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PREFACE

Quod si tam celebris est apud omnes gloria Adamantis, atque varia ista
opum gaudia, gemmae unionesque, ad ostentationem tantum placent, ut
digitis colloque circumferantur; non minori afficiendos speraverim gaudio
eos, quibus curiositatis conscientia quam deliciarum est potior, novitate
corporis alicujus, instar crystalli translucidi, quod ex Islandia nuper ad
nos perlatum est; cujus tam mira est constitutio, ut haud sciam, num
alias magis naturae apparuerit gratia.

Erasmus Bartholinus, Experimenta crystalli islandici disdiaclastici

Apart from a few objects of our immediate neighborhood (the solar system), all
the information on the physical phenomena taking place in the Universe comes
from the radiation that the astronomical objects send into space and that is finally
collected on earth by telescopes or other instruments. Among the different kinds
of radiation, electromagnetic waves have by far played the most important role in
the history of Astronomy — probably, it is not unrealistic to say that more than
99% of our present knowledge of the Universe derives from the analysis of the
electromagnetic radiation.

Such radiation contains three different kinds of information, encoded into as
many physical characteristics typical of any oscillatory propagation phenomenon:
the propagation direction, the frequency and amplitude of the oscillation, and the
oscillation direction — or polarization.

The first one is the most direct and the easiest to measure: the human eye is
itself a suitable instrument, though of limited accuracy. As time passed, positional
astronomy became more and more accurate thanks to the invention of the opti-
cal telescope, the introduction of photographic and digital techniques and, more
recently, the development of technologies for producing images of a given region
at different wavelengths via radio, infrared, X-ray and 7y-ray telescopes, often op-
erating on board of spacecrafts. Our present knowledge of the morphology and
dynamics of the Universe, and of the different objects of which it is composed
(from planets to stars, from nebulae to globular clusters, from galaxies to Active
Galactic Nuclei and to clusters of galaxies) is based on the huge number of such
observations that have been accumulating during several centuries.

However, even if very accurate, the measurement of the propagation direction
of the electromagnetic radiation is inadequate to study other fundamental aspects
of the physical Universe such as the composition, structure, and evolution of the
different objects. To this aim, a detailed analysis of the frequency (or wavelength)
distribution of the energy carried by the electromagnetic radiation is required,
which was made possible by the invention of the spectrograph. Only through the
systematic use of spectroscopic methods it has been possible to obtain a direct
comprehension of the physical mechanisms which govern the equilibrium of stars,
their birth, evolution and death, and the complicated processes taking place in
the interstellar medium and in the nuclei of galaxies. Spectroscopy, which is also



viii PREFACE

at the basis of the idea of an expanding Universe, has played such a key role in
the comprehension of the physical Universe that a new name, astrophysics, was
introduced in the scientific lexicon to denote the astronomical research based on
this technique.

The third, and often neglected, characteristic of the electromagnetic radiation
is polarization. The earliest studies on polarization were performed around 1670
by the Danish scientist Erasmus Bartholinus, who was strongly impressed by the
properties of a newly discovered crystal, the Iceland spar (‘... whose behavior is so
surprising that, as far as I know, never the grace of nature appeared more clearly’)
and who immediately realized that those properties could prove useful to improve
human knowledge.

Since polarization is mainly related to the geometrical aspects of the emission
process (rather than to its energetics), and since polarization measurements are
often difficult to perform because of the intrinsic weakness of the signals, the study
of polarization found its place in the astronomical research with some difficulty.
But eventually the prediction of Erasmus Bartholinus was fully confirmed: some of
the most important astronomical discoveries of the 20" century were made thanks
to polarimetry — or, more properly, spectropolarimetry. Suffice it to quote the
discovery of magnetic fields in the sun, stars, and the interstellar medium.

The first application of spectropolarimetry to the astronomical research dates
back to 1908 when, using a Nicol prism as a polarizer and a Fresnel rhomb as a
quarter-wave plate, George Ellery Hale succeeded in taking two spectra of the same
area of a sunspot in opposite directions of circular polarization. The comparison
of the spectra showed the presence of the typical signature induced by a strong
magnetic field, the Zeeman effect.

Since 1908, things have considerably evolved from the technological point of view.
Spectropolarimetric observations of the solar spectrum have now attained a sensi-
tivity level which goes beyond the most optimistic expectations of only two or three
decades ago. The first dedicated instrument for the measurement of Stokes parame-
ters profiles in Fraunhofer lines, the ‘mythic’ Stokes-I polarimeter, developed in the
mid 1970s at the High Altitude Observatory, hardly attained a sensitivity of 1%.
Nowadays, sensitivity in solar spectropolarimetry has reached the level of 10~ for
spatially unresolved observations, and approximately one order of magnitude less
for observations at high spatial and temporal resolution. It has to be expected that
these limits will be rapidly overcome by the next generation polarimeters and that
the same technologies will be adapted to galactic and extragalactic observations.

The dramatic increase of polarimetric sensitivity in solar observations has raised
a serious challenge to the theoretical interpretation. Polarization in spectral lines
is indeed a subtle phenomenon since, in astrophysical plasmas, there are several
physical mechanisms that can generate polarization signatures in line profiles and
many others that can modify them during the propagation. Some of these mech-
anisms have been known for a long time from laboratory atomic physics. They
are — just to mention the most remarkable — the Zeeman effect, resonance po-
larization, and the Hanle effect. Other mechanisms are characteristic of optically
thick plasmas, and are related to the propagation of radiation in anisotropic media.
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They are known under the general names of dichroism and anomalous dispersion,
though in special cases different denominations are often used (inverse Zeeman
effect, magneto-optical effects, Faraday rotation, Faraday pulsation, etc.).

These processes have mostly been studied in specific physical contexts, for differ-
ent purposes and at different levels of sophistication, and the scientific literature
on the subject is scattered across books and journals, spanning almost a century
of active research. For this reason we felt that a book capable of describing, in
a unique and self-consistent formalism, all the known physical phenomena that
may affect the polarization signatures of spectral lines, might be welcome to the
scientific community. The diagnostic content of spectropolarimetry is high, but
the correct interpretation of the observations requires a full understanding of the
physics underlying the generation and transfer of polarized radiation.

The redaction of this book required several years. We might try to say, like Huy-
gens in the preface to his Treatise on light, ‘The reason is that I wrote it rather
carelessly in the Language in which it appears, with the intention of translating it
into Latin, so doing in order to obtain greater attention to the thing’,! but we feel
it would be hardly believed. The true reason is that the theory of spectropolarime-
try is complicated, because it implies some knowledge of several subjects: atomic
physics, quantum mechanics (with special emphasis on the theory of angular mo-
mentum and of the density matrix), quantum electrodynamics, radiative transfer
(both under LTE and Non-LTE conditions).

Moreover, spectropolarimetry is full of traps: among all the disciplines in as-
trophysics, there can hardly be found one where more attention has to be payed
to each single definition, each transformation, each physical application. Sign er-
rors are especially insidious, as most remarkably shown by the classical example of
circular polarization in a given wing of a spectral line formed in a magnetic atmo-
sphere. There are four operations which produce a sign change in such polarization,
and obviously, there are as many possibilities to make a sign error. To have a sign
switch, one can: a) invert the direction of the magnetic field; b) interchange the red
with the blue wing; c¢) use the opposite definition of positive and negative circular
polarization; d) consider an emission line instead of an absorption line. This is just
an example, but it shows very well the subtleties of the subject. We tried to make
the exposition as clear as possible by using everywhere the same definitions and
conventions, and by carefully describing all the mathematical developments.

We hope that this book may be useful to the next generations of scholars that
will like to enter the field of spectropolarimetry, solar and non-solar. And we hope
that it may contribute to make this research field more accessible and less hermetic,
thus attracting more and more scientists to the fascinanting world of the Stokes
parameters profiles and of their interpretation.

Arcetri, March 2004 Egidio Landi Degl’Innocenti
Marco Landolfi

1 Christiaan Huygens, Treatise on light (1690), translated by S.P. Thompson, Dover

Publications, New York, 1962.
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CHAPTER 1

DESCRIPTION OF POLARIZED RADIATION

According to Maxwell’s equations, the electric and magnetic fields associated with
a radiation beam propagating in vacuum are perpendicular to each other and to
the direction of propagation. The phenomena of polarization are connected with
the possibility that is left to the electric field vector (or, alternatively, to the asso-
ciated magnetic field vector) of spanning the plane perpendicular to the direction
of propagation.

The polarization properties of a radiation beam can be described in several dif-
ferent ways, each of them having its proper advantages and disadvantages. In the
following we will go through some of these descriptions showing how they are in-
terrelated and, most of all, how they can be translated into operational definitions
having a direct physical meaning in terms of measured quantities.

1.1. The Polarization Ellipse

We start from the classical (non-quantum) description of the electromagnetic field
and we refer to the idealized case of a pure monochromatic, plane wave propagating
in vacuum along the positive z-axis of a right-handed coordinate system. A full
description of the wave can be given either specifying its electric field vector or,
alternatively, its magnetic field vector, as the two quantities are related by the
equation

B(Ft) =it x E(7,t), (1.1)

where 77 is the unit vector in the direction of propagation, and where E and B are
both measured in c.g.s. units (the Gauss-Hertz system, that will be used — with
some few exceptions — throughout the whole book). As far as the cross product
is concerned, we will follow the almost universally accepted convention that is
referred to as the right-hand (or screwdriver) rule, and that is illustrated in Fig. 1.1.
However, we remind the reader that the sign in Eq. (1.1) is related to the sign
conventions which have been historically adopted to define the positive directions
for E and B. These are, in turn, connected with the historical convention of
adopting the positive sign for the proton charge and, in magnetostatic experiments,
the positive sign for the idealized monopole which is found at the North-end of a
dipole oriented in the earth magnetic field (Maxwell, 1873). Note that, according
to this definition, the earth presently shows a South magnetic pole close to the
North geographic pole.

To define the polarization properties of an electromagnetic wave we choose its
representation in terms of electric field vibrations. Again, there are historical rea-
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B=nxE

Fig.1.1. Mutual relationship among instantaneous electric field vector, instantaneous magnetic
field vector and direction of propagation of an ordinary electromagnetic wave. The cross product
is defined according to the right-hand convention.

sons behind this choice; the description in terms of electric vibrations is nowadays
preferred because polarization measurements are mostly performed, at least in the
optical spectrum, by means of materials whose interaction with the electromagnetic
radiation is dominated by the electric vector. However, a description in terms of
magnetic vibrations would be as appropriate as the former.

In the right-handed coordinate system introduced above, with its xz-axis pointing
in an arbitrary direction in the plane perpendicular to the direction of propagation,
the electromagnetic wave is described by the following expressions

E,(7,t) = E, cos(kz — wt + ¢;)

E,(7t) = Eycos(kz — wt + ¢,) , (1.2)
where E,, E,, ¢, and ¢, are four positive constants specifying the amplitudes and
phases of the electric oscillations, and where k& and w have the usual meaning of
wavenumber and angular frequency.

In a given plane that is held fixed in space, for instance in the plane z = 0, the
electric field vector oscillates according to the equations

E,(t) = Ey cos(wt — ¢)

E,(t) = Eycos(wt — ¢,) . (1.3)
The tip of the electric field vector rotates in the x-y plane describing an ellipse that
is called the polarization ellipse and whose characteristic parameters can be found
with the following algebraic manipulations.

Let us consider the couple of axes (2'y’) that are obtained by rotating the old
couple (xy) through an angle o measured positively from the z-axis to the y-axis
(see Fig. 1.2). In this new system, with the position

C=cosa, S =sina
we have
E, (t) = (E,C cos ¢, + EyS cos ¢y) coswt
+ (E,Csin¢, + E,Ssin¢,) sinwt

E,(t) =(—E,Scos ¢; + EyC cos ¢y) coswt
+ (—E,Ssin¢, + E,Csin ¢,) sinwt . (1.4)
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) y

Fig.1.2. Polarization ellipse.

We now choose the angle o so as to make the ' and 3y’ axes coincide with the
proper axes of the polarization ellipse, the long axis being directed along z’. If a
and b are the semi-major and semi-minor axes, respectively, we have

E, (t) = acos(wt — )

x

E, (t) = bsin(wt — ¢y) , (1.5)

where the phase ¢, must be determined in such a way that a > 0 and a > |b].
Comparing Eqgs. (1.4) and (1.5) we obtain

acos ¢y = F,C cos ¢, + E,S cos ¢,
asin ¢, = F,Csin ¢, + F,S5 sin ¢,
bcos ¢y, = —E,Ssin¢, + E,C'sin ¢,
bsin ¢, = E,S cos ¢, — E,C cos ¢, .

From these equations we easily get

a*+bv* =E} + E}

ab = —E  Eysin(¢, — ¢,)

a? —b? = (E? — E2) cos2a + 2E, E, cos(¢, — ¢,) sin 2«

(E} — E3)sin2a = 2E, Ey cos(¢; — ¢y) cos 2a . (1.6)

Equations (1.6) show that the geometrical properties of the polarization ellipse
depend on four bilinear combinations of the electric field components. Introducing
the notations

P, = E} + E3

P, = E} - E3

Py =2E Eycos(¢y — ¢,)

Py =2E, E;sin(¢) — ¢,) (1.7)



4 CHAPTER 1

the angle o can be found from the equation
Py sin2a = Py cos 2o
added to the further constraint
a® —b* = Pycos2a+ Pysin2a > 0.

If we choose (0, 7) as the interval of definition for a, we obtain, for Py # 0

1 P,
a=g arctan (P—Z> + o (1.8a)
where
0 ifPQ>OandPUZO
Q=147 if P >0and P; <0 (1.8b)
/2 if Py <0,
and for PQ =0

e ifP, >0
= { . v (1.8¢)

Sr if P, <0.

Obviously, in the case P = F; = 0 the angle « is left undefined.
From Egs. (1.6) we can also find the values of the semiaxes of the polarization
ellipse. Since

(a+b)* =P — Py,

the values of a and b can be found as the solutions of the second degree equation

1
xz—\/PI—PVx—inzo,

which gives

1
a§|:\/PIPV+\/PI+PV:|

b= %[\/P, — P, — /P + PV} : (1.9)

Note that the four quantities defined in Eqgs. (1.7) are not independent, being
related by the expression

P} =P3+P;+P;. (1.10)
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1.2. Special Cases of the Polarization Ellipse

For some special values of the parameters E,, E,, and (¢; — ¢,), the polarization
ellipse degenerates either into a segment or into a circle. The first case takes place
when P, = 0, which means that either E, or E, vanish, or, alternatively, that
¢, = ¢y Or ¢; = ¢, £ 7. From Egs. (1.9) we get

a=+/P;, b=0,

while the angle « can still be deduced from Egs. (1.8). In this case the monochro-
matic wave is said to be linearly polarized, and its electric field oscillates in the
constant plane containing the direction of propagation and the direction, in the
normal plane, characterized by the angle a.

The other case corresponds to P, = P; = 0, which means that E} = E, and that
(¢ — ¢y) = £ m/2; in other words the electric oscillations have the same amplitude
along the z and y axes and are in phase quadrature. For the fourth parameter we
then obtain

P, =xP,
and correspondingly
a=+/P;/2, b=F/P;/2.
In both cases the polarization ellipse degenerates into a circle. When P, = +P;,

the tip of the electric field vector rotates clockwise for an observer facing the ra-
diation source, as apparent from Eqgs. (1.5) being a > 0, b < 0. Conversely, when
P, = —P; the rotation is counterclockwise as seen by the same observer. In this
book we will adopt the convention of referring to the first case as positive (or right-
handed) circular polarization, and to the second case as negative (or left-handed)
circular polarization. In the first case a snapshot of the electromagnetic wave shows
that the end point of the electric field vector draws a helix that fits the thread of
a usual, right-handed screw; in the second case we have a left-handed screw.

Our convention, which is summarized in Fig. 1.3, agrees with those proposed in
the classical textbooks on polarized light by Shurcliff (1962) and by Clarke and
Grainger (1971). The same convention is also used, although with some few excep-
tions, by optical astronomers working in the field of polarimetry. Many radioas-
tronomers, on the other hand, use the opposite convention, so that the situation
in this field is still rather confusing (see for instance Clarke, 1974).

The sign of circular polarization is also connected with the helicity (or spin) of
photons. This connection is discussed in some detail in the following of this book
(see Sect. 4.4 and App. 3).

1.3. Polarization Tensor

In Sect. 1.1 we have described the electric vibration of a plane monochromatic
wave by means of the real quantities E,, E,, ¢;, ¢,. Alternatively, the electric
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Fig.1.3. Conventions for defining the sign and handedness of circular polarization. The tip of the
electric field vector rotates, as a function of time, in a fixed plane perpendicular to the direction

positive,
right-handed

negative,
left-handed

of propagation; the observer, receiving the radiation into his/her eye, sees a clockwise (a) or
counterclockwise (b) rotation. The corresponding snapshots are shown in the lower half of the
figure.

vibration can be described using complex numbers, with the usual convention that
the physical quantity is represented by the real part of the complex number. The
first of Egs. (1.2) can then be rewritten in either of the two equivalent forms (i is
the imaginary unit)

E,(7,t) = Re [51 ei(’“’“t)] (1.11)

where &, = F, el%1, or

E,(7,t) = Re [5; e“"”*““}

(1.12)

where £ = E; e”'%1 is the complex conjugate of £ . Here and in the following we
will use the further convention of describing oscillating quantities with a temporal
exponential of the form e™*? (rather than e“?), so that the expression for E_(7,t)
in terms of complex notations is that of Eq. (1.11). With the same convention, we
have for the electric oscillation along the y-axis

o i(kz—wt
E,(7,t) = Re [52e ( )} (1.13)

with &, = E, e,
Using the complex quantities £ and &, it is possible to introduce a 2x2 Hermitian
matrix J, called the polarization tensor, defined by

with
JZ?‘;. =J; . (1.14)

The four parameters describing the geometrical properties of the polarization ellipse
(Egs. (1.7)) are related to the components of the polarization tensor by the simple
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expressions

P =& & +E &
Py, =&16 — &6,
Py =& &+ EE,
P, =i(E & —EE). (1.15)

Note that a minus sign would appear in the expression for P, if Eq. (1.12) were
used.
After inversion of Egs. (1.15) the polarization tensor can be written as

1( Pi+Py Py—iPy,
2\ P, +iPy, P, —P, )

which can be cast into a more synthetic form. Defining the formal vector

By Py
=N I Y 5
b, Py
Py Py

and introducing the 2 x 2 identity matrix o, and the Pauli spin matrices o, o,
and o, we can write!

1
J = E;Pi o, (1.16)
where
1 0 1 0 0 1 0 —i
”0_<0 1)’ "1_<0 1)’ "2_<1 o)’ "3_<i o) (117)
with
00, =000+ iZejkl o, (J, k,1=1,2,3) . (1.18)

1
In the last equation §jk is the Kronecker symbol — equal to 1 for j = k and to 0
for j # k — and €, is the antisymmetric (or Levi-Chvita) tensor — equal to +1 if
(4, k,1) is an even permutation of (1,2,3), to —1 if (j,k,1) is an odd permutation
of (1,2,3), and to 0 if two (or three) indices are equal.
Multiplying Eq. (1.16) by o; and using the relation

Tr(0,0,) =26, (i,j=0,...,3), (1.19)

1 The representation that we have chosen here for the Pauli spin matrices differs from the

standard one, initially introduced by Pauli (1927) and then followed in classical textbooks on
Quantum Mechanics (Schiff, 1949; Messiah, 1961; etc.). The matrices introduced by Pauli (o,
o, o) are connected with the ones defined here by the relations: o = o, o,=0;,0,=0;.
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we can rewrite Egs. (1.15) in the form

P, =Tr(o;J). (1.20)
Finally, Eq. (1.10) can be expressed in the compact form

det J =0 . (1.21)

1.4. Quasi-monochromatic Wave

The pure monochromatic wave considered in Sect. 1.1 is nothing but a mathemati-
cal abstraction; in the physical world one always deals with radiation beams having
a non-zero angular spread and a finite frequency bandwidth. Such beams can be
described using wave packets of the form

—

B(F,t) = Re { / EEY e F T 8y R

where & (E’ ) is the complex electric field amplitude of the single wave propagating
with wavenumber £’ and angular frequency w’ = ¢ |k’|, with

—

ERY-K =0,

and where n(K') is the number density of waves in the three-dimensional wavenum-
ber space.

We now suppose the wave packet to be confined into a small range of wavenum-
bers Ak centered around k. This means that our packet has an angular spread
in the solid angle AQ ~ |Ak|/|k| and a finite frequency bandwidth Aw ~ ¢|AK|.
Writing

E’:EJr(SE, W =w+dw

we obtain

i(0k-F—bw t) n

E(7,t) = Re {ei(’;'F‘“t) / Elk+ 0k )e (5% ) d3 (6K )] . (1.22)

Let us consider a surface element X perpendicular to the k direction, and a co-
ordinate system (zyz) as shown in Fig. 1.4. At any point P of the surface X the
components of the electric field vector are given by

E,(P,t) = Re [51(P, £) e‘i‘“t}

E,(P,t) = Re [SQ(P, £) e’i”t} , (1.23)
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X

AQ

k
fffffffffff P i

Fig.1.4. Coordinate system for defining the various components of the electric vibration of a
quasi-monochromatic wave. The vector k is directed along the z-axis.

where & (P,t) and £,(P,t) are the x and y components, respectively, of the vector
resulting from the evaluation of the integral in Eq. (1.22). The third component
E,(P,t) is much smaller than the = and y components (a typical ratio E,/E,, being
of order AQ) and will be neglected in the following.

If the linear dimensions L of the surface X are such that L|AE| < 1, the quan-
tities & (P, t) and &,(P,t) are weakly varying functions of the point P. Moreover,
they are slowly varying functions of time, having temporal variations on typical
time-scales much larger than the period of the wave. As a result, the tip of the
electric field vector at the point P describes a polarization ellipse whose character-
istic parameters vary slowly with time; these parameters will also show a smooth
variation from point to point on the surface X.

Obviously, it is impossible to define an instantaneous polarization ellipse in this
situation. It is however possible to define appropriate average quantities by gener-
alizing Eqgs. (1.15) in the form

= <£T(P7t) El(Pvt)>+< ( )SQ(P
Py = (&1 (P,1) £,(P,1)) — (&5 (P, 1) &(P,1))
Py = (€1(P,1) £,(P,1)) + (£5(P,1) £,(P,1))

Py =i[(E1(P.) &(P, 1)) — (&3 (P.1) &,(P.1))] | (1.24)

&
&

where the symbol (---) means an average over a time interval much longer than
the wave period and an average over the surface X.
Similarly, one can generalize the definition of the polarization tensor by writing

= <€;(P’t) Sj(P’t» ) (1.25)

so that Egs. (1.16) and (1.20) are still valid.

The important difference from the case of the monochromatic wave lies in the
fact that Egs. (1.10) and (1.21) no longer are valid. To prove this statement, let
us consider the complex quantity A defined by

A = €2<P> t) <Sik <P7 t) 51 (P’ t)> - 51 (P’ t) <ET(P’ t) 52<P> t)> .
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For the average value of its square modulus we have, with easy transformations

<|A|2> = <£T (Pv t) 51 (Pv t)> [<‘€ik (Pv t) 51(P, t)><€2*(P7 t) 52(P7 t)>
— (&P E(PD)(E (P, & (P,1)] .

From this equation, excluding the trivial case & (P, t) = 0, we conclude that, being
(P, E(P,t)) >0 and (|A]*) >0,
we must have
(€1 (P.1) £,(P,0)) (€5 (P £,(P.1)) — (&1 (P.1)E,(P.0)) (E5 (P.H)E,(P.1)) > 0,

that is
det J = P; — P —P; — P} >0. (1.26)

The equal sign holds only in the case A = 0, which implies

E(Pt) _ (E1(P,1) &(P,1))

E(Pit)  (EF(P,t)E (P t))

this means either that one of the two components is identically zero, or that the
two components have, at any point P and any time ¢, the same amplitude ratio and
phase difference. In both cases the quasi-monochromatic wave is said to be totally
polarized. The opposite situation occurs when the two components & (P,t) and
&,(P,t) have the same average amplitude and random phase difference, so that

(Ef (P 1) & (P, 1)) = (E5(P,1) &, (P, 1))
<€f(P,t) SQ(P,t)> = <S§(P,t) El(P,t)> =0.
We have in this case
Po=F,=P,=0,

and the quasi-monochromatic wave is said to be totally unpolarized (if the frequency
of the radiation beam is in the visible band of the spectrum, the beam is said to be
composed of natural light). In intermediate cases the quasi-monochromatic wave
is said to be partially polarized with a polarization degree given by

p=\/P5+P3+ P2/ P,

with 0 < p < 1.
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E.(P.t) 1
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1

-10 -5 0 5 10

Fig.1.5. For a partially polarized quasi-monochromatic wave, the tip of the electric field vector
at a given point P describes, as a function of time, the trajectory shown in this graph. Note that
the characteristic shape of the polarization ellipse has a slow variation with time. The electric
field is given in arbitrary units.

In Figs. 1.5 and 1.6 the trajectory of the tip of the electric field vector is plotted
for two schematic situations corresponding to a partially polarized and a totally
polarized quasi-monochromatic wave, respectively.

1.5. Polarizers and Retarders

In the previous sections we have described the polarization properties of a radiation
beam using appropriate averages of the electric vibrations. Now we must give some
operational definitions capable of relating these properties to actual measurements
to be performed on the beam. For this purpose it is necessary to introduce the
concept of ideal polarizing filters, a concept that will be used in the following to
give an operational definition of the Stokes parameters.

We define an ideal linear polarizer (sometimes called analyzer) as a device that
is totally transparent to the electric vibration along a given axis (called the trans-
mission — or acceptance — axis of the polarizer) and totally opaque to the electric
vibration along the axis perpendicular to the former. When such a device is in-
troduced in the optical path of a radiation beam, the components of the electric
vibration are modified inside the polarizer according to the equation

() =<(o 0) (5) =" ()
=e =e ,
& 0 0/)\¢, 0
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E.(P.t)
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1

-10 -5 0 5 10

Fig.1.6. Same as Fig.1.5 for a totally polarized quasi-monochromatic wave. Although the size of
the ellipse changes with time, its characteristic shape (i.e. the a angle defined in Fig.1.2 and the
ratio between the axes) remains fixed.

where £, and &, are the components, at the entrance of the polarizer, along the
transmission axis and the orthogonal axis, respectively; £/ and & are the same
components at the exit of the polarizer, and 1 is a phase difference that is totally
inessential in determining the polarization properties of the beam.

The simplest device whose performances approach in practice those of an ideal
polarizer (in the optical range of the electromagnetic spectrum) is the well-known
Polaroid which has been developed commercially in various forms by the Polaroid
Corporation, Cambridge, Massachusetts, U.S.A. This device is based on the prop-
erty shown by some organic, needle-shaped microcrystals of absorbing light prefer-
entially along the longest axis of the crystal. Roughly speaking, a Polaroid consists
of a large number of such microcrystals oriented through a procedure of unidirec-
tional stretching. Since the basic physical phenomenon involved in the operation
of a Polaroid is dichroism (the property of absorbing light to different extents de-
pending on the polarization of the incident beam), the Polaroid is often referred to
as a dichroic polarizer.

Linear polarizers of a different kind are the so-called birefringence polarizers
which consist of one or more birefringent crystals (generally calcite) suitably pre-
pared and arranged into a compact system. These polarizers operate according to
the following scheme: the incident beam is divided in two orthogonally polarized
components that propagate along different directions in the birefringent crystal;
one of the two components is physically removed by absorption or lateral deflec-
tion, so that a single, linearly polarized component is transmitted through the
whole system. Examples of birefringence polarizers are those bearing the names of
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Ahrens, Wollaston, Rochon, Glan-Foucault, and Nicol. More details on birefrin-
gent polarizers, as well as on dichroic polarizers, can be found in Shurcliff (1962).
In the same book different kinds of linear polarizers, like refiection polarizers and
scattering polarizers, are also described.

Turning now our attention to retarders, we define an ideal retarder as a device
which divides the incident beam in two orthogonally polarized components, de-
phases one of them relative to the other without altering their amplitudes, and,
finally, reunites the two components giving rise to a beam whose polarization char-
acteristics are, in general, completely different from those of the incident beam.
An ideal retarder (sometimes called compensator) is characterized by the fact that
the phase velocity of an electromagnetic wave propagating along the optical axis
depends on the direction of the electric vibration. For an electric vibration parallel
to the fast axis the retarder is characterized by the index of refraction n;, while
for an electric vibration parallel to the slow axis the index of refraction is ng, with
ng > Ng.

Let us consider a monochromatic wave that propagates along the optical axis of
a retarder of given thickness [. The electric field carried by the wave is described
in complex notations by the equations

E¢(z,t) = Re [Sf el(nfk%m)}
. <z<l)
E.(z,t) = Re [Ssel(nsk%m)} ,

where z is the coordinate along the optical axis of the retarder with the origin
(z = 0) at the entrance, & and &, are the complex amplitudes of the electric
vibration along the fast and slow axes, respectively, and k is the wavenumber in
vacuum.

Comparing the electric vibrations at the exit of the retarder with those at the
entrance, we have with obvious notations

& w (1 0 & i &
— e : —e . : 1.27
(gs/> (0 elé) <gb 61653 ( )

where v is a phase that does not affect the polarization properties of the wave,
while 4, the so-called retardance (or retardation), is given by

§=(ng—ng) kl =2m (ng —ng) L /X, (1.28)

A being the wavelength in vacuum. When the thickness of the retarder is such that
0 = /2, the retarder is called a quarter-wave plate, and, similarly, when § = 7 the
retarder is called a half-wave plate.

It is interesting to note that an ideal quarter-wave plate followed by an ideal linear
polarizer whose transmission axis is directed at 45° from the fast axis in the coun-
terclockwise direction (as seen by an observer facing the radiation source) behaves
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fast axis
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quarter-wave linear
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Fig.1.7. Practical realization of a filter transparent to positive circular polarization and opaque
to negative circular polarization.

like an ideal filter that is totally transparent to positive (or right-handed) circular
polarization and totally opaque to negative (or left-handed) circular polarization.!

To prove this statement, let us consider a circularly polarized monochromatic
wave propagating along the direction shown in Fig. 1.7. If the wave is totally
circularly polarized in the positive direction, the components of the electric field
vibration along the unit vectors €, and €, before entering the retarder are (in
complex notations)

E, =Re [A e_iwt}
E, = Re [fiA e‘i‘“t} : (1.29)

where A is a constant. At the exit of the retarder, we have from Eq. (1.27) (apart
from an inessential phase factor)

E, = E, = Re [A e‘i‘“t] : (1.30)

thus the component of the electric vibration along the transmission axis of the
polarizer is given by

L N —iwt
Eaf\/i(EerEy)fﬂRe[Ae |

Since this component is simply transmitted through the linear polarizer, the elec-
tric vibration at the exit is still described by Eq. (1.30). Therefore, although the

1 Obviously, when the transmission axis is inclined at 45° in the opposite direction, the optical

combination behaves in the opposite way with respect to circular polarization.
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polarization has been transformed from circular to linear, the energy carried by
the wave has not been changed by the system (the overbar means a time average)

EZ+E2=EZ2+E?=|AP.

It follows that the device schematized in Fig. 1.7 is totally transparent to positive
circular polarization.

Applying the same argument to a monochromatic wave of negative circular po-
larization (£, in Eq. (1.29) must be changed in sign) we obtain that the wave is
totally absorbed inside the polarizer.

Most of the retarders that are used in practice are of the birefringent type; they
often consist of a crystal, like quartz or calcite, cut parallel to the optical axis. More
recently piezo-optical birefringence modulators have also been used. In these devices
the birefringence is induced by compressing or distending a material (otherwise
isotropic and uniform) along a given direction. According to Kemp (1969) a very
modest force, that can even be attained by simple finger pressure, is enough to
produce a quarter-wave plate by stressing a block of glass having the size of a
match-box.

Other devices that have been often used to produce retarders with variable or
modulated retardance are the so-called Pockels cells. Here the birefringence is
induced by application of high electric fields (of the order of several kV/cm) in ma-
terials such as ammonium dihydrogen phosphate (ADP) or potassium dihydrogen
phosphate (KDP).

1.6. Stokes Parameters

A simple operational definition of the Stokes parameters can be given in terms of a
set of ideal filters and an ideal detector capable of measuring, in absolute units, the
electromagnetic energy falling on its acceptance area. For this definition — or, more
precisely, for the definition of the two parameters connected with linear polariza-
tion — it is also necessary to fix a particular direction in the plane perpendicular to
the direction of propagation. Such direction will be referred to in the following as
the reference direction or the reference axis.

Given a quasi-monochromatic radiation beam having a small aperture df2, and
frequency contained in the interval (v, v+dv), we define the first Stokes parameter,
1, as the energy measured by our ideal detector per unit time and per unit cross-
sectional area. In formulae, if dW,, is the energy measured by the detector in the
time interval dt over the surface d.S oriented perpendicularly to the beam, we have

AW, = IdSdtdQdy .

This is just the usual definition of the radiation specific intensity, so that the first
Stokes parameter is simply called the intensity of the beam.

Let’s now insert in the beam path an ideal linear polarizer with its transmission
axis directed in succession at 0°, 45°, 90°, and 135° from the reference axis, all the
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angles being reckoned counterclockwise for an observer looking at the beam from
the detector. If dW,, dW,, dW,, and dW, are the corresponding energies measured
by the detector in the time interval d¢ over the surface dS, the second and third
Stokes parameters, Q and U, are defined by

AW, — dW, = QdS dt dQdv
AW, — dW, = UdS dtdQdv .

Finally, for the definition of the fourth parameter we introduce two ideal filters,
the first being totally opaque to negative (left-handed) circular polarization and
totally transparent to positive (right-handed) circular polarization, and the second
behaving in the opposite way (such filters can be realized as shown in the former
section). If dW, and dW are the energies measured by the detector (in the time
interval d¢ over the surface dS) with the first and second filters — respectively —
interposed, the definition of the fourth parameter, V', is the following

AW, — dW, = VdSdt dQdv .

The symbols used in this book to represent the Stokes parameters (I, Q, U, V)
were introduced for the first time by Walker (1954). In his original note, Stokes
(1852) used the symbols (A, B, C, D), while Jones (1941) and Perrin (1942) used the
notation (I, M, C, S). Walker’s notation seems nowadays to be preferred especially
in the astrophysical literature.

The operational definitions given above are not universally adopted. In partic-
ular, the opposite sign is used in the definition of V' by those authors who name
positive circular polarization the one that we have defined as negative and vice
versa (see the discussion at the end of Sect. 1.2). Less frequently a sign inversion is
found in the definition of U. Figure 1.8 summarizes the conventions that are used
in this book.

Now that the Stokes parameters have been defined, it is necessary to establish
their connection with the description, given in the previous sections, of the polar-
ization properties of an electromagnetic wave in terms of electric fields. Since the
energy flux carried by an electromagnetic wave is given by its Poynting vector, the
energy AW measured in the time interval At by an ideal detector having cross-
sectional area AS is connected with the electric field components by the relation

¢ 2 2
AW = E<Ew +Ey>ASAt,
where E and E, are the components of the electric field along two axes perpen-
dicular to each other and to the direction of propagation, and where the brackets

mean an average over the time interval At and over the surface AS' of the detector.
Using Egs. (1.3), (1.11), and (1.13), we can also write

AW = = (B + B3) AS At = — (16, + & £;) AS At (131)
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reference
direction

Q @ : '
Fig.1.8. Schematic representation of the definition of the Stokes parameters. The observer is
supposed to face the radiation source.

Referring to the general case of a quasi-monochromatic wave, we introduce a couple
of orthogonal unit vectors €, and €,, with €, specifying the reference direction and
€, oriented in such a way that €, €, and the direction of propagation form a right-
handed coordinate system.! If & (P,t) and &, (P,t) are the complex amplitudes
of the electric field along the €, and €, directions, the energy measured by the
detector in the various configurations specified above is given by (see Egs. (1.23)):
a) without any filter

AW, = (€1 0.0 &,(P.1) + (E5(P.0 &P, )] o A5 At

b) with a linear polarizer interposed, having its transmission axis at 0°, 45°, 90°,
and 135°, respectively

AW, = (€1 (P.1)&,(P, 1)) AS At

AW, - %[ (P t>> (&P E(P,1)
(1P E(PD) + (5 (P, 1) €, (P1)) | o= AS At

AW, = (€5(P, 1) 52(13,t)>8i7r AS At

1 In the following, €, will be referred to as the reference direction unit vector, while &, will

be referred to as the associated unit vector. Note that the definition of the Stokes parameters
remains the same if we replace €, by —€_, and €, by —€,.
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AW, = 5 |(E1 (R0 £,(P.1) + (E5(P.1) £4(P. 1)
— (E1(P,1) &, (P, 1)) — (£3(P,1) &, (P, 1)) é AS At ;

c¢) with a filter for circular polarization interposed, opaque to negative polarization
(and transparent to positive), and vice versa

aw, = (e P €, p.0) + (E R0 E.0)
F(E(P, 1) (P, 1)) — i (E5(P,1) 51(P,t)>] é AS At

AW, = {(5{“(P,t) E\(P 1)) + (&5 (P, 1) E,(P,t))

DN | =

S HE P E(P0) +1(E5 (P & (P As A

From these expressions, taking the limit for infinitesimal values of AS and At, and
bearing in mind Egs. (1.24) and the operational definitions of the Stokes parame-
ters, we obtain

[=kP, = k[<5;(P,t) £(P,1)) + <5*(P £) &, (P, t)>}

Q = kP, = K[(€1(P,1) £,(P,1)) — (£5(P,1) &x(P1))]
U=kP, = k[(gf(P,t) £ (P, 1))+ (£5(P >}
V = kP, = kil (£ (P,1) £(P, 1)) - <€ PHE@D)], (132

where k is a dimensional positive constant whose actual value is important only
when absolute measurements are to be performed.

It should be kept in mind that Eqgs. (1.32) are valid only when the component &;
of the electric vibration refers to the reference axis defining the Stokes parameters,
and when the conventions implicit in Eqgs. (1.11) and (1.13) are used. Note also
that Eqs. (1.32) give a deeper physical meaning to the quantities Py, Py, Py, Py
introduced in former sections (see Eqs. (1.7), (1.15), and (1.24)).

1.7. Measurements of the Stokes Parameters

The Stokes parameters can be measured by several different techniques, and the
various instruments that have been devised for this purpose cannot be classified in
a unique scheme. Following Hauge (1976) it is however possible to describe a kind
of prototype instrument that summarizes the essential characteristics of most of
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reference

o retarder olarizer
direction P

o detector

fransmission | ( >

€y axis

fast axis

Fig.1.9. Schematic representation of a prototype instrument aimed at the measurement of the
Stokes parameters.

the devices that are used in practice, especially for the measurement of the Stokes
parameters in the visible or near-infrared range of the electromagnetic spectrum.

Referring to Fig. 1.9, if £, and &, are (in complex notations) the electric vibrations
along the unit vectors €, and €, (where €, is the reference direction), we have, after
the beam has crossed the retarder (inessential phase factors are omitted)

E =& cosa+ & sina

& = eié(fc‘,'1 sina + &, cosa) ,

where & and &, are the components of the electric vibrations along the fast and
slow axes, respectively, and ¢ is the retardance. The only component transmitted
by the polarizer is the one parallel to the transmission axis. This component is
given by

&, =cos(B—a)& +sin(B— )&,

so that for the signal D of the detector we obtain after some algebra

D(e,3,0) =k (EE,) = % I+ (Qcos2a + U sin 2a) cos 2(8 — )
— (Qsin2a — U cos2a) sin 2(5 — a) cos §

+ Vsin2(8 — a)sind| . (1.33)

A first method for measuring the Stokes parameters is to set the various devices
at particular angles. If we are concerned with linear polarization only, the retarder
can be removed (6 = 0°), or, alternatively, its fast axis can be set parallel to the
transmission axis of the polarizer (« = ). In both cases the signal D’ of the
detector takes the simpler form

D'(B) = = |I+Qcos2B+ Usin23| ,

1
2
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and the Stokes parameters I, (), and U can be found by the combination of four
measurements

I =D'(0°) + D'(90°)
Q= D'(0°) — D'(90°)
U = D'(45°) — D'(135°%) ,

or, alternatively, with only three measurements

I= ; [D’(oo) + D'(60°) + D’(120°)]
2 / o / o /! o

QE{ZD (0°) — D'(60°) — D'(120 )]
2 ! oy 1/ o

U%{D(GO) D(120)}.

For the measurement of V' the retarder is essential. Setting a quarter-wave plate
(6 =90°) at @ = 0° we get from Eq. (1.33)

D" (B) = % [I + Qcos283 + Vsin Zﬂ} ,

and the Stokes parameters I, @), and V are found by

I — D//(oo) + D//(goo)
Q= D//<Oo) _ D//(goo)
V = D"(45°) — D"(135°) .

This technique, however, has the disadvantage of implying a rotation of the
exit polarizer, which is often a dangerous procedure especially if the polarization
analysis is to be followed by a spectral analysis (a grating spectrometer, for instance,
has a response that is rather sensitive to the polarization of the incident radiation).
To avoid these problems one can employ, for the measurement of linear polarization,

a half-wave plate (6 = 180°) and keep the polarizer fixed at 5 = 0°. The signal is
now

1
D" (o) = 3 I+ Qcosda+ Usindal| ,
and the Stokes parameters I, @), and U can be obtained by the relations

I — D///(Oo) +D///<450)
Q — D///(Oo) _ D///<450)
U = D"(22.5°) — D" (67.5°) .
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For circular polarization, keeping the polarizer fixed at § = 0°, one gets (again
using a quarter-wave plate)

1
D" () = 3 I+ Q cos® 2+ U sin 2a.cos 2a0 — Vsin 2a|

and the Stokes parameters I, @, U, and V' can be found by the combination of five
measurements

I =D"(45°) + D" (135°)

Q = 2D""(0°) — D" (45°) — D" (135°)
U =2[D"(22.5°) — D"(67.5°)

V = D"(135°) — D" (45°) .

A different method for measuring the Stokes parameters is based on rotating
devices. Using a quarter-wave plate rotating with angular frequency w and setting
B = 0°, we obtain for the detector signal D(t) the expression

1 U
D(t) = 5 [(I—i— %) + %coséhut—i— 5sin4wt— Vsin 2wt | ,

and the various Stokes parameters can be measured (for a stationary source) by
extracting the Fourier components of the signal D(¢).

A third method is to use a compensator with modulated retardance (like a Pockels
cell) while keeping the optical components at fixed orientations. To maximize
the modulation effect it is convenient to set (8 — ) = £45°, and two sets of
measurements are necessary to get the four Stokes parameters. For instance, setting
a =0° and B = 45° we have

1
D(t) = 3 [I + U cosé(t) + Vsin §(t)] ,
whereas setting o = —45°, 8 = 0° we get
1
D(t) = 3 [I + Qcosd(t) + Vsiné(t)] ,

and in both cases three of the four Stokes parameters can be obtained by an analysis
of the modulated signal.

We want to remark that the measurement of Stokes parameters is an art in itself
that can be pushed to a very high degree of sophistication. The few words that
have been spent here on this subject are not meant to be complete, but just to give
the reader an intuitive grasp on how this kind of measurements are performed in
practice.
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1.8. Stokes Parameters and Polarization Tensor

In Sect. 1.6 we have found the relation between the Stokes parameters and the
components of the electric vibration along two orthogonal unit vectors, €, and
€y, with €, the reference direction unit vector and €, the associated unit vector.
Equations (1.32) can be rewritten in terms of the polarization tensor defined in
Sects. 1.3 and 1.4. From Eq. (1.25) we have

(Jio — Joq) - (1.34)

Introducing the so-called Stokes vector S, (i =0,...,3) via the equation

S, I
si|_|@
S, U
S, v

we have, in strict analogy with Eqgs. (1.16) and (1.20)

3
1
J= 2% Z 5,0
j=0
S; =k Tr(o;J) (j=0,...,3), (1.35)

where o ; are the matrices defined in Egs. (1.17).
The preceding relations between the Stokes vector and the polarization tensor
involve the dimensional quantity & introduced in Egs. (1.32). This is a consequence
of the fact that the Stokes parameters have the dimensions of an intensity, while
the polarization tensor has the dimensions of a squared electric field. To simplify
the theoretical treatment of polarized radiation it is often convenient to leave out
the constant k, by defining a ‘new’ polarization tensor I having the dimensions of

intensity
I=FkJ, (1.36)

where J is the tensor introduced in Sects. 1.3-1.4 and k is the quantity appearing
in Egs. (1.32). In the following we will use the term ‘polarization tensor’, without
distinction, for both J and I. Obviously, the tensor I obeys the relations (cf.
Eqgs. (1.14) and (1.26))

=1, (1.37)

Jt

and
det I >0. (1.38)
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In terms of I, Eqgs. (1.34) and (1.35) read, respectively

=1 + I
Q =1y — Iy
U=1I,+1y

V=i (Im - ]21)

and

j=0

S;=Te(o,I) (j=0,....3).

23

(1.39)

(1.40)

If the unit vectors chosen to define the polarization tensor differ from (€,, &,), the
relations between the Stokes parameters and the components I;; are not as simple
as in Egs. (1.39). Let us consider, in particular, the (complex) unit vectors €., and

€_ defined by

> > . i
€, =costle, +sinfe " ¢,

- . o ig
€_ = —sinf e, +cosbe €,
with
Sk 5 ooz
€;-e, =¢e’ e =1
> x>
€ -e_=¢€” e+—0

(1.41)

Denoting by £, and £_ the controvariant components of the electric vibration

along the unit vectors €, and €_, defined in such a way that E=EE + &8 =

£, e, +& €, wehave
& =cosf &, —sinh E_

& = ew (sinH &, +cost 5_) )

and simple relations can be established between the ‘old’ polarization tensor I, =

k(1 E,
+7 7)

I, = COSQHI++ +sin?0T__ —sinfcosf (I,_+1_)
I, = sin291++ +cos’0I__ 4 sinfcosf (I,_+1_)

I,=1;, = e'? [sin&cos@ (I, ,-1__)+ COS261+_ — Sin291_+} ,

) (4,5 = 1,2) and the ‘new’ polarization tensor I,; = k(&;&;5) (a,f
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and conversely

I, =cos’ 1, +sin®0 I,, + sinf cos 0 (efiqsl12 + ei¢121)
I__ =sin?0 1, + cos*0 I,, — sinf cosf (e_i¢112 + ei¢121)
I, =1I" = —sinfcosf (I}, — I,,) + cos2fe I, — sin20 ei¢121 .
Using these transformations we can express the Stokes parameters in the form
I=1,_ +1__
Q=cos20 (I, —1__)—sin20(I,_+1_,)
U = sin 26 cos ¢ (I++ — I__) + cos 26 cos ¢ (I+_ + I_+)
+1i sin¢([+_ —I_+)

V = —sin2981n¢(l++ — I__) — 0082681n¢(l+_ —|—]_+)
+icoso(I,_—1_), (1.42)

with the inverse relations

I, +1__=1I
I, —1 =cos20Q +sin20cos¢ U —sin20sing V

I, +1 ,=—5sin20Q +cos20cos¢g U — cos20sing V
i(I,_—1_,)=singU+cosgV . (1.43)
These formulae show that it is possible to find a particular couple of complex unit

vectors of the form (1.41) such that the polarization tensor is diagonal. In fact, it
can be easily shown that for ¢ and 6 implicitly defined by

tang = =V/U , tan29:\/V2+U2/Q, (1.44)
the components of the polarization tensor satisfy the relations

I, +1__=1I

I, —1 _=+yQ*+U?+V?

I, =1,=0,
where the sign ambiguity in the right-hand side of the middle equation is connected
with the determination chosen for the ¢ and 6 angles in Eqgs. (1.44). On this basis

of complex unit vectors the electric vibration is decomposed in two independent
orthogonal components.
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Fig.1.10. The rotation of the reference direction is specified by the angle a. The radiation beam
is propagating from behind the page to the reader’s eye.

1.9. Properties of the Stokes Parameters

Since the Stokes parameters are defined with respect to a given reference direction,
we must establish how they are changed when a different reference direction is
chosen. Referring to Fig. 1.10, and denoting by (I,Q,U,V) and (I',Q’,U’, V') the
Stokes parameters relative to the old and new reference direction, respectively, the
transformation law can be established with the help of the equations derived in the
previous section. Substituting « for 6 and 0 for ¢ into Eqgs. (1.41), and interpreting
the unit vectors €, and €_ as €, and €, respectively, we obtain from Eqgs. (1.43)
and (1.39)

I'=1

Q' = cos2a Q +sin2a U

U' = —sin2a Q + cos2a U

Vi=V. (1.45)
These transformations show that I and V' are invariant under rotation of the refer-
ence direction, while the linear polarization parameters undergo a rotation through
an angle 2« in the Q-U plane, which leaves unchanged the total linear polariza-
tion P, = /Q?+ U?2. It is also apparent that the reference direction has a 180°
ambiguity, an obvious consequence of the definition of the Stokes parameters.

Introducing the position angle o, defined by
Q = P, cos2a
U = P sin2q, , (1.46)
the former equations for @’ and U’ become
Q' = P cos2(oy — @)

U = Py sin2(a — ) .
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The two quantities P, and « are often used to characterize the linear polariza-
tion in place of @ and U. In astronomical observations the reference direction is
generally taken along the meridian through the observed object, and the position
angle is measured counterclockwise from the same meridian. In solar observations
the reference direction is sometimes chosen to represent a physical direction, like,
for instance, the radial direction from the center of the sun to the observed point,
or the parallel to the solar limb.

Another fundamental property of the Stokes parameters is their additivity for
incoherent beams. This property can be proved quite easily from Egs. (1.32).
Indeed, if the electric vibrations of two beams are described (in complex notations)
by Sl-(l)(P,t) and 5;2)(P,t)7 respectively, and if the two beams are incoherent, so
that

(EN P EP(P,t)) = (7 (P, 1) £ (P,1)) =0 (i,j=1,2),
we obtain for the Stokes parameters of the composite beam

S, =S8"+ 52 (k=0,...,3),
where S ,il) and S ,f) are the Stokes parameters of the separate beams. This property,
which can obviously be generalized to an arbitrary number of incoherent beams,
will be referred to in the following as the addition theorem.
As the Stokes parameters of a radiation beam satisfy the relation (see Eqgs. (1.38)
and (1.40))
PP>Q*+U?+ V2, (1.47)

we can write, using the addition theorem

I I-/Q*+U?+V2 VQ?+U? 4 V2
0

Q|_ . Q

U 0 U

14 0 V

This means that any radiation beam can be considered as the incoherent super-
position of an unpolarized beam and a totally polarized beam. The latter is char-
acterized by a well-defined polarization ellipse, whose elements can be found from
Egs. (1.8) and (1.9). The former, on the contrary, is composed of natural radiation.

Another interesting feature of the Stokes parameters stems from the possibility
of establishing a mapping between the Stokes vectors and the points of a three-
dimensional space that will be referred to as the Poincaré space. To the Stokes vec-
tor § = (I,Q, U, V)' we associate the point P having coordinates (Q/I,U/I,V/I),
as shown in Fig. 1.11. When the point P lies on the surface of the sphere of unit
radius (the Poincaré sphere), the corresponding Stokes vector represents a totally
polarized radiation beam, while the center of the sphere represents a beam of natu-
ral radiation. This mapping, proposed by Poincaré (1892) in a classical monograph,
is particularly suitable to visualize the effect produced on a light beam by a given



DESCRIPTION OF POLARIZED RADIATION 27

Fig.1.11. Mapping of a Stokes vector (I,Q,U,V) into the representative point P inside the
Poincaré sphere of unit radius.

device (like a polarizer or a retarder) as a stepwise movement of the representa-
tive point on the sphere. In Chap. 5 we will see how it is possible to visualize
the transfer of polarized radiation as a continuous movement of the representative
point inside the Poincaré sphere.

1.10. Photons and Stokes Parameters

As we have seen in the former sections, the operational definition of the Stokes
parameters of a radiation beam involves at least four independent measurements
performed by interposing polarizers or retarders in the beam path. On the other
hand, according to the principles of Quantum Mechanics, a photon which interacts
with a polarizer is either absorbed or transmitted; in the latter case its state is in
general modified, the photon polarization being now parallel to the transmission
axis of the polarizer. All information about the original polarization state of the
photon is in any case lost, so that it is impossible to perform the four independent
measurements needed to determine its Stokes parameters. We conclude that to
speak about the Stokes parameters of a single photon has no physical meaning.

Stokes parameters can only be measured for a statistical ensemble of photons.
The connection between the measured Stokes parameters and the photon wave-
function can be easily established. Referring to Fig. 1.7, let us suppose that the
i-th photon has a wavefunction of the form

@y = [y + e )

where |1, > (Ji)y>) is the wavefunction in the polarization space of a photon which
propagates along the z-axis and is transmitted through a polarizer having its trans-
mission axis in the €, (€,) direction. Applying to the photon beam the same argu-
ments developed for wave packets in Sect. 1.6, we can express the Stokes parameters
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as

where £’ is a dimensional constant and where the statistical averages (cjyc;) are

defined by
N

* 1 i) * (4 .
<ckcj> = — c,(c) ) (k,j=1,2),

N being the number of photons falling on the measuring device in a given time
interval At. 4

Only when all the photons are in the same state, so that the amplitudes ng) are
independent of i, it is possible to determine their wavefunction from the measured
Stokes parameters.! This case, characterized by the equality

P=Q*+U*+V?,

is the analogue of the macroscopic case of the monochromatic wave. On the con-
trary, when the states of the single photons are different from each other, we have
the more complicated situation described by Eq. (1.47), that has its macroscopic
analogue in the quasi-monochromatic wave. From the quantum-mechanical point
of view, the photons are said to be in a pure state in the former case and in a
mizture of states in the latter.

1 Apart from an inessential phase factor. According to the principles of Quantum Mechanics,

absolute phases of wavefunctions are not observable quantities.
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ANGULAR MOMENTUM AND RACAH ALGEBRA

This chapter, and the two following, are devoted to establish the quantum-mechan-
ical bases that will be needed to approach the theoretical problems involved in the
generation and transfer of polarized radiation. In particular, we will recall in the
present chapter some important concepts about angular momentum and Racah
algebra and will introduce a set of notations and definitions that will be useful in
the following.

These arguments have been treated in various classical textbooks or monographs
(see e.g. Edmonds, 1957; Messiah, 1961; Brink and Satchler, 1968; Varshalovich
et al., 1988). The reason why they are repeated here is to spare the reader the
painful job of translating notations and conventions from one book to the other.
Obviously, the reader who is already familiar with the theory of angular momentum
can simply skip this chapter.

2.1. Eigenvalues and Eigenvectors of Angular Momentum

Angular momentum is defined in Quantum Mechanics as a Hermitian vector op-
erator, J, whose components along the axes (zyz) of a right-handed coordinate
system satisfy the following commutation rules’

(S Iy =1,
[, J,) = iJ,
EAPAESVAS (2.1)

From these equations it can be easily shown that the square of the angular mo-
mentum,
2 2 2 2
Jr=Jd;+J,+ T
commutes with each of the three components

[J2, 1) =[] J,)=[J%J,]=0.

Taking J? and one of the three components — say .J, — as a maximum set of com-
muting operators, we can look for the common eigenvectors of these two operators
that we denote by the symbol |Am)

T2 Amy = X|am) , J]Am> =m | m) .

1 The operator J considered here is the angular momentum expressed in units of the reduced

Planck constant i = h/(27).
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The Hermitian character of the operators J,, J,, and J,, together with the com-
mutation rules (2.1), are sufficient to deduce the eigenvalue spectrum or, in other
words, the allowed values for A and m.
Let us introduce the operators J, and J_, usually called the shift operators,
defined by
Jy=J,£1J,.

Directly from the definition it is possible to prove the following relations

(Jo)t =, (2.2a)
[J2,J.] =0 (2.2b)
(S Je] =+ (2.:2¢)
[Ty, J ] =2J, (2.2d)
JJ == J2+J, (2.2¢)
J J, == J—1, (2.2f)

Using these relations it can be proved that the vectors J, [Am} are still eigenvectors
of J? and J,, corresponding to the eigenvalues A and (m + 1), respectively. From
Egs. (2.2b) and (2.2¢) we have

AT dmy] = JoJ? [Am) = X[, [Am))]
L e dmp] = [T d, £ Ji ] [Am) = (m + 1) [T [Am)] . (2.3)

On the other hand, if we consider the norms of the vectors J_[Am) and J_[Am)
(that cannot be negative numbers), and take into account Eqs. (2.2a), (2.2e),
and (2.2f), we have

<)\m\JI_J+\)\m> = Qm|J_J |dm) = (A — m? —m){Am|Am> >0
Om|JLT_|dmy = Q]I J_|am) = (A —m? +m)dm[Am> >0, (2.4)

so that
A—m2—m>0, A—m?+m>0.

Since A and m are real numbers (being eigenvalues of Hermitian operators), these
two inequalities give
A>0, |m| < A. (2.5)

Therefore, once we fix a particular eigenvalue A for J?, the eigenvalues of J_ must
be confined within a limited interval.

Starting now from a given eigenvector |Am) and applying repeatedly the shift
operator J, (or J_, respectively), we obtain two distinct chains of eigenvectors
corresponding to eigenvalues of J, increasing (or decreasing) by unity as shown
in Eq. (2.3). These two chains have to stop at a certain point so that the second
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inequality in Eq. (2.5) can be satisfied. Thus there must be a maximum eigenvalue
for J, — say j — such that
J Ay =0.

Equations (2.4) give for this eigenvector
A—j*—j=0, (2.6)
so that
A=j+1).

Similarly, there must be a minimum eigenvalue for J, —say j’ — such that
J_|Ni'y=0.
From Egs. (2.4) we obtain for this eigenvector
A=j?+j' =0,

and comparing this equation with Eq. (2.6) we get the following relation between
j and j'
G+ =40"-1).

This is a second degree equation whose solutions are

j'==j
{ j=5+1.
The second solution must be rejected as it leads to j' > 5. We are then left with the
first solution which implies that the minimum eigenvalue of J, is just the opposite
of the maximum eigenvalue.

On the other hand, we can obtain the eigenvector |A —j> from the eigenvector
|Aj> by applying to the latter a finite number of times the operator J_; this implies
that the number [j — (—j)] = 2/ is an integer, so that the only allowed values for j
are integers or half-integers; moreover, the number of eigenvectors associated with
a given eigenvalue of J?2 is (25 + 1).

From now on, the eigenvectors of J? and J_ will be denoted by the symbol |jm ) ;
they are supposed to be normalized to unity and to satisfy the eigenvalue equations

J2gmy = j( +1)[im)
Note also that the eigenvectors |jm) obey the orthogonality relation
Gmlg'm’y = §jj/ 0 (2.8)

mm/’

since J? and J, are Hermitian operators.
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The phase relations among the various eigenvectors characterized by the same
j-value and different m-values must be established using suitable conventions. From
the properties of the shift operators we have

J+‘jm> = oz|] m+1),
where
a2 =G+ 1) —m(m+1).
The phase of the o constant is conventionally set equal to zero, so that

Jolimy =i+ 1) —m(m+1)|j m+1)

=Vi+m+1)(G-—m)|j m+1), (2.9)

and, similarly

J_ljmy = \/j(j +1) —m(m —1) |j m—1)
=V{-m+1)(+m)lj m-1). (2.10)

With these phase convention, it is easily found from Eq. (2.10) that any eigenvector
|7m> is related to the ‘parent’ eigenvector |jj> by the equation

(j+m)!

GG T 55) - (2.11)

ljm> =

2.2. Coupling of Two Angular Momenta: Vector-Coupling
Coefficients and 3-j Symbols

A fundamental problem encountered in Quantum Mechanics is the addition of the
angular momenta relative to two independent particles, or to two different degrees
of freedom (like orbital motion and spin) of the same particle. If .J, and .J, are the
angular momenta of the two separate systems, with

[‘]17;7‘]2]'] = O (7’7] = I,y,Z) 9

the angular momentum eigenvectors (normalized to unity) of the total system can
be written as

lj1amymsy ),
each eigenvector being a dyadic product of the form |j;m; > |jymy > that satisfies
the eigenvalue equations

Jtljrdzmamy ) = ji(y + 1) [jijamymy)
Jyldrdamymy > = my [y jamymy
J22|j1j2m1m2> = Jo(Jo + 1) |Gy damymy )

Jo g1 damymy > = my |4y jomymy)
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On the other hand, the total system can also be described, from the point of
view of its angular momentum properties, in terms of a different set of operators,
namely J2, J2, J2, J,, where

J=J, +J,.
It is easily seen that these four operators commute among each other; as a conse-

quence, we can introduce a new set of normalized eigenvectors of the form |j, jo JM »
such that

J12‘]'1j2JM> = jl(jl +1) |j1j2JM>
J22‘j1j2JM> = j2(j2 +1) |j1j2JM>
T2|j1dad My = J(J +1) |jyjo M)
Jz‘j1j2JM> = M |jyjo J M .

Since the two different sets of eigenvectors span the same Hilbert space, they must
be connected by a unitary similarity transformation of the form

|j1 o I M) = Z |J1damyma ) {Jyjamymay|jy jod M)

’ml m2

iy damymyy =Y |iyda I My {Gy iy Mjyjymymy ) . (2.12)
JM

The coefficients appearing in these expressions are called wvector-coupling coeffi-
cients, or Wigner coefficients, or Clebsh-Gordan coefficients. In shorthand nota-
tions they are often denoted by the symbol {j;jo,m,;m,|JM >, as the repetition of
the arguments j; and j, in the ket is unnecessary.

To deduce the expression for these coefficients we must first of all establish suit-
able phase conventions. The phase relations among the eigenvectors of the form

|71 jomymy ) are the same as those of the former section, so that we can write (see
Eq. (2.11))

- (J1 +my)! (g + my)! P e
Jrdamamy ) = . 17 . JIL NI R G dadide)
|1 PAAAS RS \/(231)!(232)!(31_m1)!(32_m2)! 1 2 |1 2J1J2

and the same convention of the former section applies also to the phase relations
among the eigenvectors of the form |JM > corresponding to a fixed J-value. The
remaining phase conventions will be established in the following.
Let us consider the eigenvector of the form |j;jym;m,)> corresponding to the
maximum m-values (my = j;, my = j,). We have
Jz|j1j2j1j2> = [le + Jzz} |j1j2j1j2> = (j1 +j2)|j1j2j1j2>
T2 jdzirday = [JE + T3 4 20 0o, Ty o+ Ty oy ]y adida)
= [j1(j1 +1) +j2(j2 +1)+ 2j1j2} |j1j2j1j2>
= (j1 +j2)(j1 +J,+ 1) ‘j1j2j1j2> :
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These equations show that the eigenvector |j;j,7;j5> is also an eigenvector of the
form |JM», with J =M = (j; + j,). By convention we take the same phase for
the two eigenvectors, so that

|j1+j2 j1+j2> = |j1j2j1j2> .

The above value of J is the maximum of the possible J-values, as it can be argued
from the fact that the maximum eigenvalue of J, is (j; + j,). The eigenvectors
with the same J-value and lower M-values can be found by repeated application
of the operator J_, so that (see Eq. (2.11))

- (Jy +Jp + M)! M s s
145 M) = \/(2] +21] ) (3 7, — i - + T P M G o)
1 2 1 2 .

The eigenvectors of the form |JM)» with J < (j; + j,) can be found using a set
of operators, O,,, that will be called the supershift operators, defined by

n

=D (=D)L T Ty

r=0

Let us consider the application of the operator O,, to the vector |j;jyj1js - Using
Egs. (2.9) and (2.10) we have, after some algebra

(n! ) (25,)! (232)
(27, — )1 (24, — n)!

(2j; — 275 —
XZ \/ Lo o) J1de J1—n+T Jo—r) (2.13)

rl(n—r)!

On |j1j2j1j2> =

Applying to this vector the operator J, we have

J [0 livdadrdar] = Gy + o — 1) [0, 1514201720 (2.14)

and applying the operator .J?, after some heavy algebra that is left to the reader
as an exercise, we have

J?[0,ld1d2d1d20] = (1 + do = n) Gy + Jy —n+ 1) [O,ldrdadiday] - (2.15)

Equations (2.14) and (2.15) show that the vector O, |j,js71J2> is, apart from a
normalization factor and a phase factor, a vector of the form |JJ) with J =
(j; + o — n). Note that n cannot be larger than the smaller of the values 2j; and
27, (otherwise O,,|j,75J175> = 0), so that the allowed values for J must satisfy the
triangular condition

iy~ Dol ST <y 4
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The norm N,, of the vector O,,|j,75j,7o, can be easily obtained from Eq. (2.13)

() (25! (24,)! Z": (2, —n+7)! (2, —r)!
" (25 ) (25 —n)! 2,,:0 ri(n—r)!

The summation above can be evaluated using some properties of the binomial
coefficients (see App. 1 of Edmonds, 1957, for a formal proof)

Z (25, —n+7) (25 =) (25, —n)! (25, —n)! (25, +2j, —n+1)!
rl(n—r)! n! (25, + 2j, — 2n + 1)! ’

r=0
and hence

N = ()7 (25)!(25)! (2 +2jp —n +1)!
" (2]1 —n)! (2]2 —n)! (2]1 + 275 — 2n +1)! .

(2.16)

From Egs. (2.13) and (2.16) we can express any vector |JJ) (normalized to unity)
as a function of the vectors of the form |j; j,m,m4 . Apart from a phase factor we
have

|JT = (i + jo — D) (2] + 1)!
Gy =da+ Do =i+ DGy +d + T+ 1)!

JyFtiy—J
L 25— )
x> (1)J1+32Jr\/(] T‘JQ+J+T) (2o —1)!

LUy i —J =)t
X |j1Js J—do+r Jo—T) . (2.17)

r=0

The phase convention that will be used in this book is that of assuming Eq. (2.17)
(with no phase factor in front) valid for any value of J. This convention agrees with
those given by Racah (1942), Edmonds (1957), Messiah (1961), Brink and Satch-
ler (1968), Varshalovich et al. (1988), and, together with the other conventions
established previously, leads to vector-coupling coefficients that are all real.

Now that the phase conventions have been fully established, we can turn to the
evaluation of the vector-coupling coefficients. From Eq. (2.11) we have

|JM)y = %J" Mgy . (2.18)
Writing
J—M (J . M)

! _M—
JJ M [J1_+J2 ]J*M: Z k'(J_M_k)' J{ﬂ_Jéf_]\/f k
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and introducing Eq. (2.17) into (2.18) we obtain

GG = DUT A M)Y(T = M) (2] + 1)
A \/(Ji — o+ IN Gy — 1+ DGy +Jo +J + 1))

J—M J,+J
« Z IZQ j1+j2 —r (]1 _]2+J+T) (2]2—7")
= EV T =M=kl (j, + 4o —J —1)!

[ Gith =k =M k)l
(G —do+J —k+r) (2 —J+M+Fk—r)!
X |j1dy J—Jo—k+1 jo—J+M+k—1).
From this expression the vector-coupling coefficients are easily calculated. Taking

the scalar product with {j,jym,;m,|, all the terms in the right-hand side are zero
except those satisfying the conditions

J—Jo—k+r=my
—J+M+k—r=m,.
Adding these two equations we find
M=m;+m,y,
and we can eliminate the sum over k by substituting
k=J—jdo—my+r=J—js—M+m,+r.

Thus we obtain

<j1j2m1m2“]M> = 5m1+m27M

< (2J +1) (4; +Jo = DI + M) (T = MGy —my)! (G — my)!
(J1 = Jo +IN UGy — g1 + DGy +do + T+ DG +my)! (G +my)!

Jitiy—J |
~ Z (—1)+iz=7=r (U1 —Ja+J+7)(2)p —7)! .
—0 (J =y =my + 1)y —my =)L (jy + 3y —J —1)lr!

This expression can be transformed into a more symmetrical one (Racah, 1942)

(rdamymyl JM )y = 6m1+m2,M

2 + 1)y +Jo = D'y —Jo + I =5y + 7o +J)!
X - -
(]1 +]2+J+1)!

% /Gy 4+ m )Gy = m)! Gy + mg)! (G — mo)! (T + ML (J — M)!

x Z (-1 [t! (p +Jo —J =) (G —mq — L (Jy +my —1)!

X (J = jytmy + OV T —jy —my+ )] (2.19)
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Fig.2.1. The addition of two vectors having fixed projections on a given axis leads, in classical
physics, to a continuous distribution for the modulus of the resultant vector.

where the sum over ¢ runs over all the values leading to non-negative factorials.

The vector-coupling coefficients have a very simple physical meaning. Given two
independent systems of angular momenta j; and j,, suppose that the z-axis pro-
jections of these momenta have been measured and found equal to m; and m,,
respectively. The square modulus |{j,jym,m,|JM »|? represents the probability
of finding the values J and M, respectively, when measuring the angular momen-
tum of the total system and its z-projection. The Kronecker symbol in Eq. (2.19)
implies that the measured M-value must be equal to (m,; + m,), which is the same
result found for classical (non quantum-mechanical) angular momenta. In the clas-
sical case, however, the total angular momentum J has a continuous distribution of
values that depend on the relative orientation of the vectors 7; and 7, (see Fig. 2.1).
The vector-coupling coefficients can be regarded as the quantum-mechanical ana-
logue of this distribution; but the distribution is now discrete, which reflects the
quantum nature of the angular momenta.

The vector-coupling coefficients satisfy a large number of properties. Multiplying
Eqgs. (2.12) by <{jijo.J'M’'| and {j,jom)m}|, respectively, taking Eq. (2.8) into
account, and recalling that the vector-coupling coefficients are real, one gets the
orthogonality relations

Z rdamymg| I My Gy jgmymo| J' My =655 6rap (2.20a)
mymy
Z {Grdamyma| I My Gy jamimal JM ) = 5m1m/1 5m2m'2 ‘ (2.20b)
JM

The identity {(j,jommy|J, |JM) = <j1j2m1m2|JL + J§7|JM> leads to the re-
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cursion relation

\/J<J+ 1) = M(M + 1) {jyjomymylJ M+1) =

= \/j1(j1 +1) =my(my — 1) {Gijy my—1 my|JM)

+\Jhala + 1) = my(my — 1) Gudgmy my—11JMY . (221)

The other properties of the vector-coupling coefficients are more easily expressed
in terms of the 3-j symbols, which are defined by

. -~ (Vi —da—M i Ja
{Jrjamymy|J —M> = (-1) V2J +1 <m1 m, M) . (2.22)
Nowadays the 3-j coefficients are employed more often than the vector-coupling
coefficients. We just summarize below a set of relations that will be needed later.
Formal proofs can be easily obtained with the help of Eqs. (2.19), (2.20), and (2.22).
a) Orthogonality relations

Z(Zchl)(Z g 3) <Z g j,)&cc,aw (2.23a)
af
2(204—1)(3 Z s) (aa g, §>:5m,555,. (2.23b)
ey

b) The 3-j symbols are invariant under cyclic permutations of their columns and
are multiplied by (—1)****¢ under non-cyclic ones

(Z g §>:<Z s, Z):(_l)a+b+c(§ g Z)  etc. (2.24)

¢) They are multiplied by (—1)2t"*¢ under sign inversion of the second row

(Z Z i)(l)a+b+c<aa fﬂ Cﬂy). (2.25)

d) By assigning particular values to some of the arguments, compact analytical
expressions can be easily obtained; we have for instance

a b 0 1
=(=1)*"%6 ,0 _— 2.26
(a B 0) (=1) abta=f Bat+ 1 ( a)

a a+1i 1 _ {\l—ata at+a—+1
(a a1 §>_( b \/(2a+2)(2a+1) (2.26b)

a a 1 e [(@a—a)la+a+1)
(a —a—1 1>(1) \/2a(a+1)(2a+1) (2.26¢)
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a a 1\ _, e« «
<a —a 0>( b ala+ 1)(2a + 1) (2:26d)

a a+1 1 wee | la+a+)(a+a+2)
(a —a—1 1)2(_1) \/(2a+1)(2a+2)(2a+3) (2.26¢)

a a+1 1Y a1 |la—a+1)(a+a+1)
(a —a O>(1) \/(a+1)(2a+1)(2a+3)' (2.268)

Analytical expressions for the 3-j coefficients with one of the three elements of the
first row set at 3/2 or 2 can be found in Brink and Satchler (1968); analogous
formulae with one j-value equal to 5/2 are given by Saito and Morita (1955), and
with one j-value equal to 3 by Falkoff et al. (1952). These analytical expressions,
together with the various numerical tables of 3-j symbols (or vector-coupling coef-
ficients) prepared by several authors (Alder, 1952; Simon, 1954; Simon et al., 1954;
Rotenberg et al., 1959; Varshalovich et al., 1988) have nowadays lost some of their
interest due to the fact that, with modern computers, the direct computation of
3-j symbols via Egs. (2.19) and (2.22) can be easily performed. A sample Fortran
code is given in App. 1.

