


Radiation from astronomical objects generally shows some degree of polarization.
Although this polarized radiation is usually only a small fraction of the total radiation,
it often carries a wealth of information on the physical state and geometry of the
emitting object and intervening material. Measurement of this polarized radiation is
central to much modern astrophysical research. This handy volume provides a clear,
comprehensive and concise introduction to astronomical polarimetry at all wavelengths.

Starting from first principles and a simple physical picture of polarized radiation,
the reader is introduced to all key topics, including Stokes parameters, applications
of polarimetry in astronomy, polarization algebra, polarization errors and calibration
methods, and a selection of instruments (from radio to X-ray). The book is rounded
off with a number of useful case studies, a collection of exercises, an extensive list of
further reading and an informative index.

This review of all aspects of astronomical polarization provides both an essential
introduction for graduate students and a valuable reference for practising astronomers.
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To the reader who will use polarimetry as a working tool,
to my wife, who knows I have long wanted to write a book of this kind,

and to my daughter, who likes the idea that her father has a volume
of his own on the 'family shelf in our bookcase,

this book is dedicated.





Contents

List of illustrations page xi
List of tables xii
Preface xiii
Acknowledgements xv

1 Introduction 1
2 A description of polarized radiation 8
2.1 Fully or 100% polarized radiation 10
2.2 The Stokes parameters 14
2.3 Orthogonal modes and birefringence 17
2.4 Unpolarized radiation 20
2.5 Partial polarization 21
2.6 The Poincare sphere 22
2.7 Further reading and some more discussion 24

3 Polarization in astronomy 27
3.1 Magnetic fields and generation of polarized radiation 28
3.2 Scattering geometry as a source of polarization 36
3.3 Polarization dependence of the refractive index 38
3.3.1 Dichroism 42
3.3.2 Birefringence 43
4 Polarization algebra and graphical methods 45
4.1 Mueller matrices 45
4.2 Jones matrices and when to use them 57
4.3 Alternative definitions for the Stokes parameters 61
4.4 Complementarity of the Mueller and Jones representations 62
4.5 Use of the Poincare sphere 64
4.6 The complex plane of polarization states 67
4.7 Astrophysical use of Mueller matrices 67
5 Instruments: principles 69
5.1 Telescopes 69

IX



x Contents

5.2 Modulation 73
5.3 Correlation 74
5.4 Statistics of polarization parameters 74
5.5 Instrumental polarization errors and their calibration 76
5.5.1 Polarized background 78
5.5.2 Polarization angle reference 78
5.5.3 Degree-of-polarization scale or polarimetric efficiency 79
5.5.4 Instrumental zeropoint of (degree of) polarization 80
5.5.5 Polarization sidelobes 82
5.5.6 Polarized radiation through sidelobes: ground reflections 85
5.5.7 Conversion from one polarization form to another 86
5.5.8 Errors in radio Zeeman polarimetry 87
5.5.9 Ionospheric Faraday rotation 88
5.6 Reduction of polarization observations 88
5.7 Polarization-induced errors in photometry 89
6 Instruments: implementations 92
6.1 Optical/infrared systems 92
6.1.1 Modulators 93
6.1.2 Two-beam analysers 99
6.1.3 Achromatic systems 103
6.2 Radio systems 106
6.2.1 Frequency conversion in a nutshell 107
6.2.2 Correlator polarimetry 110
6.2.3 Polarimetry by synthesis arrays and VLBI 113
6.3 Infrared developments 117
6.4 (Sub-)millimeter systems 119
6.5 Ultraviolet systems 119
6.6 X-ray systems 120
6.7 y-ray systems 124
7 Case studies 125
7.1 Multi-channel optical polarimetry using photomultipliers 125
7.2 Optical spectro-polarimetry using CCD detectors 126
7.3 Solar imaging spectro-polarimetry by advanced CCD methods 127
7.4 Single-dish radio-polarimetry; atmospheric compensation 128
7.5 Radio synthesis array imaging polarimetry 128
7.6 Sub-millimetre polarimetry 130
7.7 Ultraviolet polarimetry 130

Exercises 132
Hints for exercises 141
References 143
Index 155



Illustrations

2.1 The Stokes parameters 15
2.2 Orthogonal polarization forms 18
2.3 The Poincare sphere 23
3.1 The Zeeman effect 29
3.2 The Zeeman effect for OH 30
3.3 Time-resolved 0.35-2.2/zm circular polarimetry of AM Her 33
3.4 Large-scale magnetic field structure of M51 35
3.5 Galactic magnetic field topology from Faraday rotation 36
3.6 X-ray polarimetry of the Crab Nebula 37
3.7 A perfect example of scattering polarization 38
3.8 Scattered radiation from a hidden source 39
3.9 Raman scattering in symbiotic binary stars 40
3.10 A Seyfert core region model, suggested by optical spectro-polarimetry 41
3.11 The interstellar polarization curve 42
3.12 Elliptically polarized eigenmodes in pulsar radiation 44
4.1 Mueller matrix spectra 55
4.2 Constraints on pure Mueller matrices 63
4.3 Action of a retarder represented on the Poincare sphere 65
4.4 Action of several retarders in series 66
5.1 LEST, a polarization-free telescope 72
5.2 Statistical distribution of degree and angle of polarization 75
5.3 Polarization zeropoint error 80
5.4 Cross-polarization sidelobes, cause and effect 82
5.5 Polarized beam structure for the NRAO 140 ft telescope at 21 cm 84
5.6 Circularly polarized sidelobes out to 24° from the optic axis 87
5.7 Polarization reflectance curves of gratings 90
6.1 Two halfwave plate polarization modulators 95
6.2 The photo-elastic modulator 96
6.3 Prism polarizers 97
6.4 A multi-passband polarimeter 98
6.5 A spectro-polarimeter 99

XI



xii Illustrations

6.6 An imaging polarimeter 102
6.7 Performance of a 'superachromatic' halfwave retarder 104
6.8 The Fresnel rhomb and other total-internal-reflection retarders 105
6.9 Spectral representation of frequency conversion 108
6.10 An image-frequency-rejecting mixer 109
6.11 A phase-switching multiplier 111
6.12 A simple radio-polarimeter 112
6.13 A focal-plane feed antenna for polarimetry 113
6.14 A linear polarimeter with linearly polarized feed 114
6.15 A linear polarimeter with circularly polarized feed 115
6.16 An infrared polarimeter with warm retarder 118
6.17 Bragg crystal X-ray polarimetry 121
6.18 The Stellar X-ray Polarimeter, SXRP 122
6.19 Polarimetric efficiency of X-ray scattering polarimeters 123
7.1 Synthesis array polarimetry 129
Ex.1 How not to plot linear polarization 134

Tables
1.1 A brief history of astronomical polarimetry 5
1.2 Maximum degree of polarization in astronomy 6
1.3 Accuracy of astronomical polarization measurements 7
2.1 Representative Stokes vectors 24
3.1 Polarized radio emission from the Sun 32
4.1 Standard Mueller matrices 47
4.2 Mueller matrix pictograms 56



xii Illustrations

6.6 An imaging polarimeter 102
6.7 Performance of a 'superachromatic' halfwave retarder 104
6.8 The Fresnel rhomb and other total-internal-reflection retarders 105
6.9 Spectral representation of frequency conversion 108
6.10 An image-frequency-rejecting mixer 109
6.11 A phase-switching multiplier 111
6.12 A simple radio-polarimeter 112
6.13 A focal-plane feed antenna for polarimetry 113
6.14 A linear polarimeter with linearly polarized feed 114
6.15 A linear polarimeter with circularly polarized feed 115
6.16 An infrared polarimeter with warm retarder 118
6.17 Bragg crystal X-ray polarimetry 121
6.18 The Stellar X-ray Polarimeter, SXRP 122
6.19 Polarimetric efficiency of X-ray scattering polarimeters 123
7.1 Synthesis array polarimetry 129
Ex.1 How not to plot linear polarization 134

Tables
1.1 A brief history of astronomical polarimetry 5
1.2 Maximum degree of polarization in astronomy 6
1.3 Accuracy of astronomical polarization measurements 7
2.1 Representative Stokes vectors 24
3.1 Polarized radio emission from the Sun 32
4.1 Standard Mueller matrices 47
4.2 Mueller matrix pictograms 56



Preface

In het land der blinden is Eenoog koning. This saying in my mother tongue
contains a sufficient number of Germanic roots for English speakers to guess
that the situation depicted is only marginally better than 'the blind leading
the blind'. It aptly describes the current situation in astronomical polarimetry
and provides the justification for my attempt to write a primer for students
and other polarimetric novices. If we can take today's students straight from
polarimetric fundamentals to what is best in modern research practice, then
five years from now we shall have a polarization community with both eyes
wide open and firmly fixed beyond present-day horizons. That is what this
book is about.

Polarimetry, performed mainly by optical or radio specialists, has already
made a considerable impact on astronomy, and it deserves to be a standard
observational technique, to be used whenever it is best for the job in hand.
Accordingly, all astronomers should acquire polarimetric basics. My aim is
to allow the reader, starting at first principles, to make use of the very latest
literature. To preserve readibility, I have omitted most of the historical devel-
opment. The References section at the end of the book reflects this attitude;
interested readers can always trace the history backwards from modern papers.

I have tried to resist any tendency to write a comprehensive monograph. This
book is about polarimetry and, beyond mentioning guiding principles, I have
economized on astronomical applications; others are more familiar with these
than I am, and the relevant literature is available in every astronomical library.
The literature on the measurement of polarization, on polarization terminology
and on mathematical methods is much more scattered, is spectrally segregated
and is not very homogeneous; on these subjects, therefore, my attention was
focused. Whenever possible or convenient, I have used figures from other
books, reviews and research papers; this has the dual purpose of giving the

xiii



xiv Preface

reader a feeling for the (scattered) wealth already available in the literature
and of forcing myself to list such work in the References section, which has
gradually become one of the key parts of the book.

The book started life as a Leiden Observatory senior undergraduate lecture
course, in which I divided the time roughly as follows (in units of 45 minutes
duration):

chapter 1 and preview 2 units
chapter 2 6 units
chapter 3 3 units
chapter 4 4 units
chapter 5 3 units
chapter 6 4 units
chapter 7 2 units

When converting the course notes into a book, I aimed for something close to
a teach-yourself primer; partly for that reason, the references are given in full
format and exercises were added. In the interests of brevity, proofs are given
only when they are very simple, or essential to understanding. Most readers
do not need a proof of every step in a long argument, and there is no need to
duplicate matters that are well covered in accessible literature. In particular, no
attempt is made to include details of Fourier theory when discussing synthesis
imaging, and there is no detailed discussion of measurement noise, precision
or sensitivity, since these are fundamentally no different from their equivalents
in 'photometry'; polarimetric addenda to such topics are mentioned, however.

The book should be read quickly, as a preparation for tackling the latest
research literature, which must be the starting point for fully integrating po-
larimetry into astronomical practice. I can only be a general guide, my readers
must find their own way; I ask them to use the book for whatever insights
it may give and (remaining in style) to turn a blind eye to its defects and
omissions.

Jaap Tinbergen
Roden
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1
Introduction

Almost every issue of the leading astronomical journals includes some po-
larimetry, either directly or indirectly. Polarimetry as a working tool has clearly
come of age. Optical and radio techniques are most advanced, but infrared,
sub-millimetre and ultraviolet are following on rapidly, while X-ray techniques
are being developed also. There is no technical reason why astronomers should
not use polarimetry when it suits their astronomical purposes; polarimetry
often yields information that other methods of observation cannot give, and
this is the main reason why all astronomers, and today's students in particular,
should understand the basic ideas behind polarimetry.

Within the astronomical context, the degree of polarization is often low; a
few per cent is typical, though both higher and (much) lower values occur. A
polarimetric measurement is basically that of the ratio of the small difference
between two signals to their sum. Difference and ratio methods have been
devised to measure this small difference without systematic bias or drift errors,
but photometric noise (detector noise or photon noise of the signal itself) is
always present. To reduce this noise to the low level required for sufficiently
accurate polarimetry, considerable observing time on a large telescope is gen-
erally needed. Polarimetry should therefore not be used indiscriminately, but
only when it provides insight which other methods cannot give. Such judgment
also requires a grasp of polarimetric basics.

This book aims to create an awareness of what polarimetry can do and at
what price (in observing time, in complexity of equipment and of procedures).
To create such awareness, I must introduce polarimetric concepts and jargon.
The general plan of the book is detailed below.

The nature of polarized radiation
Astronomical signals have many of the characteristics of noise, which is roughly
the same as saying that phase information is not important. However, elec-

1



2 Introduction

tromagnetic radiation consists of transverse vibrations of the electromagnetic
field, and two otherwise indistinguishable vibrations can separately propagate
through a medium, without change and without interfering with each other. If,
in spite of the noise-like character of these signals, lasting phase and amplitude
relations exist between them, the wave is said to be 'polarized' (the term is a
misnomer which can be traced to Newton's light corpuscles, but it has stuck;
see Clarke and Grainger (1971, appendix I)). Within astronomy, generally only
part of the radiation is polarized; the remainder is unpolarized. The polarized
part can be a function of wavelength, time, or direction of arrival; in general,
the functional dependence on these variables will be different from that of
the unpolarized part. We can express this as a functional dependence of the
degree of polarization, in which most of the astronomical information from
polarimetry resides.

These concepts need to be defined, and chapter 2 is devoted to this; it will
deal with linear, circular and elliptical polarizations, both total and partial.

Astronomical situations that may lead to polarization
In a very general sense, one may state that polarization yields information
about asymmetry or anisotropy inherent in the astronomical configuration.
Such asymmetry may be within the source itself, or in the medium between
source and observer, or both. In the case of point sources, polarization is often
a good way of obtaining otherwise inaccessible information about the internal
structure of the source. Common asymmetries are magnetic fields or geometric
asymmetries in the distribution of scattered radiation.

The wavelength range of observable polarized radiation is from y-rays to
metre radio waves. The wavelength one uses depends on the characteristics of
(the part of) the source one wishes to observe. Polarimetry in widely different
wavelength ranges may be used to observe asymmetries in different parts of
the same object; notable examples are the Sun, quasars and Seyfert galaxies.

Chapter 3 is devoted to an overview of polarization astronomy. Pure as-
tronomers should take this only as an appetizer; coming from an instrumental
specialist, the chapter is bound to be both incomplete and naive. I have tried
throughout to refer to review articles or 'typical' modern applications, so that
the way back to the origin of the research area should be clear.

Mathematical formalism and computational methods
While simple concepts and simple thoughts suffice to set the scene, more
advanced polarimetry needs exact definitions and mathematical ways of han-
dling the state of polarization at each point of the source, the instrument
or the intervening medium. Polarization, once generated, can be modified,
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and it can be destroyed by averaging. Averaging itself is a modification, so
we need a formalism to represent modification of polarization. The vector
character of polarization implies that the representation of the modification
must convert from vector to vector, so it will be no surprise that matri-
ces figure prominently in the modification formalisms. There are two basic
formalisms, the distinction being that one of them allows the phase of the
total signal to be retained (useful for instruments and possibly for astronom-
ical sources such as masers), while the other includes treatment of partial
polarization (most of the rest of astronomy). Chapter 4 deals with these
formalisms, and pictorial representations are introduced where applicable.
Wavelength is not an important variable in this chapter, the basic formal-
ism being identical from y-ray to radio; optical-region examples will generally
be used.

Techniques of measurement

Such techniques range from 'looking through a Polaroid' (or the equivalent at
other wavelengths) to specialized use of time-varying wave plates and sophis-
ticated detectors like CCDs or VLBI arrays. Though the precise form of an
instrument is dictated by the wavelength range for which it is designed, some
instrumental principles serve over a wide range in wavelength and the unity
of instrumental methods throughout the spectrum will be stressed. Errors of
measurement specific to polarimetry will be discussed in some detail. Particular
categories of instrumentation will be defined, such as:

• filter polarimetry of point sources;
• imaging polarimetry;
• spectro-polarimetry;
• time-resolved (imaging, spectro-) polarimetry.

Chapter 5 deals with general principles, and chapter 6 discusses the hardware;
to some extent these two chapters are interdependent and should be read
together.

Case studies

Having assembled all the basic concepts, we are ready (in chapter 7) to tackle
advanced literature. The best way to verify that one understands basics is to
read such advanced literature at the end of a good day's work; if it still seems
to make sense under those circumstances, this book can be passed on to the
next reader.
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History
A brief history of astronomical polarimetry is given in table 1.1. Although
the basic concepts were available around 1850 through Stokes' work, technical
development for astronomy started with Lyot, about 75 years later. Progress
accelerated soon after 1940, and by 1980 the subject had become a mature
branch of astronomical engineering.

Polarimetry as an observational technique
To set the scene for the rest of the book, I list in tables 1.2 and 1.3 typical
maximum 'signal' levels in astronomical polarimetry and typical minimum errors
that have been achieved; this dynamic range is a rough indicator of how
informative one may expect polarimetry to be. The data necessarily are split
according to wavelength region. The numbers quoted are from many different
sources in the literature and are a rough indication only.
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Table 1.1 A few milestones in the history of astronomical polarimetry
A more detailed chronology may be found in Gehrels (1974).

1669 Bartholinus discovers double refraction in calcite

c. 1670 (Christiaan) Huygens interprets this in terms of a spherical and an
elliptical wavefront and discovers extinction by crossed polarizers

1672 Newton considers the light and the crystal to have 'attractive virtue
lodged in certain sides' and refers to the poles of a magnet as an analogy;
this in time leads to the term 'polarization'

1852 Stokes studies incoherent superposition of polarized light beams and
introduces four parameters to describe the (partial) polarization of noise-
like signals

1923 Lyot performs polarimetry of the sunlight scattered by Venus; this is the
start of polarimetry as an effective astronomical technique

1942 polarization concepts and sign conventions are clearly and unambigu-
ously defined by the Institute of Radio Engineers (IRE, nowadays IEEE);
radio astronomers adopt these conventions

1946 Chandrasekhar introduces the Stokes parameters into astronomy and
predicts linear polarization of electron-scattered starlight, to be detected
in eclipsing binaries

1949 Hiltner and Hall set out to verify this prediction and actually find
interstellar polarization

1953 Shklovskii proposes synchrotron radiation as the dominant mechanism
for polarized radio emission and for the optical continuum of the Crab
Nebula; Dombrowsky detects optical polarization in the latter

1957 first detection of polarized astronomical radio waves (from the Crab
Nebula and, marginally, in the Galactic continuum)

1972 a team from Columbia University detects polarized X-ray emission from
the Crab Nebula

1973 the International Astronomical Union (IAU; commissions 25 and 40)
endorses the IEEE definitions for elliptical polarization

1974 the first source book of astronomical polarimetry is published (Gehrels
1974)

c. 1990 common-user polarimeters in several wavelength ranges and theoretical de-
velopments in astrophysics contribute to making polarization acceptable
within mainstream astronomy

2002 'Stokes parameters; the first 150 years'. At this international conference, a
joint IAU/OSA/IEEE committee 'urges authors to state the conventions
they use' and refuses to enforce any particular system; chaos reigns and
astronomical polarimetry flourishes
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Table 1.2 Maximum observed or expected degree of polarization
Rough literature survey, 1994.

Radio
Galactic continuum
quasars (integrated)
quasars (resolved)
extragalactic jets
cosmic microwave background (33 GHz)
Crab Nebula (1 arcsec resolution)
pulsars (linear)
pulsars (circular, instantaneous)
OH masers (as seen in VLBI)
Galactic Zeeman 21cm, 18 cm absorption
solar flares, flare stars, other stars (circular)
extragalactic (circular, integrated)
extragalactic (circular, resolved)

Infrared/sub-millimetre
scattering by interstellar dust grains (1—  4/mi)
dust emission

Optical
planets
interstellar dust acting on starlight (linear)
interstellar dust acting on starlight (circular)
Sun and Ap stars (Zeeman effect)
white dwarfs (Zeeman effect)
symbiotic stars (Raman scattering)
reflection nebulae (including Herbig-Haro and bipolar)
post-AGB stars and proto-PN (global polarization)
synchrotron (Crab Nebula, blazars)
synchrotron (extragalactic jets)
Crab pulsar

Ultraviolet
interstellar dust acting on starlight (linear)
scattered light within NGC 1068

X-ray (mainly 'expected')
solar flares
Crab Nebula (2.6 keV)
accreting X-ray pulsars
rotation-powered X-ray pulsars
black hole (Lense-Thirring effect Cyg XI)
active galactic nuclei
Sevfert accretion disc reprocessing

70%
15%
70%
50%
<0.01%
30%
80%
70%
100%
2%
10-100%
0.1%
0.5%

75%
2%

>20%
10%
0.05%
100%
12%
8%
60%
30%
50%
20%
20%

4%
60%

5%
15%
80%
10%
2%
20%
5%

y-ray ('expected')
pulsars 100%
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Table 1.3 Accuracy in measurement of degree of polarization
Rough literature survey, 1994.

Minimum error
(best ever!)

Radio
emission (single dish; point source)
emission (single dish; background)
emission (interferometers, WSRT)
emission (VLA, VLB A; on-axis)
emission (VLBI; dissimilar telescopes)
absorption line (Zeeman; single dish)
absorption line (Zeeman; synthesis array)
emission line (Zeeman; single dish)
maser line (Zeeman OH VLBI)
time-resolved (pulsar)

«0.5%
1%
«0.03%
*0.2%

0.1%
«0.03%
0.15%

3%

Infrared/sub-millimetre
1.3 mm
270 nm
77/mi
20 /mi
11 jxm
1—  4 /mi

Optical
photomultiplier (stars and planets, linear)
photomultiplier (stars and planets, circular)
photomultiplier (solar)
time-resolved (pulsar, photomultiplier)
CCD (DC)
CCD (modulation; 'expected')
photographic
visual (planets, Moon)

Ultraviolet
Hubble Space Telescope FOS (140-330nm; pre-COSTAR)
WUPPE on Spacelab (14O-320nm)

X-ray ('expected' for 105 s)
graphite Bragg (2.6 keV)
lithium Thomson (5-10 keV)

0.01%
0.2%
0.1%
0.5% (1979)
0.2%
0.5%

0.001%
0.0002%
0.0001%
0.2%
<0.1%
<0.01%
«0.5%
0.1%

*0.2%
0.05%

0.5%
0.1%

y-ray ('expected')
future instrumentation 5-10%



2
A description of polarized radiation

In this chapter, the main concepts of polarized radiation will be introduced and
discussed. These concepts apply at all wavelengths. Electromagnetic radiation
will be treated as a continuous travelling-wave phenomenon. Quantum con-
siderations can be postponed until the moment the radiation strikes a detector
and is converted into an electrical signal. Ideal detectors are not sensitive to
polarization, and, to the extent that a real-life detector can be seen as an ideal
one preceded by polarization optics, quantum and polarization considerations
can live side by side without the one influencing the arguments concerning the
other. Of the electromagnetic wave, only the electric vector will be considered;
the corresponding magnetic vector follows from Maxwell's equations.

Astronomical signals are noise-like. These noise-like variations of electric field
strength (of the electromagnetic wave) may be passed through a narrow-band
filter, so that a 'quasi-monochromatic' wave remains. Such a wave contains
a very narrow band of frequencies and may be seen as a sinusoidal carrier
wave at signal frequency, modulated both in amplitude and phase by noise-like
variations. The highest frequencies (the fastest variations) in the modulating
noise determine the width of the sidebands around the carrier wave in the
frequency spectrum. Any wide-band ('polychromatic') signal may be seen as the
sum of many quasi-monochromatic signals, all with different carrier frequencies
and generally each with its own amplitude and phase modulation. It might
seem that the phase of such a composite noise-like signal is unimportant,
certainly in astronomy where no calibration signal of absolute phase exists for
reference. This simple point of view would hold for a scalar wave such as a
longitudinal wave or a pressure wave. An electromagnetic wave, however, is
transverse and has vector characteristics. The instantaneous electric field of the
wave can be resolved into two components at right angles to each other (and
to the direction of propagation). If the signal is noise-like in all respects, the
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two electric field components vary randomly, without any lasting correlation
between them in phase or amplitude. However, if, for any frequency within
the band, an amplitude and/or phase relation between the components persists
for a time which is long compared to the vibration period of the wave, the
resultant combined signal is less random than one might expect from pure
noise, 'there is some method in the madness'. For at least part of the signal, it
is then true to say that, as the two wave components pass through a fixed point
in space, the tip of the vector that represents the instantaneous electric field of
the combined wave traces out an ellipse, a circle or a straight line, rather than
a completely random pattern. While tracing out this more organized pattern
at the signal frequency, the electric field vector does vary slowly in amplitude
and phase in a noise-like manner, i.e. the size (but not the shape, orientation or
handedness) of the pattern varies slowly and so does the position of the tip of
the vector within the pattern (at times it lags or leads a little with respect to the
position it would have for strictly monochromatic radiation). The fact that such
a long-term organized pattern is present within the short-term chaos is referred
to as the polarization of a noise-like electro-magnetic wave. Corresponding to
the extent to which the flow of radiant energy of the noise-like electromagnetic
wave is represented by such a long-term organized pattern, the wave is said
to be fully polarized, partially polarized or unpolarized. The shape of the
pattern is specified by referring to linear, circular or (the general case) elliptical
polarization.

These basic concepts will be refined and quantified in the sections that follow.
The line of argument starts with an abstraction far removed from astronomy:
a strictly monochromatic wave, 100% polarized. It then proceeds to quasi-
monochromatic (which nature may provide in the form of line radiation from
a cool low-pressure stationary source; alternatively a high-spectral-resolution
instrument may select it, out of what nature offers) and finally to polychromatic,
partially polarized, which is the usual type of signal met with in astronomy.

Note: There has been a great deal of confusion in the literature (and in at
least this author's mind) regarding three-dimensional pictorial representations of
a polarized wave. One way to represent such a wave is by showing how the
tip of the electric vector varies in time, as the wave passes through a fixed point
in space, two of the axes in the diagram representing field strength, the third
representing time; the polarization ellipse is the projection of this on to a plane
t = to. The other way is to show a snapshot of the instantaneous electric field
vector distribution in space, two of the axes again representing field strength while
in this case the third is spatial; this pattern should then be thought of as moving
through space, unchanged, at the velocity of light, the intersection with z = zo
tracing out the polarization ellipse. In the usual perspective drawings of these
alternative elliptical helices, they are of opposite sense for the two representations.
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It is instructive to read Clarke's (1974a and 1974b, pp. 47-50) comments on these
alternative representations; the comments are as valid today as they were in
1974. Figure 1 of Rees (1987) is a clear illustration of the relationship between
a snapshot and the polarization ellipse, provided the x- and y-axes of that figure
are relabelled as Ex and Ey, respectively.

2.1 Fully or 100% polarized radiation

Linear polarization

(i) A MONOCHROMATIC LINEARLY POLARIZED wave is the simplest concept. It
has a transverse electric field with constant orientation, its strength at any
one point in space varying strictly sinusoidally with time. The duration
of this wave is infinite; it has constant amplitude and frequency for
all time. Good approximations in real life are light from a well-stabilized
laser (very nearly monochromatic), filtered by a Polaroid, and the radiation
from a dipole antenna driven by a sine-wave signal generator (stable single-
frequency oscillator). The laser and the signal generator are assumed to
be switched on for an infinite time.

(ii) We can conceptually convert this wave into one that is still 100% LINEARLY
POLARIZED, but is QUASI-MONOCHROMATIC, by allowing the amplitude and
phase to vary slowly and often randomly. The faster these 'slow' variations
are, the broader will be the range of frequencies contained within the wave
(as described by Fourier transform theory). If we modify the wave in no
other way, it is still 100% polarized: i.e. all of its energy is still transported
by a transverse linear vibration with a well-defined orientation; all we
have done is to distort, slowly and therefore only slightly, the carrier wave
sinusoid. Light from a filament lamp, filtered through a monochromator
and a Polaroid, is a good approximation, as is the radiation from a dipole
driven by a sine-wave generator with slowly varying phase and amplitude
modulation, or by a radio-frequency noise source through a narrow-band
electronic filter. If we rotate the Polaroid or the dipole 'very slowly' (i.e.
slowly even compared to the 'slow' amplitude and phase variations), we
still have 100% linear polarization of quasi-monochromatic radiation, but
with variable orientation (we say that the position angle of the direction
of vibration, the 'polarization angle', varies); this would not be allowed
with strictly monochromatic radiation since rotation of the orientation of
the polarization would modify the vibration, which therefore would not
continue for infinite time and thus would no longer be monochromatic.

(iii) Fully or 100% LINEARLY POLARIZED POLYCHROMATIC radiation is a su-
perposition of quasi-monochromatic waves of many different frequencies;
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there is usually no stable phase relation between the electromagnetic field
at different frequencies. Examples are light from a filament lamp filtered
only through a Polaroid, or the radiation from a dipole antenna driven
directly by a source of radio-frequency white noise. There is now no single
dominant frequency, amplitude or phase, just a unique orientation of the
otherwise often randomly vibrating electric field vector ('random' is in this
context to be taken as: 'random within the constraints of the mean flow
of radiant energy and of the spectral bandwidth').

Note: No clear dividing line exists between quasi-monochromatic and poly-
chromatic radiation; it is a matter of convenience. One can regard poly-
chromatic radiation as a sine wave modulated in phase and amplitude,
but the wider the bandwidth (the faster the modulation), the less useful
this concept becomes and the more attractive the polychromatic description
is. In practice, the fractional bandwidth is the criterion; when it is small
enough that one may neglect any frequency dependence of wave amplitude,
phase, receiver gain, refractive index and such (e.g. many practical lasers
and some radio applications), one uses a quasi-monochromatic description,
but when functional dependence on frequency is important, a polychromatic
description is more appropriate.

Two independent monochromatic linearly polarized waves, of the same fre-
quency but with vibration directions at right angles to each other, can prop-
agate through empty space and other homogeneous isotropic media, along
the same path and at the same time. They are both solutions of Maxwell's
equations and only two independent solutions are possible: a linearly polarized
wave of any other orientation can be seen as an in-phase combination of these
two basic waves, the ratio between their amplitudes determining the position
angle of the direction of vibration of the resultant. One may choose any two
orientations at right angles as the base of the representation; popular choices
are horizontal/vertical, right ascension/declination, latitude/longitude (ecliptic
or galactic) or as dictated by the problem studied: parallel and perpendicular
to the scattering plane, rotation axis of a magnetic star, symmetry axis of a
double radio source, etc. In the strictly monochromatic case, the amplitude
ratio of such basic polarized waves is necessarily constant for all time and the
result is always 100% polarization. In the quasi-monochromatic case, the am-
plitude ratio may be constant or it may vary 'very slowly' without the (linear)
polarization becoming significantly less than 100%.

Note: Linearly polarized radiation is sometimes said to be 'plane polarized'; the
term is not as common as it used to be. The 'plane of polarization' is also an old
term, which in fact used to refer to the direction of vibration of the magnetic field.
Though often used nowadays to denote the direction of vibration of the electric
field, the term is ambiguous in several ways and it is best avoided altogether;
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it is much better to refer to the 'direction of vibration (of the electric vector)'.
See Clarke and Grainger (1971, appendix I), for more detail on this point of
terminology; see also the definition of'plane of polarization' in IEEE (1969).

Circular polarization
(i) A MONOCHROMATIC CIRCULARLY POLARIZED wave can be seen as a com-

bination of two monochromatic linearly polarized waves with vibration
directions at right angles to each other, of equal amplitude and differing by
+90° in phase. The combined electric field vector has constant magnitude,
but its orientation moves uniformly with time, making one revolution per
wave period, rotating left' or 'right' according to the sign of the phase
difference; all the radiant energy is associated with this circular pattern.
Being monochromatic, the wave has infinite duration.

(ii) A QUASI-MONOCHROMATIC 100% CIRCULARLY POLARIZED wave differs from
its monochromatic equivalent only by slow and often random variations
of the amplitude and of the 'circular velocity'. The tip of the electric field
vector still moves around the circle, on average at the wave frequency,
but it now drifts around its mean position on the circle, while the size
of the circle also changes slowly ('slowly' denoting a speed in keeping
with the bandwidth of the signal). If one wishes, one can still regard the
signal as the superposition of two quasi-monochromatic linearly polarized
waves with 90° phase difference, now with mutually synchronized drifts
in amplitude and phase; however, the concept of slow changes in the size
of the circle and, generally independently of this, the drifts around its
circumference is a much cleaner one. For the usual astronomical signals,
the slow drifts in circle size and in position on the circle are both random.

