
www.sciencemag.org/cgi/content/full/science.1221054/DC1 
 

 

 
 

Supplementary Materials for 
 

The Heliosphere’s Interstellar Interaction: No Bow Shock 

D. J. McComas,* D. Alexashov, M. Bzowski, H. Fahr, J. Heerikhuisen, V. Izmodenov, 
M. A. Lee, E. Möbius, N. Pogorelov, N. A. Schwadron, G. P. Zank 

*To whom correspondence should be addressed. E-mail: dmccomas@swri.edu 

 
Published 10 May 2012 on Science Express 

DOI: 10.1126/science.1221054 
 

This PDF file includes: 
 

Supplementary Text (S1 and S2) 
Figs. S1 to S4 
Full Reference List 



 
 

2 
 

Supplementary Text 
Supporting online material – S1 

Geometric Relationship of Interstellar Neutral Flow Vector Angles 

In the plane of the trajectories, the angle θ∞ (true anomaly at infinity), swept out by the 

interstellar bulk flow trajectory from infinity to its perihelion at 1 AU, is related to the 

observer location and the ISM flow direction as follows: 

 θ∞ = λISM∞ + 180o - λPeak       (S1-1) 

Because the inflow angle in latitude βISM∞ is rather small (-4.98±0.21o), λPeak, the location 

of the ISM bulk flow peak is taken in ecliptic longitude with negligible effect on the 

results. For the hyperbolic trajectory of the incoming interstellar bulk flow in the Sun’s 

gravitational field, the angle θ∞ swept out by the radius vector of the trajectory from 

infinity to perihelion at 1 AU is related to the bulk speed at infinity VISM∞ by 

  

or:    (S1-2) 

 

where RE is the distance from the Sun to the Earth and Ms the Sun’s mass. Equation (S1-

2) establishes a fixed relation between VISM∞ and θ∞ (and by inference through (S1-1) 

between VISM∞ and λISM∞) that hinges solely on celestial mechanics. A smaller angle θ∞ 

(or λISM∞) is equivalent to a higher speed VISM∞ at infinity and vice versa. Combining (S1-

1) and (S1-2) we get:        (S1-3) 
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 Equation (S1-3) prescribes a relation between λISM∞ and VISM∞ that is based solely on 

celestial mechanics and contains only one free parameter, i.e. λPeak. 

Similarly, we can also formulate an analytical relationship that connects the observed 

peak latitude, ΨPeak, of the bulk flow with the ISM inflow latitude, βISM∞, at infinity via 

the angle θ∞. As shown in (15), the ISM flow direction in latitude in the rest frame at 1 

AU ΨPeak is geometrically related to the inflow direction in latitude at infinity βISM∞ 

through:   

tanψ Peak =
tanβISM∞

| sinθ∞ |                             (S1-4)   

As for equation S1-1, this equation, used in (15) and (16), applies exactly only for angles 

along the trajectory taken in the ecliptic. Again, because βISM∞ is so small, any difference 

in angles over the entire bounding range are <0.1o. The peak directions in the rest frame 

and in the observer frame are related as follows: 

 

� 

sinψPeak
'

VISM (1AU)
=
sin(ψPeak −ψPeak

' )
VE       (S1-5) 

Because VISM(1AU) depends on VISM∞ and thus is related to λISM∞ via (S1-1) and (S1-2), 

an observation of 

€ 

ψPeak
'

 at the ISM flow maximum location yields a relation βISM∞(λISM∞). 

Equation (S1-4) appears to suggest a simple linear relationship between tan(βISM∞) and 

sin(λISM∞ + 180o - λPeak) with only one free parameter ΨPeak, where λPeak is already known 

from (S1-3).  

The observable is indeed 

€ 

ψPeak
'

, which is connected with ΨPeak through equation (S1-5) 

and thus the ISM flow speed at infinity, VISM∞, and ultimately λISM∞. However, the 

transformation from the rest frame into the moving frame produces only a minute 
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variation of ΨPeak as a function of λISM∞. Yet, because we are evaluating equations (S1-4) 

and (S1-5) for a value of θ∞ that is far from 0, a small offset (tanβ0) in tanβISM∞ is 

required when using equation (S1-4) as a linear approximation in the variables shown, i.e. 

equation (S1-4) is modified to read: 

           (S1-6) 

Now, we can use equation (S1-6) for a fit to βISM∞(λISM∞) values, as obtained with either 

the analytical or the test particle method. As a result, we have two fit parameters that we 

can compare, and we can use a simplified relation for the best values. 

