences that are to be 
investigated. A call to this program with an (encoded) symbol sequence x as its actual parameter tests the 
predicate:

Sa(x): x is a "meaningful," i.e., a syntactically well formed Boolean expression.

This predicate is defined inductively in the following way:

1. A variable is a meaningful expression.

2. A meaningful expression, prefixed by a negation symbol, yields a meaningful expression.

3. Two meaningful expressions, connected by an operation symbol, yield a meaningful expression.

4. A meaningful expression put in parentheses yields a meaningful expression.

To transform this definition into an algorithm, Zuse defines the auxiliary predicates for the symbols x:

Va(x): "x is a variable symbol"

Op(x): "x is an operation symbol"
Neg(x): "x is a negation symbol"
Kla(x): "x is an opening parenthesis"
Klz(x): "x is a closing parenthesis"

And the composite predicates
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Figure 3 
Well-formedness of a propositional formula 

(from Zuse's 1948 paper)

Figure 4 
ALGOL 68 equivalent of Zuse's example in 

Fig. 3, with numbers marking correspondences 
(from the paper by Bauer and Wössner, 1972)
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Thus, he postulates for the Plan in Fig. 3:

1. The first symbol x has to fulfill Az(x)

2. Two symbols x, y following each other have to fulfill Sq(x, y)

3. The last symbol x has to fulfill Sz(x)

Moreover, he uses two predicates counting parentheses:

4. The total number of opening parentheses is equal to the total number of closing parentheses

5. For any segment of the symbol sequence, the number of opening parentheses is greater than or equal to 
the number of closing ones

The program (Fig. 3) checks these conditions:

•  serves for the special case of condition 1.

•  and  are initializations for the repetitive statement which checks condition 2 and the count 5.

•  checks condition 3 for the final case and checks the count 4.

The program, by the way, contains some bugs: for example, a count corresponding to  is missing for the 
first symbol. More seriously, the condition x ≠ V0[0] in  should be read as x = V0[i] Ù i ≠ 0 – a weakness 
in Zuse's semantics of repetition (see below).

For a direct translation of Zuse's (corrected) program into ALGOL 68, we may assume first that suitable 
Boolean procedures Va(x), Op(x), etc. have been declared. Using these predicates, we obtain the procedure 
shown in Fig. 4 in ALGOL 68 (the encircled numbers refer to Fig. 3).

An Example from Chess

Fig. 5 shows P148, the Plan for the predicate "Is the white king in stalemate?," one of the auxiliary 
procedures for a chess program formulated by Zuse in Plankalkül notation (in his 1959 paper, p. 71) and his 
related comments. He uses two further auxiliary procedures with the results R17 and R128, which he first 
defines verbally. The next step would be to state them algorithmically in Plankalkül notation. For R17, a 
one-line Plan can actually be found on page 241 in Zuse's 1972 paper. Likewise, a four-line Plan for R128 is 
there on page 260.



   

Page 287

Figure 5 
The chess example: is the white king free to move? 

(from Zuse's 1959 paper)
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Figure 6 
Example: chess structures 
(from Zuse's 1959 paper)
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The structures on which the program is based are defined in Fig. 6. A = S1.3 serves to encode the rows and 
columns, a field (Punkt) on the chess-board is determined by A2 = 2 × A1. Also a 4-bit structure S1.4 is used 
to encode the 13-element set {white king, white queen, white rook, white bishop, white knight, white pawn, 
black king, black queen, black rook, black bishop, black knight, black pawn, empty}, the three unused 
combinations being given by a predicate B3 that is violated ("data restriction"). Thus, Zuse writes

The remaining structures are defined constructively in a similar way. Zuse's program, literally translated into 
ALGOL 68, is shown in Fig. 7 (the marks (1) to (4) correspond to those in Fig. 5).

4— 
Unorthodox Elements in the Plankalkül

The non-numerical examples illustrate Zuse's boldness in introducing, in a programming language, not only

• the existence operator $ in the form ($x) F(x) and

• the for-all-operator " in the form (x) F(x), but even

• the determination operator in the form ( ) F(x) ("this one, which . . .") and the list-forming operator  F(x) 
("the set of all, which . . .").

Zuse gives a definition of  F(x) by an algorithmic implementation and uses

to denote that the list VO does not contain repetitions. Moreover, he introduces the sieve operator  F(x) 
("the ordered sublist of all, which . . . "). To give an example: for V0=(0,3,5,4,3,6,12,6,4)

He also proposes the µ-operator for lists of the form µx F(x) ("the first one which"). An example of this 
would be:
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In this case, he slightly generalizes the idea of Bernays' µ-operator: if there is no suitable element, a special 
sign ("end symbol") is to be returned (and not zero, as Bernays does – in fact, Zuse's lists may contain 
elements other than numbers).

Zuse was introduced to the symbolism of mathematical logic, by his own admission, by his friend Hans 
Lohmeyer. Together with Lohmeyer, he studied, to some extent, the relevant material in the classical books 
by Schröder, Frege and Hilbert-Ackermann. However, Zuse lacked a thorough mathematical education, so 
he may have misinterpreted something here and there; in particular, he was innocent and naive enough to 
bring the concepts of mathematical logic, which were invented for quite another purpose, into the emerging 
Plankalkül. Zuse's unfamiliarity with mathematical tradition also led him to use non-standard terminology. 
This, coupled with inconsistent typography, makes reading the Plankalkül difficult and has certainly scared 
away impatient mathematicians. On the other hand, no mathematician-not even Turing – knew how to build 
a practical computer around the concepts of mathematical logic in 1942. This makes Zuse unique.

Figure 7 
ALGOL 68 equivalent of Zuse's chess example 
(from the paper by Bauer and Wössner, 1972)
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5— 
Limitations

In the comments he made in 1972, Konrad Zuse suggests that the Plankalkül represents a machinery 
equivalent to a stored program computer, i.e., a universal computer11. This is not so: a data structure of the 
Plankalkül cannot be recursive any more than a program can. Certainly, the Plankalkl knows simple and 
conditional, possibly even nested repetitions (Wiederholung-spläne), characterized by a prefix W (see for 
example , Fig. 3). But that is all. The Plankalkül totally reflects the philosophy of a Babbage-Zuse machine 
with its finite system of loops and does not cover the possibilities of a von Neumann machine which, if 
necessary, can perform unrestricted procedures in the way M. S. Mahoney has used this expression in this 
volume. And the block structure, so important for storage allocation, is not yet carried through methodically 
– a deficiency which turns up again in APL. The engineer Zuse failed to get the gist of the l-notation – 
twelve years later, van Wijngaarden failed to as well. Meanwhile, thanks to Dana Scott, lambda calculus is 
based on an important mathematical structure in the form of continuous lattices.

6— 
Conclusion

Konrad Zuse's Plankalkül manuscript, whose origins go back to the early 1940s, was drafted in the second 
half of 1945. It was an attempt to devise a notational and conceptual system for writing programs, and it was 
far better than anything that was known up to the middle of the 1950s. However, this very early approach to 
a high-level programming language did not find practical use. The obstacles were its lack of orientation to 
numerical computations (or to put it more positively, its adaptation to the field of non-numerical calculation, 
which was not yet mature), the inefficiency that would have been caused by the unorthodox elements of the 
Plankalkül and its two-dimensional notation12. Nevertheless, it was a remarkable effort, which fully parallels 
Zuse's achievements with his early machines Z1-Z4. This can be seen most clearly if the Plankalkül is 
compared to the flow diagram symbolism that originated at about the same time in the US under the 
influence of John von Neumann.

In his self-righteous way, Zuse blamed the failure of the Plankalkül on others. In the 1993 English version of 
his autobiography, he wrote (p. 102) " . . . only occasionally [I] had the opportunity to have discussions with 
some of the creators of ALGOL, for example Rutishauser and Bauer. Most of the

11 "Wie bereits erwähnt, stellen die freien Rechenpläne im Sinne des PK die heute allgemein übliche Form von 
Programmen dar."
12"The Plankalkül just needs to be made compiler-compatible": K. Zuse, The Computer, My Life, Springer, Berlin und 
Heidelberg 1993, 103.
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time we talked past one another. The basic idea of the Plankalkül to systematically construct a programming 
language from its logical roots, appeared outdated to my partners, or was considered unnecessary ballast.'' 
For his efforts towards the practical introduction of the Plankalkül Zuse even saw "a united front of defense 
on the part of industry and research" (p. 164) and accused the experts in the German Research Council of 
ignorance and prejudice (p. 158). This made him no friends.

When, in 1972, ALGOL 68 was used to rewrite Zuse's examples of the early 1940s, it was done to facilitate 
comparison by using a programming language that came closer to the Plankalkül than many others. Should 
PASCAL or FORTRAN have been used for this purpose? ALGOL 68 had structured elements, too.

In 1997 Giloi wrote "I deem it questionable that the creators of ALGOL were intentionally denying Zuse the 
credit he deserved as the inventor of important programming concepts, rather I give them the benefit of the 
doubt that this came from a lack of understanding."13 I have to answer this criticism (Klaus Samelson and 
Heinz Rutishauser not being alive any longer) by saying that, while I have on many occasions given Zuse all 
the credit he deserved ("Plankalkül a forerunner of ALGOL"), I understood only too well the practical 
limitations of implementing Zuse's ideas in the la.e 1950s. In fact, I probably understood them better than 
Zuse, who never wrote a compiler, ever did.

However, on p. 103 in his autobiography, Zuse wrote "Nevertheless, I have not given up all hope that the 
Plankalkül will once again attain practical importance." But in his 1972 paper, Zuse lived in a dream-world 
as far as the Plankalkül goes; he had not kept up with the pace of developments in the construction of 
compilers or in the syntax and semantics of programming languages.

By all means, it can be safely said that Konrad Zuse had, in 1945, more than an inkling of the most 
important aspects of the emerging field of programming languages, and the time was not ripe until 1956, in a 
few cases much later. Zuse was ahead of his time, not only with his machines, but also in the Plankalkül, 
which was his greatest scientific achievement. With good reason, Zuse is the most admired computer 
pioneer today.

13 Giloi, Wolfgang K.: "Konrad Zuse's Plankalkül: The First High-Level, 'non von Neumann' Programming Language." 
IEEE Annals of the History of Computing, Vol. 19, No. 2, 1997.
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FRIEDRICH L. BAUER studied mathematics, theoretical physics, astronomy and logic from 1946 to 1949 
at the Ludwig Maximilian University in Munich. He took the state teachers' examination in 1949 and 
obtained his Ph.D. in 1952. In 1949, he became acquainted with Konrad Zuse and his Plankalkül. His 
academic career led him to the Munich Institute of Technology in 1952, where he worked under Robert 
Sauer, taking part in designing the PERM computer. He became a lecturer in 1955. He was appointed 
Associate Professor of Applied Mathematics at the University of Mainz in 1958. In 1962 he was made a full 
professor there. He returned to the Technical University of Munich in 1963, where he continued as Professor 
of Mathematics and Computer Science till his retirement in 1989. He took part in the development of 
ALGOL and in the creation of the field of software engineering. He has written numerous articles on 
numerical analysis, the syntax and semantics of programming languages, program development from 
specification, theoretical computer science and the history of computing, and more than half a dozen books, 
some translated into foreign languages, the most recent ones being on cryptography, one of his scientific 
hobbies.

F.L. Bauer has received a number of academic and public honors, among them three honorary doctorates, 
the IEEE Computer Pioneer Award and membership in the Maximilian Order of Science and Arts of the 
State of Bavaria. He is member of the Bavarian Academy of Sciences and the Akademie der Naturforscher 
Leopoldina at Halle. He designed the exhibition of computer history at the Deutsches Museum and was 
honored with the Goldener Ehrenring. For establishing the discipline Informatik at the Technical University 
of Munich, together with Klaus Samelson, he was recently awarded the Heinz Maier-Leibnitz medal.



   

Page 295

The G1 and the Göttingen Family of Digital Computers

Wilhelm Hopmann

Abstract. A small group under the direction of Dr. Heinz Billing constructed four different computers, the 
G1 (1952), the G2 (1955), the Gla (1958) and the G3 (1961), at the Max Planck Institute in Göttingen. The 
G1, G2 and Gla were bit-serial machines, which used a magnetic drum for both the main memory and the 
bit-serial registers. Whereas the G1 and Gla used punched tape programming, the G2 was controlled by 
stored programs. The G3 was a bit-parallel computer with a ferrite core memory of 4096 50-bit words for 
numbers and programs, and which operated at a speed of 5000 Flops. The G 1 and G2 operated using fixed-
point arithmetic, whereas the Gla and G3 had a floating-point arithmetic unit. Each of the G-computers was 
in operation on a regular basis at the Institute for several years.

1— 
Introduction

In 1947, a small group of computer scientists from the National Physical Laboratory (NPL) at Teddington 
visited the British Occupation Zone in Germany to explore what had been done in their field of research over 
the previous decade. Members of the party were, among others, John R. Womersley, the superintendent of 
the Mathematics Division of the NPL, Arthur Porter and Alan M. Turing. They met with Alwin Walther 
from Darmstadt, Konrad Zuse, Heinz Billing and others who were taking part in a colloquium discussing the 
state of mathematics and computing in Germany.1 It was after this meeting that Womersley told Billing of 
the NPL's plans to build a computer much smaller than the famous ENIAC, based on bit-serial numerical 
processing. Billing wrote about this meeting in his notebook and sketched the main working principle (Fig. 
1).2 This short note marks the beginning of computer development in Göttingen.

1 Whether Turing attended this colloquium is somewhat doubtful and remains an unsolvable "Entscheidungsproblem."
2 Heinz Billing, private communication to the author.
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Figure 1 
Page in Billing's notebook (Autumn 1947)

In retrospect, the fact that Womersley didn't reveal anything about the realization of the delay lines might 
have been a stroke of luck. At first, Billing thought of using electrical delay lines, e.g., cables or chains of 
quadrupoles, but eventually decided to use an endless loop of magnetic tape, a system he had utilized for 
periodizing analog signals. Then he stuck the tape on the surface of a drum, facing a writing head (W), a 
reading head (R), an erasing head (E) and a pulse-shaping amplifier, which closed the loop between the 
reading and the writing head.3 The drum could rotate at 100 rps,4 and the circulating magnetophone register 
was thus invented.

These dynamic registers were certainly much slower than the ultrasonic mercury delay lines used for the 
same purpose in the ACE. But all the problems involved in synchronizing them with each other and with the 
peripherals, caused by changes in the mercury temperature, had been avoided!

In January 1948, Billing successfully tested a drum with a storage capacity of 192 20-bit binary numbers 
plus the necessary circulating registers, as well as the tracks for the synchronization of the master clock. A 
first paper on a Numerical Computer with a Magnetophone-Memory, was presented at the GAMM (German 
Society for Applied Mathematics and Mechanics) conference of 1948.5

3See Fig. 4.
4 Heinz Billing, "Numerische Rechenmaschine mit Magnetophonspeicher," Zeitschriftfiir angewandte Mathematik und 
Mechanik 29 (1949), 38–42.
5 It is remarkable that at the same conference Zuse presented a paper on his Plankalkül under the title: The Mathematical 
Requirements for the Development of

(footnote continued on next page)
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At the end of 1948, Billing was able to demonstrate a bit-serial binary adder to Professor Werner Heisenberg 
and others. However, the realization of a complete computer seemed unattainable at that time, as the 
financial difficulties brought about by the currency reform of June 1948 led to the cancellation of all 
projects. Thus, a year later, Billing accepted an invitation from the University of Sydney to work there to 
construct a computer with a magnetic drum memory. Before departing for Australia, however, he left in 
Göttingen a revised edition of his 1948/49 draft, which had meanwhile been expanded to 34 pages.

The Big Machine

Shortly after his arrival in Sydney, Billing received a letter from Heisenberg offering him much better 
working conditions than before. Thanks to the Marshall Plan, sufficient money had been made available to 
finance the hardware of a large computer, which was urgently needed by the Astrophysics Division, headed 
by Ludwig Biermann. Billing returned to Germany in June 1950 and revised the draft of 1949 for the design 
of a fully automatic computer (Voll-Automatische Rechenmaschine ).6 The proposed system featured a 
magnetic drum main memory for the storage of 2048 51-bit words capable of storing either a single fixed-
point number or two instruction words.

It was estimated that approximately 1200 vacuum tubes would be required. The input/output was to be 
performed with standard teletype equipment. That system later became the G2. But the estimated three-year 
construction period needed for such a computer came as a shock to Biermann and his crew. They asked if an 
additional, much smaller computer could be built in less time.

The Small Machine

The speed of desktop calculations is determined by the time the operator needs to enter numbers into the 
computer and to subsequently write the results (reading from the display). It seemed, therefore, that a 
keyboard-operated computer, featuring only a few memory cells to store parameters, constants and 
temporary results, would be sufficient. Yet the risk of error due to the manual key-in and write-out of 
parameters and results should also be avoided. The speed of a single operation ought not be much faster than 
a mechanical desktop calculator.

Based on the experience gained from experiments with the mechanical design of the small drum in 1948 and 
1949 and the electronic circuitry working

(footnote continued from previous page)

Logistic-Combinatoric Computers. Zuse himself reports that his presentation didn't evoke any response at all!
6 Heinz Billing, Vollautomatische Rechenmaschine, Internal Communication (1950)
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at a clock rate of approximately 10 kHz, Billing designed a semi-automatic computer (Halb-Automatische 
Rechenmaschine, HAR),7 i.e. the G1 computer, during the autumn of 1950. His paper presented the layout of 
the memory drum, including the 4 circulating registers. It shows how left-and right-shifting of numbers can 
be performed, and how the transmission of a number from one register to another can be accomplished using 
logic gates and delays. It also deals with the arrangements for decimal to binary conversion during input and 
output. Moreover, in the approximately 35 pages of the HAR paper the sets of waveforms controlling the 
gates for the execution of specific commands, including their timing, are analyzed. Figs. 2, 3, 4 have been 
copied from that paper8.

2— 
The G1 Computer

The G1 Drum

Fig. 2 shows the G1 memory drum, 8.8 cm in diameter and 17 cm in length. The rotating speed was 50 rps. 
The track at the far left consisted of 144 millcut dents and generated the 7.2 kHz clock pulses which, after 
amplification and shaping, were used to synchronize the whole system. The other 13 tracks were coated with 
magnetite.

The first group of 4 tracks was used for the circulating registers, or dynamic memories. The angular distance 
between the writing and reading heads, which was almost 180°, resulted in a double word length of 72 bits,

Figure 
G1 memory drum

7 Heinz Billing, Plan für eine halbautomatische numerische Rechenmaschine, Internal Communication (1950).
8 All diagrams have been scanned from the referenced German publications and have only been translated into English for 
this paper.
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taking into account the delay in the electronic circuitry. Due to the use of return-to-zero writing, an erasing 
head was needed between the reading- and writing-heads.

The other 9 tracks formed the static memory. They are subdivided into 4 sectors of 36 bits each. The odd 
sectors of the next 5 tracks correspond to high-words in the dynamic memories and are addressed as memory 
locations 0 to 9. The even sectors of these 5 tracks were needed for the decimal to binary conversion. The 
last 4 tracks provided the 16 static memory locations a0 to a3; b0 to b3, c0 to c3, and d0 to d3.

Each of the 9 write/read heads of the static memory can be connected through an associated 
electromechanical relay to the input/output of the common read/write amplifier. Only one relay at a time is 
actuated according to the appropriate address number or letter used in the command referencing the memory. 
In contrast to the dynamic memories, a modified Manchester phase encoding technique was used, thus 
allowing a simple overwriting of stored numbers.

Block Diagram of the G1

Fig. 3 shows a simplified block diagram of the G1: in addition to the 3 standard registers of an arithmetic 
unit, a fourth register, distributor (DIS), serves for the data flow between that unit, the memory drum and the 
numerical input/output from/to the user interface.

When I joined the group headed by Billing on January 2nd, 1951, it consisted of himself, H. Öhlmann, and 
myself. Öhlmann was the physicist responsible for the design and construction of the G2, while I was 
responsible of the implementation of the G1 circuits. The group was complemented by a designer for the 
mechanical parts, (the magnetic drums), two mechanics in the workshop and one electronics technician for 
the assembly and wiring of

Figure 3 
Block diagram of the G1
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the chassis (after 1952 there were two). Because the group possessed only one oscilloscope, my first task 
while learning about bits and bytes was to build an oscilloscope for myself.

Implementation Step by Step

The construction of the computer was performed step by step using the HAR layout as a guide. Because we 
didn't have any electronic test equipment (other than the two scopes), the sequence of implementation was 
dictated by the requirement that parts of the machine which had already been completed had to serve as a 
sufficient testbed for the next device. While the master clock pulse generator, other timing circuits, and the 
read and write amplifiers were being assembled and put into operation, I scribbled with a pencil on old paper 
sheets the wiring diagram of the distributor register. All in all I used 50 vacuum tubes. The technician had a 
hard job deciphering my scribbles, but he did a fine job!

Once the chassis had been assembled, wired, mounted on the rack and connected to the amplifiers, pulse and 
power sources, it could be tested statically. This was done by applying constant voltages, resulting in a 
switching of the gates. During these tests the corresponding waveform generator chassis was assembled and 
wired. It was then mounted on the rack, connected to the other devices, and after plugging 29 vacuum tubes 
the distributor could be tested dynamically.

The last step of that design phase (in the spring of 1951) involved connecting the typewriter (modified for 
electrical input/output by the application of contacts and magnetic coils to specific keys) via a set of relays. 
Now the input and output from the typewriter to the memory, including decimal to binary conversions and 
all memory functions, were operational. We finally had a test-bed for the subsequent design and construction 
of the arithmetic unit which was again performed step by step as follows: first the accumulator (ACC) 
register, and the ACC waveform generator which controlled addition and subtraction, had to be designed, 
constructed and tested. Subsequently the multiplicand (MD) and multiplier (MR) registers were built, using 
a single chassis. Afterwards the corresponding waveform generators which control multiplication and 
division were added.

The G1 Distributor

Fig. 4 shows a more detailed diagram of the distributor, which Billing called the "central part of this 
computer." The output from the reading head R2 is amplified and shaped by A2 and fed to a set of 3 gates. 
GO transmits the pulses to the inputs of the adder without delay, G1 and G3 transmit with delays of 1 and 3 
bits, respectively. In standard mode, only GO is open. This establishes a circulation period of exactly one 
double word. If G1 and G3 are
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Figure 4 
G1 distributor

opened, the circulating number will be multiplied by 10 at each turn. When a number is fetched, the gate 
GM connected to the reading amplifier of the static memory is opened, and the pulses are fed to the other 
input of the adder. If A2 is switched off and Al switched on, the circulation period corresponds to a single 
word. According to the timing, this copies the bits in the distributor register from the low word positions to 
the high word positions, or vice versa.

To execute a cyclic permutation of the 4 numbers stored in one of the tracks a, b, c, d, both amplifiers A1 
and A2, as well as the erasing head E are switched off. Then, all 4 sectors of the selected track are copied 
through GM onto the distributor track. In the next step, the writing head W is switched off, and A1 is opened 
for writing back the distributor track, delayed by one sector, to the static memory. Thus, only 2 revolutions 
of the drum are needed for the interchange of the 4 numbers.

In the even sectors preceding the memory locations 0 to 9, the binary equivalents of the numbers 0 . . . 9×10-

10 are stored permanently. However, the value of these numbers refers to the binary point in the subsequent 
high word. For a decimal input the low word according to the input digit is read through GM and added to 
the contents of the distributor. In the next register cycle the content of the distributor is multiplied by 10, as 
described above.

For the decimal output, the 4 bits to the left of the binary point are latched onto a set of 4 flip-flops and are 
transmitted to the I/O hardware, before being cleared in the register. The number is again multiplied by 10, 
thus bringing the next 4 bits into the leftmost position. This enables the G1 to perform
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decimal input and output without changing the contents of the arithmetic registers: an essential feature of a 
computer with merely 26 address locations!

The Arithmetic Unit

The arithmetic unit consisted of the ACC, the MD and the MR registers. Each of these dynamic memories 
had a circulating period of 72 bits, i.e. two words in length. Bits 0 to 31 of a single word were used for the 
binary value of a number, bits 32+33 stored the sign and allowed overflows to be checked.

Negative numbers were represented by their absolute value and the sign, in order to simplify the I/O 
conversion in the distributor. Addition and subtraction into the ACC were performed by complementing the 
second argument and/or complementing the sum, depending on the signs of the operators and the operation 
to be performed.

Since shifting numbers is an inexpensive process in bit-serial registers, the number in the MD could be 
shifted 1 bit to the right, and the number in MR one bit to the left. In order to prevent overflow in the 
accumulator, the contents could be halved by shifting the number one bit to the right on command.

The multiplication is performed top-down, i.e. according to the uppermost bit in MR, the contents of MD are 
sent to the external input of the adder of the ACC. Simultaneously, these numbers are shifted one bit. Since 
the contents of the ACC are neither shifted nor cleared, all bits of a 32×32-bit multiplication can be added 
using the accumulator. Thus, during summing up of simple products, rounding errors could not occur. Only 
when being stored in memory or used as a multiplicand, the two words were transferred from ACC to DIS 
and rounded to a single word, before being brought to the memory or into the MD.

To speed up the machine, non-restoring division was implemented by adding a circuit that compared the 
values in ACC at the output of the adder /inverter and the values in MD. Thus the contents of MD and MR 
were shifted in the same way as in multiplication. After 32 steps (or 16 revolutions of the drum) the last 
partial remainder was cleared in the ACC, and the quotient was copied from MR to ACC.

These operations were implemented and tested until the end of 1951. In the meantime the designers 
considered the idea of including the square root operation in hardware because it was the most needed 
function. In the algorithm published by Zuse in 19519, binary square-root extraction can be regarded as a 
specific type of division. Presumably, it is the same algorithm Zuse used for the implementation of that 
function in his Z3 and Z4 computers: the divisor is treated as a number, to be extended by a single bit during 
the division process. This could be implemented just adding a few tubes to the waveform generator which 
controlled multiplication and division.

9 Heinz Rutishauser, Ambros P. Speiser and Eduard Stiefel, Programmgesteuerte digitale Rechengeräte (Basel, 1951), 
36.



   

Page 303

By January 1952 all the parts had been assembled and all these commands and operations had been tested 
successfully. The members of Biermann's astrophysics division could start working on the G1.

The Punched Tape System

In the autumn of 1951 the idea of connecting a punched tape reader to facilitate the implementation of 
frequently needed small programs was put forward, e.g. for the calculation of trigonometric or exponential 
functions. Discussions on that topic resulted in the decision to add 4 punched tape readers to the G1 system 
for general control purposes. The only readers available at that time were the 5-hole readers of the standard 
CCIR-TELEX systems, which operated at 7 characters/sec. They were rebuilt for parallel output on 5 signal 
lines. As all other parts of the G1 were ready and working, the output from the readers had to simulate an 
input from the contacts of the typewriter. This was done by a tree of relays acting as a 5 to 32 binary 
decoder. The output contacts were connected in parallel to the appropriate input lines coming from the 
typewriter.

Additionally, the circuitry for the control of the readers and the circuitry for the control of a tape punch had 
to be designed and built. The latter was to be used for punching all input typed into the typewriter (thus a 
program tape could be punched in parallel to the execution of the input by the computer), for copying tapes 
from reader to punch, and for punching results in parallel to their printing.

It was Easter 1952 before the tape system was assembled. It worked correctly but was unreliable: when it 
was tested in continuous operation at 7 characters/sec the unreliability of all our relays, bought cheaply from 
wartime surplus shops, became noticeable. Luckily, Zuse came to our aid: he sent us approximately 120 
relays, the standard type used in his Z5 computer. After replacing the relay boxes at the end of May 1952, all 
476 vacuum valves and all 101 relays of the G1 worked perfectly.

The Instruction Set

The commands available for handling operators are shown in the first two groups of the list of instructions 
(Table 1): each of the commands 1 to 8 exists in two versions. The a version is provided for immediate 
execution of operations on numbers which have been input directly. Otherwise version b is active: the 
execution of the command is suspended until, by inputting the next one or two characters, the memory 
location is specified from where the operand has to be fetched into the distributor. Having loaded the 
distributor with the operand, the suspended command is continued.
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Table 1: Table of instructions for the tape-controlled computer G1. The operations 3a and 3b must be 
followed by operation 4 or 5!

The table uses the letters A, M, and z to denote the accumulator, multiplicand register and a memory 
location, respectively. It shows how the contents of each register or memory location is changed by an 
instruction. <R> denotes the contents of a register, a zero, that the register has been cleared. Z denotes a 
decimal number entered from the keyboard or the punched tape.
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Command 10 transfers the contents of the accumulator to the multiplicand register for the calculation of 
multi-factorial products. Command 13 is provided in order to overcome the disadvantages of a fixed 
addressing system, at least for iterative algorithms, e.g. for the step by step numerical integration of 
differential equations.

The last group of commands in Table I were added to run the tape system: Sa (b,c,d) starts the appropriate 
tape reader. If this command is started from another reader, that calling reader is stopped simultaneously. 
Command F stops the readers. By use of rotary switches on the operator panel an embedded tape command 
may be started: when the input termination symbol (p or, n) is sensed after reading a number from any tape, 
that tape is stopped and the selected tape reader is started.

The only conditional command of the G1, implemented a year later, was the tape command SI, which 
performed as follows: if SI is read from the tape and if the ACC is not negative, then a tape skip is 
performed, i.e. the following instructions are read but no operation is executed. If the computer is executing 
a tape skip, it resumes normal operation after finding the code for I (if not immediately preceded by an S).

Thus, a piece of calculation or the start of another tape reader may be skipped. A nested set of SIs may also 
be used, however the terminator for all skips can remain the same I.

Figure 5 
The G1 (H. Billing and W. Hopmann (sitting), May 1952)
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Years of Regular Operation

On June 6, 1952, Billing presented a paper on the G1 at the GAMM conference in Brunswick. 10 The 
participants traveled to Göttingen the following day to see the computer in operation. Fig. 5 shows the G1 at 
the laboratory in May 1952.

In September 1952, the G1 was moved to the Max Planck Institute of Physics where it ran up to 24 hours a 
day, seven days a week during the first years of operation. When it was permanently taken out of operation 
on June 6, 1958, it had served for 5 years and 8 months, or a total of 49,560 hours. The G1 was switched on 
for 33,946 of those hours, an average of 16.5 hours a day; 82% of that time was used for computations, a 
mere 5% was lost due to unexpected crashes (this includes maintenance), the rest was spent on preventive 
maintenance and other tests. The magnetic drum is the only surviving part of the G1, now kept at the 
Deutsches Museum in Munich.

Keep in mind that the G was the only electronic computer in Germany to be used for scientific computations 
from September 1952. It was not until January 1955 that there was a second such computer, the G2, 
followed in May 1956 by the PERM in Munich.

Learning by Doing

The proper use of the few memory cells and the commands (Table 1) were so simple that they could be 
learned in an hour. Programming of the G1 and the use of the cyclic permutation for iterative procedures 
could be mastered by experimenting with the machine. With the command list to their left and the 
algorithms to be programmed to their right, the scientists could sit down at the typewriter and start practicing 
the art of programming the G1. The computer responded immediately by typing the commands and the 
results. Nearly a decade passed before the same ease of programming reappeared in interactive BASIC or 
FOCAL interpreters.

A summary of the tasks performed on the G1 (and the G2) up until the autumn of 1955 is given in Table 
2.11

Many of our in-house colleagues and guests from elsewhere made their first acquaintance with 
programmable computers in interactive sessions with the G1. Some of them later became directors of 
physics or astrophysics institutes or heads of industrial R&D computing centers . Thus, in addition to

10 For the most detailed description of the G1 (in German), including two programming examples, see Heinz Billing, 
Wilhelm Hopmann and Arnulf Schlüter, ''Die Göttinger bandgesteuerte Rechenmaschine G ," Zeitschrift für angewandte 
Mathematik und Mechanik 33 (1953): 50–60.
11 Ludwig Biermann, "Überblick über die Göttinger Entwicklungen, insbesondere die Anwendung der Maschinen G1 und 
G2," in Elektronische Rechenmaschinen und Informationsverarbeitung, ed. Johannes Wosnik (Brunswick, 1956), 36–39.
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producing valuable results, the G1 helped to introduce computers into science and industry over the next half 
decade. It was also responsible for the increased use of small computers in laboratories for the gathering and 
pre-evaluation of experimental data.