(iii) POLYCHROMATIC 100% CIRCULARLY POLARIZED radiation is a superposi-
tion of quasi-monochromatic waves of many different frequencies, but all
circularly polarized in the same way. There is in general no stable phase
relation between waves at different frequencies. Alternatively, viewing the
total signal as a phase- and amplitude-modulated carrier wave, changes
in the size of the circle and of the position on its circumference are much
faster than in the quasi-monochromatic case (but still 'slow', in keeping
with the increased but always finite bandwidth of the polychromatic sig-
nal). All the radiant energy is still associated with the circular motion of
the field vector tip, the circle having the same left- or right-handedness
at all frequencies in the band. If one wishes to view this signal as the
superposition of two linearly polarized polychromatic waves, the (faster,
but still 'slow') drifts in amplitude and phase of these two components
must be synchronized, just as for the quasi-monochromatic case.
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Two circularly polarized modes are possible, and they can propagate through
empty space (and other homogeneous isotropic media) independently, their
electric field vectors rotating in opposite directions; they are referred to as left-
hand-circular (LHC) and right-hand-circular (RHC), although much confusion
exists as to which of the two shows clockwise rotation of the electric field
vector and about the point of view for examining the circle (facing the source
or looking along the direction of propagation). See Simmons and Guttmann
(1970) and Clarke (1974a,b) for discussions of the sign conventions and
nomenclature; see also fig. 2.1.

As noted, LHC and RHC may be seen as combinations of two linearly po-
larized waves of equal amplitude with +90° or —90° phase difference. However,
LHC and RHC waves may themselves be used as the base for other polar-
ization forms in the same way as two linear vibrations: two phase-correlated
circularly polarized waves of equal amplitude add to give linear polarization,
the orientation of which depends on the (constant) phase difference between
the circular constituents (position angle of the direction of linear vibration =
1/2 phase difference).

Note: Linearly polarized radiation has a vector character: one must specify the
orientation as well as the 'intensity' (flow of radiant energy) of the radiation.
Circularly polarized radiation, however, requires only a single scalar, which can
specify both the 'intensity' and the 'sense' (or 'handedness', LHC or RHC, specified
by the sign of the scalar quantity). We shall encounter this distinction again in
chapter 3, in relation to the kind of asymmetry causing the polarization.

Elliptical polarization
(i) The most general form of polarization is elliptical for which the tip of the

electric field vector executes an ellipse at the signal frequency. The distin-
guishing parameters of the ellipse are orientation, axial ratio and handed-
ness ; linear and circular polarization are special cases of this general form.
A MONOCHROMATIC ELLIPTICALLY POLARIZED wave may be visualized as the
sum of two unequal linearly polarized components with phase difference of
+90°, or as the sum of two linearly polarized components (which may or
may not be equal) with a phase difference of something other than 0° or
+90°. This exercise in geometry is left to the reader. It is also possible to see
elliptical polarizations as the sum of two unequal oppositely circularly po-
larized components (or even one circular and one linear component, though
such a 'non-orthogonal' form is less useful) with a constant phase difference
between them; these useful mental gymnastics are also left to the reader.

(ii) QUASI-MONOCHROMATIC 100% ELLIPTICALLY POLARIZED radiation is ob-
tained by allowing the size of the ellipse to vary slowly, with similar slow
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variations of the position of the tip of the electric field vector within the
ellipse (lag or lead with respect to the monochromatic equivalent). The
elliptical pattern, however, is a constant of the wave. Alternatively, one
may introduce (correlated) slow and often random variations of ampli-
tudes and phases of the two linearly polarized waves which were used in
the mental picture to construct the elliptically polarized wave,

(iii) POLYCHROMATIC 100% ELLIPTICALLY POLARIZED radiation is a sum of quasi-
monochromatic components, all with the same elliptical polarization. Its
noise-like character is entirely analogous to the case of circular polariza-
tion discussed above. In spite of all the amplitude and phase variations,
the ellipse is again a constant of the wave.

Elliptical polarization is the most general form possible, linear and circular
polarization being special cases; linear polarization has axis ratio 0, circular
polarization has axis ratio 1. We have mentioned that two independent linear or
circular polarization forms can be sustained in homogeneous isotropic media,
these forms having 'opposite' characters to each other: two linear forms with
directions of vibration at right angles, two circular forms of opposite hand-
edness. By considering these limiting forms, one may suspect that 'opposite'
elliptical polarization forms must have equal axial ratio, that the major axes of
the two ellipses must be at right angles to each other and that the ellipses must
be traced out in opposite directions (opposite handedness). This statement will
be quantified in section 2.3.

The position angle of the axes of the ellipse may be changing 'very slowly'
with time, provided the radiation is quasi-monochromatic or polychromatic;
similarly, the ellipticity of the ellipse may be changing 'very slowly'. This
is entirely analogous to the case of a slowly rotating Polaroid discussed for
quasi-monochromatic linear polarization on p. 10.

2.2 The Stokes parameters
We now introduce the Stokes parameters, four quantities which all denote
'radiant energy per unit time, unit frequency interval, unit (detector or collector)
area (and for extended sources: per unit solid angle)'; see 'Note on units' on
p. 16. This representation of polarized light was invented by Sir George Gabriel
Stokes (1852); it was revived and introduced into astronomy by Chandrasekhar
(1946). The absolute phase of the wave does not enter into the definition;
addition of the Stokes parameters of beams of radiation represents incoherent
superposition of these beams. The Stokes parameters are often gathered into
a 4-vector S with components labelled So, Si, S2, S3; or /, g, I/, V (which will be
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Polarization ellipse Stokes parameters

1 x n

direction of
propagation

Q
u

V v )

(a1 \
a1 cos 2j8 cos 2x
a2 cos 2/? sin 2x

\ a2sin2p I

X = polarization angle
tan /? = axial ratio of ellipse

Fig. 2.1 The Stokes parameters for 100% polarized radiation, adapted from Van de Hulst
(1980, p. 495). In the convention recommended in 1942 by the Institute of Radio Engineers
(IRE, now IEEE) and endorsed in 1973 by the relevant commissions of the International
Astronomical Union (IAU), the polarization shown is right-handed elliptical and V is positive
(Kraus 1966, table 4.1 and its footnote; Simmons and Guttmann 1970, appendix III; IAU
1973; Conway 1974, footnote p. 353). The unit vectors 1 and 1 x n relate the present
figure to figs. 2.2 and 2.3.

used in this book); or J, M, C, S. In terms of the properties of the polarization
ellipse, they are defined by the equations shown in fig. 2.1. Other, equivalent,
definitions exist; they can be found in section 4.3. Some of these are more
elegant, or are particularly useful for defining exactly what a polarimeter
should measure. However, for handling noise-like signals in which phase is
irrelevant but a 'polarization ellipse' is a suitable description for the method in
the madness, the form of fig. 2.1 is appropriate: electric field amplitudes are
squared, phase does not appear and, finally, the parameters of the polarization
ellipse appear in the definition more or less in the functional form one might
expect. The full impact of the Stokes parameter representation will gradually
be appreciated as we use it for practical purposes. Let us for the moment
accept Sir George's gift horse in good grace; we can decide on its bite when
we have got to know it better.

Note that / > 0, but Q, U, V can be positive or negative. Note also that the
double angles 2/? and 2# enter into the definitions; the basic reason for this is
the squaring involved in going from amplitude to radiant energy ('intensity').
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Let us examine the form of the Stokes parameters for 100% linear, 100%
circular and 100% elliptical polarization (fig. 2.1). For LINEAR polarization,
sin j8 = 0 or cos j8 = 0. In both cases sin 2j8 = 0, so V = 0, while Q = a2 cos 2/,
U = a2 sin 2%. The quantity a is related to the amplitude of the electric field
vibration (so a2 is concerned with 'intensity', or flow of radiant energy), the
angle % is the orientation of the ellipse (in this case of the straight line) with
respect to the chosen reference direction; x *s called the 'azimuth' of the
polarization, or the 'polarization angle'. The quantities Q and U are Cartesian
components of the vector (a2,2y); note the doubling of the polarization angle
in this true vector representation. A g, [/-diagram (or Q/I,U/I) is one of
the common representations in astronomical polarimetry. Note that for the
polarization ellipse the origin of % is chosen arbitrarily (e.g. towards zenith,
equatorial North Pole or Galactic North Pole, along the symmetry axis of a
double radio source), but in the Q, (7-diagram the origin of 2/ is by definition
the Q-axis (which is conventionally drawn horizontally).

For CIRCULAR polarization, sin/} = +cos/J or sin2/? = +1, Q = U = 0
and \V\ = a2 = I. For the sign conventions for V, see Kraus (1966, table 4.1
and its footnote), Simmons and Guttmann (1970, appendix III) and Clarke
(1974a,b). Given the apparently contrary conventions of radio astronomers
(Conway 1974, footnote p. 353) and 'traditional' optical astronomers (Rees
1987, p. 216), I hesitate to recommend either. Although a convention is of-
ficially recommended by the International Astronomical Union (IAU 1973),
the main point to note is that sign conventions in astronomical polarimetry
are many and varied, and that one should be particularly careful in specifying
one's own choice in all future research papers.

General ELLIPTICAL polarization is represented by non-zero values of Q, U
and V. Note that for 100% polarization (which is all we have mentioned so
far) Q2 + U2 + V2 = I2. The axial ratio of the ellipse is tan /?.

Note on units: I shall side-step the hornets' nest of radiometric quantities
and units (magnitudes, candela per foot2-angstrom, jansky, counts per second,
etc.), merely noting that in astronomy we deal with what in radiometry is
called radiant intensity for point sources and radiance for extended sources (the
difference being whether one integrates over the source solid angle or not).
Questions of units are for photometrists; polarimetrists as such fortunately deal
with relations between the four Stokes parameters, all of which (in any one
application) represent similar physical quantities and are measured in the same
units. Irrespective of the radiometric quantity being discussed or the radiometric
units being used, the term (total) intensity is often used in polarimetry for Stokes
/ , and polarized intensity for Stokes Q, U and V or some combination of these.
Readers are warned of this usage and are urged to be more specific in their
own publications. Refer to Snell (1978) for an excellent overview of radiometric
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quantities and units; an overview of astronomical usage is given by Lena (1988,
section 3.1). Berkhuijsen (1975) clarifies early confusion in radio-polarimetric
terminology.

Why Stokes parameters? It may seem that the Stokes parameters, rather than fol-
lowing naturally from our physical concept of polarized radiation, are pulled out
of a hat; the author sympathizes with this view, but notes that this holds to some
extent for each of the alternative forms presented in section 4.3. Stokes himself
(1852) used a long derivation starting from time-varying electric fields (transverse
'ethereal displacements') to arrive at the definition of A, B, C, D (equivalent to,
respectively, / , F,<2, U of today) in the form given in fig 2.1. He then says:

Suppose that there are any number of independent polarized streams mixing to-
gether; let the mixture be resolved in any manner into two oppositely polarized
streams, and let us examine the intensity of each.... It follows that if there are two
groups of independent polarized streams which are such as to give the same values
to each of the four quantities A,B,C,D, if the groups be resolved in any manner
whatsoever, which is the same for both, into two oppositely polarized streams, the
intensities of the components of the one group will be respectively equal to the inten-
sities of the components of the other group. Conversely, if two groups of oppositely
(sic!) polarized streams are such that when they are resolved in any manner, the
same for both, into two oppositely polarized streams, the intensities of the compo-
nents of the one group are respectively equal to the intensities of the components
of the other group, the quantities A,B9C,D must be the same for the two groups....
Two such groups will be said to be equivalent.

Stokes' own formulation firmly connects (via A, B, C, D) the geometrical properties
of the ellipse to experimental measurements:
It follows...that no partial analysis of light, such, for example, as would be produced
by reflection from the surface of glass or metal, or by transmission through a doubly
absorbing medium, can from equivalent groups produce groups which are not equiv-
alent to each other; and we have seen already that this cannot be done by means of
the alteration of phase accompanying double refraction. It follows, therefore, that
equivalent groups are optically undistinguishable.
This is what makes the Stokes parameters such a supremely useful tool in
describing polarized radiation. A modern derivation in the same spirit as that of
Stokes may be found in Collett (1993, chapter 4).

2.3 Orthogonal modes and birefringence
For every polarization form (or 'mode'), we can define one with the same /
but opposite Q,U,V; adding +90° to /? is the operation required (fig. 2.2).
For such an opposite form, the axial ratio of the ellipse is the same as that
of the original, but the axis is at right angles and the ellipse is traced out
in the opposite direction. Such pairs of opposites are said to be 'orthogonal'
to each other; they are independent solutions of Maxwell's equations, they
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a2 = p - 90°
Fig. 2.2 Orthogonal polarization forms (general case). The general right-handed polarization
ellipse of fig. 2.1 is shown, together with the orthogonal form obtained by inverting the last
three Stokes parameters. Such inversion is accomplished by replacing /? by a = fi ± 90°. The
axial ratio of the orthogonal form is tan a = —  cot /?, i.e. the ellipse has the same shape, but
its orientation has changed by 90°. Since the circular component V has been inverted, the
orthogonal form is left-handed. The unit vectors 1 and 1 x n relate the present figure to
figs. 2.1 and 2.3.

can propagate independently through empty space and other homogeneous
isotropic media.

In a homogeneous isotropic medium, all polarization modes have the same
propagation velocity. In astrophysical magnetized plasmas, however (solar ac-
tive regions, pulsars, the interstellar medium, the Earth's ionosphere), different
polarization modes have different propagation velocities. For a given plasma
and a given direction of propagation with respect to the magnetic field, there
are always two orthogonal modes that can propagate through the medium
without changing their polarization form (they are 'eigenmodes'; the terms
'normal modes' and 'characteristic waves' are also used). Although the po-
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larization of these two modes remains unchanged, they do travel at different
velocities, i.e. the medium has two refractive indices, one for each eigenmode;
such a medium is said to be birefringent. Optical crystals are also birefringent
media; the astronomical significance of this lies in their use for constructing
accurate polarimeters.

If a medium is LINEARLY BIREFRINGENT, its eigenmodes have linear polariza-
tion. Radiation that has exactly the polarization of one of those two modes
will not be changed, but for any other polarization angle, or for circular polar-
ization, the polarization form will change as the radiation passes through the
medium. One may think of the incident radiation as being resolved into the two
eigenmodes, which propagate independently, each with its own velocity. On
emerging from the medium, the components recombine with a phase difference
induced by the medium; the exit polarization will thus be different from the
polarization of the beam that went in. In optical polarimetry, one makes use
of slices of linearly birefringent crystal materials, so-called wave plates (e.g.
'quarterwave plate' for a phase difference of 90°, used for converting linear
polarization to circular or vice versa).

CIRCULAR BIREFRINGENCE causes relative phase shifts between two circularly
polarized eigenmodes. A linearly polarized signal impinging on such a medium
should be thought of as being resolved into the two circular eigenmodes, each
of which passes through the medium at its own velocity (i.e. with its own
refractive index). On emerging from the medium, the two modes recombine to
give linear polarization again, but the direction of vibration has been rotated
by an angle of half the differential phase between the modes. In an ionized
plasma with a magnetic field component along the line of sight, such rotation
of the linear polarization is called 'Faraday rotation'. Circular birefringence
also occurs structurally in certain optical crystals (e.g. quartz), due to a helical
atomic arrangement. Such crystals can be used to construct circular retarders
(or 'rotators', viz. of the direction of vibration of linear polarization). Many
asymmetric organic molecules in solution cause the medium to be circularly
birefringent or 'optically active'; this is used in laboratory techniques such
as saccharimetry, but so far it has not been of professional significance to
astronomers.

In general, birefringence will be ELLIPTICAL, i.e. the eigenmodes are elliptical.
This occurs in astrophysics (e.g. Jones and O'Dell 1977), but is not used
much in technical work (at least not intentionally; oblique rays through crystal
components designed for normal incidence inevitably have eigenmodes with
some ellipticity).

Note: Rays with orthogonal states of polarization are sometimes denoted by 'o'
for ordinary and 'e' (or 'x' in radio work) for extraordinary. This usage arose from
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polarization effects in crystals, such as calcite, in which the extraordinary ray is
not refracted in the same way as in 'ordinary' isotropic materials, and it has been
adopted for the description of radio wave propagation (IEEE 1969). Nowadays,
the terms o- and e-ray may loosely denote any pair of rays of orthogonal
elliptical polarization, and may be encountered in descriptions of instruments
(figs. 6.3 and 6.5) and of magneto-ionic plasmas, such as the Earth's ionosphere
or the Sun's corona; for linear polarization, 's' and 'p', or _L and || are also found
(fig. 5.7 and section 6.1.2).

2.4 Unpolarized radiation
What happens when we combine the electric fields of two equal (quasi-
monochromatic or polychromatic) 100% polarized waves of orthogonal polar-
ization forms, there being no long-term persistence in the phase relation between
them ('incoherent sum', or 'intensity superposition')? For the sake of a clear
and simple mental picture, we take as an example two linear polarizations at
right angles. For a time short compared to the 'slow' variations of amplitude
and phase discussed in previous sections, some definite polarization form will
result (linear, circular or elliptical, depending on the momentary phase differ-
ence). However, a sufficiently long time average is part of the definition of
the Stokes parameters (Stokes himself is quite clear about this, distinguishing
between 'temporary intensities' and 'actual intensities'). After some time has
elapsed, the 'slow' variations will have caused the polarization form of the
incoherent sum to change to something else. During a 'sufficiently' long time
interval, all possible forms of polarization will occur, all values of jS and x
will occur, and the time-averaged Stokes parameters will be < a2 >, 0, 0, 0,
where < > denotes a time average. We call such radiation unpolarized, since
no single polarization form dominates or is conspicuously absent. We note
that the Stokes parameters of the two linear polarizations that went into the
incoherent sum were 1/2, Q, U,0 and 1/2, —Q,  —U,0, and that for such intensity
superposition the Stokes parameters of the sum are equal to the sums of the
Stokes parameters of the components. (A mathematically inclined reader may
prefer the proof of additivity of the Stokes parameters by, e.g., Collett (1993,
section 4.6).)

The same argument may be used for incoherent addition of equal LHC
and RHC polarized components. Again, the sum has Q = U = V = 0.
Unpolarized radiation can be seen as the incoherent sum of two beams, of
any two 'orthogonal' polarizations 1/2, +Q, +U,±V. It does not matter what
polarization forms one chooses, as long as the Stokes vector sum is 7,0,0,0, in
other words as long as the last three Stokes parameters are equal but opposite
in the two components.
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Parallelling the above definition of unpolarized radiation in terms of Stokes
parameters, one may define it in operational terms, i.e. in terms of hypothetical
measurements. One may set up 'polarimeters' (instruments that are sensitive to
and measure some particular form of polarization) for any polarization form
one likes to choose. If the measurement yields a null result no matter what
polarization form one tries to detect, the radiation under scrutiny is said to be
unpolarized. The first form of the Stokes parameters in section 4.3 expresses
this approach.

Note 1: Stokes, in 1852, was well aware of the equivalence of the above two
points of view on unpolarized radiation (he refers to unpolarized radiation as
common light; this term has gone out of use):
The experimental definition of common light is, light which is incapable of exhibiting
rings of any kind when examined by a crystal of Iceland spar and an analyzer, or
by some equivalent combination [such as a modern 'polarimeter' consisting of
Babinet compensator, linear polarizer and a detector—JT]. Consequently,  a group
of independent polarized streams will together be equivalent to common light when,
on being resolved in any manner into two oppositely polarized pencils, the intensities
of the two are the same, and of course equal to half that of the original group.
Accordingly, in order that the group should be equivalent to common light, it is
necessary and sufficient that the constants B, C, D should vanish.

Note 2: Unpolarized radiation is sometimes called natural radiation, but like
'common light' this term is ambiguous and is best avoided.

Note 3: Instead of averaging over time, one could use ensemble-averaging to
define the polarization of noise-like signals. In fact, quasi-monochromatic and
polychromatic radiation will usually be the result of ensemble-averaging of mi-
croscopic events, such as emission of quanta of line or continuum radiation,
scattering of light by an ensemble of molecules, or pulses of synchrotron emission
from an ensemble of relativistic electrons. In practice, therefore, averaging over
time is more or less equivalent to ensemble-averaging, though in special cases
(e.g. very fast time variations of polarization of light from a star) one may have
to be more careful about the definitions one uses.

Note 4: Stokes uses the term 'independent' to mean from separate sources, i.e.
without any correlation in the 'slow' variations of phase and amplitude. In my
own text of this chapter, 'independent' is used only in the sense of independent
solutions of Maxwell's equations, which is something different.

2.5 Partial polarization

Now that we have defined unpolarized radiation, the concept of partial po-
larization is simple: partially polarized radiation is the incoherent sum of
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an unpolarized and a fully polarized component. The Stokes parameters of
partially polarized radiation are the sums of the Stokes parameters of the
components; the / values (always positive) add, while the Q, U and V values
are those of the fully polarized component. Therefore, for partially polarized
radiation, Q2 + U2 + V2 < J2. We call y/(Q2 + U2 + V2)/I the degree of po-
larization, generally denoted by p. One also encounters the degree of linear
polarization pnn = \/(Q2 + U2)/I, degree of circular polarization pcirc = V/I,
or other, often historically determined, forms (e.g. ps = —Q/I i n optical plane-
tary polarimetry, where U = 0 for proper choice of coordinate frame: subscript
s for 'sign'; also px for Q/I, py for U/I).

Equally valid is a representation of partially polarized radiation as the inco-
herent sum of two generally unequal fully polarized components of orthogonal
polarization (in this view, unpolarized radiation is just a special case of partial
polarization). I shall mention this point of view again in section 4.2.

In terms of the elliptical envelope of the electric field vector, one can visualize
the field vector of partially polarized radiation as 'slowly' making the transition
from one elliptical envelope to another, with some ellipses occurring more
frequently than others. More radiant energy is transported by one particular
elliptical type of vibration than by any of the others; note that phase does not
occur in this statement.

For obvious reasons, fully or 100% polarized radiation is sometimes said to
be in a pure state of polarization; similarly, partially polarized and unpolarized
radiation, as an incoherent sum of two pure states, may be referred to as being
in a mixed state of polarization.

2.6 The Poincare sphere

The Poincare sphere (fig. 2.3) is a very useful pictorial representation of polar-
ization. It can deal with partial polarization, so most astronomical situations
can be represented by it, and the operation of 'optical' components on the
polarization of radiation can be represented as operations on or within the
sphere. Its main use is as a graphical device, but some instrumental components
have actually been designed by spherical trigonometry on the surface of the
Poincare sphere.

• On the equator, 2/3 = 0, so polarization is linear, with 2% the parameter
representing the orientation.

• The poles represent circular polarization, and the rest of the  surface of the
sphere represents various forms of elliptical polarization.
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right circular

Qli

linear along 1
left circular

Fig. 2.3 The Poincare sphere, adapted from Van de Hulst (1980, p. 495). The unit vectors 1 and
1 x n relate the present figure to figs. 2.1 and 2.2.

• Fully polarized radiation of one form or another is represented on the
surface, the centre corresponds to unpolarized radiation, and all other points
within the sphere represent partial polarization, the length of the radius vector
representing the degree of polarization p.

The equatorial plane with axes (?//, U/I (often denoted as pQ,pv or px,Py or
q, u or even just Q, U) is the part of the Poincare sphere most often met within
astronomy; this is because partial linear polarization is by far the most common
form in the universe. A diagram in this equatorial plane is a true vector diagram,
as opposed to a map of polarization lines (which have no sense, just orientation;
the polarization lines are often called vectors, however, and a map of them may
erroneously be called a vector map, so beware of such confusion). The true
vector diagram is often called a 'Stokes plot', which is an unambiguous term
as long as only linear polarization is considered. Occasionally, the equatorial
plane is presented as the complex plane, with the [/-axis being imaginary. In
that case, m = Q/I + iU/I = pe2lx with m referred to as the 'complex degree
of polarization' (in a few papers called 'Stokes vector'; this is exceedingly
confusing, since 'Stokes vector' usually denotes the 4-vector J,<2, [7, V).
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Table 2.1 Representative Stokes vectors, after Shurcliff (1962)

Polarization form

Pattern

|

0
0
o
0
0o

-

L/C/E/U
1/r

L

L

L

L

L

C,r

C,l

E,r

E,l

E,r

E,r

E,r

U

Ellipse

X
(deg)

0

90

45

-45

any

-

-

0

0

90

45

22.5

-

parameters

tan/?

0

0

0

0

0

1

1

0.5

- 2

2

tanjff

0.318

-

Amplitude/phase

Ay/AX

0

00

1

1

> 0

1

1

0.5

2

2

1

0.518

-

<t>y —  0 x
(deg)

-

0

±180
0 or ±180

90

-90

90

-90

90

2P

45

-

Normalized Stokes vector

I,Q,U,V

1, 1, 0, 0

1, - 1 , 0, 0

1, 0, 1, 0

1, 0, - 1 , 0

1, cos 2x, sin 2^,0

1, 0, 0, 1

1, 0, 0, - 1

1, 0.6, 0, 0.8

1, -0.6, 0, -0.8

1, -0.6, 0, 0.8

1,0, cos 20, sin 20

1, y/T/39 yfiji, y/l/3

1, 0, 0, 0

The polarization form is represented by x and f$, or by the alternative of x and y amplitude ratio Ay/Ax
and phase difference 4>y —  <j)x (cf section 4.2). L/C/E/U denotes linear/circular/elliptical/unpolarized
and 1/r denotes left-handed/right-handed; right-handed corresponds to V > 0.

2.7 Further reading and some more discussion

Examples of various polarization forms and the corresponding Stokes vectors
are shown in table 2.1. More examples may be found in the books listed
below. The reader is urged to verify the examples in the table and to construct
more. The Stokes parameters do have some unusual properties, and an effort
must be made to understand these, for we shall use the Stokes parameters in
chapter 4. For further reading, I recommend the following books; they all
concern optical polarimetry, but this is of no importance for the discussion of
the Stokes parameters.

The most compact yet clear description of the Stokes parameters and the
Poincare sphere that I know of is in Van de Hulst (1980, pp. 494-6). Hecht and
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Zajac (1974) and Kliger et al (1990) provide excellent general introductions to
polarization concepts; Kliger et al. (1990, pp. 24-6) are clearest on pictorial
representations of circularly polarized radiation. Another well-written classic is
Shurcliff (1962). Collett (1993) is a wide-ranging monograph, very informative
on the history of the Stokes parameters and how they relate to electromagnetic
theory and Maxwell's equations. Despite it being the most expensive by far,
I consider Collett (1993) the best single buy for those who wish to go well
beyond the brief introduction I have given.

Note: The author finds that the following thought experiment helps him to under-
stand the significance of the Stokes parameters. The reader is invited to try it, too:
if you get lost, blame the author and press on. J.W.Hovenier clarified an essential
didactic point.

Let us consider the normalized (i.e. / = 1) Stokes vector l9q,u,v, with degree
of polarization p = yjq2 + u2 + v2. We can look on this as the sum of a 100%
elliptically polarized part and a remainder, which is unpolarized:

For the polarized part, the parameters of the ellipse are: tan2% = u/q and

We may also split the vector into a 100% circularly polarized part, a 100%
linearly polarized part and an unpolarized remainder:

In both these Stokes vector equations, the components of the radiation are
supposed incoherent with each other, or Stokes vector addition would not apply.
The first representation is always possible, since p < 1 and the unpolarized part
at worst reduces to zero. In the second representation, however, the intensity of
the unpolarized part can become negative (a physical impossibility) if

or
IPcircl + Plin > 1

In a |p<aic|,piin diagram, the limit |pCirc| + piin = 1 is a straight line from (0,1) to
(1,0). The fundamental limit on |pcirc| and pnn is that of 100% polarization:
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In the |pCircl,Piin diagram, this is represented by a quadrant of a circle centred on
the origin and passing through (0,1) and (1,0). In the area between the line and
the circle quadrant, only the first representation is allowed. In that part of the
diagram it is not possible to represent elliptically polarized light as the incoherent
sum of a circular and a linear component; within the triangle enclosed by the
straight line and the axes, it is.

How should we interpret this physically? Remember that, if we conceptually
split elliptical polarization into a circular and a linear component, these two
components must be coherent with each other, i.e. they must perform the same
random 'slow' variations of amplitude and phase; for a certain size of the circular
component, the 'remainder' will contain a phase-correlated component of the right
size and of the correct linear polarization to make up the original elliptical. The
linearly polarized component of the second representation, however, must have
a phase which is uncorrelated with that of the circularly polarized component.
Hence, we conceptually take it from what was the unpolarized part in the first
representation (a straight swap of the correlated for an uncorrelated component
of the same polarization). If the degree of polarization is low enough, this will be
possible. In the second representation, the 'unpolarized' part will therefore include
a component correlated in phase with the circularly polarized part, but this phase
is slowly variable and uncorrelated with the phase of the rest of the unpolarized
component, so that the 'linearly polarized part of the elliptical polarization' can
indeed be conceived as part of that unpolarized part of the radiation. However,
when the phase-correlated component is too large to be accommodated as part
of the unpolarized last term, the second representation is invalid. At low partial
polarizations, there are an infinite number of possible combinations involving
linear, circular and/or elliptical polarizations; usually there will be no physical
reason for preferring any of these to the simplest interpretation (the first Stokes
vector equation above). The Stokes representations do not tell us that, within
the 'unpolarized' part, there may be a component which is coherent with, say,
the circular component. That is as it should be: we have chosen to represent
the total radiation in terms of (assumed) mutually incoherent components, which
may not correspond at all to what nature provides; if a wrong assumption yields
an incomplete answer, we have only ourselves to blame.

The pulsar illustrated in fig. 3.12 has been found to flip its polarization angle
by 90° when its sense of circular polarization is reversed (quoted in Taylor and
Stinebring (1986, p. 309)). If the degrees of linear and circular polarization are
large enough (this cannot be decided from the figure), there is only one way of
interpreting this: jumps from one elliptical mode to the orthogonal one. For
a lower degree of polarization, this will still be the simplest interpretation, but
alternatives in terms of incoherent linear and circular polarization, for some
reason making mode jumps at the same moment, remain possible (as would
other similar combinations).



3
Polarization in astronomy

In this chapter I shall discuss the scientific reasons for measuring the polariza-
tion of astronomical signals. The central question is: 'What does nature express
as polarization rather than as some other property of the signal?'. This, of
course, is the scientific point of departure for all astronomical polarimetry, but
the basic concepts of polarization and (un)polarized radiation needed clarifica-
tion before scientific necessity could be discussed properly. This chapter will be
only a brief overview of the relevant astronomy; a number of recent reviews
are available to help the reader become familiar with the astronomical appli-
cations. The subject of this book is polarimetrj;, the desirability of measuring
the polarization will be taken for granted.

The light of most stars is itself unpolarized. In fact, whenever one needs an
optical 'zero-polarization' reference source, one is generally pushed to use stars
rather than lamps. The reason for the low polarization is the great distance
(point source) and the spherical symmetry of most stars: any linear polarization
there might be is averaged out over the star's visible disc. In the radio domain,
antenna properties are highly polarization-dependent, and without specialized
techniques large spurious apparent polarization is generated within the instru-
ment. Thus, circumstances conspired to make astronomical polarimetry a late
arrival. Even in the spectral regions of greatest instrumental sophistication,
polarimetry remained a specialist technique; solar physics has been the notable
exception. As a corollary of this lack of attention to polarimetry, awareness of
polarization-induced photometric errors within telescopes and instruments has
been minimal.

During the last few decades, however, progress by polarization specialists has
been considerable, and astronomers now realize that, even as 'common users',
they neglect polarization at their peril: wherever there is appreciable asymmetry
in an astronomical situation, there is likely to be polarization at some level (how
this level compares with state-of-the-art accuracy of measurement is another

27
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matter). The higher the resolution (spatial, spectral and sometimes temporal),
the larger in general is the polarization; the increased resolution available to as-
tronomers is another reason for the increasing use of polarimetry in recent years.

The asymmetry notion can be pushed a little further: the character of the
asymmetry determines the kind of polarization to be expected. If the asymmetry
is of a scalar (+/—, magnitude) kind (e.g. the longitudinal component of the
magnetic field), the polarization generated or the birefringence (section 3.3) will
be circular (scalar in character). If the asymmetry is of a vector type (magnitude
and direction), the polarization generated, the dichroism or the birefringence
will be linear (magnitude and orientation; almost, though not quite, a vector,
since it transforms into itself on rotation by 180° rather than 360°); one example
of such asymmetry is the transverse magnetic field component, another is the
position angle of a scatterer with respect to the primary source of the radiation.

Note: The macroscopic argument of asymmetry is not enough to predict measur-
able polarization with any certainty; it only provides a hunch that polarization
may occur. One also needs a microscopic argument in the form of a viable
mechanism that will imprint this asymmetry on to the radiation we receive.

The main asymmetries giving rise to astronomical polarization are magnetic
fields and an asymmetric distribution of scattered radiation. At what wave-
lengths these manifest themselves is partly a question of where in the spectrum
the objects radiate, and this in turn can determine the sensitivity to the required
data (e.g. a 10 G* field is 'very weak' for Zeeman detection on a star in the
optical, whereas 10 ̂ G can be detected in a cold cloud by Zeeman methods at
21 cm; the zero-field width of the spectral line is the determining factor).

Specific references to reviews or the latest literature are given where possible;
when this fails, try Lang (1980). For predictions of expected polarization in
the fast-developing field of X-ray polarimetry, consult Kaaret et al. (1989) and
Meszaros et al. (1988). For a discussion of astrophysical electric fields as a
possible source of polarization effects, see Favati et al (1987).