 

Resulting Relations for the Interstellar Neutral Flow Parameters 

Equation (S1-3) is determined by celestial mechanics and contains only one free 

parameter, i.e. λPeak. With the analytical method this parameter was determined directly 

from the observations as the location of the maximum ISM flux in ecliptic longitude as 

λPeak = 130.6o averaged over 2009 and 2010 (16). With the test particle method a group of 

best fitting parameter sets was found in a combined χ2 minimization that follows closely 

the same relation, as can be seen in Figures 22 and 23 of (17), but they don’t describe 

exactly the analytical relation. Therefore, we have fitted equation (S1-3) to the results of 

(17), with λPeak as a free parameter, with a resulting value λPeak = 129.8o. However, the 

test particle simulations have been carried out by tracing the neutral atom trajectories 

from 1 AU to 150 AU, while the analytical calculations were carried out from 1 AU to 

infinity. While the latter is an idealized treatment, neutral atoms from the interstellar 

medium travel to 1 AU largely collisionless from distances larger than 1000 AU. 

Therefore, small but noticeable differences in the derived arrival direction and original 

tanβISM∞ = tanβ0 + tanψ Peak ⋅ | sin(λISM∞ +180
o − λPeak ) |
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speed of the particles arise in the two different methods, and we have extrapolated the 

remaining trajectories from 150 AU to infinity with an analytical calculation. This leads 

to small adjustments in the inflow longitude λISM∞ and the inflow speed VISM∞ for the test 

particle results, thus modifying the ISM flow peak location from (17) to λPeak = 130.21o.  

Using the analytical method, we had to obtain the peak location by extrapolating the 

neutral fluxes to the location in each orbit where the IBEX spin axis points exactly at the 

Sun in the ecliptic plane, whereas the best fitting values were obtained from a test particle 

method using all available data simultaneously. This necessarily leads to a larger 

uncertainty for λPeak in the analytical determination. With full error propagation, an 

uncertainty of ∆λ = 0.7o is given by (16), while the χ2 minimization leads to ∆λ = 0.35o 

in (17). In the following, we have derived a weighted mean between the two 

complementary determinations and a combined uncertainty that again considers the 

individual uncertainties by their weighting and the deviation of the individual results as 

an additional quadratic contribution to the uncertainty. This combination of results leads 

to: λPeak = 130.29±0.47o, which can be inserted into equation (S1-3) to establish the 

current best VISM∞(λISM∞) relation 

           (S1-7) 

To arrive at this equation, we have combined 180o and λPeak = 130.29±0.47o. In the 

comparison with data, both methods used the actual distance of the Earth from the Sun 

and orbital speed, while the average values are used for parameterization in the equations. 

Figure S1 shows VISM∞ as a function of λISM∞ for the mean value along with the curve as 

derived by the analytical method and the best values obtained from the test particle 
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method. The combined uncertainties are shown for the mean curve. As can be seen, the 

two methods provide a very close match in their results. The combined uncertainty 

overlaps with both determinations. 

The combination of equations (S1-4) and (S1-5) provides a similar unique analytical 

relation between λISM∞ and βISM∞. However, the relation is more complex and can only be 

solved implicitly. Therefore, we have approximated this relation with equation (S1-6), 

which contains two free parameters for a linear least square fit, i.e. tanβo and tanψPeak. In 

this case, we have fitted both the analytical results by (16) and the test particle results by 

(17) separately, and then obtained weighted mean values in a similar way as above for 

λPeak. Because the uncertainty of the peak location in latitude is largely determined by 

observational uncertainties, both methods carry approximately the same uncertainty. It 

should be noted that tracing to only 150 AU in the test particle method leads to a 

negligible deviation in this parameter, and no correction is necessary. We find as a mean: 

tanβo = -0.030, tanψPeak =-0.073, and an uncertainty ∆βISM∞ = 0.21o, thus resulting in: 

   (S1-8) 

Figure S2 shows βISM∞ as a function of λISM∞ in a similar representation as Fig. S1. 

Again, the different results agree with the mean and each other within the combined 

uncertainty around the mean curve. 

As shown in (16), the temperature T∞ is also tied to the inflow longitude λISM∞ in a 

similar way as the inflow speed and latitude are. To arrive at a simplified functional 

description for the temperature, we make use of the fact that the temperature can be 

expressed in terms of the Mach number M∞ of the flow, which itself only depends weakly 

on the inflow longitude λISM∞, as can be seen in Fig. 8 of (16).  

tanβISM∞ = −0.030 − 0.073⋅ | sin(λISM∞ +180
o − λPeak ) |
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T (λISM∞ ) =
VISM∞
2 (λISM∞ ) ⋅mHe

M∞
2 (λISM∞ ) ⋅γ ⋅k         (S1-9) 

γ is the adiabatic index, k is the Boltzmann constant, and mHe the mass of He. Here we 

have again computed mean values between the temperature determinations in (16) and 

(17), where we have used the temperatures with a minimum correction for the data 

transfer limitations between IBEX-Lo and the central electronics unit of IBEX (as 

described in the Appendix B of (16)). Further analysis of the interface and the data 

system has shown that such a minimum correction appears to be close to actual behavior. 