3— 
The G2 Computer

In December 1954, Herbert Öhlmann completed the construction of the G2. The magnetic drum static 
memory contained 2048 58-bit locations, arranged on 64 tracks of 32 sectors each. A sector could store 
either a single number or two command words. The 4 dynamic memories or registers with separate heads for 
writing and reading were allocated to a separate track. Manchester phase encoding was used for both types 
of memory.

Since the drum rotated at a speed of 50 rps, a master clock frequency of approximately 92.8 kHz resulted. 
Thus the G2 was not a very fast computer, compared with other bit-serial machines, which had clock rates in 
the MHz range through the use of fast delay-line or electrostatic tube memories. The mean operation speed 
of the G2 was approximately 30 Ops/sec. The chassis, containing a total of approximately 1200 vacuum 
tubes, were mounted onto 9 racks.

Table 2: Subdivision of computing time at G1 and G2

Mathematical structure of 
the problems

Description of the problem G1 G2

Tabulation of integrals with 
algebraic sums

Quantum mechanics of 
molecules

2200

 Quantum mechanics of electron 
shells

3700

Systems of ordinary 
differential equations

Störmer trajectories 1300 291

 Planetary orbits 97

 Quantum mechanics of atom 
nuclei

1300

Initial value problems of 
partial differential equations

Hydrodynamic problems from 
atomic physics

1600

 Hydrodynamic problems from 
aerodynamics

1300

 Response of quadrupole filters 700

Algebraic tasks Shock waves in magnetic field 74

 Matrix inversion 300

Others Quantum mechanics of metals 24

Computing time (hours) 12100 786
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The 1951 layout was a relatively standard one for early computers. In addition to the 3 registers of the 
arithmetic unit (ACC, MD, MR) a fourth register, the index register IR, served to index the address in a 
command: when a command was called up from the memory, it went through an adder in the IR to the 
command control. If the index flag of that command word was raised, then the content of the index register 
was added to the address. The index value itself could be exchanged with the ACC.

Conditional branching of the command sequence was controlled by the 5 different conditional commands: 
two commands sensed either sign of the ACC, the third initiated a branch if the last number read from the 
memory contained a raised flag bit. That command was very useful, e.g. when matrix operations had to be 
programmed: if the numbers in the last column of a matrix were flagged, the programming of column-
counting loops could be omitted.

The last two conditional commands sensed the position of 2 switches on the operator panel. They were used 
as program debugging tools: if, for example, a program crashed or went into an endless loop, these 
commands could be used to initiate a stop on demand in order to allow the printing of results, counts, etc., 
using the keyboard.

Between January 1, 1955 and June 30, 1961, the G2 served in the Max Planck Institute of Physics for a total 
of 56,952 hours.12 The G2 was switched

Figure 6 
Magnetostatic delay line

12 Heinz Billing, "Die Göttinger Rechenmaschinen G1, G2 und G3," MPG-Spiegel 1982, No. 4, 41–49.
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on for 36,076 hours, an average of 15.2 hours daily. 78% of that time could be used for computing, losses of 
only 5% were encountered due to hardware crashes and corrective maintenance. The remaining 17% was 
spent on preventive maintenance and development. Billing's G2 was the first computer in Germany to use 
memory stored program control.

4— 
New Technologies

After the G1 and the G2 had been completed and were operating regularly, Billing's team tried using new 
computer components. Apart from the long-life tubes and the crystal diodes, the first ferrite cores, which 
arrived in the spring of 1952, attracted the most interest.

Using the 2.7 mm type, Billing started the design of a core matrix memory with 160 elements. That matrix 
was used as a test-bed to investigate different addressing methods. The tests began in September 1952. The 
aim was to build a core memory with a capacity of 4096 words with a length of 43 bits, to be used as the 
memory of a fast bit-parallel computer, the G3.

At that time, I evaluated the suitability of 9-mm ferrite cores for application in Magnetostatic Delay Lines 
following Wang and Woo13 in the USA. It turned out that these lines could not replace Billing's dynamic 
memories because, at shifting rates beyond 20 kHz, the cores became too hot. But they were possibly 
suitable for other applications.

In order to reduce the number of cores, I redesigned the original setup and reduced the number of cores used 
per stage from 3 to 2 by adding two vacuum tubes generating alternatively bias voltages (Fig. 6)14. Setting 
up 120 cores and crystal diodes to form a loop containing only a single "1," a ring counter was obtained for 
generating 120 individual timing pulses. The source impedance of the 50 V pulses generated by the output 
coils was so low that the pulses could be used for triggering flip-flops directly and without any other 
amplification.

The paper written by Maurice V. Wilkes et al. on microprogramming15 pointed to another application of this 
type of magnetostatic delay line: a command can be executed by a specific sequence of micro-operations, 
e.g. the shifting of a number or its transfer between registers. The sequence of trigger-pulses releasing the 
micro-operations is generated by the output from the cores of a command specific magnetostatic delay line. 
Because command

13 An Wang and Way Dong Woo, "Static Magnetic Storage and Delay Line," Journal of Applied Physics 21 (1950), 49.
14 Heinz Billing and Wilhelm Hopmann, "Mikroprogramm-Steuerwerk," Elektronische Rundschau 9 (1955), 349–353.
15 Maurice V. Wilkes and J.B. Stringer, "Micro-Programming and the Design of the Control Circuits in an Electronic Digital 
Computer," Proceedings of the Cambridge Philosophical Society 49 (1953), 230–238.
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execution may need conditional branching or looping within the sequence of micro-operations, the required 
parts have been added according to Fig. 7: output and input coils of cores 1 to 6 in the upper row are 
connected as shown in Fig. 8 (the shift pulses and coils are omitted for simplicity). M1 to M6 denote 
connections to the corresponding micro-operations. However, if, during resetting of core number 2, the bus 
line C is pulsed instead of the biasing bus A, then the micro-operations M3', M4' and M5' will be released.

Fig. 8 shows the head of a micro-sequencer for several instructions. The operation-code of a command, split 
onto 2 predecoders, magnetizes one of the cores of a matrix decoder using the I/2 current adding method. 
Each of the matrix cores acts as the head core of the associated magnetostatic chain.

Figure 7 
Branch in a magnetostatic delay line

Figure 8 
Microprogram control using magnetostatic delay lines
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That system of micro-control was implemented in the Gla, using subunits of 10 cores and diodes, mounted 
on a small board. The bit parallel processing computer G3 featured the same method of micro-sequencing 
(see below).

Moreover, due to the cooperation and exchange of information between Billing's group and Zuse, an 
improved version of the two-phase magnetostatic chain went into the Z22. Lorenz Hanewinkel, who 
constructed that bit-serial computer, used these lines as current drives for the bit sequential I/O from and to 
the cores of the fast registers of that computer. These registers had a word length of 38 bits and up to 32 
registers could be used.16

5— 
Other Members of the Göttingen Computer Family

The G1a Computer

The design of the Gla17 aimed at a computer to be used like the G1: direct input of commands for immediate 
execution from a typewriter and output of results to that device. Floating-point arithmetic was used in order 
to avoid the problems of keeping numbers within a fixed range. The complex set of waveform generators as 
used in the G1 was simplified by using magnetostatic delay lines as ring counters and for 
microprogramming.

The magnetic drum stored 1800 words on 30 tracks with 60 words of 60 bits each. Due to this memory size, 
it was possible to omit a separate distributor register for decimal I/O. The communication between ACC and 
memory, including the cyclical permutation, was handled by the MD register. There were 10 track switching 
relays connected to the rotor arms of 10 selectors, each of these connecting in turn to one of the 30 tracks. 
Through programmed positioning of the selectors an address interpretation akin to bank switching was 
performed. Moreover, it was possible to replace wildcards in the address positions of a command by a 
decimal number output from the ACC.

Program control was performed by a set of 10 mechano-optical tape readers of our own design at a speed of 
up to 180 chars/sec. Because the input and the output control acted autonomously, the next command could 
be pre fetched in parallel to the execution of the current one. After conversion in the

16 It is remarkable, that due to this design, the Z22 became the only bit-serial com-puter in which the fast circulating 
registers used neither ultrasonic delay-lines, nor Billing's circulating registers, nor Williams tubes, but bit-serial ferrite 
core matrices.
17 Wilhelm Hopmann, "Zur Entwicklung der Gla," in Elektronische Rechenmaschinen und Informationsverarbeitung, ed. 
Johannes Wosnik (Brunswick, 1956), 92–98.
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ACC, a result could be printed or punched out from a separate output register while the next commands of 
the program were executed.

Two Gla's were built at Göttingen. One was put into operation at the Max Planck Institute for 
Hydrodynamics, the other went to the Institute for Plasma Physics in Jülich in 1958 and was moved to a high 
school at Neuss in 1961, from where it was later recovered and finally moved to the Deutsches Museum in 
Munich. A third Gla was built at the University in Helsinki using our diagrams and mechanical parts from 
our workshop. That computer, called ESKO, can be seen now at the Museum of Technology in Helsinki.

Table 3: The Göttingen computer family

Computer G1 G2 Gla G3

Operation 
mode

serially, 
2 ops/sec

serially, 
30 ops/sec

serially, 
20 flops/sec

parallel, 
5000 flops/sec

Memory 26 words 
of 32 bits

2048 words 
of 50+1 bits

1840 words 
of 60 bits

4096 words 
of 42+1 bits

Drum? magnetic drum magnetic drum magnetic drum ferrite core matrix

Paper tape Yes No Yes No

Number 
represen- 
tation

Fixed-point 
z < 8

Fixed-point 
z < 8

Floating-point 
43 bit mantissa 
8 bit exponent 
1 bit marker

Floating-point 
33 bit mantissa 
9 bit exponent 
1 bit marker

Program 
control

punched tape 
4 readers 
typewriter

memory 
(2 commands/ word)

punched tape 
10 readers 
180 char/sec typewriter

memory 
(2 commands/ 
word)

Commands 16 32 22 64

Micro 
coding

  magnetostatic delay lines magnetostatic 
delay lines

Address 
modifica- 
tion

no, 
but cyclic 
permutation 
4x4

yes, 
I index register, 
conditional branching 
 

involved, 
but cyclic 
permutation 
30 x 2 . . . 60 words, 
30 x 10 bank switching

yes, 
7 index registers, 
bracket handling, 
16 word hardware 
stack

Lifetime 1.11.52 
30.6.58 
= 49560 hrs.

1.1.55-30.6.61 
= 56.952 hrs

a)1958-1963 
b)1960-1970 
c)1958-1961/68 (88)

1.1.61-9.11.72 
= 104200 hrs

Operation 
time

33946 hrs. 
(16.5 hrs./day)

36076 
(15.2 hrs./day)

no specific 
statistics

57300 hrs. 
(13.2 hrs./day)

Efficiency 82% 78% app. 80 % 85.9%

Hardware 
crashes and 
corrective 
mainte- 
nance

5% 5% a)AVA Göttingen 
b)Mathematical Institute 
Helsinki 
c)IPP Jülich/ Neuss / 
Deutsches Museum, 
Munich

1.1 %
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The Bit-Parallel Computer G3

Using the latest technologies, Billing planned the G3, a succesor to the G2. The computer became one of the 
big machines of that time. It was the first computer to have a hardware stack pointer and stack registers. In 
comparison to other contemporary parallel computers with a word length of approx. 40 bits, the number of 
tubes used in the G3 (1500) is relatively small. This is due to the extensive use of magnetostatic delay lines 
for microprogramming of all operations. Circa 600 cores were used in those lines. The arithmetic unit of the 
G3 could also calculate the addresses in a command, thus saving ca. 150 tubes otherwise needed for a 
separate address unit. Because the core and diode subunits were assembled as pluggable groups, the last 
computer of the Göttingen family presented no problems for the revision of old or the implementation of 
new macro commands. Thus a digital tape recorder and a graphic display were attached to the G3 in the last 
years of operation.

A single plane of the core memory and a flip-flop plug-in unit can be seen in the Heinz Nixdorf 
MuseumsForum at Paderborn, probably the only relics of that last member of the Göttingen Computer 
Family.

<><><><><><><><><><><><>

WILHELM HOPMANN made his hobby, electronics, his vocation while working on his physics thesis. He 
transformed military radar systems into scientific measuring devices useful for ionospheric research at the 
Max Planck Institute near Göttingen. In January 1951, he joined the Working Group on Numerical 
Calculators headed by Dr. Heinz Billing, associated with the Max Planck Institute for Physics directed by 
Werner Heisenberg. Working under Billing's direction, Hopmann implemented the G1. Thereafter, he 
designed and constructed the G1a. After leaving the computer field in 1959, Hopmann headed the 
Electronics Laboratory at the Institute for Plasma Physics of the Nuclear Research Center in Jülich. Here he 
was responsible for the development and construction of electronic devices for the control and timing of 
large fusion experiments. With the development of the ADC for fast discharge experiments, Hopmann went 
back to the application of computers. He contributed to the design of computerized control and data 
acquisition systems for fusion experiments e.g. the JET experiment at Culham, UK.
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Konrad Zuse and Industrial Manufacturing of Electronic Computers in Germany

Hartmut Petzold

Abstract. Although Konrad Zuse is widely recognized as one of the pioneers of the invention of the 
computer, his role as entrepreneur in the 1950s and 1960s has been overlooked–quite unjustly. In fact, Zuse 
started the industrial production and distribution of electronic computers in Germany. He was the founder 
and director of the first German computer company, not considering IBM. For several years, Zuse was able 
to compensate his company's modest development capacity by incorporating some of the most up-to-date 
results of projects conducted by research institutes in Germany, France, the Netherlands, Switzerland and 
Austria.

1— 
Before the Electronic Machine

When Konrad Zuse decided to build a program controlled automatic calculator in 1935, his main objective 
was to construct a prototype which would validate the operational concept. However, this could only be a 
first step. His vision of the computer and a computerized society was based on the successful 
commercialization of his new machine. Zuse was not able to realize his vision until after the war, during the 
early years of the young Federal Republic of Germany. In 1955/56 his company built the model Z11, a 
special machine for surveying and optical calculations.1 Although his commitment to obtaining a patent was 
immense,2 his priority was always the construction of

1 This story has been repeatedly told and analyzed. Konrad Zuse, Der Computer. Mein Lebenswerk (Berlin, 1984) 
(revised version of the first edition with the same title, Munich 1970). Hartmut Petzold, Rechnende Maschinen. Eine 
historische Untersuchung ihrer Herstellung und Anwendung vom Kaiserreich bis zur Bundesrepublik (Düsseldorf, 1985), 
291–372. Rolf Zellmer, Die Entstehung der deutschen Computerindustrie. Von den Pionierleistungen Konrad Zuses und 
Gerhard Dirks' bis zu den ersten Serienprodukten der 50er und 60er Jahre (Diss. University of Cologne, 1990), pass.
2 Friedrich L. Bauer, "Konrad Zuse–Fakten und Legenden," in Die Rechenmaschinen von Konrad Zuse, ed. Raúl Rojas 
(Berlin, 1998), 5–21; Hartmut Petzold,

(footnote continued on next page)
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a functioning machine. Zuse often told the story of how he managed to do the extensive work which was 
necessary to build his first machines, before he founded his company in 1942.3 It seems that he possessed a 
touch of genius when it came to organizing development and manufacturing.

While Zuse's role as a pioneer of the invention of the computer in Germany is uncontested, it runs the risk of 
veiling the complexity of the invention itself. Recognition of his role as an entrepreneur during the 1950s 
and 1960s has been largely overshadowed by his failure in 1967, when his company was taken over by 
Siemens.4 However, there can be no doubt that he also was a pioneer of the electronic computer in Germany, 
which coincided with the role he played as the founder and spirit of the first German computer company.5 
This paper discusses some of the problems which Zuse faced when organizing the development, 
manufacture, and distribution of his first electronic computers, the Z22 and the Z23, between 1956 and 1963.

2— 
The Historical Role of the Z22 and Z23 Computers

Zuse was the first to embark on the industrial production and distribution of electronic computers in 
Germany, independently of IBM. The Z22, the first model produced in series and introduced in 1958/59, 
was, in his words, "a good commercial success". This product enabled the Zuse KG to establish itself as an 
electronic computer company and even to pose a challenge to IBM in Germany. The company enjoyed the 
esteem of the scientific and engineering community, which meant that Zuse could compensate for his 
company's modest development capacities by incorporating some of the latest findings of several projects 
from scientific institutes in Germany, France, the Netherlands, Switzerland and Austria. This was an 
important entrepreneurial achievement.

During the first half of the 1960s the Zuse computers, Z22 and Z23, and the specific ideas and experience 
connected with them, had a strong influence on the introduction of the computer into many fields of science 
and engineering in the Federal Republic of Germany. They paved the way for new

(footnote continued from previous page)

"Die Mühlen des Patentamts," in Die Rechenmaschinen von Konrad Zuse, ed. Raúl Rojas (Berlin, 1998), 63–108.
3 Zuse (n. I above), pass.; Karl-Heinz Czauderna, Konrad Zuse. Der Weg zu seinem Computer Z3 (Munich, 1979).
4 This also supports the completely unjustified German cliché of the genial but naive engineer, totally lacking in business 
acumen.
5Paul Ceruzzi has pointed out the pioneering role of the entrepreneur Zuse in the international computer business. Paul E. 
Ceruzzi, "Die frühen Arbeiten von Konrad Zuse im Kontext der Erfindung des digitalen Computers. 1935–1950," in 
Deutsches Museum. Wissenschaftliches Jahrbuch 1992/93 (Munich, 1993), 170–186.
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concepts, like the ''Minima"6 machine and the propagation of the programming language ALGOL, which 
were both born in Germany and neighboring countries. During the 1960s the spectrum of ideas in the young 
computer science community broadened and the voice of the European protagonists could be heard slightly 
better in the international scene. In Germany, the Z22 and Z23 models played an important role in opening 
up and preparing a new computer market alongside the traditional IBM markets. The Z22 and Z23 made 
their imprint on the new engineering discipline, which came to be called "Informatik" in Germany.

The credo of the young Federal Republic was a liberalized "social market economy." At the same time the 
strategic doctrine of obtaining maximum control over the new electronic computer technology prevailed. 
This could not be done within the framework of military projects, as was the case in the UK and USA. 
Therefore, the first computer development projects were started as research projects at scientific institutes 
and were usually financed by the Deutsche Forschungs Gemeinschaft (DFG). Projects were started at the 
Max-Planck-Institute for Astrophysics, Göttingen (Ludwig Biermann, Heinz Billing and their team) in 1947, 
without DFG financing, and at the Technical Universities in Darmstadt (Alwin Walther and his team) and 
Munich (Robert Sauer, Hans Piloty and their team) between 1950 and 1955.

After 1955, a growing number of scientists and engineers tried to obtain computers for their institutes or 
universities. It was becoming clear that computers would be indispensable to those wanting to compete 
internationally in the fields of sciences and engineering.

3— 
Architectural Decisions

Zuse's experience and knowledge in the new field of computer science and technology was reflected in his 
entrepreneurial decisions during the time spent developing the vacuum tube machine Z22 (shipped since 
1958) and the transistorized Z23 (shipped since 1961). He had to take into consideration the technological 
situation: although in 1936 Helmut Schreyer had already suggested building the new machine with 
electronic tubes, instead of electromechanical relays, Zuse hesitated and waited for about 18 years before he 
decided to build an electronic computer. In computers, tubes could not compete with relays in terms of 
reliability until 1952, when the manufacturers started producing tubes for digital circuits.

6 The "Minima" architecture is the subject of the chapter "STC ZEBRA" in Gerrit A. Blaauw and Frederick P. Brooks, 
Computer Architecture: Concepts and Evolution (Reading, Mass., 1997), 724–739. The term "Minima," which was 
introduced by Theodor Fromme, and which became well known in Germany, is not used in that book.
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Figure 1 
Assembly of Z22 in the Zuse KG factory in Bad Hersfeld (Germany)

Zuse mastered the electromechanical relay technology better than others. His technique of switching without 
current made his computers superior to most other relay machines, and an improved relay, manufactured by 
the Zettler company, gave his machines maximum reliability. Zuse's relay machines could work for many 
hours without operator supervision.

Zuse was able to acquire know-how about transistor circuits and computers in 1954. He knew at that time 
that four years later he would be able to hire the well-trained engineer Richard Bodo, from the Institute of 
Low Frequency Technology at the Technical University of Vienna. Heinz Zemanek developed and built a 
computer between 1956 and 1958 in Vienna – at about the same time the Z22 came into being. Zuse knew 
that Zemanek's machine, with the Viennese name "Mailüfterl," would be a "Minima" with transistor circuits.

While developing the Z22 and Z23, Zuse had access to the rare expertise in computer technology that was 
scattered over Germany and Europe, and he incorporated it into his small company. He adopted tube circuits 
for the model Z22, which had been developed and tested by the Max Planck Institute

7 Personal communication by Richard Bodo. Heinz Zemanek, Weltmacht Computer: Weltreich der Information 
(Esslingen, 1991), 229. Richard Bodo, Über den opti-malen Entwurfvon Transistorrechenmaschinen (Diss., Technical 
University of Vienna, 1958).
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for Physics and Astrophysics in Göttingen, and he obtained the necessary know-how on transistor circuits 
for a "Minima" machine from Zemanek's institute. He did not need to develop the architecture of the 
electronic machine in his company. He simply adopted the "Minima" architecture from Amsterdam, 
Freiburg and St. Louis, France8. In each of these cases he made competent decisions.

Zuse was initially motivated by a request to manufacture the Gla machine, which was a further development 
of the first successful electronic computer in Germany, the G1, built by the Max Planck Institute (MPI) in 
Göttingen.9 The MPI and the DFG were looking for an industrial company which could manufacture the Gla 
in small series. The Gla had not yet been completed when the MPI agreed contractually, in January/February 
of 1955, to make all the know-how they had acquired with the G1 and G2 computers available to Zuse. The 
G1 (since 1952) and the G2 (since December 1954) were the only electronic computers running in Germany 
at that time. The contract with the MPI was liberal and forward-looking and did not limit Zuse to 
manufacturing only the punched tape controlled model Gla, but explicitly allowed him to manufacture the 
"Minima." 10

A further impulse came from the inventors of the "Minima" concept who were looking for some way to 
build the machine. Willem Louis van der Poel, the inventor of the principle, could not build a "Minima" with 
the Netherlands Post, Telephon, and Telegraph (PTT). He had completed the PTERA at that institution and 
had already experimented, in 1952, with a minimal design, later called ZERO. This model ran for a few 
weeks and served as a test model for the ZEBRA. The ZEBRA became commercially available through 
Standard Telephone and Cables (STC) in 1959. 11

Theodor Fromme, who was a mathematician at Professor Henry Goertler's mathematical institute at the 
University of Freiburg and who was also enrolled at the French institute for armament research at St.Louis, 
ensured that the "Minima" would be developed and built at the institute in Freiburg.12

8 St. Louis is a suburb of the Swiss town Basle, but is situated in France and not very far from Freiburg in Germany.
9 Compare in this volume: Wilhelm Hopmann, The G1 and the Göttingen Family of Digital Computers.
10 This contract is part of the Billing Papers, NL 106/050 in the Archives of the Deutsches Museum, Munich.
11 Blaauw and Brooks (n. 6 above), 724. Van der Poel's theoretical one-instruction machine was part of his Ph.D. thesis: 
Willem Louis van der Poel, The Logical Principles of Some_Simple Computers (Ph.D. thesis University of Amsterdam 1956) 
(Excelsior, 1962). The story of W.L. van der Poel and the Netherlands PTT is told by Eda Kranakis, "Early computers in the 
Netherlands," Centrum voor Wiskunde en Informatica CWI Quarterly 1:4 (December 1988), 61–84.
12 There are several references in Billing Papers, NL 106/051, Archives of the Deutsches Museum, Munich.
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While the Z22 was being developed by Zuse's company, Fritz-Rudolf Güntsch, an assistant from the 
Mathematical Institute of the Technical University of Berlin, introduced some new instructions to the 
machine–without being asked to do so by Zuse, and in conflict with Zuse's vision of the pure "Minima." This 
event illustrates some of the enthusiasm many young people had for the new machine.13

Conditions for financing the project were favorable and Zuse knew how to take advantage of this situation.

At the time, Zuse's entrepreneurial decisions and concepts were accepted and backed by the DFG and, 
therefore, by the federal government. The computers procuring committee, initiated by the Gesellschaft für 
angewandte Mathematik und Mechanik (GAMM), and installed by the DFG in 1952, tried to get financial 
support from government agencies for Zuse's work on the Z22.14 In 1956, the West German government and 
the Bundestag decided to finance the acquisition of twelve electronic computers for twelve university 
institutes–three from Siemens, three from Standard Electric Lorenz (SEL) (which was an amalgamation of 
several traditional German companies under the roof of ITT), three from the Zuse KG, and also three model 
650 computers from IBM. Distribution was organized by the DFG and the procuring committee. At the time 
only IBM's computers had actually been built. The other companies could use half of the funds for 
development. Because Zuse's planned Z22 was smaller than the Siemens and SEL machines, he received 
less funding than the others. Therefore while this decision helped the Zuse KG, it also stimulated the 
competitors.15

A year later, the DFG asked the minister for economic affairs to organize an additional credit for the Zuse 
KG, which was needed to go into series production. Because of his experience and knowledge, Zuse was 
considered to be the ideal chief executive for a German company specializing in the manufacture and 
distribution of computers. 16

4— 
Programming

Though Zuse had invented the "Plankalkül"17 and had become an expert in programming computers much 
earlier than others, and though the "Minima" was based on the principle that the hardware should be minimal 
and the pro

13 Zuse (n. 1 above), 121 and several personal communications.
14 There are several references in Billing Papers, NL 106/078, Archives of the Deutsches Museum, Munich.
15 Petzold, Rechnende Maschinen (n. 1 above), 402416.
16 There are several references in Billing Papers, NL 106/050,051,078, Archives of the Deutsches Museum, Munich.
17 Compare in this volume: Friedrich L. Bauer, "The Plankalkül of Konrad Zuse – Revisited."
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gramming possibilities maximal, Zuse was not able to establish the Plankalkül. In 1955/56, users enjoyed 
writing their own programs even at the machine language level. Demand for a high level language grew only 
in the following years, but the Zuse KG lacked the capacity to give the "Plankalkül" a more practical form. 
In 1959/60 the users of the Z22 and Z23, and also the Zuse KG, placed their stakes on the new ALGOL 60. 
The company did not employ a programmer and was not able to write a compiler for ALGOL. They 
obtained it from the Institute of Applied Mathematics of the University of Mainz (Friedrich L. Bauer, Klaus 
Samelson). Zuse's company, which was one of the early members of the ALCOR-group,18 promoted a user 
organization that supported the exchange of programs.

Unlike FORTRAN, ALGOL had been initiated in Europe by university institutes which also actively 
promoted it.19 The non-IBM industry adopted it for some years, but did not try to develop it further.

5— 
The Competitors

At approximately the same time as the Z22 was "transistorized" by Bodo (to become the Z23), Zuse's 
company developed another machine with transistors, the Z31 model. The big electrotechnical companies, 
Siemens & Halske, Telefunken, and SEL, had been developing and delivering electronic digital computers 
in Germany since 1959. SEL ceased producing computers immediately after it had delivered its first ER 56 
models. The middle-sized company, Schoppe und Faeser, manufactured the American models LGP 30 and 
Libratol 500 under license. IBM Deutschland, which had existed in Germany since 1910 as a very efficient 
company under the name Deutsche Hollerith Maschinen-Gesellschaft (Dehomag), manufactured the models 
IBM 650 (since 1956) and IBM 305 RAMAC (since 1958) in Sindelfingen. Both machines had been 
developed in the USA.

By the middle of 1960, the Zuse KG had delivered 41 Z22 machines, Siemens ten 2002 machines, and SEL 
four of the ER56 machines. Although the design was still unfinished, Telefunken had four orders for the TR 
4 model. At that time, 52 IBM 650 models, 14 IBM 305 RAMAC, one IBM 704, one IBM 705, one IBM 
7050, 24 UNIVAC UCT from Remington Rand,

18 In 1959 several institutions had founded the ALCOR-group with the goal of making the ALGOL compilers (ALgol 
COnverteR) uniform and to exchange experiences with ALGOL. Richard Baumann (Ed.), "ALGOL-Manual der 
ALCOR-Gruppe, Part 1," Elektronische Rechenanlagen 3 (1961), 206–212.
19 Friedrich L. Bauer, "Die ALGOL-Verschwörung, " in Leitbilder der Informatik–und Computer-Entwicklung, ed. Hans 
Dieter Hellige (Bremen, 1994), 42–55.
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6 X1 models from the Netherlands company N.V. Electrologica, and 6 LGP 30 models were in use in 
Germany.20

Although Zuse KG was very active in the West German market, it also had to hold its own in a sector that 
was oriented to the world market, a task it achieved successfully between 1958 and 1965. Zuse KG was not 
short of good ideas, but they could not to amass a sufficient capital base to consolidate the company.21 The 
failure or takeover of a small or medium computer company was not a unique event. Even the large 
companies all over the world had significant problems making strategic decisions in the computer field. We 
also know what an important role small high tech companies could play – at least in the USA. The computer 
was no longer a toy for individuals, it was the lever which would revolutionize technology and science.

<><><><><><><><><><><><>

HARTMUT PETZOLD holds a degree in electrical engineering and a Ph.D. in history. He was editor of the 
German journal "Technikgeschichte." He has been the curator for computer science and time measurement 
at the Deutsches Museum in Munich since 1988. He has published the books Rechnende Maschinen. Eine 
historische Untersuchung ihrer Herstellung und Anwendung vom Kaiserreich bis zur Bundesrepublik, 
Düsseldorf 1985 and Moderne Rechenkünstler, Munich 1992. Together with William Aspray and Oskar 
Blumtritt he is the editor of Tracking the history of Radar, Piscataway, N.J. 1994.

20 All figures were published by the Deutsche Arbeitsgemeinschaft für Rechenanlagen (DARA), Stand des 
elektronischen Rechnens und der elektronischen Datenverarbeitung in Deutschland (Darmstadt, 1961), 16 and 23.
21 Looking back, Heinz Zemanek's determined judgement was: "Es ist eher für Deutschland schade–fast möchte man sagen: 
eine Schande–, daß die Zuse KG nicht zum Kern einer deutschen Rechnerindustrie geworden ist." Zemanek, Weltmacht 
Computer (n. 7 above), 230.
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Helmut Hoelzer — Inventor of the Electronic Analog Computer

Thomas Lange

Abstract. During World War II, a young German engineer, Helmut Hoelzer, studied the application of 
electronic analog circuits for the guidance and control system of liquid-propellant rockets. He developed a 
special purpose analog computer, the "Mischgerät," and integrated it into the rocket. The development of the 
fully electronic, general purpose, analog computer was a spin-off of this work. It was used to simulate 
ballistic paths by solving the equations of motion. At the time, Hoelzer did not use the word "computer" but 
referred to "electronic modeling" or "transformation of equations into hardware.''

1— 
Introduction

In 1941, Konrad Zuse built his computing machine Z3. It has long been forgotten, however, that in the same 
year a young electronical engineer developed a machine which was, at that time, probably equally important. 
His name was Helmut Hoelzer (1912–1996), and his invention the program-controlled, fully electronic 
analog computer. During World War II, Hoelzer and Zuse had no contact whatsoever. It was only after the 
end of the war that they heard about each other.1 Curiously, their computers found the same eventual 
destination, when in 1945 Zuse moved his Z4 to safety, taking it from Berlin to a mining tunnel in the Harz 
mountains. The A4 rockets were being produced in the same tunnel and were guided to their targets by 
Hoelzer's analog device, the "Mischgerät."

With the help of Wernher von Braun's staff, Zuse was eventually able to bring his Z4 to safety in the Allgäu 
region. It was also Wernher von Braun who brought Hoelzer to the army test center in Peenemünde in 1939.

1 Helmut Hoelzer, "V2-Simulator, Interview on 2 Cassette Tapes, 24 June 1983," in Special Collections MS87-8, ed. 
James E. Tomayko (Wichita, 1983); Konrad Zuse, "Greetings at the unveiling of a commemorative stone for Helmut 
Hoelzer" (Hünfeld, October 1995).
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The results of Hoelzer's research and development work in Peenemünde can be summarized in three points:

• His contribution to the development of a radio beam ("Leitstrahlverfahren") for rockets

• The integration of electronic analog circuits, working in real time, into the control system of the rocket

• The invention of the fully electronic, program-controlled analog computer and its use as simulator

The first task assigned to Hoelzer in Peenemünde was the development of a guidance system based on a 
radio beam. This had already been done for air-craft.2 Since the rocket was unmanned, the correction of a 
deviation had to be made automatically, using both built-in controls and a control by radio link. Modifying 
an idea he had in 1935, Hoelzer used a capacitor to build differentiation and integration devices and applied 
them to the guidance and control system of the rocket. He called the whole circuit the "Mischgerät."

