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Preface for 2nd Edition

In 1994, the 1st Edition of “Theory and Design of Charged Particle Beams” was
published by John Wiley & Sons, Inc. in the Wiley Series in Beam Physics and
Accelerator Technology (Editor: Mel Month). It was followed by a second and third
printing; the latter was published in 2004 by WILEY-VCH, Germany.

The 1st edition of this book has become a widely used resource for researchers,
teachers, and graduate students in our field; it is found in the libraries of accelera-
tor laboratories and universities that have research programs and offer courses in
beam physics and advanced accelerator technology. Its contents will be retained in
the 2nd edition, and the new research developments since 1993 will be presented
in a new additional Chapter 7.

In Chapter 7, after the Introduction (Section 7.1), the major developments in
beam physics research in our group, as well as related work at other institutions,
which have happened since 1993, will be reviewed. These include the longitudi-
nal beam physics research (Section 7.2), where we report experimental results on
the resistive-wall instability and on Coulomb scattering (“Boersch” effect), which
are compared with theoretical predictions. However, in both cases, “anomalous”
behavior was observed that so far has not yet been explained by theory or repro-
duced by computer simulation. In transverse beam physics (Section 7.3), the the-
oretical studies triggered by the “halo” observation in the multiple beam experi-
ments in 1991, the extensive work on resonances and instabilities, equipartitioning
and stability of anisotropic beams, and experiments at the University of Maryland
(in particular, the observation and study of the “Bernal rings”) and related exper-
iments elsewhere are discussed. Many of these topics are still pursued here and
elsewhere. In Section 7.4, the development of the University of Maryland Electron
Ring (UMER) is reported. This is a major new project, launched in 1994. It is de-
signed to cover a large range of space charge intensity, or tune depression σ/σ0, and
it can be scaled to other beams, like ions of different charge-to-mass ratio, such as
Heavy Ion Fusion Inertial Fusion drivers, Injector linacs for hadron colliders, Spal-
lation Neutron Sources, as well as to low energy electron beams for injectors into
linear colliders or FEL’s. The operation of UMER so far has already produced an
impressive number of publications and Ph.D. dissertations. The long-range goals
are multi-turn operation over hundreds of turns and acceleration from 10 keV to
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about 100 keV. This will allow us to explore important beam physics effects like res-
onances over a broad range of beam intensities and distances. At the end of Chapter
5 we discuss several ring projects at other laboratories. In Section 7.5 of Chapter 7,
Patrick O’Shea reviews research on issues related to photoinjectors. Finally, in Sec-
tion 7.6 of Chapter 7, we present Concluding Remarks with a few highlights of our
research goals and accomplishments and future plans. Note that the list of refer-
ences in the new chapter is not complete and only the major ones were selected
to highlight the developments in each section, as was already the case in the 1st

edition of the book.
After the transfer from John Wiley & Sons, Inc., New York, NY, to Wiley-VCH

Verlag GmbH, KGaA, Weinheim, Germany, the book was electronically reproduced
from digital information stored at John Wiley & Sons, Inc. for the third printing of
the 1st edition, published in 2004. The existing ERRATA List was placed at the end
of the book. In the new edition these errors are corrected in the text.

This book, both the 1st and the new 2nd edition, reflects the personal background
and history of the author, unlike any other books on a special topic that I am aware
of (like the selected books listed in the Bibliography). I would like to add here some
details that are not well known and have made a major impact on the choice of my
research area in the particle accelerator field.

I began my career as an experimentalist under the tutelage of Professor Rudolf
Kollath, Director of the Institute of Experimental Physics at the Johannes Guten-
berg University in Mainz, Germany. My “Diploma” (MS degree) project involved
the design of a 50 keV electron beam produced from a needle-shaped thermal
emitter and focused with a short solenoidal lens over a distance of 50 cm at the
surface of alkaloid crystals mounted at the center of a diagnostic cylinder. A camera
outside took pictures of the phosphor-screen pattern, known as “Kikuchi bands”,
which were scanned in another device, and the measured profiles were compared
with theoretical predictions.

After receiving the MS diploma, I accepted an offer from the AEG Research Insti-
tute in Frankfurt, Germany, to design and build the proton source and the central-
region model of the first isochronous (sector-focusing) cyclotron for the Karlsruhe
Nuclear Research Center as a doctoral dissertation project. I completed my Ph.D.
in 1960. The measurements, theoretical modeling and computer calculations of
the beam from the ion source through the central region and extraction from the
machine, including the effects of space charge, were an interesting and challeng-
ing process in which I built a novel system of electrodes that produced separated
orbits, which reduced the beam losses significantly and was then adopted by most
cyclotrons under construction.

This work in an industrial laboratory, followed by an appointment as research as-
sistant professor at Michigan State University to assist Professor Henry Blosser in
the design of the MSU cyclotron, and a brief appointment in a US government lab
(NRDL in San Francisco) were an invaluable experience, which shaped my future
career as researcher and teacher at the University of Maryland (since 1965).

First, I learned some of the fundamentals about electron guns and ion sources
including diagnostics. Second, I developed a desire to obtain a beam physics un-
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derstanding via simple scaling laws, which were not apparent in the complexity of
a rigorous theoretical analysis and computer calculations and simulations. Third,
to develop the desired beam physics scaling, I had to acquire theoretical skills and
be able to focus on the behavior of the beam and not get lost in details of the
environment and diagnostics, which is better left to the scientists, engineers and
technicians who are familiar with this challenging work. Fourth, it has always been
important to me to have cordiality and mutual respect among the members of
our group.

I recognized very early in my cyclotron work that the electrostatic space charge
forces are strongest near the particle source and in the low energy region of an
accelerator, which has become the major focus of my research activities at the Uni-
versity of Maryland. The goal of my research as reported in this book is that theory
and design agree with experiments and together they must lead to an understand-
ing of the role of space charge in intense charged particle beams.

An important contribution to our field was my support of Robert Siemann’s pro-
posal to establish the electronic Journal, Physical Review Special Topics – Accel-
erators and Beams, or PRST-AB for short, while I was Chair of the APS Division
of Physics of Beams. The Journal has become the world’s leading publication for
accelerator and beam physics.

I had the privilege of meeting many pioneers in the accelerator field of the gen-
eration before me, who have since died, in every part of the world. To name just a
few:

Wolfgang Paul, University of Bonn, who shared the 1989 Nobel Prize with Hans
G. Dehmelt, University of Washington, “for the development of the ion trap tech-
nique”.

Rolf Wideröe, engineer and creative inventor, who patented his idea of the high
energy collider principle, in 1943. According to his autobiography (www.waloschek.
de), Touschek, at the beginning of 1960, proposed the construction of an electron-
antielectron storage ring, which was completed within less than a year at the Labo-
ratori Nazionali di Frascati in Italy. It was the first storage ring ever to function. In
two other projects, similarly small storage rings of different types were also built.
One was in the USA, prompted by Gerry O’Neill in collaboration with Donald Kerst
and another in Akademsgorodok near Novosibirsk (then USSR). Construction of
these two had started before, but they did not become operational until after the
Frascati storage ring.

A. A. Kolomenskij, a leading accelerator physicist of the Lebedev Institute in
Moskow who co-authored the book A. A. Kolomenskij and A. N. Lebedev “Theory
of Cyclic Accelerators”, North Holland, 1966.

I. M. Kapshinskij, who with V. V. Vladimirskij at the 1959 International Con-
ference on High Energy Accelerators at CERN presented the linearized model of
high-current beams, now known as the “K-V distribution”.

Reginald Richardson, who built the strong-focusing cyclotron at UCLA and de-
signed TRIUMF at Vancouver, based on simple intuitive mathematical relations.
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D. W. Kerst, University of Madison, and the MURA Group, who with his team
of collaborators, in particular G. K. O’Neill, built the first electron-positron storage
ring in the USA.

Christoph Schmelzer, one of the pioneers of German particle accelerators and of
CERN, a founding father of the GSI Darmstadt Laboratory and from 1969 to 1979
its first scientific director, died on 10 June 2001 in Heidelberg at the age of 92.

Kjell Johnsen, who designed and built the proton Intersecting Storage Rings
(ISR) at CERN.

Our field is still very much alive. Accelerators for a large variety of applications
ranging from medicine, material science, generation of energy, to nuclear and high
energy physics, have motivated the design and development of novel machines
such as Fixed Field Alternating Gradient Accelerators (FFAG’s) and 4-th generation
light sources. Many of these applications require beams of high intensities. Also, as
existing projects, such as the Large Hadron Collider (LHC) at CERN and the Spal-
lation Neutron Source in Oak Ridge become fully operational in the near future,
the need for increasing the beam current will be of tantamount importance. Our
research on the physics of space charge dominated beams in the UMER facility,
with its unique, flexible features, can play an important role in these developments
for many years to come.

In closing this Preface, I want to honor the researchers, colleagues and friends
who died between the first and second edition of this book (1994 and 2008):

Rolf Wideröe (1902–1996)
J. Reginald Richardson (1912–1997)
Lloyd Smith, LBL (1922–2000)
Christoph Schmelzer (1908–2001)
Pierre Lapostolle (1922–2004)
Wolfgang Schnell (1929–2006)
Kjell Johnsen (1921–2007)
Courtlandt Bohn (1954–2007)
John Lawson (1923–2008).

Martin ReiserCollege Park, MD
February 2008
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Preface for 1st Edition

This book evolved over many years from the material I have taught in a graduate
course on charged particle beams at the University of Maryland since the late 1960s.
It is also influenced by undergraduate courses on principles of particle accelerators,
physical electronics, and fundamentals of charged particle devices that I taught
intermittently during this time.

Most important, though, this book reflects my research interests and experience
in accelerator design and beam physics: cyclotron and ion source design during
the 1960s, collective ion acceleration in the 1970s, and since then the physics of
intense, high-brightness beams.

Although the connection with particle accelerators is emphasized in the book,
I have tried to present a broad synoptic description of beams that applies to a
wide range of other devices such as low-energy focusing and transport systems
and high-power microwave sources. The material is developed from first princi-
ples, basic equations, and theorems in a systematic and largely self-sufficient way.
Assumptions and approximations are clearly indicated; the underlying physics and
the validity of theoretical relationships, design formulas, and scaling laws are dis-
cussed. The algebra is often more detailed than in other books. This is a feature that
I retained from my class notes in order to make the derivations more transparent,
which the students found especially valuable.

The “theory” in this book is an experimentalist’s theory. It tries to get away with
a minimum of mathematical complexity, avoids topics that are only of academic
interest, and stresses the essential physical features and the relevance to laboratory
beams. A central theme, which has only recently become the focus of research, is
the behavior of space-charge dominated beams and the thermodynamic descrip-
tion of beams by a Maxwell–Boltzmann distribution. Due to longitudinal cooling
by acceleration, beams are usually not in 3-D thermal equilibrium and are best de-
scribed by a Maxwell–Boltzmann distribution with different transverse and longi-
tudinal temperatures. The analysis of the “equilibrium” properties of such distribu-
tions, including the transverse and longitudinal density profiles and the modeling
by equivalent beams with linear space-charge forces, takes a major part of Chap-
ter 5. This includes a significant amount of very recent work with my collaborators,
such as image effects and the Boltzmann line charge density profiles in bunched
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beams, that has not yet been published. Nonlinear forces, instabilities, and colli-
sions drive the beam toward thermal equilibrium and thermalize the free energy
when the beam is not perfectly matched to the focusing system or deviates from
the equilibrium density profile. These effects and the resulting emittance growth
are discussed in Chapter 6, which includes a review of cooling methods in storage
rings.

This book is not intended to give an extensive review of the entire field, with a
comprehensive list of references and discussion of all important past and current
developments, like Lawson’s encyclopedic Physics of Charged Particle Beams. It is
written as a textbook for the student, researcher, or newcomer who wants to have
a thorough and systematic introduction to the theory and design of charged par-
ticle beams. However, it also addresses the needs of the more experienced physi-
cists and engineers involved in the design or operation of particle accelerators,
low-energy beam systems, microwave sources, free electron lasers, and other de-
vices. To these professionals, the book offers a broad review of focusing systems,
a detailed and critical evaluation of theoretical models, a comprehensive list of de-
finitions of fundamental beam parameters and their relationships, and theoreti-
cal guidance for the design of the high-quality beams required in modern devices
where space charge plays an important role.

Our analysis is limited to the basic physical properties of beams and their behav-
ior in various focusing and accelerating systems. Thus the topic of instabilities is
covered only in an introductory way that includes a few examples of fundamental
interest.

The references at the end of each chapter are limited to historical papers and to
more recent work that I considered important for the beam theory discussed in
the book. There are undoubtedly omissions in each category. In particular, my se-
lection in the latter category is admittedly subjective, and I apologize to the many
researchers whose contributions are not mentioned. The selectivity in the refer-
ences is balanced by an extensive bibliography at the end of the book to which I
frequently refer for further references or elaboration of a topic.

With regard to use as a textbook, my experience in teaching and lecturing at the
University of Maryland, in U.S. Accelerator Schools, and elsewhere indicated to
me that there is a demand for a more introductory presentation, in addition to the
advanced beam theory. Consequently, I have organized the material in such a way
that the first four chapters can be used for a senior-year, undergraduate, special-
topics course. Such courses are also often attended by beginning graduate students
interested in the field or searching for a research topic. A broadly based course
of this type on fundamentals of charged particle beams and focusing methods is
more useful, in my opinion, than a course devoted entirely to more specialized
topics such as beam optics or accelerators. Some material could be omitted or sup-
plemented by special lecture notes reflecting the research interests of the faculty
or student demand at a particular institution. Similarly, some topics in Chapters 5
and 6 could be included in such an undergraduate course.

If the book is used only for a one-semester graduate-level course, the material
in the first four chapters has to be condensed and presented selectively to leave
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enough time for the more advanced topics in Chapters 5 and 6. For example, the
review in Chapter 2, while useful for the electrical engineering student who has had
no advanced course in classical mechanics, could be largely omitted for the physics
student who has studied classical mechanics or is taking it concurrently. Similarly,
some topics in Chapters 3 and 4 could be omitted depending, for instance, on
whether the emphasis is to be on low-energy devices or on high-energy circular
accelerators.

As is desirable for a textbook of this type, I have tried to present the material
in a uniform notation throughout. Nevertheless, it was unavoidable to use some
letters of the Latin and Greek alphabet for different purposes. However, the “List
of Frequently Used Symbols” and the explanations in the text, including frequent
repetitions of definitions, should help to clarify the intended meaning and to avoid
the confusion that often arises with regard to this issue.

In this age of the computer, a comment on my philosophy with regard to
numerical-versus-analytical treatment is called for. First, I am a firm believer in
basic analytical theory. This analysis is required to guide experiment and simula-
tion and to provide the indispensable parameter scaling necessary for physics un-
derstanding and design. Second, the discussion of computational tools, computer
codes, and simulation techniques – even on an introductory level – is beyond the
scope of this book. Third, the interplay between analytical theory, particle simula-
tion, and experiment is an absolute necessity for achieving progress in the field of
multiparticle beam dynamics. The example discussed in Section 6.2 is an illustra-
tion of this important point: neither theory nor simulation nor experiment alone
would have been sufficient to obtain the final understanding and quantitative in-
terpretation of the behavior of such a space-charge dominated beam. Indeed, the
conclusion from my long experience is not to rest until “full agreement” is achieved
between theory, simulation, and experiment.
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Introduction

1.1
Exposition

Charged particle dynamics deals with the motion of charged particles in electric
and magnetic fields. More specifically, it implies the behavior of free charged par-
ticles in applied electric and magnetic fields (single-particle dynamics) or in the
collective fields generated by the particle distribution if the density is high enough
that the mutual interaction becomes significant (self-field effects). Many aspects
of gas discharges and plasmas (microscopic motion) are also included in charged
particle dynamics. The interaction of free particles with the electron shell of atoms
or molecules or with the periodic electric potential of crystals (electron diffraction)
as well as the physics of bound particles (solid-state theory) are excluded. The par-
ticles’ behavior in these cases is described by quantum mechanics, not classical
mechanics.

The electric and magnetic fields may be static or time dependent and the kinetic
energy of the particles may be relativistic. In general, the particles will be treated
as classical point charges. Quantum-mechanical effects may be of importance in
some applications, for example, in determining the resolution of the electron mi-
croscope, but they are ignored in this book. We shall also neglect electromagnetic
radiation by accelerated charged particles except for a brief treatment in connection
with radiation cooling: Synchrotron radiation limits the achievable kinetic energy in
circular accelerators, especially for electrons and positrons, but it can also be uti-
lized in damping rings to cool these lepton beams, as discussed at the end of Chapter
6. On the other hand, we consider collisional effects, such as intrabeam scattering,
and collisions between beam particles and gas molecules. They play a major role in
charge neutralization due to collisional ionization of the background gas, discussed
in Chapter 4; in the formation of the thermal equilibrium distribution, treated in
Chapter 5; and as a cause of emittance growth, covered in Chapter 6.

When the self fields are taken into account, a charged particle beam behaves
like a nonneutral plasma, that is, a special class of plasma having a drift velocity
much greater than the random thermal velocity and lacking in general the charge
neutrality of a regular plasma composed of particles with opposite charge. A beam
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is a well-defined flow of a continuous stream or a bunch of particles that move
along a straight or curved path, usually defined as the longitudinal direction, and
that are constrained in the transverse direction by either applied focusing systems
or by self-focusing due to the presence of particles with opposite charge. The trans-
verse velocity components and the spread in longitudinal velocities are generally
small compared to the mean longitudinal velocity of the beam. Examples are the
straight beams in linear accelerators, cathode ray tubes, or electron microscopes
and the curved beams in circular accelerators, such as betatrons, cyclotrons, and
synchrotrons.

Most particle accelerators employ radio-frequency (rf) fields to accelerate the par-
ticles. The beam in these cases consists of short bunches with a pulse length that is
usually small compared with the rf wavelength. To prevent the bunch from spread-
ing due to its intrinsic velocity distribution or due to space-charge repulsion, ex-
ternal focusing forces must be provided in both transverse and longitudinal direc-
tions. In rf accelerators, the axial component of the electric field provides focusing
in the longitudinal direction, while magnetic fields must be used for transverse
focusing. Throughout most of this book we deal with continuous, or long, beams
and linear transverse focusing systems in which the external force on a particle is
proportional to the displacement from the axis, or central orbit, of the beam. A
brief introduction to the acceleration and focusing of bunched beams is given in
Chapter 5.

Nonlinear beam optics, or more generally, nonlinear beam dynamics, which
deals with the effects of nonlinear forces due to aberrations in the applied focusing
systems, is a highly specialized field that cannot be treated comprehensively within
the scope of a book like this. We therefore limit this topic to brief discussions of
aberrations in axisymmetric lenses (Section 3.4.6), resonances in circular acceler-
ators (Section 3.8.6), and nonlinear longitudinal beam dynamics in rf accelerators
(Section 5.4.8). We do, however, analyze in some detail the generally nonlinear na-
ture of space-charge forces in the thermal distribution, which provides a realistic
description of the behavior of laboratory beams (Sections 5.4.4 to 5.4.7 and 6.2).
An example of the nonlinear interaction between the aberrations of a solenoid lens
and the space charge of an electron beam is presented in Section 5.4.12.

Overall, the material presented in our book is developed in a systematic, largely
self-contained manner. We start, in Chapter 2, with a review of the basic principles
and formalisms of classical mechanics as applied to charged particle dynamics;
our treatment is more comprehensive than the usually brief discussions presented
in other books. We then proceed to a broad, general review of beam optics and
focusing systems in Chapter 3. The topic of periodic focusing is treated in some
detail because of its importance to beam transport and particle accelerators.

A central theme is the role of space charge and emittance in high-intensity, high-
brightness beams. In Chapter 4 we use the model of a uniform-density beam with
linear self fields. This model allows us to extend the linear beam optics of Chapter
3 to include space charge without having to cope with the mathematically more
complicated nonlinear forces. Special emphasis is given to periodic beam trans-
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port with space charge (Section 4.4), space-charge effects in circular accelerators
(Section 4.5), and charge-neutralization effects (Section 4.6).

The self-consistent theory is developed systematically in Chapter 5 from laminar
beams (Section 5.2) to the Vlasov model for beams with momentum spread (Sec-
tion 5.3), and then to the Maxwell–Boltzmann distribution, which is treated very
extensively in Section 5.4. The latter section represents an attempt to develop a uni-
fying thermodynamic description of a beam and contains a considerable amount
of new material that is not found in other books on charged particle beams.

The thermodynamic description is continued in Chapter 6, which deals with the
fundamental effects causing emittance growth. The concept of free energy, cre-
ated when a beam is not in equilibrium, and its conversion into thermal energy
and emittance growth is treated in Section 6.2, which includes a comparison be-
tween theory, simulation, and experiment. Transverse beam modes and instabili-
ties are reviewed in Section 6.3.1. Longitudinal space-charge waves are discussed
in Section 6.3.2 since they are fundamental to an understanding of the behavior of
perturbations in a beam. Two historically important illustrations of the destructive
interaction between the space-charge perturbations and the beam’s environment
are selected. One is the resistive wall instability (Section 6.3.2) in straight systems
(microwave devices, linear accelerators); the other is the longitudinal instability in
circular machines due to negative-mass behavior and interaction with the wall repre-
sented by a complex impedance (Section 6.3.3). These cases, which are treated for
pedagogical reasons on a fundamental level, are intended merely as two examples
of the many instabilities that may limit the beam intensity and cause emittance
growth. A more extensive discussion of waves and instabilities in beams, includ-
ing wakefield effects at relativistic energies, is beyond the scope of this book. An
excellent introduction and survey of these topics with a comprehensive list of refer-
ences to the scientific literatures is provided by Lawson [C.17, Chap. 6]. Collective
instabilities in high-energy accelerators are treated comprehensively and on an ad-
vanced level in terms of the beams’ wakefields and the wall impedances in the book
by Chao [D.11].

Coulomb collisions as a source of emittance growth and energy spread are
treated in Section 6.4. Our analysis of the Boersch effect (Section 6.4.1) shows that
intrabeam scattering is relevant not only in high-energy storage rings (Section 6.4.2)
but may also be significant in low-energy beam focusing, transport, and acceler-
ation devices. Scattering in a background gas is discussed in Section 6.4.3. As a
natural, complementary addition to our review of emittance growth, we present in
Section 6.5 a brief survey of the methods to reduce emittance (beam cooling) in stor-
age rings. Finally, in Section 6.6, we summarize the key topics that were discussed,
comment on some questions that were left open, and mention a few issues that
need further research.

The application of the theory to the design of charged particle beams is stressed
throughout the book. Many formulas, scaling laws, graphs, and tables are pre-
sented in the text to aid the experimentalists and the designers of charged parti-
cle beam devices. Similarly, many of the problems at the end of the chapters were
chosen to be of practical interest. The main emphasis of this book, though, is on
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the physics and design of beams. Only those features of a particular device that
are relevant to an understanding of the physics and/or necessary for theoretical
analysis and design are treated. Some supplemental material is presented in the
appendixes.

Charged particle dynamics and the theory of charged particle beams combine
aspects of classical mechanics, electromagnetic theory, geometrical optics, special
relativity, statistical mechanics, and plasma physics. A few selected texts covering
these fields are listed in the bibliography at the end of the book.

1.2
Historical Developments and Applications

Historically, the first and most prominent area of charged particle dynamics is the
field of electron optics, where most of the early work and theoretical development
took place and which is well documented in many books listed in part C of the
bibliography. The birth of electron optics may be traced to 1926, when H. Busch
showed that the action of a short axially symmetric magnetic field on electron rays
was similar to that of a glass lens on light rays. Then in 1931 and 1932, Davidson
and Calbrick, Brüche, and Johannson recognized that this is also true for axially
symmetric electric fields. The first use of magnetic lenses was by Knoll and Ruska
(1931) and of electric lenses by Brüche and collaborators (1934).

Up to 1939, electron optics experienced a rapid development stimulated by
strong industrial needs, especially electron microscopes, cathode ray tubes, and
television. The classic book, which is an encyclopedia of electron optics in this im-
portant period and even today is very useful, is that of Zworykin et al., Electron
Optics and the Electron Microscope [C.1].

During World War II, electron optics received new impulses from war require-
ments: cathode ray tubes for radar and image-converter tubes for infrared vision,
but most important, the development of microwave devices (klystron, magnetron,
etc.) for the generation of high-power electromagnetic waves in the range above
1000 MHz. The need for improvement of these latter tubes stimulated interest and
progress in the study of space-charge effects in high-intensity beams. The classic
reference here is Pierce’s book [C.3].

Another important impetus that significantly expanded the field of electron op-
tics, or charged particle dynamics in the broader sense, came from the develop-
ment of high-energy particle accelerators. This development started around 1930
with the invention of the linear accelerator and the betatron in 1928, the cyclotron
in 1931, and the electrostatic accelerator in 1931–1932. This was followed by the
large high-energy accelerators existing today, such as the two-mile electron linac at
Stanford and the proton synchrotron at Fermilab, near Chicago, now operating at
an energy of about 1 TeV and called the tevatron. Beam dynamics in particle acceler-
ators is now a major branch of charged particle dynamics. Electron and ion optics
was extended to include the focusing of beams in circular accelerators. New types of
focusing systems, such as quadrupole lenses, edge focusing in sector-shaped mag-
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nets, alternating-gradient focusing, and so on, were invented and contributed to the
successful development of accelerators with steadily increasing energies and im-
proving performance characteristics. New interest in particle dynamics came also
from space science, industrial applications of electron–ion beam devices (welding,
micromachining, ion implantation, charged particle beam lithography), and ther-
monuclear fusion.

In the decade from 1965 to 1975 two new types of accelerator were developed
for the generation of electron beams with high peak power and short pulse length;
these are the relativistic diode and the linear induction accelerator. The former
produces intense relativistic electron beams (IREB), with peak currents ranging
from kiloamperes to mega-amperes and energies from hundreds of keV to more
than 10 MeV. Such high-intensity electron beams are created when short high-
voltage pulses from so-called Marx generators or pulse transformers impinge on
the diode. The associated high electric fields cause field emission from the cathode
and plasma formation. The plasma expansion leads to gap closure, which, in turn,
limits the beam pulse length to between 10 and 100 nanoseconds. These pulsed-
power IREB generators have found applications as strong x-ray sources, for studies
of the collective acceleration of positive ions by the electric fields associated with
intense electron beams, and for the generation of high-power microwaves and free
electron lasers. More recently, pulsed diodes have been developed that produce high-
power ion beams for research on inertial fusion. Miller’s book [C.18] presents a very
useful introduction to the physics and technology of such pulsed-power, intense
particle beams.

Like the betatron, the linear induction accelerator uses inductive electric fields
produced by the time-varying flux in magnetic cores. These fields are applied in
a sequence of gaps to accelerate pulsed beams of charged particles. The charged
particles traverse the gaps only during the time interval in which the magnetic flux
is changing, and hence a voltage drop appears across the gaps. In contrast to the
radiofrequency resonance accelerators, induction linacs can accelerate very high
peak currents, ranging typically from several hundred amperes to several kiloam-
peres. The largest accelerator in this class was the Advanced Test Accelerator (ATA)
at the Lawrence Livermore National Laboratory. It accelerated a 10-kA 70-ns elec-
tron beam to an energy of 47 MeV. Originally developed for relatively short electron
beams (10 to 100 ns), induction linacs are now also being used for longer pulses
(microseconds) of both electron and ion beams. The best example in the latter
category is the ion induction linac being developed at the Lawrence Berkeley Lab-
oratory. It is designed for acceleration of high-current heavy-ion beams with the
aim of using them as drivers – like laser beams – to ignite the fuel pellets of future
inertial fusion reactors. Present experiments are at relatively low energies of a few
MeV and a current of � 1 A. A full-scale heavy-ion fusion driver system would re-
quire currents of heavy ions (mass number � 100) in the range 20 to 30 kA with
an energy of 5 to 10 GeV and a pulse length of about 10 ns.

The more traditional radio-frequency (rf) linear accelerators are also being de-
veloped for high-power applications such as heavy-ion fusion, electron–positron
linear colliders for high-energy physics, and other purposes. The invention of
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the low-energy radio-frequency-quadrupole (RFQ) accelerator by Kapchinsky and
Teplyakov in 1970 has revolutionized the field of rf linacs for ion beams. Today,
practically all rf linacs in major laboratories and industry throughout the world use
the RFQ as an injector.

Other recent developments involve the use of intense electron beams as electro-
magnetic radiation sources. Of particular interest in this regard is the gyrotron, a
new high-power microwave source in the centimeter and millimeter range, and
the free electron laser (FEL), which covers a very wide spectrum from centime-
ter to optical wavelengths. All of these applications have triggered new research in
the physics of intense high-brightness charged particle beams such as transport
through periodic-focusing systems, beam stability in the presence of high space-
charge forces, interaction with a plasma background, and nonlinear effects respon-
sible for beam deterioration (emittance growth) or particle loss.

This book deals primarily with the theory and design of charged particle beams,
not with the design principles of accelerators and other devices which are found in
many of the books listed in the bibliography. Thus it will be appropriate to close
this historical review by highlighting some of the major early milestones in the
development of charged particle beam physics with regard to the theoretical under-
standing and modeling of the effects of space charge.

The recognition that there are fundamental current limits in charged particle
beams plays an important role in beam theory and design. Historically, the fact
that the magnetic self field of a relativistic, charge-neutralized beam stops the prop-
agation of the beam when the current exceeds a critical value was discovered by
Alfvén (in 1939) for electron propagation through space and later applied to labo-
ratory beams by Lawson (in 1958). The critical current associated with this effect
is known in the literature as the Alfvén current or Alfvén–Lawson current. Closely re-
lated to this effect is the work on self-focused relativistic electron beams by Bennett
(1934) and Budker (1956).

The current limit due to space charge (in the absence of charge neutralization)
in a diode is known as the Child–Langmuir law and dates to the early work of Child
(1911) and Langmuir (1913). However, the related limit for a beam propagating
through a drift tube was studied much later, and the formula for a relativistic elec-
tron beam derived by Bogdankevich and Rukhadze in 1971 is probably the one
cited most frequently in the literature.

The foundation for the mathematical treatment of beams with space charge was
laid by Vlasov in 1945. Vlasov integrated Liouville’s theorem, Maxwell’s equations,
and the equations of motion into a self-consistent theoretical model that has be-
come an indispensable tool for the theoretical analysis of beams. In 1959, Kapchin-
sky and Vladimirsky proposed a special solution to the Vlasov equation, known in
the literature as the K–V distribution, which has the property that the transverse
space-charge forces are linear functions of the particles’ positions in the beam.
This was a major milestone in beam physics whose practical importance for analy-
sis and design cannot be overemphasized. The K–V distribution gained additional
significance when Lapostolle and Sacherer in 1971 introduced the description of
beams in terms of the root-mean-square (rms) properties (rms width, divergence,
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and emittance). They showed that beams having the same rms properties are equiv-
alent. This equivalency principle is used extensively in Section 5.4 for correlating
the nonanalytical Maxwell–Boltzmann distribution with the analytical K–V distri-
bution in the transverse direction and with the parabolic line-charge distribution
in the longitudinal direction, and in Section 6.2 for our theoretical treatment of
emittance growth.

Another important milestone in the development of beam physics is the detailed
pioneering work by Laslett in 1963 on the space-charge tune shift of the betatron
oscillations in circular accelerators. This effect, often referred to as the Laslett tune
shift, is of fundamental importance, as it limits the achievable intensity in these
machines. With regard to understanding the physics of space-charge-dominated
beams, the simulation work by Chasman in 1968 for linear accelerators, the analy-
sis of collective oscillation modes in uniformly focused beams by Gluckstern, and
the stability analysis by Davidson and Krall in 1970 constitute important achieve-
ments which influenced future work.

This list of historical milestones is obviously quite subjective and incomplete and
could be extended into many directions, such as the rich field of beam instabilities,
where the theoretical analysis of the negative-mass instability in 1959 comes to mind
as a major event. But this book is not about instabilities. Furthermore, we wanted
to limit the list to “historical” milestones, defined somewhat arbitrarily as events
that occurred more than 20 years ago.

1.3
Sources of Charged Particles

Although the main topic of this book is beam dynamics, it will be beneficial to
review briefly the basic principles and performance limitations of typical particle
sources. This is particularly important for intense beams, where physical and tech-
nological constraints of the source pose fundamental limits for the beam current
and the emittance or brightness that can be achieved.

The simplest conceptual model of a source is the planar diode. One of the two
electrodes emits the charged particles; in the case of electrons it is called a cathode.
A potential difference of the appropriate polarity accelerates the particles to the
other electrode, called the anode in the electron case. In practice, the emitter has, of
course, a finite size, and usually a circular shape with radius rs . The anode contains
a hole or a mesh to allow the beam to propagate into the vacuum tube downstream,
where it is focused or accelerated depending on the particular application. Further-
more, the electrode in which the emitter is embedded as well as the anode may have
a special nonplanar design to provide initial focusing for the beam. In a Pierce-type
geometry, for example, the electrodes form an angle of less than 90◦ with respect
to the beam axis to produce a transverse electrostatic force that exactly balances the
repulsive Coulomb force due to the space charge of the beam (see [C.3, Chap. X]).

A schematic illustration of a typical diode-type electron gun with thermionic cath-
ode, Pierce-type focusing electrode, and anode mesh is shown in Figure 1.1. The
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Fig. 1.1 Schematic of an electron gun with thermionic cathode,
Pierce-type-electrode geometry, and anode mesh. (See
Appendix 1 for a discussion of such a gun without anode
mesh.)

electron beam radius in this example remains practically constant within the gun
and then increases due to space-charge repulsion when the beam enters the field-
free region outside the anode. To prevent divergence due to space-charge forces or
transverse velocity spread, the beam has to be focused with appropriate magnetic
or electrostatic lenses, as discussed in this book. Other types of electron sources
employ field emission or photocathodes; the cathodes may have the shape of an
annulus (to form a hollow beam) or a sharp tip. Additional intermediate electrodes
(triode or tetrode configurations) may be used to control the beam parameters.

Conduction electrons in a metal have an energy distribution that obeys the
Fermi–Dirac statistics. The electrons emitted from a thermionic cathode belong
to the Maxwellian tail of the Fermi–Dirac distribution, and the current density Jth
is given by the Richardson–Dushman equation [1]

Jth = AT 2e−W/kBT . (1.1)

Here T is the cathode temperature, W the work function of the cathode material
(typically a few eV), and kB is Boltzmann’s constant (8.6175 × 10−5 eV/K). The
theoretical value for the constant A is

A = 4πemk2
B

h3
= 1.2 × 106 Am−2K−2, (1.2)

where e = 1.6 × 10−19 C is the electron charge, m = 9.11 × 10−31 kg the elec-
tron rest mass, and h = 6.63 × 10−34 Js is Planck’s constant. Experimentally, one
finds a value for A that is lower than (1.2) by a factor of about 2. Fabrication of
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thermionic cathodes is a highly specialized art where the choice and composition
of materials is guided by requirements of low work function W , long lifetime (at
high temperature), smoothness of emitting surface, and other factors. Pure tung-
sten has a work function of W = 4.5 eV, and tungsten cathodes operate at a tem-
perature of 2500 K (kBT ∼ 0.2 eV), with a current density of about 0.5 A/cm2.
Considerably higher current densities of 10 to 20 A/cm2 can be achieved with
dispenser cathodes, which are used for high-power microwave generation. Dis-
penser cathodes use barium or strontium oxides impregnated in a matrix of porous
tungsten (or similar metals). These cathodes operate at a typical temperature of
1400 K (kBT ∼ 0.12 eV) and have an effective work function of 1.6 eV.

A typical ion source with a diode configuration is shown schematically in Fig-
ure 1.2. The ions are extracted from the plasma of a gas discharge, and the accel-
erated beam passes through a hole in the extraction electrode into the vacuum drift
tube. The emitting plasma surface area is not fixed as in the case of a cathode.
Rather, it has a concave shape, called meniscus, which depends on the plasma den-
sity and the strength of the accelerating electric field at the plasma surface. The
dashed lines in Figure 1.2 indicate the equipotential surfaces of the electric field
distribution due to the applied voltage V0 as well as the space charge of the beam.
Note that there is a small potential drop between the plasma surface and the wall
of the chamber that encloses the plasma. The concave shape of the meniscus and
the aperture in the source electrode produce a transverse electric field component
that results in a converging beam.

In general, ion sources are much more complex than electron guns. There are
many different types of sources for the various particle species, such as light ions,
heavy ions, or negative ions (e.g., H−). Most of the sources employ magnetic fields
to confine the plasma. Some have several electrodes at different potentials to better
control the ion beam formation and acceleration process. A special problem with
ion sources is the gas in which the plasma is formed and which leaks through the
source aperture into the acceleration gap and the drift tube. Near the source the
pressure is high enough that a plasma with density exceeding the beam density
can be formed through ionizing collisions between the beam ions and gas mole-
cules. This causes space-charge neutralization, which is advantageous for focusing
but may also cause detrimental effects such as high-voltage breakdown and beam
plasma instabilities. Another problem arises because ions with different charge
state or mass are extracted from the plasma together with the desired species. In
the case of negative ions such as H−, for instance, electrons are also accelerated
with the ion beam. Unless the number of contaminating particles is small, it is
necessary in these cases to use deflecting magnetic fields to remove the undesired
particle species from the beam.

For our purpose of illustrating the basic design concept of charged particle
sources it suffices to consider the simple diode configurations of Figures 1.1 and
1.2. In such sources the space-charge electric field limits the amount of current
that can be accelerated by a given voltage V0. For a planar electrode geometry with
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Fig. 1.2 Schematic of a plasma ion source. The equipotential
surfaces of the electric field distribution are indicated by dashed
lines. The ions are emitted from the concave plasma sheath,
which forms an equipotential surface.

a gap spacing d between the two plates, the limiting current density J (in the non-
relativistic limit and in MKS units) is given by the formula

J = 1.67 × 10−3
( q

mc2

)1/2 V
3/2
0

d2
[A/m2], (1.3)

where q and m are the particle charge and mass, respectively, and c is the speed
of light. The relation, first derived by Child and Langmuir [2], is known in the
literature as Child’s law or as the Child–Langmuir law. Applying this result to a
uniform round beam emitted from a circular area with radius rs yields for the
beam current

I = 1.67π × 10−3
( q

mc2

)1/2
V

3/2
0

( rs

d

)2 [A]. (1.4)

However, in practical ion sources and electron guns with cylindrical geometry
the beam current may be considerably lower than this limit, which is based on an
ideal one-dimensional planar-diode geometry. The ratio I/V

3/2
0 is known as the

perveance of the beam. A derivation of Child’s law is given in Section 2.5.2.
An important figure of merit for a high-brightness beam is the emittance, which

is basically defined by the product of the width and transverse velocity spread of
the beam. The electrons in the tail of the Fermi–Dirac distribution inside a cathode
and the ions in the plasma source have a Maxwellian velocity distribution given by

f (vx, vy, vz) = f0 exp

[
− m

(
v2
x + v2

y + v2
z

)
2kBT

]
, (1.5)

where T is the temperature of the cathode or the plasma. As a result, the particles
emerge from the source with an intrinsic velocity spread. If x and y denote the two
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cartesian coordinates perpendicular to the direction of the beam, the rms values
of the transverse velocity spread for the Maxwellian distribution are readily found
to be

ṽx = ṽy =
(

kBT

m

)1/2

. (1.6a)

If the emitting surface is a circle with radius rs and with uniform current density,
the rms width of the beam is

x̃ = ỹ = rs

2
. (1.6b)

As explained in Section 3.2, an effective normalized emittance is defined nonrelativis-
tically as

εn = 4x̃
ṽx

c
(1.7a)

Substitution of (1.6a) and (1.6b) in (1.7a) yields

εn = 2rs

(
kBT

mc2

)1/2

[m-rad]. (1.7b)

The normalized emittance measures the beam quality in two-dimensional phase
space, which is defined by the space and momentum coordinates of the particle
distribution (i.e., x, px , or x, vx , nonrelativistically). From Liouville’s theorem (dis-
cussed in Section 3.2) it may be shown that the normalized emittance remains
constant if there are no nonlinear forces or coupling forces between different co-
ordinate directions. Thus Equation (1.7b) constitutes a lower theoretical limit; in
practice, nonlinear beam dynamics, instabilities, and other effects may cause emit-
tance growth, so that the actual value is always larger than (1.7b).

For many high-power applications the output current of an electron gun is lim-
ited by the achievable current density Jc at the cathode rather than by the space-
charge limit and by the high-voltage breakdown effect to be discussed below. In
the widely used thermionic cathodes, current densities, in practice, are normally
limited to 10 to 20 A/cm2, and values as high as 100 A/cm2 have been achieved
in experimental studies, depending on the desired cathode lifetime, average beam
power, and other factors. If the current density Jc is fixed, the desired beam cur-
rent I determines the cathode radius rs and hence also the emittance εn. Using
rs = (I/Jcπ)1/2, one can write Equation (1.7b) in the form

εn = 2

(
I

Jcπ

)1/2(
kBT

mc2

)1/2

[m-rad], (1.8)

which shows that the emittance increases with the square root of the product
of beam current and cathode temperature and decreases with current density
as J

−1/2
c . For Jc = 10 A/cm2 = 105 A/m2 and kBT = 0.1 eV, one obtains

εn = 1.6 × 10−6I 1/2 m-rad.
In a new type of electron gun with photocathode that is being developed at var-

ious laboratories, a high-power laser beam is focused on the cathode surface and
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electron currents of several hundred A/cm2 have been achieved. The photocathode
is located inside the first cavity of an rf injector-linac structure, as shown in Figure
A5.1 of Appendix 5. The strong axial electric field in this cavity (20–100 MV/m)
rapidly accelerates the electrons to a high-energy (� 1 MeV). Timing and length of
the laser pulse are chosen to produce a short electron bunch during a small phase
interval within the accelerating part of the rf cycle. The high-brightness beams pro-
duced by the laser-driven rf photocathode guns are of particular interest for advanced
particle accelerator applications such as high-energy e+ e− linear colliders and free
electron lasers (FELs), which require beams with high intensity but very small emit-
tance. The rf photocathode gun was first developed at Los Alamos, and the general
concept is described in the early papers by Fraser et al. [3]. More recent reviews of
the developments in this field can be found in References [4] and [5]. The prob-
lem of emittance growth in such electron guns due to rf defocusing and nonlinear
space-charge forces is discussed briefly in Appendix 5.

The above scaling does not apply for high-intensity plasma-type ion sources with
a simple diode geometry. In this case the achievable beam current is often limited
by Child’s law and by high-voltage breakdown. Several different empirical formu-
las for voltage breakdown have been developed over the years based on practical
experience and theoretical models. According to these formulas the gap width d

between the electrodes must not be smaller than a critical value that depends on
the voltage V0 between the electrodes as

d = CV α
0 , (1.9)

where C is a constant and the exponent α ranges between 1 < α < 2, depend-
ing on the model for breakdown. In one model, the electric field strength, V0/d,
is the parameter controlling breakdown, hence α = 1. Another model assumes
that the product of field strength and gap voltage (i.e., V 2

0 /d) determines the break-
down condition, so that α = 2. In a recent survey of experimental results with ion
sources, Keller concluded that the relation

d[mm] = 1.4 × 10−2V
3/2
0[kV] (1.10)

(i.e., α = 1.5) provided the best fit to the data [4]. This appears to be a reasonable
compromise between the two extreme cases of α = 1 and α = 2. It should be
pointed out, however, that such simple scaling laws have to be used with some
caution. In practice, electrical breakdown is a very complicated phenomenon that
depends on many details (other than gap spacing and voltage), such as gas flow
from the source, geometry of the electrode structures, and surface cleanliness.

Another important constraint influencing the output characteristics (perveance
and emittance) of high-current, low-emittance charged particle sources is imposed
by considerations of beam optics. To minimize nonlinearities in the electrostatic
field configuration, especially spherical aberrations, which would adversely affect
the beam quality, the radius rs of the beam at the emitter surface must not be larger
than the gap width d. In most high-perveance ion source designs, for instance, the
ratio rs/d is in the range

0.2 <
rs

d
< 1.0. (1.11)
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It should be noted that this beam optics argument does not apply to intense rel-
ativistic electron beams and high-power ion diodes producing charge-neutralized
beams with intensities far above the space-charge limit given in Equation (1.4).

The above set of equations and constraints defines the parameter space for high-
perveance electron or ion sources. Thus, the intrinsic normalized emittance εn is
determined by the beam radius rs at the emitter surface and the source tempera-
ture kBT according to Equation (1.7). For electrons from thermionic cathodes, one
typically has kBTe ≈ 0.1 eV, while ion temperatures from plasma sources (e.g.,
protons or H− ions) are usually an order of magnitude higher (i.e., kBTi ≈ 1 to 5
eV). If εn, and thus rs , are given (to meet the requirements of a particular appli-
cation), the beam current and voltage are defined by Child’s law (1.4) and the two
constraints imposed by electrical breakdown (1.10) and beam optics (1.11).

For experiments in which a high-intensity beam is to be focused to a small spot
size, the unnormalized emittance at the final beam energy, ε = εn/βγ , which repre-
sents the product of beam radius and divergence angle, is an important parameter.
It is inversely proportional to the relativistic velocity and energy factors β = v/c

and γ = (1 − β2)−1/2, and hence decreases as the particles are accelerated to
high energy. Emittance by itself is not sufficient to characterize the beam quality.
A better figure of merit is the brightness B defined by the ratio of beam current
I and the product of the two emittances, i.e., I/ε2 for axisymmetric beams [see
Equation (3.8)]. Since the emittance changes with energy, it is preferable to use the
normalized brightness defined as Bn = 2I/π2ε2

n [Equation (3.22)]. The normalized
brightness, like the normalized emittance εn, is an invariant in an ideal system.
Emittance growth due to nonlinear forces, instabilities, and other effects (discussed
in Chapter 6) decreases the normalized brightness. By comparing the actual beam
brightness with the ideal value one can assess the effectiveness of the design and
performance characteristics of a particular device. As an example, let us consider a
high-intensity electron beam from a dispenser-type cathode. Using Equation (1.8),
one finds that the normalized brightness has an upper limit of

Bn = Jc

2π

mc2

kBT
. (1.12a)

This brightness limit depends on the ratio of the current density Jc at the cathode
and the temperature T of the cathode, and it is independent of the current I . If
one operates at a maximum current density of Jc = 10 A/cm2 and at a cathode
temperature of kBT = 0.1 eV, the brightness has an upper limit of

Bn = 8 × 1010 A/(m-rad)2. (1.12b)

In practice, the brightness of the electron beam in the system downstream from
the electron gun will always be less than this ideal value.

The preceding discussion was intended to provide an introductory overview of
basic design principles of charged particle sources and of the fundamental perfor-
mance limits of high-intensity beams due to constraints imposed by the physics
and technology of source operation. Detailed descriptions can be found in the liter-
ature, such as the books C.15, C.16, and C.23 listed in the bibliography, and in the
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proceedings of accelerator conferences or topical meetings on low-energy beams
and sources.

References

1 Richardson, O. W., Phil. Mag. 28(5),
633 (1914); Dushman, S., Phys. Rev.
21(6), 623 (1923).

2 Child, C. D., Phys. Rev. Ser. I 32, 492
(1911); Langmuir, I., Phys. Rev. Ser. II
2, 450 (1913).

3 Fraser, J. S., Sheffield, R. L., Gray,
E. R., Rodenz, G. W., IEEE Trans.
Nucl. Sci. NS-32, 1791 (1985); Fraser,
J. S., Sheffield, R. L., IEEE J. Quan-
tum Electron. 23, 1489 (1987).

4 O’Shea, P., Reiser, M., AIP Con-
ference Proc. 279, 579 (1993), ed.
Wurtele, J. S.

5 Ben-Zvi, I., Conference Record of
the 1993 IEEE Particle Accelerator
Conference, 93CH3279-7, p. 2964, ed.
Wurtele, J. S.

6 Keller, R., “High Current, High
Brightness, and High Duty Factor
Ion Injectors,” AIP Conf. Proc. 139, 1
(1986), ed. Gillespie, G., Kuo, Y. Y.,
Keefe, D., Wangler, T. P.



15

2
Review of Charged Particle Dynamics

2.1
The Lorentz Force and the Equation of Motion

In this chapter we present a brief review of the methods of relativistic classical dy-
namics for determining the motion of charged particles in electromagnetic fields.
We begin with the force on a point charge q in an electromagnetic field, known as
the Lorentz force and given by

F = q(E + v × B). (2.1)

Note that the International System of Units (SI), also referred to as the mks system, is
used consistently throughout this book. Equation (2.1) is valid for static as well as
time-dependent fields. The field vectors E and B obey Maxwell’s equations, which
in our case of charged particle motion in vacuum (where D = ε0E, B = µ0H) may
be written in the form

∇ × E = −∂B
∂t

, ∇ · E = ρ

ε0
, (2.2a)

∇ × B = µ0J + 1

c2

∂E
∂t

, ∇ · B = 0. (2.2b)

Here we used the relation c2 = 1/ε0µ0 between the speed of light c, the permittivity
ε0, and the permeability µ0 of free space. The current density J and the space-
charge density ρ satisfy the continuity equation ∇ · J + ∂ρ/∂t = 0. The motion of
a particle due to the force of Equation (2.1) is determined by Newton’s equation

dP
dt

= F = q(E + v × B), (2.3)

where P is the mechanical momentum. In nonrelativistic mechanics, P is simply
the product of particle mass m and velocity v (i.e., P = mv). The above force equa-
tion is also correct relativistically. However, the relationship between P and the par-
ticle velocity is more complicated and, according to the theory of special relativity,
given by

P = mv
(1 − v2/c2)1/2

,
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or

P = γmv, (2.4)

where γ , also known as the Lorentz factor, is defined as

γ = 1

(1 − β2)1/2
(2.5)

and β = v/c is the ratio of the particle velocity v to speed of light in vacuum c.
Substituting (2.4) into (2.3), one obtains

γm
dv
dt

+ mv
dγ

dt
= F = q(E + v × B). (2.6)

Solving for the acceleration a = dv/dt , one can write this equation in the form

a = F − (F · β)β

γm
. (2.7)

In the nonrelativistic limit where γ = 1 and dγ /dt = 0, the acceleration is
parallel to the force and given by a = F/m. However, in the relativistic situation
the acceleration and the force have, in general, different directions. As can be seen
from Equation (2.7), only if the force is perpendicular or parallel to the velocity is a
proportional to F. For F ⊥ v, one finds that

a⊥ = F⊥
γm

, or
dP⊥
dt

= γm
dv⊥
dt

, (2.8a)

and for F ‖ v,

a‖ = F‖
γ 3m

, or
dP‖
dt

= γ 3m
dv‖
dt

. (2.8b)

Thus in place of the mass m of nonrelativistic mechanics we have an effective mass
that depends on the direction between the force and the velocity. The two effective
masses of the two special cases (2.8a) and (2.8b) are known in the literature as the
transverse mass mt and the longitudinal mass ml , respectively, and are defined by

mt = γm = m

(1 − β2)1/2
, (2.9a)

ml = γ 3m = m

(1 − β2)3/2
. (2.9b)

In addition, γm is also known as the relativistic mass and m as the rest mass, often
written with a subscript as m0. These various definitions of mass have led to con-
siderable confusion, giving the impression that mass is a function of energy that
also depends on the direction of the force. However, according to special relativ-
ity there is only one mass m that is independent of the frame of observation (i.e.,
invariant to a Lorentz transformation) [1].

The main task of charged particle dynamics is to determine the particle motion
by solving Newton’s equation for a given configuration of fields E and B. A spe-
cial difficulty arises in high-intensity beams, where the fields depend also on the
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particles’ electric and magnetic self fields, which in turn depend on the particles’
motion. Known as the problem of self-consistency, this is addressed in Chapter 5.

Equation (2.3) is a vector equation that consists of a set of three second-order
coupled differential equations. In cartesian coordinates we have

d

dt
(γmẋ) = γ̇ mẋ + γmẍ = q(Ex + ẏBz − żBy), (2.10a)

d

dt
(γmẏ) = γ̇ mẏ + γmÿ = q(Ey + żBx − ẋBz), (2.10b)

d

dt
(γmż) = γ̇ mż + γmz̈ = q(Ez + ẋBy − ẏBx), (2.10c)

Many of the cases treated in this book involve beams and field geometries with
rotational symmetry which are best treated in cylindrical coordinates. By transfor-
mation from cartesian to cylindrical coordinates (r, θ, z), the velocity vector is given
by v = {ṙ , rθ̇ , ż}, and the equations of motion take the form

d

dt
(γmṙ) − γmrθ̇2 = q(Er + rθ̇Bz − żBθ ), (2.11a)

1

r

d

dt
(γmr2θ̇ ) = q(Eθ + żBr − ṙBz), (2.11b)

d

dt
(γmż) = q(Ez + ṙBθ − rθ̇Br ). (2.11c)

It is immediately apparent that Equations (2.10) and (2.11) are rather complex
second-order differential equations which permit rigorous analytical solutions in
only a few simple cases. Furthermore, we see that the form in which our space vari-
ables enter into the equations depends on the coordinate system we choose. This
is to say that we cannot write down a generalized form of scalar equation which ap-
plies to every component equation in any given coordinate system. This shortcom-
ing of the Newtonian form of the equation of motion is avoided in the Lagrangian–
Hamiltonian formalism, where generalized coordinates and generalized potentials
are introduced. However, it should be recognized that the Newtonian equations of
motion are a good starting point for many problems and that they are particularly
useful in obtaining a simple physical picture of the forces and the resulting particle
motion in complicated systems.

Of major interest in this book is the use of electric and magnetic fields as lenses
to focus the beam along the desired path (in analogy to the focusing of the light
rays in optics). In addition, electric and magnetic fields are also used to deflect
the beams, as in cathode ray tubes or to bend them into circular orbits, as in cy-
clotrons and synchrotrons. For design purposes, it is interesting to compare the
relative magnitude of electric and magnetic forces for the same amount of stored
energy per unit volume and to understand the constraints imposed by technical
limitations.

With wE = (ε0/2)E2 for the electrostatic energy and wM = (1/2µ0)B
2 for the

magnetostatic energy per unit volume, we find for wE = wM :

B

E
= (µ0ε0)

1/2 = 1

c
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in free space. On the other hand, the ratio of magnetic and electric forces is given by

FM

FE

= vB

E
,

and if we substitute the above relation for B/E, we get

FM

FE

= v

c
.

Since v � c, this implies that (except for extreme relativistic velocities) to achieve
the same focusing or deflection force (e.g., in a cathode ray tube), more stored
energy is needed if a magnetic field is used than with an electric field. However, in
practice, one is severely limited by electrical breakdown problems to field strengths,
which for static fields are below about 10 MV/m. Electromagnets with iron can
produce fields of up to 2 tesla (T) limited by magnetic saturation of the iron. If we
take a particle with velocity v = 0.1c and compare the force in a magnetic field of
B = 2 T with that in an electric field of E = 107 V/m, we find that the ratio of the
forces FM/FE = vB/E = 6. The magnetic force is thus six times stronger than the
electric force. On the other hand, for v = 0.01c, the force ratio is 0.6 and hence the
electric field would be more effective at this lower velocity. For this reason, electric
fields are limited to applications at low particle velocities. At relativistic energies,
magnetic fields must be used for bending and focusing of particle beams.

In recent years, superconducting magnets producing magnetic fields of 4 T and
higher have been developed for use in high-energy accelerators. A good example is
the tevatron at Fermilab, where installation of 4-T superconducting bending mag-
nets made it possible to double the proton energy to about 1 TeV.

2.2
The Energy Integral and Some General Formulas

When E and B represent static fields that do not depend on time explicitly, the
system is conservative and we can obtain a first integral of the equation of motion
which may be identified with the total energy of the particles. To accomplish this,
multiply each side of Equation (2.3) with v:

d

dt
(γmv) · v = qE · v + q(v × B) · v.

Since v ⊥ (v×B), the last term on the right side is zero, and with v = dl/dt , where
dl is the path element, we get

d

dt
(γmv) · v = qE · dl

dt
. (2.12)

The electric field E in a conservative system can be derived from a scalar poten-
tial φ:

E = −∇φ, or φ = −
∫

E · dl. (2.13)
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In the nonrelativistic case where γ = 1, integration of Equation (2.12) between two
points along the particle’s trajectory yields

m

2

(
v2

2 − v2
1

) = q

∫ 2

1
E · dl = −q(φ2 − φ1). (2.14)

On the left-hand side, we have the change in kinetic energy of the particles, and we
can interpret Equation (2.14) as follows:

1. The change in the particle’s kinetic energy is given by the
electrostatic potential difference between the two points
considered.

2. The magnetic field does not affect the kinetic energy (i.e., it
does not do any work even though it may change the
direction of the particle’s path).

3. If T denotes the kinetic energy and U = qφ the potential
energy of the particles, we can state the physical contents of
Equation (2.14) as T + U = const (conservation of total
energy).

To obtain the energy integral in the general relativistic case, we first differentiate
the left side of Equation (2.12), which yields

γm
dv
dt

· v + m
dγ

dt
v · v = qE · dl

dt
,

This may be written in the alternative form

γm

2

dv2

dt
+ mv2 dγ

dt
= qE · dl

dt
.

or

γmc2

2

dβ2

dt
+ mc2β2 dγ

dt
= qE · dl

dt
.

From β2 = 1 − 1/γ 2 we have

dβ2

dt
= 2

γ 3

dγ

dt
,

and since 1/γ 2 + β2 = 1, the preceding equation becomes

d

dt

(
γmc2) = qE · dl

dt
= −q

dφ

dt
. (2.15)

With U = qφ, this result may be stated as

d

dt

(
γmc2 + U

) = 0, (2.16)

which is the law of conservation of energy in relativistic form. Binomial expansion
in the velocity yields

γmc2 = mc2

(1 − β2)1/2
= mc2

(
1 + 1

2
β2 + 3

8
β4 + · · ·

)
. (2.17)
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For v � c, or β � 1, we obtain the nonrelativistic approximation

γmc2 ≈ mc2 + m

2
v2. (2.18)

The first term on the right side of Equations (2.17) and (2.18) is the rest energy of
the particles,

E0 = mc2, (2.19)

which is the famous energy–mass equivalence principle of Einstein’s special rela-
tivity theory. The remaining terms in Equation (2.17), which depend on the velocity
v, can then be identified as the kinetic energy T . For the nonrelativistic approxima-
tion, we have

T = m

2
v2, (2.20)

while in the relativistic case, we get

T = γmc2 − mc2 = (γ − 1)mc2 = ET − E0, (2.21)

or

ET = γmc2 = E0 + T . (2.22)

The total energy ET of the particle is the sum of rest energy E0 and kinetic energy
T . The relationship between mechanical momentum P ≡ γmv and energy ET of
a moving particle is, in view of β2γ 2 = (γ 2 − 1), obtained as follows:

P 2 = m2c2β2γ 2 = m2c2(γ 2 − 1
)
,

or

P 2 = γ 2m2c2 − m2c2 = E2
T − E2

0

c2
.

Thus,

P = (E2
T − E2

0)1/2

c
, or

P

mc
= (

γ 2 − 1
)1/2

, (2.23)

and

E2
T = c2P 2 + m2c4 = γ 2m2c4. (2.24)

Differentiating Equation (2.24) with respect to time t yields

2ET

dET

dt
= 2c2P · dP

dt
, or

dET

dt
= v · dP

dt
.

In conclusion, we can write the equations of motion in the form

dP
dt

= d

dt
(γmv) = q(E + v × B),

dET

dt
= dP

dt
· v = qE · v, (2.25)
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where ET = mc2 + T = γmc2. In the extreme relativistic limit (ET � E0), the
relation in Equation (2.23) takes the approximate form P = ET /c, with units of
MeV/c often used in high-energy physics.

The two most important particles in this book are electrons and protons. Their
charge, mass, and rest energy are given in Table 2.1. With Ee = 0.511 MeV being
the rest energy of an electron, the rest energy of an ion can be calculated to good
approximation as follows:

E0 = AEa − ZEe = 931.494A − 0.511Z [MeV]. (2.26)

Ea = 931.494 MeV represents the atomic mass unit based on 12C (A = 12 exactly).
A is the atomic mass number of the element, and Z is the number of electrons
removed from the atomic shell (i.e., the ionization state). This approximation is
accurate to the extent that we can neglect the binding energy of the electrons that
have been removed (i.e., for ions with a low charge state). Table 2.2 lists the values
of A and E0 for several light-ion species.

Table 2.1 Charge and mass of electron and proton.

Electron Proton

Charge q −1.602 × 10−19 C 1.602 × 10−19 C
Mass m 9.110 × 10−31 kg 1.673 × 10−27 kg
Rest energy E0 0.511 MeV 934.272 MeV

Table 2.2 Rest energies of some isotopes and ions.

Isotope A (amu) Rest Energy
(MeV)

Ion Rest Energy
(MeV)

1H 1.0078 938.783 1H+ 938.272
1H− 939.294

2H 2.0141 1,876.030 2H+ 1,875.519
3He 3.0160 2,809.415 3He+ 2,808.904

3He2+ 2,808.393
4He 4.0026 3,728.399 4He+ 3,727.888

4He2+ 3,727.377
6Li 6.0151 5,603.051 6Li+ 5,602.540

6Li3+ 5,601.518
12C 12.0000 11,177.932 12C3+ 11,176.399

12C6+ 11,174.856
14N 14.0031 13,043.784 14N+ 13,043.269

14N7+ 13,040.203
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2.3
The Lagrangian and Hamiltonian Formalisms

2.3.1
Hamilton’s Principle and Lagrange’s Equations

The Newtonian equations of motion have the disadvantage that they differ in their
form markedly when the coordinate system is changed. To circumvent this prob-
lem, one introduces in classical mechanics generalized coordinates qi and the associ-
ated velocities of q̇i ; one then defines a function L(qi, q̇i , t), the Lagrange function,
from which the equations of motion can be generated in a form that is independent
of the coordinate system.

We present a brief review of the main features of the Lagrangian formalism and
refer to standard textbooks on classical mechanics, such as Goldstein [A.3], for a
more detailed treatment. First, we have to recognize that a Lagrangian L can be
defined only for systems with applied forces derivable from an ordinary or general-
ized potential. The simplest case is a conservative system where

∮
F · dl = 0 (work

done around a closed path is zero). Moreover, if we take the nonrelativistic case of a
conservative system and B = 0, the Lagrange function is defined by the difference
between kinetic and potential energy,

L = T − U, (2.27)

where F = −∇U .
We shall see below that we can define a Lagrange function also for the case that

B �= 0 and the particle velocities are relativistic. For our application, we also note
that the generalized coordinates qi are normally cartesian, cylindrical, or spheri-
cal coordinates; however, in general, qi can be any set of coordinates that uniquely
defines the state of the system.

Suppose now that we are dealing with a system for which a Lagrangian can be
defined. Hamilton’s variational principle states that the motion of the system (in our
case that of a charged particle in an electromagnetic field) from one fixed point at
time t1 to another point at time t2 is such that the time integral of the Lagrangian,∫

L dt , along the path taken is an extremum (actually, a minimum). Thus, if we
compare different possible paths between the two points (i.e., consider small vari-
ations of the path taken), the actual path followed by the particle is defined by the
condition that the variation of the time integral

∫
L dt is zero, or

δ

∫ t2

t1

L(qi, q̇i , t) dt =
∫ t2

t1

δL(qi, q̇i , t) dt = 0. (2.28)

Since t1 and t2 remain fixed and we consider only virtual changes of the qi, q̇i

such that δqi, δq̇i at the two endpoints of the path remain zero, we can take the δ

under the integral. In classical mechanics, Hamilton’s principle is often used as the
starting point to derive Lagrange’s equations of motion, and we shall now present
this derivation.
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The variation of L (i.e., the difference between L for the virtual coordinates qi +
δqi , q̇i +δq̇i , and L for the unvaried original path qi , q̇i ) is, for a conservative system
where ∂L/∂t = 0,

δL =
∑

i

∂L

∂qi

δqi +
∑

i

∂L

∂q̇i

δ̇qi , (2.29)

where δ̇qi = d/dt (δqi).
Now substitute Equation (2.29) into Equation (2.28) and perform partial integra-

tion of the second term involving q̇i :∫ t2

t1

∑
i

∂L

∂q̇i

d

dt
(δqi) dt =

∑
i

∂L

δq̇i

δqi

∣∣∣∣
t2

t1

−
∫ t2

t1

∑
i

d

dt

∂L

∂q̇i

δqi dt. (2.30)

Since the variation at the endpoints is zero, the first term on the right-hand side is
zero. Therefore, we may write Hamilton’s principle in the form∫ t2

t1

∑
i

(
∂L

∂qi

− d

dt

∂L

∂q̇i

)
δqi dt = 0. (2.31)

In view of the fact that the δqi are independent of each other, it follows that

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0 (i = 1, 2, 3). (2.32)

These are the Lagrange equations of motion. We will show that they are identical
with the equations of motion in the Newtonian form [Equations (2.10) and (2.11)].
Consider a conservative system and assume that the motion is nonrelativistic and
that B = 0. In cartesian coordinates, the Lagrangian is defined as

L = T − U = m

2

(
ẋ2 + ẏ2 + ż2) − qφ(x, y, z),

and substitution in Equation (2.32) yields for the x-coordinate

d

dt
(mẋ) = −q

∂φ

∂x
= qEx.

This is identical with Equation (2.10a) when γ = 1, γ̇ = 0, and B = 0. In cylindrical
coordinates, we have

L = T − U = m

2

(
ṙ2 + r2θ̇2 + ż2) − qφ(r, θ, z),

and with
∂L

∂ṙ
= mṙ,

∂L

∂r
= mrθ̇2 − q

∂φ

∂r

we obtain from Equation (2.32) for the radial motion

d

dt
(mṙ) − mrθ̇2 = −q

∂φ

∂r
= qEr .

This equation is identical with Equation (2.11a) when γ = 1, γ̇ = 0, and B = 0.
In similar fashion one can derive the equations for the azimuthal and axial motion
[Equations (2.11b) and (2.11c)].
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(Note: In Hamilton’s principle, the variation is taken between two unvaried points
in space and time. The varied paths will not obey the equation of motion or the
conservation laws; only the unvaried, actual path does.)

2.3.2
Generalized Potential and Lagrangian for Charged Particle Motion in an
Electromagnetic Field

The Lagrange equations in the form of Equation (2.32) also apply for the more
general case where forces can be derived from a generalized potential, or a velocity-
dependent potential, U*; Lagrange’s function L is then defined (nonrelativistically)
as L = T − U∗ and the generalized forces are obtained by the prescription

Fi = −∂U∗

∂qi

+ d

dt

(
∂U∗

∂q̇i

)
. (2.33)

The most important case of such a generalized potential is that of combined electric
and magnetic forces on a moving charge. To derive U* for this case, we go back to
Maxwell’s equations [Equations (2.2)] and introduce the vector potential A:

B = ∇ × A. (2.34)

The E vector can then be redefined for time-varying fields by

E = −∇φ − ∂A
∂t

. (2.35)

With these two relations, the Lorentz force equation [Equation (2.1)] may be written
in terms of the scalar potential φ and the vector potential A in the form

F = q

(
− ∇φ − ∂A

dt
+ v × ∇ × A

)
. (2.36)

Note that φ and A are connected by the Lorentz gauge condition, which in free space
is given by

∇ · A + 1

c2

∂φ

∂t
= 0. (2.37)

The terms involving A on the right side of Equation (2.36) can be written in a
more convenient form. Consider the x-component, for instance:

Fx = q

[
− ∂φ

∂x
− ∂Ax

∂t
+ vy

(
∂Ay

∂x
− ∂Ax

∂y

)
− vz

(
∂Ax

∂z
− ∂Az

∂x

)]
. (2.38)

The total time derivative of Ax is

dAx

dt
= ∂Ax

∂t
+ vx

∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z
, (2.39)

and the x-component of v × ∇ × A can therefore be written as

(v × ∇ × A)x = ∂

∂x
(v · A) − dAx

dt
+ ∂Ax

∂t
. (2.40)
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Furthermore, we recognize that

dAx

dt
= d

dt

[
∂

∂vx

(v · A)

]
. (2.41)

With these substitutions, we obtain for Equation (2.38)

Fx = q

{
− ∂

∂x
(φ − v · A) − d

dt

[
∂

∂vx

(A · v)

]}
. (2.42)

Since the scalar potential φ is independent of velocity, this expression is equiva-
lent to

Fx = −∂U∗

∂x
+ d

dt

(
∂U∗

∂vx

)
, (2.43)

where

U∗ = qφ − qA · v (2.44)

is a generalized potential that has the form desired by the prescription of Equation
(2.33). Consequently, the Lagrangian for a charged particle in an electromagnetic
field can be written (nonrelativistically)

L = T − qφ + qA · v. (2.45)

As an example, in cylindrical coordinates, we have

L = m

2

(
ṙ2 + r2θ̇2 + ż2) − qφ(r, θ, z) + q

(
ṙAr + rθ̇Aθ + żAz

)
. (2.46)

If Equation (2.46) is substituted into the Lagrange equations [Equations (2.32)], one
obtains the equations of motion in cylindrical coordinates and in the nonrelativistic
approximation (γ = 1, γ̇ = 0), as is easily verified.

In order to obtain the equations of motion in the relativistically correct form,
one has to modify the definition of the Lagrange function from L = T − U∗ to
L = T ∗ − U∗, where

T ∗ = mc2
[
1 − (

1 − β2)1/2
]
,

with β = v/c. Note that T* is not the kinetic energy. Thus,

L = mc2
[
1 − (

1 − β2)1/2
]

− qφ + qv · A (2.47)

is a suitable Lagrange function for a relativistic particle in an electromagnetic field.
Let us check this for cartesian coordinates when A = 0. Since β2 = (ẋ2 + ẏ2 +
ż2)/c2, we find that

∂L

∂ẋ
= mc2

(1 − β2)1/2

ẋ

c2
= γmẋ,

∂L

∂x
= −q

∂φ

∂x
.

Hence from Equation (2.32),

d

dt
(γmẋ) = −q

∂φ

∂x
= Ex,

in agreement with Equation (2.10a).
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It should be noted that the definition of L in Equation (2.47) is not unique. We
can add or subtract arbitrary constants. Thus, if we subtract mc2, we get the form

L = −mc2(1 − β2)1/2 − qφ + qv · A, (2.48)

which is more widely used (Goldstein [A.3], Panofsky and Phillips [A.1], Jackson
[A.4], Septier [C.19], etc.).

2.3.3
Hamilton’s Equations of Motion

The Lagrange equations are second-order differential equations, and hence, the
motion of the particle is completely specified if the initial values for the generalized
coordinates qi and velocities q̇i are given. In this sense, the qi and q̇i together form
a complete set of independent variables necessary for describing the motion. For
many applications, in particular for numerical techniques of calculating the particle
motion, it is more convenient to replace the second-order differential equations
by a set of twice the number of first-order differential equations. This is done in
the Hamiltonian formulation of classical mechanics. However, rather than using
the (qi, q̇i ) pairs as independent variables, generalized momenta, pi , also known as
canonical momenta or conjugate momenta, are introduced in place of the q̇i . These
momenta are defined as follows:

pi = ∂L(qi, q̇i , t)

∂q̇i

. (2.49)

Thus, in cartesian coordinates we have from Equation (2.47)

px = ∂L

∂ẋ
= γmẋ + qAx, (2.50a)

py = ∂L

∂ẏ
= γmẏ + qAy, (2.50b)

pz = ∂L

∂ż
= γmż + qAz, (2.50c)

or, in vector form,

p = γmv + qA. (2.51)

The canonical momentum thus contains the added term of the vector potential A
when a magnetic field is present. The mechanical momentum, which we denote
with P (see Section 2.1), is then obtained from Equation (2.51) as

P = γmv = p − qA. (2.52)

In cylindrical coordinates, the Lagrangian of Equation (2.48) has the form

L = −mc2
[

1 − ṙ2 + r2θ̇2 + ż2

c2

]1/2

− qφ + q
(
ṙAr + rθ̇Aθ + żAz

)
(2.53)

and the three canonical momentum components are
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pr = ∂L

∂ṙ
= mc2

(1 − β2)1/2

ṙ

c2
+ qAr = γmṙ + qAr, (2.54a)

pθ = ∂L

∂θ̇
= mc2

(1 − β2)1/2

r2θ̇

c2
+ qrAθ = γmr2θ̇ + qrAθ , (2.54b)

pz = ∂L

∂ż
= γmż + qAz. (2.54c)

It is important to recognize that the canonical angular momentum pθ does not
have the same dimensions as pr and pz. The mechanical θ -momentum is therefore

Pθ = γmrθ̇ = pθ − qrAθ

r
. (2.55)

The change in variables from the (qi, q̇i , t) set to the (qi, pi, t) set is accomplished
by introducing the Hamiltonian H(qi, pi, t) via the transformation

H(qi, pi, t) =
∑

i

q̇ipi − L(qi, q̇i , t) (2.56)

The total differential of H is

dH =
∑

i

pi dq̇i +
∑

i

q̇i dpi −
∑

i

∂L

∂qi

dqi −
∑

i

∂L

∂q̇i

dq̇i − ∂L

∂t
dt. (2.57)

Since pi = ∂L/∂q̇i , the first and fourth terms on the right-hand side cancel, and
we obtain

dH =
∑

i

q̇i dpi −
∑

i

∂L

∂qi

dqi − ∂L

∂t
dt

=
∑

i

q̇i dpi −
∑

i

dpi

dt
dqi − ∂L

dt
dt, (2.58)

where we made the substitution [ from Lagrange’s equations of motion (2.32)]

∂L

∂qi

= d

dt

∂L

∂q̇i

= dpi

dt
.

On the other hand, H = H(qi, pi, t); hence, the left-hand side may be written as

dH =
∑

i

∂H

∂qi

dqi +
∑

i

∂H

∂pi

dpi + ∂H

∂t
dt. (2.59)

Since ∂L/∂qi = dpi/dt , comparison of Equations (2.58) and (2.59) yields the equa-
tions

dqi

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂qi

, −∂L

∂t
= ∂H

∂t
. (2.60)

These are Hamilton’s canonical equations, which represent an alternative form of
the equations of motion. They constitute a set of 2n first-order equations replacing
the n Lagrange equations. In principle, the first step in solving a particular problem
of charged particle motion in this canonical formulation is to set up the Lagrangian
L as L(qi, q̇i , t). Using Equation (2.49), one then obtains the canonical momenta
pi , and with their aid, the Hamiltonian H is constructed according to the prescrip-
tion of Equation (2.56). The equations of motion, which are now first order, then
follow by substituting H in Equation (2.60).
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2.3.4
The Hamiltonian for Charged Particles and Some Conservation Theorems

We shall now consider a conservative system in the nonrelativistic approximation
and show that the Hamiltonian H in this case is the total energy of the particle.
This will also explain the transformation [Equation (2.56)] which defined H . In a
conservative system, the force is given by F = −∇U , and the Lagrangian L is not
an explicit function of time t . The total time derivative of L is then

dL

dt
=

∑
i

∂L

∂qi

dqi

dt
+

∑
i

∂L

∂q̇i

dq̇i

dt
, (2.61)

which in view of the Lagrange equations [Equation (2.32)] can be written as

dL

dt
=

∑
i

d

dt

∂L

∂q̇i

q̇i +
∑

i

∂L

∂q̇i

dq̇i

dt
=

∑
i

d

dt

(
q̇i

∂L

∂q̇i

)
. (2.62)

It therefore follows that

d

dt

(
L −

∑
i

q̇i

∂L

∂q̇i

)
= d

dt

(
L −

∑
i

q̇ipi

)
= 0. (2.63)

Considering the definition for the Hamiltonian H [Equation (2.56)], the last equa-
tion can be stated in the form

dH

dt
= 0, or H = const. (2.64)

Thus, for a conservative system, the Hamiltonian H is a constant of the motion.
Next, we prove that H = T + U = total energy. For simplicity, let us consider

cartesian coordinates, where the Lagrangian is given by

L = m

2

(
ẋ2 + ẏ2 + ż2) − qφ(x, y, z) + q

(
ẋAx + ẏAy + żAz

)
. (2.65)

From the definition of H [Equation (2.56)] and using (2.50), we have

H = ẋpx + ẏpy + żpz − L;
hence,

H = ẋ(mẋ + qAx) + ẏ(mẏ + qAy) + ż(mż + qAz) − L. (2.66)

Substituting L in Equation (2.66) yields

H = m

2

(
ẋ2 + ẏ2 + ż2) + qφ = T + U. (2.67)

To obtain the Hamiltonian in the form H(qi, pi, t) required for the equations of
motion, we transform from the velocity components (ẋ, ẏ, ż) to the canonical mo-
mentum components px = Px + qAx , and so on. Then from Equation (2.67) with

m

2
ẋ2 = P 2

x

2m
= (px − qAx)

2

2m
,

and so on, we find that
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H = 1

2m

[
(px − qAx)

2 + (py − qAy)
2 + (pz − qAz)

2
]

+ qφ(x, y, z),

(2.68)

or

H = 1

2m
(p − qA)2 + qφ(x, y, z)

in cartesian coordinates. In cylindrical coordinates, the nonrelativistic Hamil-
tonian is

H = 1

2m

[
(pr − qAr)

2 +
(

pθ − qrAθ

r

)2

+ (pz − qAz)
2

]
+ qφ(r, θ, z).

(2.69)

By using the above Hamiltonian in Equation (2.60) one obtains Hamilton’s equa-
tions of motion, which are first-order equivalents of the original force equations.
As an example, consider cartesian coordinates and no magnetic field (A = 0); then,
from Equations (2.68) and (2.60),

dpx

dt
= −∂H

∂x
= −q

∂φ

∂x
.

Now, in this case px = Px = mẋ; hence,

dpx

dt
= d

dt
(mẋ) = qEx,

in agreement with Equation (2.10a).
The Hamiltonian in relativistically correct form is obtained by substituting the

Lagrangian L of (2.47) in Equation (2.56) and changing to the (qi, pi, t) set of
variables. Take the case A = 0 in cartesian coordinates. Then with L from Equa-
tion (2.47):

H =
∑

i

q̇ipi − L =
∑

i

q̇i

∂L

∂q̇i

− L,

H = γm
(
ẋ2 + ẏ2 + ż2) − mc2

[
1 − (

1 − β2)1/2
]

+ qφ,

H = mc2
[

β2

(1 − β2)1/2
− 1 + (

1 − β2)1/2
]

+ qφ,

H = mc2
[

β2 + 1 − β2

(1 − β2)1/2
− 1

]
+ qφ,

H = mc2(γ − 1) + U = T + U,

as in the nonrelativistic case. Now, from Equation (2.24),

γmc2 = c
(
m2c2 + P 2)1/2

,

where P = γmv = p since A = 0; hence,

H = c
(
m2c2 + P 2)1/2 + qφ − mc2.
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To include the case where A �= 0, we simply replace P by p – qA to get the relativis-
tic Hamiltonian

H = c
[
m2c2 + (p − qA)2]1/2 + qφ − mc2.

If we use the Lagrangian according to Equation (2.48), the last term, mc2, on the
right-hand side drops out, and the Hamiltonian has the simpler form H = γmc2 +
U , or

H = c
[
m2c2 + (p − qA)2]1/2 + qφ. (2.70)

In cartesian coordinates the relativistic Hamiltonian is given by

H = c
[
m2c2 + (px − qAx)

2 + (py − qAy)2 + (pz − qAz)
2]1/2 + qφ. (2.71)

For cylindrical coordinates one obtains

H = c

[
m2c2 + (pr − qAr)

2 +
(

pθ − qrAθ

r

)2

+ (pz − qAz)
2

]1/2

+ qφ.

(2.72)

We have shown that in a conservative system (where L and H do not depend ex-
plicitly on time), the Hamiltonian represents the total energy, which, in this case,
is a constant of the motion. Another important conservation theorem is obtained
for the case where the Hamiltonian does not depend on one of the space coordi-
nates, for instance, qj . The latter is then called a cyclic variable and from Hamilton’s
equations (2.60) follows

dpj

dt
= − ∂H

∂qj

= 0, (2.73)

or

pj = const (2.74)

(i.e., the canonical momentum variable pj is a constant of the motion in this case).
The most important application of this theorem is for systems with cylindrical

symmetry, where φ, A, and hence the Hamiltonian H are independent of the az-
imuth coordinate θ . Therefore,

dpθ

dt
= −∂H

∂θ
= 0,

or

pθ = γmr2θ̇ + qrAθ = rPθ + qrAθ = const. (2.75)

Equation (2.75) represents the conservation of canonical angular momentum, which
is very useful in the analysis of particle dynamics in axisymmetric fields. It is equiv-
alent to Busch’s theorem, which was originally derived from the equations of motion
[Equation (2.11b)] and which states that

γmr2θ̇ + q

2π
ψ = const. (2.76)
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Here ψ = ∫
B dS is the magnetic flux enclosed by the particle trajectory (i.e., the

flux inside a circle with radius r given by the radial distance r of the particle from
the axis at a given position along the trajectory). The proof that Equation (2.76) is
equivalent to Equation (2.75) simply follows from

ψ =
∫

B · dS =
∫

(∇ × A) · dS =
∮

A · dl = 2πrAθ , (2.77)

hence, rAθ = ψ/2π .
As an example, consider a particle launched at point 1 in an axisymmetric mag-

netic field with θ̇1 = 0. Then θ̇ at any other point (r, z) along the trajectory can be
calculated from Equation (2.76):

γmr2θ̇ = − q

2π
(ψ − ψ1),

or

θ̇ = − q

2πγmr2
(ψ − ψ1). (2.78)

If the trajectory remains close to the axis so that to first-order approximation
Bz(r, z) ≈ Bz(0, z) = B, we find that

θ̇ = − q

2πγmr2

(
Br2π − B1r

2
1 π

) = − q

2γm

[
B − B1

( r1

r

)2
]
. (2.79)

If, moreover, the magnetic field is uniform (B = B1), we obtain

θ̇ = − qB

2γm

[
1 −

( r1

r

)2
]

= ∓ωc

2

[
1 −

( r1

r

)2
]
, (2.80)

where

ωc =
∣∣∣∣ qB

γm

∣∣∣∣ (2.81)

is the cyclotron frequency. The sign in (2.80) depends on the polarity of the charge
and the direction of the magnetic field. It is negative when both q and B are either
positive or negative, and it is positive when q and B have opposite signs.

Suppose now that the particle is launched in a region where B = 0 with θ̇1 = 0
(i.e., no initial velocity component in azimuthal direction). Then, since ψ1 = 0, it
follows from Equation (2.76) that

γmr2θ̇ = − q

2π
ψ; (2.82)

hence, we get for trajectories near the axis where ψ ≈ Br2π ,

θ̇ = − qB

2γm
= ∓ωc

2
= ∓ωL, (2.83)

where ωL = ωc/2 is known as the Larmor frequency.
Another important theorem that is used widely, especially in plasma physics, ap-

plies for adiabatic particle motion in magnetic fields. The motion of a particle is
called adiabatic when the magnetic field varies so slowly along the particle’s helical
trajectory that the change of the field strength during one revolution or cyclotron
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period τc = 2π/ωc is negligibly small. In this case, the theorem of adiabatic in-
variance states that the magnetic flux encircled by the particle trajectory remains a
constant of the motion.

The concept of adiabatic invariance is introduced by considering the action inte-
grals of a system in terms of the generalized canonical coordinates qi and momenta
pi . For each coordinate qi , which is periodic, the action integral Ji is defined by

Ji =
∮

pi dqi . (2.84)

The integration is over a complete cycle of the periodic coordinate qi . For a given
system with specified initial conditions and with changes that are adiabatic, the
action integral is invariant or a constant of the motion:

Ji = const. (2.85)

As an example, let us consider an axially symmetric B field with particles moving
adiabatically on spiraling trajectories that encircle the axis. The periodic coordinate
is then θ (cylindrical coordinates) and with pθ = γmr2θ̇ +qrAθ , the action integral
takes the form

Jθ =
∫ 2π

0
γmr2θ̇ dθ +

∫ 2π

0
qAθr dθ = const. (2.86)

Now let

θ̇ = −qBz(r)

γm
,

where r = R is constant during one cyclotron period, and
∫ 2π

0
Aθr dθ = 2π

∫ R

0
Bz(r)r dr = ψ.

Then we get for the first term in Equation (2.86),

−
∫ 2π

0
γmR2

[
qBz(R)

γm

]
dθ = −2πR2qBz(R),

and the action integral [Equation (2.86)] may be written as

2πBz(R)R2 − 2π

∫ R

0
Bz(r)r dr = const,

or

2πBz(R)R2 − ψ = const. (2.87)

If the particle orbit is confined to the region near the axis so that in first approxi-
mation Bz(r) ≈ B(0), we have Bz(R) = B and

ψ � BR2π. (2.88)

Hence, 2ψ − ψ = const, or

ψ = BR2π = const. (2.89)
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This is the adiabatic theorem of magnetic flux conservation, which can be gener-
alized to arbitrary magnetic field configurations. Under adiabatic conditions, the
particles spiral along magnetic flux lines such that the flux encircled remains con-
stant (i.e., the radius R of the circle is proportional to B−1/2). Since the mechanical
momentum is defined by

Pθ = γmvθ = γmRθ̇ = −RqB, (2.90)

we have the equivalent conservation law:

P 2
θ

B
= const, or PθR = const. (2.91)

The same law is also expressed as the conservation of the magnetic moment. Since
the magnetic moment M is defined by the product of current I and enclosed area
S (i.e., M = I · S = IR2π ), we have for a circulating charge q,

I = q

τ
= qωc

2π
= q2B

2πγm
,

and therefore, in view of Equation (2.89),

M = qωcR
2

2
= q2BR2

2γm
= const. (2.92)

We should note that this conservation law for the magnetic moment applies only
when the particle’s energy is either nonrelativistic (γ = 1) or does not change (γ =
const), in contrast to the flux conservation law [Equations (2.87) and (2.89)]. As an
example, for relativistic electron motion in a pulsed magnetic field, γ varies due to
∇ × E = −(∂B/∂t), and hence the magnetic moment may change although the
flux conservation law, ψ = const, still holds.

2.4
The Euler Trajectory Equations

2.4.1
The Principle of Least Action and the Euler Equations

In addition to Hamilton’s principle, discussed in previous sections, the principle of
least action plays an important role in classical mechanics. It holds for a conserva-
tive system where the Hamiltonian does not depend explicitly on time (i.e., where
the total energy of the system is conserved). Applied to charged particle motion
in a conservative electric and magnetic field, the principle of least action may be
stated as follows: The line integral of the canonical momentum p along the path of
motion between two given points in space is an extremum; that is,

δ

∫ 2

1
p · dl = 0. (2.93)

Note that there is a distinct difference between the two variational principles.
In Hamilton’s principle, the variation of the path was taken between two unvaried
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points in both space and time; the varied paths do not obey the equations of mo-
tion or the conservation laws. In the principle of least action, on the other hand, the
endpoints are fixed points in space but not in time; however, the varied paths do
obey the law of conservation of energy. Thus, we are comparing all possible paths
for a charged particle to go from one fixed point to another fixed point in space.
The time of travel may differ, but along each path the sum of kinetic and potential
energy remains a constant of the motion. The actual path followed by the particle
in the real world is then uniquely determined by Equation (2.93).

The principle of least action is used to obtain equations for the trajectories di-
rectly rather than integrating the equations of motion with respect to time and
then eliminating the time. With p = γmv + qA, we may write for Equation (2.93),

δ

∫ 2

1
(γmv + qA) · dl = δ

∫ 2

1
(γmv dl + qA · dl) = 0. (2.94)

Since by definition v is in the direction of dl, we have v · dl = v dl. In cartesian
coordinates dl = [dx2 + dy2 + dz2]1/2 and A · dl = Ax dx + Ay dy + Az dz.

Now, let us make one of the three coordinates, say x, the independent variable.
Then, with dy/dx = y′ and dz/dx = z′ denoting the slopes of the trajectory,
Equation (2.94) becomes

δ

∫ x2

x1

[
γmv

(
1 + y′2 + z′2)1/2 + q

(
Ax + Ayy′ + Azz

′)]dx = 0, (2.95)

where the expression in brackets following the integral will be denoted by
F(x, y, z; y′, z′). [In general coordinates, the function F would be F(qi, q

′
i ), where

q ′ = dqi/dq1, for example.] In terms of the function F , Equation (2.95) can be
stated in the form

δ

∫ x2

x1

F(x, y, z; y′, z′)dx

=
∫ x2

x1

(
∂F

∂y
δy + ∂F

∂z
δz + ∂F

∂y′ δy
′ + ∂F

∂z′ δz
′
)

dx = 0. (2.96)

Since x is the independent variable and the variation is in the y and z directions,
the term (∂F/∂x)δx is zero and does not appear in the integral. Now

δy ′ = d(δy)

dx
, δz′ = d(δz)

dx
,

and partial integration of the terms involving y′ and z′ yields∫ x2

x1

∂F

∂y′
d(δy)

dx
dx =

[
∂F

∂y′ δy
∣∣∣∣
x2

x1

]
−

∫ x2

x1

d

dx

∂F

∂y′ δy dx.

The bracketed term equals zero, since δy = 0 at the endpoints. An analogous
expression is obtained for the z′ term. Using these results, we can write Equa-
tion (2.96) in the form

δ

∫ x2

x1

F dx =
∫ x2

x1

[(
∂F

∂y
− d

dx

∂F

∂y′

)
δy +

(
∂F

∂z
− d

dx

∂F

∂z′

)
δz

]
dx = 0,

(2.97)
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which yields the two Euler equations:

∂F

∂y
− d

dx

∂F

∂y′ = 0, (2.98a)

∂F

∂z
− d

dx

∂F

∂z′ = 0. (2.98b)

In generalized coordinates, if q1 is the independent variable, we can write

∂F

∂q2
− d

dq1

∂F

∂q ′
2

= 0, (2.99a)

∂F

∂q3
− d

dq1

∂F

∂q ′
3

= 0. (2.99b)

Returning now to Equation (2.95), we express v in terms of the kinetic energy
and the rest energy. This is possible since in the principle of least action, the varied
paths obey the law of conservation of energy. From Equation (2.23) we have

mcγβ = E0

c

(
γ 2 − 1

)1/2
.

Therefore, Equation (2.95) can be written as

δ

∫ x2

x1

{[(
γ 2 − 1

)(
1 + y′2 + z′2)]1/2 + qc

E0

(
Ax + Ayy

′ + Azz
′)}dx = 0.

(2.100)

As a special example, let us consider the nonrelativistic case of a particle in an elec-
trostatic field. In this situation, A = 0 and

mv = [2qmφ(x, y, z)]1/2,

where φ(x, y, z) is defined as the potential corresponding to the particle’s kinetic
energy at that point. Then Equation (2.95) becomes

δ

∫ x2

x1

[
φ1/2(1 + y′2 + z′2)1/2

]
dx = 0. (2.101)

Let us now further assume that the x–y plane is a plane of symmetry. Then the
force component in the z-direction is zero, and a particle with z′

0 = 0 remains in
this plane. For this case we have

F(x, y; y′) = φ1/2(x, y)
(
1 + y′2)1/2

,

∂F

∂y
= 1

2
φ−1/2 ∂φ

∂y

(
1 + y′2)1/2

,

∂F

∂y′ = 1

2
φ1/2(1 + y′2)−1/22y′ = φ1/2 y′

(1 + y′2)1/2
.

If we differentiate the last expression with respect to x and substitute into the Euler
equation (2.98a), we obtain, after some algebra, the following trajectory equation
for the particle motion in the x–y plane:

y′′ = 1 + y′2

2φ

(
∂φ

∂y
− y′ ∂φ

∂x

)
(2.102)
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(see [C.1, p. 401]).
Equation (2.102) also holds, of course, for particle trajectories in the symmetry

planes (meridional planes) of an axially symmetric system. In this case one uses
cylindrical coordinates, and if z denotes the independent variable (i.e., r ′ = dr/dz,
etc.), one gets

r ′′ = 1 + r ′2

2φ

(
∂φ

∂r
− r ′ ∂φ

∂z

)
. (2.103)

The equations for skew trajectories (vθ �= 0) in axially symmetric systems that in-
clude both static electric and magnetic fields and in which the particle motion is
relativistic are derived in the next section.

2.4.2
Relativistic Euler Equations in Axially Symmetric Fields

In axially symmetric fields, the vector potential A has only a θ -component, Aθ(r, z),
and in place of Equation (2.100), we have (using polar coordinates)

δ

∫ x2

x1

{[(
γ 2 − 1

)(
r ′2 + r2θ ′2 + 1

)]1/2 + qc

E0
Aθrθ

′
}
dz = 0. (2.104)

Here z is the independent variable and the path element dl is given by

dl = [
(dr)2 + (r dθ)2 + (dz)2]1/2 = [

r ′2 + r2θ ′2 + 1
]1/2

dz.

The Euler equations (2.99a) and (2.99b) take the form

d

dz

∂F

∂r ′ − ∂F

∂r
= 0, (2.105a)

d

dz

∂F

∂θ ′ − ∂F

∂θ
= 0. (2.105b)

The electrostatic potential φ(r, z) is implicitly given in γ :

γ = ET

E0
= T + E0

E0
= qφ(r, z) + E0

E0
. (2.106)

Note that φ is the voltage equivalent of the kinetic energy T , defined by the actual
potential distribution set up by the electrodes plus the particles’ initial voltage when
entering the field.

We begin with Equation (2.105b). Since there is no θ dependence, we have
∂F/∂θ = 0. Thus

d

dz

∂F

∂θ ′ = d

dz

[(
γ 2 − 1

)1/2(
r ′2 + r2θ ′2 + 1

)−1/2
r2θ ′ + qc

E0
Aθr

]
= 0.

This equation can be integrated directly, leading to

r2θ ′(γ 2 − 1)1/2

(r ′2 + r2θ ′2 + 1)1/2
+ qc

E0
Aθr = C. (2.107)
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It can be shown that Equation (2.107) is equivalent to the law of conservation of
canonical angular momentum,

γmr2θ̇ + qAθ r = pθ = mcC. (2.108)

It implies that a particle emitted from a source located in a magnetic field will attain
mechanical angular momentum when leaving the field. A particle launched from a
field-free region (i.e., Aθ = 0) and passing through a magnetic field will experience
a change in mechanical angular momentum, which, however, will be restored to
its initial value when the particle leaves the field.

Equation (2.107) can be substituted into the first Euler equation for r(z) in order
to eliminate θ ′. To simplify the algebra, we will introduce the following parameters
A.1, p. 432]:

ξ = γ 2 − 1, η = 1

(ξ)1/2

(
C

r
− qc

E0
Aθ

)
, λ = ξ

(
1 − η2). (2.109)

Dividing by r(γ 2 − 1)1/2, we can write Equation (2.107) in the form

rθ ′

(r ′2 + r2θ ′2 + 1)1/2
= 1

(ξ)1/2

(
C

r
− qc

E0
Aθ

)
= η. (2.110)

From Equation (2.110) one finds that

rθ ′ = η
(1 + r ′2)1/2

(1 − η2)1/2
(2.111)

and

r ′2 + r2θ ′2 + 1 = 1 + r ′2

1 − η2
. (2.112)

The function F is defined as

F = (ξ)1/2(r ′2 + r2θ ′2 + 1
)1/2 + qc

E0
θ ′rAθ . (2.113)

For the two derivative terms in the Euler equation (2.105a) one finds, after some
manipulation, that

d

dz

∂F

∂r ′ = λ1/2

(1 + r ′2)3/2
r ′′ + 1

2λ1/2

r ′

(1 + r ′2)1/2

(
∂λ

∂z
+ r ′ ∂λ

∂r

)
(2.114)

and

∂F

∂r
= (1 + r ′2)1/2

2λ1/2

∂λ

∂r
. (2.115)

Substitution of Equations (2.114) and (2.115) into Equation (2.105a) yields the dif-
ferential equation for the radial motion r(z) of a charged particle in axisymmetric,
static electric and magnetic fields

r ′′ = 1 + r ′2

2λ

(
∂λ

∂r
− r ′ ∂λ

∂z

)
, (2.116)

where from (2.109)

λ = γ 2 − 1 −
(

C

r
− qcAθ

E0

)2

.
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This trajectory equation, in which the time t has been eliminated, is exact and
in relativistic form; no simplifying assumptions have been made to this point. It
agrees with Panofsky and Phillips [A.1, Equations (23), (24), p. 432] except for a
factor (1 + r ′2) associated with ∂λ/∂r in their result, which appears to be an error.
For the nonrelativistic limit, Equation (2.116) is in agreement with Zworykin et al.
[C.1, Equation (15.54), p. 504] if we make the substitutions ξ → φ, D → η, and
λ → φ(1 − D2). Specifically, if there is only an electric field (hence Aθ = 0),
and the particle moves within a fixed meridional plane (i.e., C = 0), we have ξ =
2qφ/E0, η = 0, and λ = ξ = 2qφ/E0. Then Equation (2.116) becomes identical
with Equation (2.103).

It should be pointed out that the meridional plane in which the particle is located
at any given time and in which r(z) is measured is not the same throughout the
motion, even if the particle crosses the axis. The meridional plane rotates about
the z-axis, its azimuth being determined at any given point by integration of Equa-
tion (2.111):

θ = θ0 +
∫ z

z0

η

r

(1 + r ′2)1/2

(1 − η2)1/2
dz. (2.117)

2.5
Analytic Examples of Charged Particle Motion

2.5.1
Planar Diode without Space Charge

To illustrate the use of some of the concepts and of the equations of motion dis-
cussed earlier in this chapter, we now treat a few problems that yield relatively
simple analytical solutions. As a first example, consider two infinite, parallel, con-
ducting plates, one (the cathode) at x = 0 with potential φ = 0, the other (the
anode) at x = d with potential φ = V0. Such configuration is known as a pla-
nar diode. Suppose that an electron (charge q = −e) is emitted from the cathode
with a velocity v0 = {ẋ0, ẏ0, 0}, and determine its trajectory in the x–y plane in the
nonrelativistic limit. Ignore space-charge effects due to other electrons.

The static electric field between the two plates is given by E = −∇φ and the
potential φ(x) can be calculated from Laplace’s equation (since ρ = 0):

∇2φ = d2φ

dx2
= 0, (2.118)

with the solution

φ(x) = V0

d
x (2.119)

and

Ex = E = −dφ

dx
= −V0

d
(2.120)

(i.e., the electric field is uniform).
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The nonrelativistic equations of motion in Newton’s form [Equations (2.10a) and
(2.10b)] are readily integrated, yielding (with γ = 1)

mẍ = eE, (2.121)

ẋ = e

m
Et + ẋ0, (2.122)

x = eE

m

t2

2
+ ẋ0t, (2.123)

mÿ = 0, (2.124)

ẏ = ẏ0, (2.125)

y = ẏ0t. (2.126)

Substituting t = y/ẏ0 from (2.126) into Equation (2.123) gives the trajectory equa-
tion

x = 1

2

eE

m

y2

ẏ2
0

+ ẋ0

ẏ0
y, (2.127)

which is a parabola.
The kinetic energy gain is simply

�T = T − T0 = m

2

(
ẋ2 − ẋ2

0

) = eV0
x

d
, (2.128)

and hence �T = eV0 when the electron arrives at the anode.

2.5.2
Planar Diode with Space Charge (Child–Langmuir Law)

Let us now include the effect of the space charge of the electron current in the
diode on the potential distribution and electron motion. To simplify our analysis,
we assume that all electrons are launched with initial velocity v0 = 0 from the cath-
ode (i.e., they are moving on straight lines in the x-direction). This is an example
of laminar flow where electron trajectories do not cross and the current density is
uniform. We try to find the steady-state solution (∂/∂t = 0) in a self-consistent
form. The electrostatic potential is determined from the space-charge density ρ via
Poisson’s equation, with φ = 0, at x = 0 and φ = V0 at x = d, as in the previous
case. The relationship between ρ, the current density J, and the electron velocity
v follows from the continuity equation (∇ · J = 0 or J = ρv = const). The veloc-
ity in turn depends on the potential φ and is found by integrating the equation of
motion. Thus we have the following three equations:

∇2φ = d2φ

dx2
= − ρ

ε0
(Poisson’s equation), (2.129)

Jx = ρẋ = const (continuity equation), (2.130)
m

2
ẋ2 = eφ(x) (equation of motion). (2.131)
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Substituting ẋ = [2eφ(x)/m]1/2 from (2.131) into (2.130) and ρ = Jx/ẋ from
(2.130) into (2.129) yields

d2φ

dx2
= J

ε0(2e/m)1/2

1

(φ)1/2
, (2.132)

where the current density J = −Jx is defined as a positive quantity. After multipli-
cation of both sides of Equation (2.132) with dφ/dx, we can integrate and obtain

(
dφ

dx

)2

= 4J

ε0(2e/m)1/2
φ1/2 + C. (2.133)

Now φ = 0 at x = 0, and if we consider the special case where dφ/dx = 0 at x = 0,
we obtain C = 0. A second integration then yields (with φ = V0 at x = d)

4

3
φ3/4 = 2

(
J

ε0

)1/2(2e

m

)−1/4

x,

or

φ(x) = V0

(x

d

)4/3
, (2.134)

with the relation

J = 4

9
ε0

(
2e

m

)1/2 V
3/2
0

d2
. (2.135)

This equation is identical to Equation (1.3) and is known as Child’s law or the Child–
Langmuir law, referred to earlier (Section 1.3). For electrons, one gets

J = 2.33 × 10−6 V
3/2
0

d2
[A/m2], (2.136)

with V0 in volts and d in meters.
By comparing the result (2.134) for φ(x) with the previous case, we see that the

negative space charge of the electrons lowers the potential at any given point be-
tween the two electrodes of the planar diode. Equation (2.135) represents the space-
charge limit (i.e., the maximum current density that can be achieved in the diode
by increasing the electron supply from the cathode). The electric field at the cath-
ode is zero in this case (dφ/dx = 0 at x = 0). The current can be increased by
either increasing the voltage or decreasing the cathode–anode spacing. The Child–
Langmuir law is of fundamental importance for vacuum tubes, electron guns, and
ion sources.

2.5.3
Charged Particle Motion in a Uniform Magnetic Field

We can solve this problem in either cartesian or cylindrical coordinates. If the mag-
netic field B is in the z-direction (i.e., B = {0, 0, B}) and the velocity vector is in
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the z = 0 plane, the particle motion is circular. If we choose a cylindrical coordi-
nate system such that the center of the circle coincides with the origin, we find
the solution

ṙ = 0, r0 = γmv

qB
, (2.137)

θ̇ = − qB

γm
, v = r0θ̇ , (2.138)

as can be readily verified by substitution of these results in Equations (2.11a) and
(2.11b).

The particle gyrates on a circle with constant radius r0, known in the literature
as the cyclotron radius, and with a constant angular velocity, the cyclotron frequency
ωc = |qB/γm|. If the center of the circle does not coincide with the origin, it is
better to use cartesian coordinates (see Problem 2.2).

2.5.4
Charged Particle Motion in a Radial Electric Field

Let us consider two conducting, coaxial cylinders, the inner one with radius r1 and
at a potential φ(r1) = V1, the outer one with radius r2 and at a potential φ(r2) = V2.
By integrating Laplace’s equation, we find for the electric field

Er = −dφ

dr
= − V2 − V1

ln(r2/r1)

1

r
. (2.139)

The motion of a particle in this field depends on the charge q of the particle
and the polarity of the electric field. Let us suppose that for a positive charge Er is
radially inward and for a negative charge radially outward, and furthermore, that
the motion is nonrelativistic. Using cylindrical coordinates, we obtain the radial
force equation

mr̈ − mrθ̇2 = qEr, (2.140)

and the azimuthal equation

1

r

d

dt

(
mr2θ̇

) = 0, or mr2θ̇ = const. (2.141)

It is readily verified that a special solution exists in which the particle moves on a
circle of constant radius re, the equilibrium radius. In this case r̈ = 0, ṙ = 0, v =
vθ = v0 = reθ̇0, and the outward centrifugal force is exactly balanced by the inward
electric force, hence

mv2
0

re
= −qEr(re) = qEe, (2.142)

or

re = mv2
0

qEe

, (2.143)
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where Ee = −Er(re) is the electric field at the equilibrium radius. The angular
velocity is given by

θ̇2
0 = ω2

0 = qEe

mre
. (2.144)

What happens to a particle with the same velocity v that is displaced from the
equilibrium radius re? To answer this question, we employ a technique widely used
in similar problems which assumes that the displacement is small compared to the
radius re so that the equations of motion can be linearized. Let the radial position
of a particle be defined by

r(θ) = re + x(θ), where x � re. (2.145)

Substitute this into the equations of motion, make a Taylor-series expansion about
re, and keep only the linear terms. The azimuthal equation (2.141) then yields in
the linear approximation

θ̇ = θ̇0
r2
e

(re + x)2
≈ θ̇0

(
1 − 2

x

re

)
. (2.146)

The radial force equation (2.140) becomes

mẍ − mre

(
1 + x

re

)
θ̇2

0

(
1 − 4x

re

)
= q

(
Ee + E′

rx
)
. (2.147)

where

E′
r = dEr

dr

∣∣∣∣
re

= −Ee

re
.

Using the force–equilibrium condition and keeping only the linear terms in x/re,
we obtain the equation

ẍ + ω2
ex = 0, (2.148)

where

ω2
e = 2θ̇2

0 = 2
qEe

mre
. (2.149)

If ω2
e > 0, the particles are performing harmonic oscillations about the equilibrium

radius, which may be written in the form

x = xm sin
[√

2θ̇0(t − t0)
]

= xm sin
[√

2(θ − θ0)
]
. (2.150)

The nodes of the oscillations are spaced at intervals of
√

2θ̇0(t − t0) = √
2�θ = π ,

or

�θ = π√
2

= 127◦17′. (2.151)

An important application of this theory is the electrostatic analyzer. In this device,
cylindrically shaped capacitor plates extending over a sector with an angle of π/

√
2

are used to deflect a beam and separate the particles with different velocity (velocity
analyzer).
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2.5.5
The Harmonic Oscillator

In the previous problems, the linearization of the equations of motion for small
displacements from the equilibrium orbit led to Equation (2.148), which is the dif-
ferential equation for an harmonic oscillator. Such a system is characterized by
the fact that the forces acting on a particle are proportional to the displacement
from the equilibrium position. We will now treat the harmonic-oscillator problem
in the Hamiltonian framework. Consider the nonrelativistic motion of a particle
with positive charge q in an electrostatic field defined by the potential

φ(x) = V0

(x

a

)2
. (2.152)

The canonical variables are x, p = P = mẋ = mv, and the Hamiltonian H is
given by

H(x, P ) = T + U = P 2

2m
+ 1

2
kx2 = H0, (2.153)

where k = 2qV0/a
2. H0 is the total energy and is constant for the conservative sys-

tem being considered here. The two coordinates x and P define a two-dimensional
space called phase space, and the particle motion in this two-dimensional space is
an ellipse with semiaxes (2mH0)

1/2 and (2H0/k)1/2, provided that k is a positive
quantity.

Hamilton’s equations of motion are

dP

dt
= −∂H

∂x
= −kx (2.154)

and
dx

dt
= ẋ = ∂H

∂P
= P

m
. (2.155)

Differentiating (2.155) and substituting in (2.154) yields the harmonic oscillator
equation

ẍ + ω2x = 0, (2.156)

with

ω2 = k

m
= 2qV0

ma2
. (2.157)

If ẋ = v0, x = 0 at t = 0, the solution is

x = v0

ω
sin ωt (2.158)

and

ẋ = v0 cos ωt, (2.159)

with

H0 = m

2
v2

0 . (2.160)
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Using the radian frequency ω in place of the constant k, we can write the Hamil-
tonian in the alternative form

H(x, P ) = P 2

2m
+ 1

2
mω2x2. (2.161)

What happens if the potential is not constant but varies with time, that is, V0 =
V0(t), hence, k = k(t) or ω = ω(t)? If the variation with time is slow enough
that the potential change during one particle oscillation is negligibly small, we can
make use of the adiabatic invariance of the action integral J = ∮

Pdx. In our case,
using ẋ in place of P and taking the integral over one-fourth of the oscillation cycle,
from x = 0 to x = xm = v0/ω, we can express this invariance as

J =
∫ xm

0
ẋ dx = const. (2.162)

Now from (2.159) and (2.158) we have

ẋ = v0
(
1 − sin2 ωt

)1/2 = (
v2

0 − ω2x2)1/2
, (2.163)

hence

J =
∫ xm

0

(
v2

0 − ω2x2)1/2
dx = v2

0

ω

π

4
= const. (2.164)

In view of (2.160), we can express (2.164) in the equivalent form

H0

ω
= const. (2.165)

The total energy H0 is thus no longer constant but varies linearly with the fre-
quency ω.

Recall that in two-dimensional phase space the particle trajectory is an ellipse
with semiaxes Pm = (2mH0)

1/2 in the P -direction and xm = (2H0/mω2)1/2 in the
x-direction. The area of this ellipse is given by

A = Pmxmπ = 2π
H0

ω
= 4mJ. (2.166)

Consequently, the adiabatic invariance of the action integral implies that the area
A of the ellipse traced by the particle trajectory in phase space remains constant.
Thus, for instance, if the potential increases adiabatically with time, the total en-
ergy H0 increases proportional to the frequency ω. Furthermore, the amplitude xm

of the particle oscillation decreases as ω−1/2 while the momentum amplitude in-
creases as ω1/2, so that xmPm = const. It should be noted here that the phase-space
area A remains constant even if the system is nonadiabatic. This more general
conservation law follows from Liouville’s theorem, which will be discussed in Sec-
tion 3.2.

Another important relation for the harmonic oscillator system concerns the aver-
age values of kinetic energy and potential energy during one oscillation cycle. Since

ẋ2 = 1

2π

∫ 2π

0
ẋ2 d(ωt) = v2

0

2π

∫ 2π

0
cos2 ωt d(ωt) = v2

0

2
(2.167)
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and

x2 = 1

2π

∫ 2π

0
x2 d(ωt) = v2

0

2πω2

∫ 2π

0
sin2 ωt d(ωt) = v2

0

2ω2
, (2.168)

we find that

T = U = 1

2
H0. (2.169)

Thus, in the harmonic oscillator the average kinetic energy of the particle during
one period is equal to the average potential energy or one-half of the total energy.
This result also follows from the virial theorem of classical mechanics. For a system
of pointlike particles with position vectors li and with applied forces Fi (including
any constraints) acting in such a way that the coordinates and velocities of the
particles remain finite, the virial theorem states that

T = −1

2

∑
i

Fi · li. (2.170)

In the above harmonic-oscillator case, we have only one particle and the force can
be derived from the potential energy U (i.e., F = −∇U ), hence

T = 1

2

∂U

∂x
x. (2.171)

Since U = 1
2kx2, one finds that (∂U/∂x)x = kx2 = 2U , and therefore obtains the

result T = U of Equation (2.169).
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Problems

2.1 Derive the equations of motion in cylindrical coordinates
[Equation (2.11)] from the cartesian form (2.10) by the
appropriate transformations of the coordinates and the
components of the velocity and field vectors.

2.2 Solve the equation of motion in cartesian coordinates for a
charged particle moving in a uniform magnetic field
B = B0az and launched at t = 0 at the point {x0, y0, 0} with
velocity v0 = {ẋ0, ẏ0, 0}. Show that the trajectory is a circle
described by

(x − xc)
2 + (y − yc)

2 = R2
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and determine the coordinates xc and yc of the center point
and the radius R of the circle in terms of the initial
conditions and the cyclotron frequency ωc = |qB0/γm|.

2.3 Solve the nonrelativistic equation of motion in cartesian
coordinates for an electron (q = −e) moving in a crossed
electric and magnetic field given by E = {0, −E, 0} and
B = {0, 0, −B}. The initial conditions at t = 0 are
r = {x0, y0, 0}, v = {ẋ0, ẏ0, 0}. The solution can be greatly
simplified by transforming to a system x′ = x − (E/B)t

moving in the x-direction with constant velocity E/B. The
motion of the electron is cycloidal and can be traced by a
wheel with radius a rolling in the x-direction to which a
pencil is attached at a radial distance R from the center of
the wheel. Show from the solution of the equation of motion
that a = E/Bω and R = 1/ω[(ẋ0 − E/B)2 + ẏ2

0 ]1/2. Sketch
qualitatively the electron trajectory for the following four
cases: (a) R = a [i.e., v0 = 0 (common cycloid)]; (b) R > a

(curtate cycloid or epicycloid); (c) R < a (prolate cycloid or
hypocycloid); and (d) R = 0, y0 = 0.

2.4 Consider a charged particle moving in a uniform magnetic
field. Let R denote the cyclotron radius, ωc the cyclotron
frequency, and assume that the center of gyration is
displaced from the origin of a cylindrical coordinate system
by a radial distance R0. Show that the equation of motion for
the radial position of the particle r(t) is given by

r̈ + r
ω2

c

4

[
1 − (R2

0 − R2)2

r4

]
= 0.

2.5 Verify that the relativistic Hamiltonian
H = c[m2c2 + (p − qA)2]1/2 + qφ yields the correct
equations of motion in cylindrical coordinates [Equation
(2.11)].

2.6 Find the Hamiltonian for charged particle motion in the
region between the two coaxial conductors of a transmission
line subject to the following conditions:

(a) The inner conductor (radius r1) is at an electrostatic
potential φ = V0 with respect to the outer conductor
(radius r2).

(b) A dc current I flows along the inner conductor in the
positive z-direction, and a return current of the same
magnitude flows in the outer conductor in the opposite
direction.
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(c) The coaxial transmission line is located inside a solenoid
which generates a static uniform magnetic field
B = B0az.

2.7 Solve the relativistic equation of motion for a positively
charged particle moving in a uniform electric field
E = (E, 0, 0) with initial conditions t = 0 : x = 0, y = 0,
Py = P0. Show that by elimination of time the trajectory is
given as

x = U0

qE

(
cosh

qEy

P0c
− 1

)
, where U0 =

[(
mc2)2 + c2P 2

0

]1/2
.

2.8 Two solenoids with current flow in opposite direction and an
iron plate with infinite permeability in between form an
ideal cusped magnetic field that can be approximated by
the function

Bz(r, z) =
{ −B1 for z < 0

+B2 for z > 0,

where B1 and B2 are independent of r, z and only linear
functions of the currents I1 and I2 in the two solenoids. An
electron with kinetic energy T = eV0 is emitted from an
electron gun at z = −z1 with r = r0, ṙ0 = 0, and θ̇0 = 0. It
can pass into the region z > 0 (solenoid 2) through a suitably
placed small hole in the iron plate. Determine the electron
motion and plot qualitatively the trajectory for the following
cases:

(a) B1 = 0, B2 = B0

(b) B1 �= B2

(c) B1 = B2 = B0

Show in case (c) that there exists a threshold field B0 = Bmax

above which the electron cannot enter the region z > 0.
Calculate Bmax for an electron with kinetic energy of 2.5
MeV launched with r0 = 6 cm.

2.9 A relativistic electron of kinetic energy T = eV1 moves on a
circle of radius r = R1 in the midplane (z = 0) of an
axisymmetric magnetic mirror field. The field at r = R1 is
Bz(R1, 0) = B1. At some instant, a switch is turned on and
the magnetic field increases with time. The change in
B(r, z, t) occurs slowly enough so that the electron motion is
adiabatic and always stays in the midplane. Assume that
Bz(r, 0, t) = B(r)f (t).

(a) How do the kinetic energy T , the momentum P , and the
radius R change as the magnetic field rises? What
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requirements are imposed on the radial dependence B(r)

in order that R2B(R) = const?
(b) Find the condition for B(r) where the radius of the

electron orbit remains constant (i.e., R = R1 = const).
2.10 Consider the space-charge-limited planar diode (Child’s law)

treated in Section 2.5.2. Assume that the cathode and anode
have a cross-sectional area A and that the current is I .
Calculate the space-charge density ρ(x), the total charge Q

between anode and cathode, and the total surface charge Qa

on the anode. For comparison, calculate the surface charges
on the anode, Qa , and cathode, Qc, when the space charge is
negligible (planar diode without space charge).

2.11 Consider a static magnetic field B = {0, 0, −B} and a
time-varying electric field E = {0, −E, (1 − α cos ωt), 0} in
cartesian coordinates. Solve the nonrelativistic equation of
motion for an electron launched at time t = t0 from the
origin {0, 0, 0} with zero initial velocity (v0 = 0). Evaluate
the integration constants and write the solutions x(t) and
y(t) for the case t0 = 0 in terms of the parameters
ω, ωc = eB/m, a = eE1/m, and α.

2.12 Provide the missing steps in the derivation of the relativistic
Euler trajectory equation (2.116) for an axisymmetric system.

2.13 The betatron employs an axially symmetric magnetic field
which is varied in time. Electrons are accelerated by the
action of the induced azimuthal electric field associated with
this time variation of B (Faraday’s law!). The initial magnetic
field is zero, and during the acceleration process the
electrons are kept at a centered orbit of constant radius R.
Consider motion in the midplane (z = 0) only and prove that
the constant-radius condition implies that B(R) = 1

2B,
where B is the average field inside the orbit.

2.14 In a magnetron, a radial electric field Er(r) is formed by two
coaxial cylinders, the inner of radius r1 (the cathode) and the
outer of radius r2 (the anode). The anode is at potential V0

with respect to the cathode. A uniform magnetic field Bz

exists in the axial direction. Consider an electron leaving the
cathode with zero velocity. Calculate the relativistically
correct radial dependence of the azimuthal velocity vθ and
the critical field value Bc versus V0 for which the electron
can just reach the anode (i.e., Bz > Bc: electron misses
anode, Bz < Bc: electron hits anode). Use conservation laws
and either Lagrange’s equation of motion or the
Lorentz-force equations.

2.15 In a planar diode the voltage between the cathode (at x = 0)
and the anode (at x = d) varies periodically with time as



Problems 49

V (t) = V0 cos ωt . Solve the nonrelativistic equations of
motion for an electron launched from the cathode at t = t0

with initial conditions y = 0, v0 = {ẋ0, ẏ0, 0}). Find x(t),
y(t), and the kinetic energy T (t). Determine the transit time
τd = td − t0 for an electron leaving the cathode with v0 = 0
in the approximation ω(td − t0) � 1.
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3
Beam Optics and Focusing Systems without Space Charge

3.1
Beam Emittance and Brightness

The basic principles of producing charged particle beams in diode-type sources and
performance limitations of such sources were discussed in Section 1.3. In the case
of electron beams, the source is a piece of conducting material that forms the cath-
ode; the electrons are accelerated across the potential difference in the diode and
emerge through a hole in the anode. The cathode may be either heated (thermal
emission) or cold (field emission) or the electrons may be produced by photoemis-
sion. Positive or negative ions, on the other hand, are usually formed in the plasma
of a gas discharge; they are then extracted from this ion source by applying a po-
tential difference (with appropriate polarity) between the source and an extractor
electrode.

In view of the nature of the source, there is always a spread in kinetic energy
and velocity in a particle beam. Each point on the surface of the source is emitting
particles with different initial magnitude and direction of the velocity vector. This
intrinsic thermal velocity spread remains present in the beam at any distance down-
stream from the source. In practice, the velocity spread of the beam from a given
source may be considerably greater than the ideal thermal limit since many factors,
such as temperature fluctuations in a plasma source, nonlinear forces (aberrations)
due to the external or space-charge fields, and instabilities lead to a deterioration of
the beam quality. The emittance provides a quantitative basis, or a figure of merit, for
describing the quality of the beam. As we will see in the next section, it is closely
related to two-dimensional projections of the volume occupied by the ensemble of
particles in six-dimensional phase space as defined by the set of canonical coordi-
nates qi , pi .

Most beams of practical interest have two planes of symmetry or are circularly
symmetric. For the following discussion, assume that the beam propagates in the
z-direction and has two planes of symmetry (x–z and y–z). The motion of each
individual particle is defined by the three space coordinates (x, y, z) and the three
mechanical momentum coordinates (Px, Py, Pz) at any given instant of time. An
ensemble of particles forms a beam if their momentum component in the longitu-
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dinal direction is much larger than the momentum component in the transverse
directions (i.e., in our case of cartesian coordinates if Px � Pz, Py � Pz). If the
length of the beam is much greater than the diameter, we can treat the distribu-
tion as a continuous beam. On the other hand, if the length is comparable to the
diameter, we are dealing with bunched beams.

Consider now a particle in the x–z plane with total momentum P = (P 2
x +P 2

z )1/2,
where Px � Pz ≈ P . The slope of the trajectory is by definition x′ = dx/dz =
ẋ/ż ≈ Px/P . At any given distance z along the direction of beam propagation, every
particle represents a point in x–x ′ space, known as trace space. The area occupied
by the points that represent all particles in the beam

Ax =
∫∫

dx dx′ (3.1)

is related to (but, by our definition, not identical to) the emittance of the beam.
Unfortunately, there is no single definition of emittance that is consistently used

in the literature, a fact that often causes confusion when results from different lab-
oratories or publications are compared. Many authors, especially experimentalists,
define the trace-space area Ax as the emittance. However, this definition does not
distinguish between a well-behaved beam in a linear focusing system and a beam
with the same trace-space area but a distorted shape due to nonlinear forces. To
illustrate this point, let us consider Figure 6.1 in Chapter 6. This figure shows the
progressive distortion of the trace-space boundary during the propagation of the
beam through a periodic system of lenses with spherical aberrations. The area en-
closed by this boundary remains constant in agreement with Liouville’s theorem,
which is discussed in Section 3.2. However, it is clear from this picture that the
beam quality becomes progressively worse as the beam propagates through the
focusing channel.

We prefer, therefore, a definition of emittance that measures the beam quality
rather than the trace-space area. A measure of the beam quality is the product
of the beam’s width and divergence, where the divergence relates to the random
(or thermal) velocity spread. To be mathematically more precise, we will use the

moments of the particle distribution in x–x′ trace space, x2, x′2, xx′2 to define an
rms emittance ε̃x (see Section 5.3.4 by

ε̃x =
(

x2 x′2 − xx′2
)1/2

, (3.2a)

or, equivalently, by

ε̃x = x̃x̃′
th = x̃

ṽx,th

v0
. (3.2b)

The term xx′2 in (3.2a) reflects a correlation between x and x ′ which occurs, for
instance, when the beam is either converging (e.g., after passing through a lens)
or diverging (e.g., after passing through a waist); it is zero at the waist of an ideal

uniform beam. As discussed in Section 5.4.5, xx′2 represents an inward or out-
ward flow term in the transverse kinetic energy. The difference between the total
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transverse kinetic energy and the flow energy is the random, or thermal, kinetic
energy whose x-component is defined by ṽx,th. Equation (3.2b) is therefore equiv-

alent to (3.2a); x̃ = (x2)1/2 is the rms width, x̃′
th = (x′2

th)1/2 the rms divergence,

ṽx,th = (v2
x,th) the rms velocity spread, and v0 the mean axial velocity of the parti-

cle distribution. A rigorous derivation from the particle distribution function and
detailed discussion of this relationship can be found in Sections 5.3.4 and 5.4.5 of
Chapter 5.

The rms emittance provides the desired quantitative information on the quality
of the beam. Thus in Figure 6.1, ε̃x increases with distance through the focusing
channel while the trace-space area Ax remains constant. The only problem with
the rms emittance is that it gives more weight to the particles in the outer region of
the trace-space area (e.g., the halo observed in some beams) as compared to those
in the beam core. Removal of such particles can therefore significantly improve the
rms emittance while the corresponding decrease of beam intensity may be com-
paratively very small.

In a system where all the forces acting on the particles are linear (i.e., propor-
tional to the particle’s displacement x from the beam axis), it is useful to assume
an elliptical shape for the area occupied by the beam in x–x′ trace space. If this
ellipse has an upright position with major axes xm and (x′)m, the trace-space area
Ax , which is identical to the area of the ellipse, is given by

Ax = xm(x′)mπ. (3.3)

In this special case we can define an emittance as the product of the width xm and
maximum divergence (x′)m as

εx = xm(x′)m = Ax

π
, (3.4)

which is equal to the total trace-space area Ax divided by π . The definition εx =
Ax/π also applies when the trace-space ellipse is tilted, and we will use it consis-
tently in the chapters that deal with linear beam optics without space charge (Chap-
ter 3) and with space charge (Chapter 4). Note that we use the brackets in (x ′)m to
distinguish the maximum value of x′ from the slope of the width x′

m = dxm/dz in
a converging or diverging uniform beam.

As will be shown in Section 5.3.4, for a beam with uniform particle density where
both space charge and external forces are linear, the relationships between xm,
(x′)m, εx and the corresponding rms quantities x̃, x̃′

th, ε̃x are given by

xm = 2x̃ (3.5a)

(x′)m = 2x̃′
th (3.5b)

εx = 4ε̃x . (3.5c)

For the ideal uniform beams with linear focusing forces discussed in Chapters 3
and 4 we call xm the width, (x′)m the divergence, and εx the emittance of the beam.
For other beams having nonuniform particle distributions the total trace-space area
comprising all particles is generally larger than εxπ = 4ε̃xπ . However, in most
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Fig. 3.1 Method of measuring the trace-space distribution of a beam.

cases of theoretical or practical interest one finds that the fraction of the beam
outside of this area is relatively small. It is therefore meaningful to use εx , the four-
times rms emittance as a measure for the overall beam quality, following a proposal
by Lapostolle. [See Section 5.3.4 and the discussion at the end of Section 5.4.4 in
connection with Equations (5.295a)–(5.298). In the context of this more general ap-
plication of the relations (3.5a)–(3.5c), we will call xm the effective width, (x′)m the
effective divergence, and εx the effective emittance, of the beam.

As mentioned above, many authors identify the emittance with the trace-space
area Ax of the beam by including the factor π implicitly or explicitly. In the first
case, “emittance” is defined as εx = Ax . In the second case, π is factored out and
“emittance” is given as εxπ = Ax , where the factor π is often included with the
units, e.g., εx = 20π mm-mrad. For the reasons stated, we prefer the definitions
given in the above equations, and they are used consistently in this book.

For an axially symmetric beam, the above description of the beam properties
in one trace-space plane (x–x′) is sufficient. However, in many cases one has two
planes of symmetry, e.g., beams in quadrupole focusing channels. Hence, one also
needs the effective width ym, divergence (y′)m, and emittance εy for the y–y′ pro-
jection of the four-dimensional transverse trace-space distribution. In the case of
bunched beams, the longitudinal phase-space properties have to be included to obtain
a description of the overall beam quality in six-dimensional phase space. These
properties and the associated definitions of longitudinal emittance, bunch width,
divergence, and energy spread are presented in Sections 5.4.6–5.4.8 for linear ac-
celerators and in 5.4.9 for circular machines.

The units of measurement for emittance are m-rad. However, since the typical
widths and divergence angles of beams are in the range of mm (or cm) and millira-
dians, respectively, it is customary to use units of mm-mrad or cm-mrad. Also, the
normalized longitudinal emittance is often given in units of “electronvolt-seconds”
(see Section 5.4.6).

The emittance, as defined here, is a somewhat incomplete description of the
quality of the beam. For one thing, emittance depends on the kinetic energy of
the particles: according to Equation (3.2), the slope x′ (and hence the area in x–x′



3.1 Beam Emittance and Brightness 55

trace space) decreases as the longitudinal momentum Pz increases. One therefore
has to normalize the emittance when one compares beams of different energy, as
discussed in the next section. Another problem is due to the fact that the particle
density across the beam as well as the density of the representative points in trace
space is generally nonuniform, in practice, and decreases at the edges. Thus one
has to specify what fraction of the beam particles lies within a given area. This
is done by presenting the data in a contour map where different curves contain
different fractions of the beam.

A method of measuring the trace-space distribution of laboratory beams is
schematically illustrated in Figure 3.1. As shown in this figure, the beam is in-
tercepted by a plate with a set of narrow slits (or, alternatively, with a single slit
that can be moved across the beam). The particles passing through each slit form
a narrow beamlet with a small divergence angle. At distance l downstream from
the plate, the current density profile of each beamlet is scanned by a moving probe
(thin tungsten rod, for instance) or by a second slit with a current collector behind
it. Each slit position in the intercepting plate upstream defines an x-coordinate
within the beam. The angular divergence of the beamlet passing through a slit is
obtained from the width of the associated current density curve measured by the
probe at distance l. For any given current density level, for example 10% of the
highest peak, two points at distances d1 and d2 from the axis are defined, as indi-
cated in Figure 3.1. The corresponding divergence angle α, or slope x ′, is given by
the simple geometric relation tan α1 ≈ α1 = (d1 − x1)/ l = x′

1, and likewise for α2.
If one plots the two angles (or slopes) for each slit position in an x–x′ coordinate
system, one can construct a closed curve, as shown on the right side of the figure.
The area enclosed by this curve is then the trace-space area Ax for the fraction of
the beam defined by the given intensity level. Such emittance contours can be ob-
tained for any fraction of the beam current distribution. Specifically, the contour
corresponding to the zero current density points at the bottoms of each beamlet
curve defines the total, or 100%, trace-space area of the beam. Similarly, one can
construct trace-space contours for 95% or 90% of the beam current. This contour
map then provides a good picture of the particle distribution in the x–x′ trace space
and hence in the corresponding x–px projection in phase space.

A useful description of the beam quality is obtained by measuring the trace-space
area in both transverse directions. This is accomplished by either rotating the slits
and probe of Figure 3.1 by 90◦ or by inserting a separate system for measuring the
trace-space area Ay .

As stated earlier, emittance alone is not enough to define the quality of a beam.
One can make the emittance as small as one desires for a particular application by
use of collimating slits. What counts, however, is the number of particles, or the
total beam current, with a given emittance. The figure of merit is therefore known
as the brightness of the beam, commonly defined by [C.14, p. 160]

B = J

d�
= dI

dS d�
, (3.6)



56 3 Beam Optics and Focusing Systems without Space Charge

which is the current density per unit solid angle. In this definition, brightness, like
current density J , is a quantity that may vary across the beam. For many practical
applications it is more meaningful to know the total beam current that can be con-
fined within a given four-dimensional trace-space volume V4. The corresponding
definition of average brightness is

B = I

V4
, (3.7)

where V4 = ∫∫
dS d� represents the integral taken over the total trace-space vol-

ume. As pointed out previously in this section, the emittance is generally not di-
rectly proportional to the trace-space area. However, for any particle distribution
whose boundary in four-dimensional trace space is defined by the hyperellipsoid

x2

a2
+

(
ax′

εx

)2

+ y2

b2
+

(
by′

εy

)2

= 1,

one finds that
∫ ∫

dS d� = (π2/2)εx εy , and that the average brightness is accord-
ingly given by

B = 2I

π2εx εy

[A/(m-rad)2]. (3.8)

The best known examples of this type are the K–V distribution and the waterbag
distribution, which are treated in Chapter 5. In the waterbag case, the hyperellip-
soidal volume is populated with uniform density. In the K–V beam, on the other
hand, the particles occupy only the surface of the hyperellipsoid, and the volume
in four-dimensional phase space is zero in a mathematical sense. However, the
projections into any two-dimensional subspace (x–x ′, y–y′, etc.) are ellipses whose
areas, εxπ and εyπ , have uniform current densities; Equation (3.8) is therefore a
valid definition of brightness for a K–V beam as well. Since Equation (3.8) is also
consistent with our concept of emittance as a measure of beam quality, we will use
this relation as the definition of brightness for any distribution provided that εx and
εy denote effective (“four-times-rms”) emittances. For the experimental determina-
tion of brightness it is necessary to specify the percentage of total beam current to
which the effective emittance values being used in (3.8) apply. It should be noted
that quite often in the literature the factor 2/π2 is left out, and brightness is sim-
ply defined as I/εx εy or I/ε2 if εx = εy = ε. Sometimes the rms emittances are
used in place of the effective emittances. Since ε2

x = 16ε̃2
x , the brightness values

associated with the rms emittances are 16 times higher than those calculated from
Equation (3.8), and I/ε̃2

x is almost 80 times greater than 2I/π2ε2
x . It is therefore

important to clearly state which definition of brightness is used to avoid misun-
derstandings when brightness figures are reported in the literature or results from
different experiments are compared.

In view of the energy dependence, one also has to normalize both emittance and
brightness if one wants to compare the quality of different beams. These normal-
ized quantities can be deduced from Liouville’s theorem, which is discussed in the
next section. According to Liouville’s theorem, the normalized emittance, defined as
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εn = βγ ε, and the normalized brightness, Bn = B/(βγ )2, are invariants under ideal
conditions. A more thorough description of the concepts of beam emittance and
brightness can be found in the article by C. Lejeune and J. Aubert in Supplement
13A, p. 159ff. of Applied Charged Particle Optics [C.19].

3.2
Liouville’s Theorem

In Chapter 2 we introduced the canonical space and momentum coordinates qi ,
pi . If we construct a conceptual Euclidean space of six dimensions combining
configuration space (qi ) and canonical momentum space (pi ), a particle is rep-
resented by a point, and all particles in a beam will occupy a volume in this six-
dimensional hyperspace which is called phase space. We can define a particle den-
sity n(x, y, z, px, py, pz, t) in phase space, and the number dN of particles in a
small volume element dV of phase space is then

dN = n dV = n dx dy dz dpx dpy dpz. (3.9)

Let us now consider a system of noninteracting particles. The motion of the ensem-
ble of particles representing the beam in actual configuration space is associated
with an equivalent motion of the representative points in phase space, and we can
define a velocity vector v = {q̇i , ṗi} in phase space for each particle. As the en-
semble moves, the volume it occupies in phase space also moves and changes its
shape. Since the total number of particles and the associated representative points
in phase space must remain constant, the motion in phase space must obey the
continuity equation

∇ · (nv) + ∂n

∂t
= 0, (3.10)

or

n∇ · v + v · ∇n + ∂n

∂t
= 0. (3.11)

Now, with v = {q̇i , ṗi}, we have

∇ · v =
3∑

i=1

(
∂q̇i

∂qi

+ ∂ṗi

∂pi

)
. (3.12)

If a Hamiltonian H(qi, pi, t) can be defined for this system, Hamilton’s equa-
tions hold; that is,

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

,

∂q̇i

∂qi

= ∂2H

∂pi∂qi

,
∂ṗi

∂pi

= − ∂2H

∂qi∂pi

. (3.13)
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As a result,

∇ · v =
3∑

i=1

(
∂2H

∂pi∂qi

− ∂2H

∂qi∂pi

)
= 0,

and (3.11) becomes

∂n

∂t
+ v · ∇n = 0. (3.14)

Since

dn

dt
= ∂n

∂t
+

∑
i

∂n

∂qi

q̇i +
∑

i

∂n

∂pi

ṗi = ∂n

∂t
+ v · ∇n, (3.15)

we can write in place of (3.14)

dn

dt
= 0, or n = n0 = const; (3.16)

that is, the density of points in phase space is a constant.
If n remains constant, the volume occupied by a group of particles in phase space

also remains constant throughout the motion. If δN = n δV is the number of par-
ticles in a small volume element δV , we have

d

dt
(δN) = d

dt
(n δV ) = dn

dt
δV + n

d(δV )

dt
= 0. (3.17)

Thus, in view of (3.16),

d

dt
(δV ) = d

dt

∫
d3qid

3pi = 0. (3.18)

Equations (3.16) and (3.18) are both two versions of Liouville’s theorem, which states
that the density of particles, n, or the volume occupied by a given number of parti-
cles in phase space remains invariant.

Liouville’s theorem in the above form is, strictly speaking, valid only for noninter-
acting particles. However, it is still applicable in the presence of electric and mag-
netic self fields associated with the bulk space charge and current arising from the
particles of the beam, as long as these fields can be represented by average scalar
and vector potentials φ(x, y, z), A(x, y, z). This implies that a particle’s interaction
with its nearest neighbors can be neglected in comparison to the interaction with
the average collective field produced by the other particles in the beam. Quantita-
tively, for this to be the case, the Debye length λD , discussed in Sections 4.1 and
5.4.1, must be large compared to the interparticle distance. If the fields of individ-
ual particles and particle–particle interactions become important, one must gener-
alize the phase-space concept to a hyperspace of higher dimension. Thus, instead
of 6, we have 6N independent space and canonical momentum coordinates in this
case. Then a velocity vector v = {q̇1, q̇2, . . . , q̇3N ; ṗ1, . . . , ṗ3N } may be defined, and
Liouville’s theorem applies to the particle distribution in 6N -dimensional phase
space but not in six-dimensional phase space. For a more detailed discussion, see
Lawson’s book [C.17, Sec. 4.2] and the references given there.
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Returning now again to the six-dimensional phase space, we note the following:
1. Liouville’s theorem also applies for the phase space defined

by the mechanical momentum components Pi and spatial
coordinates qi ; thus the conservation of the phase-space
volume can be stated in the form (see Problem 5.7)

∫∫
d3qid

3Pi = const. (3.19)

2. While the volume in phase space remains constant, the shape
generally does not. In fact, nonlinearities (aberrations) in the
field configurations through which the particles move may
cause considerable distortions (filamentation) in the shape of
the phase-space volume; as a result, beam blowup and
particle loss to nearby walls may occur.

3. The trace-space area Ax is related to the projection of the
phase-space volume into the x–Px plane by

Ax = 1

P

∫∫
dx dPx = 1

γβmc

∫∫
dx dPx. (3.20)

If there is no coupling between the x-motion and the other
directions (y and z), the area in x–Px phase space defined by∫∫

dx dPx remains constant. Moreover, if there is no
acceleration or deceleration (βγ = const), the area Ax in
x–x′ trace space is also conserved. However, if there is an
energy change (i.e., βγ �= const), Ax and, by implication,
the emittance εx , do not remain constant, the change being
inversely proportional to βγ according to Liouville’s theorem
as stated in Equation (3.20). For this reason, one introduces
the normalized rms emittance

ε̃n = βγ ε̃ (3.21a)

or the equivalent normalized (effective) emittance

εn = βγ ε = 4βγ ε̃. (3.21b)

For beams in particle accelerators, the normalized emittance
is a more useful quantity than the unnormalized emittance
since in an ideal system (linear forces, no coupling) it
remains constant. An increase of the normalized emittance
is usually an indication that nonlinear effects causing a
deterioration of beam quality are present in the system.
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In similar fashion one can define a normalized
brightness,

Bn = B

γ 2β2
= 2I

π2ε2
n

, (3.22)

which in an ideal system is also an invariant.
As an example of how the unnormalized emittance is

changed by acceleration, consider a proton beam that is
injected into a linear accelerator with a kinetic energy of
50 keV and an effective emittance of ε = 200 mm-mrad. It
emerges from the accelerator with a kinetic energy of
80 MeV. What is the emittance of the accelerated proton
beam if no particle loss and no distortions in the phase-space
volume occur? We may treat the protons nonrelativistically
since T � E0 = 938.25 MeV. Now vAx = const, or
T 1/2Ax = const. Let ε1 be the emittance at 50 keV, ε2 at
80 MeV. Then ε2 = ε1(T1/T2)

1/2 = ε1/40, hence,
ε2 = 5 mm-mrad. Thus, the emittance is reduced by a factor
of 40 while the normalized emittance εn = βγ ε remains
constant.

We close this section with an example that illustrates
how to calculate the rms emittance for a given theoretical
distribution. Consider a round beam with uniform particle
density n(r) = n0 = const in space and a thermal velocity
spread defined by a Gaussian of the form
exp[−m(v2

x + v2
y)/2kBT⊥]. This is a good approximation for a

high-current electron beam with transverse temperature T⊥
from a thermionic cathode. If xm = a is the beam radius,
one finds for the rms width

x̃ =
(
r2

)1/2

√
2

= 1√
2

[
2πn0

∫ a

0 r3 dr

2πn0
∫ a

0 r dr

]1/2

= a

2
,

where (r2)1/2 = r̃ = a/
√

2 is the rms radius of the beam.
The rms thermal velocity is defined by

ṽx,th =
(
v2⊥

)1/2

√
2

=
(

kBT⊥
m

)1/2

,

where v2⊥ = v2
x + v2

y .
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The effective normalized rms emittance is then given
by

εn = 4ε̃n = 2a

(
kBT⊥
mc2

)1/2

,

4. which is identical to Equation (1.7b) if one replaces rc with a.
A method of determining the rms emittance from
experimental data in the case of an axially symmetric beam
can be found in the paper by Rhee and Schneider mentioned
in Chapter 6 (Reference 14).

3.3
The Paraxial Ray Equation for Axially Symmetric Systems

3.3.1
Series Representation of Axisymmetric Electric and Magnetic Fields

In the following, we consider particle motion in rotationally symmetric static fields
(∂/∂θ = 0, ∂/∂t = 0). We assume that the beam currents are low enough so that
self fields generated by the particles may be neglected in comparison to the applied
fields. These assumptions imply that

∇ × E = 0, ∇ · E = 0, E = −∇φ,

∇ × B = 0, ∇ · B = 0, B = −∇φm. (3.23)

Thus, both E and B may be derived from a scalar potential f (r, z) which obeys a
Laplace equation of the form

∇2f (r, z) = 1

r

∂

∂r

(
r
∂f

∂r

)
+ ∂2f

∂z2
= 0. (3.24)

Since the potentials must be finite, continuous along the z-axis, and for symmetry
reasons an even function of radius r , one can solve Equation (3.24) by means of a
power series

f (r, z) =
∞∑

ν=0

f2ν(z)r
2ν = f0 + f2r

2 + f4r
4 + · · · , (3.25)

where f0(z) = f (0, z) is the potential along the z-axis. Note that a linear term f1r

(and by implication any odd power of r) in the potential function f (r, z) would lead
to nonzero radial fields on the axis since ∂f/∂r = f1 �= 0. This is inconsistent with
the axial symmetry, which requires that Er = 0, Br = 0 at r = 0.