2.3. Coupling of Three Angular Momenta: Racah Coefficients
and 6-j Symbols

In the previous section we have shown how it is possible to couple two angular
momenta J1 and J2 to get the resultant vector J. When three angular momenta

are present, say Jl, J_;, and J3, one can follow the same line of reasoning, by first
adding two angular momenta and then adding the third one to the sum of the first
two to obtain, as a final result, the total angular momentum J.

In this procedure we are however faced with some ambiguity. In fact, we could
start from the couple (.J;,.J,) to obtain J;, = J, + J,, and then add J;, to J; to

obtain J. Alternatively, we could start from the couple (J;, J;) to obtain j23 =
Jy + J;, and then add j23 to J; to obtain again the resultant J. Finally, we could

introduce the intermediate vector j13 = fl + j3, and then add f13 to j2

These different coupling schemes are related to the fact that, given three com-
muting angular momentum operators Jl, JQ, and J3, three different sets of six
commuting operators can be considered, namely

N J}, T3, T3, Ik, 2,
) JZ, J3, J2, J2, J?, J.

N Jg, Ji, Ji, Jig, J3 T,
besides the standard set
V) J7, J3, J2, Ty, Jons s,
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Expressing the eigenvectors of sets I, II, and III in terms of the eigenvectors of
set IV, it is possible to find the transformations connecting the different bases. The
coefficients entering these transformations are called the recoupling coefficients and
can be derived as follows.

Denoting the eigenvectors of set I by the symbol

|(1a) vz dgs M (2.27)

we apply twice the first of Eqgs. (2.12) to obtain

(G172) T2 d5, JM ) = Z lJ12d3maoms ) {Jrodsmigmig|iiajs I M)

’m12’m3

= Z |J1dadsmymams)

My MyMgMyy

X (G Jamymy|jyJadiomaa ) (JradzMiamsliiads I M) (2.28)
where we have used the symbol
|71 Jodsmymemsy = |jimy )| jamy ) |jzms )y

to represent the eigenvectors of set IV.
Similarly, for a given eigenvector of set II of the form |j, (jyi5)das, S M) we
obtain

|j1, (j2j3)j237 J/M/> =

= Z |J1d2dzmymyms

m1m2m3m23

X (JoJsmams|iafsiasas ) <j1j23m1m23|j1j23J’M’> . (2.29)

If we now take the scalar product of the two vectors in Egs. (2.28) and (2.29) we
obtain, using the shorthand notation of the vector-coupling coefficients

<<j1j2)j12aj37 JM‘]D (j2j3)j23a J/M/> =

= Z {rdamyma|jiomysy {radzmyams| J M)
m1m2m3m12m23
X {JoJzMamisljogMas > {jiJagmymag| ' M") 855 Opap - (2.30)

The scalar product in the left-hand side is independent of the M-value, as it can
be easily proved by evaluation of the matrix element

<(j1j2)j12,j3, JM|J7J+|J'1’ (j2j3)j237 JM)
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Fig.2.2. When adding in classical physics three angular momenta 7, , 7, 75 to give the resultant j,
once the sum of two of them (7, and 7,) is specified, the modulus of (J, +7;) shows a continuous
distribution.

via Egs. (2.9), (2.2a), and (2.2f). On the other hand, owing to the properties of the
vector-coupling coefficients, the summation in the right-hand side can be restricted
to my, m,, and m,, with the condition (m, + my + my) = M.

The scalar product now derived is called the recoupling coefficient and has a
simple physical meaning. Given three vectors j|, 75, and J5, that combine to give
the resultant j, the square modulus of the recoupling coefficient is the probability
that, if by measuring (7; +J,)* we found the value j;5(j;5+1), then, when measuring
(75+73)?%, we find the value jys(jo;+1). Asillustrated in Fig. 2.2, the modulus of the
vector 7,4 is undetermined in classical physics too; it has a continuous distribution
of probabilities which originates from purely geometrical reasons. The quantum
nature of the angular momenta adds to this ‘geometrical indetermination’ to give
a discrete distribution for the probabilities.

Dropping the inessential parameter M, the recoupling coefficients can be used to
express the transformations between different bases in the form

1> (Jods)dags TM> = |(j1d2)dras s T M
j12
x {(J1d2)d1s Jas J1d1s (Jadz)dags I - (2.31)

In place of the recoupling coefficients it is customary to introduce different symbols
like the Racah coefficients (or Racah functions) defined by

W(j1j2=]j35 j12j23) =

:\/(Zj T T {(J1d2)drs Js i1 (Jadz)dass I (2.32)
12 23




42 CHAPTER 2

or the more symmetrical 6-5 symbols

{]'1 ]} % } = (=) =M W Gy T a3 G1odas) - (2.33)
J3 J23

Starting from Eq. (2.30), and using Egs. (2.22), (2.32), and (2.33), it is possible
to express the 6-7 symbol as a sum of products of four 3-j symbols

Oper Ocer {Z Z ;} = Z (—1)bretd+BH7+6 (96 4 1)
aByéd

c d e d b f b ¢ a f a ¢
G EOG L0 L )G ) ew

It should be remarked that, owing to the symmetry properties (2.24) and (2.25),
the right-hand side can be written in several equivalent ways, obtained by column
permutations or by sign change of the second row of each 3-j symbol. Since for
each 3-j symbol there are six permutations of the columns and two determinations
for the sign of the second row, 12* different realizations exist for the right-hand side
of Eq. (2.34), apart from the ordering of the 3-j coeflicients. All these realizations
have however the same ‘topological invariant’ which can be visualized by graphical
methods. The theory of graphical methods for angular momentum problems can
be found in Edmonds (1957) or in Brink and Satchler (1968).

The 6-j symbol has several important properties. First of all, it is zero unless four
triangular conditions are satisfied. These conditions can be illustrated as follows

S AR R A T e

Another remarkable property is the invariance of the 6-j symbol both under inter-
change of any two columns and under interchange of the upper and lower arguments
in any two columns.

An analytical expression for the 6-j symbol can be obtained from Eq. (2.30) by
substituting the series expansion (2.19) of the vector-coupling coefficients. After a
long calculation, Racah (1942) gives the following expression

{Z ; ch} = A(abe) Alaef) Adbf) Adec) Y (~1)*(z +1)!

x[(z—a—-b—0c)l(z—a—e—fl(z—d—b— )l (z—d—e—c)!
><(a+b+d+e—z)!(b+c+e+f—z)!(a—i—c—i—d—i—f—z)!}_l, (2.35)

where

_ Jlatb=o)l(a—=b+c)(—a+b+c)
A(abc)\/ (@a+b+c+1)!
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and where the sum is extended to all the values of z leading to non-negative facto-
rials.

By specifying the value of one of the arguments, simple analytical formulae can
be obtained, e.g.:

a b 0 o _1\atetf 1 a
{d e f}—éabded( D 2a+1)(2d + 1) (2.362)
a a+i i1 aibicr1 L [(a+b+c+2)(a+b—c+1)
{b+§ b c}_(_l) e 5\/(a+1)(2a+1)(b+1)(2b+1) (2:36b)
a a+i 11 _ aibicl [(a=b+c+1)(c—a+b)
{b—% b c}(l) " 5\/(a+1)(2a+1)b(2b+ 1) (2.36¢)
a a 1 _ abcll a(a+1)+b(b+1)7c(c+1)
{b b 0}( S 2 /ala+ 1)(2a+ 1)b(b+ 1)(2b + 1) (2.364)
a a+1 1 atbrec
{b+1 b c}:(_l) o
1 [(a+bt+c+3)latbtce+2)(a+tb—c+2)(a+b—c+]1) (2.36¢)
3 (@a+1)(2a+1)(2a+3)(b+ 1)(2b+ 1)(2b + 3) '
{Z anrl i}(l)a+b+c+1
1 [(a+b+c+2)(a—b+c+1)(a+b—c+1)(c—a+D)
X 5\/ (@t 1)2a+1)2at3)b(b 1 120+ 1) (2.36f)
a a+1 1 atbtc
{bl b c}(l) o
1 [(c—a+b)(c—a+b—1)a—b+c+2)(a—b+c+1)
5\/ (@+ D(2a+1)2a+3)20 - Db(2b + 1) (2.36g)
{Z Z i} _ (71)a+b+c
><§ s(s+1) — 2a(a+1)b(b+ 1) (2.36h)
2 \/(2a—1)a(a+1)(2a + 1)(2a + 3)(2b — 1)b(b+ 1)(2b + 1)(2b + 3) '

where

s=clc+1)—ala+1)—bb+1).
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Further analytical formulae have been given by Biedenharn et al. (1952), while
numerical tables have been prepared by Biedenharn (1952), Sharp et al. (1954),
Simon et al. (1954), Rotenberg et al. (1959), and Varshalovich et al. (1988). As
noted in the previous section, these tabulations have nowadays lost much of their
interest since modern computers provide the possibility of computing 6-j symbols
with simple numerical codes like that in App. 1.

Other important properties of the 6-j symbols, that can be proved either from
the analytical expression (2.35) or directly from their definition, are given below.

Sum rules:
Seveeern{s ) (- 2.37)
éuwwm){g v G b=t VEaT D@D (239
Seervereo{s ¢ G HE L o)t (2.39)
R U3 P ) B P B

_q\atbtetdtet frgthtit a b clfa b cl]g h cl|_
Z( 1) (2c+1){d e f}{g h i}{e d 5|

O A I O B
o { g d b h e a (2.41)
Contraction of 3-j symbols:

1 \b+etd+BHy+s C d € d b f b C a o
2. SO0 BG5S -
_(f a e f a e
(¢ @ e>{c d b} (2.42)

_1\a+btctd—et+f—a—4 a b e c a f> (b d f )_
Z( 1) (2f+1){d c f}(fy a ¢ 6 6 —¢

f
:<Z g —ee> (gl : i) (2.43)
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2.4. Coupling of Four Angular Momenta: 9-j Symbols

When four angular momenta are present, say jl, J;, j:;, and J;, different coupling
schemes can be followed, as in the case of three angular momenta discussed in the
previous section. For instance, one can start from the couples (Jl, J,) and (JB, Jy)
to obtain the intermediate vectors J12 = J1 + J2 and J34 = J3 + J4, and then add
J12 to J34 to obtain the resultant .J. Alternatively, one can start from the couples
(J,, J3) and (J,, J,) to get the intermediate vectors J 5 = J; +.Jy and Jp, = Jy+.J,,
and then add j13 to f24 to obtain again the resultant J. A third possibility would
be to introduce the intermediate vectors j14 = j1 + Jz and j23 = J; + J;

These different coupling schemes are related to the fact that, given four indepen-
dent angular momenta, three different sets of eight commuting operators can be
constructed, namely

) JPJ3, T3, T8, Ik, 2, I3,
) J2 J2 02, 02, 0%, J3, J2, 0,

III) J12? J22? J??? J42a J1247 J223a J25 Jz 9
besides the standard set
IV) J12’ J22’ J32’ Jf’ le’ JZZ’ J3Z’ J4z .

Denoting the eigenvectors of set I by the symbol

|<j1j2)j12’ (j3j4)j347 JM>

and those of set II by the symbol

|G13)d13s (G2da)daas TM)

the two bases are connected by the transformation

|(1d2)dr2s (sda)dsas TMY = D (ads)drss (zda)daas T
j13 j24
x {(J1J3)d13> Uoda)doas T M (J172)d10s (J3da)dsas IM )
The recoupling coefficients defined in this equation are independent of M (see the

comments about Eq. (2.30)). In their place different symbols are usually intro-
duced, like the 9-j symbols defined by

<(j1j3)j137 (j2j4)j247 J‘(jle)j127 (j3j4)j347 ‘]> =

; ; ; ; B ds s

= /@i + D @gy + D@isg + D@ + DR o Ja Jar (- (244)
Jiz Jasa  J
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The 9-j symbol can be easily expressed in terms of 3-j coefficients by means of a
procedure similar to that of the previous section for the 6-5 coefficients (Egs. (2.27)-

(2.30)). The final result is the compact formula
a b c ;
b ¢ d f g i
oy (@5 )6 )G )
Do [y (a5 5)G oD

« < a d g) < b h) < c 1 )
a 6 x/)\B n) \v §) "’
where the sum runs over all the Greek symbols except a, namely over 3, v, 9, €,

b XM, §-

The 9-j symbol can be also expressed in terms of 6-j symbols. We start from
the vector |(ad)g, (be)h, i) and neglect the fact that the vector h is obtained by
combining b with e. From Eq. (2.31) we have

a0

oo

- = =

[(ad)g, (be)h,iy = Z {a,(dh)k,i|(ad)g, h,i) |a, (dh)k,i) . (2.45)
k

Recalling that h is the resultant of b and e, we recouple the three angular momenta
d, b, e to obtain

la, (dh)k, 1> = Z (b, (de) f, k|d, (be)h, k> |a, (bf )k, i) . (2.46)
f

Finally we recouple the three vectors a, b, f to get

la, (bf)k,i> = Z {(ab)e, f,ila, (bf)k,i> |(ab)e, f i) . (2.47)

Substituting Eq. (2.47) into Eq. (2.46) and then into Eq. (2.45), and recalling that
the vector f is the combination of d and e, we obtain

|(ad)g, (be)h,i> = Z {a, (dh)k,i|(ad)g, h,iy {b, (de) f, k|d, (be)h, k>
kfc

x {(ab)c, f,ila, (bf)k,iy|(ab)c, (de)f,i) .

The three recoupling coefficients can be expressed in terms of 6-j symbols. For this
purpose it is necessary to recall the definitions (2.32)-(2.33) and to observe that,
owing to the properties of the vector-coupling coefficients, the order of the various
angular momenta can be changed according to the following rules

la, (be)d, e> = (=1)4707¢|a, (cb)d, e)
la, (be)d, e> = (=1)¢ % |(be)d, a, e .
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Using these properties and the definition of the 9-j symbol given in Eq. (2.44), we
obtain the remarkable expression

s LD e

The 9-j symbol satisfies several important properties. First of all, the symbol is
zero unless the six triangular conditions illustrated below are satisfied

0O—0—0 o o o
| | |
0O—0—0 R o o o
| | |
O—0—0 o o o

Moreover, it is invariant under reflection about either diagonal, and is multiplied
by (—1)%, ¢ being the sum of its nine arguments, under interchange of two adjacent
rows or columns.

If one of the arguments is zero, the 9-j symbol reduces to a 6-j symbol times a
constant. This can be proved directly from Eq. (2.48), which gives

Q@ a2

Z ch = 0,00, (—1)bretdty ! {“ b C}. (2.49)
b0 of o 2c+1)(29+1) Lle d g

For the numerical evaluation of 9-j symbols Eq. (2.48) can be conveniently used,
and numerical tables are also available (Smith and Stevenson, 1957; Smith, 1958;
Varshalovich et al., 1988). However, as already mentioned about 3-j and 6-j sym-
bols, simple computer codes like that in App. 1 are nowadays generally preferred.

Other important properties of the 9-5 symbols are given below.

Orthogonality:

a b c a b c
D@+ +1)Rg+1)2h+1)Sd e f ) d e fp=0,,0,, (250)
cf g h 1 g h i
Sum rule:

a b c a d g a b c
S (1) 29+ )2h+1)Sd e faqe b hop=ce d fp(251)
gh g h i j k1 j k1
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Contraction of 3-j symbols:
a c
a b c>
d fr=
(a By p ;

- = GG

©
m S
N———
7N
Qe
>
NES)
N———
7 N
SRS
a o
©
N———
7N
= Q
3 =
AN
N———
o
(@)1
K

N G I G I C R A I C 253)

(2.54)

SIS
a0
©
—
TN
)
= =
S
~——

Contraction of 6-j and 9-j symbols:

S (2c+1) gl % Jj“ {jﬁ ’ ;}:(_1)%{2 j ’;}{Z / ’2} (2.55)

c

Z (71)S+c+d+ffbfg7hfl (25 + 1)(2t + 1)

st

X;iz c f ilfd e flfb e h)_
glkjksjstjlt_

a b c .

. g h i

_jzf{jkl}. (2.56)

Finally, we want to remark that the methods illustrated so far for the coupling
of 2, 3, and 4 angular momentum operators can be directly generalized to any
number of operators. The addition of n angular momenta will involve recoupling
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coefficients depending on 3(n— 1) parameters. For n = 5 two different types of 12-j
symbols have been introduced (Jahn and Hope, 1954; Ord-Smith, 1954; Elliott and
Flowers, 1955). Fortunately we will not need such symbols in this book.

2.5. Rotations and Euler Angles

It is well-known that in Quantum Mechanics the state of a physical system is
described by a vector in the Hilbert space, while the dynamical variables of the
system are described by linear Hermitian operators. According to the postulates
of Quantum Mechanics, the result of any given measurement accomplished on the
system is expressed in terms of probabilities, which are calculated by taking the
square modulus of scalar products between appropriate vectors of the Hilbert space.
Similarly, the mean value of any given observable (its expectation value) is given by
the diagonal matrix element (|0 >, where |t is the state vector of the system
and O is the Hermitian operator associated with the measured observable.

When a rotation is performed in the ordinary three-dimensional space, two differ-
ent points of view can be followed: either a passive point of view which consists in
rotating the observer’s coordinate system leaving the physical system unchanged,
or an active point of view which consists in rotating the physical system leaving
the coordinate system unchanged.

Adopting the first point of view, the state vector |¢> of the physical system
remains unchanged, while the Hermitian operator O corresponding to a classical
observable changes into a different operator, O’, connected with O by the same
transformation that holds for the corresponding classical observable (Correspon-
dence Principle). This can be performed by introducing a unitary similarity trans-
formation on the operators,

O’ = D(R)OD'(R) , (2.57)

where D(R) is an appropriate linear operator such that DT(R) = D~!(R) and
D(R™') = D7Y(R), where R~ is the inverse rotation of R.

On the contrary, adopting the active point of view, the operators remain un-
changed, while the state vector |[¢)) changes into the new state vector |[¢)') given
by

¥ = D(R)[Y) .

Obviously these transformations satisfy the property

WO = (PO

which means that if the same rotation is performed both on the coordinate system
and on the physical system, the expectation value of any observable remains the
same.

Note that the formalism here introduced is consistent with the intuitive fact
that an arbitrary rotation R performed on the coordinate system is equivalent to
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positive
< rotation

cl

X

Fig.2.3. To find the variation 0¥ of the components of the vector ¥ under a positive rotation of
the coordinate system through an angle ¢ about the #-axis, we observe that this variation is the
same as that obtained by rotating the vector ¥ through an angle —¢ about the same axis. The
figure shows that for an infinitesimal rotation of the arbitrary vector @ through an infinitesimal
angle a we have dw = ad X W, so that U = — ¢ d X ¥.

the inverse rotation R~! performed on the physical system. This can be formally
proved by considering the quantity

(p|D(R) OD'(R)|¢)> .

On one hand, this expression can be regarded as
W[ D(R) 0D (R)| [0y = WOl

which represents the expectation value of the operator O after a rotation of the
coordinate system (passive point of view). On the other hand, the same expression
can be considered as

[<wID(R)|O[DHR)w>| = [<oIDt(R-H)]O[DIR)W)] |

which represents the expectation value of the same operator after the inverse rota-
tion of the physical system (active point of view).

The expression for the operator D(R) can be easily found in the following way.
We consider a physical system referred to a given coordinate system, and fix our
attention on a particular observable like the vector ¢ (representing for instance the
position or the velocity or the angular momentum of a particle, etc.). We now
perform a positive rotation of the coordinate system through an infinitesimal angle
¢ about the unit vector %, where by positive rotation we mean, here and in the
following, the one that makes a right-handed screw advance along the direction of
@. The vector ¥ will be changed by the quantity (see Fig. 2.3)

W=—¢ixi. (2.58)
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According to Eq. (2.57) the operator D, (¢) corresponding to this infinitesimal
rotation must therefore satisfy the relation

5 = 465 = D, (¢) 7 D}(9) . (2.59)
with 07 given by Eq. (2.58).

Let’s now recall that the commutation relations between any dynamical variable
of vectorial character and the total angular momentum J are of the form!

(], v = iz €x1m Vm (k,l,m==xz,y,2) . (2.60)

From Egs. (2.59) and (2.60) it can be easily proved that

where J,, = J - is the projection of the total angular momentum on the w-direction
(note that D}(6) = D, (¢) = D, ().

From Eq. (2.61) we can find the expression for the operator corresponding to the
rotation through a finite angle ). To this aim, we divide the angle Q) into a large
number n of equal parts, and perform the finite rotation as the succession of n
infinitesimal rotations of amplitude ©/n. We have

o e (i)
i [0 = 3 e O

_ i 7IQJU lim n!

e (=)

D,(Q)

and since the limit gives 1, we obtain

oo

—iQJ,)" —i
= S, = W (2.62)
r=0 ’

where, by definition, the exponential of an operator has the usual meaning given
by its Taylor expansion.

Having established the expression for the operator D corresponding to a finite
rotation about an arbitrary axis, we can easily find its expression for the most

1 For a system consisting of one particle, if 7, p, 7= %7’"’ X P, 8, and J =T+ 5 are the

position, momentum, orbital angular momentum, spin, and total angular momentum operators,
respectively, Eq. (2.60), with ¥ denoting any of these vectors as well as any linear combination of
them, can be easily deduced from the fundamental commutation rules

[17 J} [P“pj} [’r‘i,pj] :ihéija 317 J 1Zk €ijk Sk +

The generalization to the case of many-particle systems is straightforward.
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Fig.2.4. Definition of the Euler angles.

general rotation of the reference system. But we must first introduce the Fuler
angles, which are defined as follows.

Referring to Fig. 2.4, we first perform a rotation through an angle a (0 < v < 27r)
about the z-axis of the original reference system. This rotation brings the y-axis
into a new axis, called the line of nodes, or w-axis. Next we perform a rotation
through an angle 8 (0 < 8 < m) about the line of nodes. This rotation brings
the z-axis of the original system into a new axis, called the figure-axis, or z’-axis.
Finally we perform a rotation through an angle v (0 < v < 27) about the figure-axis
to get the new system (z'y’z’).

For the general rotation specified by the three Euler angles («, 3,~) we have

D(a, 8,7) = D..(7) D,y (8) D () , (2.63)

an expression which has the disadvantage that the rotations 8 and - are relative to
axes that have been carried over by previous rotations. To overcome this drawback
we observe that!

D, (8) = D,(2) D,(8) D () (2.64)

Equation (2.64) is self-evident from geometrical considerations, since
D,,(8)D.(a) = D, (@) D, (8)
however, it can also be proved analytically. From Eq. (2.62) we have

D, (B)=e " u
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and that
D..(v) = Dy(B) D.(v) D, (=5) - (2.65)

Substituting Eqs. (2.65) and (2.64) into Eq. (2.63), and noting that two rotations
about the same axis commute, we obtain

D(av,3.7) = D.(0) Dy (A) D, (7) = e ™ e e (2.66)
This expression shows that the rotation described by Eq. (2.63) can also be achieved
by performing three successive rotations about the axes of the old reference system
in the following order: first a rotation through an angle v about the z-axis, then
a rotation through an angle 8 about the y-axis, and finally a rotation through an
angle a about the z-axis. The former realization of the rotation, involving the
line of nodes and the figure-axis, is easier to visualize; the latter is more useful in
practice, since it involves rotation operators depending on the projections of the
angular momentum along the axes of a unique coordinate system.

2.6. Rotation Matrices

The matrix elements of the rotation operator D(«, 3,7) between eigenstates of the
total angular momentum are called rotation matrices. These quantities, which are
explicitly defined by the relation®

Diyn(R) = (JM|D(R)|JN) (2.67)

with the symbol R representing the triad (a, §,7), are of fundamental importance
in angular momentum theory. Their physical meaning descends directly from that
of the rotation operator D(R) defined in the previous section. Given a physical
system of angular momentum J, the square modulus

[Diin (R

represents the probability of finding the value NV for the z’-axis projection of the

momentum after its z-axis projection has been measured and found equal to M,
To !

the system (z'y’z’) being obtained from (zyz) through the rotation R. Note that

where J  is the operator obtained from Jy by a rotation through an angle a about the z-axis,
— -1 —
Jy =D, ()], D7 (o) =D (a) J, D, (—0) .
Taking this expression into account we obtain, by a power series expansion of the exponential

D,(8) =D (a)e v D, (~a) = D (a) D, (8) D,(~a) .

The same argument can be applied to deduce Eq. (2.65).

1 Note that the matrix elements (JM|D(R)|J'M'>, with J’ # J, identically vanish. This is
a consequence of the fact that the operator D(R) commutes with J2.
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if |[JM ) is the eigenvector corresponding to the projection M of the angular mo-
mentum along the z-axis of the old reference system, the vector D(R)|JM ) is
the eigenvector corresponding to the same projection along the axis z’ of the new
reference system.

To find an explicit expression for the rotation matrices, we first define the reduced
rotation matrices di;,. From Eq. (2.66) we have

DYy (afy) = (TMJe™ " o7 o7

where

efi(onJr'yN)

|JN) = din(B), (2.68)

—igJ

diyyn(B) = (IMle "IN

The reduced rotation matrices can be easily calculated in the case J =1/2. In-
troducing the spinors | + > and | — > to represent the eigenstates |JM > having
J=1/2 and M equal to +1/2 and —1/2, respectively, we have from Egs. (2.9)
and (2.10), taking into account that J, = —i(J, —J_)/2

i i

so that, with easy transformations

Wy =3 T s oy 4 -
n=0 !
and similarly
=y =eos ) —sin 4.

Thus the reduced rotation matrices for J = 1/2 are the following

d;(ﬂ) = d%%,%(ﬂ) = cosg
d%%%(ﬂ) - 7d§_%(ﬁ) = Slng .

Turning to the general case, let us consider an angular momentum eigenstate of
the form |JJ». This elgenstate can be expressed in terms of spinors by regardmg
the angular momentum .J as the result of the addition of 2./ momenta Jl, J2, . J2 J
each equal to 1/2. In this representation we have, with obvious notations

|JJ>:|+>1|+>2""+>2J>

where |+ ), is the normalized eigenvector of the operator J,, corresponding to the
eigenvalue +1/2.

In the same representation, the eigenvector |JM > can be obtained by repeated
application of the operator

Jo=J Ay ety
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Starting from the eigenvector |JJ) we have from Eq. (2.11)

1 1
JJ-1y = —J |JJy = —=|J,_ +Jy 4t dyy ||+ D]+ Dy |+
T = ST = [ty R R e
1
= Al e e I = a [ ey
1+ D2 1= dar )
and expressing in succession the eigenvectors |J J—2>, [J J—3), ... we finally
obtain
J+ M) (J—M)
JM>=\/( ) WD e SN P CP S SRS ¥
P (J—M)terms (J+M)terms

with the sum extended to all the permutations having (J — M) spinors of the form
| — > and (J + M) spinors of the form |+ ».
Thus we can write

—igJ VT +M(T =M (J+N)!(J-N)!

—iB(Jy, g, Ty ,)
x DL I [ et s
P (J—M)terms (J+M)terms
S0 o+ 40 )
4 (J—N)terms (J+N)terms

Let us consider a single term in the sum over ¢; the operator e_iﬁ‘]y, acting on it,
will produce, apart from the ordering of the single vectors | + » and | — ), a state

vector of the form

J-N J+N
<Cos§—>—sinﬁ|+>) (COS§|+>+sinﬁ—>> =

2 2
J-NJ+N J—N—t+J+N—r t+r
25 (A IR O Rt )
t=0 r=0

X[ =Dl =0 =D+ +) [+ .

(J—N—t+r)terms (J+N —r+t)terms

Whatever the ordering of the various indices, this state vector gives a non-zero
scalar product with one and only one of the terms in the sum over p, provided that

J-M=J—-N—t+r
J+M=J+N—r+t.
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These equalities are both satisfied if r = N — M +t, and since the sum over g gives
Q2N(J + N)!'(J — N)!J7! terms of the same kind

Al n(B) =/ (J+ M) (J— M) (J+N)!(J—N)!
(COS §>2J+M—N—2t (Sing

>2t—]\/[+N
x ;(71)t(J+M—t)!(J—N—t)!t!(t+N—M)! ’

(2.69)

where the sum runs over all the ¢ values which lead to non-negative factorials.
The reduced rotation matrices have several important properties that can be
easily deduced either from their definition or from their analytical expression.

Reality:
diuv (5)* = diuv (ﬁ)

Closure:

Z d}]vuv (51) d'J{/P(@) = d]{/IP(ﬁl + B,)
N

Symmetry:

TN G+ ) . (2.70)

Explicit analytical formulae for J = 1 and 2 are given in Table 2.1. Additional
formulae for J = 3 to 6 can be found in Buckmaster (1964, 1966). An interesting
connection between reduced rotation matrices and Jacobi polynomials can be found
in Edmonds (1957).

Going back to the rotation matrices defined in Eq. (2.67), it is possible to establish
for them a number of important properties. First of all, as the rotation operator
D(R) is a unitary operator (Df(R) = D™'(R)), we have

D}JVIN(O‘ﬁ’Y)* = DKTM(_’Y -p-a), (2.71)

where (—y—f —a) are the Euler angles characterizing the inverse rotation of (a37).
From the unitary character of the operator D(R) one gets the orthogonality
relations

Z ngN(R)* DlgM(R) =0un
P

Z DJ{IP(R) DE(TP(R)* =Oyn - (2.72)
P
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TABLE 2.1

Algebraic formulae for d,; \;(8) (top) and d2, (3) (bottom). C and S stand for cos 3 and sin 3,
respectively.

N =-1 N=0 N=+1
=-1 ia+0) 755 ia-0
M=0 —%s c %s
M=+1| 1(1-0) -5 11+40)
N = -2 N =-1 N=0 N =+1 N =42
M=-2| 11+0)? is(1+0) 352 is51-0) ta-0)?
M=-1| -isa+0) [(C-1)(C+1) V/3sc Cc+hHa-o| isa-o)
M=0 352 -/3sc 12 1) VEsc 352
M=+1| -i51-0) |[(C+hH-0)| -/Isc |(C-LHc+n| isa+0)
M=+2| 1a-0)? —351-0) 352 —351+0) 1(1+0)?

From Eq. (2.68), using the symmetry properties (2.70), it can be easily shown
that
Diyn(afy)” = (DM D7y y(asy) . (2.73)
If R is a rotation composed of two consecutive rotations R, and R,, the operator
D(R) can be written as the product D(R,) D(R,).! For the rotation matrices we
thus have, directly from their definition

Di;n(R) = (JM|D(R)D(Ry)[IN) =Y Diyp(Ry) Dhy(Ry) (2.74)

1 This statement is not trivial. Indeed the operator D(R) should be written
D(R) = D/(Rg) D(R,),

where 8. J
—1 —1 P —1
D'(R,) =e iy, o 8o Ty =iy T ,

with Jy,7 J,, the components of J on the axes Yy, 2’ obtained from y, z through the rotation R,.

Since
Jy = D(Ry) J, D™ Y(R)), J,=D(R,)J,D"YR,),

we have, by series expansion of the exponentials
—ia . — —iB,J — —iv. . —
D'(R,) = [D(R))e 2" D7Y(R))] [D(R))e Faly D Y(R))] [D(Ry)e 27 D7Y(R,)]

so that
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the so-called closure property of the rotation matrices.
Another important property follows from the addition rules of two angular mo-
menta. Let us consider the product

Din(aB) Dy (aB) 5

according to the definition of rotation matrices, this product can be written in the
form

CIMe ™ &7y T INS (M T T NS

If we now consider the angular momentum operators appearing in the two matrix
elements as referring to two different systems, we can write

—iad, —i8J, —iyJ
le e "Tve

DY n(aB) Dy (afy) = (JJ' MM’ |JJI'NN'>

where the J-operator is the resultant of the angular momenta of the two systems.
On the other hand, bearing in mind the coupling rules of two angular momenta
and the definition of 3-j symbols (Eqs. (2.12) and (2.22)), one obtains with easy
transformations!

D;w(aBy) Dy (@By) =
=> (2K +1) (z\J4 z\Jm g) <Z‘{, ]‘é, g,) Dhor (afy)* (2.75)
K

a formula that shows how the product of two rotation matrices of rank J and J’
can be reduced to the linear combination of rotation matrices having rank K such
that |J —J | < K < (J+J).

From Eq. (2.75), using the orthogonality relation (2.23a) of the 3-j symbols, the
following expressions are also obtained

DSQ/ (aBy)" =

= Z (2K +1) <Z\J4 ]\{1/ g) (}{7 ](\][/ g)DJ{IN(aﬁ’Y)DJ{;'N'(aﬁ’Y);

MM'NN'

! 1 J J/ J//
Z DJJ\/[N(aﬁ’Y) D}JVI/N/(aﬁ’Y) D}JVI//N/' (aB) (M M M”) =
MM’ M”

J g g
= <N N/ N//) .

Note that a formal summation over @ and Q' might be added in the right-hand side of
Eq. (2.75).

1
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Another important property of the rotation matrices is the so-called Weyl theo-
rem

27 27 by
/da/ /dﬂ sin 3 DMN(aﬁ’Y) M’N’ (aBy)" =
0 0 0
82
:m(;‘]']/ (;MM/ (;NN/ 9 (2.76)

which is indeed valid only when J and J’ are both integers or both half-integers.
To prove the theorem, we note that Eqgs. (2.73) and (2.75) give

D n(@fBy) Doy (afy)* = (~1)M =V
XY (2K +1) (z\J4 —{\4/ g) (é —iv' g,) DS (aBy)*,  (2.77)
K

where, if we confine ourselves to one of the two cases specified above, the sum over
K runs only over integral values. The integral in Eq. (2.76) is therefore reduced to
the sum of various integrals of the form

27 27 T
/ da / dy / dg sin 8 D ()
0 0 0

with K, @, and Q' integers. The integrals over o and ~ can be easily performed
(see Eq. (2.68)) and give the value 47°35 dg. On the other hand, Eq. (2.69)
yields

COSQ 2K -2t sing 2t
dé%(ﬂ)(K!)?Z(l)t( 2) ( 2)

a [(K —t)le!]? ’
and since

e al bl

O/(Sin )2 (cos )T dax = 2atbri)’
we have

s

/ D(B)sin BB = =5 > (- ﬁ — 260 -

0 t

Thus the integral in Eq. (2.76) reduces to

2 M’ =N’ J J/ 0 J J/ 0
= (-1) (M M o) <N ~N" 0
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or, using Eq. (2.26a), to
872
27 11077 Onar O

which proves the Weyl theorem.

This theorem can be generalized to the case where one of the angular momenta
J and J’ appearing in the rotation matrices of Eq. (2.76) is a half-integer while
the other is an integer. In this case, however, the integrals over o and v must be
extended to the interval (0,4m) instead of (0, 27), and the result is zero. Therefore
the general form of the Weyl theorem, valid for any value of J and J', is the
following

4m 4m m

. / N 3272
/da /d’V /dﬁ sin 8 Dy (a3y) Dip e (@f7)" = 27 +1 0.0/ Onrasr ON N -
0 0

0

From the Weyl theorem in the form of Eq. (2.76) it is possible to find a highly
symmetrical expression for the integral of the product of three rotation matrices

2m 2m ™

[aa [ay [a5sing D (@50) D v (@89 D o (03) =
0 0

0
87r2<J1 Jo J3>(J1 Iy J3> )
M, M, M Ny Ny Ny

It should be remarked, however, that this expression is valid only when the three
J’s are integers or when two of them are half-integers and the third is an integer.
In different cases the expression in the right-hand side is meaningless.

2.7. Irreducible Spherical Tensors

In the ordinary three-dimensional space referred to a right-handed coordinate sys-
tem, a Cartesian tensor of rank k is defined as a set of 3% quantities (called the
components of the tensor) which, under rotation of the coordinate system, change
according to the linear relationship

T'(iyyig, .- siy) = Z a(iy, j1) alia, Ja) - - - aliy, Ji) T(Grs Jos - - -5 di)
Jygeed
(7;1>i2’ .. 'ik>j17j2a ce 7jk = 1a273) 5
where T(j,jg, .-, J,) and T7(i;,is,...,4,) are the tensor components in the old

and new reference system, respectively, and where the coefficients a(i;, j;) are the
direction cosines of the new axes relative to the old axes.
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For instance, the Cartesian components of a usual vector A satisfy a transforma-

tion of the form
J
thus a vector is a Cartesian tensor of rank 1. If A and B are two arbitrary vectors,

defining
Ci; = A,B,;

we have

Cl = Za(i,k)a(]}l) Cha
kl

which shows that the dyadic product of two vectors forms a Cartesian tensor of
rank 2.

An irreducible spherical tensor of rank k is defined as a set of (2k + 1) quanti-
ties (called the components of the spherical tensor) which, under rotation of the
coordinate system, change according to the linear relation

% =N"TFDE(R)  (¢,p=—k—k+1,... k), (2.78)
p

where T"% and T* are the tensor components in the new and old reference system,
respectively, and where R is the rotation that brings the old system into the new
one.

Contrary to the case of Cartesian tensors, the dyadic product of two irreducible
spherical tensors no longer is an irreducible spherical tensor. In fact, if R’qC and S 5,/

are two irreducible tensors, the (2k + 1)(2k’ + 1) components of the form R’;Sf;;
change, under the rotation R, into

(RESE) = 3 (RESE) D, (R) DY, ().
pp’

On the other hand, using Eq. (2.75) we can write
' ' kE kK K k K K’ / .
(RESEY =3 (RESENS (2K +1) (p v Q,) (q J P ) DS p/(R)" .
pp/ K/

Multiplying both sides by

ek (kK K>
(e (B2

summing over g and ¢’, and defining

T — _pypekQ (BOE K Y g 2.79
Q — Z( ) q q/ 7Q ( q q’) ’ ( . )
qq’
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we obtain, with the help of Eq. (2.23a)

e k ok’ -k+q (B K K\ Kk «
T *Z(R Sy)(=1) » p O Dy _q(R)
pp’

= Z K, (-1 DE,_,(R)* .

Recalling the conjugation property of the rotation matrices (Eq. (2.73)) and chang-
ing the dummy index Q" in —P, we obtain for Té( the typical transformation law

for spherical tensors,
7 = Y T D
P

Equation (2.79) can thus be regarded as a kind of recipe to obtain a spherical
tensor of rank K from the dyadic product of two spherical tensors of rank k and
k’. Tt should be noted, however, that definition (2.79) is by no means unique, as
the multiplication of the right-hand side by a factor of the form f(K), with f an
arbitrary function, does not affect the transformation law of the tensor Tg){ under
rotations.

The concept of spherical tensor can be easily extended to quantum-mechanical
operators. A spherical tensor operator of rank k is defined as a set of (2k+ 1)
operators (called the components of the tensor) which, under rotation of the coor-
dinate system, change according to the linear relation (2.78). Since, on the other
hand, quantum-mechanical operators are transformed according to Eq. (2.57), the
components of a spherical tensor operator must satisfy the relation

D(R)TF D'(R Z TFD : (2.80)
From this equation it is possible to deduce the commutation rules of a spherical
tensor operator with angular momentum. Let us consider an infinitesimal rotation

of the coordinate system through an angle ¢ about the unit vector @. We have (see
Eq. (2.61))

D(R) =1—i¢J,
DY(R) =1 +i¢J,
Dy (R) = (kpll —igJ, |kq)y = 6, —i6<{kp| T, |kq) .

Substitution into Eq. (2.80) yields
[T TF] = Z TF (kplJ, kg
and equating J,, with J,, J,, and J_ one gets (see Eqgs. (2.7), (2.9), and (2.10))
k) _ ok
[JZ7 Tq } =q Tq

[Ji’qu} =V(k+q+1)(kFq) T;il . (2.81)
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Conversely,these commutation rules could be taken as basic definitions of a spher-
ical tensor operator. It can indeed be proved that from these equations one easily
gets back transformation (2.78).

From Egs. (2.81) it is possible to find the spherical components, A;, of a vector

operator A. Equation (2.60) gives

[J.,A.] =0,

z?

hence we can write

Ab=A, .

Setting k =1 and ¢ = 0 in the second of Egs. (2.81) we further obtain
[Ji’A(ﬂ = \/§A1i1 J

so that, summarizing

1
1 o .
A—l = % (Aw — lAy)
A=A,
1
Al =——(4,+i4,). (2.82)

V2

Given two tensor operators of rank 1, it is possible to construct three tensor
operators of rank 0, 1, and 2, respectively, by considering the linear combinations
(2.79). For the 0-rank tensor one gets, using Eq. (2.26a)

1 1
T9 = —= > (-1)'""R;S' = —= (R{S", — RyS) + RY,S})
V34 V3

1

R-S, (2.83)

Sl

which shows that, apart from a numerical factor (—1/4/3), the O-rank tensor is
simply the scalar product of the two vectors.

For the tensor of rank 1, a direct application of Eq. (2.79), with the 3-j symbols
computed from Egs. (2.26¢,d), gives

1

1

TS = 7 (RIS, — R S))
1

T = —= (R{Sy — RyS}) ,

V6
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or, in terms of Cartesian components (see Egs. (2.82) and their inverse)

i
T, = 2= (R,S. - R.S,)

i
T =—(R,S,—R,S

i
Therefore the spherical components of the tensor of rank 1 determine a vector Yj
which, apart from a numerical factor, is simply the cross product of the vectors R
and S,

i
V6

Finally, the components of the tensor of rank 2 are given by

T=-—RxS.

1%, = RS

T2, = J%_o (RyS*, + R, S))

T2 = % (R',S! +2RLS} + R'SL,)

77 = = (RSt + RiS))

T; = L R}ST . (2.84)

V5

It should be remarked that the adjoint (or Hermitian conjugate) of a spherical
tensor operator qu no longer is a spherical tensor operator. This can be easily
proved by taking the Hermitian conjugates of Egs. (2.81), recalling that

[AvB}T = 7[AT7BT] s (‘]:I:)T = J1 ;
we have

[, (T = —a (1)

[T (T = =V (kFa+ 1)k £ q) (T

However, the operator
kE _ (_1yr—a (Tk \t
Oq _( 1)T q<T—q) )
where r is zero for k integer and 1/2 for k half-integer, is indeed a spherical tensor
operator. In fact

[.,0g) = =(=1)" " [J,, TE ]V = (=1)"q (Tt )" = ¢ O
[Ty, 051 = —(=1)" 9 [Jo, TE )T = (-1~ T/ (k£ g + D(kF q) (T5 7))

=\/(kiq+1)(k¥q)0§il-
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The spherical tensor operator Og can be considered as the Hermitian conjugate of
the tensor qu; employing for this tensor the notation 7 we have

e — (1)~ k yt
(T )q - ( 1)T e (T—q) . (285)
A Hermitian spherical tensor operator is defined as an operator such that
ek _ k.
(T )q - Tq ’
as a consequence, the components of such operators satisfy the relation

Ty = (-1 (T* )T (2.86)

It is seen at once that the spherical components Aé of a Hermitian vector A form
a Hermitian spherical tensor operator. From Egs. (2.82) we have

1
(AL = 7 (4, +i4,) = —A]
(Ap)T =4, = A5

1 .
(A%)Jr = *ﬁ (4, - lAy) = *A£1 )

so that Eq. (2.86) is satisfied.

2.8. The Wigner-Eckart Theorem and its Consequences

The Wigner-Eckart theorem has a fundamental importance in angular momentum
theory, as it allows the matrix elements of spherical tensor operators to be reduced
to simple mathematical expressions.

For the evaluation of the matrix element

{ad M|T}|o/ J' My, (2.87)
where qu is the g-component of a spherical tensor operator of rank k, and where
a and o' are supplementary quantum numbers (relative to Hermitian operators
commuting with J2 and J,), we first consider the (2k + 1)(2.J’ + 1) vectors

ki 17 ar!
) |o'J' M,
or, more precisely, their linear combinations

S TEa' T M (T EM gl T My (2.88)

M'q
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where J” is a given angular momentum eigenvalue having the same character (in-
teger or half-integer) of (J' 4 k), and limited between |J' — k| and (J' + k). We
will now show that the (2J” + 1) vectors obtained by varying M" in the linear
combinations (2.88) are eigenvectors of J2 and .J_ corresponding to the eigenvalues
J"(J" +1) and M", respectively.

Denoting by |v(J”, M")> the linear combination (2.88), we have

Jw(J", M"Y ZJ T o/ M’y (I kM'q|l]" M">

and using the commutation rules of spherical tensors (Egs. (2.81)) we obtain

T M)y = S (M4 ) T 0! M KM gl M
M'q

=M"o(J", M")) . (2.89)
Similarly, one gets from Eqgs. (2.81) and (2.9)

Jplo(J", M")) =

=N VI 1) = MM+ )T o/ T M +1) (T kM q|J" M

+> VEE+D) —glg+ 1) Ty o T M (TkM " M)
M’q

and renaming the summation indices

Jpo(J", M")y =

=Y TFla'J M) [\/J’(J’ +1) = M'(M' —1){J'k M'—1 q|J'M">

M’q

+VE(k+1)—qlg—1) (J'kM' g—1]J"M">

which can be rewritten, with the help of the recursion relation (2.21), in the form

T o7 M"Yy = /T (T 1) — MM+ 1) [o(J", M" +1)) . (2.90)

In a similar way one can prove that

J_|o(J", M"Yy = /T (J"+1) = M"(M" — 1) |p(J", M"=1)} , (2.91)
so that, from Egs. (2.89), (2.90), and (2.91)
1
T2 (J", M"Yy = | J* + §(J+J7 +J_J)| (", M)y

= J'(J" + 1) (I, M")) . (2.92)
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Equations (2.89) and (2.92) show that the (2J” + 1) vectors of the form
[v(J", M")> are angular momentum eigenvectors (in general not normalized) cor-
responding to the eigenvalues J” and M”.

Recalling the definition of |v(J”, M")> we have, after inversion of Eq. (2.88) via
the orthogonality relations of the vector-coupling coefficients (Eq. (2.20b))

qu |Oz/J/M/> _ Z <J/kM/q‘JNMN> ‘U(JN,MN)> 7
J//
and hence the scalar products (2.87) can be written in the form
CadM[TFlo/ T My =Y " (T kM q|J"M") (o Mv(J", M")) . (2.93)
J//

On the other hand, the scalar product {aJM|v(J", M")> is zero unless J = J"
and M = M". Moreover, it is independent of M (see the comments after Eq. (2.30))
so that we can write

CadMo(J", M"Yy =6 0 Spyppe (=12 Cad|| T/ TS, (2.94)

where the quantity {(a.J||T*||a’J") is the so-called reduced matriz element! of the
operator Ty, Substitution of Eq. (2.94) into Eq. (2.93) leads to the final expression
of the Wigner-Eckart theorem

CaM|TY |/ J' My = (=1)**Lad | T* [0/ Iy {J' kM q|TM ) (2.95)
or, in terms of 3-5 symbols
(] M|TS|a/ My =

, /
Vs o N AL oW ([ L Y N (2.96)
-M M q

The reduced matrix element can be expressed in terms of ordinary matrix ele-
ments by inversion of Eq. (2.96). From the orthogonality relation of the vector-
coupling coefficients (Eq. (2.20a)) we have

(ad|[T*[a/ T = (1)~ (kM qlTM )y {a T M|T} |/ T M) .

M'q

A different way for calculating the reduced matrix element is to substitute some
special values of M and M’ into Eq. (2.95). For the reduced matrix element of the
angular momentum operator J we have for instance (denoting J! by J )

Ca M|JH ! T M = M 6,0 8550 0ppap = || T ||o/ IS (T IMO|IM )

aa’

1 The definition given here for the reduced matrix element agrees with that given by Brink

and Satchler (1968), while it differs by a factor v/2J + 1 from those given by Racah (1942) and
Edmonds (1957).
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and being
M

one obtains B
lad || T/ Ty = Oper 050 VJI(J+1). (2.97)

An important property of the reduced matrix element can be easily deduced from
the orthogonality relation of the vector-coupling coefficients

D KadMITE o/ T MY ? = [{ad || T T )| .

M'q

The most striking consequence of the Wigner-Eckart theorem is the direct ap-
pearance of selection rules for the matrix elements of the components of spherical
tensor operators. Indeed, because of the presence of the 3-j symbol in Eq. (2.96),
the matrix element {aJM |T§\o/ J'M"y is identically zero unless

J -kl <J <J+k, M =M-—q.

In particular, we obtain from Eq. (2.26a) that the matrix elements of a zero-rank
spherical tensor operator are diagonal with respect to J and M, and are indepen-
dent of M.

2.9. Properties of Reduced Matrix Elements

From the Wigner-Eckart theorem an important relation can be deduced for the
reduced matrix elements of a Hermitian spherical tensor operator H 5. Taking the
complex conjugate of Eq. (2.95) we have

(o MIH} o/ J' M"Y = (=1)** (o | H*||o/ > " (T kM q|JM ) . (2.98)
On the other hand, being Hé“ Hermitian, from Eq. (2.86) we deduce
(ad MIHEF|o/ T M"Y = (/T M|(HE) | M >
= (=)™ T M'|HE JaI M) .
Applying again the Wigner-Eckart theorem to the last matrix element we get
(ad MIHJ |/ J' M"Y = (=1)" 9028 o J' || H |ad » {TRM —q|J'M"> . (2.99)

From the symmetry properties of the vector-coupling coefficients (Eqgs. (2.22),
(2.24), (2.25)) we have

2J" +1

M _ /M/ = (=1 J—J/—M-‘,-M/
CTEM —gl/M'y = (1) st

(J'kM'q|JM >y, (2.100)
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and, finally, from Egs. (2.98), (2.99), and (2.100) we get
V2T + 1 (ad | H"||o/ T = (=1)" 7" V2T + 1/ J' | H" |od >, (2.101)

which is the relation, valid for Hermitian spherical tensor operators only, between
reduced matrix elements of the form {aJ|H"|a/J"> and {o/J'|H"||aJ]).

In Sect. 2.7 we have shown how it is possible to construct an irreducible spherical
tensor Tg from the product of two irreducible tensors B’qC and S f;,/. We want here
to show how the reduced matrix elements of these tensors are related among each
other. The Wigner-Eckart theorem, applied to the tensor Tg , gives

J T

K| I 7iap/\ _ J+K+M
{aJM|TE | My = (-1) 2J+1<M o

g) (| TE [T .

From Eq. (2.79), introducing intermediate states between the tensors R’q“ and Sé“,'
and applying again the Wigner-Eckart theorem, one obtains

SN (MK e

qq/ all JII MII
« J J" ok J" J K k kK K
M M" q M M q/ q q/ -Q

x Cad | RE[ja" Iy (o J"||S* o) =

<J J K

v b)) adlTEa sy

Multiplication of both sides by

J J K
-M M Q

followed by summation over M and M’ gives, using Egs. (2.23a) and (2.34)*

/ J J K
@Il =1 S v )
aIIJ//

x (| RF||o” "y (" J"||SF ol Ty (2.102)

which shows how the reduced matrix element of a ‘composite’ spherical tensor is
related to the reduced matrix elements of the constituent tensors.

1 The deduction of Eq. (2.102) is not trivial, as it involves the contraction of four 3-j symbols

which must be suitably manipulated to obtain the formula (Eq. (2.34)) leading to the final result.
In App. 2 we give, for the unexperienced reader, an example of how the various manipulations
can be performed.
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A direct application of this formula to the 0-rank tensor T obtained from the
scalar product of an arbitrary vector ¢ with the angular momentum J gives (see

Eq. (2.83))

1 o
(T o' ") = = Caud - TS

: J J 0 . -
= () Y VI {1 ! J,,}<aJv||a”J"><a"J~||J||aar>,
a//J//

which, using Eqgs. (2.36a) and (2.97), can be written in the form

Cad[§- TN J" =8, /T + 1) Cad 7T

From this equation a remarkable relation, often referred to as the projection theo-
rem, can be easily proved by a double application of the Wigner-Eckart theorem,

[J(J+ D] {aJM|5|a’ IM"S = (o M| (G- J)J |/ TM' . (2.103)
We have indeed for the spherical components of the operator J
(ad M| (T J) T} o/ TM'y =
= > LaJM[F-J|a"J"M"y T M| Ty o/ TM)
@ J MY

= "Kad||T- T/ Ty (JOM"0LTM ) (o J||T |0 T {TLM g JM")

M

=J(J + 1) LaJ||U]| T <{JIM q| T M >
= J(J+1) {aJM|v,|a'TM" (2.104)

which proves Eq. (2.103).

The projection theorem has a very simple physical meaning that is depicted in
Fig. 2.5. According to the vectorial model, the vector ¥ rotates rapidly about J ,
so that its only effective component, ¥4, points in the J -direction. On the other
hand, 7,4 can be written in the form

thus the projection theorem can be considered as the direct generalization to Quan-
tum Mechanics of this simple geometrical expression.
The projection theorem can be expressed in the equivalent form (see Eq. (2.104))

Cad M|/ TM"y = g, (T) (! TM|T |/ TM"Y
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Nt

Fig.2.5. The vector ¥ is rapidly spinning about j, so that its only effective component, ¥ g, is in
the J-direction.

where -
. {laJM|T-Jl'IMy  Lald| v T
Yooy (V) = = (2.105)
J(J+1) J(J+1)

is the generalization of the Landé factor that will be encountered in the next chap-
ter.

A final application of the Wigner-Eckart theorem concerns the matrix elements of
a spherical tensor operator acting on the dynamical variables of a single component
of a composite system.

Let us consider a system composed of two parts of angular momenta J; and J,,

respectively, having total angular momentum J = j1 + J; If qu(l) is a spher-
ical tensor operator (the argument (1) means that it is acting only on the first
component of the system), we have for its matrix elements

agyjpd M| Ty (1) |01 d "M =

= (1> {TEM'q|TM ) {agyjo | TH(1) || 51557 (2.106)

On the other hand, if we change the coupling scheme using the vector-coupling
coefficients, we can write

{ajigp I M| Ty (1) o jigs T M) =

= Z {Grdamymg| M Gy jamyma| ' M")
mymymym,
X {Qy jomyma| qu(l) |/ gy jgmyms) .

Since T(f (1) acts only on the first component of the system, applying again the
Wigner-Eckart theorem we obtain

Loy joymymy| TE(L) |o 5 jymimb )y =

= (1) Gk mialiymy ) Cagy | T (/51 8, 5y Sy - (2:107)
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Comparison of Egs. (2.106) and (2.107) gives the following relation between reduced
matrix elements

CT'EM'q|IM ) Loy oy || TF(1) || 51 550"y =

= Z (Grdamyma| M ) Gy jamymo| J'M") (iykmiyqljymy )

/
m m2m1

x Cagy | THA) /5> 6, 5, -

1

This relation can be expressed in a more compact form by a calculation similar to
that in App. 2. This calculation, which is left as an exercise to the reader, leads to
the following expression

Cagyjy || TH(L) |/ j1gs Ty =

= (— j1+j2+‘]l+k / . jl ]i k
- (-1) yersoe {4 4 r

x agy | TH(1) o'51> 6, - (2.108)

Similarly, if T; (2) is a spherical tensor operator acting only on the second part of
the composite system, we obtain

Loy oy I || TH(2) | 51 550"y =

(VTR : : Jo Jy kK
— (i Jer e {5 % F

x {agy || T*2) la'd5) 65 1 - (2.109)
More generally, if quil (1) and 5522 (2) are two spherical tensor operators acting on
the first and second part of the composite system, respectively, and if Tg is the

spherical tensor operator constructed according to Eq. (2.79), the reduced matrix
elements are connected by the following relation

Cagija |l T" ||0/jij§=]/> =

J J K
= @i+ D@L DRI ) G Ky
Ja Js ko

x Y Lagy || RE (1) || > <oy | S*2(2) |3

o’

The proof of this relation, that follows from Eqs. (2.34) and (2.48), is left as an
exercise to the reader.



CHAPTER 3

ATOMIC SPECTROSCOPY

Polarization can be introduced in spectral lines by several different mechanisms,
that are connected either with the presence of an external field (like for instance
a magnetic or an electric field) or with the existence of some kind of anisotropy in
the excitation of the atomic system (optical pumping, impact polarization, etc.).

While the detailed theory describing the interplay of the various mechanisms
will be tackled in the following chapters, it is first necessary to state some specific
spectroscopic notations, and to give a number of basic results concerning the inter-
action of an atomic system with an external field, in order to establish an adequate
physical background. In particular, we will review in this chapter the theory of
the Zeeman and Paschen-Back effects, including the case of hyperfine structure,
and we will give a description of atomic polarization in terms of the density (or
statistical) operator and of statistical tensors.

3.1. Zeeman Effect

According to the theory of atomic structure (see for instance Condon and Shortley,
1935; Condon and Odabasgi, 1980), the modifications produced in atomic spectra by
an external, uniform magnetic field can be described by adding to the unperturbed
Hamiltonian H|, of the atomic system an additional term Hp, called the magnetic
Hamiltonian, given by

h o N N 2
‘" ([ 128). B4+ -2

5 (B x 7)?, (3.1)

4mme 8mc?

where e, is the absolute value of the electron charge, m is the electron mass, h and
¢ have their usual meaning of Planck constant and speed of light, L and S are the
(dimensionless) total orbital angular momentum and total spin of the electronic
cloud, B is the magnetic field vector, and 7 is the position operator defined by

’I‘:E T,

%

where 7 is the position of the i-th optical electron relative to the nucleus. For one-
electron atoms, Eq. (3.1) can be derived by taking the lowest-order, non relativistic
limit of Dirac’s equation describing the motion of a particle in an electromagnetic
field (see for instance Schiff, 1949).

The second term in Eq. (3.1) is the so-called diamagnetic term. Its importance
is very limited in practice, at least for the magnetic fields that are usually found



74 CHAPTER 3

in laboratory or astrophysical plasmas. Indeed, comparing the two terms in the
right-hand side of Eq. (3.1) and taking, as an order of magnitude, the radius of the
first Bohr’s orbit for the expectation value of r, we obtain for their ratio

dt 1 h3
second term B=1.06x10"°B, (3.2)

first term 3273 m2c¢ ed
where B is expressed in G. If we exclude the extremely large fields that are found in
magnetic white dwarfs (see e.g. Angel et al., 1981, or Schmidt, 1987, for a review
on the subject) or are supposed to exist in neutron stars, the diamagnetic term can
be safely neglected in Eq. (3.1), so that we can write

egh = = ﬁ - = -

Hy = (L+25)-B=p,(L+25)-B, (3.3)

4dmme

where f1 is the so-called Bohr magneton (u, = 9.27 x 1072 erg G71).

If the magnetic field is so weak as to keep the magnetic energy much smaller than
the energy intervals relative to the unperturbed Hamiltonian H, the effect of Hp
can be computed by perturbation theory (see Messiah, 1961, for an introduction to
the argument). According to this theory, the shifts of an N-fold degenerate energy
level of H,, are obtained by diagonalization of the matrix

(Hp)y; = <u

]

Ea)|HB‘u§a)> (7’7]:177N)7

where |u§€a)> (k=1,...,N) are the degenerate eigenvectors of H,, corresponding
to the eigenvalue F, .

In our case, since the Hamiltonian H| is invariant under rotations, the total
angular momentum J and its projection M along an arbitrary z-axis are good
quantum numbers, so that the eigenvectors can be written in the form |aJM >
(where « is a collection of inner quantum numbers of H,,), with

HylaJM) = E,_; |aJM)
JladMy = J(J +1)|ad M)
JlaJMy = M |aJM) . (3.4)

When we add to H, the magnetic Hamiltonian H, the corrections to the degen-
erate energy I/, ; are found by diagonalization of the matrix

(aJM|HglaJM"y = py{aJM|(L+28)-BlaJM"> .

The matrix elements can be evaluated for any direction of the magnetic field in
the reference > system (xyz) chosen to describe the atomic system. Writing B in the
form B = Bb where b is a unit vector in the magnetic field direction, and writing
(L+25) in the form (J+S), where .J is the total angular momentum of the atomic
system, we have

(aJ M|HglaJM"y = pgB {aJ M| (J + S)-blaJ M)
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Introducing the spherical components of the three vectors, the scalar product can
be written in the form (see Eq. (2.83))

(J+8) b= (1) (J, +5,)b_,,

so that, applying the Wigner-Eckart theorem in the form of Eq. (2.96), and using
Eq. (2.97), one obtains

) J J 1
{aJM|HplaIM'y = pyB Y (~1)7HMHat /a7 41 <_M v q>
q

X G/JL]+—U—%<aJH§HaJ>)hw. (3.5)

Owing to the selection rules of the 3-j symbol, these matrix elements are zero
unless (M’ — M) =0, or 1. We have therefore a tridiagonal matrix that might
in principle be diagonalized by standard methods.

The diagonalization can however be avoided by aligning the z-axis of the reference
system with the direction of the magnetic field. In this case, in fact, the only non-
zero component of the unit vector b is by =1, and we easily obtain, substituting
the value of the 3-j symbol given by Eq. (2.26d)

(aJM|HglaJM"y = puyBgM &y » (3.6)
where g, the so-called Landé factor, can be written in the form!

. ad|S ey
§= 14 "o (J #£0). (3.7)

Equation (3.6) shows that the magnetic Hamiltonian is now represented by a di-
agonal matrix. This means that, to the first order of perturbation theory, the
eigenstates of the total Hamiltonian (H, + Hp) are of the form |aJM ), while the
eigenvalues are given by

E,, +pogBM (M =—J—J+1,....J).

Thus the Hamiltonian H 5 removes the degeneracy, and any level characterized by
the quantum number J is split into (2.J + 1) equally spaced sublevels, the splitting
being proportional to the Landé factor g and to the magnetic field.

We want to remark, however, that the states |aJM » are eigenvectors of the total
Hamiltonian only when the z-axis of the reference system points in the magnetic

1 As apparent from the 3-j symbol in Eq. (3.5), the matrix elements of H identically vanish

if J = 0. This simply means that the magnetic field does not affect, to the first order, the energy
of the atomic levels characterized by J = 0. Consequently, one can formally put g = 0 for such
levels.
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field direction. This means that a state having a definite value for the projection
of the total angular momentum along the direction of the magnetic field has a
well-defined energy value. When the z-axis of the reference system is not in the
direction of the magnetic field, a state of the form |aJM ) is an eigenvector of H,,
but not of (Hy, + Hp).

The general expression for the Landé factor, given in Eq. (3.7), involves the
evaluation of the reduced matrix element of S. This can be easily done when
the levels are described by the Russel-Saunders (or L-S ) coupling scheme (see
e.g. Condon and Shortley, 1935). In this scheme the quantum numbers L and
S corresponding to the total orbital angular momentum and to the total spin,
respectively, are good quantum numbers, so that an eigenvector of the Hamiltonian
H, can be written in the form

IBLSTM ,

where ( is a collection of quantum numbers representing the electronic configura-
tion. The reduced matrix element is then

(BLSJ|S|BLS T ,

and it can be evaluated in the easiest way with the help of the projection theorem.
From Eq. (2.105) we have

(BLSJM|S - J|BLSJM
J(J+1)

(BLSJ|S|BLSJT) =

)

and writing S - J in the form
§.7=Ltrrys o1
2
we obtain for the Landé factor

This formula can be rewritten in the form
9rs = 1 +7(J7S7L) )
where we have used the compact notation

A(A+1)+ B(B+1) - C(C+1)

7(4,B,C) = 2A(A + 1)

In the j-j coupling scheme (see e.g. Condon and Shortley, 1935) a simple expres-
sion for the Landé factor can be obtained for levels originating from two optical
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electrons of orbital angular momentum [/; and I,, respectively. In this case the
reduced matrix element to be evaluated is the following

(B (ly51)715 (1g52) a5 J||§Hﬂ (1181)d1> (I389) 2, T

where s, = s, = 1/2. Writing S in terms of the spins of the single electrons

(S = 5, + 5,) and applying Eqs. (2.108), (2.109), and (2.36d), one obtains after
some calculations

95; =1 + (g1 d2) Y01 1/2:0) + (T s 51) Y(d2: 1/2,15)

Another case where it is possible to find an analytical expression for the Landé
factor is the case of the so-called J; -l coupling. In this coupling scheme a ‘parent’
level of orbital angular momentum L; and spin S; couples its total angular mo-
mentum J; with the orbital angular momentum [ of a further electron, to give an
angular momentum K which in its turn couples with the electron spin to give the
total angular momentum J. Thus the reduced matrix element to be evaluated is
the following

(B ((L1S1)J1al)Ka5a JHgHﬁ ((L1S1)J1al)K,5> Jy,

where s = 1/2. After some tedious algebra, that is left as an exercise to the reader,
one gets the formula

g']1l = 1 +’7(‘]a 1/27K) +’7(J7 Ka 1/2) V(K7 Jlal) V(leslaLl) .

In more complicated coupling schemes, or in intermediate coupling, no simple
analytical expression can be found for the Landé factor unless the eigenfunction
of the level is known in full detail. If we know, for instance, how to express the
eigenvector |aJM ) of a given level in terms of the L-S coupling eigenvectors (see
Condon and Shortley, 1935, for further details),

aJMy =" c(B.L,S) |BLSIM )
BLS

it can be shown by some Racah algebra that

Jic = Z |C<ﬁ7Lvs)|29LS )

BLS

where g; ¢ are the Landé factors computed from Eq. (3.8). This formula is however
of little use, because the coefficients are seldom known with a sufficient degree of
accuracy.

It should be remarked, however, that in many cases the Landé factors are known
from experimental work carried out in spectroscopy laboratories. A systematic
(but incomplete and non-updated) list of experimental g-values can be found in
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Moore (1949, 1952, 1958). For the Fel and Fell spectra, further g-values can be
found in Reader and Sugar (1975) and in Corliss and Sugar (1982).

For an atom in L-S coupling, the Landé factor is equal to 1 for a level having
S = 0, while it is equal to 2 for a level having L = 0. When both L and S are
non-zero, g is generally bounded between 1 and 2, although many exceptions are
found to this simple rule, especially for low J-values. In rare cases, the combination
of the quantum numbers may give a negative or vanishing value for g. L-S levels
having g = 0 are 4D1/2, °F), Gy ), "H,, ®15 5, etc., while L-S levels having g < 0
are 6F1/2, Gy, 8G1/2, 8H3/2, etc. In other cases, large values of g can result; for
instance, L-S levels having g > 2.5 are 4P1/2 (9 = 2.667), °P; (9 = 2.5), °Dy
(9 =3.333), "Dy (9 =3), 8D3/2 (9=128), 8F1/2 (9 =4), ete.

Let’s now consider the Zeeman pattern to be expected in the transition between
two atomic levels, both split by the presence of a magnetic field. If J and J’ are the
angular momentum quantum numbers of the lower and upper level, respectively,
and if g and ¢’ are the corresponding Landé factors, the spectral line originating
from the transition between the two levels splits, owing to the magnetic field, into
a collection of components whose frequencies are given by

/ B
Vi = v+ B8 (o' M~ gM) | (3.9)

where v is the frequency of the unperturbed line and where M and M’ are the
magnetic quantum numbers of the lower and upper sublevels, respectively. Formula
(3.9) is often written in the form

V1{4J1(4/ =vy+u, (M —gM),

where B B
Ho )
=—=— 3.10
"L h dmme ( )
is the so-called Larmor frequency; numerically we have
v = 1.3996 x 10° B , (3.11)

with B expressed in G and vy, in s71.

The wavelengths of the transitions can be easily evaluated in the visible and
infrared, since in these cases the Larmor frequency is much smaller than v, (for
instance, for a line at 1.2 um and for B = 10?G, the ratio vy /v, is of order 6x 1075),
so that we can write

A = — Adg (M — gM) (3.12)
where A\, = ¢/v, is the wavelength of the unperturbed line, and where

My =2 = NGB

c  dmmc? (3:13)
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Numerically we have
AN = 4.6686 x 1071°\2 B, (3.14)

where A)y is in mA, Ap in A, and B in G.

It is important to note that, of the various Zeeman components (whose wave-
lengths are given by Eq. (3.12)) arising in a given transition, only a limited number
is actually observed: this is due to selection rules that depend on the interaction
between atoms and radiation field. The general properties of Zeeman patterns
(namely the number of observed lines, their wavelength position, their relative
strength and polarization features) depend on the kind of interaction (electric-
dipole, magnetic-dipole, electric-quadrupole, etc.). In the rest of this section we
summarize the main properties of the Zeeman patterns resulting from the electric-
dipole interaction, which is the simplest one and the most important in practice.
The reader is referred to Sect. 9.1 for a formal derivation of what is anticipated
here.

The selection rule for electric-dipole transitions is

AM =M — M =0,+1 , (3.15)

from which three distinct groups of Zeeman components arise.

The components having AM = —1, that will be called in the following the o,
components, are generally displaced to longer wavelengths (or towards the red side
of the spectrum) from the unperturbed line. In emission, they give rise in general
to elliptically polarized radiation, which degenerates into circularly polarized ra-
diation when observed along the direction of the magnetic field, and into linearly
polarized radiation when observed in the plane perpendicular to the magnetic field.
In particular, referring to Fig. 3.1, any o, component produces in emission: right-
handed (or positive) circular polarization along the positive z-axis, left-handed (or
negative) circular polarization along the negative z-axis, and linear polarization,
perpendicular to the z-axis, along any direction in the 2-y plane.!

The components having AM = +1 (o, components) are generally displaced to
shorter wavelengths (or towards the blue side of the spectrum) from the unper-
turbed line. Their behavior is similar to that of the o, components except for the
handedness of circular polarization. Referring again to Fig. 3.1, any o}, component
produces in emission: left-handed (or negative) circular polarization along the pos-
itive z-axis, and right-handed (or positive) circular polarization along the negative
z-axis. In the z-y plane the oy, components have the same properties as the o,
components.