Hoelzer noticed that the electronic circuits could also be used to solve the equation of motion of the rocket 
(Hoelzer called it "transformation of equations into hardware"). For this purpose, he developed electronic 
circuits for multiplication, division, square root, and various other functions, in addition to his differentiation 
and integration devices. A large class of differential equations could be solved using his methods.

Hoelzer described the results of his research in a Ph.D. thesis submitted in 1941. However, the thesis was 
soon declared secret and could not be published. During the massive air raid on Peenemiinde on August 18, 
1943, this first version was destroyed. Later, in 1946, Hoelzer submitted a new version to the Technische 
Hochschule Darmstadt (TH Darmstadt). His supervisor was the professor of applied mathematics Alwin 
Walther. The American Military Government ordered him to divide the dissertation into two parts, a civil 
and a military section, and the latter could not be published.

Hoelzer did not achieve recognition for a long time, so the invention of the fully electronic analog computer 
was not associated with his name. This is also clearly due to the fact that the analog computer was 
superseded by the digital computer. It was not until the beginning of the 1980s that Hartmut Petzold3 and 
James E. Tomayko4 reassessed Hoelzer's contribution. The correspondence conducted between Tomayko 
and Hoelzer in 1983 has preserved many technical details for historical research and is now kept in the

2 Fritz Trenkle, "Die deutschen Funklenkverfahren bis 1945," in AEG-Telefunken-Anlagentechnik, Geschäftsbereich 
Hochfrequenztechnik (Ulm 1982): 113-118.
3 Hartmut Petzold, Rechnende Maschinen. Eine historische Untersuchung ihrer Herstellung und Anwendung vom Kaiserreich 
bis zur Bundesrepublik (Düsseldorf, VDI 1985): 85-88.
4 James E. Tomayko, "Helmut Hoelzer's Fully Electronic Analog Computer," in Annals of the History of Computing 7 (July 
1985): 227-240.
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archives of the Charles Babbage Institute.5 In 1993, Hoelzer began to build a replica of his analog computer 
of 1941. The company ADS in Huntsville, Alabama, placed an office at his disposal, in which the 
reconstruction could be coordinated and carried out6. The machine is now part of the collection of the 
Deutsches Technikmuseum in Berlin7.

An analog computer works using analog units, for example, segment lengths in mechanical analog 
computers, and voltages and currents in electronic analog machines. At that time, analog computers were 
much faster than digital computers. For this reason, they could be used to solve real time problems, such as 
the guidance and control of a rocket. They were also capable of parallel computation – a feat that digital 
computers only performed years later.8

I describe here the electronic analog computer and the "Mischgerät" based on the existing sources. I explain 
the architecture and functionality of both devices using some circuit diagrams I have redrawn.

2— 
Electronic Modeling of Differentiation and Integration

Hoelzer started working on the analog modeling of differential expressions, which he had often came across 
in control engineering, at a rather early stage. Analog modeling could be implemented mechanically or 
electronically. Through Professor Walther at the TH Darmstadt, Hoelzer was already familiar with 
mechanical analog computers. But electronic modeling was less expensive for production in series and better 
suited to the requirements of aircraft.

Differential equations consist of several differential expressions. It is possible to arrange the devices for 
modeling the differential expressions in such a way, that the total circuit corresponds to the differential 
equation to be solved. It is also necessary to implement some algebraic calculations in order to describe 
nonlinear combinations of the differential expressions. If, in addi-

5 Helmut Hoelzer, "Helmut Hoelzer Papers 1946-1983," in Charles Babbage Institute, CBI 33, University of Minnesota 
(Minneapolis).
6 Beth Boone, "History Rediscovers Computer Pioneer," in ADS Environmental Services Inc. Publication (Huntsville/AL, 
1993): 5; Beth Boone, Angely Koons, "Computer Pioneer is in Residence at ADS," in Axel Johnson Inc. Publication 13 
(Stamford/CT 1993): 8-9; James Mc Williams, "Pioneer rebuilding Computer,'' in The Huntsville Times (Huntsville, 5 
August 1993): A1-A2.
7 Helmut Hoelzer, "Reconstruction of the Analog Computer," organized by Hadwig Dorsch, in Deutsches Museum für 
Verkehr und Technik (Berlin, 1993).
8 Gunter Schwarze, "Speech at the unveiling of a commemorative stone for Helmut Hoelzer," Manuscript of the speech 
(Usedom, 27 October 1995).
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tion, it is possible to set up the initial conditions, one obtains a machine capable of solving differential 
equations.

From his work on control engineering, Hoelzer was particularly familiar with differential expressions of 
time-dependent variables. In his impressive dissertation9, he describes how time derivatives and time 
integrals can be reduced to two physical electric phenomena:

• Inductivity (coil inductor): The first phenomenon is Faraday's Induction law. A variable magnetic field 
produces a voltage in a conductor surrounding the field. The device in which the phenomenon is used is the 
coil illustrated in Figure 1. In the ideal case, the induced voltage u is directly proportional to the time 
derivative of the current i. The proportionality factor is the inductivity L. But in practice, the variable 
magnetic field can only be generated by a current whose field must be amplified by a material with high 
permeability, for example iron. But then the nonlinear characteristic curve of iron mediates between the 
magnetizing current and the induced voltage, producing large errors. Furthermore, an "intrinsic" current is 
needed, that is, one not influenced by opposite voltages across impedances in the circuit. This can only be 
guaranteed by a voltage source with very high internal resistance, or by a regulated current.

Figure 1 
Coil

• Capacitance (capacitor): The second physical phenomenon is the fact that a variable electrical field 
produces a compensation current. In electrostatics no material exists whose dielectric constant can compete 
with the permeability of iron. In contrast to iron, the materials required to increase the field strength have 
linear characteristic curves. As in the first case, a variable electric field must be produced with an intrinsic 
voltage. This could be done by a voltage source with very low internal resistance, or by a regulated voltage. 
The device which uses the second physical phenomenon is the capacitor illustrated in Fig. 2. In the ideal 
case, the loading current is directly proportional to the time derivative of the voltage u applied to the 
capacitor. The proportionality factor is the capacitance C.

Figure 2 
Capacitor

9 Helmut Hoelzer, "Anwendung elektrischer Netzwerke zur Lösung von Differentialgleichungen und zur Stabilisierung 
von Regelvorgängen," Dissertation D.87, Technische Universität Darmstadt (Darmstadt, 1946).
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3— 
The Capacitor as Differentiator and Integrator

In principle, differentiators and integrators can be built using capacitors or coils. Since 1935, while studying 
at TH Darmstadt, Hoelzer decided to use the capacitor because of its advantages. He was, like many 
scientists in Peenemünde, an enthusiastic glider pilot and, also in 1935, he designed a device that could 
determine the ground speed, i.e. the true speed of an aircraft over the ground"10. He used an electronic 
integrator which was able to calculate (simulate) the absolute velocity ground from the acceleration . The 
acceleration could be measured by a special device (a mass-spring damping system) in all three axes11.

In Fig. 3, the measured value u, controls a voltage source, and the loading current of the capacitor is 
proportional to the time derivative of the measured value. This is only true when the internal resistance of 
the voltage source is Ri = 0.

In Fig. 4, the capacitor is connected to a controllable current source. The voltage over the capacitor is the 
integral of the measured value ui,. It is important to set the internal resistance of the current source to Ri = ∞

Figure 3 
Capacitor as differentiator

Figure 4 
Capacitor as integrator

10 Helmut Hoelzer, "Oral History Interview, 10 November 1989," in Peenemünde Interviews, National Air and Space 
Museum, ed. Michael Neufeld (Washington 1989); Gunter Schwarze, "Obituary of Dr.-Ing. Helmut Hoelzer," in RZ-
Mitteilungen 13, Rechenzentrum der Humboldt-Universität Berlin (Berlin, January 1997): 43–44.
11 James E. Tomayko (n. 4 above); Klaus Biener, "Helmut Hoelzer, Wegbereiter der Informatik," in Mikroprozessortechnik 5 
(1991): 1.
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Pure voltage and current sources are not easily available. However, it is not too complicated to obtain 
intrinsic voltages and currents by a simple regulation mechanism. A voltage is applied to the electric circuit 
to compensate the sum of voltages across the resistances at any given moment. The resulting voltage is 
measured at the additional resistance and is returned to the electric circuit, after amplification, with the sign 
reversed. Then the final current is only determined by the capacitor. Intrinsic voltages can be produced in the 
same way.

At that time, paper-winded capacitors with a capacitance of about 30 µF could be used. If the measured 
value is an oscillation of low frequency (lower than 0.1 Hz), the maximum loading current can become 
smaller than 1mA. Such low currents must be amplified.

4— 
Amplification

Amplifying elements are needed to produce intrinsic currents and voltages, as said before. Very low voltages 
and loading currents at the capacitor require the use of an amplifier. In his dissertation, Hoelzer demands the 
following characteristics from the amplifier:

1. A small time constant

2. High amplification

3. Linearity

4. Real input resistance

5. Independence of the applied input values

6. Sensitivity

7. Zero point safety

Hoelzer discusses the types of amplifier that could satisfy these requirements and which were available at 
the time. The most commonly used amplifier types, like the ones built using potentiometers, relays, or a 
magnetic coil, had to be ruled out because of large time constants and input inductivities (the first and fourth 
requirements are violated). The electronic tube amplifier, in contrast, fulfilled these requirements. The EF 14 
electronic tube (Wehrmachtsröhre), produced in steel by the Telefunken company, was rela-tively failsafe 
and robust12.

However, the electronic tube cannot be driven as a DC amplifier (direct current), because this does not 
guarantee the independence of the applied measured values. The fifth requirement is not fulfilled. Due to the 
known

12 Helmut Hoelzer, "50 Jahre Analogcomputer," in Computer als Medium, ed. N. Bolz, F.A. Kittler, C. Tholen 
(München, Wilhelm Fink Verlag, 1991): 69–90; Klaus Biener, "Computerpionier zu Gast in Berlin," in 
Mikroprozessortechnik 8 (1992): 40–41.
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Figure 5 
Elements used for a chopper amplifier

drift of the DC amplifier, zero point safety is not guaranteed and requirement seven is violated. All the other 
points are fulfilled satisfactorily.

Reacting to these problems, Hoelzer came up with the idea of driving the electronic tube as an AC amplifier 
(alternating current). The applied measured value was transformed into an alternating voltage by chopping 
up, or modulating, with a suppressed carrier. The amplification is zero point safe, because the measured 
voltage is completely separated from the operational DC voltage of the electronic tube. The open gate of the 
secondary side guarantees complete independence of the applied measured values.

The elements shown in Fig. 5 are used for the electronic tube chopper amplifier. The measured value at the 
input is chopped up with a relay, triggered by an alternating current. After amplification and separation from 
the anode DC voltage, the AC-voltage is rectified by a synchronously oscillating relay (mechanical 
rectification). In this case, the amplified output voltage is directly proportional to the input voltage. In 
addition, one is able to keep the amplification factor of the electronic tube constant.

The electronic tube amplifier with modulation needs the elements illustrated in Fig. 6. Instead of a relay, a 
ring modulator is used, which is well known from the field of telecommunications and which chops up the 
input signal, not rectangularly, but sinusoidally. When the measured voltage changes sign, the modulated 
AC voltage changes phase by 180°. At the output of the amplifier, a rectification takes place in a phase 
bridge with the addition of the AC voltage as carrier, so that the output voltage is directly proportional to the 
input voltage.

In both the ring modulator and the phase bridge rectifier, diodes of copperoxide (Cu2O) were used. These 
proved to be very stable and zero point safe.13 The electronic tube amplifier with modulation is illustrated in 
Fig. 7.

13 Klaus Biener (n. 12 above).
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Figure 6 
Elements used for a modulation amplifier

Figure 7 
Electronic tube amplifier with modulation

5— 
Differentiators and Integrators

Hoelzer built the devices for differentiation and integration using one RC circuit and two amplifier stages in 
each case. The RC circuits are shown in Fig. 8.
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Figure 8 
RC circuits for differentiation and integration

A smoothing device is added in front of the differentiation element to eliminate the harmonic series which 
occur due to rectification. The influence of the resistance Rgl on the differentiation process is eliminated by 
the feedback. The capacitor Cgl, is small compared to C (»l/1000); for that reason, the error contribution is 
small.

One could combine these RC elements using either a chopper amplifier or a modulation amplifier. The 
measured values at the input had to be fed in modulated form. Only for differentiation and integration there 
was an intermediate transformation to direct current. The feedback was also done on the alternating current 
side14.

In Fig. 9, this is illustrated using the example of a chopper amplifier. The switching frequency of the 
chopper relay is 200 Hz.

Figure 9 
Solution with a chopper amplifier

14 Helmut Hoelzer, "Guidance and Control Symposium," in The Eagle has returned, Proceedings of the Dedication 
Conference of the International Space Hall of Fame 43, Space and Technology, ed. Ernst A. Steinhoff (Alamogordo/NM, 
5-9 October 1976): 301-316.
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Figure 10 
Solution with modulation amplifier

Instead of the chopper amplifier, one could use a modulation amplifier, as illustrated in Fig. 10. The relay is 
substituted by a ring modulator and a phase bridge. Using a modulating frequency of 500 Hz, the influence 
of the smoothing device is even smaller in the case of differentiation.

The differentiators and integrators described previously can be combined at random. In this way, it is 
possible to represent high-order differential and integral expressions. In the case of second-order 
expressions, Hoelzer adopted a different approach for his analog computer. He combined two RC elements 
immediately behind each other without the use of intermediate amplifiers. This is illustrated in Fig. 11 for a 
double differentiation.

In his dissertation of 1941, Hoelzer provides a theoretical justification. The positive feedback is a suitable 
method for removing perturbations, i.e. for compensating time constants. In the case of a double 
differentiation, one is forced to choose a complex feedback factor in order to obtain an exact solution. 
Hoelzer, therefore, provided a general formula, from which one could determine the complex feedback 
factor.

Figure 1 1 
RC circuit for double 

differentiation
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6— 
Electronic Modeling of Differential Equations

Using the integrators and differentiators we have described, it is possible to solve differential equations. In 
his dissertation, Hoelzer demonstrated this using a fourth-order linear differential equation.

This differential equation can be modeled in various ways. First, we consider using integrators only. To this 
end, the differential equation can be transformed in the following way:

The composition of integrators illustrated in Fig. 12 emulates this expression.

The fourth derivative of y is integrated until y is obtained. The solution function y(t) appears as a curve in 
the oscilloscope. The signals at the output of the integrators are multiplied by the coefficients a, b, c, and d 
and added to F(t) at the input of the first integrator, taking the sign into consideration. Multiplication with 
constants is carried out by applying a voltage divider or an amplifier, if necessary. At the input of the 
integrators, potentiometers are used to adjust the initial conditions. The differential equation can also be 
solved using differentiators only. It has to be transformed in the following way:

Figure 12 
Solution of the differential equation using integrators
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Figure 13 
Solution of the differential equation using differentiators

The composition of differentiators illustrated in Fig. 13 belongs to this expression.

The quantity y is obtained by adding certain differential expressions gained by continuous differentiation of 
y to the disturbance function F(t)/d. The output signals of the differentiators are multiplied by the 
coefficients c/d, b/d, a/d, and I/d, and are then added to F(t)/d at the first differentiator, taking the sign into 
consideration. Potentiometers at the input of the differentiators are used to adjust the initial conditions of the 
differential equation. The variable y is transmitted to an oscilloscope before the first differentiation.

The advantage of the machine with differentiators is that a deviation in the zero point calibration of the 
devices will not have a serious effect. Constant errors at the input of the differentiators will not propagate to 
the output. On the other hand, the output signal will appear noisy when the input signal is not sufficiently 
continuous. To minimize the disadvantages, Hoelzer adopted a compromise with two integrators and two 
differentiators. The differential equation must be transformed once again:

The composition of differentiators and integrators in Fig. 14 belongs to this expression.

The first element is an amplifier with amplification factor 1/b whose input are all values on the right-hand 
side of the differential equation. The two outputs of the amplifier are connected to the inputs of the 
differentiators and integrators, which are combined in series. The outputs are added to F(t) at the first 
amplifier, taking the sign into consideration.
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Figure 14 
Solution of the differential equation using 

integrators and differentiators

In his dissertation, Hoelzer also formulated detailed procedures for the calibration of the three sets of analog 
devices. The solution of a system of linear second order differential equations presented him with an even 
greater challenge. This problem often appears in physics, for example, in a mechanical system with three 
independent dimensions (coordinates x, y, z) and with acceleration, velocity and distance coupling. To 
handle this problem, Hoelzer proposed a circuit where a series connection of two integrators with a mixing 
amplifier in front is used for each coordinate x, y, z, i.e., three-dimensional dynamic problems were being 
solved in Peenemünde15 using analog devices.

While only sums and differences of the differential expressions appear in

Figure 15 
The final form of the 
analog computer in 
Peenemünde, 1943

15 Gunter Schwarze, letter to the author (Berlin, Humboldt University, 5 June 1998).
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Figure 16 
Multiplier with ring modulators

Figure 17 
Multiplier with modulated input values

linear differential equations, we find products, quotients, powers and various nonlinear functions in the case 
of nonlinear differential equations. This was why Hoelzer worked on the electronic modeling of these 
functions, and it led him to develop a fully electronic analog computer. Fig. 15 shows the machine in its final 
form. The bottom panel contains the power supply unit. In addition to the differentiators and integrators, the 
top panel contains the calculating devices which are considered in the following sections.16

7— 
Multiplier, Square, and Cube Devices

The device which Hoelzer used to create multipliers, square and cube units was the ring modulator. Fig. 16 
shows how multiplication is performed with two ring modulators connected in series. Multiplication is 
carried out with the modulation of x(t) and y(t) with a constant AC voltage. This circuit can be

16 Klaus Biener (n. 11 above).
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Figure 18 
Division by solving a differential equation

used when both factors are given in demodulated form and the result is presented in modulated form. If both 
carriers have been modulated, a phase bridge has to be used, as shown in Fig. 17. However, the result 
appears in demodulated form and has to be transformed for further processing.

8— 
Divider

Hoelzer used a special differential equation to build a divider:

The differential equation has a homogeneous solution y, for the compensation process and a particular 
solution, yp =b/a, after infinite time (t = ¥).

The device shown in Fig. 18 solves this differential equation and supplies

Figure 19 
Circuit for division with negative feedback
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Figure 20 
Division by a self-balancing bridge

the quotient b/a. If there is a fast compensation process, a and b are functions of time. This is achieved by a 
high amplification V. One can also eliminate the integrator in Fig. 18, if the amplification chosen is high 
enough. The new circuit is shown in Fig. 19. It could be described as a negative feedback, which has the 
advantage that the time constants are absolute.

Another method proposed by Hoelzer was the use of the equivalence conditions of a balanced bridge for 
modeling the quotient. This circuit is illustrated in Fig. 20.

The input signals are given in modulated form and are fed through transformers into the bridge circuit. The 
other branch of the bridge is composed of a fixed resistance R2 and a controllable resistance R1. The voltage 
in the zero branch of the bridge adjusts the resistance R1 via an amplifier and a small motor until the bridge is 
balanced. Then one can obtain R1=(b/a)R2. Another potentiometer, supplied by voltage UH , is adjusted 
simultaneously with R1. The output signal b/a is finally taken from this.

9— 
Square Root Device

Hoelzer also used a special differential equation as the basis for the calculation of the square root:

This differential equation has a homogeneous solution yh for the compensation process and a particular 
solution, yp = Ö , after infinite time (t=¥). For this reason, the device illustrated in Fig. 21 is suitable for 
producing the square root of a given value.
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Figure 21 
Producing the square root by 
solving a differential equation

If b is a function of time, the compensation process must be accelerated by a high amplification. Here, as 
well, the integrator can be spared in practice (negative feedback) if the amplification factors are high 
enough.

10— 
Device for Modeling Arbitrary Functions

There was no method for modeling arbitrary functions electronically in Hoelzer's time. Therefore, he used a 
mechanical representation using a curve disk. The voltage which occurs at a mechanical comparator 
describes the sampled function. The mode of operation is shown in Fig. 22.

The value y(t) is applied to the coil of a motor and is compensated by the feedback coil after adjustment of 
the motor. In this way the plane f(y) is adjusted and the associated function value f (y(t)) is taken from the 
potentiometer.

Figure 22 
Modeling the function f(y(t))
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11— 
The A4 Rocket

The Deutsche Reichswehr, and later the Deutsche Wehrmacht, had been working since 1932 on the 
development of a long range liquid propellant rocket. This culminated in the design of the A4, which could 
carry a maximum load of about 1000 kg. After a number of failures, the first successful test flight was 
carried out on October 3, 1942. This was the first controlled projectile that went into space. The A4 rocket 
was later renamed vengeance weapon (Vergeltungswaffe) V217 by the Reichspropagandaministerium.

A liquid-propellant rocket must be launched vertically. At a certain altitude, it rotates 45º in the direction of 
launch and, at a defined time, the rocket engine is stopped. The rocket continues on a ballistic path towards 
the target. The final path can differ from the calculated one due to lateral deviations or because the rocket 
does not reach the intended distance. The latter could result from faulty adjustment of the angle of attack or 
of the cutoff time of the rocket engine. The lateral deviations had to be corrected both by remote-control 
(radio beam guidance) and by on-board control (inertial guidance system).

Figure 23 
The motion of the rocket

17 Michael J. Neufeld, The rocket and the Reich: Peenemünde and the coming of the ballistic missile era, Harvard Univ. 
Press, 2. print. (New York, Mass, 1995); Gregory P. Kennedy, Vengeance weapon 2: The V-2 guided missile, National 
Air and Space Museum (Washington D.C., 1983).
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Aerodynamic arrow stabilization was provided to the A4 rocket by fins at the rear end. Because of this 
construction, the attack point L of aerodynamic forces lies behind the center of gravity S. The mass reduction 
due to fuel consumption causes a shift in the center of gravity. But arrow stabilization does not guarantee 
that the desired path will be kept. Due to external forces and torques, a turn of thrust force  occurs, which 
is rigidly coupled with the axis of the rocket. The effect of the turning of the thrust force is much larger than 
the direct effect of the forces and torques. A guidance and control system has to compensate the deviations 
due to these forces and torques, and has to suppress them when they arise. The opposite forces and torques 
required for this are generated by thrust and air rudder. They were driven by servomotors, which received 
commands from the guidance and control system 18.

12— 
Equations of Motion and Control of the Rocket

In order to build the control device, one has to determine which physical quantities are relevant for rocket 
motion. This is illustrated in Fig. 23. The motion of the rocket is described by two differential equations. The 
first is obtained by the equivalence of forces and the second by the equivalence of torques applied to the 
rocket. In the air attack point L wind force is applied, which produces a wind torque in relation to the center 
of gravity S. The forces and torques due to air resistance also have to be taken into account. A third 
differential equation specifies the control system of the rocket. It describes how the rudders have to be 
adjusted when a deviation e is given:

To determine whether or not a disturbance could be stabilized, Hoelzer used the Nyquist method, which is 
well known in electronics. In his dissertation, he describes the following Gedankenexperiment: If the rudder 
of the rocket is perturbed with sinusoidal frequency (angle bein ), the guidance and control system will try to 
compensate this motion with an oscillation of another phase and amplitude (angle baus). This will be repeated 
for all frequencies w between 0 and ¥. When the oscillation at the axis of the rudder is

18 Helmut Hoelzer, ''Anwendung elektrischer Netzwerke zur Stabilisierung von Regelvorgängen und zur Lösung von 
Differentialgleichungen, gezeigt an der Stabilisierung des Fluges einer selbst- bzw. ferngesteuerten Großrakete 
(Application of Electrical Networks to the Stabilization of Regulating Processes and to the Solution of Differential 
Equations, Demonstrated on the Stabilization of the Flight of an Automatically Controlled, Respectively Guided Large 
Scale Rocket)," included in Helmut Hoelzer Papers CBI33 (Darmstadt 1946).
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Figure 24 
Phase modifier

represented in the complex plane, the form of the local curve according to the Nyquist method provides 
stability. The point (1;0) must always be on the left side of the curve, in the direction of increasing w. 
Remote control by radio link and on-board inertial guidance were used for the A4 rocket.

13— 
Remote Control of the Rocket

A pure amplifier cannot be used for the control device E(e). Every small disturbance would result in an 
amplification of the rocket motion. For that reason, a phase modifier had to be used too, as is illustrated in 
Fig. 24. But this would fail in a very slow drift of the rocket (w»0), because the servomotors of the rudder 
would not react. Hoelzer determined that only a series combination of four phase modifiers could be 
successful.

However, in the course of measurement, he noticed that the value from the HF-receiver did not have an ideal 
smooth curve. Due to noise in radio communication, the curve itself is noisy, making it impossible to carry 
out four differentiations of e. Only one differentiation is possible. Hoelzer, therefore, supplemented remote-
control with on-board control.

However, the errors due to the faulty adjustment of gyroscopes, amplifiers, and the rocket engine and the 
variance of m0 caused by the uncontrollable burning down of the rudder are not taken into account. In order 
to do this, we have to add a term where e is integrated over time into the control equation. Finally, we obtain 
the following expression for E(e), which has to be superimposed by the rocket's own control system:
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Figure 25 
Network for remote-control

In the ideal case, the coefficients for remote-control are determined as E-1 = 75, E0 = 750, and E1 = 2250. 
When Hoelzer considered modeling this expression, he noticed the similarity of a series combination of 
capacitance, resistance and inductivity to Ohm's law. At that time, it was only possible to create capacities of 
at most C = 60 µF. If one adopts the ratio 1:10:30 for the coefficients, the required resistance (R = 167 kW) 
and inductivity (L = 667000 H) can be computed. But such an inductivity could hardly be created in practice.

Hoelzer avoided the inductivity L by the union of serial and parallel combination, i.e. he used a serial 
combination of R1, and C1, for integration, and a parallel combination of RD and CD for differentiation. This 
circuit is illustrated in Fig. 25.

The radio beam on-board device has galvanic separated outputs, so that e is applied to the series and to the 
parallel circuit. After that, an amplification is made with the electronic tube driven as an AC-amplifier. 
However, the measured value has to be applied as voltage at the input. A small resistance has to be 
connected to the parallel circuit for this. Hoelzer called the circuit the "Isodrome Network." It was not 
intended to produce exact values for the integrals and differentials, as is important in the case of the solution 
of equations, but it was intended to correct the deviations from the calculated path due to disturbances.
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Figure 26 
Network for on-board control

14— 
Automatic Guidance of the Rocket

The quantity which has the same phase position as the second derivation of e is the position angle j. This 
angle is delivered by the inertial navigation system and could be used to model the higher order derivations 
of e. Hoelzer obtained the following differential expression A(j), which has to be added to E(e):

The differential expression for on-board control was also modeled through a parallel combination of R and 
C. Because a double differentiation is required, two RC elements were combined immediately behind each 
other, as shown in Fig. 26.

The introduction of feedback to compensate the time constants, as was done in the analog computer, does 
not yield a significant advantage. The coefficients of on-board control were determined in the ideal case as 
A0=10, A1=4 and A2=3.

The compensation of disturbances due to external forces occurs more slowly by replacing the second 
derivative of e with the position angle j.
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15— 
The "Mischgerät"

The networks for remote-control and on-board control, including the amplifying elements, were put together 
by Hoelzer in one apparatus which he called the "Mischgerät." Later on, in letters to James E. Tomayko,19 he 
translated the name as "mixing computer." The "Mischgerät" was the world's first on-board computer. Fig. 
27 shows the original circuit diagram given in Hoelzer's dissertation.20

The detailed diagram of the "Mischgerät" is shown in Fig. 28. The deviation positions of the three axes D, E, 
and A are read from the gyroscopes's potentiometers ("Kreiselhorizont" and "Kreiselvertikant")21 and fed 
into the control device. The phase shift was carried out with the RC elements according to the equation 
selected for the stabilization calculation. The voltage at

Figure 27 
Original circuit plan from Hoelzer's dissertation

19 James E. Tomayko (n. 4 above)
20 Helmut Hoelzer (n. 18 above).
21 Stefan Karner, "Die Steuerung der V2: Zum Anteil der Firma Siemens an der Entwicklung der ersten selbstgesteuerten 
Grossrakete," in Technikgeschichte 46 (1979): 45-66; Archive of the Heeresanstalt Peenemünde, Series 86 (Steering), 87 
(Flight Mechanics), 73, 79 (Navigation), 115, 119 (Inertiale Navigation), in

(footnote continued on next page)
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the output of the RC elements has to be amplified. Because the electronic tubes are driven as AC amplifiers, 
the voltage has to be modulated with an AC voltage in a ring modulator, whereby the carrier is suppressed. 
At the output of the amplifier a rectification is carried out with the addition of the carrier. The output DC 
current then controls oil-hydraulic servomotors (Askania Lrm5), which move the rudder. The commands 
from the D and E axes are conducted in each case to two amplifiers with the same phase; the commands 
from the A-axis (spin) are given with opposite phase to the two amplifiers of the E-axis. Rudders 1 and 3 
will control the E-axis if they move in phase, and the A-axis if they move in opposite phase. Rudders 2 and 4 
are prevented from moving in opposite phases (i.e. they are synchronized), so that an over determination of 
the spin control does not occur. This is done by a potentiometer construction at the rudder, whose commands 
are given in opposite phase to the amplifiers of the D-axis.

A transmitter, by which the e-commands are entered is in line with the E amplifier. These were also given to 
a ring modulator at the output of the RC element, before mixing into the control unit, in order to transform 
them into AC signals. An electronic tube modulator is used, so that no load is put on the capacitor.

16— 
Conclusion

Hoelzer's achievement was first and foremost, the development of the "Mischgerät," the world's first on-
board computer. A spin-off of this work was the design of the fully electronic analog computer, which was 
used for solving the equation of motion of rockets and for simulations.22 Although the analog computer was 
later superseded by the digital computer, with its higher calculation speed, its introduction was a significant 
technological development at the time.

Hoelzer's personal tragedy was that the first analog computer was used to control not a space ship, but a 
military rocket which came to be known and feared as "vengeance weapon." Hoelzer moved after the war to 
the USA, having been recruited together with Werner von Braun and 116 German scientists as part of the so-
called "Operation Paperclip." He became director of the Computation Laboratory at the Marshall Space 
Flight Center and contributed to the development of the Saturn V rocket.

(footnote continued from previous page)

Deutsches Museum, Abteilung Archive, Sondersammlungen und Dokumentationen (München).
22 Eric A. Weiss, "Helmut Hoelzer, 1912-1996," Annals of the History of Computing 20, No.2 (Los Alamitos/CA, April-June 
1998): 62-63.
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Figure 28 
The "Mischgerät" (Mixing Computer)
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PART IV— 
THE BRITISH SCENE
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The Colossus of Bletchley Park — The German Cipher System

Anthony E. Sale

Abstract. Colossus was designed and built at the Post Office Research Laboratories at Dollis Hill in North 
London in 1943 to help Bletchley Park in decoding intercepted German telegraphic messages. The telegrams 
were enciphered using the Lorenz SZ42 cipher machine. Colossus was the world's first large electronic valve 
programmable logic calculator. Not just one but ten of them were built and were operational in Bletchley 
Park, home of Allied World War II code-breaking.

This paper describes the German codes and the methods used by Colossus to decipher messages. Some of 
the components of Colossus are reviewed in more detail.

1— 
The German Cipher System

The German Army High Command asked the Lorenz Company to produce for them a high security 
teleprinter cipher machine to enable them to communicate by radio in complete secrecy. The Lorenz 
Company designed the SZ42 cipher machine based on the additive method for enciphering teleprinter 
messages invented in 1918 by Gilbert Vernam in America.

The Vernam system enciphered the message text by adding to it, character by character, a set of obscuring 
characters thus producing the enciphered text which was transmitted to the intended recipient. The simplicity 
of Vernam's system was that if the obscuring characters were added in a rather special way (known as 
modulo 2 addition) then exactly the same obscuring characters added in the same way to the received 
enciphered message, cancelled out the obscuring characters and retrieved the original message.

Vernam proposed that the obscuring characters should be completely random and pre-punched onto paper 
tape to be consumed character by character in synchronism with the input message characters. Such a cipher 
system using purely random obscuring characters is unbreakable.