Differentiation of Equation (3.25) and substitution in (3.24) yields
∞∑

ν=1

[2ν + 2ν(2ν − 1)]f2νr
2ν−2 +

∞∑
ν=0

f ′′
2νr

2ν = 0, (3.26)



62 3 Beam Optics and Focusing Systems without Space Charge

where f ′′
2ν = ∂2f2ν/∂z2 and [2ν + 2ν(2ν − 1)] = (2ν)2. From this equation, one

obtains the recursion formula for the coefficients f2ν :

(2ν + 2)2f2ν+2 + f ′′
2ν = 0, (3.27)

that is,

f2 = −1

4
f ′′

0 for ν = 0,

f4 = 1

64
f

(4)
0 = 1

64

∂4f0

∂z4
for ν = 1, etc.

The function of f (r, z) can thus be written in the form

f (r, z) = f (0, z) − 1

4

∂2f (0, z)

∂z2
r2 + 1

64

∂4f (0, z)

∂z4
r4 − · · · ,

or

f (r, z) =
∞∑

ν=0

(−1)ν

(ν!)2

∂2νf (0, z)

∂z2ν

( r

2

)2ν

. (3.28)

This shows that the potential distribution f (r, z) in an axisymmetric system for
any given point r , z off the axis may be determined from the potential distribu-
tion and its derivatives on the z-axis (r = 0). In practice, it is relatively easy to
obtain f0(z) with sufficient accuracy. However, small errors in the measurement
(or numerical calculation) of f0(z) are strongly amplified in the derivatives so that
the higher-order terms may become increasingly inaccurate. One therefore has to
check carefully that the series representation can be applied within acceptable er-
ror bars.

The E and B fields are obtained by substituting φ or φm for f (r, z) in Equa-
tion (3.28) and taking the gradients. Since the magnetic potential φm is not a mea-
surable quantity like φ, one uses, in the case of magnetic fields, the axial field
component Bz(0, z) = B(z) on the axis rather than φm(0, z). The field components
Br and Bz off the axis are then obtained from B(z) and its derivatives as shown
below. First, one has

Br = −∂φm

∂r
, Bz = −∂φm

∂z
. (3.29)

From (3.28), with f (r, z) = φm, one gets

Bz(r, z) = −∂φm(0, z)

∂z
+ r2

4

∂3φm(0, z)

∂z3
− · · · , (3.30)

Using Bz(0, z) = B(z) = −∂φm(0, z)/∂z, this may be written in the form

Bz(r, z) = B − r2

4

∂2B

∂z2
+ r4

64

∂4B

∂z4
− · · · ,

or

Bz(r, z) =
∞∑

ν=0

(−1)ν

(ν!)2

∂2νB

∂z2ν

(
r

2

)2ν

. (3.31)
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Likewise,

Br(r, z) = − r

2

∂B

∂z
+ r3

16

∂3B

∂z3
− · · · ,

or

Br(r, z) =
∞∑

ν=1

(−1)ν

ν!(ν − 1)!
∂2ν−1B

∂z2ν−1

(
r

2

)2ν−1

. (3.32)

3.3.2
Derivation of the Paraxial Ray Equation

With the series representation of the fields given in the preceding section, we are
now able to calculate particle trajectories in axisymmetric systems to any degree
of accuracy desired. The general approach is first to derive linear equations for
the particle motion in which only terms up to first order in r and r ′ = dr/dz are
considered. One can then improve the accuracy by including higher-order terms in
r and r ′. These terms are necessary to study nonlinear effects, or aberrations, which
are important in many applications, most notably the electron microscope. There
are several approaches to tackling this problem. One is to start with the equations of
motion in the Newtonian form or with Hamilton’s equations. Another possibility
is to use the Euler trajectory equations which were derived from the variational
principle of least action.

The basic first-order optical equation which describes the motion of charged par-
ticles in an axisymmetric system is known as the paraxial ray equation. In the fol-
lowing we derive the paraxial ray equation from the equations of motion in the
Newtonian form [Equations (2.11)].

The assumptions of paraxial motion are that the particle trajectories remain close
to the axis; that is, r is very small compared to the radii of electrodes, coils, or
iron pieces that produce the electric and magnetic fields. This also implies that the
slopes of the particle trajectories remain small (i.e., r ′ � 1 or ṙ � ż). Furthermore,
the azimuthal velocity vθ must remain very small compared to the axial velocity
(i.e., rθ̇ � ż). Thus, in this linear approximation we have ż = (v2 − ṙ2 − r2θ̇2)1/2 ≈
v. With these assumptions, only the first-order terms in the expansions of the fields
need to be considered and the equations of motion can be linearized by expanding
all quantities in terms of their values on the axis of the system and dropping all
terms of order r2, rr ′, r ′2, and higher.

The electric potential may be expressed in terms of the potential on the axis
(r = 0), which we denote with V (z). From (3.28), we obtain with f (r, z) = φ(r, z),
f (0, z) = φ(0, z) = V (z):

φ(r, z) = V − 1

4
V ′′r2 + 1

64
V (4)r4 − · · · . (3.33)

From this we obtain for the radial and axial electric field components the first-
order relations

Ez = −V ′, Er = 1

2
V ′′r = − r

2

∂Ez

∂z
. (3.34)
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The first-order magnetic field terms are [ from Equations (3.31) and (3.32)]

Br = −1

2
B ′r, Bz = B. (3.35)

Note that Eθ = 0, Bθ = 0, which follows from ∇ × E = 0 and ∇ × B = 0 with
∂/∂θ = 0. V = V (z) and B = B(z) are the electrostatic potential (corresponding
to the kinetic energy of the particles) and magnetic field on the z-axis (r = 0),
respectively.

If we substitute the above relations for the field components into Equations
(2.11a) to (2.11c), using (2.76) in place of (2.11b), we obtain the following set of
equations for the radial, azimuthal, and axial motion of the particles:

m
d

dt
(γ ṙ) − mγ rθ̇2 = qr

2
V ′′ + qrθ̇B, (3.36)

γmr2θ̇ = − q

2π
ψ + pθ = −q

2
Br2 + pθ , (3.37)

m
d

dt
(γ ż) = −qV ′ + q

2
r2θ̇B ′. (3.38)

Since in the paraxial approximation ż ≈ v = βc (i.e., vθ = rθ̇ � v), we can
neglect the term qr2θ̇B ′/2 on the right-hand side of Equation (3.38). The differen-
tiation with respect to time on the left-hand side of Equation (3.38) can be changed
into differentiation with respect to the z-coordinate as follows:

d

dt
(γ ż) = dz

dt

d

dz
(γ ż) = v

d

dz
(γ v) = γ ′v2 + γ v′v

= c2(γ ′β2 + γβ ′β), (3.39)

or, with β ′β = γ ′/γ 3,

d

dt
(γ ż) = c2(β2 + γ −2)γ ′ = c2γ ′. (3.40)

Thus, (3.38) may be written as

mc2γ ′ = −qV ′. (3.41)

Integration of Equation (3.41) yields the energy conservation law T + U = (γ −
1)mc2 + qV = const. If we define the potential such that V = 0 when T = 0, or
γ = 1, the constant is zero and we get

γ (z) = 1 − qV (z)

mc2
= 1 + |qV (z)|

mc2
. (3.42)

Note that for positive q, the potential V is negative and vice versa; hence, −qV is
always positive, and |V (z)| is the voltage equivalent of the particle’s kinetic energy.

From Equation (3.37) one obtains for the angular velocity of the particles

θ̇ = − qB

2γm
+ pθ

γmr2
,

or

θ ′ = θ̇

βc
= − qB

2γmβc
+ pθ

mcβγ r2
. (3.43)
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Integration of (3.43) with the initial condition θ = θ0 and z = z0 yields

θ − θ0 =
∫ z

z0

(
− qB

2γmβc
+ pθ

mcβγ r2

)
dz. (3.44)

By substitution of (3.43) into (3.36) one obtains for the radial motion

d

dt
(γ ṙ) = qrV ′′

2m
+ rθ̇

m

(
mγ θ̇ + qB

)

= qrV ′′

2m
+ r

m

(
− qB

2γm
+ pθ

γmr2

)(qB

2
+ pθ

r2

)
,

or

d

dt
(γ ṙ) = qrV ′′

2m
− r

4

(qB

m

)2 1

γ
+ p2

θ

γm2r3
. (3.45)

Now we have

γ̇ = γ ′ż = γ ′βc, (3.46a)

ṙ = r ′ż = r ′βc, (3.46b)

r̈ = βc
d

dz
(r ′βc) = r ′′β2c2 + r ′β ′βc2. (3.46c)

Using these relations and β ′β = γ ′/γ 3, the left-hand side of Equation (3.45) may
be written as

d

dt
(γ ṙ) = c2(γβ2r ′′ + γ ′r ′). (3.47)

From (3.42), we have

qV ′′ = −mc2γ ′′. (3.48)

Substitution of (3.47) and (3.48) into (3.45) yields

c2(γβ2r ′′ + γ ′r ′) = −1

2
c2γ ′′r −

(
qB

2m

)2
r

γ
+ p2

θ

γm2r3
,

or, after dividing by c2γβ2,

r ′′ + γ ′

γβ2
r ′ + γ ′′

2γβ2
r +

(
qB

2mcβγ

)2

r − p2
θ

m2c2γ 2β2r3
= 0. (3.49)

This is the relativistically correct paraxial ray equation that defines the radial motion
of the particles near the z-axis where the nonlinear force terms can be neglected.
As explained earlier, pθ = γmr2θ̇ + qAθr is the canonical angular momentum of
the particles as determined by the initial conditions. The azimuthal position of the
particles as a function of distance z can be determined from Equation (3.44).

Let us now discuss the physical contents of Equation (3.49). The first term, r ′′,
represents the change of slope of the particle trajectory. The second term contains
the effect of the axial electric field (acceleration or deceleration), the third term that
of the radial electric field (focusing, defocusing), and the fourth term represents
the magnetic force. The last term adds a centrifugal potential or an effective repulsive
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core when the canonical angular momentum is different from zero. In this case,
the particle never crosses the axis (i.e., r �= 0).

In the nonrelativistic limit, we can make the substitutions

γ ≈ 1, β2 = v2

c2
≈ −2qV

mc2
, (3.50a)

γ ′ = − qV ′

mc2
,

γ ′

β2
≈ V ′

2V
, (3.50b)

γ ′′ = −qV ′′

mc2
,

γ ′′

β2
≈ V ′′

2V
. (3.50c)

With these approximations we obtain from (3.49) the nonrelativistic paraxial ray
equation

r ′′ + V ′r ′

2V
+ V ′′r

4V
+ q2B2r

8mqV
− p2

θ

2mqV

1

r3
= 0. (3.51)

Note that V and qV in the denominators are positive quantities representing the
voltage equivalent of the particles’ kinetic energy. For the angle θ the nonrelativistic
approximation is [ from Equation (3.44)]

θ = θ0 −
∫ z

z0

[(
q2B2

8mqV

)1/2

− pθ

(2mqV )1/2r2

]
dz. (3.52)

With respect to canonical angular momentum, pθ = γmr2θ̇ + qAθr , three cases
are of interest:

1. The particle starts in a field-free region (Aθ = 0). In this case
pθ depends on the initial radius rθ , initial azimuthal velocity
θ̇0, and initial kinetic energy γ0 of the particle and is given by

pθ = γ0mr2
0 θ̇0. (3.53)

2. If in addition to Aθ = 0 the initial angular velocity is zero
(i.e., vθ = r0θ̇0 = 0), one has

pθ = 0, (3.54)

and the last term in the paraxial ray equation vanishes.
3. If a particle starts in a region where Aθ �= 0 with θ̇0 = 0, or if

we choose as the reference point a position along the
trajectory inside a magnetic field where θ̇0 = 0, we can
introduce the magnetic flux ψ0 = 2π

∫ r0
0 Brdr . From (2.75)

and (2.76) one then has

pθ = qψ0

2π
, (3.55)

and hence one can express the last term in the paraxial ray
equation in the form

p2
θ

m2c2β2γ 2

1

r3
=

(
qψ0

2πmcβγ

)2 1

r3
(relativistic case) (3.56)
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and

p2
θ

2mqV

1

r3
= (qψ0)

2

8π2mqV

1

r3
(nonrelativistic case). (3.57)

It is often convenient to study the particle trajectories in a frame that rotates at
the Larmor frequency ωL and is therefore known as the Larmor frame. The angle
θr between this rotating frame and the stationary laboratory system is given by

θr = −
∫ z

z0

qB

2γmβc
dz = ∓

∫
ωL

βc
dz. (3.58)

The angle θL of the particle in the Larmor frame is given by the difference between
the angle θ in the laboratory frame and θr :

θL = θ − θr =
∫ z

z0

pθdz

βγmcr2
+ θ0. (3.59)

When pθ = 0, or ψ0 = 0, particle motion in this frame is in a plane through the
axis which is known as the meridional plane. In this case, the trajectory r(z) in the
meridional plane may be found from Equation (3.49) alone by setting pθ = 0, and
the rotation of the meridional plane is found from Equation (3.58). For nonmerid-
ional motion when pθ �= 0, one must solve Equation (3.49) first and then use the
result to solve (3.44).

Although cylindrical coordinates are the natural choice for systems with axial
symmetry, it is sometimes convenient to use cartesian coordinates (x, y) and ob-
tain the projections of the trajectory on the two perpendicular planes. In this case
we start with Equations (2.10a) and (2.10b). The first-order terms for the field com-
ponents are [ from Equations (3.34), (3.35)]

Ex = Er

x

r
= 1

2
V ′′x, Ey = Er

y

r
= 1

2
V ′′y, (3.60)

Bx = −1

2
B ′x, By = −1

2
B ′y. (3.61)

Transforming from time t to axial distance z as the independent variable [as in
(3.46)] and introducing the Larmor frequency relations

ωL = qB

2γm
, ω′

L = q

2γm
B ′ − γ ′

γ
ωL, (3.62)

one obtains the two equations

x′′ + γ ′x′

β2γ
+ γ ′′x

2β2γ
+ 2ωLy′

βc
+ ω′

Ly

βc
+ γ ′ωLy

βγ c
= 0, (3.63)

y′′ + γ ′y′

β2γ
+ γ ′′y

2β2γ
− 2ωLx′

βc
− ω′

Lx

βc
− γ ′ωLx

βγ c
= 0. (3.64)

Unlike the paraxial ray equation (3.49) that contains the r−3 term when pθ �= 0,
these are linear equations in x and y. However, they are coupled and thus have to be
solved simultaneously. By introducing the complex variable ζ = x + iy = reiθ , the
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two equations can be combined into one which can be transformed to the rotating
Larmor frame via the transformation

ζ = ζLeiθr , (3.65)

where

ζL = xL + iyL = rLeiθL (3.66)

and θr is given by Equation (3.58).
The resulting differential equation describing the particle motion in the Larmor

frame has the form

ζ ′′
L + g1(z)ζ

′
L + g2(z)ζL = 0, (3.67)

with

g1(z) = γ ′

β2γ
, g2(z) = γ ′′

2β2γ
+ ω2

L

β2c2
. (3.68)

Thus one obtains for the trajectory coordinates xL = ReζL and yL = ImζL two
identical equations [since g1(z) and g2(z) are real functions]. These equations are
decoupled and linear in xL and yL, which explains the advantage of working in the
Larmor frame. Note that g1(z) and g2(z) are the same functions as in the corre-
sponding linear terms of the radial equation (3.49).

The three sets of equations for r and θ [Equations (3.49) and (3.44)], x and y

[Equations (3.63) and (3.64)], or xL and yL [ from Equation (3.67)] are, of course,
equivalent forms of the paraxial ray equation and have the same physical content.
To solve them, one must specify the initial conditions for r , r ′, θ , θ ′ (or pθ ) in
the first case, or the corresponding initial values for x, x′, y, y′ or xL, x′

L, yL, y′
L

in the latter two cases. Particularly simple is the situation where the particles are
launched with vθ = 0 in a region where the magnetic field is zero (B = 0). In
this case, pθ = 0; that is, the nonlinear term in the radial trajectory equation (3.49)
vanishes and a particle stays in the meridional plane that is defined by the initial
values of r and θ and that rotates with the Larmor frequency ωL. One can choose
one of the transverse planes in the Larmor frame, say the xL–z plane by setting
θL = 0 to coincide with the meridional plane and thus needs only one of the two
equations defined by (3.67) to describe the particle motion. The radial coordinate r

is then identical with xL. Thus we can use the equation

r ′′ + g1(z)r
′ + g2(z)r = 0 (3.69)

and treat r like the cartesian coordinate xL (i.e., it can be positive or negative, chang-
ing sign when a particle crosses the z-axis in the meridional plane). Note that (3.69)
follows directly from (3.49) for pθ = 0. The transformation to the Larmor frame is
a very important simplification. It allows us to apply Equation (3.69) and its proper-
ties, which will be discussed in the following sections, to both axisymmetric electric
and magnetic fields.

Through the remainder of this section and in Section 3.4 we will, for the most
part, restrict ourselves to axisymmetric systems described by Equation (3.69) with
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the understanding that the variable r behaves like a cartesian coordinate whether
magnetic fields are present or not. This implies that we will consider only parti-
cle motion in a meridional plane. The rotation of this plane in the presence of a
magnetic field can be calculated from Equation (3.58). Application of the results to
the more general case of nonmeridional motion requiring the inclusion of angular
momentum or the use of two equations is straightforward in view of the preceding
discussion.

3.3.3
General Properties of the Solutions of the Paraxial Ray Equations

Let us now review some general mathematical properties of Equation (3.69) de-
scribing the linear beam optics in an axisymmetric system. In the case of magnetic
fields this description is of course done in the rotating Larmor frame, as discussed
in the preceding section. First, we recognize that equations of the form (3.69) [and,
likewise, (3.67) in the complex variable ζ ] are second-order, linear, ordinary differ-
ential equations. These have two independent solutions, say u(z) and v(z), from
which the general solution can be constructed by linear superposition, that is,

r(z) = Au(z) + Bv(z), (3.70)

r ′(z) = Au′(z) + Bv′(z). (3.71)

The constants A and B, and thus the solution r(z), are uniquely determined by the
initial conditions; for instance, if r = r0, r ′ = r ′

0 at z = 0, one has

r0 = Au(0) + Bv(0), (3.72)

r ′
0 = Au′(0) + Bv′(0). (3.73)

Solving for the constants A and B yields

A = r0v
′ − r ′

0v

uv′ − u′v
, (3.74)

B = r ′
0u − r0u

′

uv′ − u′v
. (3.75)

The denominator in the solutions for A and B is known as the Wronskian deter-
minant,

W = uv′ − u′v. (3.76)

W is nonzero by virtue of the fact that u, v are linearly independent solutions.
Differentiation of (3.76) yields

W ′ = uv′′ − u′′v. (3.77)

From (3.69) we have u′′ = −g1u
′ −g2u, v′′ = −g1v

′ −g2v. When this is substituted
in (3.77), one finds that the terms involving g2 cancel, and one obtains the result

W ′ = −g1(uv′ − u′v) = −g1W. (3.78)
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Using g1 = γ ′/β2γ = γ γ ′/(γ 2−1) from (3.68), we can integrate Equation (3.78)
and obtain

W = W0 exp
[

−
∫

g1(z)dz
]

= W0 exp

(
−

∫
dγ

β2γ

)

= W0

[γ 2 − 1]1/2
= W0

βγ
, (3.79)

where W0 is the integration constant that depends on the initial conditions. Thus,
when g1 = γ ′/β2γ = 0, the Wronskian is a constant; otherwise, it changes as
(βγ )−1.

The term g1r
′ in Equation (3.69) [or in Equation (3.67)] can always be eliminated

by introducing the reduced variable

R = r

(
W0

W

)1/2

= r
[

exp
( ∫

g1(z)dz
)]1/2 = (βγ )1/2r, (3.80)

which results in the equation

R′′ + G(z)R = 0, (3.81)

where

G(z) = g2 − 1

4
g2

1 − 1

2
g′

1,

or

G(z) = γ ′2(γ 2 + 2)

4β4γ 4
+ ω2

L

β2c2
. (3.82)

In the nonrelativistic case, we have R = (V )1/4r ,

g1 = V ′

2V
, g2 = V ′′

4V
+ qB2

8mV
, g′

1 = V ′′2V − 2V ′2

4V 2
,

and the function G(z) takes the form

G(z) = 3

16

(
V ′

V

)2

+ qB2

8mV
. (3.83)

Furthermore, since∫
g1(z)dz = 1

2

∫
dV

V
= 1

2
ln V,

one finds for the reduced variable the relation

R = r exp

(
1

4
ln V

)
= rV 1/4. (3.84)

The form (3.81) of the paraxial ray equation is of great importance insofar as it
involves only V and its first derivative V ′ on the z-axis. Thus if V is measured or
calculated with some error and, hence, the second derivative, V ′′, is not too accu-
rate, one can obtain better results by using reduced variables and Equation (3.81).
Also, the reduced variable R is much smoother than r , which varies more strongly
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when the energy changes. The calculation of the focal length of an electrostatic lens
is therefore more accurate when R is used, as is done in Section 3.4.3.

Let us now return to the solution of the paraxial ray equation as presented in
Equations (3.70) to (3.76). By substituting the results for the constants A and B

into the first two equations, one obtains a linear relationship between r(z), r ′(z)
and the initial conditions r0(z), r ′

0(z), which can be written in matrix form as

(
r

r ′

)
=

(
a b

c d

)(
r0

r ′
0

)
= M̃

(
r0

r ′
0

)
. (3.85)

The matrix M̃ is known as the transfer matrix and the matrix elements depend
on u(z), v(z) and the derivatives u′(z), v′(z). It is often convenient to choose two
independent solutions having initial conditions u(0) = 1, u′(0) = 0, v(0) = 0,
v′(0) = 1 and known as the principal solutions. In this case, the constants A and B

are simply A = r0, B = r ′
0 [ from Equations (3.74), (3.75)], and the transfer matrix

is given by

M̃ =
(

u(z) v(z)

u′(z) v′(z)

)
. (3.86)

Note that the determinant of this matrix, |M̃|, is defined by the Wronskian W =
uv′ − u′v and hence changes its value as (βγ )−1 when g1(z) �= 0 (i.e., when the
particles are accelerated or decelerated). On the other hand, when g1(z) = 0, or by
operating with reduced variables (R, R′), one has the advantage that the determi-
nant of the transfer matrix is always unity (|M̃| = W = 1).

We recognize that a 2 × 2 matrix relation like (3.85) exists for any two points in a
system described by linear equations of the form (3.69). Thus the radial coordinate
and slope of a trajectory at three different positions, z1, z2 and z3, are linked by the
relation(

r2

r ′
2

)
= M̃21

(
r1

r ′
1

)
, (3.87)

(
r3

r ′
3

)
= M̃32

(
r2

r ′
2

)
= M̃31

(
r1

r ′
1

)
, (3.88)

where

M̃31 = M̃32M̃21. (3.89)

This property of the solutions for individual particle trajectories relates to the
concept of the emittance discussed in Sections 3.1 and 3.2. Suppose that we have a
distribution of particles at some initial position z1 such that the trace-space area is
defined by an ellipse of the general form

a1r
2
1 + 2b1r1r

′
1 + c1r

′2
1 = 1. (3.90)

The area occupied by this distribution at some other point z2 is then readily found
by solving the transfer matrix relation (3.87) for (r1, r ′

1) in terms of (r2, r ′
2) and
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substituting in (3.90). In view of the linear relationship between the two sets of
variables, one obtains an equation of the form

a2r
2
2 + 2b2r2r

′
2 + c2r

′2
2 = 1. (3.91)

This is again the equation of an ellipse where the coefficients a2, b2, c2 are uniquely
determined by the transfer matrix elements and the initial coefficients. Conse-
quently, the motion of particles in this linear system is such that the trace-space
area of the distribution remains an ellipse. Of course, the orientation, size, and
shape of the ellipse are changing continuously as the beam propagates along the z-
axis.

In the linear systems considered here, Equation (3.4) applies, and the emittance
is defined by the area of the ellipse, which is given by

A1 = ε1π = π

(a1c1 − b2
1)

1/2
, A2 = ε2π = π

(a2c2 − b2
2)

1/2
, (3.92)

for the two positions. Now, according to Liouville’s theorem, if mcβ1γ1 and mcβ2γ2

denote the momentum of the particles at the two positions, respectively, the emit-
tances are related as

ε2

ε1
= A2

A1
= β1γ1

β2γ2
= W2

W1
. (3.93)

Thus, the emittance changes in the same ratio as the Wronskian determinant of the
transfer matrix. It should be pointed out in this context that the beam description
in the reduced variables R, R′ also obeys Liouville’s theorem.

There are several other forms in which paraxial ray equations and transfer matri-
ces for axially symmetric systems may be written; these alternate formulations are
discussed in Lawson’s book [C.17]. Paraxial equations can be derived also for sys-
tems without axial symmetry, such as rectangular geometries (strip beams), systems
with two symmetry planes (quadrupole fields), and beams in circular accelerators.
Some of these equations are discussed in subsequent sections.

3.4
Axially Symmetric Fields as Lenses

3.4.1
General Parameters and Transfer Matrix of a Lens

Whereas in the preceding section we did not make any assumptions about the axial
distribution of the fields, we now focus our attention on fields that are of limited
axial extent. These fields, which are zero outside a small interval z1 < z < z2, are
generally employed as ion-optical or electron-optical lenses in the same way that glass
lenses are used to focus light beams. Like glass lenses in optics, charged particle
lenses can be used to form images of an object (electron microscope), to transport
a beam from one point to another, or to focus a beam onto a small target.
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Fig. 3.2 Principal planes and focal points of a lens.

We first discuss the optical properties of a single lens for charged particle beams
neglecting space-charge effects. Let the electric or magnetic fields of such a lens
be confined to the region z1 < z < z2. Outside this region the particle trajectories
will be straight lines. As will be shown later, all fields of limited axial extent have a
focusing action on a traversing beam; that is, they form converging lenses provided
that the trajectories do not cross the axis within the lens region. Thus, if we choose
a ray u(z) which, prior to entering the lens, forms a straight line parallel to the
axis [i.e., (u, u′) = (1, 0) for z < z1], it will emerge from the lens with an angle of
inclination toward the axis. Likewise, there will be a ray v(z) converging toward the
axis when entering the lens which will leave the lens on a straight line parallel to
the axis with (v, v′) = (1, 0) for z > z2 (see Figure 3.2).

Both rays will cross the axis at some point on the respective side of the lens. As in
the case of a glass lens in optics, these two points are called focal points. The actual
paths of the particles inside the lens need to be known, of course, to determine
the displacement and slope of the trajectory emerging from the other side of the
lens. If we extend the two straight lines of the trajectory on either side, they will
intersect (dashed lines in Figure 3.2). The points of intersection define the two
principal planes I and II. The four lens parameters (d1, d2, f1, f2) are defined in
Figure 3.2 and are taken as positive numbers if they are as indicated. Thus, d1 > 0
when plane I is to the right of the center of the lens, as shown. For a defocusing
lens, f2 would be negative.

The two principal planes and their respective focal lengths f1 and f2 completely
determine the optical properties of the two particular solutions we have chosen, and
since these are independent solutions, that of any other particle trajectory. Con-
sider, for instance, the trajectory in Figure 3.3, which crosses the axis a distance L1

from plane I to the left and at L2 from plane II to the right. As we will see later, this
ray defines the object and image planes of the system.

Any such ray can be described by linear superposition of two independent solu-
tions like u(z) and v(z) defined above. If we project the rays on each side through
the lens, they intersect the midplane of the lens (z = 0) at distances r1 and r2, re-
spectively, as shown in Figure 3.3. The action of a lens is thus seen to result in a
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Fig. 3.3 Trajectory crossing the axis at object and image plane.

change of the projected slope and displacement of the trajectory at the center, and
it can be described by a lens transfer matrix relation(

r2

r ′
2

)
= M̃

(
r1

r ′
1

)
=

(
m11 m12

m21 m22

)(
r1

r ′
1

)
. (3.94)

This relation is valid for any trajectory, including the two principal solutions u(z)

and v(z). Using u(z) and v(z) and the geometrical relations illustrated in Figure
3.2, we can find the transfer matrix elements in terms of the four lens parameters
d1, d2, f1, f2. Starting with the parallel ray entering the lens from the left [i.e.,
(u1, u

′
1) = (1, 0)], we get(

u2

u′
2

)
=

(
m11 m12

m21 m22

)(
1

0

)
=

(
m11

m21

)
. (3.95)

From Figure 3.2 we have the relation

u′
2 = − 1

f2
, u2 = 1 + u′

2d2 = 1 − d2

f2
.

Consequently,

m11 = 1 − d2

f2
, (3.96)

m21 = − 1

f2
. (3.97)

Using the other independent ray leaving the lens parallel to the axis [i.e., (v2, v
′
2) =

(1, 0)], we obtain the relation(
v2

v′
2

)
=

(
1

0

)
=

(
m11 m12

m21 m22

)(
v1

v′
1

)
(3.98)

From Figure 3.2 we have

v′
1 = 1

f1
, v1 = 1 − d1

f1
,

hence(
1

0

)
=

(
m11 m12

m21 m22

)(
1 − d1

f1
1
f1

)
,
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or (
1 − d1

f1
1
f1

)
= (m11m22 − m21m12)

−1
(

m22

−m21

)
. (3.99)

Since m11 and m21 are known, we can solve for the other two matrix elements and
obtain after some algebra the result

m22 = f1

f2

(
1 − d1

f1

)
, (3.100)

m12 = f1

(
d1

f1
+ d2

f2
− d1d2

f1f2

)
. (3.101)

In terms of the four lens parameters, the lens transfer matrix thus has the form

M̃ =
(

m11 m12

m21 m22

)
=

(
1 − d2

f2
f1

(
d1
f1

+ d2
f2

− d1d2
f1f2

)
− 1

f2

f1
f2

(
1 − d1

f1

)
)

. (3.102)

When the two principal planes coincide, we may put d1 = d2 = 0, and the lens
matrix becomes much simpler:

M̃ =
(

1 0
− 1

f2

f1
f2

)
. (3.103)

The displacement of the trajectory, �r = r2 − r1, is zero in this case and the lens
changes only the slope of the trajectory. This is known as the thin-lens approxima-
tion or weak-lens approximation, which in many cases is sufficient to determine the
focusing effects of a lens. Physically, a lens may be considered as thin or weak in
the above sense when the width of the lens is short compared to the focal length.
In this case the change of slope, �r ′ = r ′

2 − r ′
1, is small and the particle position

r(z) within the lens region may be regarded as constant to good approximation.

3.4.2
Image Formation and Magnification

As we know from light optics, one of the important features of a lens is the fact that
it can form an image of an object. In our case of charged particle beam optics, the
object can be an electron-emitting surface such as the cathode of an electron gun,
a piece of material from which an electron beam is reflected into an electron mi-
croscope, or the plasma surface of an ion source. However, in a broader sense, any
cross-sectional area of a particle beam can be an object. In this case, particles with
different slope r ′ from a given point r within the beam are focused into a point at
the image location. Indeed, from this point of view, there is no difference between
an emitting surface, like a cathode, and a cross-sectional area of the beam. In either
case, particles emerge from every point with different angles of their trajectories.
An image is formed at the position where the trajectories emerging from a given
object point are focused again into a point downstream from the lens.

To examine this image-forming property of a lens, let us return to Figure 3.3.
The trajectory shown in this figure crosses the axis on the left side (object side) at
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distance L1 from principal plane I and on the right (image side) at distance L2 from
the plane II. We know that this ray can be obtained by linear superposition of the
two independent solutions u, v defined earlier, that is,

r(z) = Au(z) + Bv(z). (3.104)

Now, on the object side of the lens (z < 0) we have u1 = 1, u′
1 = 0, v′

1 = 1/f1,
v1 = v′

1[z + (f1 − d1)] = [z + (f1 − d1)]/f1, and hence

r(z) = A + B
z + (f1 − d1)

f1
. (3.105)

With the condition r(z) = 0 at distance L1 from plane I [i.e., at z = −(L1 − d1)],
one obtains from (3.105) the relation

f1

L1
= B

A + B
. (3.106)

On the image side of the lens (z > 0), we have v = v2 = 1, v′
2 = 0, u′

2 = −1/f2,
u2 = −[z − (f2 − d2)]/f2, and thus

r(z) = −A
z − (f2 − d2)

f2
+ B. (3.107)

With r(z) = 0 at distance L2 from plane II (i.e., at z = L2 − d2), one finds from
(3.107) that

f2

L2
= A

A + B
. (3.108)

Adding Equations (3.106) and (3.108) leads to the well-known lens equation relat-
ing object distance and image distance:

f1

L1
+ f2

L2
= 1. (3.109)

As we have made no restrictions concerning the slope r ′ of the ray at distance L1

from plane I, our analysis implies that all rays emerging from the object point on
the axis are imaged into a single point at distance L2 from principal plane II on the
axis.

Let us now consider the behavior of rays displaced from the axis at the object
location L1. As an example, consider the ray r(z) emerging from point P1 which
is displaced by rI in the object plane, z = −(L1 − d1), as shown in Figure 3.4. We
will show that all rays emerging from point P1 are focused into point P2 a distance
rII off the axis at the image plane, z = L2 − d2. The ray r(z) can be represented by
a linear superposition of the previous ray (starting from the axis), which we now
denote with rc(z), and the parallel ray through point P1, given by ra(z) = rIu(z):

r(z) = Ara(z) + Brc(z). (3.110)

At the object plane rc = 0 and r = rI = ra , hence, A = 1, and thus

r(z) = ra(z) + Brc(z). (3.111)
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Fig. 3.4 Relation between object point P1 and image point P2.

As rc(z) = 0 at the image plane, all rays emerging from P1 will have the same
distance rII = ra from the axis (i.e., they will be focused into point P2). Q.E.D.

The magnification (i.e., the ratio rII/rI), can be found by obtaining ra at z =
L2 − d2. This ray crosses the axis at distance f2 from plane II. From Figure 3.4 we
find that

rI + rII

L2
= rI

f2
,

that is,

rII

rI
= L2

f2
− 1. (3.112)

Multiplying the right side with (3.109), which is unity, we obtain

rII

rI
= L2

L1

f1

f2
− f1

L1
+ 1 − f2

L2
= L2

L1

f1

f2
−

(
f1

L1
+ f2

L2
− 1

)
.

The last term on the right-hand side is zero and, hence,

rII

rI
= f1L2

f2L1
. (3.113)

This is the magnification factor.
Equations (3.109) and (3.113) allow us to determine the image distance L2 and

the image magnification from the object distance L1 and the two focal lengths f1

and f2. Thus, if the two focal points and the two principal planes of a lens are
known, one can construct the image for an object at an arbitrary position along
the axis, provided that both object and image lie in the field-free space outside the
lens fields.

Since f1/f2 is a constant for any given lens, we see that rII : rI = C(L2 : L1). If
we consider f1, f2, L1, L2 as positive parameters and define the radial coordinate
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of an object point by ro, that of an image point by ri , then because of the image
inversion, we have ro = rI, ri = −rII, and hence, we must write (3.113) in the form

ri = −f1L2

f2L1
ro. (3.114)

3.4.3
Electrostatic Lenses

We return now to the paraxial ray equation and consider first electrostatic lenses
(B = 0) for particles with zero azimuthal velocity (pθ = 0). In this case, the paraxial
ray equation [Equation (3.49)] becomes

r ′′ + γ ′

β2γ
r ′ + γ ′′

2β2γ
r = 0,

or

(βγ r ′)′ + γ ′′

2β
r = 0. (3.115)

We shall now derive a simple relation between the two focal lengths f1 and f2. To
do this, let us consider the Wronskian determinant of the two independent solu-
tions, which from Equations (3.76) and (3.79) is given by

W = uv′ − u′v = W0
(
γ 2 − 1

)−1/2 = W0

γβ
. (3.116)

Now let us assume that to the left of the lens (in object space),

u = u1 = 1, u′
1 = 0, γ = γ1 = qV1

E0
+ 1,

and to the right (in image space),

v = v2 = 1, v′
2 = 0, γ = γ2 = qV2

E0
+ 1.

On the left side of the lens, we therefore get from (3.116)

v′
1 = W0

(
γ 2

1 − 1
)−1/2

,

whereas to the right,

u′
2 = −W0

(
γ 2

2 − 1
)−1/2

.

From the preceding section, we know that v′
1 = 1/f1, u′

2 = −1/f2; hence, taking
the ratio of the last two equations, we find that

f1

f2
= (γ 2

1 − 1)1/2

(γ 2
2 − 1)1/2

= P1

P2
= γ1β1

γ2β2
. (3.117)

In the nonrelativistic limit, this relation takes the form

f1

f2
=

(
V1

V2

)1/2

. (3.118)
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Fig. 3.5 Trajectory through an electric lens (schematic).

Thus the ratio of the object-side and image-side focal lengths of an electrostatic
lens is equal to the ratio of the mechanical momenta (or, in the nonrelativistic case,
the velocities) on either side of the lens region. If the momenta in the field-free
space on each side of the lens, or the voltage equivalents, are identical, we speak of a
unipotential lens. In this case, the two focal lengths are the same (i.e., f1 = f2).

We will prove now that all axisymmetric electrostatic fields (with field-free re-
gions on either side) form positive, or converging, lenses provided that the trajec-
tories do not cross the axis within the lens region. First we see this qualitatively
from Figure 3.5 for a bipotential lens (i.e., different potentials, or velocities, on each
side) in which the electric field accelerates the particles. The radial force component
on the left is focusing, that on the right is defocusing. The radius of the particle tra-
jectory decreases and the velocity increases from left to right. Hence, converging
action dominates over diverging, and we have a net focusing effect. A similar ar-
gument can be made if the field is decelerating. Quantitatively, this follows from
Equation (3.81), which in the nonrelativistic case is

R′′ + 3

16

(
V ′

V

)2

R = 0. (3.119)

Integration yields

R′
2 − R′

1 = − 3

16

∫ z2

z1

(
V ′

V

)2

R dz. (3.120)

As long as the particle does not cross the axis within the lens, R > 0, (V ′/V )2 > 0,
and hence R′

2 − R′
1 < 0. From the definition R = rV 1/4, we have

R′ = r ′V 1/4 + r

4
V −3/4V ′.

As the limits of integration are assumed to be outside the lens field, V ′ is zero at
these points, hence

r ′
2V

1/4
2 − r ′

1V
1/4
1 < 0.

In the special case where r ′
1 = 0, we find from this relation that r ′

2 < 0 (i.e., the
parallel ray emerges from the lens with negative slope); hence, the lens is focusing.
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This argument is still valid if a magnetic field is considered (see next section) or
added to the electric field. The reason is that in a solenoidal magnetic lens, the par-
ticle energy does not change; hence, V2 = V1, and therefore we have r ′

2 − r ′
1 < 0.

A similar argument can be made for a two-dimensional system with planar elec-
trodes separated by a gap. Thus we can generalize the conclusion and state that all
axisymmetric or two-dimensional electrostatic and solenoidal magnetostatic lenses
are focusing provided that the particle trajectory does not cross the axis within the
lens field region.

We had seen in Section 3.4.1 that the action of a lens on the particle trajectory
may be described by the transfer matrix M̃ [Equation (3.102)]. When the thin-lens
approximation can be applied, this matrix is greatly simplified and is given by Equa-
tion (3.103). In the case of electrostatic lenses, the accuracy of the thin-lens approx-
imation can be improved by assuming that the reduced variable R, rather than r ,
is constant through the lens. One can show that R is uniformly concave toward the
axis, irrespective of the character of the lens field; r , however, varies so that its value
is larger in the converging parts of the lens than in the diverging part of it. Conse-
quently, putting r = const invariably leads to too low a value for 1/f . Suppose that
the path considered has a displacement r1 and zero slope (r ′

1 = 0) to the left of the
field and a slope r ′

2 to the right of the field. The focal length f2 is defined as

f2 = − r1

r ′
2
. (3.121)

Now, in the nonrelativistic limit, one has, from Equation (3.84),

r1 = R1

V
1/4
1

; r ′
2 = R′

2

V
1/4
2

since V ′
2 outside the field is zero. Then

1

f2
= −R′

2

R1

(
V1

V2

)1/4

. (3.122)

Using (3.120) with R′
1 = 0, this becomes

1

f2
= 3

16

1

R1

(
V1

V2

)1/4 ∫ z2

z1

(
V ′

V

)2

R dz.

Assuming that R = R1 = const leads to

1

f2
= 3

16

(
V1

V2

)1/4 ∫ z2

z1

(
V ′

V

)2

dz. (3.123)

Thus f2 can be obtained by integration of (V ′/V )2 over the region of the lens, and
f1 is then determined by the relation

f1

f2
=

(
V1

V2

)1/2

,

or

1

f1
= 3

16

(
V2

V1

)1/4 ∫ z2

z1

(
V ′

V

)2

dz. (3.124)
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It should be noted that the actual value of R is always slightly smaller than the
assumed constant value. Consequently, the focal length calculated by the above
weak-lens formula is slightly longer than the true focal lengths.

There are several types of electrostatic lenses, which may be classified as follows:
1. UNIPOTENTIAL OR EINZEL LENSES. These are

characterized by equal constant potentials in object and
image space. As mentioned before, the object-side and
image-side focal lengths are then the same (i.e., V2 = V1;
f2 = f1).

2. BIPOTENTIAL OR IMMERSION LENSES. The potentials in
object and image space are different (V1 �= V2). Immersion
lens is derived from the analogy to the oil-immersion
objectives of the light microscope, for which object and
image are placed in media of different refraction index (i.e.,
oil and air, respectively). In this case, one has

f2

f1
=

(
V2

V1

)1/2

(nonrelativistically).

3. SINGLE-APERTURE LENSES. These comprise the lens
fields about an aperture in an electrode which separates two
regions of different constant potential gradients (i.e.,
V ′

1 �= V ′
2). Since the electron paths in the object and image

fields here are not straight lines but parabolas, the
considerations leading to the above lens equations do not
apply and, hence, these formulas cannot be used. One can
show, however, that the image magnification and image
distance can be found from the position of the focal points
and principal planes if the points and planes are redefined in
a suitable manner.

4. CATHODE LENSES. These are lenses which are terminated
on one side by an emitting surface at zero potential, normal
to the optical axis (e.g., the cathode of an electron gun). An
example of this type of lens is a planar diode in which the
anode has a hole through which the beam can pass. The
electric field in the region of the anode hole has a defocusing
radial component, and the system constitutes a lens with a
diverging effect on the beam. The cathode lens can be
considered as a single-aperture lens with the aperture in the
anode and V ′

2 = 0.

Note that this classification is not unique. There is, for instance, an alternative
classification that cuts across the above grouping and divides all electron lenses
into long and short lenses.
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Fig. 3.6 Bipotential lens formed by two coaxial conducting
tubes at different potentials. (Typical lines of force are shown
for V2 > V1.)

An example of a bipotential lens is shown in Figure 3.6. Two coaxial cylinders
with radii b1, b2, and separated a distance d, are at potentials V1, V2, respectively.
The potential distribution for such a lens can be found by solving Laplace’s equa-
tion and has the general form

φ(r, z) = 1

2π

∫ ∞

−∞
a(k)J0(ikr)eikz dk. (3.125)

J0(ikr) is the normal Bessel function of the first kind of zero order and can be
represented by the power series

J0(ikr) =
∞∑

n=0

1

(n!)2

(
ikr

2

)2n

. (3.126)

The coefficients ak(k) of the integral (3.125) must be determined from the bound-
ary conditions for φ(r, z).

For the special case where the two cylinders have the same radius (b1 = b2 = b)

and their separation is infinitesimally small (d → 0), the potential functions may
be written in the form

φ(r, z) = V1 + V2

2
+ V2 − V1

π

∫ ∞

0

sin kz

k

J0(ikr)

J0(ikb)
dk. (3.127)

On the axis (r = 0), this function becomes

φ(0, z) = V (z) = V2 + V1

2
+ V2 − V1

π

∫ ∞

0

sin kz

k

dk

J0(ikb)
. (3.128)

Figure 3.7 shows V (z) and the two first derivatives, V ′(z) and V ′′(z). For conve-
nience it was assumed that V1 = 0, V2 = 1, and that the distance z is given in units
of the cylinder radius b.

The potential distribution along the axis, V (z), given in Equation (3.128) and
plotted in Figure 3.7, can be approximated with a good degree of accuracy by the
expression (see [C.11, Vol. I, p. 39])

V (z) = V1 + V2

2
+ V2 − V1

2
tanh

(
1.318

b
z

)
. (3.129)
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Fig. 3.7 Potential distribution and derivatives on the axis of a
two-cylinder lens with the same diameter and infinitesimally
small separation d.

With this relatively simple analytical formula the integration of the paraxial ray
equation and the determination of the focal properties of such a lens is obviously
easier than using the Bessel function integrals. It is found that both f2 and f1 de-
crease (i.e., the refractive power of the lens increases) as the ratio V2/V1 increases.
However, not much is to be gained if V2/V1 goes beyond about 10. Furthermore,
both principal planes always lie on the low-voltage side of this bipotential lens. The
focal strength 1/f2 for a thin lens can be calculated analytically for the general rel-
ativistic case, and in the nonrelativistic approximation one finds with α = 1.318/b

(see Problems 3.4 and 3.5)

1

f2
= 3

8
α

(
V1

V2

)1/4(
V1 + V2

V2 − V1
ln

V2

V1
− 2

)
. (3.130)

For the case where the two cylinders have the same radius b1 = b2 = b but are
separated by a distance d, the potential on the axis, V (z), can be approximated by
the analytical formula (see [C.11, Vol. I, p. 41])

V (z) = V1 + V2

2
+ V2 − V1

2αd
ln

cosh αz

cosh α(z − d)
, (3.131)

where α = 1.318/b. In the limit d → 0, one recovers Equation (3.129). If the diam-
eters of the two cylinders differ, purely analytical methods cease to be effective and
it is best to solve Laplace’s equation, ∇2φ = 0, numerically (e.g., by the relaxation
method) to obtain the potential distribution.

As a second example of electrostatic focusing we will now discuss the aperture
lens illustrated in Figure 3.8. An electrode at potential V , located between two
coplanar electrodes at potentials V1 and V2, has a small circular aperture of radius
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Fig. 3.8 Field configuration and focusing action of a plane
electrode with a circular aperture separating two regions of
different field gradients.

a through which the particle beam passes from one region to the other. In prac-
tice, the first electrode could be a cathode at V1 = 0, the aperture plate could be
an anode, and the third electrode could be absent. Alternatively, all three electrodes
could have an aperture, as would be the case in an einzel lens. However, to analyze
the effect of a single aperture, let us consider the geometry as shown in the figure.

First we note that the perturbation introduced by the aperture is confined to a
region z1 < z < z2 whose width is comparable to the hole diameter, 2a. Outside
this small region the electric field on either side of the center electrode is practically
uniform and the particle trajectory is either a straight line (for ṙ0 = 0) or a parabola
(for ṙ0 �= 0). Thus we will assume that Ez1 = V ′

1 = const in the region z � z1 and
Ez2 = V ′

2 = const in the region z � z2. For the configuration shown in the figure,
we have V2 > V > V1 and V ′

2 > V ′
1. Hence the radial force, qEr , experienced

by a particle passing through the aperture region is inward (i.e., the aperture acts
like a focusing lens). Since electrostatic focusing is usually employed at low particle
velocities, we can use the nonrelativistic force equation; hence, we obtain for the
radial motion (with θ̇ = 0),

mr̈ = qEr .

Integration through the aperture region yields

ṙ2 − ṙ1 = q

m

∫ t2

t1

Er dt = q

m

∫ z2

z1

Er

v
dz. (3.132a)

Using the paraxial relation (3.34) between Er and ∂Ez/∂z, we can write

ṙ2 − ṙ1 = − q

m

∫ z2

z1

r

2v

∂Ez

∂z
dz. (3.132b)

Let us assume now that in the transition through the aperture region the radius r

and velocity v of the particle remain approximately constant (thin-lens approxima-
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tion). The integral is then readily solved and we obtain for the change of the slope
r ′

2 − r ′
1 = (ṙ2 − ṙ1)/v the result

r ′
2 − r ′

1 = − qr

2mv2

(
Ez2 − Ez1

)
(3.133a)

or alternatively, with mv2 = 2qV , Ez = V ′,

r ′
2 − r ′

1 = − r

4

V ′
2 − V ′

1

V
. (3.133b)

This result can also be obtained by applying Gauss’s law for the electric flux to a
cylinder of radius r and length �z = z2 − z1. From

∫
D · dS = ∫

ε0E · dS = 0
one obtains

−Ez1r
2π + Ez2r

2π + 2πr

∫ z2

z1

Er dz = 0,

and hence
∫ z2
z1

Er dz = −(r/2)(Ez2 − Ez1), which leads to (3.133a).
Setting r ′

1 = 0, one finds for the focal strength of the aperture lens

1

f
= − r ′

2

r
= V ′

2 − V ′
1

4V
. (3.134)

From these results we conclude that an aperture lens has a focusing effect if
V ′

2 > V ′
1, a defocusing effect if V ′

2 < V ′
1, and no effect if V ′

2 = V ′
1. Of special

interest is the case where the beam emerges from a diode-type source, for instance
an electron gun or an ion source, and propagates through an aperture into a field-
free drift tube. In this configuration, the first electrode is a particle emitter (e.g., a
thermionic cathode or a plasma surface), and the second electrode serves to extract
and accelerate the beam. Since V ′

2 = 0, hence f < 0, the aperture in the extractor
electrode has a defocusing effect. This single-aperture lens is then identical with
the cathode lens of electron optics, as mentioned in the classification of electrostatic
lenses given above.

In some applications the aperture may not be circular, but instead may have a
rectangular shape having a width �x = 2a and a height �y = 2b. For this case we
can apply Gauss’s law to a flux tube of length �z = z2 − z1 and height y. Using
the fact that∫ a

0
Ex dx = Exa =

∫ b

0
Ey dy = Eyb,

where Ex and Ey are average field values, we find for the change of slopes �x′,
�y′ in lieu of (3.133b) the relations

x′
2 − x′

1 = − x

2(1 + a/b)

V ′
2 − V ′

1

V
, (3.135a)

y′
2 − y′

1 = − y

2(1 + b/a)

V ′
2 − V ′

1

V
. (3.135b)

We must of course recognize that these linear relations are only approximately cor-
rect, as there are always aberrations (nonlinearities) associated with such rectangu-
lar apertures. From a practical point of view, two cases are of special interest. First,
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Fig. 3.9 (a) Action of a defocusing grid on a laminar parallel
beam in a trace-space diagram. Incoming particles (with
x′

1 = 0) occupy a straight line between mesh wires, and the
emittance is zero. (b) Outgoing particles acquire slopes x′

2
proportional to displacement from the center point of each wire
mesh, straight lines representing particle distribution between
mesh wires become tilted, and the effective emittance is
εg ≈ R�x′

max.

if a = b (i.e., if the aperture has the shape of a square), the two equations are iden-
tical with (3.133b) if r is substituted by x or y. Second, if b → ∞, the rectangular
aperture becomes an infinitely long slit for a one-dimensional sheet beam. There
is no force in the y-direction, and the change of slope for the x-motion is given by

x′
2 − x′

1 = −x

2

V ′
2 − V ′

1

V
. (3.136)

Using the above thin-lens approximations for the effect of an aperture and uni-
form fields for the regions between electrodes, one can calculate the focusing
properties of more complicated electrode configurations such as cathode lenses
or einzel lenses.

Finally, we note that the above theory also applies to cases where the electrode in
question does not have a single aperture but consists of a configuration of parallel
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wires (grids) or a wire mesh. Such a configuration essentially subdivides the beam
into many beamlets, each of which passes through a small aperture lens defined
by the wire mesh. The formulas developed above must then be applied to each
beamlet, and the net result is an effective increase of the emittance, as illustrated
in Figure 3.9 (where a defocusing field geometry was assumed). As an example,
consider an electron gun with a control grid at a potential Vg located a small dis-
tance from the thermionic cathode. Such a grid may be used to control the current
and pulse width of the electron beam produced by the gun. Suppose that the grid
is a mesh of thin wires crossing at right angles and forming square-shaped open-
ings of width �x = �y = 2a. Each opening acts like an aperture lens; that is,
the electrons passing through it experience a change of slope given by (3.135) with
a = b and with x and y measuring the distance from the center of the opening (see
Figure 3.9). The maximum change of slope for each beamlet is then

�x′
max = −a

4

V ′
2 − V ′

1

Vg

,

where V ′
1 and V ′

2 are the potential gradients between grid and cathode, and grid and
anode, respectively. Let R denote the total electron beam radius as defined by the
cathode size. A parallel beam of electrons with zero initial emittance will acquire
an effective emittance of εg ≈ R|�x ′

max| after passing through the wire mesh. The
corresponding normalized emittance is

εn,g = v

c
εg =

(
2eVg

mc2

)1/2

εg,

or

εn,g = Ra

4

(
2eVg

mc2

)1/2 |V ′
2 − V ′

1|
Vg

.

If the intrinsic thermal emittance, εn,th, according to Equation (1.7), is included,
one obtains for the total normalized emittance of an electron beam produced by a
gun with cathode grid the result

εn =
(
ε2
n,th + ε2

n,g

)1/2
.

A numerical example illustrating the magnitude of this grid effect is given in Prob-
lem 3.6. Note that the emittance increase due to a cathode grid is proportional to
the difference of the field gradients, |V ′

2 −V ′
1|. An obvious conclusion, therefore, is

to design and operate a gun such that this difference is as small as possible; ideally,
the gradients on both sides should be the same, but this may not always be possible
in practice.



88 3 Beam Optics and Focusing Systems without Space Charge

3.4.4
Solenoidal Magnetic Lenses

In the case of a purely magnetic field, the paraxial ray equation (3.69) takes the
form r ′′ + g2(z)r = 0, or

r ′′ + k2r = 0, (3.137)

where

k2 =
(

qB

2mcγβ

)2

= ω2
L

β2c2
, (3.138)

and k2 = q2B2/8mqV in the nonrelativistic approximation. By integration, one
gets for the change in the slope of the trajectory

r ′
2 − r ′

1 = −
∫ z2

z1

k2r dz. (3.139)

Since k2 is always positive, and if the particle does not cross the axis inside the lens
field (i.e., r > 0), we see that r ′

2 < r ′
1; hence, the lens is focusing, as stated earlier.

The major difference between solenoidal magnetic and electric lenses is that in
the electric case the image is inverted, while in solenoidal magnetic lenses it is
inverted and rotated by an angle θr given [ from Equation (3.58)] by

θr = −
∫ z2

z1

k dz. (3.140)

Since, by Ampère’s circuital law, the integral
∫ ∞
−∞ Hdz = NI = number of ampere

turns of the coil, we can also write

θr = −µ0
q

2mcβγ
NI, (3.141)

or θr = −µ0(q/8mV )1/2NI nonrelativistically. This relation between the angle
of rotation and the number of ampere turns of the coils exciting the solenoidal
magnetic lens is accurate if we take the integral from a sufficiently field-free region
on the left of the lens to the field-free space on the right of it. For electrons, one
obtains the nonrelativistic relation

|θr | = 0.1865 × NI[A](
V[V ]

)1/2
. (3.142)

If the axial width of the magnetic lens is so short that the change in the radial
coordinate r of a trajectory within the field region is negligibly small, the magnetic
field in question constitutes a thin or weak magnetic lens, as defined earlier. In this
case, r on the right side of (3.139) may be treated as a constant. Suppose that r ′

1 is
zero to the left of the lens (parallel ray); then we obtain for the slope r ′ = r ′

2 on the
right side,

r ′ = −r

(
q

2mcβγ

)2 ∫ z2

z1

B2 dz. (3.143)
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Fig. 3.10 Solenoid lens with iron shield.

In a magnetic lens f2 = f1 since V2 = V1; that is, one deals with only one focal
length, f , which in our case here is defined by

1

f
= − r ′

r
=

(
q

2mcβγ

)2 ∫ z2

z1

B2 dz. (3.144)

Note that the focal length from this formula is shorter than the exact thick-lens re-
sult. The reason is that the trajectory radius r is not actually constant but decreases
slightly through the lens due to the fact that r ′′ = −(qB/2mcβγ )2r from Equation
(3.137) is always negative.

As an example of a magnetic lens, let us consider the solenoid shown in Fig-
ure 3.10. The field produced by this arrangement may, in first approximation, be
assumed to be uniform in the region 0 < z < l and zero outside this region if
the diameter D of the aperture is small compared to the length l (i.e., D/l � 1).
Mathematically, the effective length l of this equivalent uniform field (or hard-edge)
approximation can be defined by

l = 1

B2
0

∫ ∞

−∞
B2(z) dz,

where B0 is the peak magnetic field (see Figure 3.10).
Since the paraxial ray equation involves only B(z) on the axis and not the deriv-

atives of B(z), the treatment of solenoidal magnetic lenses is much simpler than
that of electric lenses. In our particular case, using the hard-edge approximation
we can integrate (3.137) with the assumption k = const for 0 < z < l and k = 0
elsewhere. Thus, with initial conditions r = r0, r ′ = 0 at z = 0, we obtain

r = r0 cos kz, (3.145a)

r ′ = −r0k sin kz. (3.145b)
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Fig. 3.11 Trajectory entering solenoidal field with zero slope.

When the particle leaves the field, the radius and slope will be (with z = l and
φ = kl)

rl = r0 cos φ, (3.146a)

r ′
l = − r0

l
φ sin φ, (3.146b)

where

φ = kl = qB0l

2mcβγ
= µ0qNI

2mcβγ
, (3.147a)

or

φ = kl =
(

q

8mV

)1/2

B0l = µ0

(
q

8mV

)1/2

NI (nonrelativistically). (3.147b)

The image rotation is given by

θr = −φ; (3.148)

that is, the parameter φ measures the amount of rotation of the meridional plane
by the solenoidal magnetic field.

The focal length is obtained from (3.146) as

1

f
= − r ′

l

r0
= φ sin φ

l
. (3.149)

The image-side principal plane is located at z2, and from Figure 3.11 one has the
relations

− r0 − rl

l − z2
= r ′

l , or z2 = l + r0 − rl

r ′
l

;

hence,

z2 = l

(
1 − 1 − cos φ

φ sin φ

)
. (3.150)

Expressing the location of the principal plane as a distance d2 to the left of the
center of the lens, one obtains

d2 = l

2
− z2,

or

d2 = l

(
1 − cos φ

φ sin φ
− 1

2

)
. (3.151)
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By comparison, the thin-lens approximation yields from Equation (3.144)

1

f
=

(
q

2mcβγ

)2

B2
0 l = φ2

l
= k2l, (3.152)

which follows also from the thick-lens formula (3.149) if one expands the sin φ for
φ � 1. In the thin-lens approximation, the location of the principal plane, is of
course, in the center of the lens; hence, z2 = l/2 and d2 = 0.

The comparison shows good agreement between thick-lens and thin-lens results
for φ � 0.3. The object-side principal plane is obtained by integrating (3.137) for
a trajectory leaving the lens at z = l with r = rl and r ′ = r ′

l = 0. The solution in
this case is

r = A cos kz + B sin kz, (3.153a)

r ′ = −Ak sin kz + Bk cos kz. (3.153b)

One finds that

A = rl cos kl, B = rl sin kl. (3.154)

At z = 0, the particle’s radial position and slope are

r0 = rl cos kl, (3.155a)

r ′
0 = rlk sin kl. (3.155b)

The object-side focal length is

1

f
= r ′

0

rl
= k sin kl = φ sin φ

l
,

which is the same as the image-side focal length, as expected for a magnetic lens.
The location of the object-side principal plane is at z1 = (rl −r0)/r ′

0, or, with respect
to the lens center, at d1 = z1 − l/2, that is,

d1 =
(

1 − cos φ

φ sin φ
− 1

2

)
l = d2. (3.156)

The two principal planes are thus located at an equal distance (d1 = d2) upstream
and downstream from the center of the lens.

We must now discuss the physical meaning of our results. At first glance, one
would expect that a particle entering a uniform magnetic field on a straight path
parallel to the field lines should not be deflected radially. This is certainly true if
one disregards the transition from zero field to B = const. However, our field
Bz = B0 for 0 < z < l and B = 0 outside this region has a Br component in
the fringe-field region, from ∇ · B = 0, and this condition has been utilized in the
derivation of the paraxial ray equation. This means that in our equation (3.137), the
linear force from the Br component associated with the off-axis Bz component at
the edges (z = 0, z = l) is implicitly taken into account. In contrast, the simple,
uniform-field equations in cartesian coordinates, ẍ = ωcẏ, ÿ = −ωcẋ, z̈ = 0, where
ωc = qB0/γm is the cyclotron frequency, are valid only within the uniform field
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region Bz = B0 and do not give a focusing action of this field unless the junction
effect is considered separately.

The book by El-Kareh and El-Kareh [C.14] contains many examples of electric
and magnetic lens design and tables of lens parameters for almost every type of
lens used in practical applications. Also very useful are the books by Szilagyi [C.21]
and Hawkes and Kaspar [C.22], where detailed treatments of charged particle beam
optics, properties of lenses, and aberrations can be found, and the book by Wollnik
[C.20], which contains special material on dipole magnets, electrostatic deflectors,
quadrupole lenses, and the design of particle spectrometers.

3.4.5
Effects of a Lens on the Trace-Space Ellipse and Beam Envelope

In earlier sections we studied the motion of individual particles to determine the
focal properties of a lens and its effects on the particle trajectories. If we want to
know what happens to an entire distribution of particles comprising a beam it is
convenient to use the trace-space ellipse discussed in Section 3.3.3. Suppose that at
some initial position z0 upstream from a lens the distribution of particles in r–r ′
trace space fills an area bounded by an ellipse that is defined by an equation of the
form (3.90). How does this ellipse change as the distribution of particles moves
downstream through the lens?

In the field-free space on either side of the lens the particles’ trajectories are
straight lines determined by the slope r ′ and initial position r of each particle, and
the motion can be described by the matrix

M̃ =
(

1 z

0 1

)
. (3.157)

Let the subscript 1 denote the particles’ r–r ′ coordinates at the entrance side of the
lens center, 2 those at the exit side, and 3 at an arbitrary position downstream from
the lens. Furthermore, let M̃01 be the free-space matrix between the initial position
and the lens, M̃12 the lens matrix given by Equation (3.102), and M̃23 the free-space
matrix between the lens and point 3 downstream. Then the relation between a
particle’s r–r ′ coordinates at point 3 and the initial conditions (r0, r ′

0) is given by(
r3

r ′
3

)
= M̃23M̃12M̃01

(
r0

r ′
0

)
=

(
a11 a12

a21 a22

)(
r0

r ′
0

)
. (3.158)

The equation of the trace-space ellipse at any of the four points is of the form

air
2
i + 2birir

′
i + cir

′2
i = 1 (i = 0, 1, 2, 3). (3.159)

Of particular interest is the case where the initial ellipse is upright (i.e., b0 = 0). The
motion of such an ellipse from object to image space is depicted schematically in
Figure 3.12. In the free-space regions the slope of each particle trajectory remains
constant and the beam is divergent. At the lens the shape and the radial position
are changed and the beam converges until it reaches a waist. The location of this
waist zw is defined by the condition b3 = 0 (upright ellipse). The image of the
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initial beam is located at zi , a short distance past the waist position, as illustrated
in the figure. It is determined by the condition that r4 must be independent of r ′

0,
hence a12 = 0. Note that the ellipse at the image position is tilted (not upright like
the initial object ellipse).

The envelope of the beam, R = rmax, versus distance is also plotted schematically
in Figure 3.12. For a tilted ellipse, the envelope radius is found by solving the ellipse
equation for r ′. Since this is a quadratic equation, there are generally two values of
r ′ associated with each value of r , except for rmax, where r ′ is single-valued. From
this condition one finds for the beam radius

rmax = R = A

π

√
c = ε

√
c, (3.160a)

while the slope of the envelope is defined by

R′ = −εb√
c

. (3.160b)

Here A = επ = π/(ac − b2)1/2 is the area of the ellipse according to Equation
(3.92) and a, b, c denote the three coefficients in the ellipse equation. For motion
in free space, c depends on the initial conditions (R0, R′

0) and the distance z from
the initial position. Differentiating (3.160) twice and using relations such as (3.92),
one obtains the following differential equation for the beam envelope in free space:

R′′ − ε2

R3
= 0. (3.161)

This equation can be readily integrated, and one obtains for R(z) the hyperbolic
solution

R(z) =
[
R2

0 + 2R0R
′
0z +

(
ε2

R2
0

+ R′2
0

)
z2

]1/2

. (3.162)

R0 and R′
0 denote the radius and slope of the envelope at the initial position, and ε

the emittance.
Figure 3.12(b) depicts the change of the envelope as the beam propagates in the

axial direction. The passage through the lens has a similar effect on the envelope as
on an individual particle [i.e., it changes the radius and slope (R, R′)]. In general,
this change must be calculated from (3.160a) and (3.160b) using the coefficients
c2, b2 of the beam ellipse after the lens matrix has been applied. Only in the special
case of a thin lens can the single-particle lens matrix M̃12 also be used to obtain the
change in the beam envelope directly via the relation(

R2

R′
2

)
= M̃12

(
R1

R′
1

)
. (3.163)

The reason for this is that a thin-lens transformation does not change the particle
radius. Hence, a particle that is at the edge of the beam remains at the edge after the
transformation has been applied. However, in a thick lens, a particle that coincides
with the beam envelope on the upstream side of the lens is no longer at the beam
edge after the lens transformation is applied, and vice versa. This can be seen in
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Fig. 3.12 Qualitative change of the emittance ellipse in trace
space and of the beam envelope as the beam travels from
object space to image space of a lens.

Figure 3.12 by following the motion of particle B from position 1 (entrance side of
the lens) to position 2 (exit side of lens).

We must also keep in mind that the emittance does not necessarily remain
constant when the lens transformation is applied. Thus, if the particle energy is
changed, as is the case in a bipotential lens, the emittance also changes according
to the relation

ε2

ε1
= β1γ1

β2γ2
= f1

f2
. (3.164)

In the free space downstream from the lens the beam envelope is again described
by an equation of the form (3.162) with the new initial conditions R2, R′

2, and ε2

and with z denoting the axial distance from the midplane of the lens.

3.4.6
Aberrations in Axially Symmetric Lenses

The paraxial ray equation was derived on the basis of idealizing assumptions (ex-
panding the equations of motion and keeping only linear terms in r , r ′). The lenses
treated in this paraxial approximation are ideal in the sense that they produce sharp,
faithful images of an object in a plane perpendicular to the beam axis. In practice,
such perfect lenses do not exist as nonlinearities in the focusing fields, and other
effects cause imperfections or aberrations. These aberrations can be classified ac-
cording to the source by which they are caused, as follows: (1) geometrical aberra-
tions (spherical aberration, coma, curvatures of field, astigmatism, and distortion
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Fig. 3.13 Effect of spherical aberration. The large-angle
trajectories cross the axis at a distance �zi upstream from the
ideal image plane.

of the barrel, pin cushion, or rotational type); (2) chromatic aberrations (due to en-
ergy spread in the beam); (3) space-charge effects; (4) diffraction (limits resolutions
of electron microscopes); and (5) imperfection [such as mechanical misalignments,
fluctuations (ripple) in the voltages and currents supplying the electric and mag-
netic lens elements, etc.].

In an ideal lens, all particles leaving a point ro, θo in the object plane will arrive at
the same point ri , θi in the image plane. When aberrations are present, this is no
longer the case, and particles emerging from an object point ro, θo with different
initial angles will arrive at different points ri + �ri , θi + �θi in the image plane.
For a detailed discussion of the various types of aberrations, we must refer to the
literature (e.g., the books on electron optics by Zworykin et al. [C.1] or Klemperer
[C.2], or the more recent books by Wollnik [C.20], Szilagyi [21] or Hawkes and Kas-
par [C.22]). We will, however, briefly discuss two types of aberrations that are of
particular importance: the spherical aberration and the chromatic aberration.

The spherical aberration is a geometrical aberration that arises from third-order
terms (r3, r2r ′, etc.) that are neglected in the paraxial ray equation. Note that r2

terms are excluded by symmetry since the radial forces on a particle must change
direction when the sign of r is changed. As an example, if one includes all terms
up to third order in r and r ′ in the equations for solenoidal magnetic lenses, one
obtains in place of the paraxial ray equation (3.137) the nonlinear equation

r ′′ + κr + κr ′2r − κ

(
B ′

B

)
r ′r2 +

[
κ2 − 1

2
κ(B ′′)

]
r3 = 0. (3.165)

Here it was assumed that pθ = 0 and κ is defined as κ = k2 = ω2
L/β2c2; B ′ and

B ′′ are the first and second derivatives of Bz on the axis with respect to z.
To illustrate the effect of spherical aberrations, consider the case of a thin lens

shown in Figure 3.13. Two particle trajectories emerge from an object point on the
axis with angles α0 and −α0 and pass through the midplane of the lens at radial
distance r1 and −r1. Due to the r3

1 term, they will experience a stronger force than
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in the perfect lens and as a result, they will cross the axis at angles αi and −αi before
reaching the image plane of the perfect lens. For small angles αi , the displacement
�ri at the image plane can be defined to good approximation by the relation

�ri = Csα
3
i , (3.166)

where Cs is the spherical aberration coefficient, which depends on the initial con-
ditions and the lens geometry. The crossing angle αi depends on the initial angle
α0, or the object distance L1. The crossover point is at a distance �zi upstream
from the perfect image plane. If one considers the entire ensemble of trajectories
within a beam, one finds that the minimum radius (waist of the beam envelope),
which defines what is known in the literature as the disk of least confusion, is located
at a distance of �zm < �zi upstream from the perfect image plane, as indicated
in Figure 3.13. If the object is at a large distance (L1 � L2, L2 ≈ f2), the incident
rays are practically parallel to the axis. In this case, defining the spherical aberra-
tion coefficient as Cs(∞), one can show that the radius �rm of least confusion and
the associated distance �zm are given by

�rm ≈ 1

4
Cs(∞)α3

i , �zm ≈ 3

4
�zi = 3

4
Cs(∞)α2

i . (3.167)

For a unipotential or magnetic lens (f1 = f2 = f ), the relation between the spher-
ical aberration coefficient for infinite and finite object distance is found to be

Cs(∞) = f

L2
Cs(L1), (3.168)

where L2 defines the location of the ideal image plane, L1 the object distance, and
f the focal length of the lens. Spherical aberrations constitute a fundamental form
of lens defects that, unlike the situation in light optics, cannot be eliminated com-
pletely. This is due to the constraints imposed on the field shapes by the conditions
∇ ×B = 0, ∇ ·E = 0 when space charge is neglected. (Unfortunately, space-charge
effects tend to make things worse rather than better.) The ratio of the spherical
aberration coefficient to the focal length, Cs/f , is used as a figure of merit defining
the quality of a lens. Spherical aberration data for various types of lenses can be
found in Septier [C.13, Vol. I], El-Kareh and El-Kareh [C.14], Szilagyi [C.21], and
Hawkes and Kaspar [C.22].

Chromatic aberrations are due to the spread in kinetic energy that is inherent
to some degree in any beam. They are different from geometrical aberrations in
that they do not imply any nonlinear terms in the trajectory equations. Since the
focal length f (or f1 and f2 for bipotential lenses) depends on the momentum,
particles with different momentum or energy produce images at different distances
from the lens. These images are perfect in the paraxial approximation, and the
spread in the image locations, �zi , depends on the momentum spread �P in the
beam. The variation of the focal length f with particle momentum responsible
for this effect also produces a circle of least confusion of radius rc. We can calculate
this radius by considering a parallel beam consisting of trajectories that enter the
lens with zero initial slope (i.e., r ′

0 = 0). Particles of momentum P will cross the
axis downstream from the lens at the focal distance zf . Those with a different



3.4 Axially Symmetric Fields as Lenses 97

momentum, say P + �P , will be focused at a point zf + �zf , where �zf =
(∂f/∂P )�P . If the angle of convergence for the particle with momentum P is α,
then the radius of the circle of least confusion is (following Lawson, [C.14, p. 41])

rc = α

(
∂f

∂P

)
�P = αf

(
P

f

∂f

∂P

)
�P

P
. (3.169)

One now defines a chromatic aberration coefficient Cc for a lens by

Cc

f
= 1

2

(
P

f

∂f

∂P

)
, (3.170)

and writes

rc = 2αCc

�P

P
= 2Ccα

�γ

β2γ
. (3.171)

In the nonrelativistic limit one gets

rc = Ccα
�V

V
, (3.172)

where V is the voltage equivalent of the kinetic energy and �V represents half
the total energy spread in the beam. For a thin, solenoidal magnetic lens we found
that the focal length f is proportional to P 2 [Equation (3.144)], and hence we get
for the chromatic aberration coefficient the value Cc/f = 1. In general, however,
when one considers thick as well as bipotential lenses, the expressions for Cc can
be rather complicated.

Although space charge is neglected in this chapter, we discuss briefly its effect on
spherical aberrations. First, we note that the space charge associated with a beam acts
like a defocusing lens. In an ideal beam with uniform charge density, the electric
field, and hence the defocusing force, are proportional to the radius r and cause an
increase in the focal length, which in turn changes the image location and magnifi-
cation. Linear beam optics with space charge is treated in Chapter 4. In practice, the
charge density is not uniform, and this nonuniformity causes spherical aberration,
as we now show. Suppose that the charge density across the beam varies as

ρ(r) = ρ0

(
1 − δ

r2

a2

)
for r � a, (3.173)

and ρ(r) = 0 for r > a, where δ = �ρ/ρ0. From ∇ · E = ρ/ε0, one then gets for
the radial electric field

Er(r) = ρ0

ε0

(
r

2
− δr3

4a2

)
= ρ0r

2ε0

(
1 − δ

2

r2

a2

)
. (3.174)

As an illustration, consider a unipotential, thin lens with paraxial focal length f0.
Suppose that the linear part of the space-charge force increases the focal length
to σf0. A parallel ray entering the lens will therefore cross the axis at distance f0

when no space charge is present and at distance σf0 when the linear part of the
space charge is taken into account (no aberration). The nonlinear (quadratic) term
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Fig. 3.14 Spherical aberration due to space charge.

in the charge density reduces the defocusing force, and the trajectory will cross
the axis at a distance f0 < z < σf0, which depends on the incident radius of the
particle. This is illustrated in Figure 3.14. For the outermost particle passing the
lens at r = a, the angle of convergence is θ0 = a/σf0 when δ = 0. However, for
δ �= 0, the angle will be increased to

θ = a

σf0

1

1 − δ/2
≈ θ0

(
1 + δ

2

)
. (3.175)

At the focal plane (z = σf0), there will be a spot size of radius �r ≈ aδ/2. Equating
this with Csθ

3, where Cs is the spherical aberration coefficient of the combined
lens and space-charge effect, we get

Csθ
3 = Csθ

3
0

(
1 + 3δ

2

)
= aδ

2
,

or

Cs = (σf0)
3

a2

�ρ

2ρ0
. (3.176)

From our previous discussion of spherical aberration, the circle of least confu-
sion has a radius of

�rmin = 1

4
Csθ

3
0 = 1

8
a

�ρ

ρ0
. (3.177)

Thus, as an example, if a = 2cm, �ρ/ρ0 = 0.2, we get �rmin = 0.5mm.

3.5
Focusing by Quadrupole Lenses

The focusing strength of axially symmetric systems is of second order since it is
proportional to the square of the fields given in the form of the ratios (V ′/V )2

and B2/V [see Equations (3.81) to (3.83) and Lawson, C.17, pp. 32, 34]. Thus, the
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focusing action of the axisymmetric lenses described in Section 3.4 is relatively
weak. There are two alternative ways to provide stronger, first-order focusing: (1)
utilizing charges and currents within the beam channel (i.e., ∇ · E = ρ/ε0 �= 0,
∇ × B = µ0J �= 0), as explained in Section 4.6; and (2) abandoning axial symmetry
by introducing quadrupole fields or, as in circular accelerators, by using alternating-
gradient (“strong”) focusing.

In the present section we discuss quadrupole fields, which have two planes of
symmetry. Following this, in the next section, we study the focusing of beams that
propagate along a circular path in a magnetic guide field. Quadrupole fields are a
special case of cylindrical multipole fields (“2n poles”) which satisfy the condition
∇ · E = 0, ∇ × B = 0, and where the variation of the radial field component is
proportional to f (z)rn−1 cos[2(n − 1)θ]. In particular, a pure electric quadrupole
field (n = 2) is given by

Er = −E0r

a
cos 2θ, Eθ = E0r

a
sin 2θ (3.178a)

in cylindrical coordinates, or

Ex = −E0
x

a
, Ey = E0

y

a
(3.178b)

in cartesian coordinates.
Such a two-dimensional field is produced by conducting boundaries shaped in

hyperbolic form as shown in Figure 3.15 for the electric quadrupole. If potentials
V0 and −V0 are applied, as shown in the figure, the potential distribution in the
space between the electrodes is given by the expression

V (x, y) = V0

a2

(
x2 − y2), (3.179)

from which Ex and Ey given in (3.178b) are obtained, with E0 defined as
E0 = 2V0/a. In practice, the electric quadrupole potential distribution of Equa-
tion (3.179) can be approximated with good accuracy by using four cylindrical rods
having a circular cross section of a radius a, rather than electrodes with hyperbolic
shapes.

In similar fashion, a magnetic quadrupole field is described by

Br = B0r

a
sin 2θ, Bθ = B0r

a
cos 2θ, (3.180a)

or

By = B0
x

a
, Bx = B0

y

a
. (3.180b)

Such a field is produced by a magnet configuration with hyperbolic pole shapes,
as shown in Figure 3.16.

We will assume that in the electrostatic quadrupole the changes in kinetic en-
ergy remain negligibly small, so that for both magnetic quadrupoles and electric
quadrupoles we have γ = const or γ̇ = 0. The equations of motion for the electric
quadrupole system are then

γmẍ = qEx = −qE0

a
x,
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Fig. 3.15 Electrodes and force lines in an electrostatic quadrupole.

Fig. 3.16 Field lines in a magnetic quadrupole. For a positively
charged particle moving in the z-direction, the force
components are focusing in the x-direction and defocusing in
the y-direction.

or

ẍ + qE0

γma
x = 0,

and likewise

ÿ − qE0

γma
y = 0.

In the case of a magnetic quadrupole one has

γmẍ = −qvzBy = −qvz

B0

a
x,

or

ẍ + qvzB0

γma
x = 0,

ÿ − qvzB0

γma
y = 0.

These equations all have the same form, ξ̈ ± ω2
0ξ = 0, with solutions ξ =

A cos ω0t +B sin ω0t , or ξ = A cosh ω0t +B sinh ω0t , depending on the sign. Thus,
we get focusing action in one plane of symmetry and defocusing in the other.
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Let us now eliminate the time t and write the above equations as trajectory equa-
tions. With z = vzt , vz ≈ v ≈ const, d2/dt2 = v2(d2/dz2), we obtain

x′′ + κx = 0, (3.181a)

y′′ − κy = 0, (3.181b)

where for magnetic quadrupoles

κ = qB0

γmav
, (3.182)

and for electric quadrupoles

κ = qE0

γmav2
. (3.183a)

In the nonrelativistic case (γ = 1) the latter relation may be written in terms of the
quadrupole voltage V0 and beam voltage Vb as

κ = V0

Vba2
(3.183b)

since E0 = 2V0/a and mv2 = 2qVb. With initial conditions x = x0, x′ = x′
0,

y = y0, y′ = y′
0 at z = 0, one obtains the solutions

x = x0 cos
√

κz + x′
0√
κ

sin
√

κz,

x′ = −√
κx0 sin

√
κz + x′

0 cos
√

κz

or (
x

x′

)
=

(
cos

√
κz 1√

κ
sin

√
κz

−√
κ sin

√
κz cos

√
κz

)(
x0

x′
0

)
(3.184a)

and (
y

y′

)
=

(
cosh

√
κz 1√

κ
sinh

√
κz√

κ sinh
√

κz cosh
√

κz

)(
y0

y′
0

)
. (3.184b)

A quadrupole field of a short axial width �z = l, where l is normally greater than
the semiaperture a, but less than 1/

√
κ , constitutes a quadrupole lens. In practice,

the quadrupole field does not end abruptly. There is a fringe field which forms a
transition from the ideal quadrupole field to the field-free region. However, as in
the solenoid case of Section 3.4.4, we can replace the actual gradient profile, κ(z),
by an equivalent hard-edge approximation. If κ0 denotes the peak gradient in the
flat part of the profile, the effective length l of the equivalent hard-edge function
is given by

l = 1

κ0

∫ z2

z1

κ(z) dz.

Hence, we have κ = κ0 = const for 0 � z � l and κ = 0 elsewhere. The hard-edge
assumption is sufficient for a paraxial (first-order) analysis. Nonlinear effects due
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to fringe fields and nonhyperbolic boundaries are discussed by Hawkes [C.10] and
Wollnik [C.20].

Two quadrupole lenses, arranged as a focusing–defocusing pair, have a net focus-
ing effect that is much stronger than the focusing action of an axisymmetric lens
of comparable size and field strength. This is why magnetic quadrupole doublets
are widely used for focusing of high-energy particles in accelerators and beam-
handling systems.

Electrostatic quadrupoles are limited in their application to focusing and trans-
port of low-energy ion beams. This can be seen by comparing the electrostatic and
magnetic gradient functions. From (3.183a) and (3.182) we find that

κE

κM

= E0

vB0
= E0

βcB0
.

High-voltage breakdown limits E0 to about 107 V/m and saturation of ferromag-
netic materials limits B0 to about 2 T, so that

κE

κM

= 1.67 × 10−2

β
.

Thus below β = 1.67 × 10−2 (i.e., for protons with energies less than 130 keV
or for electrons with energies less than 70 eV), electrostatic quadrupoles are more
efficient than magnetic quadrupoles. At higher energies, however, the magnetic
lenses are superior. Furthermore, by use of superconductors the focusing capability
of magnetic quadrupoles can be increased substantially beyond the 2-T limit of
room-temperature magnets.

The transfer matrix M̃ and the four lens parameters (or cardinal points, as they are
often called) for each symmetry plane of a single quadrupole lens can be calculated
in the same way as for the axially symmetric lenses of Section 3.4. In the thin-lens
approximation, one finds that

1

f
= ± κl. (3.185)

The negative sign applies for the diverging case (y–z plane). The properties of a
doublet consisting of a focusing and defocusing pair of thin lenses separated by a
short drift space of length �z = s are obtained by multiplication of the appropriate
transfer matrices. If f1 denotes the focal length of the first lens, f2 that of the
second lens, one finds in the thin-lens approximation that the combined action of
the two lenses is equivalent to that of a single lens of focal length F given by

1

F
= 1

f1
+ 1

f2
− s

f1f2
. (3.186)

For a quadrupole doublet with equal strength (i.e., f1 = f , f2 = −f ), one obtains

1

F
= s

f 2
= κ2l2s. (3.187)

It is interesting to compare a quadrupole doublet with a solenoid having the same
total length L and a magnetic field strength equal to the quadrupole field B0 (at the
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pole tips). Taking the case s = l when the two quadrupoles are adjacent to each
other and hence L = 2l, one obtains

1/Fdoublet

1/fsolenoid
= 4l3

a2L
= L2

2a2
.

This relation shows that both lenses have equal strength when L = √
2a. In

practice, however, L � a, and hence the quadrupole doublet is stronger than a
solenoid. As an example, when L = 10a, one finds that the doublet is 50 times
stronger than the equivalent solenoid.

Other important quadrupole lens systems are the triplet, which consists of a lens
of length l with a shorter lens of length l/2 on either side, and the periodic FODO
channel discussed in Section 3.8.3.

Further details on quadrupole lenses can be found in Reference C.13 (article
by Regenstreif, Vol. I) and in Livingood [D.1]. A thorough treatment of magnetic
quadrupoles, including aberrations, is given by Hawkes [C.10].

3.6
Constant-Gradient Focusing in Circular Systems

3.6.1
Betatron Oscillations

So far, we have considered beams that move along a straight path. Let us now dis-
cuss the focusing of beams that move on circular orbits as is the case in high-energy
accelerators with magnetic guide fields. In betatrons, classical cyclotrons, and syn-
chrocyclotrons, the magnetic fields employed are axially symmetric and the orbits
of the particles are circles. On the other hand, modern sector-focusing cyclotrons
and high-energy synchrotrons have magnetic fields that vary azimuthally, and the
orbit shape departs from a circle. In all cases, the fields are designed in such a way
that the particles comprising the beam perform oscillations in the radial and ax-
ial directions about a closed orbit or equilibrium orbit. These oscillations are known
as betatron oscillations since they were first investigated theoretically by Kerst and
Serber [1] in connection with the betatron.

In Section 3.6 we restrict our analysis to an axially symmetric field. First, we
define the equilibrium orbit of a particle of momentum P = γmv as the circle with
radius R0 centered on the axis. This orbit is in the median plane (z = 0), which is
the plane where the radial component of B is zero (see Figure 3.17). The radius R0

is found by equating the outward centrifugal force and the inward Lorentz force,
which yields the well-known result

R0 = γmv

qB0
= βγmc

qB0
, (3.188)

where B0 = Bz(R0, 0).
A particle of the same momentum, which is displaced from this equilibrium

orbit by a small amount x = r − R0, experiences a radial force which will either
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Fig. 3.17 (a) Axisymmetric magnetic field configuration and
focusing forces between pole shoes of a cyclotron-type magnet;
(b) radial forces acting on particles neart equilibrium radius R.

drive it back toward R0 (focusing) or farther away from R0 (defocusing). Likewise,
a particle that is displaced from the equilibrium orbit in the axial direction (z �= 0)

will experience a focusing or defocusing force. To determine whether focusing can
be obtained simultaneously in both the radial and axial directions, we make a first-
order analysis, as in the case of the paraxial ray equation (i.e., we assume that the
displacements and slopes of the nonequilibrium trajectories are small).

Let B = {Br(r, z), 0, Bz(r, z)}, γm = const, and consider first the radial motion
of a particle with velocity v = {ṙ , rθ̇ , 0} moving in the median plane (z = 0). The
radial force equation in this case is with Br(r, 0) = 0, Bz = Bz(r, 0):

γmr̈ − γmrθ̇2 = qrθ̇Bz. (3.189)

If Bz is positive, a particle with positive charge will move in the negative θ -
direction, and in the linear approximation we have rθ̇ = vθ ≈ −v. Thus
we can write

γmr̈ − γmv2

r
= −qvBz. (3.190)

Let

r = R0

(
1 + x

R0

)
, x � R0, (3.191)

and

Bz(r) = Bz(R0) + ∂Bz

∂r
x,
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or

Bz = B0

(
1 − n

x

R0

)
, (3.192)

where

n = −R0

B0

∂Bz

∂r
(3.193)

is the field index and ∂Bz/∂r is evaluated at the equilibrium radius (r = R0). We
then obtain by substitution in (3.190) the first-order equation

γmẍ − γmv2

R0

(
1 − x

R0

)
+ qvB0

(
1 − n

x

R0

)
= 0.

From the equilibrium-orbit condition (x = 0, ẍ = 0), we have γmv2/R0 = qvB0,
and the two corresponding terms in the last equation cancel. Thus one gets

ẍ + v2

R2
0

(1 − n)x = 0. (3.194a)

But v/R0 = ωc is the cyclotron frequency at the equilibrium radius R0; hence,

ẍ + ω2
c (1 − n)x = 0, (3.194b)

or

ẍ + ω2
r x = 0, (3.194c)

where

ω2
r = ω2

c (1 − n). (3.195)

Let s = Rθ = Rθ̇t = vt denote the distance along the equilibrium orbit. Then, with
x′′ = d2x/ds2 = (1/R2

0ω2
c )ẍ, we may write Equation (3.194) in the alternative form

x′′ + k2
r x = 0. (3.196)

ωr = ωc(1 − n)1/2 is the radial betatron frequency, kr = 2π/λr = νr/R0 is the
betatron wave number, λr the betatron wavelength, and

νr = ωr

ωc

= (1 − n)1/2 (3.197)

is the number of radial betatron oscillation periods per revolution, also known as
the betatron tune.

As we see from Equation (3.195), the orbits are unstable (exponential growth of
x) when ω2

r < 0 or n > 1, and they are stable (periodic solution for x) when ω2
r > 0

or n < 1. In the latter case, we have (for x = 0 at t = 0)

x = xm sin ωr t = xm sin [(1 − n)1/2ωct].
or

x = xm sin krs. (3.198)
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Next, we examine the motion of a particle displaced from the equilibrium orbit
in axial direction. The equation of motion is

γmz̈ = −qrθ̇Br = qvBr . (3.199)

In this case, v = {0, rθ̇ , ż}, ż � |rθ̇ |, and again rθ̇ ≈ −v. Now Br = (∂Br/∂z)z+
higher-order terms. But ∂Br/∂z = ∂Bz/∂r from ∇ × B = 0. Hence

z̈ = qv

γm

∂Bz

∂r
z = qB0

γm

v

R0

R0

B0

∂Bz

∂r
z = −ω2

cnz,

that is,

z̈ + ω2
cnz = 0, (3.200a)

or

z̈ + ω2
zz = 0, (3.200b)

where

ω2
z = nω2

c . (3.201)

This may also be written in the form

z′′ + k2
z z = 0, (3.202)

with kz = 2π/λz = νz/R0 and

νz = n1/2. (3.203)

Thus, to get focusing in the axial direction (periodic solution in z), we must have
n > 0. Orbit stability in both the radial and axial directions imposes the require-
ment

0 < n < 1. (3.204)

In view of the definition (3.193) for the field index n, the stability condition im-
plies that Bz(r) must be a decreasing function of radius r [i.e., (∂Bz/∂r) < 0];
however, the gradient may not be greater than is allowed by the n = 1 limit or else
there is no radial focusing. In the special case n = 0.5, the focusing strength is the
same in both directions (i.e., νr = νz).

Figure 3.18 shows the νr and νz curves versus field index n for the respective
ranges where the oscillation frequencies are real (focusing). Only in the region
0 < n < 1, where the two curves overlap, does one get orbit stability simultaneously
in both directions.

The differential equations (3.194) and (3.200) for the radial and axial motion of
the particles about the equilibrium orbit are also known as the Kerst–Serber equa-
tions.

Note that the condition (3.204) also implies that 0 < νr < 1 and 0 < νz < 1. This
means that it takes more than one revolution to complete a radial or axial betatron
oscillation. The amplitude of a betatron oscillation is inversely proportional to the
betatron tune (νr or νz, respectively). This follows from (3.198), which yields

x′ = xmkr cos krs; (3.205)
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Fig. 3.18 Betatron tunes versus field index n.

hence, with x′ = x′
0 at s = 0, kr = νr/R0:

xm = x′
0R0

νr

. (3.206)

Since x′
0 = ṙ0/v = sin α ≈ α, we can also relate xm to the orbit radius R0 and the

angle α between particle trajectory and equilibrium orbit at x = 0:

xm = R0α

νr

. (3.207)

One betatron oscillation period is νr�θ = 2π , and the corresponding change in
azimuth angle is thus

�θ = 2π

νr

. (3.208)

The number of turns it takes for a particle to complete a betatron oscillation cycle
[i.e., to return to its oscillation phase (or x, x′ values) at a given azimuth angle] is
then simply

N = �θ

2π
= 1

νr

. (3.209)

As an example, suppose that n = 0.36. In this case, νr = (1 − n)1/2 = 0.8, and it
takes N = 1/0.8 = 1.25 revolutions to complete an oscillation period.

3.6.2
The Trace-Space Ellipse and Beam Envelope in a Betatron-Type Field

In x–x′ trace space, a particle moves on an ellipse which from (3.198) and (3.205)
is given by

x2 + x′2

k2
r

= x2
m,

or

x2

x2
m

+ x′2

k2
r x

2
m

= 1. (3.210)

This is an upright ellipse with major axes xm and krxm in the x and x′ directions,
respectively, as shown in Figure 3.19. A particle starting on the equilibrium orbit
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Fig. 3.19 Ellipse representing particle motion in x–x′ space (νr < 1).

(x = 0) with x′ = x′
m = krxm (point 1 in Figure 3.19) moves clockwise as s

increases. If νr < 1, it will be at point 2 after one revolution (s = 2π), at point
3 after two revolutions, and so on.

If we consider a group of particles with different initial conditions x0, x′
0 at s = 0,

they will each move on similar upright ellipses with constant ratio of the major
axes, x′

m/xm = kr as determined by the equations

x = x0 cos krs + x′
0

kr

sin krs, (3.211a)

x′ = −x0kr sin krs + x′
0 cos krs, (3.211b)

or, since s = R0θ , kr = νr/R0,

x = xm cos νr (θ − θm), (3.212a)

x′ = −krxm sin νr(θ − θm). (3.212b)

It follows that

x2 + x′2

k2
r

= x2
0 + x′2

0

k2
r

= x2
m (3.213)

and

tan νrθm = −R0x
′
0

νrx0
. (3.214)

Suppose that all particles comprising a beam make a distribution of initial con-
ditions x0, x′

0 which fills an elliptic area in x–x′ trace-space defined by the equation

a1x
2
1 + 2b1x1x

′
1 + c1x

′2
1 = 1 (3.215)

and pictured in Figure 3.20. As each particle moves on an ellipse defined by its ini-
tial conditions according to Equation (3.213), the trace-space ellipse will rotate. Let
us calculate the shape and orientation of this ellipse and the envelope point xmax as
a function of azimuth angle θ . As we know from Section 3.3.3, all particles whose
initial conditions correspond to points on the circumference of our trace-space el-
lipse (3.215) will remain on the circumference as the ellipse is changing. If x1, x′

1
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Fig. 3.20 Ellipse representing beam trace-space area at θ = 0.

denote the initial conditions of any such particle at θ = 0, we obtain the coordi-
nates x, x′ at any other azimuth angle from the transfer matrix corresponding to
Equation (3.211):

(
x

x′

)
=

(
cos νrθ

R0
νr

sin νrθ

− νr

R0
sin νrθ cos νrθ

)(
x1

x′
1

)
=

(
α11 α12

α21 α22

)
=

(
x1

x′
1

)
. (3.216)

Since det M̃ = 1, we obtain(
x1

x′
1

)
=

(
cos νrθ −R0

νr
sin νrθ

νr

R0
sin νrθ cos νrθ

)(
x

x′

)
=

(
α22 −α12

−α21 α11

)(
x

x′

)
. (3.217)

Substituting this result in Equation (3.215) yields the equation of an ellipse of the
form

ax2 + 2bxx′ + cx′2 = 1. (3.218)

The coefficients a, b, c depend on the initial coefficients (a1, b1, c1), the betatron
tune νr , and the azimuth angle θ . The calculation yields the result

a = a1α
2
22 − 2b1α22α21 + c1α

2
21, (3.219a)

b = −a1α22α12 + b1(α12α22 + α11α22) − c1α21α11, (3.219b)

c = a1α
2
12 − 2b1α12α11 + c1α

2
11. (3.219c)

We are particularly interested in the envelope of the beam which is defined by
xm = εx

√
c [Equation (3.160a)], where εx is the emittance, which remains constant

according to Liouville’s theorem.
Using the relation (3.219c), one obtains for the envelope

xm = εx

[
a1α

2
12 − 2b1α12α11 + c1α

2
11

]1/2
,

or

xm = εx

[
a1R

2
0

ν2
r

sin2 νrθ − 2b1
R0

νr

sin νrθ cos νrθ + c1 cos2 νrθ

]1/2

. (3.220)

Consider the special case where the initial ellipse is upright (i.e., b1 = 0). Equation
(3.220) then may be written in the form

xm = xm1
[
1 + h sin2 νrθ

]1/2 = xm1
[
1 + h sin2 krs

]1/2
, (3.221)
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Fig. 3.21 Beam envelope as function of θ if ripple is small.

where xm1 is the beam envelope at θ = 0 and

h = a1R
2
0

c1ν2
r

− 1. (3.222)

If h � 1, we can expand the expression on the right-hand side of Equation (3.221)
and obtain the first-order relation

xm = xm1

[
1 + h

4
(1 − cos 2νrθ)

]
. (3.223)

The beam envelope thus varies as a function of θ as shown qualitatively in Fig-
ure 3.21 and with a frequency that is twice the betatron frequency. The ripple, rep-
resented by the parameter h, is seen to depend on the ratio a1/c1 of the initial
(upright) ellipse and on ν2

r . Note that 1/
√

a1 and 1/
√

c1 are the major axes of the
ellipse in the x and x′ directions, respectively; that is, 1/

√
a1 = xm1 is the max-

imum displacement (envelope point), 1/
√

c1 = x′
m1 the maximum slope in the

particle distribution comprising the beam at the initial position (θ = 0).
If the initial (upright) ellipse is chosen such that h = 0, hence

a1 = c1ν
2
r

R2
0

,

or

x′
m1 = νr

R0
xm1, (3.224)

then the beam envelope xm remains a constant (no variation with angle θ ), that is,

xm = xm1 = const. (3.225)

In this special case the beam is said to be matched. The beam ellipse then is iden-
tical with the ellipse on which the particle with the maximum amplitude moves in
the x–x′ diagram (see Figure 3.19). Consequently, there is no rotation of the beam
ellipse and xm remains constant.

Let us now derive the differential equation that determines the beam envelope
xm as a function of angle θ or time t . By differentiation of Equation (3.221) with
respect to s we get

dxm

ds
= xm1hkr

sin krs cos krs

[1 + h sin2 krs]1/2
. (3.226)
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Differentiating again, one obtains from (3.226) after some algebra the envelope
equation

d2xm

ds2
− ε2

x

x3
m

+ k2
r xm = 0, (3.227)

or, in terms of time t , with θ = ωct , ω2
r = ω2

cν
2
r :

d2xm

dt2
− ε2

x

ω2
cR

2
0

x3
m

+ ω2
r xm = 0. (3.228)

Using X = xm, X′ = dX/ds for the envelope, one obtains from Equation (3.227)
the alternative form

X′′ + k2
r X − ε2

x

X3
= 0. (3.229)

An analogous equation may be obtained for the beam envelope in the z-direction.
Thus, with Z = zm, one gets

Z′′ + k2
zZ − ε2

z

Z3
= 0, (3.230)

where kz = 2π/λz = νz/R0, and εz represents the beam emittance in the z-
direction. λz is the axial betatron wavelength.

The above differential equations for the beam envelope were derived from an
initial upright ellipse, but they are also valid for a tilted initial ellipse. The only
difference is that with a tilted ellipse, the initial slope (X′

1 or Z′
1) enters in the

solutions of the envelope equations.
In the absence of a focusing force the second term in the envelope equation

vanishes. Thus, for instance, when k2
z = 0 the axial envelope equation reduces

to the form

Z′′ − ε2
z

Z3
= 0, (3.231)

which is the equation of the beam envelope in free space derived earlier for an
axisymmetric beam [Equation (3.161)]. Free-space envelope equations like (3.231)
apply to sections of a circular beam path with no focusing forces in one or both
transverse directions. Examples are bending magnets with uniform field where
ν2
z = 0 and beam propagation along a straight path between magnets where both

ν2
r = 0 and ν2

z = 0.
Note that the above envelope equations can be obtained from the Kerst–Serber

equations simply by substituting X and Z for x and z and adding the emittance
terms (negative sign!), which are proportional to 1/X3 or 1/Z3, respectively. While
a single particle in its motion can have values x = 0, z = 0, the envelope of the
beam can never approach the beam axis due to the repulsive emittance term.

3.6.3
Focusing in Axisymmetric E × B Fields

The linear theory of focusing of circular beams in axisymmetric magnetic fields
can be generalized to include applied electric fields as well as the effects of the
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beam’s magnetic and electric self field [2]. Let us assume a combination of electric
and magnetic fields with axial symmetry and a median plane as defined by the field
vectors B = {Br(r, z), 0, Bz(r, z)}, E = {Er(r, z), 0, Ez(r, z)}. The fields may be
produced by charges and currents in conductors outside the beam as well as by
the fields arising from the charges and the currents of the particles that constitute
the beam. Although self-field effects will be treated in subsequent chapters, we will
include them in this generalized theory for later reference. The only difference in
the analysis as compared to the previous situation is that we can no longer use the
condition ∇ · E = 0, ∇ × B = 0. Rather, we have to consider two contributions to
the fields acting on an individual particle, namely, the applied fields (Ea , Ba) and
the self fields (Es , Bs ); that is, we write

E = Ea + Es , B = Ba + Bs .

For the steady state (∂/∂t = 0) being considered here, we have from Maxwell’s
equation

∇ × E = 0, ∇ · Ea = 0, ∇ · Es = ρ

ε0
, (3.232)

∇ · B = 0, ∇ × Ba = 0, ∇ × Bs = µ0J = µ0ρv. (3.233)

The radial force equation in this case takes the form

d

dt
(γmṙ) − γmrθ̇2 = qEr + qrθ̇Bz. (3.234)

The equilibrium orbit is defined by the condition d/dt = 0, r = R0, θ̇ = θ̇0 = ω0 =
−v0/R0, Er = E0, Bz = B0; that is,

γm
v2

0

R0
= q(v0B0 − E0), (3.235)

from which follows for the equilibrium radius

R0 = γmv0

qB0

1

1 − E0/v0B0
. (3.236)

Introducing the cyclotron frequency ωc = −qB0/γm and the frequency ωe asso-
ciated with the electric field and defined by

ω2
e = qE0

γmR0
, (3.237)

we can write Equation (3.235) in the form

ω2
0 − ωcω0 + ω2

e = 0. (3.238)

Solving this equation for the angular frequency of rotation ω0, one obtains

ω0 = 1

2

[
ωc ± (

ω2
c − 4ω2

e

)1/2
]
. (3.239)

When the electric field is zero (ω2
e = 0), we recover ω0 = ωc = cyclotron frequency.

In the case of zero magnetic field (ωc = 0), we need ω2
e < 0 [i.e., Er < 0 (inward

radial electric field) for a rotating positively charged particle and get ω0 = ωe]. In
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the general case, we see from the above equations that the presence of an electric
field changes both the equilibrium radius and the orbital frequency from the well-
known cyclotron values Rc and ωc.

The analysis for the motion of particles that are displaced from the equilibrium
orbit in either the radial or axial direction follows the derivation given in Section
3.6.1. However, due to the presence of the electric field, the azimuthal velocity is
no longer a constant but may change to first order.

In the relativistic case, the change in energy experienced by the particle, which
is a radial distance x = r − R0 off the equilibrium orbit, may be expressed in the
form

dγ

γ
= qE0R0

γmc2

x

R0
. (3.240)

The radian frequency is then found to be

θ̇ = ω0

[
1 −

(
1 − qE0R0

mc2γ 3β2

)
x

R0

]
, (3.241)

where γ and β are the values at the equilibrium radius (x = 0).
Substituting (3.240) and (3.241) in the radial force equation, (3.234), and expand-

ing all terms to first order leads to an equation of the form (3.196), where ν2
r can

be expressed in terms of the fields, E0, B0, field gradients, ∂Bz/∂r , ∂Er/∂r , and
velocity, v0 = βc, at the equilibrium radius R0 as follows:

ν2
r = 1 + E2

0(1 − β2)

(βcB0 − E0)2
+ R0βc(∂Bz/∂r) − [E0 + R0(∂Er/∂r)]

βcB0 − E0
. (3.242)

If neither E0 nor B0 is zero, we can introduce the electric and magnetic field index

ke = R0

E0

∂Er

∂r
, km = R0

B0

∂Bz

∂r
= −n. (3.243)

Furthermore, we define

β0 = E0

cB0
. (3.244)

Then the expression for ν2
r may be written in the form

ν2
r = 1 + β2

0 (1 − β2)

(β − β0)2
+ βkm − β0(1 + ke)

β − β0
. (3.245)

The following limits are of interest:
1. MAGNETIC-FIELD CASE: E0 = 0, ke = 0

ν2
r = 1 + km = 1 − n. (3.246)

This is identical with solution (3.197) derived previously.
2. ELECTRIC-FIELD CASE: B0 = 0, km = 0

ν2
r = 3 − β2 + ke. (3.247)
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In the nonrelativistic limit, β2 can be neglected, and if the
electric field is produced between coaxial cylinders by an
external voltage source, the field index ke = −1. Hence
ν2
r = 2, in agreement with Equation (2.149).

In similar fashion, the axial motion of a particle can be analyzed. From the force
equation in the z-direction,

d

dt
(γmż) = qEz − qrθ̇Br , (3.248)

one obtains by linearization an equation of the form (3.202), where ν2
z is found to

be

ν2
z = R0[βc(∂Br/∂z) + ∂Ez/∂z]

βcB0 − E0
. (3.249)

∂Br/∂z and ∂Ez/∂z are the axial gradients of the fields at the equilibrium radius.
For the special case where the self fields of the beam can be neglected (or for that

part of ν2
z that is due to the applied fields only), we can use ∇ · E = 0, ∇ × B = 0

from which follows
∂Ez

∂z
= −

(
E0

R0
+ ∂Er

∂r

)
. (3.250)

Under these conditions, Equation (3.249) takes the form

ν2
z = E0 + R0(∂Er/∂r) − R0βc(∂Bz/∂r)

βcB0 − E0
. (3.251)

With the definitions (3.243) and (3.244), this may also be written as

ν2
z = (1 + ke)β0 − kmβ

β − β0
. (3.252)

Note that for negatively charged particles (q = −e), we have to change the signs
of all terms associated with the electric field and gradients. Thus, the equilibrium
condition (3.235) is γmv2

0/R0 = e(v0B0 + E0). Furthermore, θ̇0 = v0/R0, ωc =
eB0/γm. Equation (3.249), for instance, has to be written as

ν2
z = −R0[βc(∂Br/∂z) − ∂Ez/∂z]

βcB0 + E0
. (3.253)

3.6.4
Energy Spread, Momentum Compaction, and Effective Mass

So far, we have considered only monoenergetic beams, where all particles have the
same total momentum or kinetic energy. This even includes the E × B field case
discussed in the preceding section, where particles do gain or lose energy when
they depart from the equilibrium orbit. However, the assumption was that they all
have the same kinetic energy at the equilibrium orbit (r = R), and in that sense, we
can still speak of a monoenergetic beam in the E×B case. What happens if there is a
true momentum spread �P in the beam (i.e., if the particles at the radius R as well
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as at any other position have a difference in kinetic energy)? The most important
effect is that particles with different momentum have different equilibrium radii
about which they oscillate. Consider first the case of particles in a magnetic field
(i.e., E = 0). If R is the equilibrium radius of a particle with momentum P , defined
by

R = P

qB
, (3.254)

a particle with momentum P +dP will have a different equilibrium radius R+dR.
For small fractional changes, one has to first order

dR

R
= dP

P
− dB

B
. (3.255)

The momentum compaction factor α, defined by

α = dR/R

dP/P
, (3.256)

is a measure for the change in equilibrium radius due to a change in momentum.
From (3.255) we obtain

dR

R

(
1 + R

B

dB

dR

)
= dR

R
(1 − n) = dP

P
. (3.257)

Thus,

α = 1

1 − n
= 1

ν2
r

. (3.258)

This expression holds for axisymmetric magnetic fields. When radial electric fields
are present, B has to be replaced by the total guide field Bg , which from Equation
(3.236) is defined as

Bg = Bz − Er

vθ

= B0 − E0

v0
. (3.259)

In this case the momentum compaction factor α is given by

α = 1

1 − ng

. (3.260)

where ng is the effective gradient that includes the self fields.
Due to the change in radius R, there is also a change in the angular frequency ω

and the revolution time τ = 2πR/βc of the particles. This relative change is readily
found to be

dτ

τ
= −dω

ω
=

(
α − 1

γ 2

)
dP

P
= η

dP

P
, (3.261a)

and it may be related to an equivalent velocity difference of

dv

v
= −dτ

τ
= −η

dP

P
, (3.261b)
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where the factor η is defined by

η = α − 1

γ 2
= 1

ν2
r

− 1

γ 2
. (3.262a)

In conventional weak-focusing machines (e.g., betatron, cyclotron) the radial be-
tatron tune is less than unity (νr < 1); hence η is always positive (η > 0). How-
ever, in modern strong-focusing machines, the betatron tune is greater than unity
(νr > 1). Thus there will be a critical energy γtmc2, known as the transition energy,
where η = 0. Replacing νr in Equation (3.262a) by γt , we can write the relation for
η in the alternative form

η = 1

γ 2
t

− 1

γ 2
. (3.262b)

For γ > γt , η > 0, as in the weak-focusing case, while for γ < γt , η < 0. The
different operating regimes will be discussed further in connection with Equations
(3.266) and (3.267).

Relation (3.261) gives the fractional change in the revolution time or frequency
of a particle with momentum P + dP as compared to a particle with momentum
P = γmβc, which is why η is also known as the frequency slip factor. If the path is
straight rather than circular (i.e., if α = 0 or η = −1/γ 2), then

dτ

τ
= − 1

γ 2

dP

P
(3.263)

measures the difference in travel time of the two particles for a given distance.
The minus sign indicates that, as expected, the travel time decreases when the
momentum increases. By multiplying with the momentum P = γmv, we can
rewrite Equation (3.261b) in the form

dP = −γm

η
dv = m∗dv. (3.264)

Here m∗ is an effective mass, defined by

m∗ = dP

dv
= −γm

η
, (3.265)

which determines the relationship between the momentum difference and the velocity
difference of the two neighboring particles in circular orbits.

In the case of a straight path (α = 0), the effective mass is seen to be

m∗ = ml = γ 3m, (3.266)

which is known as the longitudinal mass, ml , and is a positive quantity. This relation
is identical with (2.9b) that was obtained directly from the equation of motion. For
the transverse motion the effective mass is mt = γm. If we apply the definition
(3.265) to the relation (3.261) for particle motion in a circular orbit (α �= 0), we find
that

m∗ = −γm

η
= − γ 3m

αγ 2 − 1
. (3.267)
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From this expression, we conclude the following: When η < 0, the effective
mass is positive, as in the case of straight motion. However, when η > 0 (i.e.,
γ > γt in strong-focusing machines), m∗ is negative; and at the transition energy,
where γ = γt , or η = 0, m∗ goes to infinity. Negative mass means that the particle’s
revolution time increases when its momentum or kinetic energy is increased in
contrast to the straight motion. At the transition point, the revolution time remains
unaffected by a change in momentum. The sector-focusing cyclotron discussed
in Section 3.8.4 operates in this way and is therefore also known as an isochronous
cyclotron. The revolution time in this case is constant at all radii or energies (i.e., the
particle’s effective mass is infinite). In view of (3.258) and the condition 0 < n < 1
for focusing in the axial and radial directions, we see that α > 1, and hence αγ 2 > 1
in this case. Thus, all devices with axisymmetric magnetic fields (νr < 1) and all
circular accelerators above the transition energy (γ > γt ) are in the negative-mass
region. This peculiarity of particle motion in a magnetic field is responsible for the
so-called negative-mass instability, which poses a fundamental limit to the particle
intensity in circular accelerators and is treated in Section 6.3.3.

Let us now examine how we can incorporate the changes due to energy spread
into our first-order theory of betatron oscillations. We already pointed out that parti-
cles with different momentum oscillate about different equilibrium orbits. In gen-
eral, we may suspect that the oscillation frequencies, ωr and ωz, are also functions
of the momentum since the field index n = −(R/B)(dB/dR) may vary with ra-
dius R. This is in fact the case, and one defines this effect by the chromaticity para-
meters

ξr = dνr/νr

dP/P
, ξz = dνz/νz

dP/P
. (3.268)

Using (3.258), we may write these definitions in the alternative form

ξr = Rα

2ν2
r

d(ν2
r )

dR
, ξz = Rα

2ν2
z

d(ν2
z )

dR
. (3.269)

It is easy to show that for a scaling field where B/B0 = (R/R0)
−n, the chromaticity

parameters are zero. In a field where dB/dR is constant, n varies with radius and
one obtains

dn

dR
= − 1

B

dB

dR
+ R

B2

(
dB

dR

)2

= n(1 + n)

R
. (3.270)

In this particular case, with ν2
r = 1 − n, ν2

z = n, one finds that

ξr = − n(1 + n)

2(1 − n)2
, ξz = 1 + n

2(1 − n)
. (3.271)

The variation of the equilibrium radius R with momentum P is a first-order
effect, while the changes in ν2

r and ν2
z are of second order. We therefore neglect

the latter in our first-order theory of betatron oscillations. The difference in mo-
mentum is incorporated in the theory in the following way: Let R0 denote the
equilibrium radius for particles with the average momentum P0; that is, a parti-
cle with this momentum will perform betatron oscillations about R0 in accordance
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with Equation (3.211) for the radial motion (and, likewise, for the axial motion). A
particle with momentum P0 + �P will perform similar oscillations about a dis-
placed equilibrium radius R0 + �R. When the momentum spread is included,
the equation of motion (3.190) must be modified by expanding the velocity as
v = v0(1 + �v/v0) = v0(1 + �P/P0 − �γ/γ0). One then obtains, in lieu of
(3.196),

x′′ + k2
r x = 1

R0

�P

P0
. (3.272)

The general solution consists of the linear superposition of the betatron oscillation
amplitude xb, which satisfies the homogeneous part of Equation (3.272), and the
equilibrium orbit displacement xe due to the momentum difference �P/P0, which
is a special solution of the inhomogeneous equation; that is, we have

x(s) = xb(s) + xe(s). (3.273)

The betatron oscillation obtained for �P = 0 (homogeneous solution) may be
written in the form

xb(s) = xb(0) cos krs + x′
b(0)

kr

sin krs, (3.274a)

x′
b(s) = −xb(0)kr sin krs + x′

b(0) cos krs, (3.274b)

where

kr = 2π

λr

= νr

R0
=

√
1 − n

R0
. (3.274c)

The special solution of the inhomogeneous equation (�P �= 0) is

xe(s) = �P

P0

1

R0k2
r

(1 − cos krs), (3.275a)

x′
e(s) = �P

P0

1

R0kr

sin krs. (3.275b)

The general solution of Equation (3.272) for an off-momentum particle (�P �= 0)

can be conveniently expressed with the aid of a 3 × 3 matrix as
( x(s)

x′(s)
�P
P0

)
=

(α11 α12 α13

α21 α22 α23

0 0 1

)( x0

x′
0

�P
P0

)
, (3.276a)

where the matrix is given by

M̃r =
( cos krs k−1

r sin krs (R0k
2
r )

−1(1 − cos krs)

−kr sin krs cos krs (R0kr)
−1 sin krs

0 0 1

)
. (3.276b)

The last row in the matrix indicates that in the static magnetic field considered
here, the momentum of the particles does not change. Note that the above expres-
sion is valid if x � R0 and �P � P0. The fact that the radial motion of a particle
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depends on �P/P0 is known as dispersion. By contrast, the axial motion is nondis-
persive to first order. With the definition

kz = 2π

λz

= νz

R0
=

√
n

R0
, (3.277a)

we can write the axial matrix either as a 3 × 3 of the form

M̃z =
(α11 α12 0

α21 α22 0
0 0 1

)
, (3.277b)

or simply as 2 × 2 matrix
(

z

z′

)
=

(
cos kzs k−1

z sin kzs

−kz sin kzs cos kzs

)(
z0

z′
0

)
. (3.277c)

Momentum spread increases the effective radial width of a beam in a circular
system. In practice, beams without space charge are found to have a Gaussian
distribution in their betatron and momentum-spread amplitudes. If x̃b = (x2

b )1/2

denotes the rms value of the distribution in the betatron amplitudes and x̃e =
(x2

e )1/2 the rms value of the amplitude variation due to the momentum spread, the
total rms half-width of the beam is given by

x̃ = (
x̃2
b + x̃2

e

)1/2
.

We discuss dispersion further in Section 5.4.10.

3.7
Sector Magnets and Edge Focusing

Many magnets used in practice for deflecting a beam (bending magnets), as mo-
mentum analyzers (to separate ions or electrons of different momenta), or mass
spectrometers (to separate charged particles of different mass) are sector shaped,
as illustrated in Figure 3.22. Outside the magnetic field the particles move on a
straight trajectory, inside the field on a circular path. In first approximation, one
can neglect the fringe-field region and employ the formalism developed in Chapter
2 for particle motion in axisymmetric fields. Thus, one defines a central ray which
inside the magnetic field is a circle of radius R0. Particle motion with regard to this
central ray is then described by a drift-space matrix in free space:

( x

x′
�P
P

)
=

( 1 s 0
0 1 0
0 0 1

)( x0

x′
0

�P
P

)
(3.278)

Inside of the magnet, the matrix (3.276) can be applied for the radial (or horizontal
motion). For the vertical motion, a 2 × 2 drift-space matrix and the matrix (3.277)
suffice. The trace-space coordinates of a particle at any point along the central tra-
jectory are then obtained by matrix multiplication.
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Fig. 3.22 Two examples of sector magnets.

Fig. 3.23 Magnet with slanted edge and components of
magnetic fringe field Bh. A particle with positive charge enters
from the right side and leaves on the left side. The direction of
the axial magnetic field lines is into the plane of the figure.

The above procedure is applicable as long as the particles enter the edge of the
magnetic sector field at right angles. If the angle differs from 90◦, the particle will
experience a Lorentz force which will either be focusing or defocusing. This effect
is known as edge focusing. To explain it, consider Figure 3.23, which shows a magnet
with slanted edge so that a particle enters and leaves the field region at an angle
α with respect to the normal. The magnetic field in the fringe region then has a
component Bh normal to the edge for any point at a distance z outside the median
plane. In the median plane, Bh will be zero by reason of symmetry. Now Bh can
be decomposed into a component B‖ = Bh cos α in the direction of the particle
trajectory and a component B⊥ = Bh sin α perpendicular to it. Only the latter exerts
a force on the particle. Consider first the axial motion perpendicular to the plane of
the figure when the particle passes through the fringe region as it leaves the sector
magnet. The axial component of the Lorentz force is qvB⊥, and one obtains the
equation

γmz̈ + qvBh sin α = 0. (3.279)

Introducing the path length s along the trajectory, we get

v = ds

dt
,

d2z

dt2
≈ v

dvz

ds
, (3.280)

and thus,

dvz

ds
= − q

γm
Bh sin α. (3.281)
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Now integrate between point s1, which is sufficiently far from the edge so that the
magnetic field is zero, and point s2, which is inside the magnet where there is only
an axial component B0 of the magnetic field:∫ s2

s1

dvz = − q

γm
sin α

∫ s2

s1

Bh ds = − q

γm
tan α

∫ s2

s1

Bh cos α ds. (3.282)

Assume that in the transition through the fringe region the axial displacement z

of the particle from the median plane remains approximately constant (thin-lens
approximation). Apply Stokes’s theorem,∫

∇ × B · dS =
∮

B · dl = 0,

for a rectangular closed path from point P1 (s1, 0) to P2 (s2, 0) in the median plane,
up to point P3 (s2, z), then parallel to the median plane to point P4 (s1, z) and down
to P1 (s1, 0). The nonzero contributions to the line integral are∫ P3

P4

Bh cos α ds and
∫ P2

P3

Bz dz = +B0z.

Consequently,∫ P3

P4

Bh cos α ds = −B0z, (3.283)

and Equation (3.282) becomes

vz2 − vz1 = − q

γm
B0z tan α. (3.284)

This may be written, with vz = dz/dt = v(dz/ds) = vz′, as

z′
2 − z′

1 = − qB0

γmv
z tan α. (3.285)

Introducing the orbit radius R0 = γmv/qB0 of the particles inside the magnetic
field, we can write

z′
2 − z′

1 = − z

R0
tan α. (3.286)

By definition, the focal length fz is obtained (with z′
1 = 0) from 1/fz = −z′

2/z,
which yields

fz = R0

tan α
. (3.287)

This shows that there is focusing in the axial motion of the particle when α > 0
and defocusing when α < 0. The magnet edge can thus be considered as a thin
magnetic lens that may be described by the transfer matrix(

z2

z′
2

)
=

(
1 0

− tan α
R0

1

)(
z1

z′
1

)
(3.288)

A similar analysis can be made for the particle motion in the median (radial) plane.
One finds in this case for the focal length in the radial direction (see [D.1, Sec. 4.3])

fr = − R0

tan α
. (3.289)
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Hence for the radial motion the edge is defocusing for α > 0 and focusing for
α < 0, and the radial thin-lens matrix for the edge region may be written in 3 × 3
form as( x2

x′
2

�P
P0

)
=

( 1 0 0
tan α
R0

1 0
0 0 0

)( x1

x′
1

�P
P0

)
. (3.290)

The same results apply for the other side where the beam passes through the edge
region on entering the magnet. In general, the edge angles at the entrance and exit
side may differ (i.e., α2 �= α1). The first-order properties of a sector magnet with
such thin-lens (or hard) edges and two different angles α1 and α2 can thus be ob-
tained by multiplication of three matrices, M̃2M̃sM̃1, where M̃1 and M̃2 represent
the two edge-focusing lenses and M̃s the magnet sector.

3.8
Periodic Focusing

3.8.1
Periodic Focusing with Thin Lenses

A periodic-focusing system for charged particle beams consists of an array, or lat-
tice, of periodically spaced lenses and other beam manipulation devices. Impor-
tant applications of periodic focusing are microwave devices such as traveling-
wave tubes, high-current beam transport over large distances, linear accelerators,
sector-focusing cyclotrons, synchrotrons and storage rings, racetrack microtrons,
and other devices for recirculating electron beams. One of the simplest cases of
periodic focusing is a beam transport system with a periodic configuration of iden-
tical short solenoids. Circular accelerators constitute more complicated periodic
systems in which the particles are bent around and traverse the same lattice of fo-
cusing lenses and deflecting magnets many times. In such systems one has prac-
tically two fundamental periods. One is the length S of a unit cell, and the other is
the circumference C of the ring. If the ring lattice contains an integral number of
N unit cells, then C = NS. In a perfect system, the forces acting on the particles
have a repetition period of length S. However, if there are errors and misalign-
ments in the system of lenses and bending magnets, the particles experience the
resulting perturbation forces once in every revolution (i.e., with a repetition period
of length C). For this reason, a circular focusing lattice is sometimes called a doubly
periodic system.

As an introduction to the theory of periodic focusing, let us now consider the
simplest case of a periodic system, which is a straight array of thin lenses (e.g.,
short solenoids), depicted in Figure 3.24. The basic building block, or unit cell, of
such a periodic array consists of a lens and a drift space of length S. All lenses have
the same focal length f . The particle trajectories between lenses are straight lines.
Each lens changes the slope of the trajectory according to the relation �r ′ = −r/f .
The relation between the trajectory parameters at the input (n) and output (n+1) of
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each cell can be written in matrix form as the product of the lens and the drift-space
matrices, that is,

(
rn+1

r ′
n+1

)
=

(
1 0

− 1
f

1

)(
1 S

0 1

)(
rn

r ′
n

)
=

(
a b

c d

)(
rn

r ′
n

)
. (3.291)

In equation form this becomes

rn+1 = arn + br ′
n, (3.292a)

r ′
n+1 = crn + dr ′

n, (3.292b)

where

a = 1, (3.293a)

b = S, (3.293b)

c = − 1

f
, (3.293c)

d = 1 − S

f
. (3.293d)

From (3.292a) we get

r ′
n = 1

b
(rn+1 − arn) (3.294)

and thus

r ′
n+1 = 1

b
(rn+2 − arn+1). (3.295)

Using relation (3.292b) for r ′
n+1 and substituting for r ′

n from (3.294), we obtain the
difference equation

rn+2 − (a + d)rn+1 + (ad − bc)rn = 0, (3.296)

which determines the change of the particles’ radial position through the lens array.
From the relations given in Equation (3.293) we can show that ad − bc = 1, hence
we can rewrite (3.296) as

rn+2 − 2Arn+1 + rn = 0, (3.297)

where

A = 1

2
(a + d) = 1 − 1

2

S

f
(3.298)

represents the trace of the matrix in (3.291).
In Figure 3.24 a particle trajectory was traced through a periodic system of thin

lenses using a computer program. The ratio of the focal length f of the lenses to
the cell length S was chosen to be f/S = 2.618. In this case the particle makes
a full oscillation in approximately 10 lens periods. The result shown in this figure
suggests that we can approximate the particle trajectory through the lens array by
a sinusoidal oscillation. Indeed, this conclusion follows also from the difference
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Fig. 3.24 Particle trajectory and matched-beam envelope in a
periodic thin-lens array with focal length f = 2.618S, where S

is the cell length. The phase advance per cell is σ = 36◦ (i.e.,
the particle performs one oscillation in 10 lens periods).

equation (3.297), which is the equivalent of the harmonic-oscillator equation r ′′ +
k2r = 0. Thus we are led to try a solution of the form

rn = r0e
inσ , (3.299)

which, when substituted in (3.297), leads to

e2iσ − 2Aeiσ + 1 = 0. (3.300)

From this equation we obtain

e±iσ = cos σ ± i sin σ = A ± i
√

1 − A2, (3.301)

where, in view of (3.298),

cos σ = A = 1

2
(a + d) = 1 − 1

2

S

f
. (3.302)

The general solution of (3.297) can be expressed as a linear superposition of
exp(inσ ) and exp(−inσ ), or by the equivalent sinusoidal form

rn = rmax sin(nσ + θ), (3.303)

where rmax and θ are determined by the initial conditions, r0 and r ′
0, at the entrance

of the focusing system.
For the particle trajectory to be stable, the parameter σ must be a real number so

that | cos σ | � 1, or |A| � 1. From (3.302), the stability condition implies that

0 � S � 4f, or
f

S
� 1

4
. (3.304)
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Fig. 3.25 Particle trajectory and beam envelope in a periodic
thin-lens array with focal length f = 0.246S, slightly below the
stability threshold (f = 0.25S). The particle motion is unstable
in this case.

In accelerator theory the parameter σ is known as the phase advance, or phase
shift, of the particle oscillation in one cell length of the periodic lattice, and it is
usually given in degrees. If λ is the wavelength of the oscillation, we can write

σ = 360◦ S

λ
. (3.305)

In the example of Figure 3.24 we have a wavelength of λ = 10S, and the advance
per cell is therefore σ = 36◦. If the stability criterion (3.304) is not satisfied (i.e., if
f � S/4), we obtain for (3.297) solutions of the form

rn = C1e
δn + C2e

−δn, (3.306)

where

e±δ = A ±
√

A2 − 1, (3.307)

with the constants C1 and C2 being determined by the initial conditions. Since the
magnitude of both e+δ and e−δ exceeds unity, the trajectory radius will increase
exponentially. Such a case is illustrated in Figure 3.25, where we chose a value of
f/S = 0.246 which is slightly below the stability threshold of f/S = 0.25. As
can be seen, the maximum trajectory radius increases very rapidly. In an actual
experiment, the beam simply blows up within a few lens periods when such “over-
focusing” occurs.

Examination of the stability requirement (3.302) shows that the phase advance σ

has the stability range 0 < σ < 180◦. For σ = 0(f → ∞), there is no focusing. On
the other hand, when σ > 180◦, particles cross the axis within a lens period and
the trajectory becomes unstable, as illustrated in Figure 3.25.

So far we have treated the motion of a single particle through the periodic lens
system. If we now consider a beam with emittance ε, we know from Section 3.4.5
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that the envelope radius R(z) in the drift space between lenses has the hyperbolic
shape (3.162)

R(z) =
[
R2

0 + 2R0R
′
0z +

(
ε2

R2
0

+ R′2
0

)
z2

]1/2

,

where R0, R′
0 are the initial radius and slope at the beginning of the drift section.

The thin lenses merely change the slope of the envelope, as in the case of single
trajectories.

For a matched beam, the envelope must be periodic with period length S, as can
be seen in Figure 3.24. The waist Rw must occur at the center (S/2) of each cell.
Furthermore, the slope at the entrance and exit side of each lens must have the
same magnitude, |R′

0|, so that the slope R′
0 at the lens exit is given by

2R′
0 = −R0

f
. (3.308)

Using these symmetry properties of the beam envelope one finds for the maximum
radius

Rm = √
εS

[
4(f/S)2

4(f/S) − 1

]1/4

. (3.309)

and for the waist radius

Rw = Rm

(
1 − S

4f

)1/2

. (3.310)

Figure 3.24 shows the matched-beam envelope for the case f/S = 2.618 or σ0 =
36◦; the emittance ε was chosen to yield Rm = 0.1S. As can be seen, the envelope
ripple �R = Rm − Rw is relatively small in this example. On the other hand, in
the example of Figure 3.25, the instability of single-particle motion also results in a
rapid blowup of the beam envelope. It is not possible to obtain a matched, periodic
solution for R(z) in this instability case.

Equation (3.309) shows the scaling relationship between the maximum beam ra-
dius Rm, emittance ε, cell length S, and focal length f of the periodic thin-lens
array. We can use this relation to define an important quantity known as the ac-
ceptance of the focusing system. Suppose that the aperture radius, rmax = a, of the
lens channel is fixed. What is the maximum emittance, εmax, that a matched beam
can have for a given value of f/S to fit into the available aperture? This maximum
emittance is identical with the acceptance; that is, we can make the identification
εmax = α where α denotes the acceptance. A mathematical relation for the accep-
tance of a thin-lens array can be obtained by solving (3.309) for ε, substituting α for
ε, and setting Rm = a. The result is

α = a2

S

[
4(f/S) − 1

4(f/S)2

]1/2

. (3.311)

As can be seen from this relation, the acceptance of the focusing channel scales
linearly with the product of aperture radius a and the ratio of the aperture to the
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cell length, a/S. In addition, it is a function of the focal length to the cell length
f/S. The ratio a/S must be significantly less than unity (i.e., a/S � 1), to avoid
nonlinear forces (lens aberrations) that would adversely affect the beam quality. A
prudent choice might be a/S = 0.2, for instance. The focusing capability of the
system is represented by the acceptance function α given in (3.311). This function
is zero when f = ∞ (no focusing) and f = S/4 (stability limit); it has a maxi-
mum at f = 0.5S, corresponding to a phase advance of σ = 90◦, in which case it
is α = a2/S. The maximum acceptance of a periodic channel of thin lenses (with
identical focusing length f ) is therefore αmax = a2/S. If a/S is fixed for the rea-
sons mentioned, the only way to match a beam of a given emittance into such a
channel is to make the aperture radius rmax = a, and hence also S, sufficiently
large. The alternative is to replace the array of weak-focusing lenses discussed here
by strong-focusing lens configurations such as quadrupoles, as discussed in Sec-
tion 3.5. Magnetic quadrupole lenses, for instance, are used in high-energy accel-
erators since they provide stronger focusing than solenoids at high particle kinetic
energies. The derivation of the various relations for a channel consisting of thin
quadrupole lenses is left as a problem (3.17) at the end of this chapter.

So far we have not discussed how to match the beam into a given focusing chan-
nel. The first requirement, of course, is that the emittance fit into the acceptance
(i.e., ε � α). Assuming that this condition is satisfied, we must inject the beam
into the first lens with initial condition given by R0 = Rm and R′

0 = −Rm/2f .
These two conditions can be met by using two matching lenses placed before the
entrance into the focusing channel. If the beam is not properly matched, it will per-
form envelope oscillations that are generally not desirable since they may lead to
deterioration of beam quality and particle losses. Envelope oscillations, including
the effects of space charge, are discussed in Section 4.4.3.

With regard to the optimum choice of parameters, several considerations indi-
cate that one should not operate in the region where the phase advance σ is greater
than 90◦ even though the stability requirement permits higher values. First, as
discussed above, the channel acceptance is a maximum, or, conversely, the beam
radius Rm a minimum, when σ = 90◦ in the thin-lens system being considered.
Therefore, nothing is gained by increasing the focusing strength beyond this point.
Second, the effects of random lens misalignments increase as sin(σ/2), as shown
in Section 4.4.4; hence it is desirable to have as small a value of σ as possible. Fi-
nally, space-charge perturbations cause envelope instabilities when σ > 90◦, as we
will see in Section 4.4.3. It should be noted that the σ0 < 90◦ rule is not restricted to
the thin-lens array treated here; it applies also to other periodic focusing systems.

In the next section we present the general mathematical theory of periodic fo-
cusing. Following this we discuss three examples: a quadrupole focusing channel,
the sector-focusing cyclotron, and the strong-focusing synchrotron. In addition, we
briefly review the topic of resonances in circular accelerators.
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3.8.2
General Theory of Courant and Snyder

Let us now consider the general case of a periodic-focusing system with two planes
of symmetry and without the thin-lens restriction made in the preceding section.
Mathematically, the linear, or paraxial, motion of charged particles in periodic sys-
tems is described by two differential equations of the form

x′′(s) + κx(s)x = 0, (3.312a)

y′′(s) + κy(s)y = 0. (3.312b)

Here x, y are the displacements from the beam axis and s is the independent vari-
able measuring the distance along the beam axis (or equilibrium orbit in a circular
accelerator). κx(s), κy(s) are the periodic-focusing functions, which satisfy the pe-
riodicity relation

κ(s + S) = κ(s), (3.313)

where S is the length of one period. In a circular accelerator with circumference C

and N focusing periods, or unit cells, we have the additional periodicity relation

κ(s + C) = κ(s), (3.314)

where C = NS.
Many systems, such as quadrupole channels, have two planes of symmetry where

the forces κx(s) and κy(s) may differ in phase or in both phase and amplitude.
However, as long as there is no coupling between these two forces, the theory is
the same, and in the following, we consider only motion in the x-direction.

Linear second-order differential equations with periodic coefficients of the form
(3.312) are known as Mathieu–Hill equations. The properties of these equations
and their solutions have been treated extensively in the literature [3]. The standard
reference for periodic focusing of charged particles in the accelerator field is the
theory by Courant and Snyder [4]. Although this theory deals with circular accel-
erators, the method and results apply equally to linear accelerators or beam trans-
port systems. In this general treatment of periodic focusing we follow closely the
Courant–Snyder theory.

First we recall from the paraxial theory that the solution of any linear second-
order differential equation of the form (3.312), whether or not κ(s) is periodic, is
determined uniquely by the initial values (x0, x

′
0) or (y0, y

′
0). Thus, for (x, x′) at a

distance s, one gets

x(s) = ax0 + bx′
0, (3.315a)

x′(s) = cx0 + dx′
0, (3.315b)

or, in matrix notation,

X(s) =
(

x(s)

x′(s)

)
= M̃(s|s0)X(s0) =

(
a b

c d

)(
x(s0)

x′(s0)

)
. (3.316)
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Let us now examine the motion in a periodic system. In this case the matrix M̃

has the property

M̃(s + S|s) = M̃(s), (3.317)

which is to say that the matrices describing particle motion through any one period
of length S are identical. The matrix for passage through N periods is then obtained
by multiplication of the matrices for a unit cell, that is,

M̃(s + NS|s) = [
M̃(s)

]N
. (3.318)

The motion of the particle can be stable or unstable depending on whether x(s) re-
mains finite or increases indefinitely with distance s. For the motion to be stable it
is necessary and sufficient that the elements of the matrix M̃N remain bounded for
any number of periods N . To find this condition for stable motion, let us consider
the eigenvalues for the characteristic matrix equation

M̃X = λX, (3.319)

which changes only the length, but not the direction of the vector X = (x0, x
′
0).

Writing it out, we have

ax0 + bx′
0 = λx0, (3.320a)

cx0 + dx′
0 = λx′

0, (3.320b)

This system of linear equations have nonvanishing solutions only when∣∣∣ a − λ b

c d − λ

∣∣∣ = 0, (3.321)

or

λ2 − λ(a + d) + (ad − cb) = 0. (3.322)

The last term in Equation (3.322) represents the determinant of the matrix M̃ ,
which is unity since we do not consider changes in the particle’s kinetic energy,
that is,

ad − bc = 1, (3.323)

and hence Equation (3.322) becomes

λ2 − λ(a + d) + 1 = 0. (3.324)

Let us now introduce the parameter σ , already defined in the thin-lens case
(3.302), by

cos σ = 1

2
(a + d) = 1

2
TrM̃. (3.325)

The two solutions of the quadratic equation (3.324) are then

λ1,2 = cos σ ± i sin σ. (3.326)

The parameter σ will be real if |a +d| � 2 and imaginary or complex if |a +d| > 2.
It will be advantageous to write the matrix M̃ in a form that contains cos σ and
sin σ . To do this we introduce the parameters α̂, β̂, γ̂ defined by the relations
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a − d = 2α̂ sin σ, (3.327a)

b = β̂ sin σ, (3.327b)

c = −γ̂ sin σ. (3.327c)

The matrix M̃ may now be written as

M̃ =
(

cos σ + α̂ sin σ β̂ sin σ

−γ̂ sin σ cos σ − α̂ sin σ

)
, (3.328)

or

M̃ = Ĩ cos σ + J̃ sin σ, (3.329)

where

Ĩ =
[ 1 0

0 1

]
, J̃ =

[
α̂ β̂

−γ̂ −α̂

]
. (3.330)

The condition det M̃ = 1 implies that

β̂γ̂ − α̂2 = 1. (3.331)

Note that det J̃ = 1, Tr J̃ = 0.
The representation (3.329) of M̃ has properties similar to the complex exponen-

tial eiσ = cos σ + i sin σ . Thus one can show that

M̃N = (
Ĩ cos σ + J̃ sin σ

)N = Ĩ cos Nσ + J̃ sin Nσ. (3.332)

The particle motion through a periodic array of N lenses (where N can be arbitrarily
large) is stable when the parameter σ is real, or, in view of (3.325), when∣∣TrM̃

∣∣ = ∣∣a + d
∣∣ < 2, (3.333)

and it is unstable when |a + d| > 2. The parameters α̂, β̂, γ̂ are also known in
the literature as the Courant–Snyder or Twiss parameters, and β̂ as the amplitude
function or betatron function. We depart from the traditional notation by adding a
hatch ()̂ to avoid confusion with the relativistic velocity and energy factors, β, γ .
Furthermore, we use σ in place of µ to denote the phase advance per cell. (Courant
and Snyder used the symbol µ. However, in more recent work on periodic focusing
it has become customary to use σ instead, and we therefore adopt this notation [5].)

Returning now to Equation (3.316), we note that the two eigenvalues of the char-
acteristic matrix equation, λ1 = cos σ + i sin σ and λ2 = cos σ − i sin σ , obey the
relation

λ1λ2 = 1, or λ2 = 1

λ1
. (3.334)

Consequently, there will be a unique pair (u, v) of independent solutions of the
Mathieu–Hill equation fulfilling the condition

u(s + S) = λ1u(s), v(s + S) = 1

λ1
v(s). (3.335)

This statement is called Floquet’s theorem, and a pair of solution (u, v) satisfying
(3.335) are called Floquet functions. The Floquet functions allow one to express any
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other solution of the Mathieu–Hill equation in the simplest way. In the special case
where the force parameter κ is constant, Equation (3.312) reduces to the harmonic-
oscillator equation and the Floquet functions are given by u(s) = exp[i√κs], v =
exp[−i

√
κs]. In the case of a periodic system, the Floquet function can be written

in the phase-amplitude form

u = w(s)eiψ(s), (3.336a)

v = w(s)e−iψ(s), (3.336b)

which reduces to the harmonic-oscillator solution when κ(s) = const. Actually,
(3.336a) and (3.336b) represent two fundamental solutions even if κ(s) is not peri-
odic. In the following we will initially make no particular assumptions concerning
κ(s). The constraints imposed on w(s) and ψ(s) if κ(s) is periodic will be discussed
subsequently. First, we note that the use of (3.336) makes it possible to express any
solution x(s) as a linear combination of u and v in the form

x(s) = Aw(s) cos[ψ(s) + φ], (3.337)

where the amplitude A and the phase φ are determined by the initial conditions.
The Wronskian W = uv′ − u′v, which is a constant, is given by

W = −2iw2ψ ′ = W1. (3.338)

Choosing for the constant the value W1 = −2i, one obtains the relation

dψ

ds
= ψ ′ = 1

w2
, (3.339)

which the two functions w(s) and ψ(s) have to satisfy if u, v are to be fundamental
solutions.

Differentiation of either u or v and substitution into Equation (3.312) yields the
differential equation

w′′ + κw − 1

w3
= 0 (3.340)

for the amplitude function w(s). This equation has the form of the envelope equa-
tion for a beam with an emittance of elliptic shape as discussed in Section 3.4.5.
Let us explore this analogy by deriving the equation of the trace-space ellipse for a
particle whose trajectory is given by (3.337). Differentiation of (3.337) yields

x′ = A[w′ cos(ψ + φ) − wψ ′ sin(ψ + φ)]. (3.341)

By eliminating ψ + φ, using cos2(ψ + φ) + sin2(ψ + φ) = 1, one obtains from
(3.337) and (3.341) the equation

x2

w2
+ (wx′ − w′x)2 = A2. (3.342a)

We can write this in the form

γ̂ x2 + 2α̂xx′ + β̂x′2 = A2, (3.342b)

by using the definitions
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β̂ = w2, (3.343a)

α̂ = −ww′, (3.343b)

γ̂ = 1

w2
+ w′2 = 1 + α̂2

β̂
. (3.343c)

Equation (3.342) is the equation of an ellipse whose shape and orientation at any
given s are determined by the amplitude factor A and the coefficients α̂ and β̂

which in turn are defined by w(s) and w′(s). We conclude that all particles with
the same initial value of A but different φ lie on the ellipse described by (3.342). To
follow the motion of an ensemble of particles with the same A, we need to know
how w varies with distance s, that is, we need to solve Equation (3.340) subject to
the appropriate initial values w(0), w′(0) at s = 0. As we pointed out above, the
functions w(s) and ψ(s) are the same for all particles in the beam. Thus, particles
with different A lie on different ellipses scaled in size but otherwise similar. The
largest ellipse is defined by the maximum value of A, which we denote by A0.