Finally, the wavelengths of the components having AM = 0 (the so-called 7
components) fall in between those of the o, and o, components. In emission, the

L In absorption, the situation is more complicated because the polarization of the radiation

absorbed by the o components depends also on the polarization of the incident radiation. For
the special case of an unpolarized incident beam, the absorbed radiation has the same polariza-
tion characteristics as the radiation that would be emitted in the direction of the beam. As a
consequence, the opposite polarization will be present in the beam after absorption.
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<; o

r
b

Fig.3.1. The polarization properties of the radiation emitted by different Zeeman components
depend on the type of component and on the angle between the observing direction and the
magnetic field vector. For the radiation emitted along the z, y, and z-axes, the tip of the wave
electric field vector draws, in a fixed point, the figures here shown.

7 components give rise to linear polarization whose direction is always parallel to
the magnetic field, as represented schematically in Fig. 3.1.

In particular, for an observer located in the z-y plane, all the components pro-
duce linear polarization that is parallel (for the m components) or perpendicular
(for the o components) to the direction of the magnetic field. This explains the
denominations 7 and o, which follow from the German words parallel and senkrecht
(perpendicular).

As far as the number of Zeeman components is concerned, the simplest case (often
referred to as normal Zeeman effect) occurs when the angular momentum of any
of the two levels involved in the transition is zero (J = 0 or J’ = 0), or when both
levels have the same Landé factor (g = ¢’).! In both cases only three components
are left: one o, component at the wavelength (A, + gAAz), one o, component at
the wavelength (A, — gAMg), and one m component at the wavelength A, where
the g-factor is either the Landé factor of the level having J # 0, or the Landé factor
common to the two levels.?

1 The two cases will be referred to in this book as normal Zeeman triplet and anomalous

Zeeman triplet, respectively. Other authors reserve both names for the case (J = 0 or J' = 0),

and use normal or anomalous according as the Landé factor is unity or not.

2 The normal Zeeman effect (or, more properly, the normal Zeeman triplet case) can also

be treated by a classical (non quantum-mechanical) approach, that will be presented in the next
section.
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TABLE 3.1

Analytical expressions for the strengths of Zeeman components. J and M are the quantum
numbers of the lower sublevels, J’ and M’ the quantum numbers of the upper sublevels.

J =J+1 J=J J=J-1
_ 3(J+M+1)(J+M+2) 3(J=M)(J+M+1) 3(J—M)(J—M—1)
Y M =M +1 2(J+1)(2J+1)(27+3) 27(J+1)(2J+1) 2727 —1)(2J+1)
- M =M 3(J—M+1)(J+M+1) 302 3(J—M)(J+M)
= (J+¥1D)(2J+1)(2J+3) J(J+1)(2J+1) T(2T—1)(27+1)
M o= M—1 3(J=M+1)(J—M+2) 3(J+M)(J—M+1) 3(J+M)(J+M—1)
Oy =M= 2(J+ 1) (27 +1)(27+3) 27(J+1)(2J+1) 27(27—1)(2J+1)

In the other cases (referred to as anomalous Zeeman effect), more complicated
patterns occur. It will be proved later (see Sect. 9.1) that the relative strengths of
the various components are given by the expression

: JooJ 1Y
S{.]]J (M, M/) -3 (M/ M q) (q = —1’0,4—1) R (316)

where the index ¢ = —(M' — M) = —AM is equal to —1, 0, +1 for the oy, 7, and
o, components, respectively. It can be easily seen that the relative strengths, as
defined by Eq. (3.16), are normalized to unity; from Eq. (2.23a) we have in fact

J! J 1 2
JJ' /
E Sq (M, M") = E 3( MM q> =1 (¢g=-1,0,+1). (3.17)
MM’ MM’

Using the analytical expressions of the 3-j symbols (Egs. (2.26)), the strengths of
the various components can be written as algebraic functions of M and M’. The
results are summarized in Table 3.1.

From Eq. (3.16) one can prove some symmetry properties for the strengths. Equa-
tions (2.24) and (2.25) give

JJ’' _gJJ
S (M, M) = §7T (—M, —M") (3.18)
JJ' _oJJ
S (M, M") = S (M, ~M) . (3.19)

On the other hand, defining the wavelength displacement from line center via
Eq. (3.12),

AN = — A (f M — gM) (3.20)

we also have
AN == AN (3.21)
AN = AN (3.22)

Equations (3.18) and (3.21) show that for any o, (0,,) component there is a oy
(0,) component of the same strength symmetrical about line center, and for any
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7 component (except the one corresponding to M = M’ = 0, if it exists) there is
another m component of the same strength symmetrical about line center. From
Egs. (3.19) and (3.22) we further deduce that the inversion of the upper and lower
level in a given transition yields the same combination of strengths and splittings
of the various components, or, in other words, the same Zeeman pattern; the
component connecting, in the original pattern, the lower sublevel (J, M) with the
upper sublevel (J’, M’) corresponds in the ‘inverted’ pattern to the component
connecting the lower sublevel (J’, —M’) with the upper sublevel (J, —M).

Some representative Zeeman patterns are shown in Fig. 3.2. An extensive numeri-
cal table of Zeeman patterns for a large number of electric-dipole atomic transitions
has been given by Beckers (1969b).!

3.2. Classical Theory of the Zeeman Effect

According to the classical theory of the electron, as developed by Lorentz in the
early years of this century, we schematize the emitting atom as a negative electric
charge (-e,) oscillating, at the frequency v, around a point P under the action of
an elastic, restoring force. In the presence of a magnetic field é, the motion of the
electron is described by the equation

dt?

L e, d¥ = dz
:—47r2ygm——0—><B
m

—y = 3.23
c dt RFT ( )

where v is a constant which accounts for the damping of the electron due to its
energy loss by radiation.

The actual value of this constant, that is introduced here in a purely phenomeno-
logical way, can be deduced by equating the work per unit time done on the electron

by the friction force
dL az\?
=
at ~ "\t

with the energy loss by radiation per unit time

o 2
260 d?z
T3¢\ d?
By averaging these quantities over an oscillation period, and disregarding the slight
difference — due to the magnetic field — between the actual oscillation frequency

and v,, we have
82 eg 5 8T 7reo 1
= = ) 3.24
7= "3 mcd Yo = 3 )\2 ( )

1 In Beckers’ table the Landé factors of the levels involved in the transitions are calculated

according to the L-S coupling scheme (Eq. (3.8)).
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18071131 (a) 5D2*7D3 (b)
| |
°P,~°F, (c) *Dy—"Fs (d)
[
*Py—"D, (e) °D;—Ge (f)

Fig.3.2. Characteristic Zeeman patterns for different transitions. The Landé factors are computed
according to the L-S coupling scheme. Following the usual convention, the m components are
drawn upward and the o components downward. The ¢, components in panels (c) and (f) are
dashed for clarity; the o and o, components at line center in panel (c) are drawn somewhat
apart but they actually coincide. From left to right, top to bottom, we have patterns of Type 0
(a), Type II (b), Type III (c,d), and Type I (e,f) (see Sect. 3.3 for the definition of Type).
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To find the solution to Eq. (3.23) we introduce a real unit vector #, parallel to
B and two real unit vectors i, and 4, in the plane perpendicular to é, in such a
way that (a,, 1, u,) form, in this order, a right-handed coordinate system. From
4, and @, we next define two complex unit vectors @, by the equation

1
Uy, = —=(Fu, +id,) . (3.25)

S

Expanding & on the basis @, (a =0, +1),

:E :Iaua,
«

8

and noting that
U, X Uy =—iai, , (3.26)

we obtain for z,, the following decoupled equations

d?z dx dz,,

2 2 .
dt2a = —4n*yyx,, +4miay, dta Vg

(@ =0,+1), (3.27)

where v, is the Larmor frequency defined in Eq. (3.10). If we now look for a
solution of the form _
—2miv_t
z, =A,e o
and observe that the quantities v; and <y are generally much smaller than the
frequency v,,' we obtain
6727ri (vy—avy )t efgt

z, =A 0

[e3 (o3 ’

(3.28)

where the constants A , are to be determined from the initial conditions and depend
on the excitation mechanism of the classical dipole.

To determine the radiation emitted by our classical model atom we have just to
recall some important results from classical electrodynamics. It is well-known (see
e.g. Jackson, 1962) that an oscillating, monochromatic dipole 7' (¢) produces in the
radiation zone an electromagnetic wave whose frequency is the same as that of the
dipole, and whose electric field is described by the equation

ikr
E(r,0,t) = k? S (Q xﬁ(t)) x ) =

r

ikr
k2e

r

pLt), (3.29)

where k is the wavenumber, r is the distance from the dipole, ) is a unit vector in
the direction of propagation, and p;, = p— Q (2-p) is the component of the dipole

1 For instance, for a spectral line at 5000 A and a magnetic field of 103G, we have (see

Egs. (3.11) and (3.24))

vy ~1.4x 109571, y~89x107s71, Vo = 6.0x 10Ms71 .
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Fig.3.3. Geometry for calculating the polarization properties of the radiation emitted by a classical
dipole in a magnetic field 5. The unit vector € is the reference direction for defining the Stokes
parameters.

in the plane perpendicular to Q. From this equation it is possible to determine
the polarization of the electromagnetic wave emitted by a classical dipole in any
direction.

To define the Stokes parameters (see Sect. 1.6) we choose, in the plane perpen-
dicular to €, the reference direction unit vector €, and the associated unit vector
€,, oriented as shown in Fig. 3.3. Since the oscillating dipole is ' = —e, Z, the
components of the vector p, along the directions € and €, can be easily obtained

Lt

P =pi(t) = —en Y Cpy Ay e M TITE = 19) (3.30)

where the direction cosines C; are defined by!

C,, =i, &". (3.31)

al 2

We must consider, however, that the dipole oscillation is not monochromatic. By
Fourier series expansion we get

o0
—2mivt
p;(t) = —eq ani A, /Fa(u) e dv, (3.32)
@ — 00
1 Indeed, in this formula, the direction cosines could be just defined as C, = i, - €;, since

the unit vectors €, and €, are real. However, Eq. (3.30) and the following ones up to Eq. (3.37)
are valid also when the unit vectors €, €, are of the more general form of Eqgs. (1.41).
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where
—27i (v, —av, —v)t —Lt i 1
F = oL 2°dt = —— .
o (V) /e ¢ 21 (vy —avy, —v) —il’ (3.33)
0

with I' = /4x. Thus the component of the electric field along the unit vector €
can be written in the form (as k = 27v/c)

- 4 2 T i(kr—27v
&(r, 0, t) = — :CSOZCMAQ/Fa(u)ﬁe(k 0

— 00

and hence

" 1674 60 .
Si gj = ’I"264 Z CBJA Aﬁ

To obtain the polarization tensor we must take the average of this quantity over a
time interval 7 sufficiently long as specified in Sect. 1.4. This leads to

T/2
—2mi(v —v 1 —2mi(v —v 1
<62 ) )t>:—lim /62 ) )tdt:—é(y—u’),
T T—00 T
—7/2

with §(x) the Dirac delta-function, so that (see Eq. (1.25))!

1671' r *
Jij(r) = =570 Z . C, Tﬁ / ViF, (V)" Fy(v)dv. (3.34)

— 00

The quantities A, depend on the initial conditions for the motion of the oscillator.
For random initial conditions (as one would have, for instance, if the oscillator
were collisionally excited by a population of perturbing particles with isotropically
distributed velocities), these quantities are uncorrelated with each other, so that,
performing a statistical average over the initial conditions, we can replace A7 Ag

by |A?6,5. On the other hand, the quantity |A|? is related to the average energy
E contained in each of the three degrees of freedom of the oscillator. In fact, since

1 Note that this formula contains the normalization time 7 which is not related to any physical

quantity. We will see shortly (Eq. (3.35)) how this quantity disappears from the final results.
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for a classical oscillator the average kinetic energy is equal to the average potential
energy, writing A, = |A|e!? we have from Eq. (3.28)

E =472 m [Re(asa)]2 = 4n2v2 m | A|2 cos?[2m (vy — oy )t — ple 7",

1

and being the time interval 7 much larger than the decay time v~ of the oscillator,

we can write

T

_ _ 2212 m ——
E = 4n2? IAP— lim /e M= TR (3.35)
T T—00 T

0

Let us now introduce the emission coefficient in tensorial form, €,;(v, Q). Assum-
ing N oscillators per unit volume, we have (see the analogous Eq. (1.31))

[/%(u,g) dy} dtdQ = = J,,(r) N dtr* dQ, (3.36)

— 00

and using Egs. (3.34) and (3.35) we get
= el
5ij(VvQ)*—0Vg NEZ NI

which via Eq. (3.33) can be written in the form

I
(Vg —aw, —v)2+172°

ey (1, Q) = Weo N— VO E Z (3.37)

From Egs. (1.39), defining the profiles ¢y,, ¢, ¢, (normalized to 1 in frequency) as

b L r
biﬂ(yo—l—yL—y)?—i—F?
b r
P (vy— )2+ 12
1 r
d)r*; (VO—UL—V)Q—FFQ, (338)

and expressing the direction cosines for the geometry specified in Fig. 3.3,

1
Ciq = 7§(¥ cosf cos ¢ + isinf sin ¢)
Cy, = —sind

1
Ciiy= E(i sin ¢ +icos @)

Cyp=0, (3.39)
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we finally obtain the emission coefficient in the four Stokes parameters

- - 1
1, 69) = 130, D) ey (0, 5) = k5 [, sin%0 + @ (1+ cos?0)|

= 3 = 1 P, + 007
ey ) = e1, (1 9) — o, B) = ki 5 |6, — 2 sin
€U(Vvﬁ) = 512(7/76) Jr521(”76) =0

I - - 1
ey (v, Q) = 1(512(u, Q) — ey (v, Q)) =k 5 [¢r — ¢b} cos@ , (3.40)

where ) )
K="0N2
mc C

These formulae show that our collection of randomly excited classical model
atoms emits along B (§ = 0) a radiation that is right-handed (or positively) circu-
larly polarized around v = (v, — v1,) (in the ‘red’ component ¢,) and left-handed
(or negatively) circularly polarized around v = (v, 4+ v,) (in the ‘blue’ component
oy,). Obviously, the handedness of circular polarization changes when the direc-
tion is reversed (§ = w). For § = 7/2, on the contrary, the emitted radiation is
linearly polarized. The direction of linear polarization is parallel to the magnetic
field in the m component and perpendicular to the magnetic field in the o}, and o,
components.

To sum up, we see that the classical theory provides a satisfactory explanation
for the normal Zeeman effect with respect both to the wavelength separation of the
Zeeman components and to their polarization characteristics. In the classical theory
the frequency separation of the components is found to be vy, which corresponds
to a Landé factor ¢ = 1. This is quite obvious since g-values other than 1 are
produced by the spin (see Eq. (3.7)), that cannot be accounted for by a classical
theory.

We also want to remark that the results obtained for the polarization of the
various components depend on the negative sign that we have assumed for the
electric charge (see Eq. (3.23)). Assuming a positive charge for the electron, v has
to be replaced by -1y in Egs. (3.27) and following, and a further sign change must be
performed in Eq. (3.30). This last change is irrelevant, as the Stokes parameters
are quadratic functions of the dipole components, so that the net result is the
exchange of ¢, and ¢, in Egs. (3.40), which leads to the opposite sign for €y, (v, Q).
In other words, a sign inversion in the electron charge produces a sign inversion of
circular polarization. This also means that by measuring the handedness of circular
polarization in the various Zeeman components it is possible to determine the sign
of the electron charge.

This was just the procedure followed by Lorentz and Zeeman to give, for the
first time, the correct negative sign for the electron charge. It is curious to note,
however, that at first they deduced the wrong sign: hence the witty remark by Segre
(1976) that ‘when signs are involved, even two Dutch physicists as scrupulous as
Lorentz and Zeeman may make errors’.
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3.3. Classification of Zeeman Patterns

The first parameter that can be used to characterize Zeeman patterns is the so-
called effective Landé factor g,' which represents the wavelength shift from line
center of the ‘center of gravity’ of the o, components in units of A\g (sometimes
also called Lorentz units). For an electric-dipole transition connecting a given level,
having angular momentum J; and Landé factor ¢,, with another level of angular
momentum J, and Landé factor g,, the value of g can be easily derived from
Eqgs. (3.12) and (3.16)

A2y
= J1']2 Mle 70
9= Z Syt (My, My) 7]

M, M, Adp
Jy, J, 1Y)
— 2 1
S ORI WA VEFATAR (3.41)
]\/[lM2

This expression is valid both when the index 1 refers to the lower level and the
index 2 to the upper level, and in the opposite case. This is a consequence of the
symmetry properties discussed at the end of Sect. 3.1, and reflects the fact that
Zeeman patterns depend only on the quantum numbers of the levels involved in
the transition, and not on which of them is the lower or the upper.

Obviously, because of the symmetry properties just mentioned (Egs. (3.18)-
(3.22)), the center of gravity of the o, components is -g, while the center of gravity
of the m components is 0.

Equation (3.41) can be transformed into a simpler expression by means of some
Racah algebra. First we note that, with the help of Eq. (2.26d), we can write for
M, and M,

My = 7,00, + D@J, + 1) (~1) (5211 _‘5\141 é) (3.420)

My = /1y (Jy + D)2, +1) (~1)2 (z\JfQ _‘5\2‘42 é) . (3.42D)

Next we observe that the term originating from M; in Eq. (3.41) can be written,
using Eq. (2.42), in the form

2
3 Jo A LN e (A A 1Y
~M, M, -1 M, —M, 0
M, M,

_ Yy J, 1 J, J, 1
M, -M] o)\ -M, M, -1

M, MM,
« Sy 1Y L
-M, M{ -1)

The quantity g is often denoted by the symbol z in the literature concerning magnetic stars.
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1 1 1 1 1 1
T T
= ( 1) 1772 (1 1 O) {Jl A } . (343)

Performing the same transformation on the other term of Eq. (3.41), and taking
into account the analytical expressions of the 3-j and 6-j symbols (Egs. (2.26d)
and (2.36d)), we obtain

1 1
g=7 (91 + 92) + 1 (91 - 92) d, (3~44)

2
where
d=J,(J;+1) = Jy(Jy+1).

Note that this formula, originally due to Shenstone and Blair (1929), is invariant
under interchange of the indices 1 and 2. In most cases, Eq. (3.44) is employed
together with the Landé factors obtained from the L-S coupling scheme (Eq. (3.8)).
The resulting g-value, that will be denoted in the following by g; g, can be easily
calculated for any given electric-dipole transition (see e.g. Beckers, 1969b). A more
appropriate value for § can be obtained by substituting in Eq. (3.44) the values g,
and ¢, deduced by spectroscopic measurements. In some cases, and especially for
lines belonging to complex spectra and involving levels of high excitation potential,
the L-S coupling scheme fails, so that the value g; ¢ may be very different from g.
Comparisons between g and g; ¢ values for several lines of the Fel and Fell spectra
have been published by Landi Degl’Innocenti (1982a) and by Solanki and Stenflo
(1985).

Typical g values range from 0.5 to 2.5, but, for some transitions, § can attain
null or even negative values, while for other transitions it can be larger than 2.5. A
list of transitions characterized by such ‘anomalous’ values of the effective Landé
factor is presented in Table 3.2. The list includes all the transitions between L-S
levels having S < 7/2 and L < 5, and subjected to the following limitations

AJ=0,+1, AS=0,41, AL=0,41,42.

Lines having either exceptionally large values or null values for their effective Landé
factor are of great importance for the study of solar (and stellar) magnetism. Obvi-
ously, lines with large g values produce strong polarization signals, and are partic-
ularly useful for the detection and measurement of magnetic fields. On the other
hand, lines with g = 0 are especially useful for velocity measurements and for
calibration. A reduced list of lines with large g-values has been given by Harvey
(1973), while Sistla and Harvey (1970) have presented a list of g = 0 lines. A table
of close line pairs (less than 100 A apart), with one line having a large § value and
the other a small (or null) g value, has been presented by Robinson (1980).

In some studies of stellar magnetism, it can be useful to compute an average
value for the effective Landé factor over the lines contained in a given statistical
sample or in an assigned spectral interval. For instance, considering the sample
of approximately 400 unblended lines of the Fel solar spectrum given by Stenflo
and Lindegren (1977), if the effective Landé factor of each line is weighted by the
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Transitions having ‘anomalous’ values for the effective Landé factor g; ;. The transitions listed

are those obeying the restrictions specified in the text.

Transition drs Transition drs Transition drs
9rs <0
Py —Fs —0.167 "Dy —°Gs —0.6 *F1 —°Gg -1
°P, —3F, —0.25 °F, -G, —0.25 SF% - SH% —-1.5
Dy - °F, —0.333 OF, —°F, —0.667 *Fy — °Hg -1
D, - "G, —-0.5 GF% - 8G% —1. SF% - SH% —-0.3
°D, —5G, —0.25 GF% - SH% —0.333 SF% - GH% —0.286
Dy —1Fs —0.333 °Fs —°Hg —-0.3 0Gy —°Hy —0.2
GD% - 6G% —0.833 GF% - 4H% —0.143 G, -"G, —0.5
GD% - 4(;% —0.4 Fg— "Gy —0.5 SG% - SG% —1.333
"D, —5G, -1. F, - %G, —0.25 8G% - BH% —0.167
"D, —7G, —0.25 F, — "H, —0.75 SG% - GH% —0.2
"D, — 5G4 —0.167 "F, —5Hy —-0.5 SHy —Hy —0.4
9rs=0
3Po - 51:‘1 7D1 - 5F2 7F2 - 7H3
°Py -~ 'y "Dg - °Gy s =M,
4D% _4D% 5F1 —5F1 SF% —GG%
4]:)%76Gg 5F177F0 GG%76Gg
5D() - 5Fl1 5Fl1 - 7H2 7H2 - 7H2
5D2—3G3 5F2 _5H3
Grg>3
Py Dy 3. Dy —°F, 3.667 *Ds — %Gy 3.6
6 %—4D% 3. "D, — "D, 3. SD% —GG% 3.
Py —OF, 3.167 D, - F, 3. "Fy— "H, 3.
GP% - 4F% 3. D, — 5F, 3. F, —5H, 3.
Py —5F, 3.5 D, — "G, 3.25 SF% - 8F% 4.
*Ps —OF4 3.2 "D, —5G, 3.167 *Fs —°Gg 3.
5Dy — "D, 3. SD% - GF% 3.667 SF% - SH% 3.3
5D, — 6D, 3.333 8D3 —8G 1 3.833 8F, —6H; 3.286
2 2 2 2 2 2
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central depression observed for the same line, one finds the value (g, ¢) = 1.22
(Landi Degl’Innocenti, 1985a).!

Besides the effective Landé factor, higher order moments can be introduced to
characterize Zeeman patterns. For each type of component we define the barycen-

tric n-th order moment vén) to be

n J,J, J,J, _ "
Ué )(J17J2) = Z Sq* 2 (My, My) [A)\]V}lfwz —qgAig| (3.45)
M1M2

where A/\]{/}jfwz and S;]]l %2 (M, M,) are defined in Egs. (3.20) and (3.16), and where
g = —1,0,+1 for the oy, 7, and o, components, respectively.

Using the symmetry properties derived in Sect. 3.1 (Egs. (3.18)-(3.22)), and
recalling that g is invariant under interchange of J, and J,, one easily gets

v{g")(J% Jy) = Uén)(c]p Js) (3.46)
v(—nq)(‘]lv Jy) = (=1)" Uén)(Jp Jy) - (3.47)

Equation (3.46) shows that the various moments are not altered by the interchange
of the lower and the upper level — an obvious consequence of the same property
holding for the Zeeman patterns. Equation (3.47) shows that the odd-order mo-
ments of the m components identically vanish, while, for the o components, the
even-order moments of the oy, and o, components are the same, and the odd-order
moments have opposite sign. Obviously, all the even-order moments are positive
quantities.

We will now show that the barycentric moments defined in Eq. (3.45) can be
reduced to a simple form which contains 3-j and 6-5 symbols only. Substitution of
Egs. (3.20) and (3.44) into Eq. (3.45) leads after some algebra to the expression

vé”)(Jl,JQ) =ANE (91 — 92)" Xén)(‘]pJQ) ) (3.48)
with
n d+2 1" 1.
Xé )(JlaJQ) = Z [M1 - TQ} Sq' "2 (M, M,y)
M, M,
- nei () (d+2 e i
=S o (N (52) Aoen). e

i=0

where Zéi)(Jl, J,) is the i-th moment of M, weighted by the strength of the ¢-
transition originating from M,

i i g1
Zé )<J1aJ2) = Z My Sq*72 (M, M) (3.50)
M, M,

1 Owing both to the L-S assumption and to the procedure itself by which it is obtained, this

value has only an approximate and statistical meaning.
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The quantities Zéi)(Jl,JQ) can be evaluated by some Racah algebra. For this

purpose we note that the a-component of an angular momentum a can be written
in the form (see Eqs. (3.42))

—a 0

a=(=1)*"*Vala+ 1)(2a+1) (Z “ 1) . (3.51)

Squaring this equation we get

a2[a<a+1><2a+1>](3 S (1)) <Z “ é)

or, with the help of Eq. (2.43)

o = (=1)*" [a(a+1)(2a + 1)]

xZ(2f—|—1){i ! ﬁ}(é h g) (Z - g) (3.52)

f

where the sum over f runs over the values 0 and 2 only (for f = 1 the first 3-5
symbol in the right-hand side is zero).

Repeated application of the same procedure gives the following remarkable for-
mula
o — (71)(211—3)(1-&-@ [a(a + 1)(2a + 1)] n/2

xY @A+ DRAFD) - (2f,  +1)

flfz“'fn—l
fl}{l fl fZ}{ fn72 fnf
a a a a a a a a
n—1
0
(

X
—N
IS

—

1
D596 )
0o/)lo 0o o 0 0
X(Z _aa f"01> n=2.3,..).

Owing to the property (2.24) of the 3-j symbols, the indices f;, f5,. .. are alternately
even and odd numbers. Moreover, they are chained in such a way that the allowed
values for f;, , are (f; £1), starting from f; = 0 and f, = 2. For example, if n =4
the chains of allowed values for f;, f,, and f; are: (0,1,0), (0,1,2), (2,1,0), (2,1,2),
(2,3,2), (2,3,4).

We now use the above expansion to express the quantity M?{ in Eq. (3.50), and
substitute the explicit expression for the strengths given by Eq. (3.16). Performing

X
N
o =
o =
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the sum over M, and M, by the same method that leads to Eq. (3.43), we obtain,
for i > 2

Ztgi) (‘]17 ‘]2) =
i/2

= (—1)EN Lt g () + 1) (27, +1)]
x Z 2fH+D2f+1) - (2fioy +1)

Fofyficy
x{ }{1 fi fQ}...{l fio fi—l}
Jy gy Jy Sy S Ji Jy
" (1 1 f; (1 1 > _ <1 fiza fil)
0 0 O 0 0 0 0
1 1 f; e
(L s s

while for 4 = 0 and 7 = 1 we have

Zém(‘]lv ‘]2) =1

Z(Ty 1) = (<13 LT+ DR+ )

" ( 11 1) { 1 1 1 }
-q¢ ¢ 0 Jpo S S
These formulae, together with Eqgs. (3.49) and (3.48), give the required expres-
sions for the barycentric moments. Using Eqs. (2.26) and (2.36) one can indeed

obtain simple analytical formulae for the low-order moments. The results, that
are contained in Table 3.3, show the characteristic symmetrical behavior of the
quantities thn)(Jl, J,) under interchange of J; with J, and of ¢ with —q.

Besides the barycentric moments of the components, it is also convenient to
introduce the moments tout court. These moments are defined by

(T, Jy) = Z S (0, M) [A/\]{}Il‘lfwj , (3.53)

and it can be easily seen that they satisfy the same symmetry properties found for
the barycentric moments (Eqgs. (3.46) and (3.47)).
The relations between the two types of moments are the following

CRCUNAEDY (U“(’.‘) W) (11, 5) [ag MAg]"™

wé”)(Jl, Jy) = Z (n> Uéi)(Jp J5) [qu)‘B]nﬂ
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TABLE 3.3

Analytical expressions for the low-order barycentric moments of Zeeman components.*) The
expressions have been simplified taking into account that, for electric dipole transitions, the
quantity [d(2s — d?)] is identically zero.

7™ =1 x{? =1

Z§ =0 x{M=o

Z{) =+1(d+2) x{ =0

Z(()Q) _ % (—d? + 3s — 2) X(()Q) = % (—d? +3s —2)

73) = & (d? +5d + 25 + 2) X8 = g5 (~d? 85— 12)

2 =0 x# =0

73 = + L (3% + 642 + 125 + 8d — 8) X$) =+ 5 dd—d?)

780 = Ao (=34 4+ 7d? 4+ 1552 — 30s +20) | XM = $5 (—3d* + 7d2 + 1552 — 30s + 20)

Z) = Sl (3d* + 21d® + 14d2 + 652 + 165 | X{*) = Lo (~9d* + 56d2 + 19252 — 832s
—14d — 20) +816)

=) s = [Jl(‘]l +1) + JQ(JQ +1)],d= [J1(J1 +1) - JQ(JQ +1)]

After some algebraic manipulations, w((zn) can be expressed in the form

w(M (Jy, Jy) = AXNE G (T, ) (3.54)
where .
n n i n—i (i
Gé )(J17J2)Z<i> (91— 92)" (92 9) Zé)(J17J2) . (3.55)
i=0

Analytical formulae for the quantities Gg")(Jl, Jy) up to n = 4 are contained in
Table 3.4.

An alternative derivation of the quantities v((zn) and wg ’ in terms of Bernoulli
polynomials has been given by Mathys and Stenflo (1987a,b), who employ the

(n)
q

notations ,ué") and n! (—A/\B)"C,(Iq), respectively. In their second paper (1987b),
these authors give also extensive numerical tables for ,ugn) and C,(f); these last
quantities are however evaluated, for any given transition, by assuming for the
Landé factors the values deduced from the L-S coupling scheme.

Zeeman patterns can be classified into four different types according to the value
of their barycentric moments, with particular emphasis on the third-order mo-
ment v{".

First of all, we will call Type 0 the normal and anomalous Zeeman triplets (see
Sect. 3.1): obviously, these patterns are characterized by vé”) =0forn>1 A
complete list of transitions giving rise to Type 0 patterns has been published by
Mathys and Stenflo (1987b).
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TABLE 3.4

Analytical expressions for the low-order moments of Zeeman components *)

a™ =1
aiM =0

G(ili = (39, + 1d94) = £37

G = & (3s — d* - 2)g2
Q=% [(d + 25 — 3)g% + 5dg, g, + 592
ai¥=o

0
3
G} =+ & [(3d2 — 7)dg3 + 6(d® + 25 — 3)g2g, + 15dg 9% + 1047

Gf)4) = 135 (—3d* + 7d? + 1552 — 30s + 20)g}
1

%1 = 360 [(6d4 — 14d? + 1252 — 525 + 51)g4 + 14(3d? — 7)dg3g, + 42(d* + 2s — 3)g2g>

+70dg,g2 + 3592 ]

") 5= [Jl(Jl +1)+ JQ(JQ + 1], d= [J1(J1 +1) - JQ(JQ + 1], 95 = (91 +92) » 94 = (91 _92)

For anomalous Zeeman patterns, we will call, following Back and Landé (1925),

Type I those having v{” > 0, Type II those having v\ < 0, and Type III those

with v{” = 0. As it can be argued from the definition of the barycentric moments
(Eq. (3.45)), patterns of Type I have their strongest o, component toward the blue
side of the spectrum, while patterns of Type II have their strongest o, component
toward the red side of the spectrum. Finally, Type III patterns have o components
symmetrical about their center of gravity. Some examples of Zeeman patterns of
different types are shown in Fig. 3.2.

From the analytical expressions given in Table 3.3 and from Eq. (3.48) we have

1
oY = s AN (9 — ) (4 ).

This formula shows that Type III patterns can only originate when d = 0, or, in
other words, when J; = J,. By contrast, Type I and Type II patterns correspond
to transitions having AJ = +1. In particular, Type I patterns arise when the
Landé factor of the level having the smaller J is larger than the Landé factor of the
level having the larger J, while the opposite situation leads to Type II patterns.

It should be remarked that the classification of Zeeman patterns, although based
on the o components, characterizes at the same time the behavior of the = com-
ponents. Indeed, with increasing distance from line center the strengths of the
components decrease (quadratically) for Type I and Type II patterns, while they
increase (also quadratically) for Type III patterns. This is apparent from Table 3.1
and Eq. (3.20).
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Fig.3.4. Definition of the minimal equivalent Zeeman pattern.

It should also be mentioned that a useful concept for certain applications is that
of minimal equivalent Zeeman pattern. Given an arbitrary Zeeman pattern, we
define its minimal equivalent as the pattern having only two 7 components and
two o components (both for the blue and the red wing) with such splittings and
strengths that the barycentric moments up to n = 3 of the original pattern are
reproduced. The minimal equivalent Zeeman pattern is sketched in Fig. 3.4. It can
be shown that the strengths S; and the splittings z; (expressed in units of A)g,
and satisfying the condition z, > z;) are given by

2o = |94l / X5 So =

g _

21 =9 594/ X717 [\/4+z2—z} Sy =
1

=g+ 5l XP [Va+ 242 5=

N = N~ N~
| —
—
+
Ny
-+ W
N
()
—_

where
9. X"
" T ko
Yal [X{7]
Note that the value of z remains undefined when X|” = 0; this is a degenerate

case corresponding either to a Zeeman triplet (Type 0 pattern) or to the transition
1/2 — 1/2. In both cases the two o components merge into a single one with
21 =2y =0, (S;+5,) =1.

3.4. The Paschen-Back Effect

As already stated in Sect. 3.1, when the magnetic field is so strong as to produce
on a J-level a splitting comparable with the energy separation between different



98 CHAPTER 3

J-levels, the perturbation theory presented for the Zeeman effect cannot be applied
any longer. In this regime, that is called the Paschen-Back effect regime, the energy
levels have to be found by diagonalization of the total Hamiltonian H given by

H=Hy+ Hyg,

where H, and Hp are the unperturbed and magnetic Hamiltonians, respectively,
with Hp given by Eq. (3.3).

The diagonalization of the Hamiltonian H can be performed on the basis of the
eigenvectors |aJM ) of H, (see Egs. (3.4)). This implies the evaluation of matrix
elements of the form

(CaJM|Hglo/ M"Y = po{aJ M|(L+2S)-Blo/J'M"> .

A calculation similar to that of Sect. 3.1 leads to the expression

, J J 1
<aJMHB|a’J’M’>uOBZ(l)-J+NI+q+1\/2J+1<M o q>
q

X [VIT+1) b b, + | S ") b,

and, in particular, when the quantization axis for J is in the magnetic field direction
{aJM|Hgld/ J'M") =

= MOB[M (Sao/ 6]]’

/ J J 1 =
+ (=) Mg 41 <M M 0> <aJHS||a’J’>} Sarngr - (3.56)

Equation (3.56) shows that the magnetic Hamiltonian H g connects only eigenstates
having the same value of the magnetic quantum number M: in other words, it is
block-diagonal, each block being characterized by an assigned M-value.

The general problem of finding the eigenvalues and the eigenvectors of the matrix
H can be solved only by numerical methods. There are, however, some special cases
where the analytical calculations can be pushed somewhat further. If we suppose,
for instance, that the atomic system is exactly described by the L-S coupling
scheme, the eigenstates of H|, are of the form |LSJM ) (where § summarizes the
electronic configuration quantum numbers), so that Eq. (3.56) becomes

(BLSTM|H4|3'L'S' T M =
= ,LLOB|:M 666/ 6LL’ 6SS/ 6]]/

/ ; / =
b (=)7L T ({W i é)(ﬂLSJ||S||ﬂ’L’S’J’> Sara
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and using Egs. (2.109) and (2.97)

</8LSJM‘HB‘ﬂ/L/S/J/M/> = ’[LOB 6[35/ 5LL/ 55«5«/ 5]\/[M/

X [M 8, 4 (=) HASEM T L) (20 +1)S(S + 1)(2S + 1)

J J 1 J J 1
X(M 7 0){5 ! LH (3.57)
From this expression we obtain the important result that in the L-S coupling
scheme the magnetic Hamiltonian is block-diagonal, each block being now charac-
terized by the magnetic quantum number M and by the quantum numbers (3, L, S)
specifying the term. In other words, the magnetic field produces a J-mixing of the

various levels belonging to a particular term, so that the eigenvectors of the total
Hamiltonian will be of the form

BLSjMy = C5(BLS, M) |BLSIM) (3.58)
J

where the index j labels the different states of the IN-fold degenerate subspace
corresponding to assigned values of (8, L, S, M); N is given by

N=1+L+S—max(|M|,|L—89]).

Of course, in contrast with the Zeeman effect regime, J is not a good quantum
number.

We now recall that in the L-S coupling scheme the energies E;;o(J) of the
different J-levels originating from a given term (3, L,S) are determined by the
spin-orbit Hamiltonian H,  (included in H,,), which in most cases can be written
in the form (see Condon and Shortley, 1935)

Hso = C(ﬁLS)E ! ga (359)
where ( is a constant having the dimensions of energy. Writing L - S in the form
- = 1
L-S=_[7*-1*-82
2 [ ] ’
we have!
Eyps(J) = (BLSJIM|H,,|BLSIM

. %g(gw) [J(J+ 1)~ LL+ 1)~ S(S+1)] . (3.60)

Note in passing that the energy difference between two adjacent J-levels is given by
Egps(7) = Bgrs(J —1) = C(BLS) T,

which is the well-known Landé interval rule.
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Thus the whole problem of finding the energy levels of an atom described by the
L-S coupling scheme, embedded in a magnetic field, reduces to the diagonalization
of a set of matrices of the form

{BLSJM|H,, + Hg|BLSJ' M) .
From Eq. (3.57), using the analytical expressions of the 3-j and 6-j symbols

(Egs. (2.26) and (2.36)), we have that the only non-zero matrix elements are those
of the form

(BLSIM|Hy, + Hg|BLSIM ) = Eg;5(J) + pgB g1,5(J) M (3.61a)

(BLS J—1 M|H, + Hy|BLSJM) = (BLSJM|H,, + Hy|BLS J—1 M}

(3.61D)

B [(JHSHL+)(J=S+L)(J+S-L)(=J+S+L+1)(J2—M?)
2J (2J+1)(2J-1) ’

where g; ¢(J) is the Landé factor defined in Eq. (3.8).

Diagonalization of the matrix (3.61) (which is seen to be tridiagonal, real, and
symmetric) gives the energy eigenvalues A y (BLS, M) and the corresponding eigen-
vectors expressed in terms of the coefficients C}(ﬁLS, M) of Eq. (3.58). Since the

matrix is real and symmetric, the coefficients C? can be chosen to be real. More-
over, from general theorems concerning the diagonalization of matrices one can
prove the relations

> CY(BLS, M) C (BLS, M) = &, (3.62a)
J

> C(BLS, M) C5,(BLS, M) = 6, (3.62b)
J
> C3(BLS, M) C3,(BLS, M)A, (BLS, M) =
J
= (BLSJM|H,, + Hg|3LSJ M> . (3.62¢)

The diagonalization of matrix (3.61) can be performed analytically for doublet
terms only (S = 1/2). The energy eigenvalues are found to be

L+1

L+3

1
A =g LC+mB M

for M = +(L + 1/2), and

2
1 1 1
AMap =70t BME 5 \/C2 (L+ 5) +2Cuo BM + (poB)?



ATOMIC SPECTROSCOPY 101

15 T T T T T T T T T T T T T T T T T T T T T T T T

Lo

|
(o)}
T

LI —
Lo

—-10

I
|

T T T T
Lo

—15 I I I I 1 I I I I 1 I I I I 1 1 1 1 1 | 1 1 1 1
0 1 2 3 4 5

Fig.3.5. The energy levels of the term 2P plotted as functions of the magnetic field strength. The
energy E (vertical scale) and the magnetic energy B (horizontal scale) are both normalized to
the fine-structure energy ¢ (supposed positive). For an inverted multiplet (¢ < 0) the graph is
simply reversed about the E = 0 axis.

for M # £(L 4+ 1/2). In all the other cases, the diagonalization can be performed
only by numerical methods.

Figures 3.5 to 3.9 illustrate the behavior of the energy eigenvalues of the most
common L-S terms as a function of the magnetic field strength, parameterized
through the quantity v defined by

B
y = B2 (3.63)

¢
For v < 1 the eigenvalues spread out linearly from their degenerate, zero-magnetic
field value (Zeeman effect regime). For intermediate values of v, the eigenvalues
start crossing each other and the linearity with the magnetic field is, in general, lost
(incomplete Paschen-Back effect regime); finally, for large values of vy (7 > 1), the
eigenvalues behave again linearly with 7, as shown in Fig. 3.10 (complete Paschen-
Back effect regime).

In this last regime, the spin-orbit interaction can be considered as a perturbation
in comparison with the magnetic interaction. On the other hand, the magnetic
Hamiltonian is diagonal on the basis |GLSM; Mg, and the eigenvalues are given
by

(BLSM Mg|Hg|BLSM Mgy = poB (M, +2Mg) ,

which explains their linear behavior with B for v > 1. As the magnetic field
increases from v < 1 to v > 1, the energy eigenvectors gradually evolve from
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15 T T T T T T T T T T T T T T

10 D

—15 I I I I 1 I I I I | 1 1 1 1

Fig.3.6. Same as Fig.3.5 for the term 2D.

15 T T T T T T T T T T T T T T

10 F

—15 I I I I 1 I I I I | 1 1 1 1

Fig.3.7. Same as Fig.3.5 for the term 2F.
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—15 I I I I 1 I I I I 1 I I I I 1 1 1 1 1 | 1 1 1 1

Fig.3.8. Same as Fig.3.5 for the term 3P.

15 T T T T T T T T T T T T T T T T T T T T T T T

10 D —

—-10 g

—15 I I I I 1 I I I I 1 I I I I 1 1 1 1 1 | 1 1 1

Fig.3.9. Same as Fig.3.5 for the term 3D.
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40 T T T T T T T T T T T T T T T T T T T
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0 5 10 15 20

Fig.3.10. For large values of the magnetic field, the energy eigenvalues spread out linearly. This
figure is just an enlargement of Fig.3.5 and is intended to show the behavior of the eigenvalues
for v > 1.

the form |BLSJM ) to the form |SLSM;Mg). In other words, the magnetic field
induces a gradual basis-transformation on the energy eigenstates.

As apparent from Figs. 3.5-3.9, the incomplete Paschen-Back effect regime is
characterized by several ‘crossings’ of the energy eigenvalues, each corresponding
to a well-defined value of the « parameter. It will be shown in Sect. 10.18 that
such level-crossings induce important phenomena in resonance scattering. Table 3.5
gives, for the most common L-S terms, the values of 7y relative to each level-crossing,
and the corresponding M-values of the levels involved. To illustrate how this table
should be used, consider the 3p 2P term of Nal: from the tables of Moore (1949)
we get a value for the constant ¢ equal to 11.4642 cm™!, whence we deduce that
level-crossing takes place for B = 1.64 x 10° G and for B = 2.46 x 10° G.

In some cases, and particularly for light atoms such as He, the spin-orbit inter-
action cannot be described by the simple expression given in Eq. (3.59). In these
cases the energy levels in the presence of a magnetic field can still be obtained by
diagonalizing the matrix given in Egs. (3.61), but the actual values Ez;o(J) are
now to be found in tables of atomic energy levels (see e.g. Moore, 1949, 1952, 1958)
or in the specialized literature.

Let’s now consider how the splitting of the energy levels due to the magnetic
field affects, in the general case of the Paschen-Back regime, the spectral lines
originating in the transition between two given terms. The main properties of the
Paschen-Back patterns resulting from the electric-dipole interaction are described
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TABLE 3.5

Level-crossings for the most common L-S terms. The magnetic field is expressed through the
parameter v defined in the text. The M-values refer to a normal multiplet (¢ > 0). For inverted
multiplets they must be changed in sign.

Term 5 M M’ Term 5 M M’
2p 0.667 -3 3 5p 0.45 -2 1
L. -3 -3 0.616 -2 0

2D 0.6 -5 3 0.707 -1 1
0.75 -3 i 0.859 -1 0

0.866 -3 3 1.185 -1 0

L. -3 -3 1.217 -2 0

1.257 -3 3 1.5 —2 -1

1.5 -3 -3 2.210 0 1

1.591 -3 3 5D 0.476 -3 2

3. -3 -1 0.576 -3 1

2F 0.571 -z 5 0.611 -1 2
0.667 -7 2 0.724 -2 1

0.707 -5 s 0.730 -3 0

0.8 -7 i 0.786 -2 1

0.862 -5 3 0.856 -1 2

0.928 -3 s 0.930 -2 0

L. -1 -3 1 -3 -1

1.106 -2 : 1.100 -2 0

1.225 -3 2 1.157 -3 1

1.333 -z -3 1.253 -1 1

1.356 -1 5 1.287 -2 -1

1.562 -3 -1 1.370 -3 0

1.840 -3 i 1.463 0 2

2. -z -3 1.667 -3 -1

2.174 -3 3 1.760 -1 1

2.562 3 5 1.797 -2 1

3. -3 -3 1.813 -2 -1

6. -3 -3 2 -3 -2

2.5 -1 0

2.600 -2 0

4.773 0 1
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below.

First of all, since the projection M of the total angular momentum on the mag-
netic field direction is a good quantum number, the individual components can be
characterized by the value AM = (M’ — M), where M refers to the lower level and
M’ to the upper one. Owing to the selection rule (3.15) we thus obtain that — in
strict analogy with the Zeeman effect — the components can be divided into three
distinct groups: o, (AM = —1), 7 (AM =0), and o, (AM = +1).

As far as the strengths of the components are concerned, it can be shown that
they are proportional to the quantities

SPMIM = [(BLSMIr |B'L'S'y M (¢ = ~1,0,+1),

where the unprimed quantum numbers refer to the lower level, the primed ones to
the upper level, and where 7, are the spherical components of the position operator
of the optical electrons.

Expanding the eigenvectors as in Eq. (3.58), and taking into account that the
coefficients C are real, one obtains

SIMIM = NT O CH(BLS, M) O, (BLS, M) C,(B'L'S", M") O, (B'L'S", M)
JJ/J//JIII
x (BLSIM|r |3'L'S"J' M"y (BLSJ" M]r,|6'L'S" J" M'>*" .
Evaluating the matrix elements through the Wigner-Eckart theorem (Eq. (2.96)),
and noting that r, is an operator which acts only on the orbital part of the eigen-
vector, one gets from Eq. (2.108)

G M, M _
S) =

= 3 CH(BLS, M) C%,(BLS, M) Y (8'L'S, M") C3,,.(3'L'S, M)
JJIJIIJ/N

x (2L + 1)\/(2J +D)(2J +1)(2J" 4+ 1)(2J" + 1)
L L' 1 L L 1
X J/ J S J/// J// S
J J 1 J J 1 D
(w2 (e o 2 10tiria o b,
a formula that contains all the relevant selection rules, namely

AL=0,41 L=0-»L =0
AS =0
AM =0, +1 .
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Summation over all the possible transitions gives (see Eq. (3.62b))

SooSIMIM = N (2L 4+ 1)(20 +1)(27 + 1) Loy’
. a J J S
§3' MM’ JJ' MM
2
J’ J 1 1Al TN |2
(L) Kemierop.
which can be reduced, using Eqgs. (2.23a) and (2.39), to
SO SN = 220+ 1)@ + ) [BLIFIT TP
Jj MM’
This property makes it possible to define the normalized strengths in the form

GIM' M _

3
= > 551 C%(BLS, M) C3,, (BLS, M) CY,(3'L'S, M) C%,,,(B'L'S, M)
JJ/J//J///

\/ 27+ 1)(2J + 1)(2J" + 1)(2J7 + 1)

L L' 1
X J/ J S J/// J// S

J/ J 1 J/// J// 1
(T (. 64
with o
S SIMIM =1 (g=—-1,0,+1).
33’ MM’

The strengths as defined by Eq. (3.64) have some important properties:

a) In the absence of magnetic fields, J is a good quantum number, and the eigenvec-
tors |[BLSjM ) converge towards the states [3LSJM ) which are degenerate with
respect to M. For the coefficients C¥; we have

CY(BLS, M) = 55
so that

SJM,J’M’ _

3 ) L 1/ J 1Y\
2511 2T E +1){J’ J s} (—M’ M —q> :
and summing over the degeneracy parameters M and M’ we obtain the usual
expression for the relative strengths of a fine-structure multiplet

’ ’ 2
J:ZS;MJM:(2J+1)(2J +1){L L 1} . (3.65)

/
= 25+ 1 JJ S
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b) The centers of gravity in frequency of the 7, o, and o, components (¢ = 0, +1,
and —1, respectively) are linear functions of the magnetic field

Av, = —quy , (3.66)

where vy, is the Larmor frequency and Ay, is defined by

Ay, = 37 SIMIM A (3.67)

q
G5’ MM’

with Ayﬁ;\/p the frequency shift of the component corresponding to the transition
between the lower state |SLSjM ) and the upper state |5'L'Sj’M’'> from the
unperturbed frequency of the transition between the two terms (SLS) and (3'L’S).

To prove Eq. (3.66) we substitute into Eq. (3.67) the strengths of Eq. (3.64) and
the frequency shifts

Ay (B'L'S, M) — X, (BLS, M)
h )

Al = (3.69)
where A;, A;, are the eigenvalues of the matrix (3.61) for the lower and the upper
term, respectively. We then perform the sums over j and j’ using Egs. (3.62b) and
(3.62c¢), to obtain

-z Z Z % VT +1)2J +1)(2J7 +1)(2J" +1)

MM’ JJ'JrJj
« L L' 1 L I’ 1
J/ J S J/// J// S
J/ J 1 J/// J” 1
X |:6JJ” <5/L/SJ/M/|HSO+HB|/6/L/SJ///M/>
=0y (BLSIM|H,o + HBﬂLSJ”M>] . (3.69)

It is easy to prove that the spin-orbit Hamiltonian gives zero contribution. Indeed,
noting that this Hamiltonian is diagonal with respect to the quantum numbers J
and M, and that its matrix elements are independent of M, and performing the
sums over M and M’ via Eq. (2.23a), we have for this contribution

Z @I+1)QI+1) (L I 1)°
)so The T (25+) J J S

x [(ﬁ’L’SJ’M’|HSO|ﬂ’L’SJ’M’> — (BLSJM|H,,|BLSJM>



ATOMIC SPECTROSCOPY 109

Summation over J for the first term, and over J’ for the second term gives, with
the use of Eq. (2.39)

— 1 2Jl+1 /I r/ ! !/ /! / /
(qu)soﬁ[; GI T D@ T T) CLST M He |5 L'ST M)

27 +1
> (2L + 1)(+2$+ 7y SBLSTM|Hyo|SLSIM) |

The first sum is simply the average energy of the fine-structure levels of the upper
term, while the second sum is the same quantity for the lower term. It can be
easily proved that both these quantities are identically zero when the spin-orbit
Hamiltonian is described by Eq. (3.59).1

The only non-vanishing contribution to Eq. (3.69) is due to the magnetic field. To
evaluate this contribution, we substitute the matrix elements given by Eq. (3.57)
and perform the sums over M and M’ by means of Eq. (2.42). After some tedious
Racah-algebra calculations which involve the use of Egs. (2.38), (2.48), (2.55), and
(3.51), we obtain that only the first term in the square bracket of the matrix
element (3.57) gives a non-zero contribution, and we get the expression

3y N , L ' 1\°/1 1 1
qu—ZSJrl;( 1) @I+DRI+D] 5 g ¢ —q 0

e .

+VI(T+ 12T +1) {,} ; }’H '

Evaluating the 6-5 symbols in the square bracket by Eq. (2.36d) and the 3-j symbol
by Eq. (2.26d), and performing the sums over J and J’ via Eq. (2.39), we finally
obtain Eq. (3.66).

The theorem just proved shows an interesting property of the Paschen-Back effect
which can be summarized by the following statement: The frequency shifts of the
centers of gravity of the o, oy, and ™ components in the Paschen-Back effect regime
are those typical of the normal Zeeman effect between two spinless levels. In other
words, given a fine-structured lower term (SLS) and a fine-structured upper term

L To prove this statement, one has just to recall the sum rules for integers

ZZ:I k= %n(n+ 1), ZZ:le = %n(n+ DH(2n + 1), ZZ:1k3 = in2(n+ 1)2.

If, on the other hand, the spin-orbit Hamiltonian cannot be written in the form (3.59), the quantity
(Auq)so may indeed differ from zero. In such cases, it represents a constant shift (independent
of g) that affects the unperturbed frequency of the transition. In other words, Eq. (3.66) still
holds provided Eq. (3.68) is replaced by

1

Avid’ :—[Aj,(,e'L’s,M’)—Aj(ﬁL&M) ~ (Avy)

MM’ h so’
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(B'L’S), the centers of gravity of the o,, oy, and 7 components have the same
frequencies as the individual components that would originate from the transition
between a spinless lower level (8L) and a spinless upper level (8'L’), both split
according to the normal Zeeman effect. This result is what should be expected
from the principle of spectroscopic stability,' as it can be inferred from considering
the limit of negligible fine structure.

3.5. Magnetic Field and Hyperfine Structure

It is well-known that hyperfine structure results from the interaction of the elec-
tronic cloud with the atomic nucleus. The energy involved in this interaction is
approximately one thousand times smaller than the energy relative to the spin-
orbit interaction, so that the hyperfine-structure components of a spectral line
have typical wavelength separations of a few mA.

In most cases (and particularly for lines originating from astrophysical plasmas),
these components remain unresolved, because their separation is much smaller than
the line width due to different broadening mechanisms. For this reason the hyper-
fine structure of spectral lines is often neglected, especially in usual astrophysical
applications.

However, when polarization phenomena are involved, the situation is substan-
tially different, and hyperfine structure generally plays an important role (see
Sect. 9.23). We describe here the effect of a magnetic field on a hyperfine-structured
line, in order to state some basic properties of the resulting pattern.

We consider a particular isotope having nuclear spin I, and introduce the rep-
resentation |aJIF f) to describe its energy eigenvectors. In this notation, apart
from the symbols already used, F' is the total angular momentum (electronic plus
nuclear: F = J+ 1T ) quantum number, while f represents its projection on the
z-axis of the coordinate system (f = —F,—F +1,..., F).

The hyperfine-structure interaction energy can be expressed as an infinite series
of electric and magnetic multipoles (see for instance Kopfermann, 1958). In most
cases, a very good approximation to the observed energy intervals is obtained by
retaining only the first two terms in the multipole series; these are the magnetic-
dipole and electric-quadrupole terms, which are given by

Ala, J, 1)
2

(QJIFfIH{ | IF £y = 6pp 6,44 K
(QJIFfIHZ | IF f'y = 8 640 Bla, J, 1)
4

X |K(K+1) = gJ(J+DIT+ 1|, (3.70)

where A(a, J, I) and B(«, J, I) are the magnetic-dipole and electric-quadrupole hy-
perfine structure constants relative to a given atomic level of a given isotope, while

L A formulation of this principle is given in Sect. 7.10.
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K is defined by
K=FF+1)-JJ+1)-I(I+1). (3.71)

An extensive table of experimental A and B values can be found in Brix and
Kopfermann (1952). From such values, and from Egs. (3.70), the energy of the
various hyperfine-structure sublevels can be easily computed. The sublevels are
characterized by the total angular momentum F' and are degenerate with respect
to f.

If a magnetic field is present, so weak as to produce a splitting much smaller
than the energy differences between the various hyperfine-structure sublevels, its
effect can be deduced from perturbation theory, by diagonalizing the magnetic
Hamiltonian Hp of Eq. (3.3) on the degenerate basis |aJJIFf).1 Aligning the
z-axis of the reference system with the direction of the magnetic field, the matrix
elements to be evaluated are of the form

(QJIF flpugB(L, +25)|aJIF "> .

Let us evaluate the more general matrix element (that will be needed later)
between two states having different F-values. Writing (L, +2S,) in the form
(J,+S,) and bearing in mind the definition of the Landé factor (Eq. (3.7)), we
obtain from Eqs. (2.96) (Wigner-Eckart theorem) and (2.108)

(adIF flugB(J, + S,)|aJIF 'y =

= 1B oy 05 (1) I+ 1)(2] + 1)(2F + 1)(2F' + 1)

O EAEE 572
In particular, for ' = F’ we have
CaJIF flugB(J, + S)JIF ') = p1oB g0y Gues(F) 040
where the hyperfine-structure Landé factor, gq (F), is given by

1 F(F+1)+ J(J +1) — I(I +1)

(F#0) . (3.73)

Thus for weak magnetic fields any hyperfine level of total angular momentum F
splits up into (2F + 1) magnetic sublevels, each characterized by its own f-value.
The splitting is proportional to the magnetic field and to the product of the usual
Landé factor g, ; times a Landé factor g,z (F) which depends on the particular
hyperfine level. This is the Zeeman effect for hyperfine structure.

L' The Hamiltonian describing the direct interaction between the magnetic field and the nuclear

spin can be safely neglected, since the corresponding energy is about 103 times smaller than the
energy involved in the interaction between the magnetic field and the electronic cloud.
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If the magnetic field is so strong that the Zeeman splitting is of the same order as
the energy difference between different hyperfine levels, perturbation theory cannot
be applied any longer, and one has to go back to the simultaneous diagonalization
of the hyperfine-structure and magnetic Hamiltonians, whose matrix elements are
given in Egs. (3.70) and (3.72). The situation here is quite similar to that of the
Paschen-Back effect (Sect. 3.4): since the matrix elements are diagonal with respect
to f, the overall Hamiltonian can be factored into [2(I + J) + 1] submatrices, each
characterized by a particular f-value.! Thus the eigenvalues and eigenvectors are
of the form

N (I, f)
] Tify =" Cpl(aI, f)|aJIFf) (3.74)
F

(where the C% coefficients can be chosen real) and can be found, in general,
by numerical diagonalization of the total Hamiltonian. Figure 3.11 illustrates
the behavior of the energy eigenvalues for the hyperfine-structure components of
the level 3 2P, 2 of Nal as a function of the magnetic field (the values of the
hyperfine-structure constants are from Figger and Walther, 1974). As in the case
of the Paschen-Back effect, there are several level-crossings between the hyperfine-
structure magnetic sublevels. Such level-crossings induce important phenomena in
resonance scattering (see Sect. 10.22).

The strengths and the splittings of the various hyperfine-structure components
can be computed in strict analogy with the case of the Paschen-Back effect. For
the normalized strengths of the hyperfine components of the transition connecting
a lower level () with an upper level (¢/J’") one obtains

ST = ]+ (@1, f) Chu (a1, ) Cio (o T'T, ) Cho (0 J'T, f)
FF/FIIFIII
x \/(2F + 1)(2F" + 1)(2F" + 1)(2F" +1)
J J’ 1 J J o1
F/// F// I
F/// F// 1
: 3.75
( )G ) &)
with

oS =1 (g=-1,0,+1).
i’ ff’
The relevant selection rules are

AJ=0,41 J=0-»J =0
Af =0,+1.

1 It is assumed here that the magnetic splitting is much smaller than the energy differences

among the various J-levels. The opposite case will not be considered in this book.



ATOMIC SPECTROSCOPY 113

50 MHz

L ‘ L ‘ L ‘
0 10 20 30 40 50 B(G)

Fig.3.11. Energies of the hyperfine sublevels of the level 3 21:’3/2 of Nal as functions of the magnetic
field strength.

Similarly to the Paschen-Back effect, the strengths defined in Eq. (3.75) have
some important properties, which can be proved by observing that the coefficients
Ct(aJI, f) satisfy the following relations, similar to Egs. (3.62)

> Ch(adI, f) CplalI, f) = 6, (3.76a)
F
> Crl@JI, ) Cplald 1, f) = S (3.76D)

> Ci(adI, f) Ch(ad I, f) \(aJ T, f) =

= (aJIFf|H{} + H{ + Hg|laJIF'f . (3.76¢)

The properties of the strengths are the following:

a) In the absence of magnetic fields, F' is a good quantum number, and the eigen-
vectors |aJIif) converge towards the states |aJIF f)> that are degenerate with
respect to f; the coefficients C}. are given by

Ci(adI, f) =0;p ,
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so that we obtain

3 _or+ner+ndd L1 (FF 1Y
2I +1 F'F T -7 f —q ’

and summing over the degeneracy parameters f and f’ one gets the usual expression
for the relative strengths of hyperfine-structure multiplets

Ff,F'fl -
S, =

2
o prep  QF+1D)@F' +1) (] J 1
S _%;Sq B (2I +1) F' F If

b) The centers of gravity in frequency of the 7, o, and o, components (¢ = 0, +1,
and —1, respectively) are linear functions of the magnetic field

Ay, = Z S;f’i/f/Au}i}, =—qguv, , (3.77)
w! ff!

where vy is the Larmor frequency, Au}i}, is the frequency shift of the component
corresponding to the transition between the lower state |aJIif> and the upper
state |/ J'Ti' f'> from the unperturbed frequency of the transition between the
two levels (aJI) and (/' J'I),

i M (T I f1) = N (I, f)
AV = - , (3.78)

and where g is given in terms of the Landé factors of the lower and upper level

1 1
9=73 (9o + orsr) + 1 (9og = Garg) [J(J+1) = J(J + 1)].
Comparison with Eq. (3.44) shows that the factor g is just the effective Landé
factor that one would obtain for the transition between the levels (aJ), (/J') if
hyperfine structure were not present.

The proof of Eq. (3.77) is rather tedious and quite similar to the proof of the
analogous equation for the Paschen-Back effect. For this reason it will not be
given here and is left as an exercise to the reader.! Equation (3.77) is particularly
important, and it can be expressed by the following statement: The frequency shifts
of the centers of gravity of the o, 0y, and ™ components of a hyperfine-structured
line are the same as those resulting from the same line without hyperfine structure.
This result is what should be expected from the principle of spectroscopic stability.

1 To prove that the hyperfine-structure Hamiltonian (Egs. (3.70)) gives no contribution to

the quantity Auq, one needs the sum rules
Skt =dnm e DEe+DER2 430 -1), S0 k5= n2(n+1)3(2n% 4+ 20— 1).

To evaluate the contribution of the magnetic Hamiltonian (Eq. (3.72)), the sum rule (2.41) must
be used (instead of (2.48), employed for the Paschen-Back calculation).
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Fig.3.12. Logarithm of the strengths of 7 (upper) and o, (lower) components against wavelength
for the line Eull A 4205. The value of the magnetic field is 6 kG. Only the components having
strength larger than 10~8 are shown. The number of components of each type is approximately
400.

The numerical calculation of the strengths and splittings of the various hyperfine-
structure components of a spectral line requires the diagonalization of the total
Hamiltonian for the lower and for the upper level followed by the evaluation of
expressions (3.75). If the element has more than one isotope, the calculations must
be repeated for each of them and the splittings must be adjusted to allow for isotope
shift.

Landi Degl’Innocenti (1978a) has presented a computer program to perform such
calculations. The program has then been applied to the line Eull A 4205 using the
data for the hyperfine-structure constants given by Krebs and Winckler (1960).
The result is shown in Fig. 3.12 for a magnetic field of 6 kG. The number of
components is indeed striking, with an intricate pattern recalling a ‘wild forest’.
The implications of such a pattern on the determination of the europium abundance
in magnetic stars have been discussed by Landi Degl’Innocenti (1975).

3.6. Atomic Level Polarization and Density Matrix

When an atomic system is excited through a physical process which, for any reason,
is not spatially isotropic, the various magnetic sublevels of the system, degenerate
or quasi-degenerate with respect to energy, are, in general, not evenly populated;
moreover, they are characterized by definite phase relations, and the atomic system
is said to be polarized. A typical example occurs when the atomic system is excited
by a unidirectional (or polarized) radiation beam, or by collisions with a collimated
beam of fast particles.
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In such situations, the description of the atomic excitation in terms of the usual
concept of populations of the atomic levels (or sublevels) is no longer adequate,
and one must resort to the more sophisticated concept of atomic density operator.

The density operator can be defined for any assigned quantum system. If p,
(p, > 0) is the probability of finding the system in the pure state [¢)(*) > (normalized
to 1), the density operator p is defined by

p=> Pl W] (3.79)

Introducing a complete and orthogonal basis of unit vectors {|u; >} for the Hilbert
space spanned by the vectors |@Z)(°‘)>, one has

Q| P> = P = 3 D ([0S s, >

where p,,,, are the matrix elements of the density operator, also called density-
matriz elements.

Some important properties of the density operator follow directly from its defi-
nition:
a) The density operator is Hermitian,

p=p',

which leads to the remarkable symmetry property of the density matrix

P = Prim - (3.80)
b) The density operator is positive definite. In fact, for an arbitrary state vector
|¢> we have
Blpldy = po WD) >0

in particular, for [¢) = |u,, >
Pun 20, (3.81)

and hence the diagonal matrix elements are real and non-negative.

c) The trace of the density matrix is independent of the basis chosen to define its
matrix elements. In fact, since a complete, orthonormal basis satisfies the relation

> fu, > <u,| =1, (3.82)

we obtain from Eq. (3.79)

Tr(p) =D pon =3 > Po ([0 P, >

n

= pa WO Y > [ =Y p . (383)
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In particular, if the probabilities p,, are normalized to unity one gets
Tr(p)=1. (3.84)
d) The density-matrix elements satisty the following Schwarz inequality

Prm|? < P P - (3.85)

To prove this relation, let us consider the state vector
(6> = P [t ) = P [t 5
for the diagonal matrix element {¢|p|¢p) one gets

which proves Eq. (3.85) since {¢|p|¢> > 0 and p,,,, > 0.

e) If the quantum system is in a pure state rather than a statistical mixture of
states, or, in other words, if the sum in Eq. (3.79) is restricted to only one state
[ the above inequality reduces to an equality

[ |* = [ <t [0 2 [ ety [0 D12 = i P

f) The expectation value of any dynamical variable is equal to the trace of the
product of the density operator times the operator associated to the variable

(A) =" o WA =Tr (pA) . (3.86)
Indeed, using Eq. (3.82) one obtains
Tr(pA) = 3 Cu,lpAlu,, )
= > p [y (| Alu,,
=3 P WAL, ) Cu, [

= po (YA = (A).

g) If a system consists of two subsystems a and b, the trace of the density operator
of the system over the states of one subsystem is the density operator of the other
one. Indeed, let {|a, >} and {|b,,>} be two complete bases for the Hilbert spaces
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of subsystems a and b, respectively, and p the density operator of the compound
system. If O(®) is an operator acting on subsystem a only, we have

(0@Y =Tr (pO™@ §:<a\<b\p0 10, |a,>

—Zhﬁ{ZGWM%ﬁdm%>
= Z a, | T (p) O |a, >

On the other hand, if p(* is the density operator of subsystem a, we also have

(0@ = Ty(@ ()@ o) Z<a 9@ 0@ |a, >

Comparison of these two relations shows that
T (p) = p@ | (3.87)

h) The time evolution of the density operator in the Schrédinger representation is

described by the equation
d 27
—p=—[H .
P = Hrl (3.88)

where the symbol [A, B] denotes the commutator of the two operators A and B,
and where H is the Hamiltonian of the system.

This equation follows directly from the Schrodinger equation applied to the state
vectors [1)(®)) entering the definition of p. In fact, we have from Eq. (3.79)

d d d
So=n| (S0 )+ e (S cwe))]
= 3 pu 2T H) ] = 3 py 2 9l (|

which proves Eq. (3.88).

As far as the density-matrix elements are concerned, their time evolution depends
on the particular basis {|u,, > }. If we choose the basis of the energy eigenvectors,
or, in other words, if the vectors |u,, > are such that

Hlu, ) = E,|u,)
we have from Eq. (3.88)

d d 2
= Prn = 37 il Pl = T2 g [ pl [, = =270, Py
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where the Bohr frequency v, is defined by

mn

On the other hand, for a different basis one gets

—p =-"3N"(H H
3 Pron .

d 27i
( mp Ppn — Hpn pmp) 5

p

where
Hij = <U1|H‘UJ> .

For an atomic system, the most natural basis for defining the matrix elements
of the density operator is the basis of the eigenvectors of the angular momentum,
although in some cases this is not the basis of the energy eigenvectors (see for
instance the discussion of the Paschen-Back effect in Sect. 3.4). On this basis, the
elements of the density matrix are

p(aJM, o/ J M) = {aJM|pla’ T My .

In this representation — usually referred to as the standard representation of the
atomic density operator — the diagonal terms, p (aJ M, aJM), represent the pop-
ulations of the various magnetic sublevels, with the overall population n; of an
assigned J-level given by

nJ:Zp(aJMszM) . (3.89)
M

Conversely, the off-diagonal terms p (aJ M, o’ J'M') represent the so-called coher-
ences or phase-interferences between different magnetic sublevels. Their physical
meaning is illustrated, in a qualitative way, by the following example.

Suppose that a simple atomic system, namely a two-level atom with a lower level
having J = 0 and an upper level having J = 1, is excited by a stationary radiation
field tuned at the frequency of the atomic transition. If we choose a quantization
direction for the atomic system, and take a reference system (xyz) with the z-axis
in the quantization direction, the eigenvectors |«JM ) are of the form |1 —1),
[1 0>, |1 1> for the upper level, and |0 0} for the lower level.

It will be proved later (see Sect. 7.1) that if the atom absorbs a photon propagat-
ing along any direction in the z-y plane and linearly polarized in the z-direction,
it is excited from the level |0 0) to the level |1 0). Similarly, if the atom absorbs a
circularly polarized photon propagating along the z-direction, it is excited to the
level [1 1>, or |1 —1), according to the handedness of circular polarization. In all
these cases, the diagonal matrix elements {1M|p|1M > for the upper level attain
a definite value, but the coherences remain zero.
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For any other incidence direction, or any other polarization of the absorbed
photon, the atom is excited to an upper level which is a linear combination of the
form

c oyl =1) 4610y + ¢ [11) = ¢y 1My
M

where the three coefficients c;;, depend on the direction and polarization of the
absorbed photon. In this case the coherences are non-zero and take the simple
form

AM|p[IM"y = cp ey -

The physical meaning of coherences is just contained in this simple example. We
will see in Sect. 5.13 how a qualitative analogy can be drawn between atomic
coherences and interferences in classical oscillators.