3.1 Magnetic fields and generation of polarized radiation

Polarimetry is the most direct method of detecting magnetic fields, which in
astronomy range from 10fiG in interstellar space to perhaps 1013 G in pulsars.
The techniques used and the data produced vary according to object and
wavelength. A list of applications such as that which follows will never be
complete, but it can serve as a general guide.
* The astronomical literature still uses the gauss as the unit of magnetic flux density (magnetic

induction, B-field): 1G = 10~4T (see also Crangle and Gibbs 1994).
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Fig. 3.1 The Zeeman effect, adapted from Jenkins and White (1950); reproduced with
permission of McGraw-Hill Inc., New York, (a) Laboratory experiment to demonstrate
the effect, (b) Zeeman-split spectral lines, (c) Zeeman patterns for a normal triplet, with
polarization indicated, (d) A normal triplet in absorption.
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Fig. 3.2 The Zeeman effect for the OH spectral line at 1665 MHz after
Garcia-Barreto et al. (1988).

The Sun and similar stars
Photospheric fields in magnetically active regions are determined from the
Zeeman effect (figs. 3.1 and 3.2; more details in Landstreet (1992)) and Hanle
effect (Leroy 1985, Stenflo 1994); for the domains of applicability of such
methods, see Landi Degl'Innocenti (1992), particularly the very enlightening
discussion leading up to his figure 11. Three-dimensional field patterns as a
function of time can be derived from maps of circular and linear polarization
profiles of spectral lines, and these can be combined with Doppler data from
the same specialized instrument. For a review of how much is known about
solar magnetic field structure, see Stenflo (1989). (Figure 4 of that paper is a
magnificent illustration of the Zeeman effect in a solar context, and some of
the methods mentioned in that review can be applied to other stars). A recent
conference volume (Schiissler and Schmidt 1994) gives a good impression of
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the detailed knowledge we have of solar magnetic fields, almost all of which
is, in the end, based on the interpretation of polarimetric observations. For an
impression of the sophistication of solar polarimetry at optical wavelengths, see
Hagyard (1985), Keller and von der Luhe (1992), Stenflo (1994) and Volkmer
(1994). The technique of Doppler imaging applied to Zeeman profiles can
provide details of magnetic structure in chromospherically active stars (Donati
et al. 1992). Coronal magnetic fields from solar flare regions are routinely
detected by radio-polarimetry; the polarization is mostly circular. Attempts to
detect linear X-ray polarization from these regions have yielded upper limits,
which help to distinguish between models for the X-ray-generating mechanisms
of flares. Flare stars and certain interacting binary stars with strong fields show
radio polarization, probably by mechanisms similar to those in solar flares. For
an overview of solar and stellar radio-polarimetry and the radiation mechanisms
involved, see Dulk (1985) from which our table 3.1 has been adapted.

Magnetic Ap stars
The longitudinal Zeeman effect has been used extensively to analyse the strong
magnetic fields which some of these rather exceptional stars have in large 'spots'
on their surface. The apparent field varies with time, due to the sub-Earth
point scanning the magnetic structure which is not aligned with the rotation
axis. Magnetism in non-degenerate stars is reviewed in Borra et al. (1982) and
Landstreet (1992). In the transverse Zeeman effect, the central component is
twice the equivalent width of the outer ones. If an absorption line is strong, the
difference in saturation will lead to a net linear polarization for the complete
Zeeman multiplet. In a spectral region with many saturated lines, this will lead
to a small net broad-band linear polarization (see Landstreet (1992, p. 43) for
references).

Magnetic white dwarfs
Some white dwarfs have been found to have magnetic fields so strong that
the Zeeman effect can be detected even in very wide features in the optical
spectrum. For the stronger fields (up to hundreds of mega-gauss), magnetic
effects completely distort the spectrum and produce both circular and linear
polarization in lines and continuum. Fitting models to full spectro-polarimetry
is the best attack in trying to understand these objects. Recent reviews are by
Chanmugam (1992) and by Landstreet (1992); they list over 25 magnetic white
dwarfs, usually detected by polarimetry of one kind or another and always
confirmed by that technique. A recent study of a high-field white dwarf is
Liebert et al. (1994), a low-field (1MG!) example is discussed in Schmidt et al.
(1992a). Multi-band time-resolved polarimetry is essential to the study of the



Table 3.1 Polarized radio emission from the Sun
Extracted from Table 1 of Dulk (1985).

Burst type Duration Polarization Frequency range Source
I
II
III
IV moving
IV flare continuum
IV storm continuum
V
microwave impulsive
microwave IV
microwave postburst
microwave spike burst

< l s
> lOmin
few seconds
«30 min
«20min
few hours
> lmin
>lmin
«10 min
minutes-hours
«10ms

50-100%
low
< 30%
low—•high
0-40%
60-100%
<10%, changes sign
« 3 0 %
« 1 0 %
low
»100%

50-300 MHz
200—1  MHz
200—1  MHz
0.2-1 GHz
0.2-1 GHz
300—50  MHz
100—10  MHz
3-30 GHz
1-30 GHz
1-10 GHz
0.5-5 GHz

large sunspots
flare shock wave
0.1-0.5 c electron stream
small flare
moderate to large flare
flare, late phase
follows some Ills
small to large flares
large flares/shocks
flare, late phase
flare/hard X-rays

Arrows denote progression with time, over the frequency or polarization range.
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AM Her, 1987 July 25, circulor.
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Fig. 3.3 Time-resolved 0.35-2.2 /mi ('U'-'K') circular polarimetry of AM Her. 'V%' is the
degree of circular polarization V/I, expressed as a percentage; from Hough et al. (1991). The
polarimeter shown in fig. 6.4 was used to obtain these results.
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internal structure of close binaries with a magnetic white dwarf component;
fig. 3.3 shows such data for AM Her (Hough et al. 1991).

Pulsars

The magnetic field configuration and radiation mechanism of pulsars have
been studied in great detail by measuring the polarization variations during the
radio pulses (average and individual, linear and circular polarization). Some
details are given in the pulsar review by Taylor and Stinebring (1986); see
Stinebring et al (1984) for a full account of the polarimetry (see also fig. 3.12).
Detailed optical polarimetry of the pulsar in the Crab Nebula is reported in
Smith et al (1988). Chanmugam (1992) reviews the available data on magnetic
fields of neutron stars. An impression of the surprisingly detailed knowledge
of pulsars obtained from polarimetry may be gained from Michel (1991).

Galactic magnetic fields (interstellar, transverse component)

These can be detected by radio (synchrotron emission) or optical (polarized
extinction) methods. Both our own Galaxy and nearby spiral galaxies have been
analysed (fig. 3.4). For reviews see Beck (1993), Wielebinski and Krause (1993)
and Kronberg (1994). In the radio domain, 'Faraday rotation' of the plane of
polarization (section 3.3.2) is used to estimate the strength of the longitudinal
field component in the region between source and observer; the sources used
range from local Galactic synchrotron emission (Brouw and Spoelstra 1976)
and pulsars (Rand and Kulkarni 1989) to remote radio galaxies and quasars
(fig. 3.5). Zeeman measurements of the longitudinal component are available
for neutral hydrogen clouds in our Galaxy, seen in absorption against strong
point sources of continuum radiation (Schwarz et al 1986). Under suitable
circumstances, magnetic fields in 21-cm emission regions can also be measured
(Troland and Heiles (1982a,b); however, see the discussion in section 5.5.5).

Molecular clouds

Zeeman measurements of the longitudinal magnetic field as a function of gas
density within molecular clouds are reviewed by Myers and Goodman (1988).

Masers

The longitudinal magnetic field within H2O maser regions has been measured
by Fiebig and Glisten (1989), and within an OH maser by Garcia-Barreto et al
(1988); the latter used the very sophisticated technique of polarization-spectral-
VLBI.



3.1 Magnetic fields and generation of polarized radiation 35

Fig. 3.4 Large-scale magnetic field structure of M51, as derived from 2.8 cm polarimetry with
the Effelsberg radio telescope (Neininger (1992), optical image from Lick Observatory). The
orientation of the polarization lines corresponds to the magnetic field orientation, their length is
proportional to polarized intensity; this is a representation often used for radio-polarimetry of
(presumed) synchrotron emission. Radio-polarimetry of galaxies does not suffer from contami-
nation by scattered light, which complicates the interpretation of optical polarimetry of such
objects; however, the wavelength of observation must be short enough for elimination
of Faraday rotation to be possible.

Supernova remnants
The synchrotron emission from the Crab Nebula has been studied by po-
larimetry throughout most of the spectrum; see fig. 3.6 for an example. Nu-
merous other supernova remnants have been studied in the radio domain,
using polarimetry to obtain the magnetic field configuration (see Astronomy
and Astrophysics Abstracts).

Quasars and active galaxies
Magnetic fields in these objects have been investigated by radio-polarimetry
with increasing resolution, first by using single telescopes, later aperture syn-
thesis instruments and most recently by VLBI networks. The polarization is
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Fig. 3.5 Galactic magnetic field topology as revealed by observed rotation measure (RM)
of extragalactic sources (RM = Faraday rotation normalized to a wavelength of 1 m). The
sign of the longitudinal magnetic field component (filled vs open circles) is the most reliable
datum from such a plot; to interpret the magnitude of the RM (size of the circles) in terms of
magnetic field strength, additional data are needed (e.g. the electron density, the thickness of the
Galactic gas disk and the scale of the irregularities of the Galactic field). This provisional map,
showing large-scale Galactic magnetic field structure, was kindly provided by P.P. Kronberg,
and displays the average rotation measure at the position of each of 901 sources (RM averaged
over several neighbours). A similar plot without averaging, also due to Kronberg, is shown by
Wielebinski and Krause (1993, figure 3), and is more suitable for tracing local anomalies in
the magnetic field structure.

almost entirely linear (transverse field) and arises from synchrotron emisssion;
Faraday rotation within the source is used where possible to estimate the lon-
gitudinal field. For general reviews see Saikia and Salter (1988) and Kronberg
(1994), for the jets Bridle and Perley (1984). Polarimetry at optical and X-
ray wavelengths can be used to investigate the central engine (which is often
unresolved) of such sources (e.g. Meszaros et al. 1988). Optical polarization
angles are also combined with radio morphology in attempts to unravel the
mechanism of double-lobe formation.

3.2 Scattering geometry as a source of polarization

There are a number of situations in astronomy in which scattered radiation
reaches the observer. The direction of vibration of the electric vector of the
scattered radiation is at right angles to the scattering plane, the plane containing
the incident and the scattered rays. Often direct radiation is also present; in
some cases it is absent. Measurement of the linear polarization can help to
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Fig. 3.6 X-ray linear polarimetry of the Crab Nebula, from Weisskopf et al (1978). The curves
show the variation of the detector signal with position angle of the instrument. The upper curve
is the source, the lower represents the background signal to be subtracted. The wavelength was
4.77A(2.6keV).

identify the scattering mechanism, it can pinpoint an obscured source, or it can
give information on the properties of source (e.g. orientation as projected on
the sky, spottedness) and/or the scattering medium (e.g. size, shape, degree of
alignment and refractive index of the particles).

Figs. 3.7 and 3.8 illustrate applications of such techniques in the infrared; for
more detail, see Aspin et al. (1990) and Minchin et al. (1991). The equivalent
at optical wavelengths, as carried out with the polarimeter shown in fig. 6.6,
is summarized in Scarrott (1991). Proposed applications at X-ray wavelengths
may be found in Matt et al. (1989) and in Kaaret et al. (1989); these concern X-
ray emission from such sources as Seyfert nuclei and black hole environments,
subsequently scattered by an accretion disc. The extensive body of optical
polarimetry of planets is reviewed in Coffeen and Hansen (1974), and for Venus
in particular in Van de Hulst (1980, section 18.1.5). Linear polarimetry (optical,
infrared, spectro-) promises to constrain very effectively the models for stars
evolving from the asymptotic giant branch to planetary nebulae (Johnson and
Jones 1991); Trammell et al. (1994) present spectro-polarimetry of post-AGB
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Fig. 3.7 A perfect example of scattering polarization (from Aspin et al 1990). Linear
polarimetry, at a wavelength of 2.2 fim, of the region around the infrared source IRS4;
coordinate units are seconds of arc, IRS4 is at (0,0). The centro-symmetric arrangement
of the polarization lines persists out to at least 3 arcmin, showing that the central
source illuminates the whole of the region around it.

stars as convincing evidence that non-spherical structure is already present in
this early phase of planetary nebula formation.

In general, the scattered photon may be at the same frequency as the
incident photon (as in Rayleigh and Thomson scattering) or the frequency
may be different (as in Compton and Raman scattering). Spectro-polarimetry
can be particularly useful in separating different components of the radiation
(optical applications in figs. 3.9 and 3.10).

3.3 Polarization dependence of the refractive index

If the refractive index of the medium between the source and the observer is
a function of polarization, radiation from the source will have its polarization
modified by this intervening medium, and this produces a number of observ-
able effects. In terms of the complex notation for electromagnetic waves (see
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Fig. 3.8 Scattered radiation from a hidden source, from Walther et al. (1990). Linear
polarimetry at 2.2 fim of the region near the infrared source IRS1. Coordinate units are seconds
of arc, IRS1 is at (0,0). The authors comment: '...clearly shows centro-symmetric vectors about
a point in the dark lane, indicating that this is the location of the exciting star. The polarization
is extremely high, indicating that the dust must be optically thin to scattering. The geometry
must be such that scattering takes place preferentially off large dust grains in the walls of
the outflow...'.

section 4.2), the 'complex refractive index' determines the optical path length
(real part; classical refractive index) and the attenuation (imaginary part; ex-
tinction coefficient) as the wave propagates. When these components of the
complex refractive index depend on the polarization of the wave, one uses the
terms birefringence (real part) and dichroism (imaginary part) for the difference
between the values for two orthogonal polarization forms; these polarization
forms may be linear, circular or elliptical, depending on the eigenmodes of the
medium (see chapter 2). Examples are linear dichroism of a sheet polarizer
and elliptical birefringence of a magnetized plasma. The following subsections
describe astronomical occurrences of polarization dependence of the refractive
index. Note that the concept of complex refractive index is a macroscopic de-
scription; the microscopic mechanisms underlying the polarization dependence
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Fig. 3.9 Raman scattering in symbiotic binary stars. Adapted from Schild and Schmid (1992),
where more detail is given; (a) is from Duerbeck and Schwarz (1995). The broad emission
features in the flux spectra are due to Raman scattering (see energy level diagram (c)) of
ultraviolet photons by the atoms of the neutral wind from the red giant (see plan view of the
binary star (b)). Fractional Doppler width is increased in the ratio of the scattered to incident
wavelengths. Part (d) shows spectro-polarimetry of two such stars. The scattering origin of the
lines is confirmed by this spectro-polarimetry and the geometry of this kind of object is
thus open to investigation.
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• %'m\ • • * Observer

Fig. 3.10 A Seyfert galaxy core region model, suggested by optical spectro-polarimetry,
adapted from Antonucci and Miller (1985). The spectrum of the central obscured source can
be detected only through light scattered by electrons on the polar axis of the system. Such light
will be linearly polarized, and spectro-polarimetry can be used to distinguish it from the other
components of the radiation. Polarimetric observations play an important role in unified
models for these remote extragalactic sources. See also Fosbury et al. (1993).

are varied, although magnetic fields play a role in most astronomical cases. (An
exception to this last statement is the multi-wavelength polarization-sensitive
radar reflectometry reported by Evans et al. (1994); this technique, similar to
what is called 'ellipsometry' in optical laboratory practice, is very powerful for
mapping planetary surface structures.)

Note: Like 'polarization' itself, the term 'dichroism' is a misnomer. It arose
from the first known instance of this effect, the crystal K2PdCl4, in which
the polarization dependence of the absorption coefficient is also wavelength-
dependent, so that the colour of the crystal depended on the polarization (and
the direction) of the light passing through it (see Clarke and Grainger 1971,
p. 86). By analogy with 'birefringence', a term like 'biattenuance' would have been
preferable to 'dichroism'.
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8.0

Fig. 3.11 Linear dichroism of the interstellar medium in the direction of the star HD 161056.
Starlight is polarized by dust particles partially aligned in an interstellar magnetic field. The
shape of the curve (solid line, from Somerville et al. (1994)) is more or less the same for
all stars ('Serkowski curve') when the degree of polarization and the wavelength are both
normalized at the peak of the curve. For reference, the extinction curve for this star has also
been sketched in (broken line, arbitrary zeropoint). At the wavelength of the polarization peak,
the difference in extinction for the two orthogonal polarizations is about equal to the thickness
of the dashed curve; this highlights the precision that must often be achieved in polarimetry.

3.3.1 Dichroism

Dichroism is the differential extinction of orthogonally polarized radiation
components. A 'dichroic' sheet of Polaroid operates by differential absorption
of linear polarization components, and something similar can happen at optical
wavelengths in interstellar space. Interstellar dust particles are non-spherical
and/or have crystalline structure; they have a different scattering cross-section
(effective area) for light linearly polarized parallel to the geometric or crystalline
axis than for light polarized at right angles to it. Since the non-sphericity of the
particles and the crystalline structure also influence the magnetic and electrical
properties, the interstellar magnetic field can induce a slight preferential ori-
entation with respect to the field. These two deviations from perfect isotropy
cooperate to produce a certain amount of polarization by differential extinction
of the linear polarizations along and across the transverse magnetic field com-
ponent (extinction denotes absorption plus scattering; at optical wavelengths it
is scattering that matters, further into the infrared absorption becomes more
important; polarized true absorption will - according to Kirchhoff's law - be
accompanied by polarized emission; see Aitken et al. (1986) and Hildebrand
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(1988)). The degree of polarization of light from distant stars peaks (fig. 3.11)
at a wavelength which is related to the median size of the interstellar grains
(Serkowski et al (1975); see Martin and Whittet (1990), Whittet et al. (1992)
and Somerville et al. (1994) for the latest information and extensive refer-
ences). Observations of interstellar polarization are used to investigate both
the properties of the grains and the magnetic field topology.

3.3.2 Birefringence

The other way in which the intervening medium can influence the state of
polarization is by birefringence of the medium. For birefringence to have any
effect, the radiation generally must have been polarized elsewhere in the first
place (but see section 7.1).

Linear birefringence is expected to occur at optical wavelengths in the inter-
stellar medium, due to the optical properties of the aligned dust particles that
also cause the linear polarization. This linear birefringence can convert previ-
ously generated linear polarization into circular polarization, if the magnetic
field is twisted in some systematic way. The interstellar circular polarization
is very small, and good measurements are only available for a few stars; the
main use of this phenomenon has been for estimating the (real part of the)
refractive index of the interstellar grains. Deguchi and Watson (1985) have
estimated linear birefringence effects in absorption lines at radio wavelengths;
in this case, the birefringence is due to unequal populations in the magnetic
substates of atoms and molecules.

Circular birefringence due to a longitudinal magnetic field component is
called Faraday rotation and is an important observable at radio wavelengths.
Faraday rotation is proportional to the square of the wavelength, which means
that there is only a relatively small wavelength range over which it is observable
in any one application: if the wavelength is too short, the rotation is too small
to detect; if it is too long, the inhomogeneities in the intervening medium cause
many different values of the rotation to be present within the telescope beam
and no net polarization remains (Stokes Q and U average out to zero). On
the other hand, the wavelength-squared dependence of polarization angle (in
simple cases) is the one sure proof that we are measuring a linearly polarized
component rather than some instrumental effect. It is also the only observable
connected with the longitudinal field component when linear polarization is
all we can detect (see Spoelstra (1984) and Sofue et al (1986)): the quantity
measured is the product of longitudinal magnetic field component and density
of thermal electrons, integrated over the line of sight. Faraday rotation has
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Fig. 3.12 Elliptically polarized eigenmodes in pulsar radiation, adapted from Stinebring et al.
(1984). Polarization variations within the pulse of PSR2020+28 are shown. The average pulse
is shown, together with a statistical display of the polarization of individual pulses. At A, the
degree of linear polarization passes through 0, but the 90° jump in the polarization angle shows
that for the locus in the {vQ>Pv) diagram the origin (0,0) is nothing special. Between B and C, two
orthogonal elliptical modes are possible, as evidenced by the two branches of linear polarization
separated in angle by 90° and the spread of the circular component. The jumps from one linear
branch to the other occur at the same moment as the sign reversals of the circular component.

been exploited to investigate fields within distant radio sources, the intergalactic
medium and the Galaxy (see figs. 3.5 and 7.1).

For an arbitrary line of sight, a magnetized plasma will have elliptically
polarized eigenmodes and will be elliptically birefringent. In general, elliptical
birefringence will cause conversion from one form of elliptical polarization to
another (conversions between Q, U and V). In astronomy, there is usually too
little information to make it worthwhile to refer to the general case, and quasi-
longitudinal or quasi-transverse conditions are invoked. There is evidence in the
mode-switching of pulsars (Taylor and Stinebring 1986, p. 309) that elliptical
eigenmodes are important in the mechanism of generating pulsar radio waves
(fig. 3.12). Other cases of importance are generation of radio waves in stellar
coronae and propagation of radio waves through the Earth's ionosphere.



4
Polarization algebra and graphical methods

This chapter introduces the tools used by astronomers and instrument designers
in describing the action of a medium on the polarization of the radiation passing
through it. In the majority of situations encountered in astronomy, the phase
of the wave is unimportant, and we need a way to describe the transformation
of Stokes parameters, i.e. the changing polarization forms which support the
flow of radiant energy. For cases where the phase of the polarized radiation
is important (e.g. polarization effects within an optical interferometer, the
focusing of a plane wave by a radio telescope, or the amplification of polarized
radiation within an astronomical maser), an alternative formulation will be
introduced (in section 4.2) that describes the transformation (including phase)
of the electric field vibrations of two orthogonal 100% polarized waves (usually
linear polarization). In this formulation, partial polarization cannot be handled,
and we must make separate calculations for two orthogonal polarizations of
the incident radiation, constructing the incoherent sum at the end. Shurcliff
(1962, sections 8.6, 8.7, 8.9) details the early history of these two calculi and
compares their fields of use; a concise statement of the relationship between
the two calculi may be found in Stenflo (1994, section 2.6).

4.1 Mueller matrices
As discussed in chapter 2, the four Stokes parameters denote the flow of
radiant energy in specific vibrations of the electromagnetic field, and all four
are expressed in the same units. We write them collectively as a four-element
column matrix, which is generally referred to as the Stokes vector; as we have
seen in sections 2.2 and 2.5, its elements are not all independent, so as a 4-vector
it is somewhat limited. When convenient, the vector will be written as a row
matrix, but a column matrix is always intended.

When radiation propagates through a certain volume of space (which may

45
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be empty or contain some material medium), the polarization of the input and
output radiation is represented by the input and output Stokes parameters.
Within the volume, the state of polarization may be altered: in general, any
elliptical polarization may be transformed into some other elliptical polarization
form, or the radiation may be polarized by the medium. This can be represented
by a transformation between the input and output Stokes parameters, and in
general the transformation is linear. When the input and output Stokes
parameters are arranged as 4-vectors, the transformation becomes a 4 x 4
matrix M:

Sout = M Sin

where
\

m2i m22 m2 3

m3i m 3 2 m 3 3 m3 4

\ m4i m42 m43 m44

and S stands for the Stokes vector (/,Q, U9 V). Since Stokes parameters are
real quantities, the elements of M are all real numbers; m\\ must be positive
(/ is always positive), and the other elements can be positive or negative.
The matrices are known as Mueller matrices, after H. Mueller who worked out
their precise form for a number of optical components (Mueller 1948); see
Shurcliff (1962, pp. 117-18) for the historical development of these ideas. The
assumption of linear transformations amounts to assuming that there is no
functional dependence of the elements of the matrix on the incident radiation
(e.g. no processes such as squaring the amplitude in a mixer, frequency doubling,
etc.; frequency conversion - though involving a mixer stage - can, as a single
indivisible operation, be considered a linear transformation, see section 6.2.1).

When the radiation travels through several media in succession, the output
Stokes vector for one medium ('a') is the input Stokes vector for the next ('b'):

Sb,out = M b * Sb,in = M b ' Sa,out = Mb • M a * Sa in = M • Sa in

or
M = Mb Ma

where M represents the combined action of the two media 'a' and 'b'; it is
the matrix product of Mb and Ma (note the order: the first medium traversed
comes last in the matrix equation). This procedure is used extensively in the
design of 'optical' instruments (see chapter 6) and in the representation of the
transformations of polarized radiation within a multiple or distributed astro-
nomical source of polarized radiation (e.g. a stellar or planetary atmosphere,
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Table 4.1 Simple Mueller matrices
See Shurcliff (1962) and Kliger et al. (1990) for more complicated examples.

linear (+Q) polarizer

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Polarizers
linear (—Q) polarizer

1 - 1 0 0
- 1 1 0 0
0 0 0 0
0 0 0 0

linear (+U) polarizer

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

homogeneous
circular (+F) polarizer

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

homogeneous
circular (—V) polarizer

1 0 0 - 1
0 0 0 0
0 0 0 0

- 1 0 0 1

linear (+2) polarizer
+ quarterwave (r\ = 45°)

1 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0

Retarders
linear retarder

halfwave (rj = 0° or 90°)

1 0 0 0
0 1 0 0
0 0 - 1 0
0 0 0 - 1

linear retarder
halfwave {rj = ±45°)

1 0 0 0
0 - 1 0 0
0 0 1 0
0 0 0 - 1

linear retarder
quarterwave (r\ = 0 ° )

1 0 0 0
0 1 0 0
0 0 0 1
0 0 - 1 0

linear retarder
quarterwave (rj = 90°)

1 0 0 0
0 1 0 0
0 0 0 - 1
0 0 1 0

linear retarder
quarterwave (r\ = ±45°)

1 0 0 0
0 0 0 + 1
0 0 1 0
0 + 1 0 0

isotropic absorber

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Various
ideal depolarizer

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

rotation by +0

0
cos 20

0 0
sin 29 0

0 - s i n 29 cos 29 0
0 0 1

k is the transmittance (/out/An) f°r unpolarized light and is < 0.5 for the polarizers, < 1 for the other
components; rj is the orientation of the component (rj —  0° denoting principal orientation).
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Faraday rotation within a synchrotron source). In the radio domain, a similar
but distinct development has occurred: 4 x 4 matrices of a slightly differ-
ent kind are used to describe the polarization response of a correlation-type
interferometer (Hamaker et al. 1995).

For many purposes (such as reading this book), multiplication is the only
matrix algebra one needs. It is specified by

or, as a pictogram:

)ik ' (rnjkj
k=i

k=l
X

{. . I .
Modern papers in both astrophysics and instrumentation increasingly use

matrix methods of some sophistication (e.g. Sanchez Almeida and Martinez
Pillet 1992, McClain et al 1993, Hovenier 1994, Stenflo 1994, Hamaker et al
1995); more insight into matrix algebra and the structure of Mueller matrices
will certainly pay off in future work. The Mueller matrices of a number of
components were derived long ago and are tabulated in, for instance, Shur-
cliff (1962) or Kliger et al (1990). A few worked examples will suffice here,
to demonstrate the simple-minded phenomenological approach one may of-
ten use; table 4.1 lists a few more. The derivations are not always intuitive,
mainly because we do not have a clear mental picture of the Stokes vector
and its properties. It is worth investing some time understanding the matrices
in this chapter, including those of fig. 4.1 and table 4.2; programs like Math-
ematica simplify matrix manipulation considerably, but without some basic
understanding such manipulations can be dangerous.

Example 1: An ideal linear polarizer absorbs all the light of one linear polar-
ization (—Q, say) and passes all the light of the opposite linear polarization
(+Q). Therefore, if the input is unpolarized light of intensity /, the output
intensity is 0.5/ and, since the output light is fully polarized, Q must also equal
0.5/, while U and V are zero. Hence, for a +Q polarizer:

(0.57,0.57,0,0) = M-(7,0,0,0)
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This implies that mn and mn are both 0.5, while m?>\ and m^\ must be zero; it
does not tell us anything about the other elements. We now pass fully circularly
polarized light through the linear polarizer; since this can be regarded as being
made up of two orthogonal linear polarizations, again half the intensity will be
passed, in the form of linear polarization (+Q):

(0.57,0.57,0,0) = M- (7,0,0,/)

Given the previous m*i elements, this can only be true if m\$ and ni24 are zero;
for the output U and V to be zero, we also need m^ and m^ equal to zero. A
similar argument with U substituting for V leads to m*3 being zero. We thus
have as the Mueller matrix of the ideal linear +Q polarizer:

f 0.5
0.5
0

. 0

. 0

. 0

. 0

0
0
0
0 /

We now pass 100% linearly polarized light of the correct orientation to the
polarizer; since the light already has the correct polarization, all of it must
pass through unchanged, so

(1,1,0,0) = M-(1,1,0,0)

are 0.5 and if m^ and m^ are zero. TheThis can only be true if myi and
matrix is generally written as:

Mlin.poL(0°) = k -

( 1 1 0 0 \
1 1 0 0
0 0 0 0

V o o o o )
where k is the transmittance of the polarizer for unpolarized light (0.5 for a
perfectly transparent polarizer and close to that for many crystal polarizers
shown in fig. 6.3; for Polaroids, k is between 0.2 and 0.4, depending on
wavelength).

Example 2: What happens when we rotate the polarizer through 90°, or
consider the second beam of a two-beam crystal or wire-grid polarizer? The
output vector will have its Q reversed: (0.57,-0.57,0,0). The arguments
concerning unpolarized and circularly polarized input remain the same, except
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that gout must equal —0.5/,  implying that ni2\ must be —0.5. If we now take
linear —Q polarization as the input (Stokes vector: / ,—7,0,0), all of the /
should come through, and Qout should be equal to —/; this means that
must be —0.5 and ni22 must be 0.5:

Mlin.pol.(90°) = k •

/ I - 1 0 0
- 1 1 0 0
0 0 0 0

V 0 0 0 0 /

Similar arguments hold for the polarizer at +45°. Rather than going through
these, let us look at the general case of rotation of components with respect to
the coordinate system.

Example 3: If we rotate an optical component, its Mueller matrix will remain
the same, as long as we express it in a coordinate system that rotates with
the component. To express the effect of the rotated component in the original
coordinate system, we must first transform the input Stokes vector into the
rotated coordinate system, then apply the component matrix that we know,
then transform back into the original coordinate system. Since rotating the
coordinate system does not change the nature of the radiation, it must be
just the Stokes parameters that are transformed into each other, so that
rotation must also be expressible as a Mueller matrix. The matrix of a rotated
component must therefore be:

Me = T(-20) • Mo • T(20)

where T(20) is the rotator matrix describing the change of coordinate system.
What form should T take? Rotation of the coordinate system should not
involve / or V, as they do not contain the polarization angle %. If we rotate
the coordinate system through +9 (see fig. 2.1; 9 in the same sense as #),

Znew = Xold v

2new = +2oid ' cos 29 + U0\d • sin 20

CAiew = —fioid  * sin 29 + (70id • cos 29

or

T(20)=

/ 1 0 0 0 \
0 cos 29 sin 29 0
0 -sin29 cos29 0
0 0 0 1 /
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Applying this, we find the Mueller matrix of the linear polarizer at orientation
9 to be:

1
cos 20
sin 20

0

cos 20
(cos20)2

cos20-sin20
0

sin 20
cos 20-sin 20

(sin20)2

0

0 >
0
0

Example 4: When a medium is birefringent, it introduces a phase difference
between its two eigenmodes. The most common form of birefringence used in
instruments is linear birefringence. Slabs of such birefringent crystal are called
halfwave or quarterwave plates, if the phase difference is exactly one-half or
one-quarter of a wavelength; in general, they are called linear retarders, and the
phase difference is called their retardance. A quarterwave plate oriented at 45°
to the plane of electric vibration of input linearly polarized light transforms
this polarization into circular polarization; it is the hardware analogue of
the thought experiment by which we introduced circularly polarized light in
chapter 2. Similarly, circularly polarized light incident on a quarterwave plate
is transformed into linear polarization, with the plane of electric vibration at
45° to those of the eigenmodes of the crystal. By such arguments one can show
that a quarterwave plate has the Mueller matrix

/ 1 0 0 0 \
0 1 0 0
0 0 0 1

x 0 0 - 1 0 /

This form is for orientation 0°, i.e. with the plane of electric vibration of the
fast eigenmode (that with the lowest refractive index) along the reference zero
direction of the coordinate system. Such orientation is also called principal
orientation. It is easy to see that / and Q are not affected, but U (linear
polarization along ±45°) and V (circular polarization) are transformed into
each other.

It can be shown (by using the third form of the Stokes parameters given
in section 4.3) that the Mueller matrix for a general linear retarder (with
retardance A) in its principal orientation is

/ 1 0 0 0 \
0 1 0 0
0 0 cos A sin A

\0 0 —sin A cos A  J
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Stenflo (1994, p. 320) discusses the case of a partially polarizing retarder (e.g.
reflection at an inclined metallic surface).