The area of each ellipse is πA2(β̂γ̂ − α̂2)−1/2 = πA2 since β̂γ̂ − α̂2 = 1 in view
of (3.343c) (i.e., it is a constant through the motion of the beam). Specifically, the
area of the largest ellipse is given by Ax = εxπ , where εx is the emittance of the
beam, and we can write

Ax = A2
0π, or A0 =

√
Ax

π
= √

εx. (3.344)

Thus, with A2 = A2
0 = εx , we obtain from (3.342b) the equation of the beam ellipse

in x–x′ trace space, that is,

γ̂ x2 + 2α̂xx′ + β̂x′2 = εx. (3.345)

This ellipse is illustrated in Figure 3.26, which also shows the relations for the in-
tercepts with the two axes and for the maximum values of x and x′. The derivation
of these relationships is left as a problem (3.19). The beam envelope xm is charac-
terized by the maximum value of x which occurs when ψ+φ = 0 or cos(ψ+φ) = 1
and A = A0. Thus, we have the relation

xm(s) = A0w(s) = √
εxw(s) =

√
εxβ̂(s). (3.346)

Substitution of (3.346) into (3.340) yields the envelope equation

x′′
m + κxm − ε2

x

x3
m

= 0. (3.347)

We note that the Courant–Snyder form (3.345) for the trace-space ellipse, which
is widely used in the accelerator literature, differs from our previous notation in
Sections 3.4.5 and 3.6.2. The relations between the coefficients α̂, β̂, γ̂ in Equation
(3.345) and a, b, c in Equations (3.159) or (3.218)ff. are given by a = γ̂ /εx , b =
α̂/εx , c = β̂/εx . Using these relationships, it is readily verified that the previous
equations for the beam envelope, such as (3.160a) and (3.160b), are identical with
the Courant–Snyder expressions in (3.346) and in Figure 3.26.
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Fig. 3.26 Trace-space ellipse described by equation
γ̂ x2 + 2α̂xx′ + β̂x′2 and relations for several important points
on the circumference of the ellipse.

Comparison of Equations (3.340), (3.346), and (3.347) shows that the amplitude
w(s) of the fundamental solutions represents the characteristic envelope for a par-
ticular system defined by a given force function κ(s). We can obtain w(s) by integra-
tion of (3.340) subject to initial conditions w(0), w′(0). The actual beam envelope
then depends on the emittance εx and is found by relation (3.346). Furthermore,
once we know w(s), we can obtain the phase function ψ(s) by integrating Equation
(3.339).

Since u, v are linearly independent solutions, we can write the matrix M̃ that
determines the change in a particle’s position and slope between two points s2 and
s1 in terms of u, v and hence in terms of the functions w(s), ψ(s). The calculations
for the matrix M̃(s2|s1) lead to the following results:

[ w2
w1

cos ψ − w2w
′
1 sin ψ w1w2 sin ψ

− 1+w1w′
2w2w′

2
w1w2

sin ψ −
(

w′
1

w2
− w′

2
w1

)
cos ψ w1

w2
cos ψ + w1w

′
2 sin ψ

]
,

(3.348)

where ψ = ψ(s2) − ψ(s1), w1 = w(s1), w2 = w(s2).
The phase-amplitude solution (3.336), and hence the matrix (3.348), is valid

whether or not κ(s) periodic, as pointed out earlier. Let us now examine the con-
straints imposed by the condition that w(s) be a periodic function of s with pe-
riod S. In this case, if s2 − s1 = S, we have w2 = w1 = w, w′

2 = w′
1 = w′, and the

matrix (3.348) takes the simpler form

M̃ =
(

cos ψ − ww′ sin ψ w2 sin ψ

− 1+w2w′2
w2 sin ψ cos ψ + ww′ sin ψ

)
. (3.349)

Furthermore, we recognize that the matrix M̃ is now identical with the matrix
(3.328) provided that we use the relations (3.343) and make the additional iden-
tification

ψ = ψ(s2) − ψ(s1) = σ. (3.350)



134 3 Beam Optics and Focusing Systems without Space Charge

We note that the relations between α̂, β̂, γ̂ , and w, w′ given in Equation (3.343) are
valid even if κ(s) is not a periodic function. The periodicity condition is contained
in (3.350), and in view of (3.339), we have for σ the relation

σ =
∫ s+S

s

ds

w2
=

∫ s+S

s

ds

β̂
. (3.351)

As already mentioned in Section 3.8.1, σ is the phase advance or phase shift per pe-
riod or cell. The particle motion in a periodic focusing channel is basically a pseudo-
harmonic oscillation with frequency ω = (κ)1/2v, or wavelength λ = 2πv/ω =
2π/(κ)1/2, and an amplitude modulation or ripple that varies with the period S of
the force function. Here κ is the mean value of κ in one period and v is the velocity
of the particles. The phase advance σ measures the fraction of the wavelength in
one oscillation period [see Equation (3.305)]; thus, σ = 90◦ implies that the parti-
cle completes one oscillation in four periods of the focusing channel. Note that the
condition for stable motion is | cos σ | < 1 (i.e., σ < 180◦), in agreement with our
result for the thin-lens channel treated in the preceding section.

In the case of circular accelerators with circumference C = NS, one uses in
place of σ the parameter

ν = Nσ

2π
= 1

2π

∫ s+C

s

ds

β̂
, (3.352)

which is the number of betatron oscillations in one revolution, also known as the
betatron tune.

From the form (3.337) of the solution of the equation of motion, we see that the
largest displacement xmax is obtained where w(s), and hence the betatron function
β̂(s), attains its maximum value. In a given accelerator or focusing channel, the
particle motion is usually restricted by the vacuum chamber or other structures. If
xmax denotes the maximum excursion of the particle trajectory permitted by these
aperture constraints, the acceptance or admittance of the system in the x-direction
is defined by the quantity

αx = a2

w2
max

= a2

β̂max
. (3.353)

A beam is considered matched when the emittance is equal to the acceptance (i.e.,
εx = αx ) and when the maximum displacement of the beam envelope xmax = a

occurs at the points (usually the center of the focusing lenses) where the betatron
function β̂(s) has its maximum value β̂max. In this case no particles are lost to
the walls. Note that the function β̂(s) has the same period S as the focusing func-
tion κ(s), and in the matched case the beam envelope xm(s) therefore also varies
with period S according to the relation (3.346). As an example, comparing Equation
(3.353) with (3.311) of the preceding section, we see that β̂max for an array of ax-
isymmetric thin lenses is given by β̂max = S[4(f/S)2]1/2/[4(f/S)−1]1/2. Relations
for a periodic axisymmetric channel consisting of thick lenses (e.g., solenoids) can
be found in Section 4.4.1, Equations (4.163) to (4.170) and Figures 4.4 to 4.6.
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Fig. 3.27 Gradient and envelope functions in a periodic
quadrupole channel of the FODO type. (From Reference 2.)

3.8.3
The FODO Quadrupole Channel

As a first example of a general periodic-focusing system and to illustrate the use
of the Courant–Snyder theory, let us consider a quadrupole channel in the FODO
configuration. One period of such a channel is defined by a quadrupole of length
l that is focusing in x and defocusing in y, a quadrupole that is defocusing in x

and focusing in y, and two drift sections of length L each, as illustrated in Fig-
ure 3.27. The force function κ(s), which we will assume to be piecewise constant,

and the qualitative variation of the amplitude function w(s) =
√

β̂(s), and thus
of the matched-beam envelopes xm(s) = X(s), ym(s) = Y (s), are indicated in the
figure.

The transfer matrix M̃ for one period of such a FODO channel can be calculated
by multiplication of the appropriate matrices for the four sections of one channel
period using (3.184a), (3.184b), and the matrices for the two drift spaces. Compar-
ing this with the matrix M̃ in the form (3.328), one finds for a FODO section the
following results:

cos σ = cos θ cosh θ + L

l
θ(cos θ sinh θ − sin θ cosh θ)

−1

2

(
L

l

)2

θ2 sin θ sinh θ, (3.354)
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α̂ sin σ = − sin θ sinh θ − L

l
θ sin θ cosh θ

−1

2

(
L

l

)2

θ2 sin θ sinh θ, (3.355)

β̂ sin σ = l

θ

[
(sin θ cosh θ + cos θ sinh θ) + L

l
θ(2 cos θ cosh θ + sin θ sinh θ)

+
(

L

l

)2

θ2 cos θ sinh θ

]
. (3.356)

The parameter θ in these equations represents the focusing strength of the lenses
and is defined by

θ = κ1/2l. (3.357)

Note that κ is given by the relation (3.182) for magnetic quadrupoles and (3.183)
for electric quadrupoles. The relations (3.354) to (3.356) are transcendental equa-
tions that must be solved by computer or presented in graphical form for practical
use. A plot of the relationship between σ and θ for different values of L/l of a
FODO channel, for instance, is shown in Section 4.4 (Figure 4.7), where periodic
focusing in both FODO and solenoid channels, including space-charge effects, will
be treated. Fortunately, there are several rather simple approximate formulas that
are very useful for design and scaling purposes and therefore worthy of being pre-
sented here. First, one finds for θ � π/2 from (3.354) for cos σ the approximate
result

cos σ = 1 − θ4

6

[
1 + 4

L

l
+ 3

(
L

l

)2
]
. (3.358)

If in addition to θ � π/2 the drift length L is much larger than the lens width l

(i.e., L/l � 1), we can neglect 1 + 4L/l compared to 3(L/l)2 and obtain

cos σ = 1 − 1

2
θ4

(
L

l

)2

= 1 − κ2l2L2

2
,

or

cos σ = 1 − η2

2
, (3.359)

where η = θ2(L/l) = κlL. This is known as the thin-lens approximation, and for
β̂max and acceptance αx it yields the results

β̂max = 2L

η

(
2 + η

2 − η

)1/2

, (3.360)

αx = a2

β̂max
= a2η

2L

(
2 − η

2 + η

)1/2

. (3.361)
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Finally, in the smooth approximation, where the phase advance per period is small
(σ � π/2), one gets from (3.358) and (3.359) the simple relations

σ = θ2

√
3

[
1 + 4

L

l
+ 3

(
L

l

)2
]1/2

for θ � π

2
, (3.362a)

and

σ = η = θ2
(

L

l

)
= κlL for θ � π

2
, L � l. (3.362b)

The maximum and minimum values of the amplitude function w(s) in the
FODO channel can be obtained from the transfer matrix for half a period. By
comparing this matrix with the form (3.348) and using the fact that w1 = wmax,
w2 = wmin, w′

1 = w′
2 = 0, one finds that

w2
max

w2
min

= β̂max

β̂min
= 1 + tanh(θ/2)[tan(θ/2) + (L/l)θ]

1 − tan(θ/2)[tanh(θ/2) + (L/l)θ] = n2
1, (3.363)

w2
maxw

2
min = l2

θ2

1 + coth(θ/2)[tan(θ/2) + (L/l)θ]
tan(θ/2)[coth(θ/2) + (L/l)θ] − 1

= l2

θ2
n2

2. (3.364)

Solving for β̂max, β̂min yields

β̂max = l

θ
n1n2 = 1√

κ
n1n2, (3.365)

β̂min = l

θ

n2

n1
= 1√

κ

n2

n1
. (3.366)

The above relations define the properties of a FODO channel such as the phase
advance σ and the maximum of the amplitude function. If the maximum aperture
available for the beam (e.g., the diameter of the beam pipe), is 2a, the acceptance of
the FODO channel is given by

αx = a2

β̂max
= a2√κ

n1n2
. (3.367)

As mentioned before, the acceptance of the channel is identical with the maximum
emittance that a perfectly matched beam could have without particle loss to the
wall of the beam pipe (provided that space-charge effects are negligible). Note that
in the more general case of a FODO channel, the two quadrupoles and the two drift
regions could have different lengths l1, l2 and L1, L2 and/or different strength |κ1|,
|κ2|. The example presented here is a symmetric quadrupole system with |κ1| =
|κ2| = κ , l1 = l2 = l, L1 = L2 = L. Further discussions of periodic beam transport
systems – solenoids as well as quadrupoles – that include space-charge effects and
several useful graphs can be found in Section 4.4.

3.8.4
Sector-Focusing Cyclotrons

In this section we discuss the sector-focusing cyclotron as a first example of a dou-
bly periodic-focusing system in a circular accelerator. To appreciate the advantage
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of sector focusing in this case, we must first understand the basic operating prin-
ciples and limitations of the classical cyclotron with axisymmetric magnetic field.

The cyclotron concept was invented by Lawrence in 1929; the first model was
constructed a year later by Lawrence and Edlefsen, and the proof of principle was
established by Lawrence and Livingston in 1931 [6]. The concept is based on the fact
that a magnetic field B forces charged particles into circular orbits with angular
frequency ωc = qB/γm and orbit radius R = v/ω. During each revolution the
particles pass through an even number of acceleration gaps across which an rf
voltage V = Vm cos ωet is maintained. When the radio frequency is in resonance
with the circulating ions (i.e., when ωe = ωc), continuous acceleration occurs, and
the ions travel on an expanding spiraling orbit from the center of the magnetic field
to a maximum energy and radius determined by the size of the pole shoes of the
magnet.

The magnetic field in the conventional cyclotron must decrease slightly with ra-
dius to produce the required force component toward the median plane, which
serves to focus the beam during the many revolutions from center to maximum
radius. The theory of gradient, or betatron, focusing was discussed in Section 3.6.1.

The focusing requirement of dB/dr < 0 implies that the orbital frequency
ωc = qB/γm of the ions is not a constant, but decreases with radius. As a re-
sult, the resonance condition ωe = ωc is violated, particles get out of step with the
rf voltage, and after a certain number of turns the phase slip is large enough so that
deceleration occurs. This dilemma is enhanced still further by the increase in the
relativistic mass, γm, which also decreases the orbital frequency.

The maximum energy attainable in this type of cyclotron depends on the phase
slip between the particles and the rf voltage; it is greater if the voltage is higher.
The largest conventional machine was the 86-inch cyclotron at Oak Ridge National
Laboratory, which accelerated protons to 24 MeV (with a peak accelerating voltage
of Vm = 500 kV).

In 1945, McMillan and Veksler independently proposed the synchrotron principle
[7] which made it possible to go beyond the energy limits of the conventional cy-
clotron and which led to the development of synchrocyclotrons and synchrotrons.
The two basic ingredients in this new accelerator concept are (1) the modulation
of the electric frequency (and in the synchrotron also the magnetic field) with time
to maintain synchronism between radio frequency and circulating particle during
acceleration; and (2) the existence of phase stability, which assures the continuous
acceleration of nonsynchronous particles within certain limits.

The synchrocyclotron employs a cyclotron-type rf system with frequency ωe mod-
ulated by the use of a rotating capacitor, tuning fork, or other means, such that ωe

is a function of time, decreasing in synchronism with the orbital frequency of the
ions. After a group of ions is accelerated to full energy, the radio frequency returns
to its starting value and begins another cycle of acceleration. The major drawback
of this scheme is that beam intensities are down by a factor of 102 to 104 com-
pared to those of the fixed-frequency cyclotrons. Many synchrocyclotrons were built
throughout the world, the largest machines producing protons of about 1 GeV.
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Fig. 3.28 Three-sector magnet configuration with straight radial
wedges, or hills, for an isochronous cyclotron. Equilibrium orbit
(a), magnetic field lines, and axial focusing (b) are illustrated
schematically.

In 1938, L. Thomas had shown in a theoretical study that it should be possible to
build an isochronous cyclotron with constant ion frequency ωc by employing a mag-
netic field that varies sinusoidally with azimuth angle [8]. The average magnetic
field increases with radius to compensate for the increase in the relativistic mass,
γm, thus keeping ωc = qB/γm a constant while at the same time vertical focusing
is provided by the azimuthal field variation (called flutter). Because of World War II
and the invention of the synchrotron, this idea was not acted upon until 1950, when
a group at the Lawrence Radiation Laboratory began a study and built an electron
model that proved the feasibility of the new cyclotron concept [9]. Similar studies
were soon started at other places in the United States and Europe, and since then
a large number of sector-focusing cyclotrons have been built.

All sector-focusing cyclotrons employ magnets with wedge-shaped pole shoes
producing a square-wave rather than a sinusoidal variation in azimuth. Recall that
edge focusing in single-sector magnets was discussed in Section 3.7. A simple
three-sector magnet configuration with straight radial wedges or hills of 60◦ in az-
imuthal width is illustrated in Figure 3.28. The equilibrium orbit deviates from a
circle having a small radius of curvature in the hills and a large radius in the val-
leys. As indicated in the figure, a positive ion moving in a clockwise direction will
have a radial velocity component pointing outward when the ion enters the hill sec-
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Fig. 3.29 Sector-focusing cyclotron with a spiral-ridge magnetic
field. Additional axial focusing is provided by the
alternating-gradient forces in such a field configuration so that
higher energies can be achieved than in a straight radial-sector
machine.

tor and inward when it leaves it. A vertical cut through the magnet system along
the equilibrium radius illustrates the magnetic field lines and the azimuthal field
component Bθ in the edge regions of the pole-shoe sectors. For an ion displaced
vertically from the midplane, there will be a force component Fz = qvrBθ that fo-
cuses the particle toward the midplane when it passes through the edge regions.
This is, of course, the same edge-focusing effect that we discussed in Section 3.7.
A low energies, this focusing force is sufficient to overcome axial defocusing due
to the radially increasing average magnetic field. In most high-energy isochronous
cyclotrons, however, the pole-shoe sectors are spiral-shaped rather than straight, as
illustrated schematically in Figure 3.29.

The spiral configuration introduces an alternating-gradient focusing effect,
marked in the figure by arrows that show the direction of the local magnetic field
index, denoted here by k = (r/Bz)(∂Bz/∂r). As we know from the discussion
of quadrupole focusing in Section3.5, a combination of focusing and defocusing
lenses provides a net focusing effect [see Equations (3.186) and (3.187)]. Thus the
alternating-gradient configuration of the spiral-sector system produces an addi-
tional net focusing force. This effect supplements edge focusing, thereby providing
adequate axial stability for proton energies of several hundred MeV. The median-
plane magnetic field of a configuration consisting of N sectors can be written in
the form
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B(r, θ) = B(r)

[
1 +

∑
n

fn(r) cos n(θ − φn(r))

]
(n = N, 2N, 3N, etc.).

(3.368)

The phase angle φn, where the azimuthal variation of the nth field harmonic
reaches its maximum value, varies with radius in accordance with the spiral shape
of the pole sectors. Radial stability requires that the number of sectors be at least
three or larger (i.e., N � 3). The average magnetic field B(r) increases with radius
according to the relativistic energy change γ = (1 − β2)−1/2, that is,

B(r) = γB0 = B0
(
1 − β2)−1/2 = B0

[
1 −

( rω0

c

)2
]−1/2

, (3.369)

where B0 is the magnetic field at the center (r = 0). The orbital frequency is then
ωc = ω0 = qB0/m and is thus constant. Calculation of the radial and axial beta-
tron frequencies for such a sector field leads to rather complicated analytical ex-
pressions. For high accuracy, numerical orbit integration by computer is required.
Neglecting a number of less important terms, first-order theory gives the following
approximate results:

ν2
r = 1 + k, (3.370)

ν2
z = −k + N2

N2 − 1
F

(
1 + 2 tan2 δ

)
, (3.371)

where k = (r/B)(dB/dr) is the index of the average magnetic field. The parameter
F , given by

F ≈ 1

2

∑
n

f 2
n , (3.372)

represents the flutter of the magnetic field variation; δ is the (effective) spiral angle
defined by

tan δ = r dφ

dr
, (3.373)

where φ = φ(r) is the azimuth angle of the peak field in the sectors.
Equation (3.370) for the radial frequency is identical with Equation (3.197) except

that in this case νr > 1, as k is positive. With respect to the vertical frequency
[Equation (3.371)], the spiral angle δ and the flutter amplitude F must be large
enough to compensate for the defocusing average field and, in addition, provide a
net focusing effect such that νz > 0. At small radii, sector focusing ceases to be
effective since the azimuthal field amplitude, measured by F(r), goes to zero as
(r/g)N , where g is the magnet gap width and N the number of sectors. To achieve
good focusing at small radii, the number of sectors should be small (i.e., N = 3
or N = 4). As mentioned, fields with fewer than three sectors are unstable for the
radial motion. The problem is alleviated in large cyclotrons which employ separated
sectors in a ring-type configuration with beam injection from a small machine.
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Sector-focusing cyclotrons are limited in energy by resonances in the radial mo-
tion which arise whenever the betatron frequency νr passes through certain critical
values. Under the condition of isochronism, one finds from Equation (3.369) that

k = γ 2 − 1 =
(

1 + T

E0

)2

− 1 (3.374)

and hence,

νr = γ = 1 + T

E0
= 1 + T

mc2
. (3.375)

Thus νr starts at unity and increases linearly with kinetic energy. According to the
theory of resonances in circular accelerators discussed in Section 3.8.5, an insta-
bility stop band occurs in the radial motion whenever νr = N/2, where N is the
number of sectors [see Equation (3.404)]. A two-sector field is therefore intrinsi-
cally unstable. Using Equation (3.375), one finds that in a three-sector cyclotron
(N = 3), the stop band νr = 3/2 occurs at a proton energy of 469 MeV, while
N = 4(νr = 2) leads to a limit of 938 MeV. If terms neglected in Equations (3.370)
and (3.371) are taken into account, the stop-band energy limits are found to be
considerably lower than these values.

The largest sector-focusing cyclotron with a spiral-ridge magnetic field configura-
tion of the type illustrated in Figure 3.29 is the TRIUMF machine at the University
of British Columbia [10]. It has six ridges (N = 6) rather than the three shown in
the figure, and accelerates H− ions to a maximum energy of 500 MeV. Extraction
from the cyclotron is achieved by passing the H− beam through a stripper foil,
thereby converting the H− ions to protons (H− → H+ +2 e−) which escape from
the sector field on trajectories with curvature in the outward direction. In a new
project that has been proposed recently, the TRIUMF machine is to be used as an
injector for a kaon factory [11].

Even higher proton energies, namely 590 MeV, have been achieved in the S.I.N.
ring cyclotron in Switzerland [12]. It consists of a configuration of separated mag-
net sectors and uses a low-energy sector-focusing cyclotron as an injector for the
ring machine. A separated sector magnet design has also been employed in the In-
diana University Cyclotron Facility. This is a variable-energy, multiparticle machine
that accelerates protons up to about 215 MeV and heavy ions of charge state Z and
mass number A to energies up to 220Z2/AMeV. An interesting new development
at Indiana University is the addition of a storage ring. In this ring, the beams in-
jected from the cyclotron are further accelerated and cooled with a superimposed
electron beam to very high phase-space densities that are particularly useful for
some nuclear physics experiments [13].

Yet another development in the field of sector-focusing cyclotrons is the use
of superconducting coils. The much higher magnetic fields that can be achieved
make the superconducting cyclotron especially attractive for the cost-effective accel-
eration of heavy ions. The highest energies in a machine of this type, namely
1400Z2/AMeV, can be achieved with the facility at the National Superconducting
Cyclotron Laboratory at Michigan State University [14].
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3.8.5
Strong-Focusing Synchrotrons

For acceleration of protons to energies above 1 GeV, both linear accelerators and
synchrocyclotrons are impractical, as the size of such machines would become pro-
hibitively large. The only type of accelerator that has been capable so far of generat-
ing protons in the gigavolt (109 V) energy range is the synchrotron, which is based
on the principle of phase-stable synchronous acceleration proposed by Veksler and
McMillan. Fundamentally, the synchrotron is related to the synchrocyclotron, the
main difference being that the orbit radius is kept constant, and the guiding mag-
netic field is provided by a number of individual dipole magnets placed along the
orbit. The particles are first preaccelerated in a linear accelerator and then injected
into the synchrotron ring. To keep the orbit radius constant in the synchrotron,
the magnets are pulsed such that B = B(t) increases from a minimum value at
injection to the maximum given by the final energy of the particles.

In the early synchrotrons orbit stability was provided by constant-gradient focus-
ing as in conventional cyclotrons. The focusing forces in constant-gradient syn-
chrotrons are inherently weak, and consequently, the amplitudes of the betatron
oscillations are relatively large. This necessitates the use of magnets with large
gap dimensions to contain the beam and makes an accelerator of this kind pro-
hibitively expensive if the energy exceeds more than a few GeV. The invention
of the alternating-gradient or strong-focusing principle was, therefore, a major break-
through in high-energy accelerator design. Alternating-gradient, or strong-focusing
synchrotrons can be built with smaller magnets and have better beam quality and
higher beam intensities than those of constant-gradient machines.

The principle of strong focusing was independently proposed first in 1950 by
Christofilos [15], who did not publish his idea but applied for a U.S. patent in that
year, and in 1952 by Courant, Livingston, and Snyder [16]. This new concept is
most easily understood in terms of its well-known optical analog, the combination
of focusing and defocusing lenses, that was discussed in Section 3.5. If two lenses
of focal lengths f1 and f2 are combined, with a separation s between them, the
focal length F of this system is, according to Equation (3.186), given by

1

F
= 1

f1
+ 1

f2
− s

f1f2
.

In the special case of a converging and diverging lens of equal, but opposite,
strength, one has f2 = −f1, and hence [Equation (3.187)]

F = f 2
1

s
, or

1

F
= s

f 2
1

.

The focal length of such a two-lens system is thus always positive (focusing). The
application of this idea to synchrotrons implies the combination of strongly fo-
cusing and defocusing magnets. According to the theory of betatron oscillations,
Equations (3.197) to (3.203), a magnet with negative gradient dB/dr < 0 is focus-
ing vertically while defocusing radially if the field index n > 1. A radially increasing
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field (n < 0), on the other hand, focuses the particles only in the radial direction
and is defocusing with respect to the vertical motion. The first alternating-gradient
synchrotron ring consisted of a succession of magnets arranged in such a way that
a magnet with large positive gradient is followed by one with a negative gradient
of equal strength. The absolute values of n are typically in the range 10 to 100,
compared to 0.5 in the conventional weak-focusing machines. Consequently, the
frequencies of the corresponding radial and vertical oscillations are an order of
magnitude larger than in constant-gradient accelerators.

The strong-focusing forces reduce the beam width and hence the size of the mag-
nets and the vacuum tube, which results in substantial reduction of costs. All mod-
ern synchrotrons use arrays of quadrupole magnets for strong focusing, usually
in a FODO configuration, and separate dipole magnets for bending of the particle
orbits. This separate-function system provides better control, and is less expensive,
than the use of alternating-gradient magnets, in which focusing and bending was
combined. In addition, sextupole magnets placed at appropriate intervals are used
to minimize the effects of chromaticity (i.e., the energy dependence of the betatron
oscillations) (see Sections 3.6.4 and 5.4.10). The array of dipole, quadrupole, and
sextupole magnets in a synchrotron is called a lattice. Such a lattice consists of a
periodic configuration of N cells each of which contains identical sets of bending
and focusing magnets [17].

Let us denote the length of one cell by S and the phase advance per cell by σ ,
as defined previously [Equation (3.351)]. In a synchrotron lattice with N cells, the
circumference, or length of the closed equilibrium orbit, will be C = NS. The
phase change of the betatron oscillations per revolution is then simply Nσ , and
the number of betatron wavelengths in one revolution, also known as the betatron
frequency or tune, is given by Equation (3.352), (i.e., ν = Nσ/2π ). We note that in
the European literature the betatron tune is denoted by Q. The focusing functions
κ(s) in Equation (3.312) for such a synchrotron lattice are thus doubly periodic
functions with small period S and large period C.

According to the Courant–Snyder theory, the two fundamental solutions of Equa-
tion (3.312) may be written in the form

u = β̂1/2(s)eiνψ(s), v = β̂1/2(s)e−iνψ(s), (3.376)

where

ψ(s) =
∫

ds

νβ̂
(3.377)

is a function that increases by 2π every revolution and whose derivative, ψ ′ =
dψ/ds, is periodic. The general solution of the differential equations (3.312) for
such a doubly periodic lattice is, analogous to (3.337), of the form

x(s) = Aβ̂1/2(s) cos[νψ(s) + φ], (3.378)

where the constants A, φ are determined by the initial conditions. This is a pseudo-
harmonic oscillation with varying amplitude β̂1/2(s) and varying instantaneous
wavelength

λ = 2πβ̂(s). (3.379)
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The orbital frequency of the particles in the synchrotron is determined by the ratio
of the particle velocity v and the circumference C of the orbit (i.e., ω = 2πv/C =
2πβc/C). In terms of the relativistic energy factor γ = (1 − β2)−1/2, we can write

ω = 2πc

C

(
γ 2 − 1

γ 2

)1/2

. (3.380)

At extreme-relativistic energies (γ � 1), the orbital frequency approaches the con-
stant value ω = 2πc/C.

The particle momentum P can be related to the average radius R = C/2π and
the average bending magnetic field B by

P = γβmc = (
γ 2 − 1

)1/2
mc = qB R. (3.381)

The particles are accelerated by rf resonators located in the straight sections be-
tween magnets. From Equation (3.381) the rate of energy increase, dE/dt =
mc2 dγ /dt , is determined by the rate of change of the average magnetic field, that
is,

dE

dt
=

(
γ 2 − 1

γ 2

)1/2

qRc
dB

dt
. (3.382)

The corresponding energy gain per turn, �E = (2π/ω) dE/dt , is then obtained
from Equations (3.380) and (3.381) and is given by

�E = 2πqR
2 dB

dt
. (3.383)

To assure that the energy gain qVm cos ωet of the particles in the rf cavities dur-
ing one revolution remains in step with the rising magnetic field, several condi-
tions have to be met: (1) the electric frequency ωet must be a multiple of the orbital
frequency so that the particles remain in phase with the rf voltage; (2) the ampli-
tude Vm of the accelerating voltage and the phase φs = ωets of the synchronous
particle during rf gap crossing must be correlated to satisfy the energy increase
�E = qVm cos φs as required in Equation (3.383); and (3) the acceleration process
must be stable against phase oscillations (phase stability). The second condition
can be satisfied for only one phase of gap crossing called the synchronous phase
φs . Particles in the bunch whose phase differs from φs will gain less or more energy
than the synchronous particle. However, the principle of phase stability mentioned
earlier assures that the particles whose phase and energy differ slightly from the
ideal values perform stable oscillations about the synchronous phase φs . To provide
phase stability, the synchronous phase φs must be chosen to be within the proper
quarter cycle of the rf voltage as defined by the relation (3.261) between revolu-
tion time and momentum, which depends on the frequency slip factor η. In strong-
focusing synchrotrons the radial betatron tune, denoted by νx , is always greater
than 1. Hence, as discussed in connection with Equation (3.262), at low energies,
where γ < γt , an increase in momentum causes a decrease in revolution time.
This implies that stability exists if the synchronous particle crosses the accelerat-
ing gaps when the voltage is rising. As γ increases, a critical transition energy occurs
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where γ = γt . Above that energy (γ > γt ), particles behave as in the synchrocy-
clotron and constant-gradient synchrotron (i.e., the synchronous phase must be in
a region of falling voltage). This means that in strong-focusing synchrotrons provi-
sions must be made to shift the phase of the accelerating voltage at the point where
the particles pass through the transition energy. If the injection energy is, however,
higher than the transition energy, this phase shift can be avoided.

A major problem in the design of strong-focusing synchrotrons is the existence
of unstable resonances in the betatron oscillations due to nonlinearities and im-
perfections in the magnet lattice. The operating point in νx − νy parameter space
must be carefully chosen, to be safely away from the nearest resonance; in typ-
ical machine designs one aims for a separation of �ν ≈ 0.25. An introductory
treatment of resonances will be given in the next section (3.8.6). The electric and
magnetic self fields of the circulating beam produce a net defocusing force that is
equivalent to an effective decrease �ν of the betatron tune. The condition that this
tune shift due to self fields cannot exceed the value �ν = 0.25 to avoid dangerous
resonances imposes a fundamental limit to the current, or number of particles, in
the circulating beam. This tune depression due to space-charge forces is treated in
Section 4.5.

3.8.6
Resonances in Circular Accelerators

As was pointed out in the preceding sections on periodic focusing, circular acceler-
ators are very sensitive to field errors or misalignments since the particles traverse
the focusing lattice many times. Resonant-type instabilities occur when the errors
or misalignments are encountered at the same phase of the betatron oscillations
during each revolution (i.e., whenever there is an integral relationship between be-
tatron frequency and orbital frequency). In this section we present a brief review of
this important topic.

To illustrate a resonant-type instability in the particle motion, let us consider as
a first example the effect of an error �B in one of the dipole magnets that guide
the particles around the circular path. In the ideal system (i.e., when �B = 0),
the particles perform radial betatron oscillations about the equilibrium orbit. The
number of these oscillations per turn is defined by the tune ν = Nσ/2π , where N

is the number of unit cells in the circumference, C = 2πR, of the circular lattice,
and R is the mean orbit radius. For the following analysis we will use the smooth
approximation which ignores the ripple in the oscillation amplitude and assumes
that the particle oscillation is sinusoidal; that is, it can be described by a differential
equation of the form x ′′(s) + k2x = 0, where k2 = ν2/R2. (A formal treatment of
the smooth approximation, including the effects of space charge, is presented in
Section 4.4.) It will be convenient to introduce the azimuth angle θ = s/R in lieu
of the distance, as the independent variable.
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A field error �B in a short interval �θ along the circumference can be analyzed
as a function of θ in terms of a Fourier series, that is,

�B(θ) =
∑
n

�Bn cos(nθ + θn), (3.384)

where n is an integer and θn is the phase angle for the nth harmonic. The equation
of motion for the perturbed trajectory in the radial direction takes the form

d2x

dθ2
+ ν2x = R

�B

B
, (3.385)

where B is the average unperturbed magnetic field.
Let us now consider the Fourier component with the largest amplitude, denoted

by the integer n. Using δ = δn = R�Bn/B and assuming that θn = 0, we can write

d2x

dθ2
+ ν2x = δ cos nθ. (3.386)

The solution of this differential equation is the sum of the solution xh for the homo-
geneous equation and the particular solution xp of the inhomogeneous equation,
that is,

x = xh + xp. (3.387)

The homogeneous solution is of the harmonic-oscillator form

xh = c1 cos νθ + c2 sin νθ, (3.388)

and for the particular solution one has

xp = δ

ν2 − n2
cos nθ + c3 cos νθ + c4 sin νθ. (3.389)

A resonance with unlimited amplitude growth occurs for ν = n, where the first
term on the right-hand side of Equation (3.389) goes to infinity. Before further an-
alyzing this resonance condition, however, let us first consider the situation where
ν �= n. In this case one obtains a closed-orbit solution, that is,

xp(2π) = xp(0),
dxp

dθ
(2π) = dxp

dθ
(0), (3.390)

by setting the two constants c3 and c4 to zero so that

xp = δ

ν2 − n2
cos nθ (for ν �= n). (3.391)

The general solution (3.387) for this case can therefore be interpreted as a regular
betatron oscillation with unperturbed tune ν about a new closed equilibrium orbit
that takes into account the field error �B.

Returning now to the resonance where

ν = n = integer, (3.392)

we infer from (3.389) that there is no longer a stable, closed-orbit solution. Phys-
ically, what happens is that the “frequency” n of the driving force due to the field
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error is in resonance with the “frequency” ν of the radial betatron oscillations. This
causes unlimited amplitude growth and thus instability of the radial motion. The
rate of increase of the radial amplitude near the resonance can be calculated by
considering a particle with initial conditions

xp(0) = 0,
dxp

dθ
(0) = 0, (3.393)

which results in the particular solution

xp = δ

ν2 − n2
(cos nθ − cos νθ). (3.394)

This result is obviously different from the closed-orbit case (3.391), and using
trigonometric relations it can be written in the alternative form

xp = 2δ

ν2 − n2
sin

(
ν + n

2
θ

)
sin

(
ν − n

2
θ

)
, (3.395a)

or

xp = δθ

ν + n
sin

(
ν + n

2
θ

)
sin

(
ν − n

2
θ

)/(
ν − n

2
θ

)
. (3.395b)

In the limit ν → n, where sin α/α → 1, one obtains

xp = δθ

2ν
sin νθ (for ν = n). (3.396)

This relation shows that at the resonance (ν = n) the amplitude of the radial oscil-
lation grows linearly with azimuth angle θ . Furthermore, the sin νθ factor indicates
that the maximum radial displacement occurs at a phase angle of 90◦ with respect
to the field perturbation. In practice, of course, the radial amplitude of the particle
motion does not grow indefinitely since the particles may get out of the resonance
or hit the wall of the vacuum chamber after a number of revolutions.

As a second example of a resonant-type instability, let us consider the effect of
a gradient error �κ in one of the quadrupole magnets of the circular focusing
lattice. In the equation of motion such an error appears as a linear driving force.
Again using the azimuth angle θ as the independent variable, we can write this
equation in the smooth-approximation form

d2x

dθ2
+ ν2x ∝ R2�κx, (3.397)

where ν is the betatron tune in the absence of the error. As in the previous example,
the error �κ can be expressed in terms of a Fourier series of the angle θ . Consid-
ering again the Fourier component with the largest amplitude and defined by the
integer n, we can rewrite (3.397) as

d2x

dθ2
+ (ν2 − α cos nθ)x = 0. (3.398)

This is a Mathieu-type equation that can be transformed to the standard Mathieu
form

d2x

dφ2
+ (a − 2q cos 2φ)x = 0 (3.399)
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Fig. 3.30 Mathieu stability diagram; particle motion is stable in
shaded regions, unstable outside.

by defining

nθ = 2φ;
(

2ν

n

)2

= a; 4α

n2
= 2q. (3.400)

The analysis of Mathieu’s equation shows the existence of stable and unstable so-
lutions depending on the values of the parameters a and q. A Mathieu stability
diagram is shown in Figure 3.30. The region in q versus a parameter space where
the solutions x(φ) are periodic, and hence stable, are shaded in the figure. Out-
side these stability regions the solutions x(φ) are quasiperiodic function of φ with
increasing amplitude (i.e., they are unstable).

As noted in Section 3.8.2, particle motion in a periodic-focusing channel is gov-
erned by a Mathieu equation. The stability condition −1 < cos σ < 1 is consis-
tent with the Mathieu diagram. From Figure 3.30 and Equation (3.399) we see that
Mathieu’s equation degenerates into the equation of a harmonic oscillator when
q = 0, a = m2 (m = 1, 2, 3, . . .). In this case the solution is stable and of the form
x = cos mφ. The period of the oscillation is therefore defined by

�φ = 2π

m
(m = 1, 2, 3, . . .). (3.401)

The analysis shows that the solutions in the unstable regions between the stability
lines passing through the points q = 0, a = m2 maintain the periodicity �φ =
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2π/m, but the amplitudes increase without bounds. From (3.400) the azimuthal
period �φ and the corresponding betatron tune ν are then also preserved. Thus we
can draw the important conclusion that a solution of Equation (3.398) is unstable
if the oscillation period obeys the relation

�θ = 2�φ

n
= 4π

mn
. (3.402)

The equivalent statement for the betatron tune ν is

ν = 2π

�θ
= mn

2
, (3.403)

where m and n are both integers, with n denoting the harmonic of the gradient
error responsible for the instability and m the periodicity. Since both m and n are
integers it follows from (3.403) that the forbidden values of the betatron tune ν are
either integers or half-integers, depending on the values of m and n. If one chooses
a given value of the amplitude parameter q and increases the frequency parameter
a, one passes through bands of instability or stop bands between stable regions.
Each stop band is defined by the corresponding value of m and the associated half-
integral or integral resonance according to Equation (3.403).

The above analysis of the effects of a gradient error also has important applica-
tions for the ideal lattice of a circular machine. The N unit cells of such a peri-
odic structure constitute a strong variation of the gradient function with harmonic
n = N . In view of (3.403) we conclude therefore that

ν = p
N

2
(p = 1, 2, 3, . . .) (3.404)

should be forbidden values for the betatron tune, as we discussed in Section 3.8.4
for the case of sector-focusing cyclotrons.

In addition to the two examples presented above, there are many other effects
leading to resonant-type instability of the betatron oscillations, such as perturba-
tions resulting in nonlinear forces (e.g., a2x

2) or coupling between the two trans-
verse directions (e.g., b1xy, etc.). All of these effects appear as driving terms on the
right-hand side of the equation of motion, which can be put into the form

d2x

dθ2
+ ν2

xx = a0 + a1x + a2x
2 + b1xy + · · · . (3.405)

Strictly speaking, the parameters in this equation are not constants but vary with
the angle θ ; thus ν2

x = κ0(θ), a0 = a0(θ), and so on. The first term on the right-
hand side, a0, represents a dipole field error, the second term, a1x, a quadrupole
field error, both of which were treated above. The next term, a2x

2, represents a
sextupole force. The general theoretical analysis of Equation (3.405) shows that the
forbidden resonances in the horizontal and vertical betatron tunes, denoted by νx

and νy , respectively, can be expressed in the general form

mνx + nνy = p. (3.406)

Here m, n, and p are integers and |m| + |n| = l defines the order of the resonance.
For l > 4, both theory and experiments show that the resonances are harmful only
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if the amplitudes of the associated errors are very large. Note that (3.406) contains
all the resonances, including the dipole and quadrupole errors treated above. In a
diagram plotting νy versus νx , the resonances appear as forbidden lines. Such dia-
grams are calculated for every circular accelerator, and the operating point (νx, νy)

is chosen to be at the center of a stable region bounded by the nearest resonance
lines that are considered dangerous, say l � 4.

The theory of resonances is of fundamental importance for the design of circular
accelerators such as sector-focusing cyclotrons, synchrotrons, and storage rings. In
practice, analytical theory must be complemented by detailed numerical computa-
tions to obtain information on the nonlinear properties and stability limits of a fo-
cusing lattice. This is particularly important for storage rings where all effects that
may limit the lifetime of the beam must be understood. Fast particle tracking codes
using Lie operators [18] and differential algebra techniques [19] have been developed
to investigate the long-term behavior of the beam in such circular machines. This
is a highly specialized and active field for which we have to refer to the appropriate
literature such as the review articles in the AIP Conference Proceedings 249 (1992)
(see D.8) by Symon (p. 278), Yan (p. 378) and Berz (p. 456) and references therein.
A very exciting new development in this field is the experimental investigation of
nonlinear beam-dynamics effects at Fermilab [20] and Indiana University [21].

3.9
Adiabatic Damping of the Betatron Oscillation Amplitudes

In the preceding sections on transverse focusing in accelerators such as betatrons
(3.6.1), cyclotrons (3.8.4), and synchrotrons (3.8.5), we tacitly assumed that the par-
ticle energy, magnetic field, and focusing strength of the lenses remain constant.
This assumption is justified if the changes in the pertinent parameters occur on a
time scale that is very long compared to a betatron oscillation period. If, however,
we are interested in determining how the oscillation amplitudes of individual parti-
cles, or the transverse dimensions of the beam, vary during the entire acceleration
process, we must take that time variation of energy and focusing conditions into
account. In betatrons and synchrotrons, for instance, the orbit radius remains con-
stant during the acceleration cycle. However, the particle energy and the magnetic
field increase with time and, as a result, the betatron oscillation frequency may also
change.

As an example, let us consider the focusing in a betatron as discussed in Section
3.6.1. The axial motion of the particles was described by the Kerst–Serber equation
(3.200), where ω2

z = ω2
cn was considered to be constant. For evaluating the long-

time behavior we must modify this equation to include the change of energy, γmc2,
and of the axial oscillation frequency, ωz. The appropriate equation of motion in
place of (3.200) is then

d

dt
(γmż) = γmz̈ + γ̇ mż = Fz,
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or, with Fz/γm = ω2
zz,

z̈ + γ̇

γ
ż + ω2

zz = 0, (3.407)

where both γ̇ /γ and ω2
z vary with time. The coefficient γ̇ /γ of the ż term is positive,

indicating that the motion is damped, the decrease in amplitude being dependent
on the rate of energy change. If the changes in γ and ωz are adiabatic (i.e., if they
occur slowly with respect to a betatron oscillation period), one can solve (3.407) by
the approximate relation

z(t) = z0f (t) exp i

∫
ωz(t) dt. (3.408)

Differentiating (3.408) and substituting in (3.407) yields the following differential
equation for the amplitude function f (t):

f̈ + 2ḟ iωz + f iω̇z + γ̇

γ
ḟ + γ̇

γ
f iωz = 0. (3.409)

Now we assumed that the time variations of f (t) and ωz(t) are adiabatic with re-
spect to the betatron period, 2π/ωz. Therefore, we can neglect the first and fourth
terms (f̈ and γ̇ ḟ /γ ) and write Equation (3.409) in the form

ḟ

f
= − ω̇z

2ωz

− γ̇

2γ
. (3.410)

This can be readily integrated to yield

f = c1

(ωzγ )1/2
, (3.411)

where c1 is an integration constant.
Substituting (3.411) in (3.408), we obtain

z = z0c1

(ωzγ )1/2
exp i

∫
ωz dt. (3.412)

A similar result is obtained for the radial motion, where one has

x = x0c1

(ωrγ )1/2
exp i

∫
ωr dt. (3.413)

The amplitudes of the axial and radial betatron oscillations are thus seen to damp
with increasing energy as

z ∼ (ωzγ )−1/2 and x ∼ (ωrγ )−1/2, (3.414)

respectively. In this general form, the above result is applicable not only to be-
tatrons, but to cyclotrons, synchrotrons, and to linear accelerators as well. One
merely needs to change the notation appropriately. In linear accelerators and syn-
chrotrons the two transverse directions are usually taken as x and y; hence one has
x ∼ (ωxγ )1/2 and y ∼ (ωyγ )1/2 for the horizontal and vertical motion, respectively,
in these cases.
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For betatrons and synchrotrons with time-varying magnetic fields, one can use
the relation ω = νωc = νqB/γm for the oscillation frequencies and write (3.414)
in terms of the tune ν and magnetic field strength B as

z ∼ (νzB)−1/2, x ∼ (νrB)−1/2. (3.415)

In the conventional betatron, the tunes are simple functions of the field index n,
namely νz = (n)1/2 and νr = (1 − n)1/2 [see Equations (3.203) and (3.197)], and we
can present our results in yet another form as

z ∼ n−1/4B−1/2, x ∼ (1 − n)−1/4B−1/2. (3.416)

Thus if the change of the magnetic field B and the gradient ∂B/∂r at the equilib-
rium radius are known as functions of time during the acceleration cycle, one can
calculate the change in the betatron amplitudes for (3.416).

Note that the damping laws for the betatron oscillations apply also to the beam
width in the two transverse directions. In fact, we can derive these results in a much
more elegant fashion from the conservation of the normalized beam emittance,
εn = βγ ε, which follows from Liouville’s theorem for linear focusing systems.

Let xm denote the half-width of the beam, x′
m the maximum slope. For a matched

beam, εx = xmx′
m = x2

mkx , using x′
m = kxxm. Thus

εnx = βγ εx = βγ kxx
2
m = const. (3.417)

But kx = ωx/v = ωx/βc, hence

γωxx2
m = cεnx = const, (3.418)

or

xm = (εnxc)
1/2

(ωxγ )1/2
= const

(ωxγ )1/2
, (3.419)

in agreement with (3.414).
The damping of the betatron oscillations and the beam cross section is a very

important general effect in particle accelerators. It applies also when the space-
charge forces reduce the net focusing forces. One merely has to use the space-
charge depressed frequency, or tune, in this case. However, one must bear in mind
that the above scaling relations apply, strictly speaking, only to a system in which all
forces are linear in the transverse space coordinates and change adiabatically with
time. Such systems also preserve the normalized emittance. If nonlinear effects
increase the normalized emittance, we must use the more general scaling laws

xm ∼
(

εnx

ωxγ

)1/2

, ym ∼
(

εny

ωyγ

)1/2

(3.420)

for the beam size in the two transverse directions. Thus, if one wants to com-
pare the matched-beam size at two different times or locations in the accelera-
tion process, one must know not only the two energies and betatron frequencies,
but also the change in the normalized emittance. Conversely, by measuring the
matched-beam width at two locations, one can infer from (3.420) the emittance
change that may have occurred.



154 3 Beam Optics and Focusing Systems without Space Charge

References

1 Kerst, D. W., Serber, R., Phys. Rev.
60, 53 (1941).

2 Reiser, M., Part. Accel. 4, 239 (1973).
3 See, for instance, McLachlan, N. W.,

Theory and Applications of Mathieu
Functions, Clarendon Press, Oxford,
1951.

4 Courant, E. D., Snyder, H. D., Ann.
Phys. 3, 1 (1958).

5 Struckmeier, J., Klabunde, J.,
Reiser, M., Part. Accel. 15, 47 (1984).

6 Lawrence, E. O., Edlefsen, N. F., Sci-
ence 72, 376 (1930); Lawrence, E. O.,
Livingston, M. S., Phys. Rev. 38, 834
(1931).

7 McMillan, E. M., Phys. Rev. 68, 143
(1945); Veksler, V., J. Phys. (Sov.) 9,
153 (1945).

8 Thomas, L. H., Phys. Rev. 54, 580
(1938).

9 Kelly, E. L., Pyle, P. V., Thornton, R.
L., Richardson, J. R., Wright, B. T.,
Rev. Sci. Instrum. 27, 493 (1956).

10 Richardson, J. R., Blackmore, E. W.,
Dutto, G., Kost, C. J., Mackenzie,
G. H., Craddock, M. K., IEEE Trans.
Nucl. Sci. NS-22, 1402 (1975).

11 Craddock, M. K., Part. Accel. 31, 183
(1990).

12 Joho, W., IEEE Trans. Nucl. Sci. NS-
22, 1397 (1975).

13 Pollock, R. E., Annu. Rev. Nucl. Part.
Sci. 41, 357 (1991).

14 Blosser, H., Resmini, F., IEEE Trans.
Nucl. Sci. NS-26, 3653 (1979).

15 Christophilos, N., “Focusing System
for Ions and Electrons”, U.S. Patent
2,736,799 (filed March 10, 1950, is-
sued February 28, 1956).

16 Courant, E., Livingston, M. S., Sny-
der, H., Phys. Rev. 88, 1190 (1952).

17 For a review of lattice design in
strong-focusing synchrotrons, see
Brown, K. L., Servranckx, R. V., in
Physics of High Energy Accelerators (ed.
Month, M., Dahl, P. F., Dienes, M.),
AIP Conf. Proc. 127, AIP, New York,
1985, p. 62.

18 Dragt, A., Rev. Nucl. Part. Sci. 38, 455
(1988).

19 Berz, M., Part. Accel. 24, 109 (1989).

20 Chao, A. et al., Phys. Rev. Lett. 61,
2752 (1988).

21 Syphers, M. et al., Phys. Rev. Lett.
71, 719 (1993); Lee, S. Y., 1993 IEEE
Particle Accelerator Conference Record
93CH3279-7, pp. 6–10.

Problems

3.1 Prove that the scalar potential of an axisymmetric field can
be represented in the form (known as Laplace’s formula)

φ(r, z) = 1

π

∫ π

0
φ(z + ir cos θ) dθ.

3.2 (a) Derive the nonrelativistic paraxial equations (3.51) and
(3.52) for B = 0 and pθ = 0 (electrostatic field) from Euler’s
equations.
(b) Derive the relativistic paraxial equations (3.44) and (3.49)
from the Euler equations (2.115) and (2.116).

3.3 Find the magnetic field B(z) on the axis of a solenoid of
length l, radius a, total number of turns N , and current I .
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Determine Br(r, z) and Bz(r, z) from B(z) by the
power-series expansion up to third order in r .

3.4 Show that for nonrelativistic particles and in the thin-lens
approximation the image-side focal strength of the
bipotential lens of Figure 3.6 is given by

1

f2
= 3

8
α

(
V1

V2

)1/4(
V1 + V2

V2 − V1
ln

V2

V1
− 2

)
,

where α = 1.318/b.
3.5 Repeat Problem 3.4 for relativistic particles, and show that in

this case the image-side focal length is given by

1

f2
= α

4

(
γ 2

1 − 1

γ 2
2 − 1

)1/4

·
[

γ1 + γ2 + 1
2 (γ1γ2 − 5)

γ2 − γ1
ln

γ 2
2 − 1

γ 2
1 − 1

− γ1γ2 − 5

γ2 − γ1
ln

γ2 + 1

γ1 + 1
− 5

]
,

where α = 1.318/b [see Y. Chen and M. Reiser, J. Appl. Phys.
65, 3324 (1989)].

3.6 An electron gun with a 1-cm-diameter thermionic cathode
uses a rectangular wire mesh as a control grid. The mesh is
located at a distance of dg = 0.11 mm from the cathode. The
wires have a diameter of 0.025 mm and are spaced at
identical intervals of 0.182 mm in both the x and y

directions. The anode is at a distance of da = 15.4 mm from
the grid. Suppose that the gun operates with a cathode
temperature of kBT = 0.08 eV, a grid voltage of Vg = 40 V,
and an anode voltage of Va = 5 kV. Determine the total
normalized emittance of the electron beam due to both the
cathode temperature and the grid effect.

3.7 A symmetrical electrostatic einzel lens consists of three
electrodes each of which has a circular aperture of diameter
2a. The center electrode is at a potential V2; the two outer
ones have the same potential V1 and separation �z = l from
the center plate.
(a) Neglecting the electrode thickness, show that the focal

length of this three-aperture lens is given by

l

f
= 3

8

(
V2

V1
− 1

)[
4 −

(
V2

V1

)1/2

− 3

(
V1

V2

)1/2
]
,
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and that the principal plane is located at a distance

d

l
= 4

[3 − (V2/V1)1/2][(V2/V1)1/2 + 1] − 1

from the center plate.
(b) Using the reduced variable R = rV 1/4, treat the

three-aperture system as a thin lens and show that in
this thin-lens approximation the focal length is given by

l

f
= 3

8

[(V2/V1) − 1]2

V2/V1
.

(c) Plot l/f and d/l from (a) and l/f from (b) versus
V2/V − 1 for the range 0.5 � V2/V1 � 2. How good is
the accuracy of the thin-lens approximation in this
range?

3.8 The field on the axis of a magnetic lens is given by

Bz(z) = B0
[
1 + (z/a)2]−1

.

(a) Determine the focal length, f , and the Larmor rotation,
θr , in the thin-lens approximation.

(b) A 40-keV electron beam is emitted from an object at a
distance of 20 cm from the lens; one wants to have a
focal length of f = 5a, and an image with magnification
3:1 is to be formed downstream of the lens. Find a, B0,
f , image distance l2, and the Larmor rotation angle of
the image with respect to the object.

3.9 A beam of charged particles is focused by a thin unipotential
lens. At a distance S1 upstream of the lens, the particles in
the beam occupy an upright ellipse in r–r ′ trace space with
semiaxes Rmax = a1 and r ′

max = b1.
(a) Determine the equations for the beam ellipse, the

maximum slope r ′
max, and the envelope radius rmax at an

arbitrary point downstream from the lens in terms of
given parameters (S1, f1, a1, b1, and z). Specify the
ellipse parameters at the image locations zi and at the
position zw where the beam waist occurs.

(b) As an example, suppose that a1 = 0.5 cm, S1 = 9 cm,
b1 = 2.19 × 10−2 rad, and f = 5.0 cm. Find zi , zw , and
the ellipse coefficients at zi and zw .

3.10 Two thin unipotential lenses with focal strength f1 and f2

are separated by a distance l. Obtain the transfer matrix
relating r2, r ′

2 at the exit of lens 2 to r1, r ′
1 at the entrance of

lens 1. What is the focal length F of the combined lens
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system? What is F if both lenses form a quadrupole doublet
(one focusing, the other defocusing, of the same strength)?

3.11 Consider an electric quadrupole field that is focusing in the
x-direction and defocusing in the y-direction (see the figure
below). Assume that the field extends a distance l (from
z = −l/2 to z = +l/2) in the z-direction and that it is strictly
two-dimensional [i.e., V = V (x, y) for −l/2 � z � l/2 and
V = 0 outside]. Calculate the lens parameters (f1, f2, d1, d2)

of this field for a particle of kinetic energy qV1 traveling in
the z-direction close to the axis both for motion in the x–z

plane [case (a)] as well as in the y–z plane [case (b)].
Determine the length l for which the convergence 1/f2 is a
maximum in the x–z plane.

3.12 Derive the relationships between object and image of a lens
[i.e., Equations (3.109) and (3.114)], from the transfer matrix
M̃30 = M̃32M̃21M̃10 between an object point (r0, r ′

0) at a
distance z1 upstream and a point (r3, r ′

3) at a distance z2

downstream from the lens center. Here M̃10 and M̃32 are the
drift-space matrices on either side of the lens and M̃21 is the
lens matrix as given in (3.102). (Hint: Make use of the fact
that the image point is independent of the initial slope of the
particle trajectory.)

3.13 Derive the relationship between (R2, R′
2) and (R1, R′

1) of the
beam envelope in a thick-lens transformation. Show that
(3.163) is not valid except for the thin-lens approximation.

3.14 Consider a source of ions that emits a beam of total radial (or
horizontal) width w0 = 2x0. Let the starting condition of an
ion that leaves the source at an arbitrary point be x1, x′

1 and
dP/P0, P0 being the momentum of the central-ray particle.
After traveling a distance S0, the beam passes through a
sector magnet with focusing edges (angles θ1 at entrance, θ2

at exit), as shown in the figure below. The magnet extends
over an angle θ . After leaving the magnetic field, the beam
travels again on a straight path with distance from the
magnet edge given by S1.
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(a) Prove that the image formed of the source is at distance
Si downstream from the magnet given by

Si = S1(image)

= S0[cos φ + (t1 sin φ)/νr ] + (R0 sin φ)/νr

(S0/R0)[νr sin φ − (t1 + t2) cos φ − (t1t2 sin φ)/νr ] − cos φ − (t2 sin φ)/νr

,

where

t1,2 = tan θ1,2,

φ = νrθ,

R0 = P0

qB0
.

(b) Determine the image magnification
Mx = wi/w0 = wi/2x0 and prove that Mx equals −D−1,
where D is the denominator of the expression for Si .

3.15 Consider a sector magnet with uniform magnetic field and
normal entry and exit (edge angles θ1,2 = 0). The source of a
beam is at object distance S0 from the edge of the magnet,
the image at distance Si downstream (see the figure below).
Prove that the object point O, the center of curvature C of
the bending radius R0, and the image point I lie on a
straight line, that is, that

θ0 + θ + θi = π.

This relation is known as Barber’s rule. (Hint: You may make
use of the expression for the image distance Si given in
Problem 3.14.)
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3.16 Derive the relations (3.309) to (3.311) for a periodic thin-lens
array.

3.17 Following the procedure of Section 3.8.1, determine the
unit-cell matrix, stability criterion, phase advance σ ,
matched-beam envelope parameters, and acceptance αx for a
periodic channel consisting of thin quadrupole lenses in a
FODO array. Compare the results with the thin-lens
approximations of Section 3.8.3.

3.18 Show that the Courant–Snyder amplitude function β̂(s)

satisfies the differential equations

2β̂β̂ ′′ − β̂ ′2 + 4κβ̂2 = 4 (1)

and

β̂ ′′′ + 4κβ̂ ′ + 2κ ′β̂ = 0, (2)

where κ = κ(s) represents the focusing force function in the
equation of motion. Show furthermore that in regions where
κ = const, the solution of (2) must be one of the three forms

β̂(s) = A + Bs + Cs2, (3a)

β̂(s) = A cos 2
√

κs + B sin 2
√

κs + C, (3b)

β̂(s) = A cosh 2
√|κ|s + B sinh 2

√|κ|s + C. (3c)

Evaluate the constants A, B, C for each of these three cases
in terms of the initial Courant–Snyder parameters α̂0 and β̂0

at s = 0.
3.19 According to Equation (3.345), the equation of the beam

ellipse in x–x′ trace space may be written in the form

γ̂ x2 + 2α̂xx′ + β̂x′2 = ε,

where, from (3.343c), the Courant–Snyder parameters α̂, β̂,
γ̂ are related by β̂γ̂ − α̂2 = 1. Using these two equations,
prove the validity of the relations for the intercepts (xint, x′

int)
and maximum values (xmax, x

′
max) given in Figure 3.26.

3.20 Derive the relations (3.354) to (3.356) for a FODO channel.
3.21 Find the phase advance σ , and the maximum of the

amplitude function, β̂max, for a periodic-focusing channel
consisting of solenoid lenses of length l and spacing L

(between lenses) in terms of the focusing parameter
θ = √

κl and the ratio L/l.
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3.22 Determine the acceptance area Ax (i.e., the area
∫

dx dx ′ in
trace space) of a cylindrical pipe with radius a and length
L � a for a beam of charged particles for the following
cases:
(a) No focusing field exists.
(b) A uniform magnetic field is applied along the pipe (in

this case, take x, x′ to be the radial coordinates in the
Larmor frame).

(c) A thin magnetic lens with focal length f is placed at the
entrance of the pipe, and it produces a waist in the beam
envelope at the center of the pipe.
Neglect self-field effects and sketch the acceptance area
in a phase-space diagram for each case. What is the ratio
of acceptance (b) to acceptance (a), and how does it vary
with particle energy?

3.23 A sector-focusing cyclotron has an axial magnetic field
Bz = B in the median plane (z = 0) of the form

B(r, θ) = B(r)[1 + f3(r) cos 3θ]

in cylindrical coordinates.
(a) Determine the radial variation of the average field B(r)

and the field index k(r) that is required to keep the
average cyclotron frequency ωc constant. Show that the
radial betatron tune νr increases linearly with the
relativistic energy factor γ (i.e., νr ∝ γ ).

(b) Suppose that we want to accelerate protons to a final
energy of T = 100MeV using an rf system with
frequency f = 20MHz. Determine the central magnetic
field B0, maximum average field Bmax, maximum orbit
radius Rmax, and the value of the azimuthal field
variation factor f3 necessary to achieve a vertical
betatron tune of νz = 0.1 at Rmax.

3.24 Consider a simple periodic-focusing lattice of a synchrotron
that can be treated like a quadrupole array in a FD (or DF)
configuration without drift space. Assume that the two
lenses comprising a unit cell have different lengths l1 and l2

and focusing strengths κ1 and κ2. Using the focusing
parameters θ1 = √

κ1l1 and θ2 = √
κ2l2 determine cos σFD

and cos σDF for the two orthogonal directions. Plot the
stability boundaries for each direction in a θ2

1 versus θ2
2

diagram and indicate the region in which the motion is
stable for both directions. This is known as a necktie diagram
since the stable region resembles the shape of a necktie.
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3.25 Let

M̃0 =
(

a0 b0

c0 d0

)

define the matrix for one revolution and ν0 the tune in an
ideal circular machine. A gradient error �κ of a quadrupole
magnet would be expected to change the tune from ν0 to ν.
Suppose that the single gradient error is equivalent to a
thin-lens quadrupole with focal length f . The perturbed
matrix for a single turn, M̃ , may then be represented as the
product of M̃0 and the thin-lens matrix for the quadrupole
with gradient error.
(a) Prove that

cos 2πν = cos 2πν0 − 1

2

β̂

f
sin 2πν0,

where β̂ is the value of the Courant–Snyder amplitude
function at the perturbation.

(b) Assume that the tune change �ν = ν − ν0 is small
compared to ν0 and show that

�ν = 1

4π

β̂

f
.

(c) If there is a distribution of gradient errors �κ(s) around
the ring circumference, show that the tune change may
be expressed by

�ν = 1

4π

∫ C

0
β̂(s)�κ(s) ds.

3.26 Let M̃ represent the transport matrix between two points s1

and s2 in a periodic-focusing lattice. Prove that the phase
advance from s1 to s2 is given by

�ψ = tan−1
(

c

β̂1a − α̂1b

)
,

where a, b, c, d are the matrix elements of M̃ and α̂1, β̂1

denote the values of the Courant–Snyder parameters at s1.
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4
Linear Beam Optics with Space Charge

4.1
Theoretical Models of Beams with Space Charge

In this chapter we include the effects of space charge in the transverse beam optics
by using a uniform particle distribution in which both the charge and current den-
sity, ρ and Jz = J , are independent of the transverse coordinates. This uniform
beam model assumes that the beam is continuous in the direction of propagation
and has a sharp boundary with ρ = const, J = const inside and ρ = 0, J = 0
outside the boundary. The uniformity of charge and current density assures that
the transverse electric and magnetic self fields and the associated forces are linear
functions of the transverse coordinates. Thus, the uniform beam model allows us
to extend the linear beam optics of Chapter 3 to include the space-charge effects
or, more generally, the forces due to the self fields, in a straightforward manner. For
nonneutral beams, the terms space-charge fields and self fields are interchangeable
since the moving space charge of the particle distribution is the source for both the
electric and the magnetic self fields. However, if the space charge of a beam is com-
pletely neutralized by a background of particles with opposite charge polarity, the
electric self field is zero. Yet the beam current and hence the associated magnetic
self field are still the same as without the charge-neutralization effect. For this rea-
son it would be preferable to speak of self-field effects rather than of just space-charge
effects. But we will use the two terms interchangeably.

Before proceeding with linear beam optics we first present in this section a gen-
eral discussion of the theoretical beam models and the problems of including
the space-charge forces in the beam dynamics. This discussion will also provide
some clarification with regard to the limitations and usefulness of the uniform
beam model. Specifically, it will be pointed out that real beams, in general, have
nonuniform density profiles and that uniformity is approached only as the beam
temperature (random transverse velocity spread) goes to zero. Nevertheless, the lin-
ear model yields valuable information on the average beam behavior (e.g., the rms
width or divergence) and has become an indispensable tool in the design and op-
eration of accelerators and other devices. A justification for the use of the uniform
model is presented in Chapter 5, which deals with self-consistent beam theory. In
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particular, the concept of equivalent beams, discussed in Section 5.3.4, will estab-
lish a correlation between rms quantities of nonuniform beams and the equivalent
uniform beam.

When the beam currents are high enough that self fields can no longer be ne-
glected in comparison to the applied fields, the mathematical analysis becomes
substantially more difficult and complex than the single-particle dynamics dis-
cussed in previous chapters. The self fields are functions of the charge and current
distribution of the particle beam. At the same time, this distribution is affected by
the total external and internal forces acting on the particles. Thus one has a closed
loop in which the particle distribution changes the forces and the forces change the
particle distribution.

It is straightforward to calculate with any desired degree of accuracy the motion
of a single charged particle in an applied field by solving the Lorentz force equa-
tion. However, it is practically impossible to find exact solutions of the equations
of motion for the enormous number of interacting particles in an intense beam.
Even the most advanced computer codes can use only a relatively small number of
macroparticles to represent the actual particle distribution in a beam and to thereby
“simulate” the effects of the mutual interaction between the particles. Such codes,
tracing thousands of macroparticles, have become indispensable tools for the study
of beam physics and for the design of charged-particle beam devices in which self-
field effects are important.

The mutual interaction of the charged particles in a beam can be represented by
the sum of a “collisional” force and a “smooth” force. The collisional part of the
total interaction force arises when a particle “sees” its immediate neighbors and is
therefore affected by their individual positions. This force will cause small random
displacements of the particle’s trajectory and statistical fluctuations in the particle
distribution as a whole. In most practical beams, however, this is a relatively small
effect, and the mutual interaction between particles can be described largely by a
smoothed force in which the “graininess” of the distribution of discrete particles
is washed out. The space-charge potential function in this case obeys Poisson’s
equation, and the resulting force can be treated in the same way as the applied
focusing or acceleration forces acting on the beam.

A measure for the relative importance of collisional versus smoothed interaction,
or single-particle versus collective effects, is the Debye length, λD, a fundamental
parameter in plasma physics that can also be applied to charged particle beams.
If a test charge is placed into a neutral plasma having a temperature T and equal
positive ion and electron densities n, the excess electric potential set up by this
charge is effectively screened off in a distance λD by charge redistribution in the
plasma. This effect is known as Debye shielding.

The Debye length λD in a nonrelativistic plasma is defined by the ratio of the rms
random velocity ṽx = (v2

x)1/2 and the plasma frequency ωp ,

λD = ṽx

ωp

, (4.1a)
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where ωp = (q2n/ε0m)1/2 and where the plasma ions and electrons are assumed
to have the same charge q with opposite polarity. For a nonrelativistic isotropic
plasma that is in thermal equilibrium at temperature T (thermal distribution), the
rms thermal velocity is ṽx = (kBT/m)1/2 and hence

λD =
(

ε0kBT

q2n

)1/2

. (4.1b)

A charged particle beam can be viewed as a nonneutral plasma that exhibits col-
lective behavior (e.g., instabilities and electromagnetic wave propagation), similar
to a neutral plasma (see [B.3]). Thus a local perturbation in the equilibrium charge
distribution of a beam with transverse temperature T and density n, confined by ex-
ternal focusing fields, will be screened off in a distance corresponding to the Debye
length λD.

However, in a charged particle beam moving at relativistic velocity, the nonrela-
tivistic definitions of plasma frequency and Debye length implied in Equation (4.1)
must be modified. As shown in Section 4.2, the force on a particle due to the self
fields of the beam is proportional to ω2

p . If transverse motion is considered, we
have ẍ = ω2

px = Fs/γm, and since the electric Coulomb repulsion is reduced by
magnetic attraction [i.e., Fs = qEs(1 − β2) = qEs/γ

2], we obtain, with Es ∼ qnx

(assuming uniform density),

ω2
p = q2n

ε0γ 3m
,

or

ωp =
(

q2n

ε0γ 3m

)1/2

. (4.2)

The same results also follows from a Lorentz transformation of the nonrelativistic
plasma frequency in the beam frame to the laboratory frame.

It should be noted that most authors in the beam literature use either the non-
relativistic definition of ωp , leaving out the factor γ 3, or (like this author in his
past work) change only m to γm and leave out γ 2. However, it is argued here that
(4.2) is the more logical relativistic definition with which the equations involving
the plasma frequency become simpler and less confusing, as will be discussed in
the appropriate context. The relation (4.2) is also correct for longitudinal motion
in bunched beams, where there is no relativistic magnetic reduction of the electric
space-charge force but where the longitudinal mass γ 3m takes the place of nonrel-
ativistic mass.

Using (4.2) for the plasma frequency and assuming that the random transverse
motion in the beam is nonrelativistic (i.e., ṽx � c), we obtain for the Debye length
in a relativistic beam the definition

λD = ṽx

ωp

=
(

ε0mγ 3ṽ2
x

q2n

)1/2

. (4.3a)
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For a thermal distribution in this case we can use the relation γmṽ2
x = kBT to

define the transverse temperature in the laboratory frame. With the substitution
ṽx = (kBT/γm)1/2 we can then write the Debye length in the form

λD =
(

ε0γ
2kBT

q2n

)1/2

. (4.3b)

It should be noted in this context that the relativistic definition of temperature is
somewhat controversial. Many authors in the recent literature on relativistic gases
and plasmas use only the temperature in the rest frame and treat it – like mass m –
as a relativistic invariant. However, as will be shown in Section 5.4.3, one can also
justify the use of a laboratory temperature. The relationship between temperature
Tb in the beam (rest) frame and temperature T in the laboratory frame is T = Tb/γ .
Hence, the above expression for the Debye length can be written in terms of the
beam-frame temperature Tb as

λD =
(

ε0γ kBTb

q2n

)1/2

, (4.3c)

where all quantities except Tb are defined in the laboratory frame. We shall use both
definitions and indicate by the appropriate subscript which temperature is implied
wherever necessary to avoid confusion.

If the Debye length is large compared with the beam radius (λD � a), the screen-
ing will be ineffective and single-particle behavior will dominate. On the other
hand, if the Debye length is small compared to the beam radius (λD � a), collec-
tive effects due to the self fields of the beam will play an important role. It follows
from (4.2) and (4.3) that the plasma frequency decreases with particle energy and
that the Debye length increases so that at sufficiently high energy the space-charge
forces become insignificant in comparison to the external forces acting on a beam.

Smooth functions for the charge and field distributions can be used as long as
the Debye length remains large compared to the interparticle distance lp , that is,
as long as the number ND of particles within a Debye sphere of radius λD remains
very large (ND � 1). On the other end of the spectrum, when λD becomes com-
parable to lp , a particle will be affected by its nearest neighbors more than by the
collective field of the beam distribution as a whole. In this limit, which occurs at
extremely low temperature or very large density, the mutual interaction of single
particles leads to configurations in the particle distribution in which crystal-like,
“grainy” structures may develop. Such structures have been observed in particle
simulation studies and are an important new topic of current beam research [1]. As
mentioned, for most beams of practical interest the collisional forces are very small
compared to the smooth forces and can be neglected. Notable exceptions are the
Boersch effect at low energies and intrabeam scattering in high-energy storage rings,
which are treated in Section 6.4. Collisions also play a fundamental role in driving a
beam toward a Maxwell–Boltzmann distribution, as discussed below and in Section
5.4. We should also mention in this context that collisions between macroparticles
used in computer simulation may cause artificial “numerical” emittance growth.
Such effects can be avoided by judicious choice of mesh size and number of par-
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ticles, by charge-averaging in a mesh, and by better modeling of the system being
investigated.

If collisions can be neglected (i.e., if λD � lp), the single-particle Hamiltonian,
the particle distribution, and Liouville’s theorem can be defined in six-dimensional
phase space (r, P). This is possible because the smoothed space-charge forces act-
ing on a particle can be treated like the applied forces. Thus, the six-dimensional
phase-space volume occupied by a charged-particle distribution remains constant
during propagation or acceleration. If, furthermore, all forces are linear functions
of the particle displacement from the beam center, the normalized emittance asso-
ciated with each direction remains a constant of the motion. For a matched beam
in a linear focusing channel we can express this conservation law in terms of the
rms beam width x̃, rms tranverse momentum P̃x and rms velocity ṽx as

ε̃n = x̃P̃x

mc
= x̃γ ṽx

c
= const. (4.4a)

In the case of a thermal beam this relation can be written in terms of the laboratory
or beam-frame temperatures as

x̃2γ kBT = const, (4.4b)

or

x̃2kBTb = const, (4.4c)

respectively.
Thus, as in a gas, if the beam in such an ideal system is compressed adiabatically

by the applied focusing forces, its transverse temperature increases. Likewise, in
an expanding beam the temperature decreases (i.e., the beam cools). On the other
hand, nonlinear external or space-charge forces existing in the real world tend to
increase the normalized emittance and the temperature of the beam and may also
produce a temperature variation across the beam. The actual behavior is then more
complicated than implied by relation (4.4).

As in thermodynamics and plasma physics, one of the fundamental questions
of particle beam theory concerns the existence of equilibrium states in which the
particle distribution remains stationary (i.e., it does not change with distance along
the focusing channel). When collisions are negligible, the possible equilibria can
be found with the help of the Vlasov theory. As shown in Section 5.3, many par-
ticle distribution functions can be constructed mathematically that are stationary
solutions of the Vlasov equation, which combines the equations of motion for the
particles and Maxwell’s equations for the fields. Such distribution functions are
useful tools for mathematical analysis or computer simulation, but the correlation
with actual beams may often not be readily apparent. The notable exception is the
Maxwell–Boltzmann distribution, also known as the thermal distribution, defined by
f (x, P) = f0 exp(−H/kBT ), where H is the single-particle Hamiltonian. It not
only satisfies the Vlasov equation, but also represents the natural thermodynamic
equilibrium state when collisions are included, as discussed in Section 5.4. Labo-
ratory beams are usually not in thermal equilibrium. They have different transverse
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and longitudinal temperatures, T⊥ and T‖, with T‖ � T⊥ due to longitudinal cooling
(see Section 5.4.3) and other effects. If temperature relaxation (equipartitioning)
due to collisions and nonlinear forces is slow compared to the lifetime of the beam,
we can have a quasistationary state, or metaequilibrium (as defined in B.1, section
1.1 for a plasma). Thus, a perfectly matched, continuous beam in an axisymmet-
ric uniform or smooth focusing channel or acceleration system can be treated as
a transverse Maxwell–Boltzmann distribution for which the particle density profile
obeys the Boltzmann relation (see Section 5.4.4).

n(r) = n0 exp

[
− qφ(r)

kBT⊥

]
. (4.5)

Here, n0 is the density at r = 0, T⊥ represents the transverse laboratory temper-
ature of the beam, kB is the Boltzmann constant, and φ(r) is the sum of the ef-
fective external potential, φe(r), and the effective potential due to the self fields,
φs(r)(1 − β2); that is,

φ(r) = φe(r) + φs(r)
(
1 − β2). (4.6)

The space-charge potential φs(r) must obey Poisson’s equation. The external poten-
tial in the linear focusing channel considered here is given by qφe(r) = γmω2

0r
2/2,

where ω0 is the particle oscillation frequency (when self fields are neglected). It
follows from (4.5) that as kBT⊥ → 0 or, alternatively, as the repulsive self force be-
comes equal in magnitude to the external focusing force [i.e., qφs(1−β2) → −qφe],
the beam density profile becomes uniform with a sharp radius, a, hence

n(r) = n0 = const for r � a,

n(r) = 0 for r > a. (4.7)

On the other hand, at high temperature or, alternatively, when the self force be-
comes negligible compared to the external focusing force, we obtain a Gaussian
profile,

n(r) = n0 exp

[
− γmω2

0r
2

2kBT⊥

]
. (4.8)

In the first case [Equation (4.7)], the Debye length approaches zero (i.e., λD → 0),
while in the second case [Equation (4.8)], λD → ∞.

Strictly speaking, these considerations are valid only for a beam in a long, uni-
form focusing channel. However, as shown in Section 4.4, a periodic-focusing sys-
tem can often be described in terms of an equivalent uniform channel by using the
smooth approximation theory. Hence, the argument that beams tend to approach a
Boltzmann distribution if collisional and other effects have time to thermalize the
distribution also applies in an approximate sense to periodic-focusing systems that
are more commonly used in practice.

Since the potential function due to the self fields decreases with increasing en-
ergy [i.e., φs(1 − β2) = φs/γ

2 → 0 for γ � 1], we conclude that at sufficiently
high energy, charged particle beams tend to have the Gaussian density distribution
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of Equation (4.8). By contrast, at low energy when the self force is comparable in
strength to the external force, beams in smooth, linear focusing channels tend to
have uniform density profiles.

A stationary distribution represents a state of minimum total energy. As shown
in Chapter 6, deviations from this stationary state, such as beam mismatch, off-
centering, and nonstationary particle density profiles, are associated with higher
total energy. The difference in energy represents free energy that can be converted
into random, or thermal, particle energy, thereby increasing the temperature and
emittance of the beam. The mechanisms converting the free energy into emittance
growth are collisional processes, instabilities, nonlinear space-charge forces, and
any forces of a stochastic (random) nature acting on the particle distribution.

For the theoretical modeling of beams we can distinguish three regimes that
can be characterized by the ratio of the Debye length to the effective beam radius,
λD/a. When self-field effects dominate the beam physics (i.e., when λD � a), it
is convenient for the mathematical analysis to neglect the thermal velocity spread
altogether and use a laminar-flow model for the beam (T⊥ = T‖ = 0). In laminar
flow, all particles at a given point are assumed to have the same velocity, so that
particle trajectories do not cross. As we know from Equation (4.7), the particle den-
sity for a stationary laminar beam in a linear focusing channel is uniform. Like
the external focusing force, the space-charge force is therefore a linear function of
position within the beam. As a result, the linear beam optics techniques of Chapter
3 can be extended in a straightforward manner to include the self-field effects.

When the transverse thermal velocity spread becomes comparable to self-field ef-
fects, so that λD ∼ a, the density profile of a stationary beam becomes nonuniform,
according to the Boltzmann relation (4.5). The forces due to the self fields of the
beam are therefore nonlinear, a nonlaminar treatment of the beam is required, and
the analysis becomes more complicated. A nonlaminar beam can be represented
by the distribution of particles in phase space, f (x, P). The stationary state and the
evolution of nonstationary distributions can be analyzed with the aid of the Vlasov
equation, as mentioned above. Analytical techniques are rather limited in useful-
ness – except for the K–V model discussed below – and must be complemented or
replaced by particle simulation.

The third regime is characterized by λD � a, which implies that the self fields
of the beam can be ignored. According to the Boltzmann relation (4.6), the steady-
state density profile is Gaussian. However, the particle motion is entirely governed
by the external fields; that is, the beam optics techniques and results of Chapter 3
are valid in this regime.

From a mathematical as well as a practical point of view, the most useful theo-
retical model satisfying the Vlasov equation is the distribution of Kapchinsky and
Vladimirsky, known in the literature as the K–V distribution. For the spatially uni-
form focusing channel discussed above, the K–V distribution is defined as a delta
function of the transverse Hamiltonian [i.e., f (x, y, Px, Py) = f0δ(H⊥ − H0)]. Al-
ternatively, the K–V distribution can be defined as a delta function of the transverse
emittances [i.e., f (x, x ′, y, y′) = f0δ(εx, εy)]. In the latter case, it is also applica-
ble to spatially varying focusing systems, consisting of discrete lenses, acceleration
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gaps, and so on, where the transverse Hamiltonian is not a constant of the mo-
tion. The K–V beam has the property that the density profile is uniform with sharp
boundaries and the external forces are linear. Since the self fields of a uniform-
density beam are linear functions of position, the density remains uniform and
sharply bounded as the beam propagates through the focusing or accelerating sys-
tem. Thus it is possible to extend the linear beam optics to include the space-charge
forces in a straightforward way, and this will be done in subsequent sections of
this chapter. It should be noted that the K–V model covers the entire range from
space-charge-dominated laminar beams (λD � a) to the emittance-dominated
beams (λD � a), where self-field forces are negligible. The self-consistent the-
ory of beams, including the K–V distribution, is treated in Chapter 5. We show
there that correlations between average beam parameters (rms width, divergence,
emittance, etc.) of the K–V model, and other, more realistic distributions can be es-
tablished. These correlations justify retroactively the extensive use of the uniform
beam profile for the analysis of beam optics with self field presented in Chapter 4.

The major shortcoming of a linear model like the K–V beam is the fact that it
does not provide any information on emittance growth due to nonlinear external
or self forces. The determination of emittance growth requires additional tools such
as nonlinear theory, particle simulation, and experiment, as discussed in Chapter 6.

In many practical devices, a background gas or plasma may affect the beam be-
havior in a substantial way. Depending on the gas density, ionizing collisions be-
tween beam particles and gas molecules may lead to partial or full charge neu-
tralization of the beam. Secondary particles created in these collisions having the
same charge polarity as the beam particles are expelled, while those with opposite
charge polarity remain trapped in the potential well of the beam. The resulting
charge neutralization, called gas focusing, is of great practical importance. It occurs
naturally in regions where the vacuum pressure is not low enough (e.g., in the low-
energy beam transport lines near ion sources); or it may be deliberately utilized to
transport high-current beams that could not be handled in conventional focusing
systems. On the other hand, such charge-neutralization effects may lead to insta-
bilities resulting in emittance growth and beam loss. Charge neutralization will be
represented in our uniform-beam model by a partial neutralization factor fe, and
some special neutralization effects are discussed in Sections 4.2.4 (Bennett pinch)
and 4.6 (neutralization in a background gas).

4.2
Axisymmetric Beams in Drift Space

4.2.1
Laminar Beam with Uniform Density Profile

We start our study of self-field effects in beams with a simplified model of a cylin-
drical beam propagating in a drift tube (i.e., with no applied fields present). Assume
that a laminar, parallel beam of particles with uniform density is injected into a con-
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ducting drift tube. For vanishingly small currents, all particles would continue on
trajectories parallel to the beam axis and the diameter of the beam would remain
constant. As the current is increased, however, the space charge will produce a de-
focusing outward electric force and the beam will spread radially. At high velocities,
the beam current produces a magnetic self field which exerts an attractive force that
reduces the net defocusing effect. If the beam propagates through a region with a
low-density background gas (rather than ideal vacuum), collisional ionization ef-
fects may result in partial neutralization of the beam space charge. Thus, in the
case of an electron beam, the secondary, low-energy electrons created by the colli-
sions are ejected and the positive ions remain inside the beam. Due to their heavy
mass, these ions remain almost stationary compared to the fast beam electrons. If
fe is the ratio of positive ion charge to electron charge per unit volume, the electric
field due to the space charge will be reduced by a factor (1−fe). The magnetic field,
however, remains unaffected as the stationary ions do not contribute to current
flow. The ions, of course, do oscillate radially in the potential well of the electron
beam, but the oscillation periods are long compared to the electron oscillation pe-
riods. On the other hand, if we are dealing with a positive ion beam, the ions from
the collisions are ejected and the secondary electrons remain in the beam. These
electrons are very mobile and oscillate rapidly across the beam in the transverse
direction. The net effect is a partial charge neutralization of the ion beam which, as
in the case of an electron beam, does not affect the beam current and the associated
self magnetic field. As we will see, the combined effect of self magnetic field and
partial charge neutralization may not only balance the repulsive electric force but
may result in a net focusing or pinching of the beam.

Let us now list the assumptions that we will make in our simple uniform beam
model:

1. The beam has a circular cross section with radius a and
propagates within a concentric drift tube of radius b, and the
variation of beam radius with axial distance z is slow enough
that axial electric field components Ez and radial magnetic
field components Br can be neglected.

2. The potential difference 	φ between beam axis and the
drift-tube wall due to the space charge of the beam is small
compared to the voltage equivalent of the particles’ kinetic
energy.

3. The beam particle density, as well as the density of
charge-neutralizing particles of opposite polarity, is uniform
inside the beam and zero outside. In view of assumption 2,
the axial velocity of all beam particles is approximately the
same, and we can therefore assume that the current density
is uniform.

4. The flow is laminar (i.e., all beam particles move on
trajectories that do not cross).
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5. We consider a steady-state situation; that is, ∂/∂t = 0 and the
beam cross section at any given position along the direction
of travel does not change with time.

6. The particle trajectories obey the paraxial assumption that
the angle with the axis (slope) is small. This follows
implicitly from assumption 1.

For the mathematical treatment that follows, we write the equations of motion
for a positive charge q, as in previous chapters. The factor fe represents a station-
ary charge distribution of opposite sign which results in a partial neutralization of
the space charge of the primary particles. The results can be applied to electrons
by setting q = −e. The current remains unaffected by the stationary particles. It
should be pointed out that, strictly speaking, the assumption of uniform charge
density is valid only when there are no charge-neutralizing particles present in the
beam (fe = 0). For a beam with gas focusing by secondary particles of opposite
charge polarity, the density profiles of both species tend to become nonuniform.
The uniform-density model is still useful, though, in describing the average behav-
ior of the beam in this case.

First we note that in the steady state considered here the volume charge den-
sity ρ and the current density J at any point within the beam, or alternatively, the
line charge density ρL and beam current I, are related by the continuity equation,
that is,

J = ρv, (4.9a)

I = ρLv, (4.9b)

where v is the velocity of a charge element at that point, and vz ≈ v has been
assumed in (4.9b). Due to the space charge of the beam, there exists a potential
difference between the beam axis (r = 0) and the beam surface (r = a) and (for
b > a) between the beam edge and the wall of the drift tube. If the total energy
of the particles is a constant, the kinetic energy of a particle on the axis will be
less than that of a particle on the beam edge. Thus, in general, we have a velocity
distribution v(r), and if ρ = const, J must be a function of radius, or vice versa.
In principle, we could specify any one of the three functions, and the other two
are then determined self-consistently by Equation (4.9), Maxwell’s equations, and
the equations of motion. However, in our uniform beam model, we abandon self-
consistency to avoid mathematical complexity. As long as the paraxial assumption
holds (i.e., vr � v, vθ � v, vz ≈ v) and the difference in potential energy across
the beam is small compared to the kinetic energy of the particles, the error will be
small. Our major objective at this point is to gain physical insight into the behavior
of the beam with a minimum of mathematical effort. Thus, we will assume that
J, ρ, and vz ≈ v are all constant across the beam (i.e., independent of radius r).
Hence, with ρ0 = I/a2πv denoting the charge density of the primary beam parti-
cles, we obtain

Jz = J = I

a2π
, (4.10a)
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ρ = ρ0(1 − fe) = I (1 − fe)

a2πv
for 0 � r � a, (4.10b)

and J = 0, ρ = 0 for r > a. In view of assumption 1, the electric field has only a
radial component, which is readily found by application of Gauss’s law, ∫ ε0E·dS =
∫ ρ dV , to a cylinder of radius r and unit length in the z-direction:

Er = ρ0(1 − fe)r

2ε0
= I (1 − fe)r

2πε0a2v
for r � a, (4.11a)

Er = I (1 − fe)

2πε0vr
for r > a. (4.11b)

When charge neutralization is absent (fe = 0), we obtain

Er = ρ0r

2ε0
= Ir

2πε0a2v
for r � a (4.11c)

and

Er = I

2πε0vr
for r > a. (4.11d)

The magnetic field, which has only an azimuthal component, is obtained by ap-
plying Ampère’s circuital law, ∫ B · dl = µ0 ∫ J · dS, which yields

Bθ = µ0
Ir

2πa2
for r � a, (4.12a)

Bθ = µ0
I

2πr
for r > a. (4.12b)

By integrating Equations (4.11) we obtain for the electrostatic potential distribu-
tion (with φ = 0 at r = b)

φ(r) = Vs

(
1 + 2 ln

b

a
− r2

a2

)
for r � a, (4.13a)

φ(r) = 2Vs ln
b

r
for a � r � b, (4.13b)

where

Vs = ρ0(1 − fe)a
2

4ε0
= I (1 − fe)

4πε0βc
≈ 30I

β
(1 − fe) (4.14a)

and

Vs = ρ0a
2

4ε0
= I

4πε0βc
≈ 30I

β
(4.14b)

when charge neutralization is absent (fe = 0).
The peak potential on the beam axis (r = 0) is thus [ from (4.13a)] φ(0) = V0 =

Vs[1+2 ln(b/a)], and the maximum electric field at the beam edge is Ea = 2Vs/a ≈
60I (1 − fe)/(βa), or Ea ≈ 60I/(βa) when fe = 0.

We now examine the motion of a beam particle in this field using only the radial
force equation

d

dt
(γmṙ) = γmr̈ = qEr − qżBθ ,
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where we dropped the force term qrθ̇Bz on the grounds that rθ̇ is negligibly small
and γ = const since there is no external acceleration. Substituting for Er from
(4.11a) and for Bθ from (4.12a), we get with ε0µ0 = c−2, ż = v = βc,

γmr̈ = qIr

2πε0a2βc

(
1 − fe − β2), (4.15a)

or

γmr̈ = qIr

2πε0a2βc

(
1 − β2) for fe = 0. (4.15b)

With

r̈ = v2
z

d2r

dz2
= β2c2r ′′,

Equation (4.15) becomes

r ′′ = qIr(1 − fe − β2)

2πε0a2mc3β3γ
. (4.16a)

or, with fe = 0, 1 − β2 = γ −2,

r ′′ = qIr

2πε0a2mc3β3γ 3
. (4.16b)

We will now introduce several parameters used in the literature on beams with
space charge. First, we define a characteristic current I0 by

I0 = 4πε0mc3

q
≈ 1

30

mc2

q
, (4.17)

which is approximately 17 kA for electrons and 31(A/Z) MA for ions of mass
number A and charge number Z. Next we introduce the Budker parameter [2] νB

defined as the product of the number of primary beam particles per unit length,
NL = ρL/q, and the classical particle radius rc. The latter is obtained by equating
the rest energy mc2 and potential energy q2/4πε0rc of a point charge with mass m
and charge q; hence, rc = q2/4πε0mc2, and we find

νB = NLrc = I

I0β
. (4.18)

Thus, for ultrarelativistic particles (β ≈ 1), the Budker parameter is simply given
by the ratio of the beam current I to the characteristic current I0.

A third important beam physics parameter, the plasma frequency, was already
introduced in Equation (4.2) for a relativistic, unneutralized beam (fe = 0).

For the more general case where charge neutralization is not zero (fe �= 0), our
definition ω2

p = Fs/γmr , using 1 − fe − β2 = γ −2(1 − γ 2fe), yields

ω2
p = q2n

ε0γ 3m

(
1 − γ 2fe

)
, (4.19)

or, in terms of the beam current I ,
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ω2
p = qI

πε0mcβγ 3a2

(
1 − γ 2fe

)
, (4.20a)

and

ω2
p = qI

πε0mcβγ 3a2
(4.20b)

when fe = 0. Equation (4.15) for the radial motion of a particle may then be written
in the form

r̈ = ω2
p

2
r. (4.21)

The advantage of our generalized definition for the plasma frequency is now ap-
parent: Equation (4.21) has the same mathematical form whether the motion is
nonrelativistic or relativistic, and whether charge neutralization is present or not.
From (4.19) we see that ω2

p > 0; that is, the net space charge is defocusing when
γ 2fe < 1. On the other hand, ω2

p < 0 (i.e., the self fields produce a net focusing
force) when

fe >
1

γ 2
. (4.22)

This relation is known as the Budker condition of self focusing [2]. It is of particular
importance for intense relativistic electron beams where a small fraction of station-
ary positive ions is sufficient to focus the beam.

From Equations (4.19) and (4.20) we note that the plasma frequency is inversely
proportional to the beam radius, a. As the radius a changes in a diverging or con-
verging beam, ωp will also change. Thus, we cannot integrate Equation (4.21) un-
less independent information is provided on the variation of ωp with time or dis-
tance. Furthermore, it is desirable to eliminate time and introduce the distance
along the direction of beam propagation as the independent variable, as was done
in Equation (4.16). Before we proceed with solving this trajectory equation, we in-
troduce another important parameter, the generalized perveance K, a dimensionless
quantity, defined by Lawson [3] as

K = I

I0

2

β3γ 3

(
1 − γ 2fe

)
. (4.23)

As can be seen, the generalized perveance – unlike the plasma frequency – does
not depend on the beam radius. It is solely defined by the beam current and par-
ticle energy and, where applicable, by the charge-neutralization factor fe. When
charge neutralization is absent (i.e., fe = 0), the relationship among generalized
perveance, Budker parameter, and the plasma frequency is given by

K = I

I0

2

β3γ 3
= 2νB

β2γ 3
= ω2

pa2

2β2c2
. (4.24)

In terms of the generalized perveance, as defined in Equation (4.23), the equation
(4.16) for the particle trajectories can be expressed as

r ′′ = K

a2
r. (4.25)



176 4 Linear Beam Optics with Space Charge

Note that unlike Equation (4.21), this equation shows the explicit dependence on
the beam radius. It applies to the trajectory of any particle within the beam (r � a)

and can be solved if the radius a is known as a function of distance. Now, under the
conditions of laminar flow, the trajectories of all particles are similar and scale with
the factor r/a. Specifically, the particle at r = a will always remain at the boundary
of the beam. Thus, by setting r = a = rm in Equation (4.25), we obtain the equation
for the beam radius rm(z) in drift space, which may be written in the form

rmr ′′
m = K. (4.26)

We should point out here that our paraxial beam model is valid only for |K| � 1,
as discussed in Section 4.2.3. With regard to the solution of Equation (4.26), several
special cases are of interest:

1. fe = 0 (no stationary, neutralizing particles)

K = 2νB

β2γ 3
= ω2

pr2
m

2c2β2
= I

I0

2

β3γ 3
. (4.27a)

2. fe = 1 (full charge neutralization by the stationary particles)

K = −2νB

γ
= − I

I0

2

βγ
. (4.27b)

3. fe = 0, γ ≈ 1 (nonrelativistic approximation)

K = 2νB

β2
= I

I0

2

β3
= qI

2πε0mv3
. (4.27c)

Substituting v = (2qV/m)1/2, where V denotes the beam voltage, Equation
(4.27c) may be written as

K = I

V 3/2

[
1

4πε0(2q/m)1/2

]
. (4.28)

For nonrelativistic, unneutralized (fe = 0) beams, the ratio I/V 3/2 is known as
the perveance. The generalized perveance K thus differs from the perveance I/V 3/2

by the factor in brackets in Equation (4.28). In the case of electron beams (and sta-
tionary positive ions), the above formulas for the generalized perveance K become
numerically

K = 1.174 × 10−4 I

(γ 2 − 1)3/2
for fe = 0, (4.29a)

K = −1.174 × 10−4 I

(γ 2 − 1)1/2
for fe = 1, (4.29b)

and for a nonrelativistic electron beam with fe = 0,

K = 1.515 × 104 I

V 3/2
. (4.29c)

Finally, we note that the case fe = 1/γ 2 represents a force-neutral beam where
K = 0 and the particles move on straight lines.
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Let us now integrate Equation (4.26) for the radius of the beam in the general
case where K �= 0 assuming that the beam has an initial radius rm = r0 and slope
r ′
m = r ′

0 (at z = 0). First, we introduce dimensionless variables

R = rm

r0
, R′ = dR

dZ
= 1√

2|K| r
′
m, Z = (±2K)1/2 z

r0
= (2|K|)1/2 z

r0
.

(4.30)

Here and in the equations that follow, the plus sign applies when K > 0 (defocus-
ing) and the minus sign when K < 0 (focusing). In terms of the new variables,
Equation (4.26) can be written in the form

d2R

dZ2
= R′′ = ± 1

2R
, (4.31)

or, alternatively,

2R′ dR′ = ±dR

R
. (4.32)

Integration of Equation (4.32) with R = R0 = 1 and R′ = R′
0 at z = 0 yields

R′2 − R′2
0 = ± ln R, (4.33)

or

R = e±(R′2−R′2
0 ). (4.34)

By integration of Equation (4.33) one obtains

Z =
∫ R

1

dR

R′ =
∫ R

1

dR

(R′2
0 ± ln R)1/2

. (4.35)

If we use R′ as the independent variable, we get from Equations (4.32) and (4.34)

dR = 2R′e±(R′2−R′2
0 )dR′. (4.36)

Integration of Equation (4.36) then yields the alternative expression

Z = 2e∓R′2
0

∫ (± ln R+R′2
0

)1/2

R′
0

e±R′2
dR′, (4.37)

or

z

r0
=

(∣∣∣∣ 2

K

∣∣∣∣
)1/2

e∓R′2
0

∫ (± ln R+R′2
0

)1/2

R′
0

e±R′2
dR′. (4.38)

The factor in front of the integral is always positive. As for the integral itself, the
plus sign applies when R′ > 0 (diverging beam) and the minus sign applies when
R′ < 0 (converging beam). If the initial slope is zero (R′

0 = 0), for instance, the
beam will diverge when K > 0, and we have then

z

r0
=

(
2

K

)1/2 ∫ [ln(rm/r0)]1/2

0
eR′2

dR′. (4.39)



178 4 Linear Beam Optics with Space Charge

On the other hand, a converging beam results when K < 0, and we can write (for
R′

0 = 0)

z

r0
=

(∣∣∣∣ 2

K

∣∣∣∣
)1/2 ∫ [ln(r0/rm)]1/2

0
e−R′2

dR′. (4.40)

Even if K > 0, we can still get a converging profile by passing the beam through
a focusing lens. In this case, the initial slope of the beam profile will be negative
(R′

0 < 0). The beam radius rm will decrease until a minimum is reached where
R′ = 0. Beyond that, the radius will increase again (diverging beam profile) as a
result of the defocusing self-field forces. The minus sign in the upper limit of the
integral in Equation (4.38) applies for the region from z = 0, R = 1 to the point
zm, where R is a minimum and ln R + R′2

0 = 0. For z > zm, the plus sign in the
integral applies. The integral in Equation (4.38) is of the type∫ ±x

0
e±y2

dy,

which is tabulated in handbooks of mathematical functions. For different values
of the “reduced” initial slope R′

0, one obtains for the case K > 0(fe = 0) the
curves shown in Figure 4.1, where R is plotted versus the “reduced distance”
Z = (2K)1/2(z/r0). These curves might, for instance, represent the behavior of
a charged particle beam after passage through a focusing lens which changes the
slope R′

0 as the beam enters the drift region following the lens. As we see, the beam
diameter goes through a minimum (waist) which varies with the initial slope R′

0.
In some high-current applications one wants to pass as much current as possible

through a tube of diameter D and length L with the help of a focusing lens at the
tube entrance. In this case one has to focus the beam such that the waist is at the
center of the tube, the beam having equal diameters at the entrance and exit of the
tube (R = R0 = 1). As we can see from Figure 4.1, there is a maximum value of Z,
and hence for given values of beam voltage V , tube length L, and radius r0 = D/2,
a maximum current that one can get through the tube. This maximum Z value is
2.16, and the corresponding slope is about R′

0 = −0.92 [i.e., Z = (2K)1/2(L/r0) =
2.16].

Letting r0 = D/2, z = L, and Z = 2.16, we obtain from Equations (4.30) and
(4.27a) for the maximum current:

Im = I0
β3γ 3

4
(2.16)2

(
r0

L

)2

= 1.166I0β
3γ 3

(
r0

L

)2

. (4.41)

For electrons the maximum current (in amperes) is

Im = 0.496 × 104(γ 2 − 1)3/2
(

D

L

)2

(4.42)

in the relativistic case, and

Im = 38.5 × 10−6V 3/2
(

D

L

)2

(4.43)

in the nonrelativistic approximation.
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Fig. 4.1 Beam radius R versus “reduced” distance Z for
different initial slopes R′

0 = dR/dZ (laminar flow).

Returning again to Figure 4.1, let us consider now the upper curve, where the
initial slope is zero (R′

0 = 0). For this particular case, the beam diameter doubles
in a reduced distance of about Z = 2.12, and one can show that the curve Z versus
R can be approximated by the relation

Z = 2
∫ [ln R]1/2

0
eR′2

dR′ ≈ 2(R − 1)1/2, (4.44)

which is accurate to better than 3% for 1 � R � 2. In this approximation, the beam
radius is a quadratic function of distance given by

R = rm

r0
= 1 + 0.25Z2 = 1 + 0.5K

(
z

r0

)2

. (4.45)

For an electron beam with no ions (fe = 0), we obtain

R = rm

r0
= 1 + 5.87 × 10−5 I

(γ 2 − 1)3/2

(
z

r0

)2

(4.46)

in the relativistic case, and

R = rm

r0
= 1 + 7.58 × 103 I

V 3/2

(
z

r0

)2

(4.47)

in the nonrelativistic approximation.
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From these relations one can calculate the distance in which the beam radius
doubles due to the space-charge repulsion. Setting rm = 2r0, one obtains for an
electron beam from (4.46) for the doubling distance the relativistic relation

z = zd = 1.31 × 102(γ 2 − 1)3/4I−1/2r0

and from (4.47) the nonrelativistic formula

z = zd = 1.15 × 10−2V 3/4I−1/2r0.

As an example, for an electron beam with a kinetic energy equal to the rest energy
of 511 keV and a current I = 200 A, one finds zd = 21.0r0 or zd = 52.6 cm for
r0 = 2.5 cm. In this case, the beam expansion is slow enough (zd/r0 � 1) that the
assumptions of our uniform beam model are well satisfied.

As was pointed out earlier, the defocusing self-field forces in a relativistic electron
beam can be compensated by a background of stationary positive ions. Thus, when
fe = 1/γ 2 (i.e., K = 0), we get from Equation (4.26) r ′′

m = 0, or rm = r ′
0z + r0;

and if the initial slope is zero (r ′
0 = 0), the beam diameter remains constant. The

positive ions thus provide uniform focusing, like a long solenoidal magnetic field.
When fe > 1/γ 2, K is negative and the beam pinches. The beam diameter

decreases until it approaches zero at

(0.5|K|)1/2
( z

r0

)
≈ 0.8,

as discussed by Lawson [C.17]. As rm → 0, our beam model breaks down. The
motion is no longer paraxial as the slopes of the trajectories become very large; at
the same time, the flow becomes nonlaminar. In practice, of course, all beams have
transverse temperature, or nonzero emittance, which prevents such a collapse of
the beam radius. The effects of finite emittance on the beam envelope are discussed
in the next section, and then we explore the limits of our model and the concept of
limiting currents.

4.2.2
Beam Envelope with Self Fields and Finite Emittance

The derivation leading to the trajectory equation (4.16) or (4.25) is valid for a uni-
form density profile whether the beam is laminar or nonlaminar. It was only when
we derived the equation for the beam radius [Equation (4.26)] that we introduced
the assumption of laminar flow. Let us now assume that the particles have a distrib-
ution in r, r ′ trace space that corresponds to an area of elliptical shape, as discussed
in Chapter 3. If the radius rm represents the envelope of the beam (i.e., if we set
a = rm), Equation (4.16) or (4.25) describes the motion of any particle at radius r

within the beam. Specifically, when the current is negligibly small (I → 0), we get
r ′′ = 0, or r = r0 + r ′

0z, which is the motion of a particle in free space with zero self
fields. For this case we found that the beam envelope obeys a differential equation
of the form of Equation (3.161), which we rewrite with R = rm as

r ′′
m = ε2

r3
m

, (4.48)
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where ε denotes the emittance of the beam.
Since the trajectory equation (4.16) is linear in r , we can obtain the general enve-

lope equation by linear superposition of the two special solutions: Equation (4.26)
for zero emittance and Equation (4.48) for zero space charge; that is, we can write

r ′′
m = ε2

r3
m

+ K

rm
. (4.49)

A mathematically more rigorous derivation of this equation is presented in Section
5.3.2.

Integration of Equation (4.49) with the initial condition rm = r0 and r ′
m = r ′

0 at
z = 0 and assuming that K > 0 yields the result

r ′
m =

[
r ′2

0 + ε2
(

1

r2
0

− 1

r2
m

)
+ 2K ln

rm

r0

]1/2

(4.50)

and

z =
∫ rm

r0

[
r ′2

0 + ε2
(

1

r2
0

− 1

r2
m

)
+ 2K ln

rm

r0

]−1/2

drm. (4.51)

When K = 0, the integral can be evaluated and we obtain the result (3.162)
for the beam envelope without space charge. Likewise, for ε = 0, we recover the
result (4.35) for our uniform, laminar beam model. In the general case of a beam
with space charge and finite emittance, the integral in (4.51) has to be evaluated
numerically and one obtains envelope curves that are qualitatively similar to those
shown in Figure 4.1.

4.2.3
Limitations of the Uniform Beam Model and Limiting Currents

It was noted earlier that our paraxial beam model becomes invalid when the particle
trajectories either strongly converge or strongly diverge (i.e., when the assumptions
|K| � 1, ṙ � v are no longer satisfied). To explore this limitation of our model,
let us assume that we have a fully charge-neutralized relativistic electron beam
(fe = 1), where K = −(I/I0)(2/βγ ) = −2νB/γ and the particles are affected
only by the magnetic self force of the beam. From (4.25), one obtains for a particle
within the beam the trajectory equation

r ′′ +
( |K|

a2

)
r = 0. (4.52)

Now let us treat the beam radius as a constant. With r = r0 and r ′ = r ′
0 = 0 at

z = 0, the solution of Equation (4.52) is then

r = r0 cos

(√|K| z
a

)
(4.53)

and

r ′ = − r0

a

√|K| sin

(√|K| z
a

)
. (4.54)
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The radial velocity is vr = ṙ = r ′v, or

vr = − r0

a
v
√|K| sin

(√|K| z
a

)
. (4.55)

It has a maximum value (for r0 = a) of v|K|1/2 = v(2νB/γ )1/2. We had assumed
that vr � v, and therefore we require that νB/γ � 1 or |K| � 1 in order for our
model to be valid. This implies that the electron current must be substantially less
than a critical current IA, which follows from Equation (4.18) by setting νB/γ = 1:

IA = I0βγ (4.56)

(i.e., IA ≈ 1.7 × 104βγ amperes for electrons). This fundamental current limit
was first derived in 1939 by H. Alfvén [4], who studied the propagation of electrons
through a plasma in space. If one does not assume that |vr | � v, it is still possible
to solve the equation of motion since γ is a constant in the charge-neutral beam,
where only the magnetic self field is present. The solution was obtained by Alfvén
in terms of elliptical integrals, and it indicates that beam propagation essentially
stops when the limit (4.56) is reached since most of the electrons are reflected back
in the strong magnetic self field.

The factor νB/γ is a measure of the effects of the self fields on the beam dynam-
ics. In terms of the beam current, we can write

I

IA
≈ νB

γ
. (4.57)

Note that, in general, β and γ are functions of radius and that the beam current
relates to the mean velocity βc. In our simple model, β is uniform across the beam,
and the velocity of individual particles is identical with the mean velocity. However,
when β = β(r), we have to use β in the definition [Equation (4.18)] of the Budker
parameter νB.

We conclude from this analysis of a fully charge-neutralized beam that the uni-
form beam model in paraxial approximation is good only as long as νB/γ � 1.
When νB/γ → 1, the assumptions of uniform current density across the beam and
vr � v are violated. The particles acquire increasingly larger values of radial veloc-
ity; as the more accurate trajectory calculations indicate, at νB/γ ≈ 1 the particles
pass through the axis with no remaining axial velocity and are reflected backward.
The beam therefore ceases to propagate in the forward direction, which explains
why we speak of a limiting current, IA. The stopping of a beam by its own magnetic
self field was also studied by Lawson [3]. The relation (4.56) is often referred to as
the Alfvén current, or as the Alfvén–Lawson current, or simply as the magnetic current
limit.

A similar fundamental current limit also exists for a beam that is not charge-
neutralized. In this case, without external focusing, the beam would expand radially
due to the repulsive space-charge forces. For the following derivation, let us assume
that an infinitely strong applied magnetic field prevents such expansion and keeps
the beam radius constant. Due to the space-charge field, part of the kinetic energy
of a particle inside the beam is converted into electrostatic potential energy. The



4.2 Axisymmetric Beams in Drift Space 183

potential difference between center (r = 0) and the wall (r = b) of a uniform-
density, cylindrical beam of radius a inside a conducting tube of radius b � a is
obtained from Equations (4.13a) and (4.14b):

φ(0) = V0 = Vs

(
1 + 2 ln

b

a

)
= I

4πε0βc

(
1 + 2 ln

b

a

)
, (4.58)

where I is the beam current and βc the average (axial) velocity in the beam. Sup-
pose that all particles are injected into the conducting drift tube with the same
kinetic energy (γ − 1)mc2 = qV . For a particle on the axis (r = 0) inside the tube,
the kinetic energy is then reduced by qV0, so that [with γ (0) = γ0]

γ0mc2 = γmc2 − qV0. (4.59)

One sees that a particle is stopped when all its kinetic energy is converted into
potential energy [i.e., when (γ − 1)mc2 = qV0]. From (4.58), this happens when
the current reaches the limit [5]

I = I0
β(γ − 1)

1 + 2 ln(b/a)
. (4.60)

This value is actually a little too high since the current maximum is reached before
the potential energy on the axis equals the kinetic energy. Solving (4.58) for the cur-
rent I and expressing V0 and β in terms of γ and γ0, one finds from the condition
∂I/∂γ0 = 0, the more accurate limit (with fe = 0)

IL = I0

(
γ 2/3 − 1

)3/2

1 + 2 ln(b/a)
, (4.61)

which was first derived by Bogdankevich and Rukhadze and independently by Na-
tion and Read [6]. Note that this space-charge limiting current IL is lower than the
Alfvén–Lawson current IA.

So far, we have considered the two extreme cases where the beam was either
fully charge neutralized (fe = 1) or had no charge-neutralizing particles (fe = 0).
In the first situation, the beam pinches and, as a result, stops propagating when
νB/γ ≈ 1 or I = IA. In the latter case, the beam would blow up radially unless
it is confined by a strong external magnetic field, and propagation stops when the
potential energy of a particle in the beam becomes comparable to the kinetic energy
at injection (i.e., when I = IL).

Let us now examine what happens when the beam is partially neutralized and
no external magnetic field is present. As we discussed in connection with Equation
(4.26), the repulsive electric force exceeds the magnetic attraction when fe < 1/γ 2

and the beam spreads radially (r ′′
m > 0). On the other hand, for fe > 1/γ 2, the

beam pinches due to a net inward focusing force (r ′′
m < 0). A special “force-free”

state exists when fe = 1/γ 2. When fe �= 0, the analysis leading to the space-charge
limiting current (4.61) can be extended simply by including the factor (1 − fe) in
the denominator; that is, one may write

IL = I0

(
γ 2/3 − 1

)3/2

[1 + 2 ln(b/a)](1 − fe)
. (4.62)
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This formula suggests that an arbitrarily large current can be achieved by using a
large amount of charge neutralization; in fact, IL → ∞ when fe → 1. However,
we have seen that for a charge-neutralized beam (fe = 1), magnetic pinching leads
to the Alfvén–Lawson limit IA. Consequently, as fe → 1, Equation (4.62) must be
modified by the constraint

IL � IA = I0βγ (for fe → 1). (4.63)

From this discussion it appears that IA constitutes a fundamental upper limit for
particle beams. But this conclusion is not correct since IA applies only to a beam
that is fully charge neutralized by stationary particles of opposite charge. If the self-
magnetic field of the primary beam becomes neutralized by an opposite current of
moving secondary particles, pinching no longer occurs, and in principle, the beam
current can become arbitrarily high. Such a current neutralization can be achieved
by injecting co-moving particles of opposite charge into the primary beam, as, for
example, in ion propulsion where electrons are used to neutralize the positive ion
beam. Another mechanism is the generation of a return current due to the induc-
tive fields associated with short beams propagating through a gas or plasma. The
intense relativistic electron beams produced by high-power pulse generators have
relatively short time durations with typical pulse widths of 10 to 100 ns. The rise
time of these beams produces a time-varying magnetic field ∂Bθ/∂t and hence an
electric field Ez (from ∇ × E = −∂B/∂t) as the beam front enters the gas region.
As soon as the ionizing collisions of the electrons with the gas molecules produce
a plasma, this E field generates a current in the opposite direction to the incom-
ing electron beam. The magnetic field Bθ associated with this return current is
opposite to the Bθ of the primary beam. Consequently, one gets a partial magnetic
neutralization for which we introduce the factor 1 − fm. Our original equation for
the magnetic field (4.12a) must then be written in the form

Bθ = µ0I (1 − fm)r

2πa2
for r � a. (4.64)

Assuming that the beam is completely charge-neutralized (fe = 1), the equation
of motion (4.15) has to be modified and will now be

γmr̈ = −qIrβ2(1 − fm)

2πε0a2βc
. (4.65)

The force is still inward, but it is weakened by the factor 1 − fm. The magnetic
current limit in this case will then be increased by a factor (1 − fm)−1, that is,

I∗
A = 17,000βγ

1 − fm

. (4.66)

Since, by assumption, the beam is electrically neutral (fe = 1), the consideration
that kinetic energy is transformed into potential energy does not apply. Therefore,
I∗

A can be considerably greater than the Alfvén current IA if there is a large degree
of magnetic neutralization [see Miller, C.18, Sections 4.3.3 and 5.5]. Thus, we can
substitute I∗

A for IA whenever a current in the direction opposite the primary beam
current can be produced that results in partial magnetic neutralization.
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The existence of upper limits for the beam current can also be understood from
an energy-conservation or “power-balance” argument. As a charged particle beam
propagates, kinetic energy has to be spent to build up the electric and magnetic
self-field energy along the path of the beam. Suppose that a beam of length L and
constant radius rm = a propagates inside a conducting drift tube of radius b. Let
the pulse duration τ = L/v be short enough that the magnetic self field does not
penetrate through the conducting wall. The total field energy associated with the
beam is then given by

W = 2πL

[
ε0

2

∫ b

0
E2

r r dr + 1

2µ0

∫ b

0
B2

θ r dr

]
. (4.67)

Substitution for Er and Bθ from Equations (4.11) and (4.12) then yields the expres-
sion

W = I 2L

4πε0c2

(
1

4
+ ln

b

a

)[
(1 − fe)

2

β2
+ (1 − fm)2

]
, (4.68)

where we have added the parameters fe and fm to include partial charge or current
neutralization. This field energy must be supplied from the kinetic energy of the
particles at the beam front, (γf −1)mc2. If (γi −1)mc2 represents the kinetic energy
of the beam front particles at injection into the drift tube, one obtains the following
energy conservation law in the form of a power-balance equation (assuming that
the current I remains unchanged):

I (γf − 1)
mc2

e
= I (γi − 1)

mc2

e
− W

L
βf c, (4.69)

where βf c is the final beam-front velocity. It is obvious from the last two equations
that there is an upper limit for the beam current (unless fe = fm = 1) where the
field energy is comparable to the kinetic energy of the particles and hence the beam
can no longer propagate.

4.2.4
Self-Focusing of a Charge-Neutralized Beam (Bennett Pinch)

In our discussion of the laminar beam model (Section 4.2.1), we found that charge
neutralization leads to self-focusing, or pinching, of the beam when fe > 1/γ 2 and
hence K < 0. We concluded, however, that the paraxial assumptions of our model
are no longer valid when the beam radius approaches zero. A real beam is not
perfectly laminar but always has a finite transverse temperature, or emittance, that
prevents the collapse to zero radius. Let us now examine the pinch effect and the
role of finite temperature more closely by returning to the beam envelope equation
(4.49), which includes both the space charge and the emittance.

In the following, let us assume that we are dealing with a relativistic electron
beam with stationary positive ions. If K is negative due to the fact that the inward
magnetic force exceeds the repulsive space-charge force, there will be an equilib-
rium beam radius rm = a, where this net inward force is just balanced by the
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outward “pressure” due to the thermal velocity spread, or emittance, of the beam.
Setting r ′′

m = 0 in (4.49), we find that

ε2 = −Ka2 = |K|a2. (4.70)

Solving for the beam radius a yields

a = ε√|K| . (4.71)

An alternative form of this equilibrium relation can be obtained by considering a
thermal distribution and introducing the transverse electron beam laboratory tem-
perature Te in place of the emittance. With ṽx = (kBTe/γm)1/2, a = 2x̃, we obtain
from (4.4a) an effective emittance (ε = 4ε̃) of

ε = εn

βγ
= 2a

(
kBTe

γmv2

)1/2

. (4.72)

Substitution of (4.72) in (4.70) yields

kBTe = 1

4
|K|γmv2 = 1

4
|K|γβ2mc2. (4.73)

For a fully charge-neutralized beam (fe = 1, fm = 0), K is given by Equation
(4.27b); hence,

kBTe = 1

4

I

I0

2

βγ
γβ2mc2

or, with I0 = 4πε0mc3/q,

kBTe = 1

2

Iqβc

4πε0c2
. (4.74)

If both sides of (4.74) are multiplied by the number of electrons per unit length,
NL, one obtains, with NLqβc = I and 1/ε0c

2 = µ0 on the right-hand side, the
relation

2NLkBTe = µ0

4π
I 2. (4.75)

In a real situation, the positive ions are not stationary and the ion distribution also
has a transverse temperature, Ti , which we can assume to be nonrelativistic. If this
ion temperature is included, one obtains the more general expression

2NLkB(Te + Ti) = µ0

4π
I 2, (4.76)

which is known as the Bennett pinch relation [7].
The physical meaning of the pinch relation becomes clear when we recognize

that NLkB(Te + Ti) represents the mean transverse kinetic energy per unit length
of the beam, while the right-hand side relates to the field energy. From (4.68), we
find that the magnetic field energy stored inside the electron beam (with fe = 1,
fm = 0, b = a) per unit length is given by Wm/L = (1/4)(µ0/4π)I 2. Consequently,
the Bennett pinch condition may be stated in the form

NLkB(Te + Ti) = 2
Wm

L
; (4.77)
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that is, the mean transverse kinetic energy per unit length is equal to two times the
magnetic field energy stored per unit length inside the beam region (r � a). In
practice, it is difficult to produce such an ideal equilibrium state for a significant
length of time.

4.3
Axisymmetric Beams with Applied and Self Fields

4.3.1
The Paraxial Ray Equation with Self Fields

The results obtained for the self-field effects on a beam propagating inside a drift
tube can be applied to the paraxial ray equation. To the extent that our uniform
beam model is valid (ν/γ � 1, etc.), Equation (4.25) is linear in radius r , and
since the paraxial ray equation is linear, we can simply add the two force terms
representing the applied fields and the self fields. Thus, we can amend Equation
(3.49) by (4.25) and obtain the modified paraxial ray equation

r ′′ + γ ′r ′

β2γ
+ γ ′′

2β2γ
r +

(
qB

2mcβγ

)2

r −
(

pθ

mcβγ

)2 1

r3
− K

r

r2
m

= 0, (4.78)

where K is the generalized perveance and rm is the beam radius.
It should be pointed out in this context that in axisymmetric beams propagating

through coaxial boundaries there are no electric or magnetic image fields. From
Gauss’s and Ampère’s laws the self fields are entirely determined by the charge and
current inside the radius r . This is no longer true, however, when the beam is dis-
placed from the axis, as discussed in Section 4.4.4. Note also that we assumed the
mean azimuthal beam rotation in the B field to be small enough that the axial self-
magnetic field is negligible; otherwise, K would have to include a corresponding
term. The above paraxial approximation thus implies that βr � βz and βθ � βz.
We will see in Chapter 5 how the beam can be treated self-consistently when these
paraxial restrictions are relaxed.

To solve the modified paraxial ray equation, we need to know the beam envelope
rm in the space-charge term as a function of axial distance z. From our previous
studies we know that the envelope equation can be obtained from the trajectory
equation by making the substitution r = rm and adding the emittance term. When
electrostatic lenses are present in which a change of particle energy occurs (i.e.,
γ ′ �= 0), the normalized emittance εn = βγ ε must be used since ε is no longer
constant. The envelope equation then takes the form

r ′′
m + γ ′r ′

m

β2γ
+ γ ′′rm

2β2γ
+

(
qB

2mcβγ

)2

rm −
(

pθ

mcβγ

)2 1

r3
m

− ε2
n

β2γ 2r3
m

− K

rm
= 0. (4.79)
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For laminar flow, the normalized emittance εn would be zero in our linear-beam
model.

The paraxial approximation demands that the generalized perveance is substan-
tially less than unity (i.e., |K| � 1). It is interesting to note that the emittance term
in (4.79) has the same r−3

m dependence as the angular momentum term. Both rep-
resent repulsive forces tending to diverge the beam. In fact, if we equate the two
terms, we see that

pθ

mc
= εn = βγ ε. (4.80)

Thus, a nonzero canonical angular momentum, which gives rise to a rotation of
the particle trajectories and hence a centrifugal force, has the same effect as the
normalized emittance, βγ ε. As an example, the magnetic field produced by the
heating current for a thermionic cathode or the earth magnetic field may generate
canonical angular momentum that in effect increases the normalized emittance of
the electron beam.

The solution of the envelope equation is relatively simple when the applied fields
acting on the beam can be represented by the thin-lens approximation. In this
case, one can use the thin-lens matrix neglecting self-field forces when the beam
passes through a lens, and Equation (4.51) for the beam envelope in the free space
between lenses. If the self fields are defocusing (K > 0), for instance, the position
of the image plane (upright ellipse) downstream from the lens is shifted farther
away. One can balance this effect by increasing the focusing strength of the lens,
thereby assuring that the image occurs in the same plane as in the absence of
self-field forces. When the self fields are negligible, the envelope of the beam was
found to have a hyperbolic shape as given by Equation (3.162), and the individual
trajectories of the particles are straight lines. For repulsive self forces (K > 0),
the beam envelope is obtained from Equation (4.39), which near the waist can be
approximated by the quadratic function (4.45). The individual trajectories can be
calculated from Equation (4.25) putting a = rm, fe = 0, that is,

r ′′ − K
r

r2
m

= 0. (4.81)

In general, rm = rm(z) and the solution of (4.81) is complicated. However, when rm

varies rather slowly so that we can assume it to be piecewise constant, the solution
of (4.81) is of the form

r = A cosh

√
Kz

rm
+ B sinh

√
Kz

rm
for K > 0. (4.82)

Similarly, one finds that in the case of attractive self fields (K < 0, fe > 1/γ 2) the
solutions for the individual trajectories are oscillatory (assuming again that rm may
be considered as piecewise constant), that is,

r = A cos

√|K|z
rm

+ B sin

√|K|z
rm

for K < 0. (4.83)
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The constants A and B are determined by the initial position and slope of the
particle. Obviously, if K is very small, the self-field effect represents only a small
correction to the straight-line trajectory solution (r ′′ = 0, r = r0 + r ′

0z).

4.3.2
Beam Transport in a Uniform Focusing Channel

Let us now consider the case of a beam propagating through a long, uniform fo-
cusing channel. We will assume that there is no applied accelerating electric field
(γ̇ = 0) and that the canonical angular momentum pθ is zero. The restriction
pθ = 0 implies that the particles are launched from a magnetically shielded source
(i.e., B = 0 at source) with θ̇0 = 0. For our further analysis we define the beam
envelope by R. Setting rm = R, the paraxial ray equation (4.78) may then be writ-
ten as

r ′′ + k2
0r − K

R2
r = 0 (4.84a)

In the literature on microwave sources, time t (rather than distance z) is preferred
as the independent variable. The ray equation then takes the alternative form

r̈ + ω2
0r − ω2

p

2
r = 0, (4.84b)

as can readily be verified.
The terms k2

0r and ω2
0r represent the linear external focusing force. The para-

meters k0 = 2π/λ0 and ω0 = k0v (v = beam velocity) define the wavelength λ0

and oscillation frequency of the transverse particle oscillations due to the applied
focusing force alone (i.e., when K = 0, or ωp = 0). The plasma frequency ωp is
defined by

ω2
p = q2n

ε0γ 3m
= 2Kv2

R2

according to Equations (4.2) and (4.24).
For the corresponding beam envelope equation one obtains from (4.79)

R′′ + k2
0R − K

R
− ε2

R3
= 0, (4.85a)

which in the time domain becomes

R̈ + ω2
0R − ω2

p

2
R − ε2v2

R3
= 0. (4.85b)

The best known example of a uniform focusing channel is a long solenoid, for
which case the oscillation frequency ω0 is identical with the Larmor frequency ωL,
that is,

ω0 = ωL = |qB|
2γm

, (4.86a)

and the wave number is given by
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k0 = ωL

v
= |qB|

2mcβγ
. (4.86b)

Both ω0 and k0 are constants since the magnetic field B is uniform (i.e., indepen-
dent of distance along the channel). Furthermore, we recall that the above equa-
tions describe the particle and envelope motion in the rotating Larmor frame.

Another example of a uniform transport channel that is often used for mathe-
matical convenience is the case where the focusing force is provided by a transpar-
ent stationary cylinder of opposite charge with uniform density ρe. This is basically
identical to the charge-neutralization effects discussed previously, for instance in
connection with the Bennett pinch (Section 4.2.4). However, in our present context
we treat the effect of the cylindrical channel of opposite charge like an external fo-
cusing force. We will see in Section 4.4 that in the smooth approximation, where
only the average forces are considered, a periodic-focusing channel behaves like a
cylinder of opposite charge. This equivalence is particularly apparent in the case of
a periodic electrostatic quadrupole channel, where the transverse focusing forces
are electrical in nature. However, the analogy also applies to magnetic quadrupole
channels, or axisymmetric channels consisting of periodic arrays of short solenoids
or electrostatic einzel lenses. Mathematically, the treatment of the average behavior
of the particle motion or beam envelope in such periodic systems is identical with
that in a uniform cylinder of opposite charge. The radial electric field due to a uni-
form charge distribution of density ρe is [ from Equation (4.11c)] Er = ρer/2ε0,
and one can readily show that the corresponding frequency ω0 and wave number
k0 for the particle motion in such a field are given by

ω0 =
[

qρe

2ε0γm

]1/2

(4.87a)

and

k0 = ω0

v
=

[
qρe

2ε0γm

]1/2 1

v
. (4.87b)

Let us now return to the envelope equation in the form (4.85a). The solution for
the beam envelope will depend on the initial conditions, that is, on the beam radius
R(0) and the slope R′(0) at the entrance (z = 0) of the uniform channel. In view
of the fact that the force is constant (i.e., k0 is independent of distance z), there
will be a special solution where R(z) = a = const, R′(z) = 0, and R′′(z) = 0,
and hence the beam envelope is a straight line. This special case is known as the
matched beam, and from (4.85a) it is defined by the algebraic equation

k2
0a − K

a
− ε2

a3
= 0. (4.88a)

This can be written in the alternative forms

k2a − ε2

a3
= 0, (4.88b)

or

ka2 = ε (4.88c)
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by introducing the wave number k defined as

k2 =
(

2π

λ

)2

= k2
0 − K

a2
. (4.89a)

The last relation can be expressed in terms of the plasma wave constant kp = ωp/v

as

k2 = k2
0 − 1

2
k2
p, (4.89b)

or in terms of the frequencies as

ω2 = ω2
0 − ω2

p

2
. (4.89c)

The parameters k and ω define the wavelength λ = 2π/k and oscillation fre-
quency of the particle oscillation due to the action of both the applied focusing
force and the space-charge force. Since the space-charge force of the beam is defo-
cusing, we have k < k0, λ > λ0, ω < ω0, as can be seen from Equations (4.89).
The ratio k/k0, or alternatively, ω/ω0, is known as the tune depression due to space
charge.

The algebraic matched-beam envelope equation (4.88a) relates the four quanti-
ties a, k0,K , and ε and can be solved for any quantity if the other three are given.
We will first solve it for the beam radius a by assuming that k0, K , and ε are known.
First, we will consider the two extreme cases where either the emittance ε or the
space-charge force (represented by the generalized perveance K) is zero. In the
limit of zero emittance (ε = 0), the flow is laminar and the beam radius is given by

aB = K1/2

k0
. (4.90)

This type of flow, first identified by Brillouin [8] in 1945, is known as Brillouin flow.
When the space charge is negligible (K = 0), on the other hand, the beam

radius is

a0 =
(

ε

k0

)1/2

. (4.91)

By comparison with (3.346) we see that the amplitude function w for the uniform
transport channel in the case of zero space charge is w0 = k

−1/2
0 and is independent

of z. If we introduce the dimensionless parameter

u = K

2k0ε
, (4.92)

we can write the general solution of Equation (4.88a) for the beam radius in the
form

a = aB

(
1

2
+ 1

2

√
1 + u−2

)1/2

, (4.93a)

or
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a = a0

(
u +

√
1 + u2

)1/2
. (4.93b)

[See also Equation (5.293), which represents a useful approximation for practical
design and scaling.]

From Equation (4.91) we see that without space charge, a beam with emittance ε

has a radius a0. As the current, and hence the space-charge parameter u increases,
the beam radius expands to the value given in (4.93b), and the diameter of the beam
pipe has to be increased accordingly. Conversely, we can say that a pipe with radius
a > a0 could accommodate a beam with zero space charge but larger emittance.
From Equation (4.91), setting ε = α, a0 = a, we can define a trace-space acceptance
α of the pipe for zero space charge given by

α = a2k0 = a2 ω0

v
. (4.94)

In many cases the beam radius a, or acceptance α, is given. For instance, the di-
ameter of the vacuum pipe may be fixed, or the beam size may not exceed the linear
aperture of the focusing system to avoid nonlinear effects. One can then calculate
the maximum perveance or beam current from (4.88a), using (4.94), as

K = k2
0a2 − ε2

a2
= k0α

[
1 −

(
ε

α

)2
]

(4.95)

or

I = I0

2
β3γ 3k0α

[
1 −

(
ε

α

)2
]
, (4.96)

where I0 is the characteristic current defined in (4.17). We see that the current that
can be transported through the focusing channel increases rapidly with the parti-
cle energy; furthermore, the acceptance α has to be larger than the emittance ε of
the beam as indicated by the factor 1 − (ε/α)2. The transportable current reaches
a maximum when the emittance ε becomes negligibly small compared to the ac-
ceptance α [i.e., when ε/α → 0 (laminar beam limit)]. For such a laminar beam
(ε = 0), one gets the condition

K = k2
0a2, (4.97a)

or, in terms of frequencies,

ω2
0 = ω2

p

2
. (4.97b)

The second expression agrees with the well-known nonrelativistic relation ωL =
ωp/

√
2 for ideal Brillouin flow in a long solenoid.

Let us now consider the motion of individual particles within the matched beam.
We can write the particle trajectory equations in the alternative forms (space and
time domains)

r ′′ + k2r = 0, (4.98a)

or
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r̈ + ω2r = 0, (4.98b)

where the parameters k and ω are defined in Equations (4.89a) and (4.89c), respec-
tively. Note that k0 = 2π/λ0 = ω0/v and that λ and λ0 are the wavelengths of the
particle oscillations with and without self fields. Focusing requires that ω2

0 � ω2
p/2,

so that ω is real. For ideal Brillouin flow, we have ω = 0 in the Larmor frame and
|θ̇ | = ω0 = ωL in the laboratory frame. The tune depression k/k0 or ω/ω0 can be
related to the emittance ε, the acceptance α, and the parameter u by

k

k0
= ω

ω0
= ε

α
=

√
1 + u2 − u. (4.99)

For negligible space charge (i.e., u = 0), the particle oscillation frequency is equal
to ω0, and for the long solenoid ω0 = ωL, which is in accordance with the paraxial
theory in Section 3.4.4 In the laminar-beam limit (ε = 0), on the other hand, we
have ω = ωp/

√
2, as stated earlier.

Let us return now to the matched-beam envelope equation (4.88a) and compare
the second and third terms representing the space charge and emittance. Clearly,
when Ka2 > ε2, we can say that the beam is space-charge dominated, while Ka2 <

ε2 implies an emittance-dominated regime. The transition between the two regimes
occurs when

Ka2 = ε2. (4.100)

Using the three relations in (4.88) and the definition (4.89a), we can express Equa-
tion (4.100) in terms of the tune depression as

k

k0
= ω

ω0
= √

0.5 ≈ 0.71. (4.101)

Thus, when k/k0 <
√

0.5, the beam is dominated by space charge, and when
k/k0 >

√
0.5, emittance dominates. For now, this distinction between the two

regimes merely indicates which of the two terms in the envelope equation is more
significant in determining the beam radius. We will see in the following discussion
of a mismatched beam that there is also a difference in the internal dynamics of
the particle motion.

To obtain the matched-beam solution (R = a = const) treated above, the beam
must be properly matched into the focusing channel. In the solenoid case, where
the source is in a region of zero magnetic field, the starting conditions must be
chosen such that R = a and R′ = 0 when the beam reaches the uniform-focusing
plateau inside the channel after passing through the fringe-field region. There are
several possibilities for satisfying these matching requirements, each of which in-
volves at least two parameters to control both the radius and slope of the beam
envelope. In practice, the beam emerges from the source with an initial radius
and slope that depend on the source design and operating conditions. By judicious
choice of the source location with respect to the channel entrance, one can achieve
the desired matched beam inside the channel provided that the generalized per-
veance K is fixed. A better solution is to place a small matching lens (e.g., a short
solenoid) between the source and the focusing channel. By varying the focal length
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of this lens and its location between the source and the channel, one can achieve the
desired matching even if K is not constant. A third possibility is to use two lenses
at fixed positions and to vary the focusing strength of the two lenses to control the
beam radius and slope for proper matching.

When the beam is not matched, the envelope radius becomes a periodically vary-
ing function of distance z. There are basically three major possibilities of beam
mismatch:

1. The initial envelope radius and slope are not matched [i.e.,
R(0) �= a, R′(0) �= 0].

2. The beam is not axisymmetric (e.g., it has an elliptic cross
section).

3. The density is not uniform.

The second case requires the use of two transverse coordinates X(z) and Y (z) for
the envelope; this is treated in Section 4.4.3 and leads to two fundamental eigen-
modes of the envelope oscillations. The third case lies outside the framework of the
uniform-beam model and will be treated in Section 6.2.

In the first case, which we will now analyze, the beam remains axisymmetric.
For small-amplitude oscillations, we can linearize Equation (4.85a) and find an ap-
proximate solution. Let

R = a + x, (4.102)

where |x| � a and a is the matched-beam radius. Then one obtains from (4.85a),
using (4.88a) to cancel zero-order terms, the equation

x ′′ +
(

k2
0 + K

a2
+ 3

ε2

a4

)
x = 0. (4.103)

This can be expressed in the equivalent forms

x′′ + k2
e x = 0, (4.104a)

ẍ + ω2
ex = 0. (4.104b)

The parameter ke = 2π/λe is the wave number, and ωe is the radian frequency
of the envelope oscillations. By elimination of ε in Equation (4.103) with the aid
of (4.88a) and by introducing the wave number k and frequency ω of the single-
particle oscillations with space charge, as defined in (4.89a) and (4.89c), one ob-
tains

ke =
[
2k2

0 + 2k2
]1/2 = √

2k0

[
1 +

(
k

k0

)2
]1/2

, (4.105a)

ωe =
[
2ω2

0 + 2ω2
]1/2 = √

2ω0

[
1 +

(
ω

ω0

)2
]1/2

. (4.105b)

The relationship between the wavelength λe associated with the beam envelope
oscillation and the oscillation frequency ωe is given by

λe = 2π

ke

= 2πv

ωe

. (4.106)
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We note that Equations (4.105a) and (4.105b) represent the solutions of the en-
velope oscillations for the axisymmetric case, which is called the in-phase mode.
In Section 4.4.3 we also obtain the solutions for the quadrupole (ellipsoidal) case
known as the out-of-phase mode. The relations (4.105a) and (4.105b) can be ex-
pressed in terms of the plasma wave number kp and plasma frequency ωp [using
(4.89)] as

ke =
[
4k2

0 − k2
p

]1/2 = 2k0

[
1 − 1

4

(
kp

k0

)2
]1/2

, (4.107a)

ωe =
[
4ω2

0 − ω2
p

]1/2 = 2ω0

[
1 − 1

4

(
ωp

ω0

)2
]1/2

, (4.107b)

where

kp = 2π

λp

= ωp

v
=

[
2k2

0 − 2k2
]1/2

(4.108)

As we see from this analysis, the frequency ωe associated with the ripple of the
beam envelope differs from the frequency ω of the particle oscillations within the
beam. In the limit of zero intensity (ωp = 0 or K = 0), we have ω = ω0 and ωe =
2ω0. If the channel is a long solenoid, this implies that individual particles oscillate
with the Larmor frequency, ω0 = ωL, while the envelope of the mismatched beam
oscillates with the cyclotron frequency, ωe = 2ωL = ωc. For ideal Brillouin flow
(ε = 0), on the other hand, we have ω = 0 and ωe = √

2 ω0 = ωp (i.e., the
envelope oscillates with a frequency given by the plasma frequency).

When the above linear approximation (|x| � a) is valid (i.e., for a small mis-
match), the envelope oscillations are sinusoidal. For a large mismatch when |x|
is no longer small compared to the matched-beam radius a, numerical solution
of the envelope equation (4.85a) is required. Such a solution [9] is shown in Fig-
ure 4.2(a, b), where the beam was injected into the long channel with an initial
mismatch radius of R0 = 0.5a and a slope of R′

0 = 0. The beam parameters in this
case were chosen such that the single-particle tune depression was k/k0 = 0.8. It
is interesting to note that the wavelength of the envelope oscillation predicted by
linear theory [λe = 0.55λ0 from Equation (4.105a)] is in relatively good agreement
with the numerical result [λe � 0.53λ0 from the plot in Figure 4.2(a, b)]. On Fig-
ure 4.2(b) we plotted the trace-space ellipse at 24 positions during one envelope
oscillation. The dashed ellipse represents the matched beam. To obtain the equa-
tions for the ellipse, one must choose values for the perveance K , emittance ε, and
wave constant k0 that are consistent with the tune depression of k/k0 = 0.8 using
Equations (4.88) and (4.89a). The Courant–Snyder parameters α̂, β̂, γ̂ , as defined
in Section 3.8.2, are readily found from the envelope radius R and slope R′ using
Figure 3.26. Thus

β̂ = R2

ε
(4.109)

and since R′ = −α̂xint = −α̂

√
ε/β̂,
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Fig. 4.2 Beam envelope (a, c) and motion of the trace-space
ellipse during one envelope oscillation period (b, d) for a
mismatched beam with a0/a = 0.5 and tune depression of
k/k0 = 0.8 (a, b) and k/k0 = 0.3 (c, d). The matched-beam
ellipses are indicated by a dashed line in each case. (From
Reference 9; © 1991 IEEE.)

α̂ = −R′
√

β̂

ε
= −R′R

ε
. (4.110)

As we can see from the plot of Figure 4.2(b), the tips of the trace-space ellipse de-
scribe an ellipse that is concentric with the matched-beam ellipse, as expected from
single-particle theory without space charge. This simple picture changes, however,
when one studies the case of a beam with large tune depression, as we will see next.