Although coherences can be defined for any pair of magnetic sublevels, no matter
how large is the energy difference between them, the most important are those
between degenerate or quasi-degenerate sublevels. For such coherences one can
introduce more compact symbols to simplify the notations; for instance, for the
magnetic sublevels pertaining to an assigned term « one can write

{aJM|plaJ M"y = p, (JM,J' M'),
and if the term is described by the L-S coupling scheme
{BLSIM|p|BLST'M"y = Pars(JM, J'M') . (3.90)

For the coherences between magnetic sublevels of the same J-level the following
notation can be used

<aJM|p|aJM/> = pa.]<M> M/) ) (3913‘)
and for the diagonal elements’
(M| plad M) = p,, (M, M) = po s (M) . (3.91b)

The atomic density matrix can be defined in the presence of hyperfine structure as
well. With obvious notations, for the matrix elements between different hyperfine-
structure magnetic sublevels one can write in general

(aJIFf|p|d JTF 5 = p(aJIFf, o JIF' ),

and for the coherences between hyperfine-structure sublevels belonging to the same
J-level
CaJIFflp|laJIF' f' = p, ; (Ff, F'f'). (3.92)

1 The more compact notation p_ ;(M) can be conveniently used in the physical situations

where all the off-diagonal elements vanish.
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Important relations can be established between the different quantities here in-
troduced, like for instance between those defined in Eqs. (3.91) and those defined
in Eq. (3.92). We can consider an atom with hyperfine structure as consisting of
two separate parts, characterized by the eigenstates |aJM > and [IM;) (where M,
is the projection of the nuclear spin along the z-axis) and by the density operators
p7 and p, respectively. Since the quantum number I of the atomic system is
fixed, we have from Eq. (3.87)

PORCTATIIITREE

M,

where p is the density operator of the whole system. Taking the matrix element of
these operators between the eigenstates |«JM > and |aJM'> we get

(aTM|p | M"y =" {aJIMM;| plaJIM'M;)

M,
which relates the density-matrix elements in Eqgs. (3.91) to those in Eq. (3.92). In
the following we will use this kind of relations by dropping the apex (J), and we

will simply write

Pas (M, M) =" (aJIMM,| plaJIM M) .
M,

Changing the coupling scheme via Eq. (2.12) we have

Pag(M,M') = > (JIMM,|JIF [y (JIM'M|JIF'f')
FF/ff'M,

x {aJIFf|p|laJIF {5,

or, in terms of 3-5 symbols

pos (M M) = > (1) @F+1)2F +1)

FF/ff'M,
y J T F J I F’
M M, —f)\M M, —f

X paJI<Ffa F/f/) . (393)

A similar relation can be established between the density-matrix elements relative
to different J-levels of a term (Eq. (3.90)) and the density-matrix elements that
one can define for the same term by neglecting its fine structure. Setting first

<5LML|P|5LM1/;> = pﬁL<ML7MJ/L) )
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where M, is the projection of the orbital angular momentum on the z-axis, and
then introducing the inner structure due to the spin, one obtains

P (M, M) = Y ()M M RT+DRT + 1)
JJ’]WM']WS
« L S J L S J!
M, Mg -M)\M, Mg —M
X paps(JM, J'M') . (3.94)

We want to remark that the density-matrix elements on the basis of the eigen-
vectors of the angular momentum depend on the reference system chosen to define
such eigenvectors. If R is the rotation that brings a reference system (the ‘old’
one) into another reference system (the ‘new’ one), the eigenvectors of the angular
momentum in the new system are connected with those in the old system by the
relation

[TM pere = D(R) [TM) 1

new

so that the transformation law for the density-matrix elements is the following

[p(n, M| =

new

= {aJM|pld' JM"»

new

= {aJM|D'pD|a’ I M 4

new

=" D (R DY (R) [p (aJN, a’J’N’)} : (3.95)
NN/ old
In particular, for the matrix elements diagonal with respect to o and J
[Pas VM) = 57 DY (B) Do (B) [pus(NN)] - (3.96)

NN’

3.7. Multipole Moments of the Density Matrix

As shown by Eq. (3.95), the transformation law for the density-matrix elements
on the basis of the eigenvectors of the angular momentum involves the product of
two rotation matrices. We can however construct — similarly to Sect. 2.7 — linear
combinations of these matrix elements whose transformation law involves just one
rotation matrix. By so doing we obtain the irreducible spherical components of the
density matrix, which are often referred to as the multipole moments of the density
matrixz or the spherical statistical tensors.



ATOMIC SPECTROSCOPY 123

Defining the multipole moments of the density matrix by the expression’

pG (e, J) =Y (=1)"MV2K +1
MM’
<J J K
X

MM Q)p(aJM,a’J’M’), (3.97)

it is easy to prove that, under the rotation R of the reference system, the multipole
moments change according to the law

po (@, T = "1ps (et o' J)|  DE (R (3.98)
old

’

new

The proof of Eq. (3.98) will not be given here, being quite similar to an analogous
proof given in Sect. 2.7. We just want to remark that the factor /2K + 1 in
Eq. (3.97) is inessential: in fact, if this factor is replaced by an arbitrary function
of K, Eq. (3.98) is still satisfied. The definition given in Eq. (3.97) is the same as
Omont’s (1977), but different authors give different definitions for the multipole
moments, and no definition has a special advantage.

Comparison of Egs. (3.98) and (2.78) shows that the transformation law for the
multipole moments involves the complex conjugate of the rotation matrix, whereas
the transformation law for irreducible spherical tensors involves the rotation matrix
itself. Thus the multipole moments — as defined in Eq. (3.97) — are not, strictly
speaking, irreducible spherical tensors. A different definition could be given by
substituting p (o/ J'M', aJ M) for p (aJ M, o’ J'M’) in Eq. (3.97), and the multipole
moments so defined would indeed satisfy the transformation law for irreducible
spherical tensors. However, this alternative definition has no advantages over ours.

Equation (3.97) can be easily inverted using the orthogonality relations of the
3-j symbols. From Eq. (2.23b) one obtains

plaJ M, o' M) =Y " (-1)""MV2K +1

KQ

!
X(A‘Z —?\4/ _@)pgmam. (3.99)

The conjugation property of the multipole moments follows from Eq. (3.97) and
from the Hermitian character of the density operator
po (ad,a J')* = (—1)7=7'-@ pRo T ). (3.100)

Similarly to Sect. 3.6, one can introduce shorthand notations for the multipole
moments when dealing with restricted subspaces. For instance, for the multipole
moments relative to the magnetic sublevels of a term one can write

po (ad,at) = P51, ),

1 Note that for any atom (or ion) the quantum numbers J and J’ are both integers or both

half-integers, thus the rank K of the multipole moments is always an integer.
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and for the magnetic sublevels of a given J-level
pg(aJ, alJ) = pg(aJ)

= > (-)TMV2K +1 <J\°Z jm I;)paJ(M,M/), (3.101)
MM’

with the conjugation property
p& ()" = (=1)9 pK () . (3.102)

The analytical expressions for the most common multipole moments, as functions
of the ordinary density-matrix elements, are given in Tables 3.6 and 3.7.

The multipole moments can be also defined for a J-level having hyperfine struc-
ture. With self-evident notations, we have

oS (FF) => (-1)" /2K +1
Iz

X<Z; _Ff/ _[Zg)pa.H(FfaF/f/). (3.103)

Relations similar to those in Egs. (3.93) and (3.94) can be easily established for
the multipole moments. From Eq. (3.93), after some Racah algebra involving the
contraction of 3-j symbols (Eq. (2.42)), one obtains

p(ad) =Y (~1)HHE/RF $ 1)2F + 1)
FF'

FOF K\ ik /
X{J J 1} DE(F,F). (3.104)

In a similar way, from Eq. (3.94) the following relation can be proved

PE(BL) =Y (1) /2] 1120 + 1)
JJ!

J J K\ grsk y
X{L . S} DE(J,T) (3.105)

where pg (BL), the multipole moment for a spinless L-term, is defined by

Y L L K ’
pg(ﬂL): Z (71)L JV[L 2K+1 <ML 7M£ Q)pﬁL(M[ﬂML)

M, M),

An important property of the multipole moments follows from the evaluation
of the expectation value of an arbitrary spherical tensor operator Tg){ . Denoting
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TABLE 3.6

Analytical expressions for the multipole moments pg (aJ) as functions of the matrix elements
Py (M, M'"). The index (aJ) is suppressed for conciseness. The multipole moments for negative
values of @) can be obtained through the relation p}_(Q(oaJ) = (-1 pg (ad)*.

J=0 py = p(0,0)

J=73 5 =5 [P(3:3) + (=5, -3)]
pb= 75 [p(3:3) — (- 5.-3)]
pt=—n(3—3%)

J=1 P = Z5 [P(L, D) + p(0,0) + p(~1, -1)]
b= 5 [P, 1) = p(=1,-1)]

P2 = 2= [p(1.1) ~ 20(0,0) + p(~1,-1)]
P% = *% [p(l,o) - P(O, 71)]

p3 = p(1,-1)

J=3 P =35 [P35 +0(5, 5) +p(=3. -5 +p(=5.-3)]
b= 5z [3p(3.3) + p(3.3) —p(=5,—3) —30(=3,-3)]
=75 [V3r(5 5) +20(5,-5) + V3p(=3, - )]

Py =75 [p(5.3) —p(3.3) — p(=5.—5) + (-3, 3)]
P=-75 [P35 —p(=5.-5)]
B =J5 [p(3. -3 +r(3,-3)
=5z [P(3:8) = 30(3.3) +3p(=5,—%) —p(=5,-3)]
== 35 = V3r(3 -5 +p(-5.-3)]
=5 [pG -9 (3. -3)]
Py =—n(3,-%)
J=2 P = Zz [P(2,2) + (1, 1) + p(0,0) + p(~1, =1) + p(~2, ~2)]

Ph = o= [20(2,2) + p(1,1) = p(~1, 1) — 2 (-2, ~2)]

Pl =~ k= [V20(2,1) + VB p(1,0) + V3p(0, 1) + V2 p(~1,-2)]
P2 = \/% [2 0(2,2) — p(1,1) = 2p(0,0) — p(—1,—1) + 2 p(—2, —2)]
P2 = = [VB(2, 1)+ p(1,0) - p(0,~1) = VB p(~1,-2)]

P3 =L [V20(2,0) + V3p(1,—1) +v2 (0, ~2)]
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TABLE 3.6
(continued)
J=2 = s [p<2,2>—2p<1 1) +2p(~1,—1) — p(=2,-2)]
P} =~k [VBp(2,1) = V2p(1,0) = V2p(0, ~1) + VB p(~1,-2)]
3 =I5 [p(2,0) — p(0, —2)]
P =— % [p(2,-1) + p(1,-2)]
Py = s [P(2,2) = 4p(1,1) +6p(0,0) — 4p(~1, ~1) + p(~2, ~2)]
pt = ——h [p(2.1) = VB (1,0) + VB (0, ~1) — p(~1, -2)]
ps = ﬁ [V3p(2,0) — 2vZ p(1,—1) + V3 p(0, -2)]
Py =—J5 [p(2,-1) = p(1,-2)]
Py =p(2,-2)

by <T5 > its expectation value, and referring, for simplicity, to an atom devoid of
hyperfine structure, we have

(TX) = Tr(pTg) = 3 < IM|pTE T M
o' J' M’

Introducing between p and Tg the completeness relation

1= |aJM){aM],
aJM

and applying the Wigner-Eckart theorem (Eq. (2.96)) and Eq. (3.99), one obtains

2J+1
(T5) = > Voot IIT" T pS(ad, o' J) (3.106)
aa’JJ’!

which shows that the expectation value of a spherical tensor operator is strictly
connected with the multipole moments of the same rank.

Let’s now consider the physical meaning of the multipole moments. For the
O-rank moment, we have from Eq. (3.101)

1

Nor ZpaJ (M, M) , (3.107)

polad) =

so that the overall population n, ; of the (aJ)-level is given by

;=V2J+1p)(ad) . (3.108)
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TABLE 3.7

can be obtained through the relation O‘pg (J',J) = (=1)7 =7 +Q epK oI

J=0 p(0,1) = p(00,1 1)
J' =1 p5(0,1) = —p(00,10)
21(0,1) = p(00,11)
J=5 | AGD=5[GhE D+ VEG 55 D)
T=3 | 5 =-7rG535) 0555 3]
P53 =3 [V3r3 5.5 T35 53)]
A3 =-r:%3-3)
PG =5 V355 -3 —r3-5.5-3)
AH =G G130 -t 13-
a8 =3 [pG 555 - V3z -5 8 )]
Pab =i 539
J=1 pi(1,2) = \/LTO[p(11,20)+\/§p(10,271)+\/6p(171,272)]
J =2 ph(1,2) = \/%[\/gp(ll,Ql)+2p(10720)+\/§p(1—172—1)]
pL o ( :\/%[\/_p1122 )+ V3p(10,21) + p(1 —1,20)]
p§<1,2>: Z5[P(11,2-1) +v2p(10,2 -2)]
P2(1,2) = %[\/gp(ll,20)+p(10,271)f\/ip(lfl,2f2)]
P3(1,2) = — o5 [p(11,21) = p(1 —1,2 - 1)]
P21(1,2) = ¢ [V2p(11,22) = p(10,21) — v/3p(1 —1,20)]
P25(1,2) = 7= [V2p(10,22) + p(1 —1,21)]
p3(1,2) = p(11,2 -2)
P3(1,2) = — 2= [V2p(11,2-1) = p(10,2 -2)]
P(1,2) = = [VBp(11,20) = 2v2p(10,2 =1) + p(1 —1,2 —2)]
P3(1,2) = 2= [p(11,21) = VBp(10,20) + p(1 —1,2 —1)]

P21(1,2) = A= [p(11,22) —2v2p(10,21) + V6 p(1 —1,20)]
p25(1,2) = o= [p(10,22) = V2p(1 —1,21)]

K (J, J') as functions of the matrix elements
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To give a physical interpretation to the other multipole moments, let us consider
the spherical tensor operators Jg that can be constructed with the rectangular
components .J,, J,, and J, of the angular momentum according to Eqs. (2.82) and
(2.84). Assuming for simplicity the density-matrix elements to be non-zero for just
one (aJ)-level, from Egs. (3.106) and (2.97) we obtain

() = (1) = [ TLEDCTED )

() = (i) = PIETED -

1

which give after inversion

oh(ad) =3 .

VI +1)(27 +1)

Repl(a)] \/>\/JJ+1 e
1 _ /3 1
m[pl(aJ)} - \/; N EES RS (7). (3.109)

These formulae show that the multipole moments of rank 1 are connected with
the average value of the angular momentum components on the axes x, y, and z.
When such values are non-zero, there is a preferred direction in space, identified
by the vector <f >, along which the atom may be thought to be oriented. For this
reason the multipole moments of rank 1 are called the orientation components of
the density matrix.

For the tensors of rank 2 one obtains, again from Eq. (3.106)2

(J2)

pe(ad) =5 f(J) (22 = J2 = J7) (3.110a)
Re :pf(aj): - \/1;5 FO) (T, + 0,0, (3.110b)

Im :p‘f(aj): - \/1;5 PO (I, T+ T,0,) (3.110¢)

Re :pg(aJ): - \/1;5 FU) (T2 = J2) (3.110d)

Im :pg(aJ): - —\/? FOY (T T, + 0,7, (3.110e)

L Note that, for J = 0, the quantities pb are identically zero as it follows directly from

Eq. (3.101). Equations (3.109) are valid for J # 0 only. For the same reason Egs. (3.110) are
valid for J > 1 only.

2 Note that the operators (J;J, +J, J,), (i, k = z,y, z) are Hermitian, so that their expectation
values are real.
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Fig.3.13. To get an intuitive grasp of the meaning of the orientation and alignment components of
the density matrix, we can regard the atomic angular momentum as having a uniform probability
of being found on the surface of the figures drawn above. For the sphere in panel (a), the atom
is neither oriented nor aligned; for the ellipsoid in panel (b) the atom is aligned but not oriented,;
finally, for the ellipsoid in panel (c¢) the atom is both oriented and aligned. To have an example of
an atom oriented but not aligned we can go back to panel (a) and regard the angular momentum
as having more probability of being found on the upper hemisphere than on the lower one.

with
1

VIT+ 12T —1)2J +1)(2T +3)

f(J) =

the reduced matrix element {a.J|J?||aJ) having been evaluated via Eqs. (2.102)
and (2.36h).

The formulae now deduced show that the multipole moments of rank 2 are con-
nected with the average value of bilinear combinations of the angular momentum
components .J,, J,, and J,. These multipole moments are called the alignment
components of the density matrix. The word ‘alignment’, as opposed to ‘orienta-
tion’, is used in this context to mean that the atom may be regarded as aligned
with a particular straight line in space, irrespective, however, of which direction is
chosen on the line. In Fig. 3.13 we give an intuitive illustration of the meaning of
the multipole moments of rank 1 and 2.

Turning to multipole moments of higher rank, it is possible to show that those
of rank n are connected with the average values of polynomials of degree n in
the angular momentum components J,, J,, and J,. No particular name has been
assigned to these moments.
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Another general property of multipole moments, which follows directly from the
definition (3.97), should be remarked: a moment of the form pg (Q #0)is a
linear combination of coherences between states characterized by projections of the
angular momentum differing by Q; a moment of the form pf is a linear combination
of populations.

Finally, some inequalities can be established for the multipole moments as a
consequence of Eq. (3.85). Taking the square modulus of Eq. (3.101) and summing
over K and () we obtain

DS S @D =Y (o, (M, M) ;
Ko

MM
on the other hand, from Eqs. (3.107) and (3.85) we have

1
2J+1

)] 57 s (M, M) py (M, M)

MM’

1
> M, M")|?
— 2J+1 Z ‘pa.]( I )‘ 9

MM’

and from these two relations we get
2
SO o) < 20| p(ed)]
K#0 Q

Similarly, for the multipole moments connecting two levels (aJ), (¢/.J') one obtains,
starting from Eq. (3.97)

ST pS (.o )P < V2T +1)(20 + 1) pd(d) pi(a’ T .
KQ

Another important inequality can be established for the quantities pf (o). From

Eq. (3.101) we have

D) =VIEFT S 0 (3 ) usonan.

On the other hand, all the quantities p, ;(M, M) are non-negative (see Eq. (3.81));
since their sum equals [2.J + 1]/2 pd(a.J), we can write

e < VERTIED (5 )| de.

where M is the M-value giving the largest absolute value for the 3-j symbol.



CHAPTER 4

QUANTIZATION OF THE ELECTROMAGNETIC FIELD
(NON-RELATIVISTIC THEORY)

Many of the physical phenomena involved in the generation and the transfer of po-
larized radiation in spectral lines can indeed be described by means of the classical
theories of the electron and of the radiation field. In Chap. 5 we will apply these
theories to obtain a simple derivation of the radiative transfer equations for polar-
ized radiation and of the law of resonance scattering in the presence of a magnetic
field.

However, only the most simplified cases are accurately described by the classical
theory. As far as the atomic system is concerned, the classical theory of the elec-
tron gives an appropriate representation only of a two-level atom with a normal
Zeeman triplet and an unpolarized ground level, so that its applicability is very lim-
ited. Similarly, the classical description of the radiation field prevents the correct
treatment of important phenomena such as, for instance, stimulated emission.

In the main body of this book the interaction between atomic systems and the
electromagnetic field will be described through a full quantum-mechanical formal-
ism: this will allow us to handle even the most complicated physical situations
without being obliged to introduce additional terms into the relevant equations by
using phenomenological or heuristic arguments. To this aim, we need however the
formalism of second quantization for the electromagnetic field, a formalism that we
are going to develop in this chapter.

We also want to remark that the formalism of second quantization for the radia-
tion field is a classical subsection of quantum field theory and has been fully treated
in excellent monographs (see for instance Dirac, 1935; Heitler, 1954; Akhiezer and
Berestetskii, 1965). The reason why these concepts are again developed in this
book is to establish on a firm basis a set of notations that will be employed in
the following. On the other hand, in view of the physical applications that will be
presented later, the formalism of second quantization needs not to be developed
in its general, relativistically invariant form. We will thus restrict attention to
the simpler non-relativistic formulation, while we refer the reader to the textbooks
quoted above for an introduction to invariant formalisms.

4.1. Quantization of the Harmonic Oscillator

The quantization of the harmonic oscillator is at the basis of the formalism of
second quantization, because, as it will be shown in the following, the Hamiltonian
of the electromagnetic field reduces to the sum of an infinite number of independent
Hamiltonians each formally equal to that of the harmonic oscillator.
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The classical Hamiltonian of a one-dimensional harmonic oscillator, expressed as
a function of the canonical variables ¢ and p, is given by

mw?
+

pz
H(Qap):% B q

(4.1)

where m and w are the mass and the angular frequency of the oscillating particle,
respectively. The Hamilton equations give for the particle motion

dg _0H(q,p) _ p

dt dp m
dp  0H(q,p) _ 2
a9 e

To solve these coupled equations we introduce, following Dirac (1935), two linear
combinations of the variables ¢ and p of the form

*

a=A(p—imwq), a*=A(p+imwq), (4.2)

where A is a real constant which, for the moment, does not need to be specified.
Taking the time derivative of these quantities we get the equations

da . de* .
— = —1Wwa =1l1wa
dt ’ dt ’
which have the obvious solution
a=age ", at =aje™" (4.3)

with a, to be determined from the initial conditions. Inversion of Eqs. (4.2) yields
the solution to the classical problem

1
T 2mwA

(@—a?), p=ss(ata’),

9 24

with a and a* given by Egs. (4.3).

The corresponding quantum-mechanical problem can be treated along the lines
of the Correspondence Principle. The Hamiltonian is still given by Eq. (4.1), but
q and p are now Hermitian operators obeying the commutation rule

lg,p] =ih .

To solve the quantum-mechanical problem we introduce the operator a defined as
in Eqgs. (4.2) and its Hermitian conjugate a' defined as a* in Eqs. (4.2). Expressing
the Hamiltonian in terms of a and a' we obtain

1

H= iz (aa’ +afa),
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and evaluating the commutator of @ and af we get
[a,a'] = 24%mhw .

We now choose the constant A in such a way as to make this commutator equal to
unity; expressing aa' in terms of afa we get

1
H = Thw <aTa+ 5)

[a,al]=1. (4.4)

with

To find the eigenvalues and the eigenvectors of H, first of all we observe that if
|v) is an eigenvector of H corresponding to the eigenvalue v,

Hlv) =wvlv),

we have
v

Golalalo) = ol 32 = 510 = (7 = 3 ) ol

Since the left-hand side of this equality is the square modulus of the vector a |v),
it must be non-negative, so that we obtain

1

which means that all the eigenvalues are larger than fiw/2.
Next we observe that, owing to the commutation relations

[H,a] = —hwa , [H,a'] = hwa' | (4.6)

we have
Hal|vy = (aH —hwa)|vy = (v —Tw)alv) ,

which means that the vector a |v) is an eigenvector of the Hamiltonian H corre-
sponding to the eigenvalue (v — hw).

Similarly, it can be easily shown that the vector a?|v) is an eigenvector of H
corresponding to the eigenvalue (v — 2fiw), and, in general, that the vector a™|v) is
an eigenvector corresponding to the eigenvalue (v—nhw). The chain of eigenvectors
alvy, a®lvy,...,a"v),..., corresponding to smaller and smaller eigenvalues, must
however be limited, because otherwise property (4.5) would be violated. This
means that it must exist an eigenvector, which we denote by the symbol |0}, such
that

al0>=0. (4.7)

For this eigenvector we have

1 1
H|0) = hw (aTaJr 5) 0> = ihw\0> .
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Conversely, from the eigenvector |0> one can construct different eigenvectors
corresponding to larger and larger eigenvalues. In fact, from Eq. (4.6) we obtain

3
Ha'|0) = (aTHJrhw aT)\O> =3 hwa'lo) |
and, in general
1
Ha™|0) = <n + 5) hw at™(0) .
The eigenvector a'™|0, however, needs to be normalized. Assuming the eigenvector

|0> to be normalized,
0[0) =1,

it is easy to prove via Eqs. (4.4) and (4.7) that
{0la"a™[0) = n!.

The normalized eigenvectors of the Hamiltonian H, which we denote by the symbol
|n>, are therefore defined by

1
‘TL> = —' aTn‘0> ;

Vn!

and are such that

> = (o ) oy

alny = Vil — 1)
a'lny =vn+1|n+1). (4.8)

To conclude, the energy spectrum of the Hamiltonian of the harmonic oscillator
consists of a series of equispaced energy levels of the form (n+1/2) fiw. The integer
n can be regarded as the number of a sort of particles, or discrete quanta, of energy
hw that can be created or destroyed and whose presence contributes to the total
energy of the harmonic oscillator. Formulae (4.8) show that the operator a, when
acting on an eigenvector, has the effect of decreasing the number of particles, while
the operator a has the opposite effect of increasing it. For this reason the operators
a' and a are called the creation and the destruction (or annihilation) operators,
respectively.

4.2. The Electromagnetic Field as a Superposition of Plane Waves

Consider the electromagnetic field enclosed in a cubic cavity having its sides equal
to L. In the absence of charges and currents, one can choose a special case of the
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Lorentz gauge where the scalar potential ¢(7, ) is identically zero, so that the field
is described only by the vector potential A(7,¢) which obeys the wave equation

T Py V1

The Lorentz gauge is now expressed by!
div A(7,t) = 0. (4.10)
The electric and magnetic fields are connected with ILY(F, t) by the relations

., 10 -
E(rt) = ——=A(T,t

(71) = — 5, A1)
B(7,t) = curl A(7, 1) . (4.11)
At any given time ¢ the vector potential, as well as any other physical function of
7, can be expanded in Fourier series. If we require that the vector potential obey
the so-called periodicity conditions

/Y(x, Y, 2, t) = /_l'(x +m,L,y+m,L,z+m_L,t)

with m,, m,, m, arbitrary integers, we obtain

Aty =" Cat) ™7, (4.12)
E
where the summation is extended to all the values of k satisfying the periodicity
conditions
- 2 2w 2w
k: (nif,nyf,nzf> ; (413)

with n_, n, , n, arbitrary integers. Because of the real character of the function

y7
A(7,t), the complex vector C}(t) satisfies the conjugation property

Cp®)"=C ().
We now require that the vector potential A obey the wave equation (4.9). This
means

A2C(t) .

where

wp = clk| . (4.15)

Note that Eq. (4.10) is not relativistically invariant.
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Equation (4.14) can be easily solved to give
S0 A et S et
Cp(t)y=C"e +CMe

where C_"]%’) and C_"]%“ are constants. Substituting into Eq. (4.12) we obtain

A ) =37 GO T L 7 g ) (4.16)

k k

with
Com=C")
k —k

The vector potential in Eq. (4.16) is decomposed into progressive and regressive
waves. Taking into account that w; = w_, we write the exponential of the regres-
sive wave term in the form

i(k-Ptwpt) —i(—k7—w_;t)
e =

e

and then we change the summation index of this term from k to -k to obtain

/((F, t) = Z [5;2) ei(kf—w,;t) n 5]%,>* e—i(kf—w,;t)

The supplementary condition (4.10) implies, for any E,
. =)
k-C7 =0,

which is a transversality condition holding for any Fourier component of the vector
potential. This relation can be satisfied in the following way. For any wavevector
k we define two complex unit vectors €, (A = 1,2) both perpendicular to k and
perpendicular to each other,

& k=0, e EE = Gy (4.17)

Next we write

where ¢, (t) are oscillatory functions satisfying the differential equation

d :
T ey (t) = —lwg e, (1), (4.18)
and we finally obtain
T L kT v o —ikeT
A(F,t) = E |:CE>\(t) e tep@)er e , (4.19)

kX
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from which the electric and magnetic fields can be obtained via Eqgs. (4.11)

= . - L k-7 R
B(it) =1k x {%(t) e —ep () e e } : (4.20)

The summations are extended to all the wavenumbers satisfying Eq. (4.13) and,
for each wavenumber, to the two possible polarization states. Each set of values
(k, ) defines a mode of the radiation field inside the cavity. The number of modes
for which the modulus of k is contained within k and k + dk and its direction is
contained in the solid angle d2 is given by

L

N(k)dkdQ = 2 k* dk dQ <2—
s

3
1 2
> = 5 VA dkdQ, (4.21)

where V = L3 is the cavity volume.

4.3. Quantization of the Electromagnetic Field

We can now introduce the formalism of second quantization by interpreting the
coefficients ¢, (t) and ¢z, (t)* in Egs. (4.19) and (4.20) as two operators c;, and
ct)\ acting on a suitable Hilbert space. By so doing, the vector potential and the
efectric and magnetic fields become quantum operators acting on the same Hilbert
space.

The Hamiltonian of the electromagnetic field can be found with the help of the

Correspondence Principle, starting from the classical expression

=L / (E* + B*)dv (4.22)
8 v

which gives the energy of the field contained in the volume V. Substituting for E
and B their expressions given in Eqgs. (4.20) (with the coefficients c, (t) and ¢z, ()*

replaced by the operators ci, and ct)\, respectively) the integral in Eq. (4.22)
reduces to the sum of integrals of the I%orm

/ ei(k+k’)~FdV 7
%

which can be easily evaluated to give, owing to the periodicity conditions (4.13),

Vop -
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We thus obtain

w2 . .
_ %A - [c—k (€2 - €ny) + (kxer) - (kx eE/\,)} } . (4.23)

Using Eqs. (4.15) and (4.17) we have that the first two terms in the right-hand side
identically vanish, while the last two terms give!

_ v 2 1 1
H= P Z ws [CEA cpy CEACEA} . (4.24)
kA

Finally, performing the substitutions

A = 2\ 307 G 4 = 2\ 507 S (4.25)

we can express the Hamiltonian of the electromagnetic field as the sum of an infinite
number of Hamiltonians (one for each mode) formally identical to the Hamiltonian
of the harmonic oscillator,

The commutation properties of the operators aj;, and a%)\ can be derived from the
Correspondence Principle. Since these operators are, apart from a factor, the quan-
tum equivalent of the coefficients g, () which obey the differential equation (4.18),
we require that the same differential equation hold for the expectation value of the
operator ag, on an arbitrary state vector [¢) of the Hilbert space,

d
= Blagy 9> = —iwg (Blagy o

The cross products in Eq. (4.23) can be easily evaluated using the relations

(a X b)i = ij €k @bk Zk €k €tmpks = 95104 = 05 051

where the antisymmetrical tensor €k is defined on p.7.
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Since the state vector |¢> evolves according to the Schrédinger equation

. d
i 0> = Ho) .

we obtain
(llagy, H]|§) = hwi {dlag,|¢)
or )
T i —

Z EME’ <¢‘ [a;}‘)\’a]g/k/a;;/)\/ + G/EIAICLE(}\/] ‘¢> - LUE <¢|aEA|¢> .

B
Being |¢> an arbitrary state vector, it can be proved that this equation is satisfied
if

lagys agn] = [aEA’alTS'X} =0 (4.26)

when the operators refer to different modes (k # k" or A # X'), and if
[a- ,al ]=1. (4.27)

The Hamiltonian H can then be expressed in its final form
H=>Y twy(al a +1 (4.28)
4 E\TEX"EN " 9 ) )
EA

Equation (4.28), together with the commutation rules (4.26) and (4.27), proves
that the Hamiltonian of the electromagnetic field is the sum of an infinite number
of independent Hamiltonians, each formally identical to the Hamiltonian of the
harmonic oscillator.

If we now arrange the different modes of the electromagnetic field in some definite
order, and recall the results obtained in Sect. 4.1 for the harmonic oscillator, we
have that the eigenvectors of the Hamiltonian H can be described by a state vector
of the form

) (@)™ gy, (4:29)

[Ty, Mgy ey My > =

where (nq,nq,...,n;,...) are the occupation numbers and

|¢o> =10,0,...,0,...>

is the so-called vacuum state.
The corresponding energy eigenvalues are given by

1
H|n1,n2,...,ni,...>:{z hw, (nj+§>}n1,n2,...,ni,...>.
J
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Note that the presence of the term 1/2 in this expression leads to a non-zero (and
indeed infinite) energy eigenvalue even when all the occupation numbers are zero.
This represents a zero-point energy that can be eliminated from the theory by
simply shifting the scale on which energy is measured. By so doing we can write

Hiny,ng, ... ,ng,...> = {Z hwjnj}\nl,nQ,...,ni,...>.
J

The physical interpretation of the formalism introduced above is the following.
The occupation number n, is the number of photons in the i-th mode, thus the state
vector in Eq. (4.29) represents the physical state where n; photons are present in
mode 1, n, photons in mode 2, and so on. Since the occupation number n, relative
to the i-th mode can take all the values 0,1, 2, ..., and since, moreover, this number
is independent of the occupation numbers relative to all the other modes, it follows
that photons obey the Bose-Einstein statistics. This allows a direct deduction of
Planck’s law. In thermodynamic equilibrium at temperature 7', the probability P,
(normalized to unity) of having n photons in a given mode of angular frequency w
is given by

e T
m=0

where kp is the Boltzmann constant, so that the mean number of photons in the
mode is

= 1

n=0 ehsT —1

Recalling Eq. (4.21), one obtains that the energy per unit volume with angular
frequency between w and w + dw is given by

P

n

_ dk 1 hw3 1

and that the energy density with frequency between v and v 4 dv is

d 1
u(v) :u(w)—w A B )
dv (G TR
el —1
which is the classical Planck’s law.
The action of the operators a, and az on a given state vector can be deduced

from Eqs. (4.8)
a;[ny, Moy o0y =g Ingyng, ooy — 1,000
a“nl,nQ,...,ni,...>:m|n1,n2,...,ni+1,...>

a}ai [Ny, Ny, sy ey =1y N, Ny, ..y
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These equations fully justify the denomination of destruction and creation oper-
ators for a; and a;, respectively. The last equation shows that agai is a positive
definite Hermitian operator whose eigenvalues are the occupation numbers n,;. For
this reason it is named the occupation number operator relative to the i-th mode.

4.4. The Stokes Parameters in the Formalism of Second Quantization

The formalism introduced in the previous sections can be slightly modified to make
it more suitable for the physical applications that will be presented in Chap. 6.
Instead of labelling the modes with the wavenumber k we characterize them by the
frequency v and the direction 2. Thus we replace the operators agz, and a}%)\ by
the operators a(v, Q, A) and af (v, 0, A), respectively. Moreover, instead of the unit
vectors €}, we will use the unit vectors €’ , (€) which still depend on the direction
O but not any longer on the radiation frequency. With these notations, and taking
into account Egs. (4.25) and (4.15), we can write for the operator E(F) defined in
its classical form in Eq. (4.19)!

5, h = o =y ik o Rk —ikT
A(F) = Z Ty {a(u,Q,)\) e +al(v, QN eE ()" e } , (4.30)
9N
where
P=G
c
g -a=0, @) - =6, (AMN=12), (431
and

[a(v, G, N),a(v/, ¥, N)] = [a' (1, B, N), 0’ (v, ¥, V)] =0

[a(v, 4, N), af (v, Y V)] =6, 056, Oy - (4.32)

Similarly, for the electric and magnetic field operators we have

EF) =iy ,/27;}” {a(y,ﬁ,)\) &, (3)e™ "

vQA
—at, G, ) e (D) T }

By =iy ,/27;”1 {a(u,ﬁ,)\) (6% &,(G)]

vQA

—at (v, 8,0 [§ x 2, ()] e‘i”} L (433)

1 To avoid any possible confusion, we use in this section the symbol ~ to distinguish the

operators from the corresponding classical quantities.
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and for the Hamiltonian (with the vacuum energy removed)

—

H=>" hva' (v, ) a(v,Q,)). (4.34)
792

From these expressions it is possible to derive, according to the Correspondence
Principle, the quantum-mechanical operators corresponding to a number of classical
dynamical variables. In App. 3 we present such derivations for the momentum and
for the angular momentum of the electromagnetic field.

Let us now consider the classical definition of the intensity of a radiation beam,

B dE
I, ()= — &
V9= Sawa

where dE is the energy crossing the surface dS (perpendicular to the beam) in the
time interval dt, with frequency between v and v + dv and direction contained in
the solid angle dQ2 around the direction Q. The corresponding quantum operator
can be derived by the following arguments. The number of modes having frequency
contained in the interval (v,v 4+ dv) and direction in the solid angle df? is given,
for each polarization state, by (see Eq. (4.21))

2
N@)dvd2 =V 2 dvdn. (4.35)
C

If n(v, ﬁ, A) is the number of photons belonging to a particular mode, the number
of such photons crossing the surface dS in the time interval d¢ is

- dtd
n(v, Q, \) ¢ v 5 ,

and since each photon carries the energy hv one obtains

- hv? -
I(v, ) = —- > a0, (4.36)
A=1,2

This expression immediately suggests the form of the corresponding quantum-
mechanical operator

I(va) = 0—2 Z CLT(V,Q,)\)CL(V,Q,)\) s
A=1,2

and the generalization to the polarization tensor defined in Eq. (1.36) is quite

obvious
S = hv3 —_— =
Iaﬁ(V7Q) = C—Q a (V,Q,Q)G(V,Q,ﬁ) . (437)
The relations connecting the Stokes parameters with the components of the po-
larization tensor depend on the reference direction chosen to define the Stokes
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—

parameters (see Sect. 1.6) and on the specific unit vectors €, (£2) chosen to expand

the vector potential E(F ) (see Eq. (4.30)). Obviously, both choices are completely
arbitrary, and the relation between the Stokes parameters and the polarization
tensor is in general rather involved (see Egs. (1.42)). It is however convenient, for

future applications, to define the unit vectors e}\(f_'l) in the following way

. 1 .
(D) = = @ @) +ig@)] | 4.38
1(2) 7 (€) +16,(Q) (4.38)
where €a(ﬁ) and €b(ﬁ) are the reference direction unit vector and the associated
unit vector, respectively (see Sect. 1.6). It can be easily shown that these vectors
satisfy Eqs. (4.17), namely

511(52) Q=0

Moreover, they satisfy the relation

—

()" =~ ().

—

With this choice for the unit vectors €,(2) — a choice that will appear clearer
in the following, see Sect. 5.10 — the relation between the Stokes parameters and
the polarization tensor can be derived from Eqs. (1.42) substituting 6 = 57/4,
¢ = —m/2 (which makes Eqs. (1.41) coincident with Eqgs. (4.38)). We have

=1 (v, )+1__(v,Q)

—

(v, )
Qw, Q) =—-I._(v,)—1_,(v,Q)
(v, Q) = —il )
)

Uy, Q) = —1I+7(y,ﬁ) —|—i[l+(u,Q)
Vi, Q) =1, (v,Q) - 1__(v,Q), (4.39)

where we have shortened the notations writing I 44 instead of I 4141, and so on.
Finally, substituting Eq. (4.37) we obtain

hv3 N N N

f(u, Q) = — [aT(y, Q,4+1) a(v, O, +1) +a'(v,Q, -1) a(v, Q, —1)]
c
o ﬂ hu3 i . o + . —
Qv Q) =——F [a (v, ,+1) a(v,Q,—1) +a' (v, 2, —1) a(v, Q, —|—1)]
c

N - hv? + - - i = —

(v, Q) = =i — [a' (v, 2, +1) a(v, 2, —1) —a" (v,Q, —1) a(v,Q, +1) |

c

N - hv3 + - - + . .
V(V7Q) = T 5 [a (V,Q,+1)Q(V,Q,+1) —a (V7Q’71)Q(V’Q’fl)] )
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which give the Stokes parameters of the radiation field in terms of creation and de-
struction operators. The connection between the operator V (v, ) and the angular
momentum operator of the electromagnetic field is discussed in App. 3.

4.5. The Density Operator of the Radiation Field

The density operator p™ of the radiation field can be introduced using the same
general formalism presented at the beginning of Sect. 3.6. The definition of p™® is
indeed the same as that of Eq. (3.79),

P =32 pa 0D Uil

where W%‘”) is now a state vector of the Hilbert space considered in Sect. 4.3.
A complete basis of this Hilbert space is that of the energy eigenvectors given in

Eq. (4.29),
{|n1,n2,...,ni,...> } ,
so that the matrix elements of the operator p™ have the form

(R) _ (R) [ny/ / /
Py myeng,e) () nyen/ ) = Ny Ny ooy | p R ng, o, )

The expectation value of any dynamical variable can be expressed in terms of
the density operator p™. For instance, the expectation value of the electric field
in a given point is expressed by

E(F) = T (E(7) p™) .

and analogous formulae can be written for the other physical variables associated
with the electromagnetic radiation field.

In some special cases, the density operator of the radiation field can be written
as the direct product of an infinite number of operators each spanning one mode of
the radiation field characterized by the frequency v and the direction (.1 In these
cases we have

P = p™ (v, Q) @ p(vg, Qy) - ® pm)(%‘aﬁi) oo

The expectation values of the polarization tensor components relative to the mode
(Vg §2y) are then given by

Iaﬁ(VOa ﬁo) =Tr (Iaﬁ(ym Q'0) P<R)) =Tr (faﬁ(ym Q’0) P<R)(V07 Qo)) )

1 . . . . .
The concept of mode is used here in a broader sense than in previous sections. Modes

are defined here irrespective of the photon polarization, so that, more precisely, they are double-
modes.
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or, with shorthand notations,
s = Tr (1 o) = "2 10 (al ay o
aB = r(aﬁpO ) = 2 r(%aﬁpo )

where p* is the ‘reduced’ density operator acting on the mode (v, QO) and where
al and ag are the operators aT(uo, ﬁo, a) and a(vg, QO, B), respectively.

It should be remarked that the density operator described above is an operator
acting on the Hilbert space of the occupation numbers. Sometimes, a different
density operator is introduced, acting on the wavefunction space of the photons
(Fano, 1949; Blum, 1981). This latter operator will not be used in this book.
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CHAPTER 5

INTERACTION OF MATERIAL SYSTEMS WITH POLARIZED
RADIATION (THE CLASSICAL APPROACH)

In this chapter we will discuss the physical mechanisms involved in the generation
and transfer of polarized radiation in spectral lines within the framework of classical
physics. In particular, the classical theory of the electron (already introduced in
Sect. 3.2) will be used to describe the atomic system interacting with polarized
radiation, and the electromagnetic radiation field will be described in terms of
classical electrodynamics.

The results that will be derived are of limited validity as, in most cases, the
correct results can only be obtained by a quantum-mechanical treatment. The
formalism of classical physics is, however, simpler and more transparent than the
quantum-mechanical one. Thus it is suited to give the reader a plain introduction
and an intuitive approach to the physical processes that will be treated in full
generality in the following chapters. Moreover, some of the results obtained from
classical physics coincide with special cases of the corresponding quantum results.
And it is indeed illuminating and encouraging to find, as a limiting case of an in-
volved quantum-mechanical calculation, the same result deduced from the simpler,
classical formalism.

This chapter is also intended to show the strict connection between some clas-
sical and quantum concepts. This subject — generally overlooked in textbooks on
Quantum Mechanics — can be conveniently illustrated by the physical processes
described here, such as resonance scattering and the Hanle effect. Although the
connection can be established only in a qualitative way, it is nevertheless important
for the correct understanding of polarization phenomena.

5.1. Propagation of Electromagnetic Waves in Anisotropic Media

The propagation properties of electromagnetic waves in a material medium can be
derived, in classical physics, from the Maxwell equations. In the following we will
restrict attention to a homogeneous medium having magnetic permeability p = 1,
so that it is not necessary to distinguish between the two vectors B (magnetic
induction) and H (magnetic field).

In such a medium, with no free charges, the Maxwell equations take the form (in
the Gauss-Hertz system of units)

divD =0 (5.1a)
divB =0 (5.1b)
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L 10D

1B =—- — 1
cur - (5.1c)

. 1 0B

| = —— — 5.1d
cur el ( )

where ¢ is the velocity of light and where the electric displacement D is connected
with E by the equation

D=FE+4nP,
P being the electric polarization. From Eqs. (5.1¢) and (5.1d) it easily follows that

1 92D

V2E — grad divE = R (5.2)

For an isotropic medium, D is related to E by the simple equation

—

D:eﬁ,

where € is the dielectric constant of the medium. Substitution into Egs. (5.2) and
(5.1a) leads to the wave equation for the electric field

L ¢ 0°F
V2E = - —
2 ot?
and to the transversality condition

divE =0.

A particular solution to these equations is the well-known plane wave of frequency v
propagating along the direction 2

E=E et : (5.3)

where n = /e is the index of refraction of the medium and Eo is a constant such
that

E,-Q2=0.
Note that Eq. (5.3) gives for the spatial evolution of the electric field components

o€,
—L —orilng,,
C

Os

where &; is the component of E along any direction perpendicular to Qand s = 7
is the coordinate measured along the ray path.



MATTER-RADIATION INTERACTION (CLASSICAL) 149

For an anisotropic medium, like for instance a birefringent crystal, or a vapor
permeated by a magnetic and/or electric field, the relation between D and E
becomes of tensorial form,

Di=) ;&
J

where D; (i = 1,2,3) and &; (j = 1,2,3) are the Cartesian components of the

vectors D and E, respectively, and where ¢,; is the dielectric tensor.

From general theorems on matrices it follows that the dielectric tensor can always
be diagonalized through a suitable similarity transformation. This means that any
medium is characterized by a triplet of axes @, (o = 1,2,3), called the principal

—

dielectric azxes, such that when the vectors D and E are expanded on this basis,

D=Y D,i,, E=) &,i,, (5.4)

[e3

one simply has
D,=¢€,&, - (5.5)

The quantities €, are called the principal dielectric constants. In the special case
where the medium is a crystal, the dielectric tensor is real and symmetric (Born
and Wolf, 1964). In this case the principal dielectric constants are real, and the
three unit vectors «,, are also real and form an orthogonal triplet.

By contrast, these properties break down for absorbing anisotropic media. In this
case the principal dielectric constants are generally complex and the same holds for
the unit vectors #,, which no longer are orthogonal. It follows that if we expand
any vector ¥ on the basis i,

V= v,i,, (5.6)

the components v, are given by

Vo = H(; U, (57)

where the unit vectors 4/ (o = 1,2, 3) are such that

—

Ul -ty =045 -
These vectors can be explicitly written in the form!

—

— =/
Uy X Us Uy =

—

- —/
3><’LL1, Usg

Q| =

Z (5.8)

£
=

X
[V

1
@l = =
g

Q|+

1 For a dielectric crystal we simply have 4

i, In the case of a vapor permeated by a
magnetic field, it will be shown in Sect. 5.3 that =

ok
ua.

A
« /
uoa
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where g = 0 - (ty X U3).

The general solution to Egs. (5.2) and (5.1a) in an anisotropic absorbing medium
is quite complicated, except for some particular directions of propagation and po-
larization. For instance, if we consider the wave

E _ Ea ﬁa eZﬂiE (n,, 7 Q—ct)
with
n: =e, (5.9)
and
i, -2=0,

[e3%

we easily see that Eqgs. (5.2) and (5.1a) are satisfied. Obviously this is a very special
case because the wave is polarized along one of the principal dielectric axes and it
propagates along a direction perpendicular to the same axis.

Instead of looking for a general solution to the problem of wave propagation
within the medium,! we will confine ourselves to establishing an evolution equation
for the components of the electric field. Our derivation will be further restricted
to media having principal dielectric constants very close to unity. In other words,
defining

€, =1+ ¢&, (¢ =1,2,3), (5.10)

we suppose that |¢, | < 1.

Let us now consider a stationary plane wave of frequency v propagating along
an arbitrary direction Q). The vectors E and D associated with the wave depend
only on s (the spatial coordinate measured along ) and on time ¢, thus Eq. (5.2)
can be written in the form

82E ~ 0% - = 47?4
— Q)= - D. 5.11
0s2 0s? (E-9) c? ( )
Scalar multiplication by Q gives
D-G=0, (5.12)

so that the transversality condition (5.1a) is satisfied. These equations show that
D is perpendicular to Q) while E has, in general, a non-zero component along the
direction of propagation.

Let’s now introduce two mutually orthogonal unit vectors €j perpendicular to
the direction of propagation,

& e, =0y, & Q=0 (jk=12). (5.13)

J J

1 This is a classical problem in crystal optics and leads to the so-called Fresnel equation of

wave normals (see Born and Wolf, 1964).
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These vectors can be, for instance, the reference direction unit vector €, and the
associated unit vector €, defined in Sect. 1.6 or, more generally, the complex unit
vectors €, and €_ defined in Eqs. (1.41). Defining also

& =¢éy =0, (5.14)

we can expand the vectors E and D on the basis (€1, €5,85),
E=Y&¢, D=>» D¢,
i i

where
E=¢"-F, D =¢e*-D.

2 K2 2 K2

The relation between the components &, of the electric field in the reference system
(€], €5, €) and the components £, along the triplet (&, @y, U5) is the following

Si = Z (gi* 'ﬁa)ga ’ Sa = Z (ﬁolz ) gi)gi . (5~15)

a 7

Analogous equations obviously hold for the components of the electric displace-
ment.

From the transversality condition (5.12) one obtains, using Eqs. (5.4), (5.5),
(5.15), (5.14), and (5.10)

S g 1+ e)]E =0 (5.16)

On the other hand, if we expand any vector €; on the basis @, via Egs. (5.6) and
(5.7),

Yo (e d,) (i, - &) =6, (5.17)
therefore Eq. (5.16) can be written in the form
[1 + Z (53* 'ﬁa) (_:; " €3) fa:|g3 =
—-[Y @) @ ang e - Y@ a) @ @)

This formula shows that the ratio of the longitudinal component &5 of the electric
field to the transverse components is of order £,,. Since we have supposed [¢ | < 1,
we have

[&l<|&] ((=1,2).
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Consider now Eq. (5.11). Performing the scalar product by € (j = 1,2) and
using Egs. (5.4), (5.5), (5.10), and (5.15), we get!

825j 47212

0s? c?

The contribution from & = 3 has the form

4212 R
- 2 Z (e] ’ ua) (’U,(; ’ 63) ga 53 ’

and since & is itself of order £, this contribution can be neglected according to
the assumption |, | < 1. Up to first-order terms in &, we thus have

92¢&. 2,2 2
=S 6w @ e) (18] &

k=1 «

To the same order of approximation it can be easily shown, with the help of
Eq. (5.17), that this equation is equivalent to the following

OE,; 2
ot S [Y e a) @A (14 58)] & (519)

k=1 «

The =+ sign appearing in this equation is a consequence of the existence of progres-
sive and regressive waves. If we choose to describe the temporal oscillation of the
wave through an exponential of the form e~2™** (consistently with the convention
of Sect. 1.3), we must take the positive sign. Since from Egs. (5.9) and (5.10) we
also have

1
Lt 5 6o =g (5.19)

Eq. (5.18) can be finally written in the form

2
vV e N o .
8—; =27l p g [ g (€] - ,) (), - €,)n,| & (j=12). (5.20)

This equation expresses the variation along the propagation direction of the trans-
verse components of the electric field. Its validity is limited to media whose prin-
cipal dielectric constants differ slightly from unity and it cannot be applied, in
general, to crystals. The same equation has been used (although without physical
explanation) by Jefferies et al. (1989) in their derivation of the transfer equations

1 The scalar product by €, leads to the trivial identity 0 = 0.
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for polarized radiation from classical physics. A simpler, heuristic derivation, that
is however basically inconsistent, has been given by Landi Degl'Innocenti (1992).

5.2. Transfer Equations for Polarized Radiation

Equation (5.20) describes the spatial evolution, along the ray path, of the transverse
components of the electric field associated with a stationary plane wave of frequency
v. This equation can be rewritten in the form

0 .
& Sj('S?t) == ; ij Ek('S?t) (]7k = 172) ) (521)

where y

G = —2mi - > (i, &) (i@ - &) ny, - (5.22)

«@

The tensor G, which will be referred to in the following as the propagation tensor
of the electric field, depends both on the physical nature of the medium, specified
by the (complex) refractive indices n,, and on the geometry of the propagation
specified by the two scalar products. It is worth noticing that in an isotropic
medium, where n, = n, we get from Eq. (5.17)

v
G = —2mi o Oig - (5.23)

From Eq. (5.21) the transfer equation for the polarization tensor can be eas-
ily derived. Recalling the definition of polarization tensor given in Chap. 1 (see
Eq. (1.25) and its generalization in Sect. 1.8) we have

d . (s +As) = J(s)
ds Tin = AI;IEO As
~ <(€;(S + As, ) E,(s + As,t)) — <€;(s, t)Ex(s,t))
As—0 As

= (B ) + (g6 22

and since the propagation tensor can be extracted from the statistical average
implied by the symbol (---), we obtain

2

d * .

ds Jik _Z( e+ G sz) (J,k=12). (5.24)
=1

To derive the transfer equations for the Stokes parameters we need the relation
between these quantities and the components of the polarization tensor. We recall
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that this relation depends on the choice of the unit vectors €] and €, defined in
Eq. (5.13). The easiest choice is

— — —

1= e_’a ) 2 b

where €, is the reference direction unit vector and €, the associated unit vector
(see Sect. 1.6). With this definition the relation between the Stokes parameters
and the components of the polarization tensor is given by Eqgs. (1.34), which can
be inverted to give

1 1 .
Jllzﬁ(l—i_Q) J12:ﬁ(U—lV)

1 1 .
JQQ:ﬁ(I_Q) J21:ﬁ(U+lV)

Substitution into Egs. (5.24) leads to the following propagation equation for the
Stokes parameters

I e} Nu v I
d1Q)_ _[(n m »pv —ru Q (5.25)
ds | U My —Pv M1 PQ vl ’
Vv T Py —Pg M1 14

where the seven independent quantities appearing in the propagation matriz are
given by

nr = Re (Gy; + Gy,)

ng = Re (G11 — Ga) po = —Im (G — Ga)

Ny = Re(Gp +Gy) py = —Im (G5 + Gyy)

ny =1Im (G5 — Gy) py =Re (G — Gyy) (5.26)

Equations (5.25) and (5.26) are at the basis of radiative transfer for polarized
radiation and deserve some discussion. First of all it should be emphasized the
remarkable symmetry property of the 4 x 4 propagation matrix. This matrix is
constructed with only seven independent quantities and can be decomposed into a
diagonal matrix, proportional to 7;, and two off-diagonal matrices, one symmetric
and the other antisymmetric about the main diagonal.

Denoting the propagation matrix by K, we have

n, 0 0 0
(0w 0 0
E=l0o 0 ofF
0 0 0 7
0 ng nuv v o 0 0 0
o 0 0 0 0 0 py —py
+ + . 5.27
ny 0 0 0 0 —py O Pq ( )
v 0 0 0 0 py —pg O
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The first matrix is responsible for the absorption of the energy of the electromag-
netic wave irrespective of its polarization state. This matrix would produce by
itself an exponential decrease of the whole Stokes vector, so that the quantity 7;
can be regarded as the generalization to the polarized case of the absorption coef-
ficient encountered in the standard theory of radiative transfer. In this respect it
is worth noticing that for an isotropic medium we simply have from Eq. (5.23)

14
=47 —k
Nr TFC )

k being the imaginary part of the refractive index which is connected with the
standard absorption coefficient. This first matrix will be referred to in the following
as the absorption matriz.

As apparent from Eq. (5.23), both the second and the third matrix are zero for
an isotropic medium. For reasons that will be clarified in the next section, these
matrices will be referred to in the following as dichroism matriz and dispersion
matrix, respectively.

The expression that we have obtained for the propagation matrix K, and in par-
ticular its symmetry properties, descend directly from the physical approximations
adopted. First of all we have assumed the principal dielectric constants €, — which
describe the dielectric properties of the medium — to be independent of the ampli-
tude of the propagating electric field. This means that the polarization P induced
in the medium is linearly related to the electric field itself. The present theory is
therefore inadequate to treat the physical phenomena connected with non-linear
optics. Moreover, we have assumed the principal dielectric constants of the medium
to differ slightly from unity, so that the applicability of Egs. (5.25)-(5.26) is limited
to such media. Finally, we have supposed the electromagnetic wave to propagate
in a homogeneous medium, whose properties do not depend on the spatial coordi-
nate 7. It can however be shown that for non-homogeneous media the equations
now derived can still be applied provided that

27

gradn,, ’ < |n, ~

)

a condition which is generally well-satisfied for optical radiation propagating in
astrophysical or laboratory plasmas.

5.3. Application to Magnetic Lines

We now apply the results of the previous section to the case of an atomic vapor in
the presence of a magnetic field. We describe the atom by the classical theory of
the electron, going back to the oscillator model already used in Sect. 3.2. In the
presence of a constant magnetic field B and of an oscillating electric field of the
form

= —2mivt

Ee ,
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the motion of the electron is described by the equation

dt?

L e, d¥ = dZ ey = —2rmivt
:74772ug:177—0—><B — _XAFe

— 2
me dt Y& m ’ (5.28)

where v, is the frequency of the oscillator and  is the damping constant.

To find the dipole induced by the oscillating electric field associated with the
incident electromagnetic wave we disregard the transient solution depending on
the initial conditions and we look for a solution of the form

= - —2wivt
r=4de
Substitution into Eq. (5.28) gives

. - . S o € 2
[4%2@3 — VQ) — 27T1y'y} a— 87r21nya X Uy = _EO E,

where v, is the Larmor frequency defined in Eq. (3.10) and @, is a real unit vector
directed along the magnetic field.

Similarly to Sect. 3.2, we introduce the real orthogonal unit vectors ,., i, (such
that (@,, i, U,) is a right-handed coordinate system), and their linear combinations

U, defined in Egs. (3.25). Expanding the vectors @ and E on the basis @, (o =

0,+1),
i=>Y» a,i,, E=) E,i,,
« «

one easily obtains, with the help of Eq. (3.26)

o = Xa Eao » (5.29)
where ), is the electric susceptibility
€y 1
Yo ~4mm (Vg —v?) = 2wl — 20wy, (o =0,£1) (5.30)
with I' = /4.

If there are N oscillators per unit volume, the electric polarization is
P=-N ey a
and the electric displacement is
5:E+4Fﬁ:E—4ﬂN€O6.
Therefore the principal dielectric constants €, defined in Eq. (5.5) are given by

Ne% 1

mm (Vg —v?) — 2avyy, — 2wl

e, =1+ (a=0,41).
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Since both vy, and I are usually much smaller than v, (see Sect. 3.2), the principal
dielectric constants are sharp functions of the frequency v peaked at v, so that we
can replace (v — v?) by 2v (v, — v).

If we now assume — consistently with the treatment of Sect. 5.2 — the principal
dielectric constants to be close to unity, and separate the refractive indices n, in
their real and imaginary parts,

n, =(14+06,) +ik, (5.31)

with ¢, and k_ real, we obtain from Egs. (5.9) and (5.19)

- Ne? r
“ drmy (vy — oy, —v)2 + T2
5. Ne? Vy —aup, — V (5.32)

= drmw (Vg —av, —v)2+ 12"

It should be emphasized that the basis @, (o = 0, £1) introduced above is such
that the unit vectors @/ appearing in the expression of the propagation tensor G
(Eq. (5.22)) are given by

)

R %

=) =
Uy, = U

as it can be proved directly from Egs. (5.8). As a consequence, the propagation
tensor reduces to y
G = —2mi— > CoyCipny s (5.33)
«@

where C,; are the direction cosines defined in Eq. (3.31), and the completeness
relation (5.17) becomes

Z CoiCoj =0y - (5.34)

Equations (5.33), (5.34), and (5.31) allow the coefficients of the propagation matrix
K given in Eq. (5.26) to be written in the form!

mr=2m 2 Y kg (G + 1CaP?)

nQ = 271—% Z ka (|Oo¢1‘2 - ‘Ca2|2)
v *

Ny = 271—; Z ka2Re (Cal (x2)

ny = 271'% Z k,2Im (C,, C%,)

1 Note that these expressions hold provided the unit vectors €; appearing in the direction cosines

C,; are the reference direction unit vector €, and the associated unit vector &, (see Sect. 5.2).
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Fig.5.1. The direction of the magnetic field Bis specified by the polar angle # and the azimuth
angle X, reckoned from the reference direction €,. In the plane perpendicular to B, the unit vector
i, lies in the plane containing B and ; i is defined accordingly.

PQ = Zﬂ-% Z Oq (|Oa1‘2 - |Oa2‘2)
12 *
py =2m — > 6,2Re(C,, Chy)

Py = QWE S 6,2Im(C,, CLy) - (5.35)

Thus in the case considered in this section (propagation of electromagnetic waves
through an atomic vapor permeated by a magnetic field), the quantities 7, NG
N> My depend only on the imaginary parts k, of the refractive indices, while pg),
pu» Py depend only on the real parts d,. More precisely, Ng» Mu» My depend upon
differences between the imaginary parts, as apparent from the fact that these quan-
tities vanish when the three k,, are equal (isotropic case). Therefore the phenomena
described by the second matrix in the expansion (5.27) consist in a differential ab-
sorption of the different polarization states: hence the denomination of ‘dichroism
matrix’ introduced in Sect. 5.2. By contrast, the third matrix in Eq. (5.27) is
connected with differences between the real parts of the refractive indices, thus
it describes phenomena associated with the dephasing of the different polariza-
tion states in the propagation through the medium (hence the denomination of
‘dispersion matrix’).

The direction cosines C, can be explicitly evaluated once the geometry of the
magnetic field is specified. From Fig. 5.1 we easily obtain

= cosfcosx €, + cosfsiny €, —sinf (2

£l

r

<

s = —sinx e, +Ccosx €,

Uiy = sinf cos x €, + sinfdsin x €, + cosf €1,

= —[(¥cos9005x—isinx)é’a+ (Fcosfsiny +1icosx)é, £ sinf (2} .
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TABLE 5.1

Expressions for the bilinear combinations of the quantities C_,

a=-1 a=0 a=+1
ICoi1? +1C,1? 1 (1+ cos?0) sin20 1 (1+ cos?0)
|C 12 —1C 5|2 —1 5in%6 cos 2x sinZ6 cos 2x —1 sin%0 cos2x

2Re (C,,C%,)

1

3 sin®6 sin 2y

1

sin? sin 2y -3 sin? sin 2y

2Tm (OMC;Q)

—cos

0 cos 0

The C,,; combinations appearing in Eqgs. (5.35) are summarized in Table 5.1. Using
Eqgs. (5.32) one finally obtains the following expressions for the elements of the

propagation matrix

5 _
_ T€ 1 ) ¢b+¢r 2
nz—mCN2_¢>psm9+—2 (1 + cos?0)
5 -
_7'('60 l _¢b+¢r i 2
Ng = ch2 _qbp —5|sin 0 cos2x
9 -
_7'('60 1 _¢b+¢r .92 .
nU_—chZ _<Z5p 5 sin”f sin 2
5 -
BT P
Ny = ch2 _(br ¢5b] cosf
5 -
_r L, ] e
prch2 _1/1p 2 sin“f cos 2y
5 -
LI A % Y P
prch2 _¢p 2 sin“f sin 2
5 -
_mnLll, o
py = N 5 _dzr 1/14 cosf | (5.36)
where
1 I 1 Vg + v, —V
¢b:;(VO+VL7V)2+F2 wb:;(VOJrVLfV)QJrFQ
é 1 r " 1 Vo — v
P (vg—v)2+ 12 P (vy—v)2+ 12
1 r 1 Vg — VU, —V
- =— . 5.37
O T (Vg —v, —v)2+17? Vr T (Vg —v, —v)2+17? ( )

The functions ¢y, ¢,,, ¢, — where the subscripts stand for ‘blue’, ‘parallel’, and ‘red’,
respectively — have already been encountered in Sect. 3.2 (see Egs. (3.38)). They
are Lorentzian profiles centered at the frequencies (v, +vy), vy, and (v, — vy),
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Fig.5.2. Absorption profiles ¢ and dispersion profiles % in units of I'~1, for v, /T =5.

respectively, and normalized to unity in frequency,

/¢b,p’r dv=1.

The functions y,, ¥,,, ¥, are the corresponding dispersion profiles. An illustrative
example of such profiles is shown in Fig. 5.2. These profiles can be easily generalized
to include the effect of microscopic velocity fields that may be present in the medium
(see Sect. 5.4).

An important extension of the theory presented in this section concerns the
inclusion of the emission term into the propagation equation. This term has already
been derived in Sect. 3.2, although in a slightly different geometry (see Fig. 3.3).
For the geometrical configuration of Fig. 5.1 the expressions (3.39) for the direction
cosines must be replaced by corresponding expressions which lead to the bilinear
combinations of Table 5.1. The emission coefficient becomes accordingly

29+¢b+¢r

5 (1 + cos®6)

1
€I:k§ ¢pSiH
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LT
sQ:k§ quw] sin®0 cos 2x
N
5U:k§ quw] sin®@ sin 2y
LT
avzk‘§ ¢, — ¢y | cosb, (5.38)
where ) )
P TN

me c
E being the mean energy contained into each degree of freedom of the classical
oscillator.

Adding to Eq. (5.25) the contribution due to emission, we obtain the radiative
transfer equations for polarized radiation in the form

I oo v My I-5
dlel__ |1 m v —r Q (5.39)
ds |\ U Ny —Pv N PQ U ’
Vv v Pu  —Pq "I Vv
where the scalar source function S is given by
202
S = 0_2‘0 E. (5.40)

In particular, under the hypothesis of Local Thermodynamic Equilibrium (LTE)
the mean energy E is given by kg7, where ky is the Boltzmann constant and T’
the absolute temperature, so that

202
SLTE = C_QO kB T,

which is the classical expression for the Planck function Bp in the limit » — 0
(approxzimation of Rayleigh and Jeans).

Obviously, we cannot expect to find by a classical theory the exact expression
for the Planck function, which is intimately connected with quantum concepts.
However, using a semiclassical approach, we can go back to the quantization of the
harmonic oscillator (see Sect. 4.1) and write

S nx
> ne 1
E = hyy =2 =y
nx e
e
nzz:O

where = hyy/kgT, and substituting this result into Eq. (5.40) we obtain

2hv3 1
20 “he. BP(VO) 5

SLTE =
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an expression that could also be obtained by invoking the Kirchhoff law for the
emission of a source in LTE.

Equation (5.39), with the matrix coefficients given by Eqs. (5.36) and with
the Planck function in the place of the source function, was first obtained by
Unno (1956) by a heuristic approach which neglected anomalous dispersion effects
(pQ = py = py =0). These effects were subsequently introduced by Rachkovsky
(1962a) through classical considerations, similar to those presented in this section,
based on the refractive index. Another derivation has been recently presented by
Jefferies et al. (1989). In the meantime a quantum derivation of the same equation
was given by Landi Degl’'Innocenti and Landi Degl’Innocenti (1972), who pointed
out some minor errors or ambiguities (mainly connected with sign conventions) ap-
pearing both in the original papers and in subsequent papers based on those (like
for instance in Beckers, 1969a). The reader is referred to Rees (1987) for a clear
presentation of the possible errors that may arise in the derivation of Eq. (5.39).

5.4. The Voigt Function and the Associated Dispersion Profile

In the previous section we have derived the absorption profiles ¢, ¢,,, ¢, and the
corresponding dispersion profiles ¢, ¥, ¥, for a collection of atoms supposed at
rest in the laboratory frame (the frame where the Stokes parameters are defined).
These profiles are of the form p (v, — v), where v, is the frequency of the classical
oscillator.

Actually, however, the atoms will always be in motion. In order to realize how
the profiles are affected by these motions, let us consider a radiation beam of
frequency v propagating along a given direction, which we identify with the line of
sight. If w is the velocity component of the atom along the line of sight, the atomic
frequency v, is shifted, according to the classical formula of the Doppler effect, to

the new value
vy =V (1 — E)
0 0 c)

where we have assumed w < ¢ (non-relativistic approximation) and where we have
adopted the sign astrophysical convention according to which w > 0 when the atom
is receding from the observer.

Therefore, for a collection of atoms having a normalized distribution of velocity
components f(w), the profile p (1, — v) must be replaced by the expression

/P (T Vo% —v) f(w)dw . (5.41)

In many cases of astrophysical interest the velocity w can be decomposed in two
parts: the bulk (or macroscopic) velocity w, of the ambient medium, plus a random
velocity due to thermal or microturbulent motions, usually distributed according
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to the Maxwellian law and characterized by the velocity wy. We thus assume for
f(w) the following expression

L e_(w;:A)Q
VT wy

Substituting Eq. (5.42) into Eq. (5.41), and introducing the reduced variables

F(w) = (5.42)

w I
AyD:yo—T, a=
c Avp
v w Vo W Vo — U
vg = vA:—A = 0_A v= -2 (5.43)
Av w c Av Av
D T D D

one obtains with easy transformations
o, = 1 H( + )
=—HWw-—-v avg, a
e} \/7—1_ Av A B>

1
¢a:mL(U*UA+O‘UBaa)v (5.44)
D

where a = —1,0,+1 for the ‘red’, ‘parallel’, and ‘blue’ component, respectively,
and where we have defined the functions

a —yz 1
H = — ——d
(v,a) T /e (v—1y)?+ a? Y
L(v,a) = 1 /efy2 Y gy, (5.45)
’ T (v—1y)?+ a?

In the above expressions Avpy represents the Doppler width in frequency units,
and it is used to normalize all the other quantities: v is the so-called reduced
frequency, v the normalized Zeeman splitting, v, the normalized shift due to the
bulk motion, and a the damping constant. Figure 5.3 shows the two sets of profiles
¢ and 1.

The functions defined in Eqgs. (5.45) are the so-called Voigt function H(v,a) and
the associated dispersion profile L(v,a). In previous works on this subject the
function L(v, a) has been usually written in the form

L(v,a) = 2F(v,a) ,

and the name of Faraday-Voigt function has sometimes been employed for F(v,a).

It should be remarked that the quantities defined in Egs. (5.43) can be expressed
in terms of wavelength (instead of frequency) displacements and broadenings. In-
troducing the Doppler width in wavelength units,

)\2
0 App = Ay L (5.46)

C C

A\ =
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Fig.5.3. Absorption profiles ¢ and dispersion profiles 1/ in units of Av=!, corresponding to v, = 3,
D B
v, =0, and a = 0.05. Note that the magnetic field is 12 times stronger than in Fig.5.2.

Egs. (5.43) can be written in the form

- T C Agwy
TTAN, 0 YT ANy AT CAn,
A2 NeyB  AX
vp =0 = 00T Z/B (5.47)

cA\p  drmc2 Ay Alp

where A\ g is defined in Eq. (3.13). With these positions Egs. (5.44) are still valid.!
The thermal velocity wy in the above equations can be related to the kinetic
temperature T and to the microturbulent velocity & by the expression

2, T

2 5.48
W M +&%, (5.48)

1 Note, however, that the profiles ¢, defined in Egs. (5.44) are normalized to unity in frequency.

The corresponding profiles, normalized to unity in wavelength, are obtained by substituting A\
for Avp, in the same equations.
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where p is the atomic weight of the atom which originates the spectral line and M
is the mass of unit atomic weight. Therefore, the normalized Zeeman splitting v
can be expressed in the form

Aoeo B 1
vg =
4 2k, T
mme | M 42

or, numerically
1
1663 <102 T 4 g2 ’

v =1.400x 1077\, B (5.49)

where )\, is in A, B in G, T in K and ¢ in km s™!

In the following of this section we discuss the main mathematical properties of
the functions H(v,a) and L(v, a) defined in Egs. (5.45). These properties are easily
obtained by considering, rather than the separate functions, their complex linear
combination

W(v,a) = H(v,a) +1L(v,a) . (5.50)
Introducing the complex variable z defined as
z=v+ia, (5.51)

we obtain with easy transformations

W(Z):i / e dy , (5.52)

T z—y

— 00

where, being a > 0, we have Im z > 0. The function W (z) is an analytical function
of the complex variable z that can be related to the complementary error function
(see Abramowitz and Stegun, 1965).

By the substitution (z —y) = u we first transform the integral in Eq. (5.52) into

the following
i e 67u +2uz
W(z)=—e — du,
L u

s

where L is a straight line parallel to the real axis in the half plane Imu > 0 (see
Fig. 5.4).
Next we observe that

d e—u2+2uz 2, 5
— 7du:2/e_u+uzdu:2ez/e_(uz u—2\/_e ;
dz Jp u L L

whence we obtain by integration

—u +2uz

/L ——du=C +2f/ (5.53)
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Im(u)

Re(u)

Fig.5.4. Integration paths L and L’ in the plane of the complex variable u.

where C'is a constant that can be determined by taking the limit z — 0 of Eq. (5.53)

—u? +2uz —u?