Example 5: 'Depolarizers' are components used in the optical part of the
spectrum to calibrate equipment or to stabilize the response of a polarization-
sensitive component. For complete depolarization of an arbitrarily polarized
input signal, the Mueller matrix for a depolarizer must take the form:

dn
0
0
0

dn
0
0
0

dn
0
0
0

d\A
0
0
0 )

If a component existed with non-zero values of dn, di3 or du, its transmission
would depend on input polarization, i.e. it would be a polarization analyser.
Although no analyser is known that is not at the same time a polarizer for
unpolarized radiation (non-zero di\,&*>>\ or d$\), a rigorous proof that such a
component cannot exist is as yet lacking.

No physical component corresponds exactly to the definition above; ar-
rangements involving multiple scattering would probably come closest. All
'depolarizers' in use actually obey the definition:

D = j ( f f M{X,t,A,6)d2.dtdA
( dn 0 0 0 \

0 0 0 0
0 0 0 0
0 0 0 0 )

This expresses the aim that, averaged over the wavelength range, time, beam
size, component position angle (or a combination of these, in other words
some sort of ensemble average), the polarization of the input radiation should
be destroyed. A true depolarizer must include randomness in the ensemble-
averaging, but most practical 'depolarizers' are deterministic, so they should
be referred to as 'pseudo-depolarizers' (the depolarization can be reversed by
a suitably constructed piece of equipment or the polarized components in the
mixture can be identified). Spatially almost-random averaging can be obtained
by using a rough-surfaced wave plate cemented to a smooth cover plate (Peters
1964).

A Lyot pseudo-depolarizer integrates the action of two stationary multi-wave
plates over wavelength and only works well for broad passbands with 'soft'
edges. Halfwave and/or quarterwave plates rotating at constant speed can be
used in narrow wavelength bands to integrate over the position angle, which in
this case is a function of time. A near-halfwave plate rotating at constant speed,
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of retardation n —  b (b < 1 and a function of wavelength), has a Mueller
matrix (averaged over an integral number of quarter-revolutions):

/ 1 0 0 0 \
0 / 0 0
0 0 / 0

\ 0 0 0 -cosfc j

where / = (1 —  cosb)/2 « b 2/4 and k is the transmission for unpolarized light.
This represents a linear pseudo-depolarizer, a component which, on average,
reduces linear polarization very effectively, while inverting but only slightly
reducing the circular component. Such an optical component is very useful for
reducing photometric errors due to instrumental linear polarization effects, and
also when one is trying to detect the minute interstellar circular polarization
in the presence of linear polarization, which is stronger by about two orders
of magnitude. The 'superachromatic' halfwave plate illustrated in fig. 6.7
performs very well in this application (|fc| < 0.05 at all wavelengths within a
very wide range). Effective use of random rotation of the entire telescope for
depolarization of an unwanted linear polarization component is described in
section 5.5.6.

A depolarizer is encountered in astrophysics in the form of 'Faraday de-
polarization' (e.g. Beck 1993). In the quasi-longitudinal approximation of
magneto-ionic theory, this is represented by the depolarizer matrix:

1 0 0 0
0 cos20F sin20F 0
0 -sin20F cos20F 0
0 0 0 1

DFar = /

where the Faraday rotation 9? = )? • ^(Q), AA is the passband and Qbeam is the
beam solid angle. For 0p < 1 radian, the plane of polarization is rotated, but
the degree of polarization is not affected. When 6? > 1 radian, however, discrete
directions within the beam and discrete wavelengths within the passband can
have widely different values of 9?, and the result is linear depolarization of any
radiation from behind the 'Faraday screen'. This screen itself may be distributed
along the line of sight, possibly overlapping the source of polarized radiation;
in such a case the integral becomes still more complicated. The pioneering
paper on this subject, used extensively since, is Burn (1966). In a modern
study, A.D. Poezd and A. Shukurov (Moscow State University, private commu-
nication, 1995) include the effects of the higher angular resolution of modern
observations (a finite number of turbulent magnetic field cells within the beam);
they identify ways of distinguishing between scatter in the intrinsic source po-



54 Polarization algebra and graphical methods

larization angle and a distribution of Faraday rotations along the line of sight.
This astrophysical example illustrates how pseudo-depolarization results from
the averaging of many mutually incoherent contributions of differing polar-
ization; at any one wavelength and angular resolution, the apparent result
is depolarization, but the amount of depolarization varies both with wave-
length and with resolution, so that by suitable observations and reconstruction
(modelling) one may identify individually polarized radiation components, i.e.
pseudo-depolarization is the correct term.

Note: In works translated from French, one may come across 'depolarization'
in the sense of 'separation into two polarized components'. In English, this is
confusing in the extreme.

Example 6: Graphics and pictograms of Mueller matrices can be very useful
in summarizing the action of components (e.g. figs. 4.1 and 4.2, and table 4.2).*

Example 7: To simplify certain calculations, Collett (1993, p. 164 et seq.)
and Stenflo (1994, p. 254) introduce so-called 'diagonalized Mueller matrices'.
These are not Mueller matrices in the conventional sense; their elements are
in general complex (which is the price one pays for diagonalizing). To convert
them into conventional Mueller matrices, they must be pre- and post-multiplied
by certain unitary matrices with complex elements; in other words, they belong
to a representation in terms of four (complex) linear combinations of the
Stokes parameters. Similarly, Hovenier and Van der Mee (1983, equations
(19)-(48)) mention other linear combinations of the Stokes parameters, with
corresponding 4 x 4 matrices (e.g. a 'CP' or circular polarization representation,
in which the rotation matrix is diagonalized). To avoid confusion, none of the
above matrices should really be called Mueller matrices. For more comment
and references on what, in a particular application, may be the most useful
representation, see Van de Hulst (1980, pp. 497-8).

In radio synthesis instruments, the 'Stokes visibilities' in the pupil or aper-
ture plane are the spatial (complex) Fourier transforms of the (real) Stokes
parameter sky distributions. Although these visibilities are complex, they are
sometimes referred to as 'Stokes parameters', and 4 x 4 matrices transforming
these quantities are considered to be 'complex Mueller matrices'. It should be
noted that each of the Stokes visibilities, though complex, depends only on the
one corresponding Stokes parameter sky distribution; the complex representa-
tion is used only for the Fourier transform relation, and the 'complex Mueller
matrices' operate in the pupil domain.
* Note added in proof: see also J. L. Pezzaniti and R. A. Chipman (1995), Opt. Eng. 34, 1558-68.



4.1 Mueller matrices 55

0.9 •

I "
J ,.

-.025- -.025-

••.025-

-025 - - . 2 5 -

+.025- + .25 -

- .25 - / I

Fig. 4.1 Mueller matrix spectra of several g —•  K converters, from Tinbergen (1973). Each
element of the matrix is shown in graphical form. The abscissa is relative retardation (linearized
inverse wavelength), from 0.5 to 1.5. The design range of the components is about 0.7 to 1.3
and is indicated by the vertical dashed lines. Note that the achromaticity of the m42 element is
best for the Pancharatnam Q —•  V converter (solid curve), but that performance as a V -> Q
converter (m24) is sacrificed for this; this converter is definitely not a modified quarterwave
retarder, but it is a very good Q —•  V polarization converter.
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Table 4.2 Mueller matrix pictograms, illustrating the behaviour of
ideal and multi-layer achromatized components

Linear retarder
ideal (principal orientation) (rotation matrix) ideal (any orientation)

1 0 0 0 \ / 1 0 0 0 \ / 1 0 0 0
0 1 0 0 1 / 0 A A 0 I / 0 AR AR AR
0 0 R R I I 0 A A 0 I \ 0 AR AR AR
0 0 R R / \ 0 0 0 1 / \ 0 AR AR R

Halfwave linear retarders
exact halfwave Pancharatnam achromatic
1 0 0 0 \ / 1 0 0 0
0 A A 0 | / 0 A A (0)
0 A A 0 I I 0 A A (0)
0 0 0 - 1 / \ 0 (0) (0) (-1)

exact with dichroism Pancharatnam with dichroism
1 (0) (0) 0 \ / I (0) (0) (0)

(0) A A 0 1 [ (0) A A (0)
(0) A A 0 I I (0) A A (0)
0 0 0 1 / \ (0) (0) (0) (-1)

Q -> F converters
exact quarterwave (7/ = 45°) two-material achromatic

1 0 0 0 \ / 1 0 0 0
0 0 0 - 1 1 0 (0) 0 (-1)
0 0 1 0 I 1 0 0 1 0
O I O O / \ 0 (1) 0 (0)

Pancharatnam quarterwave achromatic Pancharatnam converter achromatic
1 0 0 0 \ / 1 0 0 0
0 (0) (0) (-1) 1 / 0 (0) R R
0 (0) (1) (0) I I 0 (0) R R
0 (1) (0) (0) / \ 0 (1) (0) (0)

'Depolarizers'
ideal rotating near-quarterwave rotating near-halfwave

1 0 0 0 \ / 1 0 0 0 \ / 1 0 0 0
0 0 0 0 1 0 (0.5) 0 0 1 I 0 (0) 0 0
0 0 0 0 I 1 0 0 (0.5) 0 I I 0 0 (0) 0
0 0 0 0 / \ 0 0 0 ( 0 ) / \ 0 0 0 (-1)

Element values are indicated as follows: 0; 0.5; ±1; —1  < A < +1, a function mainly of component
azimuth (orientation); — 1  < R < +1, a function mainly of retardation (i.e. wavelength and component
thickness); - 1 < AR < +1, a function of both azimuth and retardation. Brackets indicate approximate
values. The matrices have been normalized to a transmittance of unity for unpolarized radiation. Zero
dichroism has been assumed except where explicitly stated. For spectral performance of the Q —•  V
converters, see fig. 4.1.
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Note: Personally, I welcome this particular extension of the nomenclature, al-
though the notation should draw attention to the fact that complex visibilities are
intended (e.g. by referring to 'Stokes visibilities' rather than Stokes parameters
and using a script font for . / , J , % and if\ cf. section 6.2.3). Extension of Jones
and Mueller calculus to radio (correlation) interferometers is a developing field;
at the time of writing, I recommend Hamaker et al. (1995) and Sault et al. (1995).

4.2 Jones matrices and when to use them

When the phase of a polarized signal relative to some other polarized signal is
important, the Stokes parameters are of no use; they deliberately ignore phase
(except in a relative sense within each signal, as needed to specify the state of
polarization). However, there are situations (such as when combining the beams
of an interferometer) when phase does matter. Under such circumstances, one
has to use Jones vectors and matrices, first introduced by R.C.Jones (1941);
these represent the electric fields (and their transformations) of two orthogonal
polarization forms (usually linear), including absolute phase if desired. Excellent
modern presentations are given in Kliger et al (1990, pp. 61-75) and Collett
(1993, pp. 187-218). Since Jones calculus is not used a great deal in astronomy
(except to design instruments), only the basic ideas will be presented here. The
important thing is to know when it is necessary to use Jones rather than Mueller
calculus (i.e. when phase is important) and where to find information in such
a case. Typical advanced applications in astronomical instrumentation may be
found in Chipman (1989), Chipman and Chipman (1989), November (1989),
Sanchez Almeida and Martinez Pillet (1992) and in Sanchez Almeida (1994).

Jones calculus cannot handle partial polarization (mixed states of polariza-
tion). There are situations in which phase is important but polarization is
partial. In such a case, one must formally separate the radiation into two (gen-
erally unequal) mutually incoherent fully polarized components (pure states)
of orthogonal polarizations (i.e. that of the partial polarization in the input
signal and its opposite), treat each separately by Jones calculus and obtain the
final result by incoherent formal recombination of the outputs.

The notation used for Jones calculus is the complex notation for sinusoidally
varying quantities. This notation is explained clearly in Born and Wolf (1964,
pp. 494-9) and in Hecht and Zajac (1974, pp. 17-19 and 199). The crux is
that one rewrites a cosine function as 'the real part of a complex exponential'.
The advantage of the complex exponential is that the effect of a phase </> can
be expressed as multiplication by e^ and that one can gather amplitude and
phase of a signal into a single complex amplitude E:

\p(x91) = Re [^x-cot+(»j  = Re



58 Polarization algebra and graphical methods

Knowing that, to obtain a physically meaningful quantity, we should multiply
E by the complex exponential g1^*-®*) and then take the real part, we can add,
subtract, integrate, phase shift or otherwise transform E linearly. Of course,
the original wave function xp represents an electric field and hence represents
the amplitude rather than the 'intensity' of the electromagnetic wave, which is
generally not an observable and in any case is never the desired end-product
of astronomical observations. To obtain the observable 'intensity' or the flow
of radiant energy, we must eliminate the absolute phase by squaring the
amplitude A, e.g. by obtaining E • E*, where E* is the complex conjugate of
E. In the quasi-monochromatic and polychromatic cases, A and (/> are ('slow')
functions of time; such 'slow' variations must be averaged in computing Stokes
parameters from complex amplitudes (see section 4.3).

A slightly different situation arises in (quasi-)monochromatic radio systems,
in which, by splitting a signal into two components and applying a 90° phase
shift to one of them, we can obtain both the real and the imaginary parts of
the signal as observables and do away with the mental real part of qualifica-
tion (the same process could of course be carried out at optical wavelengths,
but in the photon-limited conditions of astronomy there is usually no ad-
vantage to this). Jones matrix algebra applies whether the imaginary part
is an observable or not. For astronomical purposes one usually converts to
Stokes parameters and Mueller matrices at the end of the calculation (with
the added complication in correlation-type interferometers that the observables
are spatial cross-correlation products; these are complex quantities, viz. the
spatial complex Fourier transforms of the real Stokes parameter sky distri-
butions, but they are nevertheless often referred to as Stokes parameters; see
section 6.2.3).

Jones represented a fully polarized signal as the vector sum of two electric
fields at right angles, as we did in words in chapter 2. In terms of complex
amplitudes,

E = EX -l + Ey m

where 1 and m are unit vectors in the x and y directions. In the Jones calculus,
E is written as a column matrix, with complex components:

E =

With every state of 100% polarization one can associate such a column matrix,
or 'Jones vector'. Distinction is made between 'full Jones vectors' (which include
amplitude and phase of both components) and 'standard normalized Jones
vectors' (for which the modulus is equal to unity). The standard normalized
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Jones vectors for horizontally (along x) and vertically polarized radiation are,
respectively,

For linear polarization at position angle x, the standard normalized Jones
vector is

For general elliptical polarization, the standard normalized Jones vector is

\̂  sin Z - e * )

where A is the phase difference between the x and y components (in the sense
(j)y —  cj)x). More symmetrically, whenever absolute phase is not important, this
is rewritten:

/ cosx • e~' A/2 ^
1̂  sin/ • eiA/2 )

This form is in agreement with the sign of kx —  cot above, within the 1942
convention of the Institute of Radio Engineers (IRE, now IEEE; see Simmons
and Guttmann (1970, appendix III)).

Circular polarization is represented by (x = 45°, A = 90°):

and 1/V2 I _ . 1 or 1/^2 I { and l/yjl I J

The Jones vectors

represent mutually orthogonal polarization forms. Any Jones vector may be
expressed as a linear combination of any such pair of orthogonal Jones vectors;
the standard normalized Jones vectors form a complete orthonormal set. In
practice, pairs of orthogonal linear polarization forms ('horizontal' and 'verti-
cal') are almost always chosen as the base of the complex vector space.

This completes the thumbnail sketch of the Jones vectors. To represent the
action of a medium on polarized radiation, matrices are again employed. These
matrices now have 2 x 2 elements, which, however, are complex. A non-
polarizing and non-retarding absorbing medium absorbs both components
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equally and causes no relative phase shifts; it has the matrix

Here t is the amplitude transmittance (0 < t < 1), while what we usually
measure in astronomy is t2, the intensity transmittance. For a linear polarizer
with maximum transmittance for electric field vibrating along the x-axis, the
matrix is:

where (tx)2 and (ty)2 are the intensity transmittances for an electric field
vibrating along the x- and y-axes, respectively (tx > ty). The term diattenuation
is sometimes used to describe the phenomenon of tx^ty.
Just as with Mueller calculus, there is a rotator matrix:

( cos9 sin0 \[-sme cosO )
A linear retarder (component with linear birefringence) produces linear retar-
dance, a phase difference between the x and y components, but causes no
relative absorption. The phase difference is A = 2nd(ny —  nx)/X, the n-values
being refractive indices and d being the thickness of the component. In princi-
pal orientation, i.e. with the fast axis of the retarder along the x direction, the
Jones matrix of such a retarder is:

f eiA/2 0 \
JA,O - ^ Q e.iA/2 J

At angle 0, it becomes:

JA,0 = T(-0) • JA,o • T(0)

For an extensive list of standard Jones matrices, see Kliger et al. (1990,
appendix B).

Just as with the Mueller matrices, the order of the matrices is important
(the matrices do not in general commute). Thus, one cannot easily establish
the matrices for media which both retard and absorb within the same volume
of space. For these applications, Jones developed an extension of his matrix
calculus, essentially splitting the medium into an infinite number of infinitely
thin layers; for an infinitely thin layer, one may think of the two actions taking
place one after the other, and the order is immaterial (the infinitesimal matrices
do commute; cf. the 'weakly polarizing optical train' in Stenflo (1994, section
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13.4)). The infinitesimal result is then integrated to obtain the result for the
entire medium. The differential matrices employed are known in the optical
literature as Jones N-matrices; see Kliger et al. (1990, pp. 133-50).

Another specialized development of the Jones calculus, suitable for polar-
ization ray-tracing of complete optical systems, is described in Chipman (1992,
1995) and in McClain et al. (1993); it uses three-dimensional complex electric
field vectors, to allow for rays inclined to the system optical axis. Optical compo-
nents are represented by 3 x 3 matrices with complex elements; the advantage
for computer ray-tracing is that one system of coordinates can be used for the
entire optical system, rather than many local systems and the transformations
between them. For analysis and optimization of systems including polarization
optics (e.g. Semel 1987), such polarization ray-tracing is indispensable, and it
is being incorporated into optical design software (Chipman 1995).

4.3 Alternative definitions for the Stokes parameters
The definition of the Stokes parameters in section 2.2 was, for didactic reasons,
given in terms of the axial ratio and azimuth of the polarization ellipse. These
are not the quantities one actually measures, but the definition can be proved to
be equivalent to forms couched in terms of measured quantities. The proofs are
somewhat involved, and are most easily traced using van de Hulst (1957, p. 41),
then Kliger et al (1990, pp. 103-18, culminating in pp. 117-18); they should
be read thoroughly once. The equivalent forms of the Stokes parameters are:

/ = J0+/90 = EXE! + EVE*V = Al+Al = a2

Q= J0 - /90 = ExE*x-EyEm
y = A\-A] = a2 cos 2j8 cos 2/

U = J45 —  i_45 = EXE* + EyE* = 2AxAy cos A = a2 cos 2/? sin 2x

V= / r c - / i c =i{ExE*-EyE*x) = 2AxAysinA = a2sin2j8

where overlining denotes time- or ensemble-averaging. The first form is used in
'optical' polarimetry (from infrared to y-ray), where equipment measures inten-
sities and there is no simple way of obtaining cross-products of amplitudes; the
second and third forms are more common in radio-polarimetry, where ampli-
tudes and phases are available as physical quantities and (complex) amplitudes
can be multiplied together in a 'correlator'. Actual measurement techniques are
discussed in chapter 6.

The Wolf 'coherency matrix' formulation is equivalent to that using the
Stokes parameters; it includes partial polarization. Sanchez Almeida (1992)
discusses the equivalence in the context of radiative transfer, but otherwise it
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has not been used much in astronomy and will not be discussed here. Details
may be found in Born and Wolf (1964, pp. 544-55), a short summary may be
found in Stenflo (1994, section 2.6.2). The coherency matrix may be rearranged
into a four-vector; its transformations and conversions are then represented by
4 x 4 matrices with generally complex elements. This formulation is related
to the Stokes/Mueller formalism and is particularly suited to the treatment of
radio (correlation-type) interferometers; the reader is referred to Hamaker et
al (1995) for details.

4.4 Complementarity of the Mueller and Jones representations
The Mueller and Jones formalisms (and related systems) might seem to be
competing alternatives, but in fact they are complementary to a large degree.
This section concerns the relationship between them and their respective niches
in astronomical practice.

The addition of Stokes vectors represents incoherent combination of beams,
or 'intensity superposition' (e.g. integrating the light from the visible hemisphere
of a star); the addition of Jones vectors represents coherent combination of
beams, or 'amplitude superposition' (e.g. the output of an optical interferometer
or the signal at the focus of a radio telescope).

A number of relations connect the parameters of the Jones and Mueller
vectors for (the polarized part of) a beam of radiation. They are listed here;
the proofs may be found, for instance, in Kliger et al. (1990, table 5.2 and
preceding pages). With A = (j)y —  <j>x and tany = Ay/Ax , the relations are:

tan2# = tan2y • cos A = U/Q
sin2j8 = sin2y • sin A = V/^Q2 + U2 + V2

tan A = tan 2/? / sin 2x = V/U
cos2y = cos2jS • cos2/ = Q/VW + U2 + V2

Systems that convert a 100% polarized input signal into a 100% polarized
output signal can be described by Jones matrices. Their Mueller matrices can
be derived from the Jones matrices; this derivation is sketched, and the result
given, by van de Hulst (1957, p. 44; note particularly that the resultant Mueller
matrices contain only seven independent constants). The constraints on such
Mueller matrices are discussed clearly and succinctly by Hovenier (1994) (see
also fig. 4.2); constraints such as these may become very useful in astronomy.
Since such optical systems convert one pure state of polarization into another
pure one, Hovenier refers to the Mueller matrices representing these systems
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Fig. 4.2 Systematic presentation of the constraints linking the elements of a 'pure' Mueller
matrix; from Hovenier (1994) and references therein, (a) Seven relations between the squares of
elements; dots in the pictogram represent positive squares of the elements of the Mueller matrix
and circles represent negative squares; the sum of each row and also of each column of the
pictogram is equal to the squared modulus of the determinant of the Jones matrix (or,
equivalently, the positive square root of the determinant of the Mueller matrix), (b) Thirty
relations between products of elements; each pictogram denotes one relation; the lines linking
elements of the pictogram represent products of the elements of the Mueller matrix, a thick line
for a positive product, a thin line for a negative one. The sum of the products within each
pictogram is equal to zero, e.g. the top left pictogram represents m\\mn —  mnmii —

= 0, the bottom right pictogram mi\m?i —  m22in3i + mi3m44 —  mi4m43 = 0.
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as pure Mueller matrices; other terms in use are 'non-depolarizing', 'totally
polarizing' and 'deterministic', none of which is as clear and concise as 'pure'.

Macroscopic astrophysical Mueller matrices may be thought of as ensemble
averages or sums of (products of) microscopic matrices which themselves are
'pure' Mueller matrices to which the constraints do apply. Products of pure
Mueller matrices are themselves pure (Hovenier 1994), but for sums of Mueller
matrices this is not necessarily true (witness, for instance, the 'depolarizer'
matrices of example 5 of section 4.1, which do not obey the 'sums of squares'
rule of fig. 4.2(a)).

Note: A system which has an associated Jones matrix can reduce the degree of
polarization of partially polarized radiation, which is why 'non-depolarizing' is
not a happy choice of terminology. A single example suffices to illustrate this (I
am indebted to J.W. Hovenier for pointing this out to me): a partial polarizer
(e.g. linear, Shurcliff (1962, p. 168)), presented with a partially polarized input
signal of polarization orthogonal to its output for unpolarized light, will yield an
unpolarized output signal; it is left to the reader to write this out as a Mueller
matrix equation and to verify that for 100% polarized input the output is also
100% polarized.

Suitability of the Mueller and Jones calculi and of the 'three-dimensional
Jones calculus' for polarization ray-tracing within telescopes and other instru-
ments (optical, X-ray, radio) is discussed by Chipman (1992). Sanchez Almeida
and Martinez Pillet (1992) use both Jones and Mueller calculi in their discussion
of the polarization properties of optical telescopes. They use Jones calculus for
deriving the effect of the optical system on fully polarized radiation, after which
they convert to observables by deriving the Mueller matrix of the system as a
function of image coordinates, pixel size and seeing conditions. In astronomy,
which generally deals with radiation for which phase is irrelevant, this would
appear to be the best procedure (perhaps even for some astrophysical calcula-
tions). In a similar vein, Hamaker et al. (1995) use Jones calculus to represent
the response of one dipole of a single radio telescope with its associated receiver,
then derive the Mueller matrix of a two-element correlation-type interferome-
ter via the direct matrix product of the two Jones matrices for the individual
telescopes; this promises to be a significant new departure in the description
of the polarization aspects of radio (correlation-type) interferometers.

4.5 Use of the Poincare sphere
Since the Poincare sphere is used for a graphical representation of the Stokes
parameters, it must be possible to represent a Mueller matrix graphically as
some operation on or within the Poincare sphere. Such a graphical method can
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Fig. 4.3 Action of a retarder represented on the Poincare sphere, adapted
from Kliger et al. (1990).

be useful in the initial stages of analysing a problem; when the approximate
solution has been found, it may be verified and perhaps improved by matrix
calculus. The Poincare sphere methods are described clearly in Shurcliff (1962)
and Kliger et al (1990); the latter also gives most of the proofs. For more de-
tailed proofs and further illustrations, consult Ramachandran and Ramaseshan
(1952) and Jerrard (1954). Examples of the design of polarization components
by using the Poincare sphere may be found in Pancharatnam (1955a,b) and
Koester 1959; the results of matrix calculations on Pancharatnam's original
designs are included in table 4.2 and fig. 4.1. Landi Degl'Innocenti and Landi
DeglTnnocenti (1981) use the Poincare sphere in an astrophysical application,
constructing an analogy between polarized radiation transfer and the motion
of a charged particle in the presence of electric and magnetic fields. The essence
of these graphical methods is as follows:

• Any point R on the Poincare sphere represents a particular state of polar-
ization.

• The opposite end of the diameter through R represents the orthogonal
polarization R'.

• Any homogeneous birefringent medium (a 'retarder') has two eigenstates of
polarization, those states of polarization for which the radiation can propa-
gate through the medium without change of polarization. These eigenstates
are orthogonal.

• The diameter RRf therefore represents the medium with eigenstates R and
R' (hence the choice of R, for 'retarder'). R is taken to be the fast eigenmode,
i.e. that with the lowest refractive index.

• Given an initial polarization state represented by the point Pi on the Poincare
sphere, the action of the retarder (retardation d) is to produce an output
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Fig. 4.4 Action of several (elliptical) retarders in series; from Shurcliff (1962),
reprinted by permission of Harvard University Press.

state of polarization P2, where Pi is obtained from Pi by striking an arc of
length 8 from Pi along a (generally small) circle centred on RR' (or rotating
the sphere and its coordinates around RR', whilst keeping the point Pi fixed
in space). The arc is struck clockwise, or the equivalent sphere rotation is
anticlockwise, when looking back from infinity at the R end of the diameter
(fig. 4.3); if R had been chosen to be the slow eigenmode, the arc and the
rotation would have been reversed.
Several retarders in series are represented by several rotations in succession,
of appropriate size and about appropriate axes. The general case of elliptical
retarders acting on elliptical input polarization is illustrated in fig. 4.4.
If light of polarization state P passes through a polarizer of state A (A for
'analyser'), then the intensity of the light transmitted is cos2(Py4/2), where
PA is the length of the great circle arc between P and A. The proof of this
is outlined in Ramachandran and Ramaseshan (1954, pp. 51, 52) and two
examples are of particular interest:

- When PA = 90°, the transmission is 0.5; thus any linear polarizer transmits
half of any incident circularly polarized radiation, and a circular polarizer
transmits half of any incident linearly polarized radiation (not counting
any polarization-independent attenuation).

- When PA = 180° (orthogonal forms), the transmission is zero; for every (in
general elliptical) 100% polarizer, a corresponding (orthogonal elliptical)
analyser exists which yields zero transmission for the combination of the
two.
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4.6 The complex plane of polarization states
Like the alternative matrix calculus in terms of complex amplitudes of the
electric fields, there exists an alternative graphical representation in terms of a
complex plane; like the Jones calculus, it cannot be used for partial polarization.
The complex quantity represented in that plane is Ey/E* = (Ay / Ax)el^y~~^x\
The relationship between this complex plane and the surface of the Poincare
sphere is by stereographic projection, which has the useful property that circles
project into circles; the relationship is explained and illustrated in Kliger et al.
(1990, pp. 118-33) and in Collett (1993, pp. 237-44). Like the Jones calculus,
the complex-plane representation is unlikely to be needed by the practising
astronomer (as opposed to the instrument designer).

4.7 Astrophysical use of Mueller matrices
For almost all conceivable astronomical situations, the Mueller matrix is the
most general description of the processing of polarized radiation. Whenever the
polarization is expected to provide useful astronomical information, we should
describe the propagation of the radiation from source to detector by Mueller
matrices. If we do not know all the elements of these matrices, the proper
course is not to hide our ignorance by collapsing the matrix to its top left
element, but rather to examine how all the elements enter into the desired final
result and only then to decide whether to neglect them or to make an effort to
determine them by measurement or theory. We should of course make use of
whatever knowledge we have of the symmetry properties or other constraints
of the matrices involved.

Some of the Mueller matrices used in applications are similar to Jones
N-matrices (section 4.2). They are 'differential matrices', i.e. they express the
modification, per unit path length, of the Stokes parameters due to the properties
of the medium and they are functions of position within the medium. Discus-
sions of polarization radiative transfer (for instance with the aim of deducing
stellar magnetic fields from the complicated Zeeman profiles one observes in the
integrated light from a star) may be found in Landi Degl'Innocenti and Landi
Degl'Innocenti (1981), in Landi Degl'Innocenti (1992) and in Stenflo (1994).
The reader new to polarization concepts is referred to Rees (1987) for a 'gentle'
introduction, followed by Landi Degl'Innocenti (1987); the latter enumerates
(pp. 266, 267) the physical meaning of the elements of the Mueller matrix; after
such preparation, the reader may graduate to Casini and Landi Degl'Innocenti
(1993) and to Stenflo (1994). Deguchi and Watson (1985) use polarized radia-
tive transfer in the interstellar medium to interpret circular spectro-polarimetry
in the 21-cm H and 18-cm OH lines, in terms of the Zeeman effect and possible
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linear-to-circular polarization conversion. For the case that depolarization of
100% polarized radiation does not occur (as is specifically mentioned by Landi
DeglTnnocenti and Landi DegFInnocenti (1981) and is implicit in Sanchez
Almeida (1992)), the differential matrix has only seven independent parameters
and the cumulative matrix for an entire optical path is then a pure Mueller
matrix (i.e. it has an associated Jones matrix; see Sanchez Almeida (1992)
and references therein; Stenflo (1994, section 2.6.2) is helpful when reading this
paper). When depolarizing processes are important (e.g. scattering of radiation
from other volume elements of the medium), the Mueller matrices will, in
general, not be pure; they must, however, satisfy the 'Stokes criterion', i.e. for
an arbitrary input Stokes vector they must yield a physically possible output
Stokes vector (with a degree of polarization not exceeding unity).

Another area of application with a considerable history is the scattering of
sunlight within planetary atmospheres (a related case is scattering of photo-
spheric light in a circumstellar shell, e.g. Voshchinnikov and Karjukin (1994)).
Instead of reflection, transmission and scattering coefficients, one should use
the corresponding Mueller matrices (see, for instance, Stammes et al. (1989)).
Multiple scattering is the rule in such situations, and rotation matrices are
needed to transform from each local scattering coordinate system to the next;
large errors are likely if one uses scalar rather than matrix calculations in
multiple scattering (see section 5.7). When the atmosphere is of noticeably
less than inifinite thickness, the polarization properties of the planet's solid
surface enter into the problem; a measurement, guess or estimate of many of
the elements of the reflection matrix of the surface is then required, while in
fact usually no more than four (or even one) of these have been determined.
The reader is referred to Van de Hulst (1980, chapter 15 ff.).

A third example is distributed generation of synchrotron emission and sub-
sequent Faraday rotation, these two mechanisms overlapping in space. The
traditional treatment has been very simple: the transverse component of the
magnetic field is considered for the synchrotron emission, while only the longitu-
dinal component is considered relevant for the Faraday rotation. In fact, these
are convenient approximations (isotropic velocity distribution of relativistic
electrons; circular birefringence only) which are not always valid, in particular
when relativistic mass motions destroy the symmetry so conveniently assumed.
Mueller matrix treatment therefore becomes necessary; it is complicated (see
Jones and O'Dell 1977 and Jones 1988), but computer-aided intelligence is
bound to provide insights, at the very least about the uniqueness of models
'derived' from the observations.



5
Instruments: principles

In this chapter, instrumental principles will be discussed, with emphasis on
system behaviour and without any preconceptions about the wavelength at
which one observes. Practical illustrations will inevitably relate to a particular
wavelength region (optical and radio, which is where the experience resides). It
may therefore be necessary to scan chapter 6 before attempting to understand
the present chapter in detail.