In Figure 4.2(c, d) we have shown the envelope and trace-space ellipse for
a tune depression of k/k0 = 0.3, keeping the beam mismatch the same (i.e.,
R0/a = 0.5). The value for the envelope oscillation wavelength predicted by lin-
ear theory (λe � 0.68λ) in this case is also relatively close to the numerical re-
sult [λe � 0.65λ from Figure 4.2(c, d)]. However, the trace-space ellipse reveals
an oscillatory pattern markedly different from that of Figure 4.2(b). We attribute
this difference to the fact that the first case (k/k0 = 0.8) is in the emittance-
dominated regime while the second case (k/k0 = 0.3) is in the space-charge-
dominated regime. In the first case, the single-particle trajectories in the beam
are simple betatron oscillations crossing the axis every half betatron period. The
second case shows a beam in which the single-particle motion is dominated by
the plasma oscillation. We can understand this behavior by looking at the extreme
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case of a laminar beam where emittance is zero (ε = 0) and where single-particle
trajectories do not cross the axis of the system. The trajectories in such a lami-
nar beam are self similar and show the same behavior as the beam envelope [i.e.,
they oscillate between a maximum and minimum (at the waist) without crossing
the axis]. As mentioned earlier, the transition between these two regimes occurs at
k/k0 = √

0.5 [ from Equation (4.101)].
It is interesting to note that a typical particle trajectory in the mismatched beam

is no longer sinusoidal. This is due to the fact that the beam envelope R and hence
the net force seen by the particle vary periodically with period λe. The trajectory
is quasi-periodic with a wavelength λ = k/2π that is approximately the same as
in the matched-beam case in our example. Thus the mismatched beam represents
a special case of periodic focusing in which the external force is uniform and the
space-charge force varies periodically with distance. The more general case where
both applied forces as well as the self forces are periodic is treated in the next
section. Finally, we want to point out that if we apply the preceding analysis of beam
transport to a long solenoid, we must keep in mind that the radial oscillations of the
particles are in the Larmor frame (i.e., in the meridional plane which rotates with
the Larmor frequency ωL). The actual three-dimensional trajectories of the particles
in the solenoid system have a helical shape which is obtained by a superposition
of the radial oscillations, the Larmor rotations, and the axial velocity. When the
space charge is zero, for instance, the projections of the trajectories in the x–y

(r−θ ) plane are off-centered circles. In this case, a particle that was launched with
vr = 0, vθ = 0 will describe a helix that will touch the z-axis without crossing it, as
discussed in connection with Busch’s theorem (Section 2.3.4). On the other hand,
when the flow is laminar [i.e., entirely dominated by the space-charge fields (ideal
Brillouin case)], the trajectory projections in the x–y plane are centered circles. The
particles rotate around the axis with the Larmor frequency in this case, whereas the
trajectories in the Larmor frame are straight lines (since ω = 0). In between these
two extremes, the trajectory pattern is more complicated and depends on the ratio
of the plasma frequency to the Larmor frequency, or, conversely, on ω/ωL.

4.4
Periodic Focusing of Intense Beams (Smooth-Approximation Theory)

4.4.1
Beam Transport in a Periodic Solenoid Channel

In many practical applications the beams are focused by a periodic array, or lat-
tice, of lenses rather than a uniform field. If the space-charge forces are linear,
as assumed here, the theory of periodic focusing discussed in Section 3.8 can be
amended to include the self fields in a straightforward way [10]. We begin our analy-
sis with an axisymmetric channel consisting of periodically spaced short solenoid
lenses. (A similar analysis can be applied to periodic arrays of electrostatic einzel
lenses.) If R(z) denotes the envelope of the beam and κ0(z) = [qB(z)/2mcβγ ]2
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denotes the periodic-focusing function of the lens system, the paraxial trajectory
equation (4.84) can be written in the form

r ′′ + κ0(z)r − K

R2(z)
r = 0. (4.111)

To solve this equation, one must first find the beam radius R(z) from the envelope
equation

R′′ + κ0(z)R − K

R
− ε2

R3
= 0. (4.112)

When R(z) is known, one can write (4.111) in the alternative form

r ′′ + κ(z)r = 0, (4.113)

where

κ(z) = κ0(z) − K

R2(z)
. (4.114)

If S denotes the length of one focusing period, we have the periodicity condition

κ0(z + S) = κ0(z). (4.115)

For the case where the beam is matched, R(z) and κ(z) are also periodic with period
S, that is,

R(z + S) = R(z), (4.116)

κ(z + S) = κ(z). (4.117)

According to the theory discussed in Section 3.8.2, the solutions of Equation (4.113)
can be written in the phase-amplitude form

r(z) = Aw(z) cos[ψ(z) + φ], (4.118)

where A and φ are determined by the initial conditions and w(z), ψ(z) obey the
relation

dψ

dz
= ψ ′ = 1

w2
= 1

β̂
. (4.119)

Equations (4.118) and (4.119) are valid whether or not κ(z) is periodic.
For a matched beam in a periodic channel, when both R(z) and κ(z) are periodic

functions with period S, the particle trajectories are pseudoharmonic oscillations
with a period or wavelength

λ = 2πS

σ
. (4.120)

The parameter σ represents the phase advance of the particle oscillation per period
with space charge and is given by the change of the phase function ψ in one channel
period; that is, according to Equations (3.350), (3.351), and (4.119),

σ = ψ(z + S) − ψ(z) =
∫ z+S

z

dz

w2(z)
=

∫ z+S

z

dz

β̂(z)
. (4.121)
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When the space-charge term is absent (K = 0) [i.e., κ(z) = κ0(z)], we will denote
the phase and amplitude functions by ψ0(z) and w0(z), respectively. The phase ad-
vance of the particle oscillations without space charge is then defined as

σ0 = ψ0(z + s) − ψ0(z) =
∫ z+S

z

dz

w2
0(z)

=
∫ z+S

z

dz

β̂0(z)
(4.122)

and the wavelength of the particle oscillations is

λ0 = 2πS

σ0
. (4.123)

As we will see below, the phase advances with and without space charge, σ and σ0,
are the key parameters that determine the beam physics. They take the place of the
frequencies ω and ω0 = ωL of the uniform solenoidal focusing system studied in
Section 4.3.2.

In accordance with Equation (3.346), the beam envelope R(z) is defined by the
product of the amplitude function w(z) and the square root of the emittance, that is,

R(z) = √
εw(z) =

√
εβ̂(z), (4.124)

and likewise for zero space charge (K = 0)

R0(z) = √
εw0(z) =

√
εβ̂0(z), (4.125)

where β̂ = w2, β̂0 = w2
0 , as defined in (3.343a). Note that w0(z) depends only on

the focusing function κ0(z) and is found by solving the envelope equation (3.340),
that is,

w′′
0 + κ0w0 − 1

w3
0

= 0. (4.126)

Thus, w0(z), or alternatively, β̂0(z), describes the properties of the periodic-
focusing lattice and is independent of the beam emittance ε and the generalized
perveance K . [Note that this is not true for the amplitude functions w(z), β̂(z) with
space charge.]

In general, the solutions for the beam envelope and particle trajectories in a
periodic-focusing channel with space charge must be obtained by numerical in-
tegration of the equations (4.111) and (4.112). Figure 4.3 shows such a numerical
solution for a matched beam in the periodic solenoidal channel used in the Uni-
versity of Maryland electron-beam transport experiment. Each solenoid produces a
field of the form

B(z) = B0
exp(−z2/d2)

1 + z2/b2
, (4.127)

where d = 3.24 cm and b = 4.40 cm. The length of one period is S = 13.6 cm,
and the actual field used in the computation is obtained by superposition of the
lens fields. Note that κ0(z) ∼ B2(z) according to Equation (4.86b). For purposes of
illustrating the nature of the periodic envelope and trajectory solutions, the peak
value B0 [hence the maximum of κ0(z)], the beam emittance ε and the generalized
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Fig. 4.3 (a) Axial magnetic field variation B(z) in a periodic
focusing channel with solenoid lenses; (b) matched beam
envelope and single particle trajectories without space charge
(σ0 = 72◦) and with space charge (σ = 36◦) in this channel.

perveance K were chosen to yield σ = 36◦ and σ0 = 72◦. As Figure 4.3 indicates,
the matched envelope of the beam is a periodic function R(z) that has the same
periodicity S as the focusing system. The particle trajectory shown in the figure
is a pseudoharmonic function in which the period is determined by σ , or σ0, and
where the ripple in the amplitude reflects the periodicity S of the focusing system.
When the space-charge term is set to zero (K = 0, σ = σ0), the particle trajectory
performs one oscillation in a distance λ0 = 2πS/σ0 that corresponds to five lens
periods (2π/σ0 = 360◦/72◦ = 5). On the other hand, when space charge is in-
cluded (σ = 36◦), the particle oscillation wavelength increases to 10 periods since
2π/σ = 360◦/36◦ = 10.

When the variation of the beam radius during one focusing period is small com-
pared to the mean radius in the period, one can use the smooth-approximation
theory to solve the envelope and trajectory equations for the average values of the
quantities involved. In effect, this implies replacing the periodic force κ0(z) by the
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constant average force κ0 and hence reducing the problem to the uniform focus-
ing system treated in the preceding section. As we will see below, the smooth-
approximation results (with suitable corrections to account for the envelope mod-
ulation) are fairly accurate for beams of practical interest.

The general derivation of the smooth-approximation theory for intense beams in
periodic-focusing channels can be found in Reference 10. In the following analy-
sis we consider a special case of a matched beam in an axisymmetric channel.
(Quadrupole focusing is treated in Section 4.4.2 and envelope oscillations of mis-
matched beams in Section 4.4.3.)

The envelope R(z) of the matched beam in a periodic channel can be written in
terms of the mean radius R, which is constant, and a modulation function δ(z) as

R(z) = R[1 + δ(z)]. (4.128)

Correspondingly, one can represent the amplitude function w(z) by

w(z) = w[1 + δ(z)]. (4.129)

The ripple function δ(z) has the period S; thus

δ(z + S) = δ(z), (4.130)

and, by definition, the average of δ(z) over one period is zero, that is,
∫ z+S

z

δ(z) dz = 0. (4.131)

By substituting (4.128) into the envelope equation (4.112), Taylor expanding, and
keeping only the linear terms in δ, we obtain

Rδ′′ + κ0(1 + δ)R − K(1 − δ)

R
− ε2

R
3
(1 − 3δ) = 0. (4.132)

If we average over one period, using the fact that, from (4.131), δ = 0 and therefore
also δ

′′ = 0, we find that

κ0R + R

S

∫ z+S

z

κ0(z)δ(z) dz − K

R
− ε2

R
3

= 0. (4.133)

The equivalent equation for the case where space charge is negligible (i.e., K = 0)
is

κ0R0 + R0

S

∫ z+S

z

κ0(z)δ0(z) dz − ε2

R
3
0

= 0. (4.134)

R0 and δ0(z) denote the average beam radius and ripple function for zero space
charge, as defined by the relation

R0(z) = R0[1 + δ0(z)], (4.135)

analogous to (4.128).
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Numerical studies indicate that the modulation function δ(z), defined in (4.128),
has only a very weak dependence on the perveance K , as long as |δ(z)| � 1, which
is the case for σ0 � 90◦. Thus we have to good approximation

δ(z) = δ0(z); (4.136)

that is, we can replace δ(z) in the integral term of Equation (4.133) by δ0(z).
From (4.124) and (4.125), the emittance can be related to the average amplitude

functions with and without space charge as

ε = R
2

β̂
= R

2

w2
(4.137a)

and

ε = R
2
0

β̂0

= R
2
0

w2
0

. (4.137b)

On the other hand, we have, from (4.121),

σ =
∫ z+S

z

dz

β̂(z)
= S

β̂
= S

w2
(4.138a)

and

σ0 =
∫ z+S

z

dz

β̂0(z)
= S

β̂0

= S

w2
0

. (4.138b)

By substituting (4.137b) in (4.134) and using (4.138b), we obtain for the focusing
force averaged along the envelope radius over one period of the solenoid array the
result

κ0 + 1

S

∫ z+S

z

κ0(z)δ0(z) dz = σ 2
0

S2
. (4.139)

Using (4.136), (4.137a), and (4.138a) in (4.133), we find for the net average force
with space charge

κ0 + 1

S

∫ z+S

z

κ0(z)δ0(z) dz − K

R
2

= σ 2

S2
,

or, in view of (4.139),

σ 2

S2
= σ 2

0

S2
− K

R
2
. (4.140)

By substituting this result in (4.133) we obtain for the average beam radius R in
our solenoidal channel the algebraic equation

σ 2
0

S2
R − K

R
− ε2

R
3

= 0, (4.141a)

which, in view of (4.140), may be written in the alternative form
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σ 2

S2
R − ε2

R
3

= 0. (4.141b)

This first major result of our smooth-approximation theory is equivalent to Equa-
tion (4.88) for the uniform focusing channel. Indeed, by comparing the two equa-
tions and considering relation (4.138b), we can make the important identification

k0 = 2π

λ0
= σ0

S
= 1

β̂0

(4.142a)

for the beam without space charge and, likewise,

k = 2π

λ
= σ

S
= 1

β̂
(4.142b)

when space charge is included. Thus, we see that the average values of the ampli-

tude functions β̂ and β̂0 define the wavelengths λ and λ0 of the particle oscillations
with and without space charge.

The algebraic equation (4.141) can readily be solved in the same way as (4.88a).
First, we obtain for the average radius R0 without space charge (K = 0)

σ 2
0

S2
R0 − ε2

R
3
0

= 0. (4.143)

which yields

R0 =
√

εS

σ0
. (4.144)

The same result can be obtained from Equation (4.125) by using β̂0 = S/σ0 from
Equation (4.138b).

In analogy to Equation (4.92) of the uniform focusing case we define the dimen-
sionless parameter

u = KS

2σ0ε
, (4.145)

and obtain from Equation (4.141) for the average beam radius the result

R = R0

(
u +

√
1 + u2

)1/2
. (4.146)

R0 is the average radius for zero space charge (u = 0), as defined in Equation
(4.144).

Likewise, we find for the phase advance with space charge

σ = σ0

(√
1 + u2 − u

)
. (4.147)

When space-charge effects are negligible, u = 0 and R = R0, σ = σ0. As space
charge increases (u > 0), the beam radius R becomes larger while the phase ad-
vance σ decreases (σ → 0 as u → ∞).
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Alternatively, we can solve for the generalized perveance K if the average radius
and other parameters are given. Thus, we get from Equation (4.140)

K = R
2

S2

(
σ 2

0 − σ 2). (4.148)

We can introduce the acceptance α defined as the maximum beam emittance εmax

for given radius R when space charge is zero (σ = σ0). Equation (4.141) may then
be written in the form

σ 2
0

S2
R − α2

R
3

= 0, (4.149)

which yields

α = σ0
R

2

S
. (4.150)

Also, by comparison of the two expressions (4.141b) and (4.149) we find that
ε

α
= σ

σ0
. (4.151)

Using the last two relations we obtain for the generalized perveance (4.148) the
alternative form

K = σ0α

S

[
1 −

(
ε

α

)2]
. (4.152)

The beam current that can be transported through a channel with acceptance α is
then [10]

I = I0

2
β3γ 3 σ0α

S

[
1 −

(
ε

α

)2]
. (4.153)

For transport of large currents, the emittance must be significantly less than the
acceptance. The maximum current is obtained when ε/α → 0 (laminar-flow limit),
in which case one gets

Imax = I0

2
β3γ 3 σ0α

S
= I0

2
β3γ 3σ 2

0

(
R

S

)2

. (4.154)

As we will see in Section 4.4.3, envelope instabilities limit the phase advance to
σ0 � 90◦. In addition, the aspect ratio of beam radius to lens period must not be
too large, say R/S < 0.2, to avoid nonlinear effects, especially spherical aberrations,
in the lenses.

The above set of equations for the average beam radius R, for the phase advance
σ , and for the generalized perveance K , or the beam current I , represent the es-
sential results of the smooth approximation. The accuracy of these results depends
on the geometrical configuration of the periodic lattice and on the phase advance
σ0. The latter, also known as the zero-current phase advance, can be calculated for a
given periodic focusing function κ0(z) by the method described in Section 3.8 and
below. A general criterion for the validity of the smooth approximation is that the
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variation of the beam envelope in one focusing period must be small compared to
the average radius R. This is usually satisfied when σ0 is not too large.

From a practical point of view, the maximum beam radius, Rmax – rather than the
average radius, R – is the quantity of interest since it relates directly to the channel
aperture available to the beam. If we define Rmax = a and consider the relations
(4.128), (4.129), (4.136), (4.124), and (4.125), we can write

a

R
= a0

R0
= w0,max

w0
= 1 + δ0,max; (4.155)

hence, in view of (4.138b),

Rmax = a = R

(
σ0

S

)1/2

w0,max. (4.156)

From these equations we can define a ripple factor G by

G =
(

R

a

)2

= 1(
1 + δ0,max

)2
= S

σ0w
2
0,max

. (4.157)

Let us now introduce for the acceptance α in lieu of (4.150) the exact definition
(3.353) in terms of the maximum beam radius Rmax = a, that is,

α = a2

w2
0,max

= a2

β̂0,max
. (4.158)

By comparison with (4.157) we then find that

σ0α

S
= σ 2

0 a2

S2
G. (4.159)

Thus the equations (4.152) and (4.153) may be written in the alternative forms

K = σ 2
0

a2

S2
G

[
1 −

(
ε

α

)2]
, (4.160)

and

I = I0

2
β3γ 3σ 2

0
a2

S2
G

[
1 −

(
ε

α

)2]
. (4.161)

This relation shows the explicit dependence of the transportable current on the
semiaperture of the channel (or the allowed maximum beam radius) Rmax = a,
which is more useful than the average radius R. The ripple factor G depends on
σ0 and on the shape of the focusing function κ0(z). Note that all quantities on the
right-hand side of the last two equations are independent of space-charge forces
and represent directly “measurable” parameters of the beam and the focusing chan-
nel.

In general, for periodic focusing functions κ0(z) of arbitrary shape, the quanti-
ties w0,max, σ0, G, and so on, must be calculated by numerical integration of Equa-
tions (4.126) and (4.122). However, in most cases of practical interest one can use
for κ0(z) a hard-edge approximation that yields quite accurate analytical results and
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hence scaling relations not readily obtained from numerical studies. If κ0,max de-
notes the maximum of the focusing force, we can define the equivalent hard-edge
function for each lattice period S of the channel by

κ0 =
{

κ0,max for 0 � z � l,

0 for l � z � S,
(4.162)

where the effective length l of the lens is given by

l = 1

κ0,max

∫ S

0
κ0(z) dz. (4.163)

If L denotes the field-free region between the lenses, we have the relation

l + L = S. (4.164)

To find the phase advance without space charge, σ0, and other quantities for such
a hard-edge periodic channel we define the focusing-strength parameter

θ = √
κ0l (4.165)

and follow the procedure discussed in 3.8.3 (see also Problem 3.21). From the trans-
fer matrix M̃ for one channel period one finds that

cos σ0 = cos θ − 1

2

L

l
θ sin θ. (4.166)

The maximum value of the amplitude function is obtained from the transfer matrix
for a half period (from z = l/2 to z = L/2):

Fig. 4.4 Relationship between phase advance σ0 and focusing
strength parameter θ in an axisymmetric periodic-focusing
channel. (From Reference 11.)
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β̂0,max = w2
0,max = l

θ

[
1 + (L/l)(θ/2) cot(θ/2)

1 − (L/l)(θ/2) tan(θ/2)

]1/2

. (4.167)

From these two equations one can calculate the ripple function G = G(θ,L/l).
Figure 4.4 shows the phase advance σ0 versus θ for a periodic solenoid channel for
different values of L/l. In Figures 4.5 and 4.6 we plotted w0,max/

√
l and G versus

σ0 (rather than θ ), with L/l as a parameter [11]. For thin lenses, where θ � π/2,
we have the approximation

cos σ0 = 1 − θ2

2

(
1 + L

l

)
. (4.168)

If, in addition, σ0 � π/2, we obtain

σ0 ≈ θ

(
1 + L

l

)1/2

. (4.169)

In the latter case one finds for the ripple factor the approximation

G

(
σ0,

L

l

)
≈

(
1 − σ 2

0

4

L/l

1 + L/l

)1/2(
1 − σ 2

0

12

L/l

(1 + L/l)2

)−1/2

. (4.170)

Fig. 4.5 Amplitude function w0,max/l1/2 versus σ0 in an
axisymmetric periodic focusing channel for different values of
L/l. (From Reference 11.)
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Fig. 4.6 Ripple factor G = (R/a)2 versus σ0 in an
axisymmetric periodic focusing channel for different values of
L/l. (From Reference 11.)

The above theory and the various relations for a periodic channel are discussed in
more detail in References 10 and 11.

Let us now discuss two examples of periodic transport to illustrate the application
of the theory and the accuracy of the approximation involved. First, we consider the
case shown in Figure 4.3. Since κ0(z) ∝ B2(z), the hard-edge approximation (4.162)
yields an effective length of

l = 1

B2
0

∫ S

0
B2(z) dz,

which is found to have a value of l = 3.34 cm for the solenoidal field (4.127) of
each lens. The period length is S = 13.6 cm, hence L = 10.26 cm and L/l = 3.08.
To simplify the calculation, let us take L/l ≈ 3 and use the plot for G(σ0, L/l) in
Figure 4.6, from which we find (for σ0 = 72◦) that θ � 0.6, G = (R/a)2 ≈ 0.82,
hence a = Rmax � 1.1R. This is in good agreement with the numerical result of
Figure 4.3, from which one infers an envelope modulation of slightly less than 10%.

As a second example, let us calculate the maximum electron-beam current that
can be transported in the periodic solenoid channel of Figure 4.3 if the electron
energy is 5 keV and the aperture radius is a = 1 cm. Assuming that ε � α and
using the values σ0 = 72◦ = 0.4π , G = 0.82, a/S = 1/13.6, βγ = 0.14, and
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I0 = 1.7 × 104 A, we find from Equation (4.161) a beam current of I = 0.164 A.
Suppose now that the emittance of this beam is 8 × 10−5 m-rad; what is the phase
advance with space charge σ ? First, we find that the generalized perveance is K =
(I/I0)(2/β3γ 3) = 7.03 × 10−3. Then we obtain for the parameter u the result
u = KS/(2σ0ε) = 4.76. This yields from Equation (4.147) σ ≈ 0.104σ0, or σ =
7.5◦. The phase advance due to the depression of the external focusing force by
the space-charge repulsion is thus almost a factor 10 smaller in this case than the
zero-current value of σ0 = 72◦.

4.4.2
Beam Transport in a Quadrupole (FODO) Channel

The foregoing theory of beam transport in a periodic system with axisymmetric
lenses can be applied to a quadrupole channel in a straightforward way [10, 11].
The major difference is that the focusing system, and hence the beam, has two
planes of symmetry. Consequently, we need a set of two equations to describe the
beam envelopes and the particle trajectories in the two planes. As we will see be-
low, these two equations are coupled through the self-field terms. The case where
self fields are negligible was treated in Section 3.8.3, where we considered a peri-
odic system of hard-edge quadrupole lenses arranged in a FODO sequence. Such
a system with the beam envelopes in the x and y directions is depicted in Figure
3.27. When the quadrupole lens is focusing in x and defocusing in y, the envelope
function for a matched beam has a maximum in the x direction and a minimum
in the y-direction. The beam cross section is then an ellipse with major axis in
the x-direction and minor axis in the y-direction. Half a period later this ellipse
has rotated by 90◦. This picture also applies when linear self fields of a beam with
uniform density are included.

If X(z) denotes the x-envelope, Y (z) the y-envelope, the ellipse describing the
boundary of the beam obeys the equation

x2

X2
+ y2

Y 2
= 1, (4.171)

and the charge density is defined by

ρ(z) =
{

ρ0 for x2

X2 + y2

Y 2 � 1,

0 for x2

X2 + y2

Y 2 > 1,
(4.172)

where

ρ0 = ρ0(z) = I

πvX(z)Y (z)
(4.173)

is constant inside the beam at any given position but varies with distance z. The
electric field for such a charge distribution can be calculated from Poisson’s equa-
tion, and one obtains

Ex = I

πε0v

x

X(X + Y )
, (4.174)
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Ey = I

πε0v

y

Y (X + Y )
. (4.175)

In the case of a round beam, with X = Y = a, these results agree with Equation
(4.11c) for the radial electric field Er .

Similar expressions are obtained for the magnetic self-field component Bx,By .
If κx0(z) and κy0(z) represent the external focusing functions in the two planes of
symmetry, one obtains with the above self fields the following trajectory equations:

x′′ + κx0x − 2K

X(X + Y )
x = 0, (4.176)

y′′ + κy0y − 2K

Y(X + Y )
y = 0. (4.177)

These two equations are linear in x and y, but coupled through the self-field terms
which can be determined from the two corresponding equations for the beam en-
velopes X(z), Y (z), that is,

X′′ + κx0X − 2K

X + Y
− ε2

x

X3
= 0, (4.178)

Y ′′ + κy0Y − 2K

X + Y
− ε2

y

Y 3
= 0. (4.179)

The focusing functions κx0 and κy0 are periodic with period S. For the hard-edge
approximation of a FODO system one has

S = 2(l + L), (4.180)

where l is the length of a quadrupole lens and L the length of the drift space
between lenses. We will show in Section 5.3.2 that the above equations – like
all other linear beam-optics equations in Chapter 4 – follow naturally from the
self-consistent K–V beam model mentioned in Section 4.1. For our analysis we
will assume that the two focusing functions have the same amplitudes (i.e.,
|κx0| = |κy0| = κ0) and that the emittance is the same in both directions, hence
εx = εy = ε. The envelopes for a matched beam can then be written in terms of
the mean radius R, which is constant, and a modulation function δ(z) as

X(z) = R[1 + δx(z)] = R[1 + δ(z)], (4.181)

Y (z) = R[1 + δy(z)] = R[1 − δ(z)], (4.182)

where we used the fact that in a quadrupole channel δy(z) = −δx(z). These rela-
tions are analogous to Equation (4.128) for the axisymmetric case and we can apply
all equations of the preceding section to our quadrupole channel. The major differ-
ence is that we have two lenses of opposite polarity in each channel period. If these
two lenses are identical in length and focusing strength, as is the case for the ideal
symmetrical FODO channel that we consider below, the average value of κ0(z) will
be zero; that is,

κ0(z) = 1

S

∫ z+S

z

κ0(z) dz = 0.
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Fig. 4.7 Relationship between phase advance σ0 and focusing
strength parameter θ in a periodic quadrupole (FODO)
channel. (From Reference 11.)

However, the second term in Equation (4.139) is not zero since δ(z) is positive
(X > R) when κ0(z) is positive (focusing lens) and negative (X < R) when κ0(z)

is negative (defocusing lens).
The calculations of σ0 and w0,max versus the quadrupole focusing parameter

θ = √
κ0l for a FODO channel was carried out in Section 3.8.3. The related plots

for different ratios of l/L are shown in Figures 4.7 and 4.8, and the ripple factor is
plotted in Figure 4.9. These plots are from Reference 11, where more detailed in-
formation is given. Here we note only that the ripple factor is almost independent
of the ratio of the quadrupole length to the drift space, l/L. In fact, one finds that
for the region σ0 < 90◦, G can be approximated with reasonable accuracy by the
relation [11]

G
(
σ0,

L

l

)
≈ 1 − 1.2

π
σ0. (4.183)

From Equation (4.161) of the smooth approximation theory, one then obtains
for the maximum transportable beam current in a FODO channel with aperture
Xmax = a and period S the result

Imax = I0

2
β3γ 3σ 2

0

(
1 − 1.2

π
σ0

)(
a

S

)2

. (4.184)

The corresponding generalized perveance is

Kmax = σ 2
0

(
1 − 1.2

π
σ0

)(
a

S

)2

. (4.185)

The ratio a/S should not be too large to avoid nonlinear forces in the fringe fields
of the lenses. If we assume that a/S = 0.1 and a maximum phase advance of
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Fig. 4.8 Amplitude function w0,max/l1/2 versus σ0 in a FODO
channel for different values of L/l. (From Reference 11.)

σ0 = 90◦ to avoid envelope instabilities, we find that Kmax ≈ 10−2. The phase
advance σ0 depends on the focusing parameter θ , which for magnetic quadrupoles
is defined by

θ =
(

qB0

mcβγ aq

)1/2

l. (4.186)

B0 is the field strength at the pole shoe surface, aq the quadrupole “radius” (i.e., the
distance between the tip of the pole shoe and the axis), and l the effective width of a
quadrupole. In the case of electrostatic quadrupole lenses, the focusing parameter
is given by

θ =
(

2qV0

γmv2a2
q

)1/2

l, (4.187)

where V0 is the electrode potential and aq the electrode “radius” as in the magnetic
case. At nonrelativistic energies (γ = 1) where electrostatic quadrupoles are mostly
used, one can introduce the beam voltage Vb from the kinetic energy relation

mv2

2
= qVb (4.188)
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Fig. 4.9 Ripple factor G = (R/a)2 in a FODO channel for
different values of L/l. (From Reference 11.)

and obtain the simple formula

θ =
(

V0

Vb

)1/2
l

aq

. (4.189)

As mentioned in Section 3.5, magnetic quadrupoles provide stronger focusing than
solenoid lenses for a given magnetic field strength, and they are used in all modern
high-energy accelerators. Room-temperature electromagnets with iron pole shoes
are limited to a field strength of 1 to 2 T due to iron saturation. To overcome this
limitation, superconducting magnets producing fields in the range of 3 to 7 T have
been developed. At low energies, designers for beam transport systems can choose
between magnetic quadrupoles, solenoids, or axisymmetric electrostatic lenses.
The choice depends on the application, particle species, kinetic energy, beam cur-
rent, emittance, and on past experience at a particular laboratory. The stringent
brightness and intensity requirements of such advanced accelerator applications
as free electron lasers, heavy-ion inertial fusion, and high-current light-ion beams
(p, H−, etc.) pose great challenges for beam transport design. In many cases, such
as low-energy transport of p or H− beams from the source to the linear accelerator,
charge neutralization via beam particle collisions in the background gas (known as
gas focusing) is utilized to confine the beam. This topic is discussed in Section 4.6.
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4.4.3
Envelope Oscillations and Instabilities of Mismatched Beams

The amount of beam current that can be transported through a periodic-focusing
channel with a given aperture is a maximum when the beam is perfectly matched
(i.e., when the mean beam radius is constant and the envelope is a periodic func-
tion with the same period as the lens system). Also, for space-charge-dominated
beams, it is important that the particle density profile be as uniform as possible. In
practice, perfect matching is often difficult to achieve. For instance, the beam cur-
rent or emittance may differ from the design value. In pulsed beams the current
may vary between front and tail. Matching lenses may not have the correct focusing
strength or may not be in the right position. Indeed, beam matching between var-
ious components of an accelerator/transport system is one of the most important
problems for the design and operation of any facility. Conversely, one must have an
understanding of beam behavior when matching conditions are not perfect. As we
know from our analysis of mismatch in a continuous (uniform) focusing channel,
the beam envelope performs oscillation about the equilibrium (or matched beam)
radius. We expect similar behavior for a periodic-focusing channel. However, due
to the periodic nature of the focusing force acting on the beam, we have the possi-
bility of parametrically excited instabilities that do not occur in uniform channels.
As we will see, such instabilities do occur when σ0 > 90◦ and the beam intensity
is sufficiently high.

Following the analysis by Struckmeier and Reiser [12], we will first calculate the
envelope oscillation frequencies for small deviations from the matched-beam con-
ditions in the smooth approximation which replaces the periodic channel by the
equivalent uniform focusing channel. Next, we present a more rigorous analysis
that takes into account the periodic variation of the focusing force and that leads to
predictions of instabilities. We will carry out this study for the more general prob-
lem of a quadrupole channel which includes the axisymmetric system as a special
case.

Let us start with the two envelope equations (4.178) and (4.179) and assume again
that εx = εy = ε. When the beam is not perfectly matched, the mean values of the
envelope functions X(z) and Y (z) will differ from the matched radius R and will be
functions of z. In the smooth approximation, we can replace the periodic-focusing
functions κx0(z) and κy0(z) by σ 2

0 /S2, as shown in Section 4.4.1. Introducing the
wave number k0 defined as

k2
0 = σ 2

0

S2
, (4.190)

we then obtain for X(z) and Y (z) the equations

X
′′ + k2

0X − 2K

X + Y
− ε2

X
3

= 0, (4.191)

Y
′′ + k2

0Y − 2K

X + Y
− ε2

Y
3

= 0. (4.192)
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This is a set of coupled differential equations which, in contrast to (4.178), (4.179),
has constant coefficients and can therefore be solved analytically. First, we note that
in the matched-beam case we have X = Y = R = const, where the mean radius
obeys the algebraic equation

k2
0R − K

R
− ε2

R
3

= 0, (4.193)

which is identical with Equation (4.141a) for the axisymmetric channel. Introduc-
ing the space-charge depressed wave number, k or phase advance σ , defined by the
relation

k2 = σ 2

S2
= k2

0 − K

R
2

= σ 2
0

S2
− K

R
2

(4.194)

and substituting into Equation (4.193) one obtains for the average radius of the
matched beam in the presence of space charge the result

R =
√

ε

k
=

√
εS

σ
. (4.195)

When the beam mismatch is small, the envelopes X(z) and Y (z) will not deviate
very much from the mean radius R. Defining the deviations by ξ(z) and η(z), we
can write

X(z) = R + ξ(z), (4.196)

Y (z) = R + η(z), (4.197)

where ξ, η � R.
By substituting (4.196), (4.197) into (4.191), (4.192), Taylor expanding, keeping

only linear terms, and using the matched-beam relations (4.193), (4.194) to elimi-
nate K and R, we obtain

ξ ′′ + A1ξ + A2η = 0, (4.198)

η′′ + A1η + A2ξ = 0, (4.199)

where

A1 = 3σ 2
0 + 5σ 2

2S2
, A2 = σ 2

0 − σ 2

2S2
. (4.200)

These coupled equations are identical in form with the set of second-order linear
differential equations describing the behavior of two coupled harmonic oscillators.
There are two fundamental modes of oscillation, which we define by

ζ1(z) = ξ(z) − η(z), ζ2(z) = ξ(z) + η(z). (4.201)

The first mode, defined by ζ1, corresponds to the case where the two oscillations in
the x and y directions are 180◦ out of phase (antiparallel). By subtracting Equations
(4.198) and (4.199), one obtains

ζ ′′
1 + k2

1ζ1 = 0. (4.202)
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with

k1 = (
k2

0 + 3k2)1/2
, or φ1 = k1S = (

σ 2
0 + 3σ 2)1/2

. (4.203)

The second fundamental mode, defined by ζ2, corresponds to the case where both
oscillations are in phase (parallel) and is given by

ζ ′′
2 + k2

2ζ2 = 0,

with

k2 = (
2k2

0 + 2k2)1/2
, or φ2 = k2S = (

2σ 2
0 + 2σ 2)1/2

. (4.204)

Any other case can be expressed as a superposition of these two fundamental
modes. Suppose, for instance, that the initial conditions are ξ0 �= 0, ξ ′

0 = 0, η0 = 0,
η′

0 = 0; then the envelope oscillations in the x and y directions are given by

ξ(z) = ξ0 cos

[
1

2
(k1 − k2)z

]
cos

[
1

2
(k1 + k2)z

]
, (4.205)

η(z) = ξ0 sin

[
1

2
(k1 − k2)z

]
sin

[
1

2
(k1 + k2)z

]
. (4.206)

The envelope oscillations in this special case are characterized by a fast frequency
variation, 1

2 (k1 + k2), and a slow variation given by 1
2 (k1 − k2).

When the space charge, or current, is negligibly small (K → 0), we have from
(4.194) k = k0, or σ = σ0, and hence the two fundamental modes converge, that is,

k1 = k2 = 2k0, or φ1 = φ2 = 2σ0. (4.207)

Thus, in this limit, the envelopes of a mismatched beam oscillate with a frequency
that is twice as fast as the single-particle oscillation frequency defined by the phase
advance per period, σ0.

On the other hand, when the space charge is very high and k → 0, or σ → 0, the
envelope oscillation frequencies approach the lower limits of

k1 = k0, or φ1 = σ0, (4.208)

for the antiparallel mode, and

k2 = √
2k0, or φ2 = √

2σ0 (4.209)

for the parallel (in-phase) mode.
Note that the result (4.204) for the in-phase mode is identical with Equation

(4.105a) for the axisymmetric envelope oscillation of a mismatched beam in a uni-
form focusing channel. This is not surprising since the smooth-approximation the-
ory replaces the periodic-focusing force by the smoothed average force. Apart from
this agreement, however, the above analysis for the periodic channel is more gen-
eral than our previous calculation in that it includes two transverse degrees of free-
dom yielding two fundamental oscillation modes. This is of particular interest for
quadrupole channels where small mismatch errors are more likely to produce the
out-of-phase mode or a mixed mode. By analyzing the envelope perturbations, we
arrive at a system of coupled linear differential equations with periodic rather than
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constant coefficients, which must be solved numerically. The starting point is again
the nonlinear (coupled) system of the envelope equations (4.178), (4.179), in which
we substitute the perturbed envelope functions directly:

X(z) = X0(z) + ξ(z), Y (z) = Y0(z) + η(z). (4.210)

Here, X0 and Y0 denote the matched envelope functions [i.e., periodic solutions of
(4.178), (4.179)] and ξ, η denote the small perturbations:

ξ(z) � X0(z), η(z) � Y0(z).

Due to these conditions, we can linearize the differential equations for the pertur-
bation functions ξ(z) and η(z) and obtain

ξ ′′(z) + a1(z)ξ(z) + a0(z)η(z) = 0, (4.211)

η′′(z) + a2(z)η(z) + a0(z)ξ(z) = 0, (4.212)

with three S-periodic coefficients:

a0(z) = 2K

[X0(z) + Y0(z)]2
, (4.213a)

a1(z) = κx0(z) + 3ε2

X4
0(z)

+ a0(z), (4.213b)

a2(z) = −κy0(z) + 3ε2

Y 4
0 (z)

+ a0(z). (4.213c)

To solve this system, we need the matched envelope functions X0(z) and Y0(z).
The two second-order equations (4.211), (4.212) are equivalent to a system of four
first-order differential equations. With ζ = (ξ, ξ ′, η, η′), we may write in matrix
notation

ζ ′(z) = Ã(z) · ζ(z), (4.214)

with the S-periodic matrix

Ã(z) =




0 1 0 0
−a1(z) 0 −a0(z) 0

0 0 0 1
−a0(z) 0 −a2(z) 0


 . (4.215)

If Z̃(z) denotes the 4 × 4 solution matrix of (4.214) with Z̃(0) = Ẽ (Ẽ =
unit matrix), we may write Floquet’s theorem as follows:

Z̃(z + nS) = Z̃(z) · Z̃(S)n, (4.216)

where n is an arbitrary integer number. The solution of (4.214) at any value z + nS

can be expressed as a product of the solution matrix Z̃(z), 0 � z � S, and the
matrix Z̃(S) at the end of the first focusing period. If we evaluate the eigenvalues
and eigenvectors of Z̃(S), we obtain a 4×4 matrix of eigenvectors C and a diagonal
matrix of eigenvalues (denoted by �):

Z̃(S) · C = � · C.
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Fig. 4.10 Location of eigenvalues for envelope oscillations (see text for discussion).

If we define the matrix Ỹ (z) by

Ỹ (z) = Z̃(z) · C,

it follows from (4.216) that

Ỹ (z + nS) = �n · Ỹ (z). (4.217)

Since Ỹ (z) is a solution matrix of (4.214), every special solution ζ(z) of (4.214) can
be expressed as a linear combination of the column vectors of the matrix Ỹ (z). It
is now obvious that a solution of (4.214) can be stable only if �n remains finite for
n → ∞. One can readily prove that Z(S) is symplectic and real, so the four eigen-
values occur both as reciprocal and as complex-conjugate pairs. Therefore, �n can
remain bounded only if all eigenvalues lie on the unit circle in the complex plane.
Mathematically, this problem is identical to the two-dimensional linear oscillator
without space charge treated by Courant and Snyder (Chapt. 3, [4]). Thus, if we
express the eigenvalues in polar coordinates, that is,

λ = |λ| · eiφ, (4.218)

we arrive at only four possibilities for the four eigenvalues [12], assuming them to
be distinct, as shown in Figure 4.10:

(a) All four eigenvalues lie on the unit circle, forming two
complex conjugate and reciprocal pairs (no instability).

(b) One reciprocal pair is complex with |λ| = 1 (stable); the
other pair is real with |λ| �= 1 (unstable).

(c) Both reciprocal pairs are real with |λ| �= 1 (unstable).
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Fig. 4.11 Hard-edge focusing functions κ0(z) used in the
computations: (a) solenoid channel with L/l = 3.0, period
length S = 0.136 m; (b) asymmetric quadrupole (FODO)
channel with L1/l = 0.821, L2/l = 2.858, and period length
S = 1.238 m. (From Reference 12.)

(d) Both reciprocal pairs are complex and are not on the unit
circle, so that λ2 = 1/λ1, λ3 = λ∗

1, λ4 = 1/λ∗
1

(“confluent-resonance” instability).

By using relation (4.218) we can identify the growth rate (damping rate) |λ| of the
appropriate eigenvector passing through one focusing period and the phase shift φ

of the corresponding envelope oscillation. A growth rate that is not equal to unity
is an indication of instability. As we can see from Figure 4.10, this instability can
occur only if |λ| �= 1, and if:

1. One or both eigenvalue pairs lie on the real axis, that is,
φ1,2 = 180◦ [Figure 4.10(b) or 4.10(c)].

2. The phase shift angles obey the relation (φ1 + φ2) = 360◦, or
are equal (φ1 = φ2) [Figure 4.10(d)].

Case 1 can be seen as a half-integer resonance between the focusing struc-
ture and the envelope oscillation mode [i.e., half an oscillation occurs per period
(parametric resonance)]. Case 2 is a resonance between both envelope oscillation
frequencies, since they are equal (confluent resonance).

To illustrate the effects of envelope oscillations and instabilities computations
were performed [12] for both a solenoid and a quadrupole (FODO) channel with
hard-edge focusing functions as shown in Figure 4.11. The results of numerical
integrations of Equation (4.214) are plotted in Figure 4.12 for the solenoid channel.
The left side of each figure shows the φ1, φ2 values versus σ for several values of
σ0; the right side shows the growth rates |λ| versus σ . Instability is indicated by
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Fig. 4.12 Phase shifts and growth rates of envelope
perturbations versus decreasing σ (increasing beam intensity)
for σ0 = 90◦, 120◦, and 150◦ for the solenoid channel. Dashed
curves represent the smooth-approximation results. (From
Reference 12.)

|λ|-values differing from unity. The solid φ-lines are the perturbation phase shifts
obtained by numerical integration and eigenvalue analysis; the dashed lines show
the results obtained from Equations (4.203), (4.204) for a uniform or smooth chan-
nel. As can be seen from the figures, for σ0 = 90◦ these results are nearly identical.
Above σ0 = 90◦, instability occurs in some specific regions. Note that σ is plotted
on the abscissa as a decreasing function so that beam intensity increases from left
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to right. The value of σ at the origin corresponds to σ0 (zero intensity), while σ → 0
represents the laminar beam limit (ε = 0).

For the solenoid channel, only parametric resonances occur, namely when a φ-
curve reaches the 180◦-line. In that case, the smooth approximation results differ
from the exact periodic ones at and near the regions of instability, as one would
expect.

In the case of the quadrupole channel, shown in Figure 4.13, we are dealing with
confluent resonances where phase locking occurs between the two modes so that
φ1 = φ2. The instability occupies a certain range of σ values. As σ0 increases, this
patch gets wider and wider, extending over the entire region below σ � 90◦ when
σ0 exceeds 120◦.

For both types of beam transport channels, the instability growth rate increases
with increasing σ0, and at sufficiently high values of σ0 there is an intensity thresh-
old beyond which the beam is unstable for all values of σ → 0. The results obtained
here from the perturbation theory of the K–V envelope equations are equivalent
with those obtained from the Vlasov equation perturbation analysis [13] for the
special case of the second-order even mode.

As a check of the above linearized envelope perturbation theory and to further
illustrate the beam behavior in the case of mismatch conditions, the envelope equa-
tions (4.112) and (4.178), (4.179) for the solenoid and quadrupole channels of Fig-
ure 4.11 were integrated numerically. By choosing the appropriate initial condi-
tions, one can excite either one of the two fundamental modes or a mixed mode.
Figure 4.14 shows a pure in-phase mode for the solenoid case. The phase advance
without and with space charge is σ0 = 60◦, σ = 21.2◦, resulting in a theoretical
phase shift of

φ2 = (
2σ 2

0 + 2σ 2)1/2 = 90◦.

As can be seen in the figure, the envelope oscillation exhibits a pattern with a wave-
length of four periods (i.e., φ2 = 90◦), in excellent agreement with the theory. A
particle trajectory showing the oscillation period of about 17 lenses (in agreement
with σ = 21.2◦) is also plotted for comparison in the figure. An example of unsta-
ble behavior is illustrated in Figure 4.15 for the solenoid channel. The parameters
in this case are σ0 = 120◦ and σ = 34.6◦. As can be seen from Figure 4.12, the
in-phase oscillation mode is unstable due to a parametric resonance (φ1 = 180◦)
with a growth rate of |λ| = 1.283, whereas the 180◦ out-of-phase mode is stable
(φ2 = 134◦, |λ| = 1). Figure 4.15 shows the increasing oscillation amplitude for
the unstable in-phase mode. A typical particle trajectory in the beam which starts
out with pseudoharmonic motion is seen to lose its periodicity quickly as the enve-
lope becomes unstable.

Similar results are obtained for mismatched beams in the quadrupole channel.
Figure 4.16 shows the envelope oscillation in the case σ0 = 60◦, σ = 21.2◦, for
the in-phase mode whose wavelength extends over four cells in agreement with
the linear theory. The particle trajectory also behaves as expected. A case of un-
stable behavior (i.e., exponential growth of the beam radius) is demonstrated in
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Fig. 4.13 Phase shifts and growth rates of envelope
perturbations versus decreasing σ (increasing beam intensity)
for σ0 = 90◦, 120◦, and 150◦ for the quadrupole channel.
Dashed curves represent the smooth-approximation results.
(From Reference 12.)

Figure 4.17. The chosen parameter values of σ0 = 120◦, σ = 35◦ are in the region
of a confluent resonance where, according to Figure 4.13, one has

φ1 = φ2 = 162◦, |λ| = 1.395.

Thus in this case both modes are unstable.
The detrimental effects of envelope instabilities in the focusing region above

σ0 = 90◦ is also observed in computer simulation studies as well as in experi-
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Fig. 4.14 Solenoid channel, stable in-phase mode (σ0 = 60◦, σ = 21◦). (From Reference 12.)

Fig. 4.15 Solenoid channel, unstable in-phase mode
(σ0 = 120◦, σ = 34.6◦). (From Reference 12.)

ments. As a consequence, periodic transport channels for high beam currents must
be designed to operate at values of σ0 below 90◦. In this region, the smooth approx-
imation theory can be applied to design the focusing systems, as was pointed out
previously.
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Fig. 4.16 Quadrupole channel, in-phase mode (σ0 = 60◦, σ = 21◦). (From Reference 12.)

Fig. 4.17 Quadrupole channel, slightly mismatched beam
(σ0 = 120◦, σ = 35◦). (From Reference 12.)

4.4.4
Coherent Beam Oscillations due to Injection Errors and Misalignments

In our analysis of periodic focusing so far we have assumed that the lenses are
perfectly aligned and that the center of the beam coincides with the optical axis
of the focusing channel. Since such an ideal system cannot be realized in prac-
tice, it is very important to analyze and understand the effects of injection errors
and misalignments on the beam. One type of injection error that results in beam
mismatch has already been discussed in the preceding section. There, the beam
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remains centered, but the envelope performs oscillations that may lead to beam
loss when the beam strikes the drift-tube wall or becomes unstable. In the present
section we will be concerned with errors leading to displacements of the beam cen-
ter from the ideal optical axis of the channel. Such displacements are caused by
injection errors and misalignments of lenses or other hardware components, and
they lead to coherent oscillations of the beam centroid about the optical axis. These
oscillations are called coherent since they are performed by the beam as a whole
(i.e., the beam behaves very much like an oscillating rigid body). By contrast, the
single-particle oscillations about the beam axis are called incoherent since they are
not in phase (i.e., at any given position different particles in the distribution have
different phase angles).

Let us first consider the case where the beam is injected into an ideal, perfectly
aligned focusing channel with a small aiming error; that is, the beam centroid is
displaced from the optical axis or makes a small angle with the axis at the channel
entrance. As a result of this injection error, we expect that the beam will perform
a coherent oscillation about the channel axis. To determine the frequency or wave-
length of this oscillation, we must bear in mind that the centroid is defined as the
center of mass of the particle distribution. Thus the self fields are zero at the cen-
troid position (at least to the extent that the effects of conducting boundaries can be
ignored), and the motion of the centroid is therefore governed by the external fo-
cusing force alone. This implies that the trajectory of the centroid is identical with
that of a single particle in the absence of space charge. Consequently, we expect that
the wavelength of the coherent beam oscillation is given by λ0 = 2π/k0 = 2πS/σ0,
where σ0 is the phase advance without space charge. However, this description is
correct only as long as the space-charge forces are small. When the self fields of the
beam are not negligible in comparison with the external focusing fields, the effect
of the image charges induced in the conducting drift-tube wall by the off-centered
beam must be taken into account. As we will see later in this section, this image
effect will increase the oscillation wavelength by an amount that depends on the
beam current (or generalized perveance) and the drift-tube radius. We will proceed
with our analysis by first neglecting the image force and then adding it later as a
correction.

Returning now to our discussion of injection errors, let us suppose that the beam
centroid at the channel entrance (z = 0) has a displacement x0 and a slope x′

0 with
respect to the optical axis of the ideal channel. With these initial conditions and
ignoring the image force, as stated, the coherent oscillation of the beam in the
focusing channel will be given by the “single-particle” equation

x(z) = x0 cos k0z + x′
0

k0
sin k0z. (4.219)

The amplitude of this oscillation (i.e., the maximum displacement from the axis)
is defined by

xm =
[
x2

0 +
(

x′
0

k0

)2
]1/2

. (4.220)
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As an example, a beam injected with an error of x0 = 1 mm, x′
0 = 20 mrad into a

periodic channel with S = 15 cm and σ0 = 60◦ will perform a coherent oscillation
with a wavelength λ0 = 90 cm and an amplitude of xm = 3.0 mm. By increasing
the phase advance to σ0 = 90◦, one would decrease the oscillation wavelength to
λ0 = 60 cm and the amplitude to xm = 2.2 mm.

Next, let us consider the effects of lens misalignments. Suppose first that only
one lens, with period S and located at zi � z � zf in an otherwise perfect channel,
is translationally offset a distance 	 from the channel axis. If the beam centroid
within this lens has a displacement x(z) from the channel axis, its transverse po-
sition with regard to the center of the misaligned lens is x(z) − 	. Since the force
experienced by the centroid is proportional to its distance from the lens axis, the
equation of motion for the centroid trajectory is given by

x′′ = −κ0(z)(x − 	),

where κ0(z) represents the focusing force of the lens. Again using the smooth-
approximation theory, we can replace κ0(z) by the constant average focusing force
for the lens period [i.e., κ0(z) → k2

0 = σ 2
0 /S2], and write the equation of motion in

the form

x′′ + k2
0x = k2

0	 for zi � z � zf . (4.221)

Note that zj = (zi + zf )/2 defines the center of the misaligned lens period and
zf − zi = S the length of the period. If we assume that the beam is perfectly
centered when it enters the misaligned lens (i.e., xi = 0 and x′

i = 0 at z = zi ), then
the solution of (4.221) is readily obtained as

x(z) = 	[1 − cos k0(z − zi)] (4.222a)

and

x′(z) = k0	 sin k0(z − zi) (4.222b)

for zi � z � zf .
The displacement and slope of the centroid trajectory at the end of the misaligned

lens period are then

xf = 	[1 − cos k0(zf − zi)] = 	[1 − cos k0S], (4.223a)

x′
f = k0	 sin k0(zf − zi) = k0	 sin k0S. (4.223b)

The misaligned lens thus produces a beam offset that is equivalent to an injection
error with regard to the motion through the remaining part of the focusing chan-
nel. Thus we can use Equation (4.219), with (4.223) as initial conditions, to describe
the centroid trajectory in the perfectly aligned channel section beyond the displaced
lens. The resulting equation is then given by

x(z) = 	[1 − cos k0(zf − zi)] cos k0(z − zf )

+	 sin k0(zf − zi) sin k0(z − zf ) for z > zf .
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This may be written in the simpler forms

x(z) = 	[cos k0(z − zf ) − cos k0(z − zi)], (4.224)

or

x(z) = 2	 sin
σ0

2
sin

σ0

S
(z − zj ) for z > zf , (4.225)

where we used k0 = σ0/S and zj = (zi + zf )/2.
The above analysis can readily be extended to more than one misaligned lens.

Thus if two neighboring lenses are misaligned, one with offset 	1 at zj = zi , the
other with offset 	2 at zj = z2 = z1 +S, one finds for the centroid trajectory in the
channel downstream of the two lenses

x(z) = 2	1 sin
σ0

2
sin

σ0

S
(z − z1) + 2	2 sin

σ0

2
sin

σ0

S
(z − z2)

for z > z2 + S

2
. (4.226)

Generalizing this linear superposition to N successive misaligned lenses, one gets

x(z) =
N∑

j=1

2	j sin
σ0

2
sin

σ0

S
(z − zj ) for z > zN + S

2
. (4.227)

Thus if the misalignment offsets 	j of the N lenses are known, one can calculate
both the displacement and slope of the beam centroid at the end of the N th lens
period (z = zN +S/2) or at any position z in an ideal channel section following the
N misaligned lenses.

In practice, the alignment state of a focusing channel is known only within a
certain accuracy limit. The remaining alignment errors below this accuracy limit
are usually statistical (i.e., random) in nature. The deflections experienced by the
beam in such a system of lenses with random misalignment are analogous to the
problem of random walk. This problem is exemplified, for instance, by the scatter-
ing of a particle passing through a gas and suffering deflections from its path in
collisions with the randomly distributed gas molecules. We can apply the statistical
analysis of random walk to estimate an expectation value for the deflection am-
plitude of the centroid after the beam passed through a system of N lenses with
random alignment errors. To carry this out, we will rewrite Equation (4.227) using
the trigonometric identity sin(α − β) = sin α cos β − cos α sin β, which yields for
the displacement and slope of the centroid trajectory at position z � zN + S/2

x(z) = sin
σ0

S
z

[
N∑

j=1

2	j sin
σ0

2
cos

σ0

S
zj

]

− cos
σ0

S
z

[
N∑

j=1

2	j sin
σ0

2
sin

σ0

S
zj

]
(4.228a)

and
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x′(z) = σ0

S
cos

σ0

S
z

[
N∑

j=1

2	j sin
σ0

2
cos

σ0

S
zj

]

+σ0

S
sin

σ0

S
z

[
N∑

j=1

2	j sin
σ0

2
sin

σ0

S
zj

]
. (4.228b)

The square of the amplitude, A2 = x2
m, of the coherent beam oscillation after pas-

sage through the N lenses is then given by

A2 = x2 +
(

x′

k0

)2

=
[

N∑
j=1

2	j sin
σ0

2
cos

σ0

S
zj

]2

+
[

N∑
j=1

2	j sin
σ0

2
sin

σ0

S
zj

]2

. (4.229)

This may be written as

A2 = 4 sin2 σ0

2

[
N∑

j=1

	2
j +

N∑
k=1

N∑
j �=k

	j	k cos
σ0

S
(zj − zk)

]
. (4.230)

If the alignment errors 	j for the N lenses were known, Equation (4.230), which
was derived from (4.227), would allow us to calculate the exact value of the ampli-
tude A. However, if the errors are not known and are statistically random in nature,
we can only calculate an expectation value for A. To accomplish this, let us assume
that (	1, 	2, . . . , 	N) represents a set of N independent, identically distributed
random variables. This implies that we consider an infinite number of possible
alignment states in which the displacement of each lens can assume any random
value within a continuum of values over a given range. We will assume that the
averages (first and second moments) of the distribution for each lens are identical
and given by 	1 = 	2 = 	j = 0 and 	2

1 = 	2
2 = 	2

j = 	2 (for j = 1, 2, . . . , N ).
Each possible set of the N variables will yield a different value for A2 in Equation
(4.230). If we take the average over all sets, we find that

	j	j ′ =
{

0 for j �= j ′,
	2 �= 0 for j = j ′. (4.231)

Hence the average (expectation value) of A2 is

〈A2〉 = 4 sin2 σ0

2
N〈	2〉, (4.232)

or, taking the square root,

Ã = 2	̃ sin
σ0

2

√
N, (4.233)

where Ã = Arms = (A2)1/2, 	̃ = 	rms = (	2)1/2.
Thus we obtain the very important result that the maximum rms displacement,

Ã, of the beam centroid from the axis of a focusing channel with N randomly
misaligned lenses is proportional to the rms value of the misalignments, 	̃, and
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Fig. 4.18 Off-centered beam with radius a and displacement ξ

in conducting drift tube with radius b can be treated as a line
charge, ρL, if a � b. Image −ρL, is located at b2/ξ .

increases with the square root of the number of lenses. In addition, it also increases
with the zero-current phase advance σ0 of the channel as sin (σ0/2). As an exam-
ple, if σ0 = 90◦, N = 50, and 	̃ = 0.2 mm, we find that Ã = 2.0 mm. It should
be noted that the above analysis of the effects of lens displacements in one trans-
verse coordinate, x, can readily be extended to include misalignments in the other
directions, y and z, or tilt angles. Such generalization still leads to a relation of
the form (4.233). However, Ã then represents the total transverse rms amplitude
Ãr = (Ã2

x + Ã2
y)1/2 and 	̃ the rms sum of all random misalignment errors.

Let us now discuss the effect of image forces on the coherent motion of a beam
that is displaced from the axis. Figure 4.18 shows a beam of radius a, horizon-
tally offset by an amount ξ , in a conducting pipe of radius b. When the beam
is centered (i.e., ξ = 0), the image charges induced on the inner surface of the
wall are distributed uniformly in azimuth, and there will be no net electric field
at the center. However, when the beam is offset, as shown in the figure, the im-
age charge varies with azimuth along the pipe surface. From the geometry of Fig-
ure 4.18, we infer that the image charge has a maximum at x = b, y = 0 and
a minimum at x = −b, y = 0, and that there should be a defocusing force in
positive x-direction on the centroid of the beam. The potential distribution and
electric field produced by this image charge can be calculated in a straightfor-
ward way by adding the free-space potential φf (x, y) of the beam (in the absence
of the tube wall) and the potential φi(x, y) due to the image charge. The free-
space potential can be found from Poisson’s equation or Gauss’s law. It varies as
φf (R1) = φa − (ρ0a

2/4ε0)R
2
1/a2 with distance R1 from the beam center inside

the beam (R1 � a) and as φf (R1) = −(ρL/2πε0) ln(R1/R10) outside the beam
(R1 > a). φa and R10 are constants determined by the boundary conditions, ρ0 is
the uniform charge density, and ρL = ρ0a

2π the line charge density of the beam.
Note that outside the beam the charge distribution can be replaced by a line charge
ρL. The image potential can be found by placing a line charge of opposite polarity,
−ρL, at a distance xi from the center of the tube. It varies with distance R2 from the
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image location as φi(R2) = (ρL/2πε0) ln(R2/R20), where R20 is a constant. At the
wall of the conducting tube the total potential must be zero (i.e., φ = φf + φi = 0
at x2 + y2 = b2). From this calculation one finds that the image location is given
by xi = b2/ξ , as indicated in Figure 4.18 (see Problem 4.9).

The electric field produced by the image charge at the center of the beam is then
found to good approximation (for ξ � b) as

Ex = ρL

2πε0

1

(b2/ξ) − ξ
≈ ρL

2πε0

ξ

b2
. (4.234)

The corresponding force on the particle of charge q, Fx = qEx , is directed away
from the axis; hence it is defocusing (i.e., it reduces the net restoring force on a
centroid particle).

In addition to the electric image force there is also a magnetic image force. The
main difference here is that we must distinguish between the ac case and the dc
case. When the beam consists of a pulse, or a sequence of pulses, whose time dura-
tion is short compared to the magnetic diffusion time, the situation is similar to the
electric image case. The ac currents induced in the conducting wall surrounding
the beam produce a magnetic image field that must be tangential to the bound-
ary surface. The associated force reduces the electrostatic image force by the factor
1 − β2 = γ −2, and we obtain for the net image force in this ac case the result

Fi = qρL(1 − β2)

2πε0

ξ

b2
= qI

2πε0cβγ 2

ξ

b2
. (4.235)

If we add this force to the external focusing force and use x in place of ξ , we ob-
tain the following equation of motion for a particle representing the centroid of
the beam:

x′′ + (
k2

0 − k2
i

)
x = 0, (4.236)

where

k2
i = K

b2
. (4.237)

K = (I/I0)(2/β3γ 3) denotes the generalized perveance of the beam, as before.
The image effect thus reduces the focusing force, and the corresponding effective
phase advance is given by

σeff =
(

σ 2
0 − K

b2
S2

)1/2

. (4.238a)

When the emittance term is negligible so that K = k2
0a2 = (σ 2

0 /S2)a2 this relation
can be written in the form

σeff = σ0

(
1 − a2

b2

)1/2

, (4.238b)

which shows a simple dependence on the ratio of the beam radius a to tube ra-
dius b.
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The above analysis is valid only for beams with short pulse lengths, or for the
early part of a long pulse (i.e., for times that are short compared to the magnetic
diffusion time, τm).

In the dc case (i.e., for continuous beams or, more generally, for beams whose
pulse duration is large compared to τm), the conducting wall is no longer a bound-
ary for the magnetic field produced by the beam. The currents induced in the wall
decay exponentially with a characteristic time constant τm, and at time t � τm

the magnetic field of the beam has completely penetrated, or diffused, through
the tube walls surrounding the beam. Thus there is no magnetic image effect due
to the conducting walls in this case. However, there still can be another magnetic
image force if there is magnetic material outside the beam tube, such as the ferro-
magnetic poles of dipole or quadrupole magnets. The dc magnetic field of the beam
will then be modified to satisfy the boundary condition requiring that the field lines
are perpendicular to the pole surface. For simplicity, let us assume that this second
image effect can be neglected. Then the dc case is equivalent to free space as far as
the magnetic self field is concerned. The factor 1 − β2 = γ −2 introduced for the ac
case must then be taken out again, and Equation (4.238) becomes

σeff =
(

σ 2
0 − Kγ 2

b2
S2

)1/2

when t � τm. (4.239)

From standard electromagnetic theory one finds for the magnetic diffusion time
the relation

τm = 4d2σµ

π2
, (4.240)

where d is the width of the conducting drift-tube wall, σ the conductivity (not to
be confused with the phase advance σ ), and µ the magnetic permeability of the
wall material. As an example, for a copper wall with d = 2.5 × 10−3 m thickness,
using σ ≈ 6 × 107(� · m)−1 and µ = µ0 = 4π × 10−7 H/m, one finds that
τm = 1.9 × 10−4 s. Thus, in this case one would use Equation (4.238) for beams
with pulse length τp � 200 µs and (4.239) when τp > 200 µs. In between these
two limits one must take into account the penetration of the magnetic field into the
wall as a function of time.

To evaluate the significance of the image effect let us calculate σeff for two ex-
amples. First consider a 100-mA 100-kV proton beam in a focusing channel with
σ0 = 60◦, lens period S = 0.2 m, and a drift-tube radius of b = 0.02 m. For these
parameters one finds that K = 2×10−3. Since the beam is nonrelativistic (γ � 1),
the magnetic image is negligible (i.e., the pulse length is unimportant), and one
obtains for the effective phase advance the result σeff ≈ 54◦. This corresponds to a
decrease of 10% from σ0 = 60◦.

As a second example, consider an electron beam of 20 A and 100 keV with a
pulse length of τp = 2 µs propagating through a periodic solenoid channel with
σ0 = 80◦, S = 0.2 m, b = 0.02 m. Since τp � τm, Equation (4.238) is valid,
the generalized perveance is K = 8.4 × 10−3, and one obtains σeff = 60◦ (i.e., a
decrease of the phase advance by 25%).
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These two examples illustrate that the image force can be significant for beams
with high perveance. The effect can readily be incorporated into the theory of
coherent beam oscillations by using σeff in place of σ0 in Equations (4.219)
through (4.233) of this section. Thus Equation (4.233) may be written as Ã =
2	̃ sin(σeff/2)

√
N . Since σeff < σ0, we see that the image effect in the line-charge

approximation appears actually to be benign, as it reduces the amplitudes of the
coherent beam oscillations. However, one must bear in mind that in practice the
image effect may give rise to nonlinear forces and hence emittance increase. This
occurs when either the beam size is not significantly smaller than the drift-tube di-
ameter and the particle distribution is not exactly uniform or when the conducting
boundaries are nonaxisymmetric, as in the case of electrostatic quadrupole lenses.
Such conditions would warrant further analysis and numerical simulation studies
that are beyond the scope of this book.

Coherent beam oscillations are a particular problem in linear accelerators. In
a frame moving with the particles, the lattice of acceleration gaps and focusing
elements is seen as a periodic array of lenses with regard to the transverse mo-
tion. If the phase advance σ0 is constant in the accelerator, our analysis can be
applied to this problem. Otherwise, the theory can be modified appropriately. Ex-
cept near injection, the image effects can be neglected since K ∼ I/β3γ 3 rapidly
decreases with increasing energy. In place of the image force, however, a much
more serious effect arises that is especially worrisome in high-current electron
linacs. An electron beam displaced from the axis excites electromagnetic waves
with transverse electric field components in the accelerator waveguide or drift-tube
structures. The transverse electric fields of these waves then interact with the parti-
cles arriving later in the beam pulse, thereby increasing the centroid displacement
from the axis. Due to the increasing oscillation amplitude, even more energy is fed
into these unwanted electromagnetic modes, leading to further beam off-centering.
This process, which is intrinsically unstable, is known as the beam breakup insta-
bility. It occurs in both electron induction linacs with relatively long beam pulses
and in rf linacs with short bunches. In the latter case, the instability is also known
as the transverse wakefield effect. This is because the effect can be described in terms
of the wakefield generated by a short relativistic electron bunch passing through an
aperture in a disk-loaded waveguide structure, or through any other discontinuity.
The transverse component of the wakefield produced by the bunch head can dis-
place the tail of the same bunch or affect other bunches trailing behind. The effect
of coherent beam oscillations and associated instability can be minimized by care-
ful design, such as precision alignment, use of dipole magnets for beam steering at
periodic intervals, programming of rf phase history in an rf linac, and other mea-
sures. The variation in rf phase introduces an energy spread in the bunch. This, in
turn, produces a spread in the transverse oscillations (σ0) which destroys the co-
herence in the interaction with the transverse electromagnetic field components,
thereby damping the instability.
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4.5
Space-Charge Tune Shift and Current Limits in Circular Accelerators

4.5.1
Betatron Tune Shift due to Self Fields

So far in this chapter on linear beam optics with self fields we have restricted our
analysis to straight beams such as beam transport through periodic-focusing chan-
nels. However, the uniform beam model with linear forces can also be applied to
circular accelerators. The main difference is that in circular systems the particles
pass through the same focusing lattice repeatedly in many revolutions. Therefore,
any field errors, misalignments, and nonlinearities have a much more serious ef-
fect than in straight transport lines. In particular, the change in the betatron oscil-
lation frequency due to space charge that can be tolerated is considerably smaller
in circular machines than in linear accelerators or transport lines. As discussed in
Section 3.8.6, imperfections and nonlinear forces cause resonance-like amplitude
growth for the transverse betatron oscillations that must be avoided. These forbid-
den resonances are summarized in Equation (3.406) by the relation mνx +nνy = p,
where νx, νy are the two betatron tunes and m, n, p are integers. In the design of
synchrotrons and storage rings, one therefore chooses an operating point of νx and
νy that is not near any dangerous resonances. However, the resonance lines in the
νx versus νy diagram are so closely spaced that relatively small changes of the be-
tatron tune may drive the beam into instability. By far the most important effect in
this regard is the tune shift caused by the defocusing self-field forces.

Another important difference between circular beams and straight beams is the
effect of dispersion due to the momentum spread in the particle distribution [see
Section 3.6.4, Equations (3.272) to (3.276)]. For the calculations of space-charge
effects in circular accelerators presented in this section, we will, however, neglect
the momentum spread. The inclusion of dispersion into the tune-shift formulas
is given in Section 5.4.7. When dispersion is neglected, calculation of the betatron
tune shift is a straightforward extension of the smooth-approximation theory for a
FODO channel presented in Section 4.4.3. Let us assume a focusing lattice with
νx = νy = ν0 without space charge and a beam with identical emittance εx =
εy = ε in both directions. Furthermore, assume that the beam is matched, having
a mean cross-sectional radius X = Y = a and that it extends uniformly along the
entire circumference C of the synchrotron. The relationship between beam radius
a, average focusing strength k2

0 , generalized perveance K , and emittance ε is then
determined by the envelope equation (4.193), which, if R is replaced by a, takes
the form

k2
0a − K

a
− ε2

a3
= 0. (4.241)

The wave number k0 is defined by the ratio of the phase advance per period without
space charge, σ0, and the length of one period, S, that is,

k0 = 2π

λ0
= σ0

S
.
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Introducing the betatron tune ν0 = Nσ0/2π [Equation (3.352)], where N is the
number of focusing cells along the circumference, C, and defining the mean radius
R of the equilibrium orbit by C = 2πR, we get the alternative relation

k0 = 2π

λ0
= ν0

R
. (4.242)

Likewise, we can define the wave number k and depressed tune ν due to self
fields as

k = 2π

λ
= ν

R
. (4.243)

The envelope equations (4.241) may then be written in the alternative form

k2a − ε2

a3
= 0, (4.244)

where

k2 = k2
0 − K

a2
. (4.245)

Subtracting (4.244) from (4.241), we obtain

k2
0 − k2 = ν2

0 − ν2

R2
= K

a2
. (4.246)

Since the allowed tune shift 	ν = ν − ν0 is very small compared to the tune ν0

(i.e., 	ν � ν0), we have

ν2
0 − ν2 = −(ν0 + ν)	ν ≈ −2ν	ν,

hence

	ν = −KR2

2νa2
= − IR2

I0β3γ 3νa2
. (4.247)

From (4.244) we obtain k2 = ν2/R2 = ε2/a4, or

ε = ν

R
a2. (4.248)

The corresponding normalized emittance is then

εn = βγ ε = βγ νa2

R
. (4.249)

Substitution of (4.249) in (4.247) yields

	ν = − IR

I0εnβ2γ 2
. (4.250)

The above analysis for a continuous, or unbunched, beam can readily be extended
to the case where the beam consists of discrete bunches. The current I in Equation
(4.250) must then be replaced by the peak current in the bunch, Î . It is customary
to use the bunching factor Bf , which is defined by the ratio of the average current,
I , to the peak current, Î , that is,

Bf = I

Î
, or Î = I

Bf

. (4.251)
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Note that Bf has the range 0 < Bf � 1, and that Bf = 1 represents the unbunched
beam treated above.

Introducing Î = I/Bf in place of the current I , we obtain from (4.250) the
relation

	ν = − IR

I0εnβ2γ 2Bf

. (4.252)

An alternative form often found in the literature uses in place of the average cur-
rent the total number of particles Nt = 2πRI/qβc and in place of I0 the classical
particle radius rc. This yields

	ν = − Ntrc

2πεnβγ 2Bf

, (4.253)

where

rc = q2

4πε0mc2
. (4.254)

For the proton, rc = 1.535 × 10−18 m, and for the electron, rc = 2.818 × 10−15 m.
As mentioned earlier, the effect of dispersion on the space-charge tune shift will be
discussed in Section 5.4.7. Solving (4.252) for the average current, one gets

I = I0εnβ
2γ 2Bf 	ν

R
, (4.255)

where I0 ≈ 3.1 × 107 A for protons and 1.7 × 104 A for electrons.
As the above formulas indicate, the tune shift is proportional to the beam in-

tensity (i.e., current I or particle number Nt ) and is inversely proportional to the
normalized emittance εn. Furthermore, it decreases with increasing energy and is
therefore most pronounced at the injection point of a synchrotron. As a general
conservative rule one tries to limit the tune shift at injection to a value of

|	ν| � 0.25. (4.256)

As an example, consider the booster synchrotron for the Fermilab proton accel-
erator (see D.10, Table B.1 in Appendix A). It has a circumference of C = 2πR ≈
470 m and an injection energy of 200 MeV (βγ ≈ 0.7). The normalized emittance
for the injected proton beam has a design value of εn = 8 mm-mrad. Assuming a
bunched beam with a bunching factor of Bf = 0.25, and taking |	ν| = 0.25, one
finds for the allowed average current the value I ≈ 98 mA, which corresponds to a
total number of particles of Nt ≈ 1.7 × 1012.

In practice, tune shifts greater than |	ν| = 0.25 may be tolerated as long as the
emittance dilution or particle losses that occur when a resonance is encountered
remain within acceptable limits. The problem of resonance traversal of the beam
due to the space-charge tune shift was first studied theoretically by M. Month and
W. T. Weng, who concluded that |	ν| can exceed the theoretical limit of 0.25 sig-
nificantly. [See the review article by W. T. Weng in AIP Conference Proceedings 153,
pp. 349–389, (1987) listed in D.7, and references therein.] This finding is in agree-
ment with experimental observations and has also been confirmed in numerical
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simulation studies by I. Hofmann [Part. Accel. 39, 169 (1992)]. It should also be
pointed out in this context that actual beams usually do not have the uniform den-
sity profile implied by the above theory. Take, for example, a Gaussian profile with
standard deviation δ, that is,

n(r) = n0 exp

(
− r2

2δ2

)
. (4.257)

The radial force due to the electric and magnetic self fields of such a Gaussian
distribution is a nonlinear function of the radius r . Hence, in contrast to the
uniform-beam case, the betatron oscillation frequency is a function of a particle’s
position in the beam [i.e., ν = ν(r)]. The betatron tune shift 	ν of particles near
the center of the beam is larger than in the equivalent uniform beam, while parti-
cles in the Gaussian tail have a smaller tune shift. As a result, particles in the core
of the distribution may encounter a resonance while the outer particles remain un-
affected. This may lead to an increase of the effective emittance, thereby reducing
the tune shift and moving the particle distribution away from the resonance.

From Equation (4.252) we see that the cure for emittance dilution and beam
loss due to the betatron tune shift is higher injection energy and smaller ring size.
The original booster synchrotron at Fermilab, for instance, has an injection energy
of 200 MeV and a radius of 75 m. This was found to restrict the beam intensity
severely, and an upgrade to 400 MeV has been undertaken.

4.5.2
Current Limits in Weak- and Strong-Focusing Systems

The theory of tune shift due to space charge presented in this section also applies
to other circular accelerators, such as betatrons and cyclotrons, where the focusing
is weaker than in the case of strong-focusing synchrotrons. As an example, let us
consider a hypothetical betatron with a field index of n = 0.5, hence νr = νz =√

0.5 ≈ 0.7. The main effect in this case is that the space charge decreases the
already weak focusing force. This, in turn, increases the beam size and may lead
to particle losses to the walls. An upper limit for the beam current exists where the
depressed tune approaches zero (i.e., ν → 0), and hence the net focusing force is
zero. We can calculate this space-charge limit for a betatron from Equation (4.246)
and obtain

Kmax = ν2
0

a2

R2
,

or

Imax = I0ν
2
0a2β3γ 3

2R2
. (4.258)

As an example, suppose that the betatron has a radius of R = 0.5 m, a useful beam
aperture of a = 1 cm, and operates at a tune of ν0 = √

0.5. If the electron beam
is injected at an energy of 100 keV (βγ = 0.656), one finds that the maximum
current is 4.8 A.
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In deriving the relation (4.258) we neglected the emittance of the beam. If the
emittance is included, we obtain from (4.241) the more accurate results

Kmax = ν2
0

a2

R2
− ε2

a2
,

or

Imax = I0β
3γ 3

2

(
ν2

0a2

R2
− ε2

n

β2γ 2a2

)
. (4.259)

The maximum current that can be injected into the betatron is then reduced by
an amount that depends on the emittance. On the other hand, the above relations
show that the current can be increased substantially by raising the injection energy
(I ∼ β3γ 3). At an injection energy of 1 MeV (βγ = 2.783), for instance, the max-
imum current increases by a factor (2.783/0.656)3 = 76.5: in the above example
from 4.8 A to 367 A if the emittance term can be neglected.

We note in this context that various methods to improve the focusing, and hence
to increase the space charge limit, in a betatron have been proposed or studied.
The first idea, tried unsuccessfully in the 1950s, was to use charge neutralization
(plasma betatron). More recent interests have focused on high-current acceleration
schemes involving toroidal magnetic fields [14], modified betatrons with additional
toroidal [15], or stellarator-type [16] fields, and other configurations. A good review
of these various schemes, including a detailed list of relevant papers, can be found
in Reference 16.

The net effect of all these schemes is to increase the effective betatron frequency
significantly. In a sense, the betatron is converted into a strong-focusing device
with ν0 > 1.

The difference between a weak-focusing circular accelerator, such as a conven-
tional betatron or constant-gradient synchrotron, and a strong-focusing machine
can be illustrated by comparing the beam current that can be handled by each de-
vice. Let ν0,w = √

0.5 be the effective betatron tune in the weak-focusing machine,
as in our previous example. The corresponding maximum perveance is then ob-
tained from (4.246) by setting ν2

0,w = 0.5 and ν2 = 0, that is,

Kw = 0.5
a2

R2
. (4.260)

For the strong-focusing device, we will assume that the allowed tune shift is
|	νs | = |νs − ν0,s | = 0.25 � ν0,s ; hence, from (4.247),

Ks ≈ 2ν0,s |	νs | a2

R2
= 0.5ν0,s

a2

R2
. (4.261)

Assuming that both machines have the same energy, major radius R, and minor
radius a, we find from the last two equations that

Ks

Kw

= Is

Iw

= ν0,s (for ν0,s � 1). (4.262)

Thus the current ratio scales linearly with the effective betatron tune ν0 that can be
achieved in the strong-focusing configuration.
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As a further application of the theory of tune depression developed in this sec-
tion, let us compare a circular, strong-focusing lattice with a linear FODO trans-
port system having the same focusing strength per unit length, as defined by
k0 = σ0/S = ν0/R. For the linear channel, there is no constraint on the tune
depression (i.e., σ → 0, or k → 0). Hence, from Equation (4.246) we obtain for the
maximum perveance

Kl = k2
0a2. (4.263)

In the circular system, the depressed tune is limited by an allowed shift of |	ν| �
ν0, so that

Kc = 2ν0|	ν|
R2

a2 = 2k2
0
|	ν|
ν0

a2. (4.264)

The ratio of the beam currents that can be handled by the two systems is then
given by

Il

Ic

= 1

2

ν0

|	ν| = 2ν0 (4.265)

if we assume a tune shift of |	ν| = 0.25. Thus, as an example, for a tune ν0 between
5 and 6, the linear channel can transport a 10- to 12-fold higher current than the
equivalent circular machine.

4.5.3
Effects of Image Forces on Coherent and Incoherent Betatron Tune

In the foregoing analysis of self-field effects on the betatron oscillations and beam
currents in circular machines we have not considered the image forces due to the
boundaries surrounding the beam. For a vacuum tube with circular cross section,
we could apply the results of Section 4.4.4 directly to our problem. However, in
practice, many vacuum tubes in circular accelerators have a rectangular or elliptical
shape, with the height, 	y, usually considerably smaller than the radial width, 	x.
In general, the boundary problem can be very complicated, as both tube cross sec-
tions and wall materials may vary along the circumference of the accelerator. Also,
as discussed in Section 4.4.4, the magnetic field case is much more complicated
than the electric image problem and one must distinguish between short-time (ac)
and long-time (dc) behavior.

The problem of electric and magnetic image forces in vacuum tubes with vari-
ous geometries and boundary conditions was treated in detail by Laslett [17]. We
limit our analysis to the simple model of a line charge ρL between two infinite con-
ducting planes, illustrated in Figure 4.19. As shown in the figure, we assume that
the beam is displaced in the vertical direction from the midplane by a distance η,
which is considered to be small compared to the separation 2h of the two planes
(i.e., η � 2h). This will allow us to evaluate the image effects for both the coherent
oscillations of the beam as a whole and the incoherent betatron oscillations of the
individual particles. Following Laslett [17], we will limit the analysis to the verti-
cal motion (y-direction) where the image force is defocusing and the beam size is
limited by the aperture 2h between the conducting planes.
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Fig. 4.19 Beam represented by a line charge ρL between two
conducting planes. The line charge is displaced from the
midplane by a distance η. The first images above and below the
conducting planes are indicated.

The two-dimensional electrostatic field problem in Figure 4.19 can be treated
either by conformal mapping or by the method of images. We choose the latter,
which is well known from basic electrostatic theory. The two nearest images with
respect to the upper and lower planes are shown in the figure. The first two have a
negative line charge of −ρL and are located at points y1 = 2h−η and y2 = −(2h+
η). At a distance y from the origin in the x = 0 plane, these two image charges
produce electric fields Ei

y1 = (ρL/2πε0)(2h−η−y)−1 and Ei
y2 = −(ρL/2πε0)(2h+

η+y)−1. The two negative images generate positive images, which in turn produce
negative images, and so on.

By summation of the contributions from this infinite series of images one ob-
tains

Ei
y = ρL

2πε0

[
1

2h − η − y
− 1

2h + η + y
+ 1

4h − η + y
− 1

4h + η − y
+ · · ·

]
,

(4.266)

which can be written in the form

Ei
y = 2ρL

2πε0

[
η + y

4h2 − (η + y)2
+ η − y

16h2 − (η − y)2
+ η + y

36h2 − (η + y)2
+ · · ·

]
.

(4.267)

By assuming that |η ± y| � 2h, one gets the first-order approximation

Ei
y � ρL

4πε0h2

[
η + y

1
+ η − y

4
+ η + y

9
+ η − y

16
+ · · ·

]
,

or
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Ei
y = ρL

4πε0h2

[(
1 + 1

4
+ 1

9
+ 1

16
+ · · ·

)
η +

(
1 − 1

4
+ 1

9
− 1

16
+ · · ·

)
y

]
.

(4.268)

The numbers in brackets associated with η represent the series of expansion of
π2/6, and those associated with y represent π2/12. Thus we obtain the result

Ei
y = ρLπ

48ε0h2
(y + 2η). (4.269)

Note that in contrast with the beam in a cylindrical pipe of Section 4.4.4, there
is an electrostatic image field in our case, even if the beam is centered in the mid-
plane. For η = 0 we get, from (4.269),

Ei
y = ρLπ

48ε0h2
y (for η = 0). (4.270)

On the other hand, the image field at the center of the displaced beam is found by
setting y = η in (4.269) and is given by

Ei
y = ρLπ

16ε0h2
η (for y = η). (4.271)

As can be seen from the last three equations, the image fields produce defocusing
forces in the y-direction. On the other hand, since ∇ · Ei = 0, the corresponding
forces in the x-direction have opposite signs and are thus focusing.

Let us now evaluate the effect of the image forces on the betatron oscillations of
the particles in the beam. If the net force in the y-direction is different from the net
force in the x-direction, the matched beam will have an elliptical cross section even
in the smooth approximation being used here. Let a and b denote the semiaxes in
the radial (x) direction and axial (y) direction, respectively. The trajectory equation
for particles in the x = 0 plane will then be of the smooth-approximation form

y′′ +
[
k2
y0 − 2K

b(a + b)
− k2

yi

]
y = 0. (4.272)

The first term in brackets represents the external focusing force, the second term
the space-charge force without images, and the last term, −k2

yi , the effect of the
electrostatic image force. Using (4.270), one finds for the electrostatic image term

k2
yi = π2

24h2
Kγ 2, (4.273)

where K = (I/I0)(2/β3γ 3) is the generalized perveance.
The equation of motion (4.272) may be written in the alternative form

y′′ + k2
yy = 0, (4.274)

with

k2
y = k2

y0 − 2K

b(a + b)
− k2

yi . (4.275)

The tune shift of the incoherent betatron oscillations is then, by analogy to Equa-
tions (4.246) and (4.247), given as
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ν2
y − ν2

y0 = − 2KR2

b(a + b)

[
1 + ε1γ

2 b(a + b)

h2

]
, (4.276a)

or

	νy ≈ − KR2

νyb(a + b)

[
1 + ε1γ

2 b(a + b)

h2

]
, (4.276b)

where the electrostatic image coefficient ε1 for our case has the value

ε1 = π2

48
. (4.277)

Equation (4.276) includes in the perveance parameter K the focusing effect
(1 − β2 = γ −2) due to the magnetic self field of the beam without magnetic image
forces. It is thus equivalent to the dc case with no ferromagnetic boundaries. The
bunched-beam result (ac case) is obtained by setting γ 2 = 1 in the bracketed term
on the right-hand side of Equation (4.276). The correction factor due to image ef-
fects depends on the beam size and is most significant in the dc case (unbunched
beam). Taking the example of the booster synchrotron for the Fermilab accelerator
with an injection energy of 200 MeV (γ = 1.21) and assuming that a ≈ b = 0.1h,
one obtains

ε1γ
2 b(a + b)

h2
= π2

48
× 1.212 × 2 × 0.12 = 6 × 10−3,

which is negligibly small. On the other hand, if the beam size increases (e.g., due
to interaction with a resonance, mismatch, poor emittance, or other causes), these
image effects may become significant. However, the above first-order results are
valid only as long as a � h, b � h, and one must use nonlinear theory or particle
simulation to compute the beam behavior in this situation.

To analyze the effect of image forces on the coherent motion of a displaced beam
we set y = η and K = 0 in Equation (4.272) and use relation (4.271) for calculating
k2
yi . One finds that

k2
yi = π2

8h2
Kγ 2, (4.278)

and for the change in the coherent betatron tune

ν2
c − ν2

c0 = −2KR2

h2
ε1cγ

2, (4.279a)

or

	νc ≈ −KR2

νch2
ε1cγ

2, (4.279b)

where

ε1c = π2

16
. (4.280)

The result (4.279) corresponds to the dc case when ferromagnetic boundaries are
neglected. For a bunched beam (ac limit) we obtain in lieu of (4.279)
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ν2
c − ν2

c0 = −2KR2

Bf h2
ε1c = − 4IR2

I0Bf h2β3γ 3
ε1c, (4.281a)

or

	νc ≈ − KR2

νcBf h2
ε1c = − 2IR2

νcI0Bf h2β3γ 3
ε1c. (4.281b)

Taking the parameters for the Fermilab booster, namely R = 75 m, Bf = 0.25,
νc0 = 6.7, βγ = 0.7, and using I = 100 mA, h = 5 cm, we find from (4.281a) that

	ν2
c = ν2

c − ν2
c0 = − 4 × 0.1 × 752

3.1 × 107 × 0.25 × 0.052 × 0.73
× π2

16
= −0.2.

In this case the image forces are seen to have a noticeable effect on the coherent
motion of a vertically displaced beam.

Laslett calculated the tune shift of the incoherent and coherent oscillations due to
self-field effects for a variety of other boundary conditions such as rectangular and
elliptical tube cross sections [17]. For the dc case, he introduced the ferromagnetic
image force coefficient ε2 in addition to the electrostatic image coefficient ε1. When
the beam passes through a dipole bending magnet, for instance, the ferromagnetic
boundaries can be represented by two parallel planes separated by a distance 2g.
The dc magnetic image coefficient then has the same value as in the analogous
electrostatic problem, namely ε2 = ε1 = π2/48.

The tune-shift equations for the dc case must be modified when ferromagnetic
images are present. Thus Equation (4.276) for the incoherent tune shift becomes

ν2
y − ν2

y0 = − 2KR2

b(a + b)

[
1 + ε1γ

2 b(a + b)

h2
+ ε2β

2γ 2 b(a + b)

g2

]
,

(4.282a)

or

	νy ≈ − KR2

νyb(a + b)

[
1 + ε1γ

2 b(a + b)

h2
+ ε2β

2γ 2 b(a + b)

g2

]
.

(4.282b)

Accordingly, for relativistic beams (β � 1, γ � 1) and pole-shoe separation 2g

comparable to the vacuum tube aperture 2h, the ferromagnetic image term is seen
to be of the same magnitude as the electrostatic image term.

The corresponding tune shift equation for a bunched beam (ac case), or for pulse
durations short compared to the magnetic diffusion time τm, is

ν2
y − ν2

y0 = − 2KR2

b(a + b)

[
1 + ε1

b(a + b)

h2

]
, (4.283a)

or

	νy ≈ − KR2

νyb(a + b)

[
1 + ε1

b(a + b)

h2

]
. (4.283b)

At relativistic energies the difference between the dc and ac image terms can be
very significant. As an example, consider the case of the high-current betatron with
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1 MeV injection energy (γ = 3, βγ = 2.78) discussed in connection with Equation
(4.259). Let a = b, b/h � 0.2 and b/g � 0.18, ε1 = ε2 = π2/48. For a time t < τm

after beam injection, the ac formula (4.283) applies and the image term is

ε1
b(a + b)

h2
= π2

48
2 × 0.22 = 1.64 × 10−2.

At later times when t > τm, Equation (4.282) applies and the image term is

ε1γ
2 b(a + b)

h2
+ ε2β

2γ 2 b(a + b)

g2
=

π2

48

(
32 × 2 × 0.22 + 2.782 × 2 × 0.182) = 0.25.

This is a very significant change that increases the tune shift and reduces the total
current that can be accelerated in the betatron. The frequency of the coherent mo-
tion of a displaced beam is also strongly affected by this time-varying behavior of
the magnetic image forces.

The various formulas and examples presented in this section show that the cor-
rection factors for the space-charge tune shift due to the image forces depend on
the geometry of the beam and vacuum chamber, the particle energy, and the time
variation of the beam. Generally speaking, the larger the ratio of beam size to cham-
ber height, (a + b)/h, and the larger the energy (i.e., γ ), the greater is the image
correction factor. It is interesting to note that this general trend is in just the oppo-
site direction as the space-charge term without images, where one has the scaling
KR2/[a(a + b)] ∝ I [β3γ 3a(a + b)]−1. Finally, we note that the betatron tune shift
due to self-field effects, including images, is often referred to in the literature as
the Laslett tune shift.

4.6
Charge Neutralization Effects

4.6.1
Ionization Cross Sections for Electron and Proton Beams in Various Gases

Since in practice it is not possible to obtain a perfect vacuum in the beam tubes
of accelerators and other devices, there is always a finite probability that partial
charge neutralization occurs due to ionizing collisions of the beam particles in the
background gas. In fact, in some cases, such as the transport of low-energy H+ or
H− beams, or of intense relativistic electron beams, the background gas is used
deliberately to achieve better focusing or even self-focusing via charge neutraliza-
tion, as will be discussed below. The degree of neutralization depends on the gas
density ng , the chemical composition of the gas, the ionization cross section σi for
the production of electron–ion pairs, the velocity v of the beam particles, and the
pulse length of the beam. The density increase with time, dn/dt , of the electrons
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or ions created in the collisions between the beam particles, and the number of gas
molecules or atoms is given by

dn

dt
= nbngσiv, (4.284)

where nb is the beam density.
The secondary particles created in the collisions that have the same charge po-

larity as the beam particles are expelled to the walls by the beam’s space charge if
no magnetic fields are present. (If there is a magnetic field, the situation becomes
more complicated as the particles undergo E × B drift.) Those having opposite
charge polarity are trapped and contribute to partial charge neutralization. In gen-
eral, the transverse velocity and spatial distribution of the beam and the trapped
particles are different, so that the charge-neutralization factor fe is a function of ra-
dius r and distance z along the beam [i.e., fe = fe(r, z)]. However, in this section on
charge-neutralization effects, we treat fe as a constant since we are interested here
in the gross features and linear beam theory rather than in a truly self-consistent
description. An important parameter is the charge-neutralization time, τN , defined
as the time it takes to obtain full charge neutralization of the beam (fe = 1). Sup-
pose that both beam and secondary particles are singly charged and that the gas
and beam densities are constant. If we neglect recombination of electrons with
ions, which is a valid assumption at low density and short times, then Equation
(4.284) can be readily integrated, yielding n(t) = nbt/τN , with the relation

τN = 1

ngσiv
(4.285)

for the charge-neutralization time (where n = nb, or fe = 1). The corresponding
mean free path between ionizing collisions is li = τNv = (ngσi)

−1.
For an ideal gas, the density at standard atmospheric pressure (760 torr) and

standard temperature (0 ◦C) is given by Loschmidt’s number nL = 2.69×1025 m−3.
Thus the relationship between ng and the pressure p is

ng

[
m−3] = 3.54 × 1022 × p[torr] = 2.65 × 1020 × p[Pa], (4.286)

where 1 pascal (Pa) = 7.5 × 10−3 torr and 105 Pa = 1 bar.
The ionization cross section depends on the velocity v of the beam particles and

the atomic properties of the gas species. Experimental data and empirical scaling
laws based on Bethe’s theory [18] can be found in the literature. Good references
for electron impact ionization cross sections in various gases are the papers by
Kieffer and Dunn [19] for electron energies below 10 kV, and by Rieke and Prepe-
jchal [20] for electron energies above 10 keV. Following Slinker, Taylor, and Ali [21],
the general scaling law for electron impact ionization can be written in the form

σi = 8a2
0πIRA1

mec2β2
f (β)

(
ln

2A2mec
2β2γ 2

IR

− β2
)

, (4.287a)

or, numerically,

σi[m2] = 1.872 × 10−24A1

β2
f (β)

[
ln

(
7.515 × 104A2β

2γ 2) − β2
]
, (4.287b)
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where a0 = 0.529×10−10 m is the Bohr radius, IR = 13.6 eV the ionization energy
of atomic hydrogen (Rydberg energy), β = v/c, γ = (1 − β2)−1/2, and me is the
electron mass. A1 and A2 are dimensionless empirical constants that depend on
the gas species. f (β) is a correction function for fitting the data at low energy near
the threshold where the kinetic energy T of the electrons equals the ionization
energy Ii . It is given by [21]

f (β) = Ii

T

(
T

Ii

− 1

)
= 2Ii

mec2β2

(
mec

2β2

2Ii

− 1

)
. (4.288)

Note that f (β) = 0 at T = Ii where σi = 0, and f (β) → 1 for T � Ii .
The constants A1 and A2 are related to the parameters M2 and C of Rieke and

Prepejchal [20] by

A1 = M2 and 7.515 × 104A2 = eC/M2
.

Specifically, for electron ionization of molecular hydrogen (H2), where Ii =
15.4 eV, one finds (with M2 = 0.695, C = 8.115 from Table IV of Reference 20)

A1 = 0.695 and A2 = 1.567.

By substitution of these values in Equation (4.287b), one obtains for the electron
ionization cross section in H2 the relation

σi[m2] = 1.301 × 10−24

β2
f (β)

[
ln

(
1.177 × 105β2γ 2) − β2

]
, (4.289a)

with

f (β) = 6.027 × 10−5

β2

(
1.659 × 104β2 − 1

)
. (4.289b)

This cross section for electrons in H2 is plotted in Figure 4.20 as a function of β (a)
and of the electron kinetic energy T (b). Table 4.1 shows the values of the constants
for H2, He, Ne, and Ar from the data of Reference 20, where information on many
other gas species can be found.

Impact ionization of proton beams at low energies between 0.3 keV and 5 MeV
in various gases was studied by Rudd et al. [22]. The authors found that the experi-
mental data could be fit with an empirical scaling law of the form

σi =
(

1

σl

+ 1

σh

)−1

= σlσh

σl + σh

, (4.290a)

where

σl = 4πa2
0CxD, (4.290b)

σh = 4πa2
0

x
[A ln(1 + x) − B], (4.290c)

x = Te

IR

= Tp

1836IR

= mec
2β2

2IR

, (4.290d)

and A, B, C, and D are fitting constants that depend on the gas species. Note that
v = βc is the velocity of the protons, Tp = mpv2/2 is the (nonrelativistic) proton
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Fig. 4.20 Ionization cross sections for electron and proton
beams in hydrogen gas (H2) as a function of β = v/c (a) and
kinetic energy T (b).

energy, and Te = mev
2/2 is the kinetic energy of the electron with the same velocity

as the proton (mp/me = 1836). At the high-energy end of the range covered by this
study, say Tp > 1 MeV, one has x � 1, ln(1 + x) ≈ ln x, σh � σl , hence

σi ≈ σh = 1.872 × 10−24

β2

[
A ln

(
1.879 × 104β2) + B

]
. (4.290e)

On the other hand, for protons with kinetic energies Tp > 1 MeV the behavior
of the ionization cross section is similar to that of electrons; that is, the relativistic



4.6 Charge Neutralization Effects 247

Table 4.1 Values of fitting constants for ionization cross section of electrons in several gases.

Gas Species M2 = A1 C A2 = 1.331 × 10−5eC/M2

He 0.745 8.005 0.6174
Ne 2.02 18.17 0.1073
Ar 4.22 37.93 0.1066
H2 0.695 8.115 1.5668

Source: Reference 20.

formula (4.287) can be applied, setting f (β) = 1. Comparison of relations (4.290e)
and (4.287b) in the nonrelativistic region near Tp of 1 to 5 MeV where they overlap
and where β2 � 1 shows that

A1 = A and A2 = 0.25eB/A.

As an example, let us take the ionization cross section for proton beams in molec-
ular hydrogen (H2). From Reference 22 one obtains for the constants in this case

A = 0.71, B = 1.63, C = 0.51, D = 1.24;
A1 = 0.71, A2 = 2.483.

The corresponding formulas for the cross section σi are then

σl[m2] = 3.575 × 10−15β2.48, (4.291a)

σh[m2] = 1.872 × 10−24

β2

[
0.71 ln

(
1 + 1.879 × 104β2) + 1.63

]
for Tp < 5 MeV, (4.291b)

σi[m2] = 1.329 × 10−24

β2

[
ln

(
1.866 × 105β2γ 2) − β2

]

for Tp > 5 MeV, (4.291c)

Figure 4.20 shows the cross section for protons in hydrogen gas (H2) as a func-
tion of kinetic energy based on Equations (4.291a) to (4.291b), for the energy range
below 5 MeV and on Equation (4.291c) for energies above 5 MeV. Table 4.2 lists
the values of the constants for H2 and various other gases published in Reference
22, where additional information can be found. Equations (4.287) to (4.291) for
the ionization cross section show that the dominant parameter is the particle ve-
locity v = βc. As can be seen in the plot of σi versus the relative velocity β in
Figure 4.20 (a) the two curves of σi for electrons and protons differ only at low ve-
locities near the peak, σi,max, and are practically identical in the high-energy region.
This “asymptotic” behavior of the cross section, independent of particle species, is
an important feature of the Bethe theory [18]. It can be used to extrapolate experi-
mental data to higher energies, as was done in Figure 4.20 for both electrons and
protons or to estimate the cross sections for other species. Thus, the cross sections
for positrons (e−), on the one hand, and antiprotons (p) and H− ions, on the other
hand, are basically identical with those of electrons and protons, respectively.
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Table 4.2 Values of fitting constants for ionization cross section of protons in various gases.

Gas Species A = A1 B C D A2 = 0.25eB/A

H 0.28 1.15 0.44 0.907 15.193
He 0.49 0.62 0.13 1.52 0.886
Ne 1.63 0.73 0.31 1.14 0.391
Ar 3.85 1.98 1.89 0.89 0.418
Kr 5.67 5.50 2.42 0.65 0.659
Xe 7.33 11.10 4.12 0.41 1.136
H2 0.71 1.63 0.51 1.24 2.483
N2 3.82 2.78 1.80 0.70 0.518
O2 4.77 0.00 1.76 0.93 0.250
CO 3.67 2.79 2.08 1.05 0.535
CO2 6.55 0.00 3.74 1.16 0.250

Source: Reference 22.

4.6.2
Linear Beam Model with Charge Neutralization

The charge-neutralization effects can be incorporated into our linear beam model
by using the expression (4.23) for the generalized perveance, that is,

K = K0

[
1 − γ 2fe(τ )

]
(4.292)

where K0 = (I/I0)(2/β3γ 3) and fe(τ ) is the charge-neutralization factor. The pa-
rameter τ measures the “time into the beam pulse” at a given position in the beam
tube. Thus, τ = 0 defines the instant where the beam front passes through the
location of interest. In most cases fe(τ ) can be approximated as a function of τ by
(see [D.4, Fig. 10])

fe(τ ) =
{

τ
τN

for 0 � τ � τN

1 for τ > τN .
(4.293)

However, there are notable exceptions, such as beams of time duration τp < τN ,
where fe,max = t/τp < 1, or overneutralized beams, where fe,max > 1 for τ >

τN . Also, in practice, the fe(τ ) curve approaches the steady state [fe(τ ) = const,
dfe/dτ = 0] in exponential fashion [i.e., [fe(τ ) ∼ 1 − exp(−τ/τN)], rather than
linearly with time. But these are minor details that can be easily accounted for
if they become important. Charge neutralization increases the net focusing force
acting on the particles and hence reduces the average beam radius. For simplicity,
let us assume that the external focusing is provided by a symmetrical periodic-
focusing lattice (i.e., X = Y = a) and that the round-beam smooth approximation
can be used. The mean radius a then obeys the envelope equation

a′′ + k2
0a − K0

a

[
1 − γ 2fe(τ )

]
− ε2

a3
= 0. (4.294)

The wave number k0, which represents the external focusing strength, is defined by
k0 = σ0/S [Equation (4.190)]. In circular machines, it relates to the betatron tune
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without space charge, ν0, and the mean orbit radius, R, by k0 = ν0/R [Equation
(4.242)]. The second and third terms of Equation (4.294) can be combined into a
single term, k2a, with

k2 = k2
0 − K0

a2

[
1 − γ 2fe(τ )

]
, (4.295)

where k = σ/S = 2π/λ defines the effective particle oscillation wavelength, λ, or
phase advance, σ , in the presence of self fields and charge neutralization.

Theoretically, a quasi-steady state (matched beam) exists where a′′ = 0 and
a = const for any given value of the charge-neutralization factor fe. If the beam
is matched at a given time and fe(τ ) changes adiabatically, the radius will change
adiabatically and the beam remains matched at all times (see Section 3.9). The in-
crease of the charge-neutralization factor fe(τ ) is considered adiabatic if it occurs
on a time scale that is long compared to a betatron oscillation period Tb = λ/v,
so that 	fe/fe � 1 during the time interval 	τ = Tb. If, on the other hand, the
change of fe(τ ) occurs nonadiabatically (i.e., if the rise dfe/dτ = 	fe/Tb during
one betatron period is significant), the beam cannot be matched for the entire pulse
duration. In the latter case, if the beam is matched for a particular value of fe(τ ) at
a given time τ , it will be mismatched at other times during the pulse and hence per-
form envelope oscillations (see Section 4.4.3). Furthermore, as long as fe(τ ) varies
with time, the frequency and amplitude of these oscillations will also change. An
estimate of the degree of mismatch can be obtained by comparing the maximum
and minimum values of the equilibrium radii for the range considered. As an ex-
ample, suppose that a space-charge-dominated beam (K0a

2 � ε2) is matched at
τ = τ1 = 0 when it is unneutralized (fe = 0). Its radius, a = a1, is then obtained
from (4.294) to good approximation as

a1 =
(

K0

k2
0

)1/2

. (4.296)

At a later time, τ = τ2, when γ 2fe(τ2) = 1, the space-charge term in the envelope
equation is zero and one obtains a matched radius of

a2 =
(

ε

k0

)1/2

. (4.297)

The ratio of these two radii is

a2

a1
=

(
εk0

K0

)1/2

=
(

I0εnk0

2I

)1/2

βγ. (4.298)

For space-charge-dominated beams, where εk0 � K0, the two radii can differ
significantly (i.e., a2/a1 � 1). This is the case, for instance, in low-energy, high-
brightness proton and H− beams (β � 1, fe ≈ 1) and in intense relativistic elec-
tron beams (β ≈ 1, fe = 1−β2 � 1). If such beams are matched into the focusing
channel for fe = 0 at the beginning of a pulse, there will be strong envelope oscil-
lations in the later parts of the pulse, and vice versa.

If fe > 1/γ 2, the space-charge term in the envelope equation becomes positive
(focusing). For sufficiently high partial neutralization, the positive space-charge
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term becomes equal in magnitude to the negative emittance term. In this case,
the beam can be “self-focused” (i.e., external forces are not required to confine the
beam). Setting a′′ = 0 and k0 = 0 in Equation (4.294), we find the equilibrium
condition

K0

a

(
γ 2fe − 1

) = ε2

a3
, (4.299)

from which follows that the neutralization factor fe must satisfy the relation

γ 2fe − 1 = ε2

K0a2
. (4.300)

Alternatively, for a given value of fe we can solve for the equilibrium radius, which
yields

a = ε√|K| = ε
[
K0

(
γ 2fe − 1

)]−1/2
. (4.301)

When fe = 1, this relation is identical with Equation (4.71) of Section 4.2.4 for
a fully neutralized Bennett beam. The equilibrium state of a partially neutralized
relativistic electron ring confined by an axial magnetic field was first discussed by
Budker and formed the basis for the electron ring accelerator concept studied in the
1970s (see Schumacher [D.4 and references therein]).

It should be pointed out in this context that the above simplified model repre-
sents the effects of the secondary charge-neutralizing particles on the beam parti-
cles by a single parameter, fe(τ ), but it ignores the dynamical details of the mutual
interaction between the two particle species. A more accurate theory would have
to consider the distribution and motion of both particle species in a self-consistent
manner. The main advantage of the linear beam model is its simplicity and the fact
that it provides an adequate description of the average behavior of the beam (mean
radius, net average charge density, etc.). Linear beam codes that include an em-
pirically determined charge neutralization factor fe are indispensable tools for the
interpretation of experimental data and for the design of beam transport systems
with a charge-neutralizing background gas.

In the following subsections we discuss the effects of charge neutralization for
four cases of practical interest: low-energy proton and H− beams, intense relativis-
tic electron beams, high-energy circular accelerators and storage rings, and plasma
lenses.

4.6.3
Gas Focusing in Low-Energy Proton and H− Beams

Space-charge effects are most severe at low energy. One of the most difficult prob-
lems, therefore, is to focus the high-brightness beam extracted from a proton or
H− source. Such beams must be transported over a distance of typically 30 to
100 cm and matched into the radio-frequency-quadrupole (RFQ) injector that con-
stitutes the first stage of a typical RF linear accelerator facility. The conventional
method is to use a combination of gas focusing and magnetic lenses (solenoids or
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quadrupoles) for this task [24]. Magnetic lenses alone are not capable of handling
the beam. Judicious use of charge neutralization in the background gas improves
the focusing considerably. Even so, some loss of beam current and deterioration of
beam quality appears to be unavoidable in such a system.

To understand the effects of charge neutralization in low-energy beam transport,
let us first consider a proton beam. Suppose that the kinetic energy of the protons is
100 keV and that the beam passes through a vacuum tube with hydrogen gas (H2)
at a pressure of 10−5 torr (i.e., a gas density of ng = 3.5 × 1017 m3). The collisions
between the protons and the hydrogen molecules cause dissociation (H2 → 2H)
and produce positive ions (H+

2 , H+) which are expelled from the beam region and
electrons which remain trapped and gradually neutralize the positive charge of
the beam. From Figure 4.20 one finds a cross section of σi � 2 × 10−20 m2 for
ionizing collisions by 100-keV protons in H2. With v = 4.38 × 106 m/s for the
proton velocity one obtains from Equation (4.285) a neutralization time of τN =
32.6 µs. Thus, if the proton beam has a pulse duration of τp > τN , the charge-
neutralization factor fe will rise linearly with time from zero at τ = 0 to fe = 1
at τ = 32.6 µs and then remains constant. The proton beam radius will decrease
with time from a maximum at τ = 0 to a small value at the fully neutralized state
(τ > τN). To get a rough idea of the magnitude of the effect, suppose that the
proton current is I = 200 mA (K0 ≈ 4 × 10−3), that the normalized emittance
εn = 6 × 10−7 m-rad (ε = 4 × 10−5 m-rad), and that the average focusing due to
magnetic lenses is given by k0 = 2π/λ0 = 2π m−1. With these numbers one finds
from Equations (4.296) and (4.297) that a1 ≈ 10 mm and a2 ≈ 2.5 mm, hence
a2/a1 = 0.25. This is a very significant change in the beam radius, and one would
expect that a large fraction of the beam current in the initial part of the beam pulse
(τ < 32.6 µs) could not be focused into the RFQ and would therefore get lost.

A similar situation exists for the transport of low-energy H− beams except that
the physics is more complicated. Thus, in contrast to the proton case, the electrons
produced in the ionizing collisions are repelled from the H− beams while the posi-
tive ions are trapped and provide the charge neutralization. In addition, one or both
electrons can be stripped from the H− ion, converting it into either a neutral parti-
cle (H0) or a proton (H+). For a 100-keV H− beam passing through hydrogen gas
(H2), for instance, the ionization cross section is about the same as in the proton
case (≈ 2 × 10−20 m2). The cross section for stripping [23] one electron from the
H− ion is 4 × 10−20 m2. Particle losses due to electron stripping depend on the gas
density and the length of the gas region and may become significant if the density
is too high. A unique feature of low-energy H− beam transport through a back-
ground gas is the fact that a state of overneutralization (fe > 1) can be achieved in
which the potential in the beam region is positive with respect to the wall [25]. The
positive ions then experience a repulsive force and escape from the beam region
with a velocity vi that depends on the potential at the radial position where they
are created. Secondary electrons can also escape from the positive potential well
since they are born with an energy distribution [26] that is practically Maxwellian
with temperature kBTe. The temperature depends on the beam voltage, Vb, and the
ionization potential of the background gas, Vi , by the approximate relation [26, 27]



252 4 Linear Beam Optics with Space Charge

kBTe

e
≈ 2

3

(
VbVi

mb/me

)1/2

, (4.302)

where mb/me represents the mass ratio of beam ions and electrons with mb/me =
1836 for protons and mb/me = 1838 for H− ions. As an example, the ionization
potential of molecular hydrogen (H2 → H+

2 + e) is Vi = 15.4 eV. Hence, 100-keV
proton or H− beams produce electrons with a temperature of kBTe � 19.3 eV and
a corresponding mean energy of 1.5kBTe ≈ 29.0 eV.

According to the theory [27], a quasi-steady state exists in which the H− beam
is overneutralized (fe > 1) (i.e., self-focused) and in which the positive poten-
tial difference between the center and the edge of the beam is on the order of
	φ ≈ kBTe/e. In this state, the number of electrons and positive ions created by
collisions of the H− beam in the background gas is exactly balanced by the num-
ber of electrons and ions escaping from the beam. This overneutralized state can
occur only when the gas density exceeds a critical value, ng,0, where the mean es-
cape time of the positive ions, τi , is equal to the neutralization time, τN , and the
beam is fully neutralized (fe = 1). If one takes τi = x/vi , where vi is the mean ion
velocity and x = a/2 is the mean escape distance equal to half the beam radius a,
one obtains for the critical gas density the relation [25]

ng,0 = 2

a

vi

v

1

σi

. (4.303)

The mean escape velocity vi depends on the temperature of the positive ions, which
is assumed [25] to be on the order of kBTi ≈ 0.1 eV. As the beam tends to become
charge neutralized (fe → 1), the initially negative beam potential goes toward
zero (	φ → 0). The positive ions are then no longer trapped but can escape to
the wall with a velocity vi . For a gas density ng < ng0, the ion escape time is
faster than the neutralization time (τi < τN), hence the beam will not become
fully neutralized. At the critical density, ng = ng0, the two effects (ion escape and
creation) exactly balance each other; hence fe = 1, 	φ = 0. When the gas density
exceeds the critical value, ng > ng0, the beam becomes overneutralized. The self-
focused steady state described above is achieved when the net focusing force acting
on the H− beam due to the positive space charge (fe > 1) is sufficient to balance
the beam divergence due to the emittance. The positive beam potential 	φ in this
equilibrium state is determined by the electron temperature, which is considerably
higher than the ion temperature (	φ = kBTe � kBTi). As a result, the ion escape
velocity is greater than at the critical density; that is, we have to good approximation
vi = (2	φ/mi)

1/2 rather than vi = (kBTi/mi)
1/2 at ng = ng0.

To minimize stripping losses and other problems in a low-energy H− beam
transport system with gas focusing, one prefers to operate at as low a gas pres-
sure as possible. Since, according to Equation (4.303), the critical gas density is
proportional to the ion escape velocity (ng0 ∼ vi) and vi scales with the ion mass
as vi ∼ m

−1/2
i , it is advantageous to use a background gas with high atomic

mass such as xenon (atomic mass number A = 131.3). The ionization cross
section for a 100-keV H− beam in Xe gas is comparable to that for protons [22]
(i.e., σi ≈ 11 × 10−20 m2). Compared to molecular hydrogen (A ≈ 2), the crit-
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ical density which scales as ng0 ∼ m
−1/2
i σ−1

i is lower in xenon by a factor of
(131/2)1/2(11/2) = 44.5.

Let us now examine the steady state of a self-focused H− beam in the framework
of the linear theory developed in Section 4.6.2. With γ = 1, we obtain from Equa-
tion (4.300) for the neutralization factor fe that is required to focus a beam with
emittance ε, perveance K0, and radius a the result

fe − 1 = ε2

K0a2
= I0εnβ

2Ia2
, (4.304)

where I0 = 3.1×107 A is the characteristic current. Alternatively, one can solve for
the beam radius and get

a = ε

[K0(fe − 1)]1/2
= εn

[
I0β

2I (fe − 1)

]1/2

. (4.305)

At first sight, Equation (4.305) suggests that the beam radius decreases with in-
creasing current and increasing charge overneutralization. However, the product
I (fe − 1) is related to the positive potential difference in the overneutralized H−
beam by

	φ = Vs = I (fe − 1)

4πε0cβ
= 30I (fe − 1)

β
, (4.306)

according to Equation (4.14). At the same time, 	φ is proportional to the electron
temperature, and one has approximately

	φ ≈ kBTe

e
= 2

3

(
VbVi

mb/me

)1/2

, (4.307)

as was pointed out in the discussion following Equation (4.302). Substituting
(4.306) and (4.307) into (4.305), one obtains for the beam radius

a = εn

(
3

4

mbc
2

e

)1/2(
mb/me

VbVi

)1/4

= 1.74 × 105εn

1

(VbVi)1/4
. (4.308)

Thus, according to this rather crude model, the equilibrium radius of an overneu-
tralized, self-focused H− beam scales as a ∼ εn/V

1/4
b ; that is, it is linearly pro-

portional to the normalized emittance εn, depends only weakly on the beam volt-
age and, most surprisingly, is independent of the beam current, I . For a 100-keV
H− beam propagating through xenon gas (ionization potential Vi = 12.1 V) and
having a normalized emittance εn = 2 × 10−7 m-rad, one obtains a radius of
a = 10−3 m = 1 mm. This constitutes a very strong focusing effect which cannot
be achieved by external means (magnetic or electrostatic lenses) unless the beam
current is very small, say I � 50 mA at 100 keV. This theoretical result explains the
appeal of gas focusing. In practice, however, it is very difficult to achieve the ideal
equilibrium state described here, and gas focusing in both H− and proton beam is
not well understood theoretically. Geometry effects, plasma-type instabilities, local
pressure variations, and other factors make theoretical modeling extremely diffi-
cult. Charge neutralization alone is usually inadequate and must be supplemented
by magnetic solenoid or quadrupole lenses to achieve better control, especially for
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matching the beam into the RFQ accelerator. Even so, substantial beam losses and
emittance growth are typical for such systems.

Electrostatic quadrupole (ESQ) lenses, which have been used successfully for
heavy ions [28], or combinations of ESQ and einzel lenses offer an attractive alter-
native for low-energy transport of high-brightness H+ and H− beams [27, 29, 30].
These provide strong focusing and at the same time prevent charge neutralization
and plasma buildup since the ions and electrons created in collisions with the back-
ground gas are immediately accelerated to the ESQ electrodes with the appropriate
voltage polarity. Ongoing research in this area will undoubtedly lead to improved
designs for low-energy transport of both H− and proton beams [24, 30].

4.6.4
Charge-Neutralization Effects in Intense Relativistic Electron Beams

For high-energy particle beams, the space-charge neutralization effects differ from
the low-energy cases discussed in Section 4.6.3 in two ways. First, the ionization
cross sections are considerably lower than near the peaks of the ionization curves
(see Figure 4.20). Second, the magnetic self field of the beam reduces the space-
charge defocusing force by the factor 1 − β2 = γ −2 at relativistic velocities. This
means that one can have self-focusing when the beam is only partially neutralized,
as pointed out before.

Let us now examine the effects of charge neutralization in intense relativistic
electron beams. Such beams are produced by applying high-voltage pulses in the
range 0.1 to 10 MV with time durations of typically 10 to 100 ns across a diode.
Electron currents ranging from 103 to 106 A are produced mostly by field emis-
sion; thermionic cathodes are also being used when high-brightness currents in
the kiloampere range are desired. (For a general review of the physics of intense
charged particle beams, see Miller [C.18].)

An important parameter in the theory and application of intense relativistic elec-
tron beams is the space-charge limiting current, IL, discussed in Section 4.2.3.
We first consider the case where the beam current is less than IL. As a specific
example, let us examine the self-focusing effect in a 1-MeV 5-kA electron beam.
Suppose that this beam has an emittance of ε = 5 × 10−4 m-rad, a pulse length of
τp = 30 ns, and that it is injected into a drift tube filled with hydrogen gas (H2) at
a pressure of p = 50 mtorr. Let the initial beam radius be a = 1 cm and the drift-
tube radius be b = 3 cm. The geometry of this system is illustrated in Figure 4.21,
which also shows the potential on the beam axis when the beam can propagate into
the drift tube for I < IL (solid curve). For the case where I > IL, which will be dis-
cussed later, the beam cannot propagate and forms a so-called virtual cathode near
the injection plane; the potential then has the shape shown by the dashed curve.

From Figure 4.20 the ionization cross section for 1-MeV electrons in H2 gas is
2 × 10−23 m2, and the resulting neutralization time is τN,e = 100 ns (i.e., consid-
erably longer than the pulse length of the beam). However, the positive hydrogen
ions produced in the collisions are accelerated in the potential well of the beam to
energies in the range of 100 keV, where they are much better ionizers as the 1-MeV
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Fig. 4.21 (a) Electron beam propagating through a vacuum
drift tube and (b) potential on beam axis; the dashed curve
indicates the potential when the beam current exceeds the
space-charge limit (I > IL) and electrons are reflected back
(virtual cathode formation).

electrons. As mentioned earlier, the ionization cross section for 100-keV protons
in H2 gas is 2 × 10−20 m2, and the resulting neutralization time at 50 mtorr is
τN,i = 6.5 ns. Olson, who studied this effect, estimated that the effective neutral-
ization time due to the combined action of the relativistic electrons and the positive
ions in H2 gas can be approximated by the relation [D.4, p. 49]

τ
e,i
N [ns] ≈ 1.0

p[torr] , (4.309)

which for p = 50 mtorr yields τ
e,i
N = 20 ns. The neutralization factor fe thus in-

creases linearly with time as fe(τ ) = τ/τ
e,i
N for τ � τ

e,i
N = 20 ns and then remains

constant at fe = 1 for the remaining 10 ns of the electron beam pulse. For the given
values of the beam radius at injection (a0 = 1 cm) and drift-tube radius (b = 3 cm),
the space-charge limiting current from Equation (4.61) is IL � 6 kA, which is above
the beam current of 5 kA. The beam front will thus propagate into the drift tube,
but the beam radius will blow up rapidly and hit the drift-tube wall due to lack of
focusing. As the charge neutralization increases with time, the radial divergence
will decrease until the equilibrium condition is reached at a = a0 = 1 cm. Since
K0 = 2.6 × 10−2 and ε = 5 × 10−4 m-rad, we obtain from (4.300) a neutralization
factor of fe = 0.12 that occurs at a time of 2.4 ns after injection of the beam front.
If this value of the neutralization factor could be kept constant, the beam radius
would remain matched, with a = a0 = 1 cm, through the remainder of the pulse.
In fact, however, fe increases further, hence the beam will become overfocused and
experience large envelope oscillations. The amplitude and wavelength of these os-
cillations for a given slice of beam within the pulse (defined by the time τ from the
beam front) can be obtained by solving the envelope equation (4.294), with initial
conditions a0 = 1 cm, a′

0 = 0 and using the value fe(τ ) for the neutralization para-
meter. The large envelope oscillations in this example of a relativistic electron beam
are unavoidable since the change of fe(τ ) during the first 20 ns is nonadiabatic.
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Fig. 4.22 IREB injection into drift tube when current is above
the space-charge limit (I > IL). (a) Beam front stops a short
distance dm from the anode, electrons are reflected; (b) typical
potential variation along the beam axis; the potential minimum
Vm at virtual cathode exceeds the beam voltage Vb .

A special situation arises when the electron-beam current, I , exceeds the space-
charge limiting value, IL, given in Equations (4.61) and (4.62). In this case the
beam front will not propagate into the drift tube and a virtual cathode forms until
fe(τ ) becomes sufficiently large that IL exceeds the beam current, so that I < IL.
The beam behavior depends very strongly on the pressure of the gas in the drift
tube. An interesting feature is the fact that the positive ions formed in the colli-
sions between electron beam and background gas experience collective acceleration
as the electron beam propagates into the drift tube after it is sufficiently charge
neutralized. The collective acceleration is attributed to the high electric field asso-
ciated with the virtual cathode and its subsequent motion as the beam propagates.
Figure 4.22 depicts the situation in the early stage where the beam enters into the
drift region through the anode plane. A fraction of the beam corresponding to the
limiting current, IL, will propagate into the drift tube. The rest, corresponding to
the difference I – IL, will be reflected back into the anode and diode region. A vir-
tual cathode forms at a short distance dm beyond the anode plane. The associated
potential variation along the z-axis is depicted at the bottom of Figure 4.22. The po-
tential drops almost linearly from zero at z = 0 to a minimum of −Vm at z = dm,
whose magnitude can exceed the electron-beam voltage, Vb. Using a planar geom-
etry the electric field at z = 0 can be calculated in terms of the injected current
density J and the electron energy factor γb, and one obtains

E =
(

4mcJ

eε0

)1/2(
γ 2
b − 1

)1/4
. (4.310)
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With J = I/a2π this can be expressed as

E[MV/m] = 2 × 102

a[cm]

(
I

I0

)1/2(
γ 2
b − 1

)1/4
, (4.311)

where a is the beam radius and I0 = 17 kA the characteristic current. As an exam-
ple, for I = 2I0 = 34 kA and a = 1 cm one gets E = 485 MV/m. Theory and com-
puter simulation show that the virtual cathode potential actually oscillates axially
and in magnitude with roughly the plasma frequency, ωp , about mean values of dm

and Vm, where the latter corresponds to the beam voltage, Vb. If a background gas
is present and the beam becomes charge neutralized, the virtual cathode moves
forward. Collective ion acceleration is observed in an intermediate gas pressure
regime (typically, 50 to 100 mtorr). If the pressure is too low, the beam will not
be neutralized during the pulse duration time (i.e., τN > τp); hence, it will not
propagate and no collective ion acceleration is observed. If the pressure is too high,
neutralization occurs so fast that there is no time to establish a virtual cathode, and
hence no collective acceleration can occur. The positive ions that are accelerated in
the intermediate pressure regime are found to have a broad energy spectrum, with
a mean energy that is approximately equal to the electron kinetic energy for singly
ionized particles (i.e., T i ≈ qVb) and a peak energy of Ti,max � 1.5qVb. The peak
energy can be considerably higher if the gas is confined to a small region near the
anode and the drift-tube region downstream is vacuum. Simulation studies [31, 32]
show that as a plasma is formed by collisional ionization in the localized gas re-
gion, the virtual cathode moves from the anode plane to the plasma surface on the
vacuum side. A group of ions born near the anode gain an energy of qVb as they
fall down the potential well. When the well begins to move, they “surf” along and
gain an additional energy of ∼ qE 	z, so that

Ti,max = qVb + qE 	z, (4.312)

where 	z is the width of the localized gas/plasma region. In this configuration
peak ion energies of three to eight times the electron energy have been observed.

Collective ion acceleration methods using the space-charge field of intense rel-
ativistic electron beams were studied extensively in the 1970s. General reviews of
the work during this period can be found in the books by Olson and Schumacher
[D.4], Rostoker and Reiser [D.5], and Miller [C.18]. More recent studies have been
concerned with the external control of the virtual cathode motion through local-
ized gas channels to increase the ion energy. By injecting laser-produced H2 gas
clouds along the electron-beam path in the vacuum drift tube in a properly timed
sequence, Destler et al. [33] were able to extend the surfing effect and obtained
peak proton energies of Ti,max ≈ 20qVb. However, so far this scheme has not yet
been employed to build an inexpensive practical accelerator for isotope production
or other applications.

Current interest in the collective accelerator field has shifted toward laser beat-
wave and wakefield acceleration in dense plasmas, where, theoretically, electric fields
in the range of �1 GeV/m are predicted, and other concepts. Most of these
schemes are aimed at future linear e+e− colliders in the TeV range, which require
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very high gradients to be economic in cost. A major problem facing these novel
schemes is the high luminosity requirement for such a linear collider. It is difficult
to see how the high particle intensity and low emittance needed can be achieved.
However, it is still too early to assess the ultimate feasibility of a collider based on
one of these new methods. A recent review of the work in this new field can be
found in [D.8].

4.6.5
Charge-Neutralization Effects in High-Energy Synchrotrons and Storage Rings

In high-energy synchrotrons and storage rings, partial charge neutralization in the
residual gas background of the evacuated beam tubes may significantly alter the
betatron tune. However, there is a major difference between continuous beams
and bunched beams. The situation in the latter case is much more complicated,
and in this section we consider only the continuous-beam case. Since the residual
vacuum pressure is usually much lower than in the cases considered in previous
subsections, charge-neutralization effects in circular machines occur adiabatically
(i.e., on a time scale that is large compared to a betatron oscillation). The beam is
thus in a quasiequilibrium state at all times, except when a resonance instability is
encountered. With a′′ = 0 and k0 = ν0/R, one obtains for the beam envelope from
(4.294) the smooth-approximation equation

ν2
0

R2
a − K0

a

[
1 − γ 2fe(τ )

]
− ε2

a3
= 0. (4.313)

The parameter τ measures the time after injection of the beam into the machine. If
the emittance remains constant, the beam radius decreases with increasing charge
neutralization. However, in circular machines the change in the betatron tune, 	ν,
is much more important than that of the beam size. To calculate this tune shift due
to charge neutralization we can use the formulas derived in Section 4.5 by making
the substitution K = K0[1 − γ 2fe(τ )]. In lieu of (4.247), (4.250), we then obtain,
respectively,

	ν = −K0R
2[1 − γ 2fe(τ )]

2νa2
(4.314)

or

	ν = − IR[1 − γ 2fe(τ )]
I0εnβ2γ 2

. (4.315)

Thus, if the machine operates in a nonaccelerating cycle where γ = const and
I = const, the tune depression 	ν will have a negative maximum at τ = 0,
fe(0) = 0 and then |	ν| will decrease linearly with time. If the cycle lasts long
enough, 	ν will go through zero at fe(τ ) = γ −2 and then become positive at later
times. Hence, the possibility exists that ν may be driven into a resonance above
the single-particle design value ν0 (rather than below when charge neutralization
is negligible).
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These effects are most significant when the beams are unbunched so that the
neutralizing particles from the background gas can accumulate without interrup-
tion. A numerical example that illustrates the effect of charge neutralization on the
betatron tune is given in Problem 4.14.

In storage rings where high-energy particles are trapped for many hours, special
measures must be taken to prevent charge neutralization. Thus, an ultrahigh vac-
uum of p � 10−10 torr is maintained in these machines. However, even at these
low pressures the typical charge neutralization time is still less than a minute.
Therefore, clearing electrodes have to be installed along the ring with sufficient
electric field strength to extract the charge-neutralizing particles from the beam.
Even so, small uncleared pockets of ions (or electrons) remaining trapped in the
electrostatic potential well of the beam may cause serious beam-quality deteriora-
tion and beam loss. These detrimental effects are caused by dipole or quadrupole-
type instabilities which occur when the ion bounce frequency, ωi , in the potential
well of the beam is in resonance with a sideband frequency of the beam’s betatron
oscillations.

Dipole-type instabilities are excited when the center of mass of the beam parti-
cle distribution (beam centroid) and that of the trapped ion distribution are dis-
placed from the equilibrium orbit and from each other in one or both transverse
directions. In the following we present a brief linear analysis of this effect while
referring to the original literature [34, 35] for further details. Let us consider a rel-
ativistic electron or antiproton beam with trapped positive ions in a synchrotron or
storage ring. (The same analysis will, of course, also apply to a proton beam with
trapped electrons.) To simplify the theory, we will use the smooth approximation
and assume that the betatron tune and emittance is the same in both transverse
directions. The beam then has circular cross section with effective radius a = 2x̃,
where x̃ = ỹ is the rms width in each transverse direction. The distribution of sta-
tionary positive ions trapped in the beam is also assumed to have a circular cross
section with radius a. Suppose that the beam centroid as well as the center of the
ion distribution are displaced in the x-direction from the equilibrium position by
amounts xb and xi , respectively, where xb � a and xi � a. This displacement
could be either in the horizontal or vertical direction. The coherent motion of the
beam and ion distribution is then described by the coupled equations

ẍb + ν2
0ω2

0xb + ω2
bi(xb − xi) = 0, (4.316a)

ẍi + ω2
i (xi − xb) = 0, (4.316b)

where ω0 = v/R is the angular revolution frequency, R the average orbit radius
of the beam, and ν0 the betatron tune without space charge. ωi is the ion bounce
frequency in the space-charge well of the beam and is given by

ωi =
(

q2nb

2ε0mi

)1/2

, (4.317)
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where q and mi are the ion charge and mass, respectively, and nb is the beam den-
sity. The frequency ωbi represents the focusing effect of the positive ion distribution
on the beam and is given by

ωbi =
(

q2ni

2ε0γmb

)1/2

= ωi

(
mi

γmb

fe

)1/2

, (4.318)

where fe = ni/nb is the charge-neutralization factor and mb the mass of the beam
particles.

Since the ions are stationary while the beam particles are moving with velocity
v in the direction s = Rθ = (v/ω0)θ along the circular orbit, the dot representing
the total time derivative implies that

ẋb = dxb

dt
= ∂xb

∂t
+ ∂xb

∂s
v = ∂xb

∂t
+ ω0

∂xb

∂θ
(4.319a)

for the beam, and

ẋi = dxi

dt
= ∂xi

∂t
(4.319b)

for the ions.
Let us now try a solution of Equation (4.316) that is of the form exp[i(ωt−kss)] =

exp[i(ωt − lθ)], where kss = ks(v/ω0)θ = lθ and l is an integer, that is,

xb = xb0 exp[i(ωt − lθ)], (4.320a)

xi = xi0 exp[i(ωt − lθ)]. (4.320b)

Differentiating and substituting in Equation (4.316) then yields
[
−(ω − lω0)

2 + ω2
b

]
xb0 = ω2

bixi0, (4.321a)(
−ω2 + ω2

i

)
xi0 = ω2

i xb0, (4.321b)

from which one obtains the dispersion relation[
(ω − lω0)

2 − ω2
b

](
ω2 − ω2

i

)
= ω2

biω
2
i . (4.322)

The frequency ωb in the preceding two equations is defined as

ωb =
(
ν2

0ω2
0 + ω2

bi

)1/2
. (4.323)

Equation (4.322) is a fourth-order algebraic equation for the unknown frequency ω

of the coherent oscillations of the beam and ion centroids. It has, in general, four
roots that depend on the values of the frequencies ω0, ωb, ωi, ωbi , and the integer
(space harmonic) l. The latter determines the number of spatial oscillation peri-
ods per revolution of the perturbation. The general analysis of the dispersion rela-
tion reveals large regions of resonant-type instability in parameter space. Graphical
plots of ωb versus ωi for given values of the other parameters show that only a
small region near the origin is stable while instability exists for all values of ωb, ωi

outside this region [34]. When the right-hand side of Equation (4.322) is small (i.e.,
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ωbiωi � ω2) and, by implication, ωbi � ν0ω0, one can obtain in the neighborhood
of the resonance the approximate solution [35] for low-frequency ω:

ω = ωi + δ ± i

(
ω2

i ω
2
bi

4ωiν0ω0
− δ2

)1/2

, (4.324)

with

δ = 1

2
(lω0 − ν0ω0 − ωi). (4.325)

Resonance occurs when δ = 0, that is,

ωi = (l − ν0)ω0 (4.326)

and

ω = ωi ± i

(
ωiω

2
bi

4ν0ω0

)1/2

. (4.327)

The negative imaginary part of the frequency defines the growth rate τ of the
instability, which is given by

1

τ
= Im(ωi),

or

τ = 2

(
ν0ω0

ωiω
2
bi

)1/2

= 2
(ν0ω0)

1/2

ω
3/2
i

(
γmb

femi

)1/2

, (4.328)

where we used relation (4.318) for ωbi .
We conclude, therefore, that in the unstable parameter regime where the above

approximation is valid (low-frequency ω, small partial charge neutralization, i.e.,
fe � 1, etc.), the two beam centers oscillate coherently at the ion bounce frequency,
ωi . At the same time, the ion bounce frequency corresponds to a side band, l − ν0,
of the betatron tune according to (4.326).

Quadrupole-type instabilities are caused by mutual excitation of oscillations in
the shape, or envelope, of the beam and the shape of the ion distribution. They
are qualitatively somewhat similar to the envelope oscillations discussed in Sec-
tion 4.4.3 except that in the present case we have a resonant interaction between
two particle species rather than between the beam and a periodic-focusing lattice.
Linear analysis [34] shows that the quadrupole resonances occur when

ωi =
(

l

2
− ν

)
ω0, (4.329)

where l is an integer, as before. In the ωb versus ωi diagrams, the resonant-type
instabilities of the quadrupole type have the form of narrow bands, with the first
one occurring in the stable region of the dipole interaction. The most important
aspect of both dipole and quadrupole instabilities is that they depend on the beam
current, or total number of particles stored in the ring, and on the beam size, or
emittance. Assuming a uniform-density round beam with radius a and a negligible
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degree of partial neutralization (say, fe � 0.01), the ion bounce frequency in the
potential well of the beam is readily calculated as

ωi =
(

2qVs

mia2

)1/2

, (4.330)

where q and mi are the ion charge and mass, respectively, and Vs is the beam
potential as defined in Equation (4.14) (see Problem 4.17). As the total number
of beam particles stored in the ring is increased, the beam potential Vs rises and
instability occurs when a dangerous resonance of the type predicted by (4.326) or
(4.329) is encountered.

Dipole and quadrupole instabilities were found to severely limit the particle num-
ber in the antiproton (p) accumulator rings at CERN and Fermilab [36]. At CERN,
for instance, the betatron tune is ν0 = 2.25 in both the horizontal and vertical di-
rections. Signals from pickup electrodes indicated when instability occurred. The
main culprits are thought to be CO+ ions, whose bounce frequency in the beam
matches the resonant frequencies inferred from the measurement. By applying rf
signals with appropriate frequencies and phases it was possible to damp the most
prominent dipole instability with l = 3 at ωi = (3 − ν0)ω0. This technique, which
introduces a spread in the particle oscillation frequencies, thereby detuning the
resonance condition, is known as Landau damping. A second method that has been
found effective in damping instabilities is called ion shaking. An rf field applied to
the beam by electrodes induces coherent oscillations of the p beam about the equi-
librium orbit with very small amplitudes of less than 0.01 mm. If the frequency of
these kicker signals is chosen to be close to one of the dipole sideband resonances
of l ± ν0, the oscillations of the trapped ions are resonantly driven to large am-
plitudes so that they effectively escape from the beam’s potential well. Using this
technique it was possible to increase significantly the number of antiprotons stored
in the accumulator ring [36].

4.6.6
Plasma Lenses

The charge neutralization effects discussed in the preceding sections occur “natu-
rally” when a charged particle beam passes through a region of gas. If gas pressure
and ionization cross sections are sufficiently high, the beam creates a plasma along
its path. Plasma particles with the same charge polarity as the beam particles are
expelled by the beam’s space-charge force, and the remaining oppositely charged
particles reduce the repulsive Coulomb force of the beam.

A major drawback of such “gas focusing” is the fact that the degree of charge
neutralization varies along the beam according to Equation (4.293). Furthermore,
for low-energy (nonrelativistic) ions even full charge neutralization is not sufficient
to balance the outward pressure represented by the emittance term in the beam en-
velope equation. This has led to proposals and exploration of alternative methods
such as forming the plasma by ionizing the gas prior to the beam arrival, using the
magnetic force due to the discharge current in a z-pinch, or creating a nonneutral



4.6 Charge Neutralization Effects 263

electron plasma for focusing of positive ions. Such plasma lenses are of particular
interest for focusing intense beams to a small spot size. Notable examples are the
focusing of the intersecting electron and positron beams in a linear e+e− collider,
the final focusing of heavy ion beams for inertial fusion, and the matching of low
energy proton, H−, or other ion beams into the small aperture of an RFQ linac (dis-
cussed in Section 4.6.3). Theoretically, the focusing strength of a plasma lens can
exceed the capability of conventional and even superconducting magnetic lenses by
as much as several orders of magnitude depending on the particular application.
Experimentally, many difficulties have been encountered in developing a practical
device, and this is still a very active field of research. A detailed discussion is be-
yond the scope of this book; we will merely present a very brief review of the three
methods mentioned above.

Historically, the first important event in this field was Gabor’s proposal in 1947
to use a nonneutral electron plasma, confined in a magnetron-type trap, as an ef-
fective space-charge lens for focusing of positive ions beams [37]. This Gabor lens,
as it became known in the literature, was investigated experimentally and theoret-
ically in the former Soviet Union, at Livermore, Brookhaven, and more recently at
Fermilab [38]. The Fermilab experiments were concerned with focusing proton and
H− beams into an RFQ linac. None of this past work has led to a practical device.
A theoretical comparison of the Gabor lens with conventional lenses and reference
to important past studies can be found in [39].

In the z-pinch type of plasma lens, a high axial current is generated in the plasma.
The Lorentz force, Fr = qvzBθ , due to the azimuthal magnetic field produced by
the current focuses the beam particles. Such a lens was used for the first time to
focus the proton beam from the 184-inch cyclotron at Berkeley in 1950 [40] and for
capturing 3-GeV muons and kaons at Brookhaven in 1964 [41]. More recently, a z-
pinch was employed in a successful demonstration experiment at GSI Darmstadt,
where a 460 MeV heavy-ion beam (Ar11+) was focused to a small spot size of about
1 mm [42]. This experiment was motivated by the final focusing requirements for
heavy ion inertial fusion.

The most active research work in recent years has been concerned with the use of
plasma lenses for focusing the electron and positron beams to the extremely small
spot size required at the interaction point of a linear e+e− collider [43]. Following
the first proposal by Chen [44] in 1987 there have been a number of theoretical
studies, e.g., by Rosenzweig and Chen [45], Whittum [46], Chen et al. [47], Kat-
souleas and Lai [48]. There have also been proof-of-principle experiments [49, 50]
of a preliminary nature.

In the most recent theoretical studies it is proposed to use an adiabatic, tapered
plasma channel with increasing density (focusing strength) to guide the beams
into the interaction region of the linear collider [47, 48]. In the case of the electron
beam, for instance, the initial ion density ni is considerably less than the beam
density ne (fe = ni/ne � 1). It then increases adiabatically so that full charge
neutralization (fe = 1) is reached towards the end of the channel. In practice, the
problem of forming such a plasma column with the desired properties needs to be
solved. In the Japanese experiment an argon plasma was produced by a discharge
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and confined by the octupole field of permanent magnets [50]. Another possibility
is to use a laser pulse for preionizing the gas, as was successfully demonstrated
at Livermore [51] in ion-focusing experiments with an intense relativistic electron
beam. (Laser gas preionization is also being considered for the final focusing of the
heavy ion beams in inertial fusion.)

Let us now estimate the strength of ion focusing on a relativistic electron beam
propagating through a plasma channel. We will assume a round beam and use the
envelope equation (4.294), with k0 = 0, to calculate the beam radius in the channel.
Since for the highly relativistic energies of a linear collider γ 2fe � 1, we can write
(4.294) in the form

a′′ + K0

a
γ 2fe − ε2

a3
= 0. (4.331)

Using I = enea
2πc, I0 = 4πε0mc3/e, fe = ni/ne, we obtain the alternative ex-

pression

a′′ + e2ni(z)

2ε0γmc2
a − ε2

a3
= 0. (4.332)

If we approximate the actual beam with an equivalent cylinder of uniform charge
density, effective length lb and total number of particle Ne = nea

2πlb, we can write
the envelope equation in yet another form as

a′′ + 2rcNefe

γ lba
− ε2

a3
= 0. (4.333)

Here, rc is the classical particle radius (rc = 2.82 × 10−15 m for e− and e+). If
fe(z) = ni(z)/ne(z) changes adiabatically with distance z and the beam is well
matched we can set a′′ = 0 and obtain from (4.333) for the radius

a(z) = εn

[
lb

2rcγNefe(z)

]1/2

, (4.334)

where εn = γ ε is the normalized emittance of the relativistic beam (β ≈ 1).
As an example, let Ne = 1010, γ = 106 (500 GeV energy), lb = 4 × 10−3 m,

εn = 10−5 m-rad, and fe = 1 (at the end of the column). With these numbers we
find from (4.334) a final radius of a = 84 × 10−9 m = 84 nm. Such submicron
beam radii are needed to meet the luminosity requirements of future TeV linear
colliders. The focusing strength of plasma columns is orders of magnitude greater
than that of superconducting magnetic quadrupoles. This explains the strong in-
terest in plasma lenses and motivates the current research activity in this field. It
will take a systematic research effort for several years to determine the practical
feasibility and ultimate technological limitations of these focusing methods.
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Problems

4.1 A uniform relativistic electron beam with constant radius
a = 1 cm is propagating inside a conducting drift tube with
radius b = 2 cm. The kinetic energy of the electrons is 1
MeV and the current is 2 kA.

(a) Calculate the potential difference between the beam axis
and the wall of the drift tube.

(b) Determine the electric and magnetic field energy and the
capacitance and inductance per unit length. Compare the
capacitance with the case where the electron beam is
replaced by a solid conductor having the same charge per
unit length on its surface.

4.2 Derive the relation (4.61) for the space-charge limiting
current. Calculate the electrostatic field energy per meter in
the beam for this case when b = a (beam fills drift tube) and
compare it with the beam kinetic energy.