C=1lm [ & qu= [ & qu.

z—0 L u L u

The last integral can be evaluated by observing that the integration variable u has
a pole at the origin. Deforming the integration path L into the path L’ shown in
Fig. 5.4, the contributions arising from the integration along the real axis cancel
out, while the contribution from the semicircle around the origin simply gives —im.

To conclude, we have obtained that the function W(z) can be written in the form

W(z) = efz2 [1 + % /et2 dt] = 6722 erfe (—iz) , (5.54)
0

where erfc (z) is the complementary error function defined as in Abramowitz and
Stegun (1965).

From Egs. (5.52) and (5.54) some important properties of the functions H (v, a)
and L(v,a) can be easily derived:

i) Limiting case a = 0.
For a = 0, being z = v, Eq. (5.54) gives

v

2 2] 2 2
Wi(z)=e +\/—1Ee /et dt ,

0

thus from Eq. (5.50) one gets

2
—v

H(v,0)=e L(v,0) = D(v) , (5.55)

=B
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where D(v) is the so-called Dawson integral

Dw)=¢ " /et dt . (5.56)
0

it) Limiting case v = 0.

Being now z = ia we get

so that
H(0,a) = O P /aet2 dt| = e erfc (a)
) - \/E -
0
L(0,a) =0.

iii) Asymptotic expansion for large values of the argument: (v + a?) > 1.

In Eq. (5.52) one can write

1 1 y1-! Yy
S 1,_} _ v
-2 =Y 4

z —
Yy k=0

therefore

k=0 n=0

. oo 0 k . oo
i Yyt 2 i I'(n+1/2)
W =23 [ et ay= 2y

where T'(z) is the Euler Gamma function. By taking the leading terms of the
expansion in inverse powers of z one easily obtains the asymptotic behavior

H(v, a) L a l 3v? —a? n
va VT a? 4 v? 2 (a? 4 v2)?
1 v 1 v? —3a?
L ~— e .
(v,a) TRt a? [ + 3 (@1 00)? + } (5.57)

iv) Derivatives.
From Eq. (5.54) we have
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from which we deduce

2i

0 .0 . . .
H+1L)—71£(H+1L)—72(U+1a)(H+lL)+ﬁ,

ov 70
whence

0H(v,a) OL(v,a)

—2 [_UH(U, a) + aL(v, a)}

ov T da
9H(v,a) 778L(U,a) = ,L aH(v,a) +vL(v,a
da v 2[ \/7?+ H(v,a) + L(,)], (5.58)

a set of formulae which allows to express the derivatives of H(v,a) and L(v,a) in
terms of the functions themselves.

v) Power series expansion.

For a < 1, a useful series expansion can be easily derived from Egs. (5.58). We
give here the expansion up to the fourth order in powers of a

H(v,a) = e_v2 + 2\/_a_ <2vD(v) - 1) +a? (1 - 2112) e
4

[UQ ~140(3 — 20%)D(v)| + = (31207 4 40 e

+

\/_

2 —v2 2 2 —v2
L(v,a) = NG D(v) — 2ave = + ﬁcﬂ [v +(1- ZUQ)D(U)} - §a3v(3 —2v%)e
+ ma‘1 [v(5 —20?) + (3120 + 4@4)D(v)} .
vi) Symmetry properties.
From Egs. (5.45) the following symmetry properties are easily derived
H(-v,a) = H(v,a) , L(-v,a) = —=L(v,a) , (5.59)

which means that H is symmetrical in v, while L is antisymmetrical.

vii) Integral properties.

From Eq. (5.52), integrating in the complex plane z along the real axis R, and
using the residue theorem, we obtain

2 1 00_2
/W /dyey/27ydz:/eydy:ﬁ,
R

— 00

whence
o0

7H(v,a) dv = 7 | /L(v, a)dv =0 (5.60)

— 00



MATTER-RADIATION INTERACTION (CLASSICAL) 169

This formula proves that the profiles ¢, in Eqs. (5.44) are normalized to unity in
frequency.

viii) Conwvolutions.

Consider the integral
/W — vg,a) Wv—vy,d) dv.
Using Eqgs. (5.51)-(5.52) and inverting the order of the integrals one gets

/W v—vy,a) Wv—v),ad")dv=

1 [e%e] 7y2 e’} 7y/2 [e%e] 1
=—— [ d dy’ d
7T2/ ve / voe /(v—vo—y+ia)(v—v6—y’+ia’) v

The last integral can be performed via the residue theorem. Since both poles lie in
the half plane Im v < 0, one obtains

/W(v—vo,a)W(v—vé,a’)dvzo. (5.61)
Similarly,

/W v—vy,a) Wv—vj,d) dv=

o0 o0 oo 1
1 2 2
= d dy' e’ / dv
2 ye / ve (v—vy—y+ia)(v—v)—y —id)
—00 —00 — 00
and using again the residue theorem we obtain
/W v—vy,a) Wv—v,ad) dv=
o0 (o ]
2' a2 o2 1
=z dy e’ /dy’ e’ - p — .
™ Gty —yril@+a)

— 00 — 00
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The double integral can be evaluated by the substitution

1 / / 1 /
r=— — , r = — + ,
s (v—v) 5 Wty
which leads to
/W(U— vy,a) W(v— vj,a’)" dv
21 [ 7 —?
12
— 2T dx’/ 2 5 da .
0 vy — vy — V2z +i(a+ a)

Performing the integral in da’ and recalling Eq. (5.52), one finally obtains

o0 /7
/W(vao,a) W(v— v,,a")" dv=+v2r W(vo Y%

Substitution of Eq. (5.50) into Egs. (5.61) and (5.63) yields

< I /
/mv_vo,a)H(v_vg,a’)dv: @ H<”0 v o +“>

V2 V2

o0

r ’
/L(vvo,a)L(vv(),a/)dv\/EH<UO Y% a+a>

2 V2 V2
< r '+ oa
Lv—vy,a) Hv— v),d") dv= zL<U0 vo,a > 5.64
J B w0 Ho = w0y o= 5 (B (5.64)
These formulae can be easily generalized to more complicated convolutions. Con-
sidering the integrals
x !/
v — vy v — v
ol ()
and

(5.62)

a + a
N AR ) . (5.63)
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we obtain with similar manipulations!

x _ _ /
(5 (5
_ bb'\/m H< vy — vy a'b+ ab>
\/b2—|— b2 \/b2—|—b’2 7\/b2+ b2

[ ol ) oo
_ bb'\/m I vy — vy ad'b/+ ab
\/b2—|— b2 \/b2+ b2 7\/b2—|— b2

_ _ /
i ()
_ bbm L< vy — vy db+ ab>
\/b2—|— b2 \/b2—|— b2 ,\/b2—|— y2 )’

(5.65)

ix) Mazima and minima.

The function H (v, a), considered as a function of v, has a single maximum at v = 0.
The maxima and minima of the function L(v, a) with respect to v can be found by
solving the implicit equation (see Egs. (5.58))

1
VT
Using numerical methods, the value of v, is found to be 0.9241 for a = 0, and to
increase almost linearly to 1.5372 for a = 1. For larger values of a, v, converges

asymptotically towards a as it can be deduced from Eq. (5.57). Obviously, there is
a corresponding minimum at v = —v,.

a H(vy,a) + vy L(vy,a) =

x) Numerical methods.

Several algorithms have been proposed for the numerical computation of the func-
tions H(v,a) and L(v,a). The most extensively used for astrophysical applications
are those by Reichel (1968), Hui et al. (1978), and Humlicek (1982). The values
obtained using these algorithms can be checked against the tabulated values of the
complex function W(z) given by Faddeeva and Terent’ev (1961).

1 Transformation (5.62) should be replaced by the following

by = vy , Vy+ by

T = , T e
/b2 + b2 Vb2 + b2
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5.5. Symmetry Properties of the Transfer Equations
for Polarized Radiation

In Sect. 5.2 we have derived, in the framework of classical electrodynamics, a
compact expression for the propagation matrix K which describes the transfer of
polarized radiation, and we have seen that this matrix satisfies the remarkable
symmetry properties summarized in Eq. (5.27). It will be shown in Sect. 6.7 that
the quantum-mechanical treatment leads to the same symmetry properties, so that
it seems natural to ascribe them to general physical principles. Following Landi
Degl’Innocenti and Landi Degl’Innocenti (1981) we present here a series of argu-
ments leading to an alternative proof of Eq. (5.27).

Consider a radiation beam of frequency v, characterized by the Stokes parameters
I, Q, U, and V, propagating through an arbitrary medium within the solid angle
dQ in the direction €. By analogy with the usual transfer equation for unpolarized
radiation we can write for the Stokes parameters a transfer equation of the form

3
d .
=0

where S is the Stokes vector defined by
ST = (SO’SDSZ’SB) = (I7Q7U7V) )

K is a 4 x 4 matrix which is composed in principle of 16 independent quantities,
and € is the emission vector

el = (50751752753) = (5175Q7€U7€V) .

We assume here that both K and & do not depend on the Stokes vector S. This
may indeed appear as a rather restrictive assumption, because there are many
physical situations, mainly of astrophysical interest, where the properties of the
medium at any given point depend in fact upon the local radiation field. It should
be remarked, however, that the angular spread of the radiation beam that we are
considering can always be made sufficiently small for the properties of the medium
to be not affected by the beam itself. Keeping this argument in mind, we can
derive some important properties of K and € by varying arbitrarily — in a sort of
Gedankenexperiment — the value of the Stokes vector S appearing in Eq. (5.66).

If we start by considering the limiting case of very intense radiation beams, the
contribution of the emission vector in Eq. (5.66) can be simply neglected and the
transfer equations reduce to

3
d .
7=0
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from which we deduce

1d
__127 27U27V2:
2ds( @ )
= Ko I? + K,,Q° + Ky U? + K33V?
+ (K9 — K1) 1Q + (Kyg — Kgp)IU + (K35 — Ko3)IV

+ (Kyg + Kp)QU + (K3 + K31)QV + (K3 + K3,)UV . (5.68)

As proved in Chap. 1 (see Eq. (1.47)), the quantity (I — Q? — U? — V?) is always
positive, except for the case of a totally polarized radiation beam when it reduces
to zero. Therefore, if we consider a totally polarized radiation beam,

St =(ly, Qg Uy Vy)  with I2=Q2+ U2+ V2,
the right-hand side of Eq. (5.68) must be > 0,

(K, — Koo)Qf + (Kgy — Koo) UG + (Kgg — Koo) Vi
+(Kyg — Ko1)o Qo + (Kog — Koo)IgUy + (K39 — Ko3) 1,V

(
(I, + K51)QoUy + (K3 4 K1) Qo Vo + (Ky3 + K3p)UpVy 2 0. (5.69)

At this point we make a distinction between depolarizing and non-depolarizing
media according to whether the greater-than or the equal sign holds in Eq. (5.69).
In a non-depolarizing medium, by definition, a beam which is totally polarized
remains so in the process of propagation (provided that no other terms are added
to the right-hand side of Eq. (5.67)), while in a depolarizing medium this feature
is lost and the propagation shows a typical irreversible character.

For non-depolarizing media — the only case that will be considered here — equality
(5.69) must hold for whatever realization of the Stokes vector S, or, in other words,
for any values assigned to @, Uy, V, satisfying the condition I? = (Q2 + UZ + V).
Therefore all the brackets in the left-hand side of Eq. (5.69) must vanish, which
implies

K11 =
Ky, Kyp=Ky, Ky=K;
Ky, Kj3=-Kg3, Ky=-Ks.

KOO
KOl
K12

These are just the symmetry relations contained in Eq. (5.27). In the light of the
arguments presented above we see that these relations are a direct consequence
of: a) the definition of the Stokes parameters (which implies the inequality 1% >
Q? + U? + V?); b) the linear character of Eq. (5.67) (which is equivalent to the
assumption K independent of S); c¢) the reversible character of the interaction of
radiation with the ambient medium (which implies the equal sign in Eq. (5.69)).
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When conditions b) and c) are fulfilled the propagation matrix K can be written
in the form
nr Mg Nu nv
K=|" ™ Pv  —Pu
My —Pv Mg Pq
v Pu  —Pq "I
We will now prove that one, or even two, of the seven independent coefficients
appearing in the expression of K can be set equal to zero by an appropriate choice
of the reference direction which defines the Stokes parameters. Recalling the results
derived in Sect. 1.9 (see Eq. (1.45) and Fig. 1.10), the Stokes vector S’ relative to
the ‘new’ reference direction characterized by the angle o can be written in the
form
S'=R(a)S,
where
1 0 0
0 cos2a  sin22a
0 —sin2a cos2«a

0 0 0

R(a) =

_ o O O

Thus in the new reference frame the expression for the propagation matrix is
K =R(a) K R '(a),

whence we deduce after some easy algebra

=N My =Tys o Py =Py
N = €08 2a 1 + sin 2a 7y, pg = €os2a pg + sin 2a pys
Ny = —sin2a 1g 4 cos2a ny; Py = —sin2a pg + cos2a py; - (5.70)

These formulae show that while the quantities n;, 7y, and p,, are invariant with
respect to the choice of the reference direction, 7 and 7, change into each other
according to a rotation through an angle 2a in the 7,-n; plane, and the same
happens for p, and py;. It follows that the two quantities 7y, and py, defined by

=g + 1 L= pg + 0

are invariant. Moreover, it is possible to choose a particular reference direction,
specified by the angle a4, such that nj; is zero, and another reference direction,
specified by the angle «,, such that pj; is zero. The angles a; and a, may be
different in principle, but in most cases of interest they are found to be equal.
When this happens we will call preferred reference direction the one for which ny;
and py; are both zero.

Obviously, the expressions derived in Sect. 5.2 for the elements of the propagation
matrix K are consistent with the transformation law given in Egs. (5.70). This
can be proved directly from the general equations (5.26) by taking into account
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the transformation properties of the unit vectors €,, €, under rotation of the ref-
erence direction. The proof is straightforward and will not be given here. In the
special case of the propagation of radiation in a magnetized medium (Sect. 5.3) one
can easily see from Eqs. (5.36) that the preferred reference direction lies (indepen-
dently of frequency) in the plane containing the magnetic field and the direction
of propagation.!

The above remarks show that when a preferred reference direction can be defined
the propagation matrix K can be cast into the simpler form

U le} 0 Ny
K=" Py 0

0 —py 0y Pq

v 0 —Po N1

Going back to Eq. (5.66), we can also deduce some interesting properties of the
emission vector € by considering the limiting case of very weak intensity of the
radiation beam. Under this limit the transfer equations reduce to

and by integration over the interval As one gets
S;(s+ As) = S,(s) + ¢, As .
Therefore, if we suppose S;(s) = 0 we obtain that the following inequality must be

satisfied
er > \/eg +eb +et (5.71)

In the case of the propagation of radiation through a magnetized medium this
relation can be proved directly from Eqgs. (5.38).
It should be noticed that the corresponding inequality for the components of the

dichroism matrix, namely
nr >/ g+ (5.72)

does not hold in general. However, under Local Thermodynamic Equilibrium or,
more generally, when one can write

€r "
Ql=g|" |, (5.73)
€y My
Ey A%

inequality (5.72) follows directly from (5.71).

L Indeed, there is another preferred reference direction at 90° from the former.
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Another property of the emission vector concerns its transformation under a
rotation of the reference direction. It is easy to prove that the rotation leading to

Egs. (5.70) induces the following transformation on the components of the emission
vector

el =¢;
£g = cos2a £ +sin2a gy,
ey = —sin2a g + cos2a g
ey =€y .
These formulae show that the quantity e; defined by
5% = 52Q + 8%]
is invariant, and that it is possible to choose a particular reference direction, charac-

terized by the angle a, such that €7, is zero. When a preferred reference direction
can be defined (n;; = py; = 0) it often happens that f; is zero as well.

5.6. Geometrical Interpretation of the Transfer Equations
for Polarized Radiation

In Sect. 1.9 we have introduced the concept of Poincaré sphere as a mapping be-
tween Stokes vectors and points within a sphere of unit radius (see Fig. 1.11).
Thus it is quite natural to give a geometrical interpretation to the radiative trans-
fer equations for polarized radiation in terms of the motion of the representative
point within the Poincaré sphere. This is schematically illustrated in Fig. 5.5.

In a right-handed orthogonal system (xyz) we consider the formal vectors p', 7,
0, € defined by

~_(QUV
P=\T T T
ﬁ: (nQ777Ua77V)
ﬁ: (vavapV)
g_§_(€_Q u v
I \I1’1°1)"
and the scalar quantity
(o
I — I .

With these positions the transfer equations for polarized radiation can be trans-
formed into the following

dr L

= i)l (5.74a)
2

— ==+ (- P)P+ XD +E—€P. (5.74b)

ds
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on the
surface

Fig.5.5. The transfer of polarized radiation in an arbitrary medium can be described in terms of
the motion of the representative point inside the Poincaré sphere. The point cannot pierce the
surface of the sphere but may describe a curve that is tangent to it, like in the point P. The
starting point P, represents the radiation entering the medium.

The scalar equation describes the transfer of the beam intensity and it can be
considered as the equation which controls the scaling factor connecting the Stokes
parameters with their fractional value given by the vector p’. It is interesting to
note that this equation differs from the standard equation for unpolarized radiation
only for the presence of the term (77 - ) which adds to the (generalized) absorption
coefficient 7;. Note also that the dispersion term, p’, does not appear directly
in this equation, nevertheless it affects the intensity via the term (77-p’) (since p’
depends on 7).

The vector equation describes the motion of the representative point inside the
Poincaré sphere. The first term in the right-hand side tends to align the fractional
polarization p with the vector —7j. If we consider for instance the simple case
where 77 does not depend on s, and if we take 7= 0 (unpolarized radiation) as the
boundary condition at s = s,, when the ray has traveled a distance As from s, we
obtain from this term

p(As) = —1if As

and, as As grows, the representative point might pierce the Poincaré sphere. This
is however prevented by the second term, which is opposed to the first one and
whose relative importance grows as the point approaches the surface of the sphere.
Clearly this term describes a phenomenon of saturation for the fractional linear
polarization.

In this respect it is also interesting to consider the effect of the term (77- )
in the scalar equation for the intensity. In the simple situation discussed above
(7 = const., P = 0 at s = s,) this term brings a negative contribution to the
absorption coefficient, since p’ is directed along —77. Therefore, as the radiation
beam propagates through the medium, the polarization grows and the medium
becomes more and more transparent. We are facing again a saturation phenomenon
which is strictly connected with the former.
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(a) (b)

Fig.5.6. Geometrical interpretation of Faraday rotation (a) and Faraday pulsation (b). In case
(a) only the component py, is non-zero and we have a transformation from @Q to U, and vice versa.
In case (b) the component p;; induces a transformation from @ to V, and vice versa.

As an illustrative example, let us consider a low-temperature medium (i.e. a
medium with negligible emission) which is opaque to left-handed circular polariza-
tion, and suppose that an unpolarized radiation beam is entering the medium at
s = 5. During the propagation, the left-handed circular polarization will decrease
exponentially, so that right-handed circular polarization only will remain in the
beam and the medium will be totally transparent.

Let’s now consider the third term in the right-hand side of Eq. (5.74b). This term
causes a precession of the vector p” about the vector p’; in this motion the absolute
value of the fractional polarization is unchanged, while the type of polarization
changes. In particular, the z-component of the vector 7, py,, induces a rotation of
the representative point about the z-axis, which implies a rotation of the direction
of maximum linear polarization. The z and y components (p, and p;;) give rise to
a rotation about an axis belonging to the x-y plane, which implies a transformation
from linear to circular polarization and vice versa. These two phenomena, which
are illustrated in Fig. 5.6, will be referred to in the following as Faraday rotation
and Faraday pulsation, respectively, although these names should more properly be
employed when dealing with the propagation of polarized radiation in a magnetized
medium far from resonances.

An important property of the term (9 x p) is that it can be efficient in removing
the alignment between the vectors p’ and —# that tends to arise in the schematic
situation discussed previously. Thus the presence of dispersion reduces the impor-
tance of the saturation mechanisms that we have just pointed out. The only case
where the effects of dispersion can be neglected is when the three formal vectors 77,
0, and € point in the same direction. In this case, if we add the further condition
that the radiation beam is unpolarized when entering the medium, the vector p’
will also be aligned with the same direction, and the term (5 X p’) vanishes.
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Comments similar to those on the terms —7 and (77-p)p can be made for the
last two terms in Eq. (5.74b), € and —¢;5. The fourth term tends to align the
polarization  with €, but when p starts growing the other term comes in and
prevents, through a saturation mechanism, the possibility of piercing the surface
of the Poincaré sphere.

Finally, let us consider the special case described by Eq. (5.73) (which includes
the LTE case). Defining the reduced scalar source function § as

.
_s

we have from Eq. (5.74b)

dp_

717~ﬁ 0. —
Is (1=38)7+(7-p

an equation containing the driving term, the saturation term, and the dispersion
term.

5.7. Resonance Scattering and the Hanle Effect

We have seen in Sects. 5.1-5.2 how it is possible to deduce the transfer equations
for polarized radiation using the concepts of classical electrodynamics. The general
equations (5.25)-(5.26) have then been applied to the case of an atomic vapor
embedded in a magnetic field. By schematizing the atomic system as a negative
charge oscillating under the action of an elastic, restoring force, we have derived
Eqgs. (5.36) which give the basic quantities describing the transfer of polarized
radiation in a magnetic field.

In this section we will use the same atomic model to deduce the laws of resonance
scattering and of the Hanle effect. Starting from Eq. (3.34), we can write for the
frequency-integrated radiation emitted per unit time in the solid angle dQ2 by an
atomic oscillator embedded in a magnetic field

T 3\ 2
dIij(Q)fgz] ()72 dQ

2m3e? ALA r *
OdQZ Cy L /V4Fa(u) Fy(v)dv, (5.75)

T
— 00

where the symbols have the same meaning as in Sect. 3.2.

To describe a scattering experiment we will now assume the initial values of
the amplitudes, A, to be proportional to the corresponding components &, of
the resonant electric field impinging on the oscillator from the direction 4 (see
Fig. 5.7). Note that the only difference between the present case and the case
considered in Sect. 3.2 lies in the assumption on the amplitudes A,. To obtain
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B
atomic magnetic field

oscillator — \__

scattered
radiation

incident
radiation
dQ

Q Q
Fig.5.7. A radiation beam is scattered from the direction (¥ to the direction €} in the presence of
a magnetic field.

the emission in the Zeeman effect we assumed the amplitudes to be completely
uncorrelated,

AL A = 1A 0up 5

by contrast, we now assume
AZAB = KS&*S% aqy, (5.76)

where df is an infinitesimal solid angle around the direction (/. Note that the
frequency dependence of the components £/, in the above equation is not specified:
they are supposed to be constant over a spectral interval centered at the reso-
nance frequency v, and much larger than the Larmor frequency v, (flat spectrum
approximation).
If we now introduce two mutually orthogonal unit vectors perpendicular to the
direction €/,
gi/* ) gg/' = 52’;‘ ’
we can write

g=>cnel, (5.77)

Substituting Eq. (5.77) into Eq. (5.76), and averaging over all the possible realiza-
tions of the incident electric field, we have

AnAy = Z CLCly IL(Y) A (5.78)

where k is the constant appearing in Egs. (1.34) and Ilfj(ﬁ’) is the polarization
tensor of the incident radiation.
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The dimensional constant K can be determined by considering the special case
of thermodynamic equilibrium. In this case the incident radiation (isotropic and
unpolarized) at the resonant frequency v, is characterized by the polarization tensor

2
vy kgT 5.
o2 ij >

ro_
]ij—

where we have used the classical expression for the Planck function. Substitution
into Eq. (5.78) gives

K
ALAy = ”0 kB f Z Cl Ol deY

K Vo kT =2 R o
=7 %[(5(43 —(Q -, - uﬁ)] dq’

c2

87 K 1} kgT
T 2 e (5.79)

C

On the other hand, the amplitudes of the atomic oscillations in thermodynamic
equilibrium are given by (see Eq. (3.35) for a similar derivation)

T kB

ALA, =

Comparison of expressions (5.79) and (5.80) leads to

2
% - 16?;3 Z;;n ' (5-81)

Using Egs. (5.78) and (5.81), Eq. (5.75) becomes

dl; () =

- g Wm_ei)vzﬁ %Z CoxClin iy (2 )dQ dQ/ o) Fy(v)dv,  (5.82)

where we have extracted the factor v from the integral since the Fourier transforms
F, (v) are substantially non-zero only for v ~ v, (see Eq. (3.33)).

The frequency integral can be easily evaluated with the help of the residue the-
orem

T 1 1
F *F dv = — 5.83
[ R0y By v = 2 e (5.89)
where 5 B
=™ %P (5.84)
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The quantity H is proportional to the magnetic field intensity; numerically we have
H =0.879 B/v, (5.85)

with B in G and v in 107s7!
Substitution of Eq. (5.83) into Eq. (5.82) leads to

= 2R3 -, deY
= a Z ikt (2,5 B) Iy () 2. 96 (5.86)
where
2
Tes
O = —
me

is the classical (frequency-integrated) cross section of the atomic oscillator, and T
— the so-called scattering phase matrix for the polarization tensor — is defined by

Lo 1
T, (Q,Q5B) Z :Cs,CoiCl TPy (5.87)

This matrix depends on the geometry of the scattering event and on the magnitude
and direction of the magnetic field vector; moreover, it depends on the choice of
the unit vectors (€;,¢€,) and (€7,€3). Note that expression (5.87) is valid both
for real unit vectors and, more generally, for complex unit vectors of the form of
Egs. (1.41).

The following symmetry property can be proved directly from Eq. (5.87)

- -

Tij,kl(ﬁ’ﬁ/§§)* =T} 1 ’Q/§§) . (5.88)

If the direction of the magnetic field vector is reversed, one gets a sign inversion of
the term in H in Eq. (5.87) (see Egs. (3.23), (3.27), and (3.33)). This leads to the
further property L . Lo

Tij,kl(Q7Q/; -B) = Tm,ji(Q/aQ%B) . (5.89)

In the case of zero magnetic field the expression for the matrix T reduces to a much
simpler form. Summation over the indices a and g yields

= = = =, 3
z],kl(Q Q/%O) = z],kl(Q Q' )= 5 =D, kD]l )
where the direction cosines D, are given by
D, =¢ -é’. (5.90)

Equation (5.86) can be transformed into an equivalent equation relating the
Stokes parameters of the incident and scattered radiation. As noticed several
times, the relation between Stokes parameters and polarization tensor depends
on the choice of the unit vectors €; and €/. The most natural choice is to take,
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both for the incident and for the scattered radiation, the reference direction unit
vector and the associated unit vector defined in Sect. 1.6. In other words, we take

& =&,(Q) & =)
Q) &y = e ().
In this case the required relation is given by Eqgs. (1.40), which imply that the

frequency-integrated Stokes parameters dS, (0 ) scattered in the solid angle d©2 by
an atomic oscillator are given by

dgi(ﬁ) = Z (Uz)nm djmn(ﬁ) )

nm

with o, the Pauli spin matrices defined in Eq. (1.17). Using again Egs. (1.40), we
obtain

dqy
4

= CIZR Q.9 B) Sj(Q)—d2  (i,j=0,...,3),  (5.91)

where the scattering matrix R for the Stokes parameters, sometimes called the
phase matriz, is given by

R, (3,5 B) =
1 L
= 5 Z (Ui)lk(aj)m Kkl mn(Q Q B)
kimn
_3 (0)( > CrCyCl C’*; (5.92)
4klmn Lk mn e ak™~ Bl n 1+1(a 5) .

In the case of zero magnetic field the matrix R reduces to the so-called Rayleigh
phase matriz

- - 3 .
Rij(QaQ/;O) = Rij(QaQ/) =17 Z (Ui)lk(aj)mn Dy D, »

klmn

where the direction cosines D;; are defined in Eq. (5.90).
Since the Stokes parameters are real, the scattering matrix must be real as well,

—

3 O BY* 3 Q. B .
R, (O,0; B) = R, (9,5 B); (5.93)
this can be checked directly from Eq. (5.92) recalling that
(0’1)7*1m = (Uz)mn .
Moreover, from Eq. (5.89) one gets

- -

Rij( ,Q:—B) :Rji(Q/,Q;B) . (5.94)
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incident /

radiation

. scattering atom

L

magnetic field

. scattered radiation

Fig.5.8. The Hanle effect is illustrated by this simple scattering experiment. For zero magnetic
field the polarization of the scattered beam is perpendicular to the plane of scattering; when
a magnetic field is present, the polarization is reduced and its direction is rotated through an
angle a.

In the particular case of zero magnetic field this equation becomes
S =0 =, =
R, (Q,Q) = R;,(,Q), (5.95)

which is known as the Helmoltz principle of reciprocity for a scattering event.
Thus Eq. (5.94) represents the generalization of this principle to the case where a
magnetic field is present.

The equations that we have derived in this section describe the scattering of
polarized radiation by an atomic system, schematized as a harmonic oscillator, in
the presence of a magnetic field. In the limiting case of zero magnetic field the
results here obtained reduce to the classical results of Rayleigh for the scattering
of polarized radiation.’

In the presence of a magnetic field the laws of scattering are deeply modified and a
new phenomenon — known as Hanle effect — appears. Discovered in the laboratory
in the early years of this century (Hanle, 1924), this effect usually produces a
depolarization of the scattered radiation and a rotation of its plane of polarization
(see Fig. 5.8). However, this holds only for particular geometries of the scattering
event — probably the most used in laboratory experiments and the most important
for astrophysical applications. For different geometries the effect of the magnetic
field can be very different, and in fact the polarization of the scattered radiation
can even be increased relative to the non-magnetic situation. Thus, in general
terms, one can only state that the Hanle effect consists in a modification of the
scattered radiation due to the presence of a magnetic field. These points will be
further clarified in Sect. 5.9.

1 It should be remarked that Rayleigh’s law of scattering can be applied to a broader class

of phenomena and not only to the scattering by a harmonic oscillator — the simple case on which
we have based our deduction. Thomson scattering by free electrons, or scattering by a dielectric
sphere having a radius much smaller than the wavelength of the radiation, are just two examples
where Rayleigh’s law can still be applied in full generality. The only difference with the case
considered here is in the cross section o, appearing in Egs. (5.86) and (5.91).
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Z

Fig.5.9. The most general geometry for the scattering event. The unit vector 1, lying in the plane
perpendicular to €, is the reference direction unit vector €_,(€2), while 2 is the associated unit
vector €,(€2). The unit vectors 3 and 4 are € (') and €]/(£2'), respectively.

Equation (5.92) describes the Hanle effect from the classical point of view; we
will see in Chap. 10 how this equation is generalized in the quantum theory.

5.8. The Scattering Phase Matrix in a Particular Case

In the previous section we have obtained a general expression for the scattering
phase matrix that can be applied to any geometrical configuration of the scattering
event and of the magnetic field and to any choice of the reference directions for the
Stokes parameters. For practical applications it is however useful to have explicit
analytical expressions for the scattering phase matrix in particular geometrical
situations.

The most general geometry is illustrated in Fig. 5.9, where the three directions ﬁ,
o , and B are specified by their polar angles and where the reference directions are
defined by the angles v and +’. In this geometry the scattering phase matrix will
depend on 8 parameters, namely 0, 6', 05, (x — x5), (X’ —x5), 7, 7, and H, and
the calculation of one element R,; will require the sum of 144 (= 3% x 2%) terms.
It is not worth here to develop in detail these calculations; the interested reader is
referred to Landi Degl’Innocenti and Landi Degl’Innocenti (1988), where an ana-
lytical expression for the phase matrix is derived under the assumption v =~' =0
(which means that the positive @Q-directions for the incident and scattered beams
lie in the meridian planes of Fig. 5.9). Being deduced from the quantum theory,
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Fig.5.10. A particular geometry for the calculation of the scattering phase matrix. The polar
angles of the directions $ and € are reckoned from the magnetic field direction. The meaning of
the unit vectors 1, 2, 3, 4 is the same as in Fig.5.9.

the expressions presented in the paper just quoted are in fact more general than
those obtainable from Eq. (5.92); however, they reduce to the classical results with
easy transformations.

Some general properties of the scattering phase matrix relative to the geometrical
configuration of Fig. 5.9 will be given in Sect. 5.12. Here we want to derive the
explicit expression of this matrix for the much simpler geometry illustrated in
Fig. 5.10.

Now the magnetic field vector is parallel to the z-axis and the reference direction
for the Stokes parameters lies in the meridian plane containing the magnetic field
and the propagation direction. The various unit vectors are given by

€a(ﬁ) =¢) =cosfcosy 7+ cosfsinyx 7—sinb k

é’b(ﬁ) =é,=—siny ¥+cosyx J

no

& (') =& = cost cosy' T+ cosl siny’ J—sinf k
€é(ﬁ’) =éy=—siny 7+cosx’ T

" 1 S

uﬂ:ﬁ(:Ferl]),

and the direction cosines can be easily evaluated
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C.. = —— cosh e X Ciy= RS e X
11 \/5 \/§

Cy, = —sind Coy =

C = — cosf eiX c_,,= X

-1

=

i
= — e ,
V2 VR
with analogous expressions for C?,
From these expressions the elements of the scattering phase matrix for the polar-

ization tensor, given by Eq. (5.87), can be evaluated via some heavy algebra that
is left to the reader as an exercise. The results are the following

3 3 1
T =5 [1—u2—u +2u2u’2+2uu’\/1—u2\/1—u’2Cl+§u2 1 Cy

3
T11,12:T11,21:§[ p? /1 —p? S ——MQMIS}
3
Typn =T 1= B) [N/ V1—p2y/1—p? 8 + 3 H#IQ 52}
311 1
T =3 {5 - 5,112 C’z]
311 1
22,11 — 9 {5 le ) M’Q 02]
3[1 1
Tig19 =T51 01 = 22 pi' + /1= p? /1 —p?2 Cp + 3 ! CQ]
3 1 1
Tig01 =15 10 = 5173 i+ 3 s 02]
371
Tip o9 =Tp1 00 = D) *5,“5 ]
31
Ty 01 =Tp99 = 5 5 /S}
1
Tyo20 = [ ) } (5.96)
where
= cosf ' = cos@’
C, = cosay cos(a; +x —X) S, = cosay sin(ay +x' — x)
C, = cosaycos(a, +2 (X — X)) S, = cosaysin(a, +2 (X' — x)) (5.97)

and where the angles o; and «,, implicitly defined by

tano; = H | tan o, = 2H | (5.98)
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are particularly useful to express the quantities (1 +iH)~! and (1 & 2iH)~! in the
form

. —1 _ . Fia, 2 P
(1+iH) " =cosa, e = cos“o; F isinay cosa,

. _ Fia ..
(1+£2iH) ' =cosaye’ > =cos’a, F isinay,cosa, .

Note that the intensity of the magnetic field is contained only in the quantities C|,
C,, Sy, S,. In particular, for zero magnetic field one gets

C, = cos(x’' — x) S, =sin(x" — x)
Cy =cos2(x' — x) S, =sin2(x" —x),

and for strong magnetic field (H > 1)
C;=5=0,=5,=0,
so that the expressions of the matrix elements are considerably simplified.
Finally, substituting Egs. (5.96) into Eq. (5.92) and using the explicit expressions

of the Pauli spin matrices (Egs. (1.17)), one obtains for the scattering phase matrix
of the Stokes parameters the following expressions

g (38— p® — p? +3p°u%) + guu’mm C,
R [ YeA

% (1=3u?)(1— ) + gﬂu’mm o
5= ) ey

L 3 3
Rop(2, Q5 B) = = /1= p? V1 = Sy + 5 (1= p?) i’ S,

3
(=) (1= W) + S V1 = 2 V1= 2 Gy

3
3 (1+p%) (14 p?)C,

. 3 3
RH(Q,Q/;B):—i,u\/l—,uQ\/l—u’Q 51—1(14—/12)//52
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~ = = 3 3
Ry (2, B) = 5,/«/1 — 21— p% S, — I p(l—p?) S,
= =, = 3 3
R, (Q,Q:B) = 5“/‘/1 — 21— 2 S, + 1 p(l+p?) S,

< =, = 3 3
RQQ(Q,Q’;B)zix/lf,uQ V19— p? C1+§,u,u’C’2

- 3
Ry (05 B) =g + 5 V1—p2V1—p2 0. (5.99)

These formulae show that the V' Stokes parameter (S;) is totally decoupled from
the other Stokes parameters in a scattering event.
In the limiting case of strong magnetic field one gets

5+51 =31 -347%) (1-3u*)(1-p? 0 0
R(G, G5 — o0)= > (1—p?)(1 - 3u") 31-p*)(1—p?) 0 0
e 8 0 0 0 0

0 0 0 4dpy

which shows that the U Stokes parameter of the scattered radiation is zero irre-
spective of the direction and polarization of the incoming beam. If, in addition, the
incoming beam is unpolarized, the fractional polarization of the scattered radiation

is found to be ) o
Q_  (1—ph)(-3u")
T 3— 12— 2 + 3202

thus it is positive, negative, or zero according as (u'? — 1/3) is negative, positive,

or zero. Defining the Van Vleck angle 6y, according to the formula

cosfy = 1/V3, (5.100)
which implies
0, = 54°.74 , (5.101)
one obtains
% >0 (linear polarization parallel to B) for 6y <6 <mw—06y
% < 0 (linear polarization perpendicular to E) for 0<6 <0y

or m—0,<b <m.
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— Q/
reference ;Cﬁﬂered
direction eam unpolarized
incident beam

Fig.5.11. Geometry for a 90° scattering. The magnetic field lies in the plane perpendicular to
the incident beam and makes an angle 3 with the direction of the scattered beam. The reference
direction for the Stokes parameters of the scattered radiation is perpendicular to the scattering
plane.

In other words, for an unpolarized incoming beam and in the limit of large magnetic
field (H > 1), the linear polarization of the scattered beam is either parallel
or perpendicular to the magnetic field according to the direction of the incident
radiation.

Another consequence that can be easily deduced from Eqs. (5.99) concerns the
particular case of an incident beam parallel (or antiparallel) to the magnetic field
vector. Setting 1/ = +1 in Egs. (5.99) we see that the matrix elements of the
form R,;, (¢ = 0,...,3) are independent of the magnetic field. Therefore, if the
incident beam is unpolarized the scattered radiation is completely insensitive to
the magnetic field.

5.9. Some Illustrations of the Hanle Effect

To understand in further detail the role of the magnetic field in resonance scattering,
it is convenient to apply the results obtained in the previous section to some specific
geometrical configurations of the scattering process.

Consider first the configuration of Fig. 5.11, where we want to investigate the
polarization of the radiation scattered at 90° from an unpolarized incident beam.
The scattering event takes place in the presence of a magnetic field which lies in
the plane perpendicular to the incident beam.

Since the incident beam is unpolarized, the only elements of the scattering phase
matrix that must be computed are those of the form R, (¢ =0,...,3). Taking as
reference direction the perpendicular to the scattering plane (see Fig. 5.11), these
matrix elements can be deduced from Eqs. (5.99) by the substitutions

p=cosf, =0, x—x=5.
This leads to the expressions

Ry =

ool w

(3 — cos?f —sin’3 cos2a2)
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Fig.5.12. Polarization diagram (or Hanle diagram) relative to the scattering process illustrated in
Fig.5.11. Full lines correspond to 3 = const., while broken lines correspond to constant magnetic
field strength, parameterized through the quantity o, (see Eqgs.(5.84) and (5.98)).

3

Ry, = 3 (sin®B + (1 + cos®B) cos®a,)
3 .

Ryy = 1 cos 3 sin oy €os oy

Ry, =0,

so that the fractional linear polarization of the scattered beam is given by

Q sin?3 + (1 + cos?f) cos’a,

I 3 — cos2f3 — sin?3 cos2a,

v _ 2(:osﬂs1n?422cosoz2 . (5.102)
I 3—cos?( —sin“g cos?a,
The results now deduced can be conveniently plotted in the polarization diagram
(or Hanle diagram) shown in Fig. 5.12. The solid lines are isoazimuth curves
(8 = const.), while the broken lines are isostrength curves (a, = const.). For
any assigned couple (3, a,) the diagram gives the polarization Q/I, U/I of the
scattered beam. Note that the values of 3 can be confined in the range [0, 7] since
Eqgs. (5.102) are invariant under the substitution 8 — —g.
There are several characteristics of Egs. (5.102) that it is worthwhile to discuss
in some detail. First of all, in the case of zero magnetic field (a,, = 0) one gets
Q U

higg - = .1
7 , 7 0, (5.103)
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thus the scattered beam is totally polarized perpendicularly to the scattering plane.
On the other hand, for very strong magnetic field (o, = 7/2) one obtains

Q_ si®p U _,
I 3—cos2f’ I

so that the scattered beam is again polarized perpendicularly to the scattering
plane (consistently with our former discussion on the Van Vleck angle); however,
the fractional linear polarization varies now between 0 and 1/3 according to the
value of .

For intermediate values of the magnetic field, the U Stokes parameter is in general
non-zero, which means that the direction of linear polarization is rotated from the
zero-field direction. The maximum rotation for a given magnetic field strength
occurs for =0 or 7. In these cases we have

— 2 i :
T =cosTay, 7 = £ sina, cosay ,

where the plus sign for U/I corresponds to 8 = 0 and the minus sign to f = 7. In
both cases the total linear polarization is given by

Q\> [(U\’ 1
— - — = = Nl 4
29 <I + 7 COS vy ik (5.104)

while the position angle o, (see Egs. (1.46)) is

ay ==+ % oy ==+ % arctan 2H (5.105)
with the plus sign for f = 0 and the minus sign for § = w. This formula shows
that a magnetic field with the same direction as the scattered radiation produces
a counterclockwise rotation (for an observer looking at the scattering point) of the
plane of linear polarization; conversely, the rotation is clockwise if the magnetic
field is in the opposite direction.

Equations (5.104) and (5.105) are often used to discuss the role of the Hanle
effect in scattering polarization (see e.g. Mitchell and Zemansky, 1934). They are
however of limited use because they refer to an extremely particular case.

In the scattering configuration just considered the magnetic field produces, be-
sides a rotation of the polarization direction, a decrease of the polarization degree
(depolarization); but this is not always the case. A counter example is provided,
for instance, by forward scattering.

The relevant geometry is now illustrated in Fig. 5.13, where we consider the effect
of a magnetic field on the forward scattering of an unpolarized radiation beam. The
polarization of the scattered beam can again be deduced from Egs. (5.99) by the

substitutions
!

p=p =cosfB, x=x".
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reference
_ direction
. B
unpolarized
incident beam B scattered beam
Q 3

Fig.5.13. Forward scattering. The reference direction for the Stokes parameters lies in the plane
containing the magnetic field and the direction Q.

We obtain
1 9 2,3 .5 2 2 3 .4 2
Ryy=1+ 3 (3COS 5—1) + Esm B cos”f3 cos”a; + gsm 0 cos“a,
3
Ry, = s sin?3 [1—3cos®B + 4 cos’3 cos’a; — (1 + cosB) cos®a, |
3 .9 . .
Ryy = 7 5in 3 cos B [2sina, cos oy — sin a, cos a, |
Ry =0. (5.106)
For zero magnetic field (a; = a, = 0) one gets

Q_U_

I I 0,

so that the scattered beam is unpolarized as the incident beam. For strong magnetic
field (a; = a, = /2) one obtains

=0

Q (1 —cos®B)(1 —3cos’p) U
I 3—2cos?23+3costs I

or, in other words, a linear polarization which is parallel or perpendicular — accord-
ing to the sign of the quantity (1 — 3 cos?3) — to the plane containing the magnetic
field and the propagation direction. For intermediate values of the magnetic field
the U Stokes parameter is non-zero, which means a rotation of the plane of linear
polarization. The rotation angle is a complicated function of § and H, as apparent
from Egs. (5.106).

This example shows that in some scattering configurations the magnetic field is
able to produce a definite amount of linear polarization in a radiation beam which
would be unpolarized if the magnetic field were not present.
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5.10. The Scattering Phase Matrix Expressed in Terms
of Rotation Matrices

The equations that we have derived in the preceding sections involve the evaluation

of several direction cosines relating the unit vectors @, relative to the magnetic

)
field, to the unit vectors é’i(ﬁ) needed for the definition of the Stokes parameters.
These direction cosines and, in particular, their bilinear combinations can be conve-
niently expressed in terms of ordinary rotation matrices. This leads, in most cases,
to much more compact and handy expressions for the relevant physical quantities,
like the scattering phase matrix derived in Sect. 5.7.

The introduction of rotation matrices requires, however, some remarks about
the spherical components of ordinary vectors, an argument that we have already
treated in Sect. 2.7 and that we are going to develop in further detail here.

Given an arbitrary vector v, its spherical components v, are defined by (see

Egs. (2.82))

v = ——= (v, +iv,), (5.107)

where v,, v, , v, are the Cartesian components in a right-handed coordinate system.
Since in the following we will often deal with vectors of the form

T=d+ib (5.108)

with @ and b real, we want to establish some properties of the spherical components
of such vectors.

Taking the complex conjugate of Eqs. (5.107), with ¥ given by Eq. (5.108), we
have

(v))* = ——=[(a, —b,) —i(b, +a,)] . (5.109)

we have for the spherical components of the vector v *

(") = 7 [(a, —b,) —i(b, +a,)]

9, = - a —i(b, —a
(), = ﬂ[(xﬂLby) (b, —a,)] - (5.110)
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Comparison of Egs. (5.110) and (5.109) shows that

(v"), = (1) (v_ )", (5.111)
a formula that could also be deduced by application of Eq. (2.85) to ordinary vectors
(tensors of rank 1). Thus the complex conjugates of the spherical components of
the vector ¥ do not form an irreducible spherical tensor; nevertheless they are
connected with the spherical components of the vector ¥ * by the simple relations
(5.111).
From now on we will use for simplicity the symbol v (without parentheses) to
denote the complex conjugate of the spherical component of the vector v,

vy = (v,)" .

Consider now the direction cosines C,; defined in the former sections. Since the
scalar product of two vectors ¥ and @ can be written in the form (see Egs. (2.83))

T = Z (—D)9wvuw_,, (5.112)
we have
Cai = ’L_l:a : é;* = Z (_1)q (ua)q (6:)7(1 = Z (ua)q (67,); ) (5113)

and for a bilinear product of two direction cosines

CoiClj = 2 (a)q (ug)y (€); (e))y -
qq’
This expression suggests the introduction of a tensor — the dyadic product of two
irreducible spherical tensors of rank 1 — which plays a very important role in the
description of polarization phenomena. Indeed, as we will see in the following, this
tensor — and the analogous ones that will be derived from it — appears as a natural
ingredient of almost any mathematical expression relevant to polarized radiation.
For this reason it deserves a careful definition.

In the right-handed reference system (zyz) of Fig. 5.14 we consider a particular
direction characterized by the real unit vector ¢. In the plane perpendicular to ¢
we introduce two real unit vectors, @ and b such that a. b and ¢ form, in this
order, a right-handed coordinate system. The orlentatlon of (d, 5, ¢) relative to
(xyz) is specified by the angles 6, x, and v defined in Fig. 5.14, with

0<0<m, 0< x<2rm, 0<y<2m.

From the unit vectors @, b, ¢ we then define the unit vectors ¢_;, ¢, ¢, via the
equations

1
8_1 ﬁ(a +lb)
& =¢c
" Lo .y
Ciy = 75(—(1 +1ib), (5.114)
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plane
perpendicular

to 6\

X

Fig.5.14. Geometry for the definition of the tensor 5qq, (a, 8,0).
and, finally, we define the reducible spherical tensor £ , relative to the triplet
(@,b,¢) ast

Egy (., 3,C) = (cy), (cp) (a,3==+1; q,¢ =0,%1). (5.115)

The explicit expression for £, (o, 3,¢) can be found by the following argument.

In the reference system (d@, b, ¢ ) we have, from Egs. (5.107) applied to the unit
vectors defined in Eqgs. (5.114)

(Ca)q = 6th ) <Cﬁ)q’ = 65‘1, :

Since (c,,) o 1s an irreducible spherical tensor of rank 1, its expression in the reference
system (zyz) of Fig. 5.14 can be obtained by application of the transformation law
of irreducible spherical tensors under rotations. From Eq. (2.78) we get

(Ca)g = D Sap Dpg(R) = DL (R) (5.116)

and, similarly
(Cﬁ)z’ = ’Dliliq’ (R)* )

1 The quantity & 0 is neither an irreducible spherical tensor nor the dyadic product of

two irreducible spherical tensors. The denomination ‘reducible spherical tensor’ is due to the fact
that it can be reduced to the linear combination of irreducible spherical tensors (see Eq. (5.125)).
Note also that £ , depends not only on the direction of the unit vector ¢ (specified by the angles
0 and x), but also on the direction (specified by the angle v) of the unit vector @ in the plane
perpendicular to & To shorten notations, we keep only ¢ as an explicit argument of the tensor.
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where R = (—v, —0, —x) is the rotation bringing the system (@, b, €) into the system
(zyz). Thus the expression for €, (a, 8, ¢) in the reference system (zyz) is

Eyy (@, 8,8) = Dy (R) Dp, (R)* . (5.117)

Let’s now go back to the scattering phase matrix T appearing in Egs. (5.86) and
(5.87), and consider the case where the polarization unit vectors (€, &,) relative to
>

the scattered radiation and the analogous vectors (€7, €3) relative to the incident
radiation are defined by the expressions (note the similarity with Eqs. (5.114))

6= [0 @ +ia@] =@

& =5 [e@+ig0)] =@

=5 [ @) = @)

& = \/% :—ej;(ﬁ’) + igg(ﬁ/)} =& (), (5.118)

— — — —

where €,(€), €,(Q2), €.(Q), €,(£Y') are the reference direction unit vectors and the
associated unit vectors defined as in Fig. 5.9.
With this choice Eq. (5.86) can be rewritten as

g’

dipu(Q) = 0q Z Tpu,pa(Qa Q/; B) I;)U(Q/) E dQ
po

where p, v, p,oc = +1, with the elements of the matrix T given by (see Eq. (5.113))
00 B) =
ul/,po‘(Q’Q ’B) -

3 * ) )\ * 7\ ) * * o)
= 5 (ua)q (e;J,(Q))q (u,ﬁ)q’ (eV(Q))q’ (ua)q” (e;(Q/))q” (uﬁ)q"' (efj(Q/))q’”
Q/B qq/q//q///
1

(a,8=0,£1). (5.119)

This formula can be evaluated in any reference system. If we choose the reference
system (,, i, 4,) used in Sects. 3.2 and 5.3 we simply have

(Ua)g = 0ag > (ug)y =054 - (5.120)

Thus Eq. (5.119) can be written, with the help of Egs. (5.115) and (5.117), in the
form

Sqq’ (.ua v, Q) gq’q(07 P Q/)

v po 2 & 1+i(qg—q)H
1 1 * 1 * 1
_ § Z Dp.q(R) Dl/q’ (R) qu(R/) Do’q’ (R/) (5 121)
2 <= l+i(g—q)H ’ '
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where R is the rotation bringing the system (€, ((),&,(€), ) into the system
(@,,u,, ) and, similarly, R’ is the rotation bringing the system (e (), €é(ﬁ’), )
into the system (., i, U).

In the general geometrical configuration of Fig. 5.9, R and R’ can be expressed
in the most convenient way as the result of two consecutive rotations,

R (_’77 _67 _X) X (XBaeB>a)
R/ (77/770/77)() X (XngBaa) ) (5122)

where « is an arbitrary angle whose actual value is unimportant for the evalua-

tion of the quantity T, ,, and that can be set equal to zero. In the geometrical

configuration of Fig. 5.10, R and R’ are simply given by
R=(0,—-0,—x), R =(0,-6,-Y). (5.123)

As shown in Sect. 2.7, the dyadic product of two irreducible spherical tensors of
rank k and &’ can be used to construct an irreducible spherical tensor of rank K.
Therefore, recalling Eq. (5.111), one can obtain an irreducible spherical tensor by
taking appropriate linear combinations of the quantities &, (a, 8,¢) defined in
Eq. (5.115). According to Eq. (2.79) such combinations are given by!

" 1 1 K "
£ (0, ,7) = 3 (~1)11/BRK + 1) <q L _Q) Ep (00,7, (5.121)
qq’
with the inverse transformation
2K+1 (1 1 K
=) — 1+ K —
&M(aJic)—-E:(—l) q,L_TT__(q Ly _Lg)ﬁb(aJic). (5.125)
KQ
In terms of rotation matrices, one gets from Eq. (5.117)

eflane) = orvaRRTD (L L S ) ol ol )

aq’

which, using Egs. (2.77), (2.23a), (2.73) and the fact that « and 8 can only take
the values £1, can be written in the form

1 K

s =vaRRTD 1y 1,

)ngR) (a, 3==+1). (5.126)

1" The linear combinations of Eq. (2.79) have been multiplied by the factor f(K) = —4/3(2K+1).
This slightly simplifies some expressions that will be deduced in the following.
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Substitution of Eq. (5.125) into Eq. (5.121) leads to the expression of the scat-
tering phase matrix T'in terms of irreducible spherical tensors

Ty 0o (G B) =
:%K 1) 5 (v, ) £X (ap,Q’)HilQH
:g; 2K+1)(i % —122’) (i Y —g”>
x D5, o(R) DS, _o(R) ﬁ , (5.127)

where R and R’ are the rotations given in Eqgs. (5.122) or (5.123).

To deduce the scattering phase matrix R for the Stokes parameters we need the
relation between the Stokes parameters and the polarization tensor corresponding
to the basis of unit vectors (5.118). This relation can be obtained from Eqs. (1.42)
by the substitution § = 57 /4, ¢ = —m/2. We have

I=1,, 41 _ Q=—(I,_+1_)

V=1, -1 U= —i(l,_—1,),

where we have shortened the notations writing I, , instead of I,,,, and so on.
The inverse transformations are

(I+V) I,_=-(-Q+iU)

(I-V) I,

N = N =

(-Q—iU).

+
+
l\')l»—l l\DIr—l

If we take an appropriate representation for the Pauli spin matrices (which differs
from that of Eqgs. (1.17)) we can write these transformations in a more compact
form. Defining

. (10 . (0 -1 . (0 —i . [(-10

with

>

7 j:‘Sij&OJriZGijk&k (i,5,k =1,2,3)
k

and
Tr (6,.6,) =20, (k,1=0,1,2,3),
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and labelling the rows and columns of the matrices in the order (—,+) (so that,for
instance, (6;),_ = (6,),1), we have'

3
1 .
Lg=52 5 0)ay  (a,8=41)
j=0
S; = (67)ap Lsa (1=0,1,2,3) . (5.129)

Since these transformations are identical to (1.40) provided the matrices o; are
exchanged with &, , the scattering phase matrix for the Stokes parameters can be
easily obtained along the same lines of Sect. 5.7. The result is

.1 o e
Ry (25 8) = 5 > (601 (67) s T po( LY B)

or, using Eq. (5.121)

T, (1,2) T, (5,)

R, (0,9%;B)=3 ! 5.130
w5 5) %: l+i(g—q)H (5.130)
where we have defined the tensor 7, (i, Q) as
R 1, =
Ty (i) = Y 5 (03)ap Egy (B0 ). (5.131)
af=+1

From the tensor 7, it is possible to construct — similarly to what done for

&,y — an irreducible spherical tensor, Tg , that will play an important role in the
continuation of this book

s’ 1 1 K o
T5(i,Q) = % (—1)9 /32K + 1) (q Ly Q) T, %)
K
- oD ()
%aﬁgil q —q 7Q
1 -
x 5 (6i)aﬁ gqq’ <ﬁ7a7Q)
= Z % (6i)aﬁ Sg(ﬁ7a7ﬁ) . (5132)
af=+1

1 Equations (5.129) have the same form as Eqs. (1.40). Note, however, that they involve the

polarization tensor defined on the basis of the unit vectors (5.118), while the polarization tensor
in Egs. (1.40) is defined on the basis of the reference direction unit vector and the associated unit
vector.
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Inversion of the first line of Eq. (5.132) gives
- 2K+1/1 1 K 3
. _ 1+ K-
i) = 32 1)y 5 (¢ 2 Zo)mdea.

which can be substituted into Eq. (5.130) to obtain the expression of the phase
matrix R in terms of the irreducible spherical tensor 7, 5

- o, o - - 1
(0, B) = —D)TEG ) TE (G, Q) ——— .
Rzg( ) ) ) KZQ( ) Q(7’7 ) —Q(]a )1+1QH

(5.133)

Using Eq. (5.126) the tensor Tg can be explicitly written in terms of rotation

matrices
TE (i, ) th ) DEo(R) (5.134)
where

HOEESY %(&i)aﬁ 3(2K+1)<é L _ﬁ) (5.135)

—
af==£1

From this equation, using some properties of the rotation matrices (Egs. (2.71) and
(2.73)) and noticing that t& (i)* = %, (i), Eq. (5.133) can be rewritten in the form

L 1
R..(Q.Q:B)= ) th, D R) D5, (R™') ———, (5.136
lj( (L] ) K;:,, P Z QP( )1+1QH’ ( )

which is our final equation expressing the phase matrix R in terms of rotation
matrices. In this equation we can isolate the contributions of the various K-values
(sometimes referred to as the multipole components of the phase matrix)

—

R, (0,4 B) ZR‘K’ O B) (5.137)

with

1

RGO B) = -
i (L5 B) 1+iQH

Q

1
Do tp @)t () Y Dig(R) DEp (R Trion (5.138)
PP’ 0

The tensors introduced in this section satisfy several properties, which are col-
lected in the following section together with a number of tables that are particularly
useful for applications. With the help of such tables we can easily get back expres-
sions (5.99) which give the scattering phase matrix in the reference system with
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the z-axis parallel to the magnetic field (see Fig. 5.10). In terms of multipole
components we get

1 0 0 0
= =5 0 0 0 O
(©) / _
R (Q?Q7B)_ 0 O O 0 9
0 0 0 O
0 0 0O
WG By — S 2 ) 0 0 0O
ROQQ5B) = S(pe' + V1= VI=p2C) | g o o o
0 0 0 1
(1=3p*)(1—3p?) (1-3p*)(3-3u7) 0 0
= =, 1 3 —3u2)(1 —3u? 3—-3u®)(3-3u2) 0 0
R(Q)(Q,Q/;B):— ( 2 )( H ) ( :U')( 1% )
8 0 0 0 0
0 0 0 0

p' Cyoopp' Gy =Sy 0
) '
VI L s e
0 0 0 0
(1=p?)(A = p?)Cy —(1=p?)A+p?)Cy 21— p?)u'Sy 0
L3 P21 = p?)Cy (L4 p?) (1 +p?)Cy —2(1+ )’y 0 (5.139)
8 —2u(1—p)S, 2p(1 + ¢/%)8, dpp'Cy 0]
0 0 0 0

where the notations are the same as in Egs. (5.97). Adding the contributions of
the three matrices R, R™, and R®, Egs. (5.99) are easily obtained.

5.11. Spherical Tensors for Polarimetry

The various tensors defined in the former section are particularly suitable for the
description of polarization phenomena in spectral lines. As they will be heavily
used in the following of this book, their properties deserve a thorough discussion.
At the same time, we will take the opportunity of introducing some new tensors
that will also be useful later.

Starting with the reducible tensors, we have defined

€4 (@:8,9) = (e, (D)), (e5(D),, (¢, =0,%£1; a,f=+1) (5.140)

with
& () = — [Feu@) +ia @) (5.141)

\)
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and we have obtained, in terms of rotation matrices (see Eq. (5.117))

&, (@, 8,9) =D} (R) D}, (R)* (5.142)

where

R= <_’Y7 —9, _X)

is the rotation bringing the coordinate system (€, (Q),&,(Q),Q) into the system
(zyz) (refer to Fig. 5.14 with (a@, b, ) replaced by (€, (9),&,(€), D).

In terms of reduced rotation matrices (see Eq. (2.68)) one gets, with the help of
Egs. (2.70)

o) i{(a=a")x + (a=p)7]
Epp(a, 3,9) = NN T dy . (0)dl5(0) .
From Eq. (5.142), using Eqs. (2.72), one obtains

> &y (o0, Q) =6, — Dy, (R) Dj, (R)"
a==+1

and by application of the Weyl theorem (Eq. (2.76))

dQ = 2
> f{E Eqqr (00:0,0) = 5 8y (5.143)
a==+1
Again from Egs. (2.72) one gets the relation

Z g, B,9) =06, (5.144)

and directly from the definition (5.140)
Egy (. B,)" =&, (B,0,9) . (5.145)

The explicit expression for the tensor &, (a, 3, ﬁ) as a function of x, 6, and - is
given in Table 5.2.

The other reducible tensor that we have introduced is 7, (4, Q), defined by (see
Eq. (5.131))

4 1 . R (¢,¢ =0,+1)
Ty D) = > = (6)0p &g (B0, Q) s
a1 (i=0,...,3).

(5.146)

Taking the complex conjugate, we have from Eq. (5.145)
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TABLE 5.2

Explicit expression for the tensor € ,(c, 3, ﬁ) The remaining components can be obtained from
the relation Sq,q(a, B,Q) = qu, (B, a, 2)*.

E ., (== =11 +cos0)?

Eoo(— ) = sin’6

E (=0 = 1 (1—cos0)?

5710(_,_76) :—ﬁ sin 6 (1 + cos #) e X
&, 1(*,*,5) = i sin26 e~ 21X

501(7,7,62) = 7$ sin@ (1 — cos ) e~ X
5_1_1(_,_1_,@) = i e~ 27 sin?g

500(—,-1-,@) = _% e~ 217 sin20

511(*7+7ﬁ) - i e~ 217 gin20

5_10(—,4-,@) = ﬁ e~ 27 sin@ (1 + cos ) e~ iX
£ 11(—H®) =3 e (14 cos0)2 o2
Eor(= D) = =55 €7 sind (14 cosd) e
€y (=) = e sin?0

500("_7_7@) = _% e?i’y sin29

511(4—,—,@) = 1 ¢%7 sin?¢

E o+ =) = 7$ e sin 6 (1 — cos @) e~IX
€ 11 (= D) =™ (1 —cosh)? 72X

Eyq (4, -0 = ﬁ e sinf (1 — cos §) e~ X
€4 1+ +DQ) =] (1 —cosh)?

500(+,+,ﬁ) = % sin®@

E1(h ) = (14 con?

5‘710(+,+,§_‘2) = ﬁ sinf (1 — cos §) e~ X

€1 (+,+,6) =] sin?0 e 2X

501(4_74_7@) — ﬁ sin 6 (1 + cos §) e~ X




MATTER-RADIATION INTERACTION (CLASSICAL) 205

and since the matrices &, obey the conjugation property

(&i)fxﬁ = (&i)ﬁa ) (5.147)

we get . ~
T,y (1,Q)" = Tq,q(z,Q) . (5.148)

Another property can be obtained from Eq. (5.144) using the trace properties of
the matrices &

ST, 0D = Y L (0)ae =5 T (6) =6y (5.149)
q a==%1
The explicit expression for the tensor 7, (i, Q) is given in Table 5.3.

Using the tensors &, (a, 3, €2) and 7, (i, Q) we can construct a further reducible
tensor, Z, ., (v, §2), which describes the polarization properties of the radiation field
propagating along the direction 2. If I, 5(v, Q) is the polarization tensor (defined on
the basis of the unit vectors €, (£2) of Eq. (5.141)) and S, (v, 2) is the Stokes vector,
both relative to the frequency v and the direction ﬁ, we define the tensor Z, (v, Q)
according to either of the equivalent relations (see Eqgs. (5.129) and (5.146)

Ly, D)= > &£,(c,89) 14,10
af=%£1

—

3
=Y T, 5.9 (5.150)
=0

This tensor satisfies the conjugation property (easily deduced from Eq. (5.148))

T, w8 =1, (), (5.151)

qq

and the trace property (consequence of Eq. (5.149))

— —

> T, Q) =S,Q) =I(r9). (5.152)

The explicit expression for the tensor Z,, (v, ﬁ) is given in Table 5.4. It is important
to remark that the linear polarization Stokes parameters, Q and U, enter the
expressions of Table 5.4 only via the linear combinations

Q =cos2yQ —sin2y U , U=-cos2yU+sin2vy Q.

These combinations are independent of the angle v which defines the reference
direction for the Stokes parameters ) and U.
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TABLE 5.3

Explicit expression for the tensor 7 ,(i,ﬁ). The remaining components can be obtained from
the relation 7, (i,Q) = 7T_,(4,Q)*.

7_,_4(0, ) = 1 (14 cos26)

T4 (0, Q) = % sin26

7,,0,8) =1 (1+cos?0)

T,10(07Q) :—ﬁ sin 6 cos 6 e~ix

7 ,,0,9Q) = i sin?f e~ 21X

7,4 (0, Q) = ﬁ sin @ cos 0 e~ X

T_l_l(l,ﬁ) = —i cos 2y sin20

Tyo(1, o)) = % cos 2 sin26

7,,(1, ) = 7i cos 2y sin26

T_lo(l,ﬁ) :—ﬁ (cos 2y cos@ — i sin27y) sinf e~X
T_,,(1, Q) = —% cos 27y (1 + cos?0) — 2i sin 2y cos 9] e~ 2ix
Ty, (1, ) = ﬁ (cos 2y cosf — i sin2v)sin@ e~ X
T, (2 Q) = i sin 2+ sin?6

Ty0(2, Q) = —% sin 2+ sin26

7,,(2, ) = i sin 2 sin26

T_1,(2, Q) = ﬁ (sin2y cos @ + i cos 2) sin @ e~ X
T ,,2,0) =1 [sin 27 (1 + cos?0) + 2i cos 2y cos 9] e 2ix
%1(2,62) = 7$ (sin 2y cos@ 41 cos 2) sin§ e~ X
T ,_4(3, Q) = 7% cos 6

T50(3 Q) =0

’1'11(3,@) :%COSQ

T .00, Q) = ﬁ sin @ e~ X

T_,,3,9) =0

Ty, (3, Q) = ﬁ sin 0 e~ix
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TABLE 5.4

Explicit expression for the tensor I - / (v, Q) The remaining components can be obtained from
the relation Z , (v, Q) = I,y W, Q).

Ty (v, 9) = 1[(1 + cos?0) I(v, §) — sin®0 Q(v, D) — 2cos 0 V (v, )]

Tyo, D) = 3§ sin20 [I1(v,D) + Q(v, D)

7, (v, Q) =i[(1+cos 0) I(v, ) — sin?60 Q(v, ) + 2cos 6 V (v, ()]

T 10 Q) =35 sinf[—cos0 I(v,9) — cos0 Q(v, 3) +iT (v, 3) + V (v, 3)| e~

2
I 4, Q) = i sin20 I(v, @) — (1 + cos20) Q(v, ) + 2i cos 0 U(v, ﬁ)] e 2ix

01 Q) == sin 0 [cos 0 I(v, ) + cos 0 Q(v, ) — iU (v, D) + V (v, ()] e~ix

where  Q(v, ) = cos 2y Q(v, ) — sin2v U (v, )

~ —

U(v, ) = cos 2y U(v, 1) + sin2y Q(v, ©3)

Finally, from the tensor 7, (v, Q) one can define the tensor J, (V) by averaging
over the whole solid angle

Ty V) = dQ v, Q) :f (i,9) 8, (v, Q) . (5.153)
=0

This tensor depends on the polarized radiation field propagating in all directions,
and will be called the (reducible) radiation field tensor. Its trace is given by (see

Eq. (5.152)) o
> D)= § 4 10050 = I

which is the usual definition of the mean intensity of the radiation field over the
solid angle. From Eq. (5.151) it follows the conjugation property

J q,(y)* =J ,q(y) . (5.154)
All the tensors defined so far are reducible tensors. Under rotation of the coor-

dinate system the new components, Tq’q,, are obtained from the old ones, Tpp,, by
the transformation (see the derivation of Eq. (5.117))

Z D, (aB3y) Dy ()" T,

where «, 3, v are the Euler angles of the rotation which brings the old reference
system into the new one.
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We can easily construct the associated irreducible tensors through the standard
procedure (see Eq. (5.124)). By so doing, the following irreducible tensors are
obtained

5 (@, 3,9), T5(i,Q), I5w,Q), J5v)
corresponding to
Egp (. 3,9),  T,.,(1,9), I, (v,Q), J,(v),

respectively. The relations between the irreducible tensors and the corresponding
reducible ones are repeated here for the sake of completeness

1 1 K
Th = Z (-1)"*9 /32K + 1) (q _q, —Q) T,y s (5.155)
99’

with the inverse transformation

2K + 1
T =Y (-1, /T+ <; _1q, _%) TX . (5.156)

KQ
Obviously, the various irreducible tensors are connected with each other by the

same relations which connect the corresponding reducible tensors, namely (cf.
Egs. (5.131), (5.150), and (5.153))

= 1 -

af=+1
3
IEW, Q) = > E5(a. B, D) I, (v, Q) =D T (i,0) S, (v, D)
af=+1 i=0
dQ < dQ & < <
K _ K _ K:
IE W) = f = Lo w9 _]fy ; T5(0,9)S,(v,9Q) . (5.157)

Their conjugation properties can be deduced from the corresponding properties of
the reducible tensors, and are found to be

55(047 ﬁ7 ﬁ)* = (_1)Q gf(Q(ﬁ7 Q, Q)

TE (i, )" = (-1)9 T5,(i,9)

5 (v, Q)" = (-1)? 5, (v, Q)

JEW) = ()9 I v) . (5.158)

We rewrite here, for the sake of clarity, the expressions of the tensors 55 (o, B, ﬁ)

and T5 (i, Q) in terms of rotation matrices (see Eqs. (5.126), (5.134), and (5.135))
X - 1 1 K \.x

& (a,8,0) = /32K +1) o -8 - Dgio(R) (o, B =£1);

TEG,Q) =) t5(i) DE,(R) (5.159)
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Fig.5.15. Reference direction unit vector (€,) and associated unit vector (€,) relative to the
directions © and —Q. €_(f2) is parallel to €, (—£2).

with
) = Y %(&i)aﬁ 3(2K+1)(; L [;) (5.160)

-«
af=+1
where R is the rotation bringing the reference system (€ (ﬁ) (ﬁ) Q) into the
system (zyz).
One can easily deduce some remarkable properties of the coefficients £ (i):

a) The only non-zero components of ¢ (i) are those with P = 0,42, as the indices
«a and 3 can only take the values £1.

b) From Eq. (5.147) and from the properties of the 3-j symbols it follows the
conjugation relation

¢) Defining the quantities

;= (1, 1,71 -1)=¢;; (5.161)
with ¢ = 0,...,3, one gets
(a'i)foéfﬁ =& (&i)ﬁa ) (&i)aﬁ =T (&i)ﬁa ) (a'i)fafﬁ = (&i)aﬁ )

and hence

H(6) = G (~ 1) (i) - (5.162)

These properties allow a simple derivation of the relation between the tensors
75 K (i, Q) and ’T (i, —€1), which will be needed in the following.