The difficulty was, in a hot war situation, to make sure that the same random character tapes were available 
at each end of a communications link and that they were both set to the same start position. The Lorenz 
Company de-
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cided that it would be operationally easier to construct a machine to generate the obscuring character 
sequence. Because it was a machine it could not generate a completely random sequence of characters. It 
generates what is known as a pseudo random sequence. Unfortunately for the German Army it was more 
''pseudo" than random and that was how it was broken.

The amazing thing about Lorenz is that the code breakers in Bletchley Park never saw an actual Lorenz 
machine until right at the end of the war, but they had been breaking the Lorenz cipher for two and a half 
years.

The First Intercepts

The teleprinter signals being transmitted by the Germans enciphered using Lorenz machines were first heard 
in early 1940 by a group of policemen on the South Coast who were listening out for possible German spy 
transmissions from inside the UK.

Brigadier John Tiltman was one of the top code breakers in Bletchley Park and he took a particular interest 
in these enciphered teleprinter messages. They were given the code name "Fish" and the messages which, as 
was later found out, were enciphered using the Lorenz machine were known as "Tunny." Tiltman knew of 
the Vernam system and soon identified these messages as being enciphered in the Vernam manner. Because 
the Vernam system depended on addition of characters, Tiltman reasoned, if the operators had made a 
mistake and used the same Lorenz machine starts for two messages, (a Depth), then by adding the two cipher 
texts together character by character, the obscuring character sequence would disappear. He would then be 
left with a sequence of characters each of which represented the addition of the two characters in the original 
German message texts. For two completely different messages it is virtually impossible to assign the correct 
characters to each message. Just small sections at the start could be derived but not complete messages.

The German Mistake

As the number of intercepts increased, now being made at Knockholt in Kent, a section was formed in 
Bletchley Park headed by Major Ralph Tester and known as the Testery. A number of Depths were 
intercepted but not much headway had been made into breaking the cipher until the Germans made one 
horrendous mistake. It was on 30th August 1941 and a German operator had a long message of nearly 4,000 
characters to be sent from one part of the German Army High command to another, probably Athens to 
Vienna. He correctly set up his Lorenz machine and then sent a twelve-letter indicator, using the German 
names, to the operator at the receiving end. This operator then set his Lorenz machine and asked the operator 
at the sending end to start sending his message. After nearly 4,000 characters had been keyed in at the
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sending end, by hand, the operator at the receiving end sent back by radio the equivalent, in German, of 
"didn't get that–send it again."

They now both put their Lorenz machines back to the same start position. Absolutely forbidden, but they did 
it. The operator at the sending end then began to key in the message again, by hand. If he had been an 
automaton, and used exactly the same keystrokes as the first time, then all the interceptors would have got 
would have been two identical copies of the cipher text. Input the same–machines generating the same 
obscuring characters–same cipher text. But being only human and being thoroughly disgusted at having to 
key it all again, the sending operator began to introduce differences in the second message compared to the 
first.

The message began with that well-known German phrase SPRUCHNUMMER, "message number" in 
English. The first time the operator keyed in S P R U C H N U M M E R. The second time he keyed in 
S P R U C H N R and then the rest of the message text. Now NR means the same as NUMMER what's the 
difference? It meant that immediately following the N the two texts were different but the machines were 
generating the same obscuring sequence, therefore the cipher texts were different from that point on.

The interceptors at Knockholt realized the possible importance of these two messages because the twelve 
letter indicators were the same. They were sent post haste to John Tiltman at Bletchley Park. Tiltman applied 
the same additive technique to this pair as he had to previous Depths. But this time he was able to get much 
further with working out the actual message texts because when he tried SPRUCHNUMMER at the start he 
immediately spotted that the second message was nearly identical to the first. Thus the combined errors of 
having the machines back to the same start position and the text being re-keyed with just slight differences 
enabled Tiltman to recover completely both texts. The second one was about 500 characters shorter than the 
first, where the German operator had been saving his fingers. This fact also allowed Tiltman to assign the 
correct message to its original cipher text. Now Tiltman could add together character by character, the 
corresponding cipher and message texts revealing for the first time a long stretch of the obscuring character 
sequence being generated by this German cipher machine. He did not know how the machine did it, but this 
was what it was generating!

The Denouement

John Tiltman then gave this long stretch of obscuring characters to a young chemistry graduate, Bill Tutte 
who had recently arrived to Bletchley Park from Cambridge.

Bill Tutte started to write out the bit patterns from each of the five channels in the teleprinter form of the 
string of obscuring characters at various repetition periods. Remember this was BC, "Before Computers," so 
he had to write out vast sequences by hand. When he wrote out the bit patterns from
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channel one on a repetition of 41, various patterns began to emerge which were more than random. This 
showed that a repetition period of 41 had some significance in the way the cipher was generated. Then over 
the next two months Tutte and other members of the Research section worked out the complete logical 
structure of the cipher machine which we now know as Lorenz. This was a fantastic tour de force and at the 
beginning of 1942 the Post Office Research Labs at Dollis Hill were asked to produce an implementation of 
the logic worked out by Bill Tutte and colleagues. Frank Morrell produced a rack of uniselectors and relays, 
which emulated the logic. It was called "Tunny." So now when the manual code breakers in the Testery had 
laboriously worked out the settings used for a particular message, these settings could be plugged up on 
Tunny and the cipher text read in. If the code breakers had got it right, out came German. But it was taking 
four to six weeks to work out the settings. This meant that although they had proved that technically they 
could break Tunny, by the time the messages were decoded the information in them was too stale to be 
operationally useful.

The Machine Age

The mathematician Max Newman now came on the scene. He thought that it would be possible to automate 
some parts of finding the settings used for each message. He approached TRE at Malvern to design an 
electronic machine to implement the double delta method of finding wheel start positions that Bill Tutte had 
devised. The machine was built at Dollis Hill and was known as Heath Robinson after the cartoonist 
designer of fantastic machines.

There were problems with Heath Robinson keeping two paper tapes synchronized at 1,000 characters per 
second. One tape had punched onto it the pure Lorenz wheel patterns that the manual code breakers had 
laboriously worked out. The other tape was the intercepted enciphered message tape. The double delta cross 
correlation measurement was then made for the whole length of the message tape. The relative positions 
then moved one character and the correlation measurement was repeated. The code breaker was looking for 
the relative position which gave the highest cross correlation score, which hopefully corresponded with the 
correct Lorenz wheel start position.

Heath Robinson worked well enough to show that Max Newman's concept was correct. Newman then went 
to Dollis Hill where he was put in touch with Tommy Flowers who was the brilliant Post Office electronics 
engineer who designed and built Colossus to meet Max Newman's requirements for a machine to speed up 
the breaking of the Lorenz cipher.

Tommy Flower's major contribution was to propose that the wheel patterns be generated electronically in 
ring circuits thus doing away with one paper tape and completely eliminating the synchronization problem. 
This required a vast number of electronic valves, but Tommy Flowers was confident it could be made to 
work. He had, before the war, designed Post Office
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repeaters using valves. He knew that valves were reliable provided that they were never switched on and off. 
Nobody else believed him!

Colossus design started in March 1943. By December 1943 all the various circuits were working and the 
1,500 valve Mkl Colossus was dismantled shipped up to Bletchley Park and assembled in F Block over 
Christmas 1943. The Mkl was operational in January 1944 and successful on its first test against a real 
enciphered message tape.

The Contribution to D Day

Colossus reduced the time to break Lorenz messages from weeks to hours and just in time for messages to 
be deciphered which gave vital information to Eisenhower and Montgomery prior to D Day. These 
deciphered Lorenz messages showed that Hitler had swallowed the deception campaigns, the phantom army 
in the South of England, the phantom convoys moving east along the channel, that Hitler was convinced that 
the attacks were coming across the Pas de Calais and that he was keeping Panzer divisions in Belgium. After 
D Day the French resistance and the British and American Air Forces bombed and strafed all the telephone 
and teleprinter land lines in Northern France, forced the Germans to use radio communications and suddenly 
the volume of intercepted messages went up enormously. The Mk1 had been rapidly succeeded by the Mk2 
Colossus in June 1944, and eight more were quickly built to handle the increase in messages. The Mkl was 
upgraded to a Mk2, and there were thus ten Mk2 Colossi in the Park by the end of the war. By the end of 
hostilities 63 million characters of high grade German messages had been decrypted, an absolutely 
staggering output from just 550 people at Bletchley Park, plus of course the considerable number of 
interceptors at Knockholt, with backups at Shaftsbury and Coupar in Scotland.

2— 
The Colossus Computer

Each of the ten Colossi occupied a large room in F Block or H Block in Bletchley Park. The racks were 90 
inches high (2.3 m) of varying widths. There were eight racks (Fig. 1) arranged in two bays about 16ft (5.5 
m) long plus the paper tape reader and tape handler (known as the bedstead).

The front bay of racks, spaced 5ft (1.6m) from the rear bay, comprised from right to left, the J rack holding 
the master control panel, the plugboard, some cathode followers and the AND gates. Next came the K rack 
which contained the very large main switch panel together with the very distinctive sloping panel at the front 
which was a duplicate patch panel for the thyratron rings. Next came the S rack which held the relays used 
for buffering counter output and making up the typewriter drive logic. The left-hand rack at the
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Figure 1 
The racks of Colossus

front was the C rack which held the counter control logic on the front and the decade counters on the back

The rear bay of Colossus contained four racks, the R rack holding the staticizer and delta boards for the 
paper tape reader output and the K and S wheel thyratron ring outputs, the M rack for the M wheel 
staticizers and S wheel motion logic. The very large W rack held, on one side all the thyratrons making up 
the wheel rings, 501 in all, and on the other side the 12 thyratron ring control panels. Also on the W rack 
were the link boards for the wheel patterns and the uniselectors for setting wheel start positions. The end 
rack of the back bay held the power packs. These were 50 volt Westat units stacked up in series to give +200 
volts to –150 volts. The total power consumption was about 5 Kilowatts most of which was to the heaters of 
the valves.

The circuit layout was all surface mounting on metal plates bolted to the racks. The valve holders were 
surface mounting with tag strips for the components. This form of construction had much to commend it, 
firstly both sides of a rack could be used, secondly wiring and maintenance were very easy and lastly 
cooling of the valves was expedited by them being horizontal.

How Colossus Worked

The following information summarizes the structure and capabilities of Colossus:
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• Input: Cipher text punched onto 5-hole paper tape,
read at 5,000 cps.

• Output: Buffered onto relays,
typewriter.

• 
Processor:

Memory of 5 characters of 5-bits held in a shift 
register, 
pluggable logic gates,

 20 decade counters arranged as 5 by 4 decades.

• Clock 
speed:

5 KHz, derived from sprocket holes in the input tape.

• Valves: 2500.

Colossus read teleprinter characters, in the international Baudot code, at 5,000 characters per second from a 
paper tape. These characters were usually the intercepted cipher text which had been transmitted by radio. 
The paper tape was joined into a loop with special punched holes at the beginning and end of the text.

The broad principle of Colossus was to count throughout the length of the text the number of times that 
some complicated Boolean function between the text and the generated wheel patterns had either a true or 
false result. At the end of text the count left on the counter circuits was dumped onto relays before being 
printed on the typewriter during the next read through the text, an early form of double buffering.

Colossus had two cycles of operation. The first one was controlled by the optical reading of the sprocket 
holes punched between tracks 2 and 3 on the paper tape. The sprocket signal was standardized to 40 
microseconds wide. The optical data from the paper tape was sampled on the back edge of the standardized 
sprocket pulse as were the outputs from the rings of thyratrons representing the Lorenz wheel patterns. The 
result of the logical calculation was sampled on the leading edge for feeding into the counter circuits.

The second cycle of operations occurred at the beginning and end of the text punched onto the paper tape. 
The paper tape was joined into a loop and special holes were punched just before the start of text between 
channels three and four (called the start) and just after the end of text between channels four and five (called 
the stop). This long cycle of operations began with the electrical signal from the photocell reading the stop 
hole on the tape. This stop pulse set a bistable circuit which stayed set until the optical signal from the start 
hole was read. The setting of this bistable thus lasted for the duration of the blank tape where the text was 
joined into a loop, typically about 100 milliseconds. The first operation after the stop pulse was to release 
any settings on the relays from the previous count. Next the new count was read onto the relays. Then the 
counters and the thyratron rings were cleared and then the thyratron rings were struck at the next start point 
to be tried. When the bistable was reset by the start pulse, sprocket pulses were released to precess the 
thyratron rings, to sample the data read from the paper tape and to sample the calculation output to go to the 
counters.

The various components of Colossus were the optical reader system, the master control panel, the thyratron 
rings and their driver circuits, the optical
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data staticizers and delta calculators, the shift registers, the logic gates, the counters and their control 
circuits, the span counters, the relay buffer store and printer logic.1

The Optical Reader System

In order to break the Lorenz codes in a reasonable time the cipher text had to be repeatedly scanned at very 
high speed. This meant at least 5,000 characters per second and in 1942 this implied hard vacuum photocells 
to optically read the holes in the paper tape. The smallest photocells available were some developed for 
proximity fuses in anti aircraft shells. Six of these in a row meant an optical projection system to enlarge the 
image of the paper tape about 10 times. Dr Arnold Lynch designed the paper tape reader and used slits cut 
into black card to form a mask in front of the photocells.

The output from the data channels went to the staticizer and delta circuits.

The Master Control Panel

This was where the start and stop pulses from the optical reader set and reset the bistable. Monostable delay 
circuits generated the voltage waveforms for releasing the relays, for staticizing the counters, for resetting 
the counters and thyratron rings, and for striking the rings. Gate circuits controlled the flow of sprocket 
pulses.

The Thyratron Rings and Their Driver Circuits

These circuits were the most complex on Colossus. Thyratrons are gas filled triodes which strike a discharge 
arc between anode and cathode when the grid voltage is raised to allow electrons to flow. This discharge, 
when struck, continues quite independent of the grid voltage. Thus the thyratron acts as a one-bit store. It 
can only be switched off by driving both the anode and the grid negative with respect to the cathode. To 
construct a shift register with thyratrons requires that the striking of the next thyratron in the ring also 
quenches the previous thyratron. This leads to a biphase circuit with anodes of alternate thyratrons connected 
together and the grid voltage partially biased by the cathode voltage of the previous thyratron.

1 Thomas H. Flowers, "The Design of Colossus," Annals of the History of Computing, 5:3 (1983), 240–252.
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Figure 2 
Block diagram of Colossus

The complication arises when a Lorenz wheel contains an odd number of setting lugs. The thyratron ring 
controller for this requires a complete set of circuits to handle just the odd thyratron in order to get back to 
the biphase circuits for the rest of the ring. The thyratrons in a ring conduct sequentially stepped round by 
the sprocket pulses. Each thyratron cathode is brought out to a patch panel which allows the cathode pulse to 
be connected to a common output line when a link is plugged into the patchboard. Thus as the ring precesses 
round, a sequence of pulses appears on the common output line. By selecting the link positions this sequence 
can replicate the mechanical lugs set on the Lorenz wheel. Alongside the patch panel is a Uniselector which 
selects the thyratron cathode to which the ring strike pulse goes. This is the start position of the ring when 
sprocket pulses come in at the start of text.

The common line output went to the staticizer (one-digit stores) and delta circuits (program switches).
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The Staticizers and Delta Circuits

These circuits take the raw signals from the paper tape reader and the thyratron rings, sample them on the 
back edge of the clock pulse and set them to standard voltages of plus or minus 80 volt. Also on these boards 
are circuits giving a delay of one clock pulse. This is achieved with integrator capacitors which "hold" the 
previous data signal for long enough for it to be sampled on the next sprocket pulse. This delayed signal is 
available as an output but also on the board is an adder circuit which produces the delta signal, i.e., a one 
when current data is different from previous and a zero when current equals previous.

The Shift Registers

These are the same circuits used on the delta boards, just integrators sampled on the next sprocket pulse. Up 
to 5 shift elements could be connected in cascade giving a 5-bit shift register. This is thought to be the first 
recorded design or use of a shift register. Some of the computational algorithms used this window on 
previous data to improve the cross correlation measurement.

The Logic Gates

Colossus was provided with AND and OR gates which could be plugged together in any combination.

The Counter and Counter Control Circuits

The decade counter circuits were based on a pre-war design by Wynn Williams. They used a divide by two 
circuit followed by a ring of five pentodes. Four decades were required for each of the five counters used 
and each control circuit covered four decades of counters. The inputs to the control circuits were the output 
from the logic gates, the sprocket pulse for strobing and the reset pulse from the master control panel. Also 
on the control panels were comparison circuits between the outputs of the decade counters and switches on 
another panel. These switches could be set to any number in the range 0 to 9999. The output of the 
comparison could be included in the logic calculations thus for instance suppressing printing of scores below 
a set value.
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The Span Counters

These were the same design of counters and counter control circuits with switches on another panel which 
could be set in the range 0 to 9999. The purpose of the span counters was to be able to ignore sections of the 
cipher text which were corrupted, possibly due to fading radio signals. The comparison output was used to 
gate the sprocket pulses which went to the main counter controllers, cutting off these pulses stopped the 
sampling of the logic calculation and thus ignored the section of text covered by the span counters.

The Relay Buffer Store and Printer Logic

Latching relays held the ending count on the decade counters. The start positions of the thyratron rings and 
the count for the previous run through the text are clocked out sequentially onto the typewriter by the printer 
relay and uniselector logic.

3— 
Programming Colossus

Programming of the cross correlation algorithm was achieved by a combination of telephone jack plugs and 
cords and switches. The main plug panel was on the rack nearest to the paper tape reader. The direct and 
delta signals from the paper tape reader and the K wheel thyratron rings were on this panel. The changeover 
from direct to delta could also be achieved by switches. Also on the main plug panel were the input and 
output sockets for the AND gates and the so-called "Q" sockets which took the calculated output to the main 
switch panel on the next rack to the left. This very large switch panel allowed signals to be combined 
through further logic gates and the results switched to any of the five result counters.

As an example take the simple double delta algorithm as devised by Bill Tutte. This requires two wheels to 
be run simultaneously so take K4 and K5.

First the delta outputs from channel 5 from the paper tape reader is combined in an AND gate with the delta 
output of the K5 thyratron ring, then this result is ANDed with the AND output of delta channel 4 and the 
delta output of the K4 thyratron ring. This result is plugged to Q1 and on the switch panel Q I is switched to 
counter 1. The output can be negated before being counted so that the count can represent either the number 
of times the double delta calculation equals one or zero.
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The End of Colossus

After Victory Day, suddenly it was all over. Eight of the ten Colossi were dismantled in Bletchley Park. Two 
went to Eastcote in North London and then to GCHQ at Cheltenham. These last two were dismantled in 
about 1960 and in 1960 all the drawings of Colossus were burnt, and of course its very existence was kept 
secret. In the 1970s information began to emerge about Colossus. Professor Brian Randell of Newcastle 
University started researching the machine. Dr. Tommy Flowers and some of the other design engineers 
wrote papers in the 1980s describing Colossus in fairly general terms.

4— 
The Colossus Rebuild Project

When some colleagues and I started, in 1991, the campaign to save Bletchley Park from demolition by 
property developers, I was working at the Science Museum in London restoring some early British 
computers. I believed it would be possible to rebuild Colossus. Nobody believed me. In 1993 I gathered 
together all the information available. This amounted to the eight 1945 wartime photographs taken of 
Colossus plus some fragments of circuit diagrams which some engineers had kept quite illegally, as 
engineers always do!

I spent 9 months poring over the wartime photographs using a sophisticated modern CAD system on my PC 
to recreate the machine drawings of the racks. I found that sufficient wartime valves were still available as 
were various pieces of Post Office equipment used in the original construction.

In July 1994 His Royal Highness the Duke of Kent opened the Museums in Bletchley Park and inaugurated 
the Colossus Rebuild Project. At that time I had not managed to obtain any sponsorship for the project and 
my wife Margaret and I decided to put our own money into it to get it started. We both felt that if the effort 
was not made immediately there would be nobody still alive to help us with memories of Colossus. Over the 
next few years various private sponsors came to our aid and some current and ex Post Office and radio 
engineers formed the team that helped me in the rebuild.

The Switch-On

By 1995 the optical paper tape reader was working, (helped by the memories of Dr Arnold Lynch who 
designed it in 1942) and the basic circuitry of Colossus had been recreated. Colossus first worked at two-bit 
level (out of the five bit channels from the paper tape). HRH The Duke of Kent returned to the Park on 6th 
June 1996 to switch-on the basic working Colossus. This was a marvelous occasion with Dr Tommy 
Flowers present and a large number of the people who worked at Knockholt, in the Testery and the 
Newmanry during the war.
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One reason for wanting to get Colossus working in 1996 was that for far too long the Americans have got 
away with the myth that their ENIAC computer was the first in the world. It was not, but they got away with 
it because Colossus was kept secret until the 1970s. As 1996 was the 50th anniversary of the switchon of 
ENIAC, I made sure that Colossus was rebuilt and working in Bletchley Park, just as it was in 1944. There 
has been a stunned silence from across the water!

The American Information

One ironic twist to the Colossus story is that most of the information about how Colossus was used has come 
from America. In 1995 the American National Security Agency (equivalent to GCHQ) was forced by 
application of the Freedom of Information Act to release about 5,000 World War II documents into the 
National Archive. The listing of these documents was put onto the Internet and I quickly obtained a copy of 
the list. When I scanned this I was amazed to see titles like ''The Cryptographic Attack on FISH." I managed 
to get copies of these documents only to find that they were reports written by American service men 
seconded to Bletchley Park when America entered the war. The most important one was written by Albert 
Small and is a complete description of Colossus code breaking. Having this report has enabled us to work 
out the function of many more of the circuits and program switches on Colossus. We have now, we think, 
incorporated nearly all the circuits and although there may still be some parts which cannot be worked out, 
we think we have about 90% of Colossus correct and working.

The Performance of Colossus

Colossus is not a stored program computer. It is hard wired and switch programmed, just like ENIAC. 
Because of its parallel nature it is very fast, even by today's standards. The intercepted message punched 
onto ordinary teleprinter paper tape is read at 5,000 characters per second. The sprocket holes down the 
middle of the tape are read to form the clock for the whole machine. This avoids any synchronization 
problems, whatever the speed of the tape, that's the speed of Colossus. Tommy Flowers once wound up the 
paper tape drive motor to see what happened. At 9,600 characters per second the tape burst and flew all over 
the room at 60 mph! It was decided that 5,000 cps was a safe speed.

At 5,000 cps the interval between sprocket holes is 200 microseconds. In this time Colossus will do up to 
100 Boolean calculations simultaneously on each of the five tape channels and across a five character 
matrix. The gate delay time is 1.2 microseconds which is quite remarkable for very ordinary valves. It 
demonstrates the design skills of Tommy Flowers and Allen Coombs who re-engineered most of the Mk2 
Colossus.
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Colossus is so fast and parallel that a modern Pentium PC programmed to do the same code breaking task 
takes twice as long as Colossus to achieve a result!
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The Manchester Mark 1 Computers1

R. B. E. Napper

Abstract. This paper provides a brief history of the four related computers that were designed and built in 
Manchester from 1948 to 1951, and a summary specification of their architecture. Each machine has a strong 
claim to be a "first" in the history of stored-program computers, specifically allelectronic computers with an 
electronic store. The SSEM (June 1948) was the first such machine to work, thus realizing and proving the 
von Neumann ideal. The Manchester Mark 1 (Intermediate Version, April 1949) was the first full-sized 
computer available for use. The completed Manchester Mark 1 (October 1949), with a fast random access 
magnetic drum, was the first computer with a classic two-level store. The Ferranti Mark 1 (February 1951) 
was the first production computer delivered by a manufacturer.

1— 
Introduction

By 1946 F.C. Williams had been working at the Telecommunications Research Establishment (TRE) for 
seven years, and was an electronics engineer of international reputation. He had led for some years a small 
team that specialized in solving problems for other groups working in radar and airborne electronics. On a 
visit to the U.S. in July 1946, Williams saw that electronic digital storage was the problem holding up the 
development of electronic computers. So on return he looked into the problem of storing digital information 
on a conventional radar cathode ray tube (CRT). By November 1946 a single bit could be stored.

In December Williams moved to the University of Manchester as Professor in the Electrical Engineering 
Department (originally Electrotechnics). He arranged for Tom Kilburn (a member of his group) and another 
person to be seconded from TRE, with the authority to order parts from TRE, so that they could continue 
their CRT storage research.

1 This paper was written with the assistance of Prof. Tom Kilburn, who was unable to attend the Conference.
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2— 
The CRT Store

By October 1947 the team had developed a system for storing 2048 bits on a standard CRT. The mechanism 
used a 64x32 array of phosphor charges on the screen, each planted in one of two different ways, 
representing a 0 or a 1. But the charge would decay within 0.2 seconds; so a detector was placed in front of 
the CRT, and a mechanism devised so that, as the array was swept again by an electron beam, the type of 
charge at each position could be detected and refreshed to the same type of charge before the beam moved 
on to the next position. With the surface of the tube being refreshed at regular intervals, before the charge 
could decay significantly, the CRT could hold a pattern of 0s and Is indefinitely. Resetting of particular bits 
and reading values could be interleaved with the refresh mechanism.

Figure 1 
A pair of Williams-Kilburn CRT memories. Reprinted with permission 

of the Department of Computer Science, University of Manchester.
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Tom Kilburn submitted a report to the TRE management, A Storage System for use with Binary Digital 
Computing Machines (Progress Report, 1st December 1947),2 which explained in detail the research carried 
out in 19472, and explained how the CRT store could be used inside a stored-program computer. The report 
was circulated widely and was influential in several American and Russian organizations adopting the 
Williams-Kilburn CRT storage system.

3— 
The Small Scale Experimental Machine

By June 1948 the team had built a Small Scale Experimental Machine to Tom Kilburn's design, the SSEM, 
or just "The Baby"; this was to test that the CRT store would still work effectively at the fast speeds required 
in a computer. The SSEM only had a 32x32-bit word main store, using one CRT. It had a second CRT just 
holding a 32-bit accumulator A, and a third holding the address of the current instruction C, and the 
instruction itself (PI). A fourth CRT, without any storage mechanism, was placed on the console and could 
be switched to show a copy of the current bit pattern on any of the storage tubes. This was used as the output 
device, and the input device was a keyboard of 32 buttons plus manual switches; these could be used to set 
any bit pattern in any word.

The SSEM used a whole 32-bit word for an instruction, using bits 13–15 for the function code and bits 0-12 
for the store address (though as only one CRT was fitted for the main store, which could hold 32 words, only 
five bits were used). There were just seven instructions initially, i.e., where S represents the contents of the 
given store address:

1) A = –S Load S negated into the accumulator

2) A = A – S Subtract S from accumulator
3) S = A Reset S to the value in the accumulator
4) C = S Reset C to (the address in) S
5) C = C + S Add (the address in)S to C
6) If A < 0 then C = C + 1 Skip next instruction if accumulator < 0
7) Halt.  

Note that both relative (5) and absolute (4) unconditional jumps were provided, and they were both indirect 
(the more general case) rather than direct. C had to be set to the instruction before the next instruction to be 
obeyed, since C was always incremented at the start of each instruction. The branch instruction (6) simply 
consisted of testing the accumulator and skipping an

2 Department of Computer Science, University of Manchester, The Computer that Changed the World CD-ROM June 
1998. This contains copies of early papers including the Technical Report of 1947, video interviews and explanatory 
material
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instruction if it was negative. The awkward use of negative operations (1 and 2) was simply to avoid having 
to build a full 32-bit adder as well as a 32-bit subtractor before the SSEM could be tested – of course X + Y 
can be computed as X – (0 – Y). Following instructions were added a few months later:

• A = S

• A = A + S

• A = A & S

A 32-bit line on the main store CRT could be read, written or refreshed in just over 300 microseconds. 
Refreshing scans, cycling in turn through each line in the store, were interleaved with "action" scans of the 
same length, so that the regular rhythm of obeying an instruction was as follows:

1. Refresh the next line in turn; add 1 to the control address C.

2. Read the line given by C into PI.

3. Refresh the next line in turn; decode PI.

Figure 2 
Schematics of the SSEM architecture
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4. Read/write any line S as required and complete the instruction. (Note that any addition/subtraction 
involved was done serially bit by bit, and was overlapped with the serial read operation.)

Instructions were therefore executed in around 1.2 milliseconds, and the main store CRT was refreshed 
every 16 instructions.

The SSEM immediately proved the suitability of the CRT storage device and the effectiveness of the stored-
program computer. Within days of the first successful run on June 21st 1948, a run of two million 
instructions in under an hour had been achieved. New programs (albeit short!) could be loaded in minutes.

4— 
The Manchester Mark 1

By October 1948 a decision had been made to build a full-sized computer in the Electrical Engineering 
department, the basic architecture had been decided, the team had been expanded, and the government had 
contracted Ferranti Ltd. to build a commercial production computer based on it. Tom Kilburn was again 
responsible for the design. The other full time members of the team, with their specialities, were D.B.G. 
(Dai) Edwards (CRT store and central processor), A.A. (Alec) Robinson (multiplier, starting in June 1947), 
G.E. (Tommy) Thomas (drum) and G.C. (Geoff) Tootill (general, joined June 1947, seconded from TRE).

The full-sized machine, the Manchester Mark 1, included two significant advances in computer design over 
the SSEM and the basic von Neumann model: a fast two-level store and address modification registers (B-
lines).

It was the general opinion that a computer would need a few thousand words of main store to make it useful 
for general applications. But it was decided that, although there was no particular architectural problem in 
providing this amount of memory, the cost would be significant. So it was decided to attach a fast magnetic 
drum store. The drum would rotate at a speed synchronized with the refresh scans, so that a read transfer 
resetting a CRT would be completed in a single revolution.

The second innovation was the introduction of the B-tube, containing two special 20-bit registers (more 
usefully eight in the Ferranti machines), called B-lines. Each instruction contained a field which specified 
one of the B-lines, and as soon as the next instruction was fetched from store, the contents of the B-line were 
added to the instruction before it was fully decoded and executed. The contents of B0 were by convention 
always kept at 0, so that B0 was used wherever a modification was not required. The ability to modify a 
whole instruction was a dangerous facility, that was rarely required. The real usefulness was in modifying 
instruction addresses; this soon became a fundamental capability of most computers, with modification 
being restricted to the address of the store operand in an instruction. This address would now in
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general have two components, the fixed part F in the store address field of the instruction plus a variable part 
V, being the current contents of a specified modification register. This classically facilitates access to 
general data, for example (a) accessing an element of a fixed-position array, where F gives the array base 
and V the index, and (b) accessing a scalar in a record or stack, where V gives the record/stack base and F 
the relative address of the scalar. Of course as store sizes increase, the B-lines enable access to store 
addresses outside the range that can be specified by the address field of an instruction. Therefore, the B-lines 
constitute, as they were used, what we would call today "index registers."

The Manchester Mark 1 was fully operational by around October 1949, with 128 40-bit words as main store, 
and with a magnetic drum capacity that continued to be increased up to about 3,000 words. However an 
Intermediate Version was available for general use by other departments and Ferranti from April 1949. It 
was recorded as completing a successful 9-hour overnight run on Mersenne Primes on June 16-17, 1949. It 
was still without paper tape I/O and programmable drum transfers. The magnetic drum was working, but the 
circuitry to incorporate transfers into the instruction set had not yet been completed; so transfers were by 
human intervention with the program halted. However, it was invaluable for holding previously prepared 
input data and programs, output, useful routines, and intermediary calculations for long program runs.

From the summer of 1949 the effort moved increasingly from developing the Manchester Mark 1 to 
transferring the design, and enhancing it, for the Ferranti Mark 1. The first machine was delivered to the 
University in Febru-ary 1951. This had essentially the same architecture, but the number of instructions, the 
CRT and drum stores, and the machine speed, were all increased. The engineering of the machine was 
considerably improved, the multiplier was redesigned and the drum re-engineered. The main store now 
contained 256 40-bit words and the maximum drum capacity was about 16,000 words.

Specification of the Manchester Mark 1

The Manchester Mark 1 evolved as a physical extension of the SSEM, with sections being added, revised or 
replaced as appropriate over a period of time. It had two specially manufactured CRTs for its main store, 
each of which held two arrays of 32×40-bit words. Each 40-bit word could contain two 20-bit instructions. 
With a multiplier unit now available, the accumulator was extended to 80-bits.