4.3 A toroidal relativistic electron beam is confined in an
axisymmetric magnetic mirror field with the following
assumptions: (1) the beam has a circular cross section of
radius a; (2) the major radius R0 of the beam is large enough
that self fields resulting from the curvature of the beam can
be neglected (i.e., the self fields can be calculated as if the
beam were moving on a straight path); (3) both charge and



Problems 267

current density within the beam may be considered uniform;
and (4) a background of stationary positive ions of uniform
density is present within the beam; the charge density of the
ions is fe times that of the electrons (fe < 1).

(a) Calculate the betatron tunes νr and νz.
(b) State the condition for which the beam retains a circular

cross section.
(c) Derive a relation for fe which assures that the beam

remains focused in both radial and axial direction.
(d) Determine the numerical values of νr and νz for the case

where the beam parameters have the following values:
electron energy, 2 MeV; beam current, 2 kA; major radius
R0, 6 cm; minor radius a, 3 mm; fraction of ions, 5% of
electrons.

4.4 A magnetic mirror for confinement of a toroidal electron
beam with mean radius R is formed by a combination of a
long solenoid and two coils, as shown in the figure below.
The solenoidal field and the field due to the two mirror coils
can be increased separately with time, and the combined
field along the z-axis (r = 0) and close to the midplane
(z = 0) may be described by the approximate formula

Bz(z, t) = B0F(t) +
(

B1 + k2

2
z2

)
f (t),

where the first term on the right side represents the long
solenoid and the second term the two mirror coils. Assume
that the field increase with time is adiabatic (i.e., the change
of Bz is negligibly small during one period of the particle
oscillations between the magnetic mirrors).
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(a) List all constants of the motion that you can think of.
(b) Determine the constants B1, k

2, and the field index n in
terms of the coil radius a, coil separation 2d, the peak
field Bm that each mirror coil produces at its center
(t = 0, z = d) and (in the case of n) the equilibrium orbit
radius R. Assume that F(t) = 1, f (t) = 1 for this
calculation.

(c) Consider a T = 2 MeV electron beam with major radius
R = 6 cm and minor radii xm = 0.5 cm, zm = 0.5 cm in
radial and axial directions at time t = 0. Let
a = d = 10 cm. Suppose that F(t) = f (t) = 1 (i.e., no
change with time), and that Bm = 300 G. Calculate
B0, B1, n, νr and ωc. Neglect the self fields of the beam.

(d) Suppose now that F(t) = 1 and f (t) = 1 + 9 (1 − e−t/τ ).
Find n, νr , νz, xm, and zm when t → ∞.

(e) Finally, let F(t) = f (t) = 1 + 9 (1 − e−t/τ ) with initial
conditions at t = 0 as in (c). Calculate
T , B0, B, R, N, νr , νz, xm, zm when t → ∞. Suppose that
the electron-beam current at t = 0 is I = 103 A. What is
the current when t → ∞?

4.5 An axisymmetric beam of 100-keV electrons is injected into
a drift tube of length L = 100 cm and diameter D = 4 cm.
At the entrance of the drift tube, the beam is focused by a
thin, solenoid lens with an effective width of l = 4 cm and
magnetic field B on the axis. Calculate the following
quantities:

(a) The maximum electron beam current that can be passed
through the drift tube for laminar flow, the associated
field B of the lens, the radius a = rmin at the beam waist,
and the value of the plasma frequency ωp of the beam at
the waist.

(b) The electrostatic potential difference between the beam
axis and the drift-tube wall at the waist in case (a).

(c) The acceptance α of the drift tube (i.e., the maximum
emittance that the beam could have) if the self fields are
eliminated by charge and current neutralization.

4.6 The envelope equation (4.85a) for a beam in a uniform
focusing channel (k2

0 = const) can be integrated once
without any approximations. Obtain this first integral for r ′

m

if the initial conditions are rm = a, r ′
m = r ′

0 at z = 0, where
rm = a is the equilibrium radius of the matched beam. By
setting rm = a + x, assuming that x � a, and using Taylor
expansion up to second-order terms in x/a, one can obtain a
second integral. Find this integral for rm, or x, as a function
of r ′

m and determine the maximum amplitude xmax of the
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envelope ripple as a function of r ′
0 when the beam is

mismatched.
4.7 Design a periodic hard-edge solenoidal focusing channel for

a 10-keV, 0.6-A electron beam having a normalized
emittance of εN = 9 × 10−6 m-rad. The ratio L/l of the drift
space to the width of a lens is to be 3, the desired phase
advance without space charge is σ0 = 72◦, and the mean
radius of the beam is R = 1 cm. Using the
smooth-approximation theory, determine the length of a
focusing period S, the phase advance with space charge σ ,
and the maximum radius of the beam, Rmax. Calculate the
solenoidal magnetic field B0, the mean plasma frequency
ωp , the associated plasma wavelength λp , and the Debye
length λD of this electron beam.

4.8 Consider an axisymmetric beam with current I , voltage V,

and radius a propagating inside a drift tube with radius
b > a. Suppose that the beam has a nonuniform density
profile given by n(r) = n0[1 − (r/a)2] for r � a and
n(r) = 0 for a < r < b. Calculate the following quantities:

(a) Self fields Er , Bθ and the associated force Fr on a particle
(b) Potential distribution V (r)

(c) Electrostatic energy per unit length
(d) Rms beam radius ã

(e) Radius rm, where the force Fr is a maximum
4.9 Consider the thin beam (line charge ρL) displaced from the

axis of a conducting drift tube by a distance x1 = ξ , as shown
in Figure 4.18. Prove that the electrostatic potential
distribution within the drift tube satisfying the boundary
condition can be obtained by adding the potential due to an
image line charge −ρL located at distance x2 = b2/ξ .

4.10 A round beam with particle energy γmc2 and a Gaussian
density profile n(r) = n1 exp[−r2/2δ2] propagates through a
uniform, linear focusing channel defined by the
single-particle oscillation frequency ω0.

(a) Determine the rms radius r̃ and rms width x̃ of this
distribution.

(b) Calculate the number of particles per unit length NL and
the beam current I in terms of n1 and δ.

(c) Find the density n0 and radius a0 of the equivalent
uniform density beam having the same rms radius r̃ and
beam current I as the Gaussian beam.

4.11 Consider the Gaussian beam of Problem 4.10.
(a) Calculate and plot schematically the radial force Fr(r) due

to the self fields and its derivative dFr/dr versus radius r .
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Find the values of r/δ where Fr and dFr/dr have a
maximum.

(b) Show that for small radii the force Fr is to first
approximation a linear function of radius r . Determine
the radius r/δ where the difference between the linear
approximation and the actual force reaches 10%.

(c) Using the result of (b), calculate the small-radius particle
oscillation frequency ω that includes the self force as a
function of ω0, I, δ, and γ .

4.12 Derive the result (4.250) for the tune shift 	ν due to
space-charge forces from the relation

	ν = 1

4π

∫ C

0
β̂(s)	κ(s)ds

given in Problem 3.25(c). (Note that the space-charge force
can be equated to a gradient error 	κ .)

4.13 Suppose that the radial force in a continuous-focusing
channel has a nonlinear term due to spherical aberrations so
that Fr(r) = −α1r − α3r

3 and α3r
3 = α1r at radius r1.

Assuming a Boltzmann distribution of the form (4.5), find
the density profile n(r) versus radius in the laminar-flow
limit (kBT⊥ → 0) for a relativistic beam with radius
a = 0.5r1.

4.14 Consider the 200 MeV low-energy ring with circumference
C = 470 m of the Fermilab accelerator discussed in
Section 4.5 following Equation (4.256). Assume that the
beam is unbunched (Bf = 1).

(a) Determine the amount of fractional charge
neutralization, fe, due to ionizing collisions in the
background gas that would exactly balance the tune shift
	ν due to the space-charge forces.

(b) Suppose that the background gas is molecular hydrogen
(H2). Find the pressure for which the above value of fe is
reached in a time of 1 ms.

4.15 In an e+e− linear collider electron and positron bunches are
accelerated to very high energy in two opposing accelerators.
The bunches are then focused to a very small cross section
and forced to pass through each other in a head-on collision
at the so-called interaction point between the two linear
accelerators. For the following calculations, consider an
electron bunch (coming from the left side) passing through a
positron bunch (coming from the right). Assume that each
bunch can be represented by a cylinder of radius a and
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length l � a having uniform charge density and the same
total number of particles.

(a) Calculate the radial force Fr on an electron (positron) at
radius r in the midplane of the bunch before the collision.

(b) Calculate the radial force Fr at the instant where the two
bunches completely overlap each other at the intersection
point. Compare the direction and magnitude of Fr at and
before the intersection point.

(c) The effect of one bunch on the other can be represented
by an equivalent focusing lens. Determine the focal
length f and the so-called disruption parameter D = l/f

at the intersection point as a function of N, γ, a using the
thin-lens approximation.

(d) Find the self-magnetic field Bθ(r) of the two bunches at
the moment of overlap and the associated radius of
curvature R for a particle traveling at the outermost
radius r = a.

(e) Calculate the disruption parameter D, the magnetic field
Bθ(a), and the associated radius of curvature R at the
intersection point for the following specific parameters:
a = 1 µm, l = 1 mm, N = 5 × 1010, and a particle energy
of 100 GeV.

4.16 One of the most important problems in accelerator and
beam transport design is to match the beam from one
focusing system into another. Consider a beam that is to be
matched from a focusing channel with uniform (or
smooth-approximation) wave number k01 = 2π/λ01 without
space charge into a channel characterized by k02 = 2k01. Let
R1, R2 and k1, k2 denote the matched beam radii and wave
numbers with space charge in each channel, respectively.
Note that the problem is similar to quarterwave matching
between two transmission lines. Thus an appropriate
uniform focusing element, characterized by constants k0

without space charge and k with space charge, and length
	s = d, can be inserted between the two channels to achieve
perfect matching.

(a) Neglecting space charge, determine k0 and d in terms of
given parameters.

(b) Repeat for a beam with space charge.
(c) Calculate k and d for a laminar beam (ε = 0).

4.17 The antiproton (p) accumulator ring at CERN operates at an
ultrahigh vacuum of 0.75 × 10−10 torr and uses clearing
electrodes to prevent any significant buildup of partial
charge neutralization. The circumference of the ring is
2πR = 150 m, the p energy is 3 GeV, the total number of
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antiprotons is typically Nb = 5 × 1011, the betatron tune is
νx = νy = ν0 = 2.25, and the p beam has an average circular
cross section with radius a = 3.3 mm. Despite the clearing
electrodes, dipole and quadrupole instabilities are
encountered due to a small number of H+ ions trapped in
the p beam (fe = Ni/Nb < 0.01).

(a) Calculate the cross section σi for ionization of H by a
3-GeV p beam.

(b) Calculate the charge neutralization time τN at a H
pressure of 0.75 × 10−10 torr.

(c) Find the self potential Vs of the p beam assuming that fe

can be neglected.
(d) Determine the bounce frequency ωi of the H+ ions

trapped in the p beam corresponding to the Vs value of
(c).

(e) Suppose that the dipole instability is observed at the
sideband of the betatron frequency where l = 3;
determine the frequencies fi = ωi/2π , fbi , fb, and the
growth rate τ of the instability assuming that the
neutralization factor is fe = 0.01.

4.18 Prove that Equation (4.324) is an approximate solution of the
dispersion relation (4.322).



273

5
Self-Consistent Theory of Beams

5.1
Introduction

In the uniform-beam model of Chapter 4, we made the assumption that charge
density ρ, particle velocity v, and current density J are independent of the trans-
verse coordinates (x, y) and that the external forces acting on the beam are linear.
This allowed us to obtain the relatively simple paraxial trajectory equations, which
are linear in x and y. However, the uniform-beam model does not in general satisfy
Maxwell’s equations and the equations of motion in a self-consistent manner when
the paraxial approximations are violated. Furthermore, from a general theoretical
point of view, the equilibrium state of a beam in a linear focusing channel tends to
be more like a Boltzmann distribution which has a nonuniform density profile ex-
cept in the zero-temperature limit, where the density is constant across the beam,
as discussed in Section 4.1.

When the density is nonuniform, the forces associated with the self fields of the
beam are nonlinear. In most laboratory systems nonuniformity of the density pro-
file tends to be the rule rather than the exception; and, in addition, the applied
focusing or accelerating forces also have an unavoidable minimum amount of as-
sociated nonlinearity. In other words, the general system that we are dealing with
is intrinsically nonlinear, and we need to develop theoretical models (including
particle simulation codes) that are self-consistent to a desired degree of accuracy.
Such models are necessary to evaluate the nonlinear effects that are neglected in
the uniform beam model and that cause emittance growth, halo formation, and
particle loss.

To understand the self-consistency problem, we must recognize that on the one
hand, the positions and velocity vectors of the particles in the beam determine the
charge and current density, ρ and J, at each point. On the other hand, ρ and J
are the sources of the electric and magnetic self fields, which, together with the
applied fields, determine the motion (i.e., the position and velocity of the parti-
cles). Thus one deals with a closed loop in which the motion of the distribution of
particles changes the fields and the forces due to these fields change the particle
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distribution. A truly self-consistent theoretical model of the beam must close this
self-interaction loop.

The mathematical difficulties involved in the self-consistency problem are quite
formidable, and only relatively simple beam geometries can be solved by analytical
techniques. With only one exception (the K–V distribution in Section 5.3.2), all of
the self-consistent models presented in this chapter assume beams with cylindri-
cal symmetry and applied focusing forces that are either uniform or “smoothed”
over the lattice periods of a periodic focusing system. First, in Section 5.2, we dis-
cuss laminar beams in uniform magnetic fields; and we begin this analysis with a
simple model of a cylindrical beam in an infinitely strong magnetic field to illus-
trate the self-consistency problem. Both nonrelativistic and relativistic descriptions
of the stationary states (equilibria) of laminar beams will be treated. The nonrela-
tivistic analysis closely follows the electron-beam theory developed in connection
with microwave tube design (klystrons, traveling-wave tubes, etc.) during the pe-
riod 1945–1970 after World War II. The relativistic theory, which is of interest for
the intense relativistic electron beams, high-power microwave devices and electron
beams developed more recently is mathematically more complex, and analytical
results are available only for the simplest beam geometries.

In Section 5.3 we derive the self-consistent Vlasov equation, which allows us
to treat nonlaminar beams (i.e., beams having an intrinsic velocity spread). We
then discuss several important examples of stationary nonlaminar distributions
in a linear focusing channel. These are distributions that satisfy the stationary
(time-independent) Vlasov equation and hence represent matched beams. The best
known examples are the K–V distribution and the Maxwell–Boltzmann distribu-
tion, also known as the thermal distribution. Section 5.4 is devoted to a detailed
analysis of the Maxwell–Boltzmann distribution, which will be shown to be the
natural equilibrium state of a beam when the Coulomb collisions between the par-
ticles are taken into account. Beams with collisions are treated self-consistently by
the Fokker–Planck equation, which reduces to the Vlasov equation when collisions
are neglected. Although the charged particles are usually in thermal equilibrium
inside the sources (thermionic cathode, plasma, etc.), acceleration results in a cool-
ing of the longitudinal temperature. The typical laboratory beams are thus charac-
terized by two different temperatures in the transverse and longitudinal directions.
The relationships between temperature, emittance, and other beam parameters
will be discussed for both the transverse and longitudinal Maxwell–Boltzmann dis-
tributions. The analysis will be restricted for the most part to external focusing
fields with linear forces; the major exception is the longitudinal beam dynamics in
rf fields (Section 5.4.8). However, the space-charge forces of a Maxwell–Boltzmann
distribution in harmonic oscillator potentials are in general nonlinear. We will also
investigate the effects of momentum spread on the transverse focusing and the
dispersion that occurs in circular accelerators. The coupled envelope equations for
bunched beams with space charge will be analyzed in Section 5.4.11, and in the
final section (5.4.12) we discuss briefly the problems of matching, focusing, and
imaging of beams.
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5.2
Laminar Beams in Uniform Magnetic Fields

5.2.1
A Cylindrical Beam in an Infinitely Strong Magnetic Field

We begin our analysis of a self-consistent laminar flow with a simple cylindrical
beam model where we assume that both the source and the accelerated beam are
immersed in an infinitely strong uniform magnetic field. The Lorentz force due to
this applied field is infinitely stronger than the defocusing forces due to the electric
and magnetic self fields. As a result, there is no transverse velocity component (i.e.,
vr = vθ = 0) and the particle trajectories are straight lines with radius r = const.

Let us assume that the beam has a constant radius r = a and that it propagates
inside a conducting drift tube with radius r = b, as indicated in Figure 5.1. The
drift tube is connected with the anode (or, in the case of ions, with the extraction
electrode of the ion source). If the potential difference between the cathode (plasma
surface) and the anode (extraction electrode) is φb, the particles will enter the drift
tube with a kinetic energy of Tb = qφb. Due to the beam space charge, however,
there will be a potential distribution inside the drift tube which will reduce the
kinetic energy of the particles in accordance with the energy conservation law. At
a sufficient distance from the tube entrance, this potential (as well as all other
parameters describing the beam) will be independent of the z-coordinate and vary
only with radius r in view of the axial symmetry. If φe(r) denotes the electrostatic
potential due to the space-charge field in this region of the tube, then from energy
conservation the kinetic energy of the particles at a given radius r will be

T (r) = Tb − qφe(r) = qφ(r). (5.1)

Here we introduced the function φ(r), which, as in previous contexts, represents
the voltage equivalent of the kinetic energy. This definition implies that both the
potential function φ(r) and the particle charge q are treated as positive quantities.
In the following we use φ(r) rather than φe(r) as the potential function. The vari-
ation of the potential function φ (and hence of the kinetic energy of the particles)
versus distance z along the axis of the beam is shown schematically in Figure 5.1.
Note that φ = 0 at the emitter surface of the source and φ = φb at the anode mesh
where the beam enters the drift tube. At a distance from the anode comparable to
the drift-tube diameter the potential φ (or kinetic energy) drops to a constant value
φ0. In this region, φ is only a function of radius r varying from φ = φ0 on the axis
to φ = φa at the edge of the beam (r = a) and φ = φb at the tube wall (r = b).
It is important to recognize that the maximum kinetic energy of the particles at
the beam edge, qφa , is less than the injection energy, qφb, when b > a, as dis-
cussed in Section 4.2.3. Since T = (γ − 1)mc2, we can write Equation (5.1) in the
alternative form

γ (r) = 1 + qφ(r)

mc2
. (5.2)
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Fig. 5.1 (a) Electron beam propagating inside a drift tube along
a uniform magnetic held. The electrons are emitted from a
thermionic cathode C and enter the drift tube through a mesh
in the anode A. (b) Graph showing schematically the variation
of the potential function along the axis.

The variation of the potential function φ(r), and hence γ (r), with radius is deter-
mined by Poisson’s equation, ∇2φe = −ρ/ε0, which relates the electrostatic po-
tential φe to the charge density ρ in the beam. Replacing φe by Tb − φ from (5.1)
and ρ by qn, where n(r) is the particle density and where the charge q is treated
as a positive quantity, and considering the fact that there is no azimuthal or axial
variation, we can write Poisson’s equation in the form

∇2φ = 1

r

d

dr

(
r
dφ

dr

)
= qn(r)

ε0
. (5.3)

Integration yields the radial electric field

Er = −dφe

dr
= dφ

dr
= q

ε0r

∫ r

0
n(r)r dr, (5.4)

which can also be obtained directly from applying Gauss’s law.
From the continuity equation one obtains for the current density J = Jaz the

relation

J (r) = ρ(r)v(r) = qcn(r)β(r), (5.5)

with β(r) related to φ(r) by the energy conservation law as

β(r) =
[

1 −
(

1

γ (r)

)2
]1/2

= [2mc2qφ + (qφ)2]1/2

mc2 + qφ
. (5.6)

The total beam current is given by

I = 2π

∫ a

0
J (r)r dr = 2πqc

∫ a

0
n(r)β(r)r dr. (5.7)
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Poisson’s equation (5.3), the continuity equation (5.5), and energy conservation
(5.6) represent three relationships between the four functions φ(r), n(r), J (r), and
β(r). Thus we can choose one of the four functions, and then the remaining three
are self-consistently determined by these equations. As an example, let us choose
the current density to be independent of radius r (i.e., J = const). Then, from (5.7),
I = Ja2π , and from (5.5),

n(r) = I

qc a2πβ(r)
. (5.8)

Substituting (5.8) into (5.3) and using the relationship (5.6) for β(r) yields the dif-
ferential equation

1

r

d

dr

(
r
dφ

dr

)
= I

ε0a2πc

mc2 + qφ

[2mc2qφ + (qφ)2]1/2
, (5.9)

which determines the potential function φ(r) in a self-consistent manner. If one
uses γ in place of φ, one can write this equation in the alternative form

1

r

d

dr

(
r
dγ

dr

)
= qI

ε0a2πmc3

(
1 − 1

γ 2

)−1/2

. (5.10)

These equations have to be integrated numerically. In the nonrelativistic case,
where βc = (2qφ/m)1/2, Equation (5.9) takes the form

1

r

d

dr

(
r
dφ

dr

)
= I

ε0a2πc(2q/mc2)1/2
φ−1/2. (5.11)

For simplicity let us assume that the beam fills the drift tube so that b = a; that
is, we can ignore the factor 1 + 2 ln(b/a), which arises when b > a, as we know
from Section 4.2. This case is discussed by Pierce [C.3]. When φ = 0 at r = 0 (i.e.,
when the kinetic energy of the particles on the axis is zero), this equation has the
special solution

φ(r) =
(

9I

16πε0c
√

2q/mc2

)2/3(
r

a

)4/3

. (5.12)

Putting r = a, φ(a) = φa , ε0c = √
ε0/µ0 = 1/120π , one gets from (5.12) the

perveance k of this beam

k = I

φ
3/2
a

= 16π
√

2

9 × 120π
√

mc2/q
= 20.95 × 10−3

(
mc2

q

)−1/2

. (5.13)

For electrons, the perveance has the value

k = 29.34 × 10−6 A/V3/2. (5.14)

On first thought, one would assume that the above current is the upper limit that
can be obtained for a given potential φa ; that is, as the beam current is gradually
increased, the potential φ(0) = φ0 at the center will gradually decrease until it be-
comes zero and the current reaches its maximum. This, however, is not the case. If
one obtains the general numerical solution of Equation (5.11) for all possible values
of φ0 (namely, 0 � φ0 � φa), one finds that the maximum current occurs at a value
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Fig. 5.2 Graph showing dependence of current on potential ratio φ0/φa .

of φ0 = 0.174φa . This is illustrated in Figure 5.2, where I/(πε0c
√

2q/mc2φ
3/2
a ), is

plotted versus the potential ratio φ0/φa . The maximum of the curve is 1.963, and
the corresponding current is

Im = 1.963πε0c

√
2q

mc2
φ

3/2
a . (5.15)

This yields a maximum perveance of

km = Im

φ
3/2
a

= 1.963π
√

2

120π
√

mc2/q
= 23.13 × 10−3

(
mc2

q

)−1/2

, (5.16)

which for electrons has a value of

km = 32.4 × 10−6 A/V3/2. (5.17)

This is 10% higher than the value for φ0 = 0 obtained in Equation (5.14). If one
would try to inject currents higher than Im, the potential at the center would drop
to φ0 = 0, but particles would be reflected back toward the source from the virtual
cathode that is formed in the beam and the net forward current would drop to the
value of Equation (5.13). Actually, the situation is more complicated than that; one
finds that in the region to the left of the current peak oscillations occur (i.e., one
cannot achieve a stable steady-state operation).

The more general relativistic case, which requires a solution of Equation (5.10),
was treated by Bogdankevich and Rukhadze in 1971. They obtained for the maxi-
mum current the approximate solution

Im = IL = I0
(
γ

2/3
a − 1

)3/2
,

which was presented in Equation (4.61) (assuming that b = a). It is worth noting
that in the extreme relativistic case this space-charge current limit has the same
value as the Alfvén–Lawson current (4.56) (i.e., IL = IA = I0γa for γa � 1, βa = 1).
This is true only when the beam fills the drift tube (b = a). If the drift-tube radius is
greater than the beam radius, IL is always lower than IA by the factor 1+2 ln(b/a).
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5.2.2
Nonrelativistic Laminar Beam Equilibria

In the preceding section we discussed the idealized model of a laminar beam in an
infinitely strong magnetic field where all particles are forced to move on straight
trajectories along the magnetic flux lines. Let us now consider the more realistic
case where the beam is confined by a uniform axial magnetic field of finite strength.
In this section we present the nonrelativistic theory where γ = 1, β2 � 1, and
hence the magnetic self fields can be neglected. The equilibrium state is character-
ized by exact force balance at every radial position within the beam. This implies
that the particles must have an azimuthal velocity component, vθ , so that the ra-
dially inward Lorentz force, qvθBz, can balance the outward electric force, qEr ,
due to the space charge and the centrifugal force, mv2

θ /r , due to the rotation. The
desired azimuthal motion is achieved when the magnetic field at the source is dif-
ferent from the field in the downstream equilibrium region so that the particles
cross flux lines and experience a force Fθ = qvzBr . In addition, the space-charge
electric field, E, produces an azimuthal force, E × B. The effects of the launching
conditions on the beam equilibrium are discussed below. The particle trajectories
in the equilibrium state are thus helices encircling the axis with constant radius r

and with two components, vz and vθ , both of which may, in general, be functions
of r . It follows that vr = ṙ = 0 and r̈ = 0 for all particles. The nonrelativistic radial
force balance equation may then be written in the form

mv2
θ (r)

r
+ qEr(r) + qvθ (r)B0 = 0, (5.18)

where B0 is the applied axial magnetic field and Er is the radial electric field due to
the space charge of the beam. In some special cases there may also be an applied
radial electric field, for instance when the beam is hollow and there is a coaxial
inner conductor at an electrostatic potential with respect to the drift tube. In view
of the cylindrical symmetry such an applied field is of the form C/r , where C is a
constant. The inclusion of an applied electric field is straightforward. However, to
simplify matters we will limit our analysis to the cases where no external electric
field is present. These cases are also the more important ones from a practical
point of view. It will be convenient to write the radial force-balance equation in
terms of the angular frequency θ̇ = ω. By substituting vθ = rω and introducing
the cyclotron frequency ωc = −qB0/m in (5.18), one obtains

rω2(r) + qEr(r)

m
− rω(r)ωc = 0. (5.19)

The space-charge electric field, Er(r), is determined by the particle density, n(r),
via Poisson’s equation or Gauss’s law, as given in Equation (5.4). Using this rela-
tionship we can write (5.19) in the alternative form

ω2(r) + q2

ε0mr2

∫ r

0
n(r)r dr − ω(r)ωc = 0. (5.20)
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This equation can be used in two ways. If the particle density, n(r), is known, one
can solve for the angular frequency and obtains

ω(r) = ωL ±
[
ω2

L − q2

ε0mr2

∫ r

0
n(r)r dr

]1/2

, (5.21)

where the Larmor frequency ωL = ωc/2 was introduced.
One the other hand, if ω(r) is known, one can solve Equation (5.20) for the par-

ticle density, which yields the equation

n(r) = −ε0m

q2

1

r

d

dr

{
r2[ω2(r) − ωcω(r)

]}
. (5.22)

Note from Equation (5.21) that in order for ω to be real, the condition

q2

ε0mr2

∫ r

0
n(r)r dr < ω2

L (5.23)

must be satisfied. This implies that the magnetic restoring force exceeds the repul-
sive electrostatic force of the space charge.

The force-balance equation (5.20) and its alternative forms (5.21) and (5.22)
contain only the two functions n(r) and ω(r). It appears, therefore, that we can
make an arbitrary choice of one of these two functions and then determine the
other self-consistently. For example, if we assume that the density is uniform [i.e.,
n(r) = n0 = const], we find from (5.21) the solution

ω = ωL ±
(

ω2
L − ω2

p

2

)1/2

, (5.24)

where ωp = (q2n0/ε0m)1/2 is the plasma frequency. Thus, for a beam with uniform
density n0, where the plasma frequency ωp is by definition constant (independent
of radius r), all particles rotate around the axis with constant angular frequency ω.
This state is known in the literature as a rigid-rotor equilibrium [B.3] or an isorota-
tional beam [C.9]. Note that the frequency ω as defined here for the laboratory frame
is not identical with the frequency ω used in Chapters 3 and 4 to describe particle
motion in the Larmor frame (ωL.f.). The relationship between the two frequencies
(with ω = ωLab) is ωL.f. = ωLab − ωL.

Before proceeding with a more detailed discussion of this special result we must
recognize that the force-balance equation alone does not completely describe the
equilibrium state of the beam. In addition to force balance, the particles must also
satisfy the two conservation laws for energy and canonical angular momentum.
The energy conservation law relates the total velocity of the particles, v(r), to the
potential function φ(r) according to the nonrelativistic formula

v(r) = [
v2
θ (r) + v2

z (r)
]1/2 =

[
2qφ(r)

m

]1/2

. (5.25)

The potential function φ(r), in turn, is determined from the particle density distri-
bution n(r) via Poisson’s equation (5.3).
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The conservation law for the canonical angular momentum pθ , also known as
Busch’s theorem, given in Equation (2.76), implies that for each particle

mr2θ̇ + q

2π
ψ = pθ = const.

Here ψ denotes the magnetic flux enclosed by the particle in the equilibrium re-
gion. The value of pθ is determined by the magnetic field configuration at the emit-
ter surface of the source. (We will assume that in all cases θ̇ = ω = 0 at the source.)
Two such configurations are illustrated in Figure 5.3, where two solenoids, sepa-
rated by an annular iron plate, are used to control the magnetic field at the source,
Bs , and in the downstream region, B0, independently. In the configuration shown
on top of the figure, the source solenoid is turned off. All of the magnetic flux gen-
erated by the other solenoid passes radially outward through the iron plate, and the
source is in the field-free region (Bs = 0). Thus, pθ = 0 for all particles. The other
case illustrated in the figure shows a so-called cusp-field configuration in which
both solenoids produce a magnetic field of the same strength but opposite polarity
(Bs = −B0).

The canonical angular momentum is determined by the magnetic flux ψs en-
closed by the particle’s initial radius rs , that is,

pθ = q

2π
ψs = q

2
Bsr

2
s . (5.26)

In each of the two field geometries the particles cross magnetic flux lines and rotate
about the axis in the uniform field of the downstream equilibrium region, as illus-
trated in the figure. However, the flux change, and hence the rotation frequency ω,
in the cusp case is twice as large as in the upper configuration of a magnetically
shielded source. The variation of the axial magnetic field for the two cases is shown
in Figure 5.3(c). By varying the current in the source solenoid one can achieve other
configurations, such as the dashed curve in the graph where the field at the source
has the same polarity but a lower value as in the downstream region.

From Busch’s theorem one obtains for the angular frequency of the particles in
the equilibrium region the relation

θ̇ = ω = 1

mr2

(
pθ − q

2π
ψ

)
. (5.27)

Using Equation (5.26) for pθ and ψ = B0r
2π for the flux enclosed downstream,

one can write this relation in the form

ω(r) = qBsr
2
s

2mr2
− qB0

2m
= −qB0

2m

(
1 − Bsr

2
s

B0r2

)
,

or

ω(r) = ωL

(
1 − ψs

ψ

)
. (5.28)

The force-balance requirement, Equation (5.20), energy conservation, Equation
(5.25), Poisson’s equation (5.3), and conservation of canonical angular momen-
tum, Equation (5.28), form a complete self-consistent set of equations of state for
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Fig. 5.3 Electron beam with different magnetic
field configurations. (a) Magnetic flux is zero at
the cathode (pθ = 0); (b) cathode and
downstream equilibrium region are immersed
in a uniform magnetic flux with opposite
polarity (cusp geometry); (c) magnetic field

variation along the axis for cases (a) and (b)
and for 0 < Bs < B0 (dashed curve). Case (a)
corresponds to the Brillouin solid beam where
the beam current I is a maximum. In case (b),
on the other hand, there is no laminar-flow
equilibrium, hence I = 0.

the laminar-beam equilibrium. Note that these are four equations for the four func-
tions vθ (r) = rω(r), vz(r), n(r), and φ(r). The only free parameter in this set is
the canonical angular momentum, pθ , or the magnetic flux ratio ψs/ψ . If pθ (r)

is given (i.e., if a particular field configuration for the source is chosen), the four
functions are uniquely determined. Thus the free choice of either n(r) or ω(r) im-
plied by the force-balance equation does not exist when the conservation of energy
and canonical angular momentum are included in the analysis. We will see below
that the rigid-rotor beam (n = const, ω = const) constitutes a special solution of
the equations of state satisfying these conservation laws.
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We can reduce the number of equations to two by eliminating n(r) and φ(r).
First, let us differentiate Equation (5.25) with respect to r using a prime (′) to de-
note d/dr :

vθ (r)v
′
θ (r) + vz(r)v

′
z(r) = qφ′(r)

m
= qEr(r)

m
(5.29)

By substituting for Er from Equation (5.19) and using vθ = rω, one obtains the
differential equation

vz(r)v
′
z(r) + ω(r)

{
r2[ω(r) − ωL

]}′ = 0. (5.30)

Equations (5.30) and (5.28) uniquely determine the self-consistent solutions for the
two functions vz(r) and ω(r). The nature of these solutions, and hence the struc-
ture of the beam equilibrium, depends on pθ (i.e., the magnetic field configuration
and the launching conditions for the particles from the source).

As a first example, let us examine the rigid-rotor equilibrium obtained from the
force-balance equation. Inspection shows that the solution ω = ω0 = const is com-
patible with Equation (5.30) and with Equation (5.28), provided that the flux ratio
ψs/ψ is a constant for all particles. The latter condition is obviously satisfied for
a magnetically shielded source where pθ = 0, hence ψs/ψ = 0. In this case, one
has from (5.28) ω = ωL, which is consistent with Equation (5.24) provided that
ω2

L = ω2
p/2. This is the condition of ideal Brillouin flow already encountered in

Section 4.3.2 on beam transport in a uniform solenoidal magnetic field. We com-
pare the results of the self-consistent theory with those from the linear (paraxial)
theory of Section 4.3.2 in more detail below.

The flux ratio ψs/ψ is a constant when the source is in a uniform magnetic
field, Bs , and the particles are launched from an emitter surface with a circular
area to form a solid cylindrical beam. Under conditions of laminar flow, there is
a correlation between the launching radius rs of a particle and the radius r in the
equilibrium state downstream. For each particle the ratio rs/r = α is a constant,
hence the flux ratio ψs/ψ = Bsr

2
s /B0r

2 is also constant, and the canonical angular
momentum is a quadratic function of radius r :

pθ (r) = q

2π
ψs = qBsr

2
s

2
= qB0α

2r2

2
. (5.31)

The constant rotation frequency ω of the rigid-rotor beam must satisfy the two
equations (5.24) and (5.28). By comparison we find the following relation between
the flux ratio ψs/ψ and the ratio ωp/ωL:

ψs

ψ
= ∓

(
1 − ω2

p

2ω2
L

)1/2

. (5.32)

We see from this relation that ωp/ωL is a maximum, that is, the maximum amount
of charge (or beam current) can be confined, when

ω2
p = 2ω2

L, (5.33)

which implies that ψs = 0 (shielded source) and ω = ωL. On the other hand,
one finds that ωp/ωL = 0 for either ψs/ψ = 1, ω = 0, or ψs/ψ = −1, ω =
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Fig. 5.4 Relationship between angular frequency, ω, and
plasma frequency squared, ω2

p , in the rigid-rotor beam. The
upper and lower branches of the curve (ω+ and ω−) represent
the two solutions of Equation (5.24). The value of the magnetic
flux at the source, ψs , is indicated on the right side for the three
cases ω = 0, ω = ωL, and ω = 2ωL.

2ωL = ωc. Thus, no rigid-rotor equilibrium exists for a finite space charge (ωp > 0)

in the two cases where the source is immersed in the same uniform field as the
downstream beam (Bs = B0) or in the case of an ideal cusp (Bs = −B0) illustrated
in Figure 5.3(b). For flux ratios 0 < |ψs/ψ | < 1, rigid-rotor confinement is possible,
but the confined charge is always less than in the ideal Brillouin case (ψs = 0).

The variation of ω versus ω2
p/2ω2

L according to Equation (5.24) is plotted in Fig-
ure 5.4. By substituting ω = const into Equation (5.30), one finds that the axial
velocity vz of the particles is a quadratic function of radius r except for ω = 0
where vz = v = const and for ω = ωL where vz = v0 = const. For the ideal cusp
field one gets v2

z = v2 − ω2
c r

2, where the total velocity is the same for all particles
since there is no space-charge potential. Note that in the Larmor frame used in
Chapters 3 and 4, the frequency ω = ωLab changes to ωL.f. = ωLab −ωL. Thus when
ψ = 0, ω2

p = 2ω2
L, the frequency in the Larmor frame is zero (ωL.f. = 0) and the

particle trajectories are straight lines.
We now proceed to study the so-called isovelocity solution vz = v0 of the equations

of state in more detail. When vz is a constant (independent of radius r), one obtains
from Equation (5.30) for the angular frequency ω the solution

ω(r) = ωL + C

r2
, (5.34)

where C is an integration constant whose value depends on the canonical angular
momentum at the source.
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Fig. 5.5 Schematic of electrode and magnetic field
configuration to form a Brillouin hollow beam (used, for
example, in magnetron injection guns). Both source and
drift-tube region are immersed in the same uniform magnetic
field. The magnetic flux enclosed at the source is the same for
all particles (pθ = 0.5qB0r2

s and rs = r0). A practical example
of a magnetron injection gun is discussed in Appendix 2.

The case C = 0 corresponds to the special rigid-rotor solution

ω = ωL = ωp√
2

(5.35)

for a shielded source (pθ = 0). Thus, in this case, all particles within the equi-
librium beam not only have a constant axial velocity but also a constant rotational
frequency. This isovelocity-isorotational type of laminar flow is also known in the
literature as a Brillouin solid beam.

The other solution (C �= 0) of Equation (5.34) implies launching conditions such
that the canonical angular momentum pθ , or the flux ψs enclosed at the source, is
the same for all particles within the beam. Such a configuration is illustrated in Fig-
ure 5.5, where a hollow beam is formed and both the source and the downstream
equilibrium are immersed in the same uniform magnetic field (Bs = B0). The
radius, rs , of the emitter surface is equal to the radius, r0, of the inner edge of the
downstream equilibrium beam. Therefore, pθ = 0.5qB0r

2
0 and

ω(r) = ωL

(
1 − r2

0

r2

)
. (5.36)

Thus the angular frequency is ω = 0 at r = r0 and then increases with the radius
until it reaches the value ω = ωL(1 − r2

0 /a2) at the outer edge of the beam. This
type of immersed flow is also known in the literature as a Brillouin hollow beam,
and the electron source producing such a hollow beam is known as a magnetron
injection gun. In practice, the cathode is located in the fringe region of the solenoid
where the magnetic flux lines begin to diverge away from the axis. The cathode has
a conical surface which coincides with the magnetic flux surface so that the total
flux enclosed by the particles remains constant (ψ = B0r

2
0 π).
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The particle density distribution for the various self-consistent beam configu-
rations is obtained by substituting ω(r) from the canonical angular momentum
equation (5.27) in (5.22), which yields

n(r) = ε0m

q2

(
2p2

θ

mr4
+ ω2

c

2

)
. (5.37)

In terms of the particles’ plasma frequency ωp = [q2n/ε0m]1/2, this relation may
be written as

ω2
p = ω2

c

2
+ 2p2

θ

m2r4
. (5.38)

For the Brillouin solid beam, where pθ = 0, ω = ωL, we thus find the solution

n = n0 = ε0mω2
c

2q2
, or ωp = ωc√

2
. (5.39)

In the case of the Brillouin hollow beam, where pθ = qB0r
2
0 /2, ω = ωL(1− r2

0 /r2),
on the other hand, we obtain

n = n0

[
1 +

(
r0

r

)4
]
, or ωp = ωc√

2

[
1 +

(
r0

r

)4
]1/2

. (5.40)

Let us now examine the two types of beam separately.

(a) Brillouin Solid Beam Figure 5.3(a) shows in schematic form the configura-
tion for a Brillouin-type solid electron beam with uniform magnetic focusing. As
discussed above, the magnetic field at the cathode is zero (Bs = 0) and the parti-
cles acquire an azimuthal velocity vθ = rωL when entering the uniform field region
after crossing the flux lines.

The potential φ(r) in the beam is obtained from Equation (5.25) with vz = v0

and vθ = rω = rωc/2; one gets

φ(r) = mv2
0

2q
+ ω2

cmr2

8q
= φ0 + qB2

0

8m
r2, (5.41)

where φ0 is the potential on the axis (r = 0) related to the axial velocity by

vz = v0 =
√

2qφ0

m
. (5.42)

The axial current density is given by

Jz = qn0vz = ε0mω2
c

2q

√
2qφ0

m
, (5.43)

and the total current carried by the beam in longitudinal direction is then simply

I = Jza
2π = a2πε0mω2

c

2q

√
2qφ0

m
= a2πε0qB2

0

2m

√
2qφ0

m
, (5.44)
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where r = a is the outer beam radius. If the potential φa at the beam edge is
introduced, one has from (5.41) with r = a,

φa = φ0 + ω2
cma2

8q
= φ0 + qB2

0

8m
a2, (5.45a)

which can be solved for the applied magnetic field, yielding

B0 = 2

a

(
2m

q

)1/2

(φa − φ0)
1/2. (5.45b)

With the aid of these relations we can eliminate either B0 or φ0 in Equation (5.44)
and obtain for the beam current the alternative expressions

I = 4πε0

√
2q

m
(φa − φ0)φ

1/2
0 , (5.46a)

or

I = πε0ma2ω2
c√

2q

(
qφa

m
− ω2

ca
2

8

)1/2

. (5.46b)

The last equation has the advantage that it relates the beam current only to the
experimental parameters φa , ωc (or B0), and a. Note that we can solve Equation
(5.46) for any one of the four quantities I , φa , B0, a if the other three are given. For
simplicity let us again assume that the beam fills the drift tube (b = a) so that qφa

represents the initial kinetic energy of the particles. As we see from Equation (5.46),
for a given potential φa , the current varies as the magnetic field, and hence ωc, is
changed. To find the maximum current, we write ω2

ca
2/8 = x, I = Cx(A − x)1/2.

Differentiating and setting dI/dx = 0 yields

x = 2

3
A,

that is,

ω2
ca

2

8
= q2B2

0a2

8m2
= 2

3

qφa

m
, (5.47a)

or

B0 = 4√
3

1

a

(
mφa

q

)1/2

. (5.47b)

Substituting (5.47a) in (5.45a) leads to the important relation

φ0 = 1

3
φa. (5.48)

Note that we get the same result by using Equation (5.46a), differentiating with
respect to φ0 and setting ∂I/∂φ0 = 0. The maximum current Im is thus obtained
in the beam when the beam voltage on the axis is one-third of the voltage at the
beam edge, which implies that the ratio of the azimuthal velocity vθ on the outer
radius to the constant axial velocity vz = v0 is

√
2. By substitution of (5.47) into

(5.46), one finds that

Im = 16πε0

3
√

6

√
q

m
φ

3/2
a . (5.49)
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This corresponds to a maximum perveance for an electron beam of

km = Im

φ
3/2
a

= 25.4 × 10−6 A/V3/2. (5.50)

In summary, this type of Brillouin flow represents the ideal case of a rigid-rotor
beam in which all particles rotate about the axis at a constant angular frequency
ω = ωL and have the same constant axial velocity vz = v0 = (2qφ0/m)1/2. The
particle density is uniform and the plasma frequency is 0.707 times the cyclotron
frequency (ωp = ωc/

√
2). The current reaches a theoretical upper limit I = Im

that is defined by Equation (5.49). The applied magnetic field required to focus Im

is given in Equation (5.47b) and is seen to be inversely proportional to the beam
radius a.

In deriving the above relations for a Brillouin solid beam we assumed that the
beam fills the drift tube (a = b) so that φa represents the beam voltage at injection.
If the drift-tube radius is greater than the beam radius (b > a), Equations (5.41)
through (5.46b) are still valid. However, the voltage φa is no longer constant, and
one must use the relation

φb − φa = 2(φa − φ0) ln
b

a
, (5.51a)

or

φb − φ0 = (φa − φ0)

(
1 + 2 ln

b

a

)
(5.51b)

between the beam voltage φb and the values φa at the beam edge (r = a) and φ0 on
the axis (r = 0). By eliminating φa in Equation (5.46a) (i.e., by expressing I in terms
of φb and φ0, differentiating with respect to φ0, and setting ∂I/∂φ0 = 0), one finds
that φ0 = φb/3 and that φ

3/2
a in (5.49) must be replaced by φ

3/2
b /[1 + 2 ln(b/a)].

We note that the beam current I for given voltage, magnetic field, and beam radius
in the general case (b > a) is always less than for the case where the beam fills
the drift tube (b = a). The maximum current Im is reduced by the geometry factor
1 + 2 ln(b/a).

When the conditions for perfect Brillouin flow are not exactly satisfied, the force
balance implied in Equation (5.18) is violated so that the particles no longer move
with constant radius. As a result, both the particle trajectories as well as the beam
radius vary periodically with distance z. We investigate this case of a rippled or
mismatched beam with the aid of the paraxial ray equation in Section 5.2.4.

The Brillouin beam discussed here is of great importance from both a theoretical
point of view and in regard to practical applications. Because of the relatively low
magnetic field that is required, and since it is possible to achieve rather uniform
current density and velocity profiles, this type of beam is used, for instance, in
microwave tubes such as klystrons.

(b) Brillouin Hollow Beam As was mentioned above, this type of beam corre-
sponds to a source located inside the uniform magnetic field region with all par-
ticles starting from a surface that coincides with a magnetic flux tube and having
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zero initial angular velocity. The cathode can have a cylindrical shape, as illustrated
in Figure 5.5 (if it is located in the uniform field region of the solenoid), or a conical
shape (if it located in the fringe region), as is usually the case in practical designs,
such as in magnetron injection guns. For simplicity, we take the cylindrical cath-
ode shown in the figure and assume that the inner beam radius, r0, downstream is
equal to the cathode radius, rs (i.e., r0 = rs ).

According to Equation (5.36), the particles at the inner edge of the beam do not
rotate (ω = 0 for r = rs ) since they do not cross any flux lines, and from Equation
(5.40) we see that the plasma frequency at this radius is equal to the cyclotron
frequency, ωc. As the radius increases, the angular frequency increases, while the
plasma frequency decreases approaching the asymptotic value ωp = ωc/

√
2 at the

outer beam edge when a � r0.
Following the same procedure as in case (a), one finds for the total beam current

I = πε0ω
2
ca

2m√
2q

(
1 − r4

0

a4

)[
qφa

m
− ω2

ca
2

8

(
1 − r2

0

a2

)2
]1/2

. (5.52)

As before, φa denotes the potential on the outer beam edge and represents the
voltage equivalent of the initial kinetic energy. For fixed values of φa , r0, or a, the
current reaches a maximum when

(ωca)2
(

1 − r2
0

a2

)2

= 16

3

qφa

m
, (5.53)

which leads to the expression for the maximum current

Im = 16πε0

3
√

6

√
q

m
φ

3/2
a

1 + r2
0 /a2

1 − r2
0 /a2

. (5.54)

In the case of electrons, the corresponding perveance is

km = 25.4 × 10−6 1 + r2
0 /a2

1 − r2
0 /a2

[A/V3/2]. (5.55)

This is larger than the maximum perveance of the solid Brillouin beam by the
geometry factor in Equation (5.55). If the ratio of inner to outer beam radius is 0.5,
for instance, the factor is 1.67, and for r0/a = 0.75, the perveance is increased by
3.57.

The potential distribution across the beam is given, in analogy to (5.41), by

φ(r) = φ0 + r2ω2m

2q
= φ0 + qB2

0 r2

8m

(
1 − r2

0

r2

)2

for r0 � r � a. (5.56)

Substituting (5.56) into (5.52) with r = a, φ(a) = φa , yields

I = πε0B
2
0a2

√
2

(
q

m

)3/2

φ
1/2
0

(
1 − r4

0

a4

)
. (5.57)

This equation represents the relationship between beam current, I , magnetic field,
B0, inner and outer beam radii, r0 and a, and the voltage φ0 at r = r0 that must



290 5 Self-Consistent Theory of Beams

be satisfied to obtain the self-consistent laminar equilibrium of the Brillouin hol-
low beam.

Similar relations between the parameters of the beam and the magnetic field can
be obtained for the other types of laminar equilibria discussed in connection with
the rigid-rotor solution. A comprehensive review of the various types of laminar
beams can be found in the book by Kirstein, Kino, and Waters [C.9].

5.2.3
Relativistic Laminar Beam Equilibria

In an exact relativistic treatment of beam equilibria [1], the magnetic self field Bsθ

and Bsz due to the axial and azimuthal current components must be included in
the equations of state. As before, let us assume that the cylindrical relativistic beam
with equilibrium radius a is injected from a diode into a conducting drift tube of
circular cross section, with radius b. The tube is inside a solenoid which produces
a uniform static magnetic field in the region downstream from the diode. For the
general derivation, the emitting surface may be either disk-shaped (solid beam)
or annular (hollow beam) and may be either in a magnetically shielded region or
linked by magnetic flux lines. The injection conditions are such that the beam
assumes a laminar-flow equilibrium state at a distance comparable to a few tube
diameters downstream from the injection point.

The most relevant case is that of an intense relativistic electron beam (IREB).
Normally, such a beam is a pulse of short time duration (10 to 100 ns); however, the
length of the beam is usually considerably larger than the tube diameter so that the
postulated equilibrium state can be reached after transient effects due to the beam-
front have decayed. Considering such laboratory beam pulses, the equilibrium state
can exist for only a short period of time during which the magnetic self fields of
the beam do not penetrate through the walls of the conducting tube. However, by
letting the magnetic boundary increase beyond the tube radius or to infinity, the
solutions for any intermediate situation or for a long beam can readily be obtained
from the equations. We assume that the conducting pipe is at anode potential φb

and that all particles are injected with the same kinetic energy (γb − 1)mc2 = qφb.
As before, the potential φ is defined as a positive quantity representing the voltage
equivalent of the kinetic energy, and the particle charge is also taken as positive.

In the region of the equilibrium state, an electrostatic field is set up by the space
charge such that φ = φa at the surface of the beam and φ = φ0 at the center
(r = 0) or the inner edge of a hollow beam. The energy conservation law then
implies that the kinetic energy of the particles is less than qφb and varies as a
function of radius from a minimum of (γ0 − 1)mc2 = qφ0 at the center to the
maximum of (γa − 1)mc2 = qφa at the surface of the beam (r = a). When the
beam fills the entire pipe (a = b), the kinetic energy of the outermost particles is
equal to the injection energy (i.e., qφa = qφb). The relativistic radial force balance
equation may be written in the form

γ (r)mv2
θ (r)

r
+ qEr(r) + qvθ (r)Bz(r) − qvz(r)Bθ (r) = 0, (5.58)
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where Er and Bθ are self fields, while Bz = B0 + Bsz includes both the uniform
applied magnetic field, B0, and the axial self field Bsz. Note that Bsz is due to the
azimuthal current density, Jθ , and since it is in the opposite direction to the applied
field, it is called diamagnetic. In addition to force balance, we have the conservation
law for the canonical angular momentum for each particle, which in this relativistic
case takes the form

γ (r)mrvθ (r) + qrAθ (r) = γ (r)mrvθ (r) + q

∫ r

0
Bz(r)r dr = pθ (r). (5.59)

It implies that all particles at given radius r (which, under laminar-flow conditions,
were emitted from the source at the same radius rs ) have the same canonical an-
gular momentum pθ . Particles at different radii in the equilibrium beam have dif-
ferent pθ values if they are emitted from a source that is linked by magnetic flux
lines such that the magnetic vector potential Aθ varies across the emitting surface
[i.e., Aθ = Aθ(rs) at the source].

The relationship between azimuthal velocity vθ , axial velocity vz, energy factor γ ,
and the potential function φ in the equilibrium beam is defined by the relativistic
energy conservation law:

γ (r) =
[
1 − β2

θ (r) − β2
z (r)

]−1/2 = 1 + qφ(r)

mc2
. (5.60)

The potential is determined by the particle density n(r) via Poisson’s equation,
∇2φ(r) = qn(r)/ε0, which in this relativistic case may be written in the form

1

r

d

dr

(
r
dφ

dr

)
= mc2

q

1

r

d

dr

(
r
dγ

dr

)
= qn

ε0
. (5.61)

The radial electric field is then given by

Er = dφ

dr
= φ′ = mc2

q
γ ′. (5.62)

The magnetic self-field components are determined by the current density J =
qnv. From Maxwell’s equation, ∇ × B = µ0J = µ0qnv, we obtain

1

r
(rBθ )

′ = µ0qnvz (5.63)

and

B ′
z = −µ0qnvθ . (5.64)

Equations (5.58) through (5.64) constitute a complete set of relations which al-
low one to determine the field components and the beam properties in a self-
consistent way.

In analogy to the nonrelativistic analysis, these relations can be reduced to two
equations of state which in addition to vz, vθ , and pθ contain the relativistic energy
factor γ and which take the form

[
r(γ vz)

′]′ − vz

(
rγ ′)′ + 1

m

(
vθp

′
θ

vz

)′
= 0. (5.65)

vθ

r
γ ′ + (

γ + γ ′r
)(vθ

r

)′
+ (

γ v′
θ

)′ − 1

m

(
p′

θ

r

)′
= 0. (5.66)
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As in the nonrelativistic case, the possible solutions allowed by these two equations
depend on the launching conditions at the source, which are represented by the
canonical angular momentum pθ . We will limit ourselves to a brief discussion of
the results for a shielded source where pθ = 0 and refer for the details of the
analysis to Reference 1. If pθ = 0, one obtains for a solid beam the solutions
vz = v0 = const, ω = ω(r) ∝ r0/(r

2
0 + r2), and n = n(r) ∝ (r2

0 + r2)/(r2
0 − r2)3,

where r0 is an integration constant. This is in contrast to the rigid-rotor solution
for the nonrelativistic case where axial velocity vz, angular frequency ω, and particle
density n are constant (i.e., independent of radius r).

The relativistic energy factor γ which determines the kinetic energy of the parti-
cles in the equilibrium state is found to vary with radius r as

γ (r) = γ0
r2

0 + r2

r2
0 − r2

, (5.67)

where γ0 = (1 − v2
0/c2)−1/2 defines the kinetic energy on the beam axis (r = 0).

At the outer edge of the beam, defined by the radius r = a, we get from (5.67)
the equation

γa

γ0
= 1 + a2/r2

0

1 − a2/r2
0

. (5.68)

This relates the integration constant r0 to the beam radius a and the ratio γa/γ0 and
hence to the kinetic energies qφa = (γa − 1)mc2 and qφ0 = (γ0 − 1)mc2 defined
by the potentials φa , φ0 on the beam edge and on the axis, respectively.

The potential between the beam edge (r = a) and the wall (r = b) varies loga-
rithmically with radius r , and by setting r = b and γ (b) = γb one finds that

γb

γ0
= γa

γ0
+
(

γ 2
a

γ 2
0

− 1

)
ln

b

a
. (5.69)

Note that (γb − 1)mc2 = qφb is the kinetic energy of the beam particles at injection
and corresponds to the diode voltage defined by φb.

For the experimentalist, the most important information is the relationship be-
tween total beam current, injection energy (or diode voltage), and applied magnetic
field that has to be met in order to achieve laminar-flow equilibrium for a given
beam and tube diameter. The axial beam current is readily obtained by integrating
2πqnv0r dr from r = 0 to r = a, which yields, in terms of γa/γ0, the result

I = I0
(γ 2

0 − 1)1/2

2

(
γ 2
a

γ 2
0

− 1

)
, (5.70)

where I0 = 4πε0mc3/q ≈ 17,000 A for electrons. The current thus depends on φa

and the ratio of the potential on axis to the potential at the beam surface, φ0/φa .
In Figure 5.6 we plotted I/I0 versus the potential ratio φ0/φa for several values of
the potential φa . Note that in the case a = b, φa represents the diode voltage. The
current is seen to have a maximum at small values of the potential ratio and is
zero at φ0/φa = 0 and φ0/φa = 1. The region to the left of the maximum, where
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Fig. 5.6 Beam current (in units of I0 = 4πε0mc3/q) versus
potential ratio φ0/φa for different values of �a = qφa/mc2.
(From Reference 1.)

the slope of the curve is positive (∂I/∂φ0 > 0), is unstable, as is known from the
nonrelativistic theory.

For the applied magnetic field, B0, one obtains the expression

B0 = 4mc

qr0

(1 − a4/r2
0 b2)

(1 − a2/r2
0 )2

, (5.71)

which, in view of (5.68), may also be written in the form

B0 = mc

qa

(
γ 2
a

γ 2
0

− 1

)1/2[(
γa

γ0
+ 1

)
−
(

γa

γ0
− 1

)
a2

b2

]
. (5.72)

Figure 5.7 shows how B0 varies with the potential ratio φ0/φa for the case b = a.
The three curves correspond to the values of φa used in Figure 5.6 for the current.
Given the beam current, potential φa , and beam radius a, one can thus determine
φ0/φa and the required magnetic field B0. Of the two values of φ0/φa associated
with a given current I , one must choose the larger one that corresponds to stable
current flow.

If the beam does not fill the entire pipe (b > a), the procedure for determining
the allowed combination of the parameters I , φb, a, b, B0 is a little more compli-
cated. One must then use Equation (5.69), which relates the potential on the beam
edge, φa , to the diode voltage, φb, in combination with Equations (5.70) and (5.72)
for the current and the magnetic field, respectively. Note from these formulas that
as b/a increases, both the current and the required applied magnetic field decrease
(assuming a constant diode voltage).
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Fig. 5.7 Applied magnetic field B0 (in units of mc/qa) versus
potential ratio φ0/φa for different values of �a = qφa/mc2.
(From Reference 1.)

The maximum value of the beam current, known in the literature as the space-
charge current limit, plays an important role in many relativistic electron beam
experiments and devices. We will therefore derive an analytical expression for
this value from Equation (5.70). By differentiation with respect to γ0, and setting
∂I/∂γ0 = 0, one obtains the equation

γ 4
0 + γ 2

a γ 2
0 − 2γ 2

a = 0, (5.73)

which has the solution

γ 2
0 = γ 2

a

2

[(
1 + 8

γ 2
a

)1/2

− 1

]
. (5.74)

Substitution of (5.74) into (5.70) then yields for the maximum current the expres-
sion

Im

I0
= 1

2

{
γ 2
a

2

[(
1 + 8

γ 2
a

)1/2

− 1

]
− 1

}1/2[
2

(1 + 8/γ 2
a )1/2 − 1

− 1

]
.

(5.75)

This is obviously a somewhat complicated functional form, especially if the case
b > a is considered, where Equation (5.69) has to be used to find the relationship
between γa and the injection-energy parameter γb.

For the applied magnetic field required to focus the limiting current, one obtains
in the case b = a, by substitution of (5.74) into (5.72), the result

B0 = 2mc

qa

[
2

(1 + 8/γ 2
a )1/2 − 1

− 1

]1/2

. (5.76)

In the ultrarelativistic limit (γ 2
a � 1), the potential on the beam axis approaches

a maximum value which is independent of φa and given by

γ 2
0 = 2. (5.77)
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The corresponding relations for the limiting current, magnetic field, and energy
factors (potentials) are

Im = I0
γ 2
a

4
, (5.78)

B0 = 2mc

qa

γa√
2
, (5.79)

and

γb = γa + γ 2
a√
2

ln
b

a
. (5.80)

Figure 5.8 shows the limiting current, Im/I0, versus the diode voltage �b =
qφb/mc2 in the range 0 � �b � 7 (0 to 3.5 MV for electrons) for several ratios
of tube to beam radius. The corresponding curves for the applied magnetic field
B0 are presented in Figure 5.9. As an example, take an electron beam with b = a, a
beam radius of a = 1 cm, and a diode voltage of 1 MV (�b = 2). With I0 ≈ 17 kA,
one finds that Im = 30 kA, B0 = 0.7 T = 7 kG. If the tube diameter is 25 percent
larger than the beam diameter, these values drop to Im = 15 kA and B0 = 6 kG. In
the latter case, the potential on the beam edge drops from 1 MV to 650 kV according
to Equations (5.74) and (5.69).

In practice it is not possible to achieve the equilibrium state that is defined by
the space-charge current limit of Equation (5.75), so that the current that can be
propagated for a given beam voltage is usually lower than Im. The design for an
actual beam system then requires simultaneous solution of the three equations
(5.69), (5.70), and (5.72) for the five experimental parameters I , γb, a, b, B0 and the
two theoretical parameters γ0, γa . To find a solution, four of the seven parameters
must be specified, and the other three are then calculated self-consistently from the
equations for the equilibrium state. This procedure is best carried out by numerical
solution.

The relationship for the nonrelativistic beam can be recovered from the above rel-
ativistic equations by assuming that qφ � mc2, and hence γ 2 = (1 + qφ/mc2)2 ≈
1 + 2qφ/mc2. The proof is left as Problem 5.5.

When the source is immersed in the applied magnetic field and the canonical
angular momentum pθ varies with radius, the mathematical analysis becomes
considerably more difficult. The axial velocity profile is no longer uniform, and
in general, it is not possible to eliminate one of the two velocity components from
Equations (5.65) and (5.66) to obtain a single equation that determines the equilib-
rium state. An inspection of the force balance equation (5.58) shows that as in the
nonrelativistic case, the particles must acquire an angular velocity component, vθ ,
in order to achieve a force equilibrium. As the particles leave the source (cathode),
vθ is initially zero and there is a net repulsive force qEr − qvzBθ which increases
the radius and results in a rotation of the trajectory due to the E×B effect of the Er

and Bz field components. At a short distance downstream from the source, an equi-
librium state is reached in which the inward Lorentz force, qvθBz, balances the net
defocusing action of the remaining force terms. In general, the azimuthal velocity
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Fig. 5.8 Limiting current Im (in units of I0 = 4πε0mc3/q)
versus potential ratio �a for different values of b/a. (From
Reference 1.)

Fig. 5.9 Applied magnetic field (in units of mc/qa) versus
potential ratio �a for different values of b/a in the
limiting-current case (I = Im). (From Reference 1.)

component vθ will be very small compared with vz, and a relatively strong applied
magnetic field B0 is needed to confine the beam. Consequently (in contrast to the
flow from a magnetically shielded source), the axial diamagnetic self field is very
small and may be neglected. With the simplifying assumptions B0 → ∞, vθ = 0,
and Jz = qnvz = const (uniform current density), Bogdankevich and Rukhadze ob-
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tained the solution for the limiting current given in Equation (4.61) and discussed
in Section 5.2.1. It is interesting to compare this result, which applies to beams im-
mersed in an infinitely strong magnetic field, with Equation (5.75) for the limiting
current in the case of a magnetically shielded source. For convenience, consider
the case b = a and ultrarelativistic energies where γa � 1. A comparison then
shows only the linear dependence IL = I0γa of the Bogdankevich–Rukhadze cur-
rent with voltage as compared with the quadratic dependence in Equation (5.78).
Thus, one is led to conclude that injection from a shielded source should yield
limiting currents, which, at relativistic energies, are substantially larger than the
maximum currents achievable in a system where the source is located within the
applied field. In the first case, the beam exhibits considerable rotational motion
with the average vθ comparable to vz, while in the latter case, vθ ≈ 0. Furthermore,
due to the approximations made, the theory of immersed flow yields no practical
relationship for the magnetic field strength required to focus the beam, other than
the statement that B0 should be very large. We do know, however, from the nonrel-
ativistic theory of magnetically focused beams, that the magnetic field, required to
focus a beam of a given current, voltage, and radius, is larger when the source is
immersed in the field than in the case where the source is magnetically shielded.

5.2.4
Paraxial Analysis of Mismatched Laminar Beams in Uniform Magnetic Fields

In previous sections we considered self-consistent laminar beam equilibria where
the beam radius a and the radius r of each particle trajectory were constant (i.e.,
independent of axial position z in the region downstream from the diode). If
the beam is not launched with the correct initial conditions, the trajectories and
the beam radius will perform oscillations about the respective equilibrium radii.
Knowledge of the behavior of such a mismatched beam is very important for prac-
tical design and experiments. To study this problem without excessive mathemati-
cal difficulties, we will use the paraxial theory (i.e., we abandon the self-consistent
approach). We will carry out the analysis for the general case of immersed flow
(pθ �= 0); the shielded flow is then obtained by setting pθ = 0 in the equations. As
we shall see, the paraxial analysis leads to useful results, and the errors are small
when the currents are not too high.

For laminar flow, the emittance is neglected (ε = 0), and since there are no
axial electric field components (i.e., γ ′ = γ ′′ = 0) the envelope equation (4.79) for
immersed beams can be applied in the form

r ′′
m +

(
qB0

2mcβγ

)2

rm −
(

pθ

mcβγ

)2 1

r3
m

− K

rm
= 0. (5.81)

Since pθ is determined by the magnetic field Bs and the initial radius rs at the
source (i.e., pθ = 1

2qBsr
2
s ), we may write

r ′′
m + κrm − κs

r4
s

r3
m

− K

rm
= 0, (5.82)
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where

κ =
(

qB0

2mcβγ

)2

, κs =
(

qBs

2mcβγ

)2

. (5.83)

Note that Equation (5.82) is formally identical with (4.85a) except that we have the
pθ term in place of the emittance term. Indeed, as was already pointed out in Sec-
tion 4.3.1, a nonzero canonical angular momentum pθ has the same effect on the
beam envelope as a finite emittance ε. Thus, the following mathematical analysis
for laminar flow with pθ �= 0 is directly applicable to a nonlaminar beam where
ε �= 0. A special solution of Equation (5.82) is rm = a = const, which corresponds
to a force balance condition where the outer radius of the beam is constant. For
this case we have r ′′

m = 0 and obtain the relation

a4 − K

κ
a2 − κs

κ
r4
s = 0. (5.84)

Two special cases are of interest:
1. K = 0 (space-charge forces are negligible), in which case we

obtain the solution

a = ra = rs

(
κs

κ

)1/4

= rs

(
Bs

B0

)1/2

. (5.85)

Note that the downstream equilibrium radius is greater or
less than the cathode radius rs if the magnetic flux density
Bs at the source is greater or less than the uniform field B0.

2. Bs = 0, that is, the source is shielded from magnetic flux
(pθ = 0). In this case, the value of the equilibrium radius a

is defined as rb, where

a2 = r2
b = K

κ
. (5.86)

In the nonrelativistic case, K = (I/φ
3/2
0 )/4πε0(2q/m)1/2

and κ = qB2
0/8mφ0, and we obtain from (5.86) the relation

I = ε0πa2B2
0φ

1/2
0 (q/m)3/2

√
2

, (5.87)

which is identical with Equation (5.44). Thus, in the case of a
solid nonrelativistic Brillouin beam, the paraxial analysis
yields the same results as the self-consistent theory provided
that we use the potential on the axis, φ0, in both cases.

With the two radii ra and rb, Equation (5.84) may be expressed in the form

a4 − a2r2
b − r4

a = 0. (5.88)



5.2 Laminar Beams in Uniform Magnetic Fields 299

The general solution for the equilibrium beam radius a may then be written in the
two equivalent forms

a = rb

[
1 + (1 + 4r4

a /r4
b )1/2

2

]1/2

, (5.89)

a = ra

[(
1 + r4

b

4r4
a

)1/2

+ r2
b

2r2
a

]1/2

. (5.90)

One can show from these relations that even if I �= 0, the equilibrium beam radius
re is larger or smaller than rs when Bs is smaller or larger than B0 (i.e., the beam
is magnetically expanded when Bs > B0 and magnetically compressed when Bs <

B0). Also, the equilibrium radius in the case where Bs �= 0 will exceed the radius
in the case Bs = 0 (solid Brillouin beam) for the same current I and voltage φ0.

When the equilibrium conditions are not satisfied, the downstream beam radius
is rippled [i.e., rm = rm(z)] and we must solve Equation (5.82) to obtain the solution
for this case. If we define the beam radius rm in terms of the unrippled equilibrium
radius a by the substitution R = rm/a and the slope by dR/dz = R′, we obtain the
following first integral of Equation (5.82) after multiplying by 2r ′

m:

R′2 = R′2
0 + κ

(
R2

0 − R2 + 1

R2
0

− 1

R2

)
+ K

a2

(
ln

R2

R2
0

+ 1

R2
− 1

)
, (5.91)

where R0 = R(0), R′
0 = R′(0).

Putting R′ = 0, one can find the maximum and minimum excursions of the
beam radius (Rmax and Rmin) by solving the transcendental relation for R as a
function of R′

0, κ , K , and a2.
The second integral can be obtained from (5.91) in closed form only if the space-

charge term K vanishes (zero current limit); otherwise, one has to resort to a nu-
merical integration method. However, when the ripple amplitudes are relatively
small compared with the equilibrium radius a, one can derive an approximate solu-
tion. By substituting rm = a(1+x), where |x| � 1, into Equation (5.82), expanding,
and keeping only first-order terms in x, one obtains the equation

x′′ + 4κ

(
1 − r2

b

2a2

)
x = 0, (5.92)

which is analogous to (4.103). This is the differential equation of the linear har-
monic oscillator, which for x = 0, x′ = x′

0 at z = 0 has a solution of the form

x = x′
0 sin kez = x′

0 sin
2π

λ
z, (5.93)

where the wavelength λe of the beam envelope oscillation is given by

λe = 2π

k
= 2π

[
2
√

κ

(
1 − r2

b

2a2

)1/2]−1

. (5.94)

In a solid Brillouin beam (Bs = 0), where rb = a, the wavelength is

λe = 2π√
2κ

. (5.95)
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If we introduce the time t = z/v0, we obtain the envelope oscillation frequency or
the transverse resonant frequency, ωe, given by ωe = 2πv0/λe, or

ωe =
(

1 − r2
b

2a2

)1/2

2
√

κv0. (5.96)

When K = 0 (no space charge), we find that

λe = 2π

2
√

κ
= 2πv0

ωc

, ωe = ωc. (5.97)

For the solid Brillouin beam (Bs = 0), the envelope oscillation wavelength and
frequency are given by

λe = 2π
√

2v0

ωc

, ωe = ωc√
2

(in agreement with Section 4.3.3). (5.98)

Thus, in the absence of space charge, the frequency associated with the envelope
oscillation of the beam is equal to the cyclotron frequency. In a solid Brillouin
beam emitted from a magnetically shielded source, on the other hand, the envelope
frequency is equal to the plasma frequency given by Equation (5.39) (i.e., ωe =
ωp = ωc/

√
2). Interestingly, in the latter case, the paraxial analysis yields the same

results as the self-consistent theory for a nonrelativistic beam.

5.3
The Vlasov Model of Beams with Momentum Spread

5.3.1
The Vlasov Equation

When the effect of the velocity spread (temperature, emittance) of the beam is not
negligible compared with the space-charge force, the flow is nonlaminar, and the
theoretical model has to be modified. In the paraxial theory, the nonlaminar situa-
tion is represented by the emittance term in the envelope equation. As one might
expect, a self-consistent theory of nonlaminar flow is not that simple; that is, one
cannot merely add a temperature term to the self-consistent laminar equations dis-
cussed in preceding sections. The accepted method of describing self-consistent
equilibria in this more general case is the Vlasov model [2]. It applies to all sys-
tems (nonneutral beams as well as neutral plasmas) for which Liouville’s theorem
is applicable and where collisions between particles can be neglected. A system of
identical charged particles is defined by the distribution function f (qi, pi, t) in six-
dimensional phase space, where qi and pi represent the conjugate canonical space
and momentum coordinates. Liouville’s theorem states that

df

dt
= ∂f

∂t
+

3∑
i=1

(
∂f

∂qi

q̇i + ∂f

∂pi

ṗi

)
= 0, (5.99)
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which is equivalent to the statement that the volume occupied by a given number
of particles in phase space remains constant (see Section 3.2), that is,∫∫

d3qd3p = const. (5.100)

The phase-space coordinates qi , pi obey Hamilton’s equations of motion (2.60),
that is,

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, (5.101)

where H(qi, pi, t) = c(m2c2 + (p − qA)2)1/2 + qφ is the relativistic Hamiltonian.
The scalar potential φ and the vector potential A represent the sum of the applied
fields and the self fields generated by the particles. The self-field contributions are
determined by the space charge ρ and current density J, which are obtained by
integrating the distribution function f (qi, pi, t) in momentum space, namely,

ρ = q

∫
f (qi, pi, t)d

3p, (5.102)

J = q

∫
vf (qi, pi, t)d

3p. (5.103)

In the case of explicit time dependence, ∂f/∂t �= 0, one has to solve the wave
equations for φ and A (subject to the boundary conditions):

∇2φ − µ0ε0
∂2φ

∂t2
= − ρ

ε0
, (5.104)

∇2A − µ0ε0
∂2A
∂t2

= −µ0J. (5.105)

By substituting (5.101) into the Liouville equation (5.99), we obtain the relativistic
Vlasov equation [2], also known as the kinetic equation:

∂f

∂t
+

3∑
i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)
= 0. (5.106)

The set of equations (5.102) to (5.106) determine self-consistently the dynamics of
an ensemble of charged particles that obey Liouville’s theorem.

An alternative and often more convenient formalism specifies the distribution
function in terms of the space coordinates qi and the mechanical momentum com-
ponents Pi = pi−qAi [i.e., f = f (qi, Pi, t)]. By transforming from (qi, pi) to other
variables (Qi, Pi), Equation (5.100) may be expressed as∫∫

D d3q d3p =
∫∫

d3Q d3P = const, (5.107)

where

D = ∂(q1, q2, q3, p1, p2, p3)

∂(Q1, Q2, Q3, P1, P2, P3)
(5.108)

is the Jacobian of the transformation. Obviously, when D = 1, Liouville’s theorem
also applies to the phase space defined by the other variables (Qi, Pi). It is easy



302 5 Self-Consistent Theory of Beams

to show that the Jacobian determinant D = 1 for the transformation (qi, pi) →
(qi, Pi). As a result, Liouville’s theorem may be stated in the alternative form∫∫

d3q d3P = const, (5.109)

or

∂f

∂t
+

3∑
i=1

(
∂f

∂qi

q̇i + ∂f

∂Pi

Ṗi

)
= 0. (5.110)

The Ṗi are determined by the electric field E and the magnetic field B via the
Lorentz force equation

dP
dt

= qE + qv × B. (5.111)

Substitution of (5.111) into (5.110) then yields the relativistic Vlasov equation in
the alternative form

∂f

∂t
+

3∑
i=1

[
∂f

∂qi

q̇i + q(E + v × B)i
∂f

∂Pi

]
= 0, (5.112)

where the velocity v has to be expressed in terms of the mechanical momentum,
that is,

v = P
m

(
1 + P 2

m2c2

)−1/2

. (5.113)

The electric and magnetic field are determined self-consistently by Maxwell’s
equations:

∇ × E = −∂B
∂t

, (5.114a)

∇ × B = µ0q

∫
vf (qi, Pi, t)d

3P + µ0ε0
∂E
∂t

, (5.114b)

∇ · E = q

ε0

∫
f (qi, Pi, t)d

3P, (5.114c)

∇ · B = 0. (5.114d)

In the nonrelativistic case (i.e., when γ = 1), one can express the distribution
function in terms of the velocity v rather than the momentum P. With f (r, v, t),
the Vlasov equation may then be written as

∂f

∂t
+

3∑
i=1

[
∂f

∂qi

q̇i + q

m
(E + v × B)i

∂f

∂q̇i

]
= 0, (5.115)

where r = {qi} = {x, y, z} and v = {q̇i} = {ẋ, ẏ, ż} in the case of cartesian coordi-
nates. If the beam is composed of different types of particles or ions, the distribu-
tion function for each species obeys a Vlasov equation of the form (5.112). The self
fields are then obtained by summation of all contributions to total charge density
ρ and current density J in Maxwell’s equations (5.114).
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The equilibrium states of a distribution of particles (i.e., in our case of a charged
particle beam) are defined by time-independent solutions of the Vlasov–Maxwell
equations. In this case, with ∂/∂t = 0, Equations (5.112) and (5.114) take the form

3∑
i=1

[
∂f

∂qi

q̇i + q(E + v × B)i
∂f

∂Pi

]
= 0, (5.116)

∇ × E = 0, (5.117a)

∇ × B = µ0q

∫
vf (qi, Pi, t)d

3P, (5.117b)

∇ · E = q

ε0

∫
f (qi, Pi, t)d

3P, (5.117c)

∇ · B = 0. (5.117d)

In principle, this set of Vlasov–Maxwell equations defining the stationary states of
charged particle distributions obviously has many solutions which depend on the
form of the distribution functions and the parameters characterizing the system.
The main problem is to find a particular distribution function which permits a
mathematical analysis without excessive difficulties and which, at the same time,
represents a good model of a physically realizable system. The usual approach is
to choose a distribution function which depends on the constants or integrals of
the motion and which therefore, by definition, is a solution of the Vlasov equation.
Suppose, for instance, that the constants or integrals of the motion (e.g., total en-
ergy, canonical angular momentum, etc.) of a system of particles are known and
defined by I1, I2, and so on. Then, any distribution function which is an arbitrary
function of these integrals, f (I1, I2, . . .), satisfies Liouville’s theorem and therefore
the Vlasov equation; that is (with ∂/∂t = 0),

df

dt
=
∑
j

∂f

∂Ij

dIj

dt
= 0, (5.118)

since dIj /dt = 0, for j = 1, 2, . . ..
Unfortunately, it is not easy to find constants or integrals of the motion and

appropriate distribution functions in the general cases of three-dimensional sys-
tems, especially when space-charge forces are involved. The most important class
of problems that can be treated without excessive difficulties by the Vlasov method
are those in which the Hamiltonian (i.e., the total energy of the particles) can be
separated into a transverse and a longitudinal part. As an illustration, let us con-
sider the Hamiltonian for particle motion in a nonrelativistic beam confined by an
electrostatic potential, that is,

H = 1

2m

(
P 2

x + P 2
y + P 2

z

)
+ qφ(x, y, z), (5.119)

where φ = φa + φs is the sum of the applied (focusing) potential φa and the space-
charge (defocusing) potential φs . Now let us assume that we are dealing with a
continuous beam and that the combined potential is of the form

φ(x, y, z) = φ(x, y)f (z), (5.120)
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where f (z) is either constant (i.e., ∂f/∂z = 0) or where its variation with distance
z is so small that the effect of the axial electric field Ez = −∂φ/∂z on the lon-
gitudinal momentum is negligible. Under these conditions the axial velocity and
momentum of the particles remain approximately constant, and the Hamiltonian
can be separated into a transverse part, H⊥, and a longitudinal part, H‖, where

H⊥ = 1

2m

(
P 2

x + P 2
y

)
+ qφ(x, y)f (z), (5.121a)

H‖ = 1

2m
P 2

z . (5.121b)

We note that in this approximation H‖ is a constant of the motion whereas H⊥ is
not because of the variation f (z) in the potential function. Strictly speaking, since
the total Hamiltonian H in the system described by Equation (5.119) is a constant
of the motion, H‖ would have to vary with distance z if H⊥ = H⊥(z). However,
the approximation H‖ ≈ const is justified if the changes in the longitudinal mo-
mentum due to the axial force Fz = qEz are negligibly small (i.e., �Pz � Pz).
A good example for this case is an electrostatic quadrupole channel where the ap-
plied potentials (and hence also the beam’s self potential) vary with distance z. In
this case, the transverse Hamiltonian H⊥ is not a constant, and hence, we cannot
use it to construct a distribution function that would satisfy the stationary Vlasov
equation. On the other hand, if we consider a uniform focusing channel, where
the potential function does not vary with distance z (i.e., if ∂f/∂z = 0), then both
H⊥ and H‖ are also constants of the motion. In this case, any distribution function
of (H⊥, H‖) would satisfy the time-independent Vlasov equation and hence repre-
sent a stationary beam. A good example of such a system is the cylindrical beam
in a long solenoid with uniform magnetic field. In the rotating Larmor frame, the
applied radial Lorentz force Fr = −qvθBz is equivalent to a focusing electrostatic
force qEr = −q∂φa/∂r which opposes the repulsive force due to the space-charge
potential ∂φs/∂r . The steady state in this uniform magnetic field is characterized by
a beam that has a constant radius and hence no z-variation of the self field (matched
beam). A second, albeit somewhat more academic example is a beam that propa-
gates through a “transparent” cylinder of a stationary opposite charge with uniform
density in which collisions can be neglected and which acts like an applied focus-
ing potential. The effects of charge neutralization discussed in Section 4.6 can be
treated by such a model. Finally, the smooth approximation of beams in periodically
varying focusing systems offers a third example that is of great importance from
a practical point of view. The smoothed applied focusing force is independent of z

and can be treated like a harmonic oscillator potential in the transverse direction,
as discussed in Section 4.4. The corresponding average transverse Hamiltonian is
then a constant of the motion and, mathematically, average stationary states can be
constructed by distribution functions of the form f (H⊥, H‖). In doing so one of
course neglects the axial variation of both the applied potential φa and the space-
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charge potential φs (arising from the periodic ripple in the beam envelope). One of
the most important examples of such a distribution function is

f = f0 exp

(
− H⊥

kBT⊥

)
δ(Pz − P0). (5.122)

The longitudinal part is a delta function, which means that all particles have the
same axial momentum. The beam is therefore “cold” in the axial direction (i.e.,
it has zero longitudinal temperature). The transverse part corresponds to a two-
dimensional Maxwell–Boltzmann distribution with constant transverse tempera-
ture kBT⊥, also known as a transverse thermal distribution. The particle density,
which is only a function of the transverse coordinates, is obtained by integrating
over the momentum components, yielding

n(x, y) = n0 exp

[
− qφa(x, y) + qφs(x, y)

kBT⊥

]
. (5.123)

This equation relating the particle density to the potential and the temperature
is known as the Boltzmann relation. When the applied potential function is given
and the space-charge potential is negligible, the density variation is readily de-
fined by Equation (5.123). However, when φs is not negligible the situation be-
comes mathematically much more complicated since φs and n(x, y) are related by
Poisson’s equation, ∇2φs = −qn/ε0. We discuss this complication further in Sec-
tion 5.3.3, where several examples of stationary distributions are treated, and in
Section 5.4.4, where the transverse Maxwell–Boltzmann distribution is analyzed in
much more detail.

In the relativistic case, the Hamiltonian corresponding to Equation (5.119) has
the form [see Equation (2.70)]

H = c
(
m2c2 + P 2

x + P 2
y + P 2

z

)1/2 + qφ(x, y, z), (5.124)

in which the transverse and longitudinal kinetic energy parts are not readily sep-
arated since they appear inside the square root. Fortunately, for most beams of
practical interest, the transverse momentum components are small compared to
the longitudinal momentum, so that (5.124) can be approximated by

H = γmc2 + P 2
x + P 2

y

2γm
+ qφ(x, y)f (z), (5.125a)

or, alternatively, in terms of the velocities,

H = γmc2 + γm

2

(
v2
x + v2

y

)+ qφ(x, y)f (z). (5.125b)

Thus, as in the nonrelativistic case, we can separate the transverse part of the
Hamiltonian from the longitudinal term (represented by γmc2). As we will see
in the next sections, it will be convenient to redefine the transverse Hamiltonian in
terms of the slopes x′ and y′ by dividing (5.125b) with γmv2 and writing

H⊥ = 1

2

(
x′2 + y′2)+ qφ(x, y)

γmv2
f (z). (5.126)
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When f (z) is constant, this relativistic Hamiltonian for the transverse motion is
a constant, and any distribution function f (H⊥) will satisfy the stationary Vlasov
equation. Before we discuss several functions of this type, we will first consider the
more general case where f (z) varies with distance z and where H⊥ is not a proper
constant of the motion. We recall from Chapters 3 and 4 that the emittances εx and
εy (or the normalized emittances when acceleration is involved) are constant if all
forces acting on the particles are linear in x and y. A distribution function f (εx, εy)

would therefore satisfy the time-independent Vlasov equation. As it happens there
is only one self-consistent distribution where both the applied and space-charge
forces are linear and where the emittances are preserved. This distribution is a
delta function of the emittances. Known as the K–V distribution, it is treated in the
next section.

5.3.2
The Kapchinsky–Vladimirsky (K–V) Distribution

In statistical mechanics, the distribution in which the forces are linear and the
phase-space areas remain constant is known as the microcanonical distribution.
Kapchinsky and Vladimirsky [3] used this distribution to study the effects of space
charge on the transverse beam dynamics in a linear accelerator with magnetic
quadrupole focusing elements. Their work, which was published in 1959, has been
of major importance in accelerator theory and design, and their beam model is now
generally referred to as the K–V distribution. For the forces to be linear in the trans-
verse coordinates x and y, the conditions for paraxial motion must be satisfied (i.e.,
vx � vz, vy � vz, vz ≈ v). Furthermore, the changes in the beam size must oc-
cur slowly enough that longitudinal forces due to the beam’s self-field components
can be neglected. All particles then have the same axial velocity vz ≈ v; that is, the
potential difference across the beam must be small compared to the kinetic energy.

Let us now trace the steps that lead to the K–V distribution function. The equa-
tions of motion for a continuous beam in which both the applied as well as the
space-charge forces are linear functions of the transverse coordinates x and y have
already been derived in Section 4.4.2 for a quadrupole focusing channel [Equations
(4.176) and (4.177)]. We will write them in the form

x′′ + κx(z)x = 0, (5.127a)

y′′ + κy(z)y = 0. (5.127b)

The focusing functions κx(z) and κy(z) include the space-charge forces and are
defined by

κx(z) = κx0(z) − 2K

X(X + Y )
, (5.128a)

κy(z) = κy0(z) − 2K

Y(X + Y )
. (5.128b)

The beam has in this general case an elliptical cross section; X(z) and Y (z) are the
semiaxes of the ellipse, and they are found by solving the beam envelope equations
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(4.178) and (4.179). The two trajectory equations (5.127) have the same form as
Equation (3.312), which we studied in Section 3.8.2. Thus we can represent the
solutions in the phase-amplitude form

x(z) = Axwx(z) cos[ψx(z) + φx ], (5.129a)

y(z) = Aywy(z) cos[ψy(z) + φy ]. (5.129b)

The phase functions ψx and ψy satisfy the relations

dψx

dz
= ψ ′

x = 1

w2
x

, ψ ′
y = 1

w2
y

. (5.130)

while wx , wy obey the equation

w′′
x(y) + κx(y)wx(y) − 1

w3
x(y)

= 0. (5.131)

The parameters Ax , Ay , φx , φy depend on the initial conditions (x0, x
′
0) and (y0, y

′
0)

and remain constant throughout the motion. Specifically, in analogy to Equation
(3.342), we have the relations

A2
x = x2

w2
x

+ (
wxx′ − w′

xx
)2

, (5.132a)

A2
y = y2

w2
y

+ (
wyy′ − w′

yy
)2

, (5.132b)

which represent equations of ellipses. As discussed in Section 3.8.2, the maximum
value of the amplitude parameter is related to the emittance. Thus, if εx denotes
the emittance in x−x′ trace space, εy in y−y′ trace space, then

A2
x,max = εx, A2

y,max = εy. (5.133)

This is in agreement with Liouville’s theorem, which states that for a system of
particles where the motion in each cartesian plane is decoupled from that in the
other directions, the corresponding emittances remain constant during the motion.

Each value Ax � Ax,max, or Ay � Ay,max defines an ellipse in x−x′ or y−y′ space
whose area is conserved (i.e., A2

x and A2
y are integrals of the motion). Likewise, any

linear combination, say A2
x +CA2

y , is a conserved quantity. The constant C is given
by the ratio of the emittances (i.e., C = εx/εy ), and has the value C = 1 if the
two emittances are the same. Thus we can define as a new integral of motion the
quantity F given by

F = A2
x + εx

εy

A2
y, (5.134a)

or, alternatively, the dimensionless quantity G defined as

G = A2
x

εx

+ A2
y

εy

. (5.134b)
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Mathematically, any distribution function f (F ), or f (G), would satisfy the time-
independent Vlasov equation. However, only the special microcanonical distribu-
tion function proposed by Kapchinsky and Vladimirsky, known as the K–V distribu-
tion, produces linear equations of motion with variables separated. It has the form

f = f ∗
0 δ(F − F0), (5.135a)

or

f = f0δ(G − 1), (5.135b)

where δ(x) is the Dirac delta function with the property

δ(x) = 0 for x �= 0,

∫ ∞

−∞
δ(x) dx = 1. (5.136)

Kapchinsky and Vladimirsky treated only the case C = 1 where εy = εx = F0.
However, we will not make this restriction and will treat the more general case of
the K–V distribution, where εx �= εy (see the comment in Reference 3). For such a
choice of the distribution function, the representation points of all particles in the
beam lie on the surface of the hyperellipsoid

1

εx

[
x2

w2
x

+ (wxx′ − w′
xx)2

]
+ 1

εy

[
y2

w2
y

+ (wyy′ − w′
yy)2

]
= 1 (5.137)

in the four-dimensional phase space defined by the coordinates x, y, x′, y′. The
projection of this hyperellipsoid in the x−x′ plane gives the result

x2

w2
x

+ (
wxx

′ − w′
xx
)2 = εx, (5.138a)

which, from Equations (3.341) to (3.345), may be written in terms of the Courant–
Snyder parameters α̂, β̂, γ̂ as

γ̂xx
2 + 2α̂xxx′ + β̂xx

′2 = εx. (5.138b)

These are the equations of the emittance ellipse in the x−x′ plane with the area
εxπ . A similar relationship is obtained for the projection in the y−y′ plane, where
on the right-hand side one obtains εy in lieu of εx .

The K–V distribution has the interesting property that all two-dimensional pro-
jections (x−x′, x−y, etc.) yield uniform particle densities in both the symmetric case
εx = εy and in the asymmetric case εx �= εy (see Reference 3 and Problem 5.8).
Thus, the density in the ellipse (5.138) is uniform. Likewise, the density across the
beam in the x−y plane is uniform, as required to obtain linear space-charge forces.
From Equation (5.137) we see that the coordinates of all particles obey the relation

x2

εxw2
x

+ y2

εyw2
y

� 1,

and, consequently, with w2 = β̂, the ellipse

x2

β̂xεx

+ y2

β̂yεy

= 1 (5.139)



5.3 The Vlasov Model of Beams with Momentum Spread 309

represents the boundary of the beam outside of which there are no particles. The
semiaxes of this ellipse, which represent the envelopes in the x and y directions,
are given by

X(z) =
√

εxβ̂x(z), Y (z) =
√

εyβ̂y(z). (5.140)

The distribution function f (G) is a solution to the time-independent Vlasov–
Maxwell equations and allows us to determine the charge density, current density,
and associated fields in a self-consistent manner. First, the charge density can be
calculated from the expression

ρ = qf0

∫ ∞

−∞

∫ ∞

−∞
δ(G − 1) dx′ dy′. (5.141)

The integration yields

ρ = qf0π

√
εxεy

β̂x β̂y

, (5.142)

which represents a uniform distribution in the beam cross section.
The total beam current I in the z-direction is given by

I = vz

∫ ∫
ρ(x, y, z) dx dy = vρXYπ (5.143)

since ρ is independent of x and y and the beam cross section is an ellipse with area
XYπ . Thus, we can express ρ in terms of the current as

ρ(z) = I

πvX(z)Y (z)
, (5.144)

in agreement with Equation (4.173) With (5.140) and (5.144), the normalization
constant f0 in (5.135) and (5.142) is then found to be

f0 = I

π2qvεxεy

. (5.145)

If the beam envelopes change along the path length z, the charge density ρ is a
function of z. However, as was pointed out above, the changes occur along dis-
tances that are significantly greater than the beam width. The electrostatic potential
φ may then be calculated from Poisson’s equation for any given position z by ap-
proximating the beam as an infinite elliptical cylinder with semiaxes X(z), Y (z)and
having uniform charge density; thus

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
= −ρ(z)

ε0
, (5.146)

where ρ is given in Equation (4.172). Note that we neglect any image charges from
boundaries in this approximation.

The solution of Equation (5.146) for the potential distribution inside the beam is
found to be

φ(x, y, z) = −ρ(z)

4ε0

[
x2 + y2 − X(z) − Y (z)

X(z) + Y (z)
(x2 − y2)

]
+ const. (5.147)
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From this expression one obtains the electric field components inside the beam
given in Equations (4.174) and (4.175). The magnetic self-field components are de-
fined by B = (v × E)/c2, and the associated Lorentz force reduces the electric force
by the factor 1 − β2 = 1/γ 2, as shown in Equations (4.15) and (4.16). Substitution
of these force components into the equations of motion then leads to the trajectory
equations (4.176) and (4.177), which can be written in the form (5.127). The associ-
ated envelope equations (4.178) and (4.179) can be obtained by substituting (5.140)
into (5.131) using the definition (5.128) for the function κ(z). The proof that the
K–V distribution (5.135) yields the desired linear equations for beams with space
charge is thus essentially completed.

To apply the K–V model to a specific beam channel, one must know the func-
tions κx0(z) and κy0(z) representing the external focusing force, the generalized
perveance K representing the space charge, and the emittances εx and εy . Then
one must first find the envelopes X(z), Y (z). The envelope equations represent
a system of two nonlinear, second-order coupled differential equations which, in
general, must be solved numerically for given initial conditions. The results for
X(z) and Y (z) can then be substituted into Equations (4.176), (4.177) to find the
trajectories for individual particles in the beam.

If the channel consists of periodically spaced quadrupole lenses with period S

such that κx0(z + S) = κx0(z) and κy0(z + S) = κy0(z), proper initial conditions
will give periodic solutions for the envelopes with period S, as discussed in Section
4.4.2. In this case, the beam is said to be matched to the channel. For any other
initial conditions in the periodic system one obtains the envelope oscillations of
unmatched beams treated in Section 4.4.3. The K–V distribution f = f0δ(G− 1) =
f (x, y, x ′, y′) thus represents the phase-space function that generates the linear
self-fields in coordinate space (x, y or r , θ ) that were used in the paraxial theory of
Chapter 4.

The above trajectory and envelope equations are applicable not only to straight fo-
cusing channels and linear accelerators, but also to beams in circular accelerators.
In axisymmetric (weak-focusing) systems, for instance, the independent variable is
the path length s = Rθ , where R is the average radius of the equilibrium orbit; the
functions κx0 and κy0 then represent the radial and axial betatron frequencies (see

Section 3.6.1), κx0 = (1 − n)/R
2

and κy0 = n/R
2
. Since κx0 and κy0 are indepen-

dent of s in this case, a matched-beam solution exists where X = const, Y = const,
which can be found by setting X′′ = 0, Y ′′ = 0 in Equations (4.178), (4.179). In
alternating-gradient (strong-focusing) synchrotrons, on the other hand, κx0 and κy0

are periodic functions of the path length s; the closed equilibrium orbit is not a
circle in this case, and the periodicity is defined by the number of focusing lattice
units along the circumference of the accelerator.

If we apply Equation (4.178) and (4.179) to a round beam (X = Y = R) and
replace εx = εy by ε and κx0 = κy0 by κ0 = (qBz/2mcβγ )2, we obtain the envelope
equation (4.85a) for a paraxial beam in a solenoidal magnetic field, namely,

R′′ + κ0R − K

R
− ε2

R3
= 0.
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At first glance, this analogy is somewhat surprising since the K–V equations were
based on a self-consistent distribution function, whereas the paraxial theory did not
use a self-consistent approach. However, as we did point out, the K–V distribution
does in fact imply the paraxial assumption that the transverse velocity components
vx , vy are small compared with the axial velocity. This assumption was necessary
to linearize the equations of motion. The K–V theory may thus be called a self-
consistent paraxial theory. It applies to beams with elliptic cross section in focusing
fields with linear external forces that differ in the two perpendicular transverse
directions as well as to round beams in axisymmetric focusing systems. A truly
self-consistent nonparaxial theory comparable to that for relativistic laminar flow
entails considerable mathematical difficulty and results in a rather complex set
of nonlinear, complicated relations for the density profile and the associated self
fields. An example of this type is the intense relativistic electron beam model of
Hammer and Rostoker [4], in which the focusing force is produced by a background
of stationary positive ions providing partial charge neutralization.

The K–V theory is a good and very useful approximation for beams where the
current remains well below the space-charge limit. This is true for practically all ac-
celerators and other devices. The most notable exception is the intense relativistic
electron beam generator (IREB) which usually operates near the limiting current.
It must be kept in mind, however, that the K–V model does not include nonlin-
ear effects that increase the emittance. We deal with emittance growth effects in
Chapter 6.

5.3.3
Stationary Distributions in a Uniform Focusing Channel

In the preceding section we have shown that the K–V distribution is a self-
consistent solution of the time-independent Vlasov equation when the external
forces acting on the particles are linear functions of the transverse displacements
x, y from the beam axis. In general, the amplitudes of these forces may be different
in the two transverse directions and may vary with the distance along the path of
the beam. The K–V distribution has the property that the electric and magnetic self
forces due to space charge and beam current are also linear functions of x, y. This
property is independent of the strength of the internal fields (and hence the gener-
alized perveance K), and the particle density within the beam is always uniform.

In this section we consider the simplest case of a focusing system, namely, a uni-
form channel in which the external forces are linear, axisymmetric, and indepen-
dent of the longitudinal distance z. A stationary particle distribution in such a chan-
nel has the property that the internal forces are also axisymmetric and independent
of the distance z along the beam; however, with the exception of the K–V beam, the
space-charge forces may be nonlinear functions of x, y. Mathematically speaking,
a stationary distribution in a uniform channel is characterized by the fact that for
all forces acting on the particles ∂/∂z = 0 and ∂/∂t = 0. We will assume that all
particles have the same axial velocity ż and that the transverse velocity components
ẋ, ẏ are very small compared to ż (paraxial approximation). The relativistic energy
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factor γ can then be treated as a constant, with γ = (1−β2)−1/2 ≈ (1− ż2/c2)−1/2.
The total force acting on a particle in the transverse direction consists of the linear
external focusing force; the outward force, qEr , due to the space-charge electric
field; and the inward force, −qżBθ = −qErβ

2, due to the magnetic self field of the
beam. Note that there is also a force qṙBθ in the z-direction due to the magnetic
self field, but in our beam model the associated change in the axial velocity is so
small that we can neglect it. It is easy to show that the equation of motion for a
particle experiencing these forces can be derived from a Hamiltonian H⊥, which
is a function of r and v⊥ = (ẋz + ẏz)1/2. If we use the trajectory slopes x′ = ẋ/v,
y′ = ẏ/v in place of ẋ, ẏ, the Hamiltonian can be defined in dimensionless form as

H⊥
(
r, r ′⊥

) = 1

2
r ′ 2⊥ + 1

2
k2

0r2 + qφs(r)

γmv2

[
1 − β2], (5.148)

where r2 = x2 + y2 and r ′2⊥ = x′2 + y′2. Note that r ′2⊥ stands for v2⊥/v2 = x′2 + y′2
and is not to be confused with the square of the slope r ′2 = (dr/dz)2 of r(z),
where r is the radial coordinate. The first term on the right-hand side represents
the transverse kinetic energy, the second term is the potential energy due to the
external focusing field, and φs(r) in the third term is the electrostatic potential due
to the space charge of the beam. Note that (5.148) is identical with (5.126) except
that the potential function is split into the applied part, φa assumed to be of the
harmonic oscillator form (∝ r2) and the space-charge part, φs , in which the factor
1 − β2 represents the attractive magnetic self force arising from żBθ .

Physically, such a uniform focusing system corresponds to particle motion
through a long solenoid as seen in the Larmor frame or to a particle beam passing
through a channel of stationary charges of opposite polarity and uniform density
ρe, or to a smoothed periodic channel, as was pointed out earlier. In the first case
the constant k2

0 is given by k2
0 = κ = ω2

L/v
2, where ωL is the Larmor frequency,

while in the second case it is proportional to the charge density ρe of the focus-
ing background particle distribution, and in the third case it relates to the phase
advance σ0 and period length S by k2

0 = σ 2
0 /S2. The Hamiltonian H⊥ for particle

motion in such a system is constant, and thus a stationary, self-consistent solution
of the steady-state Vlasov equation can be represented by a properly chosen distri-
bution function f (H⊥). Although the Hamiltonian depends only on r and r ′⊥, we
should bear in mind that both H⊥ and f (H⊥) are functions in four-dimensional
phase space (x, y, x′, y′) or (r, θ, r ′⊥, ψ), where θ and ψ denote the angles of the
cylindrical coordinate system in x, y and x′, y′ space, respectively.

If a distribution function f (H⊥) is given, the self-consistent determination of
the particle density n(r) and the space-charge potential φs(r) follows the procedure
outlined in Section 5.3.1. First, one obtains for the density

n(r) =
∫ a′(r)

0

∫ 2π

0
f (H⊥(r, r ′⊥))dψr ′⊥ dr ′⊥ = π

∫ a′2

0
f (H⊥(r, r ′⊥))d(r ′2⊥ ),

(5.149)

where a′(r) denotes the maximum value of r ′⊥ in the particle distribution at a given
radius r .
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The space-charge potential φs is then found by solving Poisson’s equation,

1

r

d

dr

(
r
dφs(r)

dr

)
= −ρ(r)

ε0
= −qn(r)

ε0
, (5.150)

which, by substituting (5.149) for n(r), takes the form

1

r

d

dr

(
r
dφs(r)

dr

)
= −qπ

ε0

∫ a′2

0
f (H⊥(r, r ′⊥))d(r ′2⊥ ). (5.151)

It will be convenient to introduce an effective potential W(r) which represents
the sum of the external focusing potential and the self-field potential, that is,

W(r) = 1

2
k2

0r2 + qφs(r)

β2γ 3mc2
, (5.152)

where 1 − β2 = 1/γ 2 has been used. The Hamiltonian may then be written as

H⊥(r, r ′⊥) = 1

2
r ′2⊥ + W(r). (5.153)

A particle reaching the outer edge of the beam, defined by rmax = a, will have
zero slope at this point, and its Hamiltonian, or transverse total energy, will have
the maximum value given by

H0 = W(a), with r ′⊥(a) = 0. (5.154)

At any radius r < a inside the beam, this particle has the maximum value a′(r)
and its Hamiltonian is

H0 = 1

2
a′2(r) + W(r) = W(a). (5.155)

It follows from these last two equations that

1

2
a′2(r) = W(a) − W(r). (5.156)

We may thus write Equation (5.149) in the alternative form

n(r) = 2π

∫ W(a)−W(r)

0
f (H⊥(r, r ′⊥))d

(
1

2
r ′2⊥
)

,

or

n(r) = 2π

∫ W(a)

W(r)

f (H⊥)dH⊥. (5.157)

Likewise, the Poisson equation (5.151) may be written in the form

1

r

d

dr

(
r
dφs(r)

dr

)
= −2πq

ε0

∫ W(a)

W(r)

f (H⊥)dH⊥. (5.158)

The boundary of the particle distribution in four-dimensional space outside of
which the density is zero is defined by the maximum value of the Hamiltonian
[i.e., by setting H⊥(r, r ′⊥) = H0 = W(a)]. If a′ = a′(0) defines the maximum value
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of a′(r) occurring at r = 0, we obtain from Equations (5.153) to (5.156) the equation
for the boundary

r ′2⊥
a′2 + W(r) − W(0)

W(a) − W(0)
= 1. (5.159)

In the following we discuss three distributions that have been treated in the lit-
erature and are known to be stationary self-consistent solutions of the steady-state
Vlasov equation for a uniform focusing channel: the K–V distribution (introduced
in the preceding section), the waterbag distribution, and the Gaussian distribution.

For a uniform focusing system, the K–V distribution can be represented as a
delta function of the transverse Hamiltonian, that is,

f (H⊥) = f1δ(H⊥ − H0), (5.160)

where f1 is a normalization constant. This distribution has the property that all
particles in the beam have the same total transverse energy defined by H0; hence,
the particles populate the surface of a hypersphere in four-dimensional phase space
uniformly. We note that for an asymmetric matched beam, where the focusing
forces and/or the emittances differ, (5.160) is not valid and F(H⊥) has a rectangular
shape. (See the report by Saraph and Reiser mentioned in Reference 3.)

The particle density is found from Equation (5.157) by substitution of (5.160),
yielding

n(r) = 2πf1

∫ W(a)

W(r)

δ(H⊥ − H0)dH⊥ = 2πf1 = n0 (5.161)

for H⊥ � H0 = W(a). The density is thus uniform, as expected for a K–V distribu-
tion, and the normalization constant is related to the density by

f1 = n0

2π
. (5.162)

With this result for the particle density, Poisson’s equation becomes

1

r

d

dr

(
r
dφs(r)

dr

)
= −qn0

ε0
= −ρ0

ε0
,

which yields for the space-charge potential the solution

φs(r) = ρ0

4ε0
(a2 − r2) = I

4πε0v

(
1 − r2

a2

)
(5.163)

if φs = 0 at r = a is assumed and the relation (4.10b) between charge density
ρ0 and beam current I is used. The associated electric field is a linear function of
radius r and is given by

Er = −dφs

dr
= ρ0

2ε0
r = I

2πε0a2v
r. (5.164)

By substituting (5.163) for φs and introducing the generalized perveance K defined
in (4.23), we obtain for the Hamiltonian (5.148) in the case of a K–V distribution
the result

H⊥(r, r ′⊥) = 1

2
r ′2⊥ + W(r) = 1

2
r ′2⊥ + 1

2
k2

0r2 + 1

2
K

(
1 − r2

a2

)
. (5.165)
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We note that the distribution functions (5.135) and (5.160) are equivalent descrip-
tions of a K–V beam. The latter was chosen for an axisymmetric beam in a uniform
focusing system, while the former also includes the more general case of quadru-
pole fields that may vary with distance (although still linear in the two transverse
directions). When the external forces vary with distance, a stationary distribution is
characterized by the fact that the beam radius is no longer constant [i.e., a = a(z)].
Special cases of this type are the periodic-focusing systems discussed in Sections
4.4.1 to 4.4.3.

The phase-space boundary of the K–V distribution is obtained from Equation
(5.159) and given by

r2

a2
+ r ′2⊥

a′2 = 1, (5.166)

where the relations W(0) = 1
2K and W(a) = 1

2k2
0a2 have been used.

Our second example of a stationary beam in a uniform focusing channel is the
waterbag distribution, which is defined by the Heaviside step function

f (H⊥) = f2θ(H0 − H⊥), (5.167)

that is, f (H⊥) = const for 0 � H⊥ � H0 and f (H⊥) = 0 for H⊥ > H0. This
distribution has the property that all transverse total energies between H⊥ = 0 and
H⊥ = H0 occur with equal probability and that the particles populate the interior
of the hypersphere defined by H0 uniformly.

Substitution (5.167) in (5.157) and integration yields for the particle density the
result

n(r) = 2πf2[W(a) − W(r)]. (5.168)

In view of the definition (5.152) for W(r), the density thus depends linearly on the
space-charge potential φs(r), which must be determined from Poisson’s equation

1

r

d

dr

(
r
dφs(r)

dr

)
= −2πqf2

ε0

[
W(a) − 1

2
k0r

2 − qφs(r)

β2γ 3mc2

]
. (5.169)

This equation can be simplified by introducing the potential function

U(r) = W(r) − W(a) + 2k2
0

k2
1

, (5.170)

where the constant k2
1 is defined by

k2
1 = 2πqf2

ε0

q

β2γ 3mc2
. (5.171)

In place of Equation (5.169) one then obtains

1

r

d

dr

(
r
dU(r)

dr

)
− k2

1U(r) = 0. (5.172)

This equation has the solution

U(r) = CI0(k1r), (5.173)
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where C is an integration constant and I0(k1r) the modified Bessel function of
order zero. If we let the space-charge potential take the value φs = 0 at the edge of
the beam (r = a), where W(a) = 1

2k2
0a2, the integration constant becomes

C = U(a)

I0(k1a)
= 2

k2
0

k2
1

1

I0(k1a)
. (5.174)

The effective potential is then given by

W(r) = W(a) − 2
k2

0

k2
1

(
1 − I0(k1r)

I0(k1a)

)
. (5.175)

For the particle density one finds that

n(r) = nf

(
1 − I0(k1r)

I0(k1a)

)
, (5.176)

where

nf = 4πf2
k2

0

k2
1

= 2k2
0ε0β

2γ 3mc2

q2
(5.177)

and where the density at r = 0 is given by

n(0) = n0 = nf

(
1 − 1

I0(k1a)

)
. (5.178)

In the extreme space-charge limit (k1 → ∞), the density is seen to be essentially
uniform inside the beam and given by nf . Thus nf is the limiting density where
the internal force due to the self fields is exactly equal and opposite to the external
focusing force.

The beam current is defined by the integral

I = 2π

∫ a

0
vqn(r)r dr = 2πqvnf

∫ a

0

(
1 − I0(k1r)

I0(k1a)

)
r dr,

which yields

I = πqnf va2
[

1 − 2

k1a

I1(k1a)

I0(k1a)

]
= πqnf va2 I2(k1a)

I0(k1a)
. (5.179)

By substituting relation (5.177) for nf and introducing the characteristic current
I0, defined in Equation (4.13), we can write Equation (5.179) in the form

I = 1

2
I0β

3γ 3k2
0a2 I2(k1a)

I0(k1a)
. (5.180)

From this we obtain the equivalent equation for the generalized perveance

K = k2
0a2 I2(k1a)

I0(k1a)
. (5.181)

For given values of the generalized perveance K , the external focusing parameter
k0, and the beam radius a, the parameter k1 can be calculated by solving Equation
(5.181) numerically.
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The space-charge potential φs(r) is found from (5.152) by substituting (5.175) for
W(r), and one obtains

φs(r) = 1

2
I0

β2γ 3

4πε0c
k2

0a2

[
1 − r2

a2
− 4

k2
1a2

(
1 − I0(k1r)

I0(k1a)

)]
. (5.182)

By introducing the beam current I from (5.180), we can write this equation in the
form

φs(r) = I

4πε0v

I0(k1a)

I2(k1a)

[
1 − r2

a2
− 4

k2
1a2

(
1 − I0(k1r)

I0(k1a)

)]
, (5.183)

which can be compared with the result (5.163) for the K–V distribution.
The Hamiltonian is given by

H⊥(r, r ′⊥) = 1

2
r ′2⊥ + 1

2
k2

0a2

[
1 − 4

k2
1a2

(
1 − I0(k1r)

I0(k1a)

)]
. (5.184)

For its maximum value H0 = W(a) one has r ′⊥ = a′ at r = 0 and r ′⊥ = 0 at r = a,
which yields the relation

1

2
a′2 + 1

2
k2

0a2

[
1 − 4

k2
1a2

(
1 − I0(0)

I0(k1a)

)]
= 1

2
k2

0a2. (5.185)

By substituting n0/nf from (5.178), we obtain the following relation for the pa-
rameter k1:

k2
1 = 4k2

0n0

a′2nf

, (5.186)

or, in view of (5.177),

k2
1 = 2q2n0

a′2ε0β2γ 3mc2
. (5.187)

Finally, by substituting (5.175) into (5.159), we obtain for the phase-space boundary
of the waterbag distribution the equation

r ′ 2⊥
a′2 + I0(k1r) − 1

I0(k1a) − 1
= 1. (5.188)

The shape of this boundary in the x−x′ plane is shown in Figure 5.10 for several
values of the parameter k1a, and the corresponding density profiles n(r)/n0 are
displayed in Figure 5.11. Of interest are two limiting cases. First, when the space-
charge effects are negligible (k1 → 0), the phase-space area takes the well-known
shape of an ellipse and is thus similar to the boundary of a K–V distribution. The
density profile in this limit becomes

n(r) = 2

a2π

(
1 − r2

a2

)
. (5.189)

Second, in the extreme space-charge limit (k1 → ∞), we see that the phase-space
contour becomes rectangular and the density profile uniform. In fact, as discussed
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Fig. 5.10 Phase-space boundary of stationary waterbag
distributions for different values of the parameter k1a.
(Courtesy of J. Struckmeier.)

later, all nonuniform distributions in linear focusing channels become uniform in
the laminar-flow limit, where the emittance is zero. The net potential in the in-
terior of the beam is approaching the value zero in this limit due to the fact that
the space-charge potential φs(r) is quadratic in r and exactly cancels the external
focusing potential. The beam in this case resembles a rigid box in which the par-
ticles move freely on straight trajectories until they reach the “wall” at the edge
(r = a), where they are reflected. Since the phase-space boundary becomes rectan-
gular when k1 → ∞, we can represent the trace-space area by the approximate re-
lation

επ = 4aa′, (5.190)

while the total beam current can be approximated by I = qn0a
2πv. Using these

relations, we obtain for k2
1a2 the result

k2
1a2 = 32q2n0a

4

ε2π2ε0β2γ 3mc2
= 64

π2

Ka2

ε2
, (5.191)

where K is the generalized perveance of the beam. By comparing this result with
the envelope equation (4.86), we see that k2

1a2 is proportional to the ratio of the
space-charge and emittance terms. If ω0 denotes the particle oscillation frequency
in the uniform focusing channel without space charge and ω the frequency with
space charge, one can also show that k2

1a2 ∝ ω0/ω. This relation, as well as Equa-
tion (5.191), is of course valid only in the limit k2

1a2 � 0 (i.e., Ka2 � ε2 or
ω0 � ω).

Finally, we note that the normalization constant f2 for the waterbag distribution
can be calculated from Equation (5.177) if k2

1 is known. On the other hand, by
substituting k2

1 from (5.187) in (5.177), one obtains the simple relation

f2 = 2qn0

a′2π
, (5.192)

indicating that f2 is proportional to the density n0 and inversely proportional to the
square of the maximum slope a′ at the center of the beam (r = 0).
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Fig. 5.11 Density profile of stationary waterbag distributions for
different values of the parameter k1a. (Courtesy of
J. Struckmeier.)

The third example of a stationary beam in a uniform focusing channel is the
Gaussian distribution defined by

f (H⊥) = f3 exp

(
− H⊥

α

)
, (5.193)

where f3 and α represent normalization constants. Its form is identical to the
Maxwell–Boltzmann distribution discussed in Section 5.3.1 [Equation (5.122)] ex-
cept that in the present case the Hamiltonian is defined in terms of r ′ rather than
P⊥. Furthermore, the value of H⊥ cannot be arbitrarily large since the particle beam
has a finite radius (r = a). Thus the range of H⊥ is given by 0 � H⊥ � H0 = W(a),
as in the case of the waterbag distribution; that is, the exponential function is trun-
cated at some specified value H⊥max = H0 with f (H⊥) = 0 for H⊥ > H0. If H0 is
chosen to be in the “tail” of the distribution, one can take the upper limit of inte-
grals involving the exponential function (5.193) at H⊥ = ∞ without significant loss
of accuracy. The mean value of H⊥, for instance, is given in this approximation by

H⊥ =
∫ H0

0 H⊥ exp(−H⊥/α) dH⊥∫ H0
0 exp(−H⊥/α) dH⊥

≈ α (5.194)

and can be expressed in terms of the transverse beam temperature T⊥ in the labo-
ratory frame as

H⊥ ≈ α = kBT⊥
γmv2

. (5.195)

From Equations (5.193) and (5.157) we obtain for the particle density

n(r) = 2πf3α

[
exp

(
− W(r)

α

)
− exp

(
− W(a)

α

)]
. (5.196)

Using W(a) = H0, this result can be substituted into Poisson’s equation, yielding

n(r) = −ε0

q

1

r

d

dr

(
r
dφs(r)

dr

)

= 2πf3α

[
exp

(
− k2

0r2

2α
− qφs(r)

αβ2γ 3mc2

)
− exp

(
− H0

α

)]
, (5.197)



320 5 Self-Consistent Theory of Beams

which must be solved numerically to obtain either the space-charge potential φs or
the particle density n as a function of radius. If the Gaussian function f (H⊥) is
not truncated so that α = kBT⊥/γmv2 and exp(−W(r)/α) = exp(−H0/α) → 0,
it becomes identical to the transverse Maxwell–Boltzmann distribution. The den-
sity profile (5.197) then takes the form of the ideal Boltzmann relation n(r) =
n(0) exp(−qφ(r)/kBT⊥), where φ(r) includes both the applied focusing potential
φa and the space-charge potential φs . We will study the Maxwell–Boltzmann distri-
bution, including the behavior of the density profile with temperature T⊥ in Sec-
tion 5.4.4. Here we note only that at high temperature, when φs is negligible, the
profile becomes truly Gaussian in radius, as can be seen from Equation (5.197).
On the other hand, as T⊥ → 0 and the space-charge potential φs balances the ap-
plied potential φa , the density profile becomes uniform, as was the case with the
waterbag distribution (see Figure 5.11). This will be discussed in more detail in
Section 5.4.4.

5.3.4
RMS Emittance and the Concept of Equivalent Beams

In the preceding section we discussed three examples of self-consistent, stationary
particle distributions in a uniform focusing channel. Laboratory beams as well as
distributions used in computer simulation studies may differ significantly from
such stationary theoretical solutions of the Vlasov equation. Furthermore, most
focusing systems consist of discrete lenses, and often these lenses are quadrupoles
which do not exhibit the axial symmetry assumed in our theoretical models.

To analyze and compare the behavior of different stationary or nonstationary dis-
tributions, Lapostolle and Sacherer in 1971 introduced rms quantities (for beam
radius, emittance, etc.) and the concept of equivalent beams [5, 6]. According to
this concept, two beams composed of the same particle species and having the
same current and kinetic energy are equivalent in an approximate sense if the sec-
ond moments of the distribution are the same. This implies that the rms beam
widths and rms emittances in the two orthogonal transverse directions are identi-
cal, assuming that the two beams are compared at identical positions in the same
focusing systems.

Consider a stationary or nonstationary distribution f (x, y, x ′, y′) in four-
dimensional transverse trace space. The second moment in the particle coordinates
x is defined by

x2 =
∫∫∫∫

x2(x, y, x′, y′) dx dy dx′ dy′∫∫∫∫
f (x, y, x ′, y′)dx dy dx′ dy′ , (5.198)

and the rms beam width in the x-direction is then given by

xrms = x̃ = (
x2
)1/2

. (5.199)

In similar fashion the other second moments, such as x′2, xx′, y2, and so on, and
associated rms quantities (x̃′, ỹ′, etc.) are defined. As an example, let us take a K–V
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distribution whose boundary in the x−x′ plane is described by a tilted ellipse of the
form (5.138b), that is,

γ̂ x2 + 2α̂xx′ + β̂x′2 = εx.

Consider a position where the ellipse is upright (i.e., α̂ = 0) and let xmax = a,
x′

max = a′ denote the maximum x-position (radius or envelope) and maximum
slope in the particle distribution. Then it is straightforward to show that

x2 = β̂εx

4
= a2

4
, x̃ = a

2
(5.200)

and

x′2 = γ̂ εx

4
= a′2

4
, x̃′ = a′

2
. (5.201)

The total or 100% emittance encompassing all particles in the K–V distribution is
given by

εx = aa′√
β̂γ̂

= aa′ (5.202)

since
√

β̂γ̂ = 1 in this case. The rms emittance can be defined from the relation

ε2
x = x2 x′2 as

(
ε2
x

)1/2

= ε̃x = [
x2 x′2]1/2 = aa′

4
= εx

4
. (5.203)

For the more general situation of a tilted ellipse (α̂ �= 0), the total emittance of a
K–V beam in the x−x′ plane is given by

εx

(β̂γ̂ − α̂2)1/2
= εx, (5.204)

since (β̂γ̂ − α̂2)1/2 = 1 from (3.343c). The analogous definition of the rms emit-
tance for this case is

ε̃x =
[
x2 x′2 − xx′2

]1/2

. (5.205)

Similar relations apply for the y-direction. Equation (5.205) represents the gen-
eral definition of the rms emittance for an arbitrary distribution and is very useful
in describing laboratory beams as well as theoretical or particle simulation results.
The normalized rms emittance is obtained by multiplication with the factor βγ (i.e.,
ε̃nx = βγ ε̃x ) and it is in general not a constant. Nonlinear space-charge forces, in-
stabilities, collisions, and other effects may lead to emittance growth. This topic is
of great current interest for the generation and acceleration of high-intensity, high-
brightness beams. Considerable progress has been made during the past years in
obtaining a better understanding of the sources of emittance growth, discussed in
Chapter 6.

Of particular interest is the behavior of distributions that are not of the stationary
type treated in Section 5.3.3 and hence would be expected to change with distance
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along the linear uniform focusing channel. Examples of such cases are the nonsta-
tionary waterbag (WB), parabolic (PA), conical (CO), and nonstationary Gaussian
(GA) distribution functions that are often used to represent the initial state of a
beam in particle simulation studies, such as the investigation of beam transport in
a magnetic quadrupole FODO system [7]. These distributions, three of which are
listed in Table 5.1 (together with the stationary K–V beam), are defined as functions
of r2

4 = [r2/a2 + r ′2/a′2], where r4 is the “radius” in four-dimensional trace space,
and not as functions of the Hamiltonian H⊥. Consequently, they do not represent
stationary solutions of the Vlasov equations, and as discussed in the next section,
the simulation studies show that they do not retain their initial mathematical form.
The normalization factors for each distribution in Table 5.1 have been chosen such
that the integral over the four-dimensional trace-space volume yields I/(qv), where
I is the total beam current. The ratio of total emittance to rms emittance, εt /ε̃, is a
measure of the tail in the distribution (i.e., how far the particles are spread out in
trace space compared to the rms area). For a K–V beam with its uniform density
this ratio is 4, as discussed earlier. The ratio εt /ε̃ then increases in the order in
which the distributions are listed, reaching a maximum value for a Gaussian dis-
tribution that has the form exp(−r2

4 /2δ̃2). The constant δ̃ represents the rms width
of the Gaussian distribution (i.e., δ̃ = x̃ = ỹ when 0 � x < ∞ is assumed). For nu-
merical simulation studies, however, the Gaussian tail is truncated at a finite radius
r4 = nδ̃, where n is an integer. In the case n = 4 (i.e., r4 � 4δ̃), for instance, one
finds that εt /ε̃ ≈ 16. However, the number of particles outside the K–V ellipse (i.e.,
outside the trace-space area defined by 4ε̃) represent only a small percentage of the
total beam in the distributions of Table 5.1. For this reason, Lapostolle proposed to
use an emittance defined by 4ε̃, rather than the rms emittance ε̃, as a measure for
the trace-space area of the beam (see our comment in Reference 5). We will simply
call this quantity the effective emittance and use the symbols εx and εy . Thus, in
agreement with the relations given in Section 3.1, we define

εx = 4ε̃x = 4
[
x2 x′2 − xx′2

]1/2
, (5.206)

and likewise, εy = 4ε̃y . In similar fashion we define an effective beam radius

X = 2x̃ = 2
(
x2
)1/2

. (5.207)

For a K–V beam, these quantities are identical with the total emittance εt and the
beam radius r = a, respectively.

Lapostolle [5] and Sacherer [6] have shown that K–V envelope equations can be
derived for either the rms or effective beam radii of more general distributions such
as the ones listed in Table 5.1. (Sacherer preferred to use rms quantities and did not
adopt Lapostolle’s notation.) This then led to the concept of equivalent beams, which
says that two different phase-space distributions of a given particle species with the
same kinetic energy and beam current are equivalent when they have the same
first and second moments [i.e., when the rms (or effective) emittances and radii
are identical]. Nonstationary distributions used in computer simulation work to
study beam transport in a focusing channel do not retain their initial mathematical
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form, just like experimental nonstationary (e.g., mismatched) beams would not be
expected to maintain their initial profile. The concept of equivalent beams allows
one, however, to describe their average or rms behavior by solving the rms envelope
equation or by studying the equivalent K–V beam. There is the implicit assumption
in this concept that the rms emittance of two beams being compared remains the
same or that the emittance change with time (or distance) is known a priori. This
assumption is in general not correct, as we discuss in Section 6.2.

Let us now derive the rms envelope equations following the original work by
Lapostolle and Sacherer. Consider a focusing channel with linear external forces
and (generally nonlinear) space-charge forces acting on the particles. In cartesian
coordinates the equations for the transverse motion of a particle in such a channel
can be written in the form

x′′ + k2
x0x − Fx = 0, (5.208a)

y′′ + k2
y0y − Fy = 0. (5.208b)

The functions Fx and Fy represent the forces due to the electric and magnetic self
fields of the beam and are defined by

Fx(y) = qEx(y)(1 − β2)

γmc2β2
= qEx(y)

mc2γ 3β2
, (5.209)

where the factor 1 − β2 = γ −2 takes into account the relativistic reduction of the
electrostatic Coulomb repulsion by the force qvzBθ due to the self-magnetic field.

Note that the constant k2
0 , which represents the external focusing force, can have

different magnitudes and signs in the two directions (i.e., the beam would have
an elliptical shape in this general situation). For k2

x0 = k2
y0 = k2

0 , we recover the
axisymmetric case (round beam) discussed so far.

If we multiply Equation (5.208a) by x and average over the distribution, we obtain

xx′′ + k2
x0x

2 − Fxx = 0. (5.210)

Now we have the following relations:

x̃2 = x2, x̃′2 = x′2,(
x2
)′ = 2xx′ = (

x̃2)′ = 2x̃x̃′, (5.211)
(
x2
)′′ = (

x̃2)′′ = 2
(
x̃x̃′)′ = 2

(
x̃x̃′′ + x̃′2). (5.212)

Furthermore,(
xx′)′ = x′2 + xx′′ = x′2 − k2

x0x
2 + Fxx, (5.213)

where we substituted for xx′′ from Equation (5.210). The last equation may be
written in the alternative form

1

2

(
x2
)′′ = (xx′)′ = x̃x̃′′ + x̃′2 = x′2 − k2

x0x
2 + Fxx (5.214)

or, with x̃′ = xx′/x̃ and x̃2 = x2,

x̃x̃ ′′ + (xx′)2

x̃2
− x′2x2

x̃2
+ k2

x0x̃
2 − xFx = 0.
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By introducing the rms emittance, as defined in Equation (5.205) and dividing by
x̃, we obtain the equation for the rms beam envelope:

x̃′′ + k2
x0x̃ − ε̃2

x̃3
− xFx

x̃
= 0. (5.215)

It has been shown by Sacherer [6] that the term xFx is independent of the form
of the distribution and has the same value as for the equivalent K–V distribu-
tion, that is,

xFx = K

2

x̃

x̃ + ỹ
, (5.216)

and furthermore,

xFx + yFy = K

2
. (5.217)

With (5.216) the rms envelope equation becomes

x̃′′ + k2
x0x̃ − K

2(x̃ + ỹ)
− ε̃2

x

x̃3
= 0. (5.218)

A similar equation can be derived for the y-envelope. By introducing the effective
beam width X = 2x̃, Y = 2ỹ, and the effective emittance εx = 4ε̃x , εy = 4ε̃y , we
obtain the two equivalent equations for the effective beam envelopes:

X′′ + k2
x0X − 2K

X + Y
− ε2

x

X3
= 0, (5.219a)

Y ′′ + k2
y0Y − 2K

X + Y
− ε2

y

Y 3
= 0. (5.219b)

These equations are identical in form to the K–V envelope equations (4.178) and
(4.179), but they apply to any other transverse phase-space distributions as well. If
a given distribution is stationary, the effective emittance εx(y) does not change and
the above equations can be solved for the effective envelopes (X, Y ) of the beam.
All stationary beams with the same perveance K and effective (or rms) emittance
εx(y) have the same effective (or rms) radii. On the other hand, for nonstationary
distributions one expects that the emittance will change, and one would have to
know the evolution of this change to solve Equations (5.219a) and (5.219b) for X

and Y as functions of distance along the focusing channel. As we will see in Section
6.2.1, one can in fact derive a differential equation relating the emittance growth
to the rate of change of the free energy in a nonstationary beam. But its useful-
ness in determining the evolution of ε with distance is rather limited. However, by
comparing the final equilibrium state with the initial nonstationary state, using the
concept of equivalent beams, it is possible to obtain upper limits for the emittance
growth. The analytical expressions for these limits also exhibit the scaling of emit-
tance growth with the experimental parameters. On the other hand, to unravel the
dynamical details of the emittance growth processes, one must rely on computer
simulation and experiments, as we discuss in Section 6.2.2.
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The Vlasov equation provides an extremely useful framework for the study of
beam equilibria and for a stability analysis which shows whether a particular equi-
librium is stable or unstable against various types of perturbations. With regard to
the equilibrium state, we have seen that any distribution that depends only on the
constants or integrals of the motion satisfies the time-independent Vlasov equa-
tion and hence represents an equilibrium beam. From a practical point of view,
one would like to know which of the many possible theoretical distributions repre-
sents the best model for a real beam in the laboratory. Obviously, the Vlasov theory
in itself does not give an answer to this question. However, as we mentioned in
Section 4.1, based on thermodynamic arguments, the Maxwell–Boltzmann distri-
bution provides the most physical description of a laboratory beam. To prove this
assertion we need to go beyond the Vlasov equations and include the Coulomb
collisions between the particles in our model. As we will see in the next section,
Coulomb collisions play the key role in achieving the thermal equilibrium repre-
sented by the Maxwell–Boltzmann distribution.

5.4
The Maxwell–Boltzmann Distribution

5.4.1
Coulomb Collisions between Particles and Debye Shielding

In our self-consistent theoretical models of both laminar and nonlaminar beams
discussed so far we have made the assumption that the space-charge forces acting
on the particles can be derived from smoothed potential functions. This means
that a particle does not “see” its immediate neighbors but only the smooth collec-
tive field of the particle distribution as a whole. To the extent that this is correct,
Liouville’s theorem can be applied in six-dimensional phase space, which plays a
central role in the theory and design of charged particle beams. In this section we
examine the validity of this assumption. We do this in a coordinate system in which
the centroid of the beam is at rest and we call this the beam frame. Furthermore,
we assume that the particle motion in this beam frame is nonrelativistic, which is
the case for most beams of practical interest, and that there is an effective three-
dimensional applied potential φa(r, t) which keeps the particles confined. In the
laboratory frame this situation corresponds to a bunch of charged particles that are
being acted upon by applied focusing forces in both the transverse and longitudinal
directions. The continuous beams that we have treated so far would be obtained by
letting the axial force go to zero and the bunch length go to infinity.

Let us now turn our attention to the Coulomb interactions between the particles
in this bunch. Since the particle motion is nonrelativistic and the mean velocity
of the distribution as a whole is zero in the beam frame, the magnetic force can
be ignored completely. Suppose that we have N identical particles with charge q

and mass m in the bunch whose location at a particular instant of time is given
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by the position vector r. The force exerted by particle j on particle i is given by
Coulomb’s law as

Fij = q2rij

4πε0r
3
ij

, (5.220)

where rij = ri − rj .
The total force on particle i is given by the sum of the forces exerted by all other

particles, that is,

Fi = q2

4πε0

N∑
j �=i

rij

r3
ij

. (5.221)

In addition, we have the applied external force Fa = −q∇φa(r, t), which, however,
we omit from consideration temporarily since we are concerned with the space-
charge interaction between the particles.

The long-range nature of the Coulomb forces implies that many particles will
contribute to the total force Fi on our test particle. The many small contributions
of the “distant” particles will add up to a smooth function whose effect on the par-
ticle trajectory can be described in terms of a space-charge potential φs(r, t) that
acts in a continuous fashion just like the external potential. On the other hand, the
few particles in the immediate neighborhood of our test particle are seen as dis-
crete point charges which will effectively change the curvature of the test particle’s
trajectories in very short distances. The encounters with these neighbors can be de-
scribed as “collisions” that cause rapid fluctuations in the particle’s motion. Thus,
we can divide the total Coulomb interaction force on the test particle into two com-
ponents. One represents the gradient of the smooth space-charge potential φs(r, t)
of the large number of “distant” particles, the other the collisional force due to the
few neighbors:

Fi = − ∂

∂r
φs(r, t) + q2

4πε0

∑
j

rij

r3
ij

. (5.222)

The smooth space-charge potential can be represented by the volume integral over
the charge density function ρ by

φs(r, t) =
∫

ρ dV

4πε0|r − r′| =
∫

ρ dr
4πε0|r − r′| . (5.223)

In turn this can be related to the distribution function f (r, v, t) as

φs(r, t) = q

4πε0

∫∫
f (r′, v′, t)

|r − r′| dv′ dr′, (5.224)

where r′, v′ denote the position and velocity vectors of the “field” particles over
which the integration is taken. As a result of the collisional or fluctuating part of
the interaction between the particles, the time variation of the distribution function
will now include a collisional term [∂f/∂t]c. Thus, in place of the nonrelativistic
Vlasov equation (5.115), with B = 0, we have

df

dt
= ∂f

∂t
+ v · ∂f

∂r
+ q

m
(Ea + Es ) · ∂f

∂v
=
[

∂f

∂t

]
c

. (5.225)
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This is known as the Boltzmann equation. The two electric field vectors Ea and
Es represent the applied field and the smoothed part of the space charge field,
respectively, while [∂f/∂t]c on the right-hand side stands for the effects of Coulomb
collisions or Coulomb scattering, as it is often called. Clearly, when [∂f/∂t]c �= 0, the
total derivative of the distribution function, df/dt , is not zero; hence Liouville’s
theorem in (r, v) phase space does not hold. In this case, the rate of change of the
distribution function along a given trajectory in phase space is due entirely to the
Coulomb collisions represented by [∂f/∂t]c. On the other hand, if [∂f/∂t]c = 0,
we recover the Vlasov equation, as expected.

Before proceeding further with our analysis of the Boltzmann equation, we need
to define a characteristic distance from a given point charge which separates the
region near the charge where the collisional forces dominate from the “distant” re-
gion where the particles produce a smooth space-charge force on the point charge
considered. This distance is known as the Debye length, λD, which we introduced
in Section 4.1 and used in Section 5.3.3. Historically, the problem was first inves-
tigated by Debye and Hückel [8], who showed that the electric field of an ion in an
electrolyte was effectively screened by the cloud of particles with opposite charge
surrounding it. This concept applies to both a neutral plasma and to a nonneutral
charged particle distribution.

Consider a plasma consisting of singly charged positive ions and electrons in
thermal equilibrium at a temperature T . If we place a test charge q into this plasma
(say at r = 0 of a spherical coordinate system), it will disturb charge neutrality and
produce an electrostatic potential φ(r). Both electrons and ions have a Maxwellian
velocity distribution, and their density functions will obey the Boltzmann relation

n(r) = n0 exp

[
− qφ(r)

kBT

]
, (5.226)

which one obtains from the Vlasov equation analogous to the derivation of (5.123).
The potential function φ(r) must relate to the difference in charge density between
electrons and ions (produced by the presence of the test charge) via Poisson’s equa-
tion:

∇2φ(r) = − q

ε0
[ni(r) − ne(r)]

= − q

ε0
n0

{
exp

[
− qφ(r)

kBT

]
− exp

[
qφ(r)

kBT

]}
. (5.227)

The positive sign in the argument of the second exponential function on the
right-hand side results from the fact that the electrons have a negative charge. As-
suming that qφ(r) � kBT , we can expand the exponential functions and obtain to
first order

∇2φ(r) = − q

ε0
n0

[−2qφ(r)

kBT

]
= 2φ(r)

λ2
D

, (5.228)

where

λD =
(

ε0kBT

q2n0

)1/2

(5.229)



5.4 The Maxwell–Boltzmann Distribution 329

is the Debye length. The latter can also be expressed in terms of the rms thermal
velocity ṽx = (kBT/m)1/2 and the plasma frequency ωp = (q2n/ε0m)1/2 as

λD = ṽx

ωp

. (5.230)

The solution of Equation (5.228) is

φ(r) = q

4πε0r
exp

(
−

√
2r

λD

)
, (5.231)

as is readily verified by differentiating and substituting into the Poisson equation.
Now one can see that for r � λD the exponential term is close to unity and the

potential φ(r) is essentially that of the unscreened test charge, that is,

φ(r) = q

4πε0r
for r � λD. (5.232)

On the other hand, when r � λD, the exponential term dominates and the poten-
tial φ(r) goes toward zero much faster than without the shielding effect.

The condition qφ/kBT � 1 that we used in deriving the Poisson equation (5.228)
implies that the average potential energy per particle should be small compared to
the average kinetic energy per particle. If we substitute r = λD in the point-charge
potential (5.232), divide by kBT , and use Equation (5.229), we obtain

qφ(λD)

kBT
= q2

4πε0λDkBT
= 1

4πλ3
Dn0

= 1

3ND
, (5.233)

where ND is the number of particles inside the Debye sphere of volume (4π/3)λ3
D.

The condition
qφ(λD)

kBT
� 1 implies that ND � 1, (5.234)

which means that the number of particles inside the Debye sphere is very large.
When this is the case, the smooth part of the Coulomb interaction force in Equa-
tion (5.222) exceeds that of the collisional part. Thus, collisional effects under these
conditions, which apply to most particle beams, are small, and our assumption that
Liouville’s theorem holds has now been validated. There are, however, exceptions,
such as the Boersch effect and intrabeam scattering in high-energy synchrotrons
and storage rings, that we discuss in Section 6.4.1 and 6.4.2. Furthermore, scatter-
ing in a background gas, time-varying nonlinear space-charge or applied forces of
a stochastic nature, and instabilities have the same effect as Coulomb collisions,
violating Liouville’s theorem and causing emittance growth (see Section 6.2). It is
therefore important that we pursue the thermodynamic treatment of collisions in
further detail.

5.4.2
The Fokker–Planck Equation

Let us now return to the Boltzmann equation (5.225). To continue the analysis we
need to evaluate the collisional term [∂f/∂t]c on the right-hand side of the equation.
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Modeling the physics of a particular problem, finding mathematical expressions
for the collision term, and solving the Boltzmann equation is rather complicated
even in relatively simple cases. The application to Coulomb interactions in charged
particle beams was discussed by Jansen, whose recent book presents a very detailed
review of this topic, with a comprehensive list of references [9].

Briefly, the effects of Coulomb interactions on the particle distribution in a beam
or a plasma can be described as a diffusion process that is opposed by a dynamical
friction (“drag”) force. The thermal outward flow of particles from a given region
due to diffusion is slowed down by collisions that reduce the forward momentum
components. The rate of change of the distribution function at any given point
[∂f/∂t]c due to these processes can be modeled as [Reference 9, Equation (4.3.10)][

∂f

∂t

]
c

= βf

∂(vf )

∂v
+ D

∂2f

∂v2
, (5.235)

where βf is the coefficient of dynamical friction and D the coefficient of diffusion
(which for simplicity is assumed to be isotropic in this case). Substitution of (5.235)
into Equation (5.225) yields

df

dt
= ∂f

∂t
+ v · ∂f

∂r
− q

m

∂φ

∂r
· ∂f

∂v
= βf

∂(vf )

∂v
+ D

∂2f

∂v2
. (5.236)

This form of the Boltzmann equation is known as the Fokker–Planck equation.
If the two coefficients βf , D and the applied potential φa are given, Equation
(5.236), together with Equation (5.224) for the self potential φs , represents a
self-consistent description of the evolution of the particle distribution function
f (r, v, t) in space and time.

Without a focusing force and without friction (i.e., when φa = 0 and βf = 0), no
stationary solution exists. The particle distribution then simply expands in space
and time, and the density n(r, t) of the core decreases monotonically, as can be
shown mathematically. When a confining potential is present, an equilibrium ex-
ists even if βf = 0. However, particles in the high-energy tail may leak out of the
system if their kinetic energy exceeds the potential energy qφa due to the applied
force. The distribution then becomes a truncated Maxwellian. A good example is
the atmosphere in the earth’s gravitational field. Due to collisions there is a slow
leakage near the top of the atmosphere of particles whose velocity v exceeds the
escape velocity ve (v > ve). Another example are the beams in storage rings, where
there is a continuous loss of particles whose energy exceeds the potential energy
of the confining fields. In the case of the atmosphere, the escape of particles into
space does not matter since there are always enough new particles entering from
the surface of the earth to balance these losses. However, in the storage rings, the
diffusion of particles is an important factor that contributes to the finite lifetime
of the beam.

When there is no confining potential but friction exists (i.e., when φa = 0 and
βf �= 0), it is easy to see that a stationary solution of the Fokker–Planck equation
exists. This solution is found by setting the time derivatives equal to zero, that is,

df

dt
= 0; ∂f

∂t
= 0,

[
∂f

∂t

]
c

= 0, (5.237)
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and hence

βf

∂(vf )

∂v
+ D

∂2f

∂v2
= 0. (5.238)

By integrating the corresponding equation for each velocity component, one finds
that

f (v) = C exp

[
− βf (v2

x + v2
y + v2

z )

2D

]
= C exp

(−βf v2

2D

)
, (5.239)

where the constant C is found from the normalization
∫∫∫

f (v) dvx dvy dvz = 1,
which yields C = (βf /2πD)3/2.

As we see, the equilibrium distribution satisfying the Fokker–Planck equation is
a Gaussian in the three velocity components, and it can be shown that it is identical
to a Maxwellian distribution of statistical mechanics:

f (v) =
(

m

2πkBT

)3/2

exp

[
− m(v2

x + v2
y + v2

z )

2kBT

]
. (5.240)

By comparing the last two equations one finds that the ratio of the diffusion and
friction coefficients relate to the temperature and particle mass as

D

βf

= kBT

m
. (5.241)

Assuming a Maxwellian distribution one can calculate the two coefficients by aver-
aging over the statistical fluctuations of the particle velocities due to the Coulomb
collisions. The results of the rather lengthy calculations are

βf = 16
√

π

3

nr2
c Z4c ln �

(2kBT/mc2)3/2
, (5.242)

D = 8
√

π

3

nr2
c Z4c3 ln �

(2kBT/mc2)1/2
, (5.243)

where n is the particle density, Z the charge state of the particles (in the case of
multiply charged ions), and rc the classical particle radius defined as

rc = q2

4πε0mc2
=
{

2.8180 × 10−15 m for electrons,
1.5347 × 10−18 m for protrons.