Let us con51der two opposite directions, Q and —Q, and the corresponding ref-
erence direction unit vectors &,(Q), &,(—). We assume for simplicity that the
directions €,(Q) and &,(—) coincide (see Fig. 5.15). From the definition (5.159)
we have
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TABLE 5.5

Values of the symbol ¢ (¢)

i K=0 K=1 K=2

0 Sp.o 0 75 %P0

1 0 0 *é (éP,—2 + 5P,2)
2 0 0 P12 (6p_y— bp,)
3 0 NEXIS 0

TE( D) =) t5(i) Dig(R')

where R’ is the rotation bringing the system (€a(fﬁ), €b(fﬁ), —0) into the system
(xyz). The rotation R’ can be executed in two steps: first a rotation R, which
brings the system (&, (—$3), &,(—Q), —€1) into the system (¢, (93), &,(€), ), and then
a rotation R which brings this last system into (xyz). Thus from the closure
property of the rotation matrices (Eq. (2.74)) we have

T (i, - th i) > Dfo/(Ry) DS (R) -
T

On the other hand, the rotation R, is given by
R, = (m,7,0),

and since (see Eq. (2.70))

—irP

—inr P
Dio (rm0) =e dpg (T) =e (-1)E+ 5

P=Q >

we obtain

—17rP
T, — Z tK (i (—1)F+P DEL(R) .

Using property a) of the coefficients ¢ (i) (see above) and the last of Eqgs. (5.162)
we finally get . .
T50, -0 =G T5(0,9). (5.163)

It should be remarked that this relation is valid only when the directions €a(ﬁ)
and &,(—€) coincide.

Let us turn to the evaluation of the irreducible tensor 7, c,lg( (i,€)). From Eqs.
(5.160), (5.128), and (2.26) we can easily obtain the values of the coefficients t% (4),
which are collected in Table 5.5. The explicit expressions for ’Tg (3, ﬁ) can then

be derived from the definition (5.159) by direct evaluation of the rotation matrices
(Eq. (2.68) and Table 2.1). The results are contained in Table 5.6.
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TABLE 5.6

211

Explicit expression for the tensor 7K (i, ﬁ) The components with negative @Q-value can be ob-
tained from the relation TK (1,Q) = (—1)° TK (i,§)*. The angles x, 0, v are shown in Fig.5.14.

Note that the rotation carrylng the reference system (@,b,€) into (zyz) is R =

(=

-0, —x).

—

79(0,Q) =

TL(0,8) =0

T10,0) =0

Tg((),ﬁ) 2\/— (3cos?0 — 1)
TIQ(O,Q) = —@ sin 0 cos 6 el

Tg((),ﬁ) = @ sin20 e2iX

T9(1,8) =0

Ti(1,0) =0

Ti(1,0) =0

Tg(l,ﬁ) = —% cos 2 sin?6

T2(1,Q) = —%2 (cos 2y cos 0 + i sin 2v) sin 6 e'X

V3
2
T2(1, Q) = 7§ [cos 27 (1 + cos?0) + 2i sin 2 cos 6’] e?ix

T79(2,9) =0

TH(2,8) =0

TH(2,0) =0

’Tg(2,ﬁ = % sin 2 sin2

T2(2, Q) = § (sin2y cos @ — i cos 2) sin § e'X
T2(2, Q) = @ [sin 2y(1 + cos20) — 2i cos 2 cos 9] eix
T9(3,6) =0

T&(S,ﬁ) = \/g cos @

T%(S,ﬁ) = —@ sin 6 eiX

T3(3,%) =0

72(3,() =0
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TABLE 5.7

Explicit expression for the tensor

5 (v, ﬁ) The components with negative @-value can be
obtained from the relation IfQ v,Q) = (-

)@ I (v, )"

Zi (v, ) = % cos 0 V(v, Q)

Ti(v, Q) = —@ sin@ V (v, 1) e'x

2 (v Q) 1 [(3 cos?0 — 1) I(v, Q) — 3sin%6 @(V Q)]
o\ 22 ’ )

I3 (v, Q) = —@ sin @ [cosel(u7 Q) + cos 6 Q(v, ) +iU(v, ﬁ)] elx

I3 (v, Q) = % [sin26’ I, §) — (1 + cos20) Q(v, ) — 2i cos 6 U(v, ﬁ)] e?iX

where  Q(v, ) = cos 2v Q(v, ) — sin 2y U (v, 1)

U(v, ) = cos 2y U(v, ) + sin 2v Q(v, ©2)

The derivation of the explicit expression for the tensor Ig (v, Q) defined in Eq.
(5.157) is straightforward (see Table 5.7). Note that the expressions in Table 5.7
— like those of Table 5.4 — contain only the linear combinations Q and U, which
are independent of the reference direction chosen to define the Stokes parameters
@ and U.

Finally, the irreducible tensor of the radiation field Jg (v) is obtained by averag-

ing Ig (v, ﬁ) over the solid angle. In the particular case of an unpolarized radiation
field having cylindrical symmetry about the z-axis only two components are not
zero, namely

B = § 3 100

Ji(v) = 21% f% (3cos?0 — 1) I(v,0) . (5.164)

Obviously, the component JZ(v) is also zero if the radiation field is isotropic.

5.12. Further Properties of the Scattering Phase Matrix

The expression given in Sect. 5.10 for the scattering phase matrix and the various
relations proved in Sect. 5.11 allow a further extension of the remarkable properties
of this matrix.

Starting from Eq. (5.133) and using Eq. (5.163) one can directly prove the fol-
lowing relations (which are however valid only when the same reference directions
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are chosen for 3 and —§, and for € and —ﬁ’)

T Lo
R, (0,4 B) = ¢ R; (0,4 B)

— —

- . - < = =
Rij<Qv_Q aB) - gj Rij<QaQ 7B)
= =3y S
R,;(—Q,-Q%B) =(( R;(Q,Q:B) .
The first relation means that if (I, Q,U, V) is the Stokes vector scattered along the
direction €2, then, irrespective of the polarization of the incident beam and of the
intensity and direction of the magnetic field, the Stokes vector scattered along the
direction —Q is (I, Q, —U, —V). The two other relations have analogous meanings.
Considering next Eq. (5.136), we can write the expression of the scattering phase

matrix for the most general geometry of Fig. 5.9. The two relevant rotations are
(see Eq. (5.122))

R=(—v,-0,-x) x (xp,9p,7B)
R/ = (77/7 76/7 7X/) X (XB7 eBa’yB)

where v is an arbitrary angle, and hence from Eq. (2.74) we obtain

R, (0, Vs é)
= 2 O R0 X Dhol= —8 =) MG (B) D (' 0/ (5.165)
KPP Qe
where we have introduced the magnetic kernel defined by
= 1
MG (B) =" DEqi(xp 05 78) Poro (=18 —05 —X5) THi07H (5.166)
QN
In terms of reduced rotation matrices (Eq. (2.68)) we have
5 i(Q-Q) 1
ME(B)=e BN A8 (0p) Ay (—0p) ——— . (5.167)

1 "H
QN + l Q
which shows explicitly that the magnetic kernel is independent of the angle 5,
that can be set equal to zero.

The magnetic kernel satisfies several important properties which can be easily
derived from Egs. (5.166) and (5.167) using some properties of the rotation matri-
ces:

i) Limiting case of zero magnetic field
Recalling Eqs. (5.84) and (2.74) we have

élLHOMQQ/ ) = Z DCIQ(Q"<XB 93 O) D(.IQ("Q’(O _HB _XB)
QII

— DK —
=D (000) =d50
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and hence L
R (2,950) = > t5(i) t15.()" DEp(R), (5.168)

KPP’

where R is the rotation bringing the reference system (€, (Q),&,(Q),Q) into the
system (£1(), &4(0V), ).

ii) Limiting case of strong field

lim MQQ/( ) DQO(X39 0) le(O —0p —Xp) -

B—oo
iii) Conjugation property
MG (B) = (-1)°" ¢ M",_,.(B).
iv) Magnetic field symmetries
MEq (B,m— b5, —xp) = MEo_/(B, 05, xp)
MEq (Bym = 0,7 —xp) = (—1)9Y M%,_ (B, 05, x5)
MQQ’(B70377T+XB) ( )Q o MQQ’(B7037XB)7

a set of formulae giving the transformation of the magnetic kernel under a 180°
rotation of the magnetic field vector about the axes x, y, and z of Fig. 5.9, respec-
tively.

v) Magnetic field reversal

MQQ’( _') =
1
- Z Digr(m+xp m=05 0) DG (0 —m+0p —7—xp) TFi0"H
QII
1
= Z DCIQ(Q”(XB GB O) DCIQ("Q’(O 703 *XB) m s (5169)
QII

which shows that the reversal of the magnetic field can also be obtained by the
formal substitution H — —H.

vi) Average over an isotropic distribution of magnetic fields

For an isotropic distribution of magnetic field vectors we can find the average value
of the magnetic kernel. Defining

2m ™

. 1 ' .
(ME(B)) = E/dXB /smeB ME,,(B)do, (5.170)

0 0
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we easily obtain, with the help of Egs. (2.71) and (2.76)

(MG (B)) = g dgq » (5.171)

where the quantities p; are given by

1 1
- 172
Hi 2K+1;1+1Q"H (5.172)

or, explicitly

po =1
1 9 1 2
/1,123(14-2008 al) =§|:1+m:|
1 1 2 2
Ho = g (L+2c08%a, +2co8’a,) = 3[1+ im0

the angles «; and a, being defined in Eq. (5.98).

This result shows that the average of the scattering phase matrix in an isotropi-
cally distributed magnetic field can be obtained directly from the scattering phase
matrix of the non-magnetic case by multiplication of the various multipole compo-
nents by the quantities py,

(R (0,9 B)) = pg R (2,050) . (5.174)
K

In particular, in the limiting case of strong magnetic fields the matrix R™ is
reduced by a factor 3, while the matrix R® is reduced by a factor 5.

5.13. Understanding Scattering Experiments
through Oscillator Models

In the previous sections we have derived the expression for the scattering phase
matrix in the presence of a magnetic field both in terms of direction cosines and
in terms of rotation matrices. However, these derivations are rather involved and
there is a danger that the physical meaning of the various results may be hidden
by the mathematical formalism. Thus we think it is worthwhile to present some
qualitative arguments — based on the atomic oscillator model — aimed at clarifying
the underlying physics. At the same time we will draw some interesting analogies
between the classical and quantum-mechanical descriptions of scattering phenom-
ena.

Let us consider a simple scattering event like that illustrated in Fig. 5.16a, left.
The incident radiation beam is unpolarized (conventionally, this is represented by
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Fig.5.16. Qualitative description of a 90° scattering event in the absence of magnetic fields and
in the presence of a magnetic field parallel to the line of sight. See text for explanation.
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two double-ended, perpendicular arrows which should be regarded as incoherent
electric field oscillations), and there is no magnetic field. We schematize the scat-
tering atom as a collection of three linear oscillators of frequency v, that will be
called the z, y, and z-oscillator, respectively. The scattering experiment can be
described in the following way.

i) The electric field of the incident radiation can be decomposed into its = and
z components; owing to the unpolarized character of the radiation, the two com-
ponents are incoherent, or, in other words, there are no phase relations between
them.

ii) The = component of the electric field excites the x-oscillator, while the z compo-
nent excites the z-oscillator (the latter is represented by a double-ended arrow in
the right part of the figure). The incoherent character of the electric field is simply
transferred to the oscillators.

iii) The oscillators decay with a damped motion and each of them emits, in any
given direction, a radiation beam polarized according to the well-known laws of
classical electrodynamics (see Eq. (3.29)). If we consider the beam scattered in
the x direction, it is easily seen that the z-oscillator is ineffective (being pole-on),
while the z-oscillator produces a radiation beam that is linearly polarized along the
z direction. As a consequence, the radiation scattered in the z direction is 100%
linearly polarized perpendicularly to the scattering plane, which is consistent with
the results derived in Sect. 5.9 (see Eq. (5.103)).

To investigate the effect of the magnetic field it is convenient to describe the
model atom by a different set of oscillators, namely the linear z-oscillator plus two
circular oscillators with opposite directions (called o, and o_) laying in the y-z
plane as shown in Fig. 5.16b, left. If the magnetic field is zero, the frequency of
the three oscillators is still v, and we must find the same results as above.

Following the same line of reasoning, we see at step ii) that while the 2 component
of the electric field still excites the z-oscillator, the z component excites the o, and
o_ oscillators in such a way as to produce a well-defined phase relation between
them, because the resulting motion of the electric charge takes place along the
z direction (Fig. 5.16Db, right). For the scattered radiation we obviously have the
same result as before, but we must bear in mind that this new description of
the atomic system has forced us to introduce the concept of phase relation (or
coherence) between the two circular oscillators.

In the presence of a magnetic field directed along the z-axis (see Fig. 5.16¢)
the circular oscillators vibrate at different frequencies ((v, + vy) and (v, — vy),
respectively, with v the Larmor frequency). Thus the phase relation produced by
the exciting electric field is lost little by little during the damped decay process. The
electric charge describes in the y-z plane a complicated pattern (sometimes called
a ‘rosette’ — Fig. 5.16¢, right), and thus the polarization of the scattered radiation
— which reflects the weighted average of the pattern — is decreased and rotated
from the direction of the non-magnetic regime: in Fig. 5.16¢ (left) the scattered
beam is the superposition of a linearly polarized beam plus an unpolarized beam.
The shape of the rosette is controlled by the parameter H = 27vy /vy defined in
Eq. (5.84). When the value of H is very large (H > 1) the rosette degenerates
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into a different curve (that we will rather call a ‘daisy’, see Fig. 5.16d right) and
the scattered radiation is totally unpolarized.

This simple example shows that the effect of the magnetic field is to cause a
relaxation of the phase relations (or coherences) between the different oscillators:
the coherence between the o, and o _ oscillators is maximum for zero magnetic field
(Fig. 5.16b) and gradually decreases with increasing field strength (Fig. 5.16¢,d).
The Hanle effect is just the consequence of this relaxation process in resonance
scattering.

Different geometrical configurations can be envisaged to get a deeper insight into
the phenomena of resonance polarization and the Hanle effect. Figure 5.17 presents
an example of forward scattering; here the scattered beam is unpolarized for zero
magnetic field and partially linearly polarized along the field’s direction when the
magnetic field is present. The discussion of this case, that can be carried out along
the same lines as before, is left to the reader as an exercise (cf. Eqgs. (5.106)).

The classical model that represents the atom as a collection of one linear os-
cillator and two circular oscillators of opposite directions has a simple quantum
analogue. This is the two-level atom having a lower level of angular momentum
J = 0 and an upper level of angular momentum J’ = 1. The excitation of one of
the classical oscillators induced by the electric field of the incident beam has its
quantum equivalent in the excitation of one of the Zeeman sublevels of the upper
level. In this analogy, the linear oscillator corresponds to the sublevel M’ = 0, while
the circular oscillators of frequency (v, %+ v,) correspond to the sublevels M’ = +1,
respectively.

In scattering experiments, apart from special geometrical configurations, the var-
ious oscillators are excited unevenly by the electric field of the incident beam, and
well-defined phase relations arise between different oscillators. This means — in the
language of Quantum Mechanics — that the upper level of the atom is polarized
(see Sect. 3.6); in other words, the diagonal density-matrix elements p ; (M’, M')
are different from each other and the off-diagonal elements p ;, (M’, M"") are non-
zero. In particular, the amount of excitation present in a given oscillator has its
quantum analogue in the corresponding diagonal element of the density matrix,
while the combined excitation of two different oscillators with a well-defined phase
relation has its analogue in the off-diagonal element of the density matrix between
the two corresponding sublevels. For example, in the case of panel (b) of Fig. 5.16,
the non-zero density-matrix elements are p (0,0), p(1,1), p(—1,-1), p(1,—1), and
p(—1,1), the last two elements being related to the coherence between the circular
oscillators. Passing to panels (¢) and (d) of the same Figure, the diagonal ele-
ments remain unchanged, while the off-diagonal ones are reduced by the presence
of the magnetic field. In the following of this book we will see that these qualita-
tive concepts are fully confirmed by a more rigorous treatment based on Quantum
Mechanics.
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Fig.5.17. Same as Fig.5.16 for a forward scattering event. The trajectories of the oscillating
electron in the y-z plane are the same as in Fig.5.16 right.
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5.14. The Role of Collisions

We present in this section a simple theory to describe the effect of collisions on
polarization phenomena. Both the atom and the colliding particles will be described
in terms of classical physics; in particular, the atom will be schematized as a three-
dimensional oscillator, like in the previous sections of this chapter.

Our first assumption is that the interactions with the closest perturbing particle
(binary interactions) play the principal role. In other words, we assume that triple
and multi-particle interactions can be neglected, which implies a limitation on the
density n of perturbing particles in the medium,

a%n<<1

where o is the typical collisional cross-section. This inequality is always well-
satisfied both in laboratory plasmas and in stellar atmospheres.

Next we distinguish between two different kinds of collisions, ezciting collisions
and perturbing collisions, defined according to the following simple model.

a) Exciting collisions are inelastic, which implies an energy transfer from the col-
liding particle to the atom. When an exciting collision takes place, the oscillator is
abruptly forced to interrupt its previous motion, described by Eq. (3.23), and starts
oscillating again with a new set of initial conditions. These initial conditions de-
pend on the efficiency of the collision (which sets the amplitude of the oscillation),
and on the geometry of the impact event (which sets the polarization characteris-
tics of the oscillation). The geometry of the event is specified by the direction of
the colliding particle, the direction of the vector joining the center of the oscillator
with the center of the colliding particle at the moment of closest approach, and on
the orientation of the colliding particle if this is not spherically symmetrical.

If the colliding particles have an isotropic distribution of velocities, and — in the
case of oriented particles — if they have random orientations, the initial conditions
set up in the oscillator will be isotropic as well. Employing the same notations as
in Sect. 3.2, the initial values of the amplitudes of the oscillations will be given by

(AZAG) = 6,4 1A, (5.175)

where the symbol (...) means a statistical average over all the possible collisions.
This is just the physical situation described in Sect. 3.2. We remind the reader that
exciting collisions, as defined here, have their quantum counterpart in collisions able
to induce transitions between atomic levels.

In different cases, like for instance when the atom is bombarded by a collimated
and/or oriented beam of particles, Eq. (5.175) does not hold and, as a result, the
atom emits polarized radiation in the decay process. This phenomenon is known
under the name of impact polarization, a subject that will not be deepened here.

b) Perturbing collisions, on the contrary, are elastic collisions which are not able to
interrupt the oscillatory motion of the atom and to make it restart from scratch,
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but are effective in shifting the phase of the oscillation during a time interval ¢,
that is called the collision time.

Following a model that was proposed by Lorentz (1915) and refined by Weisskopf
(1932) and Lenz (1933), we suppose that the collision time ¢, is much smaller than
the other typical times involved in the physical process, namely the decay time
of the oscillator 1/ and the mean time between collisions 1/f, where f is the
frequency of perturbing collisions!

t. K L t. < !

c T Cf
This hypothesis allows to treat the collisions as instantaneous (impact approzima-
tion). We further assume that each perturbing collision produces a large phase
shift in the atomic oscillation, so that the oscillations before and after the collision
are totally uncorrelated (strong collision hypothesis). These two assumptions are
at the basis of the usual treatment of collisional broadening in spectral lines (see
e.g. Sobel’'man, 1972) and can also be used to derive the effect of collisions on
polarization phenomena.

To this aim, however, the second assumption must be suitably specified to de-
scribe with greater accuracy the geometrical details of the collisional event. We
suppose that each collision, characterized by its own geometry, induces an indepen-
dent phase shift in each of the three components of the oscillatory motion along a
triplet of real, orthogonal unit vectors whose orientation is fixed by the direction of
the velocity of the colliding particle (and by its orientation, in case of an oriented
particle). These unit vectors will be denoted in the following by the symbol t_;
(1 =1,2,3), and the corresponding phase shifts by ¢,. Now we are going to derive
the consequences of this simplified model on the results obtained in the previous
sections of this chapter.

(5.176)

i) Radiative Transfer Equations.

In the derivation of the radiative transfer equations for polarized radiation in the
presence of a magnetic field (Sect. 5.3) we found in Egs. (5.29) and (5.30) the
relation between the amplitude of the oscillation and the corresponding component
of the forcing electric field. This relation is based on a particular solution of the non-
homogeneous equation (5.28) which disregards the transient solution depending
on the initial conditions. In the presence of collisions the transient solution is
important, and we take it into account in the following way.

1 Obviously the frequency f can be written in the form

f:NpT)rU7

where N_ is the number density of perturbers, o, is the average velocity of the perturbers relative
to atoms, and o is the cross-section. Expressing Np in cm ™3, v, in km s~1, and o in units of a%
(ay being the Bohr radius), we have

f=280x10"" N 5,0 s".

r
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Let ¢t = 0 indicate the time at which the first collision takes place and suppose
the previous collision was sufficiently far in time for its transient to be already
damped (statistically, there will always be such a collision and nothing prevents us
from calling it the ‘first’ collision). Employing the same notations as in Sect. 5.3,

and making the same approximation (17 — v?) ~ 2v (v, — v), we can write

1
F(t=0)=——2 Z(V E, i, . (5.177)

8m2my o — avy, —v) — il

Expansion on the unit vectors ¢, gives

e 1 -
7(t=0)=——209 E D .t
T = 871'2muZ (Vg —auy, —v) —i @ 7

where the direction cosines D, are defined by!

—

D, =i, iF. (5.178)

(e %7 K2

According to the above assumptions, the effect of the collision is such that

1 i, —
Ft=0)=——2_%" E.D,. e%t,

- 8m2my (Vg —awy, —v)—il ¢ '

and returning to the basis 1,

€ 1 i,
T(t=0,)= g3, B[ Do D3|y (5.1
T =0 = g L oy mawy — ) =i D2 D Din] Ty (5:179)

To obtain the motion of the electron after the collision we must solve Eq. (5.28).
Its general solution is the following

N € 1 —2mivt
(1) =~ G 2 | ir e U
8

- 8mmw vy, — By, —v) —

—ori (v — 2
+Z CB o 27i (v, —By; ) t o Ft _,ﬁ,
8

where the constants C5 must be determined in such a way as to satisfy the boundary
condition (5.179). Hence we obtain

e E i},
Oy = ——0 o > Do Dp,
A 87r2mu{ za: (Vg — oy, —v) —ill zl: ai © pi

Eg
_(VoﬂVLV)iF}.

L The quantity D, could also be written as @, - z_f;. as we have supposed the unit vectors Z;. to

be real. However, we adopt the definition (5.178) to make easier a possible generalization of our
hypotheses on the effects of collisions.
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Now we perform a statistical average over collisions. Since the phases ¢, are arbi-
trary large numbers (strong collision hypothesis), we have

(”Y=0 (i=1,2,3).

The first term in curly brackets vanishes and we obtain

—2mivt

N €o [ —27i (v, — B, —v)t —ZLt Eﬁ € N
t) = — 1- Ol P ’
T 8m2my zﬁj ¢ ¢ (vg — By, —v) —1il s

so that (cf. Eq. (5.30))

—2mi (v, —Bv, —v)t —Xt
€y 1—e (o =P, )62

t) = —
X5 (1) 8m2my (Vg — By, —v) —1iI"
or, in other words, an electric susceptibility variable with time. The average value of
the electric susceptibility can then be obtained by multiplying its value at time ¢ by
the probability that no collision occurred in the interval (0,¢). If f is the frequency
of collisions, we have!

8

& 1
8n2my (v, — Py, —v) —il"’

e Ty, dt =

<Xﬁ(t)> =f

o

where
S

2
F/:F ZF:
+ 21 47T+27r’

(5.180)
with? ;

o= (5.181)
Comparison with Eq. (5.30) shows that the effect of perturbing collisions consists
in a broadening of both the absorption profile and the associated dispersion profile.
The same result could be formally obtained by the addition of a supplementary
friction force in the equation of motion of the oscillator.

1 The probability that a collision occurs in the interval (¢,t 4 dt) is given by

dp = fdt.

Dividing the interval (0,t) into a large number N of equal parts, the probability that the first
collision occurs in the interval (¢,¢ + dt) is given by (see Eq. (2.62) for a similar derivation)
dP= lim (1-f~)"fat=fe/tar.
N

N—o0

2 The definition I', = f/4m (instead of f/2m) leads to simpler forms for the expressions that

will be encountered in the following.
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ii) Zeeman Effect, Resonance Polarization and Hanle Effect.
By a similar reasoning we can find the effect of perturbing collisions on the polar-
ization of the radiation emitted by an atom in a decay process.

We suppose that our model oscillator is excited at time ¢ = £, = 0 either by an
exciting collision or by the radiation field, and we suppose that the first collision
takes place at time ¢, the second at time ¢,, and so on. In the interval (¢,,¢,) the
motion of the oscillator is described by Eq. (3.23), which has the solution

2 (f) = A, o Tt ST gy (5.182)
where A are the initial amplitudes set up by the exciting mechanism. At time ¢,
the oscillator undergoes the first collision, which is characterized by its particular
geometry (specified by the three unit vectors t_;“) and by the corresponding phase
shifts ¢;"). Along the same lines leading from Eq. (5.177) to Eq. (5.179) one can
write for the time interval (¢,,t,)

_9ri _ _
2o (t) = A K e P T3 <<ty

where KV

sa» the collisional kernel due to the first collision, is given by

a

thz —27r1(a vt [Z D(l) (1)*} ’ (5183)

with the direction cosines D) defined as in Eq. (5.178). Similarly, for the time

interval (t,,t,, ;) one has

—27i (v,—av, )t —t
(1) (2) (n) 0 L 2
E AéKéeKw...Kpae e
dep...p

(t, <t<t, ).

To shorten notations we define the cumulative collisional kernel due to the first
n collisions as

Kgy= Y K@KD.. K (5.184)
€p...p
with
(0) 0) _
KOy =K =04 (5.185)

and we can write

—omi (v — e
ZAJ kS e 2mi (v, —av; )t o 2t (t, <t<t, ).

a general formula which includes Eq. (5.182).
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The function z,, (t) can be expanded in Fourier series,

(t) = / Fw) ¢ T dy |

where!
o0 tn+1
Tiv i (v, —av —v 2
ot S [
0 n=0 § .
') 7Natn . 7N0‘tn+1
=30 A5k S . : (5.186)
N
n=0 4 @
with
N, =27i(yy — oy, —v) + % = 2mi [(VO —ay, —v) — iF] . (5.187)

To investigate how the Zeeman effect and resonance polarization are affected
by perturbing collisions we must start from Egs. (3.34) and (5.75), respectively.
Owing to the different definition of the Fourier transforms F, (v) and F, (v), these
two equations must be rewritten in the form

T (r) = lfcho Z [yt / A F(v)" Fylw) dv (5.188)
and -
dr,; (@) = 2 60 Bl9) Z i Cy ~ /I/4.7:a(u)*.7:ﬁ(u) v, (5.189)
respectively. -

From Eq. (5.186) we have
FoaW) Fyv) =
-3 S S
n=0 n’=0 dJe

* *
|:e_Na t, _ e_Na tn+1:||:e_N/3tn' — e N{itn'+1j|

N; N,

(5.190)

! The Fourier transform F, (v) differs from F_(v) defined in Eq. (3.32) for the presence of the

amplitudes A;. In the spemal case of no collisions ((;5(”) =0, IC<") =4,3) we have

Folv) = A, F ().

@
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This expression refers to a particular sequence of collisional events. Now we must
average over all the possible collision directions and over all the possible collision
times ¢, t9,... T,,,. ..

First of all, we observe that the phase shifts ¢§"’ relative to the n-th collision
are totally uncorrelated with the phase shifts gb;-"’/) relative to the n/-th collision.
This reduces the double sum in Eq. (5.190) to a single sum (n’ = n). Then we
consider the average of the collisional kernels over an isotropic velocity distribution
of perturbing particles. These statistical averages are performed in some detail in
the following section. Borrowing from there Eq. (5.200), we have

FoW)" Fyv) =

Sy gt 504 5)

n=0 &e KQ

[e_N; ty _ e_N; tn+1i| [e_N,e t, _ e_NB tn+1i|
Nz Ny ’

where the symbol rj is defined in Eq. (5.199).

Finally, we average over all the possible collision times. To this aim we must
evaluate the multiple integral (see footnote 1 on p. 223)

X

/ fdt, / fdty- - / i, e E ) Fuw)
0 tl tn

where f is the frequency of perturbing collisions. The evaluation of the integral is
elementary and leads to

F(v) Fylv) =
- . Y . 1 1 K\/1 1 K
:Z;%;f%AJ—U5 Z;TK@K:%U(E s Q)(ﬁ W Q)
y " (Ng+ Ng+2f)

(NG + N+ /) (NG + 1) (Ng+ f)

Performing the sum over n, and using the expressions of N and Ng given in
Eq. (5.187), one finally obtains

FoaW)" Fyv) =

_ L £ 4 (_1y0—a L +i(a-p)H
 Aq2 %:A‘SAE( 2 [(uo —ay, — V) JriF’][(VO — By, —v) — iF’]

x%(QKJrl)(i ,15 g) (;; —1a g)
X[W

+i(a— ﬂ)H] s (5.191)
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where the various damping coefficients are given by
2 B
-1 =L poryur, p=a_ %8
4 47 ¥ 2mcery
As far as the Zeeman effect is concerned, if we restrict attention — as in Sect. 3.2 —

to the case of natural excitation, we must replace A5A_ by |A|? d;5, in Eq. (5.191).
Using Eq. (2.26a) we can write

Cea o1 1 0\(1 1 0
O (=1) _3<6 -5 0) <a —« O>'

Application of the orthogonality relation (2.23a) shows that the only non-zero
contribution originates from the K = 0 term. Thus we obtain, with the help of
Egs. (2.26a) and (5.199)
1 — I 1
F.(w)*F =05 —|A]? —= .
a(y) ﬁ(y) af 471_2 | ‘ I (VO —avp, — V)2 + [‘/2

(5.192)

Since Eq. (3.35) — which relates the amplitude [A[? to the average energy E con-
tained in each oscillator — is still valid, from Eqgs. (3.36), (5.188), and (5.192) we
obtain for the emission coefficient in tensorial form the expression (3.37) with I’
replaced by I''. In other words, the effect of perturbing collisions on the Zeeman
effect is nothing but a broadening of the profile. This is consistent with what we
found for the radiative transfer of polarized radiation.

As far as resonance polarization and the Hanle effect are concerned, the situation
is very different. Since the Fourier transform F, (v) is substantially non-zero only for
v & 1, we can extract the factor v* from the integral over frequency in Eq. (5.189).
Using the residue theorem, we then obtain from Eq. (5.191)

1 N a 1 1 K 1 1 K
:M—F;A(;Ae(fl)é %(MH)(G s Q)<ﬂ . Q>
X[FJrFC(lTK)

¢ +NamH]1

(which is consistent, under the limit f — 0, with Eq. (5.83)). Repeating the same
arguments leading to Eq. (5.87), one finds that this equation must be replaced by
the following

a3 0O 53 3 — * *
Tij,kl(QvQ/§B7f) = 5 Z(_l)é Chi Cﬁj C:sk Cél
afde

x%(QKJrl)(i ,15 g) <¢1a —1a g)
X[M

: +uamH]i
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which is the general expression for the scattering phase matrix of the polarization
tensor in the presence of perturbing collisions. It can be easily seen that properties
(5.88) and (5.89) are still satisfied.

The scattering phase matrix for the Stokes parameters in the presence of collisions
is given by the analogue of Eq. (5.92), namely

)

Y n o 1 Y o
Rij( V5B, f) = ) Z CAMm (Uj)mnTkl,mn(Q’Q/;B7f)'

klmn

Again, properties (5.93) and (5.94) still hold.

The effect of perturbing collisions can be better understood if irreducible ten-
sors are introduced (see Sect. 5.10). Repeating the same arguments leading to
Eq. (5.121) one finds that this equation must be replaced by

TG B ) =5 (P18, (1,1, D) £, (0, p, )
qq’ pp’

el L B0 )
KQ

[ -]

Using then Eqgs. (5.125) and (2.23a) one obtains

— —

OB, f)=

el

Tuv,pa (

1

|+, (1—r
= 5 S ()R EE (v D) € <,p,9'>[%
KQ

[\]

-1
+iQH} ,

which is the same as Eq. (5.127) with the only substitution

I+ T, (1—rg)

-1
[IHQH]lﬂ[ HQH] .

r
Similarly, one finds that Eq. (5.133), which gives the scattering phase matrix for
the Stokes parameters, must be replaced by

Ry B, f) =) (1975 (5,9) T, (5,)

[FJrFC(lTK)
I
KQ

—1
+iQH] .

These expressions show the substantial difference between magnetic field and
collisions as depolarizing agents in resonance scattering. Collisions affect all the
K-pole components (except that with K = 0, as it will be seen shortly), while the
magnetic field does not affect the Q = 0 components. It has been mentioned in
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Sect. 5.13 — and will be shown in detail in Chap. 10 — that this feature is related to
the fact that the magnetic field can alter the coherences but not the populations
of the atomic levels, whereas collisions can alter both. In terms of classical dipoles
this means that collisions affect both phase correlations and amplitude differences
between oscillations, while the magnetic field affects only the former.

To discuss the results just obtained, we can write the depolarization factor in the
form

-1

Ir+r.(1- 1 1 1
L0 o] = - . (5.193)
r 146 +iQH 1465 1+i1QHK
where
I f
(;K:?C(l*TK):;(l*TK)
H 2
/ il # (5.194)

K= 156, ~v+f(0—-rg)

This expression shows that the effect of collisions is twofold. First, each K-pole
contribution to the scattering phase matrix is reduced by the factor (1 + ¢, ), where
0y is a parameter proportional to the frequency of perturbing collisions or, in other
words, to the density of perturbers. It will be shown in the next section that the
values of 6, depend on the specific assumptions which are made about the phase
shifts induced by perturbing collisions. The model considered here leads to the
values (see Eq. (5.199) of next section)

Thus
= _ (5.195)

a result deduced through a quantum-mechanical calculation by Omont (1965) for
the case of Van der Waals, dipole-dipole interactions.

Moreover, perturbing collisions reduce the efficiency of the magnetic field in de-
polarizing (or in polarizing) the scattered radiation, the reduction being larger for
K =1 than for K = 2.

As a specific example, let us consider the scattering geometry illustrated in
Fig. 5.10. In the absence of collisions the multipole components of the scatter-
ing phase matrix are given by Egs. (5.139). In the presence of collisions, one finds
that the matrix R™ must be divided by the factor (1 + d,), and the quantity C,
appearing in its expression must be replaced by

C} = cosa cos(a) + X —x) ,

with of defined by
tana) = Hj .
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Similarly, the matrix R must be divided by the factor (1 + ¢,), and the quantities
Cy, Sy, C,, Sy must be replaced by

Cy = cosay cos(af + x' = x) 57 = cosay sin(af +x' —X)
5 = cosaly cos(af +2(x" — X)) 5 = cosaly sin(ah +2(x — X)) .
with
tanaf = Hy | tanay = 2H) .

Finally, we want to recall that the theory presented in this section is based on
rather restrictive assumptions, and that it could in principle be generalized by
considering the effects of weak collisions, the existence of correlations between
different phase shifts, and so on.

5.15. Some Properties of the Collisional Kernels

We evaluate in this section — under the assumption of an isotropic velocity distribu-
tion of colliding particles — the average over all collision directions of the quantity

(n) * g (n)
K5 K

where the kernels are defined in Eq. (5.184).
Starting from the kernel relative to the first collision, we have from Egs. (5.185)
and (5.183)

- ) ) * g
Kso Keg = Kso K

27i (a—8—PB+e€) v, t . 7~¢51) ¢(_1) y
=e LI[Z DY D) ZD“’ 7D (5.196)

i=1

According to our hypotheses on perturbing collisions, the phase shifts relative to
the i-direction are totally uncorrelated with those relative to the j-direction. Thus
the double sum reduces to a single sum of the form

where
D . =4 -t =u_t,

a1 [e3 K2 [e3% (2

Since we must average over all the possible orientations of the unit vectors t_;, and
since, on the other hand, these three unit vectors are equivalent, we have

(S) =3(D.;Dj; Doy Dj;) (5.197)
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where ¢ = 1, or 2, or 3.
The average is easily evaluated using spherical tensors. In the reference system
of the magnetic field (u,,,, %,) we have, with the help of Egs. (5.111), (5.112),

and (5.120)

q

From Eq. (5.116), identifying the unit vectors ,, t,, t_;, with @, l;, C, respectively,
we have

(ta)g = Dag(R) ,

where R is the rotation bringing (f,,%,,%,) into (,,,,d,). Since in Eq. (5.197)
the index ¢ can be chosen arbitrarily, taking ¢ = 3 one has

<S> =3 <De3 D§5 D, DE3> =3 <(t0): (to)s (to)a (t0)5>
= 3(D.(R)" Dys(R) Dy, (R)" Dy (R)) -

To evaluate this expression we use twice Eq. (2.77) and then Eq. (2.73) and the
Weyl theorem (2.76) to get

<S>(1)6_QZTK(2K+1)<1 _15 g) (; _1a g) (5.198)

KQ
where

0 for K =1 (5.199)

000 2/5 for K=2.

<1 1 K>2 1 for K =0
T =3 =

Substitution into Eq. (5.196) gives

o= S (o g) (5 L o)

The collisional kernels of higher degree can be evaluated by a recursive procedure.
Assuming the complete independence of successive collisions one obtains

(K" Ky ) =

:(—1)5_°‘Zr}‘((2K+1)<i _15 g) <; _1a g) ; (5.200)

KQ

which — recalling the orthogonality relations (2.23b) — is valid also for n = 0.

It should be remarked that the expression for rj given in Eq. (5.199) is strictly
related to the assumptions on the phase shifts ¢, that we have made at the begin-
ning of Sect. 5.14. The motion of the atomic oscillator has been expanded into three
oscillations along a triplet of real, orthogonal unit vectors t;, and the phase shifts ¢,
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induced by a perturbing collision have been assumed to refer to such oscillations.
If we choose a different triplet of unit vectors, and retain the assumption of the
complete independence of the phase shifts along each of them, the final results will
generally be different. This is no wonder, as the choice of a specific triplet of unit
vectors is equivalent to a definite physical assumption on the effects of perturbing
collisions.

For example, let us choose the triplet of unit vectors

- I - ..
t,= i (t, +ity)

=1,

- 1, - .-

t, =—= (-t +ity) , (5.201)

with (ﬂ,t;,tg) the usual triplet of real, orthogonal unit vectors. One finds the
same results as before, except that Eq. (5.197) must be replaced by the following

<S>:Z<DeuD§uDauDEu>
m

(obviously the three unit vectors of Eq. (5.201) cannot be considered equivalent).
In terms of rotation matrices we have

(S) =3 " (DL.(R)* D}s(R) D}, (R)* DL4(R))

and we obtain the same equation as Eq. (5.198) with

1 for K=0
T = =<¢1/3 for K=1
1/5 for K =2.

Thus Eq. (5.195) becomes
9, b

5, 6°

which is just half the value obtained from the previous model.

5.16. Classification of the Physical Regimes

We have seen in this chapter how it is possible to describe in classical terms some
of the different phenomena which are able to induce polarization in spectral lines
or to affect its characteristics. In particular, we have seen that polarization can be
originated either by the presence of a magnetic field — which induces a frequency
splitting between the different classical dipoles — or by the presence of an intrinsic
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Fig.5.18. A classification scheme for polarization phenomena in spectral lines (the meaning of the
symbols is explained in the text).

anisotropy in the radiation field which is illuminating the atom. The anisotropy of
the radiation field, that is in general related both to its angular distribution and
to its polarization state, can induce amplitude differences between the oscillations
of the dipoles and well-defined phase correlations (or coherences) between such
oscillations. We have also seen that a magnetic field has the further effect of
reducing such phase correlations, and that collisions with an isotropic distribution
of perturbers produce a relaxation of the amplitude differences and of the phase
correlations.

All these phenomena, that will in general act simultaneously in a magnetized
plasma, can be characterized by four different parameters all having the dimensions
of frequency. These parameters are the following:

a) vy, the Larmor frequency, proportional to the magnetic field magnitude, which
is defined in Eq. (3.10);

b) Avp, the Doppler width, which depends on the temperature of the plasma (and
on its microturbulent velocity), defined in Eqgs. (5.43) and (5.48);

c) v, the oscillator damping constant, which has its quantum analogue in the
Einstein A coefficient for spontaneous emission from the upper level;

d) f, the frequency of depolarizing collisions, which is proportional to the number
density of perturbers.

According to the relative values of these four parameters we have different phys-
ical regimes that can be suitably classified in a two-dimensional diagram (Landi
Degl’Innocenti, 1983). Such diagram, shown in Fig. 5.18, bears a magnetic field
indicator (the Larmor frequency) on the vertical axis and a density indicator (the
frequency of collisions) on the horizontal axis.

In drawing the diagram we have assumed Avp > . In terms of the thermal
velocity wp we have indeed

Avp  wy
v M
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where A is the line wavelength. Substituting typical values relative to a spectral line
of optical wavelength formed in a stellar atmosphere (wp = 2 km s=%, A\ = 5000 A,
v =107 s71) we get

A
"D _ 4.0 x 102 .

The various physical regimes are sketched in Fig. 5.18; each of them can be
assigned a specific denomination.! As far as the magnetic field is concerned, we
have the following five regimes:

Ta) Zero field regime (v, < +): the magnetic field is so weak as to induce a
negligible Zeeman splitting and a negligible relaxation effect on phase correlations.
In this regime the magnetic field can just be ignored.

Ila) Hanle effect regime (v = 2mv; < Avp): the magnetic field is strong enough
to reduce the phase correlations between different oscillators. By contrast, the
Zeeman splitting is still very small and can be neglected.

ITa) Strong field regime (v < v, < Avp): the relaxation of coherences is now
complete, so that the different oscillators can be treated as independent. The
Zeeman splitting is a small fraction of Ay and is able to produce an observable
(although weak) polarization signal.

IVa) Magnetograph (or intermediate) regime (v < vy, & Avp): the Zeeman split-
ting is comparable with the Doppler width, which results in a strong polarization
signal; the different Zeeman components are, however, still unresolved. The obser-
vations performed by solar or stellar magnetographs usually fall in this regime.

Va) Intense field regime (v, > Avp): the Zeeman splitting is now so large that the
different components are well-separated in the spectrum.

To sum up, we have that the Zeeman splitting can be neglected in regimes Ia and
ITa, while in regimes IITa, IVa, and Va coherences are completely relaxed and can
be ignored. As far as the amplitude differences between oscillators are concerned,
the magnetic field has no effect on them.

Turning now to the influence of collisions, we have three different regimes:

Ib) Collision-free regime (f < v): depolarizing collisions have a negligible influence
on atomic polarization and can be disregarded.

Ib) Collisional depolarization regime (f ~ v): depolarizing collisions are important
in reducing atomic polarization (both coherences and amplitude differences between
oscillators) but not so strong as to produce a complete relaxation. In this regime
a detailed knowledge of the depolarizing rates is essential for a correct description
of the physical situation.

IIIb) Collision-dominated regime (f > «y): the effect of depolarizing collisions is
so strong that atomic polarization is totally destroyed. In this regime there are no
coherences between different dipoles and the oscillation amplitudes are equal; in
other words, the classical dipoles are thermalized.

1
(1983).

The denominations used here are slightly different from those in Landi Degl’Innocenti
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Fig.5.19. The (v, - f) diagram is divided into fifteen different regions resulting from the intersec-
tion of the physical regimes sketched in Fig.5.18.

By combining the five magnetic regimes and the three collisional regimes, one
finds out that there are 15 characteristic regimes for polarization in spectral lines,’
each occupying a well-defined region in the (v - f) diagram. Figure 5.19 points out
the regions of the diagram where conventional laboratory experiments are usually
performed.

It is important to remark that the classical description given above can be trans-
posed into quantum-mechanical terms. As outlined at the end of Sect. 5.13, the
phase correlations between different dipoles have their quantum analogue in the
off-diagonal density-matrix elements, while the oscillation amplitudes of the single
dipoles have their analogue in the diagonal matrix elements. Finally, the oscillator
damping constant v has its quantum equivalent in the Einstein A coefficient for
spontaneous emission.

Indeed, regime (Ia-IIIb) is equivalent to (ITa-IIIb).
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CHAPTER 6

INTERACTION OF MATERIAL SYSTEMS WITH POLARIZED
RADIATION (THE QUANTUM APPROACH)

We derive in this chapter the basic equations describing the interaction of a material
system with a polarized radiation field. These equations consist essentially of two
distinct sets, one for the material system (statistical equilibrium equations) and the
other for the radiation field (radiative transfer equations). But the two sets are
coupled, as the properties of the material system turn out to be affected by the
radiation field, and vice versa. From this point of view, the theory presented in
the following can be regarded as the basis for a generalized theory of Non Local
Thermodynamic Equilibrium which takes the polarization characteristics of the
material system and of radiation into account.

The two sets of equations are deduced by strictly similar procedures, which start
from the very principles of Quantum Mechanics and are based on the use of the
density operator. The radiation field is described with the formalism of (non-
relativistic) second quantization, while the material system is characterized by its
own Hamiltonian which does not need to be specified in detail. The interaction
is also treated under the non-relativistic approximation, and explicit formulae for
electric-dipole and magnetic-dipole transitions are derived.

The formalism used in this chapter is rather complicated, but the preceding
outlines of density operator and second quantization theories (Chaps. 3 and 4,
respectively) should enable the reader to follow all the developments. We also tried
to point out, whenever possible, the physical meaning of the various equations and
the analogies with the classical treatment presented in Chap. 5.

The results that will be obtained in this chapter suffer from some basic limita-
tions that arise both from the formalism itself and from the different approxima-
tions introduced in the derivation. Indeed, such results cannot be applied when
coherences between non-degenerate levels are present, unless the spectrum of the
radiation incident on the material system is flat across a range wider than the
frequency separation of those levels. Similarly, if coherences between degenerate
levels are present, the results provide an exact description of scattering phenomena
only if the spectrum of the incident radiation is flat across a frequency range wider
than the inverse lifetime of the levels.

These limitations are analogous — in the polarized case — to those contained in
the ‘complete frequency redistribution’ approach of the standard non-LTE theory
(see e.g. Mihalas, 1978). They are ultimately related to the fact that two consec-
utive interactions of the material system with the radiation field are considered as
independent: this means, for instance, that when an emission event takes place, no
memory is kept of the frequency of the photon that induced the previous absorption
event.
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Notwithstanding its basic limitations, the theory has a wide range of physical and
astrophysical applications because, in many cases, the spectrum of the incident
radiation is in fact flat across the relevant frequency range. Usually coherences
are important as long as the separation between energy levels is less than about
108s~! (a typical value of the spontaneous de-excitation Einstein coefficient), and
such frequency interval — which corresponds to 1 mA in the visible — is much smaller
than the typical Doppler widths of spectral lines.

However, there are some phenomena that cannot be fully described by the formal-
ism presented in this chapter, like the quantum-interference polarization observed
in the Call H and K lines at the solar limb (Stenflo, 1980). In that case, coherences
between energy levels separated by a very large interval (about 50 A) are found
to play a major role, and the incident radiation field is definitely not flat across
such interval. In these cases a more general formalism, able to encompass fre-
quency redistribution effects, is required. Although some results have indeed been
obtained on this subject (Stenflo, 1994; Bommier, 1997a,b; Landi Degl’Innocenti et
al., 1997), the underlying theory is still in a preliminary phase and remains outside
the scope of this book.

This chapter is based on previous works by the authors and collaborators (Landi
Degl'Innocenti and Landi Degl’Innocenti, 1972, 1975; Landi Degl’Innocenti et al.,
1976; Landi Degl’Innocenti, 1983). The same method has been reconsidered and
illustrated in some detail by Cannon (1985), Trujillo Bueno (1990), and Stenflo
(1994).

6.1. Equations of Motion

According to the principles of Quantum Mechanics (see e.g. Messiah, 1961) the
state of a physical system at time t is described by a vector in the Hilbert space,
|¥(t) >, which satisfies the normalization condition

Q@) o)) =1.

The time evolution of the system is governed by the well-known Schrodinger equa-
tion hod

o= ety = HI9@)
where i is the imaginary unit, h is the Planck constant, and H is the Hamiltonian
operator that we suppose here independent of time.

On the other hand, any observable of the system is described by a linear, Her-
mitian operator acting on the same Hilbert space. The expectation value of the
observable (i.e. the average value of the measurement of the observable ideally
performed on an infinite number of ‘copies’ of the same physical system) is given
by R

O(t) = @) |Ov(t))

where O is the quantum operator corresponding to the observable O.
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However, there are many physical situations where the state of the system cannot
be described by a pure state | 1(t)> (nor by a superposition of pure states), but a
detailed quantum-statistical description is necessary. This can be achieved in a very
natural way using the concept of density (or statistical) operator (see Sect. 3.6).
We recall that the expectation value of the observable O is related to the density
operator p by the expression (see Eq. (3.86))

O(t) =Tr{Op} . (6.1)

The time evolution of O(t) can be easily obtained from Eq. (6.1). We have

%O(t)zTr{gp}+Tr{éi—j}, (6.2)

where the first term is non-zero only when the operator O depends explicitly on
time. This equation can be rewritten, with the help of Eq. (3.88), in the form

%O(t) Tr{%ﬂ} - 221 Tr{O[H»P]} !

or, using the cyclic property of the trace, in the more convenient form

%o(t)=Tr{§p}—%Tr{[O7H]ﬂ}~ (6.3)

In many cases the total Hamiltonian H of the system can be expressed as the
sum of two terms,

H=H,+V, (6.4)

where H, is the so-called unperturbed Hamiltonian and V' is the interaction Hamil-
tonian. In such cases it is in many respects useful to introduce a different rep-
resentation for the quantum phenomena, called the interaction picture. This is
obtained from the usual Schrddinger picture — which has been employed so far —
by the following unitary transformation

a) for the state vectors:

[9(t)>r = ¢ BT ()

b) for the operators:
21 7 4

~ j2mw A 4T
O,(t) ='Wl O o7t (6.5)
where the index I means that the corresponding symbol (operator, or state vector)
is defined in the interaction picture.
The equation of motion for the density operator expressed in the interaction
picture can be easily obtained from Eq. (6.5). Using Eqgs. (3.88) and (6.4) we get

<o) =22 M), m(0)] (6.6)
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where
27 H.t

Vi(t) =e oty o 7R o (6.7)
is the interaction Hamiltonian expressed in the interaction picture.
Substitution of Eq. (6.6) into Eq. (6.2) leads to

%0@) —Tr { (%OI@)) pI(t)} ~ % Tr { [01(8), y(1)] pl(t)} . (638)

Comparison of Egs. (6.8) and (6.3) shows that when the interaction picture is
used, the time evolution of the expectation value O(t) is determined by the inter-
action Hamiltonian only (rather than the total Hamiltonian, as in the Schrédinger
picture). When the interaction Hamiltonian is small in comparison with the un-
perturbed Hamiltonian,! Eq. (6.8) can be usefully expanded as follows. Integration
of Eq. (6.6) between 0 and t gives

t
2mi

0= 0= =[G m(e)] o

0

which can be substituted into Eq. (6.8) to obtain, using the cyclic property of the
trace

- 4,% Tr{ / [CXCRACIRAGIF dt'} | (6.9)

0

This is an exact equation describing the time evolution of the observable O(t)
produced by the interaction Hamiltonian. In the following sections it will be applied
to describe the interaction between a material system and the radiation field.

6.2. The Interaction Hamiltonian

We consider the interaction between an arbitrary material system and the radiation
field. The material system is here schematized as the collection of N independent
subsystems (that will be called ‘atoms’) occupying a definite volume V in the
ordinary three-dimensional space. The total Hamiltonian of the coupled system
composed of one atom and the radiation field can be written, in the Schrédinger
picture, in the form

H=H,+V,

1 ‘Small’ means here that the typical matrix elements of V' are much smaller than the matrix

elements of H.
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where H; — the unperturbed Hamiltonian — is the sum of the Hamiltonians of the
free radiation field and of the atom,

Hy=Hy+H, . (6.10)

The expression for Hy has already been deduced in Chap. 4, where the formalism
of second quantization has been introduced. From Eq. (4.34) we have

—

Hy = Z hv aT(u, Q, A) a(v, 2,0, (6.11)
79)

where a(v, Q, A) and af (v, Q, A) are, respectively, the destruction and creation oper-
ators associated with the mode of frequency v, direction Q, and polarization state
characterized by the unit vector €, (A = 1,2), and where the sum runs over all the
possible modes of the radiation field.

The expression of the atomic Hamiltonian H, depends on the particular atomic
system and on the possible presence of external agents (like, for instance, a static,
electric or magnetic field). For the time being we make no specific assumption
on H,. However, we suppose to know its normalized eigenstates |n) and energy
eigenvalues E,, solution of the stationary Schrédinger equation

Hy|n)=E,|n>, (6.12)

with
RIm> = G (6.13)

and
> Inyin|=1. (6.14)

The interaction Hamiltonian V' can be deduced using the standard methods of
Quantum Electrodynamics. According to Cohen-Tannoudji et al. (1977, 1987) the
expression for V is given, in the non-relativistic approximation, by the expression

2 2
V= e 2 A AE) ¢ LS R BE) + ;(Am)) . (615)

where 7, p;, and §; are the position, momentum, and spin operators of the i-th
optical electron of the atom, and where A(7) and B(F) are the operators corre-
sponding to the vector potential and to the magnetic field vector of the radiation
field, respectively.

Writing the different contributions to V' in the form

V=Vi+V,+V;,

we can easily find the order of magnitude of the various terms. We have just to
recall that, as an order of magnitude

h h
P . A~r-SE, sx~--,  BrE,
2may 2my 2
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where E and v are the electric field and the frequency of the radiation field, re-
spectively, and where a is the Bohr radius. Moreover, for the atomic Hamiltonian
H, we have

2 2
~ P L%
<HA> “m ag’
so that we obtain
<‘/1> ~ <V3> ~ eoan <‘/2> ZTI'CLO (6 16)
(Hy) (Vi) [ '

At optical wavelengths the quantity hv is comparable with the atomic energy, so
that we can also write

<V1> ~ <V3> _ eolag ,E

<HA> <V1> eolBaty By
where E,, is a typical interatomic electric field. Thus when the ratio between
the radiation electric field and the typical interatomic electric fields is small, V;
can be considered a perturbation in comparison with H,, and V; a perturbation
(of the same order) in comparison with V;. On the other hand, Eq. (6.16) shows
that V,, at optical wavelengths, is also much smaller (by about four orders of
magnitude) than V;. It follows that if we restrict attention to typical astrophysical
or laboratory plasmas, where the inequality F/E,, < 1 is always well-satisfied,
and to wavelengths A such that A > a,, we can simply write the interaction

Hamiltonian in the form
_ =0 TGAN 6.17
DI (6.17)

This is the form that will be actually used in the following to describe the interaction
between the atomic system and the radiation field.

Substituting the expression of the operator fT(F ) in terms of destruction and
creation operators (Eq. (4.30)) into Eq. (6.17), we obtain

V= Z { v, N a(v, QN + QF (v, 2, ) aT(y,ﬁ,)\)} , (6.18)
VA

where the operator Q(v, 0O, A) and its adjoint QT(v, Q, \) are given by?

Q(Vaﬁ’)‘) = duz P €A<Q) eikﬂ

Q4N =d, Y p (e ",

1 This inequality is not satisfied in optical experiments performed with high-power lasers,

giving rise to non-linear optics phenomena.

2 To prove that the operator multiplying af (V,Q,)\) in Eq. (6.18) is just the adjoint of

Q(v, G, A) one needs the commutation rule

[5-8\ (D), 7] =0,

which follows from the commutation rule [r;,p,] =ik, and from Eq. (4.31).
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with
€ h
m V 2rvY

(6.19)

v =

The interaction Hamiltonian given in Eq. (6.18) is expressed in the Schrédinger
picture. To derive its expression in the interaction picture, it should be noticed
that the operators Q(v, 0, A) and QT (v, Q, A) act only on the atomic system, while
the operators a(v, O, A) and a' (v, 9, \) act only on the radiation field, which implies

[Hz, Q(r, 0, N)] = [Hy,a(v, 0, N)] = [Hy, Hp] =0.

We thus obtain from Eq. (6.7)

Vi(t) = e ot v e TR — By + Bi(1) (6.20)

;2m - L2 i2m - _i2r
B(t)=Y" {el R QN e R HAt}{e Tt g, G, 0) e R Ht} (6.21)
v

Denoting by P(t) the operator resulting from the second curly bracket, we can

easily prove that
—2mivt

P(t)= e a(v, 9, ) . (6.22)

The formal proof is as follows. For ¢ = 0 we have
P(0) =a(v,Q,N), (6.23)
and the time derivative of P(t) is

d omi 2 - 2
= P(t) = 22 W [ a(v, G, 0)] e T TR

On the other hand, taking into account the expression for Hy (Eq. (6.11)) and the
commutation properties of the operators a and a' (Egs. (4.32)), one gets

[HR,CL(I/,Q,)\)] =—hv CL(I/,Q,)\) )

so that
d
T P(t) = —2wiv P(t) .
Integration of this differential equation with the initial condition (6.23) leads to

expression (6.22).
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As far as the first curly bracket is concerned, we can express it in a more con-
venient form by introducing the complete set of eigenvectors {| n)} of the atomic
Hamiltonian defined in Eqs. (6.12)-(6.14). We have

2Ht

i

=
=

* QAN e

@

e T |0y (n| QG A) [m) (m | e It

ey (m (6.24)

Z 27'r1 7
nm

where v, are the Bohr frequencies
vy, —=n_ Pm (6.25)
and where the matrix elements [¢(v, €, \)],,, = are given by
[a(r, 3 0] = (n] Z - e T m (6.26)

Substituting Egs. (6.24) and (6.22) into Eq. (6.21) we get

=334, [aw, BN, In) mla(r, B, 0) 7 VTt (627
vQIX nm

and, similarly
Z Z d, [¢'(v,Q A Iny{m|a v, G, ) M Wnm T )t ,  (6.28)

X nm

where

6.3. The Dipole Approximation

The matrix element [¢(v, 2, \)],,,,, defined in Eq. (6.26) can be somewhat simplified
by a series of transformations that are discussed here in some detail.

First we observe that the coordinate 7; of the ¢-th electron is measured from an
arbitrary origin. Introducing the relative coordinate Z, , measured from the center
of mass of the atomic system, we have

=X+ 7z
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where X is the coordinate of the center of mass. With this position, the exponential

appearing in the definition of [¢(v, 0, M)l can be written as
ik-7, ik-X ik-Z,
e =e e ,

and expanding the last exponential in power series

ik-7, kX 1,
M= M ik d 5 (R7) ] (6.29)
Since at optical wavelengths
- 27a,
E-# ~~—2«1
x,; h <1,
we can simply write (long-wavelength approzimation)
ST X ’ (6.30)

which is consistent with our previous approximation of neglecting V; in the general
expression for the interaction Hamiltonian (see Eq. (6.16)).

To avoid the introduction of a heavier formalism, we suppose the center of mass
of the atomic system to be at rest, so that, taking X = 0, we get

[a(v, 3, N)] = <(n] Z 7 - &\ (Q)|m) . (6.31)

It should be remarked, however, that the theory presented in the following cannot
give — because of the assumption X = const. — a consistent description of the
phenomena associated with the motion of the atomic system (Doppler effect). We
observe that if the coordinate X is considered as an ordinary variable describing
the physical state of the atomic system (like the relative coordinates &; of the
optical electrons) the formalism of Quantum Electrodynamics is able to provide
an elegant derivation of the fundamental formulae of the Doppler effect — which
basically result from the laws of conservation of momentum and energy. The reader
is referred to Louisell (1973) for an example of such derivation; the original idea
of deducing the Doppler effect from the momentum-energy conservation is due to
Fermi (1932).

Equation (6.31) can be further simplified by considering the expression of the
atomic Hamiltonian H,. Neglecting relativistic corrections, we have

2
HA :Z 2’;77, + VCoul ’

where V., represents the electrostatic energy of the electrons which depends on
the coordinates Z;,. Using the commutation rule of the operators p; and &, and

defining
=Y,
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we have

m™m

. . h .
[HA,;U]:—12 Zpi,
thus Eq. (6.31) can be written in the form
[a(v, 4, N)], = 2rmiv,, (n|Z &\ (D)|m), (6.32)

where v,,,, is the Bohr frequency defined in Eq. (6.25). This new expression involves
the matrix elements of the operator &, which coincides, apart from the factor -¢,
with the dipole operator

d = —ey T .
This justifies the alternative name of (electric) dipole approzimation that is given
to the long-wavelength approximation (Eq. (6.30)).

An important point concerning the dipole approximation should be explicitly
stressed. Substitution of Eq. (6.32) into Eq. (6.27) gives

B0y =0 X deopun 2y (nl7 6@ m)

v nm

x |y <m| a(v, 9, \) M Wnm =t (6.33)

where Eq. (6.19) has been used. This expression can be compared with a similar
expression that is obtained by assuming a priori that the interaction Hamiltonian

has the form .
V= Z e T; - E(T;)

K2

instead of the form (6.17). Substituting Eq. (4.33) for E(7,), passing to the inter-
action picture, and adopting again the long-wavelength approximation, we get

_12_Tth

Vi) = e bl yre R ey 4 B

where

(6.34)

Comparison of Eqgs. (6.33) and (6.34) shows that B’(t) can be obtained from
[B(t)],.q. by replacing the factor v,,, with v. In most physical applications the
distinction between these two forms of the interaction Hamiltonian is insignifi-
cant. Roughly speaking, this is due to the presence of the rapidly oscillating factor

exp [27i (v,,,,, — ) t] which, for large values of t, is zero unless v,,, = v. A full
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discussion on this subject, together with a formal proof on how the two differ-
ent Hamiltonians can be connected by a similarity transformation (the so-called
Goppert-Mayer transformation) can be found in Cohen-Tannoudji et al. (1987).
In this book we will take for B(t) the more compact expression of Eq. (6.34). The
final form of the interaction Hamiltonian is therefore

V() = [BO)],q + [B'W)],4 -

where
= 2ri(v, —v)t
[B®)],q =—1>. > ¢ [d- &), |n>m|aw,G,x) ™
vXA nm
[BI®)] g =12 D e [d-a@)],,, In)><m]al (v, 0,2 T Wt (g 35)
vQOX nm
with
2mvh
e =
v 1%
d = _eoz Ty = =€y
J
[d-&\(@)],,, = nld-&\(@)m) = (n|d|m) - &, ()
= (d) - E\(D)
[d" e\ @)],,,, = nld- & @) |m) = (n|d|m)y - &)
= (d) - EN(Y)° (6.36)
and with

[d-e\( )] —=[d-e\(Q)] . (6.37)
In some cases, the dipole matrix elements between two particular levels |n) and
| m> may well be zero. This means that the electric dipole approximation gives no
contribution to the transition between such levels, and one must go back to those
parts of the interaction Hamiltonian that have been neglected so far. The various
terms neglected in the Taylor expansion (6.29) give rise to the electric quadrupole,
electric octupole, etc., Hamiltonians and to those parts of the magnetic-multipole
Hamiltonian related to the orbital angular momentum of the electrons, while the
second term in the right-hand side of Eq. (6.15) gives rise to those parts of the
magnetic-multipole Hamiltonian related to the electron spin.
In particular, let us consider the so-called magnetic-dipole transitions. Setting
again X = 0, the contribution of the second term of the expansion (6.29) to the
interaction Hamiltonian can still be written in the form of Eq. (6.18) with the
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substitutions’

—

-1y [ﬁ, ) kT + kT, P 63(52)*} . (6.38)

Introducing the orbital angular momentum of the i-th electron,

it can be easily shown that

B e (@) E-Z, + k-7 5 an(@) = 1k x ay(8)

(2

Recalling that k = 271 (/c, we obtain

= . e - s
Ql(V,Q,A): 161/2—”30{; li'Qxek(Q)

DI RN RN N SCEY

where the definitions of d,, and ¢, (Egs. (6.19), (6.36)) have been used.
Consider now the second term of the interaction Hamiltonian in Eq. (6.15). Using

expression (4.33) for B (7), and adopting the long-wavelength approximation (6.30)
with X = 0, we see that this term can also be written in the form of Eq. (6.18)
with the substitutions

Qr, 3, \) — Q,(, B, N) = ic, 2O 5 -0 xe(Q
2 v i A
mc N
QT (1, 9,0 — Ql(r, 9, \) = —ic, —;00 5, Q0 x e, (D). (6.40)

1 1t can be easily shown that the operators 7, -ék(fﬂl) and Ei’l commute (cf. footnote 2 on p.242).

However, the symmetrized forms in Eqgs. (6.38) lead in the most straightforward way to the correct
decomposition of the interaction Hamiltonian into the electric-quadrupole and magnetic-dipole
terms (see e.g. Shu, 1991).
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The terms in square brackets of Eqgs. (6.39) are responsible for electric-quadrupole
transitions, while the first terms, combined with those in Egs. (6.40), are responsible
for magnetic-dipole transitions. Passing to the interaction picture, the magnetic-
dipole Hamiltonian can thus be written in the form

Vi) g = BO] g+ B O]

where

x [n><{m|af(v,Q,N) M Wam T (6.41)

In these expressions the quantity

fo= G—OZ(EJF%})

" 2me

is the magnetic moment associated with the electrons, and the matrix elements are
defined in strict analogy with Eqgs. (6.36).

Comparison of Egs. (6.41) and (6.35) shows that the magnetic-dipole Hamilto-
nian can be simply obtained from the electric-dipole Hamiltonian by the formal
substitutions

d—ji, &) —a0xe(Q). (6.42)

6.4. Approximate Equations of Motion

Substituting Eq. (6.20) into Eq. (6.9), the time variation of any physical observable
can be written as

%o(t) — Ty { <%Ol(t)) pl(t)} - % Tr { [O1(t), B(t)] pI(O)}

- {(00.570) 00}
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i [ 00500510 i ar)

- %2 Tf{ / [0,(t). B'(1)], B(t)] py(¥) dt’}
- %2 Tf{ / [0(t), B (1)], B'()] mu(#) dt’} . (6.43)

It should be emphasized that this is a very general, exact equation that follows
directly from the principles of Quantum Mechanics. Now we are going to introduce
a number of assumptions which will enable us to derive a self-contained set of
evolution equations for the physical quantities characterizing the interaction of an
atomic system with the radiation field.

First of all we suppose that the density operator of the full system is the direct
product of the density operators of the individual systems,

pilt) = oV (1) ® p(1)  for £20. (6.44)

In other words, if O® is an operator acting only on the radiation field, and O™
is an operator acting only on the atomic system, we assume that the expectation
value of their product is equal to the product of their expectation values,

Tr {OAER) O}A) pl} = Trm){OAfR)piR)} ™ {OAEM/J;A)} ,

where Tr™ and Tr® denote tracing over the states of the radiation field and of
the atomic system, respectively.

The physical meaning of this approximation is that the radiation field and the
atomic system are supposed to be uncorrelated. At time ¢ = 0 (when the interac-
tion starts) this is indeed a reasonable approximation to describe the interaction
between light and matter in an environment like a stellar atmosphere. In such an
environment an atom interacts with radiation quanta that have been emitted at
typical distances of the order of many kilometers, so that atom-radiation correla-
tions can be safely neglected. The above approximation is also valid in laboratory
experiments, provided the light source is physically separated from the cell (or
analogous device) containing the atoms. By contrast, the approximation breaks
down in other physical conditions (like for instance in lasers, where atom-radiation
correlations play a major role).

Equation (6.44) postulates, however, that the uncorrelation between the radia-
tion field and the atomic system persists for ¢ > 0. When Eq. (6.44) is substituted
into Eq. (6.43), we obtain an equation which can be considered as the lowest-order
approximation to the exact equation of motion. This approximation is justified
when the relaxation time of the density operator, ¢, , is much longer than the typ-
ical temporal factors which appear in Eq. (6.43) when the explicit expressions of
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B(t) and Bf(t) are used (Egs. (6.27)-(6.28), or (6.35)-(6.36) in the dipole approxi-
mation).

Our second assumption concerns the properties of the radiation field, and can be
expressed by the set of conditions

Tr““{a(m Q,\) Py (t)} = Tr(m{aT(V, a, A) pr (t)} =0 (6.45)
Tr(R) {a(y7 Q’ )\) a(]//7 6/7 )\/) piR) (t)} =0 (6463.)
T Lal (1,6, 0) ol (0, 6, X) 7 (1)} =0 (6.46b)

—

Tr<R>{aT(V, QN a(', YN pi® (t)} =0 unless v=1,60=0". (6.47)

Equation (6.45) means that the expectation value of any observable which is linear
either in the destruction or the creation operator of the radiation field is zero. If
we consider, for instance, the expectation value of the electric or magnetic field
(whose associated operators are given, in the Schrodinger picture, by Egs. (4.33))
we have

= i2m = _i2m
(E(7 1)) = Tr™ {e it By o pe (t)} =0

and, similarly

(B(F,1)) =0.

We thus obtain the analogue of the classical result that the statistical average of
such quantities is zero as long as the electromagnetic field can be regarded as the
incoherent superposition of different wavetrains with random phases.

Equation (6.45) is, however, somewhat restrictive in that it prevents the consider-
ation of processes involving coherent states of the radiation field (see e.g. Glauber,
1964, for an introduction to these concepts). Nevertheless, this approximation is
quite reliable to describe the radiation field typical of a stellar atmosphere, where
optical-coherent phenomena are believed to play a totally insignificant role. The
same is true for a quite large variety of laboratory experiments.

The meaning of Eqs. (6.46) is similar; indeed, the left-hand side of Eq. (6.46a)
represents, up to a factor, the statistical average of the quantity cg,(t)cz,,, (1),
where cg, (t) is the amplitude of the Fourier component of the electric field vector
associated with a particular mode (see Eq. (4.20)). Similarly, the left-hand side
of Eq. (6.46b) represents the statistical average of the quantity cg, (t)*cz,, ()"
Again, the approximation of Egs. (6.46) is fully justified for electromagnetic fields
that can be described as the incoherent superposition of different wavetrains with
random phases.

Finally, assumption (6.47) means that no correlations exist between different
modes of the radiation field, except for correlations between polarization states
within each mode.

Using approximations (6.44)-(6.46) we can considerably simplify Eq. (6.43) for
two important classes of operators Ol(t), namely the operators acting only on the
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atomic system and the operators acting only on the radiation field and having the
form af(v, 2, \) a(v/,Q', \). It can be easily shown that for such operators, owing
to the form of B(t) and Bf(t) (Egs. (6.27)-(6.28)), Eq. (6.43) reduces to

% o) = Tr { (%Q(ﬂ) pl(f)}

- o [0, 50]51¢)] iy ar}
0

- v o050 8e)] s}
0

Because of the Hermitian character of the density operator and of the cyclic prop-
erty of the trace, this equation can be rewritten as

%O(t) — Ty { <%O}(t)) pl(t)}

tec {o}(t) — Ol (t)} : (6.48)

where the last symbol denotes the quantity that is obtained by taking the complex
conjugate of the previous term and by replacing the operator Ol(t) with its adjoint
Ol (t).

This is the basic equation that will be used in the following to derive the time
evolution of the radiation field and of the material system resulting from their
mutual interaction.