5.1 Telescopes
The first optical element of an astronomical observing system is always a tele-
scope (disregarding the atmosphere for the present discussion). It is important
to realize that, in general, a telescope will modify the polarization of the radi-
ation before the polarimeter measures it. It is equally important to have some
general feeling for the conditions under which such modification is likely to be
appreciable and how it can be minimized.

The guiding principle is symmetry; any departures from full symmetry will
modify the polarization. The considerations below illustrate this, but full un-
derstanding will require mathematical treatment by Mueller or Jones calculus,
with optical constants applicable to the wavelength of interest.

Oblique incidence on a mirror produces both diattenuation (polarizing action)
and retardation (wave plate action). These effects are minimal at near-normal
and, somewhat surprisingly, at grazing incidence; the largest effects occur at
intermediate angles of incidence, the details depending on the values of the
real and imaginary parts of the refractive index (which in their turn depend
on the wavelength). In general, Coude and Nasmyth telescopes will exhibit
strong polarization modification, while prime-focus, Cassegrain and Gregorian
systems will be relatively free from it.

69
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Note: This statement also applies to grazing-incidence X-ray telescopes. There has
been much confusion in the literature about phase changes at grazing incidence
(at any wavelength), both at a conducting surface and for total internal reflection
within a dielectric. This confusion is due to (mis)interpretation of the sign of
the amplitude reflection coefficients, in relation to the coordinate systems for the
electric field vectors of the incoming and reflected rays. The relationship between
these two coordinate systems for normal incidence reverses for grazing incidence,
which means that a formal retardance value of 180° at grazing incidence must
not be interpreted as halfwave action, but rather as zero retardance. Experiment
has indeed shown that incident circularly polarized light does not change its
handedness on reflection at grazing incidence.

Rotationally symmetric telescopes of large focal ratio (slow optical systems)
show very little linear polarization of unpolarized incident radiation for an
image on the optical axis, since the polarizing action of different parts of the
mirror(s) is basically radially oriented and the resultant averages out.

Note that even rotationally symmetric telescopes are not ideal, they do not
transmit the state of polarization of incident radiation to the on-axis focal
image without any change whatsoever: a certain amount of net (pseudo-)de-
polarization of the incident radiation will remain after the averaging; the
converted linear polarization averages out to zero, with the result that the
diagonal elements are less than unity. This is not all, however: contrary to the
lowest level of intuition, the off-diagonal elements do not all average to zero,
either; what remains is (rotationally invariant) coupling between Q and U and
separately between / and V (but not between these pairs of Stokes parameters;
see McGuire and Chipman (1988), particularly J.O. Stenflo's foreword to that
report, which makes clear that with a more sensitive intuition we should really
have expected a result of this nature).

Note: When the telescope aperture is sufficiently small in terms of the wavelength
of the radiation, the diffraction pattern will extend beyond the image determined
by geometrical optics, and a single point in the focal plane (e.g. the on-axis image)
will receive radiation from more than one direction in the sky: the spatial point
spread function (antenna pattern) will have sidelobes, which have polarization
properties of their own. This is a problem mainly in the radio region of the
spectrum and is discussed in section 5.5.5.

For off-axis images the rotational symmetry is broken; the angles of incidence
on different parts of the mirror(s) are no longer symmetrically distributed, so
that residual polarizing action will exist, larger for faster (lower focal ratio) op-
tical systems. Schmidt et al. (1993) discuss a 'software beam-switching' system
for a wavelength of 2.8 cm, and in their very instructive figure 4 show (linear)
polarization antenna patterns for each of the four offset focus antennas. The
focal-plane antennas of the VLA and VLBA radio telescopes are offset, in
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order to allow front-ends for several frequencies to be mounted permanently.
This introduces asymmetry, instrumental polarization and a different primary
antenna pattern for the two orthogonal polarization channels of the receivers
(the latter feature causes problems in obtaining the highest polarization ac-
curacy from these synthesis arrays; the Westerbork telescope does not suffer
from this, but requires more complicated operations to change frequency); the
matter is discussed and references are given in Spoelstra (1992). An optical
case is discussed by Sanchez Almeida and Martinez Pillet (1992), who con-
clude that only fast, wide-field systems are likely to show measurable effects
in the optical region (cf. Schmidt et al. (1992), section 2.1, on the original
Multi-Mirror-Telescope).

The design of 'polarization-free' telescopes is becoming an important part
of astronomical engineering. Any oblique reflection that is not symmetrical
about the optical axis should be avoided or made innocuous by preceding it
with a polarization modulator (see section 5.2; the LEST design of fig. 5.1 is
an example of the latter approach, as is the fibre link from Cassegrain focus to
Coude spectrograph mentioned by Donati et al. (1992)). Alternatively, but less
fundamentally, some kind of compensation may be used (e.g. Martinez Pillet
and Sanchez Almeida 1991). The ideal solution is a full-aperture modulator as
the first optical element of the telescope; the only such system that I know of
is WISP, a far-ultraviolet Schmidt telescope of 20-cm aperture with a rotatable
wave plate as its entrance window (Nordsieck et al. 1994b).

For short exposures, atmospheric seeing also breaks the rotational symme-
try of the system: bright patches in the system pupil cause different weights
for different parts of the mirror surface, so that the polarizing properties
of the different sections of the telescope mirrors no longer cancel. Sanchez
Almeida (1994) investigates this in detail and concludes that some of the off-
diagonal elements ('instrumental polarization' and 'polarization conversion',
see section 5.5) of the normalized Mueller matrix of atmosphere plus telescope
(upstream of modulator) may reach 'instantaneous' values of (+) a few tenths
of a per cent (all-reflecting telescope) to a few per cent (realistic entrance
window for an enclosed telescope) at individual speckles within the seeing disc.
When averaged over the seeing pattern or over long periods, the polariza-
tion effects disappear. These findings will be of practical importance only for
high-resolution polarimetry of bright sources (sufficiently low photon noise for
the optical polarization errors to dominate, even in speckles). Solar speckle
polarimetry (Keller and von der Liihe 1992) is an immediate concern, and the
infrared may well be the wavelength region of prime importance. A conceptual
cure for such effects would be a full-aperture rapid polarization modulator,
since that would code only the polarization of the incoming signal and render
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Fig. 5.1 A virtually polarization-free Coude telescope; the optical design for the
Large Earth-based Solar Telescope LEST (from Engvold 1992). The optical system
for this helium-filled telescope includes windows (W) and mirrors (M); focal
positions (F) are also indicated. The polarization modulator is mounted at the focal
position F2, while the first oblique reflection is at M4.

the polarization properties of the telescope irrelevant; future developments in
liquid crystal technology will bear watching in this respect, particularly for a
telescope with an integral entrance window (fig. 5.1).

Even when the telescope is rotationally symmetric and we are observing the
complete seeing disc as a single entity, on-axis, we may expect some polarizing
action by the mirror surfaces, owing to technical imperfections constituing
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a lack of symmetry of the internal structure of the surface. Early aluminium
coatings for optical mirrors sometimes showed strong polarization, which could
also depend strongly on wavelength. This was traced to asymmetric and too
rigorous cleaning of the surface before coating and/or to oblique incidence of
the aluminium atoms during the coating process; it is generally not a significant
problem in modern telescopes. Similar effects are to be expected from internal
details of the mechanical support structure or the reflecting surface of radio
mirrors; at short X-ray wavelengths, structure in the 'mirror' at the atomic-
lattice level may be expected to cause trouble, while at longer wavelengths
harmful residual structure could remain after diamond-machining to produce
the complicated shapes required for X-ray mirrors. The perennial questions
will be to what extent a mirror is ideal and what else it does.

The analysis of polarimetric errors usually deals with the entire optical
system, i.e. including the telescope. Indeed, in synthesis telescopes it would be
difficult to say where the 'telescope' ends and the 'instrument' begins.

5.2 Modulation
In many astronomical applications, the polarized radiation flux is only a small
part of the total. Under such circumstances, small errors in flux measurement
could lead to large fractional errors in the degree of polarization. Often this
can be calibrated, but such calibration uses valuable observing time, and the
errors may vary too rapidly for calibration to be feasible. The problems include
flexure of instruments or their supports, magnetic fields influencing detectors,
dewing of optical surfaces and of feed antennas, etc.; they will not be discussed
here, since a near-perfect cure exists in the form of the modulation technique.

The technique of modulation makes the measurement of degree of polariza-
tion (or the normalized Stokes parameters Q/I9 U/I, V/I) insensitive to many
errors. Basically, modulation is a way of making a differential measurement
very rapidly and is useful whenever the required information is represented
by a small quantity superposed on a large, irrelevant background signal. For
polarimetry, modulation is implemented as a rapid switching of the polarimeter
sensitivity between two orthogonal states of polarization and measuring the
ratio of the alternating ('AC') signal to the average ('DC') signal. This ratio is
proportional to Q/I, U/I, V/I or some combination of these, depending on
the adjustment of the instrument. Clearly, such ratios are insensitive to external
effects which multiply AC and DC by the same factor, such as time-varying
gain of a radio receiver or scintillation in the atmosphere. Any (drift in the) ze-
ropoint error will also be reduced; it will not affect the AC component, and the
fractional error in degree of polarization will only be that of the / measurement.
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A basic requirement for modulation techniques to work is that the modula-
tion is faster than the time-constant of the errors which one tries to eliminate.
For scintillation noise to be eliminated from optical polarimetry, modulation
frequencies should be tens or hundreds of hertz; for elimination of slow gain
changes (flexure of spectrographs, changing humidity in a radio feed, etc.),
modulation may only be at millihertz frequencies (in this case, one could
equally well call it differential measurement; the principle is the same).

5.3 Correlation
Radio techniques make use of polarized antennas in the focal plane of the
telescope. Such a polarized feed antenna converts the free-space field of one
particular polarization form into an electrical signal within a receiver system.
It is possible to mount a pair of feed antennas of orthogonal polarizations
within one focal-plane structure and to allow these to feed two entirely sep-
arate receivers (including the detectors, which square the amplitude signal to
produce an output proportional to incident radiant energy). Depending on
the polarization and/or orientation of the feed antennnas, the difference of
the 'energy' signals in these two channels represents Q, U or V, while the sum
represents / . However, the two receivers, though as far as possible identical, in
fact differ by small amounts which may vary with time, so that the looked-for
small differences between large signals may be unstable. For that reason, the
'sum and difference' method is not the most widely used in the radio part of the
spectrum. Instead, one makes use of the fact that a polarized wave generates
signals with correlated (complex) amplitudes in a pair of orthogonal polariza-
tion channels (cf. section 4.2; see also section 6.2.2). Such systems are not
immune from error, but the recorded polarized flux is proportional to receiver
gain acting on the incident polarized flux rather than to small differences in
gain acting on the total flux. The recorded signal is therefore more stable to
fractional gain changes by a factor of order 1/p. However, stray signals that
are correlated in the two channels will show up as spurious polarization; an
example of this is mixer noise in one channel, introduced also into the other
channel by non-orthogonality of the feed antennas or imperfections of the
waveguide or horn in which they are mounted.

5.4 Statistics of polarization parameters
In reducing or modelling polarimetric observations, one does have to be careful
of one's statistics. Fig. 5.2 shows that degree and angle of polarization will not
have a Gaussian distribution when the degree of polarization is small, even
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Fig. 5.2 When the degree of polarization is small compared with the measurement noise,
the distribution of both degree and angle of polarization become noticeably non-Gaussian,
(a) A set of measured p~ and pv, with histograms representing their distributions. The shape
and width of these distributions are invariant with respect to choice of polarization (vector)
zeropoint (only p^ and p^ change). Parts (b) and (c) show histograms for p with different
signal-to-noise ratios p/crp. (b) p ^ » °> v (zeropoint at A); this distribution will
approach that of pQ and pv as A moves away to infinity, (c) p ^ " « a p v (zeropoint at
B). The distribution of 6 similarly changes character as the polarization zeropoint moves
from B to A to infinity. For K7Z » o p , op —  aPij « o p «  2poQ (6 in radians).
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though Q and U (or Q/I and U/I) may have a distribution which departs very
little from a Gaussian. This fact implies that one should not average degree
and angle of polarization; instead, one should convert them to Q and U or
Q/I and U/I, then perform the averaging, and finally convert back to degree
and angle.

In some cases, a normalized Stokes parameter (Q/I etc.) is determined
directly, as a 'noisy signal' within the polarimeter electronics or online software.
This noisy signal is then averaged to reduce the noise. For a low signal-to-noise
ratio of the individual measurements (below about 30 for the signal-to-noise
ratio of Stokes / , which is always in the denominator), one should allow for the
fact that the normalized Stokes parameters themselves do not have a Gaussian
distribution. Details are given in Clarke and Stewart (1986), who discuss a
number of statistical points peculiar to polarimetry (optical applications are
assumed, but most of the paper is applicable to all spectral regions); Maronna
et al. (1992) further refine the estimation of the normalized Stokes parameters.

The most likely occasion on which one might inadvertently break the above
rules is when rebinning observations from detector pixels to some more mean-
ingful coordinate such as wavelength or arcseconds on the sky; it should be
remembered that rebinning is weighted averaging and must be performed as
described above.

Subtle statistical questions involved in establishing reliable astronomical po-
larization standards are discussed by Clarke et al. (1993) and by Clarke and
Naghizadeh-Khouei (1994).

5.5 Instrumental polarization errors and their calibration

Since astronomical degrees of polarization are often small, it is fortunate that
many of the errors affecting photometry do not trouble polarimetry. Because
the required quantities depend on ratios of fluxes at one (effective) wavelength,
many errors tend to cancel out as long as these fluxes are measured at the same
time by the same equipment. This is why accurate polarimetry of bright point
sources can often be carried out during observing conditions that are too bad
for almost any other type of observation.

However, there are several specifically polarimetric errors which must be
discussed; each of them may be a function of wavelength and/or position
within the image or pupil. Such errors include (vector) background polarized
flux, scale error in degree of polarization, zeropoint error in polarization angle
and degree-of-polarization (vector) zeropoint. At radio wavelengths, one should
add the errors due to polarization sidelobes to this list. In this section I shall



5.5 Instrumental polarization errors and their calibration 11

discuss generalities; for more detail, the reader should consult instrument
manuals or reviews of instrumentation, e.g. Tinbergen and Rutten (1992,
pp. 11-19) for optical CCD spectro-polarimetry, and Weiler (1973), Thompson
et al. (1986) and Spoelstra (1992) for radio (synthesis) polarimetry. The hybrid
case of (sub-)millimetre polarimetry is illustrated very well by Clemens et al.
(1990).

In a photometric system, the equation relating the true source flux / entering
the telescope to the recorded signal i might in a simple case look something
like this:

* = *0 ~\~ ^instrument ' {-'dome H~ ^telescope " (/ H~ /background);

where the G factors represent 'gains', /dome includes any sort of radiation that
bypasses the telescope, /background includes man-made and natural sources of
'sky brightness' and z'o is an electronic zeropoint error. By judiciously nodding
the telescope or chopping with the secondary or a succeeding mirror, by sky
and standard-source observations, and by assuming constancy of the equipment
errors for a certain time or within a certain regime, one can calibrate many of
these errors and, to a large extent, remove them. For polarimetry, of course,
the above equation will become:

S = SQ + M j n s t r u i n e n t • {Sdome + M t e i e s c o p e * (S + Skackgroun( |)j

which might look quite complicated when written out in full, since the s and S
are Stokes vectors and the M are Mueller matrices. Fortunately many elements
of the matrices vanish or can be parametrized, and in many cases either linear
or circular polarization can be neglected. This leads to the simpler types of
error discussed in the following, which generally suffice to describe the situations
encountered in present practice. However, as treatment of polarization both
in astrophysics and in instrumentation becomes more sophisticated, one must
expect other and more subtle kinds of error to emerge. Matrix analysis will be
the proper tool for describing these errors and for devising suitable calibration
schemes (see, for example, McGuire and Chipman (1988), Elmore (1990),
Xilouris (1991), McKinnon (1992a) and Sault et al (1995)).

The present situation is that optical and single-dish or phased-array radio
systems are often analysed in terms of Mueller and/or Jones matrices. The
usual procedure is to derive first the Jones matrix for individual rays through
the entire system; at the end of the calculation one converts to Mueller
matrices for astronomical application, averaging over the optical pupil for each
point in the focal plane. Synthesis instruments have so far not been treated
by these matrix methods (but this will change, as outlined by Hamaker et
al. (1995)). Aperture synthesis provides extra freedom in devising schemes
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to calibrate the system: the equipment of one individual telescope is largely
independent of that of the other telescope in the elementary interferometer pair.
Often the dipoles in one telescope can be oriented at any desirable angle with
respect to those of the other one (mechanically or by electronic processing),
and the connections between dipoles and electronics can be swapped between
channels. In general, each synthesis instrument has its own folklore in what
measures are actually taken to generate a simulated 'perfect' instrument from
imperfect components. Matrix analysis will be a valuable tool in identifying the
instrumental parameters that are important for polarimetry; using such insight,
one may then set up optimal calibration schemes. See Sault et al. (1995) for
such a discussion in matrix terms.

5.5.1 Polarized background
In astronomy one is often concerned with point sources which appear against
a smooth background such as moonlit sky or galactic radiation. To eliminate
this background, one subtracts a separate background observation from the
'source + background'; in polarimetry, one should do this for each of the
four Stokes parameters, before obtaining the quotients Q/I, U/I and V/I.
When the polarized flux of the sky background is a function of position (e.g.
scattered moonlight), it may be necessary to average background measurements
at several positions. In radio synthesis polarimetry, the background (in Stokes
/ and the other Stokes parameters) can be eliminated by leaving out the short-
spacing interferometers (often this is unavoidable, particularly in the case of
the near-zero spacings: see section 7.5); the drawback is that this procedure
amounts to spatial high-pass filtering, and low spatial frequencies in the true
sky distribution are rejected at the same time.

5.5.2 Polarization angle reference
Operationally, polarization angle is measured with respect to some instrumental
zeropoint. This is quite adequate as long as calibration observations relate
the instrumental zeropoint to a reference direction on the celestial sphere. In
some cases, relative polarization angles may be all that one needs; in such
cases, calibration of the instrumental zeropoint may not be necessary (cf. most
astronomical photometry, which in the absolute sense is less accurate than 1%,
yet astrophysical information is obtained at the 0.1% level or even better).

Specialized methods have been developed to tackle calibration of polarization
angle. At optical wavelengths, a reversible Polaroid can be suspended in front
of a nearly horizontal telescope (Gehrels and Teska 1960), and one could devise
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methods with a water or mercury pool, while the scattering polarization from
a low-albedo asteroid (D.Clarke, private communication, 1991) or from the
terrestrial blue sky at the zenith (Konnen et al. 1993) have both been suggested.
Absolute accuracy of a few tenths of a degree should be possible. At radio
wavelengths, the usual practice is to align the dipoles within the feed antenna
optomechanically and assume that the feed waveguide structure does not rotate
the direction of vibration; orthogonality of the two dipoles within one feed is
also tested electronically. The resultant accuracy is considered to be a few tenths
of a degree. A specially constructed calibration transmitter on a satellite would
be one way to improve accuracy still further, as would (at some wavelengths)
a wire-grid polarizer installed in the telescope. At any one wavelength, one
may adopt a celestial source as one's standard and relate all installations at
this wavelength to each other. However, polarization angles at one wavelength
relative to those at another will remain uncertain to some extent; this could be
of importance in high-accuracy studies of Faraday rotation or within-source
magnetic field structure.

5.5.3 Degree-of-polarization scale or polarimetric efficiency
An ideal polarimeter has a polarimetric efficiency of unity, i.e. a polarization
of x% in the input is actually recorded as a polarization of x%. Practical
polarimeters have to make do with efficiencies less than unity in many cases.
The value 'one minus the polarimetric efficiency' is often referred to as the
'instrumental depolarization'; insofar as different components added at the
output have been combined with random phases (e.g. different wavelengths
within the passband), this represents true depolarization, but to the extent
that the process of superposition is coherent (rays within the beam of an
optical polarimeter), 'pseudo-depolarization' would be a more accurate term
(cf. section 4.1, example 5).

The usual cause of reduced polarimetric efficiency is the fact that retarders
or analysers do not work perfectly at all wavelengths included within the
instrumental passband. For this reason, it is mainly a problem in optical
polarimeters; radio systems manipulate relative phases in local oscillator signals
to simulate retarders with inherently broadband characteristics, while dipoles
are sufficiently perfect polarizers over wide passbands.

The normal method of dealing with imperfect polarimetric efficiency is to
calibrate it by observing some standard source (or any suitable source through
some standard component) or by injecting a standard signal. Standard sources
must be calibrated themselves. Optical standard components are polarizers; if
they are not perfect, they can sometimes be made so in practice by cascading



80 Instruments: principles

Q

+3

+2

+1

0

-1

-2

1 '
2
oo

% 8

-

r

o 23 oo

0

°8o
22

2l8oo
8

i i

-1
1

o Q o °

°

1°

5 o °
0 0 0

20°

1

0 +1 +2
1 1 1

3Q

0

0

0 0

o 4
g. °

19

i i i

+3
1

-

-

-

-

(b)
i

- 8 - 6 - 4 - 2 0 + 2 +4 +6 U - 3 - 2 - 1 0 +1 +2 +3 U

Fig. 5.3 Calibration observations over 12 hours (or more) of one point in the sky (at 1411
MHz and in the alt-azimuth frame), during (a) night-time, (b) daytime. The centre of the circle
in (a) identifies the non-zero instrumental linear polarization zeropoint of the system. As is
obvious when one traces the numbered chronological sequence of points in (b), the daytime
'circle' is badly distorted by (probably solar) radiation entering through the sidelobes. Note that
the Q- and U- axes are interchanged compared to the usual practice. From Spoelstra (1972a,b).

them. Radio calibration of polarimetric efficiency is effected by injecting
correlated noise into both channels at equivalent points of the receivers; this,
of course, fails to calibrate the very first part of the chain, i.e. the telescope and
feed structure, the dipoles and the first lengths of cable.

Since astronomical polarizations are usually much less than 100%, one is
in danger during calibration of either overloading the hardware designed to
handle the polarized signal or of losing accuracy by too small a signal in the
'total signal' channel. Sometimes there are technical solutions to this, such
as the 'pile-of-plates' polarizer in the optical region, which can produce a
calibrated 5 to 10% polarization in the light of a bright unpolarized star.

Polarimetric efficiency is often a function of wavelength or position in the
field of view, and such functional dependence must be calibrated as well. The
details will depend on the instrument and on the application.

5.5.4 Instrumental zeropoint of (degree of) polarization
Most telescopes and instruments polarize radiation to some small extent; this
property is generally called instrumental polarization, but zeropoint of (degree
of) polarization is a more descriptive term. When one observes a source
of zero polarization, one generally obtains some significant output in Q, U
and V. As long as this polarization is small, it is (vectorially) added to the
true polarization signal when one observes any other source, and it may be
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(vectorially) subtracted during the reduction; whether the vector addition is to
the Stokes vector itself or to the vector degree of polarization depends on the
situation (e.g. point source or background, and cause of the zeropoint shift).
If both the polarization of the signal and the zeropoint are large, full Mueller
matrix treatment becomes necessary.

Such vector zeropoints are determined by observing sources of (near-)zero
polarization, if these are available. When they are not (and one can rarely be
sure a given source actually has zero polarization), one uses randomly selected
ensembles of sources of low polarization (e.g. the average of the nearest 100
stars, excluding those with Tunny' spectral types, which might be intrinsically
polarized; to get a flavour of such efforts, see the discussions in Clarke et a\.
(1993) and in the papers they cite).

The most fundamental method of eliminating the instrumental zeropoint of
linear polarization is to use a telescope of the alt-azimuth type, using the fact
that the sky rotates with respect to the telescope to determine and eliminate the
instrumental linear polarization. Fig. 5.3(a) shows observations of a polarized
celestial source during a period of 12 hours. In the instrumental (alt-azimuth)
frame, a circle is described in the Q, U (or Q/I, U/I) plane; the centre of this
circle represents the instrumental polarization to be removed. Clearly, if one can
trust the constancy of this circle, the average of two observations at opposite
ends of a diameter is a reliable estimate of the instrumental polarization.
Optically this can often be used: one averages (in the instrumental frame)
two observations of the source, timed so that between the observations the
sky has rotated exactly 90° with respect to the telescope (it is best if the
two observations are also symmetrically arranged with respect to the meridian,
since any flexure of the telescope or instrument should then be identical in both
and true source polarization can be obtained; that same source can then be
used to investigate whether the system zeropoint varies with elevation). With
radio observations, ionospheric Faraday rotation may invalidate this simple
procedure: one needs enough points on the circle to define the centre without
any information as to where on the circumference the point has been moved
to by Faraday rotation. Fig. 5.3(b) shows that the assumption of constancy of
the 12-hour circle is not always warranted; the cause may be solar radiation
in the sidelobes, flexure of optomechanical assemblies or any other change of
ambient conditions. McKinnon (1992a) documents polarization calibration of
a phased array, using the alt-azimuth mount of the individual telescopes to
good effect.

In synthesis radio telescopes, the instrumental zeropoint is a function of
position within the field, due to the polarization sidelobes of the individual
dishes (Napier 1989 and Wieringa et al. 1993). It can be strong, but in principle
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Fig. 5.4 Cross-polarization sidelobes, adapted from Westerhout et al. (1962) and Napier (1989,
pp. 56-7); showing the cause, the schematic field pattern and a real-life case of such sidelobes.
In the top half of this figure, (a) and (b) show the situation for transmission from a focus dipole,
via the telescope mirror, into space; the curved field lines in the telescope aperture are shown
resolved into the linearly polarized components that a distant observer would see. In (c), the
right half of the telescope aperture is shown for the complementary situation: the straight field
lines from a fully polarized distant source are shown resolved along the directions which the
focus dipoles see as their orthogonal polarizations, (d) The cross-polarized aperture field pattern
has 180° rotational symmetry. The cross-polarized antenna pattern is the Fourier transform of
this and has similar structure; a real-life case is shown in (e). Polarization is generated from
unpolarized incoming plane waves, with maximum conversion from directions along lines at
45° to the dipoles, roughly at the half-power points of the main co-polarized beam.

it is very stable and can be corrected for, after proper calibration by correlation
methods (section 5.5.5).

5.5.5 Polarization sidelobes

Section 5.5.4 discussed the response of the polarimetric system to an unpolarized
source located on the optical axis of the system. Radio systems also show
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considerable off-axis* 'polarization' responses to unpolarized radiation; such
sidelobes are known as (cross-)polarization sidelobes. They are due to curvature
of the electric field lines generated by the focal-plane antenna on the telescope
mirror surface (engineers usually think - and talk - of antennas as transmitting
into space; this is an example of the optical principle of reversibility; for
receiving mode, one should think of the field lines which a distant source
would have to produce on the mirror surface for the focal-plane antenna to see
them as straight; fig. 5.4).

Design of focal-plane antennas for polarimetry concentrates on straightening
the field lines in the telescope aperture and thus reducing the cross-polarization
sidelobes. More details are given in Napier (1989, pp. 55-8), including a
reference to what happens when the focal-plane antenna is not exactly on the
optical axis of the telescope mirror(s) (which, of course, is a loss of symmetry,
so one expects polarization effects on the effective axis of the complete telescope
consisting of mirrors and focal-plane antenna; this is indeed what happens; see
section 5.1, also Fiebig et al (1991) and Schmidt et al (1993)).

In synthesis instruments, the imperfections of the individual telescopes (such
as the cross-polarization sidelobes and ellipticity of the primary beam) enter
into the polarization response of the two-element interferometers, but the extent
to which this happens depends on the relative orientation (crossed, parallel,
+45°) of the dipoles in the two telescopes. As noted above, the end results
depend on the details of the synthesis installation concerned; at the time of
writing, both insight and everyday practice are evolving.

A special case arises in Zeeman effect measurements at 21 and 18 cm, in an
attempt to detect the very weak interstellar magnetic fields. The basic measure-
ment is that of very faint polarized spectral line structure, and all continuum
polarization is removed during measurement and reduction. We are therefore
only concerned with polarizing sidelobes looking at spectral-line radiation (or,
much less likely, continuum radiation through 'sidelobes with line structure'
- which could possibly be a receiver artefact), and very low error levels are
achieved. Even so, it is still doubtful whether any of the claimed magnetic
field detections from Zeeman effect studies in radio emission lines are in fact
reliable. Verschuur (1995a,b) addresses these questions (see fig. 5.5), and the
discussion will no doubt continue for several years yet.

Since astronomical polarization signals are often small, low-level polarized
sidelobe structures can contribute appreciable polarimetric errors when they
happen to point at strong sources (the Sun, Cas A etc.). Since output varies

i.e. in off-axis directions, even for an antenna mounted on the telescope optical axis (at the centre
of the focal plane); see the note on p. 70.
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Fig. 5.5 Maps of 21 cm polarized beam structure obtained on Tau A using the NRAO 140 ft
radio telescope, from Verschuur (1995b and private communication), (a) The average of six
maps at feed rotation angle 155°. (b) The average of six maps at feed rotation angle 335°. The
heavy contour is zero level, dotted lines are negative values and contours are at intervals of
0.05% of the main beam peak. The half-power beam is indicated by the circle in (b). Note
that for a perfect feed antenna, these maps would be identical; the extent to which they
differ indicates the residual uncertainties even when antenna patterns have been investigated
thoroughly. Two components of the sidelobe structure (two-fold, four-fold symnmetry) are
clearly identifiable; Verschuur suspects a third (which rotates with the feed antenna), at
a 0.05% level.

linearly with source strength, a good first approximation to this sidelobe pat-
tern can be obtained by scanning a strong source of low polarization through
the antenna pattern. This method will always break down at some level, when
competing signals from other sources through the main beam or through un-
documented far-out sidelobes become dominant. The best method, therefore, is
to use a correlation-type interferometer, using one telescope to track the strong
source on-axis in one well-defined polarization, and to use the other telescope
to scan the antenna pattern under test in some other polarization, while corre-
lating these two signals in a standard correlator receiver. This eliminates most
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of the systematic errors; only those signal components that are correlated with
the selected polarization from the strong source will contribute to the output.
It is an extension of normal methods of obtaining a reliable sidelobe pattern
of a radio telescope (Scott and Ryle 1977) and need not be discussed in detail
here. Once the sidelobe structure has been determined reliably, and a first ap-
proximation to the polarized and unpolarized sky has been obtained, sidelobe
contributions can be removed during data processing (iterative cleaning of the
data). This approach is in its infancy as far as polarization is concerned and
its limits are still unclear (but see Verschuur 1995a,b).

Troland and Heiles (1982a, figure 1 and discussion) and Wieringa et al. (1993,
section 2.2) document far-out polarization sidelobes with a 'spokes' or 'clover-
leaf type of structure, which are probably caused by (polarized) diffraction
around the support structure of the focal-plane assembly when the plane wave
is on its way to the primary mirror; though the mechanism is different from the
cross-polarization lobes, the measures taken to remove the errors from the data
are similar. A complicating factor is that such far-out sidelobes may, for part
of the measurement procedure, be looking at the local ground structure rather
than at the sky; modelling radiation emitted by or reflected from such local
ground structure is fraught with difficulties, but this situation can sometimes
be approximated successfully; see section 5.5.6.

5.5.6 Polarized radiation through sidelobes: ground reflections
In radio-polarimetry of the galactic background, a strongly elevation-dependent,
vertically polarized component was found to add to whatever sky polarization
was detected (see Brouw and Spoelstra (1976) for a detailed investigation and
earlier references; for those investigations, the elevation-dependent component
was spurious and the term 'spurious radiation' has stuck; 'ground-reflection
polarization' would be a more descriptive term). The primary mechanism is
polarizing reflection of mostly unpolarized sky radiation by the ground sur-
rounding the telescope; this reflected component then enters the system through
the so-called spill-over sidelobe (the feed antenna looking over the rim of the
main reflector with some residual, mostly non-polarizing, sensitivity). How-
ever, there must be other components contributing to the total. The only way
to eliminate this polarization component has been to determine its average
strength and (vector-)subtract that from all other measurements; variations in
its strength remain in the observations as noise.

The assumption used when determining the average strength of this compo-
nent is that truly celestial polarization will average out if one observes the sky
at many different orientations. The Dwingeloo telescope, for which this is best
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documented, is alt-azimuth and the sky rotates with respect to it. At the start
of any observing period, the practice has been to spend several days and nights
taking one elevation scan after another, at many different azimuths; Q and U
in the alt-azimuth system are then averaged per elevation and azimuth interval.
See Brouw and Spoelstra (1976), and Spoelstra (1992), for further details.

Polarimetry by synthesis systems has been found to be less sensitive to this
kind of error. This agrees with the mechanism described above: the correlated
radiation from one point in the sky will, after reflection, enter the two telescopes
of an interferometer with relative phase depending on local ground topology
(detailed shape of the effective electrical earth plane); since many points in the
sky contribute, the complex correlation will take on values which spread over
the complex plane, and the average correlation will be very small. Sidelobes
from direct-neighbour telescopes, however, can overlap on the ground, and,
under these circumstances, 'spurious polarization' effects have been found in
interferometers (T.A.Th. Spoelstra, private communication, 1994).