(5.244)

The parameter ln � is known as the Coulomb parameter, and it is usually defined in
terms of the Debye length λD, and the impact parameter b corresponding to a 90◦
deflection of a test particle’s trajectory due to the Coulomb interaction with a single
field particle:

ln � = ln
λD

b
. (5.245)

The impact parameter b represents the distance between the test particle and the
field particle at the point of closest approach (r = b), where the potential energy is
equal to the initial kinetic energy. If vr represents the relative velocity between two
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interacting particles and vth the thermal velocity, one can show that v2
r = 2v2

th. The
impact parameter can then be defined as

b = q2

4πε0mv2
th

, (5.246a)

where

v2
th = 3

kBT

m
(5.246b)

and

T = 1

3
(Tx + Ty + Tz) = 2

3
T⊥ + 1

3
T‖ (5.246c)

is the average temperature of the beam. If the beam is in thermal equilibrium,
T = Tx = Ty = Tz = Teq. If the beam is not in three-dimensional equilibrium
(i.e., initially Tx �= Ty �= Tz), two possibilities exist: (1) the conditions are such that
given enough time, equilibrium can be achieved, in which case T = Teq remains
constant; or (2) equilibrium cannot be achieved in principle, as is the case in many
storage rings (see Section 6.4.2), in which case T will be increasing with time.

Using λD from Equation (5.229), and Equations (5.246) for b and vth, we obtain
for the Coulomb logarithm

ln � = ln
(ε0kBT )3/212π

q3n1/2
= ln

3

2
√

π

(kBT/mc2)3/2

r
3/2
c n1/2

. (5.247)

This expression is valid as long as the Debye length λD is less than the average
beam radius a. If λd > a, one uses the radius a in place of λD in the Coulomb
logarithm:

ln � = ln
4πε0amv2

th

q2
= ln

12πε0akBT

q2
= ln

(
3a

rc

kBT

mc2

)
. (5.248)

Some authors use the effective radius a = √
2r̃ , some use the rms radius r̃ , and

others the rms width δx = r̃/
√

2 for a. However, because of the logarithmic de-
pendence, the Coulomb parameter varies only slowly over a wide range of the pa-
rameters involved. Thus, for electrons, one finds that 6 < ln � < 30 for densities
between 103 and 1024 m−3 and temperatures between 102 and 108 K. Finally, we
note that Equations (5.242) and (5.243) do indeed satisfy the relation (5.241) that
we obtained by comparing the Gaussian solution of the stationary Fokker–Planck
equation with the Maxwellian distribution.

In our analysis so far of the steady-state solution (5.238) of the Fokker–Planck
equation we have focused entirely on the effects of random Coulomb collisions.
However, it should be pointed out that the Gaussian distribution is of much more
general importance. Thus, according to the central limit theorem of statistical me-
chanics, any processes of a random, statistically independent nature acting on a
particle distribution in a harmonic oscillator potential will lead to displacements
in the particles’ positions that obey a Gaussian distribution. Examples of this kind
are the random misalignments treated in Section 4.4.4 (related to the problem of
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“random walk”); random fluctuations of the fields or field gradients in the focus-
ing magnets or rf cavities of an accelerator or storage ring due to vibrations; rf
noise from the acceleration cavities, or other sources of noise; collisions between
beam particles and the molecules of a background gas; and nonlinear forces of a
stochastical nature. Another, very important example that will be discussed in Sec-
tion 6.2 are nonlinear space-charge forces. Since the particle distribution of a beam
is confined by focusing potentials and the individual particles are performing os-
cillations, there is a continuous exchange between position (potential energy) and
velocity (kinetic energy) so that displacements in position due to random processes
translate into velocity changes, and vice versa. With a harmonic oscillator potential,
given by φ(x, y, z) = const(x2 + y2 + z2), the Gaussian distribution of the central
limit theorem is of the form

f (r, v) = C0 exp
[− C1(x

2 + y2 + z2) − C2(v
2
x + v2

y + v2
z )
]
, (5.249)

where C0, C1, C2 are constants.
This observation concerning the central limit theorem is very important for our

following discussion of the Maxwell–Boltzmann distribution as the “natural” equi-
librium state of a charged particle beam, which, as we will see, is identical to Equa-
tion (5.249). We elaborate more on this topic in connection with our discussions of
the causes of emittance growth in Section 6.2.

5.4.3
The Maxwell–Boltzmann Distribution for a Relativistic Beam

We are now ready to integrate the results of the steady-state Vlasov equation (Sec-
tion 5.3.3) with those of the Fokker–Planck equation (Section 5.4.2) to obtain a
modified model for the “natural” thermodynamic equilibrium state of a charged
particle beam. First, we note that the left-hand side of the Fokker–Planck equation
is identical to the Vlasov equation and contains the potential function φ due to
both the applied and self fields. The right-hand side, which contains the effects of
Coulomb scattering, yielded a Maxwellian velocity distribution [Equation (5.240)]
as the only steady-state solution. While the steady-state Vlasov equation is satisfied
by any distribution that is an arbitrary function of the invariants of the motion, only
one solution satisfies both sides of the time-independent Fokker–Planck equation:
the Maxwell–Boltzmann distribution, also known as the thermal distribution, which
in the beam frame considered here has the form

f (r, v) = f0 exp

[
− m(v2

x + v2
y + v2

z )

2kBT
− qφ(x, y, z)

kBT

]
. (5.250)

It can be written in terms of the nonrelativistic single-particle Hamiltonian

H = m

2

(
v2
x + v2

y + v2
z

)+ qφ(x, y, z) (5.251)

as

f (H) = f0 exp

(
− H

kBT

)
, (5.252)
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where the constant C = (βf /2πD)3/2 = (m/2πkBT )3/2 of Equation (5.240) has
been absorbed in the normalization factor, f0. In the case of a harmonic-oscillator
potential, Equation (5.250) becomes identical in form to Equation (5.249).

By integrating the Maxwell–Boltzmann distribution over the spatial coordinates
(x, y, z) we recover the Maxwellian velocity distribution (5.240). On the other hand,
by integrating over the velocities (vx, vy, vz) we recover the Boltzmann relation for
the particle density (5.226).

The only remaining step is to transform the Maxwell–Boltzmann distribution
from the beam frame to the laboratory frame in which the beam physics is usually
described. Let us assume that the laboratory beam propagates in the s-direction,
that the centroid position of the distribution is s0(t), and that a particle’s position
s(t) is described relative to s0 by zl = s−s0. If the beam considered is nonrelativistic
in the laboratory frame, the transformation is an easy task. Using the subscript b for
quantities measured in the beam frame and l for the counterparts in the laboratory,
all we need to do is substitute in Equation (5.250)

z = zb = zl = s − s0 (5.253a)

for the longitudinal coordinate and

vz = vbz = vlz − v0 = �vlz (5.253b)

for the longitudinal velocity, where v0 is the centroid velocity of the distribution
in the laboratory and s0 = v0t . We then obtain for the distribution in the labora-
tory frame

fl = f0 exp

[
− m

[
v2
x + v2

y + (�vlz)
2
]

2kBT
− qφ(x, y, zl)

kBT

]
(5.254)

since the transverse velocity components (vx, vy), the transverse coordinates (x, y),
and the temperature are unaffected by the nonrelativistic (Galilean) transforma-
tion.

Unfortunately, the Lorentz transformation for a relativistic Maxwell–Boltzmann
distribution is not so straightforward; in fact, it is rather tricky, as we will see. We
already noted in Section 5.3.1 that the transverse and longitudinal particle motion
cannot be separated if the beam is relativistic in both the beam frame and the
laboratory frame. Fortunately, for most beams of practical interest the motion in
the beam frame is nonrelativistic. Thus, we will limit our discussion to relativistic
laboratory beams that have a nonrelativistic Maxwell–Boltzmann distribution in
the beam frame.

First, we note that the distribution function (5.250) is not in a covariant form
suitable for the Lorentz transformation. In special relativity, space and time, mo-
mentum and energy, electric scalar potential and magnetic vector potential, are
intricately linked and must be represented by appropriate four-vectors. Thus

P i =
(

Px, Py, Pz,
E

c

)
(5.255)
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is the momentum-energy four-vector, with the energy defined as E = γmc2. The
four-vector potential is defined by

Ai =
(

Ax, Ay, Az,
φ

c

)
, (5.256)

where φ represents the electric scalar potential.
The transformation of such four-vectors from one frame to another is presented

for convenient reference in Appendix 3. If Plz is the z-component of a particle’s
momentum in the laboratory frame, and El the energy, then the z-component of
the momentum in the beam frame is given by

Pbz = γ0

(
Plz − v0

c2
El

)
, (5.257)

where v0 is the beam velocity in the laboratory frame. Considering now the entire
particle distribution, we note that by definition the average momentum in the beam
frame is zero (i.e., Pb = 0, hence specifically P bz = 0). Using this result and taking
the average of both sides of Equation (5.257), we obtain

v0 = c2P lz

El

(5.258)

and for the corresponding energy factor

γ0 =
(

1 − v2
0

c2

)−1/2

= (
1 − β2

0

)−1/2 = El

(E
2
l − c2P

2
lz)

1/2
. (5.259)

These two equations uniquely define the center-of-momentum frame, that is, the ve-
locity v0 and energy γ0mc2 of the “beam centroid” particle (in the laboratory frame),
whose velocity and energy in the beam frame are vb = 0 and Eb = mc2, respec-
tively. Here mc2 represents, of course, the particle’s rest energy.

A key question with regard to our Maxwell–Boltzmann distribution is, how does
the temperature transform from one Lorentz frame to another? The literature con-
tains conflicting answers to this question [10]. On the one hand, one might think
that temperature, representing the average thermal energy of the particles, could be
treated like energy, which would suggest a transformation of the form Tl = γ0Tb.
Upon further thought one of course realizes that temperature is a measure of the
random motion of the particles contained in the velocity or momentum distribu-
tion. So an appropriate four-momentum vector for temperature would appear to be
the answer. However, the accepted convention is to treat temperature as a scalar.
Much of the literature in the early part of the century [11] uses the transforma-
tion T = T0/γ0, which satisfies all relevant thermodynamic relations for a Lorentz
transformation from the rest-frame temperature T0 to a moving-frame tempera-
ture T ). Applied to our problem, the corresponding transformation from the beam
frame (T0 = Tb) to the laboratory frame (T = Tl) is thus

Tl = Tb

γ0
. (5.260)
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More recently, some authors [12] have preferred to use a temperature that is Lorentz
invariant; that is, there is only one temperature, the temperature as measured by
an observer in the rest frame of the system.

We take the position that both viewpoints are correct and that the temperature
definition one should use depends on the situation being considered. Some prob-
lems, such as Coulomb scattering, are best described in the beam (rest) frame of
the system and in terms of the beam-frame temperature Tb, as we did above in our
discussions of this topic. On the other hand, we will see below that there is also jus-
tification for using a laboratory temperature as defined in Equation (5.260). In this
regard, our position on temperature differs from that on mass, where we prefer to
use the definition of mass as a Lorentz-invariant scalar to avoid the problems of
different transverse and longitudinal masses (see Section 2.1). Fortunately, unlike
mass, the temperature does not exhibit asymmetry with regard to longitudinal and
transverse motion of the particles. The transformation (5.260) holds for both direc-
tions (i.e., for T‖ as well as T⊥), and the confusion regarding the various definitions
of mass does not exist here.

Returning now to our problem of transforming from the beam frame to the labo-
ratory frame, we will use the covariant form of the Maxwell–Boltzmann distribution
given in Reference 12 (p. 46):

f (xi, P i) = A exp

[
− (P i + qAi)Ui

kBTb

]
. (5.261)

The four-vectors P i and Ai are defined in (5.255), (5.256), respectively. Ui is the
covariant partner of the center-of-momentum four-velocity vector (see Appendix 3
for details), which is in the beam frame

Ubi = (0, 0, 0, c), (5.262)

and in the laboratory frame

Uli = (0, 0, −β0γ0c, γ0c). (5.263)

The temperature Tb is treated here as a Lorentz-invariant scalar. The transforma-
tion of the momentum and potential four-vectors P i and Ai from the beam frame
to the laboratory frame is given by

P i
l = (

Qi
j

)−1
P

j
b , (5.264a)

Ai
l = (

Qi
j

)−1
A

j
b, (5.264b)

where

(
Qi

j

)−1 =




1 0 0 0
0 1 0 0
0 0 γ0 β0γ0

0 0 β0γ0 γ0


 . (5.265)

Let us assume now that in the beam frame the particles have nonrelativistic veloc-
ities. The distribution (5.261) has the form

fb = Ab0 exp

(
− Eb + qφb

kBTb

)
, (5.266a)
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or since E = γmc2 = mc2 + ( 1
2 )mv2,

fb = Ab1 exp

[
− m(v2

bx + v2
by + v2

bz)

2kBTb

− qφb

kBTb

]
, (5.266b)

where the factor exp(−mc2/kBTb) has been included in the normalization constant
Ab1. Clearly, Equation (5.266b) is identical to the Maxwell–Boltzmann distribution
of Equation (5.250), as expected.

The transformation from the beam frame to the laboratory frame is somewhat
lengthy and is left to be carried out in Problem 5.11(a). With zl = s − s0, �vlz =
vl − v0, as in (5.253), the final result can be written in the form

fl = Al exp

[
− γ0m(v2

lx + v2
ly) + γ 3

0 m(�vlz)
2

2kBTb/γ0
− qφl(x, y, zl)

kBTb/γ0

]
, (5.267)

where again the factor exp[−mc2/kBTb] was absorbed in the constant Al and where
kBTb denotes the beam-frame temperature. Also, the potential function φl includes
the magnetic vector potential Alz that is generated by the transformation. It rep-
resents the sum of the effective potential due to the applied focusing forces, φla ,
and the potential due to the self fields of the beam, φls ; that is, φl = φla + φls/γ

2
0 ,

where the factor γ 2
0 in the second term represents the focusing effect of the beam’s

magnetic self field (1 − β2
0 = 1/γ 2

0 ).
Equation (5.267) is the desired Maxwell–Boltzmann distribution in the laboratory

frame for a relativistic beam with nonrelativistic transverse and longitudinal veloc-
ities in the beam frame. We have written the equation in a form suggesting that
we introduce a laboratory temperature Tl = Tb/γ0. Otherwise, the factor γ0 com-
bined with kBTb in the denominator would appear in the kinetic and potential en-
ergy terms in the numerator, causing considerable confusion. Thus, the Maxwell–
Boltzmann equation (5.267) can be used to justify the transformation (5.260) for
the temperature, rather than keeping the beam temperature as a Lorentz invariant.
In terms of the laboratory temperature Tl , we can write Equation (5.267) as

fl = Al exp

[
− γ0m(v2

lx + v2
ly) + γ 3

0 m(�vlz)
2

2kBTl

− qφl

kBTl

]
, (5.268a)

which, if we introduce the transverse mass mt = γ0m and the longitudinal mass
ml = γ 3

0 m, can be put into the suggestive form

fl = Al exp

[
− mt(v

2
lx + v2

ly) + ml(�vlz)
2

2kBTl

− qφl

kBTl

]
, (5.268b)

which resembles the nonrelativistic distribution (5.266b). We note that one can
obtain the relativistic Maxwell–Boltzmann distribution from (5.266b) more directly
by applying the Lorentz transformations for the velocities and the scalar potential
[see Problem 5.11(b)].

As we will see, beams are usually not in the three-dimensional thermal equi-
librium implied by the single-temperature expression given above. Acceleration
tends to cool the beam longitudinally while keeping the transverse temperature
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unaffected. Thus it is useful to write the Maxwell–Boltzmann distribution in terms
of a transverse temperature T⊥ and a longitudinal temperature, T‖, as

fl = Al exp

[
− γ0m(v2

lx + v2
ly)

2kBTl⊥
− qφl⊥

kBTl⊥

]
exp

[
− γ 3

0 m(�vlz)
2

kBTl‖
− qφl‖

kBTl‖

]
,

(5.269)

where we assumed that the potential function can be split into transverse and lon-
gitudinal parts.

The two temperatures for each frame are then defined by the second velocity
moments of the distribution as

kBTb⊥ = kBTbx = mv2
bx = kBTby = mv2

by, (5.270a)

kBTl⊥ = kBTlx = γ0mv2
lx = kBTly = γ0mv2

ly , (5.270b)

kBTb‖ = kBTbz = m�v2
bz, (5.270c)

kBTl‖ = kBTlz = γ 3
0 m�v2

lz. (5.270d)

We recognize that the distribution function (5.269) can be expressed in terms
of the transverse and longitudinal Hamiltonians and temperatures in the labora-
tory frame as

f (H⊥, H‖) = A exp

(
− H⊥

kBT⊥

)
exp

(
− H‖

kBT‖

)
, (5.271)

where we dropped the subscript l. This two-temperature Maxwell–Boltzmann dis-
tribution provides the most realistic theoretical description for laboratory beams. It
should be pointed out, however, that in a strict mathematical sense the separation
of the Hamiltonian into a transverse and longitudinal part is possible only when
the coupling due to the space-charge forces is negligible. This is the case for long
or continuous beams and for bunched beams in either the high-temperature limit
where emittance dominates or in the low-temperature limit (T⊥ → 0, T‖ → 0)

where the space-charge forces tend to be linear. Otherwise, there is coupling be-
tween the transverse and longitudinal motion via the space-charge potential, and
the two-temperature distribution is only a crude approximation that does not satisfy
the stationary Vlasov equation. The coupling may lead to a relatively rapid change
of the distribution towards thermal equilibrium (T⊥ = T‖), with relaxation time
depending on the strength of the space-charge coupling forces and the difference
in the two temperatures. This equipartitioning process is particularly strong in high-
current rf linacs and will be discussed in Appendix 4.

If we are dealing with a continuous beam rather than a bunch, the longitudinal
potential term is zero (φ‖ → 0) since there is no applied longitudinal focusing
force. In this case, Equation (5.269) represents a Maxwell–Boltzmann distribution
for a continuous beam with longitudinal temperature, that is,

f = A exp

(
− H⊥

kBT⊥

)
exp

[
− γ 3

0 m(�vz)
2

kBT‖

]
. (5.272)
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Finally, if we let the longitudinal temperature go to zero (i.e., �v2
z = 0) and as-

sume a nonrelativistic energy, we recover the transverse two-dimensional Maxwell–
Boltzmann distribution of Equation (5.122).

In practice, beam focusing and acceleration systems are designed to be “linear”
in the applied forces as much as possible to avoid emittance growth from nonlin-
earities. The corresponding applied potential functions are then quadratic in the
displacements of the particles from the beam centroid.

5.4.4
The Stationary Transverse Distribution in a Uniform or Smooth Focusing Channel

The stationary Vlasov distributions discussed in Section 5.3.3 represent examples
of continuous beams in which the transverse Hamiltonian H⊥ is a constant of
the motion and the longitudinal temperature is zero. In view of what we know
now, the transverse Maxwell–Boltzmann or thermal distribution is the one that
best describes the equilibrium state of a real beam in transverse phase space. Let
us from now on again define all quantities in the laboratory frame unless stated
otherwise, and drop the subscript l. As in Section 5.3.3, we assume a uniform
focusing channel in which the applied potential function has the form

φa(r) = 1

2
γ0mv2

0k2
0r2 (5.273)

so that the focusing force acting on the particles is linear and independent of the
axial coordinate z. This description also applies, of course, to the average behavior
of the matched beam in a periodic channel in the smooth approximation. Using
vx = v0x

′, vy = v0y
′, r2 = (x2 + y2), r ′2⊥ = (x′2 + y′2), and Equation (5.273), one

can express the transverse Maxwell–Boltzmann distribution for a matched beam
in such a system as

f⊥ = f0 exp

(
− H⊥

kBT⊥

)
, (5.274a)

or

f⊥ = f0 exp

[
− γ0mv2

0(r ′2⊥ + k2
0r2)

2kBT⊥
− qφs(r)

kBT⊥γ 2
0

]
, (5.274b)

which is identical to Equation (5.193) if one sets α = kBT⊥/γ0mv2
0 . By integrating

Equation (5.274b) with respect to the transverse velocity, or r ′⊥ = v⊥/v0, one ob-
tains the well-known Boltzmann relation for the particle density profile, which in
our case has the form

n(r) = n(0) exp

[
− γ0mv2

0k2
0r2

2kBT⊥
− qφs(r)

kBT⊥γ 2
0

]
. (5.275)

The space-charge potential φs(r) is related to the density n(r) via Poisson’s equa-
tion. Thus, the Boltzmann density profile n(r) is in general nonanalytic and must
be determined by a numerical method. Only in the low- and high-temperature lim-
its does one get analytic solutions for n(r).
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In the first case (T⊥ → 0), the beam is laminar and the space-charge potential
φs exactly balances the applied focusing potential, so that

γ0mv2
0k2

0r2

2
= −qφs(r)

γ 2
0

= q2n0r
2

4ε0γ
2
0

, (5.276)

where we used Poisson’s equation. The density profile in this case is thus uniform
inside the beam, that is,

n(r) =
{

n0 for 0 � r � a0,

0 for r > a0,
(5.277)

where a0 is the beam radius at zero temperature. The relation (5.276) shows that
we can replace the external focusing force by a background of stationary ions or
electrons of opposite charge to that of the beam particles.

In the second analytic case, at high temperature (T⊥ → ∞) the space charge
is negligible, and by setting φs(r) = 0, we obtain from (5.275) the Gaussian den-
sity profile:

n(r) = n(0) exp

(
− γ0mv2

0k2
0

2kBT⊥
r2
)

. (5.278)

These results for the low- and high-temperature cases are in agreement with exper-
imental observations: space-charge-dominated beams in high-intensity, low-energy
devices tend to have a uniform density profile, whereas emittance-dominated
beams in high-energy synchrotrons, for instance, tend to have a Gaussian shape.

To obtain the solutions for the general case where both space charge and emit-
tance are important, we must integrate Equation (5.275) numerically. We will adopt
the procedure used by Lawson [C.17, p. 203], who considered a nonrelativistic
beam. The relativistic case can be treated in the same way except that we include
the additional factor γ 2

0 in our equations.
Following Lawson, it will be convenient to use the self-electric field, Es(r) =

−dφs(r)/dr , which from Poisson’s equation or Gauss’s law is related to the charge
distribution by

Es(r) = q

ε0r

∫ r

0
rn(r) dr. (5.279)

Substitution for n(r) from (5.275) using φs(r) = − ∫ r

0 Es(r) dr and relation (5.276)
for the external force term yields

Es(r) = qn(0)

ε0r

∫ r

0
r exp

[ −q2n0r
2

4ε0kBT⊥γ 2
0

+ q

kBT⊥γ 2
0

∫ r

0
Es(r) dr

]
dr. (5.280)

Let us now introduce the Debye length λD, corresponding to the density on the
axis, which by our definition (4.3) is

λD = λD(0) =
[

ε0kBT⊥γ 2
0

q2n(0)

]1/2

. (5.281)
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Then, by normalizing the radius as x = r/λD and the electric field as F =
ε0Es/n(0)qλD, we can write (5.280) as

F(x) = 1

x

∫ x

0
x exp

[ ∫ x

0
F(x) dx − n0x

2

4n(0)

]
dx. (5.282)

The Boltzmann relation (5.275) for the particle density may then be written in the
form

n(x) = n(0) exp

[ ∫ x

0
F dx − n0x

2

4n(0)

]
. (5.283)

We note that the two equations (5.282) and (5.283) that determine our relativistic
Boltzmann distribution are identical with Lawson’s nonrelativistic relations. The
distributions for different temperatures are normalized by requiring that the num-
ber of particles per unit length NL be the same, that is,

NL = 2π

∫ ∞

0
rn(r) dr = πa2

0n0. (5.284)

By solving Equations (5.282) and (5.283) numerically, using the relations (5.281)
and (5.284), we obtain [13] the density profiles shown in Figure 5.12. The eight
curves labeled 1 to 8 in (a) are identical to Lawson’s results [C.17, p. 203]. Curve
7a represents an additional profile close to the zero-temperature limit. In Fig-
ure 5.12(b) we normalized these curves so that the rms radius is the same. The
normalization (5.284) defines the ratio n(0)/n0 for any given value of λD(0)/a0.
Note that the radius r in the figure is given in units of the zero-temperature ra-
dius a0 [i.e., the variable x is taken in the form x = (r/a0)(a0/λD)]. The density
curves plotted in the figure for different values of the parameter λD/a0 show the
general behavior discussed above and in Section 4.1. The shape varies from the
uniform distribution (5.277) in the laminar limit, where temperature and emit-
tance are zero, to the Gaussian profile (5.278) as λD/a0 increases toward infinity.
Table 5.2 shows a list of relevant parameters for each curve in Figure 5.12. The first
column gives the density ratios n(0)/n0, which, except for case 7a, were chosen to
agree with Lawson’s eight profiles. The second column shows the ratio of the De-
bye length on the axis λD(0) to the zero-temperature radius a0; these values differ
from Lawson’s results, which appear to be incorrect, probably because of an error
in the normalization procedure. Our values for λD(0)/a0 in Table 5.2 converge to-
ward the analytical result λD(0)/a0 = n0/2n(0) for T⊥ → ∞, whereas Lawson’s
numbers do not converge toward this limiting value. The third column lists the
rms radius r̃ in units of the zero-temperature radius r̃0 = a0/

√
2, as calculated for

each curve. Note that r̃/r̃0 = a/a0, where a = √
2r̃ is the effective radius of the

equivalent uniform beam. The next three columns show the values for the rele-
vant parameters of the equivalent uniform beam calculated from Equations (5.286)
and (5.287) below. The average Debye length λD was calculated using the relation
λD/a = (λD(0)/a0)(n(0)/n0)

1/2. The last column shows the ratio of the density
on axis to the zero-temperature density, n(0)/n0, for each of the rms normalized
curves in (b). For T⊥ → ∞, one gets n(0)/n0 = 2.
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Fig. 5.12 Radial profiles of the transverse
Maxwell–Boltzmann distribution in a uniform
focusing system for different temperatures. All
beams have the same number of particles per
unit length. (a) The focusing force is kept

constant so that the beam width increases with
increasing temperature. (b) The focusing force
is increased to keep the rms radius constant.
Table 5.2 lists the relevant parameter values for
each curve. (From Reference 13.)

Table 5.2 Relevant parameters for the radial Boltzmann density profiles of Figure 5.12.

Curve n(0)/n0 λD(0)/a0 r̃/r̃0 λD/a Ka2/ε2 k/k0 n(0)/n0
for r̃ = r0

1 0.1 4.82 4.43 1.52 0.054 0.974 1.96
2 0.25 1.81 2.75 0.905 0.153 0.931 1.89
3 0.5 0.795 1.88 0.562 0.396 0.846 1.77
4 0.75 0.432 1.46 0.374 0.893 0.727 1.60
5 0.95 0.229 1.18 0.223 2.51 0.534 1.32
6 0.995 0.145 1.08 0.144 6.00 0.378 1.16
7 0.9995 0.107 1.04 0.107 10.9 0.290 1.08
7a 0.999995 0.0710 1.02 0.0710 24.8 0.197 1.04
8 1 0 1 0 ∞ 0 1

Source: Reference 13.

Near the limit of laminar flow, the Maxwell–Boltzmann distribution, like the wa-
terbag distribution treated in Section 5.3.3, has a uniform density profile, with a
transition from n(r) = n0 in the interior to n(r) = 0 for r > a that depends on
the ratio λD/a. This transition at high space-charge density, where λD � a, was
studied by Hofmann and Struckmeier [14], who found that both distributions can
be approximated in this case by the function

n(r) = n0

{
1 − exp[(r − a)/λD]√

r/a

}
. (5.285)
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The ratio of the average Debye length to the beam radius, λD/a, can be related to
ε2/Ka2 or to the ratio of the particle oscillation frequencies with and without self
fields, ω/ω0. From Equations (4.88) and (4.89) one obtains, with ω0/ω = k0/k,

Ka2

ε2
= ω2

0

ω2
− 1 = k2

0

k2
− 1. (5.286)

Using the relationship between normalized emittance εn = βγ ε and temperature
T⊥ and Equation (5.286), one can show that

λD

a
=
(

ε2

Ka2

)1/2(1

8

)1/2

=
(

k2

k2
0 − k2

)1/2(1

8

)1/2

. (5.287)

Thus, when λD � a or k � k0, λD/a is directly proportional to the tune depression
k/k0 = ω/ω0 of the particle oscillations of the beam.

The preceding two equations are very important from a practical point of view
since they relate the experimental parameters K , a, and ε to the beam physics pa-
rameters λD and k/k0. To obtain this correlation and to describe the behavior of the
Maxwell–Boltzmann distribution in more detail, we will use the concept of equiva-
lent beams introduced in Section 5.3.4. According to this concept, any distribution
can be modeled to good approximation by an equivalent analytical beam having the
same rms radius, rms transverse velocity, and rms emittance. For an axisymmet-
ric stationary (i.e., matched) beam in a uniform focusing channel characterized
by the focusing constant k0, we obtain from (5.218) with x̃′′ = ỹ′′ = 0 the rms
envelope equation

k2
0 x̃ − K

4x̃
− ε̃2

x̃3
= 0, (5.288a)

where x̃ = ỹ = r̃/
√

2 is the rms width in each of the two orthogonal directions and
r̃ is the rms radius of the beam. This equation may be expressed in terms of the
effective radius a = √

2r̃ = 2x̃ and the effective emittance ε = 4ε̃ of the equivalent
uniform (K–V) beam as

k2
0a − K

a
− ε2

a3
= 0, (5.288b)

which is identical to Equation (4.88a). The unnormalized emittance in this case
corresponds to an upright ellipse in x−x′ trace space of area ε̃π and is defined by

ε̃ = x̃
ṽx

v0
, or ε = 4ε̃ = a(x′)max. (5.289a)

Introducing the laboratory temperature from (5.270) [i.e., using ṽx = (v2
x)1/2 =

(kBT⊥/γ0m)1/2], we can express the emittance by

ε̃ = x̃

(
kBT⊥
γ0mv2

0

)1/2

, or ε = 2a

(
kBT⊥
γ0mv2

0

)1/2

. (5.289b)

The corresponding normalized emittance is

ε̃n = x̃

(
kBT⊥γ0

mc2

)1/2

, or εn = 2a

(
kBT⊥γ0

mc2

)1/2

(5.290a)
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and in terms of the beam-frame temperature,

ε̃n = x̃

(
kBTb⊥
mc2

)1/2

, or εn = 2a

(
kBTb⊥
mc2

)1/2

. (5.290b)

Note the absence of the relativistic energy factor γ0 when the normalized emittance
is expressed in terms of the beam-frame temperature, kBTb⊥.

From Equations (5.288a) and (5.288b), we see that Ka2/ε2 used in Table 5.2 de-
fines the ratio of space charge to emittance in the envelope equations and that it
can be written in terms of the rms quantities as

Ka2

ε2
= Kx̃2

4ε̃2
. (5.291)

To exhibit the scaling with regard to the experimental parameters more clearly, we
will use the definition (4.27a) for the generalized perveance K . Furthermore, we
will introduce the normalized emittance, which is more useful than the unnor-
malized emittance, since it remains constant in the ideal case. We then obtain for
(5.291) the alternative relation

Ka2

ε2
= I

I0

2a2

β0γ0ε2
n

= I

I0

x̃2

2β0γ0ε̃2
n

, (5.292)

where I is the beam current and I0 the characteristic current defined in Equation
(4.17).

Equations (5.289a) to (5.292) constitute the desired scaling relationships that al-
low us to analyze the behavior of the stationary beam when parameters such as
transverse temperature, kinetic energy, current, emittance, or radius are changed
adiabatically so that the beam remains matched. The beam radius a = 2x̃ depends,
of course, on the focusing strength of the channel as defined by the wave constant
k0. If k0, perveance K , and emittance ε are given, we can calculate it from Equation
(5.288). The solution is found in Equations (4.91) to (4.93b), and the scaling of the
radius with k0, K , and ε is in general not very transparent from these equations.
However, we can use the approximation

a ≈
(

K

k2
0

+ ε

k0

)1/2

, (5.293)

which shows the scaling more clearly. This relation is exact at both ends of the
parameter range (i.e., when either K = 0 or ε = 0), and in between it slightly
overestimates the radius, with a maximum error of about +12% at K/k0ε = 1.5.
For a space-charge-dominated beam, when emittance can be neglected (ε = 0), we
obtain the exact relation

a = 2x̃ =
√

K

k0
=
(

I

I0

2

β3
0γ 3

0

)1/2 1

k0
. (5.294a)

On the other hand, when emittance dominates and space charge is negligible (K =
0), we obtain [see Equation (4.91)]

a =
(

ε

k0

)1/2

=
(

εn

β0γ0k0

)1/2

, (5.294b)
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or, in terms of rms quantities,

x̃ =
(

ε̃n

β0γ0k0

)1/2

. (5.294c)

We can of course adjust the focusing strength to obtain a desired beam size and
then simply use the radius a as a measured or given quantity in the above scaling
relations.

Let us now return to the Boltzmann density profiles of a thermal beam in Fig-
ure 5.12. From Table 5.2 we can determine which of the profiles is closest to the
desired or experimentally known beam parameters. If we have a computer code we
can of course calculate the profile by solving Equation (5.275) numerically. To illus-
trate the scaling and parametric dependence explicitly, let us assume that we have
a space-charge-dominated beam near the zero-temperature limit so that the profile
is practically uniform. From the relationships given above we have several possibil-
ities of changing the profile toward the more Gaussian “high-temperature” shape:

1. Increase in Transverse Beam Temperature T⊥, and Hence
Emittance ε̃n. A number of effects, such as beam mismatch,
nonstationary density profile, instabilities, and collisions,
cause emittance growth and hence temperature rise; these
effects are discussed in Chapter 6.

2. Increase of Particle Kinetic Energy. The acceleration of the
beam decreases Ka2/ε2 in general; for instance,
Ka2/ε2 ∝ (β0γ0)

−1 according to Equation (5.292) if current
I , beam radius a, and normalized emittance remain
constant. We discuss this change in an example below.

3. Increase of Focusing Strength. This reduces the beam radius
and hence decreases Ka2/ε2; it leaves the normalized
emittance unchanged, but in view of (5.290) it increases the
temperature as kBT⊥ = const/a2.

4. Longitudinal Debunching or Expansion. This reduces the
beam current in the bunch and also the beam radius if the
transverse focusing strength remains constant; the result is a
decrease in Ka2/ε2 and an increase in temperature, which
moves the profile in the direction of a more Gaussian shape.

It is interesting to note that not all four effects cause an increase in the tempera-
ture. Particle acceleration in case 2 may, in fact, decrease the transverse laboratory
temperature as T⊥ ∝ γ −1

0 according to (5.292) if the radius remains constant. How-
ever, the net effect is still a decrease in Ka2/ε2 ∝ (β0γ0)

−1 and hence a change of
the density n(r) toward a more Gaussian shape. The transverse beam-frame tem-
perature Tb⊥ remains, of course, unaffected by acceleration.

To illustrate the effect of acceleration on the beam profile, let us consider the
hypothetical case of a high-current linear accelerator of the type being considered
for radioactive waste transmutation [15], spallation neutron sources [16], and other
applications requiring high energy and beam power. We will assume a proton beam
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of 100 mA average current injected by an RFQ accelerator into a drift-tube linac
(DTL) at an energy of 2 MeV (β0γ0 ≈ 0.065) accelerated to some intermediate
energy in the DTL and then further accelerated to a full energy of, say, 1000 MeV
(β0γ0 ≈ 1.81) in a coupled-cavity linac (CCL). Suppose that the bunching factor
at 2 MeV is Bf = I/I = 0.1, so that the current in the bunch is I = 1 A and
that the beam has an rms width of x̃ = 2.0 mm at this energy. The acceleration
in the DTL shortens the phase width of the bunch with respect to the rf period
β0λ and thereby increases the bunch current, and the CCL is usually designed for
a higher frequency, say twice the DTL frequency. However, we are not interested
in the details of the accelerator design and the coupling between longitudinal and
transverse bunch sizes. For the purpose of our calculation we will simply assume
that the transverse focusing strength is varied along the linac system in such a way
that the product of I x̃2 is the same at 1000 MeV as at 2 MeV. Furthermore, we
assume that the normalized rms emittance remains constant in the acceleration
process and is given by ε̃n = 2 × 10−7 m-rad. Using the above numbers we obtain
from Equation (5.292) with I0 = 3.1 × 107 A,

Ka2

ε2
= 1 × (2 × 10−3)2

3.1 × 107 × 2 × 0.065 × (2 × 10−7)2
= 24.8.

This value corresponds to curve 7a in Figure 5.12, which is a space-charge-
dominated beam with a tune depression of k/k0 ≈ 0.2 and a relatively uniform
density profile.

At the final energy of 1000 MeV, we obtain

Ka2

ε2
= 24.8 × 0.065

1.81
= 0.89

and k/k0 = 0.73, which corresponds to curve 4 in Figure 5.12 and is in the re-
gion where emittance begins to dominate over space charge (i.e., Ka2/ε2 < 1 or
k/k0 >

√
0.5 = 0.707). Thus, during the acceleration process in this hypotheti-

cal linac system the stationary beam profile n(r) changes from a nearly uniform,
sharp-edged shape at 2 MeV to a more Gaussian-like shape with a significant tail
at 1000 MeV. In view of the high average power of about 100 MW of such a linac,
particle losses must be kept extremely low to avoid activation of the machine. Pre-
vention of halo formation is therefore of utmost importance (see Section 6.2.2).
But as we see from our calculation, the stationary beam profile develops during the
acceleration process a natural tail that is comparable to a halo. This feature of the
thermal distribution must be taken into consideration in the design of such a linac.
The parameter Ka2/ε2 should be kept as large as possible, and emittance growth,
which would move the density profile even more toward a Gaussian shape, must
be avoided.

What is particularly interesting in the example above is that the transverse beam
temperature T⊥ actually does not change very much. If the bunch current I in-
creases by a factor of 2, for instance, the rms width x̃ decreases by

√
2 (since we

assume that I x̃2 = const). With ε̃n ∝ x̃(kBT⊥γ0) = const, one then finds that the
laboratory temperature T⊥ rises by only about 10% while the beam-frame temper-
ature Tb⊥ would increase by a factor of 2 according to Equation (5.290). This shows
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that the high-temperature or low-temperature limits of the thermal distribution are
better defined as the emittance-dominated or space-charge-dominated limits. The tem-
perature, which is an appropriate parameter for a plasma, is obviously inadequate
to describe the behavior of the density profile in a charged particle beam. The above
example was chosen deliberately to be somewhat simplistic, to illustrate the energy
scaling. A more realistic example of a high-current, high-brightness linac design,
which includes the coupling between longitudinal and transverse bunch size, is
presented in Appendix 4.

A similar argument can be made with regard to emittance. Even though it in-
volves the product of two quantities, beam width and

√
T⊥, emittance alone, like

temperature, is not sufficient to characterize the beam profile. On the one hand,
in the space-charge-dominated regime where the beam is nearly uniform, the ef-
fective emittance ε = 4ε̃ is a very useful quantity and includes nearly 100% of
the beam particles. However, as the effect of space charge decreases and the den-
sity profile becomes more Gaussian in shape, neither the rms emittance nor the
effective emittance provide a sufficient description of the particle distribution. In-
deed, a significant fraction of the beam intensity may be outside the effective emit-
tance area. To get a more quantitative estimate of the tail effect, let us consider the
emittance-dominated limit of the Maxwell–Boltzmann distribution. Using carte-
sian coordinates and neglecting the space-charge potential φs , we can write Equa-
tion (5.274b) in the form

f (x, x′, y, y′) = f0 exp

[
− x2 + x′2(1/k2

0) + y2 + y′2(1/k2
0)

2δ2

]
, (5.295a)

or in terms of the betatron function β̂0 = 1/k0 as

f (x, x′, y, y′) = f0 exp

(
− x2 + β̂2

0x′2 + y2 + β̂2
0y′2

2δ2

)
, (5.295b)

where

δ = x̃ = ỹ = r̃√
2

=
√

β̂0ε̃ = β̂0

(
kBT⊥
γ0mv2

0

)1/2

(5.296)

is the rms width of the Gaussian distribution.
By integrating (5.295b) over y, y′, we obtain the density in the two-dimensional

x−x′ trace space

f (x, x′) = f0x exp

(
− x2 + β̂2

0x′2

2δ2

)
. (5.297)

This relation allows us to calculate the emittance for any part of the beam inside
of a given boundary defined by x2 + β̂2

0x′2 = const. Thus, if f denotes a fraction
of the beam (0 � f � 1), εf the emittance occupied by this fraction in x−x′ trace
space, and ε̃m the rms emittance of the beam, one can show that

εf = −2ε̃ ln(1 − f ). (5.298)

From this relation we see that the fraction of the beam within the rms emittance
(i.e., εf = ε̃), is f = 0.3935. For the effective emittance, defined by ε = εf = 4ε̃,
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one finds that f = 0.8647, while ε = 6ε̃ yields f = 0.9502. Of course, for the
entire beam the total emittance would be infinite (εf → ∞ for f = 1) in view of
the exponential tail of the distribution. In practice, however, the tail will always be
cut off and the total emittance will always be finite, since the tail particles are lost
to the wall of the beam pipe.

These results explain why different laboratories or researchers are using different
definitions of emittance. At low energies where space-charge forces dominate and
the density profile is nearly uniform in a linear focusing channel, the effective emit-
tance, defined as four-times rms emittance, includes practically 100% of the beam.
This definition was adopted by CERN, where it was first proposed by Lapostolle [5].
It was also used in our previous chapters on linear beam optics, which assumed a
K–V distribution for the beam where ε = 4ε̃ exactly. In high-energy accelerators,
synchrotrons, and storage rings, space-charge forces are usually small compared
to the applied forces, and beams tend to have Gaussian profiles, as expected for a
Maxwell–Boltzmann distribution. Some laboratories, including Fermilab, have in-
troduced a six-times emittance, εf = 6ε̃, to define the phase-space area of the beam
since it contains 95% of the particles. Needless to say, these varying definitions of
effective emittance are a source of much confusion. The problem is compounded
by the fact that many publications use the term rms emittance for the effective four-
times rms emittance, a definition that dates back to Lapostolle’s original proposal
(see our comment in Reference 5). Different notations concerning the factor π

were discussed in Section 3.1. At some places π is factored out in the transverse
emittance but included in the longitudinal emittance. If a nominal emittance of
6ε̃ is adopted, it may be adequate for the experimentalists at the high-energy end
of an accelerator chain. However, at low energies, near the ion source or linac of
a proton or H− machine, most of the beam is space-charge-dominated and con-
tained within the effective emittance of ε = 4ε̃, and 6ε̃ includes a large piece of
empty phase space. No wonder that communication between workers within the
same organization is often just as difficult as it is between personnel working in
different laboratories.

The only emittance that plays a uniquely defined role in the physics, theory, and
simulation of beams is the true rms emittance, which correlates with the mean ki-
netic energy per particle, measured by the temperature in the Maxwell–Boltzmann
distribution, and the rms beam width. Other definitions, such as our effective
emittance, ε = 4ε̃, or the six-times rms emittance, 6ε̃, are undoubtedly useful.
But the range of applications should be clearly defined, and to avoid misunder-
standings one should always be aware of the shape of the Maxwell–Boltzmann
distribution in the various parameter regimes as shown in Figure 5.12 and Ta-
ble 5.2. For proper comparison of beams at different energies or in different fa-
cilities the normalized emittance, εn, should be used, or else the beam energy
should be listed so that εn can be readily calculated. Furthermore, the beam current
should be mentioned since the figure of merit is usually not the emittance by itself
but the two-dimensional phase-space density, I/εnπ or the normalized brightness
Bn = 2I/ε2

nπ2 [see Equation (3.22)]. Finally, it should be noted in this context that
the above relationships concerning a matched beam in a uniform focusing chan-
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nel are valid not only for the transverse Maxwell–Boltzmann distribution, where
the local temperature T⊥ is the same everywhere in the beam. They also apply for
other theoretical or experimental beam distributions, where the local temperature
may vary within the beam (i.e., where the beam is not in transverse thermal equi-
librium). The primary information is contained in the velocity distribution versus
position, which may not necessarily be a Maxwellian. However, we can always de-
fine an “effective” temperature for any distribution by using the relation (5.270)
and describe the distribution in terms of an analytical equivalent beam having the
same rms parameters (or second moments).

5.4.5
Transverse Temperature and Beam-Size Variations in Nonuniform Focusing Channels

In the preceding section we treated a matched transverse Maxwell–Boltzmann dis-
tribution in a uniform focusing channel where the rms trace-space ellipse, the rms
beam width, and the temperature T⊥ remain constant. If the beam passes through
a sequence of lenses and drift spaces, such as in a matching section or in a periodic-
focusing channel, the stationary state is no longer defined by the equations given
previously, such as (5.274b) or (5.295a). After passing through a focusing lens, for
instance, the beam experiences first a compression in its transverse size and then
expands again until it reaches the next lens, as illustrated in Figure 3.12. If the lens
system is periodic, the stationary state is characterized by a periodic variation of the
beam radius. The associated trace-space ellipse is tilted in general and oscillates in
shape between the upright positions at the crests and waists of the transverse am-
plitude function β̂(z). By analogy with the compression and expansion of a gas, the
transverse beam temperature, T⊥, heats up during compression and cools during
expansion. This temperature variation can be correlated with the corresponding
orientation of the rms trace-space ellipse.

To analyze this correlation, let us consider the general Courant–Snyder equation
(3.345) as it applies to the rms emittance, that is,

γ̂ x2 + 2α̂xx′ + β̂x′2 = ε̃. (5.299a)

Using the relation γ̂ = (1 + α̂2)/β̂ [Equation (3.343c)] between the three Courant–
Snyder parameters, we can eliminate γ̂ and write this equation in the alterna-
tive form

x2 + (
α̂x + β̂x′)2 = ε̃β̂. (5.299b)

The second term on the left-hand side of Equation (5.299a), which was zero in our
previous discussion, shows that there is a correlation between x and x ′, or x and
vx , that depends on the parameter α̂.

The rms emittance of a general particle distribution f (x, x ′) is defined in terms
of the moments of the distribution by [see Equation (5.205)]

ε̃2 = x2 x′2 − xx′2. (5.300a)

The corresponding equation in terms of the particle velocities is
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ε̃2 = x2 v2
x

v2
0

− xvx
2

v2
0

. (5.300b)

For an equivalent K–V beam the particle density inside the emittance ellipse
is constant and the moments are readily evaluated from Equation (5.299). One
finds that

x̃2 = x2 = β̂ε̃, (5.301)

x̃′2 = x′2 = γ̂ ε̃, (5.302)

xx′ = −α̂ε̃. (5.303)

If we divide the rms emittance equations (5.300) by x2 = x̃2, we obtain

ε̃2

x̃2
= x′2 − xx′2

x̃2
= v2

x

v2
0

− xvx
2

v2
0 x̃2

. (5.304)

This relation can be written in terms of rms transverse velocities and kinetic ener-
gies as

ṽ2
x,th = ṽ2

x − ṽ2
x,fl, (5.305a)

or

γ0mṽ2
x = γ0mṽ2

x,th + γ0mṽ2
x,fl. (5.305b)

The physical interpretation of this relation is that the rms transverse velocity, or
rms kinetic energy, of the particle distribution consists of a thermal (i.e., random)
component, indicated by the subscript “th,” and a flow component, indicated by
the subscript “fl.” The latter is due to the correlation (xvx) between the velocity and
the position of the particle in regions where the beam size contracts or expands.

Using the relations (5.301) to (5.305), we find that

x̃′
fl = ṽx,fl

v0
= −xx′

x̃
= − α̂ε̃

x̃
, (5.306a)

or, in view of ε̃ = x̃2/β̂,

x̃′
fl = − α̂

β̂
x̃. (5.306b)

Furthermore,

x̃′2
th = ε̃2

x̃2
= γ̂ ε̃ −

(
α̂

β̂

)2

x̃ = β̂γ̂ − α̂2

β̂
ε̃,

or

x̃′
th = ε̃

x̃
=
(

ε̃

β̂

)1/2

. (5.307)

We note that the ratio of the flow divergence x̃′
fl to the thermal divergence, x̃′

th,
is given by x̃′

fl/x̃′
th = −α̂. When we compare these results with Figure 3.26 we

recognize that x̃ ′
th corresponds to the point of intersection of the tilted ellipse with
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the x′-axis (i.e., x̃′int = x̃′
th =

√
ε̃/β̂), while x̃′

fl relates to the dashed line with

slope −α̂/β̂ [i.e., x̃′
fl = −(α̂/β̂)x̃]. These relationships are thus readily identified

from plots of the rms trace-space ellipse.
From (5.307) we see that the rms emittance can always be expressed by the prod-

uct of the rms width, x̃, and the rms thermal velocity, ṽx,th = x̃′
thv0, as

ε̃ = x̃x̃′
th = x̃

(
ṽx,th

v0

)
, (5.308a)

which is identical with the relation given in Equation (3.2b). The corresponding
normalized rms emittance is

ε̃n = γ0β0x̃x̃′
th = γ0x̃

(
ṽx,th

c

)
. (5.308b)

In view of these results, the definition (5.270b) for the transverse laboratory tem-
perature can now be generalized as

kBT⊥ = kBTx = γ0mṽ2
x,th = γ0m

(
ṽ2
x − ṽ2

x,fl

)
. (5.309)

For completeness, we include the general relation for the longitudinal laboratory
temperature, where we obtain

kBT‖ = kBTz = γ 3
0 m
(
�̃vz,th

)2 = γ 3
0 m

[(
�̃vz

)2 −
(
�̃vz,fl

)2
]
. (5.310)

The flow terms in these equations are defined by the correlation terms (i.e., ṽx,fl =
−xvx/x̃ in the transverse direction), and with z = s − s0, �vz = vz − v0, by
�̃vz,fl = −z�vz/z̃ in the longitudinal direction.

The stationary state of a beam in a nonuniform focusing system is thus charac-
terized by a variation in the rms beam width which correlates with the generation of
an rms flow velocity and a variation of the thermal velocity and beam temperature.

If Coulomb collisions can be neglected or affect the beam temperature on a time
scale that is long compared to the particle travel time between the focusing lenses,
the normalized emittance is invariant. We then obtain from (5.308b) and (5.309)
the relation

x̃2γ0kBT⊥ = mc2ε̃2
n = const, (5.311)

which corresponds to Equation (4.4). It implies that the transverse beam temper-
ature, which measures the average kinetic energy per particle due to the random
part in the velocity distribution, is inversely proportional to the square of the rms
beam width. For the stationary (matched) beam in a uniform focusing system that
was treated in the preceding section, the rms radius, and hence the temperature,
are constant (i.e., independent of distance z). In a nonuniform focusing system
(e.g., a periodic channel or a matching section), the stationary state is characterized
by a variation of the rms beam width with distance [i.e., x̃ = x̃(z)]. The velocity dis-
tribution then consists of a flow part characterized by the rms flow velocity vx,fl and
a thermal part defined by ṽx,th. When the beam is diverging (i.e., when the radius
expands), the flow velocity has an outward direction [α̂ < 0, ṽx,fl > 0, from Equa-
tion (5.306)] and the thermal velocity decreases. When the beam is converging, the
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flow is inward (α̂ > 0, ṽx,fl < 0) and the transverse temperature increases. During
such expansion and compression of the beam radius the shape of the density pro-
file changes. Although the curves in Figure 5.12 represent stationary states, they
can still be used as a guide for the behavior in nonuniform systems. At the maxima
and minima (waists) of the beam envelope, the rms emittance ellipse is upright
(α̂ = 0), so that the density profiles correspond to stationary Boltzmann profiles
having the same upright ellipses. Thus, by calculating the parameter Ka2/ε2, one
can use Table 5.2 and Figure 5.12 to identify the shapes of the profile at these posi-
tions. One can thereby visualize how the “operating point” wanders from profile to
profile during an expansion and/or compression cycle. Further aspects of beam be-
havior in matching, focusing, and imaging systems are discussed in Section 5.4.11.

5.4.6
The Longitudinal Distribution and Beam Cooling due to Acceleration

In this section we want to turn our attention to the longitudinal part of the
Maxwell–Boltzmann distribution and discuss the general parameters that are used
to characterize its properties in a straight channel or linear accelerator. The station-
ary states and the longitudinal envelope equations in such straight channels are an-
alyzed in Sections 5.4.7 and 5.4.8. The behavior in circular machines is discussed
in Section 5.4.9. We will assume that coupling due to the transverse motion can
be neglected and that the longitudinal part of the distribution has the form [see
Equation (5.271) and subsequent comment]

f‖ = f‖0 exp

(
− H‖

kBT‖

)
,

or

f‖ = f‖0 exp

[
− γ 3

0 m(�vz)
2

2kBT‖
− qφ‖

kBT‖

]
, (5.312)

where we dropped the subscript l in �vz and φ‖ for simplicity and where φ‖ is the
longitudinal potential function that represents the focusing action of the applied
longitudinal forces as well as the defocusing space-charge forces.

In rf linear accelerators each bunch of particles passes through the sequence
of rf gaps in a phase interval during which the sinusoidally varying accelerating
electric force is rising in time. The so-called “synchronous particle” at the center
of the bunch always passes the gaps at the same rf phase (i.e., it is in synchro-
nism with the rf field). Particles arriving earlier experience a smaller, those arriving
later a greater accelerating force than that of the synchronous particle. In the beam
frame (i.e., to an observer traveling at the velocity of the synchronous particle), the
particles at the head of the bunch experience a force in the negative z-direction;
those in the rear (behind the synchronous phase) experience a force in the posi-
tive z-direction. In the linear regime these forces are proportional to the difference
in distance between the particle position and the bunch center defined by the syn-
chronous particle. In a traveling-wave accelerator, often employed for electrons, the
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bunch is placed slightly ahead of the crest of the wave so that the forces act contin-
uously. The net result is the same as in the case of periodically spaced rf cavities
with acceleration gaps, namely a focusing effect that keeps the bunch from spread-
ing longitudinally. The induction linear accelerators employed for high-current
beams also can provide time-dependent longitudinal focusing. The gap voltage is
increased with time along the pulse so that the early particles at the front of the
pulse gain less energy than those in the rear. This force differential can either pre-
vent the bunch from spreading or result in longitudinal compression farther down
the beam line which is required for some applications. The particle oscillations due
to these linear longitudinal forces are known as the synchrotron oscillations since,
historically, the phase stability resulting from this focusing effect was crucial to the
successful operation of the high-energy synchrotrons. We should note that the syn-
chrotron oscillation frequency is usually much lower than the betatron oscillation
frequency governing the transverse motion. The longitudinal dynamics, including
the nonlinear motion in rf fields, is discussed in Section 5.4.8.

Let us now proceed with the general parameter characterization of the longi-
tudinal distribution. Of particular interest is the longitudinal temperature and its
changes due to acceleration and the relations between longitudinal temperature,
emittance, and energy spread. The basic definition of normalized longitudinal
emittance εnz as the product of the longitudinal width and momentum spread of
the particle distribution is the same as in the transverse case. However, the longi-
tudinal phase space of a moving relativistic bunch can be characterized in several
different ways, and accordingly, there are different definitions of the normalized
and unnormalized longitudinal emittance, as we discuss below.

If we denote by s(t) the distance of travel along the direction of beam propaga-
tion, then z(t) = s(t) − s0(t) is the difference in position, �Pz = Pz − P0 is the
difference in longitudinal momentum, and �vz = vz−v0 is the difference in longi-
tudinal velocity between a particle in the distribution and the center-of-momentum
particle (“beam centroid”), indicated by the subscript “0.” In terms of the associated
rms quantities, the normalized rms emittance for a longitudinally matched beam
is defined by

ε̃nz = z̃
�̃P z

mc
= z̃γ 3

0
�̃vz

c
. (5.313)

The unnormalized longitudinal rms emittance is commonly defined in terms of
the relative rms momentum spread as

ε̃z = z̃
�̃P z

P0
, (5.314)

so that ε̃nz = β0γ0ε̃z, as in the transverse case.
If we introduce z′ = dz/ds in place of the momentum or the velocity, we obtain

z′ = dz

ds
= �vz

v0
= 1

γ 2
0

�Pz

P0
, (5.315)
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for a beam in a straight channel. With these relations we can define an unnormal-
ized rms emittance ε̃zz′ , in longitudinal trace space as

ε̃zz′ = z̃z̃′ = 1

γ 2
0

ε̃z (5.316)

for straight beams. This relation differs from the conventional unnormalized emit-
tance (5.314) by the factor γ −2

0 . Only in a nonrelativistic straight beam γ0 = 1 are
the two emittances the same (ε̃zz′ = ε̃z).

Using Equations (5.313), (5.314), (5.316), and (5.270d), we can relate ε̃nz to ε̃z,
ε̃zz′ , and to the temperature kBT‖ in the laboratory frame as

ε̃nz = β0γ0ε̃z = β0γ
3
0 ε̃zz′ , (5.317a)

and

ε̃nz = z̃

(
γ 3

0 kBT‖
mc2

)1/2

. (5.317b)

The above definitions have to be modified in circular machines, as discussed in
Section 5.4.9. Note that in the beam frame, where zb = γ0zl , the normalized emit-
tance has the same value as in the laboratory frame, ε̃bnz = ε̃nz. This is also true
for the transverse rms emittances. Thus the normalized emittance is a Lorentz-
invariant quantity [10]. In accelerator physics it has become customary to introduce
energy E and time t as the conjugate canonical variables in place of Pz and z. Us-
ing z = v0�t = β0c�t , �Pz � �P = �γmc/β0 = �E/β0c and denoting this
emittance by *, we have

ε̃∗
nz = �̃E �̃t [eV · s], (5.318a)

which is measured in electronvolt-seconds. In rf accelerators this emittance is often
expressed in terms of the rf phase ϕ and radian frequency ωrf as

ε̃∗
nz = �̃E

�̃ϕ

ωrf
. (5.318b)

where �̃ϕ defines the rms phase width of the particle distribution with respect to
the accelerating rf field.

The relationship between ε̃∗
nz and ε̃nz is given by

ε̃∗
nz = ε̃nz

mc2

c
, (5.319)

where mc2 is the particle rest energy in electronvolts and c is the speed of light in
m/s. For protons one has (mc2)/c = 3.13 eV-s/m, and the conversion factor for
electrons is (mec

2)/c = 1.70 × 10−3 eV-s/m.
All of the above relations for the longitudinal emittance imply a finite beam

length. The obvious application is a bunched beam with a longitudinal bunch size
characterized by an rms width z̃. However, the definitions can also be applied to
a continuous beam, where an emittance can be assigned to a slice of the beam
containing a given number of particles. Take as an example the continuous beam
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which is extracted from a dc ion source and which, after being chopped and/or
bunched, is injected into an rf linear accelerator. The bunch in each rf cycle, con-
taining Nb particles, can be traced back to a slice of the continuous beam. This slice
would contain Nb particles and would have the same emittance as the bunch in the
linac if nonlinear forces during the chopping/bunching process have a negligible
effect and if there are no particle losses. The bunch, of course, has a smaller rms
size than the slice in the continuous beam from which it was formed. But the rms
momentum spread in the bunch is correspondingly larger than that in the slice, so
that the normalized emittance is the same [see Equation (5.313)].

The relationships between the rms energy spread, rms momentum spread, and
the longitudinal temperature in either continuous or bunched beams are given by

�̃E = β0c�̃P , (5.320)

�̃P

P0
= 1

β2
0

�̃E

Ec

= �̃γ

β2
0γ0

, (5.321)

�̃P = mc

(
γ 3

0 kBT‖
mc2

)1/2

, (5.322)

�̃E

Ec

= β0

(
γ0kBT‖
mc2

)1/2

, (5.323)

�̃P

P0
= 1

β0

(
γ0kBT‖
mc2

)1/2

, (5.324)

where Ec = γ0mc2 is the center-of-momentum energy, P0 = β0γ0mc, and T‖ is
the longitudinal temperature measured in the laboratory frame. All of the above
relationships can of course be expressed in terms of the beam temperature Tb‖ by
making the substitution T‖ = Tb‖/γ0. In the extreme-relativistic case (β0 = 1) we
obtain �̃E/Ec = �̃P /P0 = (kBTb‖/mc2)1/2.

In the nonrelativistic case, using the mean kinetic energy qV0 instead of the total
energy Ec, we have

�̃E = (
2qV0kBT‖

)1/2
, (5.325a)

or

�̃E

qV0
=
(

2kBT‖
qV0

)1/2

. (5.325b)

Let us now discuss the effect of acceleration on the longitudinal beam tempera-
ture in a continuous beam that corresponds to the distribution (5.312) with φ‖ = 0.
We will find that acceleration decreases the random velocity spread and hence cools
the beam longitudinally. To see how this comes about, let us first consider the non-
relativistic situation as it may exist in or near an electron gun or ion source. Sup-
pose that two particles, one (A) with initial velocity v1, and the other (B) with veloc-
ity v1 + �v1, are passing through an acceleration gap where they gain an energy of
qV0. After acceleration the two particles will have kinetic energies of (A)

m

2
v2

2 = m

2
v2

1 + qV0 (5.326)
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and (B)

m

2
(v2 + �v2)

2 = m

2
(v1 + �v1)

2 + qV0. (5.327)

Expanding both sides of Equation (5.327) and assuming that �v � v so that the
quadratic terms involving (�v1)

2 and (�v2)
2 can be neglected, we find that

m

2
v2

2 + mv2�v2 = m

2
v2

1 + m�v1 + qV0 = m

2
v2

2 + mv1�v1,

and hence

mv2�v2 = mv1�v1,

or

�v2 = �v1
v1

v2
. (5.328)

Thus the velocity difference between the two particles, which initially was �v1, is
reduced by the ratio v1/v2 of the velocities before and after acceleration.

There is an inverse effect of the acceleration with regard to the separation �z

of the two particles. Let particle A with velocity v1 be a distance �z1 behind
when particle B with velocity v1 + �v1 passes the gap. When A arrives at the
gap after a time interval �t = �z1/v1, particle B will have traveled a distance
�z2 = (v2 + �v2)�t � v2�t . The relation between the two distances after and
before acceleration is

�z2 = �z1
v2

v1
(5.329)

(i.e., the particles’ separation increases by the velocity ratio v2/v1). Combining both
equations, we see that

�z2�v2 = �z1�v1. (5.330a)

We recognize that this result correlates with the invariance of the normalized lon-
gitudinal emittance in the nonrelativistic version. Indeed, if we average both sides
of (5.330a) over the entire particle distribution prior to and after transversal of the
acceleration gap, we obtain

�̃z2�̃v2 = �̃z1�̃v1; (5.330b)

since, nonrelativistically, �P/mc = �v/c, this is identical to

�̃z2
�̃P z2

mc
= �̃z1

�̃P z1

mc
= ε̃nz,

as claimed. Of course, since we are dealing here with a continuous beam, �̃z and
ε̃nz are defined as the rms length and rms emittance of a given slice of the beam
containing a fixed number of particles, as discussed earlier.

The decrease in the velocity spread according to (5.328) occurs when there are no
longitudinal focusing forces acting on the particle distribution (i.e., in a continuous
beam or in a drifting bunched beam). In the first case, both the applied and the
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space-charge force are zero in the longitudinal direction [i.e., φ‖ = 0 in Equation
(5.312)]. For the second case, only the applied longitudinal forces are zero, and the
space-charge forces increase the bunch length.

After this general discussion, we now determine the temperature change, or lon-
gitudinal cooling, of the beam due to the decrease in the velocity spread by acceler-
ation in a mathematically more rigorous form. For this purpose we assume a con-
tinuous beam (i.e., φ‖ = 0) in the nonrelativistic regime where γ0 = 1 and where
the temperatures in the beam frame and in the laboratory frame are identical. Sup-
pose that the initial state, which we will denote by i, corresponds to the distribution
emerging from the particle source (e.g., thermionic cathode or ion source) and is
given in the standard Maxwellian form as

fi(vi) = f0 exp

(
− mv2

i

2kBT‖i

)
, (5.331)

where v stands for vz = v‖.
The state of the distribution after acceleration, which we denote by the subscript

f , is characterized by a new velocity vf and temperature kBT‖f as

ff (vf ) = f0 exp

[
− m(v2

f − v2
0)

2kBT‖f

]
, (5.332)

where

v2
f = v2

i + v2
0 (5.333)

and
m

2
v2

0 = qV0. (5.334)

We note that the longitudinal velocity distribution is significantly contracted while
the transverse distribution and temperature remain unaffected by acceleration. The
new longitudinal temperature kBT‖f is defined in terms of the second moments of
the velocity distribution as [ from (5.310), with γ0 = 1]

kBT‖f = m
(
v2‖f − v‖f

2
)

= m
(
v2
f − vf

2
)

(5.335)

Using (5.334) and (5.335), we find that

v2
f = (

v2
i + v2

0

) = v2
i + v2

0,

vf
2 =

√
v2
i + v2

0

2

= v2
0

(
1 + 1

2

v2
i

v2
0

− 1

8

v4
i

v4
0

+ · · ·
)2

, (5.336)

vf
2 = v2

0 + v2
i + 1

4

v2
i

2

v2
0

− 1

4

v4
i

v2
0

+ · · · (5.337)

Thus, substituting (5.336) and (5.337) in (5.335), we find that

kBT‖f = m

4v2
0

(
v4
i − v2

i

2)
. (5.338)
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To evaluate the fourth moments of the initial distribution we must first multiply
Equation (5.332) by vi = v‖i to get the particle current leaving the source. The
integration then is from vi = v‖i = 0 to vi = v‖i = ∞ since only particles with
velocities in the positive z-direction can escape. Carrying out the calculations, one
finds that

kBT‖f = (kBT‖i )2

2qV0
. (5.339)

The cooling effect predicted by relation (5.339) is very dramatic. Take, for instance,
an electron beam with an initial temperature given by the cathode temperature of
kBT‖i = kBTc = 0.1 eV. After acceleration to qV0 = 10 keV, the longitudinal tem-
perature drops to kBT‖f � 6 × 10−7 eV; that is, for all practical purposes the beam
is essentially “cold” in the longitudinal direction while the transverse temperature
remains unaffected by the acceleration (kBT⊥f = kBT⊥i = kBTc = 0.1 eV). Also, in
view of our discussion in connection with Equation (5.330), the longitudinal emit-
tanceas well as the transverse emittance remain the same. Likewise, the energy
spread �̃E should remain unaffected by the acceleration process. It is given by the
initial temperature, and by solving (5.339) for kBT‖i one obtains

kBT‖i = �̃Ei = (
2qV0kBT‖f

)1/2 = �̃Ef , (5.340)

in agreement with Equation (5.325a).
As we have now seen, the particle distribution comprising the beam is no longer

in a three-dimensional thermal equilibrium state after it has been accelerated. Also,
the energy spread is no longer identical to the temperature when acceleration has
taken place. However, Coulomb scattering, instabilities, or other random processes
coupling the longitudinal and transverse motion of the particles will have a ten-
dency to restore equilibrium. The associated thermal energy transfer from the
transverse to the longitudinal direction will increase the longitudinal emittance
and energy spread. This is known as the Boersch effect, which is discussed in Sec-
tion 6.4.1.

Although the longitudinal cooling effect due to acceleration is most pronounced
at low energies near the particle source, it also occurs at relativistic particle ener-
gies. The evaluation of the temperature change in this case is essentially analogous
to the nonrelativistic derivation. Instead of Equations (5.333) and (5.334), one uses

β2
i = 1 − 1

γ 2
i

= 1 − 1

(γ0i + �γi)2
= 1 − 1

γ 2
0i

1

(1 + �γi/γ0i )2
, (5.341)

β2
f = 1 − 1

γ 2
f

= 1 − 1

(γ0f + �γi)2
= 1 − 1

γ 2
0f (1 + �γi/γ0f )2

, (5.342)

γf mc2 = γimc2 + qV0, (5.343)

where γ 2
0 = (1 − β2

0 )−1 defines the center-of-momentum energy and velocity and
where we used �γf = �γi . Evaluating the moments using �γi = 1

2γ 3
0i (β

2
i − β2

0i ),
one obtains

β2
f − βf

2 = 1

4

γ 6
0i

β2
0f γ 6

0f

(
β4

i − β2
i

2
)

. (5.344)
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Using the definition (5.310) and the result for the fourth moments analogous to
the nonrelativistic calculation, one finds for the laboratory-frame temperature

kBT‖f = γ 3
0i (kBT‖i )2

β2
0f γ 3

0f mc2
, (5.345)

which in the nonrelativistic limit (γ0 = 1, β2
0mc2 = mv2

0 = 2qV0) agrees with the
result (5.339). As an example, assume that an electron beam with initial energy of
10 keV (γ0i � 1) and initial laboratory temperature kBT‖i = 0.5 eV is accelerated
to 1 MeV (β0f γ0f = 2.783). The temperature is then reduced to kBT‖f = 2.10 ×
10−8 eV, which represents a drop by seven orders of magnitude.

The above cooling effect always occurs in electrostatic acceleration systems
where no longitudinal focusing or bunching forces are present (i.e., in most elec-
tron guns, ion sources, dc acceleration columns, van de Graaff accelerators, etc.).
In the bunched beams of rf accelerators and some induction linacs, the longitu-
dinal forces generated by the time-varying fields tend to prevent the longitudinal
expansion and hence to reduce the cooling effect. To illustrate the effect of bunch-
ing, consider a proton beam having an initial temperature of kBT‖i = 0.5 eV at
the ion source. Now assume that this beam is accelerated to 40 keV and then in-
jected into an RFQ accelerator, where it is bunched by a factor of 10. From Equation
(5.339), the acceleration cools the longitudinal temperature to kBT‖f = 3×10−6 eV.
However, the bunching process increases this value again, by a factor of 100, to
3×10−4 eV. This follows from Equation (5.317), which implies that z̃2kBT‖ = const
if γ0 = 1 and if the normalized emittance does not change. Of course, nonlinear
beam dynamics effects in the RFQ accelerator may increase the normalized longi-
tudinal emittance, which would then further increase the temperature.

5.4.7
Stationary Line-Charge Density Profiles in Bunched Beams

Let us now proceed with a more detailed analysis of the properties of bunched
beams. The stationary longitudinal Maxwell–Boltzmann distribution in this case
is of the general form (5.312). The function φ‖ consists of the applied potential
φ‖a that provides the longitudinal focusing force and the self-field potential φ‖s/γ 2

0
that produces a defocusing force. With φ‖ = φ‖a + φ‖s/γ 2

0 , Equation (5.312) can be
written in the alternative form

f‖ = f‖0 exp

[
− γ 3

0 m(�vz)
2

2kBT‖
− qφ‖a + qφ‖s/γ 2

0

kBT‖

]
. (5.346)

The factor γ −2
0 that occurs with the electrostatic space-charge potential φ‖s , is due

to the Lorentz transformation, as explained below (p. 368). The two potentials are
commonly taken to be functions of the distance z of a particle from the center of
the bunch [i.e., φ‖a = φ‖a(z), φ‖s = φ‖s(z)]. The applied potential is assumed to
be a known function of z. Thus, if the focusing and acceleration is provided by
rf cavities, φ‖a is a periodically varying function of time, or of phase ωrf�t with
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respect to the passage of the bunch center through the cavities. Since �t corre-
lates with z = s − s0 by z = v0�t , where v0 is the centroid velocity, one can
define φ‖a as a function of z. If the bunch length is small compared to the ac-
ceptance of the rf field (see the next section), one can approximate φ‖a(z) by a
harmonic oscillator potential (∝ z2), which for convenience will be written in the
form φ‖a(z) = φ‖0[(z/z0)

2 − 1], where φ‖a = 0 at z = z0 and φ‖a(0) = −φ‖0.
The bunch usually travels through many rf cavities, as in a linear accelerator, or

many times through the same cavities, as in a circular machine. In this general
case, the applied potential amplitude would actually be a periodic function of the
bunch travel distance s [i.e., φ‖0 = φ‖0(s)]. On the other hand, if the longitudinal
force acts continuously on the beam, as in a traveling-wave electron linac, where
the bunch rides on the rf wave like a surfer on a wave in the ocean, φ‖0 is con-
stant. For the general case of periodically spaced acceleration gaps it is customary
to use the smooth-approximation theory whenever possible. This is analogous to
the treatment of transverse focusing, and in this approximation the periodic gap
system is identical to the longitudinal focusing in a traveling-wave accelerator.

With a constant or “smooth” applied harmonic-oscillator potential as discussed
above, the stationary longitudinal distribution function, representing a perfectly
matched bunch, takes the form

f‖ = f‖0 exp

{
−γ 3

0 m(�vz)
2

2kBT‖
− qφ‖0[(z/z0)

2 − 1] + qφ‖s (z)/γ 2
0

kBT‖

}
. (5.347)

If the beam energy and the applied potential are constant, the temperature T‖ will
be constant. Moreover, if changes in energy, focusing potential, or temperature
occur adiabatically, the distribution will remain in equilibrium although its density
profile may change. If we multiply Equation (5.347) by the charge q and integrate
over the velocities �vz, we obtain the longitudinal Boltzmann relation for the line
charge density ρL(z) that is,

ρL(z) = q

∫
f‖(z,�vz) d(�vz), (5.348a)

yielding

ρL(z) = C exp

{
−qφ‖0[(z/z0)

2 − 1] + qφ‖s (z)/γ 2
0

kBT‖

}
, (5.348b)

where C is constant.
Let us now analyze the space-charge potential φ‖s in the nonrelativistic limit

(which is equivalent to treating the problem in the beam frame). As we will see,
φ‖s can be defined as a function of the line-charge density ρL. We will assume that
the bunch has a cylindrically symmetric shape, and that it is inside of a cylindrical
conducting tube of radius b. The total electrostatic potential due to the space charge
of the bunch, φs , which is a function of radius r and axial position z, must obey the
Poisson equation

∇2φs(r, z) = −ρ(r, z)

ε0
, (5.349)
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Fig. 5.13 Geometry of ellipsoidal bunch in a cylindrical conducting drift tube.

where ρ(r, z) is the volume charge density in the bunch. In general, this equation
must be solved numerically. However, we can obtain useful analytical results for
the special model where the bunch is represented by a well-defined ellipsoid with
radial semiaxis a and longitudinal semiaxis zm and with uniform charge density
ρ0, as illustrated in Figure 5.13. The potential inside the ellipsoidal boundary of the
bunch in this case can be written as

φs(r, z) = φf s(r, z) + φi(r, z) + φ0, (5.350a)

where φf s is the free-space potential that can be found analytically [17, 18] and is
given by

φf s(r, z) = − ρ0

2ε0

(
1 − ME

2
r2 + MEz2

)
. (5.350b)

φi(r, z) is the potential due to the image charges on the wall of the conducting tube,
and the constant φ0 is chosen to satisfy φs(b, z) = 0 at the wall. The parameter ME

is defined as [17]

ME = 1 − ξ2

ξ2

(
1

2ξ
ln

1 + ξ

1 − ξ
− 1

)
, (5.351)

where ξ = √
1 − (a/zm)2. When zm = a, one finds that ME = 1

3 , and over the
range 0.8 < zm/a < 4, ME can be approximated fairly well by [18] ME ≈ a/(3zm).

For the line-charge density ρL(z) in the uniformly populated ellipsoid, one ob-
tains

ρL(z) = 2π

∫ a
√

1−z2/z2
m

0
ρ0r dr = ρ0a

2π

(
1 − z2

z2
m

)
,

or

ρL(z) = ρL0

(
1 − z2

z2
m

)
. (5.352)

Here

ρL0 = ρL(0) = ρ0a
2π = 3

4

Q

zm

(5.353)
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is the line-charge density at the center (z = 0) of the bunch, Q = qN the total
charge, and N the total number of particles in the bunch.

The axial gradient of the free-space part of the potential (5.350b) inside the
bunch,

∂φf s

∂z
= −ρ0

ε0
MEz, (5.354a)

is a linear function of z and can be related to the derivative of the line-charge den-
sity by

∂φf s

∂z
= g0

4πε0

∂ρL(z)

∂z
, (5.354b)

or

∂φf s

∂z
= − g0

4πε0

2ρL0

z2
m

z = − ρ0

2ε0

g0a
2

z2
m

z. (5.354c)

For the radial gradient of the free-space potential we obtain

∂φf s

∂r
= − ρ0

2ε0
(1 − ME)r = − ρ0

2ε0

(
1 − g0

2

a2

z2
m

)
r. (5.354d)

Equation (5.354b) defines the geometry factor g, which plays an important role in
the longitudinal beam dynamics. In this case we are dealing with the free-space
potential gradient of a uniformly populated ellipsoid, where we define g = g0.
Below [see Equation (5.366)] we make use of an identical relationship in the more
general case where image effects from the conducting boundary are included and
where the line-charge density ρL(z) may not be parabolic. The geometry factor g

is then different from g0 and defined by appropriate averaging over the charge
distribution.

The free-space geometry factor g0 depends on the aspect ratio zm/a of the ellip-
soid and can be related to the parameters ME or ξ by

g0 = 2
z2
m

a2
ME = 2

ξ2

(
1

2ξ
ln

1 + ξ

1 − ξ
− 1

)
. (5.355)

For small aspect ratios (0.8 < zm/a � 4), one can use g0 ≈ 2zm/3a, which yields
for the free-space gradients the approximate relations

∂φf s

∂z
≈ − ρ0

3ε0

a

zm

z = − Q

4πε0az2
m

z (5.356a)

and

∂φf s

∂r
≈ − ρ0

2ε0

(
1 − 1

3

a

zm

)
r = −3

2

Q

4πε0a2zm

(
1 − 1

3

a

zm

)
r, (5.356b)

where we introduced the total charge Q = qN of the bunch from Equation (5.353).
In the free-space environment considered so far, the electric field lines originat-

ing from the charges in the bunch look at large distances like those from a point
charge. This picture changes significantly when the conducting tube is present.
The field lines will terminate at the image charges on the wall surface and will be
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pointing predominantly in the radial direction, as illustrated schematically in Fig-
ure 5.13. The electric field and hence also the total potential of Equation (5.350) will
therefore essentially be concentrated in the region that is defined by the length 2zm

of the bunch. The image fields will reduce the axial defocusing space-charge force
and increase the radial defocusing space-charge force on the particles. Mathemat-
ically, the image charge problem must be solved by numerical methods. Such nu-
merical calculations were done recently [19] for ellipsoidal bunches with uniform
charge density in a conducting cylindrical tube of radius b where the potential dis-
tribution is of the form Equation (5.350). In these calculations the bunch aspect
ratio zm/a and the ratio of tube radius to beam radius, b/a, were varied, covering a
large number of cases in the range 1 � zm/a � 20 and 1.5 � b/a � 5. Figure 5.14
shows the potential distribution φs(0, z) and the electric field Esz(0, z) along the
axis for three bunches with (a) zm/a = 1, (b) zm/a = 5, and (c) zm/a = 10,
for b/a = 2. In addition, the electric field gradient E′

sz(z) is shown for the case
zm/a = 5 in (d). These curves illustrate the general pattern in the electric field dis-
tribution. A careful analysis of the computer results and field plots obtained for all
the cases leads to the following conclusions:

1. The axial electric field is practically linear with distance
along the entire bunch as long as the bunch length does not
exceed the tube diameter (i.e., if zm � b). This is due to the
fact that the nonlinear image field is relatively small
compared to the linear free-space field.

2. With increasing bunch length the electric field becomes
more and more nonlinear from the image effects. The data
computed for Esz(z) can be fitted quite accurately with an
analytical expression of the form

Esz(z) = E′
sz(0)z

[
1 + A

(
z

zm

)2

+ B

(
z

zm

)4
]
, (5.357)

where E′
sz(0) is the electric field gradient at the center

(z = 0), and the coefficients A, B define the strength of the
third- and fifth-order correction terms, respectively. For a
self-consistent treatment of the equilibrium bunch
distribution with images see remark and references at the
end of Appendix 4.

3. The linear electric field near the center or in short bunches
where the nonlinear terms are negligible (A ≈ 0, B ≈ 0) can
be related to the derivative of the line-charge density, in
analogy to the free-space relation (5.354b), by

Esz(z) = g(0)

4πε0

∂ρL(z)

∂z
= g(0)

4πε0

2ρL0

z2
m

z, (5.358)
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where by comparison with (5.357) we have

E′
sz(0) = g(0)

4πε0

2ρL0

z2
m

. (5.359)

Using the computed value for E′
sz(0) and the relation

(5.353), we can calculate the geometry factor g(0) as

g(0) = 2

3

4πε0

Q
E′

sz(0)z3
m. (5.360)

4. In the general nonlinear case, we can define a geometry
factor g that describes the average behavior of the
longitudinal distribution. The proper way of doing this is to
take the average zEsz of the computed electric field and
compare it with the average zEsz for the equivalent linear
field. Now, by definition,

zEsz = 2π ∫zm

0 ∫a
√

1−(z/zm)2

0 zEszρ(r, z)r dr dz

Q/2
, (5.361a)

where in our case the volume charge density in the ellipsoid
is constant [i.e., ρ(r, z) = ρ0]. The computer results show
that the axial electric field Esz is essentially independent of
the radius r , so that (5.361a) can be integrated in r and the
average zEsz can be related to the integral over the
longitudinal line charge density ρL(z) by

zEsz = ∫zm

0 zEsz(z)ρL0(1 − z2/z2
m) dz

Q/2
. (5.361b)

The equivalent linear electric field can be written in terms of
a general geometry factor g as

Esz(z) = g

4πε0

∂ρL(z)

∂z
= g

4πε0

2ρL(z)

z2
m

z. (5.362)

By evaluating the integral (5.361b) using (5.357) for Esz(z)

and comparing the result with (5.362), one obtains for the
geometry factor g the relation

g = g(0)

(
1 + 3

7
A + 5

21
B

)
. (5.363)

5. The longitudinal potential function φ‖s(z) can be obtained
by integrating Esz(z) in Equation (5.357). However, it will be



366 5 Self-Consistent Theory of Beams

more useful to relate φ‖s to the line-charge density by
integrating Equation (5.362), which yields

φ‖s(z) � g

4πε0
ρL(z) + const = g

4πε0
ρL0

(
1 − z2

z2
m

)
+ const. (5.364)

For short bunches when g = g(0) this expression is exact,
whereas for long bunches it is an approximation based on
the equivalent linear field.

6. The geometry factors g0 for free space [Equation (5.355)],
g(0) [Equation (5.360)], and g [Equation (5.363)] for the
various cases that were calculated are listed in Table 5.3 and
plotted versus the aspect ratio zm/a of the bunch in
Figure 5.15. As can be seen, g(0) and g rise from values that
are close to g0 at zm/a = 1 and then level off as zm/a

increases. The asymptotic values in the flat region of the
curves are found to relate to the ratio b/a as [19]

gmax(0) = 2 ln
b

a
, (5.365a)

gmax ≈ 0.67 + 2 ln
b

a
. (5.365b)

The asymptotic result gmax(0) = 2 ln(b/a) can be derived
analytically [19], and these analytical values were used in the
flat regions of the curves for g(0).

In summary, we can qualitatively distinguish between three regions with regard
to the ratio of the bunch length 2zm and the diameter 2b of the conducting tube:

Table 5.3 Geometry parameters g(0), and g for different values of zm/a and b/a.

b/a = 1.5 b/a = 2 b/a = 3 b/a = 5 Free Space
Eccentricity g(0) g g(0) g g(0) g g(0) g g0

1 0.58 0.59 0.63 0.63 0.66 0.66 0.66 0.66 0.67
1.5 0.80 0.85 0.93 0.94 1.01 1.01 1.04 1.04 1.05
2 0.91 1.02 1.14 1.18 1.31 1.31 1.37 1.37 1.39
3 0.94 1.21 1.35 1.48 1.73 1.76 1.90 1.90 1.96
4 0.89 1.30 1.41 1.65 1.98 2.05 2.29 2.30 2.41
5 0.85 1.38 1.40 1.74 2.12 2.24 2.57 2.60 2.79
7.5 0.81 1.38 1.39 1.86 2.19 2.52 2.96 3.08 3.52
10 0.81 1.40 1.39 1.93 2.19 2.63 3.11 3.34 4.06
15 0.81 1.40 1.39 1.97 2.20 2.72 3.19 3.58 4.84
20 0.81 1.41 1.39 1.97 2.20 2.77 3.21 3.68 5.40

Source: Reference 19.
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Region 1 (zm � b). The axial electric field is linear and hence satisfies the relation
(5.358) for a parabolic line-charge density; the two geometry factors are essentially
identical [i.e., g = g(0)], slightly lower than the free-space parameter g0, and in-
crease with zm/a.

Region 2 (b � zm � 3b). The axial electric field becomes increasingly nonlinear,
the parabolic bunch relation (5.358) is no longer satisfied, the average geometry
factor, g, becomes greater than g(0), but the rate of increase with zm/a shill begins
to level off.

Region 3 (zm > 3b). The nonlinearity of the axial electric field increases further as
the fifth-order term (∼Bz5) becomes more and more significant, and the parabolic
bunch relation (5.358) is even less satisfied than in region 2; the geometry factors
g(0) and g are essentially independent of the bunch length, or zm/a, and can be
approximated by the values given in (5.365a) and (5.365b).

We note that this behavior of the parabolic bunch with image fields differs sig-
nificantly from the description found in the literature (see, e.g., [C.17, p. 181, or
D.11, p. 24]), where the parabolic line-charge profile is assumed to be valid for any
bunch length that is much larger than the tube diameter (zm � b) and where the
g-factor is assumed to have the constant value g = 1 + 2 ln(b/a). By contrast, we
find that the parabolic profile, and hence the linearity of the electric field gradient,
is valid only for short bunches (zm < b); that the g-factor is a function of zm/a and
b/a, which increases at first with the bunch length and then levels off to an average

Fig. 5.15 Variation of the geometry factors g0, g(0), and g

defined in the text with the ratio of bunch length to radius,
zm/a, for different ratios of tube radius to bunch radius, b/a.
(From Reference 19.)
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value of g ≈ 0.67 + 2 ln(b/a); and that the space-charge electric field becomes in-
creasingly nonlinear toward the edges as the bunch becomes longer. The problem
concerning the correct value of the g-factor will surface again in Chapter 6 when
we deal with longitudinal space-charge waves and instabilities [see the discussion
in connection with Equations (6.68), (6.69a), (6.69b), and Figure 6.18]. As we will
see there, the g-factors for bunched beams and the g-factors for perturbations in
continuous beams are different.

The preceding investigation of the behavior of an ideal ellipsoidal bunch in
a cylindrical tube was intended to given us some physical insight into the ef-
fects of image charges. After this detour we return to the problem of finding the
self-consistent longitudinal line-charge profiles for the stationary thermal distri-
bution, as stated in Equation (5.348b). To make further analytic progress with
our model, we assume that the relations Esz ∼ ∂ρL/∂z in Equation (5.362) and
φ‖s (z) ∼ ρL(z) in Equation (5.364) are also satisfied in an approximate sense (and
with the caveats presented in the preceding discussion) when ρL(z) is not exactly
parabolic. This assumption is necessary to reduce the three-dimensional problem
to a one-dimensional problem whereby the axial space-charge field Esz is related
to the derivative of the line-charge density and thus is only a function of z. The
approximation involved is usually quite satisfactory, and the relation Esz ∼ ∂ρL/∂z

is widely used in the literature (see also Sections 6.3.2 and 6.3.3). We note that
the one-dimensional approximation for the longitudinal motion is also an implicit
assumption in our two-temperature model (5.274a) for the Maxwell–Boltzmann
distribution.

The above analysis so far has been nonrelativistic. To extend it to relativistic
beams, we must transform the electrostatic potential and field from the beam
frame to the laboratory frame by multiplying with the factor γ −2

0 , as in the trans-
verse case. This result can be obtained by applying a Lorentz transformation to
∂ρL/∂z in the beam frame yielding (∂ρL/∂z)beam = (∂ρL/∂z)lab/γ

2
0 due to the rel-

ativistic contraction of longitudinal dimensions. Thus one obtains in lieu of (5.362)
and (5.364) the relativistic relations

Esz = − g

4πε0γ
2
0

∂ρL

∂z
, (5.366)

φ‖s
γ 2

0

= g

4πε0γ
2
0

ρL(z). (5.367)

An alternative way is to express the laboratory electric field of the bunch in the
form of Equation (2.35) that includes the inductive field due to the time-varying
magnetic vector potential Az (Faraday’s law), that is,

Esz = −∂φ‖s
∂z

− ∂Az

∂t
. (5.368a)

As will be discussed in the next chapter [see Equation (6.68)], this relation may be
written as

Esz = − g

4πε0

(
∂ρL

∂z
+ 1

c2

∂I

∂t

)
, (5.368b)
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and with ∂I/∂t ≈ −v2
0∂ρL/∂z, one obtains Equation (5.366) (i.e., the same result

as with the Lorentz transformation).
By substituting the self-field potential (5.367) into the Boltzmann equation

(5.348b) we obtain an integral equation from which the line-charge density pro-
file ρL(z) can be self-consistently calculated, namely

ρL(z) = ρL(0) exp

{
− qφ‖0

kBT‖
z2

z2
0

+ qgρL(0)

4πε0γ
2
0 kBT‖

[
1 − ρL(z)

ρL(0)

]}
. (5.369)

This equation can be solved numerically in a straightforward manner [13]. The re-
sults for eight different temperatures are given in Figure 5.16. For zero temperature
(T‖ → 0) we find that

ρL(z) = ρL0

(
1 − z2

z2
0

)
, (5.370)

with

ρL0 = ρL(0) = 4πε0γ
2
0 qφ‖0

qg
, (5.371)

which represents a parabolic line-charge density. Since φ‖s ∝ ρL(0)[1 − z2/z2
0], the

space-charge force Esz is linear in z, and it exactly balances the applied longitudinal
force in this laminar-flow limit. The behavior of a parabolic line-charge profile in
a low-temperature beam with linear external focusing has recently been studied
experimentally [20].

In the high-temperature case (kBT‖ � qφ‖0), where the space-charge forces can
be neglected, the longitudinal density profile approaches the Gaussian form

ρL(z) = ρL(0) exp

(
− z2

2∂2
z

)
, (5.372)

where ∂z = z̃ = (z2)1/2 is the rms width of the distribution. The Gaussian profile is
a good approximation when space-charge forces are negligible, while the parabolic
profile represents a bunched beam near the space-charge limit. We should note,
however, from our preceding discussion that the self-consistent inclusion of image
forces could yield a nonparabolic profile in the latter case.

Table 5.4 lists the parameter values associated with each of the eight density pro-
files. The column for z̃/z̃0 shows the ratio of the rms width z̃ of each curve to the
rms width z̃0 of the parabolic zero-temperature profile in case (a) of Figure 5.16.
Each density profile can be correlated with the equivalent parabolic beam of half-
length zm having the same perveance KL, longitudinal rms width z̃, and rms emit-
tance ε̃zz′ = z̃2kz, where zm = √

5z̃. As will be shown in the next section, KL is
defined by

KL = 3

2

gNrc

β2
0γ 5

0

= z3
m

(
k2
z0 − k2

z

)
, (5.373)
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Fig. 5.16 Line-charge density profiles for eight different
longitudinal temperatures: (a) longitudinal focusing force is
kept constant; (b) longitudinal focusing force is increased to
keep rms radius constant. (From Reference 13.)

Table 5.4 Parameter values for the eight longitudinal charge density profiles in Figure 5.16.

Curve kBT ‖/qφ‖0 ρL(0)/ρL0 z̃/z̃0 kz/kz0 ρL(0)/ρL0 (z̃ = z̃0)

1 10 0.237 5.03 0.994 1.19
2 5 0.332 3.59 0.985 1.19
3 2.5 0.455 2.59 0.965 1.18
4 1 0.645 1.76 0.898 1.14
5 0.5 0.777 1.41 0.793 1.10
6 0.25 0.873 1.21 0.653 1.06
7 0.1 0.947 1.09 0.459 1.03
8 0 1 1 0 1

where kz and kz0 are the focusing wave constants with and without space charge, N
is the total number of particles in the bunch, and rc = q2/4πε0mc2 is the classical
particle radius. One finds that

kBT‖
qφ‖0

= 2

5

k2
z

k2
z0

z̃2

z̃0
or

kz

kz0
=
(

5

2

kBT‖
qφ‖0

)1/2
z0

zm

, (5.374)

since z̃0/z̃ = z0/zm.
The results for the tune depression kz/kz0 for the longitudinal particle oscilla-

tions shown in Table 5.4 have been calculated from Equation (5.374). They can be
correlated with the longitudinal perveance parameter KL by Equation (5.373).
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5.4.8
Longitudinal Motion in rf Fields and the Parabolic Bunch Model

In the preceding section we analyzed the properties of the stationary state of the
longitudinal distribution in a smooth, linear focusing system where the applied
potential φ‖a(z) is a quadratic function of the position z from the bunch center.
We now proceed to derive the longitudinal equation of motion, which governs the
general behavior of the bunch and which yields the stationary state, or matched
beam, as a special solution. Since most machines employ rf fields for the acceler-
ation and longitudinal bunching of the beam, we will analyze the particle motion
in such fields. The forces acting on the particles in an electromagnetic field are,
in general, nonlinear. We start with this general situation and then consider the
special case where the bunch length is small compared to the rf wavelength, so
that the linear approximation for the applied focusing force is valid. After that we
will revisit the ellipsoidal bunch with parabolic line-charge density of the preceding
section. We show that there exists a longitudinal phase-space distribution that sat-
isfies the steady-state Vlasov equation, has a parabolic line-charge profile, and has
linear forces over the entire range of possible emittance and space-charge parame-
ters. This model can serve as an equivalent linear beam for the generally nonlinear
longitudinal Maxwell–Boltzmann distribution. It thus plays the same role for the
longitudinal beam physics as the K–V distribution does for the transverse phase
space. Unfortunately, the K–V distribution cannot be extended self-consistently
to six-dimensional phase space, as such an extension leads to a nonlinear space-
charge force in the longitudinal direction (see Problem 5.12).

Let us now start with the derivation of the longitudinal equation of motion in
rf fields. We will accomplish this task by considering the acceleration and longi-
tudinal focusing process for a bunch of charged particles moving in a traveling
electromagnetic wave. We ignore the details of mode structure, geometry, and ra-
dial variation as represented by the Bessel functions for cylindrical waveguides, and
assume a TM wave having a longitudinal electric field component, which we write
in the simple form

Eaz = Em cos ϕ. (5.375)

Em is the peak electric field and ϕ represents the phase of the particle with respect
to the peak field and is defined by the relation

ϕ = ωrft − ωrf

∫ s

0

ds

v(s)
, (5.376a)

or

ϕ = ωrft − ωrfs

v0
(5.376b)

when v(s) ≈ v0 is approximately constant. Here ωrf is the angular frequency of the
wave and v(s) is the particle velocity, which is an increasing function of distance s

when the particle is accelerated. We will assume that the phase velocity of the wave,
vp , increases with distance so that the particle at the center of the bunch moves in
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Fig. 5.17 (a) Accelerating field as a function of phase; ϕ0
denotes the synchronous phase (bunch centroid), ϕ a
nonsynchronous particle; (b) particle trajectories in the �E−ϕ
phase plane, including the “separatrix” which separates the
stable from the unstable regions.

synchronism with the wave. Hence the velocity v0 of this “synchronous” particle
is the same as the phase velocity [i.e., v0(s) = vp(s)], and its phase ϕ0 remains
constant.

This simple picture of a traveling wave, which is illustrated in Figure 5.17, pro-
vides a good general description of the “smooth” longitudinal motion in rf linacs
and synchrotrons with rf cavities. Factors such as the gap transit time in drift-tube
linacs or the harmonic number h = ωrf/ω0 between the rf and the orbital fre-
quency ω0 in synchrotrons can easily be taken into account by appropriate changes
of the field amplitude Em. For details we must refer to the various books on particle
accelerators listed in the bibliography. In this section we consider the longitudinal
motion in a linear accelerator. The extension to circular machines is treated in Sec-
tion 5.4.9.

Figure 5.17(a) shows the accelerating field versus phase. The synchronous parti-
cle has phase ϕ0 and momentum P0, and its momentum change is defined by the
equation of motion

dP0

dt
= mc

d(β0γ0)

dt
= qEm cos ϕ0, (5.377)

where ϕ0 remains constant and the space-charge force is zero at the center of the
bunch. A nonsynchronous particle with phase ϕ and momentum P = βγmc will
experience both the applied force qEm cos ϕ and the space-charge force qEsz, and
its equation of motion is given by

dP

dt
= mc

d(βγ )

dt
= qEm cos ϕ + qEsz. (5.378)
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In Figure 5.17 the phases ϕ0 and ϕ of the two particles considered are located to the
left of the crest of the wave where the electric field is rising with time t . As we will
see below, this is the region where the motion is stable. To a stationary observer, the
nonsynchronous particle passes earlier in time than the synchronous particle. If we
plot the wave as a function of distance, as is done in Figure 5.19, the two particles
are both located to the right of the peak, and the nonsynchronous particle is ahead
of the synchronous particle. These two different pictures regarding the phase ϕ of
a particle as defined in Equation (5.376) must be kept in mind since we will now
change from time t to distance s as the independent variable. It should be noted
in this context that our definitions of phase (5.376) and electric field (5.375) are not
unique. Quite often the phase is defined as (ϕ∗ = ωrfs/v0 − ωrft or the electric
field as E∗

az = Em sin ϕ∗, where we use the asterisk (∗) to distinguish the two
cases. The relevant equations can be readily converted to our notation by making
the transformation ϕ∗ = −ϕ in the first case, or ϕ∗ = ϕ + (π/2) in the second case.

To proceed now with our analysis, it will be convenient to use energy E instead
of momentum P . With v0 = ds/dt , dP/dt = (dE/dt)/v0 = dE/ds from Equation
(2.25), we can write Equation (5.377) in the form

d

ds

Ec

mc2
= dγ0

ds
= qEm

mc2
cos ϕ0, (5.379)

which determines the increase in energy Ec of the synchronous particle. The en-
ergy of a nonsynchronous particle differs from that of the synchronous particle
by �E = E − Ec, and the rate of change is obtained by subtracting (5.378) from
(5.377), which yields

d

ds

�E

mc2
= d

ds
(γ − γ0) = qEm

mc2
(cos ϕ − cos ϕ0) + qEsz

mc2
. (5.380)

The phase difference �ϕ = ϕ – ϕ0 changes with the velocities v = βc and v0 = β0c

according to the relation

d

ds
(�ϕ) = d

ds
(ϕ − ϕ0) = −ωrf

c

(
1

β
− 1

β0

)
. (5.381)

Let us now assume that the energy difference �E is always very small compared
to the energy of the synchronous particle (beam centroid) (i.e., �E = �γmc2 �
γ0mc2). Then, using the relation β = (γ 2 − 1)1/2/γ , we obtain by Taylor expansion
the result

1

β
− 1

β0
= − γ − γ0

(γ 2
0 − 1)3/2

= − �γ

β3
0γ 3

0

(5.382)

to first order in the energy difference �γmc2. Thus Equation (5.381) can be written
in the alternative form

d

ds
(�ϕ) = −ωrf

c

�γ

β3
0γ 3

0

= −2π

λ

�E

mc2

1

β3
0γ 3

0

= −2π

λ

�P/P0

β0γ
2
0

, (5.383)
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where we introduced the wavelength λ = 2πc/ωrf of the wave. By solving (5.383)
for �E and substituting in (5.380), we obtain a single equation for the phase dif-
ference between a given particle and the bunch centroid:

d

ds

[
β3

0γ 3
0

d

ds
(�ϕ)

]
= −2π

λ

qEm

mc2
(cos ϕ − cos ϕ0) + 2π

λ

qEsz

mc2
. (5.384)

If the motion is stable, the particles will oscillate in phase and energy about the syn-
chronous particle (bunch centroid). To examine the stability conditions we assume
that the energy γ0mc2 changes adiabatically. The factor β3

0γ 3
0 can then be treated

as approximately constant during one phase oscillation period, so that Equation
(5.384) becomes

β3
0γ 3

0
d2

ds2
(�ϕ) = −2π

λ

qEm

mc2
(cos ϕ − cos ϕ0) + 2π

λ

qEsz

mc2
. (5.385)

Let us now temporarily neglect the space-charge force by setting qEsz = 0. By
multiplying both sides of Equation (5.385) with d(�ϕ)/ds, we can integrate once
and obtain

1

2
β3

0γ 3
0

[
d(�ϕ)

ds

]2

= −2π

λ

qEm

mc2
(sin ϕ − ϕ cos ϕ0 + C), (5.386)

where C is an integration constant.
By substituting for d(�ϕ)/ds from Equation (5.383), we get

2π(�E)2

2β3
0γ 3

0 λmc2
+ qEm(sin ϕ − ϕ cos ϕ0 + C) = 0. (5.387)

The constant C depends on the initial conditions (�Ei, ϕi) and is readily evaluated
for any given set of the parameters β0γ0, λ, Em, ϕ0, and q/m. For each value of C,
Equation (5.387) gives a possible trajectory in the �E−ϕ phase plane. Several such
trajectories are shown in Figure 5.17. With the choice of the synchronous phase
ϕ0 < 0 in the figure we see that the particle motion is stable provided that the
initial conditions are within the so-called separatrix. Inside the separatrix, particles
move on closed curves in a counterclockwise direction, as illustrated in the figure.
Particles whose initial phase and/or energy values are outside the separatrix will
not be trapped and accelerated by the wave. They move on unstable trajectories
similar to the one shown in Figure 5.17. Thus the separatrix, also known in the
literature as the rf bucket, separates the stable from the unstable trajectories. As
shown in Figure 5.17, the separatrix intersects the positive side of the ϕ-axis at
the point ϕmax = −ϕ0, where ϕ0 < 0 represents the synchronous phase. Setting
ϕ = −ϕ0, �E = 0 in Equation (5.383) yields the value

C = sin ϕ0 − ϕ0 cos ϕ0 (5.388)

that defines the trajectory for the separatrix. The value ϕmin where the separatrix
intersects the ϕ-axis on the negative side is found by numerical integration. For
small values of the synchronous phase (i.e., |ϕ0| � π/2), one finds that ϕmin ≈
−2|ϕ0|, so that the phase difference �ϕ = ϕ – ϕ0 is to good approximation given by

−2|ϕ0| � �ϕ � |ϕ0| for ϕ0 � π

2
. (5.389)
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Fig. 5.18 Separatrix and particle trajectories in �E−�ϕ phase
plane for two values of the synchronous phase: (a) −30◦; (b)
−90◦. Particle trajectories inside of the separatrix are closed
stable orbits; those outside the separatrix are unstable.

As an example, for ϕ0 = −30◦, one finds −60◦ � �ϕ � 30◦, where ϕmax = 30◦ is
exact and |ϕmin| = 60◦ is about 3% greater than the exact value.

When ϕ0 = −90◦, there is no net acceleration of the bunch, the constant C has
the value C = −1, and the separatrix extends over the entire period of the rf wave,
that is,

−π � �ϕ � π. (5.390)

The limiting values in the energy �E of the separatrix occur at the synchronous
phase. By substituting ϕ = ϕ0 and the relation (5.388) in (5.387), one obtains

�Emax = −�Emin = 2

[
β3

0γ 3
0

λ

2π
mc2qEm(ϕ0 cos ϕ0 − sin ϕ0)

]1/2

. (5.391)

When ϕ0 = 0, the area of the separatrix in the �E−ϕ plane shrinks to a point (i.e.,
there is no stable motion for a nonsynchronous particle). On the other hand, when
ϕ0 = −90◦, the bucket size reaches a maximum with �ϕ defined by (5.390) and
�Emax having the value

�Emax = 2

[
β3

0γ 3
0

λ

2π
mc2qEm

]1/2

for ϕ0 = −π

2
. (5.392)

Figure 5.18 shows the shape of the separatrix and particle trajectories in the
�E−�ϕ phase plane for two values of the synchronous phase. The case ϕ0 = −30◦
[Figure 5.18(a)] is typical for the acceleration regime. The separatrix in this case has
a total width of �ϕmax ≈ 90◦, as discussed above, but the particle bunch usually
occupies a much smaller phase-space area, like the little circle at the center of the
separatrix. When ϕ0 = −90◦ [Figure 5.18(b)], the separatrix spans the entire phase
range −π � �ϕ � π , as shown in the picture on the right side. This regime is
used to capture the beam from an injector, and the particles fill the entire 2π phase
interval of the separatrix. Usually, the energy spread of the injected beam is consid-
erably smaller than the height �Emax of the rf bucket. However, as is evident from
the figure, there will always be some particles near the endpoints of the bucket
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(−π, π) that will not be trapped if their energy �E is outside the separatrix bound-
ary. A typical rf accelerator starts with ϕ0 = −90◦ to capture the injected beam, and
then the synchronous phase is shifted adiabatically toward the acceleration point
(e.g., ϕ0 = −30◦).

The shapes of the stable orbits inside the separatrix reflect the fact that the ap-
plied force is in general nonlinear with regard to the phase difference �ϕ. However,
if �ϕ � 1, we can use the approximation cos(ϕ0 +�ϕ)− cos ϕ0 ≈ −�ϕ sin ϕ0 and
linearize the equation of motion. Thus, with Esz = 0, Equation (5.385) becomes

β3
0γ 3

0
d2�ϕ

ds2
= 2π

λ

(
qEm

mc2
sin ϕ0

)
�ϕ. (5.393)

This may be written in the harmonic-oscillator form

d2(�ϕ)

ds2
+ k2

l �ϕ = 0, (5.394)

where

kl =
[

− 2πqEm sin ϕ0

λmc2β3
0γ 3

0

]1/2

, (5.395a)

or

ωl = klβ0c =
[

− ωrfqEm sin ϕ0

β0γ
3
0 mc

]1/2

. (5.395b)

Here kl represents the wave number for the longitudinal phase oscillation, with
wavelength λl = 2π/kl ; the corresponding oscillation frequency ωl = klv0 is
known as the synchrotron frequency. As can be seen from Equation (5.395), stable
oscillations occur only for sin ϕ0 < 0, or ϕ0 < 0, in agreement with our earlier
discussion.

Equation (5.394) has the solution

�ϕ = A cos(kls + α), (5.396)

where A and α are defined by the initial conditions. The corresponding oscillations
in the energy are obtained by differentiation of (5.396), which in view of (5.383)
yields

d(�ϕ)

ds
= −Akl sin(kls + α) = −2π

λ

�E

β3
0γ 3

0 mc2
,

or

�E = B sin(kls + α), (5.397)

where

B = Aklλβ
3
0γ 3

0 mc2

2π
. (5.398)

A particle with given phase amplitude A or given initial conditions (�Ei, �ϕi)

traces out an ellipse in �E−�ϕ phase space given by the equation

(�ϕ)2

A2
+ (�E)2

B2
= 1, (5.399)
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and the ratio of the semiaxes (�ϕm, �Em) of this ellipse is

�Em

�ϕm

= B

A
= klλβ

3
0γ 3

0 mc2

2π
=
[

− qEm sin ϕ0λβ
3
0γ 3

0 mc2

2π

]1/2

. (5.400)

We conclude from the above analysis of particle acceleration with rf fields that the
linearity of the applied force is assured only if the bunch size is small compared
to the phase width of the rf bucket. This linearity condition is usually satisfied in
most rf machines during the acceleration regime. The notable exceptions are the
injection from the source into an rf linac or from the rf linac into a synchrotron
and the debunching (and rebunching) cycles in storage rings where the buckets
can be completely filled. In these cases the longitudinal beam dynamics is highly
nonlinear and becomes even more complicated when space-charge forces play a
major role. Particles in the high-energy tail of the Maxwell–Boltzmann distribution
with such a nonlinear potential function are then no longer confined and leak out of
the rear of the separatrix. Furthermore, in the low-temperature limit the line-charge
density profile is no longer parabolic with displacement from the beam centroid.
This follows from the laminar-flow equilibrium condition, where the space-charge
field completely cancels the applied field (i.e., Esz = Eaz) and the net potential is
zero. We note that the applied potential in an rf bucket is reduced by the space-
charge potential. As a result, the net bucket height shrinks and goes toward zero in
the laminar-flow limit, and the net bucket area in �E−�ϕ phase space becomes a
straight line in this limit. Further discussion of this topic is beyond the scope of this
book. However, before we return to the initially stated goal of developing a linear
model with space charge in this section, it will be useful to transform the above
results from the �ϕ, �E variables to the z, z′ variables in which we described the
longitudinal distribution earlier.

From the definition of phase in Equation (5.376b) and assuming adiabatic mo-
tion, we obtain the relation

�ϕ = ϕ − ϕ0 = −ωrf

v0
(s − s0) = −ωrf

v0
z. (5.401)

For the energy difference one finds that

�E = mc2�γ = mc2 �β

β2
0γ 3

0

= mc2 1

β0γ
3
0

dz

ds
. (5.402)

The difference in the applied force between a particle at position z in the bunch
and the bunch centroid is given by

�Faz = qEm[cos(ϕ0 + �ϕ) − cos ϕ0] = qEm

[
cos

(
ϕ0 − ωrfz

v0

)
− cos ϕ0

]
.

(5.403)

This equation may be integrated to get the potential function �U = −∫ �Faz dz

for the applied force, which yields, with �U = 0 at z = 0, the expression

�U = qEm

v0

ωrf

[
sin

(
ϕ0 − ωrfz

v0

)
− sin ϕ0 + ωrf

v0
z cos ϕ0

]
. (5.404)
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Fig. 5.19 Accelerating electric field (a); potential (b) and
trajectory diagram in z−z′ plane (c) as seen by an observer
moving with a frame where the synchronous particle is at the
origin.

The function is plotted schematically in Figure 5.19(b) versus the displacement
ωrfz/v0 from the synchronous phase. The accelerating field is shown on top (a) with
−ϕ pointing in the positive z-direction (i.e., the synchronous phase ϕ0 is ahead of
the crest of the wave). Figure 5.19(c) shows the separatrix and typical particle tra-
jectories in a z−z′ trace-space diagram. This diagram is basically a mirror image
of the �E−ϕ plot in Figure 5.17, with distance z, rather than time t , being the
independent variable on the abscissa. Figure 5.19(b) and (c) illustrate the longitu-
dinal focusing potential and particle motion, respectively, as seen by an observer
moving in a coordinate frame in which the synchronous particle is at the origin.
Clearly, only particles whose total energy is less than a maximum value �Umax are
trapped and accelerated by the wave. Note from Equation (5.404) that the slope
z′ = β0γ

3
0 �E/mc2 of a nonsynchronous particle in the moving frame is propor-

tional to the particle’s difference in kinetic energy �E with respect to the synchro-
nous particle as measured in the laboratory frame.

The general shape of the potential function �U(z) is highly nonlinear. How-
ever, near the origin (i.e., for particles whose oscillation amplitude is significantly
smaller than the half width of the separatrix), the potential is harmonic (∼z2) and



5.4 The Maxwell–Boltzmann Distribution 379

the focusing force is linear in z. By linear expansion of (5.403) we obtain for the
applied force

�Faz =
(

ωrf

β0c
qEm sin ϕ0

)
z = −qE′

azz, (5.405)

where

E′
az = 2π

λβ0
Em| sin ϕ0| (5.406)

is the field gradient defined as a positive quantity and 2π/λ = ωrf/c.
With the aid of the relations (5.401) to (5.406) we can transform our equations

of motion in an rf accelerator to the coordinates z, z′ in the moving frame. Thus
Equation (5.393) becomes

β2
0γ 3

0
d2z

ds2
= −qE′

azz, (5.407)

which is linear in the coordinate z.
Let us now assume that the space-charge force is also linear with a constant gradi-

ent E′
sz. By adding this linear space-charge force, Equation (5.407) can be written as

d2z

ds2
= z′′ = − qE′

azz

mc2β2
0γ 3

0

+ qE′
szz

mc2β2
0γ 3

0

. (5.408)

As we discussed in connection with the zero-temperature limit of the thermal dis-
tribution [Equation (5.369)], a parabolic line-charge density profile produces a lin-
ear space-charge force. We therefore assume for the desired linear-beam model that
ρL(z) is given by

ρL(z) = ρL0

(
1 − z2

z2
m

)
, (5.409)

so that in view of (5.366) we obtain

E′
sz = g

4πε0γ
2
0

2ρL0

z2
m

. (5.410)

The line-charge density ρL0 = ρL(0) at the bunch center can be related to the total
number N of particles, or charge Q = qN , in the bunch and the half length zm by
Equation (5.353), and the rms width is given by

z̃ = (z2)1/2 = 1√
5
zm = 0.447zm. (5.411)

Using these relations one obtains for the equation of motion (5.408)

z′′ = − qE′
az

mc2β2
0γ 3

0

z + 3

2

gNrc

β2
0γ 5

0 z3
m

z, (5.412)

where rc is the classical particle radius. This equation has the desired linearity with
the displacement z of the particle from the bunch center. We can write it in a form
that is similar to the transverse force equations (4.111), namely

z′′ + κz0z − KL

z3
m

z = 0, (5.413)
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where

κz0 = qE′
az

mc2β2
0γ 3

0

(5.414)

and

KL = 3

2

gNrc

β2
0γ 5

0

. (5.415)

Note that the longitudinal focusing function κz0 has units of m−2, as in the trans-
verse case, while the longitudinal perveance parameter KL has the unit of length [m],
in contrast to the dimensionless perveance K for the transverse motion.

The equation for the longitudinal beam envelope zm can be obtained by a pro-
cedure that is analogous to the transverse case [see Equation (4.178)]. Basically,
this amounts to replacing z by zm and adding an emittance term in the trajectory
equation (5.413); one gets

z′′
m + κz0zm − KL

z2
m

− ε2
zz′

z3
m

= 0, (5.416)

where εzz′ represents the unnormalized total longitudinal emittance of the bunch
(in the moving frame) enclosing the entire distribution of the particles given in
(5.409). The applied longitudinal force κz0 as well as the beam envelope zm are in
general functions of the distance s, usually of a periodic form that reflects the pe-
riodic traversal of acceleration and/or bunching gaps by the beam, as in the trans-
verse case. For a continuously acting force, as when the bunch is propagating in a
traveling wave or in the smooth approximation of a periodic system, we can replace
κz0 by the constant k2

z0 = (2π/λz0)
2, where kz0 = kl . We then obtain from (5.416)

for the matched-beam solution with z′′
m = 0 the fourth-order algebraic equation for

the envelope

k2
z0zm − KL

z2
m

− ε2
zz′

z3
m

= 0, (5.417a)

or

z4
m − KL

k2
z0

zm − ε2
zz′

k2
z0

= 0. (5.417b)

When the space-charge force can be neglected (KL = 0), the solution is

zm = zm1 =
(

εzz′

kz0

)1/2

. (5.418)

On the other hand, when the emittance is negligible (εzz′ = 0) one gets

zm = zm2 =
(

KL

k2
z0

)1/3

. (5.419)

The general solution of (5.417b) can be approximated by the relation [21]

zm ≈
(

ε
3/2
zz′

k
3/2
z0

+ KL

k2
z0

)1/3

, (5.420)
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which yields the correct results zm1 for KL = 0 and zm2 for εzz′ = 0, and for the case
where both terms are nonzero, it deviates by no more than +3.4% from the exact
solution. Most important, this relation exhibits the scaling of the beam envelope
with the beam parameters (εzz′ , KL) and the longitudinal focusing strength (kz0).

The effects of space charge on the longitudinal focusing of the bunch can be
described by introducing the wave constant kz, defined as

kz =
(

k2
z0 − KL

z3
m

)1/2

, (5.421)

so that (5.417a) becomes

k2
z zm = ε2

zz′

z3
m

. (5.422)

In analogy to the transverse motion, we can define a longitudinal tune depres-
sion by

kz

kz0
=
(

1 − KL

z3
mk2

z0

)1/2

, (5.423a)

or

kz

kz0
=
(

1 + KLzm

ε2
zz′

)−1/2

. (5.423b)

For a system with a constant or smooth force, where the last nine equations
hold, the longitudinal Hamiltonian H‖ is a constant of the motion, and hence,
any distribution that is a function of H‖ satisfies the stationary longitudinal Vlasov
equation. Defining the Hamiltonian as

H‖ = 1

2

(
k2
z0 − KL

z3
m

)
z2 + 1

2
z′2 = 1

2
k2
z z

2 + 1

2
z′2, (5.424)

Neuffer [22] showed that

f (H‖) = f‖0
√

2(Hmax − H‖) = f‖
√

k2
z z

2
m − k2

z z
2 − z′2 (5.425)

for 0 < H‖ < Hmax and zero elsewhere produces the line-charge density profile
(5.409) and hence the desired linear equation of motion (5.413).

The corresponding distribution for the nonuniform (e.g., periodic) case, where
the focusing function is κz0(s) and varies with distance s so that H‖ is no longer a
constant of the motion, is given by [22]

f (z, z′, s) = 3N

2πε0

√√√√1 − z2

z2
m

− z2
m

ε2
zz′

(
z′ − z′

m

zm

z

)2

. (5.426)

The quadratic function under the square root is just a special form of the equation
of the emittance ellipse in z−z′ trace space. Thus, in analogy with the transverse
K–V beam, this longitudinal distribution is a function of the emittance εzz′ , and
since εzz′ is an invariant when there is no acceleration and the forces are linear, the
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distribution satisfies the time-independent Vlasov equation. From the customary
Courant–Snyder relation

γ̂ z2 + 2α̂zz′ + β̂z′2 = εzz′ (5.427)

one obtains by multiplication with β̂ and with the substitutions β̂γ̂ = 1 + α̂2,
β̂εzz′ = z2

m,

z2

z2
m

+ β̂2

z2
m

(
z′ + α̂

β̂
z

)2

= 1,

and finally, with z′
m = −(α̂/β̂)zm (see Figure 3.26),

z2

z2
m

+ z2
m

ε2
zz′

(
z′ + z′

m

zm

z

)2

= 1. (5.428)

The longitudinal beam envelope zm and its slope z′
m can be determined by solving

the envelope equation (5.416) for given initial conditions and parameter values.
We see that the Neuffer distribution plays the same role for the longitudinal

motion as the K–V distribution for the transverse motion. Like the K–V distribu-
tion, it yields linear forces over the entire parameter regime from a laminar beam
(εzz′ = 0) to an emittance-dominated beam (KL = 0). It therefore can be used
as an equivalent analytical beam to model the longitudinal behavior of laboratory
beams or of the nonanalytical Maxwell–Boltzmann distribution.

For comparison of different distributions it is desirable to use rms quantities
such as rms beam envelope and rms emittance, as in the transverse case. With
zm = √

5z̃, εzz′ = 5ε̃zz′ the envelope equation (5.416) takes the rms form

z̃′′ + κz0z̃ − KL

5
√

5z̃2
− ε̃2

zz′

z̃3
= 0 (5.429)

(i.e., one has a factor of 5
√

5 ≈ 11.18 in the denominator of the space-charge term).
By comparison, the space-charge term in the transverse envelope equation is K/4x̃,
from Equation (5.218), for a round beam (x̃ = ỹ). Furthermore, in the longitudinal
case, the space-charge term varies with the inverse square of the rms width (∼z̃−2),
whereas it is inversely proportional to the width (∼x̃−1) in the transverse case.

5.4.9
Longitudinal Beam Dynamics in Circular Machines

The preceding analysis of the properties of the longitudinal distribution and the
longitudinal beam dynamics (Sections 5.4.6 to 5.4.8) was based on the propagation
of the beam in a straight channel such as a linear accelerator. In this section we
extend our model to a circular accelerator such as a synchrotron or a storage ring.
As we know from the discussion of the negative-mass effect in Section 3.6.4, there
is a fundamental difference in the longitudinal dynamics between circular beams
and straight beams. We will show, however, that this difference can be accounted
for readily by introducing the effective mass m∗ = −γ0m/η and the associated slip
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Fig. 5.20 Relative motion of the synchronous particle (A) and a
nonsynchronous particle (B) in a circular machine operating in
the negative mass regime: (a) orbital motion; (b) relative
position in the moving frame.

factor η into the equations and relationships that we have derived so far for straight
beams. As will be seen, the mathematical form remains the same, the relations are
simply generalized to include circular motion, and the straight-beam results are
recovered as a special case of the more general theory.

According to Equation (3.261) in Section 3.6.4, two particles with different mo-
menta orbiting in a circular machine have different angular frequencies and revo-
lution times. Consequently, their relative position will change with time in a way
that depends on the slip factor η. This is illustrated schematically in Figure 5.20
for a machine that operates in the negative-mass regime. Let θ̇0 = ω0 be the an-
gular frequency, P0 the momentum of the synchronous reference particle (A) and
θ̇0 +�θ̇ , and P0 +�P the angular frequency and momentum of a nonsynchronous
particle (B). Equation (3.261) may then be written in the form

�θ̇

θ̇0
= −η

�P

P0
. (5.430)

The slip factor is defined as η = α−1/γ 2
0 or η = 1/γ 2

t −1/γ 2 according to (3.262a)
and (3.262b), where γtmc2 is the transition energy and α the momentum com-
paction factor related to the horizontal betatron tune by α ≈ 1/ν2

x . This equation
may be integrated with time to yield the change �θ in the relative angular position
of the two particles, namely

�θ = −θ̇0tη
�P

P0
= −θ0η

�P

P0
, (5.431)



384 5 Self-Consistent Theory of Beams

where we introduced the angular position of the synchronous particle θ0(t) = θ̇0t .
When the slip factor η is positive, we are dealing with negative-mass behavior;
that is, �θ is negative, and the angular separation between the two particles de-
creases. Figure 5.20 shows the change in the relative angular position of the two
particles after one half revolution for this case. Suppose that s0(t) = R0θ̇0t = R0θ0

is the distance traveled by the synchronous particle (A) and s(t) = R0(θ̇0 + �θ̇)t =
R0(θ0 +�θ) is the corresponding distance traveled by the nonsynchronous particle
(B) in time t . In a coordinate system moving with the velocity ṡ0 = R0θ̇0 of the
synchronous particle and centered at A, particle B has the longitudinal position

z(t) = s(t) − s0(t) = R0�θ(t) (5.432)

and velocity

ż(t) = ṡ(t) − ṡ0(t) = R0�θ̇ = �vz. (5.433)

Note that this moving coordinate system is not identical to the beam frame used in
Section 5.4.3 for relativistic particles. The coordinate z(t) and all other quantities
(ż, �Pz, etc.) are measured in laboratory units, whereas the position zb in the true
beam frame, for instance, is related to z by the Lorentz transformation, zb = γ0z,
with γ0 = [1 − (v0/c)

2]1/2 and v0 = ṡ0. Nonrelativistically, of course, there is no
difference between zb and z since γ0 = 1 in this case.

In view of (5.432), the relationship between the relative velocity difference
�vz/v0 and the relative momentum difference �Pz/P0 between a nonsynchro-
nous particle B and the reference particle A is given by

z′ = �vz

v0
= −η

�Pz

P0
, (5.434)

where z′ = dz/ds is the slope of the trajectory. Since P0 = γ0mv0, this may be
written as

ż = v0z
′ = �vz = − η

γ0m
�Pz. (5.435)

Introducing the effective mass m∗ = −γ0m/η from Equation (3.265), we obtain the
relationship

�Pz = m∗�vz, (5.436)

between �Pz and �vz, the momentum and velocity, respectively, of the nonsyn-
chronous particle in the moving frame; this is identical to Equation (3.264). In the
negative-mass regime (η > 0, m∗ < 0) the distance between a particle with greater
momentum and the reference particle decreases. This is shown in Figure 5.20,
where after one half revolution the longitudinal position of particle B has changed
by the amount �z = z2 − z1 = −R0�θ , where �θ = �θ(t2 − t1). Clearly, particle
B has a negative velocity ż = �vz < 0 in the moving frame [which can be calcu-
lated from Equation (5.435)], even though its momentum is greater than that of the
synchronous particle A.

The above relations governing the longitudinal motion in a circular machine are
readily applied to a straight beam. By setting α = 0, or γt → ∞, we recover the
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relations m∗ = γ 3
0 m, �Pz = γ 3m �vz, �Pz/P0 = (1/γ 2

0 )�vz/v0, and so on, that
we used in the preceding sections. The only question for which the answer is not
so obvious is how to define the longitudinal temperature in a circular machine.
However, if we go back to the basic definition of temperature as a measure of the
random (thermal) part of the velocity distribution, we are led to the relation

kBT‖ = m∗�v2
z,th = −γ0m

η
�v2

z,th. (5.437)

In a stationary beam the thermal rms velocity spread, �̃vz,th = [�v2
z,th]1/2 is iden-

tical to the total rms velocity spread, �̃vz. Otherwise, it is defined by the difference
between the total rms velocity spread and the rms flow velocity �̃vz,fl in the moving
frame; that is,

�v2
z,th = �̃v

2
z,th = �̃v

2
z − �̃v

2
z,fl, (5.438)

in accordance with Equation (5.310).
Our generalized definition (5.437) implies that the effective longitudinal temper-

ature is a negative quantity when the effective mass is negative (m∗ < 0), which
occurs for η > 0. This has the consequence that there is no three-dimensional
thermal equilibrium in the negative-mass regime, as we discuss in connection
with intrabeam scattering in Section 6.4.2. Under negative-mass conditions, the
space-charge force is actually focusing, thereby increasing the longitudinal bunch-
ing and the negative longitudinal temperature of the beam. This is the source of
the negative-mass instability discussed in Section 6.3.3.

Another peculiarity of particle motion in a circular machine occurs at the tran-
sition energy where γ0 = γt or γ0 = 1/

√
α. In this case all particle orbits are

isochronous; that is, they have the same revolution time regardless of the relative
momentum. The longitudinal particle motion thus “freezes,” the flow is laminar,
and the longitudinal temperature is zero, which follows from Equations (5.437)
and (5.438) with m∗ → ∞. The beam is extremely sensitive to small perturbations
in this regime, which is why special design features are implemented to pass very
quickly through the transition point in a circular machine. In the positive mass
regime below transition, the behavior of the particle distribution is, of course, sim-
ilar to that in a straight channel.

Let us now turn our attention to the longitudinal equation of motion in a circu-
lar machine, with rf cavities providing the acceleration and longitudinal focusing.
Since the motion is usually adiabatic (i.e., changes occur very slowly compared with
the revolution time), we can treat the electric field as a smooth, continuously acting
function. If Vm is the peak voltage gain per turn and R the average orbit radius, we
can express the peak longitudinal electric field as

Ezm = Vm

2πR
. (5.439)

In place of (5.414) or (5.395), we obtain for the synchrotron oscillation constant
kz0 = (κz0)

1/2 in a circular machine the relation

kz0 = νz0

R
= ωz0

v0
=
(

2π

λ

qEmη sin ϕ0

β3
0γ0mc2

)1/2

, (5.440)
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while the space-charge parameter is given by

KL = −3

2

gNrc

β2
0γ 3

0

η. (5.441)

With the last two relations the linearized trajectory equation (5.412) may be writ-
ten as

z′′ = 2π

λ

qEmη sin ϕ0

β3
0γ0mc2

z + 3

2

gNrcη

β2
0γ 3

0 z3
m

z, (5.442a)

or

z′′ + k2
z0z − KL

z3
m

z = 0, (5.442b)

while the longitudinal envelope equation for a parabolic bunch in a circular ma-
chine becomes

z′′
m + 2π

λ

qEmη sin ϕ0

β3
0γ0mc2

zm − 3

2

gNrcη

β2
0γ 3

0 z2
m

− ε2
zz′

z3
m

= 0, (5.443a)

or

z′′
m + k2

z0zm − KL

z2
m

z − ε2
zz′

z3
m

= 0. (5.443b)

Here εzz′ is the unnormalized total emittance of the bunch in the moving frame,
as in the case of a straight channel. It is related to εz and εnz by the relation

εzz′ = εz|η| = εnz|η|
β0γ0

. (5.444)

When η = 0 (transition energy), εzz′ is zero, as expected for the laminar flow in
this case.

We note that our previous straight-beam results can be recovered from the above
relations by setting η = −1/γ 2

0 ; the synchronous phase must be negative (ϕ0 < 0)

in this case to get focusing (kz0 > 0), as expected. Below transition (γ0 < γt ) the
slip factor is negative (η < 0); hence k2

z0 > 0 provided that ϕ0 < 0 and KL > 0, so
that mathematically the situation is perfectly analogous to that in a linear accelera-
tor. However, in the negative mass regime above transition (γ0 > γt ) the slip factor
is positive (η > 0), so that longitudinal focusing (k2

z0 > 0) requires a shift of the
synchronous phase from a negative to a positive value (ϕ0 > 0). Furthermore, we
get the interesting result mentioned earlier that the space-charge force is focusing
since the perveance term is negative (KL < 0) in this case. The accelerating force
experienced by a particle at the front end of the bunch due to the space-charge elec-
tric field increases the particle kinetic energy. This in turn increases the particle’s
orbit radius, which slows down its angular motion and hence decreases its distance
z from the bunch center. This longitudinal focusing effect of the space-charge force
in the negative-mass regime is opposite to the usual defocusing action by the space
charge below transition in linear accelerators and in the transverse direction.

The relation for the synchrotron oscillation wave constant with space charge is
formally the same as Equation (5.421). However, we can call the ratio kz/kz0 “tune
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depression” only below transition. In the negative-mass regime, kz/kz0 = νz/νz0 is
in fact greater than unity. The synchrotron tune in the presence of space charge is
given by

ν2
z = ν2

z0 − KLR
2

z2
m

= ν2
z0 + 3

2

gNrcR
2
η

β2
0γ 3

0 z2
m

. (5.445)

For a small difference |ν2
z − v2

z0| we obtain the tune-shift relation

�νz = 3

4

gNrcR
2
η

β2
0γ 3

0 z2
mνz0

. (5.446)

Note that the longitudinal tune shift due to space charge has the same sign as η;
that is, it is negative below transition and in linear accelerators, and positive in the
negative-mass regime above transition. All of the equations and relationships pre-
sented so far in this section are valid only for the parabolic beam model, where both
the space-charge force and the focusing force are linear functions of the particle po-
sition z. When the space-charge force is nonlinear we must use the rms envelope
equation (5.429) and rms values for all relevant quantities. The stationary longitu-
dinal Maxwell–Boltzmann (thermal) distribution (5.312) for circular machines can
be written in terms of the effective mass m∗ as

f‖(z,�vz) = f‖0 exp

[
− m∗(�vz)

2 + qφ‖(z)
kBT‖

]
(5.447a)

or in view of (5.434) as

f‖(z, z′) = f‖0 exp

[
− m∗v2

0z′2 + qφ‖(z)
kBT‖

]
, (5.447b)

where φ‖(z) includes both the applied focusing as well as the space-charge poten-
tial.

The unnormalized longitudinal rms emittance for the stationary distribution in
z−z′ space is given by

ε̃zz′ = z̃z̃′, (5.448)

and z̃′ can be related to the longitudinal temperature T‖ with the aid of (5.437) by

z̃′ =
(

�v2
z

v2
0

)1/2

=
( |kBT‖|

|m∗|v2
0

)1/2

=
( |kBT‖η|

γ0β
2
0mc2

)1/2

, (5.449)

so that

ε̃zz′ = z̃

( |kBT‖η|
γ0β

2
0mc2

)1/2

. (5.450)

The relation between ε̃zz′ , ε̃z, and ε̃nz is analogous to (5.444), that is,

ε̃zz′ = |η|ε̃z = |η|
β0γ0

ε̃nz, (5.451)
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and the normalized longitudinal rms emittance ε̃nz can be expressed in terms of
the temperature T‖ as

ε̃nz = z̃

(
γ0|kBT‖|
|η|mc2

)1/2

. (5.452)

Note that when η = −1/γ 2
0 we recover the earlier relations (5.316) and (5.317) for

a linear accelerator.
For a stationary (matched) beam we have z̃′ = kzz̃ and get with (5.422) for the

emittance the alternative expressions

ε̃zz′ = kzz̃
2 (5.453)

and

ε̃nz = β0γ0

|η| kzz̃
2. (5.454)

When space charge is negligible so that KL = 0 and kz = kz0, the normalized
emittance becomes

ε̃nz = β0γ0

|η| kz0z̃
2, (5.455)

or with (5.440),

ε̃nz = z̃2

[
2π

λ

qEmγ0| sin ϕ0|
β0|η|mc2

]1/2

, (5.456)

Since ε̃nz = const under ideal conditions we find for a circular accelerator where
Em, λ, and sin ϕ0 are constant that the rms width of the bunch in this case scales as

z̃ = const
[ |η|β0

γ0

]1/4

. (5.457)

In an rf linac operating under the same conditions, we have |η| = 1/γ 2
0 , so that z̃

scales as

z̃ = const
β

1/4
0

γ
3/4
0

. (5.458)

For an induction linac one must use the average field gradient E′
az and kz0 =√

κz0 = (qE′
az/mc2β2

0γ 3
0 )1/2 as defined in Equation (5.414). If E′

az = const, the
rms bunch length in this case then scales as

z̃ = const γ
−5/4
0 . (5.459)

The relative rms momentum spread �̃P /P0 scales as

�̃P

P0
= ε̃nz

z̃β0γ0
= const

|η|1/4β0γ
3/4
0

(5.460)

in the circular machine, and as

�̃P

P0
= const

β0γ
1/4
0

(5.461)
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in the rf linac.
From Equations (5.452) and (5.457) we find that the longitudinal temperature for

the assumed parameter regime scales as

kBT‖ = −const
η

γ
1/2
0

(5.462)

for a circular machine, and as

kBT‖ = const
1

γ
5/2
0

(5.463)

for a linear accelerator.
One must keep in mind that these scaling laws [Equations (5.455) to (5.463)]

apply only for the case where the space charge is negligible (KL = 0). Note that
in the circular machine the longitudinal temperature decreases with energy from
positive values below transition, passes through zero at the transition point, and
then becomes negative, in agreement with our earlier discussion.

The above scaling relations for a circular machine are, strictly speaking, valid
only when the energy is not close to the transition point (i.e., when |η| �= 0). At the
transition energy we would get z̃ → 0 and �̃P /P0 = → ∞, which is unphysical
since the normalized emittance ε̃nz must remain constant (unlike ε̃zz′ , which does
go to zero, as discussed earlier). Proper treatment of the problem for the case where
the beam passes through the transition point or remains at transition, as in the
isochronous cyclotron, reveals that z̃ and �̃P /P0 remain finite.

In the space-charge-dominated regime of the longitudinal motion, where εzz′ is
negligible, we have from (5.443) for a matched parabolic beam (z′′

m = 0) the relation

KL = k2
z0z

3
m, (5.464)

which yields the scaling

zm =
(

KL

k2
z0

)1/3

=
[

3

2

gNrc

γ 2
0

λβ0mc2

2πqEm| sin ϕ0|

]1/3

. (5.465)

For qEm| sin ϕ0|γ 2
0 /λβ0 = const, we find from this relation that the beam enve-

lope zm scales with the number of particles in the bunch, N , as

zm = const N1/3 (5.466a)

or, alternatively, since the average beam current I is proportional to N ,

zm = const I
1/3

, (5.466b)

a result that was recently confirmed experimentally [23].

5.4.10
Effects of Momentum Spread on the Transverse Distribution

In our analysis of the behavior of the transverse and longitudinal distributions in
the preceding section we tacitly assumed that these distributions are independent
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of each other. In fact, however, there is mutual coupling between the two distribu-
tions via momentum spread, the collective space-charge forces, and Coulomb col-
lisions. In this section we study only the effects of longitudinal momentum spread
on the transverse motion for both continuous or bunched beams. The coupling
through space charge, which occurs in the case of bunched beams, is treated in
Section 5.4.11, and Coulomb collisions are reviewed in Section 6.4.

The first effect caused by momentum spread is known as chromatic aberration. It
is due to the fact that the strength of transverse focusing, that is, the focal length f

of the discrete lenses or the focusing functions κ0(z) of arrays of lenses and peri-
odic lattices, depend on the momentum of the particles. The chromatic aberration
in a single lens was discussed in Section 3.4.6 and the change in the betatron oscil-
lation frequency due to momentum spread in a circular machine with gradient n

in Section 3.6.4. We can generalize the results obtained there to any focusing chan-
nel, whether straight or circular, by defining the relative chromaticity parameter ξ in
terms of the general focusing function κ0(z) as

ξ = d
√

κ0/
√

κ0

dP/P0
. (5.467a)

For a uniform channel with focusing strength defined by the wave number k0 this
relation becomes

ξ = dk0/k0

dP/P0
, (5.467b)

which for circular machines may be written in terms of the tune ν0 in the form of
Equation (3.268), that is,

ξ = dν0/ν0

dP/P0
. (5.467c)

It should be noted that this definition of chromaticity is not unique. Many au-
thors prefer to define the chromaticity in terms of the absolute, rather than the
relative, change of focusing parameter. Thus, in lieu of Equation (5.467c), one has

ξ∗ = dν0

dP/P0
, (5.468)

where we used the asterisk (*) to indicate the difference in the definition. Equation
(3.271) gives the relations for the chromaticity parameters in a constant-gradient
field. For n = 0.5, one obtains the values ξr = −1.5 for the radial and ξz = 1.5
for the vertical chromaticity parameters. In the case of a solenoid channel, where
according to (4.86b)

k0 = ωL

v
= qB

2mcβγ
= qB

2P
,

one gets

ξ = dk0/k0

dP/P0
= −1. (5.469)

For magnetic quadrupoles, which make by far the largest contributions to chro-
maticity in a ring lattice, one obtains the relations
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ξ∗
x = − 1

4π

∫ C

0
β̂x0(s)κx0(s) ds (5.470a)

for the horizontal motion and

ξ∗
x = − 1

4π

∫ C

0
β̂y0(s)κy0(s) ds (5.470b)

for the vertical motion. The betatron function β̂0(s) is always positive, while the
focusing function κ0 varies periodically between positive (focusing) and negative
(defocusing) values. In the focusing plane where β̂0 reaches a maximum, the func-
tion κ0 is positive and also at its maximum, so that the chromaticity is negative. On
the other hand, in the defocusing plane, β̂0 has its minimum while κ0 is negative,
so that ξ∗ is positive at these positions. Since the large negative chromaticity values
at the focusing planes outweigh the small positive values at the defocusing planes,
the integrals in (5.470) representing the average chromaticity over one revolution
are always negative.

Although the change of the betatron oscillation frequency due to momentum
spread is relatively small, it can cause emittance growth. More important, however,
in high-energy storage rings, the effect is responsible for the head–tail instability.
The variation in betatron frequencies and the accumulated phase difference be-
tween head and tail particles drive this instability, whose growth rate is proportional
to ξ and the number N of particles in the bunch (for a discussion of the effect, see
[D.10, Sect. 6.4.3]). Thus there is a strong reason to reduce the chromaticity effect
and ideally, to avoid it altogether. The method for compensating the chromaticity
effect is to use sextupole magnets, which are usually placed at the locations of the
quadrupoles in the FODO system of the typical accelerator lattice. In cylindrical
coordinates the field components of a magnetic sextupole vary as

Bx = B ′′r2 sin 3θ, By = B ′′r2 cos 3θ, (5.471a)

and in cartesian coordinates as

Bx = B ′′xy, By = 1

2
B ′′(x2 − y2). (5.471b)

Here B ′′ = (∂2By/dx2) is the second derivative, which in an ideal sextupole field
can be equated with the ratio of the pole tip field B0 and the pole tip “radius”
squared, a2

q , by analogy with the quadrupole case in Section 3.5.
Another longitudinal-transverse effect that occurs only in circular systems,

where it is even more important than chromatic aberration, is dispersion. As dis-
cussed in Section 3.6.4, particles with a momentum differing from that of the syn-
chronous particle, P0, by an amount �P , have a different closed (equilibrium) or-
bit. The horizontal (radial) displacement of this equilibrium orbit from that of the
synchronous particle can be written as

xe(s) = De(s)
�P

P0
, (5.472)

where De(s) is referred to as the dispersion function. The total displacement of a
particle from the central orbit can be expressed as the sum of xe and the betatron
oscillation amplitude xb [see (Equation (3.273)], that is,



392 5 Self-Consistent Theory of Beams

x(s) = xb(s) + xe(s), (5.473a)

x′(s) = x′
b(s) + x′

e(s), (5.473b)

where x′
e = D′

e�P/P0 is proportional to the derivative D′
e(s) of the dispersion

function with respect to distance s.
Since the two effects are statistically uncorrelated, they add quadratically (i.e.,

x̃2 = x̃2
b + x̃2

e ), so that the total rms width of the beam is

x̃ = (
x̃2
b + x̃2

e

)1/2
. (5.474)

As mentioned in Section 3.6.4, the dispersion in the vertical direction is zero to
first order.

In modern, strong-focusing synchrotrons and storage rings the rms average dis-
persion function D̃e around the closed orbit is typically in the range of 1 to several
meters. Thus if �̃P /P0 � 10−3, the rms width x̃e = D̃e�̃P /P0 is in the range of a
few millimeters. Unlike the chromaticity effect, dispersion is reversible (i.e., it does
not by itself generate emittance growth). However, it does play an important role
in intrabeam scattering, as we discuss in Section 6.4.2. The dispersion function
varies along the equilibrium orbit. Its amplitude as well as its rms average value,
D̃e, around the orbit can be chosen by the lattice designer within certain limits to
satisfy the requirements for a particular machine. Thus, the lattice design for a cir-
cular collider must provide a dispersion function De(s) whose local value is zero
at the interaction points of the two beams, so that the “spot” size of the beam is
determined only by the emittance.