6.5. Evolution Equations for the Atomic System

A complete description of the atomic system can be obtained through the knowl-
edge of the instantaneous value of the matrix elements of the density operator
p (1),

P (1) = < [ pV @) [y = Te{ !> m | pV(0)}, (6.49)
where |m) and |m’)> are two arbitrary eigenvectors of the atomic Hamiltonian,
and p™(t) is the time-dependent density operator of the atomic system expressed

in the Schrodinger picture.
From Eq. (3.87) we have

500 =1 {0}
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where p(t) is the density operator of the whole system, so that we can also write

P (£) = T {| "> (m| p(1) }

If we now pass to the interaction picture, we get

punr () = T {OL(O) 1 (1)} (6.50)

where O;(t) is given by (see Egs. (6.5) and (6.10))

A 1—H t

Oy(t) = e [y (m | e R =y (m | e

2wiv_, t
m/m

(6.51)

Thus the density—matrix element p,.. .. (t) represents the expectation value of an
operator given by O = |m’» {m| in the Schrodinger picture, and by Eq. (6.51) in
the interaction picture.

To derive the time evolution of p,, ., (t) we will now apply Eq. (6.48), taking for
B(t) and B (t) their expressions in the electric-dipole approximation (Eqs. (6.35)).
The first term is easily evaluated; from Eqs. (6.51) and (6.50) we get

1 (5000) (0} =20 v, T () il 27 (1)
=2miv, P () - (6.52)
For the second term we have, on the contrary, a rather involved expression
([0, B)], B ()] =
=2 2 e XD [ a@),, [d- e @),
1795

v\ nn' rr’

B A AR CAVE O L ’ (6.53)

where C is the double commutator
C= [[\m’><m |, [n>{n'| a(u,ﬁ,)\)] < aT(u’,ﬁ’,)\’)

C can be easily evaluated using the commutation rule of the creation and destruc-
tion operators (Eq. (4.32)), and the commutation rule of the projection operators

[lay<bl,ley<dl] = 8 [ay<d] = d4q]c)<b].
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After some algebra, rearranging the final result in such a way that af-operators
precede a-operators, we get

C= Gy By |5 ' | (ah (0,8 N a0, 5,0 + 8,0 G5y G

_6mn m'r’ |r><n |a (V Q/ >‘/)O’<V’Q'7>‘)
— it O | 1] (a W, Na(w, N + 6, daa (5)\/\,)
+§m’n’ nr! |T> <m| (Vlvﬁlv)‘/) CL(V,Q,)\) . (654)

Substituting this expression into Eq. (6.53) and renaming the summation indices
in the first line of Eq. (6.54) according to

! !
n=r—n, r—m',
we obtain

[[On(t), B, BT @)] =
=2 X a3 [da@],,[d @),

v\ VN nm'’
e27ri (um,n— v)t+ 27 (unm,,-i- 1/) t’ ‘ m,> <m,, |
X (aT(y/ﬁ/)\/) a(v, ﬁ, A)+ 6, O&a (5>\)\/)
+ (other terms) , (6.55)

where ‘(other terms)’ denotes the contribution arising from the other lines of
Eq. (6.54).

Now we multiply Eq. (6.55) by p;(t) and evaluate the trace. Using the approxi-
mations of Eqs. (6.44) and (6.47), and observing that

1% n =1V,

nm -V

m’m/’’ m'n

we get
ﬂ{WﬂﬁBwLEwﬂmwﬁ
= Z Ci Z [cf g)‘(ﬁ)]mn [Cf é‘/\/(ﬁ)*]nm” e27‘ri(1/m/n_y)(t_t/)
|m>{m"| e e piA’(t’)}

]
<R>{ 0N + yy) o (t’)}

+ (other terms) . (6.56)
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The two separate traces appearing in this equation can be easily identified in terms
of physical observables. The trace over (A) is nothing but the density-matrix
element p,..,..(t") (see Egs. (6.49), (6.50) and (6.51)), while from Eq. (4.37) we
have!

62

Tr™ {(aT(y,ﬁ,X) a(v,Q,\) + 5,\)\/> p (t )} e [Lua(v, Q)]t' + 0w s

where [I,,, (v, ﬁ)]t, is the polarization tensor of the radiation of frequency v prop-
agating in the direction ) at time ¢'.

Now we have to perform the integral in d¢’, between 0 and t, of Eq. (6.56).
A possible way to evaluate the integral is to assume that the relaxation time ¢,
characterizing the evolution of the physical quantities of the coupled system is
much longer than the typical time-scale over which the oscillating factor

e27ri (W — V) (E—t")
varies. Under this assumption we can extract the quantities p,,.,,, and I,,, from
the integral (and drop their explicit time dependence) to get

472 A

- w{ [ (010, 80).810)] i) ar | -
0

8732 o - Y
T Z h;TV;:V [d ' GA(Q):I mn [d : BA’(Q) ]nm” P!
AN nm'’
t

X [IA,/\(y,ﬁ) = M, /e2m = VI EH) g
0
+ (other terms) ,

where the expression of ¢2 has been used (see Egs. (6.36)).
The last integral can be evaluated by standard methods; moreover, because of
the above assumption, it is natural to take its asymptotic value for ¢ — oco. We

have .
(v, —v)(t—t’ 1
lim [e” o= 1)t t)dt/ = -
t—o0 2
0

o(v,, )+—P 1 ,

2 vy, —V

where §(z) is the Dirac delta-function and P(z) means the principal part in the
sense of distribution theory.
If we define the complex profile &(v, — v) to be

Py —v)= oy —v) + 1Yy, —v) = 6(v,—v) + % P L ) (6.57)

VO—V

1 It follows from Eq. (6.22) that the operator af (v, , M) a(v, €, A) has the same form in the

Schrédinger picture and in the interaction picture.
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and transform the summation over the various modes of the radiation field into a
double integral via Eq. (4.35), we obtain

S {/ [0 BO] B )] (e ‘“’} )

0
16 dQ2 = 7 o B\
= Tr Z Z pm”m % /dV ' Q ]mn[deA'(Q) ]nm"
AN nm!!
_, hv3
X |:I)\/A(V7 Q) + 0—2 5)\A/i| @(Vm/n - V)
+ (other terms) . (6.58)

This procedure can however be criticized from several points of view. First of
all, by assuming p,...,.,(t') to be independent of ¢, we give up the possibility of
describing those aspects of the phenomena which depend on the ‘history’ of the
density-matrix elements. This is the so-called secular approzimation (cf. Cohen-
Tannoudji et al., 1988), a special case of the Markov approximation, which makes
impossible the treatment of correlation effects in successive interactions, e.g., fre-
quency redistribution effects in the absorption and re-emission process.

Furthermore, we should realize that the exact time evolution of the density-
matrix element p,,,,,, is affected by several complicated phenomena that cannot be
accounted for by our approach, which is based on a lowest-order expansion in the
framework of Quantum Electrodynamics: the finite width of energy levels, their
energy shift due to interactions with real and virtual photons, and — when the
levels m and m’ are non-degenerate — the so-called quantum beats. The last phe-
nomenon consists in oscillations of p,,,,,, whose frequencies depend on the spectral
characteristics of the incident radiation.

The first two phenomena (finite width and shift of the energy levels) can be
taken into account, in a phenomenological way, by replacing the complex profile of
Eq. (6.57) with the following

¢(Vab_y): (b(yab_y) +iw(yab_y)

1 Fab + 1 Vab + Aab -V (6 59 )
= — — , .59%a
TLo+ (Vg + Ay —v)2 Lo+ (v + Ay, —v)?
where n
Yab Ya T
[, =-49—-¢_ 2 A, =A — A .59b
ab A7 A ’ ab a b (6 59 )

with =y, 7, the probabilities per unit time that the atom leaves level |a) or |b),
respectively, via spontaneous or stimulated transitions, and A, A, the frequency
shifts of the two levels. Note that the real part of the profile satisfies the normal-
ization

/¢(Vab —v)dv=1. (6.59¢)



MATTER-RADIATION INTERACTION (QUANTUM) 257

The existence of quantum beats affects Eq. (6.58) in such a way that, when off-
diagonal density-matrix elements connecting non-degenerate levels are present, the
central frequency v,,,,, of the @ profile is in fact an oscillating quantity. Therefore,
the equations obtained from our simple treatment remain valid when the precise
frequency position of the @ profile is not crucial. This requires that the incident
radiation field should be flat, i.e. independent of frequency, across a spectral in-
terval Av larger than the Bohr frequencies connecting the different m levels and,
moreover, larger than the inverse lifetime of each m level. Under this assumption
(flat-spectrum approximation), the integral over frequency of the first term in the
square bracket of Eq. (6.58) is seen to be proportional to

I)\’)\(Vm*nv Q) ’

where m* stands equivalently for m, m’, or m” since I,,, (v NIV

I)\’)\(Vm”rw Q)

Two special cases are worth to be treated separately because, in principle, they
do not require the introduction of the flat-spectrum approximation. These are the
cases where:

i) all the m levels involved are degenerate;

ii) all the off-diagonal density-matrix elements are zero.

In both cases quantum beats are ineffective, and the first term in the square bracket
of Eq. (6.58) leads to an integral of the form

mn?

/IA,A(V, Q) D(v,,., —v)dv.
0

In order to describe both the general case and these two special cases by a unique
equation, we write the result of the integration over frequency in the form

—

Ly Vi, )
where the ‘mean’ Bohr frequency v, is given by
1
Vin = g (V’mn + Viin + V’m”n) . (660)

Obviously, the introduction of the ‘mean’ Bohr frequency is just a formal artifice.
In the general case (non-zero density-matrix elements connecting non-degenerate
levels), v, is a ‘label’ which reminds that the radiation field at any of the Bohr
frequencies v,,,,, V,iny Ve, Should be considered; in the special cases i) and ii),
v— reduces to the true Bohr frequency v,,,, .

Let’s now consider the second term in the square bracket of Eq. (6.58). This

term leads to an integral over frequency whose real part is easily evaluated. Taking
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into account that the real part of the @ profile is practically a Dirac delta-function
centered at the frequency v— ., we obtain

mn?
h 3 :
s v if v >0
0 it v, <0.

The imaginary part of the @ profile leads, on the contrary, to a diverging integral.
Integrals of such kind are commonly encountered in Quantum Electrodynamics, and
describe the finite widths and the shifts of the energy levels due to the interaction of
the atom with virtual photons. The actual calculation of the shift of a given level
(Lamb shift) involves the removal of the divergence of the integral by standard
procedures based on the concept of mass renormalization. An example of such
calculation for the simple case of the hydrogen atom can be found in Bethe and
Salpeter (1957). In the following, these terms related to the Lamb shift will be
simply neglected in our equations. Obviously, they can be reintroduced a posteriori
in the theory by supposing that the eigenvalues E, of the atomic Hamiltonian
represent the exact energies (including the Lamb shift) of the atomic levels.
The above reasoning allows Eq. (6.58) to be rewritten in the form

0

16 7t 9 - o~ S
== h27z Z Z Pty %E [deA(Q)]mn[dek'(Q) ]nm”

AN nm/!

X ]A')\<V ﬁ)

mn?
1674 3
- hed Z Pm!'m! Z Ve @(an)
A m” n

+ (other terms) , (6.61)

where ©(z) is the step-function, which is equal to 1 for positive values of the
argument and to 0 otherwise.

The ‘(other terms)’ appearing in this equation are those arising from the sec-
ond, third, and fourth line of Eq. (6.54). The evaluation of these terms requires
calculations quite similar to those developed above. Once these terms have been
evaluated (by introducing the relevant ‘mean’ Bohr frequencies as in Eq. (6.60)),
we substitute Eqgs. (6.61) and (6.52) into Eq. (6.48) and we add the term result-
ing from the complex conjugate of Eq. (6.61) with the interchange m = m’ (this
interchange transforms the operator O;(t) defined in Eq. (6.51) into O;f(t))

After some algebra, which involves several operations of index renaming, we
obtain the evolution equations for the density-matrix elements p,,,,,,, (usually called
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the statistical equilibrium equations) in the form®

d o
4 ;= - 17, ’ ’
+ Z pnn/ TA(m,m/,n,n/)
+ Z ppp’ TE(m’m/ap7p/)
+Z ppp’ TS(mvm/7p7p/)
pp’
- Z _pmm" RA(m’m/’mH) + Pmrm/ RA(m/>mN7m):|
a Z _pmm” RE(mN>m>m/) + Pmrm/ RE<m>m/’m//)}
- Z pmm// Rs(m”,m,m/) + pm//m/ Rs<m,m/,m//):| s (662)
where
3277 > L =,
T\(m,m',n,n") = Z% . ]mn[d'e)\,(fl) ]n,m,
AN
X Iy Ve, Q)
3277 = =
TE(mvm y Py P ]p'm' [d : A(Q) ]mp
3
X VW@(VW)
3277 o o
TS(mam DD ) = ]p’m’ [d 6A'(Q) ]mp
AN

It should be recalled that from Egs. (1.37), (3.80), and (6.37) one has the relations

I (v, Q) =1, Q), Pab = Poa > [‘7‘ gA(ﬁ)Eb = [8'€)\(Q)*]ba :
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1674 a2 - | = 7T o Sy
Rylmm'sm") = 37 5 5§ [ B, 05
n A

n AN
X Ty A (Vs ) (6.63)
with
1
Vs = Z (Vrs + Vpgt +Vr’s + Vr’s’)
1
Vg = § (Vrs + Vigr + Vrs”)
1
Vs = 3 (Vys + Vyrg + V) (6.64)

The physical meaning of the various terms in Eq. (6.62) can be easily understood.
The first term in the right-hand side describes a relaxation of the coherence p,,,,,,/
due to the energy difference between levels |m> and |m’>. This term,which is
obviously zero for the coherences between degenerate levels (and in particular for
the diagonal elements p,,,, representing the populations), produces in general a
relaxation of the coherence p,,,,, which is the stronger, the larger the energy sepa-
ration between the corresponding levels. Roughly speaking, the coherence between
levels | m) and | m') turns out to be practically zero when the corresponding Bohr
frequency 27 v,,,,, is much larger than the typical rates T and R appearing in the
right-hand side of Eq. (6.62). As these rates are usually of order 10%s~! or smaller,
we obtain the following criterion for the disappearance of coherences between levels
|m> and |m’>
| > 1.6 x 10° Hz

‘me’

or, in other words
|E, —E,.|>7x107"eV. (6.65)

The other terms in the right-hand side of Eq. (6.62) represent the rates at which
the coherence p,,,,,, either increases as a result of coherence-transfer from different
levels or decreases as a result of coherence-relaxation to different levels. Coherence-
transfer rates are denoted by the symbol T" and all bear a positive sign. These terms
are due to absorption from lower levels (T, ), to spontaneous emission from upper
levels (Ty), and to stimulated emission from upper levels (Tg). Similarly, coherence-
relaxation rates — denoted by the symbol R — are due to absorption towards upper
levels (R, ), to spontaneous emission towards lower levels (Ry), and to stimulated
emission towards lower levels (Rg). All these rates bear a negative sign. The rates
Rg and Ry, originate from the first line of Eq. (6.54); the rate Ty from the second,
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==

n
o

Fig.6.1. The radiative processes contributing to the time evolution of the coherence p,, ., are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m’) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates Ty and Ty from the third, and the rate R, from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqgs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

Th(m,m',n,n")* =Ty(m',m,n’,n)

*

TE(mam/ap7p/) TE(mlamaplap)

*

TS (m7 m/ap7p/)

*

= TS(m/7m7p/7p)
Ry (m,m',m")" = Ry(m,m",m’)

11\ *

Ry (m,m’,m")* = Rg(m”,m’,m)
Rg(m,m',m")* = Rg(m",m/,m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m’ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from 7'y
exactly cancels out with the terms arising from R,, and, similarly, T} cancels out

with Ry, and Ty cancels out with Rg, so that
d
— =0.
5 (3 o)

This property — which should be expected on the basis of Eq. (3.83) — implies that
the trace of the density operator of the atomic system can be fixed once and for



262 CHAPTER 6

all. In many cases the density operator is normalized through the equation
> Pum =1,
m

but different normalizations can be safely employed. Equation (6.62), being lin-
ear in the density-matrix elements, is independent of the particular normalization
condition employed.

The expressions for the various rates given in Eqgs. (6.63) contain matrix elements
of the form [d-&, (Q)],,... The evaluation of these matrix elements is generally easier
using the spherical components of the dipole operator (rather than its Cartesian
components).! From Eq. (2.83) we have

d- _’,\<ﬁ) = Z (=1)*d_, (ez\(ﬁ))q ’

q

whence

-

[d-e\(D)],,, =D (=1 (d_)n (ex(D), (6.66)

and, similarly
(- 2()7],,,, = [d-&@]}, = [ (D7 Ay ex (D), ]

To shorten notations we introduce the symbols

(dim = [ um] > (e (D) = [(ex ()]

so that

(@], = 30 (17 () (ex (D) (6.67)

—

At this point we choose a specific form for the unit vectors €, (£2), which up to
now were just the unit vectors — satisfying the relations (4.31) — used to expand
the vector potential. From now on we require that these vectors have the form of
Eq. (5.141). This choice provides the simplest expression for their spherical com-
ponents and, moreover, it allows us to use the spherical tensors already introduced
in Sect. 5.11.

As a first consequence, we can easily evaluate the angular integrals appearing
in the expressions for the rates Ty and Ry related to spontaneous emission (see
Egs. (6.63)). From Egs. (6.66), (6.67), (5.140) and (5.143) we have

1 This is basically related to the Wigner-Eckart theorem, see Sect. 2.8.
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Z%%Wa@memu=
= 3 F i SO i ), 6

a==+1

*Z q+q 7q ab 7q dc Z % ’ aﬁ)

a==%1
Z )ie - (6.68)
q

Next, recalling the definition of the radiation field tensor J ,,(v) (see Egs. (5.150)
and (5.153)), we can rewrite the rates appearing in the statistical equilibrium equa-
tions in the more compact form

327T4 ’
Ty(mom',nn') = 5= 37 (=)™ (dg)yn (A g i oy (Vi)
a9

CADI[\D

’

647

* 3
3hC3 (dfq)p’m’ (dfq)pm VWG(VW)

Tg(m,m',p,p’) =

32 / *
TS(mvm/7p7p/) = h2c Z (71)q+q (dfq)p’m’ (dfq’)pm Jqq’(ym)

qq’
1671'
RA(m m m Z Z q+q 7q)pm’ (dfq )pm“ ‘] ( pm)

327t N
RE<m m m Z 3he3 Z )m”n V%ne)(ymn)

1671' *
Rg(m,m/,m") Z Z 1)a+d —mn @) rn Ty W) 5 (6.69)

where the various ‘mean’ Bohr frequencies are defined in Eqgs. (6.64).

An important remark should be made about the limit of the statistical equilib-
rium equations under the hypothesis of neglecting polarization phenomena in the
atomic system and of neglecting polarization and anisotropy effects in the radiation
field. Let us assume that

.1
Pab = Pa Oap L\ (v, Q) = B I(v) dyy

where p, is the population of level |a) and I(v) is the radiation field intensity.
From Eq. (6.62) we have

d
P =Y Pp Ta(mm,n,n) +Y p, [TE(m,m,p,p) +Ts(m,m,p,p)}

—-2p,, [RA(m,m,m) + Rp(m,m,m) + Rs(m,m,m)] )



264 CHAPTER 6

From Egs. (5.150), (5.153) and (5.143) the radiation field tensor is found to be

7.

o) = = I(0) 6

q 3 qq

According to Egs. (6.69) the coherence-transfer rate T, becomes

327t
TA<m7m>n’n) = m |dmn|2 ](an) )
where (see Eq. (2.82))
(i * = Vdrn” = i e = D 1) - (6.70)
q

Introducing the Einstein B,,, coefficient for the transition from the initial state
|n> to the final state |m> by the standard definition

327t -
B ==—/1d | 6.71
nm 3 hQC | nm| ’ ( )
one obtains

Ty(m,m,n,n)=0B,, I

Performing the same kind of calculations on the other rates one finally gets
5 om =3 2 B 1)
- - y
+ Z Pp [Apm + By I(me)]
P

- Z Pm BmpI(me)
p

- Z P [Amn + an ](an)] ) (672)
where 4 -
_ 647" 4 o 2hvy,

is the Einstein coefficient for spontaneous emission from the upper level |m) to
the lower level |n).

Equations (6.72) are the standard statistical equilibrium equations whose deriva-
tion, based on heuristic arguments, can be found in various textbooks (see e.g.
Mihalas, 1978). They are just a special case of a more general set of equations
(Egs. (6.62)) which have been derived here directly from the principles of Quan-
tum Electrodynamics. Equations (6.62) reduce to Egs. (6.72) when polarization
and anisotropy phenomena are neglected.
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6.6. Evolution Equations for the Radiation Field

We derive here the evolution equations for the radiation field by essentially the same
method just employed for the atomic system. In particular, we are interested in the
time evolution of the polarization tensor I,5(v,2) related to a given frequency v

and a given direction O, whose associated quantum operator is given by Eq. (4.37).
As this operator remains unchanged in the interaction picture (see footnote on
p. 255), we have just to apply Eq. (6.48) with the operator O;(t) given by

Ol(t) = T3 CLT(I/,Q,Q) a(VaQ'7ﬁ) .

Since dO,(t)/dt = 0, and since the adjoint operator Of (t) is obtained from Oy(t)
by exchange of the indices o and 3, we get

d .

E ]aﬁ (V7 Q) =

— _422;3 Tr { /[[aT(y,ﬁ,a) a(y,ﬁ,ﬁ) ,B(t)],BT(t’)} pu(t) dt’}

0
+cc {a= g}, (6.74)

We start by evaluating the inner commutator, with B(¢) given by Eq. (6.35). We
have

[aT(V, ﬁ, ) a(v, ﬁ, B) aB(t)] =

=i Z Z ez [Cf' gx(ﬁ/)]mn
v/ N mn

V')t

x [mp<{n| [GT@,Q,a) a(u,ﬁ,ﬂ),a(u’,ﬁ’,A/)] o 2T (= ,

and using the commutation properties of the operators a and a' (Eq. (4.32)) we
get

[af (v, Q. a)a(v, 3, ) ,B(t)] =ic, Z [J é'a(ﬁ)]mn

mn

x |m)<n | a(v, 3, 8) ™ Fmn =T

Thus the double commutator can be written as

([0, 0) a(v, 6, 9) B)], BY(#)] =

==Y 3N e [d-E @), [d En (@),

y'ﬁ’)\/ mn rs
27i (v, —v)t42mi(v, )t

n

c, (6.75)
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where C is the commutator
C= [\m)(n\a(u,ﬁ,ﬂ) , ‘T><S‘CLT(V/,Q/,>\/)] .

With some easy algebra, and rearranging the final result in such a way that af-
operators precede a-operators, we obtain

C=6_|md{s| (af(yf,ﬁx,x)a(u,ﬁ,@) + 0, 055 5»5)
— Oy [7) (0] @l (VY N) a(v, 0, B) . (6.76)

Now we substitute Eq. (6.76) into Eq. (6.75), multiply by p;(¢') and take the trace
of the resulting operator. With the help of Egs. (6.44) and (6.47) we obtain

1 [[o'0: B0 a1, 9), B B0)] ()} =

- Z Z 012/ [CZ €a<ﬁ)] mn [Cf é}\(ﬁ)*]ns 627"1 W, — V) (t—t")

A mns
T {[m) (s | ™ p(e)}

{(@" @, 9.2 a9, 8) + 8,5) ()}
+Z Z 612’ [J ga(ﬁ)] mn I:j gA(ﬁ)*]rm 627ri (Um"_y)(t_t/)

omiv_t/
[y <m0t g}

x Tr®

—

x T {al (v, 3, \) a, G, 9) () } -

Similarly to the previous section, we identify the various traces in this equation
with the corresponding physical observables. Next we perform the integral in d¢’
between 0 and ¢ (for ¢ — o) and we substitute into Eq. (6.74) to obtain, after
some index renaming

d =

EL}B(V’Q) =

71'31/ - . - -
{4hv Z Z [dga(g)]WN[d€7(Q)*]nm’ pm’m
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43y > L = . o
- hV Z Z [deo‘<Q)]mn[d ’Y(Q) ]n’m P/
xP(v,,, —V) I,Yﬁ(u,f_l')}
+cc {a = 8}, (6.77)

where the complex profile @ is given by Eq. (6.57).

However, the above derivation is not fully justified, because it neglects the fi-
nite widths and the shifts of the atomic energy levels due to interactions with real
and virtual photons, and quantum beats (see the analogous discussion following
Eq. (6.58)). The first two phenomena can be taken into account, in a phenomeno-
logical way, by assuming the & profile in Eq. (6.77) to have the form of Eq. (6.59a)
rather than Eq. (6.57). Even with this substitution, the validity of Eq. (6.77) is
subjected to a basic restriction related to the existence of quantum beats: in order
that our formalism can be consistent, the density-matrix elements appearing in
the equation must be deduced from the statistical equilibrium equations under the
secular approximation, which implies the flat-spectrum approximation illustrated
in the preceding section. Obviously, the formalism presented here cannot describe
frequency-redistribution phenomena.

Equation (6.77) must be interpreted as an evolution equation for the polarization
tensor in the phase space of the photon occupation numbers. To express it as an
evolution equation in the ordinary three-dimensional space, we attach an explicit
time and space dependence to the polarization tensor. In other words, we replace
Iaﬁ(u,ﬁ) by Iaﬁ(y,ﬁ;t,f) and we regard it as the polarization tensor that is

propagating at time ¢ through the point P of coordinate & in the direction ﬁ, at
frequency v. The time derivative calculated in Eq. (6.77) is nothing but

) Iaﬁ(u,ﬁ;tJrAt,erﬁcAt)ffaﬁ(y,ﬁ;t,f)
lim =
At—0 At

0 e o
:8—Iaﬁ(y,ﬂ;t,x)—i—cQ-grad]aﬁ(y,Q;t, ).

Denoting by s the spatial coordinate along the direction ﬁ, we can thus replace the
time derivative in Eq. (6.77) with

d 0 d

TR TR P
Next we observe that Eq. (6.77) has been obtained under the assumption that the
radiation field, defined in the normalization box of volume V), interacts with a single
atomic system. For an ensemble of uncorrelated atomic systems we have just to
multiply the right-hand side by the number of such systems, with the result that
the factor 1/V is replaced by the number density A. Equation (6.77) can then be
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cast into the form of a radiative transfer equation

19 d B o 3
(E & + E)Iaﬁ(y, Q) - ; [ga"/ I’Yﬁ(y’ Q) + gﬁ'y Ia'y(yvg):|

+ Z [ha’Y I’Yﬁ(y’ ﬁ) + hz;’y Ia'y (Vv ﬁ)]
v

43 [fas  F3a) (6.78)

where

473 - = .
Yap = :hVNZ [d'ea(Q)]mn[d €

43y oA S
hag =~ N Soolde, @], d- e D], P D@ — V)
2h13
fon = = e (6.79)

The physical interpretation of the terms in the right-hand side of Eq. (6.78) is
straightforward. The first term, which bears a negative sign and which results
from the third line in Eq. (6.77), describes the transfer effects produced by the
absorption of radiation. It is proportional to the coherence p,,,,, between two levels
|n> and |n') which are connected to the upper level |m) by dipole transitions.
The imaginary part of the complex @ profile describes the associated anomalous
dispersion effects.

In Chap. 5 we already found — using the formalism of classical electrodynamics —
a transfer equation for the polarization tensor (cf. Eq. (5.24)).! Comparison with
Eq. (6.78) shows that the tensor g is just the quantum analogue of the propagation
tensor G defined in Eq. (5.22) (with G — g*). This analogy provides an interesting
relation between the refractive index and the matrix elements of the dipole operator
between eigenstates of the atomic system.

The second term in Eq. (6.78), which bears a positive sign and which results from
the first line in Eq. (6.77), describes the transfer effects produced by stimulated
emission of radiation. This term is proportional to the coherence p,,,, between
two levels |m'> and |m) which are connected to the lower level |n) by dipole
transitions. We see the appearance, via the imaginary part of the complex @ profile,
of anomalous dispersion effects associated with stimulated emission of radiation.
This term has no analogue in the classical equation, an obvious consequence of the
quantum nature of stimulated emission.

Finally, the third term in Eq. (6.78), which again bears a positive sign and which
results from the second line in Eq. (6.77), describes the transfer effects produced

1 Equation (5.24) involves the tensor J, while Eq. (6.78) involves the tensor I. We recall that

I and J are proportional (see Eq. (1.36)).
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by spontaneous emission of radiation. The classical analogue of this term has been
deduced for the special case of an atom in the presence of a magnetic field (see
Eq. (3.37)).

As in the preceding section, it is convenient to express the dipole matrix elements
appearing in Eqgs. (6.79) in terms of spherical tensors, assuming at the same time
that the polarization unit vectors have the form of Eq. (5.141). Using Eqgs. (6.66),
(6.67), and (5.140) we can easily rewrite the tensors g, h, f in the form

q+q q)mn (d—q’)jnn’

mnn/’

X gqq’ (Oé, ﬂ7 Q) Prn’ ¢(an - V)

q+q q)mn (d—q’)jn’n

mm'n qq’

—

X gqq, (Oz,ﬂ, Q) Prnim @(ymn — y)

2hv3

f(xﬁ = 2 h(xﬁ . (680)

C

An important remark on the radiative transfer equations concerns the special
case where polarization is neglected both in the radiation field and in the atomic
system. If we suppose that

L1 .
I@B(V7 Q) = 5 I(va) (;aﬁ ) Prn' = Pn §nn’ )
we get
10 d - 10 d o
(; Friaa E)HMQ) = (E@ + E) Za: Lo (v, Q)
1 H
:_Z 9 (gaa+ gaa)l< ’Q)
+Z (hoo + hig) I(v, 1)
1 *
+; 5 (faa + faa) ’ <681)
where

> o= Sy )3 Z DT () [ Vo
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etc. Now we ‘average over all the possible orientations of the atom’, which is
equivalent to keeping the atom fixed and averaging over all the €2 directions entering
the tensor £,,,. Using Eq. (6.68) we obtain'

8miv > g
g Yoo = 3ch N ; |dmn‘ Pn ¢(V’mn - V) ) (682)

where |cfmn\2 is defined in Eq. (6.70). Performing similar calculations for the other
terms of Eq. (6.81) and bearing in mind the definition of the Einstein coefficients
(Egs. (6.71) and (6.73)) we easily obtain

1 N N
( 9., d)](u,Q) S o

c ot ds
where?
hv
IJ:EZ nm(pnipm)d)(ymn V)N
hv
UZE Amnpm(b(an_V)N

This is the usual radiative transfer equation whose derivation, generally based on
heuristic arguments, can be found in several textbooks (see for instance Mihalas,
1978). The quantities k, and ¢, are the line absorption coefficient (corrected for
stimulated emission) and the emission coefficient, respectively. The special case
now considered shows that the tensors g, h, and f defined in Egs. (6.79) are just the
generalization of the absorption coefficient, the negative absorption coefficient due
to stimulated emission, and the emission coefficient, respectively. These quantities,
and the structure itself of the transfer equations, have been derived in this section
directly from the principles of Quantum Electrodynamics.

6.7. Evolution Equations for the Stokes Parameters

Equations (6.78) describe the radiative transfer of polarized radiation in terms of
the polarization tensor I,5(v, ). To turn them into transfer equations for the

1 Equation (6.82) is correct only when the atomic system is evenly populated in all the

degenerate sublevels of a given energy level. Even in that case, it does not hold in the presence

of any kind of anisotropy (e.g., in the presence of a magnetic field).

2 The above expression for €, is obtained by noticing that, because of the presence of the

profile ¢(v,,,, — v), the Einstein coefficient A can also be written as

_ 2h13

mn 2 mn

A
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Stokes parameters S, (v, Q) we have just to fix the form of the polarization unit
vectors. If we choose the unit vectors of Eqgs. (5.141) — so that expressions (6.80)
can be used for the tensors f, g, h — the polarization tensor is connected with the
Stokes parameters by the transformation (5.129).! Thus we can write

10 d = 1 (’) d < (a, B==£1)
z S.(v.Q) = 5. I Q
((2+8)swa > @y e L A
where &, are the Pauli spin matrices of Egs. (5.128). Substituting Eqs. (6.78), and

using the conjugation relation (5.147) and the cyclic property of the trace, one
obtains after some algebra

(l§t+d> Z (v, ) +Z +e,  (6.83)

where?

i (6,0 )]
e; =Re[Tr (6, f)] . (6.84)

This equation can be rewritten in the explicit matrix form

I noony o Ny I
<c§+i> Ql_ |m m v —ro||@
ot ds) | U ngoo—PY N PG U
4 wooPy —Po N 14

noomy My v I €1

o nooev o || @ €0

+] Y . + . (6.85)

Ny —Pvy N PO U gu
S S 8 s Vv

v Pu Po 1 gy

where

=Ky = K7y = K3, = Ky = Re[Tr (g)] = Re (g, + g__)
g = Kiy = Kiy = Re[Tr(6,9)] = —Re (9, _ +g_,)

1 Note that a similar transformation on the transfer equations has been performed in Sect. 5.2,

although using a different basis of polarization unit vectors.

2 It is understood that the components of the tensors f, g, h are labelled in the same way as

the spin matrices &, (see the remark following Eq. (5.128)).
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ny = Ky = K5y = Re[Tr 659

9)] =
ny = Kgz = 30—R6[Tr o39)] =Re(9, —9__)
g

Tr (6,

)]

PQ *K§3* K32 =

e;=cg=Re[Tr(f)] =Re(fy, + f__)
(618)) = —Re(fr_+ /1)

ey =y =Re[Tr (6, f)] =Im (f,_ — f_,)

ey =3 =Re[Tr (65 f)] =Re(f, — f__),

and where 77, ..., pj, have the same expressions as 77, ...

=Im(g, — g,
~Im (g, +9 )

Tm |
Py =Kz = Kf3—Im[Tr(chg] :—Re(g+ - g_ +)
[

py =Ky =—K5 =Im Tr(o'3g] (g++fg__)

, py with b g

(6.86)

substi-

tuted for g,5. All these quantities can be easily written in terms of the reducible
spherical tensor 7, (4, Q) introduced in Chap. 5 (Eq. (5.146)). Defining the formal

vectors
nt =75 ntmy)  (i=0,1,2,3)
ng = minyngmy)  (6=0,1,2,3)
pi = (P P> PV) (i=1,2,3)
p; = (PG, P+ PY) (i=1,2,3),

we have from Eqgs. (6.80)

i) = TN S Y

mnn’ qq’

x Re [(dfq)mn (dfq’);:mn’ 7:111’ (7’7 ﬁ) Pnn’ @(an -

3
R ) = SN ST ST (e

mm'n qq’

< Re [(d_y) pn (A_g Vi, Ty (i D) o Py — V)]

pi(v, Q) = (v, Q) {Re — Im}

p; (v, Q) = 1} (v, Q) {Re — Im}

- 2h1? -
{-ji(I/,Q) = CQ 77?(”79) )

(6.87)

(6.88)

where the symbol {Re — Im} means that p, is obtained from the corresponding 7,

by substitution of the imaginary part for the real part.
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The radiative transfer equations become much simpler in the special case of

273
Local Thermodynamic Equilibrium, since the density-matrix elements of the atomic
system reduce to the expression (Boltzmann law)

En
kT
e ks
Prn =

where kp is the Boltzmann constant, T the absolute temperature of the medium,
and Z(T') the partition function. With the use of the conjugation relation (5.148),
we have from Eqs. (6.88)

- 8w
nf(y, Q) =

3y /
- NZ Z (71)q+q

mn qq’

E
X (d—q)mn (d—(l’)>‘<

s
mn 7:1q’ <Z7 Q)

S

~ 8
771‘ (V7 Q) =

3, ,
ch NZ Z (=1

mn qq’

E

. e BT
X (dfq)mn (dfq’)mn ,]:]q’ (7’7 Q)
and since the profiles ¢(v,,,,

Z(T) ¢(an - V) )
v) are practically Dirac delta-functions
__hv o
nzS(V>Q) =e "l 77?<VvQ)
S 2w ke . s =
g, (1, Q) = 5 (v, Q) = (771' (v, Q) — S (v, Q)) Bp (6.89)
where 5
2hv 1
BP - c2 _hy
efsT —1
is the Planck function. Thus the radiative transfer equations can be written in the
compact form
3
10 d
A I Y < K. (S. — B.U.
<Cat+d5>l ]go ZJ(J PJ)’
where!
1

_ IFA S
K, =K;; - K

Note that the relation between the quantities pf and pf analogous to the first of Eqgs. (6.89),
. __hr_ .
p; (1, Q) = e FBT p(1,Q),

is only approximately satisfied. Under such approximation we can write

A _thT_
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is the propagation matrix corrected for stimulated emission, and

U; = 8

J

1,0,0,0)f. In matrix form the equation reads

—~

is the unity vector U =

1o d
c Ot ds

with 7, = nr —n7, ng = ng — g » ete.

nr Mg N v I'-Bp
_ Ng M Py —Pu Q
—Pv N PQ U ’
o Py —Pg NI 4

< SO~
3
S

6.8. Magnetic Dipole Transitions

The statistical equilibrium equations and the radiative transfer equations have been
derived in the preceding sections under the assumption of electric-dipole transitions,
but they can be easily rewritten for magnetic-dipole transitions. As shown at the
end of Sect. 6.3, we have just to change the interaction Hamiltonian according to
Eqgs. (6.42).

It immediately follows that the basic equations (6.62) and (6.78) remain un-
changed, while the matrix elements in the expressions of the radiative rates (Egs.
(6.63)) and in the expressions of the tensors f, g, h (Egs. (6.79)) must be replaced
according to = . . .

[d- &\ (@)],,,, = [ Qx e (Q)]

When spherical tensors are introduced, it can be easily seen that the matrix ele-
bments of the form (d,),,,, must be replaced by () and the tensor &, (a, 3, Q)

Yy

nm °

[Eapr (@, B, D)] g = (Ox (@), (Axes(@),,  (@,B==%1),
which can also be written in the form
[gqq’ (Oé, ﬁ7 Q)] m.d. = aﬁ gqq/ (Oé7 ﬁ, ﬁ)

since the unit vectors €, satisfy the relation

—

Qxé, (0)=ia &, Q).

It follows that the tensor 7, (i, Q) defined in Eq. (5.146) must be replaced by
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As far as the statistical equilibrium equations are concerned, we have there-
fore that the radiation field tensor J, () (defined in Eq. (5.153)) to be used in
Egs. (6.69) for magnetic-dipole transitions is obtained from the corresponding ten-
sor for electric-dipole transitions by changing the sign of the linear polarization
Stokes parameters () and U.

As to the radiative transfer equations, it appears from Egs. (6.80) that the quan-
tities g,5. Nog, fop must be replaced by

[gaﬁ]m.d. = aﬂ ga[‘} {J'_) ﬂ}

[haﬁ]m.d. = aﬂ haﬁ {J'_) ﬂ}
[faslma = @B fop {d— 0} (o, 8==%1),

where the symbol in curly bracket means the substitution of the matrix elements
(11g) nm for (dy),m- If we consider the matrix form (6.85) of the transfer equations,
we have therefore — besides the just mentioned substitution — a sign change of the

quantities néa77[A]>p%?ﬂ?}?”%?ﬁ?jap%ap%7€Q78U~
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CHAPTER 7

STATISTICAL EQUILIBRIUM EQUATIONS AND RADIATIVE
TRANSFER COEFFICIENTS FOR ATOMIC SYSTEMS

In this chapter we will apply the basic equations derived in Chap. 6 (statistical
equilibrium and radiative transfer equations) to the special case where the material
system interacting with the radiation field is an atom — or, more properly, an
ensemble of uncorrelated identical atoms. We will also assume the atoms to be
embedded in an external, static magnetic field, on account of the great importance
of this topic in astrophysical plasmas. Obviously, the results that will be derived
in this chapter are subjected to the limitations outlined in the introduction to
Chap. 6.

The two sets of equations depend on the atomic system through the quantities:
1) pom = {n|p|m>, the matrix elements of the atomic density operator between
energy eigenstates, describing populations (n = m) and coherences (n # m);

ii) v,,, = (E, — E,,)/h, the corresponding Bohr frequencies;

i) <n|d |m) (or {n|fi|m)), the matrix elements of the electric (or magnetic)
dipole operator between energy eigenstates. In these expressions |n) and E, are
the eigenvectors and eigenvalues of the Hamiltonian of the unperturbed atom, plus
the Hamiltonian describing the interaction with the external magnetic field.

The quantities |[n) and E,, depend on the spectral properties of the atom and
on the intensity of the magnetic field (L-S or different coupling schemes, possi-
ble presence of hyperfine structure, Zeeman or Paschen-Back effect regime, etc.).
Moreover, one should in principle consider the coherences between any couple of
levels |n), |m), which would make the problem extremely involved. However,
depending on the specific atomic structure and magnetic field value, certain coher-
ences can be disregarded. This is related to a general property of the statistical
equilibrium equations, according to which the coherence p,,,, is the smaller, the
larger the energy difference between levels |n) and |m).

We consider in the following three schematic situations, which cover most cases
of interest for practical applications:

i) atom with no hyperfine structure, Zeeman effect regime, coherences between
magnetic sublevels (M, M") of each (aJ)-level (neglecting those between different
levels): Sects. 7.1-7.4;

ii) atom with no hyperfine structure, L-S coupling scheme, incomplete Paschen-
Back effect regime, coherences between magnetic sublevels (M, M") of each (BLSJ)
level and between magnetic sublevels of different levels (3LSJ), (8LSJ’) belonging
to the same term (neglecting coherences between different terms): Sects. 7.5-7.8;
iii) atom with hyperfine structure, incomplete Paschen-Back effect regime (of hy-
perfine structure), coherences between magnetic sublevels (f, f') of each hyperfine
level (aJIF) and between magnetic sublevels of different hyperfine levels (aJIF),
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(aJIF") belonging to the same level (neglecting coherences between different lev-
els): Sect. 7.9.

The statistical equilibrium and the radiative transfer equations will be written
both in the standard representation of the atomic density operator (which is easier
to work with, starting from the formalism of Chap. 6) and in the spherical statis-
tical tensor representation, which leads to more compact and physically significant
expressions.

At the end of the chapter we will also study the effect of collisions on the statistical
equilibrium equations, under the assumption of an isotropic distribution of colliding
particles.

7.1. The Multi-Level Atom in the Standard Representation

We consider an atomic system devoid of hyperfine structure, whose energy levels
are characterized by the quantum numbers « and J, where J is the total angular
momentum and « is a set of quantum numbers related to different physical proper-
ties of the energy level (in particular, for an atom described in the Russel-Saunders
coupling scheme, « could represent the set of quantum numbers (3, L, S) which
describe the electronic configuration, the total orbital angular momentum, and the
total electronic spin, respectively).

Assuming that the magnetic field is sufficiently weak for the Zeeman effect regime
to hold (see the discussion in Sects. 3.1 and 3.4), and aligning the z-direction of
the reference system along the magnetic field, we have for the eigenvectors and
eigenvalues of the atomic Hamiltonian

Hy 0] My = (Eq; + pig 9o, B M) |0 M),

where all the symbols have the same meaning as in Sect. 3.1.

The formalism presented in Chap. 6 can now be applied to this particular system.
To begin with the simplest case, we will neglect here all coherences between mag-
netic sublevels that do not belong to the same (aJ)-level. In other words, we sup-
pose that all the atomic density-matrix elements of the form® {aJM]|p|a’J M")
are zero except for (aJ) = (o/J'),

{aJM|pla My = 6,,, 6, {aJM|p|laJM") . (7.1)

This approximation is usually justified when the energy separation between two
different levels — say (aJ) and (o/J’) — is sufficiently large that the corresponding
Bohr frequency
E ,—F
J i
Vagary = 0 (7.2)

In this chapter we denote by p the atomic density operator p(*).
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is much larger (in absolute value) than the Einstein A coefficient for spontaneous
emission.! Under such approximation all the different atomic levels are decoupled
and the atomic system is referred to as a multi-level atom. For this system, the
flat-spectrum approximation discussed in Sect. 6.5 requires that the radiation field
incident on the atom should be constant across frequency intervals wider than
the Zeeman separations and than the inverse lifetimes of the relevant magnetic
sublevels. Therefore, it is sufficient to specify the incident radiation field at the
Bohr frequencies (7.2) relating different levels.

We can apply the formalism of Chap. 6 to the multi-level atom in the presence
of a magnetic field by performing the following substitutions

i) for the energy eigenvectors:
[n) = |aJ M) ;
ii) for the corresponding energy eigenvalues:

En - EaJ +:uOgonB]\4 ’
whence

iii) for the Bohr frequencies:

E —FE
Vim = % = VoM, o' M = Vab oy T VL (Gos M = gor g M/) , o (7.3)

where v, ; ./ is defined in Eq. (7.2) and vy, is the Larmor frequency (cf. Eq. (3.10));

iv) for the matrix elements of the spherical components of the dipole operator:

(dq)nm = <n ‘ dq ‘m> - (dq)aJM,a'J’M' = <aJM|dq |O/J/M/> =

/ J o J 1 -
:(—1)"+M+1\/2J—|—1<_M " q) Cad|d ol Ty, (7.4)

where we have applied the Wigner-Eckart theorem (Eq. (2.96));

v) finally, for the atomic density-matrix elements:

(n|plm) — (aJM|pla M’y =

pnm
= 6(1@/ 6JJ’ <OzJM‘p‘OzJM/> == 6(1@/ 6JJ’ paJ<M7M/) B

where we have used the assumption (7.1) and we have introduced the notation of
Eq. (3.91a).

1 We will see however in the following (see Sect. 10.17) that the coherences between

different J-levels are fundamental to explain certain polarization phenomena in multiplets even
when v rgr > A

ald, a
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By means of substitutions i) to v) the statistical equilibrium equations and the
radiative transfer equations for the multi-level atom can be directly deduced from
the corresponding equations of Chap. 6.

7.1.a Statistical Equilibrium Equations
In Egs. (6.62) and (6.69) we substitute (see also Fig. 6.1)

m — aJM
m — aJM'

m" — aJM"”

n— oy, M, p— o, J,M,
n' — a,J,M, p — o, J, M,

where the indices ¢ (for ‘lower’) and u (for ‘upper’) denote any level of energy lower
(or higher, respectively) than E_ ;. We obtain

d .
&pa.](M’ M') = =27y, goy (M — M) Py (M, M)

+ Z Z pae.]z(MlvMé) Tp(aJ MM’ o0y J,M,My)
a,J, M,M}

+ Z Z Po J (Mu7Mu/) [TE(QJMM/7%JuMuMu/)
(XuJu ]\/fthi v
+ Ty(a ] MM’ o, J, M, M)
-3 { pos (M, M") [R (MM + Ry (o M M)

M

+ RS(aJM”M’)]
+ o (M, M) [RA(aJM”M) + Ry(aJ MM")

+ RS(aJMM”)} } , (7.5)

where the various rates (for which we have introduced shorthand notations) are
given by

3271'4 / *
= W Z(_l)q+q (dfq)aJM,az.]ZJVIZ (dfq’)aJM’,aeJeMé Jqq’(”aJ,aeJe)
qq’
Ty(a MM, 0, J, M, M) =

6471'4 * 3
~ 3he3 (d_g)a, 1 7, i (dfq)oquuMu,aJM Vo, 1, a7
q

uu Ty uu’
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Ts(aJ MM’ oy, J, M, M) =

- 3}?214 Z(,l)ﬁ-q' (d_ )% J, M/, oM’ (d—q’);uJuMu,aJM Jqq/(VauJu,aJ)
qq’
Ry(aJMM') =
- Z 1:327;4 Z(il)qﬂl (d_ )%%Mu aJM (d—Q’)ZuJuMu,aJM' Joq (v auJu,aJ)
o, J M, aq’
Rg(aJMM') =

327 (d ) (d_): 3

= 1%

E : 3he3 —q/aJM, o, J, M, —q¢/aJM' o, J, M, “al, a,l,
a,J,M, q

167 : .
= Z h2c Z(il)q—s_q (dfq)a.]M,az.]ZJWZ (dfq’)aJM’,azJKJVIZ ‘]qq’(ya.],azJ[)'

a,J,M, aq’

Because of Eq. (7.4), the expressions for the rates contain the square modulus of
the reduced matrix element of the dipole operator between the (a.J)-level and one
of the lower or upper levels,

[<ad|ld llagdpy P or [<ayd,d e .

These quantities can be easily expressed in terms of the Einstein coefficients for
transitions between different levels. Given two levels («,J,) and (a,J,), with
Eau.]u > E% 7, the line strength of the transition is defined by the symmetrical
expression

Slagdy, o d,) = Sy d,, 00 dy) = (2, + 1) ‘<O[ZJEHJ||%J’U,>|2

(
= (2], + 1) [<a, T [Id [lag T (7.6)
where the last equality follows from Eq. (2.101). The Einstein coefficients for
spontaneous and stimulated emission and for absorption are connected with the
line strength by the relations!

647
24, +1) Ala,J, — apJy) = 3hed Vquu,a g, Sloydy, apdy)
3274
(20, + 1) Blod, — 00d,) = on (o, 007,
3274
(2J,4+ 1) B(a,J, — a,J,) = Shic S(apdy, o, d,) (7.7)

Note that from Eqgs. (6.71) and (6.73) the Einstein coefficients for the transition between
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with
oh
A(au‘]u - aEJE) = C_2 Voquu,az.]z B(au‘]u - aZJZ)
(2J, + 1) By, — o, d,) = (2J,+ 1) BayJ, — a,J,) . (7.8)

Using these relations, we can rewrite the expressions of the rates in the form
Ty(aJMM' o, J,M,M)) = (2J,+ 1) B(oyJ, — ] )
M M’ J JE 1 J Jl 1
: Z (_M M, —q)\-M" M; —¢
X Jqq’( ad, O‘z']z) (793’)
Te(aJ MM’ o, J, M, M) = (2], + 1) A, J, — aJ)
Y. A Vi A J 1 J, J 1
x Y (-1) <Ml i q)(M o q) (7.9b)
q
Ts(aJMM' o, J, M, M) = (2J,+1
_ M’ —M Ju J 1 Ju J 1
XZ?’( 2 < M M —q)\-M, M —¢

X Jqq( a J aJ) (79C)

uu

5
e
~
|
Q
<

the individual magnetic sublevels (a,J,M,) and (o, J, M, ) are given by

647t 4 - )
A 1My 0, 0,M, = 315 Vo, I, M, a0,M, [0 M d oy, M|
3274 o 9
BauJu]\/Iu a,J,M, = 3pae [<oy, J, M, | d o, T, M5 |
327r
Ba,s,my 0,0 M, = |<%J2M |d |o, J, M, >|?

Using Egs. (6.70), (7.4), (2.23a) and (7.6) we get

ZM A, I M, 0,0, M, = Ay J, — o J,)

Vi uou
ZMz BauJuMu,aerMe = B(a,J, = a,Jy), ZMu o, J,My 0, J M, ~ = B(ayJ, = a,J)

(the first relation implies indeed the approximation

3 3
14 =V .
o, J M  o,J,M, o J o, )
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1
Ry (aJMM') 5; (2J +1) B(aJ — a,.J,)
s -M, M —q)\-M, M -—¢
X Sy (Vau‘]u o) (7.9d)
1
Rg(aJMM') = 5 2J +1) Alad — a,dy)
a,J,
« (I)JWM'( J Jé 1 )( J JZ 1 >
ar -M M, —q)\-M M, —q
1
=3 JVeve Z}: Alad — a,J,) (7.9¢)
1
Rg(aJMM') = - > @7 +1)B(a] — a,J))

a,d,
1 J J, 1
I ¢
<3 i 2 )

qq’' M,
X Sy (Vars, %J[) . (7.91)

7.1.b Radiative Transfer Coefficients

Quite similar transformations can be applied to the different quantities entering
the radiative transfer equations — which will be simply referred to as the radiative
transfer coefficients. Substituting in Eqgs. (6.88)

m — «,J, M, n — a,J,M,
m' — o, J, M/ n' — a,J,M;,
we obtain!
N hv
n; (v, Q) = 4—N (2J, + 1) B(aydy — oy, J,)
T a[']Z au']u
1M —_ M’ Ju JE 1 Ju JE 1
M, MM, qq'
X Re[’]jlq, (,9) paeJe(MZ’Mé) ¢<VauJuMu,a2J£]\/[£ - V)] (7.10a)

1 The second expression for ¢, (v, Q) should be multiplied by the factor 1/3/112 7 o > Which
uu’ el

is however very close to unity because of the presence of the & profile.
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S hv
HAVES Y > (2J, + 1) B(ay,J, — a,J,)
QZJZ au‘]u
y 3<Ju J, 1)<Ju J, 1)
M, M'M,qq' “Mo My —q)\ =My My =
uut A
X Re|:7:]q’ (i,9) pauJu<Mu/7Mu) ¢(Vau.]u1v1u,aeJeMe - V)} (7.10b)
(v, Q) = (v, Q) {Re — Im} (7.10c)
(v, ©) = nf’(u,ﬁ){ReHIm} (7.10d)
2hv3 ~
fn0) = 205 (v 6)
hv
a,dy o,
y 3(Ju J, 1>(Ju J, 1)
M _M'M,qq' “M My —a)\ =M My =
X Re| T (1,9) po y (ML M) D(vy y ar s, —u)] . (7.10e)

7.2. The Multi-Level Atom in the Spherical Statistical
Tensor Representation

We will now convert the equations of the previous section into the spherical statis-
tical tensor representation.

7.2.a Statistical Equilibrium Equations

Multiplying both sides of Eq. (7.5) by

CoveRTT (3 e o)

and carrying out the summation over M and M’ we obtain, with the use of
Egs. (3.97) and (3.99)

Epg(ou]) = —2mivy, g,; Q pg(aJ)

K
+ E E pr(aer) Ty (JKQ, 0, J, K,Q,) +
a,J, K,Q,
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o J K Q,

uu u

+ Ty(aJKQ, %JuKuQu)}
-3 o8 (@) [RA(aJKQK’Q’) + Ry (aJKQK'Q)

K'Q
+ RS(aJKQK’Q’)} , (7.11)

where

Ty (K Q. 0,1, K,Q,) = \/ (2K + 1)(2K, + 1)

s m e S %)

MM’ MZMé
X Ty (aJ MM’ a,J,M,M))

To(aIKQ, 0,7, K,Q,) = /(2K +1)(2K, + 1)

R B LY

MM’ M, M/
X TE(aJMM/, %Ju%Mu/)

Ty(aTK Q. 0,7, K,Q,) = /(2K + 1)(2K, +1)

Rl e ) S

MM’ MuMzi
X Tg(aJ MM’ o, J, M, M)

R, (aJKQK'Q') = /(2K + 1)(2K' 4 1)

< > (2w %)

MM’ M

!
X{(Z\J4 _5\14,, _[22/>RA<CYJM’M’/)

+ (*1)62/_@ (]\(4]// 7}]\4/ I(Q//) RA(CMJMHM)}
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Rp(aJKQK'Q') = /(2K +1)(2K" + 1)

(5 )

MM'M"

/
X {(Z\J4 —1{4” —i)’) Ry (aJM"M')

sen@a (g o 1o Reana

Ry(aJKQK'Q') = /(2K + 1)(2K' + 1)

J J K
x> (M M Q)
MM’ M

/
x {( A‘Z - 1{4/’ _@,) Ry(ad M" M)

+ (71)QI7Q (]\(4]// 7}]\4/ [g,) RS(O[JMMN)} .

These expressions can be further developed by substitution of Egs. (7.9). For the
rate T, we have

Ty (0 KQ. 0,1,K,Q,) = 3 (2], + 1) Blay T, — af) \/ (2 +1)(2K, +1)
_ v J J K J, J, K
B e B % )

MM'M,M}qq’
T T J J, 1
M M, —g)\-M' M —¢

X oy Vs, a,0,) - (7.12)

We can now introduce the irreducible radiation field tensor Jg(u) using Eq. (5.156),
which gives

2K +1
Joy @) = 3 (~1)1 f3+ <; fq, fg )Jgr(y). (7.13)
K, '

Substitution into Eq. (7.12) yields!

1 To arrange the sign factor in this expression it should be kept in mind that — as apparent
from the various 3-j symbols — the indices K, Q, K,, Q,, K, Q, are integers.
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Ty (aJKQ, 0, K,Q,) = (2J, + 1) By J, — aJ)

x 3 (32K + DK, + DK, + 1)
K.Q,

J J K J J K
1T T,+Q ‘ 4 ¢
G e )G e )

MM'M,M}qq’

« J J, 1 J Jy 1 1 1 K,
-M M, —q -M' M, —q g —¢ -Q,

K
X JQ: (VaJ, O‘z‘llz) .

The sum of the product of the five 3-j symbols can be evaluated via Eq. (2.52).
After some manipulations similar to those of App. 2 we obtain!

Ty (aJKQ, o, J, K,Q,) = (2J, + 1) B(ayJ, — aJ)

x 3 (32K + DK, + DK, + 1)
K.Q,

J J, 1
K K K K
X (—l)K/z"'Qe J J, 1 (—Q Q‘Z _é ) JQ:(VQJ’ O‘eJe) . (7.14a)
K K, K, ¢ G

With analogous procedures involving the use of Eq. (2.34) for Ty, Eq. (2.52) for
Ty, Eq. (2.23a) for Ry, and Eq. (2.42) — applied twice — for R, and Rg, we get

Te(a/KQ, o, J, K, Q,) = dgx 0go (2J, +1) Ala,J, — aJ)

5 J K
_1\+J+I,+K u u
% (~1) {J J 1} (7.14b)
T/ KQ, o, J, K, Q,) = (2J, + 1) B(a,J, — o))
x 3" (32K + DK, + 2K, + 1)
K.Q,

J g1
K (—)EAEAQ L T T ( K K, K )Jgf(ua L) (7.14e)

K K, K| \7@ G —Q/ %

1 Note that the sign factor appearing in this formula, (fl)Kﬁ'Qé, can be written in various

different ways. As @, is an integer, we can also write (—1)K27Q€. As the 9-j symbol is zero unless
(K + K, + K,) is an even integer (because of the symmetry properties following Eq. (2.48)), the
sign factor can also be written (—1)KT5:+%@¢; etc.
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Ry (aJKQK'Q') = (2] +1) > B(aJ — a,J,)
o J

x

g

x 30 \BRE + DEK + 2K, +1)

x (=) I HE A K K' K, 1 1 K, K K K,
Jg g Jf\J 7 Li\e @ q
K
X CJo Vo g ) (7.14d)

Ry (aJKQK'Q') = 0y 0o Y, Alad — ayly) (7.14e)
ozsz

Rg(aJKQK'Q") = (27 +1) Y BlaJ — ayJ))

a,J,

x 3" (/32K + DK+ 12K, + 1)

% (71)1+']27J+Q, K K/ Kr 1 1 Kr K K/ Kr
J J J J J J, Q —-Q Q,

K
X G T (Vasa,0,) (7.14f)

14

where! 1
1 1 K+K’+Kr} ]
C+ = _2 [ + (* )

The equations above were first deduced by Bommier and Sahal-Bréchot (1978).
Bommier (1977) had formerly derived the corresponding equations in the standard
representation.

7.2.b Radiative Transfer Coefficients

The radiative transfer coefficients can be easily expressed in the spherical statistical
tensor representation. Using again Eq. (3.99) and writing 7_,, (4, ) in terms of the

irreducible spherical tensor 7/ (i, Q) via Eq. (5.156), we obtain from Eqs. (7.10)

n (v, Q NZZZJZJFl (apdy — )
AZJZ au‘]u
> \/3(2K—|— 12K, +1) x
KQK,Q,

1 Note that the quantity ¢, is 1 or 0 according as the integer (I + K’ + K) is even or odd,

respectively.
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_ / J J, 1 J J, 1
_1\1+J,—M ,+q u L u ?
x Y (e <z\@ M, q>(]\/[u M q’)

M, MM, qq'
><<1 1 K)(Je J, Kl>
¢ —¢ -QJ\M, -M; -Q,
LR K
X Re[Tg(%Q) ij(al‘]Z) Q(VauJuMu,aszjwz - V)} (7.15a)

- h
Q) = TN DT Y (20,4 1) Blayd, = agdy)

a,J, o, d,
x Y \BERE+ D)@K, +1)
KQKUQU
_ / J J, 1 J J, 1
_1\1+J,—M, +q u 4 u V4
. Z =D (Mu M, q>( M, q’>
M, M/ M,qq'

x Re| T (i, D) pg* (@,4,) Va1 p a,0m, ~ V)] (T15D)

P () = (v, @) {Re — Im} (7.15¢)

p; (v, ) = nj (v, 9) {Re - Im} (7.15d)
~ 2hu3 < -

€i(V7 Q) = 2 5 (V7 Q) : (7156)

These expressions simplify considerably when the dependence of the @ profiles on
the magnetic quantum numbers can be neglected. This occurs, for instance, when
the line width is much larger than the Zeeman splitting (the physical regimes Ia
and ITa of the classification scheme presented in Sect. 5.16), or when low-resolution
observations of the radiation emitted by a thin plasma are to be interpreted. Sub-
stituting in Egs. (7.15)

ds(yau.]ujwu,aeJeMe —v) = ¢<Vo¢uJu,a£.]z —-v),

the summations over the magnetic quantum numbers can be carried out using
Eq. (2.34). Taking also into account that the quantity TE(0,9Q) pf(ad) is
real — as apparent from the conjugation properties (3.102) and (5.158) — one gets

~ h
ni (v, Q) = ﬁj\/ Z Z (2J,+ 1) B(ayJ, — ay,J,) x

a,d, a,Jd,
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u

1 1 K e
X Z \/g (71)1+J£+Ju+K {‘]IZ JZ J }Tg(Z,Q) pIQ((aZJE)
KQ

x ¢(v, Joa,J —v) (7.16a)

Uy (a4

~ h
ng (v, Q) = ﬁ/\/ Z Z (2J,+ 1) Bley, J, — a,d,)

O‘z']z auJu
«SOVE (e d 0 LG 6y o,
g, J, J et ettt
KQ
X ¢(Vau']u’a€']€ —v) (7.16Db)
A S A o)
o2, 8) = 02, D) {6010, = V) = 0Wa, g a0, = 1)} (7.16¢)
P D) = . D) {6y s s, = V) = WWa s 0, — )} (7.16d)
o 2hv3 -
e(v. ) = =5~ Bw.9), (7.16¢)

c2

where the profiles ¢ and ¢ are defined in Eq. (6.59a).

7.3. Conjugation Properties of the Rates

The physical meaning of the various rates defined in Sect. 7.1.a is strictly analogous
to that of the more general rates introduced in Chap. 6 (see the discussion follow-
ing Eq. (6.65)). For instance, the quantity T, (a«JMM’, o, J,M,M]}) represents the
transfer rate, due to absorption, from the ‘lower-level coherence’ P, s, (M,, My)

to the coherence p, ;(M,M’). Similarly, the quantity R, (aJM’'M") represents
the relaxation rate, due to absorption to upper levels, connecting the coherence
Poy (M, M) with the coherence p, ;(M, M"). The rates introduced in Sect. 7.2.a
have a similar physical interpretation. The quantity T, (aJKQ, o, J,K,Q,), for in-
stance, represents the transfer rate, due to absorption, from the spherical statistical

tensor of the lower level pgj (cyJy) to the spherical statistical tensor pg (o).

We can easily find the conjugation properties of the different rates. Bearing in
mind Eq. (5.154), we have from Egs. (7.9)

Ta(a MM, 0y J,MyM;)* = Ty (] M'M, o, J,MyM,)
Te(aJMM', o, J, M, M = Ty(aJM' M, o, J, M/ M)

= T (] MM, o, J, M, M)
Ts(aJ MM’ o, J, M, M)* = Tg(aJM'M, o, J, M/ M,)
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Ry(aJMM'* = R, (o] M'M)
Ry (aJMM')* = Ry(aJM'M) = Ry (] MM')

Rg(aJMM')* = Rg(aJM'M) .

As to the rates in the spherical statistical tensor representation, we obtain from
Egs. (7.14), with the help of Egs. (5.158)

Ta(@JKQ, apJ K,Q,)" = (=1)9% % Ty (aJ K —Q, ap J, Ky —Qy)
Ty(alKQ, 0, J,K,Q,)" = (=) Ty(a K -Q, 0, J,K, —Q,)
= Ty(aJKQ, 0,J,K,Q,)
Ts(aJKQ, 0, J, K,Q,)" = (-1)*T % Ty(aJ K —Q, 0, J, K, —Q,)
Ry (aJKQK'Q')" = (1)1 Ry (aJ K —QK' ~Q')
R (] KQK'Q)* = (1) Ry(aJ K —QK' Q') = Ry(aJ KQK'Q')

Rs(aJKQK'Q)" = (=1)9"¥ Rg(aJ K —QK’ —Q") .

7.4. The No-Coherence Case

The equations derived in Sects. 7.1 and 7.2 are rather involved, which is quite
natural as they describe a complex physical situation. It is interesting to consider
in detail the special case where atomic polarization can be disregarded; obviously,
the equations become considerably simpler in this case.

Let us assume that coherences between Zeeman sublevels can be neglected or,
in other words, that the atomic density matrix is diagonal. This case — which
will be referred to as no-coherence case — covers the union (in the sense of the
mathematical set theory) of the physical regimes IIla, IVa, Va, IIIb outlined in
Sect. 5.16. The statistical equilibrium equations in the standard representation
might be deduced directly from Eq. (7.5). However, the resulting equations would
be of limited use because of the severe assumption on the spectrum of the incident
radiation. Since no coherences between magnetic sublevels are present, we can now
make — still consistently with the flat-spectrum approximation — the less restrictive
assumption that the incident radiation field is flat across frequency intervals wider
than the inverse lifetimes of the magnetic sublevels, allowing for its dependence on
the individual Bohr frequencies v, ;5 o j/3p - Performing in Eqgs. (6.62), (6.69) the
same substitutions as in Sect. 7.1.a and introducing shorthand notations for the
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rates, we have!

d
&PQJ Z Pa,J Mz talad M, o, J,M,)

o, J ]\/[

D Pa g (M) [t M, 0, M)

auJu]\/[u
+ ts(ad M, a,J,M,)]
— pos (M) [TA(QJM) + rg(a M) + rs(aJM)} , (7.17)
where

ty(aJM,a,J,M,) = (2J,+ 1) B(ayJ, — aJ)

2
1
XZ < M Mz —q> JQq(VaJM,aeJEME) (7.18a)

2
ti(ad M, o, J,M,) = (2], + 1) A(a,J, — aJ) Y <‘f\w@ ]\‘]4 1q> (7.18b)

2
J; J 1
g Z ’ <]7\L/[u M q> Jaa¥, auJuMu,aJ]V[) (7.18c)
q
A M) ZQJ+1 (@] = a,)
auJu
2
J, J 1
X Z < q> Jqq(VauJuMu,aJM) (7.18d)
q]W
reg(aJM) = Z Alad — a,d,) (7,15
a,dJ

[

s(@JM) =" (27 +1) B(a] — oy Jy)
o,

L7
2
1
XZ ( M Mé q) JQQ(V(XJM,QZJZJ\/IZ)a (7.18f)

where Eq. (3.91b) has been used.

L' The expressions for ty(aJM, o, J M ) and rg(aJ M) imply, respectively, the approximations

=V 1/3 = 1/3
o JuM saJM auJ sad ) D‘JM’O‘ZJIZMZ oLJ,aer .



EQUATIONS FOR ATOMIC SYSTEMS 293

For the radiative transfer coefficients we obtain from Egs. (7.10), with the help
of Eq. (5.148)

w9 =—=N Z Z (2J, +1) B(oyJ, — o)

g, g, 1Y
u 4 -0
x Z 3(M M, q) Z4q(1,2) g, 5, (M)
X Vo g M, 0,00, ~ V) (7.19a)

~ h
ns (v, Q) = ﬁ/\/ Z Z (2J,+ 1) B(ey, J, — a,J,)

a,J, o J,

I g, 1Y -
x> 3(_;4 MZE _q) Tp(i:) po 5 (M,)
M,M, q u

x (b(VauJuMu,aeJeMe - v) (7.19b)

pi (v, ﬁ) = 77?(”7@) {¢(Va J M, o, J, M, ~ v) — w(yauJuMu,aszMg - V)} (7.19¢)

u Tyt

p; (v, ﬁ) = n; (v, ﬁ) {¢(VauJuMu,a2J2]\/[2 —v) =Y, s u ca,J,M, — V)} (7.19d)

uuT

n; (v, €2) . (7.19)

Similar simplifications occur in the equations written in the spherical statistical
tensor representation. The no-coherence hypothesis results here in the fact that all
the components of the multipole moments pg vanish except those having @) = 0,
as apparent from the definition (3.101). Multiplying both sides of Eq. (7.17) by

o vaRT (8 )

M —-M 0

carrying out the summation over M, and using Egs. (3.99), (3.101) and (7.13), we
obtain the following simplified statistical equilibrium equations!

d K
Eﬂé((aj) = Z po “(agdy) ta(J K, oy, Ky)
a,J, K,

K
po* () [telaT K 0, K,) + ts(aT K, 0, J,K,)|

+

a J K

u

> o () [rA(aJKK’) + rg(aJ KK') + rS<aJKK/)] ,

1 The expressions for the rates ty(aJK, o, J K,) and rp(aJ KK') are derived with the help
of Egs. (2.34) and (2.23a), respectively.
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where

ta(aJ K, ap,K,)) = (20, +1) BlayJ, — ad) > \/3(21( +1)(2K, + 1)(2K, + 1)

Sy (J J K\(J, J K
I ¢ ¢ ¢
x > (=1 Z(M M 0)<M£ ~M, 0)

MM,q

2
J J, 1 1 1 K K
x (M J\/[ég q) <q —q Or) Jo r(VOLJM, %J[Mz) (7.20a)

tg(aJK, o, J,K,) = 6 (2J,+1) Ao, J, — aJ)

u

J, J, K
><(—1)1+J+JU+K{} b 1} (7.20b)

ts(@] I, 0, 1,K,) = (2], +1) B(a,J, — a]) 3 /32K + 12K, + 1)(2K, + 1)

r

_ J J K J J K
_1\1+J-J, u u u
<2 e (G5 R )
w4

2
Ju J 1 1 1 Kr K,
x (—M M —q) <q —q 0 )JO (Vau.]ujv[u’a']]yj) (7.20(3)

ra(@JKK) = 27 +1) Y Blad — a,7,) 3 (3K + 1)K + 12K, + 1)
a J K

J K J J K
1+q
x 2 (- (M —M 0)<M —M o)
MM, q
2

J J 1 1 1 K K
X y A A , 7.20d
<% M q) (q —q 0) 0 (Vau.]uJV[u,aJJVI) ( )
re(QJKK') = S0 Y Alad — aydy) (7.20e)

,d,

rg(aJKK') = (2] +1) Y Bla — o, J) Y \/3(2K + 12K+ 1)(2K, + 1)

a,J, K,

J J EKE\(J J K
—1)1ta
x> (D) (M -M 0)<M -M o)
MM,q

2
J J, 1 1 1 K.\ ,k,
% (—M MZZ —q> (q —q 0 )Jo (Va.]kl,az.]zMe)- (7.201)
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For the radiative transfer coefficients we have from Eqs. (7.15), with the use of
the conjugation relations (3.102) and (5.158)

(v, 6 NZZZJZJrl (o = ) 3 (BRI +1)(21, +1)

J e} Ju KK
2
_ J J, 1 1 1 K J, J, K
~ Z (71)1+J£ Me+q< u ¢ > < >( £ ¢ é>
Mobg -M, M, —q q —q O M, -M, O
L= K
X ’TOK(Z,Q) po ‘(e dy) ¢(Vau'7uMu’%JzM/z —v) (7.21a)
- h
(v, ) = ﬁ/\/ SN @4, + 1) Blagd, = ad) Y \/3(2[( +1)(2K, + 1)
al']l au']u KI(u
2
_ J J, 1 1 1 K J J K
X Z (71)1+Ju Mu+q( U Y4 > ( >( U U u>
Mobhg -M, M, —q q —q O M, -M, O
= K
x Tg (1,) po* (e, ¢Wa, 1M, 07,0, = V) (7.21b)

P (v, Q) = (v, D) {¢( Vo, M, a,J,M, —v) = w(yauJuMu,aszMg - V)} (7.21¢)
—v)— w(yauJHMu,alJlMe - V)} (7.21d)

(R T TR A A 4

IHAVR (7.21e)

7.5. The Multi-Term Atom in the Energy-Eigenvector Representation

We will now consider the interaction of an atomic system with a polarized radiation
field in more general terms, dropping some of the basic restrictions adopted so far.
First, we will allow for coherences between different J-levels, besides those between
magnetic sublevels of any individual J-level. Second, we will drop the limitation
on the magnetic field intensity,' so that the validity of the new equations is not
restricted to the Zeeman effect regime. The only restrictions that will be retained
are the following:

a) the atom is devoid of hyperfine structure;

b) the atom is described by the L-S coupling scheme (cf. Sect. 3.1), so that
the different J-levels are grouped in terms, each term being characterized by the
quantum numbers 3, L, and S;

c) coherences between J-levels pertaining to different terms are negligible.