5.5.7 Conversion from one polarization form to another
Sections 5.5.4 to 5.5.6 have been concerned with spurious polarizer action of
parts of the system. In this section we consider retarder -type actions, i.e. we
disregard the first row and column of the Mueller matrix. An astronomically
relevant example is partial conversion of strong optical linear polarization into
circular polarization by the telescope. This will interfere with measurements of
the minute interstellar circular polarization, which is thought to arise from weak
birefringence of the interstellar medium acting on the strong linear polarization
generated by the aligned dust grains further away from the observer. One has to
consider the detailed circumstances when looking for a way to calibrate effects
such as this; in the example discussed here, an alt-azimuth telescope effectively
allows rotation of the telescope with respect to the sky, so that converted linear
polarization can be made to change sign by 90° rotation (cf. the Mueller
rotation matrix of section 4.1). For an equatorial telescope, the only point in
the sky where one can accomplish rotation is the celestial pole (set the telescope
to declination 90° and rotate it in hour angle). A good calibration source of
strong linear polarization is daytime blue sky: measuring circular polarization
while rotating the telescope allows one to disentangle true circular polarization
from converted linear polarization; a separate measurement of the linear polar-
ization, which is only slightly influenced by the very small circular polarization,
then allows the conversion factor to be calculated with sufficient precision.

Similar effects occur in radio-polarimetry whenever components have not
been adjusted properly, or at the limits of the passband, or far from the centre
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Fig. 5.6 Circularly polarized sidelobes out to 24° (the ellipse) from the optic axis (adapted
from Troland and Heiles 1982a). Only the positive values are shown; the negative parts of
the antenna pattern appear as blank areas.

of the synthesized field. Specialized examples can be found in Spoelstra (1992);
here also, calibration is custom-designed for the case in point.

5.5.8 Errors in radio Zeeman polarimetry
Measurement of interstellar magnetic fields via the Zeeman effect for neutral
hydrogen or the hydroxyl radical has been developed to a fine art (Heiles 1989,
Verschuur 1989). The method is highly differential (polarization modulation
and frequency switching). In the resulting spectral / profile, there are often
minute remnants of errors due to equipment imperfections which do not
quite cancel out. These resemble faint broad line components, and Gaussian
component analysis reports them as such. When an attempt is made to trace
them in the spectral V profile, ambiguous results are obtained. The ad hoc
method adopted in practice is to discard these components, but some of them
could, in fact, be real. The matter is discussed in some detail in Heiles (1989).

As was discussed in section 5.5.5, faint circularly polarizing sidelobes (fig. 5.6)
can admit unpolarized line radiation masquerading as polarized radiation. All



88 Instruments: principles

modern investigations make an attempt to eliminate such error contributions
in the reduction stage (e.g. Verschuur 1989).

It is to be expected that detailed analysis will show that, in a synthesis
instrument, some of the above error contributions can be excluded, leading to
improved reliability of Zeeman polarimetry; synthesis instruments also have
the inherent capability to determine the antenna pattern of the individual
telescopes with great accuracy.

5.5.9 Ionospheric Faraday rotation
Faraday rotation in the Earth's ionosphere is variable and depends on the line
of sight, but it is of order 1 radian at a wavelength of 1 m and is proportional
to the square of the wavelength. Hence it is negligible for wavelengths shorter
than about 10 cm, but increasing efforts must be made to eliminate it at longer
wavelengths. Ionospheric sounder data are used to determine hourly values
of certain parameters in a model for the local ionosphere; the exact form of
the model and the exact choice of parameters depend on the geographic and
geomagnetic latitudes of the observatory. The uncertain quantity is the 'total
electron content' (vertical column density of electrons) of the ionosphere at
its intersection with the line of sight; the Earth's magnetic field is sufficiently
well known. Ionospheric sounders (Earth-based and topside) measure peak
electron density (electrons per unit volume) and approximate layer thickness,
from which the total electron content may be deduced. Much greater accuracy
can be obtained by making use of satellite transmissions to measure the total
electron content directly; the Global Positioning System (GPS) seems promising
in this respect.

When the ionospheric Faraday rotation is sufficiently inhomogeneous within
the telescope beam and/or receiver passband, depolarization will occur (sec-
tion 4.1, example 5); this is only likely at long wavelengths, and will, in
most cases, be negligible compared with Faraday depolarization within the
astronomical source being observed.

5.6 Reduction of polarization observations
Reduction of polarimetric data requires a few additions to the standard reper-
toire of data-handling packages (arithmetic operators, scaling, rebinning). Like
other observational data, most modern polarimetry is in the form of data
arrays, but for polarimetry one often needs to handle two or more arrays in
a single action, i.e. using vector manipulations. An often-required routine is
conversion from Cartesian (Q//, 17//) to polar (p,20) coordinates (and vice
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versa, although it is generally best to stay in a Cartesian system until final data
presentation). Note the pitfalls in rebinning discussed in section 5.4.

The situation with respect to relevant documentation changes continually
as newly developed instruments require new routines or adaptations of ex-
isting ones. Documentation should always be located via the user man-
ual of the instrument used for the observations. For optical work, two or
three versions of generally useful routines have been written and incorpo-
rated into IRAF (J.Walsh, adapted by R.G.M.Rutten), MIDAS (J.Walsh)
and FIGARO (Bailey 1989; J.Walsh, adapted by R.G.M.Rutten). For single-
dish radio-polarimetry, the NOD2 software system is available (Max-Planck-
Institut fur Radioastronomie, Bonn). For synthesis work, the VLA reduction
package AIPS is best documented (but does require previous knowledge of
synthesis theory). For Westerbork, a very effective polarization subsystem
exists within NEWSTAR. The AIPS++ international synthesis reduction sys-
tem, now being developed, is expected to have polarimetry fully integrated
within it.

5.7 Polarization-induced errors in photometry
When a telescope or instrument is sensitive to the polarization of the input
radiation, simple photometry of polarized objects will be in error (we are stating
the obvious here, but how many people actually take notice?). In such cases, a
complete polarimeter is needed to do accurate photometry and Mueller matrix
analysis of the instrument will be required. The alternative (which in practice
comes to nearly the same thing) is to depolarize the radiation before it reaches
any polarization-sensitive part of the installation.

Optical examples of such systems are telescopes or instruments with oblique
or off-axis mirrors and instruments with diffraction gratings (the so-called
'Wood's anomalies' in spectrographs are polarization errors in spectro-photo-
metry). Relevant references are Tinbergen (1987a, 1988) and Murdin (1990);
see also fig. 5.7.

In radio systems, polarization errors in photometry will occur if only one
dipole is used in order to economize on electronics or on available correla-
tor channels (e.g. to have four times as many correlators for simultaneous
telescope spacings or simultaneous wavelength channels); this maximizes the
polarization error, since a dipole is a near-perfect polarizer. It would be better
to install both dipoles and to combine their signals with equal weight; this does
involve a certain amount of top-end electronics, but could still allow economies
on intermediate-frequency electronics and correlators. If there are good rea-
sons to assume that celestial sources and all stray radiation are constant, the
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Fig. 5.7 Polarization reflectance curves of representative gratings, compared with the
reflectance of a plane aluminized surface. Solid line: electric vibration perpendicular to the
grooves of the grating ('S-polarization'); broken line: electric vibration parallel to the grooves
('P-polarization'); dotted line: aluminium (normal incidence, therefore any polarization).
Charts and description courtesy of Milton Roy Company (Rochester, NY), a subsidiary of
Sundstrand Corporation.

photometric maps in two orthogonal polarizations need not be obtained si-
multaneously. Needless to say, such 'good' reasons very often are no good at
all.

In theoretical astrophysics, 'photometric' errors can result from the use of
scalar radiative transfer theory when polarization effects are important and full
Mueller matrix treatment should have been used. Mishchenko et al. (1994)
investigated such errors in the context of Rayleigh-scattering atmospheres
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above a Lambertian surface. From that paper, from papers cited there and
from Kattawar et al. (1976), the conclusion must be that 'photometric' errors up
to 20% or even 30% are possible when polarization is neglected in computing
the light reflected or transmitted by multiple-scattering atmospheres.
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Instruments: implementations

This chapter will focus on those aspects of polarimetric instruments that are
peculiar to certain wavelength regions. The concepts discussed in previous
chapters will be used freely. Non -polarimetric wavelength-peculiar concepts
will generally be taken for granted, but a few are essential and must be
recapitulated briefly.

6.1 Optical/infrared systems
Optical polarimetric instrumentation has a long history of development. Early
polarimeters had errors at the level of a few tenths of a per cent at best, and
polarization signals were small, so that polarimetry was very much a specialist
craft. B. Lyot was the first to obtain very high accuracy by devising a modulator
and using it on the Sun. For stars, the signals were generally so small that
photon shot noise was appreciable, and there was little incentive to design
sophisticated systems of unavoidably smaller throughput.

The situation has changed drastically within the last decade or two. Larger
telescopes are available, CCD detectors now offer thousands of parallel chan-
nels of potentially very good accuracy, and improved modulators of high trans-
mission have been devised. The higher signal levels have meant that greater
resolution (spectral, temporal, spatial) can be used, and this has had the effect of
increasing the degree of polarization provided by nature (less smearing of polar-
izations from neighbouring resolution elements); the end result is that (i) many
more situations within astronomy can usefully be tackled by polarimetry with-
out exceptional cost in telescope time and (ii) 'common-user' polarimetry is be-
coming available in the optical/near-infrared wavelength region (the 'CCD do-
main'). The latest development is that such polarimetry is becoming available in
the 1-5 /mi region, where the detector arrays are improving fast and modulators
similar to those at optical wavelengths can be constructed (see figs. 3.7 and 3.8

92
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for published results); as in all infrared systems, much of the detailed design
work is concerned with cooling as much of the system as possible, and the resul-
tant equipment may look very different from its visible-wavelength counterpart.

All optical and near-infrared polarimeters can be analysed by Mueller matrix
calculus (or Jones calculus when an interferometer is part of the system). It
is sufficient to split the instrument into its simplest components, multiply all
the matrices together and inspect the top row of the resultant matrix. If one
expresses the response of a real-life detector (which depends on polarization
of the light striking it) as that of an ideal detector (which responds only to
/ ) , preceded by a fictitious optical element which one includes in the matrix
train, the top row of the matrix for the total optical train specifies the output
/ signal (and hence the detector output) for any input Stokes vector, and
describes both the intended mode of the polarimeter and its errors. For an
example, see Tinbergen (1973). If (as is usual in a modulation polarimeter)
the polarization state of the light striking the detector does not vary with the
state of the modulator, it is not necessary to know the details of the fictitious
optical element within the detector. Those details enter only as a fixed gain
factor, whereas we are interested in the quotient AC/DC, which represents
the normalized Stokes parameters Q/I etc.; the fictitious optical element is
therefore in general omitted, or included within an arbitrary gain constant.

6.1.1 Modulators

Polarization modulation is essential to accurate polarimetry in the optical
spectral region. The technique used most often is to vary a retarder within
the instrument. Radiation of both orthogonal polarizations passes through
the same components for most of the instrument, and one strives to modulate
only the polarization preference, leaving the Stokes / sensitivity constant; this
generally means either switching a retarder from one state to another by some
means, or rotating a constant retarder. Modulation may be included in the
Mueller and Jones matrices of the system.

Two modulators are shown in fig. 6.1. They are examples only, but serve
to illustrate the basic principles. The general form of their Mueller matrices,
including the analysing polarizer but excluding component 1, is:

/ A B C D \
A B C Da 5 x o o o o
o o o o )
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For the circular modulator

D/A = f(t), |Alt(JS and/or C)/A\ « e, |Alt(i4)/i4| « e 2

while for the linear modulator

(B and/or C)/A = f{t\ |Alt(D)/yl « |  6, |Alt(i4)/i4| « e 2

where f(t) represents an alternating function of time with amplitude close to
unity, 0.5A is the transmission for unpolarized light, 'Alt(x)' is short for 'the
part of x that alternates with the same frequency as f(t)\ and 6 is a small
quantity (preferably of order 1%). The modulating function f(t) is a square
wave for the circular modulator and a sine wave for the linear one; including
component 1 of fig. 6.1 in the instrument would reverse this and also exchange
the values of B (and/or C) and D.

In the optical region, the only good polarizers available are linear polarizers
(commercial 'circular polarizers' are always a combination of a linear polarizer
with a quarterwave plate).* Until the beam passes through the analyser, its
Stokes / is constant and all that happens is that the polarization form of
the polarized part of the beam is switched between the two eigenmodes of
the analyser (which in this case transmits one, absorbing the other, like a
Polaroid). The function of the analyser is to convert the modulation of the
polarization into modulation of Stokes /, which can be detected reliably by
standard electronics.

Component 2 is the actual modulator. As the circular modulator rotates,
the halfwave sections reverse the sense of circular polarization; this is a *+/—'
type of modulation, leading to a square wave of known phase in the output
of the analyser. In the linear modulator, the direction of vibration beyond the
rotating halfwave plate rotates as well (twice as fast as the halfwave plate),
leading to a sine wave in the analyser output; the phase of this sine wave
corresponds to the polarization angle at the input. In both cases, the size of
the modulated Stokes / component in the output beam, as a fraction of the
total Stokes / signal, corresponds to the degree of polarization of the input
light.

Fig. 6.4 shows a modern rotating-wave-plate polarimeter. The sine-wave
modulation is rather slow, and scintillation- and extinction-noise will show
through, but, for relatively faint objects with high polarization (fig. 3.3), photon
noise will dominate and no deterioration will result from the slow modulation
rate.

Note added in proof: This situation may change in the near future through modern liquid-crystal
developments (Philips press release 1996).
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Fig. 6.1 Two polarization modulators: (a) for circular polarization, (b) for linear polarization.
Both use a rotating halfwave plate as the modulating element; the basic modulator in each
case comprises only components 2 to 4, while component 1 is there to allow the modulator to
be used for both circular and linear polarization (Tinbergen 1972, 1974). Component 3 for the
circular modulator is essential; it converts the circular polarization of the modulator to the
linear polarization suitable for the analyser. For the linear modulator, component 3 is there
to correct certain imperfections of the modulating halfwave plate.

Rotating components generally limit modulation frequencies to about 100 Hz,
which is insufficient to suppress all scintillation noise. 'Electro-optic crys-
tals' (or 'Pockels cells') can modulate faster, as can 'photo-elastic' (or 'stress-
birefringence') modulators. The former type consists of a crystal that changes
its birefringence when an electric voltage is applied to it and is generally op-
erated as a square-wave modulator. The latter type (Kemp 1969) is a piece
of glass (or fused silica for ultraviolet transmission) in mechanicalUy resonant
oscillation and thus with time-varying stress-birefringence (fig. 6.2). Since the
last component is a linear polarizer, the Mueller matrix of the photo-elastic
modulator has the same general form as before; in this case

5 = 0
C = Co + even harmonics of the (mechanical) resonance frequency
D = fundamental and odd harmonics of the resonance frequency
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Fig. 6.2 The photo-elastic modulator, adapted from Kemp (1969). The following is Kemp's
own description: (a) The birefringence modulator in rudimentary form. A simple extensional
vibration is set up in a transparent bar, sustained by an acoustic transducer (not shown).' (b)
The output flux I2 as a function of time, for 100% linearly polarized input. The (+) and (—)
peaks correspond to opposite elliptic or circular polarizations in the beam incident on the
analyser.' (po is the retardation amplitude at the centre of the oscillating bar. For more
detail, Kemp's paper should be consulted.

Tuned amplification or synchronous demodulation in the electronics is then
used to select the desired periodic term (generally, but not always, the funda-
mental). The photo-elastic modulator is the most nearly perfect polarization
modulator known; its maximum birefringence is only about one part in 40000,
so the oscillations do not influence the optical path of the light beam in any sig-
nificant way (and therefore there is no significant spurious periodic signal which
could be interpreted as being polarized); it can also be perfectly transparent
over a wide range of wavelengths and will tolerate large angular width of the
beam (Nordsieck et al. (1994b) report a 'DC application of stress-birefringence
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Fig. 6.3 The more common prism polarizers (courtesy of Bernhard Halle Nachfl. GmbH,
Berlin). The choice between them is a matter of engineering design (one or two beams, location
at pupil or image, transmission, stray reflections, ray geometry, component size and cost, etc.).

which exploits these properties for a wide-field polarimetric survey camera in
the far-ultraviolet). The only flaw of the photo-elastic modulator is that it
cannot easily be constructed in achromatic form (however, it can readily be
tuned in wavelength).
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IR OPT (IR) FOR USE
WITH FIGS

ALTERNATIVE WAVEPLATE
POSITION FOR FIGS

C : CALIBRATION SLIDE
W P : WAVEPLATE
FP : FOSTER PRISM
F : FILTER WHEEL
N : NO WHEEL
D : OPT/IR DICHROIC
DY: YELLOW DICHROIC
DR: RED DICHROIC
AP: APERTURE WHEEL
WG: WIRE GRID POLARIZER
LWPF: LONGWAVE PASS FILTER

Fig. 6.4 A multi-passband polarimeter for wavelengths from 0.35 to 5/mi (Hough et al. 1991).
Although a two-beam analyser is used, each band uses only one of the beams. A modulation
period of 0.8 s is used. The instrument is optimized for time-resolved polarimetry within a
wide wavelength range.

More complex modulators, for 'full Stokes polarimetry' (i.e. simultaneous
determination of all four Stokes parameters), are required for solar and spe-
cialized stellar work; they are reviewed by Stenflo (1984 and 1994, sections
13.7.2-13.7.4).
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X/2 or X/4

Grating

Red fold

Fig. 6.5 The ISIS spectro-polarimeter of the 4.2 m William Herschel Telescope on La Palma;
the red and blue fold mirrors can be implemented as dichroic or other beamsplitters, allowing
simultaneous spectro-polarimetry in three channels at some sacrifice of flux efficiency. The wave
plate (halfwave and/or quarterwave) can be rotated, thus serving as a polarization modulator;
the analyser (Savart plate) has two exit beams with orthogonal polarizations, and the detectors
are CCDs; beam cross-sections and polarizations are sketched at several positions within the
optical system. Further details can be found in Tinbergen and Rutten (1992); see also Schmidt
et al (1992b) for a system designed on similar principles, but, in actual fact, different in
almost every detail.

6.1.2 Two-beam analysers

Detectors such as CCDs generally require a minimum integration time of the
order of seconds, so that fast modulation cannot be used. Stepped rotation
of a wave plate, with a separate integration at each position, can be regarded
as a very slow modulation. The unavoidable extra noise in such a system
can be eliminated if the analyser is of two-beam construction and both beams
are recorded: 'common-mode' noise, such as from scintillation and other
atmospheric variations, affects both beams equally, while the modulator is used
to label truly polarized light by switching it from one beam to the other for
successive exposures. Two-beam polarizers exist in many forms (fig. 6.3); the
Wollaston prism and the calcite plate ('calcite rod' in fig. 6.3) are used most in
astronomy. At (sub-)millimetre wavelengths, wire-grid polarizers can be used
(Hildebrand et al. 1984, Clemens et al. 1990).
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The following extract from the Users' Manual for the ISIS spectro-polari-
meter (fig. 6.5) explains how such very slow 'modulation' is used:

The polarimeter uses a Savart calcite plate, which yields 2 spectra (of opposite polar-
ization). The polarization information (one Stokes parameter per exposure) is contained
in the ratio, at each wavelength, of the intensities in the 2 spectra but it is mixed up
with the system gain ratio for the pixels concerned. The effect of the unknown gain is
eliminated by inverting the sign of the polarization effects in a second exposure, while
leaving the gain ratios identical. Inversion of (linear) polarization effects and therefore
of the Stokes parameters is accomplished by rotating the halfwave plate by 45 degrees;
while the polarization effects are inverted, the system gains remain the same since these
are determined by the built-in polarization of the o and e exit beams of the calcite plate.
All instrumental conditions (grating parameters, filters, dichroics, Dekker, slit, etc.) must
be the same in both exposures; image centering on the slit is the most difficult to control
in this respect.

The derivation of Stokes parameters from the recorded spectra is presented below. We
factorize the conversion 'constant' for input light to detector signal into a polarization-
dependent, time-independent part G and a time-dependent, polarization-independent part
F: G|| and G± refer to the o- and e-spectra on a single frame; they include grating
efficiencies and reflection coefficients of mirrors, and the sensitivity of the pixel considered
to the polarized light striking it. Fo and F45 refer to the two separate frames (halfwave at
0° and 45°) and include atmospheric transmission, seeing, image wander and variations
in shutter timing. I and Q refer to total and polarized light input and the i refer to signals
recorded by the detector. pQ = Q/I is the Q component of the degree of polarization.

IO.II = 0 . 5 ( 7 + 0 • G,| • F o

icu = 0 .5 (7-2) • G± - Fo

145,11 = 0 . 5 ( 7 - 0 • G|, • F 45

= 0.5(7+6) • G± • F45

To derive Stokes parameters from these spectra, first divide the 0- and e-ray spectra in
each frame to take out the scaling factors F. Dividing these ratios again cancels the G
factors. The Q Stokes parameter, in degree-of-polarization scale, is:

R-l . , D2 *
p _ mtn gL _

Q R+l '4
Note that by multiplying the intermediate ratios, instead of dividing them, the G ratio
(relative flat field) is obtained. The other Stokes parameter, pv, is obtained similarly
from the pair of exposures with the halfwave plate at 22.5° and 67.5°. The raw degree
of polarization p and polarization angle 9 are then given by:

P = \j{VQ)2 + (Pu)2 ^d 9 = 0.5 arctan (pv/pQ)

The equations for I + Q etc. above can be understood in terms of Mueller
matrices as follows: The matrix for a halfwave plate in positions 0° (upper
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sign) and 45° is:
/ 1

0
0

\0

0
±1
0
0

0
0

+1
0

0 \
0
0

- 1 /
Multiplying this by the matrix for a polarizer at 0°, we obtain, for the +Q
polarimeter

+ 1 0 0 \

0.5 x

/ 1
1
0
0\

±1
0
0

0
0
0

0
0
0 /

For the other beam from the analyser ('Savart' in fig. 6.5), the output polariza-
tion is at 90° and the resultant matrix of the (—Q) polarimeter becomes

0.5 x

\

1
- 1
0
0

+1
±1
0
0

0 \
0
0
0 /

Using the definitions of the F, G and i in the extract above, the equations
follow directly from the top rows of these two matrices. Note that any circular
polarization in the input does not influence the output / in either of the
beams (provided the retarder is indeed exactly halfwave). The data reduction
outlined shows that scintillation noise is eliminated by removal of the F from
the final result. Another way to understand this is as two separate modulation
polarimeters, for +Q and —Q. Both are affected by the same scintillation
and extinction noise and, in the process of obtaining the average of +g, this
coherent component of the noise is inverted for the — Q polarimeter.

We could of course have rotated the halfwave plate to a large number
of positions and analysed for the characteristic sine-wave pattern; but the
modulation would have been very slow indeed. Having verified in checkout
procedures that a true sine wave is in fact obtained, the preceding method is
the least redundant way of finding the linear Stokes parameters, by modulation
reduced to its minimal form, '+/—' modulation of  Q or U.

There are two ways of looking at this process: one is to say that we
convert the input linear polarization to its orthogonal form by rotating the
halfwave plate by 45°, the difference in output of the polarimeter reflecting the
switched input polarization; the other is the view taken above, viz. to include
the halfwave plate within the polarimeter and to say we have switched the
'preference' of the polarimeter from one polarization to its orthogonal form.
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Fig. 6.6 The Durham imaging polarimeter, from Scarrott et al. (1983). The original detector
of this polarimeter was electronographic; a CCD has now replaced that system. This compact
travelling polarimeter has seen a great deal of service on telescopes all over the world.

The essential part of either view is that one changes nothing whatsoever in the
instrument, except to rotate the halfwave plate to a new position angle and
to take a second exposure with this orthogonal state of the polarimeter. As
long as nothing is changed, it does not matter in the least that the grating and
folding mirrors respond differently to different polarizations; all this is included
in the G values, which were assumed constant with time (the extent to which
the assumption of factorization breaks down will determine the ultimate error
level for this method).

The imaging polarimeter of fig. 6.6 uses a Wollaston prism as analyser, but
is otherwise similar to that in the spectrograph of fig. 6.5. Since the image in
this case is two-dimensional, half of it is blocked for any one exposure, and
a total of eight exposures is needed for full linear polarimetry of the entire
input image. A Zeeman polarimeter for solar speckle-and-restoration imaging
is described by Keller and von der Liihe (1992); no modulator was used in this
test system, but a complex modulator for full Stokes polarimetry is envisaged.
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A variant of the two-beam analyser polarimeter uses a chopper and a single
(photomultiplier) detector to record the two beams alternately (see Piirola
(1973) and, in a simultaneous five-colour version, Korhonen et a\. (1984)), a
practice analogous to the use of the phase switch in the radio-polarimeter
of fig. 6.12. In principle, the method may be combined with a rotatable
halfwave plate to yield even higher freedom from systematic error. Until fast-
readout CCDs are integrated into polarimetry (Tinbergen 1995), this dual-beam
chopper approach yields a unique combination of wide spectral band and very
high polarimetric accuracy. On an alt-azimuth telescope (section 5.5.4), such a
polarimeter is the ideal instrument for fundamental establishment of a linear
zero-polarization standard in the sky, through very systematic observations of
bright stars of low polarization.

6.1.3 Achromatic systems
We have so far used polarizers and retarders in conceptual polarimetric instru-
ments without worrying about how one actually constructs them. In a typical
astronomical application, we need data at many wavelengths and, to make
the best use of the little light we have, we require our instruments to work
over the widest possible wavelength range. In practice, this means that, in the
optical region, we should like to work with a single instrument from 0.3 /im
to about 5)um. Existing detectors cannot span this range, so that separate
instrumentation is usually built for wavelengths below and above about 1/rni;
polarization components should preferably perform at all wavelengths within
these ranges; in other words, they should be achromatic to a high degree.

Polarizers are most readily available in achromatic form, in the sense that
they do separate the two beams effectively for a wide wavelength range. The
amount of separation (in position or angle) is often a function of wavelength,
but the design of the rest of the instrument can usually accommodate that.
(For example, in the ISIS spectro-polarimeter of fig. 6.5, the separation of the
two star images on the slit depends slightly on wavelength, which means that
the spectra on the CCD are not exactly parallel, nor straight; this does not
matter much, as long as all the signal in each spectrum is gathered during
reduction, the sensitivity of the CCD is more or less constant over its surface
and the images do not overlap; cf. Schmidt et a\. (1992b, section 2.1).)

In nature, most retarders are very chromatic: their retardation varies strongly
with wavelength. The most common type of retarder is a slice of crystal, of
which the retardation b takes the form:

6 = 2nx(ri - ri')/k
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Fig. 6.7 Performance of a 'superachromatic' halfwave retarder made from quartz and
magnesium fluoride; adapted from Tinbergen (1974). The polarimetric modulation efficiency
exceeds 0.999 over a 3 to 1 range in wavelength; such a halfwave retarder can also serve as
a very good 'linear depolarizer' (q.v.).

ri —  n" is a slow function of /I, so that S is approximately proportional to
a very unsatisfactory situation.

One way to achromatize retarders is to use two materials with different
wavelength-dependence of birefringence nf —  n" and to use a negative multi-
wave plate of one material to cancel all but a small fraction (half- or quarter-
wave) of a positive multi-wave plate of another material (fast axes of the
two components crossed). By proper choice of the thicknesses, one may thus
implement the desired retardation at two wavelengths, with a roughly parabolic
variation through the rest of the spectrum.

With birefringent polarization components, there is another option, viz. to
combine three or more slices of the same material into an achromatic combina-
tion (e.g. Pancharatnam (1955a,b); see also fig. 4.1 and table 4.2, and exercises
4.10 and 4.11). Since the only requirement is that the relative wavelength
dependence is the same for all the constituent slices, these may themselves be
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Fig. 6.8 The Fresnel rhomb (top left) and alternative total-internal-reflection retarders,
from Bennett and Bennett (1978), reprinted with permission of McGraw-Hill, New York.
The fast axis direction of these retarders is determined by the geometry, and is independent of
wavelength. Spectral performance curves (capitals) refer to the components (lower-case) shown.
Curves B and F refer to optimized versions of components a and e, with slightly changed angles
of reflection and a thin magnesium fluoride coating applied to the internal-reflection face.
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two-material achromats. Such a doubly achromatized combination is known as
superachromatic; it is difficult to construct (at least six slices of rather precise
thickness of a few tenths of a millimetre each, oriented precisely and cemented
in place without damaging the fragile crystals) and is very expensive, but can
yield > 99% modulation efficiency from 300 nm to 1 jam or beyond (fig. 6.7).

The achromatization procedure with three slices of the same material was
devised by Pancharatnam (1955a,b); similar procedures exist for achromatic
polarization rotators (Koester 1959) and for larger numbers of constituent
plates, but none of these are used very much. The Pancharatnam combinations
show dispersion of the axis directions, i.e. the position angle of the fast (and
slow) axis is a function of wavelength. This means that the phase of the sine
modulation by a rotating halfwave plate is a function of wavelength (e.g. in the
superachromatic version, which is of Pancharatnam construction; see fig. 6.7).
This does not matter in a spectrograph, since it can easily be calibrated for each
wavelength; however, it may be troublesome if it is used with a wide-band filter
(e.g. in an imager for faint object polarization). For the rotating-halfwave-plate
modulator, the problem can be eliminated by inserting a second, identical but
(usually) stationary, halfwave plate in the beam (component 3 in fig. 6.1b).

Another type of achromatic retarder makes use of total internal reflection
within a prism. Such reflection introduces a phase difference which is a function
of angle of incidence and refractive index; however, this functional dependence
is slow enough for the component to be very useful whenever a straight-
through beam is not required. The 'Fresnel rhomb' (fig. 6.8) is one of the
retarders of this type, and produces about 90° retardation in two reflections.
Two Fresnel rhombs in series can return the beam to its original path and
provide very achromatic halfwave retardation; the only disadvantages of such
a combination are its length and the delicate mechanical adjustments necessary
for its operation.

More detailed descriptions of achromatic components may be found in
Tinbergen (1973, 1974) and in Bennett and Bennett (1978). The instruments in
figs. 6.4, 6.5 and 6.6 all use a superachromatic halfwave plate.

6.2 Radio systems
We have seen that, in optical polarimeters, orthogonal polarization signals
follow the same path through the optical system. Birefringent components are
used to generate a distinction between these two signals, but the same system
gain applies to both of them separately, so that, apart from the system gain as
a multiplying factor, the difference between them is reproduced faithfully. The
gain can be calibrated reliably by observing a polarized source. Radio receiver
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channels are normally not birefringent and they lack the capability to process
a pair of polarization signals within one physical channel; two channels are
required, and these channels have different gains, the ratio of which inevitably
varies somewhat with time (and in astronomy we are particularly sensitive to
this, since we usually have a small polarization difference between two large
signals, each representing about half the total radiation). One could calibrate
the time-varying ratio, but this would only transfer the problem to the stability
of the calibration arrangements (both the source and the coupling circuitry).
Rather than determining a difference or ratio of two large and spuriously
varying intensity signals, in radio-polarimetry one determines the polarized
component directly, by measuring the correlation between the electric fields of
orthogonal polarization forms. This is possible because in radio receivers one
has available an electrical signal which represents wave amplitude and phase
rather than 'intensity'. The correlation technique is introduced in section 6.2.2.

Polarization processing is carried out mainly at intermediate frequency; phase-
maintaining conversion to intermediate frequency is a technique which in
astronomy is peculiar to the radio domain, and it is introduced briefly in
section 6.2.1.

Note: Another peculiarity of radio techniques is that the photons are of such low
energy that even the smallest signals contain very many of them and photon shot
noise is vastly exceeded by the noise of the first stage of electronic processing. This
means that after amplification one may divide a radio signal into a number of
identical copies and process these independently without worrying about introduc-
ing extra photon noise by having split the energy of the signal over several chan-
nels. One has indeed split the signal, and therefore fewer photons are available in
each channel, but the effect of this on total noise is negligible. In synthesis instru-
ments, one correlates simultaneously the output of each (telescope/polarization)
channel with all other channels, and achieves a gain in observing speed by this
massive parallellism. In contrast, if one were to divide an optical signal into many
parts, one would increase the fractional noise in each channel and there would be
no net gain in total speed; this is because the best optical detectors have very low
noise compared with that of the energetic optical photons, and dominant noise in
most optical systems is therefore 'noise-within-signal' (photon shot noise) rather
than amplifier or detector noise (however, CCDs have only recently attained 'one-
electron' readout noise, and infrared arrays do have significant readout noise).