The general specification of the Manchester Mark I was as follows, using square brackets to indicate 
comparable figures for the Ferranti Mark 1:
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• Store organized in 40-bit addressable "words," a word containing a number or two 20-bit instructions,

• Double-length accumulator, with serial 80-bit and 40-bit integer arithmetic; hardware addition, subtraction, 
multiplication, and logical operations,

• Two [8] 20–bit modifier registers – "B-lines," for modifying instructions,

• Four [8] pages of random access main store, 32x40-bit words per "page," using two CRTs,

• 128 [512] page capacity drum backing store, two pages per track, about 30 milliseconds revolution time; 
random access to any track,

• Single-address format order code (plus a field for the B-line),

• Standard instruction time: 1.8 [1.2] milliseconds, multiplication costing roughly an extra half instruction 
time for every I in the multiplicand,

• Peripheral instructions: read and punch a line of 5-hole paper tape; transfer a given page (or track) on drum 
to/from a given page (or page pair) in store.

Instruction Set

The full Ferranti Mark 1 instruction format had three fields, bits 0–9 giving the CRT store address, bits 10-
12 the B-line and bits 14–19 the instruction code. The Manchester Mark 1 only used subsets of the fields.

The order code allowed the user to interpret a 40-bit number in four ways, as either a signed number or an 
unsigned number, and as either an integer or a binary fraction. A double-length accumulator of 80 bits was 
provided, especially for use with multiplication and double-length or multi-length operation. The most 
significant 40 bits were referred to as Am and the least significant as Al. It was therefore necessary to provide 
different instructions in some places where a 40-bit Store word S was interacting with the accumulator A, to 
distinguish a number being used as an unsigned number (extend to 80 bits with Os) or signed (sign-extend). 
Unsigned orders are indicated by using Su instead of S in the instruction codes below.

An extra register D was used to hold the multiplicand in multiplication; this could be set directly from main 
store, signed or unsigned, and would hold its value until reset. Multiplication was between two 40-bit 
numbers, in D and S, yielding an 80-bit answer that was added to the accumulator. Remember that S refers 
to the contents of the address coded in the bits 0–9 of the instruction.
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Control Orders (Same As for the Ssem)

Stop
C = S
C = C + S
If A<0, C = C+1

Accumulator Orders

A = Su A = A neq S
A = S D = Su
A = –S D = S
S = A A = A + D × Su
S = Am A = A + D × S
A = A + S A = 0
A = A + Su S = Am, Am = 0
A = A – S swap Am and A1
A = A AND S S = A1, A1 = Am, Am = 0
A = A OR S Am = Am + S

Other Orders

B0 = S
B1 = S

Peripheral transfer using code word in S (not in the Intermediate Version)

Peripheral Code Word

The peripheral operations, for transfers between magnetic drum and CRT store, and for paper tape 
input/output, had a large number of variations, the extent and detail of which were not clear when the basic 
architecture was designed in October 1948. So it was decided to provide separate decoding and execution 
hardware for them, using a code word in store, and to have just one instruction in the main instruction set, to 
carry out a peripheral transfer according to a specified value S, i.e., the contents of a memory address. The 
Manchester Mark 1 used a sparsely coded 40-bit word and had a complicated paper tape system. The 
specification of the Ferranti Mark 1, which is better documented, is given below. This provided the same 
functionality neatly specified in a 20-bit line.
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Field
 

Meaning

Bits 0-9 Track address on drum
Bit 10 Even/Odd page on track
Bit 11 One/two page transfer, swapped in CRT store if bit 10 = 1
Bit 12 Transfer without/with full check
Bit 13 Read/write from/to drum
Bit 14 Drum/paper-tape transfer (see below)
Bits 16-18 CRT page address in store

In the case of paper tape I/O the following conventions were used: B14 is set and only bits 10 to 14 are used; 
bit 13 set means ''read next character to A"; bits 10-13 = 0 means "punch next character from A"; bit 13 = 0 
and bits 10-12 non-zero punches various special characters.

5— 
The Ferranti Mark 1

The first Ferranti Mark 1 was delivered to the University of Manchester in February 1951. It had the same 
basic architecture as the Manchester Mark 1, but it included many improvements, most obviously industrial-
standard engineering and increased store sizes. To improve main store reliability, a CRT now held only one 
page. Also the page layout was changed so that there were 64 20-bit lines on a page, rather than 32 40-bit 
words. Each line could hold one instruction, and a 40-bit number could start at any line (odd or even) and 
would consist of that line and its successor. Alec Robinson made a major contribution to increased speed in 
numerical computation by redesigning the multiplier using extensive parallelism. Multiplication now took a 
fixed time (2.16 milliseconds), about five times faster than the average time in practice on the Manchester 
Mark 1.

In the order code a few instructions were added to the accumulator orders, and a number of miscellaneous 
orders were also introduced. The B-line concept was shown to be so useful that eight were provided and the 
two instructions to set BO and B 1 replaced by eight new orders, including simple arithmetic. Use of B-lines 
was now extended from their role as an index modifier to the related, but more general, role as a loop control 
counter. In the classic case of a simple loop counting down to zero and accumulating a total in A, four 
instructions could be saved (save A, load counter, save counter, load A). Where the loop was processing a 
vector, the same B-line could be used for both indexing and counting (in steps of 2).

The program input mechanism and run-time management system for the new machine was devised by Alan 
Turing and Cicely M. Popplewell, using their experience with the Manchester Mark 1. This was known 
subsequently as Scheme A. It was heavily based on a 32-digit numbering system, with each digit d being 
represented by the character corresponding to the 5-bit binary
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pattern d on the paper tape equipment. It did not provide any program translation, for example of function 
code mnemonics or of symbolic names or labels; binary 10-bit addresses, 20-bit instructions and 40-bit 
integers were written as 2, 4 and 8 character groups respectively, using the base-32 character set. But there 
were comprehensive facilities for handling the two-level store. There were obviously many library routines, 
that could for example carry out division and floating point arithmetic, and read and print numbers, and 
these were held on the drum store, as were the routines of a large program. Scheme A was augmented by an 
improved alternative Scheme B by R.A. (Tony) Brooker soon after he replaced Turing in 1951. In 1954 
Brooker produced the Mark 1 Autocode, which provided users with a simple algorithmic language based on 
interpreted floating-point variables V1 to V5000 and integer indices N1 to N18, with indirect references of 
the form VNi. However an autocode program would run much more slowly than a machine code program.

Some further enhancements were made after the first two machines were sold, and it was now called the 
Mark 1*. In all, nine machines were sold publicly, three abroad (in Canada, Holland and Italy), but then in 
1957 Ferranti replaced the Mark 1* with the Mercury, again based on a prototype (MEG) designed and built 
at the University of Manchester under Tom Kilburn.
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Appendix A— 
The Ferranti Mark 1 Instruction Set

The following additions or changes were made in the Ferranti Mark 1 relative to the instruction set of the 
Manchester Mark 1.

Accumulator Orders (in addition to the 20 orders in section 4)

A = A – D × S S = A1, A = 0

A = A – D × Su A = 2 × S

B-line Orders and Control Orders (replacing those in section 4)

B = S Stop

S = B C = S
B = B – S C = C + S
B =# S If A>=0, C = S
S =#B If A>=0, C = C + S
B =# B – S If Bx>=0, C =S
 If Bx >= 0, C = C + S

Note that two versions were provided of the orders to load, store and decrement a B-line. One version (=#) 
suppressed the usual B-line modification by B before an instruction was executed; this was the most 
common requirement.

Note that the conditional test of the Manchester Mark 1 (If A < 0, C = C + 1) was replaced by two 
conditional tests on the sign of the accumulator and two on the sign of the last B-line set or stored (Bx). This 
provided both relative and absolute jumps if the test on the accumulator or last B-line used was satisfied. 
The jumps were however all indirect, as before. It could be argued that the opportunity was missed here of 
changing to direct jumps, e.g. C = Sa, where Sa is the address in the address field of the instruction itself. 
This would have made life much easier for the programmer, and the less frequent indirect jumps could have 
been programmed simply and clearly using B-modification, but using two instructions, e.g. B7 = S; C = 0
{7}, where Sa was 0, but modified by B7.

Miscellaneous Instructions

There was a set of miscellaneous instructions, some referring to the 20-bit number currently set on the 
console hand switches (H):

Peripheral transfer with code word in S Send Pulse to Hooter

Peripheral transfer with code word in H S = H



   



 

Page 376

A1 = random number (in bits 0-19) Halt if console switch /G is set

Am = Am + number of 1's in S Halt if console switch /L is set
Am = Am + position of the most  

significant 1 in S  

Appendix B— 
The First Program

The first program to run on the SSEM was a program to find the highest factor of a number N. The version 
given below is a reconstruction of it made by Tom Kilburn and Geoff Tootill in 1996, based on the 
observations made by them in Tootill's notebook on the day of the first run and a revised version of the 
program written down there a few weeks later.

The method used was to try each number J in turn from N – 1 down and see if it divided into N by setting the 
accumulator A to N and repeatedly subtracting J from it until it became 0 (in which case J was the answer) 
or negative.

The instructions are written using the notation of the order code in Section 3, but with e.g. [23] replacing S 
as the contents of a store line, i.e. meaning the contents of line 23 in store. Remember that the control 
address C is always the address of the Current instruction, and is incremented at the start of each new 
instruction.

Line Instruction Effect

1 A = – [18] Clear Accumulator (not necessary; done as "good practice")

2 A = – [19] Start of OUTER LOOP: A = N (line 19 holds –N)

3 A = A – [20] Start of INNER LOOP: A = A – J (line 20 holds J)

4 If A<0, C=C+1 If A is negative, skip I instruction, so exit inner loop

5 C = C + [21] A still >= 0, so jump back to line 3 by C =C + –3 = 5 – 3 = 2

6 A = A – [22] A = A + J; add back J (line 22 holds –J), so A = remainder

7 [24] = A Store remainder in [24]

8 A = – [22] A = J (line 22 holds –J)

9 A = A – [23] A = A–

10 [20] = A Reset J, now = old J – 1

11 A= – [20] A = –J

12 [22] = A Reset – J, now = – (old J – 1)

13 A = – [24] A = negated remainder

14 If A<0, C=C+1 If A negative, i.e. if remainder is not 0, skip an instruction

15 C = [25] Otherwise, we have a factor, so C = 16; jump to end program

16 C = [23] C = 1; jump back to start of outer loop (line 2) to test next J

17 Halt End the program (this could have been done at line 15)

18 0 Initialized to 0 (used in line 1)



   

 
19 –N Initialized to –N

(table continued on next page)
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(table continued from previous page)

20 N – 1 Initialized to N – 1, the initial value of J

21 –3 Initialized to –3

22 – (N–1) Initialized to –(N–l), the initial value of –J

23 1 Initialized to 1

24 – Not initialized; used to hold the remainder of N/J

25 16 Initialized to 16

Lines 0 and 26 to 31 were not used, and may or may not have been cleared to 0 before loading the program. 
The program is entered at line 1 (by setting C=0 before initiating the run). At the end of the program you get 
the answer by reading the value in line 20 (now the successful J – 1) and adding 1 to it – no problem if you 
were testing a prime!

If you want to immediately rerun the program with a new N, then lines 19, 20 and 22 have to be reset to –N, 
N–1 and – (N–1), and the program reentered at line 1. Note that once one of the values has been worked out 
in binary the other two are easily formed (in particular –N is the one's complement of N–1). If you want to 
rerun with the same N, then lines 20 and 22 still have to be reset, as they are used to hold J and –J. The 
revised program allowed you to rerun with the same value of N without resetting, and showed the answer J 
(not J – 1) in the appropriate line.

<><><><><><><><><><><><>

R.B.E. NAPPER has been at the University of Manchester working in Computer Science as research student 
and lecturer since 1960. His first program produced some of the wiring schedules for the manufacture of the 
first Atlas computer, using the Ferranti Mercury. His main research was to develop the ideas of the Brooker-
Morris Compiler-Compiler into a high-level, user-extensible, systems programming language (RCC). After 
his official retirement in October 1997, he contributed to the 50th Anniversary celebration of the Mark 1, in 
particular developing the www.computer50.org web-site and helping to produce a CD-ROM, both telling the 
story of the Mark 1 computers. This was done in regular contact with Tom Kilburn and Dai Edwards.
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Rebuilding the First Manchester Computer

Christopher P. Burton

Abstract. The University of Manchester Small-Scale Experimental Machine, the "Baby," first ran a stored 
program on June 21, 1948, thus claiming to be the first operational general-purpose computer. To celebrate 
the fiftieth anniversary of that event, a fully authentic replica has been built by the Computer Conservation 
Society. The paper describes some of the deductions made about the detailed design of the original machine, 
and how the actual reconstruction work was carried out.

1— 
A Stored-Program Computer

A historic event took place at 11:15 on Monday, June 21, 1948. For the first time ever in the world, a 
program stored in an electronic computing machine successfully ran and produced the expected answer. 
Today, almost half a century later, countless millions of people routinely carry out a range of tasks on their 
computers, from word-processing, through accounting to games. They would recognize that event in 1948 as 
"like" what they do all the time. And no earlier computer, not Zuse's Z3 in Germany, nor Colossus at 
Bletchley Park in Britain, nor ENIAC in the United States, was in that way "like" a modern computer. 
Loading a program into a computer (which can modify its own program) makes it a "Universal Machine," 
capable of performing any task within its capacity. The computing machine which first achieved that 
breakthrough was built at the University of Manchester by Professor F.C. Williams, Tom Kilburn and G.C. 
Tootill, three unsung heroes of the Second Industrial Revolution, the Information Age.1

The reason why the Manchester team got there first has been suggested by Tootill. All three men had been 
working on radar development during the war, where they were used to the idea of a "crash program" to get 
things designed and built in a hurry. With their knowledge of the radar circuit techniques which they had 
perfected, Williams and Kilburn moved to the Univer-

1 S.H.Lavington, "A History of Manchester Computers," National Computing Centre, 1975. Second edition, British 
Computing Society 1998. S. Lavington, Early British Computers. Manchester University Press 1980 and Digital Press, 
1980
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sity of Manchester in 1946 to carry out research into using cathode ray tubes as a memory system for a 
hypothetical computing machine.2 By the end of 1947 they had made such a data storage system hold 2048 
binary digits, and decided to test it by building a computing machine around it. This was done in the 
remarkably short time of nine months, thereby beating other teams in the world who were striving to build a 
computer. They worked long hours, improvising as they went along, in the spirit of a crash program, to get it 
done.

2— 
The Computer Conservation Society

We now jump forward to 1989, when the Computer Conservation Society (the CCS) was founded to 
promote the study of the history of the computer industry, and to help preserve and restore old computing 
machines. The CCS is constituted as part of the British Computer Society and operates in association with 
the Science Museums in London and Manchester and at Bletchley Park.3 The first secretary of the Society, 
Tony Sale, has recently completed a working reconstruction of Colossus, a specialized electronic computer 
which was built in 1943 and which contributed to decoding intercepted secret messages between Hitler and 
his generals. That reconstruction helped to inspire me to try to celebrate the approaching fiftieth anniversary 
of the running of the first program by a similar project. At the end of 1994, 1 proposed that we should build 
a replica of the Manchester computer, the SmallScale Experimental Machine, or "Baby" as it was familiarly 
called, and rerun the first program on the anniversary day, Sunday June 21, 1998.

Why bother to go to all that trouble? And what happened to the original machines? Firstly, the pioneers in 
the late 1940s started a revolution which touches everyone in the world, yet they are largely unknown. Their 
names are not as familiar as those of James Watt and Thomas Edison. Secondly, it is important to signal a 
triumph of British innovation–it is not true that com-puters originated in beige desktop boxes from anywhere 
but Britain. And the technology the pioneers used has long been superseded by transistors and extraordinary 
modern technology–but the old valve technology ought to be a source of amazement to succeeding 
generations. Colossus and Baby and similar machines filled a room, weighed a ton, and were scrapped a few 
years after they were built; Colossus because of its secrecy–nothing was publicly known until 1974, and 
Baby to make way for bigger and better computers. In both cases, negligible detailed information has come 
down to us about how they were built.

2 F.C.Williams and T. Kilburn, "A Storage System for use with Binary-Digital Computing Machines," Proc. IEE, Vol. 
96, Part III, No. 40, pp. 81–100, March 1949.
3 See World Wide Web location www.cs.man.ac.uk/CCS.
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My proposal and plan to rebuild Baby was enthusiastically taken up by the CCS and by the University of 
Manchester, who offered to provide space for this project only 100 yards from where the original was built. 
If we were successful, then the rebuilt machine would make a fine focal point for the celebrations to take 
place in Manchester in June 1998. The then chairman of our Society, Peter Hall OBE, former Ferranti and 
ICL director, was able to persuade ICL, Europe's leading systems company, that this was an important 
opportunity. After a presentation by me to Tom Hinchliffe, managing director of ICL High Performance 
Systems, he agreed to sponsor the substantial cost involved. This was a happy arrangement, since ICL in 
West Gorton is the descendant of the old Ferranti company, who collaborated with the University in 1949 to 
produce the world's first commercially-sold and delivered computer, based on the design of Baby. So the 
ground was set to see if it could be done.

3— 
What Was the "Baby" Machine like?

1995 was the year of finding out. The design was known in general terms from the published learned 
papers,4 and a few photographs have survived. The outline schematic diagram in Fig. 1 was published in 
Nature, and shows how simple the machine was. The main store for program and data held 32 words of 32 
bits. The Program Counter and Present Instruction were held in the Control Store, from where they could 
select a location in the Main Store and set up function decoding. The only arithmetic function was 
subtraction, the result being held in the accumulator. The sign of the number in the accumulator could be 
used to enable a conditional jump. All the elements of a universal computing machine were present.

There were never any engineering drawings–there was no need, it was an experimental computing machine. 
At the time, the only documentation was the set of circuit diagrams in the laboratory, which have long since 
disappeared. Fortunately, two of the pioneers, DBG Edwards and AA Robinson, made copies of those 
diagrams in their notebooks, which they have kept, and they kindly provided photocopies of the relevant 
pages. But these diagrams date from many months after our target date of June 1948, so their interpretation 
has to be treated with great care to take into account the many changes which took place in those months. 
For example, the order code was expanded from seven to nearly twenty types of instruction, the storage 
capacity was increased, and the B-tube or index register was invented and added.5 By

4 F.C.Williams, T. Kilburn and G.C.Tootill, "Universal High-Speed Digital Computers: A Small-Scale Experimental 
Machine," Proc. IEE, Vol. 98, Part II, No. 61, pp. 13–28, February 1951.
5 A fuller description of many of these innovations can be found in the companion paper in this volume, "The Manchester 
Mark I Computers," by R.B.E. Napper.
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Figure 1 
Simplified schematic of Small-Scale Experimental 

Machine. (After: Kilburn, Nature, Vol. 64, 1949, p. 684).

carefully comparing the various circuit diagrams and talking to the pioneers who did it, it was possible to 
arrive at a plausibly accurate picture of the functionality. Inevitably of course, there may have been vestigial 
details still in the machine in June but which were now unused and had been removed from the diagrams. 
We have had to ignore this possibility. We then created our own set of circuit diagrams using a CAD system 
on a PC, so that we had a reference set representing our best view of the circuits as at June 21, 1948. This 
tells us the abstract functionality, but not the physical description of the machine.

For the physical picture, the surviving photographs are an extremely valuable resource. The best-known one, 
shown here as Fig. 2, was actually taken in about March or April 1949, after significant modifications to the 
machine. Indeed it is the Mark 1 prototype rather than the SSEM. I have an original copy of that photo 
which has superb resolution – the markings on some of the valves are clearly visible under magnification. 
One example of its use is that careful examination of the push-button "typewriter" switches reveals the 
dimensions of the fixing holes and pitch of the buttons. By a stroke of serendipity, I recognized these as 
being identical with some switches in my junk-box. Furthermore, I still had the catalog of war surplus items 
for sale dating from 1953 when I bought the switches. This identified the item by its wartime reference 
number and it turned out that the switches were part of the control unit for the VHF radios in fighter aircraft. 
Turning to the Operator's Manual for the Spitfire and the Beaufighter reveals the control box in the 
photograph of the left side of the cockpit.
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Figure 2 
The Manchester University Mark 1 prototype. Reprinted with permission 

of the Department of Computer Science, University of Manchester.

Another well-known photograph is in the popular magazine Illustrated London News for June 25, 1949.6 
This is a two-page-spread wide-angle picture with many annotations. When discussing this picture with 
Geoff Tootill, he explained that it was actually a composite picture made from about twenty separate 
photographs taken by Alec Robinson. When I went to talk to Alec Robinson, he kindly loaned me a set of 
most of the original prints, and he had also kept nearly all the negatives, which are now in the University of 
Manchester archive. The importance of these photographs is that they are the earliest known of the SSEM, 
having been taken on December 15, 1948, as recorded in Robinson's notebook. Furthermore they show 
excellent detail. We have scanned the images so that, on the screen of a PC, we can make measurements of 
the dimensions of the various chassis, where the holes are, where the components are placed, what kind of 
components were used and so on. From this information, we produced CAD engineering drawings of the 
physical construction. Again, the six-month interval between June and December 1948 meant that we had to 
be very careful in our interpretation of the images.

Yet another interesting deduction had to be made to correlate a given circuit with its physical location in the 
computer. We were helped by the anno-

6 "A Marvel of Our Time – The Memory Machine which can Solve the most Complex Mathematical Problems," The 
Illustrated London News, June 25, 1949.
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tations on the Illustrated London News photo, but many of the decisions had to be made by, for example, 
counting valves and other components on a photo of a chassis and then comparing with possible circuits. A 
few circuits just could not be identified, and, in such cases, we would try to put ourselves in the shoes of the 
pioneers and do what we thought they would have done. Geoff Tootill had emphasized that the machine was 
experimental, and they did not hesitate to move chassis about as the development proceeded, so that the 
actual layout was to some extent fluid.

Finally, one of the most precious surviving documents is the notebook kept by Geoff Tootill at the time.7 
This remarkable book has notes discussing the designers' thoughts and decisions on a number of logic design 
and circuit design issues. It also has a wealth of information about early programs and fragments of routines, 
and trial runs of those routines. The book is preserved on loan to the Museum of Science and Industry in 
Manchester.

4— 
Building the Replica

Interesting though deducing the details was, it would not lead to a replica unless the appropriate old parts 
could be found. Electronic technology has moved forward at such a pace, that half a century ago is almost 
pre-history! The key items were the thermionic valves which have long been replaced by transistors, and the 
cathode ray tubes. Amazingly, there are dealers who still have stocks of these items at reasonable prices. 
Some valves are new, in original boxes marked as packed by RCA in the United States in 1943, so they will 
have been shipped as part of the war effort, dodging the submarines across the Atlantic. Other items will 
have been made in the 1950s, but are precisely identical with the originals. The Spitfire switches were 
available from a dealer in vintage aircraft parts, and I cleaned out his stock. I spread the word about and 
obtained masses of relevant components from individuals all over the country. One kind person even 
donated two of the seven-foot high steel racks, which he was using to hold his garden back from falling into 
the River Severn! The remaining racks were prepared by ICL from some donated by Tony Sale from 
Bletchley Park.

A team of volunteer friends from the Computer Conservation Society was formed at the beginning of 1996 
to do the detailed design and construction. Many were former colleagues from the old days when we worked 
on valve technology, and so knew what to do. They include Charlie Portman, Keith Wood, Ken Turner and 
George Roylance, all connected with ICL, Bill Purvis of Daresbury Labs, Adrian Cornforth, our web 
designer, and Suzanne Walker, our photographer. Each engineer took a part of the machine and

7 G.C. Tootill, ''Digital Computer- Notes on Design and Operation," National Archive for the History of Computing, 
University of Manchester on loan to the Archive of the Museum of Science and Industry, Manchester.
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created engineering drawings using modern Computer Aided Design software. The drawings would be taken 
to the workshop of ICL in Manchester, where the metal chassis would be made. Then the chassis would be 
taken home by the team member, with a bag full of components, where he assembled and wired up that unit.

The power supplies to provide the high voltages, +300V, +200V and –150V at several amps, do not appear 
on any surviving documents. We believe they were modular 50V 10A Post Office units, located in an 
adjacent room. We have made no attempt at an authentic replication here. Fairly modern, extelephone 
exchange switch-mode units have been modified to provide the supplies. Six modules in series are mounted 
in a rack behind the replica machine.

As chassis were completed, so they were brought to the university, where we built up the machine. By the 
end of 1996, it was almost complete–seven feet high, eighteen feet long, weighing nearly a ton, and looking 
most impressive!

Now we could start trying to make it work. Throughout 1997, the team would gather every Tuesday and 
gradually get parts operational. It was a time to learn a lot – where our detailed design was not quite right, 
why things had been done in certain ways, how to operate the machine and so on. The most difficult part, the 
cathode ray tube stores, took many months of patient work, but what a relief when we got them working as 
the pioneers had, almost half a century before! It was a great pleasure to have Tom Kilburn and Dai Edwards 
come to sit with us in front of an oscilloscope to help at this stage.

Figure 3 
The Small-Scale Experimental Machine replica in May 1998. 

Photo courtesy of the Museum of Science and Industry in Manchester.
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By the end of 1997, the computing machine was complete, apart from cosmetic details, and we could run 
programs; in particular, the world's first program. This had been written by Kilburn and it calculated the 
highest factor of a number, using a rather laborious method, as a proof of concept. A copy of an amended 
version has survived in Tootill's notebook, and is well known to historians. However, Kilburn and Tootill 
have now deduced what the unamended program was like. The programming work was aided by use of a 
simulator written by a student at the university. At this stage also, we launched a worldwide programming 
competition to see who could write the most interesting program for the Baby, with a chance for the winner 
to run their entry on the replica machine. About 130 entries were received from 19 different countries.

Early in 1998, the computer was dismantled and moved from the university to the Museum of Science and 
Industry in Manchester, see Fig. 3. This was done with very great care by the project team and the operatives 
from ICL, so that within a few days it was operational again. It is located in the 1830 Warehouse, the world's 
first railway goods warehouse, in a setting very reminiscent of the laboratory where the original machine 
was built. The reliability was gradually improved in the succeeding months, though the new environment 
seems to have produced some difficulties. In the middle of June 1998, one of the storage tubes became 
temperamental such that during the week of celebrations commencing June 17 we sometimes had to bypass 
it. However, the running of the first program at 11:15 on Sunday June 21, 1998 was achieved to the great 
pleasure of participants and audience– a fitting tribute to those remarkable men and women who pioneered 
our industry.
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The Atlas Computer

Frank H. Sumner

Abstract. The Atlas computer was designed and built in the Department of Computer Science at the 
University of Manchester with the collaboration of ICL. When it was completed, in December 1962, it was 
the most powerful computer in the world. It included many innovative design features of which the most 
important were the implementation of virtual addressing and the one-level store. This paper gives a brief 
summary of the structure of the Atlas and of the effect of extensive instruction overlapping on the final 
performance. The main part of the paper describes the implementation of the one-level store including the 
learning program which efficiently managed the movement of pages between the two physical levels of 
store.

1— 
Introduction

After the "Baby" ran its first program in June 1946, Kilburn and Williams expanded the design of the Mark 
1. In collaboration with Ferranti Ltd., a commercial version was constructed and installed at Manchester 
University in February 1951.

Nine other Mark I systems were built and delivered to customers, mainly in government research 
laboratories. In parallel with the production of the Mark 1, work continued at the University under the 
leadership of Tom Kilburn on two projects: the MEG, a faster extension of the Mark 1 with engineered 
floating-point arithmetic, and two transistor based computers.

The Meg design was adopted by Ferranti and commercialized as the Mercury after changing the memory 
from cathode ray tube stores to core stores. Meanwhile, the team at the University started a project with the 
grand aim of building the most powerful computer in the world. The machine, named the Atlas, was built in 
collaboration with Ferranti and was operational in December 1962. It outperformed the IBM Stretch and 
maintained its premier position until the arrival of the CDC 6600. The most significant aspects of the design 
were the introduction of virtual addressing, paging and a one-level store, features which have since become 
the norm in computer designs.

The starting and completion dates of the first five Manchester computers are listed in Table 1.
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Table 1: Summary of Manchester University Computer Systems 1946 to 1962

Name Started Operational Commercial 
Production by

First Delivery No. Made

Baby 1946 June 21" 1948    

Mk 1 1948 April 1949 Ferranti Mk I Feb. 1951 10

Meg 1951 May 1954 Ferranti Aug. 1957 19

   Mercury   

Transistor 1952 April 1953    

Transistor 1953 April 1955 Metropolitan 1956 6

   Vickers MV950   

Muse 1956  ICL Atlas Dec. 1962 3

2— 
Instruction Formats

All Manchester computers had single-address instructions; arithmetical operations used an accumulator for 
one of the inputs and for the result.

The Mark1 and the Mercury used five-hole paper tape for input and had a character size of five bits. The 
word length was 40 bits or 8 characters. Full and half-word addressing were provided and instructions 
occupied a half-word. The instruction format for both computers was:

Function Modifier Address

7 bits 3 bits 10 bits

The machines could address only 1024 words and both had drum stores with the capability of transferring 
fixed sized pages of data between the two levels of store.

The Atlas

For the Atlas the character size was increased to 6 bits with an 8 character or 48 bit word (there was a parity 
bit with each half-word giving a total word length of 50 bits).

The number of index registers was expanded to 128. The motivation for this large increase was to use them 
as fixed-point arithmetic registers as well as index registers. There were two index, or modifier, fields in an 
instruction to permit indexed addressing of operands for fixed-point and logical operations. This allowed 
double address modification for floating-point operations. In the final design, some of the index registers 
were allocated to be copies of other registers, for example, the three instruction address registers and the 
exponent field of the floating-point accumulator.

With a 48-bit word the approach of the earlier designs would have given 24 bit instructions. With two seven-
bit index fields this was insufficient so
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the decision was made to have 48 bit instructions with 24 bits allocated to the operand address. This huge 
address space, far greater than any store feasible at the time, was probably the most important decision that 
was made from the point of view of the overall design. The final instruction format was

Function Modifier Modifier Address

10 bits 7 bits 7 bits 24 bits

Full and half-word addressing were again implemented in hardware using the top 21 or 22 bits of the address 
respectively. The bottom two bits could, and with hindsight should, have been used to give hardware 
addressing of characters. In practice, the bottom 2 bits of the address were used by some programmers as a 
character address with any character manipulation being implemented by software.

The maximum address space of 221 words was considerably greater than any direct access store that was 
feasible at the time, e.g. the 2.5 Mbit store built at M.I.T was very expensive and only a fortieth of this 
address space.

The machine order code was of the single address type, with a comprehensive range of basic functions 
provided by normal engineering methods.

Also available to the programmer were a number of extra functions termed "extracodes" which gave 
automatic access to and subsequent return from a large number of built in subroutines. These routines 
provided:

• A number of orders which would have been expensive to provide in the machine both in terms of 
equipment and also time because of the extra loading on certain circuits. An example of this is the order: 
"Shift accumulator contents n places left."

• The more complex mathematical operations, e.g. sin x, log x, etc.

• Control orders for peripheral equipment, card readers, parallel printers etc.

• Input-output conversion routines.

Special programs concerned with storage allocation to different programs being run simultaneously, 
monitoring routines for fault finding and costing purposes, and the detailed organization of drum and tape 
transfers.

All this information was permanently required and hence was kept in part of the private store called the fixed 
store which operated on a read-only basis.

3— 
Multiple Stores

The Atlas was designed to have up to five distinct direct access stores together with magnetic drums and 
magnetic tape backing stores. The desired direct access store was selected by the value of the top three bits 
of the address.
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000 to 011 Main Store (maximum size: 220 words of 48 bits)

100 Fixed Store
101 Not used
110 V-Store
111 Subsidiary Store

The Fixed Store

This store consisted of a woven wire mesh into which patterns of small ferrite and copper rods were inserted 
to represent the desired digital information. The information content could only be changed manually. The 
store was arranged in two units each of 4096 words, a unit consisting of 16 columns of 256 words, each 
word being 50 bits. The access time to a word was 0.4 microseconds which made it the fastest store 
available at that time. The fixed store operated in conjunction with the subsidiary store which programs in 
the fixed store used as a data store.

The Subsidiary Store

This was a private system store not accessible to normal programs. It had 1024 words with a cycle time of 
1.8 microseconds. It was used by the supervisor program and as working space for routines in the fixed 
store.

The V-Store

In the earlier Manchester computers the peripherals were restricted to simple I/O devices and were 
controlled by a small subset of the instructions. This was not suitable for the Atlas and a different method 
had to be found. The solution was named the V-Store. It was certainly not a store in the conventional sense, 
rather an address space with words of up to 24 bits. The peripheral could be controlled and information 
transferred by writing or reading the appropriate bit patterns to or from the address or addresses associated 
with the peripheral.