1 The magnetic field must be however sufficiently weak for the diamagnetic term in the atomic

Hamiltonian to be negligible. This implies B < 109G (see the discussion in Sect. 3.1).
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The model atom described by these approximations will be named in the following
the multi-term atom. For such system, the flat-spectrum approximation discussed
in Sect. 6.5 requires that the radiation field incident on the atom should be constant
across frequency intervals larger than the frequency separation between different
levels belonging to the same term. The radiation field can thus be characterized
by specifying its value at the Bohr frequencies

E(BLS)— E(B'L'S’
Vgrs,prLrs = ( ) 5 ( ) , (7.22)

where F(BLS), E(8'L'S’) are the energies of the relevant terms (which disregard
both the spin-orbit and the magnetic Hamiltonian). This approximation is indeed
rather restrictive, but it can only be released within the framework of more general
theories able to encompass frequency redistribution effects (see the introductory
discussion to Chap. 6).

We now apply the equations derived in Chap. 6 to the multi-term atom embedded
in an arbitrary magnetic field. To this aim we must go back to the results obtained
in Sect. 3.4 for the Paschen-Back effect regime — which obviously describe, as a
particular case, also the Zeeman effect regime. Using the notations of Sect. 3.4
(which implies that the z-axis of the reference system is in the magnetic field
direction) we have for the eigenvectors and eigenvalues of the atomic Hamiltonian

Hy |BLSjM ) = [E(BLS) + A;(BLS, M)] |BLSjM)
where the eigenvectors are given by (see Eq. (3.58))

BLSiMy =" C%(BLS, M) |BLSIM ) . (7.23)
J

Therefore, we have to modify the formalism of Chap. 6 according to the following
substitutions

i) for the energy eigenvectors:
|ny — |BLS M) ; (7.24)
ii) for the corresponding energy eigenvalues:

E, — E(BLS) + )\j (BLS, M) , (7.25)
whence

iii) for the Bohr frequencies:
En — Em
Vaim = h — VBLSjM,B'L'S'j' M/ =

X (BLS, M) — X, (3'L'S", M")
= V,HLS,,G’L’S’ + J hj N (726)
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iv) for the matrix elements of the spherical components of the dipole operator:
(dq)nm = <n | dq | m> — (dq)ﬁLSjM,ﬁ’L’S’j’M' = <5LS]M‘ dq ‘5/L/S/j/M/> =

=" Ch(BLS, M) CY(B'L'S', M") (BLSIM|d, |B'L'S'J' M">

JJ'
=Y Cy(BLS, M) Y (F'L'S', M)
JJ!
’ / =
X (=1)7 M BT T (_{M z\J4 2) (BLSTd LS T

=" CL(BLS, M) C5.(B LS, M)
JJ!
x (=1)EFS=M /(2L + 1) (2 + 1) (2] + 1)

J J 1 L L' 1 7

where we have used the reality of the C.]]' coefficients (cf. Sect. 3.4), the Wigner-
Eckart theorem (Eq. (2.96)), and Eq. (2.108);

v) finally, for the atomic density-matrix elements:

Prm = {n|p|my — (BLSjM|p|3'L'S'j’M"y =
= 055 01 0g5 (BLSFM|p|BLS;'M")

= 03 O 0ss Pars(GM,j'M') (7.28)

where we have used assumption c).

By means of substitutions i) to v) the statistical equilibrium equations and the
radiative transfer equations for the multi-term atom in an arbitrary magnetic field
can be directly deduced from the corresponding equations of Chap. 6.

7.5.a Statistical Equilibrium Equations

Observing that dipole transitions are only allowed between terms having the same
S-value (as apparent from the factor d¢¢, in Eq. (7.27)), we replace in Egs. (6.62)
and (6.69) (see also Fig. 6.1)

m — BLS M

m’ — BLSj M’
m// — /BLSj//MN

n — B,L,S5j,M, p — 8,L,55,M,
n' — B,L,SjyM;  p'— B,L,SiM, ,

where the quantum numbers (6,L,S) and (8, L, S) refer to any term of energy lower
or higher, respectively, than E(8LS). We obtain
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d

EpBLS(jMvj/M/) = —2mi VBLS(jMvj/M/) pﬁLS(jMvj/M/)

+ Y ppn,s UMy, §iMy) Ta(BLSGM M, B,LyS M, jiMy)
BéLéjéMéjéA/jé

Y ppnsUa M dM) | Te(BLSTM M, B,L, S, M, j.M;)

8,L,j,M,j M/

u T udu T u

+ Ty (BLSI MM, 6,1, 55, M, i M])]

= > { ppusGM. 5" M") [Ry(BLS] M M")
jII M//

+ Rp(BLSj"M"j' M) + Rs(SLSj"M"j'M")]
+ pars("M", M) |Ry(BLS]"M"jM)
+ Ry(BLSjMj"M") + Rq (ﬁLSij”M”)] } , (7.29)
where
X, (BLS, M) = X, (BLS, M')

h

Similarly to Sect. 7.1.a, we now define the line strength of the (electric-dipole)
transition between two terms (5,L,S) and (8,L,S) — with E(8,L,S) > E(6,L,S) -
by the symmetrical expression

VﬁLS(jMnj/Ml) =

(7.30)

S(B, LS, B,L,S) = S(B,L,5, B LyS) = (2Ly +1) [<BLlId ||8,L,> 1

The Einstein coefficients for spontaneous and stimulated emission and for absorp-
tion are connected with the line strength by the relations!

1 Starting from Egs. (6.71) and (6.73), it can be proved that the Einstein coefficients for the

transition between the individual levels (8,L,Sj,M,) and (8, L, Sj,M,) are connected with the
Einstein coefficients defined here by the relations

Z:J-ZMIZ Aa L, 8j,M,,B8,L,S5,M, = A(B,L,S — ByL,S)

uwu S
. B
D,

ZjuMu BﬁzLESjZAIE,ﬁuLquuAIu = B(B,L,S — B,L,5)

8,L,Si,M,,B,L,Sj,M, = B(8,L,S — B,L,5)

(the first relation holds only under the limit

3 _ 3
VBuLquuJMu,BeLZSjEJME = VﬁuLuS, 62L£S)'
The proof can be carried out with the help of Egs. (7.27), (3.62), (2.23a) and (2.39).
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647t
(2L, + 1) A(B,L,S = BiLyS) = 53— Vi 1,5.8,L,5 SB.L,S, BL,S)
327t
(2L, + 1) B(B, LS — BeLyS) = 55— S(B, LS, BeLyS)
3274
(2L, + 1) B(B,LyS = B,L,8) = 55— S(Be LS, B,L,5) (7.32)

with

2h
ABL,S = B,LyS) = 2 VguLuS, 8,L,S B(B, 1,5 — BeL,S)

(2L, + 1) B(B,L,S — B,L,S) = (2L, + 1) B(3,L,S — B,L,S) . (7.33)
Performing the substitutions outlined above, we obtain after some algebra
Ty (BLSjMj'M', B,LySjyM,j,M;) = (2L, + 1) B(8,L,S — BLS)

xS ST 3(-1)MeMi CY(BLS, M) C, (BLS, M)
JJ'J,J; ad’

X Cf}’; (BeLyS, My) C.]}z (B LyS, My) \/(2J +1)(2J + 1)(2J, + 1)(2J) + 1)
T JJ 1 L L, 1\ (L L, 1
-M M, —q)\-M" M, —¢)\J, J S[\J, J S
X Jog VL3, 8,1,5) (7.34a)
Te(BLSiMJ'M', 8,L,55,M,j. M) = (2L, +1) A(8,L,S — BLS)

x 30 ST (—)M M CI(BLS, M) O (BLS, M)

JINJT g

x O (8,1,5, M,) C% (8,L,5. M) /(27 + 1)(27" + 1)(2], + 1)(27, + 1)
JooJ 1 0 1N\fL, L 1\[L L 1
(ot e 2l 20 0 S 5 s) oo
To(BLSjM M, 3,L, 53, M,j,M]) = (2L, + 1) B(3,L,5 — BLS)

xS0 N 3(-n)MM (8L, M) CY, (BLS, M) x

JJ'IJ qq’
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x Ol (8,1, M,) C (8,15, M) /(27 + 1)(27' + 1)(2], + 1)(27, + 1)

T JoJ 1\fL L 1\fL L 1
M, M —¢)\-M M —q¢)\J J, S{\J J S

X Jqq'(yﬁuLuS,ﬁLS) (7.34c)

RA(BLSjMj'M') =

DN | =

> (2L +1) B(BLS — 8,L,5)
B L

uu

< S ST 3(-1)TH C(BLS, M) C%(BLS, M)
JJ"J, qq'M,

X /(27 +1)(2J' +1) (2Ju+1)(‘§% A‘Z 1q)<§% ]\(14’/ qu>

L, L 1\fL L 1
X{f J S}{ﬁ J S}JqQ’(VﬁuLuS,ﬁLS) (7.34d)

Ry (BLSjMj'M') = = 8,5 600 >, A(BLS — B,L,S) (7.34€)

B,L,

DO =

Rs(BLSjMj'M') =

DN | =

> (2L+1) B(BLS — B,L,S)
B,L,

< S ST 3CY(BLS, M) C(BLS, M)

JJ'J, q¢'M,

/
x /(2T + D)2 + 1) (2JZ+1)(‘§W z\Jfl 1q>({\4’ J\J;E qu>

L L, 1 L L, 1
x {JE 7 S} { J, 7 5} Jog Wprs,5,1,5) - (7.34f)

The expressions for R, and Rg have been derived using Eq. (3.62b); the expression
for Ry using Egs. (3.62b), (2.23a), (2.39), and (3.62a).

7.5.b Radiative Transfer Coefficients
Substituting in Eqgs. (6.88)

m— ﬂuLuSJu% n— ﬂIZLZSjIZMZ
m' = B, LS M, ' = B LS My

we obtain by similar transformations
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~ hv
(v, Q) = E/\/ > (2L, + 1) B(B,L,S — B,L,5)
BZLZSBuLu
'~ gy
x Y > 3(-1rH CF (BeLeS, My) O, (B, LS, My)
Gedp gl MMM, g’

x Cl (B,L,5, M,) Ch (81,8, M,) \/ (27, + 1)(27; + 1)(2], + 1)(2J, + 1)

N JoJ 1\ [L L, 1\[L L, 1
-M, M, —q)\-M, M, —¢ )\ J, J, S{\J, J S

X Re| Ty (D) g1, sGeMenJiM}) B0 1 55,00, 5,1,55,0, =) (7:352)

~ hv
S(v,Q) = — g 2L 1) B(G,L,S — 6,L
771(”7 ) 47FNBLSBL( u+ ) (ﬁu uS 5[ ZS)
e

u

Je Je
x> > o3 O (BeLyS, My) C, (B, LS, M)

Jududunded g Ty MMM, aq!

u

x Ol (B,L,5, M,) Ch (8,L,5, M) \/ (2], + 1)(27; + 1)(2], + 1)(2], + 1)

u

A 1 JoJg 1\ [L L, 1\[L L, 1
-M, M, —q)\-M M, —¢ )\ J, J, S{\J, J S

X Re[qu/ (i, ) P, 1, s uMys 5, M,) P 1, 55 ar p,1,55,M, ~ V)} (7.35D)
A 3 A e
P, Q1) = i (v, Q) {Re — Im} (7.35¢)
p; (v, Q) = n; (v, Q) {Re — Im} (7.35d)
o 2hv3 -
g, (v, Q) = 2y ns (v, Q) . (7.35¢)
c

7.6. The Multi-Term Atom in the Spherical Statistical
Tensor Representation

It is worth pointing out an important difference between the case of the multi-level
atom considered in Sect. 7.1 and the case of the multi-term atom of Sect. 7.5. In
the former case, because of the Zeeman effect regime assumption, the energy eigen-
vectors coincide with the eigenvectors of angular momentum, so that there is no
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difference between energy-eigenvector representation and standard representation
of the atomic density operator. In the latter case, on the contrary — where the lim-
itation on the magnetic field intensity is dropped (Paschen-Back effect regime) —
the two representations are distinct, which leads to the appearance of the C coeffi-
cients of Eq. (7.23) in the expressions of the rates (Egs. (7.34)) and of the radiative
transfer coefficients (Egs. (7.35)). This fact, together with the consideration of co-
herences between different J-levels, is responsible for the much greater complexity
of the equations of Sect. 7.5 compared with those of Sect. 7.1.

It is a simple task to rewrite the equations for the multi-term atom either in the
standard representation or in the spherical statistical tensor representation. We
recall that the various representations are connected by the linear relations (see
Egs. (7.23) and (3.99))

Pars(GM. 5 M) =" CH(BLS, M) O} (BLS, M") pspe(JM, J' M)

JJ!
pars(GM. 5 M) =" C4(BLS, M) C?,(BLS, M')
JJ!
_ J J! K
x> (1) MV2K +1 (M Y Q) PESE (. ') (7.36)
KQ

with the inverse formulae, that can be deduced using Egs. (3.62b) and (3.97)

Pans(IM, J'M') =" CH(BLS, M) C3,(BLS, M') pyp(iM,j'M’)
33’
SLPE(J) = S CH(BLS, M) C, (BLS, M)

ij/M/

x<1>J-M¢72K+1( g f;)pﬁLSUM,j'M’). (7.37)

In the following we derive the statistical equilibrium equations and the radiative
transfer coefficients directly in the spherical statistical tensor representation.

7.6.a Statistical Equilibrium Equations
Multiplication of both sides of Eq. (7.29) by

C%(BLS, M) C%,(BLS, M") (—1)"M\2K + 1 ( J J K )

M —-M —-Q

followed by summation over j, M, j', M’ yields, with the use of Egs. (7.36)-(7.37)
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d . /
E ﬁLSpg(J7 J/) — _9xi Z Z NﬁLS(KQthlyK/Q/J//J//I) ﬁLSbIQ(/ (J”, J///)
K/Q/ J//J///

K
+ Z ﬁzL’fSPQZ(Je’Jé) Ty(BLSKQJJ', B, L,SK,QyJyJy)
/BZLEKEQZJZJé

w0 ALSS L) [TE(ﬁLSKQJJ’, 8,L,SK,Q,J,J!)
BLKGQ.JJ “

uTuT Yy ey

+ T5(BLSKQJT', 4,L,SK,Q, 7,1

— Z ﬁLb})g,'(J//’ J///) [RA(ﬁLSKQJJ/K/Q/JNJW)
K/Q/.]//J///

+ R (BLSKQJJ'K'Q"J"J") + RS(ﬁLSKQJJ’K’Q’J”J’”)} , (7.38)
where
NﬁLs(KQJJ/,K/Q/JHJ/N) —

= Y CY(BLS,M)C5.(BLS, M) C5,, (BLS, M) C.,, (BLS, M)

GMg’ M’

x (1)~ /2K + 1)2K' + 1)
J J K\[(J' J" K N
><<M o —Q)(M g —Q/) VﬁLS(]MJ/M/) (7.39)
Ty (BLSKQJ.J', B,L,SK,Q,J,J}) =

_ 3 C%(BLS, M) C%,(BLS, M) c;i (8,L,S, M,) cﬁz (B,L,S, M})

M3’ M'j,M,j, M,

><(1)'7M+']eMe\/(ZKJrl)(ZKe+1)<J T K>

M —-M -Q

‘]Z Jé Kz > . -/ / . -/ /
X T\(BLSjMj5'M',3,L,S5,M,5,M 7.40a
(Me M —Q, A(BLSjM ByLeSip Mg, My)  ( )

Ty (BLSKQJ.J', 3,L,SK,Q,J,.J)

= Y CY(BLS.M)CY(BLS.M') O (8,L,S. M,) % (8,L,5. M)

JMj M'j, M, j M/

x (~1) MM SO 1 1)K, + 1) <AJ4 o _@)

J 'K o o
X(]\z 71’\‘@/ Q“u> Ty (BLSjM4'M', 3,L,S5,M, . M) (7.40b)
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RA(BLSKQJJK'Q'J"J") =
= Y CHELS M) T (BLS M)

GMG MG M

x (=1)"=7" /(2K + 1)(2K" + 1) <

J J’ K
M —-M -Q
x {cg',, (BLS, M) C",,(BLS, M)

" " /
X <}(4 _ng// _}(Q/)RA(BLSJIM/]'//M//)
+(—1)M" =M I (BLS, M") C%,, (BLS, M)

J// J/// K/ . .
X <M// M _Q/) RA(ﬁLS]NMN]M):|
Ry (BLSKQJJTK'Q J"J") =
= Y C4(BLS,M)CY(BLS, M)

jAfj/ Jv[/j// M

x (-1)’~" /2K + 1) (2K’ + 1) (

J J K
M —-M -Q

x {c;’,, (BLS, M) C",,(BLS, M)

J J" K'
X M —M" _Q/

) RE(/@LSj//M//j/M/)

+ (_1)M’/—M Cﬂ’,’, (ﬁLS, M//) Cilm (ﬁLS, M/)

y ( J// J/// K/

M// *M/ Q/) RE(ﬂLS]M]NMN)

(7.40c)

(7.40d)

(the relation between Ty and Ty is identical to the relation between Ty and T}, as
obvious from the structure of Eq. (7.29); the same holds for the relation between

Rg and Rg, which is identical to the relation between Ry and Ry).

The term N defined in Eq. (7.39) can be evaluated in greater detail. Using

Egs. (7.30) and (3.62b,c) we have

Ny s(KQIT, K'QI"T") = 840, (-1)"" /@K + DK+ 1)

XlézJJ’KJ”J’ K’
h JrJn M _M/ —Q M _M/ —Q

MM’

x (BLSJM|H,, + Hp|BLSJ"M) +
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J J K J J" K
§JJ”Z(M —M’ Q)(M —M’ Q)

MM’

x {BLSJ M'|H,, + HB|5LSJ’”M’>] :

where H_, is the spin-orbit Hamiltonian and Hp the magnetic Hamiltonian. The
matrix elements in the right-hand side can be easily evaluated. Taking into account
that H is diagonal with respect to .J, expressing the matrix elements of Hy via
Eq. (3.57), and performing the summation over M and M’ by means of Egs. (2.23a),
(3.42) and (2.42), we obtain after some algebra

Ngrs(KQJJ', K'Q'J"J") = O pcr Sgqr O55n Og0gm Varsy grs.

, !
+hgg m (0 VERTTER D (S D)
-Q Q 0
K K 1
X0 g gon FLS<J’JH){J” J J/}
—K K K 1
8, (_1)K K FLS(JW’J/){J/// 7 J}:| , (7.41)

where

Z—‘LS(LL J/) = (_1)J_J FLS(J/’J)

=3, V/JJ+1)(2] +1)

4+ (=)HEFSHT 2T £ 1) (20 + 1)S(S +1)(2S + 1) { g g 2 } (7.42)

and where

Eprs(J) — Bgrs(J')
BLS BLS
VBLSJ,BLST = h ) (7.43)

with E;; ¢(J) defined in Eq. (3.60). The quantity I, g(J, J') is a sort of generalized
Landé factor. Use of Eq. (2.36d) shows that

Ipo(JJ) =V J(J+1)(2J +1) g;5(]), (7.44)

where g; ¢(J) is the usual Landé factor introduced in Eq. (3.8).

The expressions for the different rates can be further developed by substituting
Egs. (7.34) into Egs. (7.40). Performing the summations over the indices j, j/, j,,
Jjp etc. with the use of Egs. (3.62b), and substituting Eq. (7.13), the calculations
reduce to evaluating the sums over angular momentum components of products of
several 3-j symbols. This can be done using Eq. (2.52) for the rates T, and Ty,
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Eq. (2.34) for Ty, Eq. (2.42) applied twice for R, and Rg, and Eq. (2.23a), also
applied twice, for Ry. The final results are the following

Ty (BLSKQJJ', B,L,SK,Q,J;J}) = (2L, + 1) B(8,L,S — SLS)

X Z \/3 2J +1)(2J" + 1)(2J, + 1)(2J; + 1) (2K + 1)(2K, + 1)(2K, + 1)

J JE 1 {L L, 1}

K Ké e S

X{L L, 1}<K K,
Jp Q Q

Te(BLSKQJJ', 3,L,SK,Q,J,J) = 0 000 (2L, +1) A(8,L,S — BLS)

x /(27 + DT+ 1)), + 1)+ 1)

oy [ J J K L L 1 L L 1
_ 1\ HE+I+J, U u
S MV S VA A A B

Ts(BLSKQJJ', 8,L,SK,Q,J,J.) = (2L, + 1) B(8,L,S — BLS)

x 3 (/327 + DI+ 1)@, + DRI+ DEK + DEK, + DEK, + 1)
K.,

x (=1)Ke+Qu+J=J,

*Q > JQ (VBLS 8,L, g) (7.45a)

J g1
SEERI LA RS B N S| {Lu L 1}
¥ & k| A4S
L, L 1 K K, K
) { 7 5} (—Q Q, Q) T, o, s,1,5.5L5) (7.45¢)
Ry(BLSKQJJ'K'Q'J"J") = (2L + 1) (2J, + 1) B(BLS — $3,L,5)
B L J

uu S

/ 1\, I K AQ K K' K,
X KZ(; \/3(2K+1)(2K +1)(2K, +1) (1) (Q —Q Qr)

X [5”,, VI 4+ 1) (20" +1)

N L L 1 L L 1
x (=) {Jlf J 5}{]17' J S}

K K' K, 1 1 K,
X J/// J/ J J/// J/ +

DN | =

J,

u
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4+ 650 5m A/ (2T +1)(2J" +1)

/ L L 1 L L 1
_1\K+K'+K, u U
R E AN A
K K K 1 1 K K
X { J" J J/r } { J" T Jr }:| JQ: (VﬁuLuS,BLS) (745d)

Ry (BLSKQJJ'K'Q'J"J") = yc1cr S0 0550 031 ym
x (2L+1) Y A(BLS — B,L,S) (2J,+1)

BAZLZJZ
iffr , 1> (L 1, 1\°
- 4
Xz[{J@ J S} +{J¢ J 5}] (7.45¢)
Rg(BLSKQJJ'K'Q'J"J") = (2L +1) S (2J,+ 1) B(BLS — B,L,S)
’BELEJE
’ ’ K K/ K
X 32K + (2K’ + 1)(2K. + 1) (=1)"/—7+@ ( r)
KXQIW ) J2K, +1) (~1) 0 -0 O
1
x5 [5”, V(2T 1) (20" + 1)

o J=J" L Lf 1 L Lf 1
X( 1) {JZ J/ S JZ J/// S
K KK\ [1 1K
J/// J/ J J/// J/ JE
+ 85 m V(2] +1)(20" +1)
/ L L, 1 L L, 1
_\E+K'+EK, ¢ ¢
x(=1) {Je J S}{Je 7 S}

K K K 1 1 K K
X {J// J J/r } { J" T J; }:| JQ:(V,HLS,,GELZS) . (745f)

The above expressions for the relaxation rates can be further simplified by carrying
out the summations on the J quantum numbers. Using Eq. (2.41) for R, and Rg,
and Eq. (2.39) for Ry we obtain

Ry (BLSKQJJ'K'QJ"J") = (2L +1) > B(ALS — A3,L,9)
B, L,

x 30 \BRE + DEK + D)@K, +1)
KQ,

L L K K K K
_ 1\ H+L,—S+J+Q r r
< e ee)-

u
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1
X 5 |:§JJ// \/(2J’ + 1)(2J”’ + 1)
% L L K, K K K,
J/// J/ S J/// J/ J
+ §J/J//, \/(ZJ + 1)(2J’/ + 1) (,1)J”7-J'+K+K’+Kr
L L K K K K K
: {J" J S } { gy H Jo! (vg,1,5 615) (7.46a)
RE(ﬁLSKQJJ’K/Q/J//J/N) — 6KK’ 6QQ’ 6JJ/, 6J,J,,,
x> A(BLS — B,L,S) (7.46b)
BZLZ

Rg(BLSKQJJ'K'QJ"J") = (2L+1) Y B(BLS — B,L,S)

BKLK
x 30 \BRE + DEK + D)@K, +1)
K.Q,
W (—1)rEmstrs e L L LKL KKK,
1 1 L QR -Q Q,
1
X 5[5”,, V@RI + 1) (20" +1)

L L K\[K K K,
X J/// J/ S J/// J/ J

8y VT DRI 1) (1) T KK,

L L K K K K K
X{J” J sr}{w J J HJQj(VgLS,@LZS). (7.46¢)

Expressions (7.45a-c) and (7.46a-c) have been given by Landi Degl’Innocenti
(1982b).} The statistical equilibrium equations for the multi-term atom in the
standard representation of the atomic density operator have been derived by Bom-
mier (1980).

7.6.b Radiative Transfer Coefficients

Substitution of Egs. (7.36) and (5.156) — applied to the tensor 7, (z,ﬁ) — into
Egs. (7.35) leads, with the help of Eq. (3.62b), to the following expressions

L The expressions appearing in that paper contain indeed some additional terms, due to

the tensor Fi, ", in the rates R, and Ry. These terms are of very limited importance and their
presence is not justified in the flat-spectrum approximation.
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<~ h
i (v, G) = ﬁ/\/ 3 @L,+1)B(BL,S — B,L,5)

BeL,SB,L,
x 3 \/3(2K+ 1)(2K, +1)
KQK,Q,
y Z Z (=11 Mt Cii(ﬂELlS’ M,) C’%l(ﬂzLeS» M,)

e Te Ty 3,000 MMM, qq'

x C% (8,L,5.M,) C(8,L,5.M,) \/ (27, + 1)(27, + 1)(2], + 1)(27, + 1)

T 1 JoJ 1\(1 1 K
-M, M, —q)\-M, M, —¢)\q¢ —¢ -Q

(T Ko\ [Lo Lg 1\ [L, L, 1
M, —-M; —-Q,)\J, J, S{\J, J S

LR K
x Re[Tg (,9) PG (T T) B 1 s vt 5,1,55,01, u)} (7.47a)
. h
e (v, &) = ﬁ/\f Y (2L, +1)B(3,L,S — B,L,S)
8,L,S8,L,
x 33K+ 1)EK, +1)
KQK,Q,
x Y Yo (C)MRTMA O (51,8, My) O (B,LyS, M,)

G0, d 05,0, J) M, M/ M,qq’

u “u u T

X C% (8,L,5, M,) Ch(3,L,8, M) \/ (2, + 1)(2J; + 1) (2], + 1)(2J] +1)
o A e 1 JooJ 1 \(1 1 K
-M, M, —q)\-M; M, —-¢)\q¢ —-¢ -Q

L, L, 1\ [L L, 1
J, J, S{\J, J S
(

Mu/ - Mu - Qu

VAR (R ¢
K

x Re| T8 (i, B) g (L 1) Dy, 1, 55m,,6,1, 53,1, — V) (7.47b)
pi(v, Q) = ni(v, 0) {Re — Im} (7.47¢)
(v, D) = 0¥ (v, Q) {Re — Im} (7.47d)
) = 2 (0, (1.470
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These expressions become much simpler when the frequency splittings — due to
fine structure and to the magnetic field — of the lines of each multiplet can be
neglected (see the analogous case discussed at the end of Sect. 7.2.b). Replacing
the profiles

qﬁ(”ﬁuLquuMu,ﬁzLZSjljwz —v)
in Eqgs. (7.47) by a single profile
Q(VﬁuLus, B,L,S v),

and using Eqs. (3.62b), (2.34), (3.100) and (5.158), one obtains

v, Q) = =N > (2L, +1)B(3,L,S — 8,L,S)
B,L,SB,L,
X3S (CMRIR (2 1)\ /327, + 1)@ + 1)
KQ J,J,J,

JLe Ly 1\ (L, L1 1 1 K
J, J, S(VJ, J, S \J, T J,
x TK( ) zLesbg(Jéa Jé) ¢(VﬁuLuS7ﬁngS - V) (7483,)

or, performing the summation over J, via Eq. (2.41)

(v, /\/ > (2L, +1) B(B,L,S — B,L,5)
B,L,SB,L,
X303 (CN)IRASHL 32, +1)(20;+ 1)
KQ 1,7,

Lo Ly K1[1 1 K
J, J) S(\L, L, L,

X TE(0,Q) PPeDE (T, Tp) ¢ s pp,s —V) - (748D)

Similarly
7 (v, Q N > (2L, +1)B(B,L,S — B,L,S)
ﬁuLuSﬁZ £
30N ()], 4 1) 3R, + DRI+ 1)
KQ J J/J,

AL Le AV fL L, 1 [1 1K
Jo J, SV SV I,

x T (1, Q) Pl (1, 1) Sws 15 pu,s —v)  (T:48¢)

U
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or, performing the summation over J, via Eq. (2.41)

- h
B, =N 3 (2L, +1) B(8,L,S — §,L,S)
8,L,S6,L,

uu

x 33 (C)IEASTAAR [0, £ 1)) + 1)

KQ J J!
ALoL Kl[1 1 K
J, JSf\L L, L

x T (0, Q) SpE (L, ) Sws 1os.n,s —v) - (T484)
The same calculations show that
P2, B) = 2 (v, D) {6y 155,05 = V) = VW 1. 5.5,0,5 — V) } (7.48e)
P, D) = 2. D) {65 1. 5.5, = 1) = Vg1 5.8,0,5 — V) (7.48f)
= 2hv3 -
&) = =5 B9, (7.48g)

7.7. Conjugation Properties of the Rates

The radiative rates appearing in the statistical equilibrium equations for the multi-
term atom have simple conjugation properties. In the energy-eigenvector repre-
sentation, we have from Egs. (7.34), using Eq. (5.154) and the reality of the C,
coefficients (see Sect. 3.4)

T (BLSjMj'M', B,L,Sj,MyjeM;)" = Ty (BLS;'M'jM, B,L,SjM;j,M,)

Tg(BLSjM'M', B,L,S5,M,j,M,)" = Te(BLSj'M'jM, §,L,S5,M,5,M,) ,
with an analogous relation for Tg;

RA(BLSjMj'M')* = Ry (BLSj'M'jM) ,

with analogous relations for Ry and Rg; moreover, the rates T, and Ry are real.
In the spherical statistical tensor representation, we have from Eqs. (7.45a-c) and
(7.46a-c), with the help of Egs. (5.158)!

Ty (BLSKQJJ', 3,L,SK,Q,J,J;)* =

= (1) QIR T, (BLSK —QJ'J, B,L,SK, —Q,J}J,)

1 To arrange the sign factors in these equations, one should bear in mind that the quantum

numbers J, J', J, J"”" are all integers or all half-integers, and that the indices K, Q, K', Q" K,
Q. K,, Q, are integers (see footnote on p.123).
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TE(ﬁLSKQJJ’, ﬂuLuSKuQuJquj)* =

= (71)J7J/+Q+Ju7J1:+Qu TE(ﬂLSK 7@‘]/‘]’ BuLuSKu 7Qu‘]1//“]u) )
with an analogous relation for Tg;

R, (BLSKQJJ'K'Q J"J")* =
- (_1)']7.],+Q+J”7JI”+QI RA(BLSK —QJ' JK' —=Q'J"J"),

with analogous relations for Ry and Rg; moreover, the rates Ty, and Ry are real.

7.8. The Multi-Level Atom as a Special Case of the Multi-Term Atom

As apparent from Sects. 7.5 and 7.6, the description of the multi-term atom requires
much more complicated equations than the multi-level atom treated previously:
this is basically related to the fact that two types of coherences (between different
J-levels and between magnetic sublevels of each J-level) are considered in this
model. It can be easily realized that if we neglect coherences between J-levels,
retaining only those between magnetic sublevels of individual J-levels, the case of
the multi-term atom becomes very similar to the case of the multi-level atom. In
fact, after the formal identifications

a=(PLS),  a,=(FLS). o, =(8LS). (7.49)

the statistical equilibrium equations for the two cases must indeed coincide provided
the incident radiation field is such that

K — 7K K
Jq (Voquu,az.]z) =Jg (VﬁuLuSJu,ﬁ[LZSJz) =Jq (VﬁuLuS,ﬁ[LZS) (7.50)

for each multiplet. The radiative transfer coefficients for the two cases must also
coincide provided the frequency splittings of the @ profiles due to fine structure are
neglected,

P(v, Ja,d, T v)= Py 1, 5

u " U u

.B,L,ST, ~ v) =Py s, B,L,S — v). (7.51)

U

To check this property — which is a proof of consistency of the formalism — we
substitute into Eq. (7.38)

LD (1) = 8500 PEDS (I T) = 6,0 PEPG(T) (7.52)

and we get
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d ,
— PEDE(T) ==2m > > Ny o(KQILK'QJ'J) PLpE (1)
K/Ql J/
K
+ Z ﬁZLESPQZ(Je) Ty (BLSKQJJ, B,L,SK,Q,J,J,)
ﬁZLZKKQZJZ
+ Y ﬁuLuSpg:(Ju) ['}I‘E(ﬂLSKQJJ,BULUSKUQUJUJU)
B,L,K Q,J,

uTuT

+ Ty(BLSKQJJ, 4,1, 5K, Q.7 7,)|

— ALK () [R ABLSKQJJIK'Q'J'J') + Ry (BLSKQJJK'Q'J'J")
K/Q/J/
n RS(ﬂLSKQJJK’Q’J’J’)} . (7.53)
From Egs. (7.41) and (7.44) we have
Ny s(KQJJ,K'Q'J'J) =

= dgq v (1?79 VK + 1)K + 1) ( % @ 1>

-Q Q 0
X 8,5V J(J+1)(2] +1) [1+ (—1)K—K’} {[J( [; }}QLS(J)a

which can be transformed using some Racah algebra. Because of the triangular
condition (K, K’,1) we can write
[+ (D5 = 26,0,
and using Egs. (2.26d) and (2.36d) we obtain
Npps(KQJJ,K'Q'J'J') = 0y g Soq 070 . Q 9rs(J) (7.54)

which makes the first term in the right-hand side of Eq. (7.53) equal to the corre-
sponding term in Eq. (7.11).1

As far as the other terms are concerned, it is readily seen that Eq. (7.53) — with

the identifications (7.49) — has the same form as Eq. (7.11), thus we have just to
compare the expressions for the rates. From Eq. (7.45a) we have

Ty (BLSKQJJ, B,L,SK,QyJ,Jy) = (2L, + 1) B(B,L,S — BLS)

x 3" (27 41) (27, +1) 32K + 1)K, + 12K, + 1)

K.Q,
w0 |t L 1, 1°( K K, K.
X (=1)% e J J, 1 J J S 0 Q, -0
K KIZ Kr 4 4 r
K
X Jo" Wsrs,5,1,8) - (7.55)

1 Of course, Eq. (7.54) contains the Landé factor evaluated in the L-S coupling scheme, while

Eq. (7.11) contains the more general Landé factor defined in Eq. (3.7).
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which should be compared with Eq. (7.14a). To this end we need the relation be-
tween the Einstein coefficient for the transition between two terms and the Einstein
coefficients for the transition between two individual J-levels.

Equation (7.6) with substitutions (7.49) gives

S(B,L STy, B,L,ST,) = (20, + 1) [{B,L,ST,|d ||8,L,SJ,>|? .

and using Eqgs. (2.108) and (7.31) we obtain the relation connecting the strengths!
L, L, 1\
Jy J, S

Finally, from Egs. (7.7) and (7.32) we get

2
B(B,L,SJ, — B8,L,51,) = (2L, + 1) (2J, + 1) { g“ (L]Z ;}
0 (s

x B(B,L,S — B,L,5) . (7.57a)

Substitution into Eq. (7.55) shows that the expressions in the right-hand side of
Egs. (7.55) and (7.14a) are identical when approximation (7.50) is satisfied.

Quite similar calculations can be performed for the other rates. Using the further
relations between Einstein coefficients?

2
B@Aﬁ%ﬂ@@&@@%+n@%+n{? Le ;}
14 U

x B(8,L,S — B,L,S) (7.57D)

From Eq. (7.56) we have, with the help of Eq. (2.39)
Z‘fﬂu S(B,L,S7,,B8,L,81) = (2S +1) S(B,L,S,8,L,5) ,
therefore the relative strengths of the multiplet, normalized to unity, are given by

2
gty = 2D F DRI+ [ L, L, 1
25 +1 Jo J, S

u
which is just Eq. (3.65).

2 Note that Eq. (7.57¢) implies the approximation

VZ’?ULUSJu,ﬁKLZSJZ /l‘guLus, ByL,S = L.
Note also that the Einstein coefficients in Egs. (7.57) are related by the equations
Z‘]z A(B,L,SJ, — B,L,SJ,) = AB,L,S — B,L,5)
ZJ@ B(8,L,SJ, — B,L,SJ,) = B(8,L,S — B,L,5)
ZJu B(B,L,SJ, — B,L,5J,) = B(B,L,S — B,1,5) ,

which are easily derived with the use of Eq. (2.39).
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2
L L, 1
0 u

X A(B,L,S — B,L,S) (7.57c)

one finds that all the rates in Eq. (7.53) coincide with the corresponding rates of
Eqgs. (7.14), which proves that the statistical equilibrium equations for the multi-
term atom reduce to the equations for the multi-level atom under the assumptions
mentioned above.

The same check can be repeated for the radiative transfer coefficients. Substitu-
tion of Eq. (7.52) into Eqs. (7.48) and use of approximation (7.51) yields exactly
the same expressions derived for the multi-level atom (Egs. (7.16)).

7.9. The Multi-Level Atom with Hyperfine Structure

In the preceding sections of this chapter we have developed the basic equations for
a standard atom devoid of hyperfine structure. Now we are going to generalize the
description of the atomic system by including this further degree of freedom.

If I is the nuclear spin of a given atomic species, the energy eigenvectors — in the
absence of magnetic fields — have the form |aJIF f) (cf. Sect. 3.5 for the meaning
of symbols). In principle, one could develop the statistical equilibrium equations
and the radiative transfer equations for the general case implying coherences of the
form

(aJIFf|plaJ' TF f" .

However, with the exception of the hydrogen atom (which presents, moreover, an
additional degeneracy of the eigenvalues with respect to the azimuthal quantum
number [, and therefore requires a more involved formalism), it is in most cases
sufficient to restrict the description of the atom with hyperfine structure to the
J-diagonal density-matrix elements

(aJIFflp|aJIF ') = po, (Ff,F'f').

The model atom described by this approximation will be called in the following
the multi-level atom with hyperfine structure. For such system, the flat-spectrum
approximation (cf. Sect. 6.5) implies that the radiation field incident on the atom
should be constant across a frequency interval wider than the frequency shifts and
inverse lifetimes of the hyperfine-structure sublevels involved. This means that the
radiation field can be characterized by specifying its value at the Bohr frequencies

_ EaJ B Ea’]’
VaJ,a'J’ - h ’

where E_ ;, E _,; are the energies of the relevant levels (which disregard both the
hyperfine-structure and the magnetic Hamiltonian). This approximation is usually
well-satisfied in astrophysical plasmas.
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We now apply the equations derived in Chap. 6 to such an atom embedded in
a magnetic field. If we choose a reference system with the z-axis pointing in the
magnetic field direction, we have for the eigenvectors and eigenvalues of the atomic
Hamiltonian

Hy |aJIify = [E,; + N (aJI, f)] |aJIify
where (see Eq. (3.74))

] Tify =Y Ch(aJl, f)|aJIFf) . (7.58)
F

Thus we modify the formalism of Chap. 6 according to the following substitutions

i) for the energy eigenvectors:
Iny — |aJIif) ; (7.59)
ii) for the corresponding energy eigenvalues:

E,—E, ;+\(@JI,f), (7.60)
whence
iii) for the Bohr frequencies:
En — Em
Vnm = T — Vagrif, o' Jritfr =

N (@I, f) = Ay (/T f
= Vogary + (1, J) hz(a . (7.61)

iv) for the matrix elements of the spherical components of the dipole operator (see
the analogous derivation of Eq. (7.27)):

(dq)nm = <TL ‘ dq ‘m> - (dq)aJIif7 o JI T <OlJ[Zf| dq |O/‘]/Ii/f/> =
=" CiladI, f)Cp (/T f)

. x (=1)7H =1\ /(20 +1)(2F +1)(2F' + 1)

X(Ff 7 2){5 i }}<aJd’||a’J'>; (7.62)

v) finally, for the atomic density-matrix elements:

= (nlplm) — (adIif| pla’ JTi' f'y =

pnm

= O Oy ladIif|pladIi'f'y = 6,0 0550 posrGif, i f). (7.63)
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If we now compare Eqs. (7.59)-(7.63) with Eqgs. (7.24)-(7.28), we see that the
equations for the multi-level atom with hyperfine structure can be deduced from
the corresponding equations of the multi-term atom by means of the formal sub-
stitutions

08—« S—1 j—1
L—J J—F M — f. (7.64)

Thus the statistical equilibrium equations and the radiative transfer coefficients for
the multi-level atom with hyperfine structure, expressed in the energy-eigenvector
representation, are simply given by Eqs. (7.29),! (7.34) and (7.35) with the formal
substitutions (7.64).

The conversion to the spherical statistical tensor representation is also straight-
forward. Using Eqgs. (7.58) and (3.103) we obtain the relation

Past Q7)) =3 CiladI, ) Coi(ad I, ') pos (Ff,F'f))

FF'

=Y CiladI, f) Ci (oI, f)

FF’

Yt VaK +1 FF' K\ ik /
XZ(_ < _f/ _Q> pQ<F7F)7
KQ
which is just the same as Eq. (7.36) with substitutions (7.64). It follows that the
equations for the multi-level atom with hyperfine structure, expressed in the spher-
ical statistical tensor representation, can be easily deduced from the corresponding
equations for the multi-term atom by performing the same substitutions.
For the statistical equilibrium equations we have (cf. Eq. (7.38))

d
E aJI ( — 97 Z Z JI KQFF/ K’ Q F//F///) aJI K’ (F// F///)
KIQI FNF/N

+ e JZ{OQ (Fp, Fy) Ty (aJ IKQEF', 0 J 1K Qo Fy Fy)

+

a,J, K,Q,F I}

W (Fy, FY) [’]I‘E(aJIKQFF’,%JuIKuQuELFu’)

Ul U
u

o, J, K,Q,F,F!

uu uu

+ Ty(aJ IKQFF', 0, J,TK,Q,F,F))|

_ Z a.]ng/’(F//’F///) [RA(OZJ[KQFF/K/Q/FNF/N)

KIQI Va8

+ Ry (aJIKQFF'K'Q F"F") + Ry (aJIKQFF’K’Q’F”F’”)} . (7.65)

The term in Eq. (7.30) is discussed later in greater detail.
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The only term which cannot be deduced by direct substitution of Egs. (7.64) is
the first term in the right-hand side, as expected because of the intrinsic difference
between the fine-structure and the hyperfine-structure Hamiltonians. To evaluate
this term we must go back to Egs. (7.39) and (7.30). Applying substitutions (7.64)
and using Egs. (3.76b,c) we get

Nt (KQFF, K'QF'F") = bgq (1)~ /2K + 1)(2K" + 1)
1 F F’ K )ald F K’
X = 6 1
h[ o ; <f ~f Q)( fo=r Q>
x {aJIF flH{{ + H{} + Hg|aJIF" f

F F K F F" K’
5FF”;<f S0 S5
X <aJIF’f’|Hﬁ};+Hﬁ2f;+HBaJIFWf/>] ,

with the Hamiltonians H|}, and H{3, given by Egs. (3.70) and (3.71). The matrix
elements in the right-hand side can be evaluated using Egs. (3.70) and (3.72).
Carrying out the summations over f and f’ via Egs. (2.23a) and (2.42) one obtains

Noy(KQFF', K'Q'F"F") = 0y Oy Opprn Oprpm Vasrm,asrr

+8qr V1. Gay (-1 VK + 12K+ 1) (KQ g (1))
X |8 s Ty (F, F”){ b{f f; P{}

where

Vo IF, aJIF = Eoyi(F) ;LEQJI(F/)

1
= QTP fIHG + BRI IFf) = <o IF fIH + HR o IF'f)|  (7.67)

and where we have introduced a generalized Landé factor for hyperfine structure
through the position®

L A slightly different generalized Landé factor has been introduced by Landolfi and Landi

Degl’Innocenti (1985). Note the similarity of Eq. (7.68) with Eq. (7.42). Note also that
Ly (B F) =/ F(F+1)2F +1) gy (F)

where g, (F) is given in Eq. (3.73).
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(B F) = (=) I (F' F)

— (~)HHE T DR+ DERE FDEF 1 1) {§ 13 }} . (7.68)

All the other terms in Eq. (7.65) can be derived by carrying out the substitu-
tions (7.64). We write down here, for future reference, the expressions for the

radiative rates (cf. Eqgs. (7.45a-c) and (7.46a-c))

Ty (W JIKQFF', 0, J, IK,Q,F,F}) = (2J, + 1) B(ayJ, — aJ)

x \/3(2F +1)(2F + 1)(2F, + 1)(2F, + 1)(2K + 1)(2K, + 1)(2K, + 1)

K,Q,
F F 1
X (~1)KAQAR-E L {1;7] }]ﬁ }}
K K, K, Y
J J, 1 K K, K, K,
X{Fé F I}(—Q Q, —Qr)JQr(VaJ,aeJe) (7.69a)

Ty (aJ IKQFF', 0, IK,Q,F,Fl) = 65y 000 (2J, +1) Ay, J, — )

x \/(2F + 1)(2F' + 1)(2F, + 1)(2E, + 1)

e [ F F' K J J 1 J J 1
K+ F +F! u u
= R SR HE Ry oo

u u

Ty(aJ IKQFF', 0, J,IK,Q,F,F!) = (2J, + 1) B(a,J, — a.J)

<y \/3 (2F + 1)(2F" + 1)(2F, + 1)(2E! + 1)(2K + 1)(2K,, + 1)(2K, + 1)
KQ,

F FE 1
% (71)Kr+Ku+Qu+Fu’fFu F' F 1
K Ku K, F F I
J, J 1 K K, K, K,
Ak L & 5) e e (7.69)

R, (JIKQFF'K'QF'F")=(2J+1)Y  Bla — a,.J,)
J

o

L

x 30 \BRE + DEK+ D)@K, +1)
KQ,

_ fJ J K K K K
_ 1\, I+ F+Q r r
X( 1) {1 1 Ju}<Q 7Q/ Qr) .
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X

DN | =

[(;FF,, V2F +1)(2F" +1)

J J K\[K K K,
X F/// F/ I F/// F/ F

S JEF TR 1) (—1)F—F R K,
J J K K K K K
X { R IT } { R Ff }} Jer(VaquaJ) (7.69d)

RE(O{JIKQFF/K/Q/FNF/N) = 6KK/ 6QQ' 6FF” 6F/F///

X Z Alad — a,Jy) (7.69¢)

a,J,

Rg(aJIKQFF'K'Q'F'F") = (2] +1) > BlaJ — oy Jy)

J,

Xy

{4

x 30 \BRE + DEK+ D)@K, +1)

K,Q,

X<_1)1+J£—I+F+KT+Q’ J J K, K K K,
L1 J Q -Q Q

1

x5 [5FF,, V(2F' +1)(2F" 4 1)

J J K\[K K K,
X F/// F/ ] F/// F/ F

+ 5F/F/// \/(2F+ 1)(2F” + 1) (71)F”*F'+K+K'+Kr

J J K K K K e
X{F” F Ir}{F,, r Fy}:|JQ:(VO¢J,Oé£J£)' (7.69f)

Finally, the radiative transfer coefficients can be obtained by applying the same
substitutions to Egs. (7.47). In the special case where all the profiles of the various
hyperfine components can be considered coincident, we have from Egs. (7.48)

= hv
n; (v, ) = EN Z (2J, +1) B(oyJ, — o)

apJyo,d,

Y0 D0 ()RR [32F, + 1)2F] +1) X

KQ F,F)
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A J BV 1 K
F, F IT(\J, J,

u

X Tg(%ﬁ) aeJEIpIQ((FlvFé) d)(yoz J,a,J, V) (7703’)

(TR TE I A)

KQ F K]

JAo o K11 1K

FLL F’Z I Ju Ju JIZ
X T5(7’7Q) a“J“{Og(FZaFu) ¢(Vau.]u,aeJe - V) (770b)

A S A o)
o2, 8) = 02 (1, D) {601 a0, = V) = OWa, s a0, 1)} (7.70¢)
piw, D) = . D) {6y 1 s, = V) = WWa s 0, — V)] (7.70d)
o 2hv3 -

g, (v, Q) = C—Zy ns (v, Q) . (7.70e)

7.10. The Principle of Spectroscopic Stability

The equations obtained in the previous section for the multi-level atom with hy-
perfine structure must be compatible with the corresponding equations derived in
Sect. 7.2 for the multi-level atom without hyperfine structure. By this we mean
that when hyperfine structure has a negligible effect (strictly speaking, when the
two constants A and B in Egs. (3.70) are zero), it should be possible to get back
the equations of Sect. 7.2 from those of Sect. 7.9. This is what we are going to
prove here, thus obtaining — in a particular case — a confirmation of the principle
of spectroscopic stability. Among the several possible formulations of this princi-
ple, the most satisfactory is the following: ‘If two different descriptions are used
to characterize a quantum system — a detailed description which takes an inner
quantum number into account and a simplified description which disregards it —
the predicted results must be the same in all physical experiments where the struc-
ture described by the inner quantum number is unimportant’. In the particular
case that we are considering here, the inner quantum numbers are the nuclear spin
quantum numbers (I, M;).

We will now derive from Eq. (7.65) the corresponding equation for the multipole
moments pg (aJ) describing the atom irrespective of its hyperfine structure.

Equation (3.104) shows that the time evolution of pg(aj) can be obtained by
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multiplication of Eq. (7.65) by the factor

(1) RF + DEF 1) {5 5 [I(}

followed by summation over F' and F’. We thus obtain

d ’ F F' K
Gren =% corrryarrern {5 T
FF’

X [Right—Hand Side of Eq. (7.65)} . (7.71)

Now we perform the summation over F' and F’ for the various terms in the right-
hand side of Eq. (7.65). For the term containing T, we obtain from Eq. (7.69a)
the following expression

Z(—1)”’+F'+K¢(2F+1)(2F’+1>{f; E II(}

x> g (F F)) (20, +1) Blagd, — o)
]ZKZQIZFZFE

x \/3(2F +1)(2F + 1)(2F, + 1)(2F, + 1)(2K + 1)(2K, + 1)(2K, + 1)

K.Q,
F F 1
x (—1)KetQuHF=F, ) pr o1 AT/ O /A
¢ F, F 1 F, F I
K K, K ¢ ‘

K K, K,
x (_Q Q( _Q )JQ ( O"]’O‘EJE) .

The summation over F' and F’ can be performed with the help of Eq. (2.56), and
the expression above reduces to

, /
DN G A \/(QF,Z +1)(2F) +1) { f;f ? [? }
a,J K,Q,F Fy ! ¢

X %%Q (F,, F)) (2J,+ 1) B(a,J, — aJ)

JoJ, 1
x 3" \BRK + DK, + DEK, +1) (-D<F% g g, 1
‘o, K K, K,

K K, K,
< Q Qé 7Q >JQ ( aJ,asz)

which, using again Eq. (3.104), can be cast into the form

K
ij (apdy) To(@JKQ, 0y J,K,Q,) ,
a,J,K,Q,
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where T, (aJKQ, o, J,K,Q,) is the rate defined in Eq. (7.14a).
By similar calculations — which involve the use of Eqgs. (2.48), (2.55), (2.56) and
(2.41) — we obtain from Eq. (7.71)

d K _ JHI+F' +K - F F K
&pQ(aJ)*FZF/(*l) VRF+1)2F +1) o
x(=2m) Y > N (KQFF',K'Q'F'F") b/ (F", F")
K/Q/ )2l i
K
+ Z Z P (apdy) Ta(aJKQ, oy J K, Qy)
asz KzQe
K
+> D pq" () [TE(aJKQ%JuKuQu)+TS(aJKQ7%JuKuQu)}
o, J K, Q,
- Z pg’/<a‘]) [RA<aJKQK/Q/) +RE(OKJKQK/Q/) +RS<aJKQK/Q/):| 7
K/Ql

where all the rates are exactly the same as those of Eqgs. (7.14).
Finally, we evaluate the first term in the right-hand side using the expression
for N given in Eq. (7.66). With the help of Egs. (2.41), (2.26d) and (2.36d) we get

d g _ : J+I+F'+K ; P F K
&pQ(aJ)fomZ(q) VF +1)(2F +1) I

FF’

X VoJIF, oJIF' “'”pg(F, F')
. K
= 2mivy, 9o @ pg ()

K
+D 0> pglagdy) Ta(aJKQ, a0 K Q)
a,J, K,Q,

D IDINIRCTN [TE(aJKQ,%JuKuQu)+TS(aJKQ,auJuKuQu)
aJ K Q

uu T u Yy

A, [RA(aJKQK’Q’) + Ry (aJKQK'Q)
K'Q'

+Rg(aJKQK'Q)| . (7.72)

When hyperfine structure is negligible, the Bohr frequencies v, ;;p o7 are zero
(cf. Eq. (7.67)), and Egs. (7.72) reduce to the statistical equilibrium equations
for the multi-level atom without hyperfine structure (Eq. (7.11)) — which confirms
the principle of spectroscopic stability. Equation (7.72) also shows that the ‘in-
ner’ description of the atomic system involving hyperfine structure can be avoided
whenever the frequency shifts among the F-sublevels of each (a.J)-level are negli-
gible in comparison with the relaxation rates of the same level (roughly speaking,
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when they are much smaller than the inverse lifetime of the level). This provides
a quantitative criterion to ascertain whether hyperfine structure can be neglected
in a real physical problem.

As far as the radiative transfer coeflicients are concerned, a direct application of
Eq. (3.104) shows that Egs. (7.70), which have just been obtained by neglecting
the frequency shifts between hyperfine components, are nothing but Egs. (7.16)
written in a different form. Referring for instance to the expression for n (v, Q) in
Eq. (7.70a), and recalling that, according to Eq. (3.104)

Pg(aeje) =
/ F, F] K|\ .
= 3 (1)K R, 4 1)(2F + 1) { i, I} D (F ),
F,F} et
we obtain
—' hv
i (v, :4—N > 2+ 1) Blagd, — a,J,)
asz auJu

DICIETG {5 s s

u

X ¢(Vau.]“,a£J - V) )

4

which coincides with the corresponding expression in Eq. (7.16a). This is a further
aspect of the principle of spectroscopic stability.

The same reasoning followed about hyperfine structure can be repeated for fine
structure, which is — in terms of the principle of spectroscopic stability — the ‘inner’
structure of the atom due to the electronic spin. According to this principle, the
equations describing the multi-term atom should exactly reduce to the equations
for the ‘spinless atom’ when the effects due to the presence of spin are negligible.

To check this property we start from Eq. (7.38), with N given by Egs. (7.41)-
(7.43) and the rates by Egs. (7.45a-c) and (7.46a-c), and — bearing in mind Eq.
(3.105) — we multiply both sides by the factor

(—D)EHSHHE BT T 1)) 1) {J J' K}

L L S

and sum over J and J'. Neglecting the fine-structure shifts v3;¢; 576, in the
final result, we obtain the equation!

1 The first term in the right-hand side can be deduced using the Racah-algebra relation

C(C“)@C“){Z i ;}Jr(—l)‘”’ d(d+1)(2d+1){“ b 1}

d d c
=4, (—1)atetdtl \/a(a+1) /\/2a+1,

which follows from Eqs. (2.36d) and (2.36f).
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d
3 Po(BL) = =2miv, Q pg (BL)

+3° 3 pg (BiLy) TA(BLKQ, B,L,KQ,)

B,L, K,Q,

+ 30 pgr(AL) [Te(BLEQ, 4,L,K,Q,) + Ts(BLKQ, 8,L,K,Q,)]
6,L, K,Q,
=3 P(BL) [RA(BLEQK'Q) + Ru(BLEQK'Q)

KIQI

+ Rg(BLEQK'Q")] (7.73)
where all the rates are the same as those in Eqgs. (7.14) with the formal substitutions

a— 5 oy — 5[ @, — ﬁu

J—L J,— L, J,— L, . (7.74)
It is easily seen that, performing these substitutions, Eq. (7.73) is identical to
Eq. (7.11) except for the presence, in the latter equation, of the Landé factor g, ;,
which is however equal to unity when spin is neglected.

Similarly, it can be seen using Eq. (3.105) that the expressions (7.48) for the ra-

diative transfer coefficients (which have been obtained by neglecting the frequency
shifts due to fine structure) are identical to Egs. (7.16) with substitutions (7.74).

7.11. Selection Rules

All the expressions derived in the preceding sections for the radiative rates and for
the radiative transfer coefficients involve some 3-j, or 6-j, or 9-j symbols which
are responsible for the appearance of several selection rules. These rules originate
from the electric-dipole approximation and can be considered as an obvious gener-
alization of the selection rules that are usually met in conventional spectroscopy.
In the following we list the selection rules for the radiative rates written in the
spherical statistical tensor representation. The list is divided into three parts,
which refer to the different atomic models considered previously. We recall that
— as apparent from Eqs. (5.153) and (5.155) — the only non-zero components of the

radiation field tensor Jgr are those with K, =0, 1, 2.
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1) Multi-Level Atom (Egs. (7.14))1
a) Transfer rate due to absorption from lower levels,
Ty (aJKQ, 0, J, K,Q,) :
AJ=J—-J,=0,£1; 0-»0

0 for K. =0
AK =K —-K,=1¢ 0,£1; 0»0 for K, =1
0,£2; 0»0 for K, =2

b) Transfer rate due to spontaneous emission from upper levels,
Tg(aJKQ, o, J, K, Q,) :

AJ=J,—J=0,£1; 0-»0
AK =K, -K =0
c¢) Transfer rate due to stimulated emission from upper levels,
Ts(aJKQ, o, J, K, Q,)
AJ=J,—J=0,%£1; 00

0 for K, =0
AK =K,— K= 0,£1; 0»0 for K. =1

0,£2; 0»0 for K, =2

d) Relaxation rate due to absorption towards upper levels,
Ry (aJKQK'Q'):

0 for K, =0
0,£1; 0~0 for K, =1
0,£2; 0»0 for K. =2

AK =K - K =
e) Relaxation rate due to spontaneous emission towards lower levels,
Re(aJKQK'Q'):
AK =K' - K=0

f) Relaxation rate due to stimulated emission towards lower levels,

Rg(aJKQK'Q'):

0 for K, =0
0,£1; 0~0 for K, =1
0,£2; 0-»0 for K, =2

AK =K' - K =

1

Note that, for K = 2, the values AK = +1 are forbidden. For T, and Tg, this property

follows from the presence of the 9-j symbol (cf. footnote on p.287); for R, and Ry, it follows
from the presence of the factor ¢, .
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2) Multi-Term Atom (Egs. (7.45a-c) and (7.46a-c))

a) Transfer rate due to absorption from lower terms,
Ty (BLSKQJJ', B,L,SK,Q,J,J;):

AL=L—L,=0,+1; 0-»0
AJ =J—J,=0,+1; 040

AJ =J —J,=0,£1; 050

0
AK =K —-K,= 4 0,£1; 00

for K. =0
for K. =1

0,£1,£2; 0-»0,0-»1,1»0 for K =2

b) Transfer rate due to spontaneous emission from upper terms,

Ty (BLSKQJ.J', 3,L,SK,Q,J,J.):

AL=1,— L=0,+1; 00
AJ =J,—J=0,+1; 0-»0
AJ =J —J =0,£1; 0-»0
AK =K, - K=0

c¢) Transfer rate due to stimulated emission from upper terms,

Ty(BLSKQJ.J', B,L,SK,Q,J,J!):

AL=1I,— L=0,+1; 050
AJ =J,—J=0,+1; 0-»0
AJ =J —J =0,41; 050

0
AK = K, — K = { 0,£1; 00

for K. =0
for K, =1
0,£1,£2; 0-»0,0-»1,1»0 for K =2

d) Relaxation rate due to absorption towards upper terms,

RA(ﬂLSKQJJ/K/Q/J//J///):

0
AJ=J"—J=0 and AT =J" — J'={ 0,%1; 00
0

1,42 0-50,0-51,1-0

or

0
AT =J" —J'=0 and AJ=J" —J={ 0,£1; 00
0

,£1,42: 050,01, 1-50

327

for K, =0
for K, =1
for K, =2
for K, =0
for K. =1

for K, = 2;
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0 for K. =0
AK =K' — K ={0,%1; 0-»0 for K, =1
0,£1,£2; 0-»0,0-»1,1»0 for K, =2

e) Relaxation rate due to spontaneous emission towards lower terms,
RE(ﬂLSKQJJ/K/Q/J//J///) .
AJ=J"—J=0
A =J" _J =0

f) Relaxation rate due to stimulated emission towards lower terms,
Ry(BLSKQJJ K'Q'J"J"):

0 for K, =0
AJ=J"—J=0 and AJ =J" —J' =< 0,£1; 0-»0 for K, =1

0,+1,+2; 00,051,140 for K, =2
or

0 for K, =0
A =J"—J =0 and AJ=J"—-J=< 0,%1; 0-»0 for K, =1

0,£1,£2; 0-»0,0-»1,1»0 for K, =2;

0 for K. =0
AK =K' — K =< 0,£1; 0-»0 for K, =1
0,41, 42; 00,0-51,1-0 for K, = 2

3) Multi-Level Atom with Hyperfine Structure (Eqs. (7.69))

The selection rules are here strictly analogous to those for the multi-term atom;
they can be simply derived by substituting L — J, J — F.

7.12. Changing the Reference System

All the equations of the former sections have been derived in a reference system
having its z-axis (i.e. the quantization axis for angular momentum) in the magnetic
field direction — obviously, the z-axis direction is arbitrary for zero magnetic field.
It is now important to discuss how these equations are modified when a different
reference system is chosen.
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Consider first the statistical equilibrium equations. The procedure to obtain
these equations in a reference system other than the ‘magnetic’ reference system
(the one with the z-axis parallel to the magnetic field) is straightforward. One
has just to consider the equations written in the ‘old’ system and to express the
density-matrix elements as functions of the density-matrix elements in the ‘new’
system.

This procedure can be formalized as follows: we introduce a formal vector p,
having dimension N, whose N components are the density-matrix elements of the
model atom considered, and we observe that the statistical equilibrium equations
can be written in the condensed form

d
~p=A
dtp P,

where A is an N x N matrix that will be called in the following the rate ma-
triz. Since the density-matrix elements change under rotation according to linear
relations (see e.g. Eqs. (3.95) or (3.98)), we can write

p(new) — Sp(old) (775)

with the inverse formula

p(old) _ 571 p(new) ,

where S is the N x N transformation matrix that depends on the rotation. It
follows that

d new new new
4 pmew) _ glnew) p(new)

dt
where
A(new) _ SA(old) 571 )

This is the transformation law for the rate matrix under rotation of the reference
system.

To give an example, let us consider the statistical equilibrium equations for the
multi-level atom in the spherical statistical tensor representation (Eq. (7.11)). If
R is the rotation which carries the old reference system into the new one, we have
from Eq. (3.98)

pe(ad)] =" 1pGilad)| Dig(R)", (7.76)
new ‘= old

with the inverse transformation (that can be easily deduced using Eqs. (2.72))

[pg (aJ)} = [pg, (aJ)} DE,/(R) . (7.77)
=

(o) new

Note that these transformations imply that the S matrix defined above is block-
diagonal, with its non-zero elements connecting only statistical tensors of the same
level and of the same rank.
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With the help of some algebra it is easily shown that the statistical equilibrium
equations in the new reference system are the following

%[PS(QJ)} = =27y, g,y Z ICgQ, [pg, (aj)}

Ql

new new

30X poltdy)] [Ta0IKQa i KQ)|

a,J, K,Q,

{ |Te(0/KQ.0,4,K,Q)]

ew

+ [’]I‘S (aJKQ, %JuKuQ“)} neW}

- s @n] A [Ra@rkQE'Q)]

new

n [RE(aJKQK’Q’)}

new

+ [RS(aJKQK’Q’)} new} : (7.78)

where the kernel ICgQ, is given by

K& =Y Dsio(R)* Q" Do/ (R) (7.79)
Q//

and where

[TA(aJKQ, OAZJZKEQZ)} -
K

= 3 DiolB) [TaTKQ ar K Q)] Do R)
Q'Qy

[TE,S<aJKQ7 O/uJuKuQu)} new =
= Y DEGR) [Tes(@lKQ 0, L K,Q)| Do (R)
QQ)

[RA’E’S(QJKQK/Q/)} new -
-y Dg,,Q(R)*[RA,ES(QJKQ”K’Q”’)}OldDg,’,,Q,(R). (7.80)
QIIQ(//

It can be proved that the expressions for the radiative rates are formally invariant.
Consider for instance Eq. (7.14a); from Egs. (7.80) we have
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[TA<CVJKQ7 aeJKKeQz)} rew

v K
=Y DR Dyl B) (27, +1) BlayJ, — o))
Q'Q,
x 3 32K + 12K, + 12K, + 1)
K.Q,

J oJ, 1
’ K K K K
x(fl)KﬁQe J J, 1 <Q’ Qf 765 ) [JQ:(VO[J’%J[) "
K K, K, ¢ TG °

where [Jg "(Vas a.s.)].1q is the radiation field tensor evaluated in the old reference
r o adsa,d,/lold
system. After some algebra, which involves the use of Egs. (2.77), (2.23a) and

(2.73), one obtains the expression

|Ta(IKQ.0 1 K,Qp)| = (2J,+1) BlayJ, — aJ)

x 3 32K + 12K, + 1)K, + 1)

K.Q,
JoJ, 1
K K, K K K
cseed g (K 60 1 ) Pl [ v,
K K, K, ' o

and since from Eq. (2.78)

> Py (B [0 Wasa,s)] = [Jof Wara,s)] o+ (78D)
Q,

new

we see that the rate T, has the same expression in the old and new reference
systems.

It can be easily proved that this property holds for the other rates as well. Thus
we can state that all the radiative rates entering the statistical equilibrium equations
are invariant under rotation of the reference system.

This result — which has been deduced here for the multi-level atom — is also valid
for the other model atoms considered in this chapter, namely the multi-term and
the multi-level atom with hyperfine structure. This means that the radiative rates
of Egs. (7.45a-c), (7.46a-c) and (7.69) are formally invariant under rotation of the
reference system.

1 This is of course a formal invariance. The actual value of the rates Ty, Ty, Ry, Rg for an

assigned incident radiation field does depend on the reference system because the radiation field
tensor Jg changes according to Eq. (7.81).



332 CHAPTER 7

Moreover, this result is valid irrespective of the representation used for the den-
sity operator. We have proved it here for the equations written in the spherical
statistical tensor representation, but it is also valid in the standard representation.
The proof is of course more involved, since the transformation law of the density-
matrix elements under rotation of the reference system is more complicated than
the transformation law of multipole moments (cf. Egs. (3.96) and (3.98)).1

It should be remarked that, in spite of the formal invariance of the radiative rates,
the statistical equilibrium equations in a reference system other than the ‘magnetic’
system are in general more involved because of the presence of the magnetic term
(Eq. (7.79)).2 This term has its simplest expression in the reference system having
the z-axis in the magnetic field direction.

The radiative transfer coefficients, like the radiative rates, have always been
expressed in the ‘magnetic’ reference system in the former sections; thus we are
again faced with the problem of finding their expressions in a different system.

Referring, for instance, to the emission coefficient ¢, (v, 6)7 its expression in the
‘magnetic’ reference system can be formally written as the scalar product

gi(y,ﬁ) = C;L P,
where C; is a vector having dimension N. In the new reference system, one has
from Eq. (7.75)

e (v, Q) _ CzT (new) _p(new)

)

where

CJ (new) _ CZT (old) S_1 )

This is the general transformation law for the vector CZT .

To give an example, let us consider the expression of ¢, (v, ﬁ) for the multi-level
atom in the approximation of neglecting the dependence of the @ profiles on the
magnetic quantum numbers (Eq. (7.16e)). Recalling Egs. (7.8) and (7.77) we can
write

- h
e D) =N D0 DT (24, + 1) Al ], — )

agd, o,
1 1 K .
14+J,+J K
x 3 V3 (—1)H u{J ] Je} 756, )le
KQ u u

3" [ (0,)]  DEGR) by s, — 7).
Ql

new uu?

1 The proof is however straightforward. Considering for instance the multi-level atom, one

should start from Eq. (7.5), multiply both sides by the factor Dy,  (R)* D}{I’N' (R) and sum over
M and M’ to get, using Eq. (3.96) and its inverse, the statistical equilibrium equations in the
new reference system. The expressions for the rates in the old system are given by Egs. (7.9).
The corresponding expressions in the new system can then be derived via several Racah-algebra

calculations.

2 An exception occurs when the radiation field is cylindrically symmetrical about an axis.

In that case it may be simpler to write the statistical equilibrium equations in a reference system
having the z-axis directed along this symmetry axis (see e.g. Sect. 10.8).



EQUATIONS FOR ATOMIC SYSTEMS 333

where R is the rotation which carries the ‘magnetic’ reference system into the new
one. Since from Eq. (2.78)

3 [Tg; i, Q)} _ DPoo(B) = [Tg, (i, ﬁ)} ,

new
Q

we see that ¢,(v, ﬁ) has the same expression in the old and new reference systems.
As this property holds for the other radiative transfer coefficients too