6.2.1 Frequency conversion in a nutshell

Frequency conversion is a technique whereby a signal is transferred to a
(generally lower) carrier frequency with retention of relative amplitudes and
phases; the passband and the signal components within it are faithful replicas
of the originals at the higher carrier frequency. Since some of the polarization
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Fig. 6.9 Spectral representation of frequency conversion (see text for the corresponding
formulas); the lowest line shows how (the mirror image of) an undesirable part of the spectrum
can also get into the output, unless an 'image rejection filter' is fitted to exclude that part of the
signal before it is converted.
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Fig. 6.10 An image-frequency-rejecting mixer (adapted from Thompson et a\. 1986). The
subscripts u and / refer to the upper and lower sidebands, respectively. The upper-sideband
signal is obtained from the sum of the outputs (1) and (2), the lower-sideband signal from
their difference.

processing in radio systems takes place at the lower, 'intermediate' frequency
(IF), a summary of the technique is desirable.

In the mixer, a signal at LOCAL OSCILLATOR FREQUENCY is added to the
input signal (SIGNAL FREQUENCY) and the sum of the signals is squared. The
squared signal is then filtered to retain only a band of frequencies around the
INTERMEDIATE FREQUENCY. See fig. 6.9 for a graphical representation; in simple
equations:

signal : A = V ^ + <£,-)

local oscillator : B = bcos(2nvmt + </>m)

The mixer forms

(yl + B)2 = A2 + B2 + 2AB
v2 v2

= ^ ^ flffly COS(2TCV^ + (pi) cos(2nv jt
Vi=V\ Vj=V\

+ b2 cos2(2nvmt -

2b ] T ax cos(2nvtt
v,-=vi

(1)

(2)

(3)

Using 2cosxcosy = cos(x+y) + cos(x—y)  and 2cos2x = l+cos2x, we conclude
that

• term (1) contains frequencies between 2vi and 2v2 and between vi—  V2 and
v 2 -v i ;

• term (2) contains the frequencies 2vm and 0;
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• term (3) contains frequencies between v\+vm and V2+vm and between vi—  vm

and V2—v m.

The IF filter passes only (part of) the latter of these frequency intervals, and
finally we retain just:

Vm+Vfe

b ^ ai COS[27C(V; - Vm)t + <j>i - 0 m ]
v,=vm+va

which is a true copy of the input signal at a lower carrier frequency. We
therefore have the choice of manipulating at signal frequency or at intermediate
frequency. Correlating two signals is simplest at intermediate frequency, while
polarization discrimination by the dipoles is at signal frequency. Manipulating
relative phases of signals is best done by manipulating the phase of the local
oscillator, </)m; the effect of manipulating the phase of a single frequency is then
identical over the whole passband (achromatism).

Fig. 6.9 includes an 'image frequency filter'. For signal-to-noise reasons,
such a filter is sometimes dispensed with, both signal and image frequencies
appearing in the output; operation is then said to be 'dual-sideband'. In
polarimetry, this can be a risky procedure when Faraday rotation is present or
suspected. So-called single-sideband or image rejecting mixers (fig. 6.10) can
then be used to make the two sidebands available separately (see Thompson
et al. (1986, pp. 207-8); some polarization receivers actually require sideband
separation to function properly (McKinnon 1992b)).

6.2.2 Correlator polarimetry
A 'correlator' is a standard component in radio astronomy; aperture synthesis
depends on correlation-type interferometry. Basically, a correlator multiplies
the instantaneous voltages in two receivers. It can be implemented in analogue
form by squaring both sum and difference of the two signals and taking the
difference of these two squares. It can also be implemented in digital form,
in which case the numbers representing the quantities to be multiplied are
quantized to 1 (sign) bit, or a very few bits at most. Such extreme quantization
does mean a 10% to 20% loss in signal-to-noise ratio, but the gain in stability
and simplicity of construction is immense. To obtain simultaneous spatial and
spectral resolution, thousands of such few-bit correlators are used in large
synthesis installations like the WSRT and the VLA, with system efficiency
limited mainly by available funds. Discussion of digital techniques is beyond
the scope of this book; the reader is referred to Thompson et al (1986, section
8.3).
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Fig. 6.11. A phase-switching multiplier, adapted from Thompson et al. (1986).

Being a multiplier, a correlator in radio astronomy is similar to the mixer
used in frequency conversion, with the local oscillator signal replaced by a
second signal of the same frequency content as the first and the resulting
intermediate frequency equal to zero. The A2 and B2 terms are eliminated by
phase switching (fig. 6.11). Fig. 6.12 shows how, for linearly polarized feed
antennas, this can be used to measure linear polarization, with rotation of the
feed antenna to obtain both Q and U. Unpolarized, and in, this case circularly
polarized, signals do not lead to an output in the correlator channel.

The feed antenna system can be made sensitive to other polarization forms, in
particular to circular polarization. Fig. 6.13 shows how elliptically polarized feed
antennas can be conceived and actually constructed as a network linking two
linearly polarized antennas. Seen as a transmission system fed from terminal
A, this is a hardware implementation of chapter 2, where all polarization
forms were conceptually generated from two correlated linear polarization
signals in certain proportions and with a 90° phase difference between them.
As a receiving system, it produces an output at A whenever the dipoles
receive correlated signals which correspond to the polarization form selected.
When P = ±7i/4, the system is adjusted for transmission (and reception) of
circularly polarized radiation; j8 = 0 or /? = n/2 denotes adjustment for linear
polarization.

Fig. 6.14 shows a more detailed schematic of a practical polarization receiver
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Fig. 6.12 A simple (linear) radio-polarimeter, from Westerhout et al. (1962). If the voltages
at A and B are represented by the sum of a linearly polarized part (subscript 0) and an
unpolarized part (subscript 1), as follows:

A = ±{eo sin(cot + a0) cos xo + ^i sin(a>t + ai) cos xi},
B = {eosin(cot + ao)smxo + eism(cot + ai)sinxi},

then the smoothed 'polarization' output signal is proportional to —Jo  sin 2#o> while the
smoothed 'total power' output signal is proportional to Jo + / i (/ representing e2/2 and all the
sin xi and cos xi terms having averaged to zero). Rotating the dipole focus antennas, one may
derive the polarization angle xo, the linearly polarized signal Jo and the degree of linear
polarization Jo/(Jo + / i ) .

with linearly polarized feed antenna, while fig. 6.15 shows a system using a
circularly polarized feed antenna. These systems are described in Berkhuijsen
et al (1964) and Turlo et al. (1985),* respectively. The systems shown in

* The authors discuss questions of calibration, a perennial problem in radio techniques (electronic circuits
are not as stable as pieces of optics). Readers should be aware that the authors assume V = 0 and use a
Stokes 3-vector and Mueller 3 x 3 matrices; they also use an abbreviated and slightly confusing notation
as follows: 'A/B' means 'A correlated with B' or A multiplied by B', 'COS' means that the inputs to the
correlator are direct, 'SIN' means that one of them has had its phase shifted by 90°. Nevertheless, the
oaoer is worth reading in detail.
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Fig. 6.13 A focal-plane feed antenna for polarimetry, after Thompson et al. (1986).
The system may be made sensitive to any elliptical polarization by choosing values of %
(position angle) and fi (arctangent of ellipse axial ratio); 'cos/T and 'sin/T stand for the
voltage reponses of the units shown, and the unit labelled 'TT/2' is a phase shifter (the
equivalent of the quarterwave plate of the optical domain).

figs. 6.12, 6.14 and 6.15 illustrate the evolution of radio-polarimeters from
simple beginnings based on first principles to more complex modern systems,
which, by specialized design, reduce the effects of the instabilities that are the
curse of analogue electronics; it is clear that the practical design issues are
of a different kind from those in the optical region. Complexity increases
by another order of magnitude when one proceeds to the aperture synthesis
systems described in section 6.2.3.

In dual-sideband receivers, special measures must be taken to ensure proper
handling of correlator polarimetry (e.g. McKinnon 1992b)).

6.2.3 Polarimetry by synthesis arrays and VLBI
Aperture synthesis and VLBI systems use correlators in one form or another to
determine the correlated part in the signals received by different telescopes. Such
correlations provide information about the angular distribution of radiation
over the sky, since they are values of the spatial auto-correlation function and
the relation of that to the angular power distribution in the sky is a Fourier
transformation.
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Fig. 6.14 More detailed block diagram of a linear polarimeter, with linearly polarized feed;
details in Berkhuijsen et al. (1964).

It is a relatively simple extension, in principle, to cross-correlate (in four
combinations) two orthogonal polarizations of the field received by each of
two different telescopes and thus to determine values of the spatial auto-cor-
relation function of Stokes Q, U, or V as well as / (cf. the second - i.e.
EXE* etc. - of the Stokes parameter definitions in section 4.3; the 'correlated'
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Fig. 6.15 A modern linear polarimeter, with circularly polarized feed, adapted from Turlo et al.
(1985). (a) Overall receiver system; (b) expansion of the 'polarimeter' module. The TP ('total
power') outputs are used to monitor internal signal levels and provide a check on stability of
the gains of preceding stages. The Q, U and I2 outputs are identified; see the footnote to p. 112
for the notation used by the authors.
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component must have both the correct polarization and the correct phase
difference between the two telescopes for it to lead to maximum output of the
correlator). Aperture synthesis and VLBI techniques as such are not the subject
of this book. The polarimetry extension may be summarized as follows:

In correlating the outputs from two elementary telescopes of a synthesis or VLBI
installation, there is a choice of two orthogonal polarizations in each; therefore four
instantaneous combinations can be made, which is just sufficient to determine all four of
the Stokes parameter visibilities «/, 1,  °U, 'V. The time series of */, =2, tfl, if visibilities can
be Fourier transformed into maps of their corresponding sky distributions / , g , (7, V,
after which sky distributions of degree and angle of polarization can be derived.

For a more detailed description, the reader is referred to Christiansen and
Hogbom (1985, sections 7.13, 7.14) and to Thompson et al (1986, p. 150).
The mathematics is all in terms of complex numbers to represent the electric
fields and the currents or voltages into which they are translated. This leads
to complex correlator outputs, representing 'complex visibilities' containing
amplitude and phase of the sinusoid resulting from a source moving through
the interferometer antenna pattern. These complex visibilities </ , J ,^ , iT are
Fourier transformed into real sky distributions; the fact that the sky distribu-
tions of 7,g, (7, V must consist of real numbers translates into hermiticity of
the complex visibilities, and this property is used to fill a part of the visibility
plane which is not actually observed.

The hardware necessary to measure a complex visibility includes 'fringe-
stopping' (which reduces the frequency of the sinusoid to exactly zero for the
'fringe-stopping-centre' of the field and to near zero for other points) and
'complex correlators' consisting of two simple correlators in quadrature, i.e.
with 90° phase delay in one of the inputs of one of them.

Morris et al. (1964) derive a general expression for the (complex) output rmn

of a correlator for the signals from dipoles m and n, with correlator channel
gain Gmn, the input Stokes visibility vector being </, =2,^,1^, with x a n d P
(fig. 6.13) in each arm adjusted to any value one wishes:

sin(jSm-j8n)]

By adjusting the % and P values, the correlator can be made sensitive to various
(linear combinations of) the Stokes parameters. Several examples are discussed
in Thompson et al. (1986, p. 102 et seq.).

A single-dish correlation polarimeter may be regarded as a special case of a
two-element polarization interferometer, viz. one with orthogonally polarized
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channels and zero antenna spacing. This concept is useful when tracing much
of the relevant mathematics; note that */,2L,°U,"V are now synonymous with
/ , Q, U, V. Single-dish polarimeters are more sensitive to local interference than
are widely spaced correlation interferometers, since the two receiving dipoles
are in the same location and spurious local signals are likely to be correlated.

VLBI polarimetry is basically the same as polarimetry with any synthesis
instrument, the only difference is in the way the link between the telescopes
is implemented. In theory, polarimetry adds a few constraints to the image
reconstruction process, such as the 'Stokes criterion' I2 > Q2 + U2 + V2. To
make use of them, however, would require that the reconstruction takes place in
all four Stokes parameters in one combined operation, which may not be worth
it for the weak constraints involved; for synthesis polarimetry in general, usable
constraints may emerge from full matrix treatment of the entire installation;
this approach has only just started (see section 4.4).

Specialized calibration procedures do exist for synthesis polarimetry, but
these are highly specific for the instrument and configuration considered.
Thompson et al. (1986), Fomalont and Perley (1989) and Spoelstra (1992)
provide ample detail and references. This is an area in which substantial
further development is to be expected, in particular by adapting the matrix
methods of chapter 4 to radio correlation interferometry (Sault et al. 1995).

With this brief introduction and the previous grounding in polarimetric con-
cepts, the reader should be able to understand original papers in aperture
synthesis and VLBI polarimetry. The subject is still very much in development,
and interesting new experimental techniques are to be expected, particularly
where the extra freedom offered by synthesis methods is integrated within full
polarimetry.

6.3 Infrared developments

During the last few years, quality infrared arrays have become available; one
result of this has been that CCD polarimetric techniques are being pushed into
the infrared. The technique is the same, in principle, as that in the optical region,
but the practical components are different and they have to be accommodated
within the requirements of an infrared system (e.g. cadmium sulphide wave
plates and wire-grid polarizers for 8-13/im, see Smith et al. (1994)).

Infrared instruments generally are entirely contained within a cryostat, which
limits the sophistication of mechanical arrangements. A good example is pro-
vided by the linear polarimeters of the infrared observatory ISO, for wave-
lengths between 3 and 240/mi (Klaas et al. 1994). These polarimeters are
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Fig. 6.16 An infrared imaging polarimeter with the retarders outside the cryostat, from
Hough et al. (1994); IRIS is the Anglo-Australian Telescope's multi-purpose infrared
imager/spectrometer. The fact that the (often compound) retarders do not have to be
subjected to temperature extremes allows a simpler and more reliable design with less
stress-birefringence; having the retarders accessible is also more convenient operationally.

basically of the very simple 'rotating polarizer' type, which relies on calibration
rather than modulation for reducing errors. Since the system has about 10%
instrumental zeropoint polarization, the final error level is likely to be between
0.1% and 1%.
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Hough et al (1994) report on a successful infrared (1-2.4/xm) polarimeter
using a warm rotatable halfwave plate outside the cryostat (fig. 6.16). A retarder
is not a lossy component, hence its temperature should be irrelevant; to the
extent that this is true for a practical optical component (i.e. imaginary part of
refractive index negligible for the wavelength range admitted to the detector),
this arrangement should work, considerably simplifying construction, hence
allowing more sophisticated polarimetric arrangements. It remains to be seen
how far into the infrared this technique can be pushed (interestingly, Clemens
et al (1990) used it at 1.3 mm).

6.4 (Sub-)millimeter systems
At wavelengths between a few millimetres and a few tenths of a millimetre,
instrumental techniques are generally borrowed from both the optical and the
radio spectral regions. Polarimetry is no exception; the most common arrange-
ment seems to be a rotating wave plate, followed by a wire-grid polarizing
beam-splitter, followed by twin radio receivers. The experimental techniques
are developing fast. Relevant papers are Hildebrand et al (1984), Clemens
et al (1990), Flett and Murray (1991), Murray et al (1992); for the longer
wavelengths, see figure 3 of Baars et al (1994) (the polarizing grids of that
figure are used as wavelength-selective - or 'dichroic' - mirror and polarization
analyser in one component; for polarimetry a rotatable wave plate can be
added).

High accuracy has been achieved in some cases. Clemens et al (1990) quote
0.2% for instrumental polarization at a wavelength of 1.3 mm and estimate their
final precision at 0.01 to 0.03%, using the optical technique of a halfwave plate
modulating the polarization at about 25 Hz; interestingly, they also mention the
'radio' problem of polarized sidelobes at 0.25 to 1.0%. Component construction
depends very much on the wavelength of operation (e.g. a grooved dielectric
plate halfwave retarder in Clemens et al (1990)), but the principles of operation
are no different from those treated in sections 6.1 and 6.2.

6.5 Ultraviolet systems
To the extent that it exists, astronomical ultraviolet polarimetry is based on
optical techniques. From the ozone absorption at about 310 nm downwards,
ultraviolet astronomy is space-based, which in practice means that instrumen-
tation has been simple; even the Hubble Space Telescope's (HST) two cameras
and High Speed Photometer use fixed analysers, do not have modulators, and
the possibility of rotating the instrument is only that of repeat observations at
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non-standard 'roll-angles' (which are severely restricted because thermal and
power management suffer). The Faint Object Spectrograph on HST does have
a rotating-waveplate option, and polarimetry accurate to 0.1 or 0.2% has been
obtained (Somerville et al. (1994); see also section 7.7). With the COSTAR
optical correction unit now in use, polarimetry with the HST will suffer from
instrumental polarization to some extent; this will have to be calibrated, with
a loss of effective observing time. Schmidt et al. (1992b) discuss HST standard
stars for linear polarimetry from 340 to 880 nm; moderate extrapolation to
shorter wavelengths should be possible.

There is no fundamental reason why accurate polarimetry should not be
taken down to about 150nm or even beyond. Polarimetric calibration of a
spectrograph for the range 200-450 nm is discussed in Morgan et al. (1990),
who show that precision methods are feasible. Nordsieck et al. (1994a) describe
a polarimeter using a rudimentary rotating halfwave modulator over the range
140-320nm; a precision of order 0.05% is obtained, in spite of tracking
problems in the space environment. Given sufficient scientific interest (in this
respect, Clayton et al. (1992) have shown that there is additional information
on the interstellar grains, at least), precise polarimetry down to Lyman-a
seems possible: magnesium fluoride has useful transparency down to about
115 nm, and its birefringence is documented at least down to 150 nm (Bennett
and Bennett (1978, table 15); similarly for quartz, which stops transmitting at
about 150nm, however); this means that both crystal polarizers and achromatic
retarders of reasonable performance can be made, although the bandwidth
may be restricted, since the spectral dispersion of material properties is much
stronger in the ultraviolet than in the visible.

New developments in ultraviolet polarimetry are reported in a recent confer-
ence volume (Fineschi 1994). In one of the papers of that volume, Nordsieck
et al. (1994b) describe a polarimeter - WISP - for 135 to 260 nm, which uses a
large rotatable pneumatically driven stress-birefringent wave plate of calcium
fluoride as its modulator; this may be a breakthrough of great significance,
since with, a change of material and parameters such a component will allow
considerable freedom of polarimeter design at other 'optical' wavelengths.

6.6 X-ray systems
X-ray polarimetry as an astrophysical technique is in an early stage of devel-
opment, due to the severe technological difficulties and the required telescope
collecting area. Several attempts at linear polarimetry have been made, using
sounding rockets and satellites. The only statistically significant detection of
polarization is that of the Crab Nebula (fig. 3.6); upper limits for the degree
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Fig. 6.17 Bragg crystal polarimetry, from Silver et a\. (1989); rays not reflected pass through
the crystal. The 'focusing' configuration (b) is, in fact, telescope and polarizer in one; when
a separate telescope provides the focusing, the Bragg reflector can be flat (a). Focusing is
important for obtaining the low instrumental background count rate associated with a small
detector; lower detector background noise will permit observations of fainter astronomical
sources.

of linear polarization exist for several other sources. The existence of a recent
technical conference volume on X-ray and ultraviolet polarimetry (Fineschi
1994) is sufficient evidence of continuing interest and development; in par-
ticular, the development of X-ray retarders may make circular polarimetry a
possibility in due course.

Existing X-ray polarimeters are basically of a simple 'optical' type, consisting
of a linear polarizer followed by or combined with detectors, the whole assembly
(with or without the telescope) rotated about the optical axis. The polarimeters
that can be used at the focus of a telescope (soft X-rays, energies up to «15 keV)
are of two designs, each used for a different purpose:

• Bragg crystal polarimeter. In such an instrument (fig. 6.17), Bragg reflection
is used (constructive interference of the waves scattered from successive
atomic layers within the crystal). For a given angle of incidence, a very
narrow range of wavelengths is reflected. A graphite Bragg reflector is
usually made up of many micro-crystals with orientations differing by a
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X-rays from telescope

Rotation axis of polarimeter
(optical axis of telescope)

Fig. 6.18 The Stellar X-ray Polarimeter, SXRP (there are, in fact, four detector panels, the front
panel is not shown). Bragg (graphite) and Thomson (lithium) scattering polarimeters combined
into a single instrument. The graphite crystal behaves as a single-beam narrow-band reflection
linear polarizer for two wavelengths; radiation of other wavelengths passes straight through the
graphite and is used by the lithium polarimeter. The lithium polarimeter is of the double-beam
type: the polarized component appears alternately in one or the other pair of detectors as the
instrument is rotated at «1 rev/min. The lithium polarimeter can achieve moderate spectral
resolution for strong signals, by energy-binning the output pulses of the proportional counter.
Figure kindly provided by P. Kaaret.

few degrees; each micro-crystal then reflects a slightly different wavelength
and the resultant bandwidth has a more useful value (without the loss of
effective area that an array of larger mono-crystals would produce: radiation
passes straight through the matrix until it finds a micro-crystal of the correct
orientation, thus the entire reflector area contributes at all wavelengths within
the passband determined by the distribution of orientations of the micro-
crystals). The first-order band for graphite is at 2.6 keV, and the OSO-8 Crab
Nebula observation in fig. 3.6 was made with such a polarimeter operating
at 15% bandwidths centred on 2.6 and 5.2 keV.
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Fig. 6.19 Polarimetric efficiency of the lithium Thomson scattering (o) and graphite Bragg (+)
polarimeters for SXRP; the useful energy range of the system will be from 2.6 to about 15keV,
the telescope limiting the performance at the high-energy end. Figure kindly provided by
P. Kaaret and R. Eisner; data from Eisner et al (1990).

• Thomson scattering polarimeter. When a material scatters X-rays efficiently
(compared with absorbing them), this can be used to construct broad-band
polarimeters, since linearly polarized radiation is scattered preferentially at
right angles to the direction of vibration of the electric vector (see fig. 6.18;
further development of such techniques for hard X-rays (50-500 keV), using
fibre scintillators, is proposed by Costa et al (1994)).

Fig. 6.18 shows the combined Bragg and Thomson polarimeters of SXRP,
which, associated with the SODART telescope (150 nested stretched-foil
grazing-incidence mirrors) will allow sensitive linear X-ray polarimetry on
the Spectrum-X-Gamma mission. Fig. 6.19 shows the polarimetric efficiency
of these instruments. A minimum detectable degree of polarization of about
0.5% is expected for 30 hours of integration on the Crab Nebula (Kaaret et al
1994); clearly X-ray polarimetry will be largely photon-limited for some time
to come.

A completely new type of imaging linear spectro-polarimeter for X-rays of a
few tens of kilo-electron-volts may result from the work reported by Tsunemi
et al (1994). Charge clouds from polarized X-ray photons striking a CCD in
an imaging setup are found to be elongated along the electric field vector of
the incident radiation, while the number of electrons in each cloud depends
on the energy of the X-rays, as usual. The first practical test of this principle
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was effective from about 20 to 40keV, with polarimetric efficiency of order 0.1
or 0.2; the technique seems capable of considerable improvement. A test of a
somewhat similar idea is reported by Austin et a\. (1994) for the 40-100 keV
range: the ejection directions of K-shell photo-electrons in a proportional
ionization chamber are correlated with the linear polarization of the incident
X-rays. Via electron multiplication leading to optical emission, followed by
CCD readout and software analysis of the optical image, the original ejection
direction is determined. A measured polarimetric efficiency of 30% at 60keV
is reported for the laboratory test. It will be some years yet before these new
ideas are translated into practical astronomical polarimeters.

6.7 y-ray systems
Polarimetry at y-ray wavelengths has not yet started. Kotov (1988) reports
acceptable modulation efficiencies between 25 and 90% for various interactions
with y-ray detectors that could be used to measure y-ray (linear) polarization
and explores the possibility of using the COMPTEL telescope on the y-ray
observatory GRO. Kotov concludes that marginal observations (3<x) at degrees
of polarization of 15 to 50% will take integration times of one to three months!
Enough said for the moment; astronomical urgency will have to be shown first.



7
Case studies

In this final chapter, several original papers from the literature are introduced,
primarily as illustrations of modern instrumentation. The focus of this book
being the measurement of polarization, the astronomy involved was a secondary
consideration in selecting these particular papers from the wide range available.
Readers are urged to test their grasp of polarimetric fundamentals by selecting
a dozen or so further papers from those listed in the subject index of the more
recent volumes of Astronomy and Astrophysics Abstracts under 'polarimeters',
'polarimetry' or 'polarization'.

7.1 Multi-channel optical polarimetry using photomultipliers

A suitable example of optical polarimetry by the 'classical' technique of 100 Hz
modulation and photomultiplier detectors is given in Konnen and Tinbergen
(1991) and Konnen et a\. (1993). It concerns an attempt to detect ice crystals
in the upper parts of the Venus atmosphere by using the polarization peak at
the 22° halo angle as a diagnostic. A large body of earlier Venus polarimetry
exists, and scientific results derived from it are reviewed in Van de Hulst (1980,
section 18.1.5 and references therein).

The terrestrial 22° halo and related phenomena owe their polarization to
birefringence of the ice crystals that produce the halo. These crystals operate
as 60° prisms, deviating the light from the Sun by an amount depending on
the refractive index of the ice, hence by an amount which depends on the
polarization of the light. The Sun's image has a sufficiently sharp edge for no-
ticeable separation of the haloes as seen in two orthogonal linear polarizations
(parallel and perpendicular to the scattering plane). The theory of this is well
established; Konnen and Tinbergen (1991) document measurements on such a
halo and a mock Sun. These measurements fit the theory to perfection.

When the Sun-Venus-Earth angle passes through 22°, one would expect
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any Venus ice crystals to cause a short-lived reduction of the otherwise slowly
varying Venus polarization (which is due to scattering at the sulphuric acid
droplets in the clouds); the timing of such reduction will depend on the
wavelength in a predictable manner.

This basic idea was put to the test using a multi-channel photomultiplier po-
larimeter with 100 Hz modulation; technical details can be found in Tinbergen
(1987b). The astronomically relevant part of the investigation is reported in
Konnen et al. (1993). When the halo angle is passed, Venus is only about 15°
from the Sun, so daytime observations are necessary. The precautions taken
to eliminate errors by scattered light and background polarization (bright blue
sky) are discussed, as are the statistical errors obtained at several levels of
combination of the individual observations. The reduction procedure is sum-
marized below; it is typical of stellar/planetary polarimetry using single-pixel
detectors (only the last two steps are specific to the scientific project).

• Subtract background polarized component (in /,  Q, U, in the instrument
coordinate system) via interpolation of the 'sky' observations (which include
light scattered via the floor etc. and then via the white inside of the dome).

• Form Q/I, U/I.
• Subtract instrumental polarization (determined by night-time observations

of zero-polarization stars).
• Correct for wavelength dependence of polarization angle, caused by super-

achromatic halfwave plate modulator.
• Transform to coordinate system defined by the Sun-Venus-Earth plane

(astronomical system).
• Plot Q/I, U/I against scattering angle. U/I should be nearly zero and show

no particular structure near 22°.

Interpretation involves the dependence, on scattering angle and wavelength,
of Q/I (astronomical coordinate system). As temporal changes in the Venus
atmosphere contaminate the expected variation of polarization with scattering
angle, this interpretation is complicated and is not really relevant to this book;
for details, the reader is referred to Konnen et al. (1993).

7.2 Optical spectro-polarimetry using CCD detectors
Early examples of CCD spectro-polarimetry using the common-user spectro-
graph shown in fig. 6.5 are those reported by Rutten and Dhillon (1992) and
by Schild and Schmid (1992) (see fig. 3.9). This well-documented spectrograph
is a red/blue/faint-object triple instrument using a common-slit facility which
includes the polarization module; it is described in detail in its manual (Clegg
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et al. 1992), while polarimetric application is the subject of a separate manual
(Tinbergen and Rutten 1992). The polarimetric regime is used routinely, for
both linear and circular polarimetry in spectral and in imaging mode; long-slit
spectral mode is a third option.

CCD spectro-polarimetry in many ways is just multi-channel polarimetry,
as discussed in the previous section. The differences are in the modulation
rate (very slow), double-beam operation and in the data reduction (which
must cope with roughly 1000 wavelength channels). A complication of the
William Herschel Telescope (a complication which has its uses in polarimetry)
is that it has an alt-azimuth mounting, with an instrument rotator to allow
one to keep the instrument axes aligned with the equatorial coordinate system.
In polarimetry, one generally prefers not to disturb the relationship between
telescope and instrument, as that would change the instrumental polarization
zeropoint. The compromise one uses in actual practice is discussed by Tin-
bergen and Rutten (1992, p. 18); other sections of that instrument manual
worth looking at are those on scattered light and on photon shot noise in
polarimetry.

7.3 Solar imaging spectro-polarimetry by advanced CCD methods
By far the most advanced polarimetry being attempted in the optical wavelength
region is that planned for the Large Earth-based Solar Telescope LEST (fig. 5.1).
An introduction to this planned 2.4 m helium-filled tower telescope (for optimal
atmospheric seeing) is given by Engvold (1992). Polarimetry is an essential
option of almost all of its instrumentation. For the polarimetric aims, I quote
from the LEST Foundation Annual Report 1993, section 3:

The scientific aims of LEST require polarization measurements with high sensitivity and
accuracy...polarimetry system needs to record all four Stokes parameters over the full
wavelength range that the core telescope provides (0.3-2.7 \im)...polarimetry is an in-
tegral part of LEST.Jn particular the near-infrared, where the ratio between Zeeman
splitting and Doppler width increases proportional to wavelength...observations of intra-
network fields in the photosphere and weak chromospheric fields require high polarimetric
sensitivity...determinations of the field orientation require high accuracy of in particular,
the linear polarization...most specifications must be met by all systems: •sensitivity de-
termined by photon statistics, at least 10~4 of the total intensity •  accuracy (cross-talk
between Stokes components, off-diagonal elements in the Mueller matrix of the instru-
ment) better than 10~3 • wavelength coverage 0.3 to 2.7\im; simultaneous wavelength
coverage over at least 1000 A •photon flux not reduced by more than a factor of 3 by
the polarimeter •up to 10 full frames per second...the main problem with the LEST po-
larimetry system is due to the core telescope itself. Birefringence due to remaining stress
in the front window of LEST is a major source of cross-talk between the Stokes param-
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eters (at least for the visible). Much of the engineering work...should be devoted to the
window behaviour and the polarization calibration of the telescope.

The polarization behaviour of the telescope itself is discussed by McGuire
and Chipman (1988); Keller et a\. (1992) is a design review of a prototype
imaging full-Stokes polarimeter for visible wavelengths; Povel et a\. (1989) and
Stenflo et a\. (1992) report on the development of some important details of
such a polarimeter. Together, these papers take the reader right up to the
state-of-the-art in optical polarimetry.

7.4 Single-dish radio-polarimetry; atmospheric compensation
The 2.8 cm study of M51 by Neininger (1992) is a very good example of modern
radio-polarimetry (see fig. 3.4). The sophisticated receiving system which made
the study possible is described briefly in Schmidt et al. (1993); a similar 9 mm
system is described in more detail by Morsi and Reich (1986).

The polarization of M51 has been studied, at many different wavelengths,
to determine the magnetic field structure and to put constraints on dynamo
models for the origin of the large-scale magnetic field. Interpretation of opti-
cal polarimetry of external galaxies is always confused by scattered radiation,
at radio wavelengths the problem is Faraday rotation. This study at 2.8 cm
manages to avoid both problems, Faraday rotation being less (probably con-
siderably less) than 5° throughout the field. The multi-beam receiving system
is sensitive enough for this application and the beam-switching eliminates most
of the atmospheric noise.

Although Neininger used a technologically advanced observing system, most
of his paper is devoted to a discussion of the results and their implications for
models of the origin of the magnetic field. This is a tribute both to the quality
of the receivers and to the contribution of polarimetry to astrophysics.

7.5 Radio synthesis array imaging polarimetry
The study by Wieringa et al. (1993) is a suitable vehicle for examining the
strengths and limitations of synthesis polarimetry. The reader can gain a good
impression of the importance and subtlety of data processing in a mature
synthesis system, and of the extra freedom offered by a synthesis telescope
for designing calibration procedures (see Sault et al (1995) for more recent
developments).

Fig. 7.1 shows a WSRT field on which sensitive galactic-foreground con-
tinuum polarimetry was performed (partly serendipitously, while pursuing a
cosmological goal, viz. attempted detection of 21 cm line radiation at a redshift
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Fig. 7.1 Synthesis array polarimetry, at 325 MHz, of local galactic continuum radiation
(Wieringa et al. 1993); plane of vibration of the electric vector, small-scale structure only,
strongest point sources removed. The scale of the polarization lines is indicated by the boxed
line at lower left (0.1 Jy/pixel). The direction of the large-scale magnetic field, as deduced from
multi-frequency single-dish observations (Spoelstra 1984), is shown in the inset top left, with
approximate size and location of the synthesis frame sketched in (dotted square).

of 3.3). In studying this material, one should bear in mind that the smallest
spacings of the interferometers were absent, so that (polarization) structure
of larger scale than about 1° has been filtered out. However, this large-scale
structure is known approximately from the multi-frequency single-dish study
by Spoelstra (1984); no observations at 325 MHz exist, but an extrapolation
can be made, see the maps of polarization angle and polarization brightness
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temperature (figures 7 and 8 of Brouw and Spoelstra 1976); the large-scale
magnetic field direction (at right angles to the vibration direction of the electric
field for 'as-emitted' synchrotron radiation) is indicated in fig. 7.1.