As shown in Equation (3.276a), the combined action of betatron oscillations and
dispersion can be represented by a 3 × 3 matrix for the total displacement x, the
total divergence x′, and the momentum spread. We can generalize the description
given in Equation (3.276) if we replace k2

r by the gradient function κ0 so that kr =
kx = √

κ0. The most common elements in a ring are dipole magnets for bending
the beam and quadrupole magnets for focusing. In the first case, κ0 = (1 − n)/R2,
where n is the magnetic field index and R the radius of the beam centroid trajectory
in the bending magnet. In the second case, κ0 = ±qB ′/γ0mv0 = ±qB ′/P0, or
alternatively, with B ′ = B0/aq and P0/qB0 = R, κ0 = ±1/aqR, where B ′ is the
field gradient, B0 the pole tip field, and aq the distance of the pole tip from the
axis; the plus sign indicates a focusing plane, the minus sign a defocusing plane.
For elements of length l with piecewise constant-gradient function κ0, the matrix
elements aij in (3.276a) then depend on whether κ0 is positive, zero, or negative,
as shown in Table 5.5. The column with κ0 = 0 represents the bending magnets
between quadrupoles, which are assumed to act like a drift space on the betatron
motion but bend the off-momentum particles with respect to the central orbit. In
this case, R represents the local cyclotron radius in the bending magnets.

The first four rows in the table are the matrix elements for betatron motion, so
that in the case κ0 > 0 one has

xb(l) = xb(0) cos
√

κ0l + x′
b(0)

(
1/

√
κ0
)

sin
√

κ0l, (5.475a)

x′
b(l) = −xb(0)

√
κ0 sin

√
κ0l + x′

b(0) cos
√

κ0l. (5.475b)
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Table 5.5 Matrix elements αij for different κ0.

κ0 > 0 0 < 0

a11 cos
√

κ0l 1 cosh
√|κ0|l

a12 (1/
√

κ0) sin
√

κ0l L (1/
√|κ0|l) sinh

√|κ0|l
a21 −√

κ0 sin
√

κ0l 0
√|κ0| sinh

√|κ0|l
a22 cos

√
κ0l 1 cosh

√|κ0|l

a13 (1/Rκ0)(1 − cos
√

κ0l) L2/2R (1/R|κ0|)(cos
√

κ0l − 1)

a23 (1/R
√

κ0) sin
√

κ0l L/R (1/R
√|κ0|) sinh

√|κ0|l

The last two rows are the matrix elements for dispersion, and in the case κ0 > 0,
one gets the general solution for an off-momentum particle,


 x(s)

x′(s)
�P
P0


 =




cos
√

κ0l
1√
κ0

sin
√

κ0l
1

R κ0

(
1 − cos

√
κ0l
)

−√
κ0 sin

√
κ0l cos

√
κ0l

1
R

√
κ0

sin
√

κ0l

0 0 1




 x(0)

x′(0)
�P
P0


 (5.476)

By multiplying the matrices for the different sections of a lattice, one can find the
matrix for one period or for one turn consisting of an integral number of periods.
The condition that the displaced equilibrium orbits be closed implies that the vector
x(s), x′(s) must be the same at s = C = 2πR as at s = 0, that is,

 x(C)

x′(C)
�P
P0


 = M̃turn


 x(0)

x′(0)
�P
P0


 =


 x(0)

x′(0)
�P
P0


 , (5.477a)

where C = 2πR is the circumference of the equilibrium orbit. Note that by fac-
toring out �P/P0 we can apply the last two equations to the dispersion function
De(s) itself, so that (5.477a) may be written as


De(C)

D′
e(C)

1


 = M̃turn


De(0)

D′
e(0)

1


 =


De(0)

D′
e(0)

1


 . (5.477b)

The matrix M̃turn for one revolution and the initial condition must satisfy this re-
lation to obtain a closed-orbit solution. Both the betatron function β̂0(s) and the
dispersion function De(s) represent the characteristics of the focusing ring lat-
tice while emittance ε and momentum spread �P/P0 define the properties of
the beam.

As discussed in Section 3.6.4, the dispersion effect is also represented by the
momentum compaction factor α. For axisymmetric, constant-gradient fields, we
found that α = 1/ν2

r > 1 since νr < 1 in that case. This relation is still approxi-
mately true in modern strong-focusing (alternating-gradient) synchrotrons, where
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νx = νr > 1 and α ≈ 1/ν2
x and where α is usually related to the transition energy

γt by α = 1/γ 2
t < 1, which is less than unity since γt > 1.

The smaller betatron oscillation amplitudes and smaller momentum compaction
factors of alternating-gradient lattices have made it possible to build modern syn-
chrotrons and storage rings with much smaller magnet gaps and hence lower costs
than would have been required with the old constant-gradient machines.

The small gap size and low dispersion of modern circular machines, combined
with the increasingly smaller emittances of the beams produced by advanced parti-
cle sources and injector linacs, have led to a significant increase in the possible cur-
rent density in the rings. Higher current density increases the space-charge forces
and hence aggravates the tune-shift problem discussed in Section 4.5.1. This prob-
lem is further compounded by the non-Liouvillean injection schemes into the rings
employed in high-energy accelerators [24] and proposed for heavy-ion fusion [25].
In the first case, a beam from an H− ion source is accelerated by the linac and
injected into the ring through a foil. The two electrons of the H− ions are stripped
in the foil, and the resulting H+ ions (protons) are then deflected into the circular
orbit of the ring machine. This process does not obey Liouville’s theorem, which
states that the phase-space density of a particle distribution remains constant. Thus
new proton bunches can be injected and overlapped in phase space with the circu-
lating bunches that have been injected earlier. With the non-Liouvillean charge-
stripping process in the foil, the phase-space density, and hence charge density in
the circulating beam, can be increased by multiturn injection to a much higher
level than that of a single bunch, while preserving the small emittance of a single
bunch. Without such a technique, the bunches injected during subsequent turns
would have to be placed adjacent to each other in phase space, which, of course,
results in a correspondingly larger emittance.

As mentioned, a major obstacle standing in the way of achieving the substantial
increases in phase-space density that are possible is the incoherent space-charge
tune-shift limit. From Equations (4.252) and (4.253), the tune-shift relation may
be written in terms of the normalized rms emittance ε̃n, rather than the effective
emittance εn = 4ε̃n, as

�ν = − I R

4I0ε̃nβ2γ 2Bf

= − Ntrc

8πε̃nβγ 2Bf

, (5.478)

where I is the average current, R the average ring radius, Nt the total number of
particles in the ring, Bf the bunching factor, and rc the classical particle radius,
as defined in Equation (5.244). The unperturbed tune ν0 of a machine is usually
designed to fall between a half-integral and an integral resonance (e.g., ν0 = 6.7 in
the Fermilab booster synchrotron). If the space-charge tune shift gets large enough,
it will push particles into the nearest resonance, say ν = 6.5 in the Fermilab exam-
ple. Traversal through the resonance will increase the amplitudes of the particle
distribution. This amplitude growth is an incoherent process that will increase the
emittance as well. The process will saturate when the emittance growth and the loss
of particles that may occur are large enough that |�ν| decreases and the resonance
is no longer encountered. From Equation (5.478) we can see that for given energy,
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machine radius, and bunching factor, the requirement that |�ν| � |�ν|max implies
that the phase-space density has an upper limit that is defined by the relations

I

ε̃n

= 4I0β
2γ 2Bf

R
|�ν|max, (5.479a)

or

Nt

ε̃n

= 8πβγ 2Bf

rc
|�ν|max, (5.479b)

where |�ν|max is typically in the range 0.3 to 0.5, depending on the machine de-
sign. The net result of the tune-shift limit is that one cannot take full advantage
of the high-brightness beams being produced by modern ion sources or of the full
potential offered by non-Liouvillean injection. From the scaling given in Equation
(5.479), it is obvious that one way out of this dilemma is to increase the injection en-
ergy and hence the length of the linear accelerator delivering the beam to the ring
machine. Thus, the Fermilab upgrade project included an increase in the linac en-
ergy from 200 MeV (γ = 1.21, β = 0.57) to 400 MeV (γ = 1.43, β = 0.71), which
results in a theoretical increase of Nt/ε̃n by a factor of 1.74.

The horizontal spread of the beam due to dispersion, which was neglected in
the above relations, can also have a significant effect on the tune shift and increase
the space-charge limit [26]. To include dispersion we will return to our original
derivation for �ν given in Equation (4.247). Due to dispersion the beam will have a
larger width in the horizontal than in the vertical direction. With xmax = a, ymax =
b, and R = R we obtain in place of (4.247) the relation

�νx = − KR
2

νxa(a + b)
(5.480a)

and

�νy = − KR
2

νyb(a + b)
, (5.480b)

from which we recover the formula (4.247) when a = b, νx = νy = ν0. This result
follows from the fact that in an elliptical beam with uniform density the space-
charge electric fields are

Ex ∝ K

a(a + b)
x, Ey ∝ K

b(a + b)
y,

as discussed in Section 4.4.2 [see Equations (4.174) and (4.175)].
The above relations for the space-charge tune shift assume a beam with uniform

density (K–V beam). To present them in a form that is independent of the distribu-
tion we introduce the rms widths δx = x̃ = (x2)1/2 = a/2, δy = ỹ = (y2)1/2 = b/2.
Then we can write

�νx = − K R
2

4νxδx(δx + δy)Bf

, (5.481a)

�νy = − K R
2

4νyδy(δx + δy)Bf

, (5.481b)
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where we added the bunching factor Bf and replaced K by the average perveance
K , which is proportional to the average beam current in the ring. When dispersion
is present the horizontal rms width will consist of the contribution due the emit-
tance of the beam, defined by δxb = x̃b, and the contribution due to the momentum
spread, defined by δxe = x̃e. In view of (5.474), the total rms width of the beam is
then given by

δx = (
δ2
xb + δ2

xe

)1/2 = δxb

(
1 + �2

D

)1/2
, (5.482)

where

�D = δxe

δxb

. (5.483)

For the vertical direction we will assume that dispersion is zero, so that δy = δyb.
Note that δyb will not be the same as δxb unless εy = εx and νy = νx . We will
introduce the parameter

�δ = δxb

δyb

(5.484)

to define the ratio between the two quantities. The geometric terms in the denom-
inator of Equation (5.481) then become

δx(δx + δy)

2
= δ2

xbgx, (5.485a)

δy(δx + δy)

2
= δ2

ybgy, (5.485b)

where

gx = (1 + �2
D)1/2

2�δ

[
�δ

(
1 + �2

D

)1/2 + 1
]
, (5.486a)

gy = 1

2

[
�δ

(
1 + �2

D

)1/2 + 1
]
. (5.486b)

For a matched beam, the normalized emittances in both directions will be given by
the relations

ε̃nx = βγ δ2
xbνx

R
, (5.487a)

ε̃ny = βγ δ2
ybνy

R
. (5.487b)

Substituting Equations (5.485) and (5.487) in Equation (5.481) and introducing
the average current I or the total number of particles in the ring Nt , we obtain

�νx = − I R

4I0ε̃nxβ2γ 2Bf gx

= − Ntrc

8πε̃nxβγ 2Bf gx

, (5.488a)

�νy = − I R

4I0ε̃nyβ2γ 2Bf gy

= − Ntrc

8πε̃nyβγ 2Bf gy

, (5.488b)

These equations have the same form as Equations (4.252) and (4.253) except that
the normalized rms emittance ε̃n is used in place of the effective emittance εn =
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4ε̃n. Furthermore, they have in the denominator the geometry factors gx , gy which
define the decrease in tune shift due to dispersion and unequal tunes (νx �= νy)

or unequal emittances (ε̃nx �= ε̃ny). Table 5.6 shows the values of the geometry
parameters gx and gy for different ratios of �D = δxe/δxb and �δ = δxb/δyb. The
examination of the results in the table and of the equations for gx and gy for the
case where ε̃nx = ε̃ny shows the following:

1. For symmetric focusing (νx = νy , �δ = 1), dispersion
decreases both tune shifts; however, gy < gx , hence
|�νy | > |�νx |, so that the space-charge limit is determined
by �νy [Equation (5.488b)] and hence is increased by the
factor gy . As an example, for �D = 2, �δ = 1, one finds
from Table 5.5 that due to dispersion the phase-space density
N/ε̃n can be increased by a factor of gy = 1.618 compared
with the case where dispersion is negligible.

2. Asymmetric focusing (νx < νy , �δ > 1) further enhances
the gy factor provided that �D > (�2

δ − 1)1/2. For the above
example (�D = 2), if �δ = 1.5 (i.e., νy = 2.25νx ) one
obtains gy = 2.177, which is significantly higher than in the
symmetric case. In the region below the limit
�D = (�2

δ − 1)1/2, where gx < gy , the tune shift is
controlled by gx , which is less interesting from a practical
point of view.

These examples show that the effect may be quite significant and much stronger
than the Laslett tune-shift correction, due to image forces [see the example follow-
ing Equation (4.277)] that we are neglecting in the present analysis. The image fac-
tors shown in brackets in Equations (4.276), (4.282), and (4.283) must, of course, be
added to our results here to obtain the most general expressions for the tune shifts.

Since the beam profile in high-energy circular machines tends to have a Gaussian
shape, there is a spread of the betatron oscillation frequencies (i.e., a particle’s
betatron tune depends on its radial amplitude, and hence its transverse kinetic

Table 5.6 gx and gy for different values of �D = δxe/δxb and �δ = δxb/δyb .

�δ = 1 �δ = 1.5 �δ = 2
�D gx gy gx gy gx gy

0 1.000 1.000 0.833 1.250 0.500 1.500
0.50 1.184 1.059 0.998 1.339 0.905 1.618
1.00 1.707 1.207 1.471 1.561 1.354 1.914
1.50 2.526 1.401 2.226 1.852 2.076 2.303
2.00 3.618 1.618 3.245 2.177 3.059 2.736
2.50 4.971 1.846 4.522 2.519 4.298 3.193
3.00 6.581 2.081 6.054 2.872 5.791 3.662

Source: Reference 26.
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energy). The above tune-shift relations [e.g., (5.488b)] represent rms averages over
the particle distribution. They are appropriately called rms tune shifts. Particles with
large betatron amplitudes scanning the thin tail of the Gaussian distribution have
a smaller tune shift. Those with small amplitudes stay near the center in the beam
core and experience a larger tune shift. The linear part of the space-charge force in
the center of a Gaussian distribution is two times stronger than the rms force used
in the above equation. Accordingly, the tune shift in the core of the Gaussian is a
factor of 2 greater than the rms tune shift [e.g.,(�νy)core = 2�νy ].

Let us now take a closer look at the dispersion effect represented by the parameter
�D = δxe/δxb. For the lattice configuration of modern synchrotrons the dispersion
function De varies periodically with path length s, as discussed above. In an ideal
FODO lattice, which is uniformly occupied by bending magnets and quadrupole
lenses and has no long straight sections, De(s) is always positive and the rms value
D̃e = (D2)1/2, obtained from the integral over the closed orbit with average radius
R, is given by

D̃e = R

ν2
x

, (5.489)

as in the classical axisymmetric field. However, it should be noted that lattice de-
signers can significantly enhance or decrease the average dispersion compared
with this simple relation.

The rms width δxe of the beam due to dispersion is obtained from Equation
(5.472) by averaging over the distributions in xe and �P/P0 around the equilib-
rium orbit. Using (5.489) for the rms average dispersion, one can write

δxe = D̃e

�̃P

P0
= R

ν2
x

�̃P

P0
. (5.490)

Although these relations for the dispersion effect are good approximations only for
the ideal FODO lattice, they do show the general trend toward smaller dispersion
when the tune is increased. From Equations (5.487a) and (5.490) one obtains for
the parameter �D the result

�D = δxe

δxb

= 1

ν
3/2
x

(
βγR

ε̃nx

)1/2
�̃P

P0
. (5.491)

The scaling displayed by this relation implies that one should operate at a low tune
to maximize the dispersion effect and hence the geometry factor gy in the tune-
shift formula. Low-tune operation increases the horizontal beam size and there-
fore requires a large beam pipe aperture. This conflicts with the historical trend
toward stronger focusing (higher tune) and smaller apertures to minimize costs.
However, in some specific cases a low-tune, large-dispersion design may provide
a more attractive option to achieve the desired phase-space density or luminosity
than other alternatives. Equation (5.491) shows, for instance, that the dispersion
effect is the more pronounced the smaller the emittance and would therefore be
particularly useful for the non-Liouvillean injection schemes discussed earlier. As
already mentioned, a lattice with unequal tunes (i.e., νy � νx ) also helps in in-
creasing the space-charge limit, as is evident from the parameter �δ in Equation
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(5.486b). A practical upper limit to the achievable aspect ratio δx/δy of the beam is
given by the size of the beam-pipe aperture, which cannot be too large, for various
reasons. Also, one must allow enough space between the rms width δx of the beam
and the wall of the beam pipe to accommodate the Gaussian particle distribution.

So far, the large-dispersion effect to increase the space-charge limit described
here has not been used in existing circular machines. It remains to be seen whether
it can provide a cost-effective option for future designs or upgrades of existing ma-
chines.

5.4.11
Coupled Envelope Equations for a Bunched Beam

In this section we attempt to integrate the models for the transverse and longitu-
dinal distributions into a coherent theoretical description of a bunched beam that
includes the transverse-longitudinal coupling through the space-charge forces. To
simplify the analysis we make use of the smooth approximation, that is, we will ne-
glect the usually very small envelope ripple due to the periodic-focusing structures.
Furthermore, we assume that the average focusing forces and the emittances in the
two orthogonal transverse directions are the same and that the bunch propagates
in a cylindrical tube of radius b. In short, the system will have axial symmetry so
that the particle density in the bunch will only be a function of radius r and axial
displacement z from the bunch center [i.e., n = n(r, z)]. We will be concerned pri-
marily with the properties of the quasi-stationary state of the bunch in a straight
channel or linear accelerator, where both the transverse and the longitudinal dis-
tributions are perfectly matched and where the applied focusing forces are linear.
Our analysis can also be applied to a circular machine with a symmetric lattice
and negligible dispersion by incorporating the slip factor η into the longitudinal
equations.

As we know from previous discussions, our two-temperature Maxwell–Boltz-
mann distribution (5.271) and the associated Boltzmann density profiles for the ra-
dial and axial directions, given by Equations (5.275) and (5.369), respectively, gener-
ate in general nonlinear space-charge forces, except for the zero-temperature case.
However, we can model the bunch by an ellipsoid with uniform charge density,
radius a, and axial half width zm, in which the self forces are linear. This model is
consistent with a zero-temperature Maxwell–Boltzmann distribution but not with
a hot beam having finite emittances in the three phase-space projections. As we
discussed at the beginning of Section 5.4.8, the extension of the K–V distribution
to six-dimensional phase space leads to a nonlinear space-charge force in the lon-
gitudinal direction (see Problem 5.12). Unfortunately, no distribution exists that
yields linear space-charge forces in both the transverse and longitudinal directions
for a beam with nonzero average temperatures. Basically, the ellipsoidal model is
consistent with a K–V distribution of the form (5.160) in transverse phase space
and a Neuffer distribution of the form (5.425) in longitudinal phase space which
cannot be derived from a single phase-space distribution. These two distributions
are, however, adequate approximations for modeling of the bunch, and they can
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be correlated with the thermal distribution or any other particle distribution hav-
ing the same rms width and emittance by using the concept of equivalent beams
described in Section 5.3.4.

Since we are dealing with a bunched beam, it will be necessary to redefine the
generalized perveance K for the transverse space-charge force. First, we must in-
clude the radial geometry factor due to the image force in the relativistic form
1 − (ga2)/(2γ 2

0 z2
m) [see Equation (5.354d), which represents the free-space situ-

ation where g = g0], where γ0zm must be used in place of zm to account for the
longitudinal Lorentz contraction of the bunch in relativistic beams. Second, we will
use the total number of particles in the bunch N in lieu of the peak current I . For
our ellipsoidal bunch we find from Equation (5.353) that

I = ρL0v0 = 3

4

qNβ0c

zm

, (5.492)

and hence we obtain for the perveance

K = qI

2πε0mc3β3
0γ 3
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(
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)
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(
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0 z2
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)
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(5.493)

Here, rc is the classical particle radius [see Equation (5.244)], and the term in brack-
ets represents the geometry factor due to the radial image force. For the longitudi-
nal perveance parameter KL we use the definition (5.415).

With these modifications we can write the transverse and longitudinal envelope
equations for the bunched beam in the form

a′′ + k2
x0a − 3

2

Nrc

β2
0γ 3

0

1

azm

(
1 − g

2

a2

γ 2
0 z2

m

)
− ε2

x

a3
= 0 (5.494)

and

z′′
m + k2

z0zm − 3

2

Nrc

β2
0γ 5

0

g

z2
m

− ε2
zz′

z3
m

= 0. (5.495)

Note that εx and εzz′ can be related to the respective normalized emittances by
εnx = β0γ0εx and εnz = β0γ

3
0 εzz′ . In the nonrelativistic limit (γ0 = 1), and for free

space (g = g0) our last two equations agree with the equations used by Chasman
for linear accelerator design studies in the late 1960s [27].

It is readily apparent that these two equations are coupled to each other via the
space-charge term. As discussed in Section 5.4.7, the geometry factor g is in general
a function of the semiaxes a and zm of the ellipsoidal bunch and of the tube radius
b (see Figure 5.15 and Table 5.3) [i.e., g = g(zm/a; b/a)]. Thus, for a given number
of particles N , emittances εx and εzz′ , external focusing forces, as represented by
the wave numbers kx0 and kz0, tube radius b, and energy γ0mc2 = mc2(1−β2

0 )−1/2,
these coupled nonlinear equations must be solved numerically to find the radius
a and half-length zm of the bunch. The geometry factor g has a nonanalytic form
except for free space (g = g0) and for the long-bunch limit [g ≈ 0.67 + 2 ln(b/a)].
Hence, one must use approximate values for g = g(zm/a; b/a) from Figure 5.15
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or interpolate numerically between the given curves. Note that zm must be replaced
by γ0zm for relativistic beams.

If the bunch is perfectly matched in both directions, then a′′ = 0 and z′′
m = 0, and

the semiaxes a and zm can be calculated for a given set of parameters, including
the beam energy. Moreover, in an accelerator, if the rate of energy change occurs
adiabatically, as is usually the case, the change in the bunch radius a and half-length
zm can also be calculated from the matched envelope equations. However, it is
then better to use the normalized emittances to exhibit the scaling with the velocity
and energy parameters β0, γ0. Thus, the matched coupled envelope equations take
the form

k2
x0a − 3

2

Nrc

β2
0γ 3

0

1

azm

(
1 − g

2

a2

γ 2
0 z2

m

)
− ε2

nx

β2
0γ 2

0 a3
= 0 (5.496)

and

k2
z0zm − 3

2
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β2
0γ 5

0

g

z2
m

− ε2
nz

β2
0γ 6

0 z3
m

= 0. (5.497)

For the beam physics, the wave numbers kx and kz that include the space-charge
defocusing effect on the betatron and synchrotron wavelengths λx = 2π/kx and
λz = 2π/kz are very important. They are defined by

k2
x = k2

x0 − 3

2

Nrc

β2
0γ 3

0

1
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, (5.498)

k2
z = k2

z0 − 3

2
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0
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. (5.499)

In terms of these quantities the matched envelope equations may be written as

k2
xa − ε2

nx

β2
0γ 2

0 a3
= 0, (5.500)

k2
z zm − ε2

nz

β2
0γ 6

0 z3
m

= 0. (5.501)

The above set of equations (5.496) to (5.501) allow us to calculate the properties of
the bunch, in particular the semi-axes a and zm and the physics parameters kx and
kz for any given set of input parameters (N , kx0, kz0, εnx , εnz, β0, γ0, and b). Fur-
thermore, by introducing the rms quantities x̃ = a/

√
5, z̃ = zm/

√
5, ε̃nx = εnx/5,

ε̃nz = ε̃nz/5, we can determine the properties of any other equivalent bunched
beam having the same rms widths and emittances as the ellipsoidal bunch consid-
ered here. Note that the relationships for the transverse rms width and rms emittance
of the ellipsoidal bunch differ from those in a continuous beam where x̃ = a/2,
ε̃ = ε/4. (See Problem 5.21.)

The matched envelope equations (5.496) and (5.497) represent a quasi-stationary
state of the bunch in which the applied focusing force (first term), the space-charge
force (second term), and the emittance (third term) are balanced, but not necessar-
ily in three-dimensional thermal equilibrium. [See the comments at the beginning
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of this section and following Equation (5.271).] When T⊥ �= T‖ and space-charge
forces are strong, there will be rapid change and emittance growth towards an
equipartitioned state as discussed in Appendix 4. With regard to practical appli-
cation and mathematical solution of these coupled equations, we can distinguish
the following regimes:

1. The bunch is space-charge dominated in both directions, so
that the emittance terms can be neglected (εnx = εnz = 0)

for the calculation of a and zm. This occurs in high-intensity
linacs, and we discuss this case further below and in
Appendix 4.

2. Space charge dominates in one direction but not in the
other. In a circular machine, for instance, the transverse
space-charge effect is usually small compared to the
emittance, but the bunch could well be space-charge
dominated longitudinally. Of course, we would have to use
the slip factor η in the longitudinal envelope equation, as
discussed in Section 5.4.9. The radius a is then readily
determined analytically from Equations (5.496), namely
a = (εnx/β0γ0kx0)

1/2. This result can be substituted into the
longitudinal equation to find zm.

3. Space charge is negligible compared to emittance. This case
is trivial, and the semiaxes are found analytically as
a = (εnx/β0γ0kx0)

1/2 and zm = (εnz/β0γ
3
0 kz0)

1/2.
4. The bunch length is large compared to the radius (i.e.,

γ0zm/a � 1). In this case the geometry factor is
g ≈ 0.67 + 2 ln(b/a) [ from Equation (5.365b)], the
image-force term ga2/γ 2

0 z2
m in the radial envelope equation

can be neglected, and the solution is then simplified.
5. The aspect ratio of the bunch is small, say γ0zm/a � 4, and

the tube radius is significantly larger than the beam radius,
say b/a � 5. From the graph in Figure 5.15 we can see that
the g-factor in this case does not differ significantly from the
free-space value g0. Thus we can use the approximation
g ≈ g0. Furthermore, in this regime the free-space geometry
factor can be approximated by g0 ≈ 2γ0zm/3a [see Equations
(5.356a) and (5.356b)]. Thus, in this case the envelope
equations can be written in the simpler form
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= 0, (5.503)
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which can be solved more easily than the general equations,
where the g-factor must be found by interpolation from
Table 5.3.

It is apparent from this discussion of the various regimes that analytic solutions
for a and zm can be obtained only in case 3, which is trivial, and in case 5, which
is more involved since we are dealing with a set of fourth-order, coupled algebraic
equations (see Problem 5.20). In case 5, if the bunch is space-charge dominated,
we can neglect the emittance terms (εnx = εnz = 0) and hence obtain from (5.502),
(5.503) the simpler equations
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which can be solved without difficulty; one finds that

a =
(

3

2

)2/3
(Nrc)

1/3

β
2/3
0 γ

2/3
0

1

k
2/3
z0

(
k2
x0

k2
z0

+ 1

2

)−2/3

, (5.506)
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These relations reveal very clearly the scaling of the bunch size with the number
of particles N , the wave numbers kx0 and kz0, representing the applied focusing
forces, and the kinetic energy through the factors β0 and γ0. Of particular interest,
and somewhat unexpected, is the fact that the ratio of the semiaxes of the ellip-
soidal bunch in this space-charge-dominated parameter regime is independent of
the particle number N and hence the beam current. This ratio is given by the sim-
ple relation

zm

a
= 2

3γ0

(
k2
x0

k2
z0

+ 1

2

)
. (5.508)

In a high-current rf linac, for instance, the ratio kx0/kz0 usually increases with
increasing energy, so that, at least in the nonrelativistic regime (γ0 ≈ 1), the aspect
ratio zm/a of the bunch also increases with energy. Of course, we must keep in
mind that our results (5.506) to (5.508) are valid only as long as γ0zm � 4, b/a � 5,
and the space-charge terms in the envelope equations dominate over the emittance
terms. Note that a bunch of half length zm in the laboratory frame will be elongated
by the factor γ0 in the beam frame, i.e., an almost spherical bunch in the lab frame
can still have large image forces and long-bunch behavior if γ0 is high enough.

In Appendix 4 we apply the above results to a specific example of a high-intensity
rf drift-tube linac. We also investigate the relationship between longitudinal and
transverse temperature and the question of equipartitioning, which is of great im-
portance for such devices.
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From a mathematic point of view, the easiest way of solving the general coupled
envelope equations (5.496) and (5.497) is to specify desired values for the bunch
radius a and half-length zm and the emittances as well. This approach is very useful
in the design phase of a linear accelerator. One can then readily solve the envelope
equations for the number of particles N in the bunch, or the equivalent average
beam current I . For an rf linac with frequency f and wavelength λ = c/f , one has
the relation

I = Qf = qNc

λ
, (5.509)

where Q = qN is the total charge in the bunch.
By specifying a, zm and kx0, kz0, one defines the acceptance of the linac in the

transverse and longitudinal directions. If εnx or εnz is given or can be neglected
since the beam is space-charge dominated, and if the tube radius b is given so that
the g-factor can be determined from Figure 5.15, one can solve the envelope equa-
tions for the particle number N or the equivalent average current I . The results
obtained from the two equations will, in general, be different; that is, one will get
a transverse current limit I t and a longitudinal current limit I l [28]. However, two
different values for I t and I l imply that the beam is not matched in both direc-
tions. Even if it were initially matched transversely, for instance, with the choice
I = I t < I l , it would not be matched longitudinally, and space-charge coupling
would immediately mismatch it transversely as well. Thus, in this approach, one
would have to change the bunch-size parameters a and zm and/or the emittances
until a single solution for N , and hence I , is found. (See also Appendix 4.)

5.4.12
Matching, Focusing, and Imaging

The self-consistent theory of beams developed in this chapter – laminar flow, Vlasov
equation, and thermal distribution – has been applied mainly to determining the
properties of the transverse or longitudinal meta-equilibrium states. In Chapter 6
we deal with the emittance growth that occurs when the beam is not in a stationary
state (thermal equilibrium) or when instabilities and other effects, such as colli-
sions, perturb the particle distribution. However, before proceeding to this next
stage we review briefly in this section the topics of matching, focusing, and imag-
ing within the context of a self-consistent description. These topics were, of course,
discussed to some extent in Chapters 3 and 4. But with the exception of the short
overview of aberrations in Section 3.4.6, we always assumed a uniform beam model
in which both the applied focusing force and the space-charge force are linear.

The main objective of our discussion in this section is to obtain some physical
insight and a qualitative picture of the role of particle distribution and nonlinear
forces (aberrations) when a beam is focused by discrete lenses. To simplify the
analysis, we consider only axisymmetric, thin lenses, such as electrostatic einzel
lenses or short solenoids, as shown schematically in Figure 5.21. Figure 5.21(a) il-
lustrates the matching by a single lens of a beam into a periodic-focusing channel.
Ordinarily, one needs two lenses to match a beam into an axisymmetric channel
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Fig. 5.21 Schematic illustration of matching an axisymmetric
beam into a periodic-focusing channel (a), and of focusing
such a beam to a small spot size (b).

since both the radius R and the slope R′ = dR/dz need to be changed. How-
ever, this task can, in principle, also be accomplished with a single lens that can
be moved in position until the desired matching conditions are met. As another
simplification for the purpose of our discussion we consider the matching trans-
formation from a waist R1 (R′

1 = 0) to a waist R2 (R′
2 = 0), where we assumed in

the figure that R2 < R1. Note that R2 also corresponds to the waists between the
lenses of the periodic array. Finally, for describing the effects and changes of the
distribution through the lens system we assume a thermal beam having a trans-
verse Boltzmann density profile, as illustrated in Figure 5.12.

We begin our analysis by considering an ideal, aberration-free lens that matches
the beam into a periodic array of ideal lenses. There are two aspects to this problem.
One is the behavior of the rms radius of the thermal beam, and the other one is
the change in bunch profile and temperature in the focusing process. To evaluate
the rms average behavior of the particle distribution, we will use the equivalent
uniform beam having the same second moments as the thermal beam, following the
description given in Section 5.3.4. For changes in the shape of the charge density
and in the temperature of the distribution we refer to Figure 5.12 and Section 5.4.5,
where some essential features of matching have already been discussed.

Consider now the beam at the waist upstream from the matching lens. Let x̃1 =
ỹ1 denote the rms width in the two transverse directions, r̃1 = √

2x̃1 the rms radius,
and R1 = √

2r̃1 = 2x̃1 the full radius of the equivalent uniform beam. If K is the
generalized perveance, ε̃ the rms emittance in x or y, and ε = 4ε̃ the total emittance
of the equivalent uniform beam, the parameter KR2

1/ε2
1 = Kx̃2

1/4ε̃2
1 will determine

the ratio λD/R1 and hence the temperature and shape of the Boltzmann profile
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according to Figure 5.12 and Table 5.1. Since the rms ellipse of the distribution at
the waist is upright, we have ε̃ = x̃x̃′ = x̃ṽx/v0, where x̃′ is the rms divergence, ṽx

the rms velocity, and v0 the mean axial velocity. Thus if R1 = 2x̃1 and ε = 4ε̃ are
given, we find for the rms velocity at the waist

ṽx1 = v0
ε̃

x̃1
= v0

ε

2R1
, (5.510)

and for the transverse temperature from (5.289b),

kBT⊥1 = γ0mṽ2
x1 = γ0mv2

0
ε̃2
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1

= γ0mv2
0

ε2

4R2
1

. (5.511)

The variation in rms radius as the beam propagates from the initial waist through
the matching lens and the periodic-focusing channel is described by the rms enve-
lope equation (5.218) with k2

x0 = 0 and x̃ = ỹ, namely

x̃′′ − K

4x̃
− ε̃2

x̃3
= 0, (5.512a)

or in terms of the effective radius R = 2x̃ and effective emittance ε = 4ε̃ of the
equivalent uniform beam by

R′′ − K

R
− ε2

R3
= 0. (5.512b)

At each lens the slope of the envelope is changed by �x̃′ = −x̃/f or �R′ = −R/f ,
where f is the focal length of the lens. We assume that the emittance remains
constant, so that for given initial conditions (R = R1, R′

1 = 0 in our case), the
envelope can be calculated at any position along the system by integrating (5.512).
If R = R2, R′

2 = 0 at the first waist downstream from the lens, we obtain for the
transverse rms velocity and temperature at this position the relations

ṽx2 = v0
ε̃

x̃2
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ε
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(5.513)

and

kBT⊥2 = γ0mṽ2
x2 = γ0mv2
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By comparing the temperatures at the two waists we get

kBT⊥2

kBT⊥1
= x̃2

1

x̃2
2

= R2
1

R2
2

(5.515)

in agreement with Equation (5.311) for γ0 = const.
At a waist, the temperature kBT⊥ is identical to the average transverse kinetic

energy per particle. Since R2 < R1 our relation (5.515) states that the transverse
kinetic energy of the beam has increased by a factor of (R1/R2)

2 after passing
through the lens. This additional transverse energy comes from the longitudinal
energy of the particles. A lens transforms longitudinal momentum into transverse
momentum, and vice versa. Consider a particle with velocity v = vz1 entering the
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lens at radius r1 with zero slope (r ′
1 = 0) (i.e., on a trajectory parallel to the axis).

After passing through the lens it has a slope of r ′
2 = −r1/f , hence a transverse

velocity of vr2 = r ′
2vz2 = −r1vz2/f . Its axial velocity has been reduced to

vz2 = (
v2 − v2

r2

)1/2 = v

[1 − (r1/f )2]1/2
. (5.516)

This decrease in the axial velocity is zero for a particle on the axis (r1 = 0) and is a
maximum for a particle passing through the lens at the outermost radius, R1,max.
The focusing action of a lens thus introduces a spread in the longitudinal energy
distribution. This spread is reversible in the case of ideal lenses, but it may become
irreversible if nonlinear forces from lens aberrations or space-charge nonuniformi-
ties are present.

The momentum transfer between longitudinal and transverse motion due to
focusing changes the center-of-momentum velocity v0 of the distribution. Thus,
we should have used v01 and v02 in the above equations for the transverse veloc-
ities and temperatures in the two waists. Note that v01 = v02, ṽx1 = ṽx2, and
kBT⊥1 = kBT⊥2 when x̃2 = x̃1 (i.e., when the rms widths or corresponding radii at
the two waists are the same).

Our analysis of the transverse energy variation due to focusing is incomplete so
far, as we considered only the kinetic part. We also need to include the average
potential energy per particle associated with the electric and magnetic forces due
to the beam’s space charge and current. This can be done by calculating the field
energy per unit length of the beam and dividing by the number of particles per unit
length, NL. Since the transverse Boltzmann profiles in Figure 5.12 are nonanalytic,
this calculation would have to be done numerically. However, for our purpose it
will be adequate to use the equivalent uniform-beam model to obtain an analytic
approximation that exhibits scaling with the pertinent parameters. This approach
gives the correct result in the low-temperature limit where space charge dominates;
and at higher temperatures, where the profiles become more Gaussian, the error
is found to be relatively small.

The field energy per unit length for a uniform beam is given in Equation (4.68).
However, since the self force is the difference between the repulsive Coulomb force
and the attractive magnetic force [i.e., Fr = qEr − qvzBθ = qEr(1 − β2

0 )], we must
subtract the magnetic field energy from the electrostatic field energy. This yields
[ from Equation (4.68), with fe = 0, fm = 0] for the field energy per unit length

w = I 2(1 − β2
0 )

16πε0c2β2
0

(
1 + 4 ln

b

R

)
, (5.517)

where R = 2x̃ is the radius of the equivalent uniform beam. The field energy per
particle w/NL is identical to the potential energy qVs due to the self forces. Since
NL = I/qv0, we obtain

qVs = w

NL

= γ0mv2
0
K

8

(
1 + 4 ln

b

R

)
, (5.518)

where we introduced the generalized perveance K defined in (4.127a).
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The total average transverse energy per particle is then the sum of the kinetic
energy Ek = γ0m(ṽ2

x + ṽ2
y)/2 and the potential energy Es = qVs , or with ṽ2

x + ṽ2
y =

2ṽ2
x = 2v2

0ε2/4R2 from (5.513),

E = Ek + Es = γ0mv2
0

ε2

4R2
+ γ0mv2

0
K

8

(
1 + 4 ln

b

R

)
. (5.519)

Using this relation and assuming that v01 ≈ v02 ≈ v0, we obtain for the total
energy difference between the two waists,

E2 − E1 = γ0mv2
0

[
ε2

4

(
1

R2
2

− 1

R2
1

)
+ K

2
ln

R1

R2

]
. (5.520)

If R2 < R1, as is the case in the example shown in Figure 5.21, we can conclude
that the focusing action of the matching lens increases both the kinetic energy
and the space-charge-related potential energy by an amount that can be calculated
from Equation (5.520). The longitudinal energy of the beam, the velocity v0, and
the energy factor γ0 are then reduced correspondingly. Since the corrections in v0

and γ0 are usually very small, we neglected them in Equation (5.519) [see also the
discussion following Equation (5.516)].

In the periodic channel following the matching lens the total transverse beam
energy remains constant and equal to E2. This is also true for the emittance ε,
which remains conserved for an ideally matched beam. By contrast, the transverse
Hamiltonian for the motion of a single particle in the beam is not a constant, due
to the periodic variation in the focusing potential.

If the beam is not perfectly matched, the energy will be greater than for the
matched (stationary) case. The excess amount will constitute free energy that can
thermalize and hence lead to emittance growth, as discussed in Section 6.2.

Let us now consider case (b) of Figure 5.21, which illustrates the focusing of a
beam to a small spot size. With an ideal aberration-free lens there would be no fun-
damental difference to the matching case (a), except that the radius at the focused
beam is usually much smaller. However, with a real lens the aberrations have a
much stronger effect in the focusing system than in the matching system. For
beams where space-charge forces are not very significant, these nonlinear effects
are well understood and well documented in the literature (see our brief review
in Section 3.4.6). When space charge is dominant, on the other hand, as in the
focusing of very intense, high-brightness beams, the situation is much more com-
plicated. We will therefore limit our discussion to the latter case and use as an
illustrative example the experimental investigation of the effects of space charge
and lens aberrations in the magnetic focusing of an electron beam by Loschialpo
et al. [29]. In this experiment, a 5-keV 190-mA electron beam is focused by a short
solenoid whose axial magnetic field can be approximated analytically by an expres-
sion of the form (4.127). The lens and beam geometry were deliberately designed
to exhibit the effects of the inherent nonlinearity of the lens. Since the spherical
aberration was the dominant effect, we will for the purpose of this discussion ap-
proximate the solenoid by a thin lens whose action can be described by the equation
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Fig. 5.22 Focusing of a parallel beam without space charge by
an ideal lens (a) and a lens with spherical aberrations (b);
focusing of a laminar beam by an ideal lens (c) and a lens with
spherical aberrations (d). (From Reference 29.)

r ′
2 − r ′

1 = − 1

f
r − αsr

3, (5.521)

where r = r1 in the thin-lens approximation. The third-order term is defined by
the positive parameter αs and has a focusing effect. Figure 5.22 shows the results
of the trajectory calculation, which illustrate the focusing of an initially parallel
uniform beam by the lens for the two extreme cases where space charge is zero
(top) and where the temperature is zero (bottom). On the left side are the trajec-
tories without aberration (αs = 0) and on the right side are the trajectories when
the aberrations are present (αs �= 0). The case without space charge shows the
well-known axis crossing of the trajectories at the focal point (z ≈ 7 cm) when
αs = 0 (a) and the spreading of the crossing points when aberration is present (b),
as discussed in Section 3.4.6. The behavior of the zero-temperature laminar beam
is fundamentally different. Without aberration (c) the trajectories do not cross the
axis but form a waist that occurs at a distance that is significantly greater than the
focal length (zw ≈ 10 cm). When aberration is present (d), the beam breaks up into
an inner core whose trajectories behave as in (c) and an outer part whose trajecto-
ries cross the axis. This effect can be explained by comparing the applied focusing
force from the lens with the defocusing force due to the space charge. In the ideal
linear case (αs = 0) these forces are acting in such a way that all trajectories are
similar. Furthermore, the transverse kinetic energy acquired by the particles in the
passage through the lens is fully converted into potential energy at the waist where
the slope of each trajectory is zero (r ′ = vr/v0 = 0). When a nonlinear force is
present (αs �= 0), on the other hand, the particles gain additional transverse en-
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ergy, which increases rapidly with the radius r . Thus, there will be a critical radius
rc beyond which this additional transverse kinetic energy is greater than the poten-
tial energy at the waist. Therefore, the particles with r > rc at the lens will cross the
axis. As a result, the beam profile, which was uniform initially, will become hollow
downstream from the lens. The degree of nonuniformity will depend on the focus-
ing strength f , the spherical aberration parameter αs and the width of the beam
in the lens. The measurements by Loschialpo shown in Figure 5.23 illustrate this
effect very graphically. Note that the dip in the profile is most pronounced at the
waist, and farther downstream it shows a tendency to flatten out. At higher fields
(B0 = 147 G) a single peak develops at z � 20 cm. As the focusing strength is in-
creased further, the waist becomes smaller and a triple-peak profile develops when
the beam expands again beyond the waist. Computer simulations yielded excellent
agreement with these experimental observations [29]. Although the beam is not
in thermal equilibrium during the focusing process, it is still useful to compare it
with the stationary Boltzmann profiles. When the aberrations are absent (αs = 0),
the curves in Figure 5.12 will give us a good idea of how the profiles change with
temperature increases as the beam is focused down to the waist. The sharp edge of
the low-temperature space-charge-dominated initial beam will become more fuzzy
when the temperature effects, and hence the emittance term in the envelope equa-
tion (5.512), become important or even exceed the space-charge force.

The development of a hollow profile when aberrations are present is also con-
sistent with the stationary Boltzmann density distribution. Consider, for instance,
a periodic channel consisting of short solenoids with spherical aberrations, as de-
scribed by Equation (5.521). The applied focusing potential in the Hamiltonian will
then have the form φ⊥(r, z) = A(z)r2 + B(z)r4, which includes the fourth-order
aberration term. In the smooth approximation, where the potential function is av-
eraged over z, the zero-temperature density profile will have the parabolic form
n(r) = n(0)[1 + C(r/R)2], where the constant C depends on the aberration coeffi-
cient and R is the beam radius. At higher temperatures, the dip in the profile will
be washed out (see Problem 5.17).

Spherical aberrations in the electrostatic potential distribution also explain why
the electron beams from high-perveance guns, such as the gun pictured in Figure
1.1, tend to have a hollow profile when the anode hole is not covered by a mesh.
This is true even with the standard Pierce-type electrode geometry [C.3, Chap. 10.1].
The assumption of a uniform density profile made in Pierce’s theory is not correct.
But this does not affect the electrode design, in which the radial focusing force
component balances the space-charge force at the beam edge; from Gauss’s law,
the latter depends only on the total current and not on the density profile.

The deviation of the density profile in space-charge-dominated beams from a uni-
form distribution may cause emittance growth, as discussed in Section 6.2. With
regard to focusing a high-intensity, high-brightness beam to a small spot size, it is
important that lens aberrations be minimized.

As a final topic in this section, let us now briefly discuss the problem of imaging
in electron microscopy, ion-beam projection lithography, and other applications. To
form an undistorted image of an object it is essential that all types of aberrations be
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minimized. This includes the effect of space charge, which tends to act like a spher-
ical aberration, as discussed in Section 3.4.6 (Figure 3.14). For imaging purposes
the particle source (cathode, plasma) must by necessity have a very small diameter,
and the beam current must be relatively low. The beam is therefore temperature
dominated, so that the Boltzmann density profile has the Gaussian shape of curve 1
in Figure 5.12. The finite temperature, or emittance, causes chromatic aberrations
but also spherical aberrations by radial spreading of the particle distribution into
the nonlinear regions of the lenses. These detrimental effects can be minimized by
the use of apertures, just as in a camera. The beam current involved in the image
formation process is therefore always smaller than the total current emitted from
the source. Indeed, the higher the required image resolution, the lower the usable
current and current density. If Js , Ji and rs , ri denote the current densities and radii
at the object (source) and image, respectively, and Mi = ri/rs is the magnification,
ideally one would expect that Ji = M2

i Js . However, this ideal value can never be
reached in practice since current must be sacrificed with the aid of apertures to re-
duce the aberrations and achieve the desired resolution. This problem is discussed
in Pierce’s book [C.3, Chap. VIII) and reviewed by Lawson [C.17, Sec. 4.8].
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Problems

5.1 Consider a planar diode formed by two infinite parallel
planes separated a distance d with potentials V = 0 at x = 0
and V = V0 at x = d. The plane at x = 0 forms a cathode
from which a steady stream of electrons is emitted, and as a
result, a negative space charge of density ρ(x) is building up
in the gap between anode and cathode. If the thermal
velocities of the electrons are neglected, a steady-state
situation develops in which dV/dx = 0 at x = 0 and the
electron current density reaches an upper limit, Jmax. The
general approach to finding the steady-state solution for
V (x) and Jmax for relativistic electron velocities leads to an
equation for V which is not integrable in terms of
elementary functions.
(a) Carry out the analysis relativistically correct and find the

(nonintegrable) equation ∫ f (V ) dV = Cx. Determine
the constant C. Explain why the self-magnetic field of
the electron stream can be neglected.
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(b) Solve ∫ f (V ) dV = Cx for the nonrelativistic limit;
obtain V (x) and Jmax in terms of V0 and d.

(c) Current flow across the diode can be impeded by
applying a uniform magnetic field B = Baz

perpendicular to the electric field. Above a critical value
Bc, no electron leaving the cathode with zero initial
velocity will reach the anode. Derive an expression for Bc

(in terms of V0, d, and other parameters) that is
relativistically correct.

5.2 Determine n(r), v(r), and Er(r) and plot as functions of
radius (0 � r � a) for the laminar beam treated in
Section 5.2.1.

5.3 The rigid-rotor equilibrium beam is characterized by the
solution ω = const of the equations of state for all particles
in the nonrelativistic energy regime.
(a) Show that ω = ωL ± ωL[1 − ω2

p/2ω2
L]1/2 by solving the

equations of state.
(b) Show how ω relates to the magnetic field configuration

(Bs = field at the source, B = field in the equilibrium
region).

(c) Find the axial velocity vz(r) for the entire range of ω

values.
(d) Evaluate and discuss the results (a) to (c) for the cases

ω = 0, ω = 0.5ωL, ω = ωL, and ω = 2ωL.
5.4 Consider a cold relativistic electron beam with a total current

of 10 kA that is emitted from a magnetically shielded diode
with a cathode–anode voltage of 1 MV. The initial beam
profile is defined by a radius of a = 1 cm and zero slope.
(a) Determine the distance at which the beam radius

doubles when the beam propagates in a field-free drift
tube.

(b) Suppose that the beam is injected into a tube of radius
b = a. Calculate the magnetic field B0 necessary to
achieve uniform beam radius using paraxial theory, with
γ = γa determined by the diode voltage.

(c) Determine the variation with radius of the energy
parameter γ = γ (r) assuming that β ≈ 1 and density
n = n0 = const. Using the value γ0 = γ (0) on the axis
rather than γa = γ (a), recalculate the magnetic field B0

necessary to achieve uniform beam radius.
(d) Compare the paraxial result with the exact self-consistent

theory of relativistic Brillouin flow equilibrium of
Section 5.2.3 by calculating the equilibrium current that
corresponds to the magnetic field B0 obtained in the two
cases (b) and (c). Explain why the results differ.
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5.5 Show that the relations (5.45b), (5.46a), and (5.51a) for a
nonrelativistic solid Brillouin beam can be obtained from the
corresponding relativistic equations (5.72), (5.70), and (5.69).

5.6 Derive equations (5.105) and (5.106).
5.7 With qi denoting the three space variables and pi the three

conjugate canonical momenta, Liouville’s theorem may be
stated in the alternative forms

df (qi, pi)

dt
= 0,

∫∫
d3q d3p = const.

Prove that the theorem also holds in q, P space, where P is
the mechanical momentum, that is,

∫∫
d3q d3p =

∫∫
d3q d3P.

5.8 Prove that the generalized K–V distribution f = f0δ(G − 1)

represents in the x−y plane a beam with elliptic cross
section (semiaxes X and Y ) and uniform charge density
ρ = I/πvXY , where I is the total beam current, v the

particle velocity in the z-direction, X =
√

β̂xεx , and

Y =
√

β̂yεy . [Hint: It will be helpful to introduce new
variables α, ψ by the transformations

wxx′ − w′
xx = α cos ψ

wyy′ − w′
yy = α sin ψ

and to make use of the properties of the Dirac delta function,
which in this case takes the form δ(α2 − α2

0), where α2
0

represents a function that is constant with regard to the
integration.]

5.9 Consider a K–V beam whose projection in x−x′ trace space
corresponds to a tilted ellipse in the Courant–Snyder form of
Equation (3.345) (i.e., γ̂ x2 + 2α̂xx′ + β̂x′2 = εx with α̂ �= 0).
(a) Evaluate the rms emittance ε̃x as defined in Equation

(5.205) and show that εx = 4ε̃x .
(b) Calculate the first moments x and x′ of this distribution.

5.10 Prove that the brightness of a K–V beam is given by

B = 2I

π2ε2
,

where ε = εx = εy is the 100% emittance of the beam in
each transverse direction.

5.11 (a) Carry out the relativistic transformation of the
Maxwell–Boltzmann distribution (5.266) from the beam
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frame to the laboratory frame using the covariant relations
(5.261) to (5.265). Hint: Define the laboratory velocity
components by β2

l⊥ = β2
lx + β2

ly , βlz = β0 + �βlz; assume
that βl⊥ � β0, �βlz � β0, and expand γl(βl⊥, �βlz) about
the center-of-momentum value γ0 = (1 − β2

0 )−1/2 up to
second order in βl⊥, �βlz.
(b) Show that the laboratory distribution (5.268a) in a
relativistic beam can be obtained directly from the
beam-frame distribution (5.266) by applying the Lorentz
transformations for the velocities and the scalar potential
and then using the temperature relation (5.260).

5.12 Consider a K–V type distribution where the particles occupy
uniformly the surface of a hyperellipsoid in six-dimensional
phase space. Calculate the longitudinal charge density
profile ρL(z) and show that it does not yield a linear force in
the variable z.

5.13 Show that the rms kinetic energy per particle in the
nonrelativistic Boltzmann distribution

f (v) = f0 exp

[
− m(v2

x + v2
y + v2

z )

2kBT

]

is 3
2kBT . Determine ṽx , ṽ⊥ = (v2

x + v2
y)1/2, and ṽ as

functions of the temperature kBT .
5.14 Prove that the longitudinal distribution function

f (H‖) = f‖0
√

2(Hmax − H‖) of Equation (5.425) yields the
longitudinal line-charge density variation ρL(z) given in
Equation (5.409).

5.15 Solve the longitudinal envelope equation (5.416) for a cold
(εzz′ = 0) drifting beam with initial conditions at s = 0 of
zm(0) = z0, z′

m(0) = z′
0. Find the distance sw where the beam

envelope goes through a minimum (waist) defined by zw

and determine the compression ratio z0/zw as a function of
the beam parameters.

5.16 Perform the integration (5.348a) of the longitudinal
Maxwell–Boltzmann distribution that yields the density
profile (5.348b), and determine the constant C. What is the
value of C in the case where the space-charge potential φ‖s is
negligible?

5.17 Consider the stationary transverse Boltzmann distribution in
a smooth-focusing channel with an applied potential
function of the form φ⊥a(r) = γ0m0v

2
0k2

0(r2 + Ar4), where
k0 is the wave number for the linear part of the force and A

represents the spherical aberration. Determine and sketch
the density profiles for the zero-temperature case (kBT⊥ = 0)
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and for the high-temperature case, where the space-charge
potential can be neglected (φ⊥s = 0). Choose the constant A

so that n(0) = 0.6n1, where n1 = n(R) and R is the radius of
the beam in the case kBT⊥ = 0.

5.18 Consider an axisymmetric beam with an arbitrary density
profile n(r), a radial electric field Er(r), and a number of
particles per unit length NL.
(a) Prove that the average rEr has a value that is

independent of the shape of the radial density profile.
(b) Prove that xEx = 1

2 rEr , where Ex is the x-component of
the electric field.

(c) Show that xEx/x̃ = K/4x̃, as stated in (5.216).
5.19 Find the solutions (5.506), (5.507) for the coupled envelope

equations (5.504), (5.505).
5.20 By analogy with Equations (5.293) and (5.420), the general

solutions of the coupled envelope equations (5.502) and
(5.503) can be approximated by

a ≈
[(

3

2

)2
Nrc

β2
0γ 2

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)−2

+
(

εnx

β0γ0kx0

)3/2
]1/3

zm ≈
[

2

3

Nrc

β2
0γ 5

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)
+
(

εnz

β0γ0kz0

)3/2
]1/3

Evaluate the accuracy of these expressions.
5.21 Consider the ellipsoidal bunch with uniform volume charge

density ρ0 and semi-axes a and zm discussed in
Sections 5.4.7 and 5.4.11.
(a) Show that the rms widths and emittances are given by

x̃ = a
√

5, z̃ = zm/
√

5, ε̃x = εx/5, εz = ε̃z/5.
(b) Prove that in the long-bunch limit where zm → ∞,

Equation (5.494) becomes identical to the transverse
K–V envelope equation (4.85a), as one would expect.
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6
Emittance Growth

6.1
Causes of Emittance Change

In the self-consistent theory of Chapter 5 we limited our analysis for the most part
to stationary or quasistationary beams where the applied focusing forces are linear
and the emittances associated with each direction are constant. These beams are
best described by a Maxwell–Boltzmann distribution with different transverse and
longitudinal temperatures. The forces arising from the space charge of such sta-
tionary beams are in general nonlinear except at very low temperatures, where the
perveance dominates over the emittance and where the transverse density profile
tends to be uniform. However, in the equilibrium state the nonlinear space-charge
forces do not, by definition, cause any changes in temperature and emittance.

Real laboratory beams are usually not in perfect equilibrium, and there are a
large number of effects that can cause the temperature and emittance to increase.
The most important causes of emittance growth are the following:

• Nonlinearities in the applied forces
• Chromatic aberrations
• Nonlinear forces arising from nonstationary beam density

profiles
• Beam mismatch causing oscillations of the rms radius
• Beam off-centering causing coherent oscillations around the

optical axis or central orbit
• Misalignments of the focusing and accelerating elements
• Collisions between the beam particles (Coulomb scattering)

and between the beam and a background gas or a foil
• Instabilities, including unstable interactions with applied or

beam-generated electromagnetic fields
• Nonlinear single-particle resonances and nonlinear coupling

between longitudinal and transverse motion (especially
important in circular accelerators)

• Beam–beam effects in the interaction regions of high-energy
colliders
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• Random kicks due to rf noise, mechanical vibrations of the
magnets, and other sources of statistical fluctuations
(limiting the lifetime of beams in storage rings)

There are also effects that cause the emittance to decrease. An example of this
type is equipartitioning, where Coulomb collisions or collective forces tend to drive a
beam with an anisotropic temperature distribution toward three-dimensional ther-
mal equilibrium. Thus, if the temperature is high in the transverse direction, it
will fall, while the low temperature in the longitudinal direction will rise until both
temperatures are equal. As a result, the transverse emittance in this case will be-
come smaller while the longitudinal emittance will increase. Such equipartitioning
will be discussed in connection with the Boersch effect, intrabeam scattering, and
instabilities being treated in this chapter. A brief section is devoted to beam cool-
ing schemes in storage rings where the six-dimensional phase-space volume of a
beam (i.e., transverse and longitudinal emittance) is reduced. The three schemes
that have been employed most successfully are electron beam cooling of ions, sto-
chastic cooling, and radiation cooling of electrons.

However, the major topic of this chapter is emittance growth, which is one of the
most fundamental issues in beam physics. Many advanced accelerator applications,
such as high-energy colliders, heavy-ion inertial fusion, and free electron lasers,
require beams with very small emittance and high beam intensity. As discussed
in Section 1.3, some modern particle sources produce beams with high intrinsic
phase-space density I/ε̃n (or brightness 2I/π2ε̃2

n), which is often more than ade-
quate for a particular application. Near the source and in the low-energy part of the
accelerator system, such beams are dominated by the space-charge forces, which
depend strongly on the shape of the particle distribution. As we will see in the next
section, any deviation from the nearly uniform density profile of a space-charge-
dominated Maxwell–Boltzmann distribution will cause emittance growth. This is
true even if the rms radius is matched to the acceptance of the focusing channel
(where the emittance remains constant when the space charge is negligible).

As an example, consider the gas focusing of high-brightness proton or H− beams
discussed in Section 4.6.2. The collisions with the gas molecules and the resulting
charge neutralization of the beam will produce a Boltzmann distribution with a
Gaussian density profile of the form (5.316b), where n(0) = n0 if the charge is
fully neutralized. When the beam enters the radio-frequency-quadrupole (RFQ) ac-
celerator, where the focusing is entirely by electromagnetic forces, it experiences a
rapid change toward the uniform density profile of the ideal Maxwell–Boltzmann
distribution. The Gaussian beam has more electrostatic field energy than the ideal
uniform beam. During the charge homogenization process this energy difference
will be converted into thermal energy, which will cause emittance growth. The en-
ergy conversion is driven by the nonlinear space-charge forces associated with the
nonuniform initial density profile.

On the other end of the spectrum is the emittance growth caused by nonlinear
external focusing forces in beams where space charge is negligible. To illustrate this
effect let us consider the propagation of a beam through a periodic channel con-
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Fig. 6.1 Progressive distortion of trace-space ellipse during
beam propagation through a periodic channel of thin lenses
with spherical aberrations. The numbers associated with each
figure indicate the lens periods that have been traversed.

sisting of axisymmetric lenses with spherical aberration. For simplicity we assume
that the lenses are thin, so that the change of the slope of a particle’s trajectory at
each lens crossing is given by

�r ′ = −a1r − a3r
3, (6.1)

where a1 = 1/f is defined by the focal length f and a3 by the spherical aberration
coefficient C3 (see Section 3.4.6). Without aberration (a3 = 0) the beam can be per-
fectly matched, as discussed in Section 3.8.1, and the trace-space ellipse will rotate,
keeping the area constant and maintaining an elliptic shape. On the other hand,
when the spherical aberration is present (a3 �= 0), the trace-space ellipse will be dis-
torted, as shown in Fig. 6.1. The area enclosed by the trace-space boundary remains
constant, in agreement with Liouville’s theorem. However, the filamentation due to
the aberration becomes progressively worse. After a sufficient number of periods
the particle distribution fills a diluted trace-space area that is bounded by an ellipse
of larger size than the initial ellipse. The increase in the effective trace-space area
can be measured by evaluating the rms emittance of the distorted distribution and
comparing it with the rms emittance at the beginning of the channel.

A problem with the rms emittance is that it tends to give more weight to parti-
cles with large amplitudes (x, x′) since it is based on an evaluation of the second
moments of the distribution [see Eqs. (5.240) through (5.246)]. Thus the protru-
sion from the ellipse developing in the first few lens crossings of Fig. 6.1 causes an
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rms emittance growth that is considerably larger than the percentage of particles
involved in this effect. By placing collimators with appropriately small apertures
into the focusing channel, one can intercept these particles and prevent the rms
emittance increase that would otherwise occur.

In the more general case, where nonlinear forces from both the applied fields
as well as from the space-charge fields are present, the theoretical analysis is ex-
ceedingly difficult, and computer simulations become indispensable. Analytical
modeling of beams with space charge is by and large restricted to relatively sim-
ple systems such as the uniform or linear periodic channels discussed in Chapter
5. To evaluate emittance growth in nonlinear periodic channels, beam matching
systems, transfer lines, and so on, one must rely almost exclusively on computer
simulation and experiment.

We begin our formal discussion in the next section with an investigation of the
transverse emittance growth in linear focusing channels when the beam is not in
the equilibrium state corresponding to a Boltzmann density profile.

6.2
Free Energy and Emittance Growth in Nonstationary Beams

6.2.1
Analytical Theory

In Sections 5.3.3 and 5.4.4 we discussed the stationary state of a continuous beam
in a linear, uniform focusing channel. According to the smooth-approximation the-
ory, the uniform channel is also a good model for a linear periodic focusing sys-
tem. From a thermodynamic point of view, the equilibrium state of such a beam is
best described by a transverse Maxwell–Boltzmann distribution. The temperature-
dependent Boltzmann profiles are shown in Fig. 5.12, and in the space-charge-
dominated regime these profiles tend to be uniform.

Let us now examine what happens when the beam does not satisfy the stationary-
state requirements at injection into the focusing channel. The three most impor-
tant examples of such a “nonstationary” initial beam are mismatch in the den-
sity profile (e.g., the beam is not uniform in the low-temperature, space-charge-
dominated case), mismatch in the rms radius, and off-centering, or a combination
of these three effects. As we know from thermodynamics, a nonstationary initial
beam has a higher total energy per particle than that of the corresponding station-
ary beam. The energy difference �E between the nonstationary and the station-
ary beam represents free energy that can be thermalized by nonlinear space-charge
forces, instabilities, or collisions. This produces emittance growth as the beam re-
laxes toward a final stationary state at the higher energy per particle [1].

Since the Boltzmann profile is nonanalytic in general, it will not be possible to
model the system in a mathematically exact form. Instead, we use the concept of
equivalent beams introduced in Section 5.3.4 to obtain an approximate descrip-
tion following the theory developed in Reference 1. This concept implies that the
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behavior of a general nonuniform particle distribution can be modeled with good
approximation by using the equivalent uniform K–V beam having the same sec-
ond moments (rms width, rms divergence, rms emittance), current, and kinetic
energy. The theory compares the initial nonstationary beam with the equivalent
stationary distribution to determine the free energy �E. It then assumes that the
beam relaxes into a stationary distribution at the higher energy E + �E. Using
force-balance and energy-conservation relations, the change in beam radius and
emittance is then calculated as a function of the free energy and the tune depres-
sion ki/k0 defining the ratio of the betatron wave constant ki for the initial sta-
tionary beam with space charge and the betatron wave constant k0 without space
charge.

Consider a continuous round beam with current I , particle kinetic energy
(γ − 1)mc2, rms width x̃ = ỹ, transverse rms velocity ṽx = ṽy , and (unnormal-
ized) rms emittance ε̃x = ε̃y = ε̃ in a linear focusing channel and surrounded by
a conducting tube of radius b. Assume that v � vz � ṽx . For a periodic focusing
channel the smooth-approximation theory (see Sections 4.4.1 and 4.4.2) relates the
wave number without space charge, k0, to the phase advance per period, σ0, and
the period length, S, by k0 = σ0/S. The presence of the beam’s self field will re-
duce the net focusing force acting on the particle, and the wave number, oscillation
wavelength, and phase advance with space charge will be defined by k, λ, and σ ,
respectively, so that k = 2π/λ = σ/S.

It will be convenient to use the effective quantities a = 2x̃, vx = 2ṽx , ε = 4ε̃,
and the generalized perveance K = (I/I0)(2/β3γ 3), where I0 = 4πε0mc3/q is
the characteristic current. According to the theory developed in Section 4.3.2, the
stationary state of a beam in a linear focusing channel is characterized by a constant
effective radius and perfect balance between external focusing force, k2

0a, self force,
K/a, and the emittance term, ε2/a3. The relevant Eqs. (4.88) and (4.89) will be
repeated here for convenient reference:

k2
0a − K

a
− ε2

a3
= 0, (6.2)

which may be written in terms of the wave number with self fields, k, as

k2a − ε2

a3
= 0, or ε = ka2, (6.3)

with

k2 = k2
0 − K

a2
= k2

0 − K

4x̃2
. (6.4)

For such a stationary particle distribution, the total energy is a minimum, and
the density profile is practically uniform when the beam is space-charge domi-
nated (i.e., when Ka2 � ε2). The average transverse kinetic energy per parti-
cle is Ek = 1

2γm(ṽ2
x + ṽ2

y) = γmv2x̃′2, where x′ = dx/dz and nonrelativis-
tic transverse velocities are assumed. Since x̃′ = kx̃, we have Ek = γmv2k2x̃2.
The average potential energy per particle due to the external focusing force is
Ep = γmv2k2

0 x̃2. The average energy per particle associated with the self forces
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of the beam Es was calculated in Eq. (5.518). Using K = (k2
0 − k2)4x̃2 from (6.4),

one gets Es = γmv2(k2
0 − k2)x̃2[1 + 4 ln(b/2x̃)]/2. With a = 2x̃, one thus obtains

for the total energy per particle in a stationary beam,

E = Ek + Ep + Es

= γmv2

4

[
k2a2 + k2

0a2 + 1

2

[
k2

0 − k2]a2
(

1 + 4 ln
b

a

)]
. (6.5)

Let us now suppose that the beam injected into the focusing channel is not per-
fectly matched and that the total energy per particle is En, while Ei represents the
energy in the equivalent matched (stationary) beam. The free energy per particle is
then �E = En −Ei . The possible emittance growth can be calculated if we assume
that the nonstationary initial beam with energy En will relax into a stationary state
with final energy Ef = En = Ei + �E due to the action of nonlinear space charge
forces or other effects. Since both the initial stationary state (denoted by the sub-
script i) and the final stationary state (subscript f ) must obey Eq. (6.5), we obtain
the following total energy relation:

γmv2

4

[
k2
f a2

f + k2
0a2

f + 1

2

(
k2

0 − k2
f

)
a2
f

(
1 + 4 ln

b

af

)]

= γmv2

4

[
k2
i a

2
i + k2

0a2
i + 1

2

(
k2

0 − k2
i

)
a2
i

(
1 + 4 ln

b

ai

)]
+ �E. (6.6)

It will be convenient to write �E in the form

�E = 1

2
γmv2k2

0a2
i h, (6.7)

where h is a dimensionless parameter that can be calculated for each effect,
producing free energy and emittance growth. Furthermore, from (6.4) we have
k2
f = k2

0 − K/a2
f and k2

i = k2
0 − K/a2

i , hence k2
f = k2

0 − (ai/af )2(k2
0 − k2

i ). Using
this result for k2

f and substituting (6.7) into (6.6), we find the following relation:
(

af

ai

)2

− 1 − χ ln
af

ai

= h, (6.8)

where

χ = 1 − k2
i

k2
0

. (6.9)

Since ai , χi , and h are known from the initial beam, we can calculate the final
effective beam radius af from Eq. (6.8). Figure 6.2 shows af /ai versus h for various
ratios ki/k0. For af − ai � ai , one obtains from (6.8) the first-order relation

af

ai

� 1 + h

2 − χ
= 1 + h

1 + (ki/k0)2
, (6.10)

which is sufficient for most cases of practical interest.
Next, using Eq. (6.3), we obtain for the emittance difference between the final

and initial stationary beam

�ε2 = ε2
f − ε2

i = k2
f a4

f − k2
i a

4
i . (6.11)
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Fig. 6.2 Ratio af /ai of final and initial stationary beam radius
versus the free-energy parameter h for different values of ki/k0,
where k0 = 2π/λ0 = σ0/S = extemal focusing wavenumber,
ki = 2π/λ = σ/S = initial focusing wavenumber with self
fields. (From Reference 1.)

With k2
f = k2

0 − (ai/af )2(k2
0 − k2

i ) and ε2
i = k2

i a
4
i , we find for the final emittance

εf = af

ai

{
ε2
i + k2

0a4
i

[(
af

ai

)2

− 1

]}1/2

, (6.12a)

or

εf

εi

= af

ai

{
1 + k2

0

k2
i

[(
af

ai

)2

− 1

]}1/2

. (6.12b)

The laminar beam case is obtained from (6.12a) by setting εi = 0. The emittance
increase, calculated by substituting af /ai from (6.8) into (6.12), is plotted in Fig. 6.3
versus h for different initial tune depressions ki/k0.

If af − ai � ai , we can use (6.10) and get the first-order approximation

εf

εi

=
(

1 + 2
k2

0

k2
i

h

)1/2

. (6.13)

Note that the above formulas can be applied to a periodic-focusing channel by sub-
stituting σ0/σi for k0/ki .

It is very important to recognize that the above relations define the theoretically
possible increase in beam radius and emittance due to free energy. The predicted
change will occur only if nonlinear external or space-charge forces or stochastic
effects (e.g., rf noise, Coulomb collisions, etc.) act on the beam to thermalize the
free energy. Take as an example the case where space-charge forces are negligibly
small, so that ki/k0 ≈ 1, and where the applied focusing force is perfectly linear. If
the beam is mismatched (case 2 below) or off-centered (case 3 below) it will have
a higher total energy compared to the ideally matched and centered beam, due to
the additional kinetic energy associated with the coherent envelope and centroid
oscillations. This excess amount of energy constitutes free energy that could in
principle be thermalized. The above formulas correctly calculate this free energy
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Fig. 6.3 Emittance growth εf /εi versus free-energy parameter
h for different values of the initial space-charge tune depression
ki/k0. (From Reference 1.)

and the possible emittance growth. However, since no nonlinear forces are present,
this energy would not be thermalized, and the beam would continue to perform
mismatch or off-centering oscillations. In storage rings, of course, where the beam
lifetime is very long, stochastic effects such as rf noise or Coulomb collisions would
eventually thermalize the free energy.

Let us now evaluate the free-energy parameter h for nonuniform, mismatched,
and off-centered beams.

Case 1 (Nonuniform Charge Distribution) If U = wn − wu denotes the field
energy difference per unit length between the nonuniform and the uniform (sta-
tionary) initial beam, one can show that

h = hs = 1

4

(
1 − k2

i

k2
0

)
U

w0
, (6.14)

where w0 = I 2/(16πε0β
2c2) and U/w0 is a dimensionless parameter. If the linear

approximations (6.10) and (6.13) are valid, we find that

εf

εi

=
[

1 + 1

2

(
k2

0

k2
i

− 1

)
U

w0

]1/2

. (6.15)

As an example, for a Gaussian distribution one has U/w0 = 0.154. If ki/k0 = 0.2,
one finds hs = 0.037 and εf /εi = 1.688.

Historically, the emittance growth in space-charge-dominated beams having
nonuniform (nonstationary) density profiles was first identified in connection with
computer simulation studies by Struckmeier, Klabunde, and Reiser, and an equa-
tion of the form (6.15) was derived which showed good agreement with the simu-
lation results [2]. Wangler then derived the differential equation for the emittance
change [3]

d(ε)2

dz
= −a2K

d

dz

(
U

w0

)
, (6.16)
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and showed that it yields the solution (6.15) if the radius remains constant or does
not change significantly. (This differential equation had been derived earlier by
Lapostolle [4], who, however, at that time thought that the effect was not very sig-
nificant.) Detailed computer simulations of nonuniform beams injected into a uni-
form focusing channel confirmed the theoretical predictions and revealed that the
emittance grows very rapidly in a distance zm that corresponds to a quarter of a
beam plasma period given by [3]

zm = λp

4
= πv

2ωp

= πa

2
√

2K
. (6.17)

Anderson obtained the same result by analytically modeling the dynamic evolution
of a nonuniform laminar sheet beam [5]. Hofmann and Struckmeier extended the
theory to three-dimensional bunched beams [6].

Case 2 (Mismatched Beam) In x−x′ trace space a mismatched beam is repre-
sented by a tilted ellipse that rotates clockwise as the beam propagates along the
focusing channel, and the effective radius oscillates between the minimum and
maximum values, which are denoted by a0 and a1 in Fig. 6.4. We choose the up-
right (waist) position of the ellipse with semiaxes a0 and a′

0, as indicated in Fig. 6.4,
to evaluate the free energy associated with the mismatch. For an initially tilted el-
lipse in the Courant–Snyder form [Eq. (3.345)], γ̂0x

2 +2α̂0xx′ + β̂0x
′ 2 = εi , the two

radii a0 and a1 are given by

a2± = εi

2

[(
γ̂0

k2
i

+ β̂0

)
±
√√√√(

γ̂0

k2
i

+ β̂0

)2

− 4

k2
i

]
, (6.18)

where a1 = a+, a0 = a−, and γ̂0, α̂0, β̂0 are the usual Courant–Snyder parameters.
The customary assumption is that nonlinear external forces will eventually cause

the beam to fill the enclosing ellipse with width a1 and slope a′
0 so that the effective

emittance increase due to mismatch is then simply calculated as

εeff

εi

= a1

a0
. (6.19)

We note in this context that P. Lapostolle in a 1970 CERN report [7] proposed an-
other empirical relation, which applies to both the symmetrical (in-phase) and the
antisymmetrical (180◦ out-of-phase) mismatch and which was found very useful
and accurate in computer simulation studies.

In our model we compare the mismatched beam with the stationary (matched)
beam having the same emittance but semiaxes ai, a

′
i , as indicated in Fig. 6.4. For

convenience we assume that the mismatch oscillations in the x and y directions
are in phase, so that according to Eq. (4.204) the envelope oscillation wave number
ke = 2π/λe is given by ke = (2k2

0 + 2k2
i )

1/2.
The energy difference per particle between the initial mismatched beam (sub-

script 0) and the initial matched beam (subscript i) is calculated to be

�E = γmv2

4

[
a′ 2

0 − a′ 2
i + k2

0

(
a2

0 − a2
i

) + 2
(
k2

0 − k2
i

)
a2
i ln

ai

a0

]
. (6.20)
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Fig. 6.4 Trace-space ellipses for the initial mismatched beam
(radius a0, maximum slope a′

0) and the corresponding
“effective” emittance (a1a′

0), the initial stationary beam (ai , a
′
i
),

and the final stationary beam (af a′
f

). (From Reference 1.)

Since the initial emittance of the two beams is assumed to be the same, we have
a0a

′
0 = aia

′
i ; furthermore, a′

i = kiai and a′
0 = aia

′
i/a0 = kia

2
i /a0. Using these

relations, we obtain for the free-energy parameter h = hm due to mismatch

hm = 1

2

k2
i

k2
0

(
a2
i

a2
0

− 1

)
− 1

2

(
1 − a2

0

a2
i

)
+
(

1 − k2
i

k2
0

)
ln

ai

a0
. (6.21)

The mismatch leads to a possible final emittance of εf = af a′
f (indicated in

Fig. 6.4) that can be calculated for any given value of hm from Eqs. (6.8) and (6.12)
or, if hm � 1, from (6.13). As an example, we find for a mismatched beam with
a0/ai = 0.8 and ki/k0 = 0.2 from (6.21) hm = 0.0455, hence a radius increase of
af /ai = 1.0413 and an emittance growth of εf /εi = 1.836. By comparison, the
effective emittance growth factor from (6.19), with a1 = a0 + 2(ai − a0), is found
to be εeff/εi = 2(ai/a0) − 1 = 1.5.

Case 3 (Off-Centered Beam) Let us assume that the beam is properly matched
but off-centered in the x-direction, as shown in Fig. 6.5. The centroid of the beam
will perform coherent oscillations about the axis of the ideal focusing channel and
move on the small ellipse having semiaxes xc and x′

c. The wave number kc = 2π/λc

of the coherent oscillations is given by kc = k0, or if image forces are present, by
[see Eqs. (4.238) to (4.240)]

kc = (
k2

0 − k2
im

)1/2
, (6.22)



6.2 Free Energy and Emittance Growth in Nonstationary Beams 429

Fig. 6.5 Trace-space ellipse of off-centered beam. The centroid
moves clockwise along the small ellipse while the outermost
point in the beam traces the large outer ellipse. (From
Reference 1.)

where

k2
im =

{
K

b2 for τ < τm

Kγ 2

b2 for τ > τm.
(6.23)

τm is the magnetic diffusion time defined by τm = 4d2σµ/π2, where d is the wall
thickness of the conducting tube, σ the conductivity, and µ the magnetic perme-
ability of the wall material. Evaluating the total energy of the off-centered beam
where the centroid coincides with the beam axis (Fig. 6.5), we obtain

�E = γm

2
v2
c = γm

2
v2x′ 2

c . (6.24)

Since x′
c = kcxc, we get for the free-energy parameter

h = hc =
(

xc

ai

)2
k2
c

k2
0

. (6.25)

As an example, if kc = k0, xc = 0.2ai , we have hc = 0.04, and for ki = 0.2k0, we
find from (6.13) that εf /εi = 1.732.

The examples given indicate that each of these three effects can cause consider-
able emittance increase. In practice, all three effects can be present, and the asso-
ciated free-energy terms add linearly:

h = hs + hm + hc. (6.26)

While the uniform equivalent K–V beam was used to model the behavior of an
initially nonstationary distribution in a linear focusing channel it is important to
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recognize that an ideal nonstationary K–V beam would not exhibit any emittance
growth. Since all forces are linear in this case, the beam envelope would oscillate
indefinitely and the excess free energy would not thermalize, leaving the emittance
constant. Real beams, however, differ from the K–V distribution, and any perturba-
tion in the equilibrium density profile gives rise to nonlinear space-charge forces,
which may lead to thermalization of the free energy and hence emittance growth.
The nonlinear collective forces have the same effect as collisions in thermalizing a
particle distribution [8]. The available free energy is, however, not entirely thermal-
ized. Some of the energy will be converted to potential energy, due to the change
in beam radius and density profile. Relation (6.12) of the theory will therefore tend
to slightly overestimate the emittance growth since it does not take into account
the nonuniform part of the field energy in the final stationary state. Furthermore,
a small fraction of the particles with large transverse energy may form a “halo” sur-
rounding the thermal core of the beam and contributing a disproportionate amount
to the rms emittance growth, as discussed in the next section.

Another important observation mentioned earlier, but worth repeating, is that
the theory calculates the possible emittance growth. Whether for a given situation
all of the theoretically possible emittance growth will actually occur depends on
the time scale and the dynamical details of the nonlinear effects. In the case of a
nonuniform beam (case 1), most of the possible emittance growth occurs in a quar-
ter of a plasma wavelength, λp/4 = 2πv/ωp , as mentioned. On the other hand, an-
alytical studies for a mismatched laminar beam in a uniform focusing channel [9]
and computer simulation of off-centered beams in a periodic focusing channel [10,
11] show that the associated emittance growth is a slow process that can take place
over a large number of focusing periods. Specifically, the time scale for the mis-
matched beam is defined by the betatron oscillation period, since it takes one or
more betatron oscillations to get the phase mixing leading to the randomization
of the velocity distribution. By contrast, the coherent oscillations due to beam off-
centering may persist for a very large number of betatron oscillations [11], since the
beam centroid is affected mainly by the linear external force, which preserves the
coherence in the beam. In high-energy synchrotrons and storage rings the acceler-
ation and storage times are always long enough that even relatively small nonlin-
earities in the transverse focusing forces lead to phase mixing and thereby convert
all of the coherent energy due to off-centering at injection into emittance growth.
This effect is discussed in the book by Edwards and Syphers (Section 7.1, pp. 222
to 238). These authors define our off-centering as “injection steering error”; and
with regard to mismatch, they distinguish between “betatron function mismatch”
and “dispersion function mismatch,” as is appropriate for circular machines.

6.2.2
Comparison of Theory, Simulation, and Experiment

The theoretical model described in the preceding section assumes a round, con-
tinuous beam in an axisymmetric channel with uniform focusing. However, as al-
ready pointed out, the basic results should also apply to periodic-focusing channels
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in the regime where the smooth approximation is valid (i.e., for a phase advance of
σ0 < 90◦). According to the results of Section 4.4, the smooth-approximation rela-
tions for transportable beam current, beam radius, space-charge-depressed phase
advance σ , and so on, are accurate to within a few percent for the range σ0 < 90◦.
Furthermore, the envelope instabilities treated in Section 4.4.3 prohibit the trans-
port of space-charge-dominated beams in the region above σ0 = 90◦ where the
smooth approximation fails. Thus we would expect that the theory of emittance
growth in nonstationary, uniformly focused beams can also be used to predict the
behavior of periodically focused beams in axisymmetric (e.g., solenoid) or quadru-
pole (FODO) channels.

In this section we compare the theory with numerical simulation results for
beams in a uniform focusing channel, a magnetic quadrupole channel of the
FODO type, and a periodic solenoid channel. Furthermore, for the solenoid case,
both theory and numerical simulation are compared with experimental results. It
will be shown that the interplay of theory, simulation, and experiment reveals im-
portant details of beam behavior that would be missed if either simulation studies
or experiment were done alone.

Let us begin with the computer simulation studies by Struckmeier, Klabunde,
and Reiser [2] that were mentioned in the preceding section following Eq. (6.15).
These studies were aimed at obtaining an understanding of the behavior of dif-
ferent types of distributions in a magnetic quadrupole channel. Specifically, the
goal was to investigate theoretically predicted instabilities and to find out if the
growth rate for these instabilities depended on the form of the charge distribution.
The part of this work that relates to the instabilities is described in Section 6.3.1.
Here we limit the discussion to the discovery in these simulation studies of the
very rapid and unexpected initial emittance growth due to charge nonuniformity,
which appeared to be unrelated to the instability problem. This emittance growth
was found to depend on the form of the distribution. It was strongest in the case
of a Gaussian distribution, weakest in the Waterbag case, and practically absent in
the K–V beam. In all cases it was found that the emittance rises rapidly to a peak
within approximately one FODO period, and then oscillates with relatively small
amplitudes about a constant mean value over the 50 FODO periods for which the
simulation runs were made. The FODO lattice was the same as that in Fig. 4.11(b)
in Section 4.4.3. Since the emittance growth was most pronounced in the Gaussian
distribution and was not observed in the K–V distribution, it was concluded that the
effect was caused by the nonuniformity of the particle distribution.

As we now know from our discussion of the Boltzmann distribution in Sec-
tion 6.5, the stationary state for a space-charge-dominated beam is characterized by
a uniform charge-density profile. A nonuniform distribution has a greater amount
of field energy than that of the equivalent uniform beam. The energy difference
represents free energy that thermalizes as the beam evolves toward a new steady
state having a higher temperature and a more uniform density profile. This effect
causes the emittance growth observed in the computer simulation. Another way of
describing the process is that the nonlinear space-charge forces associated with the
nonuniform initial density profile produce a rapid redistribution of the particles
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Fig. 6.6 Computer simulation results of emittance growth in a
FODO channel with σ0 = 60◦ versus σ for a Gaussian
distribution and comparison with Eq. (6.12b) of theory (dashed
curve). (From Reference 2.)

toward a more uniform density. The charge homogenization effect converts the
potential energy of the particles into thermal kinetic energy, which results in the
observed emittance growth. In the computer simulation, both charge homogeniza-
tion and emittance growth occur simultaneously on a very fast time scale: within
one FODO period. As was found in later studies, this corresponds approximately
to a quarter of a plasma wavelength.

To determine the effects of beam intensity on emittance growth, Gaussian and
K–V distributions were studied systematically for the case σ0 = 60◦, with decreas-
ing phase advance σ (i.e., increasing values of the space-charge parameter Ka2/ε2).
The results are shown in Fig. 6.6, where the ratio of final to initial emittance after
50 FODO periods is plotted.

As can be seen, the K–V distribution has practically no emittance growth except
at very low values of σ below about 10◦. The small increase in this high-intensity
region is probably due to an instability caused by a fourth-order resonance of the
type described in Section 6.3.1. The behavior of the Gaussian distribution, on the
other hand, is markedly different. It, too, shows essentially no emittance growth
in the region of σ > 40◦. But then, as the intensity increases (i.e., as σ becomes
smaller), the emittance rises rapidly to large values. This computer result is con-
sistent with the predictions of the theory. Using Eqs. (6.8), (6.12b), and (6.14), with
U/w0 = 0.154 for the Gaussian beam from Table 5.2, one obtains the dashed curve
that is shown in Fig. 6.6. The agreement between theory and simulation is remark-
ably good with regard to general behavior. However, the theory overestimates the
emittance growth by about 15 to 20%. But this is not surprising since the analytical
model assumes that all of the free energy is thermalized, when in fact some of it
remains as potential energy in the final equilibrium state of the beam. Indeed, if
one keeps track of the actual variation of the field energy factor U/w0 in the sim-
ulation and uses it in the theoretical formula, the agreement between theory and
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simulation becomes almost perfect. This was done in the study by Wangler et al.
that was mentioned earlier [3], where the behavior of a Gaussian distribution in a
uniform focusing channel was investigated. The tail of the Gaussian was truncated
at two standard deviations and it was assumed that the initial tune depression of
this space-charge-dominated beam was ki/k0 = ωi/ω0 = 0.02. The variation with
distance z (in units of plasma periods, λp) of the parameter p = 1 − ā/āu, the
field energy factor U/w0, and the emittance ratio ε/εi are shown in Fig. 6.7. The
parameter p is positive for a peaked charge distribution, zero for a uniform beam,
and negative for a hollow beam. It compares the behavior of the average radius ā

of the Gaussian distribution with the average radius āu of the equivalent uniform
beam. As one can see, ā oscillates about āu with a period length that is approxi-
mately equal to the plasma period, λp . On the other hand, the field energy factor
U/w0 and the emittance oscillate with a frequency that is twice as fast as the plasma
frequency. The square symbols in the emittance curve correspond to emittance cal-
culations from the second moments of the distribution according to Eq. (5.246) at
each step. The triangles correspond to calculations using the nonlinear field energy
factor U/w0 and Eq. (6.15) at each step. Note the excellent agreement between ana-
lytical theory and simulation if the evolution of the remaining field energy is taken
into account as the beam propagates along the channel. On the other hand, if one
just uses Eq. (6.15) with ki/k0 = 0.02 and the initial value of U/w0 � 0.043 for a
Gaussian truncated at two standard deviations, one obtains εf /εi = 7.4. This value
is about 9% higher than the numerical result of εf /εi � 6.8 from Fig. 6.7. Thus, as
expected, the theory overestimates the emittance growth effect by a small amount
even in the case of a uniform focusing channel.

Following these early simulation studies, the concept of free-energy conversion
into thermal motion and emittance growth was investigated experimentally at the
University of Maryland [12, 13]. In the experiments, a 5-keV electron beam from
a gun with thermionic cathode was passed through an aperture plate outside the
anode and matched with the aid of two short solenoids into a 5-m-long periodic
channel consisting of an array of 36 solenoid lenses. The injector part of the sys-
tem, consisting of the electron gun, aperture plate, and the two matching lenses, is
shown in Fig. 6.8. With the aid of small holes in the aperture plate a nonuniform
beam consisting of a configuration of five beamlets was created, as illustrated in the
figure. The evolution of this multiple-beam distribution through the injector and
down the periodic-focusing channel was observed on a movable fluorescent screen.
The images on the screen were photographed with a CCD camera and stored in an
Apple Macintosh II computer for further analysis. Emittance measurements with
a slit-pinhole type of meter [14] suitable for axisymmetric beams were made at the
end of the long channel. The initial emittance of the five-beamlet configuration
was inferred from measurements of the full round beam produced by the gun.
This beam is converging initially and has a waist at the position of the aperture
plate. Thus the initial effective emittance is defined by Eq. (5.318b), which can be
written in the form

εi = 4ε̃i = Ri

(
2kBT

eV0

)1/2

. (6.27)
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Fig. 6.7 Results of numerical simulation for an initial Gaussian
charge distribution in a uniform focusing channel. Details are
described in the text. (From Reference 3; © 1985 IEEE.)

V0 is the beam voltage, which is 5 kV in this experiment, and kBT the temperature
at the waist. Ri is the effective initial radius, which is defined by the geometry of
the beamlet distribution. Assuming a uniform density in each beamlet, one finds
from Fig. 6.8 that

Ri = (
a2 + 1.6δ2)1/2 = 3.924a = 4.67 mm, (6.28)

where a = 1.19 mm is the beamlet radius and δ = 3a = 3.57 mm defines the
beamlet separation as indicated in the figure. The beam radius at the waist was
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Fig. 6.8 Schematic of multiple-beam experiment showing
electron gun, beam mask (aperture plate), two matching
lenses, first of the 36 lenses of periodic solenoid channel, and
diagnostics.

approximately one-half of the cathode radius, and the cathode temperature was
typically 0.12 eV. In view of Eq. (5.343), one then obtains a waist temperature of

kBTwaist =
(

Rcathode

Rwaist

)2

kBTcathode = 0.48 eV. (6.29)

Substituting (6.28) and (6.29) in (6.27), one finds for the initial effective emittance
of the five-beamlet configuration

εi = 6.48 × 10−5 m-rad = 64.8 mm-mrad. (6.30)

The total current in the five beamlets was I = 44 mA or 8.8 mA per beamlet,
yielding a generalized perveance of (see Eq. (4.27a)]

K = I

I0

2

β3γ 3
= 1.88 × 10−3. (6.31)

The calculation of the nonuniform field energy factor U/w0 that determines the
free-energy parameter h according to Eq. (6.14) is straightforward but tedious and
yields [12]

U

w0
= 0.16

{
5 − ln

[(
δ

a

)5(1 − s8

4

)4(
t2 + 1.6s2

s2

)12.5]}
= −0.2659, (6.32)
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where s = δ/b, t = a/b, and b = 14 mm is the radius of the conducting beam
tube. The axial magnetic field produced by the solenoidal lenses used for matching
and periodic focusing of the beam in the experiments can be approximated by
the analytical relation given in Eq. (4.127). The period length is S = 13.6 cm. In
the latest series of experiments performed by Kehne [15], the peak field B0 of the
36 lenses in the periodic channel was set to give a zero-current phase advance of
σ0 = 77◦. Using this number one finds from the smooth-approximation theory
discussed in Section 4.4.1 [Eqs. (4.144) to (4.147)] for the effective average radius of
the initial matched beam

ai = 4.61 mm (6.33)

and
σi

σ0
= ki

k0
= 0.31. (6.34)

The free-energy parameter for the initial five-beamlet distribution is given by
Eq. (6.14), and using the results (6.32) and (6.34), one obtains

h = hs = 1

4

(
1 − σ 2

i

σ 2
0

)
U

w0
= 0.06. (6.35)

To check the predictions of the theory, numerical simulation studies and experi-
ments were performed for two cases. In the first case, the five-beamlet configu-
ration was rms-matched to the periodic channel; that is, with the aid of the two
matching lenses the beam was injected so as to produce a matched periodic enve-
lope with initial average radius ai = 4.61 mm. In the second case, the beam was
deliberately mismatched into the channel so that the initial radius was only half of
the matched radius (i.e., a0/ai = 0.5). The results of the two experiments and the
numerical simulation studies are summarized below.

Case 1 (rms Matched Beam) The free-energy parameter for the initial five-
beamlet configuration in this case is due entirely to the nonuniformity of the dis-
tribution and given by Eq. (6.35). For the small increase in beam radius, one can
use Eq. (6.10) and finds that

af

ai

≈ 1 + hs

1 + (σi/σ0)2
= 1.055. (6.36)

The emittance increase due to thermalization of the nonuniform field energy is
calculated from (6.12), which yields

εf

εi

= 1.56, (6.37a)

or

εf = 101 mm-mrad. (6.37b)

From Eq. (6.17) one would expect that the emittance growth and the correlated
charge homogenization takes place in a distance of

zm = πR

2
√

2K
≈ 12 cm. (6.38)
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Fig. 6.9 Numerical simulation results for the variation of rms
beam radius and emittance with distance z along the solenoidal
transport channel in the rms matched case of the initial
five-beamlet configuration. S is the solenoid periodicity (13.6
cm in the experiment), z = 0 is the periodic channel entrance,
and the curves start at the location of the mask upstream from
the two matching lenses (see Fig. 6.8).

The simulation results for the variation of the effective beam radius and of the
effective emittance with distance z are shown in Fig. 6.9. They are in remarkably
good agreement with the theoretical expectations. Thus, the radius oscillates about
an average value corresponding to the prediction of Eq. (6.36), and the emittance
grows in a distance of about one lens period (13 to 14 cm) to a value close to the
predicted result of Eq. (6.37).

The fluorescent screen pictures taken in the experiment at many locations along
the channel revealed that the beam retains a rather intricate dynamical structure
over a distance of more than 1 m. However, at the end of the channel the profile is
perfectly round, with a slight peak at the center as would be expected for a Maxwell–
Boltzmann distribution. It took some effort to obtain graphic displays of the beam
profile that conform with the fluorescent-screen images. The experimental and nu-
merical beam images at six different locations are shown in Fig. 6.10. They agree
in many details to a remarkable degree, except for a slight variation in the rotation
angle which was due to a small difference between the measured magnetic field
and that used in the simulation. Of particular interest is the formation of an image
of the initial beam configuration at a distance of about 1 m. It can be attributed to
the fact that a large group of particles in each beamlet core is not yet affected by
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Fig. 6.10 Simulation plots and fluorescent-screen pictures of
the beam profiles at six different locations along the transport
channel for the rms matched beam. (Courtesy of D. Kehne.)

the developing turbulence caused by the nonlinear space charge forces in the ini-
tial part of the transport channel. These particles perform quasiperiodic betatron
oscillations with a wavelength

λb = 2πS

σi

, (6.39)

corresponding to the initial depressed phase advance of σi = 0.31σ0 = 24◦. In turn,
these oscillations lead to image formation at a distance of zimage = λb/2 � 1 m, in
good agreement with the observations in Fig. 6.9. Further downstream, however,
this coherence in the beam structure disappears, and no images are observed at
subsequent half periods of the betatron oscillations. The beam entropy increases
and the final beam profile at 524 cm has the expected axisymmetric structure of a
Boltzmann distribution at a higher temperature than the initial state. The emit-
tance measurements [15] with a slit-pinhole system at the end of the channel
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yielded a value of about 110 mm-mrad, in relatively good agreement with theory
and simulation. The fact that this value is slightly higher (by about 9%) than the
theoretical prediction can be attributed to scattering in the residual gas of the vac-
uum system. [See the example following Eq. (6.187) in Section 6.4.3.]

Case 2 (rms Mismatched Beam) In this case the beam was overfocused by the
two matching lenses to produce a mismatch ratio of a0/ai = 0.5 at the entrance
of the periodic channel. The free-energy parameter due to this mismatch can be
calculated from Eq. (6.21) using (6.34), and one obtains

hm = 0.396. (6.40)

The total free energy is defined by the sum of the nonuniform field energy (6.35)
and the mismatch energy (6.40), that is,

h = hs + hm = 0.456. (6.41)

Using (6.34) and (6.41), one obtains for the ratio of the final beam radius af to the
initial radius ai from (6.8) the result

af

ai

� 1.3. (6.42)

The emittance growth predicted by the theory is then found from Eq. (6.12b) as
εf

εi

= 3.72. (6.43)

The simulation results for the variation of beam radius and emittance growth with
axial distance are shown in Fig. 6.11. As can be seen, after an initial increase the
radius oscillates about a mean value that is close to the theoretical prediction of
Eq. (6.42). The emittance, on the other hand, shows the small increase due to the
charge nonuniformity in the first two lens periods. It then grows further, over a dis-
tance of about 12 lens periods, where it settles down and oscillates about a mean
value of εf /εi = 4.2. This emittance increase, most of which is attributable to
the beam mismatch, is approximately 16% higher than the theoretical estimate of
Eq. (6.43). To obtain some insight into possible causes of this unexpected discrep-
ancy, we need to examine the simulation and fluorescent-screen images shown
in Fig. 6.12. This series of pictures begins at a distance of 17 cm from the beam
aperture and shows an image at about 44 cm, less than half the distance of the
image location in case 1. An important new feature is the formation of a ring at
126 cm corresponding to 7 lens periods. At 194 cm (i.e., after a total of 12 lens peri-
ods), the ring develops into a large halo surrounding the beam core. This location
corresponds to the position where the emittance reaches its maximum value (see
Fig. 6.11). The halo persists through the remaining length of the focusing channel,
although it is not visible in the reproduction of the images at z = 524 cm. The final
state of the beam at the end of the channel is characterized by a well-behaved ax-
isymmetric beam core resembling a Boltzmann distribution and a halo. A detailed
analysis shows that the halo comprises about 20% of the beam current and is re-
sponsible for almost all of the emittance growth due to the mismatch, while the
well-behaved beam core has an emittance growth of about 1.5, which corresponds
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Fig. 6.11 Numerical simulation results for the variation of rms
beam radius and emittance with distance z along the solenoidal
transport channel in the rms-mismatched case of the initial
five-beamlet configuration.

to the nonuniform field energy. Only the core approaches a thermal equilibrium
state, while the free energy due to the very large mismatch studied here produces
a cloud of particles having considerably higher energy and oscillation amplitudes
than those in the core. Further studies show that the large discrepancy between
the theoretical prediction of emittance growth and the numerical result becomes
smaller when the mismatch ratio a0/ai is reduced [15]. Numerical simulation stud-
ies of round mismatched beams launched into a uniform focusing channel reveal
that in these cases the theory predicts an emittance growth that is actually higher
than the numerical value [16]. This is true even for a large mismatch where halo
formation occurs. One is therefore led to the conclusion that the low estimate of
the theory in the five-beamlet case is attributable to the fact that there is more
free energy available in this case due to the asymmetry than in a comparable ax-
isymmetric beam configuration. In any case, these findings point out that there is
need for further studies of emittance growth and halo formation in nonstationary
beams.

Although some details, such as halo formation, are not yet fully understood, the
above studies have provided valuable information on the emittance growth and
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Fig. 6.12 Simulation plots and fluorescent-screen pictures of
the beam profiles at six different (locations along the transport
channel for the rms mismatched beam. (Courtesy of D. Kehne.)

on the time scales for the various effects [17]. Considering the assumptions made
in the model, the theoretical predictions with regard to emittance growth are re-
markably good and very useful for practical applications. Also, the information ob-
tained from simulation studies and experiments on the time scales of the various
effects are extremely important. Thus the fastest process is the emittance growth
associated with the thermalization of free energy in an rms-matched beam with a
nonstationary density profile. It occurs in a quarter of a plasma period. The con-
version of free energy into emittance growth due to rms mismatch, on the other
hand, occurs in a distance corresponding to a betatron oscillation, λb, and is al-
most exclusively associated with the formation of a halo at this distance. These
observations are in general agreement with studies by Anderson on the dynamic
evolution of laminar sheet beams, which are initially nonuniform in the density
profile or mismatched [9]. Thermodynamically, the conversion of free energy into
thermal energy and emittance growth corresponds to an increase in the entropy of
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the particle distribution. The mathematical correlation between emittance and en-
tropy was discussed in a paper by Lawson, Lapostolle, and Gluckstern [18] in 1973.

6.3
Instabilities

6.3.1
Transverse Beam Modes and Instabilities in Periodic Focusing Channels

The theoretically possible stationary states of a beam in a linear focusing chan-
nel were described in Section 5.3 by distribution functions that satisfy the time-
independent Vlasov equation. Specifically, for a uniform (continuous) focusing
channel, all distributions that are functions of the transverse Hamiltonian H⊥
(which is a constant of the motion in this case) are stationary. However, in the case
of periodic-focusing channels, H⊥ is no longer constant, and the only stationary
state for which an analytic representation could be found is the K–V distribution.

A key question in the theory of particle beams is whether a particular distribu-
tion is stable or unstable against various types of perturbations. From the thermo-
dynamic arguments presented in Section 5.4, we would expect that in the presence
of collisions or, in general, due to the actions of nonlinear forces of a stochastic
nature, all distributions will eventually relax into thermodynamic equilibrium (i.e.,
into a Maxwell–Boltzmann distribution). One thermalization mechanism that we
discussed in the preceding section is the conversion of the free energy associated
with nonstationary distributions into random motion and hence emittance growth.
Another mechanism that can lead to emittance growth is instability, which is the
subject of this section. Instabilities can affect both stationary and nonstationary
initial distributions. The most powerful analytic technique for investigating the in-
stability problem involves the use of the Vlasov equation and hence the neglect of
collisional effects. In this technique the Vlasov equation is linearized by expanding
the perturbation about the known stationary solution and determining the per-
turbed electromagnetic fields with the aid of Maxwell’s equations. If the perturba-
tions consist of simple electrostatic charge-density oscillations, which is the case
with the problem that we are discussing in this section, the fields can be found by
solving Poisson’s equation for the associated space-charge potentials. For a beam
transport channel consisting of a periodic array of discrete solenoid or quadrupole
lenses, the linearized Vlasov theory is limited to the stability analysis of the K–V
distribution. For a more general investigation one must rely on computer simula-
tions.

Historically, this stability problem was first examined in 1970 for stationary dis-
tributions in a continuous focusing channel (such as a long solenoid) by Gluck-
stern [19], who analyzed the K–V distribution, and by Davidson and Krall [20],
who showed that a large class of stationary solutions of the Vlasov equation is
stable against arbitrary charge-density fluctuations. As in a plasma, local density
perturbations in beams can produce collective modes of oscillations. Gluckstern
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described these modes for the K–V distribution in terms of the oscillations of the
space-charge potential associated with the density fluctuations. The solutions for
the perturbed potentials that satisfy the Vlasov equations and the beam’s boundary
condition can be expressed in the form Vn ∝ eiωtG(r, φ), where the time t can
be related to the propagation distance s and the particle velocity v by t = s/v and
where G(r, φ) describes the geometric dependence of the potentials on the cylin-
drical coordinates r and φ. Basically, G(r, φ) consists of terms such as rn cos mφ

and rn sin mφ, where the integer n denotes the “order” of the mode and the inte-
ger m � n the azimuthal variation. Gluckstern found that the stability of the K–V
distribution in a continuous focusing channel depends on the numbers m and n

and on the tune depression k/k0 = ν/ν0 of the particle oscillations due to space
charge. For ν/ν0 � 0.4 all modes are stable, while in the region below this value
unstable behavior occurs if ν/ν0 falls below a certain value, which depends on the
structure of the mode. In simulation studies performed later [21] it was found that
these “instabilities” of the K–V distribution in uniform transport channels mani-
fest themselves only as redistributions of the charge density with no actual emit-
tance growth – in agreement with much earlier simulation studies by Lapostolle [7].
Thus, in essence, the K–V distribution in a uniform channel is stable.

In 1983, Hofmann et al. extended Gluckstern’s stability analysis of the K–V distri-
bution to periodic solenoid and quadrupole channels [21]. They found that many of
the Gluckstern-type modes become unstable when the associated frequencies inter-
act resonantly with the periodicity of the focusing system (“structure resonances”)
or when the frequencies of two modes converge (“confluence of eigen-values”). The
regions of instability depend predominantly on the zero-current phase advance σ0

and the tune depression σ/σ0 due to space charge and to a lesser extent on the “fill-
ing factor,” or the ratio l/L of lens width l to drift space L in the focusing lattice.
The stability analysis and computer simulation studies showed that the modes of
lowest order, the quadrupole (n = 2) and sextupole (n = 3) modes, are the most
dangerous and generate large emittance growth. Those of high order (n > 3) are
generally less pronounced and their effects on the beam emittance appear to de-
crease rapidly with increasing mode order.

By far the most destructive modes are those of the quadrupole type, which
are identical to the envelope instabilities studied by Struckmeier and Reiser [22]
that were discussed in Section 4.4.3. What happens in this case is illustrated in
Figs. 4.12 (for a solenoid channel) and 4.13 (for a quadrupole channel) in that sec-
tion. Shown on the left side of these figures are the phase advance � per lattice pe-
riod of the two fundamental quadrupole oscillations, the “in-phase” mode, where
V2 ∝ r2, and the “out-of-phase” mode, where V2 ∝ r2 sin 2φ. For a zero-current
phase advance of σ0, both modes start at � = 2σ0 and then decrease on separate
curves as the intensity is increased and, correspondingly, the phase advance with
space charge, σ , is decreased. When the phase advance � of either mode passes
through 180◦, a resonant interaction occurs with the periodic structure that is anal-
ogous to the σ0 = 180◦ threshold for stable single-particle motion [see Eq. (3.302)].
As can be seen in Fig. 4.12, for the solenoid case the modes become phase-locked
to the structure period, so that rather than single resonance points, one has ex-
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Fig. 6.13 Computer simulation of an initial K–V distribution in
the quadrupole channel of Fig. 4.11 at σ0 = 120◦, σ = 35◦,
showing the evolution of the envelope instabilities and a state
of saturation reached after about 100 periods. The computer
results are transformed to correspond to an upright
phase-space ellipse. (Courtesy of J. Struckmeier.)

tended regions in σ−σ0 space where the beam is unstable. The growth rates of the
instabilities |λ| are plotted on the right side of Figs. 4.12 and 4.13. In the quadru-
pole channel, the dominant effect is confluence of the two modes near and slightly
below the 180◦ threshold line (Fig. 4.13). Computer simulation with an initial K–
V distribution at σ0 = 120◦, σ = 35◦ in the quadrupole channel of Fig. 4.11 are
plotted in Fig. 6.13 and show the destructive effect of the envelope instability. The
conclusion, stated in Section 4.4.3, is that periodic-focusing channels for transport
of high-intensity beams should be designed to operate at a zero-current phase ad-
vance of σ0 � 90◦ to avoid these quadrupole-type instabilities.

The analysis of third-order (sextupole) modes shows that instabilities due to
structure resonances at 180◦ and confluence of modes occur when σ0 � 60◦. In
this case the phase advance of the mode starts at � = 3σ0 when the current is
zero, and if σ0 > 60◦, the curves of the eigenmodes pass through the 180◦ line,
at which point structure instability occurs analogous to the envelope modes. Fig-
ure 6.14 shows the growth rate of the confluent and 180◦ instabilities as a function
of σ for a quadrupole channel with σ0 = 90◦ and filling factor η = l/(L + l) = 0.1
(see Fig. 3.27). For a solenoid channel, the studies in Reference 21 show that the
third-order instabilities are much less pronounced than in the quadrupole channel
and depend more strongly on the filling factor, as illustrated in Fig. 6.15. Indeed,
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Fig. 6.14 Growth rate of the confluent and 180◦ instabilities as
a function of σ for a quadrupole channel with σ0 = 90◦ and
filling factor η = l/(L + l) = 0.1. (From Reference 21.)

Fig. 6.15 Behavior of third-order mode for interrupted-solenoid
system for which η = 1/2 or η = 1/6 and σ0 = 90◦. (From
Reference 21.)

one can see the trend whereby the instabilities become negligibly small when the
filling factor goes toward unity and one obtains a continuous long solenoid. Com-
puter simulations presented in Reference 2 for an initial K–V distribution in the
quadrupole channel of Fig. 4.11 (Section 4.4.3) at σ0 = 90◦ and σ = 41◦ are shown
in Fig. 6.16. The transverse density oscillations and the third-order structure of the
modes are quite apparent although higher-order modes may also be present.

The question arises whether these instabilities are a peculiarity of the K–V dis-
tribution, or whether they also occur in other, more realistic distributions. For
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Fig. 6.16 Computer simulation of on initial K–V distribution in
the quadrupole channel of Fig. 4.11 at σ0 = 90◦, σ = 41◦,
showing the evolution of the third-order instability in the
upright phase-space ellipse position. (Courtesy of
J. Struckmeier.)

Fig. 6.17 Emittance growth of various distributions in the
third-order instability regime (σ0 = 90◦, σ = 41◦) of the
quadrupole channel of Fig. 4.11. (From Reference 2.)
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envelope-type instabilities, computer simulations by Struckmeier and Reiser [22]
and experiments [23] show that they are quite universal. The third-order modes
are also observed in computer simulation studies of various distributions. How-
ever, the effects of these instabilities decrease substantially when the distribution
approximates a realistic beam. This is illustrated in Fig. 6.17, which is identical to
Fig. 2 in Reference 2 except that the semi-Gaussian distribution (uniform in space,
thermal in the velocities) is included. The conditions are the same as in Fig. 6.16
(i.e., σ0 = 90◦ and σ = 41◦), and the emittance growth is plotted versus the number
of quadrupole periods (cells). Substantial emittance growth that is attributable to
the third-order instability occurs for the K–V, waterbag, and parabolic distributions
and to a lesser extent for the conical distribution. (Note that the various distrib-
utions are defined in Table 5.1.) The Gaussian distribution shows a rapid initial
emittance growth within the first cell and then a rather slow, almost linear increase
over the entire length of the channel (100 cells). The conical, parabolic, and wa-
terbag distributions also show a rapid initial emittance increase before third-order
instability sets in. All of these initial emittance changes are due to the fact that
these distributions have nonstationary density profiles, and they are explained by
the conversion of the free energy into thermal energy discussed in Section 6.2. The
semi-Gaussian is a notable exception in that the initial emittance actually decreases
at first before it rises and eventually converges with the Gaussian curve after about
75 cells. The reason for the initial decrease is that the semi-Gaussian must convert
some of its thermal energy into field energy as it assumes a more stationary density
profile. Of particular interest is the fact that all distributions do not reach a plateau
of constant emittance. Instead, there is a small but fairly linear increase of the
emittance with distance that was observed already by Lapostolle et al. [24] but is not
fully understood. This small increase may, of course, be due to computational error.
However, it is only observed in the simulation of quadrupole channels and not in
periodic solenoid channels [25]. Hence, there exists the possibility that a genuine
physical mechanism occurring only in the quadrupole case may be responsible for
it.

As we have seen, the emittance growth due to third-order modes is very small in
the more realistic Gaussian and semi-Gaussian distributions, and the effects have
so far not been detected in quadrupole transport experiments [26, 27]. One there-
fore concludes that it should be possible to operate in the parameter range above
σ0 = 60◦ (where the third-order modes occur) but below σ0 = 90◦ to avoid the
envelope instabilities. Within this regime of operation the experiments show that
there appears to be no lower limit in σ for stable beam transport in long periodic
channels [12, 26, 27].

From the computer simulation results, especially the plots in Fig. 6.13 showing
a K–V distribution in the envelope instability regime of a quadrupole channel, one
infers that the beam eventually becomes stable. The final stationary state is char-
acterized by a larger radius, an increased emittance, and a density profile with a
more Gaussian-like shape than that for the uniform-density initial K–V beam. Ap-
parently, the beam reaches a Boltzmann-type equilibrium, having greater random
velocity distribution, and hence higher temperature, than the original distribution.
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Where does the energy that causes this increase of emittance and temperature
come from? As we discussed in Section 5.4.12, the total transverse energy of a
perfectly matched beam in an ideal periodic channel remains constant (i.e., there
is no coupling between the longitudinal and transverse energies in the channel).
We conclude, therefore, that the increase in emittance and temperature caused by
the instability is due to a conversion of potential energy into random kinetic en-
ergy. The envelope instability, for instance, is caused by the resonant interaction
between the collective force due to charge perturbations defined by the plasma
frequency ωp and the external periodic-focusing force characterized by the parti-
cle oscillation frequency without space charge, ω0 = (σ0/S)v0, and the frequency
ωf = (2π/S)v0 due to the periodicity S of the lattice. As the instability effect in-
creases the rms widths x̃, ỹ, and thus the mean radius of the beam, the particle
density n decreases. Hence, the plasma frequency ωp ∝ √

n decreases until the
resonance condition is no longer satisfied. Another way of looking at the problem
is that the velocity spread in the beam is increased until Landau damping occurs
(see the discussion at the beginning of Section 6.3.3). In principle, one could calcu-
late the radius and emittance increase due to the envelope instability in a fashion
similar to that done in Section 6.2. However, in the region σ0 > 90◦, the smooth
approximation is no longer valid, and therefore such analytical estimates of the
emittance growth become very difficult.

It should also be noted in this context that the unstable modes discussed in
this section (i.e., essentially the envelope instabilities) occur only in straight, lin-
ear transport systems for intense beams, which includes rf and induction linacs at
high beam current. In circular machines the space-charge tune shift severely limits
the beam intensity, so that the tune depression ν/ν0 is always close to unity and the
unstable space-charge modes cannot develop.

The instabilities due to the interaction between the space charge and the periodic-
focusing force discussed in this section assumed a beam with transverse symme-
try (i.e., identical emittances and energies, or temperatures, in the two orthogo-
nal phase-space areas). I. Hofmann showed that additional instabilities occur in
beams with anisotropic distributions having different energies, or temperatures,
in the two directions of motion [28]. While these collective instabilities are of gen-
eral importance and may, for instance, occur in the transport of sheet beams, they
are particularly relevant to high-current linear accelerators. The bunched beams
in rf linacs usually have anisotropic energy distributions in the longitudinal and
transverse directions. This leads to equipartitioning and emittance growth of the
beams via the collective space-charge forces, as was shown by R. Jameson in com-
puter simulation studies and analytical considerations [29]. We treat the topic of
equipartitioning in a high-current rf linac in Appendix 4.

6.3.2
Longitudinal Space-Charge Waves and Resistive-Wall Instability

Perturbations in the longitudinal charge distribution can create an instability that
poses a serious problem for both high-current linear accelerators and transport
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systems, as well as for circular machines. This longitudinal instability adversely af-
fects the longitudinal particle distribution, limits the beam intensity, and may also
increase the transverse emittance by generating changes in the transverse distribu-
tion. To understand the physical mechanisms driving this instability, it will be use-
ful first to discuss how perturbations of the longitudinal charge density propagate
along the beam as space-charge waves. We start with a simple, one-dimensional,
nonrelativistic beam model where boundary effects are ignored. Next, we present
an analysis of a cylindrical beam inside a perfectly conducting boundary, which in-
cludes relativistic effects. This analysis is then extended to the case where the beam
tube has a finite resistivity, which causes the resistive wall instability. Temperature
effects are neglected, i.e., we treat the beam as a cold (laminar) fluid.

As we know from basic theory (see, for instance, B.1, Chapter 1), local charge
perturbations in a plasma generate plasma oscillations with frequency ωp . This is
also the case in a beam that can be described as a nonneutal plasma (see discus-
sion in Section 4.1). Thus, if a charged particle is displaced longitudinally from its
equilibrium position due to a perturbation, it will perform longitudinal oscillations
with frequency ωp . If s(t) denotes the displacement from the equilibrium position
in the moving beam frame as a function of time t , the equation of motion of the
particle is of the simple harmonic-oscillator form

s̈ + ω2
ps = 0. (6.44)

The solution of this equation can be expressed as

s(t) = C1e
iωpt + C2e

−iωpt , (6.45)

and

ṡ(t) = iωpC1e
iωpt − iωpC2e

−iωpt , (6.46)

where C1 and C2 are complex constants determined by the initial conditions.
Let us a now consider the case where the perturbation is caused by an external

force acting on the beam. To be specific, we assume that the beam passes through a
small gap in an rf cavity where a periodic electric field with frequency ω produces a
velocity modulation (as in a klystron). Suppose that the gap width is infinitesimally
small so that a particle passing through it will receive an instantaneous “kick” that
changes its velocity but not its position in the beam at that point. If t = t0 denotes
the time of gap crossing, we can express the total initial velocity after the kick as

v(t0) = v0 + v1 cos ωt0, (6.47)

where v0 is the unperturbed velocity and v1 the amplitude of the velocity modula-
tion. The velocity change leads to a displacement of the particle from its equilib-
rium position downstream from the gap, in turn produces the plasma oscillation
described by Eqs. (6.45) and (6.46). The constants C1 and C2 can be evaluated by
using the initial conditions

s(t0) = 0, (6.48a)

ṡ(t0) = v1 cos ωt0, (6.48b)
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which yields

C1 = v1

2iωp

ei(ω−ωp)t0 , (6.49a)

C2 = − v1

2iωp

ei(ω+ωp)t0 , (6.49b)

By substituting these results into Eq. (6.45) we obtain

s(t, t0) = v1

2iωp

ei(ω−ωp)t0eiωpt − v1

2iωp

ei(ω+ωp)t0e−iωpt . (6.50)

This equation describes the displacements of the particles from their equilibrium
positions in the moving beam in terms of the times t0 when they cross the gap.
Since the distance z of travel from the gap is given by z = v0(t − t0), and hence

t0 = t − z

v0
, (6.51)

we can eliminate t0 and express the displacement as a function of t and z, rather
than t and t0. By using relation (6.51) we can write Eq. (6.50) in the form

s(t, z) = v1

2iωp

ei(ωt−kf z) − v1

2iωp

ei(ωt−ksz). (6.52)

The two wave numbers in this equation are given by

kf = ω − ωp

v0
, (6.53)

ks = ω + ωp

v0
. (6.54)

They satisfy the dispersion relation between ω and k, which applies for such pertur-
bations in a cold beam and which is given by

(ω − kv0)
2 = ω2

p, (6.55a)

ω − kv0 = ±ωp. (6.55b)

Equation (6.52) represents the sum of two traveling waves called space-charge
waves, one with wave number kf and wavelength λf = 2π/kf , the other with wave
number ks and wavelength λs = 2π/ks . The corresponding phase velocities are

vf = ω

kf

= v0

1 − (ωp/ω)
≈ v0

(
1 + ωp

ω

)
, (6.56)

vs = ω

ks

= v0

1 + (ωp/ω)
≈ v0

(
1 − ωp

ω

)
, (6.57)

where we assume that ωp/ω � 1. In the first case, the phase velocity is seen to be
greater than the beam velocity (vf > v0), and we call this wave the fast wave. In the
second case, the phase velocity is less than the beam velocity (vs < v0), and we call
this wave the slow wave.

The displacements of the particles from their equilibrium positions can be corre-
lated with perturbations of the velocity v(t, z), the space-charge density ρ(t, z) and
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the current density J (t, z) which are connected by the continuity equation J = ρv.
The superposition of the fast and slow space-charge waves leads to distinct pat-
terns of bunching and debunching of J or ρ along the beam. Thus J reaches its
first peak at a distance of λp/4 = πv0/ωp from the “input” cavity (where the initial
velocity modulation occurs). In a klystron, microwaves are generated in a second
cavity (the “output” cavity), which is located at this first current maximum. If we
examine the two space-charge waves in the beam frame, we obtain for the phase
velocities the results

v+ = vf − v0 = v0
ωp

ω − ωp

, (6.58a)

v− = vs − v0 = −v0
ωp

ω + ωp

. (6.58b)

Thus an observer moving with the beam velocity v0 would see the two waves
moving in opposite directions with frequency ωp and unequal phase velocities
|v+| �= |v−|. Although the phase velocities of the two waves differ, the group ve-
locity vg in the laboratory frame is the same, namely

vg = ∂ω

∂k
= v0, (6.59)

as can be verified from Eq. (6.55b).
Accordingly, energy and information will travel with the velocity of the beam, as

one expects from the well-known arguments of classical physics. We also note that
Eq. (6.55)) represents the classical Doppler shift for the frequency ωp measured
by an observer in the beam frame to the frequency ω measured in the laboratory
frame.

Our analysis in this section as well as in Section 6.3.3 treats the disturbances that
are producing the space-charge waves as periodically acting harmonic forces with
frequency ω. But it should be pointed out in this context that such perturbations
and the associated space-charge waves can occur also in the form of localized single
pulses. Usually the space-charge waves are created as a pair of slow and fast waves.
However, recent experiments with localized, single perturbations on an electron
beam and theoretical analysis have demonstrated that one can create only one or
the other as a single wave by controlling the conditions at the gridded cathode
of an electron gun [30]. We note in this context that the interaction of these two
waves with external electromagnetic fields plays the key role in either acceleration
or microwave generation or in causing longitudinal beam instabilities. Take as an
example a beam propagating in a waveguide together with an externally launched
electromagnetic (EM) wave traveling in the same direction as the beam. If the phase
velocity of the fast space-charge wave is in synchronism with the phase velocity of
the traveling EM wave, the beam will gain energy from the EM wave (i.e., it will
be accelerated). The fast space-charge wave is called a positive-energy wave since it
gains energy from the EM wave as its amplitude is increasing. On the other hand,
when the slow wave is in synchronism with the phase velocity of the EM wave, as
is the case in a slow-wave structure, the beam will give up energy to the EM wave.
We are dealing in this case with a traveling-wave rf generator in which the beam
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kinetic energy is transformed into microwave energy. The amplitude of the slow
space-charge wave will grow as it gives up energy to the EM wave, which is why it
is called a negative-energy wave. As we will see later in this section and in the next
section, it is the interaction of the slow wave with an external circuit impedance
that produces longitudinal instability when the slow-wave amplitude is growing.

The above analysis of the space-charge waves was somewhat academic in that
we assumed a strictly one-dimensional geometry in which the beam was assumed
to be infinitely large in the transverse direction. We can obtain a more realistic
description of the problem by taking the beam to be an infinitely long cylinder of
line-charge density ρL and radius a inside a conducting drift tube of radius b. To
simplify the use of subscripts, we use the symbol � for the line-charge density ρL

(i.e., we set ρL = �). Let us assume that the unperturbed beam has a constant line-
charge density �0, which implies that the longitudinal dc electric field is zero. If
a local perturbation develops, it will emit two space-charge waves according to our
discussion above. In the steady state, all quantities associated with this perturbation
will consist of a dc value and a wavelike ac perturbation. Specifically, the line-charge
density �, velocity v, and beam current I will be of the form

�(z, t) = �0 + �1e
i(ωt−kz), (6.60a)

v(z, t) = v0 + v1e
i(ωt−kz), (6.60b)

I (z, t) = Ī + I1e
i(ωt−kz), (6.60c)

where

I = �v. (6.61)

Note that we use the symbol Ī for the dc (average) current to avoid confusion with
the characteristic current I0.

To analyze the propagation properties of the perturbed waves, we will use a lin-
earized, cold, one-dimensional fluid model that consists of the continuity equa-
tion and the momentum transfer equation (which is identical with the longitu-
dinal equation of motion). Linearization requires that the perturbations be small
compared to the dc quantities (i.e., �1 � �0, etc.). The cold-beam approximation
implies that we neglect the longitudinal momentum spread of the beam. (We gen-
eralize the analysis in Section 6.3.3 by including momentum spread and using the
Vlasov equation instead of the cold-fluid model.)

The continuity equation yields

∂(�v)

∂z
+ ∂�

∂t
= 0. (6.62a)

or
∂I

∂z
+ ∂�

∂t
= 0. (6.62b)

Keeping only the first-order terms, one obtains from (6.60) and (6.61)

Ī = �0v0, (6.63a)

I1 = �0v1 + v0�1 (6.63b)
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and from (6.62),

−ikI1 = −iω�1, (6.64a)

or

�1 = kI1

ω
. (6.64b)

The space-charge waves will produce a longitudinal electric field Ez(z, t) which
will exert a force on the particles in the beam. This force changes the velocity in ac-
cordance with the longitudinal equation of motion, which has the relativistic form

γ 3
0 m

dv

dt
= qEz, (6.65a)

or
∂v

∂z
v0 + ∂v

∂t
= q

γ 3
0 m

Ez, (6.65b)

if the perturbed velocity amplitude v1 is small compared to the dc velocity v0 so
that the relativistic ener factor γ0 = (1 − v2

0/c2)−1/2 remains essentially constant.
With Ez = Es exp[i(ωt − kz)] and using (6.60b), one obtains from (6.65b)

(−ikv0 + iω)v1 = q

γ 3
0 m

Es, (6.66a)

or

v1 = −i
qEs

γ 3
0 m(ω − kv0)

. (6.66b)

Substitution of (6.64b) and (6.66b) in Eq. (6.63b) yields the following relationship
between the perturbed electric field and current amplitudes:

Es = i
γ 3

0 m

q�0

(ω − v0k)2

ω
I1. (6.67)

The longitudinal electric field Ez must also obey Maxwell’s equations. We will use
for out analysis the low-frequency approximation where the displacement current
term ∂D/∂t = ε0∂E/∂t in Maxwell’s equations can be neglected. The longitudinal
electric field can then be calculated by applying Faraday’s law,

∮
E ·dl = −∂/∂t

∫
B ·

dS and Ampère’s circuital law,
∮

B · dl = µ0
∫

J · dS, to the closed rectangular loop
shown in Fig. 6.18. For later use we have assumed in the figure that the wall of the
beam tube has a finite resistivity, so that the induced current Iw generates an axial
electric field Ezw in the wall. Ezs denotes the axial field associated with the space-
charge perturbation in the beam itself. The evaluation of the integrals involved can
be simplified by using in place of the generally nonuniform radial density profile
the equivalent uniform-beam model defined in Section 5.3.4 (see also Fig. 5.12 and
Table 5.2 and related discussion in the text). Carrying out the calculation, which is
left as a problem (6.4), yields the following result:

Ezs = − g

4πε0

(
∂�

∂z
+ 1

c2

∂I

∂t

)
+ Ezw (6.68a)
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Fig. 6.18 Beam geometry (a) and field configuration (b) for
calculation of longitudinal electric field and impedance.

or, since ∂I/∂t � −v2
0∂�/∂z and 1 − v2

0/c2 = 1/γ 2
0 ,

Ezs = − g

4πε0γ
2
0

∂�

∂z
+ Ezw. (6.68b)

The parameter g in Eq. (6.68) is a geometry factor that defines the proportion-
ality between the longitudinal electric field Ezs and the derivatives ∂�/∂z, ∂I/∂t

of the charge and current perturbations, respectively. The situation is analogous
to the relation (5.366) between the electric field and the line-charge density gradi-
ent in a bunched beam. However, in the present situation, we are dealing with
line-charge density perturbations in a continuous round beam, and hence the
geometry factor g should not be the same as for the bunched beam. Mathemat-
ically, the solution for perturbations in a cylindrical beam with radius a inside a
conducting pipe with radius b involves Bessel functions, and the geometry fac-
tor depends on the wave constant k or wavelength λ = 2π/k of the perturbation.
Only in the long-wavelength limit being considered here, where λ � a does one
get an asymptotic value for g that is independent of λ. This asymptotic expres-
sion depends on the relationship between the perturbed line-charge density �,
the volume charge density ρ, and the beam radius a which for a uniform beam
is given by �(z) = ρ(z)a2(z)π . The radius, in turn, depends on the wave con-
stant k0 (or betatron function β̂0 = 1/k0) of the focusing channel, the beam per-
veance K , and the emittance ε, as defined by the approximate relation (5.293),
which is more useful for our purpose than the exact result in Eq. (4.93). Since K

is proportional to the beam current I and I (z) ≈ �(z)v, we find from (5.293) that
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a2(z) = �(z)/C + ε/k0, where C = 2πε0(mc2/q)β2γ 3k2
0 . If the emittance term

dominates, i.e., if ε/k0 � �(z)/C, the radius is essentially constant (a = const),
i.e., �(z) = ρ(z)a2π , and the line-charge perturbation manifests itself as a longi-
tudinal variation (bunching and debunching) of the volume charge density ρ(z).
This is the situation in circular accelerators and storage rings. On the other hand,
if space charge dominates, i.e., if �(z)/C � ε/k0, one has a2(z) ≈ �(z)/C; hence,
the volume charge density remains constant (ρ = const), and the line-charge per-
turbation produces a variation of the beam radius. This is the case in high-current
linear accelerators and beam transport systems. The calculation yields for the g-
factor in these two limiting cases the following result (see Problem 6.4):

g = 1 − r2

a2
+ 2 ln

b

a
= 1

2
+ 2 ln

b

a
(6.69a)

for the emittance-dominated (high temperature) beam where ε/k0 � �/C;

g = 2 ln
b

a
(6.69b)

for the space-charge dominated (low temperature) beam where �/C � ε/k0.
In the first case, the axial electric field Esz varies with radius r while a is constant,

and we calculated the g-factor by averaging over r2, with r2 = a2/2. In the second
case, Esz is constant across the beam, while a varies with distance z, and we took
the average radius ā to define the g-factor. Note that both results differ from the
asymptotic average value of the g-factor for a bunched beam given in Eq. (5.365b),
as expected [see also our discussion following Eq. (5.365b)]. For the general case
where both space charge and emittance affect the beam radius, the values of the
g-factor are of course in the range between the above two limits, i.e., 2 ln(b/a) �
g � 0.5 + 2 ln(b/ā).

We should point out in this context that there is some confusion in the literature
regarding the proper expression for the g-factor. Many authors (see, for instance,
D.10, Section 6.2.1), use the relation g = 1 + 2 ln(b/a), which corresponds to the
axial electric field on the axis (r = 0) of an emittance-dominated beam, rather
than the average value (6.69a), which is more appropriate. Similarly, there has been
disagreement in the past on the formula for g in a space-charge dominated beam.
A recent experiment has confirmed for the first time the validity of Eq. (6.69b) in
this case [31]. Finally, we should point out that all our calculations here assume a
cylindrical beam in a cylindrical conducting tube. In other geometries, the g-factor
will be different. For a round beam of radius a between two parallel conducting
plates of separation 2b, the term 2 ln(b/a) in the formula for g must be replaced
by 2 ln(4b/πa) [see Reference 37, Eq. (9)]. This is also a good approximation for a
rectangular pipe with height 2b and width 2w when w � b. On the other hand,
when the width is comparable to the height (w ≈ b), one can use 2 ln(b/a) as a
good approximation.
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After this brief detour on the g-factor, let us return to Eq. (6.68a) and consider
first the case of a perfectly conducting tube where Ewz = 0. The amplitude of the
total axial electric field perturbation is then

Es = − g

4πε0

(
− ik�1 + iω

c2
I1

)
, (6.70a)

which, in view of (6.64b) may be written in the form

Es = i
g

4πε0

(
k2

ω
− ω

c2

)
I1, (6.70b)

We now have derived two relationships between the axial electric field and cur-
rent perturbations, Es and I1. The first one, Eq. (6.67), was obtained from the conti-
nuity and force equations; the second one, Eq. (6.70b), was derived from Maxwell’s
equations. Clearly, Es and I1 must satisfy both equations, and hence the two terms
associated with I1 on the right-hand side of the equations must be equal. This yields
the desired dispersion relation between the frequency ω and the propagation con-
stant k, namely

γ 3
0 m

g�0

(ω − v0k)2

ω
= − g

4πε0

ω2 − k2c2

ωc2
,

or

(ω − v0k)2 − γ 2
0 c2

s k
2
(

1 − ω2

k2c2

)
= 0. (6.71)

Here we introduced the parameter cs , defined as

cs =
(

qg�0

4πε0γ
5
0 m

)1/2

, (6.72)

which corresponds to the speed of sound in the mathematically equivalent problem
of the propagation of a perturbation in a nonrelativistic cold fluid.

In many cases the difference between the phase velocities of the two space-charge
waves and the beam velocity v0 is very small. Hence we can make the approxima-
tion ω � kv0 in the second term of Eq. (6.71) and obtain the simpler dispersion
relation usually found in the literature:

(ω − kv0)
2 − c2

s γ
2
0 k2

(
1 − v2

0

c2

)
= 0,

or (
ω − kv0

)2 − c2
s k

2 = 0. (6.73)

The solution of Eq. (6.71) is

ω =
k
[
v0 ± cs

√
1 + γ 4

0 c2
s /c

2
]

1 + γ 2
0 c2

s /c
2

. (6.74a)

while (6.73) yields

ω = k(v0 ± cs). (6.74b)
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As we see, when the condition γ 4
0 c2

s /c
2 � 1 is satisfied, Eq. (6.74a) becomes iden-

tical with Eq. (6.74b). This condition can be stated in terms of the average current
as Ī � I0β0γ0/g.

Thus we obtain, as in the previous case, two space-charge waves whose phase ve-
locities for the simpler version of the dispersion relation are obtained from (6.74b)
as

vf = ω

k+
= v0 + cs = v0

(
1 + cs

v0

)
, (6.75a)

vs = ω

k−
= v0 − cs = v0

(
1 − cs

v0

)
. (6.75b)

By introducing the plasma frequency

ωp =
(

q2n0

ε0mγ 3
0

)1/2

=
(

q�0

ε0mγ 3
0 a2π

)1/2

=
(

4γ 2
0 c2

s

ga2

)1/2

, (6.76)

the velocity ratio cs/v0 can be expressed in terms of ωp and �0 as

cs

v0
= ωpa

v0

√
g

2γ0
=

(
q�0g

4πε0γ
5
0 mv2

0

)1/2

, (6.77)

where the g-factor is as defined in Eq. (6.69).
It is interesting to compare the last four equations for the phase velocities of the

waves in the pencil beam with Eqs. (6.55) and (6.56) for the infinite beam. We see
that in place of ωp/ω in the infinite-beam case we have cs/v0, and in view of (6.77)
we have the correlation

ωp

ω
↔ ωq

ω
,

where

ωq = ωp
√

gωa

2γ0v0
= ωp

√
gka

2γ0
(6.78)

is the “reduced” plasma frequency due to screening by the wall of the vacuum tube
in the pencil-beam case. Note that cs corresponds to the phase velocity in the beam
frame since v± = ±cs for cs � v0.

As can be seen from the above results density perturbations in a pencil beam
surrounded by a perfectly conducting drift-tube wall travel along the beam as fast
and slow space-charge waves. The frequencies for the two waves are real, hence
there is no change (growth or decay) of the wave amplitudes. The beam neither
loses nor gains energy and there is no instability.

This situation changes if we consider the case where the drift-tube wall has a
finite resistance per unit length defined by R∗

w [�/m]. The electric field Ezw along
the wall surface is then no longer zero, as with the perfect conductor. The ohmic
losses due to the image currents in the wall lead to growth of the slow-wave am-
plitude, and the associated resistive-wall instability was first investigated by Bird-
sall and Whinnery in 1953 for the possibility of microwave generation [32]. More
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recently, Smith and others [33–36] studied the effects of this instability on high-
current beams in induction linacs, where it poses a threat to the beam quality. To
analyze the problem we note that the electric field along the wall surface has a dc
value that is defined by the product of the dc image current Ī = �0v0 and R∗

w (i.e.,
Ew0 = −ĪR∗

w = −�0v0R
∗
w) and an ac component Ew determined by the product

of the perturbed current I1 = �0v1 + �1v0 and R∗
w :

Ew = −R∗
wI1 = −R∗

w(�0v0 + �1v0). (6.79)

For the behavior of the space-charge waves only the ac component Ew is relevant.
From Fig. 6.18 and Eq. (6.68), Ew must be added to the space-charge field Es of
Eq. (6.70b) to give a total longitudinal electric field of

Es + Ew =
(

− i
g

4πε0

ω2 − k2c2

ωc2
− R∗

w

)
I1. (6.80)

This total field must also satisfy Eq. (6.67), and by equating (Es + Ew)/I1 from the
two equations we obtain the dispersion relation

i
γ 3

0 m

g�0

(ω − v0k)2

ω
= −i

g

4πε0

ω2 − k2c2

ωc2
− R∗

w,

or

(ω − v0k)2 − γ 2
0 c2

s k
2
(

1 − ω2

k2c2

)
− iω

qR∗
w�0

γ 3
0 m

= 0. (6.81)

For R∗
w = 0, we recover our previous result of Eq. (6.71). To simplify the analysis we

will use the approximation ω ≈ kv0 in the second term, as before, and introduce
the frequency parameter ω1 defined as

ω1 = qR∗
w�0

γ 3
0 m

(6.82)

and representing the resistive-wall effect. This yields the dispersion relation

(ω − kv0)
2 − c2

s k
2 − iωω1 = 0. (6.83)

This equation can be solved for the wave number k, and one obtains

k = ωv0

v2
0 − c2

s

{
1 ±

[
c2
s

v2
0

+ i
ω1

ω

(
1 − c2

s

v2
0

)]1/2}
. (6.84)

Using the fact that cs � v2
0 (i.e., v2

0 − c2
s ≈ v2

0 ) and introducing the parameter
k0 = ω/v0, we can rewrite (6.84) in the approximate form

k = kr + iki ≈ k0

[
1 ± cs

v0

(
1 + i

ω1v
2
0

ωc2
s

)1/2]
. (6.85)

When ω1 = 0, the imaginary part is zero (ki = 0) and we recover our previous
result in Eq. (6.74b). On the other hand, when ω1 �= 0, we can solve (6.85) for the
real and imaginary parts of k and obtain

kr = k0


1 ±

[
1

2

c2
s

v2
0

(√
1 +

(
ω1v0

c2
s k0

)2

+ 1

)]1/2

 , (6.86a)
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ki = ±k0

[
1

2

c2
s

v2
0

(√
1 +

(
ω1v0

c2
s k0

)2

+ 1

)]1/2

. (6.86b)

For typical experimental parameters one finds that ω1v0 � c2
s k0, so that one gets

the approximate expressions

kr � k0

(
1 ± cs

v0

)
≈ ω

v0 ∓ cs

, (6.87a)

ki ≈ ±1

2

ω1

cs

. (6.87b)

The result (6.87a) for the real part kr of the propagation constant k is identical with
Eq. (6.74b) for the case where R∗

w = 0. The imaginary part ki in (6.87b) is due to
the wall resistivity R∗

w . It indicates that the amplitude of the slow wave will grow
exponentially with distance as exp[(ω1/2cs)z]; that is, the beam will lose energy
via dissipation in the resistive wall. This effect is known in the literature as the
resistive-wall instability. It limits the beam current and causes the beam quality to
deteriorate.

It will be useful for the general analysis and interpretation of the various disper-
sion relations for the space-charge waves to introduce the space-charge impedance
Z∗

s [�/m], which is defined as the ratio of the voltage per meter V ∗ = −Es and
the current amplitude I1. From Eq. (6.70b) we get

Z∗
s = V ∗

I1
= −Es

I1
= −i

g

4πε0

(
k2

ω
− ω

c2

)
. (6.88)

We see that Z∗
s is complex if ω and k are complex. However, for our analysis we

will treat ω and k in the space-charge impedance as real quantities; in this case Z∗
s

has only an imaginary, or reactive, part which we will define by −X∗
s . Furthermore,

there is a capacitive component, (iωC†)−1 and an inductive component, iωL∗. The
capacitance C† is associated with the perturbed longitudinal charge density and
electric field, and it has units of F-m, which is why we use the superscript rather
than *. This is in contrast to the capacitance C∗ per unit length associated with the
transverse electric field due to the space charge of the beam, which is in units of
F/m (see Problem 6.1). L∗ is the inductance per unit length [H/m] associated with
the perturbed current. In terms of the two parameters C† and L∗ we can write the
space-charge impedance as

Z∗
s = −iX∗

s = 1

iωC† + iωL∗, (6.89a)

or

Z∗
s = − i

ωC†
(1 − ω2L∗C†). (6.89b)

By comparing the last three equations, we obtain

X∗
s = gk2

4πε0ω

(
1 − ω2

k2c2

)
[�/m], (6.90)

C† = 4πε0

gk2
[F-m]. (6.91)
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L∗ = g

4πε0c2
= gµ0

4π
[H/m], (6.92)

L∗C† = 1

k2c2
[s−2]. (6.93)

In the approximation γ 4
0 c2

s /c
2 � 1, where ω = k(v0 ± cs) [see Eq. (6.74b)], and

cs � v0, we can use ω ≈ kv0 and obtain the relation

Z∗
s = −i

g

4πε0

k2

ω

(
1 − v2

0

c2

)
= −i

g

4πε0

k2

ωγ 2
0

, (6.94a)

or

Z∗
s = −iX∗

s = −i
gk

4πβ0γ
2
0

Z0 = −i
gω

4πcβ2
0γ 2

0

Z0, (6.94b)

where Z0 = (ε0c)
−1 = (µ0/ε0)

1/2 � 377 � is the free-space impedance.
We conclude from these relations that the space-charge impedance is always neg-

ative imaginary (i.e., the capacitive part is always greater than the inductive part).
The ratio of the two impedances varies as ωL∗/(ωC†)−1 = ω2L∗C† ≈ v2

0/c2; that
is, the inductive part is negligible at nonrelativistic velocities and becomes more
and more comparable to the capacitive part at highly relativistic energies. The net
effect is that the space-charge impedance Z∗

s is essentially capacitive and decreases
with increasing kinetic energy as (β0γ

2
0 )−1. Furthermore, Z∗

s is proportional to the
geometry factor g = α + 2 ln(b/a) and inversely proportional to the wavelength
λ = 2π/k of the perturbation where 0 � α � 1 [see (6.69) and related discussion].