As well as controlling the standard peripherals this technique was very useful in other applications, for 
example, the angular position of any of the drums could be determined by reading the appropriate V-Store 
address.

A very important application was in determining the source of interrupts and in the case of multiple 
interrupts identifying the one of highest priority. Up to 512 sources of interrupt were permitted, arranged in 
order of priority and stored in 64 groups of eight in the V-store. A second level merged the 64 groups into 
eight groups, a third level into one and finally into the interrupt signal. One of the index registers was 
modified so that if it was loaded with an eight bit pattern and then read, the output was the position of the 
most
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significant digit. This enabled the highest priority interrupt to be identified in five instructions.

New peripherals could be easily added, including ones which required complex control systems, for example 
one of the peripherals on the Manchester Atlas was an X-ray crystallographic unit. At a later date an 
input /output interface was provided for speech recognition and synthesis.

The Main Core Store

On the Manchester Atlas the core store was 16K words, each of 50 bits arranged as 4 stacks of 4K words in 
two pairs with interleaved addressing. This means that consecutive addresses were on different stacks and 
therefore that a pair of instructions could be read at the same time.

The Drum Store

The Atlas had four magnetic drums, each with a capacity of 24K words. Later versions of the Atlas had 
more drums and larger core stores.

4— 
Performance

In the early stage of the development of the system it was realized that the time from initiation to completion 
of a single floating-point addition instruction would be in the region of six microseconds even though the 
actual addition time was only 1.2 microseconds. This clearly showed the need for ensuring that as many 
operations as possible could take place at the same time as others.

Whilst the steps of an individual instruction must generally be executed sequentially it is possible to arrange 
for different parts of the computer to be executing parts of different instructions at the same time. Atlas 
made extensive use of this feature of "overlapping." The effect of overlapping together with the ability to 
read pairs of instructions was to reduce the time for a sequence of floating-point add operations to 1.6 
microseconds per instruction. This corresponds to a continuous overlapping of between three and four 
instructions.

Total overlapping is possible in some cases e.g. a sequence of floating-point multiplication instructions in 
which the multiplier is always busy and all the other operations can be overlapped with those of 
multiplication.
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5— 
The One-Level Store

On the Mark 1 the CRT store was in pages, each page corresponding to one CRT and the drum was divided 
into two page blocks with the ability to transfer either one or a pair of pages between the two stores.

On the Atlas both the core store and the drum store were divided into pages of 512 . This gave 32 pages in 
the core store and 192 pages on the drum store. These 224 pages were only about 10% of the address space. 
The total address space was called the virtual address space and addresses in this space could be translated 
into real addresses in either the core store or the drum store.

For the core store 32 Page Address Registers held the virtual page addresses of the corresponding real page. 
There was always at least one empty page, how this was arranged will be described in section 6. When an 
address was presented to the store the virtual page address was compared in parallel with all 32 PAR's and if 
one was the same, the 5 bits of the real core store page address were concatenated with the rest of the 
presented address and used to access the core store.

If there was no match, a "non-equivalence" signal caused an interrupt and entry into the Supervisor, which 
used tables in the subsidiary store to locate the address on the drum store of the required page and then 
initiated the transfer of this page from the drum to an empty page in the core store. When the transfer was 
completed the PAR was set to the new page address and the location on the drum from which the page had 
been transferred was declared to be empty. Pages only existed in one place, either in the main store or on the 
drum.

6— 
The Drum Transfer Learning Program

It was stated above that there was always an empty page in the core store. In order to achieve this, as soon as 
the drum to core store transfer was initiated there was a check that there would still be an empty page in the 
core store after the transfer had been completed, which would be required when the next nonequivalence 
occurred. If this was not the case, the system chose a page in the core store to be transferred to the drum. 
This transfer, which took place as soon as the drum to core store transfer was completed, was to the first 
available empty block position on any of the four drums, i.e., the empty block with the shortest access time.

Many computer users believed that the choice of the page to be transferred to the drum could only be made 
by the programmer, as was the case in the Mark 1 and the Mercury. They were convinced that an automated 
system would lead to many more unnecessary transfers between the two levels of store with a consequent 
decrease in performance.
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The selection of the page to be transferred could be made at random; this could easily result in many 
additional transfers occurring, as the page selected could be one of those in current use or one required in the 
near future. The ideal selection, which would minimize the total number of transfers, could only be made by 
the programmer. To make this ideal selection the programmer would have to know

• precisely how his program operated, which was not always the case;

• the precise amount of core store available to his program at any instant.

This latter information was not generally available as the core store could be shared by other central machine 
programs, and almost certainly by some fixed store program organizing the input and output of information 
from slow peripheral equipment. The amount of core store required by this fixed store program was 
continuously varying. The only way the ideal pattern of transfers could be approached was for the transfer 
program to monitor the behavior of the main program and in so doing attempt to select the most appropriate 
page to be transferred to the drum. The techniques used for monitoring were subject to the condition that 
they must not slow down the operation of the program to such an extent that they offset any reduction in the 
number of transfers required. The method described occupied less than 1 per cent of the operating time, and 
the reduction in the number of transfers was more than sufficient to compensate for this.

That part of the transfer program which organized the selection of the page to be transferred was called The 
Drum Transfer Learning Program. In order for this program to have some data on which to operate, the 
machine was designed to supply information about the use made of the different pages of the core store by 
the program being monitored.

With each page of the core store there was associated a "use" digit which was set to "1" whenever any line in 
that page was accessed. The 32 "use" digits existed in two lines of the V-store and could be read by the 
learning program, the reading automatically resetting them to zero. The frequency with which these digits 
were read was governed by a clock which measured not real time but the number of instructions obeyed in 
the operation of the main program. This clock caused the learning program to copy the "use" digits to a list 
in the Subsidiary store every 1024 instructions. The use of an instruction counter rather than a normal clock 
to measure "time'' for the learning program was due to the fact that the operations of the main program may 
be interrupted at random for random lengths of time by the operation of peripheral equipment. With an 
instruction counter the temporal pattern of the blocks used will be the same on successive runs through the 
same part of the program. This was essential for the learning program to make use of this pattern to 
minimize the number of transfers.

When a non-equivalence occurred and after the transfer of the required block had been arranged, the learning 
program again added the current values of the "use" digits to the list and then used this list to bring up to 
date two



   

Page 394

sets of times also kept in the subsidiary store. These sets consisted of 32 values of t and T, one of each for 
each page of the core store. The value of t was the length of time since the block in that page had been used. 
The value of T was the length of the last period of inactivity of this block. The accuracy of the values of t 
and T was governed by the frequency with which the "use" digits were inspected.

The page to be written to the drum was selected by the application in turn of three simple tests to the values 
of t and T.

• Any page for which t > T+1,

• That page with t not equal to zero and the maximum value of (T–t),

• If all t were equal to zero, then that page with the maximum value of T.

The first rule selected any page which has been currently out of use for longer than its last period of 
inactivity. Such a page had probably ceased to be used by the program and was therefore an ideal one to be 
transferred to the drum. The second rule ignored all pages with t = 0 as they were in current use, and then 
selected the one which, if the pattern of use was maintained, would not be required by the program for the 
longest time. If the first two rules failed to select a page the third ensured that if the page finally selected was 
wrong, in that it was immediately required again, then, as in this case, T would become zero and the same 
mistake would not be repeated.

In order to make its decision the learning program had only to update two short lists and apply at the most 
three simple rules; this could easily be done during the 2 msec transfer time of the block required as a result 
of the nonequivalence. As the learning program used only fixed and subsidiary store addresses it was not 
slowed down during the period of the drum transfer.

The value of the method used was investigated by simulating the behavior of the one-level store and learning 
program on the Mercury computer at Manchester University. This was done for several problems using 
varying amounts of store in excess of the core store available. One of these was the problem of forming the 
product A of two 80th order matrices B and C. The three matrices were stored row by row, each one 
extending over 14 blocks; only 14 pages of core store were assumed to be available. The method of 
multiplication was

• B(1,1) × 1st row of C = partial answer to 1st row of A,

• B(1,2) × 2nd row of C + partial answer = second partial answer, etc.

Thus matrix B was scanned once, matrix C eighty times and each row of matrix A eighty times.

Several machine users were asked to spend a short time writing a program to organize the transfers for a 
general matrix multiplication problem. When the method was applied to the above problem, in no case were 
fewer than 357 transfers required. A program written specifically for this problem, which paid great 
attention to the distribution of the rows of the matrices relative to
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block divisions, required 234 transfers. The learning program required 274 transfers, the gain over the 
human programmer was chiefly due to the fact that the learning program could take full advantage of the 
occasions when the rows of A existed entirely within one block.

Many other problems involving cyclic running of single or multiple sets of data were simulated, and in no 
case did the learning program require more transfers than an experienced human programmer.

7— 
Conclusions

The Atlas project was a success in many ways. It was the most powerful computer in the world for about 
two years in the early sixties. Whilst only three systems were sold it established the reputation of Ferranti, 
later ICL, as a provider of high performance computer systems. The three installations at Manchester, 
London and the Rutherford Laboratory provided the UK high performance computer users with world class 
facilities for several years. Most important of all, it was the first computer to present a multilevel store as a 
unified address space to the programmer, a feature of computer design which is now the norm from PCs to 
super-computers.
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FRANK H. SUMNER has just retired from the Department of Computer Science at the University of 
Manchester. He wrote his first program for the Mark 1 computer early in 1952 after meeting Alan Turing 
who gave him a copy of
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his programming manual. After completing his Ph.D. in 1954 he joined the staff of the Computer Laboratory 
and worked on the Mark 1 and the Ferranti Mercury on a wide range of topics including Pattern Recognition 
and Artificial Intelligence. He then joined the Atlas computer team where he worked with Tom Kilburn on 
the design and implementation of the "one level store" and on the design of the central processor. In the 
1960s, again with Tom Kilburn, he initiated and designed the MU5 computer which lead to the ICL 2900 
series. After the MU5 project he was more involved in establishing and running the undergraduate school in 
Computer Science. He subsequently became the Director of the National Computer Center at Manchester 
University. He is a member of the British Computer Society and was its President in 1978.
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Past into Present: 
The EDSAC Simulator

Martin Campbell-Kelly

Abstract. The EDSAC was the world's first stored-program computer to operate a regular computing 
service. Designed and built at Cambridge University, the EDSAC performed its first fully automatic 
calculation on May 6, 1949. The simulator written at Warwick University is a faithful emulation of the 
EDSAC designed to run on a personal computer. The user interface has all the controls and displays of the 
original machine, and the system includes a library of original programs, subroutines, debugging software, 
and program documentation. This paper describes the reasons for creating the simulator and the steps taken 
to achieve a historically authentic emulation.

1— 
Introduction: 
An EDSAC Player

In his book The Past is a Foreign Country, the architectural historian David Lowenthal distinguishes five 
styles of recreating historical artifacts and experiences, which he terms duplicates, re-enactments, copies, 
emulations, and commemorations.1 Lowenthal's taxonomy is complex and his examples are largely drawn 
form the world of buildings and architecture. Lowenthal's classification, in the context of the recent 
computer "rebuild" projects, has been ably discussed by Jon Agar.2 For the purpose of this paper, I want to 
distinguish between the two terms of Lowenthal that most closely relate to the present conference: 
duplicates and emulations.

By duplicates Lowenthal means reproductions that "aim simply to duplicate admired relics."3 Clearly the 
recent British projects to rebuild Babbage's Difference Engine, the Colossus, and the Manchester "Baby" fall 
into this category. In all three cases the project leaders have gone to extraordinary and admirable lengths to 
recreate not only the architectural and logical details of the artifact, but also its physical characteristics – by 
seeking out authentic components and materials, for example. Above all, the re-creations have had

1 Lowenthal, D. The Past is a Foreign Country, Cambridge University Press, (1985).
2 Agar, J.. "Digital Patina: Texts, Spirit and the First Computer," History and Technology, forthcoming.
3 Lowenthal, Ibid, p. 290.
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Figure 1 
A photograph of the EDSAC taken shortly after its completion in May 1949. 
The left three-quarters of the picture shows the main racks of the arithmetic 
unit, control and memory. The input-output equipment (a paper-tape reader 
and teleprinter) can be seen on the table on the right. Three of the monitor 

tubes can be seen at the rear and right of the picture. The EDSAC 
operated at a speed of approximately 600 operations per second.

the goal of producing a working facsimile – in the sense of executing an original program or routine. It is 
notable that all three projects are museum-based, and when completed they will become permanent static 
exhibits, with just occasional use by a trained docent. Thus the projects fall comfortably into the museum 
tradition of functional replicas such as Stephenson's Rocket.

The EDSAC simulator4 (Figs. 1 and 2) is a very different kind of recreation that fits much more closely with 
what Lowenthal terms emulations. These he describes as "self-conscious period revivals" and "respectful yet 
creative reworkings of earlier forms and styles [that] transcend mere copying" (p. 301). Lowenthal views an 
emulation as an on-going and evolving activity that is always of its time – thus a Tudor revival of the 1990s 
would be quite different to one of the 1930s, and that, in turn, would be quite different to an original Tudor 
building of the 16th century. Yet an essential Tudorness persists in all the variations and derivatives.

The EDSAC simulator is likewise intended to be fluid and of its time, while always capturing the essential 
EDSAC. Since its original creation in 1978, the simulator has evolved through three distinct reinterpretations 
and

4 The EDSAC simulator can be downloaded from the Internet address at the University of Warwick: 
www.dcs.warwick.ac.uk/~edsac.
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Figure 2 
Screen shot of the EDSAC simulator, shown executing the 

"Squares" program, first run in May 1949. The circular display 
(top left) shows the main memory monitor tube. The register panel 

(bottom left) displays the accumulator and other registers. The clock 
(middle right) gives the elapsed EDSAC time. The output panel 

(top right) shows the teleprinter print-out. The central panel contains 
the five user-accessible controls: Clear, Start, Reset, Stop and 
Single E.P. The dial(bottom right), added in 1951, enabled a 

single decimal digit to be entered into the machine.

five versions, and I expect this periodic reincarnation to continue into the future. The reason for the fluidity 
of the EDSAC simulator is that its purpose is to enable present-day computer users to understand what it was 
"like" to write programs for the EDSAC. The simulator has consciously sought to bridge the ever changing 
gulf between past and present, by enabling the user to bring the leverage of his or her current programming 
knowledge and experience to bear on the task of understanding the EDSAC.

Two metaphors have constantly informed the design of the simulator. The first is the analogy between a 
computer program and a musical score – once described as "frozen music" needing only an orchestra to melt 
it. Consequently, the EDSAC simulator is textual rather than artifactual in spirit. This has several important 
implications. For example, the attention that other projects have given to physical authenticity has been 
directed at obtaining authentic program texts. However, as with musical scholarship, this textual approach 
permits the informed and explicit filling in of lost textual fragments where this will produce a richer 
experience for the user. The second metaphor
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informing the design of the simulator is that of a "media player." I would argue that the informational 
content of the EDSAC programming system transcends its original physical environment. In this way, 
EDSAC software is analogous to other forms of recorded information – pianola rolls, gramophone records, 
motion pictures, etc. While there is an enormous charm and an illusion of authenticity in playing a pianola 
roll, an Edison wax cylinder, or a 9.5 mm movie on original contemporary equipment, transferring the 
informational content to another media for use on modern equipment can result in a valid, if different, 
experience. Indeed, the use of modern equipment can facilitate a more informed study – for example by 
starting and stopping midsession, replaying significant passages for closer study, and so on.

Thus the primary aim of the EDSAC simulator has been not so much to create an "EDSAC experience" as to 
afford a vehicle for the scholarly study of an early programming system by today's university students and 
computer professionals. As it happens, many users have reported a real sense of walking in the shoes of the 
original EDSAC programmers. I suppose this must be an illusion – and since I was not an EDSAC user 
myself I cannot vouch for the authenticity of the experience. I will return to this point later.

2— 
The EDSAC Texts

The EDSAC (Electronic Delay Storage Automatic Calculator) contained some 3000 vacuum tubes and 
consumed about 12 kW of power. It was designed with a delay-line memory of 32 mercury-filled "tanks," 
each of which held 32 18-bit words, giving a total capacity of 1024 words with a cycle time of 
approximately 1 ms. The machine executed about 600 operations per second. The Appendix describes the 
EDSAC instruction set.5

The key text for the EDSAC simulator project is the first edition of the classic textbook on programming, 
The Preparation of Programs for an Electronic Digital Computer by M. V. Wilkes, D. J. Wheeler, and S. 
Gill (1951)–usually known as Wilkes, Wheeler and Gill, or simply WWG.6 This book contains the detailed 
coding of a number of sample programs, and an appen-

5 A more complete description can be found in: Wilkes M. V. and W. Renwick. "The E.D.S.A.C.," Report of a 
Conference on High-Speed Automatic Calculating Machines, (University of Cambridge, 1949), pp. 9–12. Reprinted in B. 
Randell, Origins of Digital Computers, Springer-Verlag, (Berlin, 1982), 417–21. Also in: Campbell-Kelly, M. 
"Programming the EDSAC: Early Programming Activity at the University of Cambridge," Annals of the History of 
Computing 2 (1980), 7–36. Reprinted in: Annals of the History of Computing 20 (1998), 46–67.
6 Wilkes, M. V., D. J. Wheeler and S. Gill. The Preparation of Programs for an Electronic Digital Computer, Addison-
Wesley, (1951). Reprinted as Vol. 1 of the Charles Babbage Institute Reprint Series for the History of Computing, Tomash 
Publishers, Los Angeles, and MIT Press, (Cambridge Ma, 1982).
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dix contains specifications and coding for much of the subroutine library. Wilkes, Wheeler and Gill is widely 
available in academic libraries (three thousand copies were originally printed in 1951), and a reprint edition 
was published as the first volume of the Charles Babbage Institute Reprint Series for the History of 
Computing in 1982. This textbook is uniquely important in making EDSAC programming tangible-it adds a 
credibility that transcends the informally published programming manuals of other historic computers. 
Incidentally, the fact that Wilkes, Wheeler and Gill contains large fragments of code means that the frozen-
music metaphor fairly leaps off the page. About half of the code supplied with the simulator comes directly 
from Wilkes, Wheeler and Gill, the remainder coming from the Cambridge University Archives with a small 
amount recreated (see Tables 1, 2, and 3).

Table 1: Routines for Initial Orders 17

Routine Status Sources

   

Initial Orders 1 Extant Wheeler 1950, Renwick

  & Worsley 1949

Programs   

Squares Lost  

Print Squares Extant Renwick & Worsley 1949

Print Primes Extant Renwick & Worsley 1949

The Airy Tape Partially reconstructed Personal communication

Figure 3 
Code fragment from Print Squares

7 Wheeler, D. J. 1950. "Programme Organisation and Initial Orders for the EDSAC," Proc. Roy. Soc. (A) 202 (1950), 
573–589. Renwick, W. and B. H. Worsley. "The E.D.S.A.C Demonstration," Report of a Conference on High-Speed 
Automatic Calculating Machines, (University of Cambridge, 1949), 12–16. Reprinted in Randell 1982, n. 3, 423–9.
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Figure 4 
Output from the "first" program

To understand these tables, it is necessary to know something about the evolution of the EDSAC 
programming system. This system was based on a set of "initial orders" and a subroutine library. The initial 
orders combined in a rudimentary fashion the functions performed by a bootstrap loader and an assembler in 
later computer systems.

The initial orders existed in three versions. The first version, Initial Orders 1, was devised by David 
Wheeler, then a research student, in 1949. The initial orders resided in locations 0 to 30, and loaded a 
program tape into locations 31 upwards. The program was punched directly onto tape in a symbolic form 
using mnemonic operation codes and decimal addresses, foreshadowing in a remarkable way much later 
assembly systems (Fig. 3). Just three programs survive from this period. The first two are demonstration 
programs, to print primes and squares-and-differences respectively, which were published in the Report of a 
Conference on High-Speed Automatic Calculating Machines held at Cambridge in June 1949 to celebrate the 
completion of the EDSAC. The third program is a draft version of a program, written by Wilkes in the 
summer of 1949, to compute the Airy integral. Most tantalizingly, the historic first program, which was run 
on May 6, 1949 and printed a table of squares, has been lost, although there are several extant copies of the 
output (Fig. 4). Re-creating this program has been a popular exercise for present-day EDSAC programmers, 
and one that requires insight and empathy to achieve in a way that is historically authentic.
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Table 2: Routines for Initial Orders 2

Routine Status Sources

Initial Orders 2 Extant Wheeler 1950; WWG 1951

Subroutine Library

Approx. 90 subroutines Extant Cambridge University Archives 
WWG 1951, ca. 30 subroutines

Postmortem Routines

P0 Extant Cambridge University Archives

P1-P5 Reconstructed  

Programs

Chapman's Integral Extant WWG 1951

Noughts & Crosses Partial reconstruction Douglas 1954

Glennie Program Extant Dodd and Glennie 1951

In September 1949, the first form of the initial orders was replaced by a new version. Again written by 
Wheeler, Initial Orders 2 was a tour de force of programming that combined a surprisingly sophisticated 
assembler and relocating loader in just 41 instructions. The initial orders read in a master routine (main 
program) in symbolic form, converted it to binary and placed it in the main memory; this could be followed 
by any number of subroutines, which would be relocated and packed end-to-end so that there were none of 
the memory allocation problems associated with less sophisticated early attempts to organize a subroutine 
library. During 1949–1951, some 90 library subroutines were developed. In a typical program, two-thirds of 
the code would come from the subroutine library, and only one-third would be directly written by the user. 
Library subroutines existed for input and output in many different formats, for the common mathematical 
functions (square root, sine, etc.), and for more complex numerical processes such as interpolation and 
numerical integration.

There are few extant programs from this period, and only one that can be genuinely described as 
compelling–this is Sandy Douglas's program to play Noughts and Crosses (tic-tac-toe in the U.S.) The 
program was written while Douglas was a PhD student and was reproduced in his PhD thesis.8 Other extant 
programs include a demonstration program for the numerical integration of a differential equation written by 
A. E. Glennie, and several programming examples in Wilkes, Wheeler and Gill, all of a mathematical nature. 
The mathematical orientation of EDSAC applications points up one of

8 Douglas, A.S. 1954. Some Computations in Theoretical Physics, PhD Dissertation 2478, (Cambridge University, 1954).
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Table 3: Routines for Initial Orders 3

Routine Status Sources

Initial Orders 3 Extant Cambridge University Archives

Test programs All lost  

the problems of making the programming system accessible to present-day programmers who lack the 
sophisticated mathematical training of the pioneers – almost all of whom were mathematicians or engineers 
with a numerical aptitude.

A third set of initial orders, written by Stanley Gill, was introduced in late 1951. These initial orders loaded 
programs punched in a form very close to binary and were used solely for running hardware test programs. 
Initial Orders 3 used only the most basic, single-length instructions (such as load and store, add and subtract, 
and the basic branch orders) so that they would usually work even if the multiplier, for example, was being 
temperamental. Unfortunately, none of the original test programs has survived so these initial orders are 
essentially a historical curiosity. Initial Orders 3 are not currently supplied with the simulator as a conscious 
editorial decision to avoid confusing the learning experience with items of marginal significance.

3— 
Interpreting the EDSAC

There is no known complete architectural description of the EDSAC at the gate level, still less at the level of 
electronic components. There are, however, a number of descriptions of the EDSAC at the systems level. 
For example, an article ''The E.D.S.A.C." in the proceedings of the Report of a Conference on High-Speed 
Automatic Calculating Machines9 gives both a narrative and diagrammatic account of the instruction fetch-
execute cycle. Wilkes's 1956 textbook Automatic Digital Computers gives a much fuller description, 
including some parts, such as the serial adder and multiplier, which are described at the gate level."10 The 
most complete description is an unpublished report produced by a visiting Australian academic.11 
Impressively detailed as this report is, it is a description of work in progress that predates completion of the 
machine and is therefore incorrect in many details.

9 Wilkes and Renwick, see n. 4 above.
10 Wilkes, M. V. Automatic Digital Computers, Methuen (London, 1956).
11 Anonymous, The EDSAC, unpublished report, Cambridge University Mathematical Laboratory, May 1948.
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In fact, although this literature has occasionally been used to clarify my own understanding of the EDSAC 
architecture, it has been little used in any tangible way in developing the simulator. The EDSAC "player" is 
defined by the software, not the hardware. For example, although in principle the simulator could emulate 
the original machine at the gate level, there would be very little to be gained by doing so and a great deal to 
be lost: the EDSAC was a serial machine, and performing a bit-by-bit simulation on a contemporary byte-
organized machine would produce such a massive computational overhead that the simulator would be 
reduced to a crawl. Instead, advantage has been taken of the fact that the EDSAC was a fairly conventional 
wordbased two's complement machine. Thus, for example, adding a pair of numbers using the built-in 
hardware circuits of a present-day machine gives exactly the right result with no time penalty and no effort 
on the part of the author. This approach has been found to be effective for interpreting the various 
arithmetical and logical instructions, most of which are identical to those in present-day machines. This 
remains true whether the implementation language is assembler, C, Pascal or Java – all of which have been 
used for various incarnations of the simulator.

As noted earlier, the EDSAC simulator has existed in three distinct forms and five deployed versions. The 
first form of the simulator, 1978–82, was a batch oriented program, reflecting the available technology of the 
day. EDSAC programs were prepared on punched cards, delivered to the computer center, and the printed 
results collected later. The system was also used on a Unix timesharing system, which enabled the use of 
files rather than punched cards, and achieved a faster turnaround, but was nevertheless batch-oriented in 
principle. As a result users of the simulator were not able to develop very exciting programs in the few hours 
they were able to use the system. A typical user program would be to sum the first hundred integers and 
print the total.

The second version of the simulator, 1982–87, was produced by a research student and it provided a 
dynamic display of the EDSAC store and registers similar to that on the original machine. This provided a 
much more evocative experience and was enthusiastically used by students. However, the program operated 
in a time-shared Unix environment and was so computationally intensive that it was possible to get a real-
time simulation only at the dead of night when the system was unencumbered with competing users. This 
problem was alleviated by the arrival of inexpensive workstations and personal computers in the late 1980s.

The present simulator is based on one designed for the Macintosh computer in 1988. The system provides an 
integrated editor for program texts, dynamically updated displays, and press-buttons for the EDSAC 
controls. The development was quite labor intensive, involving about six months of student effort. The 
simulator was consciously modeled on the Interactive Development Environments (IDEs) that were then 
becoming the norm for programmers, so that they could easily transfer their existing programming expertise 
to the task of understanding the EDSAC. The system was quite
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Figure 5 
EDSAC "console"

widely distributed, being made available as freeware in Macintosh-related magazines via CD-ROMs or in 
one case by mail order. It was not until 1996, with the arrival of the Windows 95 operating system, that the 
IBM-compatible computer finally caught up with the Macintosh by providing a fast, programmer-accessible 
graphical user interface. At the same time, the development of Rapid Application Development (RAD) 
systems had reduced the task of developing the simulator to about two weeks. The PC-based simulator was 
released in 1996. The documentation for the system has now been converted to Adobe Acrobat PDF format 
for platform independent web-based delivery. A Java-based version is currently under development, which 
should allow universal platform-independent deployment. One outcome of the Macintosh and PC versions of 
the simulator is that users have been able to study the EDSAC programming system far more deeply than 
was ever possible with a batch or time-shared system. As a result, there have been some very interesting 
programs created that could never have been envisioned by the original EDSAC programmers – of which 
more later.

The notion of an EDSAC "player" has freed the design of the simulator from the obligation to produce an 
authentic console for the user. Such a console is a distinctive feature of some other simulators of historic 
computers, such as Chris Burton's Pegasus emulator or Keith Reed-Green's IBM 650 simulator. In the case 
of the EDSAC the decision to forgo a naturalistic con-
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sole was not least due to the fact that there was no console. The closest that EDSAC came to a console was 
collecting together all the displays and controls onto a wooden table (Fig. 5). The face presented to the user 
of the EDSAC simulator is a heavily sanitized and stylized version of this equipment.

The most critical part of the EDSAC display was to represent the monitor tubes of the original machine. 
There was a total of six monitor tubes on the EDSAC. The most important of these displayed the 
dynamically changing contents of one of the 32-word main memory delay lines. Which of the 32 "long 
tanks" was displayed was determined by a rotary switch. This main memory tube is the most distinctive 
visual feature of the simulator (Fig. 2). The remaining monitor tubes displayed the processor registers or 
"short tanks" – the accumulator, multiplier registers, instruction decode register, and sequence control 
register. The shorttank displays can be turned off to enable the simulator to run more quickly – with all the 
displays turned on the simulator will run somewhat slower than the original EDSAC on an average PC. A 
clock, which shows elapsed EDSAC time, provides user feedback on the speed of the calculation. The 
EDSAC was controlled by five push buttons: Start, Stop, Clear, Reset and Single E. P. (single shot). In 
addition, a telephone dial was provided to input a single decimal digit into the machine. These are all 
represented by conventional GUI buttons.

To an extent the simulator can be regarded as an ephemeral creation, although efforts have gone into keeping 
a consistent visual appearance from version to version. Much more persistent are the program texts 
themselves. At least as much effort has gone into preparing the supporting programs and documentation as 
in developing the simulator itself. The most important user documentation is the Tutorial Guide. This is 
essentially a present-day programmer's primer for the EDSAC. One could argue that a more authentic 
experience would be gained by just supplying a copy of Wilkes, Wheeler and Gill. However, the Tutorial 
Guide has an overtly pedagogical aim to explain and interpret the nuances of EDSAC programming for the 
current generation of programmers. The Tutorial Guide includes a set of staged programming examples to 
take the user though the programming process, and concludes with a set of programming problems for the 
user to undertake. Several of the programming problems were first used at the summer school in 
programming, which was held annually at Cambridge, for several years from 1950.

In the interests of pedagogy, the program documentation and program code supplied with the simulator is 
not an uncritical reproduction of the contents of the EDSAC library. For example, a selection of just 18 of 
the 90 extant library subroutines has been included. These routines are sufficient to attempt all of the sample 
problems given in the Tutorial Guide. The subroutines that have been omitted are primarily mathematical – 
such as variants of the basic mathematical functions, and advanced numerical procedures, such as 
interpolation and numerical integration. This conscious editorial excision was made purely to make the 
simulator more accessible and less overwhelming. It should be noted that the summer schools, designed to 
introduce
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mathematical and engineering professionals to computing, were of two full weeks duration. The aim of the 
simulator is to enable the students to develop a significant appreciation of the EDSAC in a half-day, 
although there is enough material for at least a week's intensive study. For the truly dedicated student (and 
there are some) access to Wilkes, Wheeler and Gill will provide more depth again.

4— 
Authentication and Validation

Because the EDSAC simulator is relatively abstract, not being defined by an underlying hardware 
implementation, there was a need for positive proof that the representation of EDSAC was correct – both in 
terms of the few hardware features emulated as well as all the software features.

In terms of the physical hardware environment, the most important source has been The EDSAC Film. This 
movie was made for the Joint Computer Conference in Philadelphia in December 1951. Although of only 5 
minutes duration, the film gives a very detailed account of the creation and running of a complete EDSAC 
program. The movie includes a sequence showing the main memory monitor tube, on which the simulator 
display is very closely based. Incidentally, The EDSAC Film also demonstrates that it is possible to be 
misled by one's sources. According to the authority of all the textual sources, the monitor tube displayed 
words so that binary numbers appeared with their most significant bit on the left and least significant on the 
right. This made it much easier for humans, accustomed to writing decimal numbers left-to-right, to read 
data from the face of the tube. This innovation was non-obvious: in a serial machine in which the least 
significant bit of a word is generated first, numbers would appear with the least significant digit on the left 
when using the conventional left-to-right sweep of a CRT time-base. This was the case in almost all 
prototype computers. Wilkes and his co-workers were rather proud of their simple innovation, which just 
involved interchanging the connections to the X-plates of the CRT monitor tube, and they were somewhat 
scathing of Manchester University, which forced programmers into using "base-32 backwards" numbers. 
However, The EDSAC Film contradicted the textual sources, because the monitor tube displayed numbers 
with their least significant digit on the left, as on other machines. The explanation turned out to be that the 
original film – shot on 16 mm film stock, which has a left-right symmetry – had been reversed in the editing 
process. (Additional photographic evidence, noted below, subsequently confirmed this hypothesis.)