Wieringa et al. (1993) note that the / map does not contain features corre-
sponding to the polarization structure, therefore the small-scale structure in the
polarization must be caused by small-scale structure in polarization conversion
(without loss of/, i.e. non-zero off-diagonal elements only in rows or columns
2, 3 and 4 of the Mueller matrix of the intervening medium). Highly struc-
tured foreground Faraday rotation of radiation from a spatially very smooth
polarized background source is the suggested mechanism. This background
polarized component with only large-scale structure could be identical to that
documented by Spoelstra.

7.6 Sub-millimetre polarimetry
The hybrid nature of (sub-)millimetre polarimetry is well illustrated by Clemens
et al. (1990). In their instrument, a rotating halfwave modulator at room
temperature is combined with a cooled wire-grid polarization beam-splitter
(dual-beam analyser) and an existing cooled 1.3 mm dual radio receiver. A
level of accuracy in degree of polarization of about 0.02% was reached, which
is heroic considering that 'even for a relatively bright source like the Orion
cloud core, the unpolarized flux represents only 0.05% of the receiver plus sky
noisc.this drives the dynamic range to almost 106...the cost of the project had
to be essentially zero'. The paper discusses typically optical items like halfwave
plate (grooved Plexiglass) modulation and equally typical radio concerns like
sidelobe polarization and linearity of the electronics, while typically far-infrared
preoccupation with sky opacity and background is never far out of the picture,
either. The superb experimental skill involved is evident from the overview
table 1.3, in which the 1.3 mm entry refers to Clemens et al (1990).

7.7 Ultraviolet polarimetry
Very little ultraviolet polarimetry exists at present (see section 6.5), but the HST
will help to put this right. One should beware of instrumental polarization
effects in COSTAR-assisted data (however, pre-COSTAR polarimetry also has
its problems; see Somerville et al (1994, section 3)).

The interstellar polarization curve for the star HD161056 is now documented
over a 25:1 range in wavelength , with really astonishing accuracy (fig. 3.11).
The relevant papers are listed in the references of Somerville et al (1994).
Although the HST/FOS polarimetry does not seem to be of quite the same
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quality as that of WUPPE (Clayton et al 1992, Nordsieck et al 1994a), the very
complete documentation of the interstellar polarization of the light from one
particular star is worth studying. The main concern of ultraviolet polarimetry
in this field of astronomy is the search for deviations from the empirical
'Serkowski' curve and for more stringent constraints on grain models and size
distributions.
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These exercises are intended both for private study and for classroom discus-
sions; they raise questions and topics that keep on surfacing in the author's
own mind. Many of the exercises are rather open-ended, so only 'hints' are
provided (as opposed to 'answers to problems').

Chapter 1
1.1 Look up 'polarimetry' and/or 'polarization' in the latest volume of Astron-

omy and Astrophysics Abstracts. Take any astronomical topic you fancy
and, using the references in the Abstracts and in the papers you find, trace
the use of polarization in your chosen topic back to its origin. How does
the original paper you find fit into the 'milestones'? Take several other
astronomical topics and repeat the exercise; can you improve on tables 1.2
and 1.3? Write summaries of the papers for future reference; you will
enjoy reading them later.

1.2 Take two Polaroids and look at a bright source of light through the two in
series. Now rotate one of them. Do you get complete extinction at some
angle of rotation? If not, try to explain what you do see.

Now discard one of the Polaroids and look through the other at the
world around you, rotating the Polaroid as you do so. Examine, in
particular, blue sky about 90° from the Sun, clear sky close to the Full
Moon and at about 90° from it, a rainbow, a mock Sun, the 22° halo,
light reflected off a puddle in the road and off a nice shiny car. Make
notes on what you observe.

1.3 Take two Polaroids, rotate one for (near-)extinction. Now insert a third
Polaroid and/or any other transparent material into the space between
the Polaroids. Rotate the middle component. Try to explain qualitatively
what you see.

132



Exercises 133

Now use a piece of plastic foil as the middle component and stretch
it. Also use a piece of Perspex and bend it. Note down everything you
observe, for future reference (after chapter 6 you should be able to analyse
what you have seen).

Chapter 2
2.1 Can LHC polarization change 'very slowly' into RHC? If so, how? If not,

why not?
2.2 Which word should Sir George Gabriel Stokes (or his CUP support staff)

have used instead of 'oppositely' (marked sic! in the quotation on p. 17
from Stokes (1901))?

2.3 Can monochromatic radiation be unpolarized? Discuss the reasons for
whatever answer you give.

2.4 How would you describe the relationship,between two polarization states
represented by opposite ends of any diameter of the Poincare sphere?

2.5 How would you describe the polarization state represented by a point
within the Poincare sphere that describes a circle in the equatorial plane,
at a uniform speed of 1 rotation per second and at a radius of 0.5?
Answer the same question for a circle plane at right angles to the equa-
torial plane and for a circle plane at an arbitrary angle to the equatorial
plane.

2.6 In the production of unpolarized radiation, 'all values of /? and % will
occur'. What does this imply for the polarization ellipse of the radiation,
and can you determine from that geometrical picture that the time average
must indeed be 'zero polarization'?

2.7 'If polarization measurements yield a null result no matter what polariza-
tion form one tries to detect, the radiation under scrutiny is said to be
unpolarized.' What is the minimum number of polarization measurements
required to determine that a particular beam of radiation is unpolarized?
Assume that 'very slow variations' do not occur, i.e. that the statistical
properties of the signal do not evolve.

2.8 During the author's initiation as a polarimetrist (Westerhout et al. \%T),
a sequence of 12 hours of observations of the celestial North Pole yielded
results schematically represented in fig. Ex.1. What do you think should
be the interpretation of the ellipse with axial ratio close to 2 and major
axis aligned more or less radially?

2.9 In quasi-monochromatic 100% linearly polarized radiation, the orienta-
tion of the plane of vibration may change very slowly. One may also
conceive of quasi-monochromatic linearly polarized radiation for which
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Fig. Ex.1 The author's first steps as a polarimetrist. This figure shows, plotted in polar
coordinates, 12 hours of observations at the celestial (equatorial) North Pole, with a stationary
alt-azimuth telescope. Jp is the polarized intensity and 6 is the polarization angle, as deduced
from the sinusoidal variation of the 'polarization' output of the receiver (see fig. 6.12).

phase and amplitude change only very slowly, while, on the other hand, the
orientation changes slowly in a random manner. How would you describe
the state of polarization of such radiation? Would you say the concept of
slowly changing orientation is very useful?

Chapter 3

3.1 Why would you, in general, expect observed polarization to rise as the
resolution of an observation is increased (distinguish between spectral and
spatial resolution)? Can you think of exceptions to this general rule?

3.2 Having observed that the light from a sunspot umbra is, in general,
polarized at some (low) level, how would you attempt to distinguish
between scattering and magnetic fields as the origin of this?

3.3 Sunspots often occur in pairs, of opposite magnetic polarity. What is
the relationship between the polarization of normal Zeeman triplets from
the members of such a pair? Would you expect any observable effect (in
polarization and/or in some other way) for a remote (i.e. point source)
star with many such pairs of spots on its surface?

3.4 Red supergiant stars such as Betelgeuse and Antares show variable, wave-
length-dependent, linear polarization which is attributed to asymmetries
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in the scattering of photospheric light by the tenuous outer layers of the
atmosphere. The asymmetry could be in the photospheric light distribution
or in the distribution of scatterers. Convince yourself that either of
these possibilities will indeed generate linear polarization; how would you
attempt to distinguish between them?

3.5 If the charge-to-mass ratio of the electron had been much larger than
it actually is, the dispersion with frequency of the pulse arrival times
and of the Faraday rotations would also have been (very) much larger.
How would this have affected the discovery of (the polarization of) radio
pulsars? Given the theoretical concept of neutron stars and the oblique-
rotator model for magnetic A stars, polarization of pulsed radio emission
might nevertheless have been predicted. How would you set out to verify
such a prediction?

3.6 In the universe of the previous exercise, would you expect linear polariza-
tion of extragalactic radio sources to have been discovered at all? If so,
how and when? If not, why not?

3.7 Polarization of radiation always implies some sort of asymmetry some-
where. Is it possible that a velocity of the source relative to the observer
could generate or modify polarization (transverse velocity = > linear po-
larization, longitudinal => circular)? In particular, can radiation that
is emitted unpolarized in the frame of the source appear polarized to
an observer, by the mere fact of relativistic motion of source relative to
observer?

Chapter 4
4.1 In example 3 of section 4.1, a Mueller matrix is derived for a linear

polarizer in general orientation 9. Does it work out all right for the — Q
polarizer of example 2? And what is the Mueller matrix for 9 = 180°, or
9 = +45°? Verify that your matrices actually do what you would expect,
for several relevant input Stokes vectors (such as: linear polarization
in several orientations, unpolarized and circularly polarized radiation,
partially and elliptically polarized radiation).

4.2 What is the Mueller matrix of a halfwave plate in principal orientation?
What does such a halfwave plate do to circular polarization? And what
does it do to linear polarization at an angle 91

4.3 What is the Mueller matrix of a halfwave plate at an arbitrary orientation
xpl What is the output for constant input linear polarization as the
halfwave plate is rotated at a uniform rate? And what is the output in
that case for constant input circular polarization?
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4.4 Prove to yourself that a quarterwave plate oriented at an angle 9 has the
following Mueller matrix:

/ 1 0 0 0 \
0 (cos20)2 cos20-sin20 -sin 20
0 cos20sin20 (sin20)2 cos 20

\ 0 sin29 -cos29 0 /

What does such a quarterwave plate do to Q when 9 = +45°? And to
VI

4.5 The usual way to produce circularly polarized light is to use a lin-
ear polarizer, followed by a quarterwave plate at an orientation of
45°; the combination is an 'inhomogeneous circular polarizer'. The
combination has practical disadvantages, since the quarterwave plate is
never completely achromatic. Fresnel constructed a two-beam homoge-
neous circular polarizer by using alternate prisms of right-handed and
left-handed quartz crystals (Hecht and Zajac 1974, figure 8.59; Col-
lett 1993, figure A-3). Write down the Mueller matrix for each of
these two types of circular polarizer and discuss the differences. Sten-
flo (1994, p. 38) introduces a 'circular polarization filter' consisting of
two quarterwave plates with parallel orientation, with a linear polar-
izer at 45° sandwiched between them. Use Mueller matrices to discuss
the behaviour of this component in relation to that of the previous
two.

4.6 Given that Faraday rotation is proportional to the square of the wave-
length, what is the Mueller matrix at wavelength k metres for a medium
which rotates the plane of polarization by x radians at a wavelength of
\xmetres? How does this medium affect circular polarization?

4.7 In the (rarely used) complex Q + iU plane mentioned in section 2.6,
how would you represent the integrated linearly polarized radiation re-
ceived from the volume within the telescope beam, assuming linearly
polarized emission and a thermal plasma causing Faraday rotation, both
distributed along the line of sight? Does the form of this integral
remind you of anything? Can you use that insight in any practical
way?

4.8 In the (more usual) complex plane of section 4.6, states of polarization
are characterized by only two parameters. How is this related to the
statement that the four Stokes parameters provide a complete description
of polarized radiation?
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4.9 Collett (1993, p. 75) gives the Mueller matrix of a linear retarder in
principal orientation as

/ 1 0 0 0 \
0 1 0 0
0 0 cos(/> — sin</>

\ 0 0 sin(/> cos</>
Compare this with our example 4 in section 4.1. Why the sign differences?

4.10 If you have access to computer facilities with matrix manipulation and
plotting routines, try the following design exercise (which took the au-
thor weeks in 1972, writing his own matrix multiplication subroutines
and plotting the results by hand): Pancharatnam's (1955b) recipe for an
achromatic halfwave (linear) retarder is to use a stack of three identical
simple (linear) halfwave plates, the outer two having their 'fast' axes
parallel, while the central one has its fast axis rotated through an angle
\p (a little less than 60°) with respect to the outer two. By matrix mul-
tiplication and by producing as a display a 4 x 4 array of spectra for
the matrix of the complete stack (as in fig. 4.1), investigate what happens
when you let xp take the values 52°, 56°, 58°, 59° and 59°5. Note that the
abscissa in the display of fig. 4.1 is relative retardation (a monotonically
and non-linearly decreasing function of wavelength), with the value 1
referring to a wavelength somewhat blueward of the centre of the design
range; refer to Tinbergen (1973) if you need more detail.

If you have managed this exercise, you might like to investigate manu-
facturing tolerances on the thickness of (a) the central plate and (b) one
of the outer plates; this will give you some feeling for the kind of work
an optical instrument designer spends most of his time on.

4.11 Pancharatnam (1955b) states that an assembly of three linear retarders,
the outer two being quarterwave plates with their axes parallel and the
central retarder a halfwave plate, can act as a linear retarder with its
axes at 45° to those of the outer pair; the effective retardation of the
combination is four times the angle which the axes of the central plate
make with respect to those of the outer two. Prove this for yourself using
Mueller matrices. Can you suggest practical applications of this?

Chapter 5
5.1 The new 'multi-frequency front-ends' of the component dishes of the West-

erbork Radio Synthesis Telescope can rotate the entire focus assembly to
position the front-end unit for the chosen observing frequency on to the
optical axis of the mirror. This is more complicated than permanently
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mounting the several front-end units side by side in the focal plane and it
does not allow simultaneous multi-frequency observations (except at widely
separated frequencies, for which two or three units can be concentric with
each other). What do you think could be one reason for this design choice?
What does your answer imply for the Arecibo telescope, where the mirror
is stationary and the focus box is moved to follow a source as the sky
sweeps past?

5.2 Having redrawn fig. Ex.1 in exercise 2.8, address the main question of how
to interpret the ellipse (now a circle).

5.3 The spectro-polarimeter of fig. 6.5 uses gratings of the type illustrated in
fig. 5.7. In view of the inherently erratic polarization behaviour of such
gratings, can one trust the polarization spectra obtained? Indicate when
your answer may break down.

5.4 'A spectrograph on a Nasmyth platform will allow reliable Zeeman po-
larimetry, provided the right precautions are taken.' Using the fact that an
oblique mirror acts simultaneously as a partial linear polarizer and a linear
retarder (the axes for both actions being aligned and both actions being
slow functions of wavelength), consider the polarimetric errors introduced
by the Nasmyth mirror. Devise ways to minimize the effect of such errors
on the Zeeman measurements, using Mueller matrix treatment if possible.
Identify 'the right precautions'.

5.5 It has been claimed that, by determining all four Stokes parameters for
each of four calibration sources in the sky, one may determine all 16
elements of the Mueller matrix of the telescope. One can then invert this
matrix and compute the true polarization of any other source for which
one has obtained the measured values of all four Stokes parameters. What
are the implicit assumptions in this statement and are they likely to be
realized? Can you indicate restrictions on the calibration sources? Dis-
tinguish between the following types of telescope: (a) optical, (b) radio:
single-dish, and (c) radio: synthesis.

5.6 To obtain a low level of (grating) sidelobes with a synthesis radio telescope,
one commonly repeats observations of a given field with a different set of
spacings between the individual dishes. Given the variability of the Earth's
ionosphere, what do you think the influence will be on polarimetry carried
out in this way, and how would you attempt to minimize such influence?

Chapter 6
6.1 In the sine-wave modulator of fig. 6.1, how many periods does the sine

wave go through for one revolution of the halfwave plate?
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6.2 The sine-wave and square-wave modulators of fig. 6.1 can both be used
for linear or circular polarization, by retaining or removing component 1.
Discuss the modulation efficiency (and the consequent effective efficiency
of telescope use) of these alternative modulators, for the following cases:
(a) circular polarization;
(b) linear polarization of unknown polarization angle;
(c) linear polarization of known position angle.

6.3 Prove to yourself that, in the receiver system of fig. 6.12, the switched
halfwave retarder is not needed for the basic action of the circuits. Why
do you think the designer has added the complication of synchronized
modulation and demodulation?

6.4 What is the function of the signal-frequency noise source in fig. 6.14? And
of the circulators?

6.5 Single-dish radio telescopes receive a significant fraction of their signal
from directions outside the main beam. To correct a raw sky map for such
radiation, one needs an approximation to this sky map and a measurement
of the antenna pattern; these data can be obtained nowadays, and in
principle the correction can be carried out. To apply such a method
properly to 21 cm Zeeman emission measurements, one would need a full
Mueller matrix antenna pattern and a full Stokes vector sky map, both as
a function of radial velocity (frequency). This sounds like a stupendous
problem; by considering the relative size of the various combinations of
Stokes parameters and matrix elements, can you reduce the problem to
manageable proportions?

6.6 Synthesis radio telescopes are less susceptible than single-dish instruments
to spurious 'polarized' signals caused by radiation entering through the
sidelobes. What is the reason for this relative immunity and can you think
of exceptions?

6.7 Suppose that, in the universe of exercises 3.5 and 3.6, the Crab pulsar had
been successfully detected at X-ray and optical wavelengths. Given the
extreme sensitivity of Faraday rotation to longitudinal magnetic fields, at-
tempts to measure galactic Faraday rotations would be undertaken at some
point and (radio polarization of) pulsars would have been proposed as a
consequence of the oblique-rotator model for the Crab pulsar. Specify de-
sign aims for a radio system (telescope, receivers, computers) to (a) confirm
the existence and measure the polarization of decimetric radio emission
from the Crab pulsar, and (b) search at decimetric wavelengths for other
examples of the pulsar phenomenon and, if such are found, to measure
their polarization. You may assume that sufficient computer power can be
made available for your reduction and instrument-control needs.
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Chapter 7
7.1 Scan the index of this book and look up any item that still looks unfamiliar.
7.2 Read again the most recent paper on each of the topics you selected for

exercise 1.1. You should be able to follow all the polarimetric aspects now,
in detail. Compare your understanding now with your previous notes.
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Chapter 2
2.1 Fully polarized, unpolarized?
2.2 Definition of monochromatic?
2.3 p.
2.7 Q, U, V = 0, / ^ 0.
2.8 This way of plotting is not necessarily wrong, but it ignores the true-

vector interpretation of the Q, U number-pair. A similar case found in the
literature included a vector (with arrowhead) from the origin to the centre
of the ellipse. That is wrong; why? Similarly, what is wrong with calling
fig. 3.7 a 'vector map'? Redraw fig. Ex.1 in a more useful representation.

2.9 Averaging in definition of Stokes parameters. Degree of polarization.

Chapter 3
3.1 Depolarization = ??? of polarization.
3.2 Geometric configuration, type of polarization, spectral dependence.
3.3 (Inverse) Zeeman effect/Jenkins and White (1950); rotation; Doppler shift.
3.5 Spectral region, bandwidth, dispersion compensation, Lang (1980).
3.6 Faraday rotation in the Earth's ionosphere, the Galaxy and in the source

itself; technical developments.
3.7 This problem illustrates how a hunch based on symmetry needs the support

of a detailed mechanism. I am assured, by those more versed in relativity
than I am, that the degree of circular polarization and the degree of
linear polarization are separately invariant under Lorentz transformations
(Landau and Lifshitz 1975, p. 123). Within the invariant degree of linear
polarization, the polarization angle will, in general, change from one frame
to another (as will the perceived direction of the beam, the flux density
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and the wavelength; these, however, have nothing to do with polarization
as such). But unpolarized radiation will be unpolarized to all observers.

Chapter 4
4.3 It's all in the matrix, y'know!
4.4 Now compare with fig. 4.1.
4.5 Fig. 4.1 and table 4.2; also Shurcliff (1962).
4.6 Eigenmodes?
4.7 Fx = ftt W{X2) = /+^w(£)e2 a^ df. Can you define in words

what W(X2) = Q + iU and w(£) stand for ? Total volume within antenna
beam. See Burn (1966, p. 71).

4.8 Degree of polarization. Flow of radiant energy. Polarization state.
4.9 Compare Collett (1993) with Clarke and Grainger (1971, p 37).

4.11 Axes of combination at 45° to those of the outer pair. Would an
achromatic but variable retarder be useful? If so, how would you
construct one?

Chapter 5
5.2 Section 5.5.4.
5.3 Modulation, retarder, stability, signal strength.
5.5 Instrumental stability, conditions on matrix and polarization of the cali-

bration sources.
5.6 What information does one need to correct the effects and how does one

get it (from own instruments, from those of others) ?

Chapter 6
6.4 Correlated noise.
6.5 Zeeman measurements use polarization of spectral lines. Spectral structure

of polarized sidelobes? Polarization of 21 cm line, averaged over sky?
Strong point sources?

6.6 Correlated signals.
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Index

Ap stars, 31
accretion disc, 37
accuracy, 7, 71, 79, 80

photometric, 89
achromatic systems, 103
achromatic wave plates, see retarder, achromatic
active galaxies, 35
active regions, see magnetically active regions
AIPS, 89
AIPS++, 89
amplitude, 10, 12, 15, 58, 74
amplitude superposition, see coherent sum
anisotropy, 2
astronomical signals, polarization of, 27
asymmetry, 2, 13, 27, 28, 69, 71, 82
attenutation, 39
average, 20, 21
axial ratio, 13, 14, 16, 17, 61
azimuth, 16, 61

beam ellipticity, 83
birefringence, 17, 19, 39, 43, 44, 51, 60, 68, 96
black holes, 37
blue sky, 79, 86, 126
Bragg reflection, 121

calcite plate, 99
calibration, 76
carrier frequency, 107
carrier wave, 8, 12
circular birefringence, see birefringence
circular polarization, 2, 12, 16, 22, 49

interstellar, 43
circular polarizer, 94
coherency matrix, 61
coherency vector, 62
coherent sum, 26, 62
common light, 21
complex amplitude, 57
complex correlator, see correlator, complex
complex notation, 38, 57
complex plane, 67
complex refractive index, 39

complex visibility, see visibility, complex
corona, 44
correlation, 74
correlation interferometer, 48, 62, 64, 78, 84, 86,

110, 113, 116
correlator, 61, 110

complex, 116
digital, 110
output of, 116

correlator polarimetry, see polarimetry, correlator
CP representation, 54
Crab Nebula, 35
crystal polarimeter, see polarimeter, crystal

degree of circular polarization, 22
degree of linear polarization, 22
degree of polarization, 2, 22, 23, 73, 79, 94

complex, 23
maximum, see polarization, astronomical

depolarization, 70, 79
Faraday, see Faraday depolarization

depolarizer, 52
linear, 53
Lyot, 52

detectors, 8, 93
deterministic Mueller matrices, see Mueller

matrices, pure
diagonalized Mueller matrix, see Mueller matrices,

diagonalized
diattenuation, 60, 69
dichroism, 39, 41, 42
differential extinction, 42
differential measurement, 73, 106
direction of propagation, see propagation
direction of vibration, 79
dual-sideband receiver, 110, 113

efficiency
modulation, see polarimetric efficiency
polarimetric, see polarimetric efficiency

eigenmodes, 18, 19
elliptical, 44

elliptical birefringence, see birefringence
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elliptical polarization, 2, 13, 16, 22
energy, radiant, see radiant energy
ensemble-average, see average
errors, 74, 76, 83

photometric, 27, 53, 89, 90
polarization, 76
Zeeman polarimetry, 87

ethereal displacements, 17
extinction, 42

Faraday depolarization, 43, 53, 88
Faraday rotation, 19, 34, 36, 43, 53, 68, 79, 81, I

110, 128, 130
Faraday screen, 53
feed antenna, 74, 79, 83, 111

polarized, see polarized feed antenna
field pattern, electric, 9
FIGARO, 89
frequency

carrier, 107
intermediate, 109
local oscillator, 109
signal, 8

Fresnel rhomb, see retarder, achromatic

y-ray polarimetry, see polarimetry, y-ray
gauss, 28
graphical representation, 22, 25, 54, 64, 67
grazing incidence, 69, 70

halfwave plate, see retarder
halo, 125
handedness, 12, 13
Hanle effect, 30
helix, polarization, 9
history, 17, 25, 46
history of polarimetry, 5

image frequency, 110
image rejecting mixer, 110
imaging polarimetry, see polarimetry, imaging
incoherent sum, 20, 25, 26, 62
independent modes, 11, 13, 17
independent solutions, 21
infrared polarimetry, see polarimetry, infrared
instrumental polarization, 71, 80, 120, 126
intensity, see radiometry
intensity superposition, see incoherent sum
interferometer, see correlation interferometer
intermediate frequency, 109
interstellar grains, 42, 43
ionosphere, 44, 81, 88
IRAF, 89

Jones calculus, 57, 58
three-dimensional, 61

Jones matrices, 57, 62, 77
Jones N-matrices, 61
Jones vector, 57, 58, 62

left-hand-circular, 12, 13

LHC, see left-hand-circular
linear birefringence, see birefringence
linear polarization, 10, 16, 22, 48
linear polarizer, 48, 49, 51, 94, 95, 99

two-beam, 99
linear transformations, see transformations
local oscillator, 79
local oscillator frequency, 109
Lyot depolarizer, 52

magnetic field, 28, 34, 42, 43, 67, 79, 83, 87, 128, 130
magnetic field structure, 30
magnetic induction, 28
magnetically active regions, 30
maser, 34
matrix

complex 2x2, see Jones matrices
4x4, see Mueller matrices
Jones, see Jones matrices
Mueller, see Mueller matrices
Mueller-Stokes, see Mueller matrices
reflection, 68
rotation, see rotator matrix

matrix algebra, 48
Maxwell's equations, 11, 21
methods, computational, 2
MIDAS, 89
mixed state of polarization, 22
modes

independent, see independent modes
orthogonal, see orthogonal modes

modulation, 73, 92, 93
modulation efficiency, see polarimetric efficiency
modulation polarimeters, 101
modulator

electro-optic, 95
photo-elastic, 95, 96
rotating-wave-plate, 94, 99, 106

monochromatic signal, 10-13
Moon, 78
Mueller matrices, 45, 62, 64, 77, 86, 93, 100

astrophysical, 64
astrophysical use of, 67
diagonalized, 54
pure, 64
standard, 48
structure of, 48

natural radiation, 21
NEWSTAR, 89
NOD2, 89
noise

correlated, 80
extinction, 94
photon, 94, 107
scintillation, 94, 101

noise-like signals, 11, 12, 14, 15
nomenclature, 13
non-depolarizing Mueller matrices, see Mueller

matrices, pure
normal modes, see eigenmodes
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opposite polarization forms, see orthogonal modes
optical polarimetry, see polarimetry, optical
orientation, 10, 13

principal, see principal orientation
orthogonal modes, 14, 17, 20, 26, 59, 65

Pancharatnam wave plate, see retarder, achromatic
partial polarization, see polarization, partial
path length, optical, 39
phase, 10, 15, 22, 58
phase difference, 12, 19, 51
photometric errors, see errors, photometric
pictorial representation, 9
plane of polarization, 11
plane polarized wave, 11
planets, 37, 90, 125
plasma, 44
Poincare sphere, 22, 24, 64, 67

used for design, 64
polarimeter

correlation, 110
crystal, 121
fibre scintillator, 123
graphite, 121
hard X-ray, 124
lithium, 122
modulation, 93
radio, 111
Thomson scattering, 123

polarimetric accuracy, see accuracy
polarimetric efficiency, 79, 106, 123
polarimetry

Ap stars, 31
active galaxies, 35
beam-switching, 128
correlator, 107, 110, 113
Crab Nebula, 35
Galactic, 34
y-ray, 124
H26 masers, 34
history of, 5
imaging, 37, 102, 126-8
infrared, 92, 117
jets, 36
millimetre, 119, 130
OH masers, 34
optical, 92, 125-7
precision of, see accuracy
pulsars, 34
quasars, 35
radar, 41
radio-, 106, 128
reasons for, 1
single-dish, 116, 128
solar, 127
sub-millimetre, 119, 130
polarimetry and the Sun, 30
synthesis, 54, 78, 83, 86, 88, 107, 110, 113, 116,

128
time-resolved, 31
ultraviolet, 119, 130

VLBI, 35, 117
white dwarfs, 31
X-ray, 120

polarization
100%, 10, 62
astronomical levels of, 6
in astronomy, 2, 27
background, 78, 126
circular, see circular polarization
data reduction, 88
degree of, see degree of polarization

maximum, see polarization, astronomical
difference signal, 1
elliptical, see elliptical polarization
linear, see linear polarization
mathematics of, 2
maximum, see polarization, astronomical
nature of, 8
partial, 2, 3, 21, 23, 25, 45, 57, 61, 64, 67
spurious, 27
techniques of measurement, 3
by telescopes, 69
typical level, 1

polarization angle, 10, 11, 13, 16, 78
polarization conversion, 86
polarization ellipse, 13
polarization helix, 9
polarization interferometer, 116
polarization lines, 23
polarization modulation, 93
polarization profiles, 30
polarization radiative transfer, 67, 90
polarization ray-tracing, 61, 64
polarization receiver, 111
polarization sidelobes, 83, 85
polarization vectors, 23
polarized feed antenna, 111
polarized intensity, see radiometry
polarized radiation, 8

astronomical, 1
polarizer, 66, 79, 86, 103

calibration, 78, 80
linear, see linear polarizer

polarizing ground reflections, 85
polychromatic signal, 8, 10, 12, 14, 58
position angle, see polarization angle
precision, polarimetric, see accuracy
principal orientation, 51
propagation, 18
pseudo-depolarization, 79
pseudo-depolarizer, see depolarizer
pulsars, 34, 44
pure Mueller matrices, see Mueller matrices, pure
pure state of polarization, 22

quarterwave plate, see retarder
quasars, 35
quasi-longitudinal, 44
quasi-monochromatic, 8, 10, 12, 13, 58
quasi-transverse, 44
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radiance, 16
radiant energy, 9, 12-14, 22, 45, 58
radiant intensity, 16
radiation mechanisms, 31
radiation, scattered, see scattering
radio interferometer, see correlation interferometer
radiometry, 16
radio-polarimetry, see polarimetry, radio-
rebinning, 76, 89
reflection, total-internal, 70
refractive index, 37, 38, 43, 60, 69

complex, 39
representation

pictorial, 9
snapshot, see snapshot

resolution, 92
retardance, 51, 60, 69
retarder, 51, 52, 60, 65, 79, 86, 94, 103

achromatic, 53, 104, 106
superachromatic, 106

RHC, see right-hand-circular
right-hand-circular, 12, 13
rotation axis, 11
rotation, Faraday, see Faraday rotation
rotator matrix, 50, 60

scale, degree of polarization, 79
scattering, 28, 36, 68, 79, 90

multiple, 68
Raman, 38
Rayleigh, 38
Thomson, 38

scattering plane, 11, 36
scattering polarimeter, see polarimeter, Thomson

scattering
scintillation noise, 74, 99
Seyfert nuclei, 37, 41
sidebands, 8
sidelobes, polarization, see polarization sidelobes
sign conventions, 13, 16
signal frequency, 8
signals, noise-like, see noise-like signals
single-dish polarimetry, see polarimetry, single-dish
single-sideband receiver, 110
slow variations, see variations, slow
snapshot, 9
spectro-photometry, polarization errors in, 89
spectro-polarimeter, 100, 103, 126, 127
spectro-polarimetry, 38
standard source, 79
statistics, 74
stereographic projection, 67
Stokes parameters, 14, 17, 20, 24, 25, 46, 58, 61

equivalent forms, 61
formulas for, 15, 61

normalized, 25, 73, 76
Stokes plot, 23
Stokes polarimetry, full, 98
Stokes transformations, see transformations
Stokes vector, 14, 25, 45, 46, 48, 62
Stokes visibilities, see visibilities, Stokes
superposition

amplitude, see coherent sum
intensity, see incoherent sum

symmetry, 2, 13, 27, 69, 70, 82
symmetry axis, 11
synchrotron emission, 34-6, 68
synthesis polarimetry, see polarimetry, synthesis

telescopes, 69
alt-azimuth, 81, 86
polarization-free, 71
rotationally symmetric, 70

tesla, 28
time average, see average
total internal reflection, see retarder, achromatic
totally polarizing Mueller matrices, see Mueller

matrices, pure
transformations, 45, 46, 57
transverse wave, 8

ultraviolet polarimetry, see polarimetry, ultraviolet
units, 16
unpolarized radiation, 20, 23, 27

variations
slow, 9, 10, 12, 14, 20, 58
very slow, 10, 14

vector, Stokes, see Stokes vector
velocity of propagation, see propagation
visibilities, Stokes, 54, 116
visibility, complex, 57, 116
VLA, 70
VLBI polarimetry, see polarimetry, VLBI

wave duration, 10, 12
wave plate, see retarder
Westerbork, 71
white dwarfs, 31
Wollaston prism, 99
Wood's anomalies, 89

X-ray polarimetry, see polarimetry, X-ray

Zeeman effect, 28, 30, 31, 67, 83, 87
zero-polarization source, 27
zeropoint

degree of polarization, 80
polarization angle, 78