To account for remaining uncertainties, we have quadratically added the typical 

difference between the two independent temperature determinations to the statistical 

uncertainty. We have then computed the square of the Mach number as a function of 

λISM∞, which we fitted linearly according to: 

M∞
2 (λISM∞ ) = a0 + a1 ⋅λISM∞        (S1-10) 

We found a0 = -13.5 and a1 = 0.489 as the best fitting values, thus leading to 

T (λISM∞ ) =
290.5 ⋅VISM∞

2 (λISM∞ )
(a0 + a1 ⋅λSM∞ )

= 290.5±19 ⋅VISM∞
2 (λISM∞ )

(−13.5+ 0.489 ⋅λSM∞ )    (S1-11) 

where VISM∞(λISM∞) is taken from equation (S1-7).  The uncertainties are combined in the 

coefficient 290.5 ± 19 in equation (S1-11). The temperature relation is shown in Fig. S3 

in a similar representation as used in Figures S1 and S2. The uncertainties shown in 

equations S1-7, S1-8, and S1-11 and also used in Table 1 can be considered the 1σ 

uncertainties based on both complementary analyses (16, 17). 
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Both (16) and (17) derived an optimum value of λISM∞ = 79+3-3.5o, based on χ2 

minimization, largely influenced by the dependence of the observed flow peak in ecliptic 

latitude as a function of observer longitude. The bounding range of -3.5º and +3.0º from 

this value was established in the χ2 analysis based on conservative heuristic arguments as 

described in (16) and (17). This range cannot be directly expressed in terms of σ-

uncertainties, but because of the conservative approaches taken it is likely equivalent to 

significantly larger than 1σ. (15) also demonstrated that the ratio of the angular widths of 

the flow distribution in longitude and latitude constrains VISM∞, based on which (16) 

found a constraint consistent with the same angular range in λISM∞. Table 1 in the main 

paper compiles the most probable value of the flow vector and temperature along with the 

two bounding sets of values in ecliptic J2000 and galactic coordinates. 
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Supporting online material - S2 

Derivation of the Shock Compression Ratio and Other Parameters at the 

Heliospheric Shock/Bow Wave 

A plasma particle interacts with shock electromagnetic fields on the lengthscale of a few 

gyroradii rg and on the timescale of a few gyroperiods τ g . Therefore, an inhomogeneous 

non-stationary shock is locally planar and stationary if rg / R <<1and τ g /T <<1, where R 

and T are the spatial and temporal scales for variation of the shock front. These 

inequalities are valid at the heliospheric bow shock. Thus, we may consider the Rankine-

Hugoniot (R-H) relations for an oblique planar stationary shock with shock normal in the 

x-direction. Since there is no net charge increase or decrease at the shock and ∇×E = 0 , 

E is conserved across the shock. Thus the upstream and downstream vectors B and v 

must lie in the same plane, the so-called coplanarity plane. Finally the observer may 

transform locally into the de Hofmann-Teller frame such that B and v are parallel both 

upstream and downstream of the shock. Without loss of generality we take By = 0 and vy 

= 0. The R-H relations yield a cubic equation for the compression ratio X: 

MA1
2 − X cos2θ( )2 2β1X +MA1

2 X(γ −1)− (γ +1)[ ]{ } 

+MA1
2 X sin2θ X cos2θ X(γ −1)− (γ +1)[ ]+MA1

2 γ + X(2−γ )[ ]{ }= 0 ,                       (S2-1) 

 where subscript 1 refers to upstream quantities and  
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γ = 5 / 3                                                                                                                       (S2-2) 

MA1
2 = vx1

2 / vA1
2

                                                                                                              (S2-3) 

vA1
2 = B1

2 / 4πρ1                                                                                                             (S2-4) 

cos2θ = Bx1
2 / B1

2
                                                                                                          (S2-5) 

β1 = c1
2 / vA1

2
                                                                                                                 (S2-6) 

where c1 is the upstream sound speed. If we set X = 1 in equation (S2-1), we obtain the 

phase velocities of the three MHD modes 

vx1
2 = vA1

2 cos2θ                                                                                                            (S2-7) 

vx1
2 = (1 / 2) vA1

2 + c1
2 ± (vA1

2 + c1
2 )2 − 4vA1

2 c1
2 cos2θ#$ %&

1/2{ }                                                (S2-8) 

The ratio Bz2 / Bz1characterizing the three shocks corresponding to the three MHD waves 

is given by 

Bz2
Bz1

= Xvx1
2 −

Bx1
2 X
4πρ1

$

%&
'

()
vx1
2 −

Bx1
2 X
4πρ1

$

%&
'

()