It is not possible to verify all the behaviors of the various controls provided in the EDSAC simulator, and 
there may well be some minor flaws. For example, when the original EDSAC obeyed a Stop instruction, the 
machine halted and sounded a bell; however, if an attempt was made to execute an undefined operation 
code, the machine halted without sounding the bell. This
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is a subtle distinction which appears in only one place in all the EDSAC literature. Undoubtedly, the 
simulator will have failed to observe some other minor subtleties of this type. However, it has been used by 
a number of EDSAC pioneers, including Wilkes and Wheeler, and they vouch that it captures the spirit of 
EDSAC; but they could not be expected to pick up subtle flaws at this distance in time.

The most important aid for authenticating the software behaviors of the simulator are five original programs, 
for which both the original program and a physical copy or a photograph of the output exists. These 
programs are:

• Print Squares (Wilkes, June 1949)

• Print Primes (Wheeler, June 1949)

• The Glennie Program (Glennie, July 1951)

• Noughts & Crosses (Douglas, c. 1952)

• The Airy Tape (Wilkes, July 1949)

The Print Squares and Print Primes programs are the two programs written for the EDSAC demonstration at 
the Conference on High-Speed Automatic Calculating Machines in June 1949. The published proceedings 
have bound into them a spirit-duplicated copy of the output of these two programs and it has been possible 
to verify the correctness of the simulator results by a character by character comparison. However, these 
programs only performed single length arithmetic and so are a less than exacting test.

Figure 6 
Verification of the EDSAC Simulator. Noughts & 

Crosses program display: original left; simulated right
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The Glennie Program is much more demanding. This is a demonstration program written by Alick Glennie, 
who was a visitor at Cambridge from the Armament Research Establishment during 1949. The program 
appears in the report that Glennie and his colleague K. N. Dodd wrote for their employers,12 and it includes 
both a program listing and a photograph of the printed output. The program solves the recurrence relation:

This is a complex program of over 400 instructions that exercises all the double-length arithmetic 
instructions, and would be sensitive to any faults in the numerical processes. The report states that the 
program took 7 minutes to execute. The EDSAC simulator produces visually identical output to that in the 
report, and shows an elapsed time of 7 minutes 25 seconds. Incidentally, the Glennie program is not included 
with the demonstration programs supplied with the simulator as it is visually unexciting and is too 
mathematically arcane for the intended users of the simulator.

The fourth program used to test the simulator is Sandy Douglas's Noughts & Crosses program. The 
significance of this program is that the output is produced on the face of the CRT monitor tube rather than 
the teleprinter. It is the only extant original program to produce its output in this way. There are Polaroid 
photographs of the CRT monitor in Douglas's PhD dissertation, which match exactly the simulator display 
(Fig. 6). (Incidentally, the program also confirms the right-left sweep of the CRT time-base.)

The Airy Tape was a more problematic program.13 This program was written by M. V. Wilkes in the summer 
of 1949 and was his first attempt to write a "real" program for the EDSAC. The program is another 
mathematical one, the integration of the Airy Integral, which is the solution of the secondorder differential 
equation:

y" = xy

The program used a step-by-step integration process with the central difference formula:

d2y = (dx)2(y" + 1/12d2y")

The printed results of the program were reproduced in photographic form in an article that Wilkes wrote for 
Nature in 1949.14 The original program

12 Dodd, K. N. and A. E. Glennie. An Introduction to the Use of High-Speed Automatic Digital Computing Machines, 
ARE Memo No. 7/51, ARE Fort Halstead, Sevenoaks, (Kent, 1951).
13 Campbell-Kelly, M. "The Airy Tape: An Early Chapter on the History of Debugging," Annals of the History of Computing 
14 (1992), 18–28.
14 Wilkes, M. V. "Electronic Calculating Machine Development in Cambridge," Nature, 164 (1949), 557–558
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was thought lost, but in 1979, shortly before his retirement from Cambridge University, Wilkes found a 
paper tape "in a rather fragile condition" with the single word "Airy" written on it in pencil. He sent me a 
copy of the tape to see what I could make of it.

The tape turned out to be not the final version of the program but an early version with a number of errors. I 
duly "corrected" the tape to the best of my ability but was unable to reproduce exactly the results that 
appeared in Nature. The program was transcribed into Fortran, which did produce the correct results. This 
suggested that either my EDSAC code had a very subtle error, or there was an error in the multiplication or 
rounding orders. As a result, although it seemed a long shot, I rewrote the multiplication routine simulating 
exactly the shift-and-add algorithm given by Wilkes in his textbook Automatic Digital Computers (1956, p. 
55). The results were unchanged. There the matter lay, unresolved for several years. It was only when the 
Macintosh version of the simulator became available that I was able to reexamine the program, now with the 
advantage of being able to "peep" into the store and observe the numerical processes at very close hand over 
an extended period of time. The error was eventually tracked down to the non-obvious need for a double-
length arithmetic constant in place of a single-length one. The simulator then produced results that exactly 
matched those in the Nature paper. Personal programming shortcomings apart, I think this experience shows 
how very difficult it is to completely step into the shoes of the EDSAC programmers – my inability to 
discover this programming error for over a decade was fundamentally due to the fact that I have never had 
any personal experience of hand-machine computation and therefore do not have the "feel" for numbers that 
almost very EDSAC programmer had. One notes that Wilkes managed to fix the program in a couple of 
weeks.

5— 
Conclusions: 
The "So What?" Question

Historians often ask of a piece of scholarship: So what? It's always disarming, but usually the question 
deserves to be asked. What is the simulator for? Is it an "exhibit," a celebration, or a piece of recreational 
software? Or is there some deeper, academic purpose?

The EDSAC simulator is certainly an exhibit in a small way, but plainly not in the same league as the 
physical rebuild projects. It is also recreational software of a sort, and can be viewed as a kind of video game 
for computer programmers and geeks. However, I believe that even casual users take away some insight 
from using the simulator. The following appeared in a semi-popular article by Brian Hayes in The Sciences 
in 1993:

On May 6, 1949, a length of punched paper tape was threaded into a machine at the University of Cambridge; a few 
seconds later a nearby teleprinter began tapping out a list of numbers: 1, 4, 9, 16, 25, [ . . .] It
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was the first time any full-scale computer in the modern sense of the term had successfully run a program. [ . . . ]

The EDSAC is long gone; most of its parts were sold for scrap in 1958. No one will ever build another machine like it. 
Nevertheless, it is still possible to write programs for the EDSAC, to load those programs into the paper tape reader and 
then to see (and hear) the results come ticking out of the teleprinter. The time machine that offers this transport of delight 
is a simulator created by Martin Campbell-Kelly, an historian of computing at the University of Warwick.15

The following unsolicited e-mail from a female journalist is another typical, if unusually articulate, reaction:

Being 37 years old, I was brought up to think of computers as being these big mysterious boxes cooled by liquid nitrogen 
and manned by cool-voiced guys who all looked like Nicholas Negroponte. Big spools of magnetic tape would spin at 
improbable rates, manila cards and greasy paper tape would display enigmatic designs, and everywhere there would be 
big banks of twinkling lights. When I was 13, I was taught how to work with a PDP-8, but it didn't feel like a computer. 
Neither did the ZX-81 I learned BASIC on or finally, this Macintosh. I was born, I feel, somewhat too late. I'm less than a 
great programmer with BASIC, indifferent to COBOL and FORTRAN, and C++ sounds like a great idea, but hard to put 
into practice.

FINALLY, I have a computer [the EDSAC simulator] I can UNDERSTAND! No longer is there a problem showing how 
binary numbers work in calculation; I can SEE them. This may not be a great thing in the overall course of computing, 
but for my own satisfaction, this is a major breakthrough.

Perhaps reactions such as the above are justification enough for the simulator. However, the simulator does 
have two serious academic uses: as a research tool, and as a pedagogical device.

The EDSAC simulator grew out of the research that eventually appeared in my paper "Foundations of 
Computer Programming in Britain."16 This research aimed to make a comparative study of the development 
of programming on the first three British computers: the EDSAC at Cambridge, the Mark I at Manchester, 
and the Pilot ACE at the National Physical Laboratory. Simulators were developed for all three machines 
and the TPK algorithm was coded for each of them. (The TPK algorithm is a universal bench-mark pro-

15 Hayes, B. "The Discovery of Debugging," The Sciences, July/August, 1993, 10–13.
16 Campbell-Kelly, M. 1982. "Foundations of Computer Programming in Britain 1945–1955," Annals of the History of 
Computing 4 (1982), 121–131.
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Table 4: Comparative Performance of EDSAC, Manchester Mark I and Pilot ACE

Time to Run TPK (sec) EDSAC Mark I Pilot ACE

Processor 24 37 5

Input-output 70 44 17

Total 94 82 21

gram devised by Knuth and Trabb Pardo.)17 The results of this exercise are summarized in Table 4.

Two significant conclusions can be drawn from the table:

1. The Pilot ACE, which was based on Turing's unique ACE design, was overwhelmingly more powerful 
and cost-effective than its competitors in raw hardware terms. It was 5 to 7 times faster, yet had a tube count 
of less than a third of either the Cambridge or Manchester machines.18

2. Although the Manchester Williams Tube memory was a random access device, which was said to be a 
great improvement over the cyclic mercury delay lines of the EDSAC, the performances of the two 
machines were roughly comparable. This was because both were serial machines in which the speed of 
arithmetic instructions was determined by the basic pulse rate rather than the memory cycle time.

There was some controversy over both of these issues in the early 1950s. The simulators added a degree of 
quantitative analysis to the rhetoric of the contemporary debate. Beside these major findings, the act of 
running original software on the simulators provided many small insights, and afforded a degree of scholarly 
intensity that could never have been achieved with the texts alone.

A second piece of research19 concerned Wilkes's Airy Tape. The process of turning Wilkes original tape into 
a working program using the EDSAC simulator again produced many insights that could not have been 
gained by textual study alone. In particular, the exercise gave a real appreciation of the unanticipated nature 
of the debugging problem, and provided dramatic contemporary evidence to support Wilkes's famous 
assertion in his Memoirs:

17 Knuth, D. E. and L. Trabb Pardo. "The Early Development of Programming Languages," in N. Metropolis et al (ed.), A 
History of Computing in the Twentieth Century, Academic Press, (New York, 1980), 197–213.
18 See in this volume: Harry D. Huskey, "Hardware Components and Computer Design."
19 Campbell-Kelly, see n. 13 above.
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By June 1949 ( . . . ) I was trying to get working my first non-trivial program, which was for the numerical integration of 
Airy's differential equation. It was on one on my journeys between the EDSAC room and the punching equipment that 
''hesitating at the angles of the stairs" the realization came over me that a good part of the remainder of my life was going 
to be spent in finding the errors in my own programs.20

The second purpose of the simulator is pedagogical. A number of universities have used the simulator as a 
visual aid in introductory computer systems and software engineering classes. However, the main use of the 
simulator is in undergraduate courses on the history of computing. Many science students prefer writing a 
program to writing an essay. The simulator offers such students an opportunity to demonstrate their 
historical understanding in a way that compensates for shortcomings in essay writing. A surprising result we 
have noticed at Warwick University is that the quality of undergraduate submissions has as great, or even 
greater, variance than traditional essays. The tariff of grades is roughly as follows:

A: An excellent solution to a challenging or original problem. Program methodology and documentation 
fully empathetic to the Cambridge style.

B: A good program that makes full use of the EDSAC programming system, including subroutines and 
pseudo-operations. Good or acceptable documentation.

C: A good solution to a simple problem – such as the easier summer school examples. Acceptable 
documentation.

D: A "hack" that works. Documentation not in keeping with the EDSAC style.

E: A "hack" that does not work. Flawed documentation.

The scale effectively runs from a program that is almost indistinguishable from a contemporary routine in 
the EDSAC library, down to a machine code "hack" that shows little or no historical empathy.

One surprising development during the last two years we have been using the simulator at Warwick 
University, is that of students devising programs which could not have been written in EDSAC's time 
because the theory postdates machines of the EDSAC's vintage. One example of such a program was the 
computation of the Mandelbrot Set and another was a simulation of Conway's Game of Life. Both programs 
used the CRT monitor to visualize their results. The phenomenon is similar to hearing a Beatle's melody 
played on a pianola: a captivating sense of temporal dislocation. I'm not sure of the historical significance, 
but it gives pause for thought.

20 Wilkes, M. V. Memoirs of a Computer Pioneer, MIT Press, (Cambridge, Ma., 1985), 145.
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Appendix: 
The EDSAC Instruction Set

The EDSAC used a single-address instruction format, as shown in Fig. A1. Although the EDSAC was based 
on an 18-bit word, only 17 bits were used, the leading bit being unusable for reasons connected with circuit 
set up time. The opcode (or "function") was specified in 5 bits and the address in 10 bits. A further bit 
specified the operand length: most instructions could operate on either a 17-bit short word or a 35-bit 
double-length word; the length indicator specified which.

Figure A 
Instruction format

Table A1 shows the EDSAC instruction set as it existed in 1949. Operations were represented by letters of 
the alphabet, some of which suggested the function they denoted (for example, A for Add, S for subtract, 
and so on). Average instruction times were 1.5 ms, although multiplication was longer, taking 6 ms; 
input/output times were determined by the basic speeds of the peripheral equipment – a 50 character per 
second tape reader and a 6 2/3 character per second teleprinter.

 
Table A1: The EDSAC Instruction Set (1949)

A n Add the 
number in 
storage 
location n 
into the 
accumulator

S n Subtract the 
number in 
storage 
location n 
from the 
accumulator

H n Copy the 
number in 
storage 
location n 
into the 
multiplier 
register

V n Multiply 
the number 
in storage 
location n 
by the 
number in 
the 
multiplier 
register and 
add the 
product into 
the 



accumulator

N n Multiply 
the number 
in storage 
location n 
by the 
number in 
the 
multiplier 
register and 
subtract the 
product 
from the 
accumulator

T n Transfer the 
contents of 
the 
accumulator 
to storage 
location n 
and clear 
the 
accumulator

U n Transfer the 
contents of 
the 
accumulator 
to storage 
location n 
and do not 
clear the 
accumulator

C n Collate 
[logical 
and] the 
number in 
storage 
location n 
with the 
number in 
the 
multiplier 
register and 
add the 
result into 
the 
accumulator

R 2n-2 Shift the 
number in 
the 
accumulator 
n places to 
the right

L 2n-2 Shift the 
number in 
the 
accumulator 
n places to 
the left



   

 

(table continued on next page)
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(table continued from previous page)

E n If the sign of the accumulator is positive, jump to location n; otherwise proceed 
serially

G n If the sign of the accumulator is negative, jump to location n; otherwise proceed 
serially

I n Read the next character from paper tape, and store it as the least significant 5 bits of 
location n

O n Print the character represented by the most significant 5 bits of storage location n

F n Read the last character output for verification

X  No operation

Y  Round the number in the accumulator to 34 bits

Z  Stop the machine and ring the warning bell

<><><><><><><><><><><><>
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PART V— 
EARLY JAPANESE COMPUTERS
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The First Japanese Computers and Their Software Simulators

Seiichi Okoma

Abstract. In the second half of the 1950s, many experimental computers were designed and produced by 
Japanese national laboratories, universities and private companies. The researchers had only a limited 
amount of literature and poor materials at their disposal. In those days, many experiments were carried out 
using various electronic and mechanical techniques and materials such as relays, vacuum tubes, 
parametrons, transistors, mercury delay lines, cathode ray tubes, magnetic cores and magnetic drums. These 
endeavors provided a solid basis for the development of electronics in Japan. The paper presents nine early 
Japanese computers, six of which have been emulated in software in order to test and validate their 
instruction sets.

1— 
Introduction

In the second half of the 1950s, many experimental computers were designed and produced by national 
laboratories, universities and private companies in Japan. Some of them became models for mass-produced 
computers, but mostly they were once-off constructions. In those days, many experiments were conducted 
using a range of electronic and mechanical techniques and materials, such as relays, vacuum tubes, 
parametrons, transistors, mercury delay lines, cathode ray tubes, magnetic cores and magnetic drums. 
Furthermore, single-address, two-address, three-address instructions, the binary or decimal number system, 
instruction traps and interrupts, and other new ideas, were being tested and adopted. These endeavors 
provided a solid basis for the development of electronics in Japan.

Table 1 shows a list of the first Japanese computers, not including commercially developed machines. At the 
time, there were other experimental machines which could be called "computers," but they were never put 
into use nor had they been fully completed.

I have prepared software simulators for six early Japanese computers (marked with an asterisk in Table 1) in 
order to test and validate their instruction sets. We will discuss the nine computers listed in Table 1. Only the
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Table 1: The First Japanese Computers

 Computer Completion Produced by Comments

1* ETL-Mark-2 Autumn 1955 Electrotechnical 
Laboratory (ETL)

Not a stored-program 
computer; made of relays

2* FUJIC March 1956 Fuji Photo Film 
Company

First stored-program 
computer

3 MUSASINO-1 March 1957 Nippon Telegram and 
Telephone Public 
Corporation

Second electronic 
computer, compatible with 
ILLIAC-1

4* ETL-Mark-4 November 1957 ETL First transistor computer

5* PC-I March 1958 Tokyo University Parametron computer, its 
initial order was very 
famous

6* ETL-Mark-4a August 1958 ETL Revised machine from 
ETL-Mark-4

7 TAC March 1959 Tokyo University Last vacuum tube 
computer, compatible with 
EDSAC

8 Handai- 
Computer

Incomplete Osaka University Visionary but incomplete 
computer

9* K-1 June 1959 Keio University I address and 1+1 address

FUJIC and the ETL-Mark-4 will be presented in detail, including their in-struction sets.

2— 
The ETL-Mark-2

The ETL-Mark-2 was built in 1955, using a huge number of relays. It was not a stored-program computer, 
but it was the first programmable computer in Japan. Programs for the ETL-Mark 2 were punched on paper 
tape, which was read and executed instruction by instruction. To obtain a program loop, both ends of the 
tape were pasted together. The ETL-Mark-2 was basically a floating-point machine, but additions and 
subtractions could be done using fixed-point arithmetic. In those days, vacuum tubes were not very reliable, 
and transistors had not been yet put to any practical use. Therefore, the use of relays was an obvious choice. 
After completion, the ETL-Mark-2 was used for a period of 10 years as a stable, programmable computer.

The ETL-Mark-1 was produced in 1952, as a prototype of a relay computer, and provided data and know-
how for the construction of the next machine, the ETL-Mark-2. The ETL-Mark-1 was only used for tests and 
experiments.
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Table 2: The ETL-Mark-2

Completion date 1955

Number of relays 22,253

Memory 200 words (relays) 
250 words (relay ROM, constants such as e or  p)

Word length 42 bits

Input 60-unit paper tape reader × 6

Output 60-unit paper tape punch × 6

Addition/subtraction time 0.11 s (fixed-point), 0.2 s (floating-point)

Multiplication/division time 0.14-1.39 s (floating-point)

Decimal to binary conversion time 0.1-0.8 s

Binay to decimal conversion time 1.7s

3— 
The FUJIC

The FUJIC, a monumental computer, was completed in March 1956. It was the first stored-program 
computer made in Japan. The FUJIC was a binary, fixed-point, three-address machine with vacuum tubes as 
the basic elements, and a mercury delay line for the memory. It had been built almost entirely by one person, 
Dr. Bunji Okazaki, with some outside help for the wiring and soldering. He even built the card reader with 
his own hands. It was originally designed to perform calculations for optical lenses for the Fuji Photo Film 
Company. Later, it was used for other purposes by other companies and universities. The FUJIC is part of 
the collection at Japan's National Science Museum.

Table 3: The FUJIC

Completion date March 1956

Number of vacuum tubes Approx. 1,700

Memory Mercury delay line, 255 words, access 0.5 ms 
(average)

Word length 33 bits

Input Hand-made card reader (2 cards/sec, 12 
instructions or data/card)

Output Remodeled electric typewriter (10 characters /sec)

Addition/subtraction time 0.1 ms

Multiplication time 1.6 ms (average)

Division time 2.1 ms

Clock frequency 30 kHz (arithmetic unit) 
1,080 kHz (memory)
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Internal Structure

The FUJIC processor contains a single accumulator. The machine uses the following special hexadecimal 
notation (for the digits 9 to 15):

Decimal 10 11 12 13 14 15
FUJIC hexadecimal J K L M N P
Modern hexadecimal a b c d e f

The FUJIC computes using fixed-point arithmetic. A data word consists of 1 bit for the sign, 4 bits for the 
integer part and 28 bits for the fractional part. If during arithmetic computations, the absolute value becomes 
greater than 16, an overflow occurs. This reportedly provided enough accuracy for the computation of 
optical light tracking.

Figure 1 
Data word

Alphabetic and special characters are not used at all, only numerical values are treated as data.

The Instruction Set

The FUJIC has 17 simple instructions for addition, subtraction, multiplication, division, move, 
unconditional/conditional jump, input/output and stop. It has neither shift nor zero test instructions. For each 
instruction, an 8-bit quadruple is used. The left 8 bits encode the type of instruction, the other three 8-bit 
fields, called Xx, Yy, and Zz, denote three addresses in the memory.

Figure 2 
Instruction Format

Machine language instructions are always written in the FUJIC hexadecimal notation, using absolute 
addresses only.

The following conventions are used in Table 4:

• Xx, Yy, Zz are two-digit hexadecimal numbers.

• [Xx] denotes the content of address Xx.
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Table 4: FUJIC Instruction Set

Type Instruction code Meaning

 70 Xx Yy Zz ([Acc])+[Xx]+[Yy] ®Zz

Add and Subtract 60 Xx Yy Zz ([Acc])-[Xx]+[Yy] ® Zz

 50 Xx Yy Zz ([Acc])+[Xx]-[Yy] ® Zz

 40 Xx Yy Zz ([Acc])-[Xx]-[Yy] ® Zz

 20 Xx Yy Zz ([Acc])+[Xx] x [Yy] ® Zz

Multiply 15 Xx Yy Zz ([Acc])-[Xx]x[Yy] ®  Zz

 10 Xx Yy Zz ([Acc])x[Xx]x[Yy] ®  Zz

 16 Xx Yy [Acc] x [Xx] ® Yy

Divide 30 Xx Yy Zz (([Acc])+[Xx])/[Yy] ® Zz

Move 19 Xx Yy [Xx] ® Yy

 1L Xx Unconditional jump to Xx

Jump 1K Xx Yy Zz Conditional jump: if [Xx] is positive, 
jump to Yy, otherwise to Zz

 1J Xx Yy Overflow detection: if the absolute 
value of [Acc] is less than 16, jump to 
Yy, otherwise to Xx

Input 1P Read card[s]

Output 1M Xx Yy Zz [Xx] print after decimal conversion

 1N Xx Yy Zz [Xx] print direct with hexadecimal 
image

Stop 00 Stop

• [Acc] denotes the content of the accumulator.

• 00 for Xx, Yy, Zz specifies the accumulator, its value can be used by the next instruction.

• Yy, Zz for output instruction specify the layout and one character in front of the data.

An example of a FUJIC instruction is: 
70 10 2P 1K ; (Acc) + (address 10) + (address 2P) ® address 1K

Address 00 denotes accumulator, therefore, 
1K 00 20 1J ; jump to address 20 if the content of accumulator is positive, otherwise jump to address 
1J.

Input Instruction and Program Loading

The input instruction (1P) of the FUJIC is both unique and powerful, since it continues reading a data triplet 
from cards until the end of data is detected. Input data in a card must have the following format: (a) address, 
(b) type and
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(c) word. The type is 1, 2 or 3, which corresponds to hexadecimal, decimal, or end of data respectively. For 
example:

(a) (b)  (c)  

30 1 16 1M 50 00 ;  161M5000 is stored in address 30, since type is I (hexadecimal).

31  2  05 00 00 00 ; 08000000 is stored in address 31, because the type is 2(decimal).

20  3  00 00 00 00 ; end of data, i.e., end of 1P instruction execution, because the type 
is 3 (end of input), then the program control goes to address 20.

The end of the input data shows which address is to be executed next. Therefore, the next instruction of an 
input statement (1P) is written not in the program, but in its input data. A user's source program is loaded 
using this input instruction, so that a special loading program, such as an initial order, is not required.

4— 
MUSASINO-1

The MUSASINO-1 was the second electronic computer and the first parametron computer built in Japan; it 
was completed in March 1957. "Musasino" is the name of the area where the machine was produced by the 
Nippon Telephone and Telegram Public Corporation. The MUSASINO-1 was a binary, single-address, 
fixed-point computer, compatible with the ILLIAC-1 of Illinois University. Parametrons were used as its 
basic elements. In order to use the extensive library of programs for the ILLIAC-I, the MUSASINO-1 
implemented a superset of its instructions, but it was not totally compatible with the ILLIAC-1. Because 
many programs of the ILLIAC-1 used redundant bits of the instruction, this meant that they were

Table 5: The MUSASINO-1

Start 1952

Completion date March 1957

Retirement date Jul 1962

Number of parametrons 5,400

Number of vacuum tubes 519

Memory Magnetic core, 256 words

Word length 40 bits, 2 instructions/word

Input Photo electric paper tape reader

Output Paper tape punch

Addition/subtraction time 1.35 ms

Multiplication time 6.8 ms

Division time 26.1 ms

Clock frequency 6–25 kHz
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Table 6: The ETL-Mark-4

Design start October 1956

Completion date November 1957

Retirement date August 1959 (remodeled to ETL-Mark-4a)

Number of transistors 470

Number of diodes 4,600

Memory Magnetic drum (18,000 rpm), 1000 words Average 
access time 1.65 ms

Word length 5 decimal digits+sign

Input Mechanical paper tape reader (10 characters/sec) Photo 
electric paper tape reader (200 characters/sec)

Output Electric typewriter (8 characters/sec) 
Paper tape punch (30 characters/sec)

Addition/subtraction time 3.4 ms

Multiplication time 4.8 ms

Division time 6.4 ms

Comparison time 1.8 ms

Clock frequency 180 kHz

not redundant for MUSASINO-1. In the first version, the memory consisted of only 32 words. A year later, 
it was extended to 256 words.

5— 
The ETL-Mark-4

The ETL-Mark-4 was developed by Dr. Sigeru Takahasi and his group at the Electrotechnical Laboratory in 
November 1957.

This was Japan's first transistorized computer, and the first decimal computer with a magnetic drum 
memory. Although its word length was only 5 decimal digits, the 1000-word memory was the largest at that 
time.

Internal Structure

An arithmetic word consists of 5 decimal digits and a sign. There is an implicit decimal point at the leftmost 
position of a word, a convention respected by the arithmetical operations.

Figure 3 
Arithmetic Word
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Figure 4 
Instruction Word

An instruction word consists of 2 decimal digits to encode the operation, and 3 decimal digits for the 
address. The sign is not used.

One digit consists of 4 bits. The ETL-Mark-4 could not handle the full alphabet – only a few letters, such as 
D, Q and Y, could be recognized. The processor contains three registers: the accumulator, MDR (keeps a 
multiplier for multiplication) and MQR (keeps the quotient after division). Their sizes were 10, 5 and 5 
decimal digits, plus a bit for the sign.

Source programs for the ETL-Mark-4 were written in machine code and were loaded according to the initial 
order described below. Neither mnemonic operation codes nor symbolic addresses could be used in a 
program.

Instruction Set

The operation part must be always written using 2 decimal digits, but the address may consist of significant 
digits only. Absolute addressing or relative addressing may be used, indicated by the letter Y or Q 
respectively. For instance, '' 0223Y" denotes the absolute address 02023. On the other hand, "0223Q" 
denotes a relative address. If this program group is loaded starting at address 500, this becomes the address 
02523.

A constant is written in the format of an absolute address instruction. If the value of a constant is 10, 
"0010Y" or "00010Y" should be used. Writing "10Y" is not allowed. A negative constant cannot be written.

The ETL-Mark-4 provides no address modification facilities such as index registers. In Table 7 the 
following conventions were used:

• n: address part of an instruction.

• [x]: content of x, x is address n, Acc, MDR or MQR.

Although the ETL-Mark-4 cannot handle alphabets, the "type out" instruction listed above (code 36 n) prints 
the 10 special characters listed in Table 8 on a typewriter.
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Table 7: ETL-Mark-4 Instruction Set

Code Name Meaning

02 n Add [n]+[Acc] ® Acc

03 n Clear add [n] ® Acc

04 n Subtract -[n]+[Acc] ® Acc

05 n Clear subtract -[n] ® Acc

06 n Multiply and add [n]×[MDR]+[Acc] ®Acc

07 n Clear multiply and add [n]×[MDR] ®Acc

08 n Divide [Acc] / [n] ®MQR

10n Multiply and subtract -[n]×[MDR]+[Acc] ®Acc

11n Clear multiply and subtract -[n]×[MDR] ®Acc

12n Load MD [n] ® MDR

14n Store [Acc] ®n

15n Clear Store 0®n

16n Store MQ [MQR] ®n

20n Plus jump Jump if [Acc]>= 0

22n Stop and jump Stop, jump when restart

24n Minus jump Jump if[Acc] < 0

26 Raise [Acc] + 10-5® Acc

27 Clear raise 10-5® Acc

28 Round off Sign ([Acc])x(abs([Acc])+5x10-6) ®Acc

30n Left shift [Acc]× 10n ®Acc

32n Right shift [Acc]× 10-n ®Acc

34n Type out Type left most n digit from Acc

36n Type special character Type a specified character, see below

40n Read in Read n digits into Acc

41n Clear read in Clear read n digits into Acc

Table 8: Special character output

n Character 
0 space 
1 carriage return 
2 line feed 
3 upper case 
4 lower case 
5 + 
6 - 
7 . 
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Load and Start Address

There are two parameters for the initial order, one is the first address of the program loading or the origin of 
the relative address, the other is the start address of execution.

• "14nD": n indicates the first address for program loading. For example, 14100D means that subsequent 
instructions will be stored starting at address 100, and the value 100 will be added to relative addresses.

• "20nDOOY": n indicates the start address of program execution. The number n must always be an absolute 
address. For example: "20500DOOY" stops program loading and begins program execution from address 
500.

Comments could not be added to a source program because the ETL-Mark-4 could not handle letters. 
However, in my simulator source programs can be annotated. All characters occurring between two 
semicolons, or between semicolon and a carriage return, are treated as comments.

An initial order is used for ETL-Mark-4 source program loading. The paper tape punched source program is 
loaded by the initial order which was stored previously from addresses 0 to 31 of the memory. After pressing 
a start button on the MTL-Mark-4 console, the loader started, the source program was loaded onto the 
memory and started running. When the stored initial order was damaged in memory, which often occurred, 
the following three instructions were manually inserted from address 0 to 2. Starting the machine at address 
0, after loading the initial order tape on the paper tape reader, the initial order itself was loaded to memory 
again.

address   instruction 
    0     40005         ; read 5 digits into Acc 
    1     14003        ; store Acc into address 3
    2     40005        ; read 5 digits into Acc

Further Developments

The ETL-Mark-4 was remodeled into the ETL-Mark-4a (see Section 7) in August 1959. In July 1956, the 
ETL-Mark-3 was developed as a pilot model of a transistorized computer (memory: optical glass delay line). 
This was, in fact, the first Japanese transistorized computer, but it was not put to any practical use due to the 
unreliability of the pin-point contact transistors. Since that time the pin-point contact type transistors have 
never again been used.

The ETL-Mark-4 and the ETL-Mark-4a were succeeded by the Yamato (Feb. 1959), the ETL-Mark-5 (May 
1959), the K-1 (June 1960) and the ETL-Mark-6 (March 1966). Some of the earliest experiments in English 
to Japanese machine translation were carried out using the Yamato ("Yamato" is an
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ancient name for Japan). It had a memory capacity of 82 Kbits–huge for computers at that time.

6— 
The PC-1

The PC-1 (Parametron Computer 1) was developed by Professor Hidetosi Takahasi's Laboratory at the 
Department of Physics, University of Tokyo, in March 1958. The parametron was invented by Dr. Eiichi 
Goto when he was a post-graduate student in 1954. Since it was cheap and reliable, it was widely used in 
Japan, but it was replaced by transistors, because of the difference in speed. The PC-1 was a binary, single-
address computer using parametron and magnetic core memory. Its architecture was similar to that of the 
EDSAC computer built at Cambridge University, but it was not compatible with the EDSAC. Its instruction 
set and instruction format were very carefully refined.

The PC-1 was very famous for its initial order, which installed a paper tape punched-source program written 
in symbols into the memory. It took charge of decimal to binary conversion, code conversion, the process of 
relative and absolute addresses, and so on, in only 68 words. The PC-1 initial order is undoubtedly one of the 
masterpieces of computer programming in the world. It is worth decoding the initial order.1

Table 9: The PC-1

Start September 1957

Completion date March 1958

Retirement date May 1964

Number of parametrons 4,200

Memory Magnetic core 512 words (short), 256 words 
(long)

Addition/subtraction time 0.4 ms

Multiplication time 2.6 ms (short), 4.4 ms (long)

Division time 16.1 ms (short/long)

Clock frequency 10 kHz

Input I Photoelectric paper tape reader

ouput Tele-typewriter

1 See in this volume; E. Wada, "The Parametron Computer PC-1 and its Initial Input Routine."
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Table 10: The ETL-Mark-4a

Completion date August 1959

Memory Magnetic drum, 1,000 words (access time 2 ms) 
Magnetic core, 1,000 words (access time 0.01 ms)

Word length 7 decimal digits + sign

Input Photoelectric. paper tape reader

Output Electric typewriter and paper tape punch

Addition/subtraction time 4.2 ms (drum) 0.24 ms (core)

Multiplication/division time 7.2 ms (drum) 3.40 ms (core)

Comparison time 2.2 ms (drum) 0.25 ms (core)

7— 
The ETL-Mark-4a

The ETL-Mark-4a was remodeled from ETL-Mark-4 in August 1959. The word length was extended from 5 
decimal digits to 7 decimal digits. A 1000-word core memory, 2 index registers and many new instructions 
were added. Its basic architecture, including decimal coding, single-address instruction format, and 
input/output units were left unchanged.

8— 
The TAC

The development of the TAC (Todai Automatic Computer) began in 1952 and was completed in 1959, using 
a huge number of vacuum tubes as basic elements and cathode ray tubes as memories. The TAC was a 
binary, single-address, fixed-point arithmetic computer, basically compatible with the EDSAC. The 
following extra functions were incorporated in the TAC:

• division instruction,

• floating-point arithmetic, and

• B-register (index register).

The reason it took almost eight years to develop the TAC, from the start of its design to completion, was not 
the challenge of regulating the huge number of vacuum tubes, but the tremendous problems involved in 
regulating the cathode ray tube memories. Subsequently, cathode ray tubes were never again used as 
memories in Japan.
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Table 11: The TAC

Start 1952

Completion date January 1959

Retirement date July 1962

Number of vacuum tubes 7,000

Number of diodes 3,000

Memory 16 cathode ray tubes, 512 words

Word length 17 bits (short), 35 bits (long), 70 bits (floating-point)

Input Paper tape reader

Output Paper tape punch Electric typewriter

Addition/subtraction time 0.48 ms

Multiplication time 5.04 ms

Division time 9.84 ms

Clock frequency 330 kHz.

9— 
The Handai-Computer

The development of the Handai-computer began in 1954 at Osaka University. "Handai" is an abbreviation of 
Osaka University in Japanese. The Handai-computer was a binary, single-address, fixed-point arithmetic 
computer, and vacuum tubes were used as basic elements with crystal delay units as memories.

Although the computer functioned partially, it did not operate as a whole system, and unfortunately, its 
development was abandoned in 1959. Thus, the Handai-computer was never officially inaugurated, and it is 
now kept at Osaka University.

Table 12: The Handai Computer

Start date 1953

Abandon date 1959

Number of vacuum tubes 1,500

Number of diodes 4,000

Memory Crystal delay unit, 512 words

Word length 40 bits (2 instructions/word)

Input i Paper tape reader

Output Paper tape punch (6 characters/sec)

Addition/subtraction time ! 0.04 ms

Multiplication time I 1.6 ms

Division time not implemented

Clock frequency 1 MHz



   

 

Page 432

10— 
The K-1

The K-l was produced to commemorate the 100th anniversary of the foundation of Keio University in April 
1960.

The basic architecture of the K1 (i.e., the use of the decimal system, transistors and magnetic drum 
memories) was the same as that of the ETL-Mark-4 and the ETL-Mark-4a. Its word length was extended to 
11 decimal digits and floating-point arithmetic operations were added. Instructions with both one and 1+1 
addresses, could be coded. However, since there was no assembler comparable to IBM 650 SOAP2, its 1+1 
address facility could not be used effectively. The K-is still kept at the Faculty of Science and Technology, 
Keio University.

11— 
Software Simulators

I have programmed six software simulators for the first Japanese computers (ETL-Mark-2, FUJIC, ETL-
Mark-4, PC-, ETL-Mark-4a and K-) which emulate the instructions of these early machines. The source 
programs of these computers can now be tested and executed. Anyone who is interested in the first Japanese 
computers can test and use the simulators using either UNIX or MS-DOS.

However, the functions of the simulators are not exactly the same as the original machines. For instance, 
they use the standard input of the language C instead of a paper tape or card, and the standard output instead 
of an output typewriter or printer. Moreover, they do not simulate the timing of instructions. Also, a busy 
jump instruction for I-O-units will never jump, because this information is absorbed by the operating system.

Table 13: The K-l

Completion date June 1959

Number of transistors 900

Number of diodes 11,500

Memory Magnetic drum (10,000 rpm), 1,200 words (average 
access time 3 ms), Magnetic core 1,000 words 
(access time 0.01 mns)

Word length 11 decimal digits + sign

Input Photoelectric paper tape reader

Output Electric typewriter and paper tape punch

Addition/subtraction time 0.36 ms

Multiplication/division time 5.50 ms

Clock frequency 200kHz
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More information, sample programs and simulator programs written in C are available at 
http//www.comp.ae.keio.ac.jp/pub/simulator. This web site is updated whenever new information or 
materials are obtained.

12— 
Conclusions

The pioneers of computing in Japan produced their own machines soon after the end of World War II, under 
difficult circumstances and with small budgets. We, as their successors, need to preserve their achievements 
as much as possible. However, due to the non-availability of old vacuum tubes and paper tape punchers, it is 
nearly impossible to operate or to reconstruct the machines in their original form. However, using software 
simulators of the early machines, we can easily test and operate the old programs, while keeping 
maintenance costs low. Moreover, they can be very easily transferred to any other computer.

Several papers and documents have been written about the hardware, but, unfortunately very few documents 
exist that deal with the program libraries or software. For instance, "1000-digit calculation of e or ¬ which 
required only a few seconds" or "a partial differential equation which was solved numerically" were 
reported, but the programs themselves were not kept. One exception is the program libraries of PC-1, which 
were collected systematically but are only available in private edition.

References written in English are rare and difficult to obtain. References written in Japanese are available on 
my web site.
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The Parametron Computer PC-1 and Its Initial Input Routine

Eiiti Wada

Abstract. The Parametron Computer 1 (PC-1) was born at Professor Hidetosi Takahasi's Laboratory in 
1958. The logical components of the PC-1 were parametrons, elements which could compute majority logic. 
The memory system operated using a dual frequency read/write scheme. The address decoding mechanism 
applied an error correcting scheme in order to decrease the number of components necessary. Most of the 
hardware technology was conceived by Eiichi Goto.

We studied the EDSAC computer carefully at the time, but we developed the architecture and programming 
system based upon our own philosophy. The instruction set was chosen to ease programming. Conventional 
teletypes were employed, leaving the burden of code conversion to software, which seemed to us to have 
almost infinite abilities.

However, the memory capacity was small and we had to invent clever ways of implementing some 
operations. In this contribution, I describe the initial input routine and then: (a) the code conversion table 
contained in the program body, and (b) the magic number method to control the number of multiplications 
during decimal-binary conversion.

The PC-1 was one of the first computers which implemented interrupts. The peripheral devices interrupted 
the running program by saving the address of the next instruction to be executed, and then jumping to a fixed 
location in memory. As a simple experiment in multiprogramming, we implemented concurrently the binary 
to decimal conversion program and a printer control routine which used a circular buffer.

1— 
Introduction

The Parametron Computer 1 (PC-1) was a binary, single-address computer developed at Professor Hidetosi 
Takahasi's Laboratory at the Department of Physics, University of Tokyo, and was one of the first general 
purpose computers that used parametron components and dual frequency magnetic core
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memory.1 Construction started in September 1957 and was completed on March 26, 1958. The PC-1 was 
used at Takahasi's Laboratory for research related both to hardware and software and the researchers in the 
Faculty of Science also used it for scientific computing. The PC-1 was retired in May 1964.

The British EDSAC computer had a great influence on the design and implementation of all aspects of the 
PC-1 because it was the only computer described in a textbook at the time.2

The arithmetic and control circuits of the PC–consisted of 4200 parametrons. Binary numbers were coded 
using the two's complement representation; a short number was coded using 18 bits and a long one using 36. 
The single-address instructions were 18 bits long and there were about 20 of them. The memory consisted of 
512 short words. The clock frequency was 15 KHz. One addition or subtraction required 4 clock cycles; one 
multiplication 26 cycles for a short multiplier, or 44 cycles for a long multiplier. Division consumed 161 
cycles and a store operation 8. The power consumption was 3 Kw and the floor area required was 8 square 
meters. The input was done using a photoelectric paper tape reader; the output was provided by a teletype.

The PC-1 seems to be the first computer which implemented interrupts, which means that we were 
experimenting with multiprogramming as early as 1959. The research on modular computations mentioned 
by Knuth was conducted on this machine.3

This contribution reviews the parametron and memory circuits in sections 2 and 3, then the structure of 
memory and registers in section 4. The teletype code used by the PC-1 is given in section 5, so that the 
readers can understand the details of the input/output routines. Section 6 gives an overview of the instruction 
set. A few other instructions implemented later for experimental use are not included here. The operation of 
interrupts is described briefly in section 7. Section 8 sketches the initial input routine R0.4 The program 
listing can be found in Appendix A.

1 H. Takahasi (ed.), Parametron Computers, Iwanami Shoten, 1968 (in Japanese).
2 M. V. Wilkes, D. J. Wheeler, and S. Gill: The Preparation of Programs for an Electronic Digital Computer, Addison-
Wesley Press, Inc. 1951.
3 D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 3rd ed. p. 291.
4 The editors of this volume suggested using the word ''assembler" instead of " initial input routine". However, from the 
viewpoint of systems programming, they are quite different things. The initial input routine is different from the assembler 
since the initial input routine is: 1) very primitive; it normally coexists in the storage with the user's program; 2) the 
parameters must be explicitly present; 3) parameters are not symbolic addresses; they cannot refer forward; 4) the 
programmer may use parts of the initial input routine if he fully understands it; 5) special functions may be achieved by 
combining the directives; 6) interleaving can be used to save storage space. The assembly program is on the contrary: 1) very 
large; assembly and pro-

(footnote continued on next page)
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2— 
Parametrons

The parametron was invented by Eiichi Goto in 1954 when he was a graduate student. A parametron is a 
resonant circuit of frequency f energized by parametric excitation. When the circuit parameter is excited 
repeatedly with twice the resonance frequency, the circuit is energized. Fig. 1 shows a parametron circuit. 
Here, the reactance is modulated by a driver line. With respect to the excitation frequency 2f (gray line), the 
circuit might be energized in one of

Figure 1 
Parametron circuit

Figure 2 
Parametron connection

Figure 3 
Parametron connection for majority logic

(footnote continued from previous page)

duction run are distinct phases; 2) symbolic addresses may be used; forward and backward references are automatically 
resolved; 3) special functions are designed as fundamental from the beginning; they are expressed with names and 
parameters;

(footnote continued on next page)
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Figure 4 
Parametron logic

the two possible phases, 0 and p (broken lines). One of the two phases is considered to represent 0 and the 
other 1, thus it is possible to represent one bit of information.

All parametrons were grouped in one of three sets, namely I, II or III. Each set was excited in turn and the 
output of set I was fed to set II, the output of set II to set III, the output of set III to set I, by connecting 
through the input transformers (Fig. 2). The input signals were the oscillation phases of the previous set and 
the oscillation of the new set was determined by the majority

Figure 5 
Carry detector

(footnote continued from previous page)

4) inside of the assembly program is the black box for the programmer; program segment cannot be used by the user.
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of input signals (phases). Therefore parametrons implemented majority logic (Fig. 3). Negation was 
achieved by reverse coupling.

Fig. 4 shows the typical operations with the possible constant input 0 or 1. (0) is represented as-, 1 as + in 
the circle. (The small cross on the input line indicates negation.) In Fig. 4, the rightmost circuit is a full adder 
([x, y, z] means majority of x, y, z). One of the interesting circuits was a carry detector which detects n digit 
carries before performing additions in log 2 n logical steps.

Fig. 5 shows an array of the full adders with the carry detector. The carry detector works as follows: the 
parametrons in the figure are subscripted in each column a, b, etc., from the left. The input carry to the 
highest full adder, c7d, is 0 if both x6a and y6a are 0 and 1 if both x6a and y6a are 1. If x6a and y6a are 1 then x6b 

and y6b become 1 and x6g and y6g also become 1, thus c7d is 1. In case both x6a and y6a are 0, c7d is 0 in the same 
way. However, if x6a and y6a are 0 and 1, then two inputs to x6b and y6b cancel out and x5a and y5a will have the 
casting vote. If x5a and y5a are again 0 and 1, then c7d is determined by x4a and y4a at x6g and y6g. In this fashion, 
carry inputs c4d to c7d are determined at the third parametron column (d). The carry inputs to c2d and c3d are 
determined at the second parametron column (g). Thus, in general, the steps needed to detect carries are log 2

n. Although not shown in Fig. 5, the usual carry paths from one full adder to the next exist. They are used for 
repeated additions during multiplication. At the final stage of multiplication, carries are detected using this 
circuit. The addends together with the detected carries are fed to the full adders to obtain the sums.

3— 
Memory

Goto also invented most of the technology for the memory of the PC-1. The magnetic core memory of the 
PC-1 used sinusoidal waves rather than pulses for a write/read operation. The core matrix consisted of a 36 x 
256 rectangular array. In each writing operation, a sinusoidal wave of frequency 1/2fwent through the wire 
selected from one of the 256 rows, and the 36 information bits were applied to the 36 column wires in the 
form of a sinusoidal wave of frequency f, where the phase of the latter wave represented each information 
bit. The cores on the cross points of both wires were subjected to a magnetizing force of the form

I0 cos pft ± I1 cos 2 pft,

and the asymmetry of this wave caused magnetization of the core in one or the other direction (Fig. 6).

The read out signals were obtained from the second harmonic waves of the column wires (Fig. 7).
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Figure 6 
Memory write

The address selection mechanism was based on an error-correcting code developed by Takahasi and Goto.5

Figure 8 
Word selector

5 H. Takahasi and E. Goto: "Application of Error Correcting Codes to Multiway Switching", UNESCO International 
Conference on Information Processing, Paris 1959, G 2.9.
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Table 1: Output currents

input output

I(y0 ) I(y1) I0 I1 I2 I3
–I –I –2I     0    0 +21

+I –I     0 –2I +2I    0

–I +I     0 +21 –2I    0

+I +I +2I     0    0 –21

Selection Logic

The transformers shown in Fig. 8 will produce the output current shown in Table 1, when driven by input 
currents I(y0) and I(y1) of the same frequency and the same amplitude but in either phase, 0 or p (indicated by 
+I and –I). The parametrons will oscillate when driven with full amplitude, but will not oscillate under a 
weaker current. So, in this case, of the word selection parametrons driven by the output current, only those 
that are fed with ±2I oscillate, the others remain inactive. However, the difference between the maximal 
amplitude and the next one is only 21 and the discrimination power is not enough. However, by employing, 
for example, the 7 bit Hamming error-correcting code for 4 input lines, the discrimination power is 71 vs. ±I, 
which is enough for the purpose of selection. The PC-1 used 18-bit input lines and excited only one address 
selection parametron out of 256.

4— 
Structure of Memory and Registers

The structure of the PC-1 memory is shown on the left of Fig. 9. It consists of 512 short words. Like the 
EDSAC, two short words at addresses 2n and 2n+1 can be combined into one long word. Instructions are 
coded using short words, but numeric data may be 18 or 36-bit long. Instructions which refer to long word 
operands must use an even numbered address and have a 1 in the I/s bit of the instruction. Some instructions, 
however, used the l/s bit for other purposes. Of three arithmetic registers contained in the arithmetic unit, the 
accumulator and the R register were used for programming. The memory register was used to hold the 
multiplier and divisor. The contents of the arithmetic register were assumed to be fractional, i.e. numbers are 
represented in the range of –l £ n <1.
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Figure 9 
Storage and registers

5— 
Teletype Code

The PC-1 used a conventional teletype for input/output without modifying the code. In those days, the 
teletype code used in Japan consisted of 6 bits. The lower 5 bits are similar to the 5 bits of the international 
teletype code. Digits and some special characters have a 1 in the most significant bit. However, since the 
codes of the digits are based on the character codes of the third row of the teletype, the code patterns and the 
numerical values of the digits are quite independent. Therefore the input and output routines need a code 
conversion table.

Teletype Code Table

000000 Blank 010000 e 100000 Signal 110000 2

000001 t 010001 z 100001 4 110001  

000010 CR 010010 d 100010 - 110010  

000011 o 010011 b 100011 8 110011  

000100 SP 010100 s 100100  110100  

000101 h 010101 y 100101  110101 5

000110 n 010110 f 100110 , 110110  

000111 m 010111 x 100111 . 110111 =

001000 LF 011000 a 101000 + 111000 0

001001 1 011001 w 101001  111001 1

001010 r 011010 j 101010 3 111010  

001011 g 011011 FGRS 101011  111011  

001100 i 011100 u 101100 7 111100 6

001101 p 011101 q 101101 9 111101  

001110 c 011110 k 101110  111110  

001111 v 011111 LTRS 101111 : 111111 Erase
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Figure 10 
Tape image

6— 
The PC-1 Instruction Set

The PC-1 implemented the following list of instructions. The suffix "I" makes the instruction refer to a long 
word or indicates variations.

a n, al n Add the number in storage location n (nL) to the accumulator.

b n, bl n Replace the accumulator with the bitwise XOR of the numbers in 
storage location n (nL) and the accumulator.

c n, cl n Replace the accumulator with the bitwise logical AND of the numbers in 
storage location n (nL) and the accumulator.

d n, dl n Divide the number in the accumulator and R register by the number in 
storage location n (nL) and place the quotient in the accumulator, the 
remainder in the R register. The remainder is always positive.

i n If the tape reader is ready, read a character and place it in the bits 0-5 of 
the accumulator and clear the bits 6–35; if not ready, jump to n.

jl n Jump to n.
k n If the number in the accumulator is smaller than 0, jump to n.
kl n If the number in the accumulator is positive, jump to n.
l n If n < 1024, shift the accumulator n places to the left; if n > 1024, shift 

the accumulator logically 2048 – n places to the right.
ll n Same as I n except that it shifts the accumulator and the R register.
n n, nl n Clear the accumulator and subtract the number in storage location n (nL) 

from the accumulator.
o n If the teletype is ready, place bits 0–5 of the accumulator into the 

teletype; if not ready, jump to n.
p n, pl n Clear the accumulator and add the number in storage location n (nL) to 

the accumulator.

(table continued on next page)
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(table continued from previous page)

q n, ql n Replace the accumulator with the number in the R register and load the 
R register with the number in storage location n (nL).

r n If n < 1024, shift the number in the accumulator n places to the right; if 
n ≥ 1024, shift the number in the accumulator 2048–n places to the left.

rl n Same as r n except that it shifts the accumulator and the R register.
s n, sl n Subtract the number in storage location n (nL) from the accumulator.
t n, tl n Store the contents of the accumulator to storage location n (nL).
v n, vl n Multiply the number of the accumulator and the number in storage 

location n (nL) and place the product in the accumulator and the R 
register.

w n, wl n Do the same as vn (v In) and add the original contents of the R register 
multiplied by 2-17 (for w n), or by 2-35 (for wl n), to the product.

X n Store bits 7–17 of the accumulator to the address part of storage location 
n.

z n Jump to n if bits 7–17 of the accumulator contain 0.
zl n Jump to n if the content of the accumulator is 0.

7— 
Interrupts

From the beginning, the input/output instructions were designed to have busy jump facilities, that is, when a 
device was not ready, instead of waiting for the completion of the operation, the programmer could choose 
another path by jumping to the alternative context. However, after one year's experience we concluded that 
the busy jump facilities were hard to use effectively.

Therefore, in the summer of 1959, another approach was adopted: interrupts. The devices were designed to 
interrupt the program whenever they were ready for use. The interrupt worked as follows:

1. When the current peripheral operation was completed, the program counter holding the location of the 
next instruction was stored in the address part of location 510 and control was sent to 511 (last storage 
location).

2. At the same time, further interrupts were disabled by setting a flip-flop, because otherwise the return 
address could be overwritten by a subsequent interrupt.

3. The jump instruction in 511 led the control to the interrupt handling routine.
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4. At the end of interrupt handling and after resetting the interrupt disable flip-flop, the program returned to 
the former routine with the information in 510.

In the print routine digits were printed after doing the binary-decimal conversion and code conversion to the 
teletype codes. However, a digit could be converted faster than it could be printed with the teletype. 
Accordingly, the output conversion program placed the teletype code in the circular buffer without waiting 
for completion of the previous printing. Later, when the teletype finished printing one digit, it interrupted a 
running program, and the interrupt handling, taking control, started the teletype again with the next code 
taken from the circular buffer.

Figure 11 
Interrupt handling routine
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8— 
The Initial Input Routine RO

The initial input routine RO of the PC-used an approach similar to the initial orders of the EDSAC or the 
DOI (decimal order input) of the ILLIAC I, insofar as instructions are denoted by a mnemonic code and 
addresses by decimal numbers etc. In detail, there are several differences.

1. Because of the use of 6 bit teletype code, there were more characters available for programming. Without 
shifting to upper case, we could use all the small alphabetic characters, decimal digits, and 6 special 
characters (comma, period, colon, equal, plus and minus).

2. Instructions and directives were terminated with special characters, making the syntax more user friendly:

a) Instructions and short numbers were delimited by commas.

b) Directives were delimited by periods.

c) Start addresses of the program segments were indicated by colons.

d) Code letters were defined by equal signs.

e) Long numbers were delimited by plus or minus signs.

3. Teletype codes for number digits bore no relation to the numeric values. Therefore a code conversion 
table had to be used which was intermixed with the initial input routine. The address numbers of some of the 
initial input routine instructions served as the code table.

4. A digit counter for reading fractional numbers was implemented using the magic numbers, that is the ten 
odd numbered decimal fraction consisted of the most significant ten bits.

Code Table Hidden in the Program

As mentioned before, the codes of digits and numerical values are different. So, we needed to store a code 
conversion table somewhere. In the first version of the initial input routine, ten consecutive short words were 
used to accommodate the code table and each input character had to be compared to determine its numerical 
value. The conversion using a table for the other direction, i.e., a table from code to numerical value, needed 
a larger space. Since the smallest code is –31 (digit 4) and the largest –4 (digit 6), 28 short words were 
needed for the table which seemed too large for the 512-word computer. So, the accepted solution was to 
hide (or distribute) the code table inside the program body of the initial input routine. This worked very well.

Table 3 shows a list of digits, the corresponding code and the value of the codes. Each of the values, 
increased by 56, was the address at which an instruction with the number in its address part had to be stored. 
The instructions of these locations are shown in the last column of the table.
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Table 3: Conversion table for digits

digit code value address content

0 111000 –8 48 r 0
1 111001 –7 49 1 1
2 110000 –16 40 p 2
3 101010 –22 34 x 3
4 100001 –31 25 jl 4
5 110101 –11 45 kl 5
6 111100 –4 52 jl 6
7 101100 –20 36 rl 7
8 100011 –29 27 Space 8
9 101101 –19 37 11 9

Table 4: Base orders for special symbols

symbol code value address content directive

, 100110 –26 30 *s 45 jl 57
, 100111 –25 31 *s3 jl 15
: 101111 –17 39 *el 54 x 66
= 110111 –9 47 *nl 12 p24
+ 101000 –24 32 *s6 jl 18
- 101000 –30 26 *s 6 jl 18

Similarly, other terminating characters were treated by assigning the pseudo instructions (in the program of 
R0, this is referred to as the base orders) in the appropriate locations. The results are shown in Table 4. The 
stars in the content column indicate 1 in the sign bit. To obtain the instructions (most of them are jump 
instructions), the content was added to *nl 12 (instruction in 14 of the initial input routine).

This was possible because the initial input routine was stored in a fixed place and the addresses were 
unchanged (compare Table 3 with R0, Appendix A).

The ''Magic Number" for Binary Conversion

In the days of the PC-1, memory was the most crucial resource. One of the techniques used in the input 
routine was to count the number of characters by means of the strobe, the magic numbers, in the course of 
reading a fractional number up to 10 decimal digits.

When reading a fractional number, for instance 0.25, the fractional part was first read as an integer. Thus 
0.25 appeared in the accumulator simply as 25. The number of characters already read was 2. Accordingly, 



   

the content of the accumulator was multiplied by 108 and then divided by 1010.
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When the decimal point was read, a "magic number" was loaded into the accumulator where the decimal to 
binary conversion was performed (the period was identified as the decimal point if the working area was 
cleared; otherwise, it served as the directive delimiter).

The magic number was 1.193359375 in decimal, and 1.001100011 in binary representation. Since all digits 
are odd, in the course of multiplication by 10 during the decimal to binary conversion, the sign bit always 
remained as 1, i.e., the number seemed negative. And the least significant bit of the magic number was being 
shifted to the left 1 bit each time. At the same time, the result of decimal to binary conversion crept up from 
the right.

The input of a long fractional number is terminated by + or–. When the input was terminated, the dummy 
multiplication by 10 was repeated until the accumulator became positive, which meant the multiplication by 
10 was executed exactly 10 times.

The magic number for 6 digits is shown as an example in the diagram below. The 6 digits magic number is 
calculated like this. Write down the numbers 20, 2-1, 2-2, . . . , 2-5 Summing up proceeds from the bottom 
checking if the result of addition produces an odd digit in the last position of that number. If an odd digit is 
produced, add that number, otherwise skip the addition of the number by crossing it out. This brings up the 
number 1.59375 as shown below. The magic number for 6 digits is:

1.0 
0.5 
0.25 
0. 125 
0.0625 
0.03125 + 
1.59375 (decimal)
1.10011 (binary)

9— 
Conclusion

The PC-1 played a remarkable role in our group's research of computer architecture and program libraries 
and influenced the work in computational physics and chemistry in the neighboring laboratories. The 
preparation of the system program was essential for all activities within and outside of the group. In this 
paper, some typical techniques used in our system programs were explained.

Judging the research activity of that period retrospectively, the members of the laboratory benefited 
immensely from having their own computer. In a relatively few years, we could learn the whole life cycle of 
computer development from the hardware elements to the program library. Our homemade computer 
enabled us to make all the experiments in hardware or software that
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came to mind. The scarcity of computers around us led to original research in this field.

After the fundamental system programs were prepared, more advanced programming systems had been 
developed, though I have to say, the PC-1 was too small for such ambitious projects. For instance, we tried 
to introduce symbolic addresses in the initial input routine. This idea was implemented by colleagues in the 
chemistry department. They used lists to keep the unsolved symbols until symbol/location correspondence 
was settled. The modular arithmetic system was an idea of Takahasi. In this implementation, he used the wl 
n operation to obtain the remainder of division by a large prime number.

One day, a flip-flop of the PC-1 was connected to a loudspeaker and a program made the loudspeaker 
oscillate, thus generating a sound. The pitch was controlled by adjusting the shift number of the shift 
instruction and the sound duration was controlled by a busy jump in the output instruction.

A few years later, work was started on the design of the next parametron computer. Construction of this new 
machine, the PC-2, was in the hands of Fujitsu Ltd., so it didn't have the same impact on us as the PC-1. The 
PC-2 was installed in the computer room of the Faculty of Science, University of Tokyo and was used by the 
community.

Every five years, the members of the group who built the PC-1 and maintained the library meet on March 26 
to celebrate the birthday of our beloved machine.
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Appendix A: 
The Initial Input Routine R0

The PC-is a stored program computer and uses the binary system within the machine for the representation 
of numbers and addresses. In using the PC-1, the program and the numerical data should first be stored in 
the machine's memory, before computation starts. This may be done by preparing a tape in which all the 
instructions and numbers are represented in binary form. The tape is read by pressing down the "initial load 
switch". However, writing down the instructions and numbers in binary notation is by no means simple.

The basic input routine "RO" enables the instructions and numbers punched on tape (in decimal and 
alphanumeric notation) to be read and placed in the PC-1 memory. R0 decodes the teleprinter code of the 
PC-1 perforator, converts the decimal numbers into binary form, adds the operation codes and places the 
assembled words in specified locations in the memory. When all the instructions and numbers have been 
stored, R0 causes the machine to start the program by transferring control to a specified word in the memory. 
R0 provides further facilities for turning the relative addresses on tape into absolute addresses, and adding 
one or more parameters to the words before they are stored in the memory. The input routine R0 itself 
occupies the locations 0–67 of the PC-1 memory and is stored there by placing the binary tape of R0 in the 
tape reader and pressing down the "initial load switch".

Each PC-1 instruction is punched in exactly the same form as it is written in the text, that is, the operation 
code consisting of a letter, followed or not by a letter ,,l", followed by a decimal integer denoting the 
address, and terminated by a comma. Non significant zeros at the beginning of the address may be omitted. 
A sequence of instructions is normally placed in consecutive memory locations. The location of the first 
instruction in a sequence must be specified by a "directive" in front of the sequence.

Example: The tape 100: p1150, v1152, s1154, t1156, j1130, causes the memory locations 
100-104 to be loaded with the following object code:

location instruction contents of the memory

100 pl 150 001101100010010110
101 vl 152 001111100010011000
102 sl 154 010100100010011010
103 tl 156 000001100010011100
104 jl 130 011010100010000010

A program tape will consist of one or more sections of such sequences, or subprograms. A blank section of 
some ten centimeters should be left at the beginning of the program tape, and the program should begin with 
a "carriage return and line feed", which clears the working positions of R0 prior to reading essential 
information.
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The complete program should end with the control code "jl M" (terminated by a period), which stops the 
operation of RO and starts the program by causing the control to be transferred to the location M.

Listing of the Initial Input Routine, R0

Location Order Notes

38 ® 0 al   28 Decimal to binary conversion

1 jl   49  

2       0 Constant

3      (0) Temporary storage for binary number

25-4 a   64 Add function

45-5 t   64 Store function and parameter

52,7 ® 6 i    6 Read code, number or symbol

7 zl   6 Jump if blank

46 ® 8 rl  12 Shift teletype code to address part

9 kl  20 Jump if code letter

10 a   33 Add address base

I I x   12 Assemble load order

12 p   (0 Load number or base order

13 kl   34 Jump if number

14 a   47 Modify base order into switch order

18 ® 15 t   18 Set switch order

16 p   29 Load address

17 a   64 Add function and parameter

18    0 switch order (jl 18, jl 57, jl 15, x 66, p 24)

19 jl   55 Jump to "set transfer order"

9 ® 20 a   33 Add address base

21 x   24 Assemble load order

22 S   4 Examine whether code letter is LF

23 z   40 Jump to clear order in case of LF

24 p   (0 Load parameter

25 jl   4 (4) Jump to "add function" order

26 *S   6 (-) Base order for "jl 18" (* means 1 in sign bit)

27 SP   8 (8) Constant, function part is SP

28    (0) Working space for

29    (0) decimal to binary conversion



   

 

30 *s   45 (,) Base order for "jl 57"

31 *S   3 (.) Base order for "jl 15"

32 *S   6 (+) Base order for "jl 18"

33 CR  56 Address base, function part is CR

13 ® 34 x   3 (3) Store binary number

35 pl   28  

36 rl   7 (7) Decimal to binary conversion

37 ll   9 (9)

(table continued on next page)
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(table continued from previous page)

38 jl    0  
39 *el  54 (:) Base order for "x 66"

56,23 ® 40 p    2 (2) Load 0

41 tl  28 Clear working space for conversion

42 t   64  

44 ® 43 i   43 Read function, number or symbol

44 zl  43 Jump if blank

45 kl   5 (5) Jump if function letter

46 jl   8  

47 *nl  12 (=) Base order for "p 24"

48 r   0 (0)

1 ® 49 l   1 (1)

50 al   2 Decimal to binary conversion

51 tl  28  

52 jl   6 (6)

58 ® 53 p   57  

54 a   49 Increase "transfer order"

19 ® 55 x   57 Set "transfer order"

56 jl  40 (Blank) Jump to clear order

18 ® 57 t (67) (t) Transfer order

58 jl  53 (CR)

59 28 (o) o-parameter

60 0 (SP)

61 0 (h) h-parameter

62 parity (n) n-parameter

63 digit (m) m-parameter

64 (0) (LF) Working space for function and parameters

65 2048 (l) l-parameter for long word order

66 (0) (r) r-parameter

67 68 (g) g-parameter, End of tape

May 1, 1958
E. Wada
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