−1

                                                                          (S2-9) 

Both numerator and denominator of equation (S2-9) are greater (less) than zero for the 

fast (slow) shock. For the numerator positive and the denominator negative we have the 
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intermediate wave. Thus it is clear that Bz2 /Bz1 >1 for the fast shock and Bz2 /Bz1 <1 for 

the slow shock. The fast shock satisfies 

vx1
2 >

Bx1
2 X
4πρ1

,                                                                                                            (S2-10) 

whereas the slow shock satisfies 

vx1
2 <

Bx1
2

4πρ1
.                                                                                                              (S2-11) 

In between these values is the domain of the intermediate wave. Thus it is easy to check 

whether the compression ratio we obtain numerically corresponds to the fast shock. 

 

To construct our map of the bow shock/wave we specify c1 and vA1 in the interstellar 

medium. As we discussed, a reasonable model for the shape of the bow wave near its 

nose is a sphere, presumably centered downstream of the Sun to account for the greater 

downwind extent of the termination shock. The polar (z) axis is oriented from the center 

of the sphere to the bow shock/wave nose. Using spherical coordinates the outward shock 

normal is 

n = isinϑ cosφ + jsinϑ sinφ + kcosϑ ,                                                                     (S2-12) 
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where ϑ  is used to distinguish it from the angle θ  between the shock normal and the 

magnetic field. In this coordinate system we orient the i-axis so that the interstellar 

magnetic field is 

B1 = B1(isinϑ0 + kcosϑ0 ) .                                                                                       (S2-13) 

 

Therefore, we have 

cosθ = (B1 ⋅n) / B1 = sinϑ0 sinϑ cosφ + cosϑ0 cosϑ .                                              (S2-14) 

Now we may evaluate the following parameters: 

vx1
2 = vISM

2 cos2ϑ ,                                                                                                      (S2-15) 

MA1
2 = (vISM

2 / vA1
2 )cos2ϑ ,                                                                                           (S2-16) 

where vISM is the speed of the interstellar plasma flow, which is normal to the bow shock 

at the nose. This may not be quite correct since the orientation of the magnetic field could 

shift the bow shock nose into a direction that is not quite parallel to the interstellar plasma 

flow. However, this subtlety is beyond the scope of this calculation. 
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Now the procedure is to choose a pair of values for the two angles (ϑ,φ). Using these 

values evaluate equations (S2-2) through ((S2-6) using equations (S2-14) through (S2-

16). Insert these values into equation (S2-1) and evaluate X numerically. Check that the 

obtained value of X satisfies equation (S2-10). This should be continued for more values 

of (ϑ,φ) until a contour map of X values is continued out to a bounding contour where X 

= 1. Since, at this boundary, equation (S2-8) with the upper sign is satisfied, we may 

write 

vISM
2 cos2ϑ = (1 / 2) vA1

2 + c1
2 + (vA1

2 + c1
2 )2 − 4vA1

2 c1
2 sinϑ0 sinϑ cosφ + cosϑ0 cosϑ( )2⎡

⎣
⎤
⎦
1/2{ }

. 

(S2-17) 

This relation may be simplified to 

cos4ϑ − (vA1
2 + c1

2 )
vISM
2 cos2ϑ + vA1

2 c1
2

vISM
4 sinϑ0 sinϑ cosφ + cosϑ0 cosϑ( )2 = 0

.              (S2-18) 

Equation (S2-17) or (S2-18) gives an analytical expression for the boundary beyond 

which the shock becomes a wave. It should coincide with the X = 1 contour line. Figure 

S4 shows the maximum compression ratio at the bow shock as a function of the 

interstellar magnetic field strength, which shows that the bow shock ceases to exist for 

field strengths less than 2.2 µG. 
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Fig. S1: VISM∞ as a function of λISM∞ for the mean curve (green) with combined uncertainties, the 
analytical curve (red), and the optimum parameter sets obtained in the test particle method 
(blue). 
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Fig. S2: βISM∞ as a function of λISM∞ in a similar representation as Fig. S1 
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Fig. S3: Interstellar temperature as a function of ecliptic longitude of the interstellar flow in a 
similar representation as Fig. S1 and S2. 
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Fig. S4: Maximum compression ratio (up- to downstream speed at bow shock) as a function of 
the local interstellar magnetic field strength for local interstellar temperatures of 6300 K (dashed 
curve) and 12,600 K (solid curve). The 6300 K temperature is that of the undisturbed local 
interstellar medium, while the higher 12,600 K temperature represents conditions near the bow 
shock where neutral atoms stream out from the heliosphere and become ionized, thereby heating 
the local interstellar plasma. We used a LISM proton density of 0.07 cm-3 and v-B angle of 48º 
and find that no bow shock exists for field strengths that exceed 2.2 µG. 
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