If we introduce the space-charge impedance X∗
s from Eq. (6.90) and the general-

ized perveance K = (Ī /I0)(2/β3
0γ 3

0 ), the dispersion relation (6.81) may be written
in the alternative form

ω − kv0 = ±k0v0

[
i
2πβ0K

k0Z0

(
R∗

w − iX∗
s

)]1/2

. (6.95)

By defining

�ω = ω − kv0 = �ωr + i�ωi, (6.96)

we can write the general wave solution in terms of the amplitude and phase factors
as

u = u0 + u1e
−�ωi t ei(ωr t−kr z), (6.97)

where �ωrt = ωr t − krv0t and v0t = z was used. The amplitude factor e−�ωi t

measures the exponential growth of the slow wave or the decay of the fast wave,
depending on whether the sign of �ωi is negative or positive. This notation for the
wave amplitude as a whole is preferable over the solutions for either ωi or ki alone,
as we did in our analysis so far and which we still can get separately from (6.83)
if we wish [see Eqs. (6.84) to (6.87). In terms of �ω, the dispersion relation (6.95)
may be written as

�ω = �ωr + i�ωi = ±k0v0

[
2πβ0K

k0Z0

(
X∗

s + iR∗
w

)]1/2

, (6.98)
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and the solutions for the real and imaginary parts of �ω are

�ωr = ±k0v0

[
πβ0K

k0Z0

(√
R∗2

w + X∗2
s + X∗

s

)]1/2

, (6.99a)

�ωi = ∓k0v0

[
πβ0K

k0Z0

(√
R∗2

w + X∗2
s + X∗

s

)]1/2

, (6.99b)

where the upper signs indicate the fast wave (�ωr > 0,�ωi < 0) and the lower
signs the slow wave (�ωr < 0,�ωi > 0), and where k0 = ω/v0 was used.

If R∗
w � X∗

s , one obtains for the growth rate of the slow wave the approximate
result

�ωi = k0v0

(
πβ4KR∗2

w

2k0Z0X∗
s

)1/2

, (6.100a)

or by substituting for K and X∗
s [Eq. (6.94b)],

�ωi � 2π
R∗

w

Z0
β0c

(
Ī

I0

1

gβ0γ0

)1/2

. (6.100b)

This may be written in terms of the imaginary wave number ki = �ωi/v0 as a
spatial growth rate,

ki = 2π
R∗

w

Z0

(
Ī

I0

1

gβ0γ0

)1/2

. (6.100c)

For electrons (I0 � 1.70 × 104 A) the last relation becomes

ki = 1.28 × 10−4R∗
w

(
Ī

gβ0γ0

)1/2

. (6.101a)

For ions (I0 � 3.13 × 107A/Z amperes) with mass number A, charge state Z, and
average particle current Īp = Ī /Z, one gets

ki = 2.98 × 10−6R∗
wZ

(
Īp

gAβ0γ0

)1/2

, (6.101b)

which in the nonrelativistic regime (γ0 � 1, β0 = √
2T/mc2 ) may be written in

the form

ki = 1.39 × 10−5R∗
wZ

(
Īp

gA

)1/2( 1

T/A

)1/4

, (6.101c)

where R∗
w is in �/m, Ip in amperes, and T/A in MeV/nucleon.

The growth of the slow space-charge wave predicted by the above theory implies
that energy is lost by the beam to the external resistance and that the beam qual-
ity deteriorates. As we will see in the next section, the growth of the resistive-wall
instability is damped by momentum spread, �̃P /P , in the beam. If we start with
a cold beam (�̃P /P = 0), as in the above analysis, the instability will cause a mo-
mentum spread to develop which eventually will become large enough to saturate
the growth. In turn, this momentum spread may cause excessive chromatic aber-
rations which make it impossible to focus the beam to a desired spot size (i.e., the
instability produces in effect an increase of the emittance).
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The resistive wall instability is of concern for high-current electron and heavy-
ion linear accelerators and transport systems and for circular machines. The latter
have generally lower currents but many revolutions and hence a longer interaction
time than that of the linear machines. We treat the instability in circular machines
in the next section.

To illustrate the application of the above theory to laboratory beams, let us con-
sider as a first example a relativistic 10-kA electron beam in an induction linac with
R∗

w = 10 �/m, g � 2, and β0γ0 � 5. From (6.101a) we find ki = 0.04 m−1 or
z = k−1

1 = 25 m. Clearly, in this case one would expect problems with the instabil-
ity since the length of such an induction linac would be greater than the e-folding
growth distance k−1

i .
As a second example, let us take the case of a 10-GeV 137Ba2+ beam for possible

use in heavy-ion inertial fusion, with A = 137, Z = 2, Ip = 104 A, g = 2, R∗
w =

100 �/m, and β0γ0 � 0.4. From (6.101b) we get ki = 5.75 × 10−3 m−1 or z =
k−1
i = 174 m. Since the final transport line of the beam would be considerably

longer than this distance, the resistive-wall instability may pose a severe problem
for heavy-ion inertial fusion drivers.

The above analysis can be readily extended from a purely resistive wall to the
general case of a complex impedance Z∗

w = R∗
w + iX∗

w . By including the space-
charge impedance Z∗

s = −iX∗
s we then can define a total longitudinal impedance

Z∗‖ as

Z∗‖ = Z∗
w + Z∗

s = Z∗
r + iZ∗

i , (6.102a)

where the real part is given by

Z∗
r = R∗

w (6.102b)

and the imaginary part by

Z∗
i = X∗

w − X∗
s . (6.102c)

Note that all impedances are in general functions of the frequency ω and wave
number k. This is also true for the space-charge impedance X∗

s , as can be seen
from Eqs. (6.88) or (6.94b). In terms of the total longitudinal impedance Z∗‖ , the
dispersion relation (6.95) may be written as

�ω = ω − kv0 = ±k0v0

[
i
2πβ0K

k0Z0
Z∗‖

]1/2

, (6.103a)

or

�ω = ±k0v0

{
2πβ0K

k0Z0

[(
X∗

s − X∗
w

) + iR∗
w

]}1/2

. (6.103b)

If Z∗
w represents a lossy transmission-line model, where a resistance R∗ is in

series with a distributive inductance L∗ and both are connected to ground by a
distributive capacitance C∗, one has

Z∗
w(k, ω) = k2(R∗ + iωL∗)

k2 − ω2L∗C∗ + iωR∗C∗ = R∗
w + iX∗

w. (6.104)
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The linear growth rate for the slow-wave amplitude is then found to be

�ωi = −k0v0

{
πβ0K

k0Z0

[√
Z∗2

r + Z∗2
i + Z∗

i

]}1/2

, (6.105a)

or alternatively, for the imaginary wave constant

ki = k0

{
πβ0K

k0Z0

[√
R∗2

w + (X∗
w − X∗

s )2 + (X∗
w − X∗

s )

]}1/2

. (6.105b)

The analysis of these relations shows that an inductive wall impedance enhances
the growth rate, while a capacitive impedance decreases the growth rate. In the first
case, instability can arise even if Rw = 0 (see Problem 6.9).

6.3.3
Longitudinal Instability in Circular Machines and Landau Damping

In Sections 3.6.4 and 5.4.9 we pointed out that the negative-mass behavior of
charged particle beams in circular accelerators above the transition energy γtmc2

can cause longitudinal bunching and instability. This negative-mass instability was
first identified and analyzed theoretically by Nielsen, Sessler, and Symon [37] and
independently by Kolomenskij and Lebedev [38] in 1959. Later studies [39] showed
that instability also occurs below transition energy and hence is not restricted to
the negative-mass regime when the finite wall resistivity is taken into account.
In fact, the underlying physical mechanism in circular machines is basically the
same as in the resistive-wall instability discussed in the preceding section. Pertur-
bations of the beam’s line-charge density produce electromagnetic fields via the
image charges flowing through the surrounding walls and these fields act back on
the beam. If the wall impedance has a resistive component as in our previous case,
there will be unstable growth of the slow space-charge wave, which in turn may
result in beam deterioration and particle loss. Since the effect is frequency depen-
dent and shows a resonant-like behavior at high frequencies, it is also known in the
literature as the longitudinal microwave instability. As mentioned in the preceding
section, momentum spread in the beam can decrease the growth rate or prevent
the instability from developing in the first place. What happens in this case is that
the phase spread in the particle oscillations due to the different momenta offsets
the bunching that is otherwise produced by the instability. This effect is known as
Landau damping since it is mathematically analogous to the damping of unstable
electromagnetic perturbations in an infinite plasma that was first investigated by
Landau [40].

To analyze the longitudinal instability with damping due to momentum spread
we have to use the Vlasov equation and a proper longitudinal distribution function
for the beam. In our description of the problem we follow the review given by Hof-
mann [41], except that we use a somewhat different notation consistent with the
preceding section. Let us assume that the distribution of the particles in longitudi-
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nal phase space depends on the energy E, the distance s along the circumference
C = 2πR of the circular accelerator, and time t as

f (E, s, t) = f0(E) + f1(E)ei(ωt−ks). (6.106)

Here f0(E) is the unperturbed beam, assumed to be continuous (unbunched)
along the circumference, and f1(E) is the amplitude of the perturbation, R the
average orbit radius, k the wave number, and ω the frequency of the perturbation,
which can be complex in general. It is customary to introduce the angle θ = s/R

and the number of wavelengths n of the perturbation within the circumference of
the ring. With 2πR = nλ, we get ks = nθ , so that the distribution function can be
written in the alternative form

f (E, θ, t) = f0(E) + f1(E)ei(ωt−nθ). (6.107)

If �0 is the unperturbed line charge density, the total number of particles is N =
2πR�0/q, which leads to the normalization relation∫ 2π

0

∫ ∞

0
f0(E) dE dθ = 2πR�0

q
(6.108)

for the unperturbed distribution function.
The distribution (6.107) must satisfy the Vlasov equation

∂f

∂t
+ ∂f

∂θ
θ̇ + ∂f

∂E
Ė = 0, (6.109)

or

(iω − inθ̇)f1 + ∂f0

∂E
Ė = 0, (6.110)

where we assumed that ∂f/∂E ≈ ∂f0/∂E. Ė is the rate of change of the particle
energy in the distribution due to the electric field produced by the perturbation,
E‖ = Es + Ew . Here Es is the space-charge field, and Ew is the field generated by
the perturbed current I1 due to the impedance of the wall. It is customary in the
theory of circular machines to introduce the voltage drop through one revolution,
V1 = −2πRE‖, and express it as the product of the total impedance Z‖ and the
perturbed current I1, that is,

V1 = −2πRE‖ = −2πR(Es + Ew) = Z‖I1. (6.111)

If ω0 = R/v0 denotes the angular revolution frequency, the rate of change (de-
crease) of the particle energy due to the perturbation can then be written as

Ė = dE

dt
= −qV1

ω0

2π
= −qZ‖I1

ω0

2π
. (6.112)

The longitudinal impedance Z‖ consists of the space-charge impedance, Zs , and
the wall impedance, Zw , with all contributions of individual elements (such as
drift-tube sections, rf gaps, diagnostic ports, etc.) summed up along the entire
circumference of the machine. With (6.94b), the total space-charge impedance is
given by

Zs = −2πRi
gkZ0

4πβ0γ
2
0

, (6.113)
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and since k = nθ/s = n/R, we can write this relation in the form

Zs = −iXs = − ingZ0

2β0γ
2
0

. (6.114)

The total wall impedance Zw will, in general, have a resistive part, Rw , and a reac-
tive part, Xw (i.e., Zw = Rw + iXw), so that we have

Z‖ = Zs + Zw = Rw + i(Xw − Xs). (6.115)

By substituting (6.112) into (6.110), we obtain

(iω − inθ̇)f1(E) = ∂f0(E)

∂E

qω0

2π
Z‖I1. (6.116)

Since the perturbed current I1 is related to the perturbed distribution function by

I1 = qω0

∫
f1(E) dE, (6.117)

we can write the dispersion relation (6.117) as

1 = −iq2ω2
0

2π
Z‖

∫
∂f0(E)

∂E

dE

ω − nθ̇
. (6.118)

To proceed further it will be helpful to change variables from E to θ̇ so that

∂f0(E)

∂E
dE = ∂f0(θ̇)

∂θ̇

dθ̇

dE
dθ̇ . (6.119)

From (3.261) and (??) we have

dθ̇

ω0
= −η

dP

P0
= − η

β2
0

dE

E0
= − η

β2
0

dE

γ0mc2
,

or

dθ̇

dE
= − η

β2
0

ω0

E0
= − ηω0

β2
0γ0mc2

, (6.120)

where E0 = γ0mc2 and η = (1/γ 2
t − 1/γ 2

0 ), as defined in (3.262b).
Using (6.119) and (6.120), we can write the dispersion relation (6.118) in the

alternative form

+i
q2ω3

0ηZ‖
2πβ2

0γ0mc2

∫
∂f0(θ̇)

∂θ̇

dθ̇

ω − nθ̇
= 1. (6.121)

Let us first consider the cold-beam limit (zero energy spread) by assuming a delta
function for the distribution, that is,

f0(θ̇) = R�0

q
δ(θ̇ − ω0) (6.122)

using the normalization (6.108). Then
∫

∂f0(θ̇)

∂θ̇

dθ̇

ω − nθ̇
= − nR�0

q(ω − nω0)2
, (6.123)
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and with R�0 = RĪ/v0 = Ī /ω0, Eq. (6.123) becomes

(ω − nω0)
2 = −i

qηω2
0nZ‖Ī

2πβ2
0γ0mc2

. (6.124)

It is left as a problem (6.11) to show that (6.124) converts to (6.85) if one makes
the correct transition from circular to straight beam. By introducing �ω = �ωr +
i�ωi = ω − nω0, we can write the last relation in the form

ω − nω0 = �ω = ±
(

− i
qηω2

0nĪZ‖
2πβ2

0γ0mc2

)1/2

, (6.125)

which is convenient for a stability analysis. Obviously, when �ω is imaginary
(i.e., �ω = i�ωi ), the exponential wave factor of the perturbation will have the
form e−�ωi t , which indicates unlimited exponential growth of the perturbation
amplitude for �ωi < 0. We see immediately that such an instability will occur
when η > 0, or γ0 > γt (above transition), and when Z‖ is negative imaginary.
The simplest case for which this can happen is for zero wall impedance (i.e.,
Zw = Rw + iXw = 0), so that Z‖ = −iXs is entirely determined by the reactive
space-charge impedance, Xs , and with (6.114), relation (6.125) becomes

�ω = ±i�ωi = ±iω0

(
qηn2Ī gZ0

4πβ3
0γ 3

0 mc2

)1/2

. (6.126)

For �ωi < 0, this may be written in terms of the generalized perveance K =
(Ī /I0)(β

3
0γ 3

0 ) as

−�ωi = 1

τ
= ω0

(
ηn2gK

2

)1/2

, (6.127)

or, with ω0 = β0c/R, in the alternative form

−�ωi = 1

τ
=

[
ηn2Ī gZ0c

2

4πR
2
(mc2/q)β0γ

3
0

]1/2

. (6.128)

The unstable situation defined by these relations is known as the negative-mass in-
stability [39]. It occurs only in circular machines above transition energy (γ0 > γt )

and is attributable entirely to the negative mass behavior (m∗ = −γ0m/η) dis-
cussed in Section 3.6.4. In this negative-mass regime, a local density increase in
the particle distribution will grow with time, leading to bunching of the beam.
If the space-charge forces associated with these bunches become large enough,
emittance growth and particle loss will occur when the tune shift �ν exceeds the
threshold for a resonance. One should note that the negative-mass instability oc-
curs with perfectly conducting walls (i.e., under conditions where a straight beam
is stable). The straight-beam case can be obtained from (6.125) by letting γt → ∞
and hence η → −1/γ 2

0 , so that �ω becomes real and the perturbation remains
stable, in agreement with our discussions in the preceding section. Of course, in
the circular machine the negative-mass instability does not occur below transition
when η < 0, as is evident from the last four equations.
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Let us now discuss the case when the wall has a finite resistivity so that the im-
pedance Z‖ is complex. To be as general as possible, we will define the impedance
as

Z‖ = Zr + iZi, (6.129)

where Zr is the real part (e.g., Zr = Rw), and Zi is the imaginary part (e.g., Zi =
Xw − Xs ), as in Eq. (6.115). The dispersion relation (6.125) then becomes

�ω = ±ω0

{
− i

qηnĪ

2πβ2
0γ0mc2

[Zr + iZi ]
}1/2

. (6.130)

With the impedance given in Eq. (6.115) we can write

�ω = ±ω0

{
− i

qηnĪ

2πβ2
0γ0mc2

[Rw + i(Xw − Xs)]
}1/2

. (6.131)

It can be seen that �ω always has a nonzero imaginary part no matter what the sign
of η is or whether or not Xw = 0. This case is known as the resistive-wall instability
in circular machines. The only difference with respect to the straight-beam case
discussed in the preceding section is that the growth rate depends on η and the
sign of η. To further analyze the dispersion relation (6.131), let us introduce the
parameter � defined as

� = q|η|nĪ

2πβ2
0γ0mc2

. (6.132)

The growth rate �ωi then depends on the sign of η. When η is positive [i.e., in the
negative-mass regime (above transition)], one obtains

�ωi = ±ω0

[
1

2
�
(√

Z2
r + Z2

i − Zi

)]1/2

for η > 0, (6.133a)

and when η is negative (below transition) one finds that

�ωi = ±ω0

[
1

2
�
(√

Z2
r + Z2

i + Zi

)]1/2

for η < 0. (6.133b)

Note that the result for the last case (η < 0) has the same form as in Eq. (6.105a)
for a straight beam. These cold-beam results can be summarized by stating that
there is always instability when Rw �= 0 (resistive-wall instability) and, further-
more, for Rw = 0, the beam is unstable above transition (η > 0, negative-mass
instability). Also, it is interesting to evaluate how the capacitive space-charge im-
pedance and inductive (Xw > 0) or capacitive (Xw < 0) wall impedances affect the
instability growth rate in the general case. Above transition (η > 0) in the negative-
mass regime, both the space charge and a capacitive wall increase the growth rate,
while an inductive wall decreases �ωi . The fact that an inductive wall impedance
tends to stabilize the negative-mass behavior was first pointed out by Briggs and
Neil [42]. Below transition (η < 0) the opposite is true: space charge and capacitive
wall lower the growth rate, while an inductive wall increases it. [See the discussion
following Eq. (6.105b).]
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To determine the effect of Landau damping on the longitudinal instability, one
must use an appropriate distribution function in energy E or rotation frequency
θ̇ and evaluate the integral in the dispersion relation (6.121). If the frequency ω

of the perturbation lies within the frequency distribution nθ of the particles, the
denominator of the integral will become zero at ω = nω0. In this case the integral
can be split into two parts, the principal value (P.V.) and the residue term, and one
obtains∫

∂f0(θ̇)/∂θ̇

ω − nθ̇
dθ̇ =

∫
P.V.

∂f0(θ̇ )/∂θ̇

ω − nθ̇
dθ̇ ± iπ

∂f0(θ̇ )

∂θ̇

∣∣∣∣
θ̇=ω/n

, (6.134)

so that (6.121) can be written as

− q3ω3
0ηZ‖

2πβ2
0γ0mc2

[
± π

∂f0(θ̇ )

∂θ̇

∣∣∣
θ̇=ω/n

− i

∫
P.V.

∂f0(θ̇)/∂θ̇

ω − nθ̇
dθ̇

]
= 1. (6.135)

To solve this dispersion relation for different distributions it will be convenient to
introduce [41] the half-width S = �θ̇/2 of the angular frequency distribution f0(θ̇)

measured at half-height and relate the frequencies in the dispersion integral to S by
means of two dimensionless variables x and x1. The first is defined by θ̇ −ω0 = xS,
or

nθ̇ − nω0 = xnS, (6.136)

and describes the angular frequencies of the particles in the beam. The second is
defined by

�ω = ω − nω0 = x1nS, (6.137)

and gives the frequency ω with which the instability is driven. As mentioned ear-
lier, ω0 is the revolution frequency of the central-orbit particle. Furthermore, the
distribution function f0(θ̇ ) is expressed in terms of x as

f (x) = 2πSf0(θ̇)

N
, (6.138)

where N is the total number of particles in the ring and∫
f (x) dx = 1. (6.139)

Finally, the half-width S is related to the full momentum spread �P at half-height
of the distribution via

2S = −ηω0
�P

P
. (6.140)

With these definitions one can express the dispersion relation (6.121) in the form

−sign
(

dθ̇

dE

)
2Ī qZ‖

πmc2β2
0γ0|η|(�P/P0)2n

I ′
D = 1, (6.141)

where I ′
D is the normalized dispersion integral given by

I ′
D = ±π

dE

dx
(x1) − i

∫
P.V.

df/dx

x − x1
dx. (6.142)
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The sign(dθ̇/dE) is +1 below transition energy and −1 above transition energy.
The factor in front of I ′

D in (6.141) is originally defined as a complex quantity [37]
V ′ + iU ′ that can be related to the complex impedance Z‖ = Zr + iZi by

V ′ + iU ′ = 2Ī q

πmc2β2
0γ0|η|(�P/P )2n

(Zr + iZi), (6.143)

so that (6.141) may be written as

−sign
(

dθ̇

dE

)(
V ′ + iU ′)I ′

D = 1. (6.144)

This equation defines a relation between x1 and V ′, U ′. The quantity x1 is related
to the real and imaginary frequency shifts as

�ωr = nS Re(x1), (6.145)

|�ωi | = 1

τ
= nS Im(x1), (6.146)

where τ = |�ω−1
i | is the growth rate of the instability. The stability limit is defined

by �ωi = 0, or by the curve

Im(x1) = 0 (6.147)

in a U ′ versus V ′ stability diagram. The region inside the curve Im(x1) = 0 is
stable and the region outside it is unstable. Figure 6.19 shows these curves for sev-
eral distributions f (x) investigated by Ruggiero and Vaccaro [43]. For high-energy
accelerators, where γ0 � 1 and where the space-charge impedance is small com-
pared to the reactive part of the wall impedance (i.e., Xs � |Xw|, or |Zs | � |Z‖|),
one can establish a very conservative stability criterion by approximating the stabil-
ity limit Im(x1) = 0 with a circle that fits inside all these curves. Using this circle,
shown in Fig. 6.19 with dashed interior, one obtains from (6.141) the Keil–Schnell
stability criterion [44]∣∣∣∣Z‖

n

∣∣∣∣ � F
mc2β2

0γ0|η|(�P/P0)
2

qĪ
= F

mc2|η|[�(β0γ0)]2

qĪγ0
. (6.148)

The form factor F is determined by the radius of the circle. In Fig. 6.19 this radius
is 0.6 and gives a form factor of F � 1. Relation (6.148) can be used in many ways.
Thus it shows the absolute value of the longitudinal impedance |Z‖| divided by
the harmonic number n of the perturbation that is necessary to obtain stability for
a given beam distribution with average current Ī , energy γ0mc2, and momentum
spread (�P/P0). Conversely, one can calculate the current threshold Ī for given
|Z‖|, (�P/P0) and γ0, and so on.

Note that the effect of Landau damping is given by the momentum spread
�P/P0. The smaller �P/P0, the smaller is the beam current that can be circu-
lated in the ring. If �P/P0 = 0, there is no stability, and we recover the previous
cold-beam results where f0(E) was a delta function.

The Keil–Schnell criterion is very conservative and deliberately underestimates
the stability threshold to provide a margin of flexibility. As we discussed in Section
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Fig. 6.19 Ruggiero–Vaccaro stability diogram for several
distributions f (x). (From Reference 43.)

5.4, laboratory beams tend to have a Maxwell–Boltzmann distribution as repre-
sented by the curve e−x2/2a2

in Fig. 6.19. Thus, in practice, the region of stability
is much larger than the Keil–Schnell limit implies, especially with regard to the
imaginary part of the impedance (U ′ ∝ Zi), which can be many times greater than
the Keil–Schnell value. In the stability diagram of Fig. 6.19, which applies for a
high-energy machine above transition, one could therefore tolerate a high net in-
ductive impedance (Zi = Xw − Xs > 0) that exceeds the Keil–Schnell limit (i.e.,
U ′ > U ′

K.S.
) if this were practical. Below transition, the stability curves in Fig. 6.19

should be flipped over since the stable region in this case extends toward the neg-
ative U ′ direction where the net impedance is capacitive (Zi < 0). If the particle
energies are not highly relativistic, as in some heavy-ion synchrotrons or in low-
energy proton machines, the space-charge impedance may be considerably greater
than the wall impedance (i.e., Xs > |Xw|) and the operating point could be well out-
side the Keil–Schnell circle in the long neck of the stable region. An example of this
type is the beam behavior in a heavy-ion storage ring discussed by Hofmann [45].
In high-current induction linacs, proposed as drivers for heavy-ion inertial fusion,
one would always operate in such a space-charge-dominated regime. The bound-
aries of the stable region then depend not only on the momentum spread but also
on the beam current or generalized perveance K . This is illustrated in Figs 6.20
and 6.21, which show the stability diagrams for a Gaussian momentum distribu-
tion f0(p) = (

√
παp0)

−1 exp{−[(p − p0)/αp0]2} with different values of α and K ,
and with β0 = v0/c = 0.3 and g = 2 (see Reference 36). The two axes correspond
to the normalized resistive and reactive parts of the longitudinal wall impedance
defined as R′

w = R∗
w(λ0/Z0) and X′

w = X∗
w(λ0/Z0), where λ0 = 2π/k0 is the

wavelength of the perturbation and Z0 = 377 � the free-space impedance.
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Fig. 6.20 Boundary of stable regions for a Gaussian distribution
in the half R′

w−X′
w plane for three different momentum

spreads at a fixed beam perveance K = 10−4, where β0 = 0.3,
and g = 2 were used in the calculation. (From Reference 36.)

Fig. 6.21 Stable-region boundary of the Gaussian distribution
of Fig. 6.20 for three values of the perveance K and a
momentum spread of 0.75%. (From Reference 36.)
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Finally, we note that there are many other instabilities, such as the transverse
resistive-wall instability, and instabilities of bunched beams. However, in many cir-
cular accelerators the most important limits for the beam current are the space-
charge tune shift treated in Sections 4.5.3 and 5.4.7 and the longitudinal instability.

6.4
Collisions

6.4.1
The Boersch Effect

In Section 5.4.6 we showed that acceleration produces a rather dramatic cooling
of the longitudinal beam temperature, while it leaves the transverse temperature
in the beam frame unchanged. The beam is therefore not in three-dimensional
thermal equilibrium. However, Coulomb collisions or other effects of a random
nature, such as instabilities, will tend to drive the beam toward thermodynamic
equilibrium so that the longitudinal temperature increases while the transverse
temperature decreases. In the final stationary state – if it could be reached – the
temperatures in all three degrees of freedom would be the same (i.e., the beam
would be equipartitioned). Unfortunately, the time constant for Coulomb collision is
much too long to achieve this equilibrium state in typical linear transport channels
or electrostatic accelerators. However, instabilities, beam mismatch, longitudinal-
transverse coupling of the space-charge forces in bunched beams (see Appendix 4),
and other nonlinear effects may shorten the relaxation time considerably and play
a major role in equipartitioning.

In this section we consider only the effects of Coulomb collisions between the
particles in a continuous beam that propagates through a smooth focusing channel.
We adopt the theory of Ichimaru and Rosenbluth [46] for a nonrelativistic plasma
with initially unequal longitudinal and transverse temperatures, T‖ and T⊥, con-
fined by an axial magnetic field. Specifically, we consider the case where the mag-
netic field has no effect on the relaxation toward equilibrium. This relaxation is
defined by the equation [Eq. (71) in Reference 46]

dT⊥
dt

= −1

2

dT‖
dt

= −T⊥ − T‖
τ

, (6.149)

where the factor 1
2 is due to the fact that T‖ changes twice as fast as T⊥. The relax-

ation time τ is given by the relation [Eq. (76) in Reference 46]

1

τ
= 8π1/2nq4

15(4πε0)2m1/2(kBTeff)
3/2

ln �, (6.150)

where n is the particle density, ln � is the Coulomb logarithm defined in
Eqs. (5.247) and (5.248), and where the effective temperature Teff is obtained from
the integral [Eq. (77) in Reference 46]

1

(Teff)
3/2

= 15

4

∫ 1

−1

µ2(1 − µ2) dµ

[(1 − µ2)T⊥ + µ2T‖]3/2
. (6.151)
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When equilibrium is reached (T = Teq), the three temperatures are the same
(i.e., Teff = T‖ = T⊥ = Teq). By introducing the classical particle radius rc =
q2/(4πε0mc2) we can write (6.150) in the alternative form

1

τ
= 8π1/2nr2

c c

15(kBTeff/mc2)3/2
ln �. (6.152)

If we apply these relations to our case of the accelerated beam and assume initial
temperatures of T‖0 = 0 and T⊥0 �= 0, we obtain for the effective initial temperature
from (6.151) the relation

1

T
3/2

eff

= 15

8T
3/2
⊥0

or

Teff,0 =
(

8

15π

)2/3

T⊥0 = 0.307T⊥0. (6.153)

The initial relaxation time is then defined by

1

τ0
= π3/2nr2

c c

(kBT⊥0/mc2)3/2
ln �. (6.154)

If we assume that the total thermal energy in the beam is constant and given by
T⊥0, then with Teq/2 for each degree of freedom, the final equilibrium temperature
Teq is

3

2
Teq = T⊥0, or Teq = 2

3
T⊥0. (6.155)

With these initial and final conditions, the integration of Eq. (6.149) and (6.151)
using Eq. (6.150) yields the temperature changes as a function of time shown in
Fig. 6.22. The parallel and perpendicular temperatures are plotted in units of the
equilibrium temperature and the time is in units of the relaxation time τeq at equi-
librium. It can be shown that τ is increasing with time, reaching τeq = 3.20τ0 at
the equilibrium temperature. The two curves in Fig. 6.22 can be approximated by
exponential functions as

T⊥ = 2

3
T⊥0

(
1 + 1

2
e−3t/τeff

)
, (6.156a)

T‖ = 2

3
T⊥0

(
1 − e−3t/τeff

)
, (6.156b)

where the best fit is obtained with τeff = 1.34τ0 = 0.42τeq, which correlates with an
effective temperature of Teff = 0.373T⊥0 = 0.56Teq. The theoretical model of Ichi-
maru and Rosenbluth has been confirmed in recent experiments with a nonneutral
electron plasma [47].

Relations (6.149) to (6.156b) for a nonrelativistic plasma apply directly to a non-
relativistic beam propagating in a focusing channel since in this case there is no
difference between particle densities and temperature in the beam frame and the
laboratory frame. However, they also apply to a relativistic beam with nonrelativistic
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Fig. 6.22 Relaxation of transverse and longitudinal beam
temperatures in a uniform focusing channel when initial
longitudinal temperature T‖0 = 0. Temperatures are in units of
the equilibrium temperature Teq, and the time is in units of the
equilibrium value of the relaxation constant τeq. (Courtesy of
N. Brown.)

transverse and longitudinal velocities in the beam frame. To express the above rela-
tions in terms of laboratory parameters, one must use the Lorentz transformations
nl = γ0n, Tl = T/γ0, and τl = γ0τ for the density, temperature, and relaxation
time, respectively.

Although the same physics applies to charged particle beams as seen by an
observer in the beam frame, the propagation time in a focusing channel of typ-
ical length is much shorter than the relaxation time, so that the beam will not
reach thermal equilibrium. To illustrate this point, let us consider a 5-keV elec-
tron beam with a current of 200 mA launched from a thermionic cathode with
radius rc = 6 mm and temperature kBTc = 0.1 eV and then focused by a long
solenoid in which the beam radius is a = 0.6 mm. Since the beam is compressed
by a factor of 10, the transverse temperature in the solenoid will be [ from (5.343)]
kBT⊥0 = kBTc(rc/a)2 = 0.1 × 102 = 10 eV. From (6.152) one obtains for electrons
in the beam frame (or nonrelativistically in both beam and lab frame)

τeff = 4.44 × 1020 (kBTeff/mc2)3/2

n ln �
. (6.157)

For the Coulomb logarithm one obtains from Eq. (5.247)

ln � = ln

[
5.66 × 1021 (kBT/mc2)3/2

n1/2

]
. (6.158)

Since I = ena2πv, one has

n = I

ea2πv
. (6.159)
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With the given parameters and β = v/c � 0.139 one gets n = 2.65 × 1016 m−3.
Since the thermal energy remains constant in our case, we use kBT = 2

3kBT⊥0 in
the Coulomb logarithm, giving ln � = 14.3. For the effective temperature, on the
other hand, we choose the exponential-fit value kBTeff = 0.373kBT⊥0 = 3.73 eV.
With these numbers we find τeff = 2.31 × 10−5 s. The corresponding distance
is L = vτeff = 925 m. Thus our solenoid would require a length of 925 m to
achieve thermal equilibrium via Coulomb collisions for the 5-keV electron beam.
One would therefore tend to conclude that Coulomb collisions play no role at all in
conventional laboratory experiments with straight beams, short transport lines, or
even linear accelerators. However, this conclusion is not correct. It turns out that
even in short distances on the order of 1 m, the collisions produce a significant
increase in the beam’s energy spread, �E. This phenomenon was first observed
experimentally in 1954 by Boersch [48] and is since known as the Boersch effect.
To understand this effect, let us first calculate the initial longitudinal beam tem-
perature T‖0 after acceleration of the above 5-keV electron beam. With an initial
temperature of 0.1 eV at the cathode, one obtains from Eq. (5.339) a longitudinal
temperature of kBT‖0 = (0.1)2/2 × 5 × 103 = 1 × 10−6 eV in the accelerated beam.
Next, let us determine what the longitudinal temperature T‖ will be after the beam
propagates a distance of L = 1 m in the solenoid. Using τeff = 2.31 × 10−5 s,
t = L/v = 2.4 × 10−8 s, and kBT⊥0 = 10 eV, one finds from Eq. (6.156b) a value of
kBT‖ = 2.1×10−2 eV. This implies that in the short distance of 1 m the longitudinal
temperature has increased from 1 × 10−6 eV by four orders of magnitude. While it
is still far from equilibrium, this temperature is large enough to cause a significant
increase in the longitudinal energy spread, �E. Initially, this energy spread is de-
fined by the cathode temperature and hence has the value of �Ec = kBTc = 0.1 eV.
Acceleration does not change this energy spread – it changes only the temperature,
the part of the kinetic energy that is related to the thermal motion of the particles.
However, after the temperature increases due to the Coulomb collisions, we have
from Eq. (5.340) an rms energy spread of

�̃E = (2qV0kBT‖)1/2 = (
2 × 5 × 103 × 2.1 × 10−2)1/2 = 14.5 eV.

This represents a significant increase in the initial energy spread by a factor of
145. Since τ ∝ n−1, �̃E increases with beam density or current. As an example,
doubling the beam current to 400 mA and leaving all other parameters the same
yields a value of τeff = 1.11 × 10−5 s and a longitudinal temperature of kBT‖ =
4.3 × 10−2 eV at a distance of 1 m. The energy spread then increases to �̃E =
20.8 eV. This sensitivity of the energy spread with beam current was observed by
Boersch in his original experiments, which, however, were quite different from
our example here. Boersch measured the energy distribution as a function of beam
current for a 27-keV focused electron beam from a thermionic cathode. The energy
spread measured downstream from the crossover point (waist) of the beam showed
anomalous broadening that increased with the current density at the waist. Boersch
did not attribute this energy broadening to Coulomb collisions, which are now
generally considered to be the cause of this effect.
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An interesting consequence of the Boersch effect is that the longitudinal emit-
tance increases while the transverse emittance decreases (albeit at a much smaller
rate). As an example, take a beam of finite longitudinal rms width, �̃z, or a given
number of particles occupying a slice of a continuous beam with width �̃z. The
normalized longitudinal rms emittance is proportional to (kBT‖)1/2 according to
Eq. (5.317). Hence, for our 5-keV electron beam it will increase by a factor of
(2.1×10−2/1×10−6)1/2 = 145 in the 100-mA case and (4.3×10−2/1×10−6)1/2 =
207 in the 400-mA case. This is a rather significant effect, while the associated de-
crease in the transverse temperature T⊥ and emittance is relatively small. If one
could reach thermodynamic equilibrium, these effects would be even more pro-
nounced, and the transverse emittance would decrease to ( 2

3 )1/2 = 0.816 of its
initial value (i.e., by about 18.4%). However, the long relaxation times make it im-
practical to achieve equilibrium in a straight beam. Only in storage rings where
particles are confined for long times can Coulomb collisions produce full equipar-
titioning of a beam, as discussed in the next section.

Before proceeding to this topic, one should note that the treatment of the Boersch
effect given in this section is somewhat simplistic. A very thorough review that
deals with the rather complicated physical and theoretical details can be found in
Jansen’s book (Reference 10 in Chapter 5). Thus, for example, the observed energy
distributions may differ significantly from the Maxwellian shape assumed here.
Furthermore, one must differentiate between the smooth uniform beam in the
long solenoid treated here and the beam that is focused to a small waist or, more
generally, a beam whose radius varies strongly, as in a matching section. In the
first case (smooth beam) the total thermal energy remains constant (i.e., 2kBT⊥ +
kBT‖ = const). In the second case, however, the temperature increases as coherent
longitudinal kinetic energy becomes thermalized in large-angle collision so that
2kBT⊥ + kBT‖ �= const. We pursue this point further in the next section.

6.4.2
Intrabeam Scattering in Circular Machines

The effects of Coulomb collisions between the particles in circular machines are
commonly referred to in the literature as intrabeam scattering. The lifetimes of the
beams in circular machines are much longer than in linear devices; this is espe-
cially true for storage rings and circular colliders, where the beams can be trapped
for many hours. Consequently, intrabeam scattering plays an important role in
these machines and may, in fact, impose an upper limit for the luminosity, bright-
ness and beam lifetime that can be achieved.

As we know from Section 5.4.9, the particle dynamics in a circular focusing lat-
tice differs significantly from that in a linear focusing channel, and hence, the
effects of intrabeam scattering also differ substantially. The two most important
differences with regard to Coulomb collisions are negative-mass behavior of the
particles in a circular machine above transition energy and dispersion.

Let us first consider the ideal machine with a smooth-focusing lattice below tran-
sition and negligible dispersion. Such a machine behaves essentially like a linear
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focusing channel except that the beam goes around in a circle and that the current
is limited by the space-charge tune shift. But even in this ideal case there is a subtle
difference, as will be shown now. As we discussed in the preceding section, the to-
tal thermal energy per particle in a smooth linear beam channel is conserved; that
is, one has (in the beam frame as well as in the lab frame) for a beam with constant
energy (γ0 = const)

2kBT⊥ + kBT‖ = const, (6.160a)

or if x and y denote the two transverse directions,

kBTx + kBTy + kBT‖ = const. (6.160b)

Coulomb collisions drive the beam toward an isotropic thermal equilibrium, in
which case the three temperatures would be the same, that is,

kBTx = kBTy = kBT‖ = kBTeq. (6.161)

In view of the relations (5.270) between temperature and rms velocity spread, we
can put the conservation law (6.160b) into the laboratory form

γ0mv2
x + γ0mv2

y + γ 3
0 m(�vz)2 = const, (6.162)

or in terms of the slopes x′ = vx/v0, y′ = vy/v0, and relative momentum spread
�Pz/P0 = γ 2

0 �vz/v0 from (5.315):

x′ 2 + y′ 2 + 1

γ 2
0

(
�Pz

P0

)2

= const. (6.163)

This relation holds for a straight beam. However, in a circular machine we must
replace 1/γ 2

0 in the third term on the left side of Eq. (6.163) by −η = 1/γ 2
0 − 1/γ 2

t

[see Eq. (5.434)], which yields

x′ 2 + y′ 2 − η

(
�P

P0

)2

= const. (6.164)

This relationship is essentially identical to the invariant for intrabeam scattering
derived in 1974 by Piwinski [49]. We recognize that it is just another form of the
conservation law (6.610) for the beam temperature. However, we see immediately
that there is a significant difference between a linear and a circular beam that is
represented by the factor η. For a linear beam (γt → ∞, η = −1/γ 2

0 ) Eq. (6.164)
is identical with (6.163), as expected. For a circular beam the behavior of the sys-
tem depends on the sign of η [i.e., whether we are below transition (γ0 < γt ) or
above (γ0 > γt )]. Below transition, η is negative, and from Eq. (5.437) and the
discussion following Eq. (5.438), we find that the longitudinal temperature kBT‖
is a positive quantity. This means that for the smooth, dispersion-free lattice be-
low transition, thermal equilibrium can be reached. However, in the negative-mass
regime above transition, η is positive and kBT‖ becomes negative. This implies that
thermal equilibrium is not possible. An increase in momentum spread �P/P0 or
negative temperature must be offset by a corresponding increase in the transverse
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temperatures to maintain the “conservation law” (6.160b). Physically, negative tem-
perature means that there is a source of energy that continuously drives up the
transverse temperature. This source is basically the coherent longitudinal kinetic
energy of the beam, which is thermalized via the negative-mass effect.

What are the consequences of the above analysis for the transverse and longitu-
dinal emittance of the beam? First, in the linear beam case and below transition in
the ideal circular machine, there will only be emittance change if the beam initially
is not in three-dimensional thermal equilibrium. If, for instance, kBT‖ < kBT⊥, as
is usually the case, there will be longitudinal emittance growth and the transverse
emittance may actually decrease slightly until equilibrium is reached, as discussed
in the preceding section. Second, above transition, there will be continuous emit-
tance growth in transverse and longitudinal directions, and equilibrium will never
be established.

The ideal circular machine with smooth focusing that we just described almost
never exists in the real world, where the effects of dispersion must be taken into
account and where the lattice is not smooth but often has a rather strong variation
around the circumference. This variation is described by the betatron function,
β̂x(s), and the dispersion function, De(s), and their derivatives, (β̂ ′

x(s) and D′
e(s).

Without scattering, the emittance of the beam remains preserved in a dispersive
lattice, as discussed in Section 5.4.7. However, Coulomb collisions will change a
particle’s momentum or slope x′, whether it is dispersed or not; that is, a particle
having position x1 = xb1 + De(�P/P0) and slope x′

1 prior to a collision will have
a changed slope x′

2 after the collision. These changes of the slopes of the parti-
cles in the beam distribution cause an irreversible increase in the corresponding
emittance. The theory of intrabeam scattering by Bjorken and Mtingwa [50] shows
that the emittance will always grow in a lattice when the combination of lattice
functions defined by the parameter φl = D′

e − Deβ̂
′
x/2β̂x does not vanish. This

condition (φl �= 0) is always satisfied along large fractions of the lattices of modern
strong-focusing rings.

In summary, the behavior of a circular machine with regard to intrabeam scatter-
ing (as compared with an equivalent linear transport channel of sufficient length)
is defined by the two parameters

η = 1

γ 2
t

− 1

γ 2
0

≈
(

D2
e

β̂2
x

)
− 1

γ 2
0

(6.165a)

and

φl = D′
e − Deβ̂

′
x

2β̂x

, (6.165b)

where the relation γt ≈ ˜̂
βx/D̃e used in Eq. (6.165a) follows from (5.489), with

γt ≈ vx and β̂x = R/vx . Three-dimensional thermal equilibrium can be achieved
only if η < 0 (γ0 < γt or Deγ0 > β̂x ), as first shown by Piwinski [49], and if, in ad-
dition, φl = 0, as pointed out by Bjorken and Mtingwa [50]. In principle, these two
conditions can be satisfied simultaneously only in an ideal smooth-focusing ma-
chine below transition energy. In modern strong-focusing machines the condition
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φl = 0 is never fully satisfied, so that in practice three-dimensional equilibrium is
never achieved, and the six-dimensional phase-space volume defined by the prod-
uct of the three emittances, εxεyεl , always increases. As mentioned in the discus-
sion following Eq. (6.164), this increase in beam temperature occurs at the expense
of the total kinetic energy of the beam, which is orders of magnitude larger than
the energy of the betatron and synchrotron oscillations. While this observation con-
cerning the parameter φl is correct, the computations for existing machines show
that the contributions from φl �= 0 to the growth rates are almost negligibly small
in many cases [51, 52], so that the results from the simpler smooth-lattice calcu-
lations are adequate. The error made by neglecting φl should be tolerable if one
keeps in mind that the Coulomb logarithm ln � is often taken to have a constant
value when in fact it may vary appreciably and is only an approximate statistical
parameter anyway.

The theory of intrabeam scattering in circular machines is rather complicated
mathematically. The calculation of the growth rates in each degree of freedom in-
volves integration and averaging procedures that must be done by computer and
are rather lengthy if the lattice parameter φl is included. Besides, it appears that
there are still significant differences between the various models that have not been
explained in a satisfactory manner. Thus the parameter H in the theory of Bjorken
and Mtingwa [50] is not exactly identical to Piwinski’s invariant [Eq. (6.164)]; the
slip factor η does not appear explicitly; and hence the fact that equilibrium can-
not be achieved for γ0 > γt even if φl = 0 does not follow from their theory. Conte
and Martini [53] found that the Bjorken and Mtingwa model applies mainly to high-
energy rings (γ0 � 10), and they revised this model to give more satisfactory results
for low energies (γ0 < 10) as well. An excellent general review of intrabeam scatter-
ing was given by Sørensen [54]. By using appropriate reduced variables, Sørensen
showed that the computer results for different values of the transverse emittances
and momentum spread in a given machine lattice can all be represented by a single
universal curve. Moreover, the regime where the horizontal growth rate dominates
is distinctly separated from the regime where the longitudinal growth rate domi-
nates.

As an example of this interesting result, Sørensen’s universal curve for a coast-
ing proton beam in the former ICE storage ring at CERN is shown in Fig. 6.23.
Note that the data points shown on this plot cover a large range of rms momen-
tum spreads (�P̃/P in our notation) from 10−5 to 10−2. (�τ−1) on the abscissa
represents the sum of the growth rates in the three degrees of freedom, C is the
circumference of the ring, 〈Log〉 = ln � is the average Coulomb logarithm, N is the
total number of particles in the ring, and the ε-parameters represent normalized
rms values for the emittances (i.e., ε̃n in our notation). On the right side in Fig. 6.23
the growth rate τ−1

p for the momentum spread dominates. Here the universal curve
represents essentially the longitudinal temperature increase of a collapsed thermal
distribution, as in the Boersch effect. On the left side, where the horizontal growth
rate τ−1

H dominates, the curve is more sensitive to the specific lattice design (see
Reference 54 for details).
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Fig. 6.23 Universal curve for intrabeam scattering in the
coasting proton beam of the former ICE storage at CERN.
(Courtesy of A. Sørensen; see Reference 54.)

The growth rate for intrabeam scattering in high-energy circular machines can
be written in the simple relativistic form [50]

1

τj

= 1

τ0
〈Hj 〉 = π2cr2

c m3N ln �

γ0�
〈Hj 〉, (6.166)

where N is the total number of particles, � the six-dimensional phase-space volume
occupied by N , and where the function Hj depends on γ0, the emittances ε̃x , ε̃y , ε̃z,
and the lattice parameters β̂x , De, β̂ ′

x , D′
e, and β̂y . The function Hj is averaged over

a lattice period and the subscript j denotes the three orthogonal directions (i.e.,
j = horizontal (x), vertical (y), and longitudinal (s)].

For bunched beams, N represents the number of particles in a single bunch and
the six-dimensional volume � of the bunch is given by

�b = (2π)3 P 3
0

c3
�̃x

�̃P x

P0
�̃y

�̃P y

P0
�̃z

�̃P z

P0
, (6.167a)

or

�b = (2π)3 P 3
0

c3
ε̃x ε̃y ε̃z = (2π)3(β0γ0)

3m3ε̃x ε̃y ε̃z. (6.167b)
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For unbunched beams, N denotes the number of particles in the circumference
2πR of the ring and � is given by

�u = 4(π)5/2(β0γ0)
3m3ε̃x ε̃y

�̃P

P0
2πR. (6.168)

The factor γ0 in the denominator of Eq. (6.166) is due to the Lorentz transformation
from the beam frame to the laboratory frame, which yields τ = γ0τb (time dilation)
for the relaxation time in the laboratory frame.

In the periodic-focusing systems of modern circular machines the temperature
is not a constant, and it is customary to use the rms emittance ε̃ ∼ δ

√
kBT and

the six-dimensional phase-space volume �, which is invariant when scattering is
neglected. The relaxation times are then defined by the increase of the emittances
rather than the temperatures as in the preceding section. Thus τj in Eq. (6.166) is
defined as

1

τj (ε)
= 1

ε̃j

dε̃j

dt
. (6.169)

For a smooth lattice where the rms beam width δ � const, one can use the temper-
ature relaxation time given by

1

τj (T )
= 1

Tj

dTj

dt
. (6.170)

Since ε ∼ δ
√

kBT , one has the relation

1

τj (ε)
= 1

2

1

τj (T )
, (6.171)

that is, the emittance relaxation time τj (ε) is a factor of 2 longer than the tempera-
ture relaxation time τj (T ).

It is interesting to compare the result (6.166) with Eq. (6.152) for the case of a
nonrelativistic (γ0 = 1) unbunched beam in a linear smooth-focusing channel. For
the density n one has

n = N

4πδxδy2πR
, (6.172)

where δx = �̃x, δy = �̃y denote the rms widths of the beam. Using (6.168) and
(6.172), one obtains for the factor 1/τ0 in Eq. (6.166),

1

τ0(ε)
=

√
πcr2

c n ln �

(kBTx/mc2)1/2(kBTy/mc2)1/2(kBTz/mc2)1/2
. (6.173)

In comparison with (6.152), this equation exhibits the same scaling except that the
constants are different and that in place of T

3/2
eff one has the product of the square

roots of the three temperatures. The definition (6.173) requires that the three tem-
peratures not differ drastically. If one of them, say Tz, goes toward zero, as was the
case in the Boersch effect with T‖, the growth rate 1/τ0 becomes infinitely large,
which is unphysical. The problem is with the definition of the growth rate (6.170),
which does not allow for an equilibrium to exist. If an equilibrium temperature Teq
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Fig. 6.24 Elastic Coulomb collision between two particles as
seen in the beam frame (a) and the laboratory frame (b). (See
References 54 and 57.)

can be reached, as in the ideal smooth system below transition, the relaxation time
should be defined by τ−1

j = (Tj − Teq)
−1dTj /dt , as in Eq. (6.149).

In the theory of intrabeam scattering in circular machines the Coulomb loga-
rithm ln � is defined as

ln � = ln
rmax

rmin
, (6.174)

where rmax is taken to be the smaller of the Debye length λD or the rms beam
width δx and rmin is the classical impact parameter b [Eq. (5.287)]. We note that this
definition of ln � differs somewhat from that given in Eqs. (5.286) to (5.289) in that
the effective beam radius a in Eq. (5.289) is replaced by the rms width δx . However,
in practice, ln � is a large number between 10 and 30 and the various definitions
differ at most by a factor of 2. Usually, a constant value of ln � � 20 is used in
the computer codes on intrabeam scattering. Despite the discrepancies that exist
between the various models, as discussed above, the computational results appear
to be generally within a factor of 2 or so of the experimental observations [50, 55].

Finally, we want to mention a special phenomenon caused by intrabeam scat-
tering in bunched beams which was first analyzed correctly by Touschek [56] and
is since known as the Touschek effect. In a relativistic storage ring, Coulomb colli-
sions lead to a momentum transfer from the transverse into the longitudinal di-
rection that is amplified by the Lorentz factor γ0. This is illustrated in the diagram
of Fig. 6.24, which is shown in Sørensen’s review article [54] and can be attributed
to Derbenev [57]. The figures portray an elastic collision between two particles, as
seen in the beam frame (a) and in the laboratory frame (b). While the total mo-
mentum in the collision is preserved, the two particles emerge from this collision
with opposite longitudinal momentum components that are larger by the factor γ0

than the original transverse momentum component before the collision. If the lon-
gitudinal momentum acquired in such a collision is greater than the momentum
acceptance of the rf bucket that keeps the beam longitudinally bunched, the two
particles involved in such a collisions will be lost. For, after the collision process,
the forward-scattered particle will have too much, and the backward-scattered par-
ticle too little energy to be contained within the stable region (bucket) of the rf
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voltage acting on the beam. The net result is that the lifetime of the stored beam is
reduced [56].

6.4.3
Multiple Scattering in a Background Gas

The collisions of the beam particles with the atoms or molecules of the residual
gas in a vacuum tube can cause a large variety of effects, all of which depend on
the particles’ kinetic energy. We have already treated the ionization of the gas due
to such collisions in Section 4.6.1. Other effects are the excitation of the gas atoms
or molecules, charge exchange between gas and beam particles, and at higher en-
ergies the many types of nuclear reactions whose cross sections are considerably
smaller than the atomic effects. All of the above interactions involve energy loss of
the beam particles and are therefore characterized as inelastic collisions.

The most frequent events in the encounters between beam particles and gas
molecules are, however, the elastic collisions, which change a particle’s momentum
without energy loss. The deflections or angular scattering of the beam particles
by such elastic multiple collisions in the gas cause an irreversible increase of the
emittance, which is the subject of this section.

The theoretical treatment of elastic scattering of fast particles by atoms is anal-
ogous to that of Coulomb scattering within a beam discussed in the two previous
sections. It differs only in the fact that we are dealing with two particle species
having a large relative velocity with respect to each other. For a detailed discus-
sion of the subject we will refer to Jackson [A.4, Sections 13.7 and 13.8] or Lawson
[C.17, Sections 5.2 and 5.3]. According to the theory, a fast particle with momentum
P = γmv and charge Ze passing an atom with nuclear charge Zge at a distance
defined by the impact parameter b, will experience an angular deflection given by
the polar angle θ in spherical coordinates. The probability that a particle will be
deflected into a solid angle d� = sin θ dθ dφ is determined by the cross section for
nuclear scattering, which for small angles θ obeys the famous Rutherford formula

dσs

d�
= b

θ

∣∣∣∣db

dθ

∣∣∣∣ =
(

2ZZge2

4πε0Pv

)2 1

θ4
. (6.175)

Thus, in view of the θ−4 dependence, the probability for a small-angle deflection
is much greater than for a large-angle deflection. As discussed by Jackson, the cross
section will actually flatten off at small angles, and one has the more general form

dσs

d�
=

(
2ZZge2

4πε0Pv

)2 1

(θ2 + θ2
min)

2
, (6.176)

where θmin is a cutoff angle. The mean-square angle for single scattering is defined
by

θ2 =
∫

θ2(dσs/d�) d�∫
(dσs/d�) d�

= 2θ2
min ln

(
θmax

θmin

)
, (6.177)
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where θmax represents an upper bound for the scattering angle and where, accord-
ing to Jackson,

ln

(
θmax

θmin

)
≈ ln

(
204Z

−1/3
g

)
. (6.178)

If the beam traverses a gas region with ns atoms/m3 and length s, the particles
will undergo multiple collisions. Since these collisions are statistically indepen-
dent events, the central limit theorem states that the distribution in angles will be
approximately Gaussian with a mean-square angle �2 = Nsθ̄

2. Ns is the number
of collisions given by Ns = nsσ

t
s s, where σ t

s = ∫
(dσs/d�) d� is the total cross

section. Following Jackson, one obtains for the mean-square angle due to multiple
scattering the result

�2 = 16πns

(
ZZge2

4πε0mc2γβ2

)2

ln
(
204Z

−1/3
g

)
s, (6.179a)

which may be written in the alternative form

�2 = 16πns

Z2
gr2

c

β2γ 2
ln
(
204Z

−1/3
g

)
s. (6.179b)

Here Z, γmc2, v = βc, and rc denote the charge state, relativistic energy, velocity,
and classical radius of the beam particles, respectively, and Zg is the nuclear charge
number of the gas atoms.

The above derivation implicitly assumes that the beam enters the gas region
with the particles having initially straight trajectories, corresponding to zero initial
emittance. In practice, the beam has, of course, a finite initial rms emittance, and
�2 defines the change of the mean-square slope according to the relation

�x′ 2 = 1

2
�2, (6.180)

where the factor 1
2 results from the projection of the deflection angles into the

x–s plane. The associated increase of the rms emittance ε̃ is readily calculated if
we assume that the beam propagates through a smooth channel characterized by
a wave number k = 1/β̂ = 2π/λ and that the change is adiabatic. In this case
an initially matched beam remains matched and since ε̃ = x̃x̃ ′ = x̃′2/k (using
x̃′ = kx̃), the emittance change is given by

�ε̃ = �x̃′2

k
= �2

2k
. (6.181)

This result can be expressed as a differential change per unit length dε̃/ds along
the distance s of propagation through the background gas as

dε̃

ds
= 1

2k

d(�2)

ds
= 8π

k
ns

Z2
gr2

c

β4γ 2
ln
(
204Z

−1/3
g

)
, (6.182a)

or, in terms of the normalized rms emittance ε̃n = βγ ε̃, as

dε̃n

ds
= 8π

k
ns

Z2
gr2

c

β3γ
ln
(
204Z

−1/3
g

)
. (6.182b)
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For electron beams, the classical radius is rc ≈ 2.8 × 10−15 m; for ion beams we
can show the explicit dependence on the charge state Z and mass number A by
expressing rc as

rc = Z

A
rp, (6.183)

where rp ≈ 1.5 × 10−18 m is the classical proton radius. In storage rings it is more
convenient to express the emittance increase due to gas scattering as a change per
unit time rather than unit length; that is, one has with ds/dt = v = βc,

dε̃n

dt
= dε̃n

ds
βc = 8πc

k
ns

Z2
gr

2
c

β2γ
ln
(
204Z

−1/3
g

)
. (6.184)

Since ns = αng , α = atoms/molecule, we can use Eq. (??) so that (6.184) may be
written in the form

dε̃n

dt
= 2.67 × 1032αβ̂[m]p[torr]

Z2
gr

2
c[m]

β2γ
ln
(
204Z

−1/3
g

)
. (6.185)

where β̂ = 1/k is the average betatron function.
As an example, consider a proton beam (Z = 1, A = 1) with air as the residual

gas in the vacuum chamber. Taking Zg � 7, α = 2 for nitrogen (N2), we obtain

dε̃n

dt
= 2.29 × β̂[m]

p[torr]
β2γ

[
m-rad

s

]
. (6.186)

In a hypothetical proton storage ring with a radius of R = 50 m, a tune of νx =
νy = 4 (i.e., β̂ = R/νx = 12.5), a kinetic energy of 300 MeV (γ = 1.32, β = 0.65),
and a pressure of 10−9 torr, the normalized rms emittance would increase at a rate
of about 6.5 × 10−9 m-rad/s, or 2.3 × 10−5 m-rad per hour. Since emittances are
typically in the range of a few mm-mrad, this increase would be a significant factor
in limiting the storage time. The emittance growth would, of course, be a factor of
10 lower if one could operate at a background pressure of 10−10 torr.

As can be seen from the above formulas, the emittance increase due to scattering
is most severe at low energies. Thus, for a 50-keV proton beam (γ ≈ 1, β ≈ 0.01)
propagating through a transport channel having a betatron function of, say, β̂ =
λ/2π = 0.5 m and a pressure of 10−5 torr, the rms emittance growth is 1.4 ×
10−2 m-rad/s or 1.4×10−2/(0.01×3×108) = 4.7×10−9 m-rad per meter of travel.
For a short channel this is not very significant, although the rate of change is more
than six orders of magnitude higher than in the above storage-ring example.

The above formulas also show that electrons are much more strongly scattered
than ions of the same velocity since �2 ∝ r2

c ∝ (Z/m)2. For the rate of emittance
change per meter of an electron beam, one obtains with rc = 2.8 × 10−15 m:

dε̃n

dt
= 7 × 10−6αβ̂[m]p[torr]

Z2
g

β2γ
ln
(
204Z

−1/3
g

) [m-rad/m]. (6.187)

As an example, let us consider the 5-keV electron beam (β = 0.14, γ ≈ 1) discussed
in Section 6.2.2, case 1 (rms matched beam). It propagated through a periodic
solenoid channel over a distance of about s = 5.2 m. In the smooth approximation,
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the β̂-function relates to the particles’ betatron wavelength λ by β̂ = λ/2π = S/σ ,
with λ = 2πS/σ [Eq. (6.39)], where S = 0.136 m is the period length and σ the
phase advance with space charge. At the beginning, one has σi = 0.31σ0 ≈ 24◦
since σ0 = 77◦, and after the rapid emittance growth one finds from (4.147) that
σf = 0.43σ0 ≈ 33◦. Using the latter value, the average betatron function can be
approximated by β̂ � 0.24 m. The average residual gas pressure in the beam tube
was around p � 2.5×10−7 torr (D. Kehne, private communication). With the above
numbers and taking air (Zg ≈ 7, α ≈ 2) as the background gas, one obtains from
Eq. (6.187) an rms emittance increase of �ε̃n � 3.7×10−7 m-rad. This corresponds
to an effective emittance change of �ε = 4�ε̃n/βγ = 10.5 × 10−6 m-rad. Adding
this value to the theoretically predicted emittance of 101 mm-mrad [Eq. (6.37b)],
one obtains ε = 111.5 mm-mrad, in remarkably good agreement with the mea-
surement. Thus, gas scattering appears to explain why the measured value of the
emittance was consistently about 10% higher than expected in the experiment of
case 1, Section 6.2.2. Gas scattering would, of course, also have affected the case 2
(rms mismatched beam) experiment described in Section 6.2.2. However, the halo
formation prevented an accurate emittance measurement in that experiment, so
that a quantitative evaluation is not possible.

Returning now to the general discussion of gas scattering, it will be useful for
us to make a comparison with the intrabeam Coulomb collisions treated in the
preceding two sections. First, it should be pointed out that both mechanisms are
elastic collision processes (i.e., the particles involved suffer no energy loss). In the
Coulomb collisions between the beam particles we are dealing, on the one hand,
with relaxation of initially different longitudinal and transverse temperatures to-
ward thermal equilibrium. On the other hand, we have a continuous transforma-
tion of coherent longitudinal kinetic energy into thermal energy when an equilib-
rium does not exist. Scattering in a background gas is related to the latter case; that
is, it is a nonequilibrium process in which the coherent, center-of-momentum en-
ergy is gradually converted into random, incoherent transverse motion and hence
thermal energy. This process continues in principle until all coherent kinetic beam
energy is thermalized. This extreme case occurs when the beam is stopped com-
pletely, as happens at high gas pressure or in a solid material. Of course, in these
extreme cases there are also many collisions involving inelastic processes where
true energy loss or dissipation occurs so that the kinetic energy of the beams is
completely transformed into heat and radiation or other forms of energy.

6.5
Beam Cooling Methods in Storage Rings

6.5.1
The Need for Emittance Reduction

For many applications of charged particle accelerators, such as high-energy collid-
ers, special nuclear physics studies, short-wavelength free electron lasers, and so
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on, the inherent emittances and momentum spreads of the beams are too large to
satisfy the experimental requirements. The best examples are the antiproton beams
used in high-energy proton–antiproton (pp̄) colliders and the positrons used in
electron–positron (e−e+) colliders. These beams of antiparticles are produced by
bombarding special targets with primary beams of sufficiently high energy, and
they have therefore inherently large emittances and momentum spreads. It was
the need to reduce the phase-space volumes of the antiproton beams for success-
ful high-energy collision experiments that led to the invention of electron cooling
by Budker [58] at Novosibirsk and stochastic cooling by van der Meer and his co-
workers [59] at CERN. Stochastic cooling of antiprotons was instrumental in the
discovery of the W and Z particles (vector bosons) at CERN by Rubbia and his
team. Electron beam cooling, on the other hand, plays an important role in a num-
ber of lower-energy facilities, such as the storage ring at Bloomington mentioned
in Section 6.3 (see Reference 13 at the end of Chapter 3).

For high-energy lepton machines such as the e−e+ linear collider at SLAC, ra-
diation cooling is the method of choice. In view of the very stringent emittance re-
quirements for achieving high luminosity in the interaction point, both positrons
and electrons require cooling in special damping rings before they are accelerated
to full energy. This technique utilizes synchrotron radiation to dampen the am-
plitudes of the particles’ betatron oscillations and also to reduce the longitudinal
momentum spread.

All of the three cooling methods (electron, stochastic, and radiation) require long
interaction times that can only be achieved in storage rings over thousands of revo-
lutions. A technique for rapid cooling of a beam in a straight transport line (rather
than an expensive storage ring) has yet to be found. In the subsections below we
discuss briefly each of the three successful methods employed in ring machines.

6.5.2
Electron Cooling

If a low-temperature electron beam is combined with a high-temperature ion beam
traveling in the same direction and at the same speed, Coulomb collisions between
the two particle species will lead to temperature relaxation. The electron beam will
heat up while the ion beam cools down as the two-beam system is driven toward
thermal equilibrium. As a result of this thermal energy exchange the emittance of
the electron beam increases while that of the ion beam is reduced.

In practice, the electron beam interacts with the ion beam only along a short
straight section of length Le built into the ion storage ring, whose circumference
C is usually much larger than Le. During each traversal of the cooling section,
the ion beam imparts a small amount of its thermal energy to the electron beam.
The latter is produced by an electron gun with thermionic cathode. It thus has a
transverse temperature on the order of 0.1 eV and a longitudinal temperature that
is several orders of magnitude lower due to acceleration, as discussed in Sections
5.4.6 and 6.4.1. The electron beam is extracted from the cooling section after the
interaction with the circulating ion beam and hence carries the transferred thermal
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energy from the ions out of the system. In each pass through the cooling section
the ions encounter a fresh group of cold electrons from the gun so that, in princi-
ple, they could be cooled to the intrinsic electron temperature. However, intrabeam
scattering in the ion beam may prevent such high cooling rates to be achieved.
For instance, if the storage ring operates in the negative-mass regime there will
be a continuous thermalization of coherent ion-beam energy, as discussed in Sec-
tion 6.4.2, which will tend to reduce the cooling effect of the electron beam. Like-
wise, if the lattice function φl defined in Eq. (6.165b) is not zero, there will also be
a lower limit to the ion-beam temperature that can be reached. In either case, this
limit will be defined by the equilibrium state in which the rate of ion temperature
increase due to intrabeam scattering is just balanced by the cooling rate due to the
interaction with the cold electron beam. It is found that the cooling effect can be
greatly enhanced by providing a longitudinal magnetic field Bz that confines the
electrons to helical orbits of small radius while leaving the heavier ions essentially
unaffected.

The theory of electron cooling is, like that of intrabeam scattering, rather involved
as there are many different regimes of operation and parameters to be taken into
account. However, if one assumes a simple electron-ion plasma model where three-
dimensional equilibrium can be achieved, one can derive an approximate relation
for the relaxation time, which is analogous to Eqs. (6.152) and (6.173) and given
by [60]

τe = C

Le

F1γ
2
0

rerinec ln �

[(
kBTbe

mec2

)3/2

+
(

kBTbi

mic2

)3/2
]
. (6.188)

Here ne is the electron density, assumed to be the same as the ion density ni , re

and ri are the classical electron and ion radii, F1 is a constant that for a smooth
focusing system has the value F1 = 3/4

√
2π ≈ 0.3, and γ0 is the relativistic energy

factor (identical for both beams); the electron and ion temperatures are measured
in the beam frame. Le/C is the fraction of the storage ring occupied by the cooling
section, and ln � is the Coulomb logarithm as defined in Eqs. (5.247) and (5.248),
with kBT/mc2 ≈ kBTbe/mec

2 since kBTbi/mic
2 � kBTbe/mec

2. When equilibrium
is reached, the two beam temperatures are the same (i.e., Tbi = Tbe). Assuming
that both beams have identical transverse cross sections, one obtains an emittance
ratio of εi/εe ≈ (memi)

1/2; that is, the ion-beam emittance would be considerably
smaller than that of the electron beam in view of the inverse square-root mass ra-
tio. As an example, consider the electron cooling of a 200-MeV proton beam so
that γ0 ≈ 1.21 and the electron energy is about 109 keV. Assuming a density of
ne � 1015 m−3, C/Le � 50, F1 ≈ 0.3, and kBTe = 0.1 eV, one finds from (6.158)
ln � = 16.5 and from (6.188) an approximate relaxation time of τe � 0.1 s. The
equilibrium temperature of the protons would be kBTi ≈ kBTe = 0.1 eV, and the
transverse emittance of the proton beam would be εi � 0.02εe if identical beam
size is assumed. In practice, the lattice design and other parameters come into
play, as mentioned above, which change the factor F1. Furthermore, Coulomb scat-
tering between the protons in the ring works against the electron cooling. The final
equilibrium is reached when the cooling rate due to the electron beam and the
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heating rate due to intrabeam scattering are equal, and the proton temperature is
always higher than the 0.1-eV electron temperature. At higher energies (i.e., above
γ0 � 1.25) the relaxation times become too long and the electron cooling systems
too bulky to be practical, and the stochastic cooling method described in the next
section is superior.

6.5.3
Stochastic Cooling

To obtain a conceptual understanding of stochastic cooling, let us first consider
the radial betatron oscillation of a single particle about the ideal equilibrium or-
bit in the midplane of a storage ring. Assume that a pickup probe consisting of
two electrodes is located at some position along the ring. One electrode is inside
and the other outside the central orbit. If the particle trajectory coincides with the
equilibrium orbit, there will be no betatron oscillation and no signal will be in-
duced in the pickup plates. On the other hand, if the particle deviates from the
equilibrium orbit it will perform betatron oscillations and induce an electric signal
in the pickup probe. This signal is proportional to the displacement from the cen-
tral orbit. It can be amplified and fed to a “kicker” consisting of two electrodes and
located an odd number of quarter-wavelengths of the betatron oscillation down-
stream of the pickup. The kicker then provides a deflection to the particle that is
proportional to the displacement sensed at the pickup probe and has a polarity that
tends to reduce the betatron amplitude. The signal path between pickup and kicker
must, of course, be sufficiently shorter than the orbital path length between the
two locations so that the signal reaches the kicker at the same time as the parti-
cle. As this process is repeated during several successive revolutions, the particle
gradually loses all its transverse energy and will move along the ideal equilibrium
orbit without deflections. In a sense, the particle has been “cooled” and its initial
transverse energy has been dissipated in the kicker system.

In a real beam, there will be many particles performing betatron oscillations with
a random distribution in phase. The signals induced in the pickup probe by the
group of particles being sampled will, however, not cancel each other completely.
Due to the finite number of particles and the stochastic nature of the oscillations
there will in general be fluctuations of the sampled group’s centroid position with
respect to the equilibrium orbit. Suppose that the number of particles in the sample
is Ns and that the mean displacement of this group of particles from the equilib-
rium orbit at the pickup probe is x̄. The corresponding signal in the pickup probe
will be amplified and fed to the kicker. There, each particle in the sample will re-
ceive a deflection �x of its trajectory that is proportional to the mean displacement
x̄ at the pickup, say �x = αx̄. Hence, after the kick, each individual particle’s dis-
placement from the equilibrium orbit will be x = xk −αx̄, where xk is the position
before the kick. The net result is that the mean square x2, and hence the rms width
x̃ = (x2)1/2 of the particle distribution after the kick, is reduced compared with the
value x2

k before the kick. Thus, the emittance is also reduced. It can be shown that
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the change of x2 per revolution (i.e., per passage through the pickup-kicker system)
is to good approximation given by (see, e.g., [D.10, Section 7.3.1])

dx2

dn
= −2α − α2

Ns

x2
k . (6.189)

The corresponding rate of emittance change is then

1

ε

dε

dn
= −2α − α2

Ns

. (6.190)

If τrev = C/v is the revolution time in the ring, the characteristic time constant τ

for the cooling process can be defined by

1

τ
= −1

ε

dε

dt
= −1

ε

dε

dn

1

τrev
= 2α − α2

Nsτrev
. (6.191)

Let us assume that the entire beam comprises a total number of particles N that
are uniformly distributed around the circumference of the storage ring. If �ts is
the pulse length of the slice consisting of the Ns particles being sampled by the
pickup probe, then

Ns = N
�ts

τrev
(6.192)

and the cooling rate (6.191) may be written as

1

τ
= 1

N�ts

(
2α − α2). (6.193)

Thus, the time constant τ for the cooling process is seen to be proportional to the
total number of particles N and the sampling time �ts and inversely proportional
to the function 2α−α2 of the signal amplification factor α. The emittance decreases
with time t as

ε(t) = εie
−t/τ , (6.194)

where εi is the initial value prior to the onset of stochastic cooling.
By using pickup and kicker probes with vertical as well as horizontal electrode

configurations, one can cool the emittances of the beam in both transverse direc-
tions simultaneously. The above analysis applies, of course, for either direction.

The stochastic cooling technique can also be employed to reduce the longitudi-
nal momentum spread of the beam. Momentum differences are detected by the
related difference in the revolution times or orbital frequencies. A synchronous
particle having the ideal momentum and orbital frequency will remain unaffected.
Nonsynchronous particles will receive a longitudinal kick from an appropriately de-
signed sensing and feedback system so that the momentum difference is reduced.
The mathematical analysis for this longitudinal cooling technique is beyond the
scope of our brief review of the subject. An excellent general review can be found
in the book by Edwards and Syphers [D.10] mentioned earlier. A more comprehen-
sive treatment of the theory was given by Möhl [61], and a good introduction to
both electron and stochastic cooling was given by Cole and Mills [62].
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6.5.4
Radiation Cooling

As is well known from classical electrodynamics, a charged particle will emit elec-
tromagnetic radiation when it is accelerated or decelerated. If the particle moves on
a straight path and the acceleration is in the direction of the particle’s velocity, as
is the case in linear accelerators, the radiation effect is generally insignificant. By
contrast, if the acceleration is perpendicular to the velocity, as in the bending mag-
nets of synchrotrons and other circular accelerators, the effect is very pronounced.
The radiated power rises strongly with the particle’s energy E = γmc2 as E4, and
it is inversely proportional to the square of the mass. Thus, the radiation plays a
significant role only in the case of highly relativistic electrons and other light par-
ticles (leptons). Indeed, in circular electron machines, synchrotron radiation, as the
effect is known in the literature, poses an upper limit to the achievable energy that
is in the range of about 100 GeV. On the other hand, it is negligible in existing
high-energy hadron colliders (protons and antiprotons) where the energy is below
1 TeV, although it would be significant at energies above 10 TeV.

A beneficial effect of synchrotron radiation in high-energy rings is the damping
of the amplitude of the incoherent particle oscillations about the beam centroid.
This can be understood intuitively by considering the transverse betatron oscilla-
tions. A particle performing an oscillation about the equilibrium orbit has a higher
energy and hence emits a larger amount of radiation power than the equilibrium
particle. Synchrotron radiation is a dissipative non-Liouvillean process and thus it
can be employed to reduce the transverse emittance and the longitudinal momen-
tum spread of electron or pasitron beams. Radiation cooling in special damping
rings, for instance, is a necessity in a linear e+e− collider. To achieve the desired
luminosity at the interaction point, the transverse dimensions, and hence the emit-
tances, of the two colliding beams have to be extremely small.

Let us now take a brief look at the existing theory of synchrotron radiation and
radiation cooling. We will not give any detailed derivations, but merely present
and discuss the major relations that describe these effects. Following Jackson (A.4,
Chap. 14), the power radiated by an accelerated particle of charge q can be ex-
pressed in the form

P = q2γ 2

6πε0m2c3

[(
dP
dt

)2

− 1

c2

(
dE

dt

)2]
, (6.195a)

or, with E = γmc2 = (dP/dt) · v [Eq. (2.25)),

P = q2γ 2

6πε0m2c3

[(
dP
dt

)2

− 1

c2

(
dE

dt
· v
)2]

. (6.195b)

For a given applied force dP/dt = F, this formula shows the inverse dependence on
the square of the mass mentioned above. Furthermore, the radiated power depends
very strongly on the direction of the applied force relative to the particle velocity v.
Consider first the case of a linear accelerator where the accelerating force F‖ =
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(dP/dt)‖ is parallel to the direction of the particle velocity v. Since in this case
(dP/dt) · v = v dP/dt , one obtains

P = q2

6πε0m2c3

(
dP
dt

)2

, (6.196a)

or

P = 2

3

rcc

mc2

(
dE

dz

)2

, (6.196b)

where we used γ 2(1 − β2) = 1, dP/dt = dE/dz, and introduced the classical
particle radius rc.

We can compare the radiated power with the energy gain per second in the linac,
dE/dt = (dE/dz)v, by writing the last equation in the alternative form

P
dE/dt

= 2

3

rc

mc2

1

β

dE

dz
. (6.197)

From this relation we can see that the radiation loss of an electron will be unim-
portant unless the rate of energy gain is on the order of mc2 = 0.511 MeV in a
distance corresponding to the classical radius of rc = 2.82 × 10−15 m (i.e., about
1.8×1014 MeV/m). In linear accelerators, the electric field gradients, and hence the
rates of energy gain, are severely limited by electrical breakdown and other effects.
Typical field gradients are in the range 10 to 100 MV/m. Thus, radiation losses are
completely negligible in linear machines.

The situation is quite different in circular accelerators, where the Lorentz force
F⊥ = qvB is perpendicular to the direction of motion. With dP/dt⊥v the second
term in brackets in Eq. (6.195b) is zero, and the radiated power becomes

P = q2γ 2

6πε0m2c3

(
dP
dt

)2

= q2γ 2

6πε0m2c3
(F⊥)2. (6.198)

Now |dP/dt | = |F⊥| = γmv2/R = ω|P| = ωβγmc; hence,

P = q2cγ 4β4

6πε0R2
, (6.199)

where R is the radius of curvature of the particle orbit. Clearly, the radiated power
in this case can be very high, as it increases with the fourth power of the energy, E.
In practice, the radiation losses must be compensated by increasing the energy
provided by the rf cavities that are located along the circumference of a circular
machine. Since high rf power is difficult to achieve and expensive, an energy limit
is reached where electron synchrotrons are no longer feasible or cost-effective. This
is the motivation for the development of linear colliders [63], where these radiation
losses are insignificant.

The energy loss due to synchrotron radiation per revolution of a circulating par-
ticle can be expressed as

�Eturn = 1

βc

∫ C

0
P ds = q2γ 4β3R

3ε0

(
1

R2

)
, (6.200)



6.5 Beam Cooling Methods in Storage Rings 493

where C = 2πR is the circumference, R = C/2π the average radius of the equilib-
rium orbit, and (1/R2) represents the square of the local curvature radius averaged
over the circumference. Most high-energy rings consist of straight sections and
bending magnets. If the bending magnets all have the same magnetic field; so
that the local orbit radii are the same and ηb is the fraction of the circumference
occupied by bending magnets, then (1/R2) = ηb(1/R2).

In a betatron, of course, where the orbit is perfectly circular, we have ηb = 1 and
R = R. For highly relativistic electrons (β = 1) the energy loss per turn will be

�Eturn = 4πreE
4

3(mc2)3

1

R
(6.201a)

or, numerically,

�Eturn[MeV] = 8.85 × 10−2E4
[GeV]

1

R[m]
. (6.201b)

It has been shown by Richter [64] that the cost of a circular machine rises as the
square of the energy, E2, whereas that of a linear collider is proportional to E. The
crossover point for the two curves is near 100 GeV, and a linear collider becomes
less expensive than a ring above this point.

As an example, consider a 10-GeV electron synchrotron with C = 700 m and
R = 0.8 C/2π ≈ 90 m. According to the preceding equations, at 10 GeV, each
electron will lose an energy of 9.83 MeV/turn. Thus the rf system must provide an
acceleration rate of 9.83 MeV/turn to make up for the radiated power. At an average
electron beam current Ī , the total rf power required to maintain the electron energy
would be

Prf[MW] = �Eturn[MeV] · Ī[A]; (6.202)

that is, for Ī = 10 mA one would need an rf power of 98.3 kW to maintain the
electron energy. At higher energies and higher beam currents the rf power require-
ments quickly become excessive, and 100 GeV is considered an upper limit for
electron synchrotrons, as mentioned above.

Proceeding now to the topic of radiation cooling, we first note that from
Eq. (6.200) the average power radiated by an electron can be expressed as

P = 1

C

∫ C

0
P ds = v

C
�Eturn = f0�Eturn, (6.203)

where f0 = v/C is the revolution frequency. It will be convenient to define the
damping rates of the particle oscillations in terms of the characteristic time τ0 in
which a particle radiates all its energy, that is,

τ0 = E

P . (6.204)

Due to the effect of momentum dispersion, De, the horizontal particle oscilla-
tions in a synchrotron differ from the vertical oscillations, as discussed in Sec-
tion 5.4.10. Likewise, the longitudinal dynamics is not the same as that in the two
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transverse directions. As a result, the radiation damping rates for the particle os-
cillations in each direction are different. A formal derivation of radiation damping
was given by Robinson [65], who also referenced earlier work in this field. Later,
Sands [66] presented a detailed physical discussion of the effects. More recent re-
views of the topic can be found in the books by Lawson [C.17, Section 5.10] and by
Edwards and Syphers (D.10, Sections 8.1 to 8.3]. The latter includes derivations of
the key relations, and in the following we quote the results in the form presented
by these authors.

According to the theory, the effects of dispersion on the radiation damping rates
of the particle oscillations amplitudes can be described by the function

D =
∫ C

0

De

R2

(
1

R
+ 2

B ′

B

)
ds

/ ∫ C

0

ds

R2
, (6.205)

where B ′ is the magnetic field gradient and B = γmv/qR.
Since the vertical motion is usually dispersion-free for all practical purposes, the

time constant for damping of the vertical oscillation amplitudes is independent of
the function D and given by

τy = 2τ0. (6.206)

The vertical betatron amplitude thus decreases exponentially as

y(t) = y0e
−t/τy = y0e

−t/2τ0 . (6.207)

For the horizontal oscillations, which consist of the betatron and dispersion part
according to Eq. (??), one finds a radiation damping time of

τx = 2

1 − D τ0, (6.208)

while the damping time for the synchrotron oscillations is given by

τs = 2

2 + D τ0. (6.209)

The three time constants obey Robinson’s theorem [65], which states that

1

τx

+ 1

τy

+ 1

τs

= 2

τ0
. (6.210)

Thus when two of the three damping constant are known, the third can be calcu-
lated directly from Robinson’s relation.

The above relations for the time constants indicate that the horizontal or longi-
tudinal oscillation amplitudes may actually grow, rather than damp, depending on
the value of D. Thus, one can see from Eq. (6.208) that τx becomes negative, that
is, the horizontal oscillation amplitudes will grow exponentially, when D > 1. On
the other hand, it follows from (6.209) that there is amplitude growth of the syn-
chrotron oscillations when D < −2. The vertical motion is always damped since
the time constant does not depend on D. For damping to occur in all three degrees
of freedom, D must satisfy the relation

−2 < D < 1. (6.211)
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For a weak-focusing machine with axial symmetry (no straight sections) like a be-
tatron, one finds that

D = 1 − 2n

1 − n
. (6.212)

The field index n = −RB ′/B must satisfy the condition 0 < n < 1 [Eq. (3.204)]
to assure focusing in both transverse directions. Thus the vertical and horizontal
oscillation amplitudes are always damped. However, the synchrotron oscillations
are damped only if n < 0.75, which, in practice, is readily achieved.

Modern strong-focusing synchrotrons and storage rings are built with “separated-
function” lattices, where the bending occurs in uniform-field magnets and the fo-
cusing in straight sections with magnetic quadrupoles. In these machines it is
found that D is positive and small compared with unity, so that there is always
damping in all three degrees of freedom. If D can be neglected, one simply gets
τx = τy = 2τ0 and τs = τ0.

The above classical theory of radiation cooling predicts that the transverse and
longitudinal beam temperatures and emittances would exponentially go toward
zero with time. However, this is not the case, as the classical model must be cor-
rected by taking into account the quantum mechanical description of the radiation
effect. According to modern theory, radiation occurs in the form of discrete pho-
ton emission, which is essentially a stochastic process. The emission of a photon
changes the momentum of the particle and hence the phase and amplitude of its
oscillation about the beam centroid. According to the quantum-statistical descrip-
tion of the process there is a large spread in the photon energies emitted by the
electrons in a beam. The photon energy w = h̄ω is usually expressed in terms of
the critical energy wc, defined as

wc = 2

3
γ 3h̄ω0, (6.213)

where h̄ = h/2π = 1.0545 × 10−34 J-s = 6.5906 × 10−16 eV-s, and ω0 is the
instantaneous angular frequency of the particle motion in the circular machine.
Figure 6.25 shows the energy distribution S(w/wc) of the synchrotron radiation.
The mean and mean-square values of the energy spectrum are found to be

w = 8

15
√

3
wc, (6.214)

w2 = 11

27
w2

c , (6.215)

The random fluctuations of the emitted photon energies produce a spread of
the particle oscillation amplitudes that leads to emittance growth for the horizontal
and longitudinal motion which opposes the radiation damping effect. Growth in
the vertical direction is negligible since there is no vertical dispersion. If Nν is the
number of photons emitted per revolution defined by

Nν = P
f0w̄

= �Eturn

w̄
, (6.216)
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Fig. 6.25 Energy spectrum of synchrotron radiation, S versus ω/ωc = w/wc .

one obtains the following differential equations for the horizontal and vertical rms
beam widths, δx , δy and the rms energy spread δE :

dδ2
x

dt
= − 2

τx

δ2
x + 1

2
Nνf0β̂xH

w2

E2
, (6.217)

dδ2
y

dt
= − 2

τy

δ2
y, (6.218)

dδ2
E

dt
= − 2

τs

δ2
E + 1

2
Nνf0w2. (6.219)

The function H represents the effect of dispersion and is defined as

H = γ̂ D2
e + 2α̂DeD

′
e + β̂D′ 2

e . (6.220)

H is the average value of H over the closed orbit, α̂, β̂, ŷ are the Courant–Snyder
parameters for the horizontal motion, and H ≈ 0 for the vertical motion.

The three Eqs. (6.217) to (6.219) can readily be integrated, yielding

δ2
x(t) = δ2

x(0)e−2t/τx + 1

4
Nνf0β̂xτxH

w2

E2

(
1 − e−2t/τx

)
, (6.221)

δ2
y(t) = δ2

y(0)e−2t/τy , (6.222)

δ2
E(t) = δ2

E(0)e−2t/τs + 1

4
Nνf0τsw2

(
1 − e−2t/τs

)
. (6.223)

Assuming that all three damping time constants are positive, we see that equilib-
rium can be reached within a few damping times (strictly speaking, as t → ∞).
Since the transverse rms emittances are defined by ε̃x = δ2

x/β̂x [see Eq. (5.334)]
and ε̃y = δ2

y/β̂y , one obtains for the normalized rms emittance ε̃n = γ ε̃ (in the rel-
ativistic limit where β = 1) and the relative rms energy spread δE/E the following
equilibrium values:

ε̃nx = C1

∣∣∣∣ H
1 − D

∣∣∣∣ wc

mc2
, (6.224)

ε̃ny = 0, (6.225)
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δE

E
=

[
C1

1

2 + D
wc

γmc2

]1/2

. (6.226)

The constant C1 is given by

C1 = 55
√

3

2432
= 0.66. (6.227)

Note that the vertical equilibrium emittance is approximately zero in this model.
In reality one has to take into account other effects, such as intrabeam scattering,
which transfers thermal energy from the transverse and longitudinal directions to
the vertical phase space. However, even though the vertical emittance will not be
zero, it will still remain significantly smaller than the horizontal emittance. Thus,
the beams in electron synchrotrons always have a rectangular ribbon-like cross
section with δx � δy . However, the energy distribution is Maxwellian. To illustrate
the radiation cooling effect, let us consider the 10-GeV electron machine discussed
earlier (following Eq. (6.201b)]. For convenience we assume a smooth lattice where
D′

e = 0 and D ≈ 0. The critical energy can be written in the form

wc = 9

8π

h̄c

re

(
R

R

)
�Eturn

E
= 2.51 × 107

(
R

R

)
�Eturn

E
. (6.228)

Using �Eturn = 9.83 MeV and R/R = 0.8, one obtains wc = 19.7 keV. The func-
tion H is given by

H = γ̂ D2
e = D2

e

β̂
= D2

e νx

R
(6.229)

since β̂γ̂ = 1, and β̂ = R/νx . Taking De ≈ 2 m, νx = 4.8, one gets H = 0.21.
With these values one obtains ε̃nx = 5.36 × 10−3 m-rad for the normalized rms
emittance, ε̃x = ε̃nx/γ = 2.7 × 10−7 m-rad for the unnormalized rms emittance,
and δE/E = 8.1 × 10−4 for the relative rms energy spread. In an actual machine,
these values would, of course, differ somewhat since De and D are not exactly zero.
But, more important, intrabeam scattering provides coupling between the three
degrees of freedom and may introduce additional thermal energy, as discussed in
Section 6.4.2.

6.6
Concluding Remarks

The topics of emittance growth, emittance preservation, and emittance reduction
by cooling techniques discussed in this chapter are of fundamental importance for
the design and application of advanced particle accelerators and other devices. We
reviewed three major causes of emittance growth – beam mismatch, instabilities,
and collisions – but our list of effects in each category is by no means complete.

In Section 6.2 we discussed the thermodynamic concept of free energy in non-
stationary, or mismatched, beams and its possible conversion into thermal energy
and associated emittance increase. This topic is relatively new, as most of the re-
search results obtained during the last few years have not yet been reviewed in
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other books. The emphasis in this section was on the role of space charge and the
shape of the particle distribution. Even if a beam is rms-matched into a focusing
channel or accelerator, emittance growth can occur if the initial density profile dif-
fers from that of the stationary Maxwell–Boltzmann distribution. Still, our analysis
was limited to a symmetrical beam in transverse phase space. In some applica-
tions the beam cross section may be asymmetric with different rms widths and
rms emittances in the two orthogonal directions (e.g., in a “sheet beam”) and the
theory – both the Maxwell–Boltzmann distribution as well as the emittance growth
formalism – needs to be extended accordingly. The work by Wangler, Lapostolle,
and Lombardi is a first step in this direction [67].

More research is needed to correlate the time scales for emittance growth with
the nonlinearities due to the applied focusing forces and due to the space-charge
density perturbations from the stationary profile. Most likely, one needs to go back
to the Fokker–Planck equation and try to obtain a better model for the diffusion
coefficient and relaxation rate, as attempted by Bohn [68].

The formation of a halo in the mismatched beam is largely unexplained. We
know that the halo is caused by the existence of free energy and the nonlinear in-
teraction of the particles with the density oscillations and fluctuations in the beam.
Recent studies by Jameson provide some insight into the mechanisms that cause
individual particles to gain transverse energy and to become part of the halo [69]:
The interaction of single particles with the time-varying collective fields due to the
plasma oscillations in the beam core may lead to a net increase of the transverse
energy and amplitude of particle excursion. In related work, the origin of the halo
particles in computer simulation was traced [70]. It was found that a large fraction
of the halo consisted of particles from the outer regions of the beam’s phase space
(i.e., their initial energy is considerably greater than the average energy). However,
there are also many particles from the interior of the phase space that are kicked
out, gaining sufficient energy to become part of the halo. Because of the stochasti-
cal nature of the interaction, such tracking of individual particles may not provide
the definitive explanation of the halo effect. Why does some fraction of the available
free energy increase the temperature of the beam core while the rest goes into the
nonthermal high-energy tail? Can we develop a model that can predict this behavior
quantitatively and allow us to determine which fraction of the initial mismatched
particle distribution and/or free energy ends up in the halo? Does one reach a fi-
nal steady state with a thermal beam core surrounded by a halo? Can the halo be
removed by appropriately placed aperture plates without disturbing the stationary
core? There is also the problem discussed in Section 5.4.4 that the Boltzmann den-
sity profile develops a natural Gaussian-like tail as the beam is accelerated to high
energy even if the distribution is rms-matched adiabatically during the acceleration
process so that no free energy is created.

All of these questions need more research. Furthermore, our analysis in Sec-
tion 6.2 needs to be extended to the longitudinal direction of bunched beams where
nonstationary line-charge density profiles, mismatch, and off-centering lead to lon-
gitudinal emittance growth and halo formation, just as in the transverse phase
planes. The situation may even be worse than in the transverse case because of
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the highly nonlinear nature of the longitudinal forces in the buckets of rf acceler-
ators. Ultimately, the goal must be to understand fully the behavior of the three-
dimensional particle distribution with space charge when free energy is created
that increases the beam’s temperature and its three-dimensional phase-space vol-
ume. This relates also to the problem of equipartitioning discussed in Appendix 4.

In Section 6.3 we limited our discussion essentially to three topics. The first was
the transverse instabilities caused by the resonant interaction between density per-
turbations oscillating with the plasma frequency and focusing forces in a periodic
channel. These instabilities in space-charge-dominated beams are closely related to
the emittance growth effects discussed in Section 6.2.

Our second topic was concerned with the nature and behavior of longitudinal
space-charge waves, which are created by perturbations of a beam’s line charge-
density profile. Space-charge waves play the key role in the physics of longitudinal
instabilities, which are the cause of beam degradation and emittance growth. As
our third topic we chose the longitudinal instability that is created by the inter-
action of the slow space-charge wave with an external circuit (e.g., resistive wall)
in a linear channel. In view of the general importance of circular accelerators and
for historical reasons, we extended this discussion in Section 6.3.3 to circular ma-
chines. There the negative-mass instability is of particular interest since it occurs as a
result of the particle dynamics in the negative-mass regime above transition energy
discussed in Section 5.4.9.

These two examples of longitudinal beam instability were intended to serve as an
illustration and introduction into the topic. An excellent, comprehensive treatment
of collective instabilities in high-energy accelerators is given in the book by Chao
[D.11]. At high, relativistic particle energies the long-wavelength electrostatic model
that we used in our analysis of space-charge waves and instabilities is no longer
sufficient. A fully electromagnetic treatment is required in which the wakefields
created by bunched beams or by perturbations in unbunched beams are taken into
account. These wakefields act back on the beam and cause transverse and longi-
tudinal instabilities which depend on the transverse and longitudinal impedances
Z⊥(ω) and Z‖(ω) of the beam’s enviroment which are functions of the frequency ω.
The mathematical treatment of these wakefield effects is quite complicated and re-
quires a mixture of analysis and simulation. We will not attempt to go any further
into this highly specialized topic, which is treated in great depth and detail by Chao.
The book by Edwards and Syphers provides a good elementary introduction into
the topic of wakefields, impedances, and instabilities in high-energy accelerators
(D.10, Chapter 6). A more general and excellent review of waves and instabilities
in charged-particle beams can be found in Lawson’s book [C.17, Chapter 6].

The third category of effects causing emittance growth, Coulomb collisions be-
tween particles in the beam or between beam particles and a background gas, was
reviewed in Section 6.4. Our treatment of collisions in Section 6.4.1 (Boersch ef-
fect) is new. We applied the theory of Ichimara and Rosenbluth for a stationary,
nonrelativistic, magnetically confined plasma to a charged particle beam in a uni-
form focusing channel. The beam’s longitudinal temperature T‖ was assumed to
be much lower than the transverse temperature T⊥, due to cooling by acceleration.
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Historically, the Boersch effect was observed in a focused electron beam where the
transverse temperature T⊥ increases with distance, reaching a maximum at the
crossover point (waist). The theoretical treatments of the collisions in such a fo-
cused beam, reviewed in Jansen’s book (see Reference 9 in Chapter 5), are rather
involved, and scaling with physical parameters is not readily apparent. Our treat-
ment, on the other hand, yields a relatively simple analytical relation for growth
rate and parameter scaling. The numerical examples show that the temperature
relaxation can increase the longitudinal energy spread by two orders of magnitude
in short distances of 1 m even though the beam is far from thermal equilibrium.
This result is in good agreement with Boersch’s observations for a focused beam.
A comparison of the results from our uniform-beam model with those from the
models for a focused beam would be very interesting. Our results indicate that sig-
nificant broadening of the energy spread should occur not only in the crossover
point of a strongly focused beam, but also in the more smoothly focused beams
of electrostatic accelerators, low-energy beam transport systems, induction linacs,
and even in rf linacs, where, however, it may be masked by the energy spread due
to bunching.

Our review of intrabeam scattering in circular machines (Section 6.4.2) provided
some new insight by emphasizing the thermodynamic aspects (i.e., the relation-
ships between momentum spreads and temperatures in the three degrees of free-
dom). Theoretically, thermal equilibrium is possible in a smooth channel with zero
dispersion below transition energy, but no equilibrium exsits in the negative-mass
regime above transition. In practice, nonzero dispersion and the variations of the
betatron function along the circumference contribute additional energy, which pre-
vents the attainment of equilibrium below transition as well. As in the negative-
mass regime, this additional energy is due to thermalization of longitudinal kinetic
energy of the beam (see our discussion in Section 5.4.12). However, the effect ap-
pears to be rather small in most cases studied, so that the simple smooth-focusing
models should be adequate to calculate the growth rates. We found it somewhat
puzzling that the more sophisticated computer models do not distinguish explic-
itly between the two fundamentally different regimes above and below transition.
Clarification of this puzzle would be highly desirable.

Our review of gas scattering in Section 6.4.3 and beam cooling methods in Sec-
tion 6.5 follows the standard treatment found in the literature, except for some
changes in notation to maintain consistency with that in other sections of the book.

With regard to our discussion of emittance growth in this chapter, we have se-
lected those effects that are fundamental to most beams, but we emphasized the
role of space charge and the thermodynamic concept of free energy. We did not
discuss many effects that are unique to a particular device, such as the instabilities
in high-energy accelerators (except for the longitudinal instability. Other examples
of this type are the special emittance preservation requirements in future linear
colliders [71], synchrotron light sources, free-electron lasers [72], and inverse free
electron laser applications [73].

For linear colliders, free electron lasers and other applications, the develop-
ment of new electron guns with higher current density and brightness that can
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be achieved with thermionic cathodes is of great importance. The rf photocathode
gun, also known as the laser-driven rf electron gun, mentioned in Section 3.1 is the
leading candidate, with research and developmental work in progress at several lab-
oratories (see References 3–5 in Chapter 1). Emittance growth in the high-density
electron bunches produced by these rf guns is a major concern and we will present
a brief general discussion of this problem in Appendix 5.

Finally, we want to mention that the emittance growth of beams in drift space,
a special topic that was not treated in this book, was studied by Lee et al. [74],
Wangler [75], and Noble [76]. An expanding or converging beam is of course not
in thermal equilibrium as the temperature decreases or increases, respectively. If
the particle density deviates from the ideal Boltzmann profile, emittance growth
occurs, and this can be significantly stronger than in the uniformly focused beams
discussed in Section 6.2. This applies not only to the continuous or long beams that
have been studied so far, but also to bunched beams which, to our knowledge, have
not yet been the subject of systematic theoretical and experimental investigations.
This topic, which is of great importance for the behavior of beams in the various
matching sections of accelerator systems and in final focusing of the beams, de-
serves further research in the future.
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Problems

6.1 Consider a uniformly focused beam with constant particle
density n0, current I , velocity v, and radius a inside a
cylindrical drift tube of radius b. It can be compared with a
coaxial cylindrical transmission line, where the beam takes
the place of the solid inner conductor.
(a) Calculate the electric and magnetic fields and the electric

and magnetic field energies per unit length for both the
beam and the equivalent transmission line (with the same
current and “voltage”).

(b) Calculate the capacitance C∗
b and inductance L∗

b per unit
length of the beam configuration and compare the results
with C

†
t and inductance L∗

t for the equivalent
transmission line. (Hint: Use relations between
capacitance and inductance and the appropriate field
energy.)

6.2 The beams emerging from electron guns with thermionic
cathodes (as in Appendix 1) often have a hollow density profile
n(r) due to nonlinear field configurations in the diode or
nonuniform cathode emission. Suppose that the density
profile has the form

n(r) =
{

n0

[
1 + δ

(
r
a0

)2]
for 0 � r � a0,

0 for a0 � r � b,

where a0 is the beam radius, b the conducting tube radius,
and δ is a number in the range 0 < δ < 1. Assume that the
beam is injected into a linear, uniform focusing channel and
that the equivalent uniform beam (with the same current I

and kinetic energy) has initial radius a1 and density
n = ni = const for r � ai , n = 0 for ai < r < b. Calculate the
following:
(a) ai as a function of a0 and δ

(b) ni as a function of n0 and δ

(c) Electric self field Er(r) for the nonuniform beam
(d) Electrostatic field energy per unit length, wE , for the

nonuniform beam
(e) Nonuniform field energy factor U/w0

(f) Radius increase af /ai , emittance growth εf /εi , and
distance zp = λp/4 if the electron beam current is 3 kA,
the kinetic energy 1.5 MeV, the cathode radius rs = 6 cm,
the cathode temperature kBT = 0.1 eV, the geometry
factor δ = 0.5, and the effective initial beam radius in the
focusing channel ai = 5 cm.
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6.3 The nonstationary waterbag (WB) distribution listed in
Table 5.1 has a nonuniform density profile of the form

n(r) =
{

n1

[
1 − δ

(
r
a1

)2]
for 0 � r � a1,

0 for a1 � r � b.

The beam radius a1 and the drift-tube radius b are constant
(i.e., independent of the axial coordinate z).
(a) Find the electric field, E(r) and the electrostatic energy

per unit length, wE .
(b) For comparison, calculate E(r) and wE for a beam with

uniform density

n(r) =
{

n0 for 0 � r � a0,

0 for a0 � r � b.

(c) Find the relation between n1 and n0, and a1 and a0 if both
beams have the same number of particles per unit length
(i.e., the same current) and the same rms radius

r̃ = (r2)
1/2

. Show that the difference in field energy
between the two beams is

�wE = U = 0.0224w0,

where w0 is defined in connection with Eq. (6.14).
6.4 Derive the relations (6.68) for the longitudinal space charge

field Esz and (6.69a) for the g-factor in an
emittance-dominated beam by applying Faraday’s law and
Ampere’s circuital law to the beam configuration shown in
Fig. 6.18. Read the discussion preceding and following these
equations.

6.5 Derive the solutions (6.86a) and (6.86b) from the relation
(6.85).

6.6 Derive the expressions for the real part R∗
w and the imaginary

part X∗
w of the transmission-line impedance Z∗

w given in
Eq. (6.104). Discuss the dependence on ω and k, draw a
diagram ω versus k, and show qualitatively the lines ω(k) for
the slow and fast space-charge waves.

6.7 Find the solutions (6.105a) and (6.105b) from the dispersion
relation (6.103a).

6.8 Consider the relation (6.105a) or (6.105b) and show that an
inductive transmission-line impedance enhances the growth
rate while a capacitive impedance decreases the growth rate of
the longitudinal instability. Under what conditions can the
beam still be unstable (i.e., ki > 0) even if R∗

w = 0?
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6.9 Consider the dispersion relations (6.124) and (6.126) for the
situation where Rw = 0. Discuss all possible combinations of
η > 0, η < 0, Xw > 0 (inductive wall impedance), Xw < 0
(capacitive wall impedance), |Xw| < Xs , |Xw| > Xs , and
compare the growth rates with each other and with the case
Xw = 0.

6.10 In a beam vacuum tube with a smooth wall, the impedance
Z∗

w is determined by the skin effect. As long as the wall
thickness is larger than the skin depth δs we have a resistive
(real) component and an inductive (imaginary) component of
equal magnitude. The complex wall impedance is given by

Z∗
w = (1 + i)

2πb

1

σδs

= R∗
w + iωL∗

w.

Here b is the radius of the vacuum tube, σ the conductivity of
the wall material in �−1/m, and δs the skin depth defined by

δs =
(

2

ωµσ

)1/2

,

where µ is the permeability of the material in H/m. (In
nonmagnetic materials, µ ≈ µ0 = 4π × 10−7 H/m.)
Evaluate the longitudinal stability of a cold 50-MeV 1-kA
electron beam with radius a = 0.5 cm in an aluminum tube
(σ = 3.26 × 10−7√ω/2π �−1/m) with radius b = 2.5 cm.

6.11 Show that the dispersion relation (6.124) is identical to (6.85)
when the transition from circular to straight beam is made.

6.12 Using the proper definitions for the temperature in a circular
machine, show that Eq. (6.164) is identical to (6.160b).

6.13 Carry out the details of the derivations leading to Eq. (6.52).
6.14 Derive the equations corresponding to Eq. (6.52) for the

perturbations (ac components) of the velocity, space-charge
density, and current density using the first-order relations

vac = v0
∂s

∂z
+ ∂s

∂t
,

ρac = ρ0
∂s

∂z
,

Jac = ρ0vac + v0ρac.

Plot the real part of Jac as a function of distance z for one
instant of time (eiωt = 1) in the interval 0 � z � λp = 2π/ωp,
and show that the first peak occurs at z = λp/4.
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7
Beam Physics Research from 1993 to 2007

7.1
Introduction

The first studies in both longitudinal and transverse beam physics research (Sec-
tions 7.2 and 7.3) are a continuation of the research initiated prior to 1993 and
reviewed in the first edition of this book [1]. This is particularly true for Section 7.2.
In Section 7.4, the research and development of the University of Maryland Elec-
tron Ring (UMER) is presented. This is an entirely new project, which had just
begun while the book was being published. Some of the early research for UMER
involved the development of the injector transport line and, therefore, is discussed
in Section 7.3. Related projects at other institutions are reviewed at the end of Sec-
tion 7.3 for transverse beam physics research results. After the UMER presentation
in Section 7.4, related ring projects are discussed. In Section 7.5, Patrick O’Shea re-
views research on issues related to photoinjectors that were initiated by him. Lastly,
in Section 7.6 Concluding Remarks are presented.

7.2
Longitudinal Beam Physics Research

7.2.1
Studies in the Long Periodic Solenoid Channel

After the successful multiple beam experiment by David Kehne [2], which was mo-
tivated by my theory on free energy and emittance growth [3] and confirmed its
predictions, as discussed in Chapter 6, I decided to start research on the longitu-
dinal beam physics. The first phase of this work was conducted by Wang in his
Ph.D. Dissertation [4], in collaboration with J. G. Wang in the same 5-m-long elec-
tron beam transport channel (EBTE) used for the multiple beam experiment. The
three small diagnostic chambers (D1, D2, D3) and the large one (D4) at the end
of the EBTE channel were also used in the new experiment [2]. However, several
significant changes were made:
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1. The Hughes electron gun was replaced by a gridded gun,
built in-house.

2. An induction accelerator module was built and placed
between the second and third solenoidal matching lens.

3. A parallel-plate retarding energy analyzer was developed,
and two such units were built. The first one was inserted
into the first diagnostic chamber D1 between the third
matching lens and the first lens of the periodic channel, and
the second one was inserted into the third diagnostic
chamber D3. A deflecting energy analyzer was inserted into
the large diagnostic chamber at the end of the channel D4.

4. The existing five current monitors (Rogowski coils) were
replaced by new fast current monitors, developed in-house,
which were better suited for the short pulses (∼50 ns)
produced by the gridded E-gun.

5. The cathode-grid bias voltage could be varied to launch
either rectangular or parabolic beam pulses. On the top of
the flat region of the rectangular pulse, small (∼5 ns)
perturbations were generated to obtain a fast or slow
localized space-charge wave, or a combination thereof, which
could be determined by slight changes of the cathode
temperature, the amplitude and the polarity of the applied
short pulse signal, a technique developed by Wang [5].

The basic theoretical derivations for both the longitudinal space-charge waves
and the resistive-wall instability have been presented in Section 6.3.2. The exper-
imental studies on the propagation of the two localized waves along the channel
were started already in 1991 and published in [6]. Both rectangular and parabolic
beam profiles were studied and, with the aid of the induction gap, they could be
expanded or compressed [7], or an initial rectangular profile could be restored af-
ter edge erosion [8]. The reflection and transmission of space-charge waves at the
bunch ends was also investigated, both experimentally and theoretically [9]. Chris
Allen and Nathan Brown performed the calculations of the geometry factor for
different bunch lengths needed for longitudinal (line charge) physics studies. The
results are shown in Section 5.4.7 and where published in Reference 19 listed there.
Chris Allen, in his Ph.D. Dissertation [10], also developed the computer code SPOT,
which has been widely used by our group for beam envelope calculations in a trans-
port channel.

7.2.2
Resistive-Wall Instability Studies in a Long Solenoid Experiment

In the second phase of the longitudinal beam physics research, we built a new
experimental facility with a long solenoid (LSE) for studies of the resistive-wall
instability. This new line of investigation was motivated by predictions that this in-
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stability could be detrimental to a heavy ion fusion (HIF) driver, and that a scaled,
small-size electron beam experiment would constitute an inexpensive tool to check
the theoretical predictions. The theory of the resistive-wall instability and the damp-
ing by a capacitive wall impedance is already reviewed in Section 6.3.2 and some
references of our publications are listed at the end of Chapter 6.

The new facility consisted of a gridded gun and three short solenoids for match-
ing the beam into a 1.37-m-long solenoid, inside which there was a coated glass
tube, with a resistive wall ∼1-m long. Two current monitors of the type that D. X.
Wang developed for the 5-m channel experiment were used. The first was placed
between the third matching lens and the entrance of the long solenoid and the
second one at the end of the long solenoid. A diagnostic chamber with a movable
fluorescent screen was located downstream from the second current monitor. The
setup of this new facility and the first experimental results are the topic of Hyong
Suk’s Ph.D. Dissertation [11]. The beam pulses produced by the electron gun had
a rectangular profile with a 110 ns flat top, and the beam currents in the flat region
ranged from 25 mA to 137 mA, with corresponding energies between 3.0 keV and
8.5 keV. Experiments were carried out with two different resistive-wall tubes, with
resistances of 5.6 k� and 10.2 k�, respectively, which were built for us by the Insti-
tute of Vacuum Electronics, Beijing, China. Localized slow and fast waves with ini-
tial widths between 2.5 ns and 10 ns were generated by the same method as in the
5-m periodic channel experiments. The results of the measurements showed that
the amplitude of the slow wave increases, whereas that of the fast wave decreases
as the beam propagates through the resistive channel, in good agreement with the-
oretical expectations. Hyong Suk also designed a resistive beam position/current
monitor and bench-tested a prototype for possible future use in the Electron Ring
and an improved version of the parallel-plate energy analyzer, which was subse-
quently used by Yun Zou. A very interesting theoretical study, performed by Hy-
ong Suk as part of his dissertation, was about the possibility of generating solitary
space-charge waves in the resistive-wall channel, which was published in Reference
12. See also the other results, which were reported in refereed journals [13–15].

Yun Zou, in the first part of his Ph.D. Dissertation [16], continued the studies
of the resistive-wall instability. He used, for the first time, the parallel-plate elec-
trostatic analyzer, which was developed by Hyong Suk, and measured the energy
spread of the localized space-charge perturbations for different operating condi-
tions. A small diagnostic chamber containing the first energy analyzer (EA) was
located between the second and third matching solenoids. After the measurements
were done, the EA was moved out of the center so that the beam could propagate
through the tube, the second current monitor, and a short solenoid for focusing
the beam into the second, much larger diagnostic chamber. This chamber con-
tained a second EA, a phosphor screen, and a slit–slit emittance meter. Each of
these diagnostic tools could be moved independently to intercept the beam. When
the phosphor screen was intercepting the beam, a CCD camera connected to a
computer was used to display and process the beam image data. As expected from
the linear theory, it was found that the energy width of the fast wave decreases,
whereas that of the slow wave increases while these waves are propagating through
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the resistive tube. When the initial amplitude of the fast wave was increased, it was
observed, unexpectedly, that in this nonlinear regime its energy width increased, in
contrast to the linear case. This important discovery in these resistive-wall studies
could not be understood and, to the best of our knowledge, even today remains
unexplained [17].

7.2.3
Studies of Energy Spread due to Coulomb Collisions

In the third phase of the longitudinal beam physics studies, the resistive glass tube
in the LSE was replaced by a conducting drift tube so that we could investigate
experimentally the effect of Coulomb collisions, known as the Boersch effect. This
effect was discovered by H. Boersch [Chapter 6, Reference 48], who observed that
the energy spread in the electron beam of an electron microscope increased with
the beam current. Boersch did not attribute this observation to Coulomb scattering.
However, a large number of mostly theoretical studies explained the effect as longi-
tudinal temperature relaxation due to Coulomb collisions between the electrons in
the beam. Rose and Spehr [18], and Jansen in his book on Coulomb collisions [19]
provide a comprehensive, detailed review of these studies. The theory of the Boer-
sch effect was already reviewed in Sections 5.4.6 and 6.4.1. Nathan Brown [20] as-
sisted me with the derivations relating to the thermal equilibrium. He contributed
Figure 5.12 of the transverse Maxwell–Boltzmann distribution for different trans-
verse temperatures, including the three-dimensional profile on the book cover [1],
and Figure 5.16, showing the longitudinal line-charge profiles for different longi-
tudinal temperatures. In addition, he performed many derivations for the Boersch
effect in Chapters 5 and 6, and contributed Figure 6.22, which shows the evolution
of the transverse and longitudinal beam temperature as they relax toward thermal
equilibrium.

As part of his dissertation, Nathan Brown also conducted two sets of experiments
in the original EBTE injector, consisting of the Hughes gun, two matching lenses,
followed by a diagnostic chamber, as shown in Figure 6.8 of this book. These ex-
periments were carried out in parallel to the resistive-wall investigations. In the
first set of experiments, he used a phosphor screen to measure the beam enve-
lope along the channel and, using a CCD, the radial density profiles for different
currents and emittances (temperatures). He compared the experimental results
with theoretical calculations of a Maxwell–Botzmann distribution and found very
good agreement. In particular, the density profiles varied in accordance with the
Maxwell–Boltzmann scaling [Equation (5.311)]

r̃2kBT‖ = mc2ε̃2
n = const. (7.1)

Here r̃ is the rms radius and T‖ is the transverse temperature. This means, when
the beam radius expands, the temperature decreases and the density profile be-
comes more flat. Likewise, when the beam is compressed, the temperature in-
creases and the beam shape becomes more Gaussian.
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In the second set of experiments, the phosphor screen was replaced by a parallel-
plate EA, with which the energy spread of the beam at the distance of ∼30 cm
from the aperture plate at the exit of the gun was measured. A beam from a small
aperture of 1.2 mm radius, with a current of about 2 mA and kinetic energies
ranging from 2 keV to 7 keV, was studied in this experiment. The measured energy
distribution was then compared with the theory of the temperature relaxation due
to Coulomb collisions (Boersch effect). The results were always considerably larger
than the predictions, which were subsequently attributed to the poor resolution of
the parallel-plate EA by Yun Zou.

Yun Zou, in the next part of his dissertation, replaced the resistive tube by a
conducting tube for the studies of Coulomb collisions. He developed a cylindrical
analyzer, for which theory and simulation demonstrated an improvement in the
energy resolution by of about a factor of 10 compared with the parallel-plate EA. To
perform experimental tests of the new EA, it was placed between matching lenses
M2 and M3, as in the resistive-wall experiment, at a distance of 32.2 cm from the
electron gun. At this position the energy spread was measured for different oper-
ating conditions. Yun then reviewed the existing theory of Coulomb collisions of
the longitudinal–transverse (LT) relaxation caused by the Boersch effect and added
the longitudinal–longitudinal (LL) effect [21], which had been previously neglected
in our work. The corresponding equation for the total rms energy spread �Ẽ‖f is
given by

�Ẽ‖f =
(

1

πε0
q2n1/3qV0 + 2qV0kBT‖

)1/2

. (7.2)

The first term in the bracket on the right-hand side of the equation represents the
LL effect, which is caused by the longitudinal temperature relaxation due to the
large density and plasma-frequency gradients within the cathode and anode of the
electron gun and tends to increase the longitudinal temperature. The second term
represents the LT relaxation due to the Boersch effect. qV0 is the beam energy af-
ter acceleration by the gun and T‖ is an increasing function of time or distance
of beam propagation. The beam energy, the term q2n1/3/πε0, and the longitudi-
nal energy kBT‖ are all in units of eV; n is the beam density in m−3 and q is the
electron charge in C. Yun Zou found the LL term to be comparable to the Boer-
sch effect initially according to the calculations. However, after the beam has been
transported for several plasma periods, i.e., several cm, the energy spread due to
the longitudinal–transverse effect will become dominant and the contribution from
the longitudinal–longitudinal effect can be ignored after the distance of 32.2 cm,
where the beam enters the long solenoid of length L ≈ 1.4 m. The total rms energy
spread �Ẽ‖f is then given to good approximation by the Boersch-effect relation:

�Ẽ‖f = (
2qV0kBT‖

)1/2
. (7.3)
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The evolution of the energy spread with time t or distance L = vt can be calcu-
lated from the analysis on pages 472–476 of Section 6.4.1. As shown there, one can
define an effective relaxation time given by

1

τeff
= 1

1.34τ0
= π3/2nr2

0 c

1.34
(
kBT⊥0/mc2

)3/2
ln �, (7.4)

where τ0 is the initial relaxation time, T⊥0 is the initial temperature, n is the particle
density, r0 = q2/(4πε0mc2) is the classical particle radius, and ln � is the Coulomb
logarithm. The latter is defined for a space-charge-dominated beam, where the De-
bye length is smaller than the beam radius (λD < a), from Equation (5.247) by the
relation

ln � = ln

(
5.66 × 1021

(
kBT/mc2

)3/2

n1/2

)
, (7.5)

which varies very slowly over a wide range of temperatures, kBT , and particle den-
sities n. In our electron beam experiments, the Coulomb logarithm has a value of
around ln � = 9, which we will use for our calculations. The longitudinal temper-
ature for a short propagation time t � τeff can be defined from (6.156b) in linear
approximation by the relation

kBT‖ = 2kBT⊥0t/τeff. (7.6)

The initial transverse temperature can be expressed in terms of the cathode tem-
perature Tc, the cathode radius rc, and the matched beam radius a in the long
solenoid by

kBT⊥0 = kBTc

r2
c

a2
. (7.7)

The particle density n can be related to the beam current, cross section, and
velocity by

n = I

qa2πv
. (7.8)

kBT‖ = 2kBT⊥0t

1.34

π3/2nr2
0 c(

kBT⊥0/mc2
)3/2

ln � (7.9)

kBT‖ = 2

1.34

(
mc2

)3/2
π3/2r2

0 c

(kBT⊥0)
1/2

I

qa2πv

L

v
ln �

= ln �

1.34

(
mc2

)5/2
π1/2r2

0 LI

(kBTc)
1/2 (rc/a)a2qc(mv2)/2

(7.10)

Now, (mv2) = 2qV0 and �Ẽ‖f = (2qV0kBT‖)1/2; hence from the last equation, we
obtain

�Ẽ‖f =
(

2 ln �

1.34

(
mc2

)5/2
π1/2r0

(kBTc)1/2rc

r0IL

qca

)1/2

. (7.11)
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From Equation (4.17), we can introduce the characteristic current I0, which, with
the definition for the classical particle radius r0, is given by I0 = r0c/q so that (7.11)
may be written as

�Ẽ‖f =
(

2 ln �

1.34

(mc2)5/2π1/2r0

(kBTc)1/2rc

IL

I0a

)1/2

= �Ẽ‖0

(
IL

I0a

)1/2

. (7.12)

The scaling of the energy spread with [IL/a]1/2 in the Boersch effect was first pre-
dicted by Knauer [22]. Equation (7.12) can be expressed in the form

ln
�Ẽ‖f

�Ẽ‖=
= 1

2
ln

(
IL

I0a

)
, (7.13)

where

�Ẽ‖0 =
(

2 ln �

1.34

(mc2)5/2π1/2r0

(kBTc)1/2rc

)1/2

(7.14)

is the energy normalization. We should point out that we have not seen this nor-
malization of the ln functions anywhere else.

Yun Zou’s experimental test results confirmed the general trend, but the mea-
sured energy spreads were always larger than the predicted values, though not as
much as in the parallel-plate EA, which could not be fully explained. Yun Zou’s
final contribution in his dissertation was the design of a prototype capacitive beam
position monitor (BPM) for UMER, which was bench-tested and found to meet the
desired performance requirements.

The most important improvements and measurements to date are presented by
Yupeng Cui in his Ph.D. Dissertation [23], which he performed in close collab-
oration with Yun Zou, guided by Patrick O’Shea, his advisor, and me providing
especially assistance in the theoretical derivations. Of particular importance were
the improvement of the cylindrical energy analyzer and the development of an
automated data acquisition system, which replaced the past tedious and lengthy
recording of the energy-spread measurements. In the new EA the cylindrical elec-
trode was electrically insulated so that a bias voltage could be applied. This made
it possible to focus the beamlet before it hit the collector much better than in the
previous version of the cylindrical EA. Yupeng Cui built a small test stand con-
sisting of the gridded electron gun, a solenoid, and a diagnostic chamber, through
which he could move a phosphor screen for measuring the beam envelope versus
distance, with the results comparing well with theoretical predictions. Then he re-
placed the phosphor screen by the new EA which was at a distance of about 25 cm
from the anode of the electron gun. For the energy-spread measurements, he used
the computer-controlled automated data acquisition and processing system, men-
tioned above, with which he could measure the energy distribution at any point of
the 100 ns beam pulse. The rms energy-spread measurements for different beam
energies and solenoidal focusing strengths agreed remarkably well with the calcu-
lated values due to Coulomb scattering. Three publications relating to the design
and performance of energy analyzers are presented by Zou et al. in [24], and by
Cui et al. in [25], and [26]. Following this work, Yupeng Cui measured the energy
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Fig. 7.1 Measured energy spread and the linear curve fit in a
Log–Log scale. The measured anomalous increase at large
values of I/a for the 3 keV (red), 4 keV (blue), and 5 keV
(green) is apparent. (Courtesy of Y. Cui).

spread through the long transport line consisting of three matching lenses, M1
to M3, the long solenoid, M4 (length ∼1.3 m), and a solenoidal lens to focus the
beam onto the new EA, which was located at a distance of 2.3 m from the electron
gun. The beam current was measured with a Bergoz coil between M1 and M2 and
two resistive current meters, one at the entrance, the other at the end of the long
solenoid. The matched beam envelope in the uniform field of the long solenoid
for a given set of beam parameters was calculated by changing the strengths of
M1, M2, and M3. The measured rms energy spreads �Ẽ‖f for different operating
conditions were found to be significantly improved compared with the previous
results by Yun Zou and in remarkably good agreement with the calculated values
for Coulomb scattering from Equation (7.3), when the magnetic field of the long
solenoid was low. They scaled as log �Erms ∝ 0.46 log(I/a), which is close to the
theoretical value of 0.5. I/a is the ratio of the beam current to the beam radius.
This result is a major accomplishment, since the energy analyzer with its high res-
olution made it possible to obtain the excellent agreement between experiment and
theory, achieved nowhere else.

However, when the field strength of the long solenoid, and hence I/a, was in-
creased, an anomalous growth was observed. The growth occurred very rapidly,
in about three to four plasma periods over the length L of the focusing channel,
which would indicate that it is caused by a collective space-charge effect or insta-
bility. This unexpected result was published in Phys. Rev. Lett. (PRL) [27]. After the
publication in PRL, a careful reader pointed out to us that there are two dimension-
ality errors. First, q was used instead of q2 in the L–L term on the right-hand side
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of Equation (7.2). Second, there was an error in the normalization constant �E‖0,
which fortunately caused only a small upshift in the plot of Figure 5 of the PRL
article. Nevertheless, we published an erratum to the PRL article [28] to correct the
equations involved and present the revised Figure 5, which is now the first figure of
this chapter, i.e., Figure 7.1. Note that Equations (7.2) to (7.14) are correct. We note
again that all energy-spread measurements were made with the energy analyzer
(EA) at L = 2.3 m. Thus, on the abscissa in Figure 7.1, the ratio IL/I0 is constant
while the beam radius decreases as the solenoidal focusing strength is increased.
The actual numbers depend on the beam parameters for each case.

This study of Coulomb collisions is a major achievement. At the same time, the
remarkable observation of anomalous energy increase opens up a new line of re-
search. As pointed out above, this effect is apparently caused by collective space-
charge instabilities through coupling between the longitudinal and transverse di-
rections, and hence can be studied by numerical simulation with a collisionless
code, like WARP. Two publications, [29] and [30], report results of a collective be-
havior, which could possibly be explaining our observations.

By contrast, Coulomb scattering in a linear channel must be calculated numer-
ically, as in our experiment, while storage rings require the type of computer pro-
gram that has been developed for intrabeam scattering in high-energy physics ma-
chines (see Section 6.4.2).

Of course, we also hope that in the future a theoretical model can be developed to
explain the experimental and simulation results of the anomalous energy spread.
This will be the subject of future investigations. The improvements in the resolu-
tion of the energy-spread measurements have, to the best of our knowledge, not
been achieved anywhere else.

A problem with these past studies was the fact that the energy-spread measure-
ments were made with only one energy analyzer. The initial data were taken in
the short test stand, with the analyzer located after a single matching lens. The fi-
nal data were taken in the long transport line described above, where the energy
analyzer was placed after the matching lens that follows the long solenoid. This
problem will now be solved by the next graduate student, Kai Tian, who in his
MS Thesis [31] and a journal article [32], already presented an impressive amount
of theoretical and experimental work on the propagation of space-charge waves
and other topics. He is currently working on the completion of the modified long
solenoid experiment (LSE) facility, which includes the installation of two energy an-
alyzers, one at the beginning and one at the end of the long transport line. Future
measurements can then be carried out with better control than before.
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7.3
Transverse Beam Physics

7.3.1
Major Milestones before 1993

Some of the theoretical studies on intense beams before 1993 were already dis-
cussed in previous chapters. In this section I would like to present additional infor-
mation in a broader perspective of the historical milestones. The history of beams
with space charge began with the paper on the self-consistent particle distribution,
including space charge, presented by Kapchinskij and Vladimirskij at the High-
Energy-Accelerator Conference at Geneva, Switzerland in 1959 [33]. This distribu-
tion is now known as the “K–V distribution.” Ilya Kapchinskij told me during his
1992 visit at the University of Maryland, to which he had been invited by Robert
Gluckstern and me, that he prefers the English translation of the two names as
Kapchinsky and Vladimirsky, which I used in my book. As mentioned in the Ac-
knowledgments, he took a great interest in the book and both he and Robert Jame-
son of Los Alamos suggested that I should include a treatment of rf linear acceler-
ators with high-intensity and equipartitioned beams, which I added in Appendix 4.
Some of the calculations and the simulations of the three-dimensional Boltzmann
density profile in Figure A4.1 were performed by Nathan Brown as part of his Ph.D.
Dissertation [20]. The figure is shown on the title page of the book. (See also the
six references at the end of Appendix 4.) Ilya Kapchinsky also started to draft a
“preface” that he offered as his introduction to the book. But this plan could not be
realized since he died unexpectedly after heart surgery in Maryland.

The two great events in the late fifties were the development of the alternating-
gradient (AG) high-energy proton synchrotrons at CERN and at Brookhaven (see,
for instance, D.9, Chapter 3, D.11, D.17, D.18). The proton synchrotron (PS) at
CERN began operation in 1959 and the AGS at Brookhaven in 1960. Even before
the startup, the need for increasing the beam intensity was recognized, and up-
grades of these machines were undertaken at a rapid pace. The most important
issue in pursuing these goals was the understanding of the space-charge effects
that pose a limit to the achievable intensities. These effects are strongest in the rf
linear accelerator, which pre-accelerates and injects the beam into the synchrotron
ring. Theoretical studies were initiated at CERN (Lapostolle, Sacherer, Promé) and
at Brookhaven (Chasman, Gluckstern) in the sixties.

Another important milestone in the development of high-intensity particle ac-
celerators was the construction, starting 1968, of the high-intensity linear acceler-
ator, then called “Los Alamos Meson Physics Facility” (LAMPF). Robert Jameson
played a pivotal role in the construction of this facility, which started its operation
in 1972. As LAMPF displayed unexpected emittance growth and a beam halo (see
the next paragraph), he assembled a group of in-house experts (Walter Lysenko,
Paul Channell, Tom Wangler, to name a few), together with outside visitors (Lapos-
tolle, Gluckstern, Hofmann, myself, and others) to study the effects of space charge
in high-current rf linacs. One of Jameson’s research interests was the problem of
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equipartitioning in linear accelerators [34]. Following the initial beam tests, the rf
linac served as an injector into the storage ring, which later on was used as one of
the first spallation neutron sources; the other one was ISIS at the Rutherford Labo-
ratory, UK. Both the rf linac and the ring are the two major components of a suite of
facilities under the umbrella of the Los Alamos Neutron Science Center (LANSCE)
for conducting a multidisciplinary research program in fundamental physics and
applied science, including problems of importance to national defense, nuclear en-
ergy, industrial applications, and medical technology. As Jameson became involved
in other projects and became director of the accelerator division, Thomas Wangler
soon established a leadership role in the physics of space-charge effects, in which
he, like Jameson, gained international recognition.

After the linac started operation, according to information from Bob Jameson
and Tom Wangler, H. Koziol was a visitor at LANL from CERN in the mid-seventies,
and at the suggestion of Bob Jameson, he performed the experiment in which he
observed the halo in LAMPF, the first such observation in a high-current rf linac
(as far as I know). In his experiments Koziol moved a metal plate across the out-
put beam in small steps and measured the scattered radiation from the plate with
scintillation detectors. From this procedure, he obtained the transverse beam dis-
tribution over several orders of magnitude in beam density, and observed the halo,
which was described in a Technical Note in 1975 [35]. It was not until the 1991
Maryland five-beamlet experiments revealed that a considerable fraction of the ex-
pected rms emittance growth was due to the formation of a halo before theoretical
investigations of the halo dynamics were started (see Section 7.3.3).

Another development, which had a major impact on the role of space-charge
physics, were the proposals by A. V. Maschke, BNL and, independently, by R. L.
Martin and R. Arnold, ANL, in 1974–1975 to use high-intensity charged particle ac-
celerators as “drivers” for inertial confinement fusion (ICF). The early history and
other references are presented in a 1982 comprehensive review of ICF by Keefe [36].
The Department of Energy (then ERDA) organized a 2-week summer study in 1976
to examine the proposed method [37]. It was this idea, which motivated me to de-
sign the long periodic solenoid electron beam transport experiment (EBTE) under
conditions which are scalable to heavy ions, protons, H−, and other ion species.
J. D. Lawson, and initially also Chris Prior and his colleagues at the Rutherford
Lab, collaborated with me for many years [38]. The papers in the 1986 AIP Conf.
Proc. 152 on Heavy Ion Inertial Fusion, M. Reiser, T. Godlove, and R. Bangerter,
editors, represent the status of the field at that time [39], while Terry Godlove gave
an excellent and well-referenced review of the history of Heavy Ion Fusion at the
PAC 1987 [40]. The five-beamlet experiments in the Maryland beam transport sys-
tem, including theory and simulation of the matched and the mismatched beam,
were already reviewed in Sections 6.2 and 6.3 (see also the related references). It
was observed that a large fraction of the predicted rms emittance growth due to
the free energy in the mismatched case was caused by a halo. The theory did not
predict the dynamics of the halo formation, which in the following years was the
subject of a number of analytical papers and simulation studies.
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The 1991 meeting in College Park, MD on High-Brightness Beams for Advanced
Accelerator Applications, AIP Conference Proceedings No. 253, Editors: William W.
Destler and Samar. K. Guharay [41], honoring my 60th birthday, brought together
92 researchers from all major accelerator laboratories in the United States, from
TRIUMF (Canada), from a number of laboratories in Europe [CERN, Rutherford-
Appleton (UK), GSI (Germany)], from Niigata University and Tokyo Institute of
Technology (Japan), and from USTEK (China). The papers presented recent activi-
ties and future plans for the use of high-brightness beams in high-energy colliders,
the energy field, free electron lasers, and other applications. Following are a few pa-
pers highlighting the focus of the conference: J. D. Lawson (Appleton-Rutherford)
“The Emittance Concept”, p. 1; Pierre Lapostolle, “Early Studies on Intensity Lim-
itations in Proton Linear Accelerators”, p. 11; Thomas P. Wangler (LANL) “Emit-
tance Growth from Space-Charge Forces,” p. 21; J. J. Bisogniano (CEBAF – now
University of Wisconsin) talked about “Solitons and Particle Beams”, p. 42. David
Kehne reported on the results of the mismatched five-beamlet configuration, in
the Maryland EBTE facility, p. 47. N. M. Gelfand reviewed “The Performance of
the Tevatron Collider at Fermilab”, p. 111. Jameson (LANL) gave an overview of
“Advanced High-Brightness Ion RF Accelerator Applications in the Nuclear En-
ergy Arena”, p. 139. Ingo Hofmann (GSI) talked about “Non-Liouvillean Method
Applied to Heavy Ion Fusion”, p. 149. Patrick O’Shea reported about “The Los
Alamos High-Brightness Photoinjector”, p. 182. C. Pellegrini presented “Saturnus:
the UCLA compact high-brightness linac”, p. 206.

One of the important highlights at the 1991 Particle Accelerator Conference be-
fore the meeting at Maryland was the paper by A. Cucchetti, M. Reiser, and T. P.
Wangler, “Simulation Studies of Emittance Growth in RMS Mismatched Beams,”
listed in Reference 16 of Chapter 6. At the same conference, two related papers,
not referenced in the book, were D. Kehne and M. Reiser, “Experimental Studies
of Emittance Growth Due to Initial Mismatch of a Space Charge Dominated Beam
in a Solenoidal Focusing Channel,” Proc. of the 1991 Part. Accel. Conf., IEEE Cat-
alog No. 91 CH3038-7, 248–250 (1991) and M. Reiser, “Emittance Growth in Mis-
matched Charged Particle Beams,” ibid. 2497–2499.

7.3.2
Overview of Milestones Since 1993

Before starting with the discussion of the Transverse Beam Physics research topics,
I would like to define some standard terms used in the literature and in this book and
present a description of the parameter range and characterization of charged particle
beams.

7.3.2.1 Definitions
(a) Emittance: The conservation of phase-space area (Liouville’s theorem) and the
emittances of a beam in transverse trace space x–x′, y–y′ are defined in Sections
3.1 and 3.2. We distinguish between un-normalized emittance, which decreases
with the mean energy of the beam, and normalized emittance, which according
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to Liouville’s theorem is constant unless nonlinear effects, instabilities, mismatch,
etc. cause beam deterioration and rms emittance growth. Only the K–V distrib-
ution has a transverse emittance with an elliptic boundary and uniform density.
In all other beams, it has become the norm to use the rms emittances, defined
from the moments of the particle distribution, as described in Section 5.3.4. A very
useful definition, first proposed by Lapostolle, is the concept of equivalent beams,
where emittance is 4× rms emittance, also described in Section 5.3.4. Since for a
K–V beam the 4× rms emittance is identical to the 100% emittance, and in most
other cases does not differ much from the K–V beam, one can define the 4× rms
emittance as the “equivalent K–V emittance,” or the “effective emittance.”

(b) Envelope equations, rms matching, and mismatching: The beam envelope equa-
tions are usually written in terms of the effective widths, xmax and slope (xmax)

′.
For the equation of the trace space ellipse, which defines the emittance, one must
distinguish between the slope of the envelope, (xmax)

′, and the maximum diver-
gence x′

max of the distribution. The various important points on the circumference
of the ellipse are marked in Figure 3.26, p. 133. For an upright ellipse, the effec-
tive emittance is defined by εx = 4εx,rms. If the beam is injected into a periodic
focusing channel, it is matched when the envelope varies with the same periodicity
as that of the focusing lenses. If it is mismatched, the envelope oscillates with a
period that is longer than the focusing period, and the amplitude is modulated by
the focusing period. In the case of a uniform, or “smooth,” channel, the matched
beam envelope is constant while the mismatched beam performs envelope oscilla-
tions. For simplicity, consider the uniform channel described in Section 4.3.2 for a
matched beam. The beam radius a is determined by the algebraic equation (4.88a),
which represents the balance of the applied focusing force and the two defocusing
forces of the space charge and the emittance.

(c) Thermodynamic definitions: A beam with identical temperature in all degrees
of freedom is considered “isotropic.” If there is a temperature difference in, say,
the two transverse directions, it is “anisotropic.” A beam with nonuniform density
can be isotropic. Having a temperature difference is mutually independent from
matching. Thus one can have an anisotropic beam that satisfies the rms envelope
equations. One must carefully distinguish between “mismatch” and anisotropy or
“nonequipartitioned.” The transverse and longitudinal rms matching equations de-
fine the matched condition; if not satisfied, including the detailed emittance ellipse
parameters, the beam is called “mismatched.” If the rms equipartitioning equation
is not satisfied, the beam is either anisotropic or nonequipartitioned. An initially
nonequipartitioned beam will tend to evolve toward thermal equilibrium when a
thermodynamic description is valid. This effect is particularly strong in Hofmann’s
“sea of instability,” which is discussed below in Section 7.3.2.2, item (b). The “free-
energy” model describes the emittance growth that occurs in the equipartitioning
process. When resonances and instabilities are present, the methods of classical
linear or nonlinear dynamics must be employed to describe the behavior of the
beam, and the laws of thermodynamics are usually not applicable, as discussed in
Section 7.3.2.2, item (f).
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7.3.2.2 The Parameter Range and Characterization of Charged Particle Beams
(a) Beams with small relative space charge: In high-energy circular colliders and stor-
age rings, where the particles make thousands of revolutions, the behavior of the
circulating beams can be described by classical relativistic dynamics and Maxwell’s
equations for including space-charge fields. The tunes of the betatron oscillations
in the two transverse directions, νx, νy , must be within a very small range to avoid
dangerous resonances, as described in Section 3.8.6. Space charge plays a minor,
though significant role, and the change of the tune due the space charge, known as
the Laslett tune shift, �ν, must be small enough that the betatron oscillation tunes
stay within the small stable region (see Section 4.5). In general, this implies that for
synchrotrons �ν � 0.25 while for storage rings and colliders �ν is usually much
smaller.

(b) Increasing space charge: As the space-charge effect increases, one uses the tune
depression, ν/ν0, rather than the tune shift, �ν = ν − ν0. We say that the beam
is emittance dominated if ν/ν0 > (0.5)1/2, while in the region ν/ν0 < (0.5)1/2,
it is space-charge dominated. One can still use the methods of linear or nonlin-
ear dynamics and Maxwell’s equations to find resonances or instabilities, which
must be avoided. However, below approximately ν/ν0 ∼ 0.4 one enters a region
where resonances or instabilities form a continuum, which Ingo Hofmann called
the “sea of instability” (see the second article [56]). The theorist strongly advises
to avoid this region for anisotropic beams. On the other hand, for transport and
accelerator systems with isotropic beams, many accelerator designers operate in
it. Examples are high-current radio-frequency quadrupoles (RFQs) and rf linacs
used for applications such as high-energy proton and H− injectors for the booster
rings, which accelerate the beam to higher energies for the next booster, etc. to the
final storage ring for the collisions. High-current RFQs and linacs are also used
for injectors into the accumulator rings of spallation neutron sources. The induc-
tion linacs for drivers of heavy-ion inertial fusion targets, the single-beam transport
(SBT) experiment at LBL, the EBTE, and the electron ring at Maryland also operate
with betatron tune depressions below 0.4, though in the latter case smaller tune
depressions can be realized with the aid of apertures at the exit of the electron gun,
as will be discussed in Section 7.3.4.

(c) Thermodynamic description of beams: As one moves downward on the tune
depression chart toward the region of space-charge-dominated beams and into
Hofmann’s “sea of instability,” a thermodynamic description of beams becomes
increasingly important compared with the dynamical relativistic linear and nonlin-
ear dynamics methods. Indeed, in the “sea of instability,” defined by Hofmann, it
becomes the dominant description of beam behavior and is defined by parameters
such as temperature, anisotropy, free energy, entropy, thermal equilibrium, and
equipartitioning.

(d) The Maxwell–Boltzmann distribution: As shown in Section 5.4.2, the Maxwell–
Boltzmann (M–B) or “Thermal” distribution derived from the Fokker–Planck equa-
tion, is the most natural state of a beam, which in this description behaves like a
nonneutral “gas.” Like the gas in a vessel, elastic collisions drive the beam, con-
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fined by external forces, toward thermal equilibrium. The best example is the case
of Coulomb collisions, known as intrabeam scattering in circular machines and
storage rings, which was treated in Section 6.4.1. For low-energy electrons, these
collisions are known as the Boersch effect, which we studied experimentally, as de-
scribed in Section 6.4.2. Of particular importance is the fact that the acceleration
in the electron gun (and likewise in an ion source) cools the beam in the longi-
tudinal direction so that the longitudinal temperature of the beam, Tl , is several
orders of magnitude lower than the transverse temperature, Tt , and the resulting
equipartitioning process to reach thermal equilibrium, Tl = Tt , takes a long time.
In the charged-particle beams of an rf linac, however, the Coulomb collisions are in-
significant compared to the interaction with the continuum of unstable modes, by
bunching and other effects, and equipartitioning may occur within the length of the
linac. In our transverse electron beam physics experiments at Maryland with the
mismatched five-beamlet configuration, equipartitioning was taking place within a
few space-charge-depressed betatron oscillation periods in agreement with the ex-
perimental observation and simulation, while the emittance increase was predicted
with good accuracy by the free-energy model.

(e) Thermal equilibrium in an axially symmetric “smooth” beam with linear focusing:
The relativistic 3D M–B or thermal equilibrium distribution for an axially symmet-
ric beam is defined in Equation (5.269). For linear external forces and the absence
of resonances and instabilities, the radial density profiles have been calculated and
plotted in Figure 5.12, with relevant parameter values listed in Table 5.2. Under
the above conditions, the M–B distribution represents the beams across the en-
tire parameter range. Thus, according to Figure 5.12, the transverse density pro-
file becomes more rectangular as the transverse temperature Tt and likewise ν/ν0

and the emittance ε approach zero (cold, laminar-flow limit). On the other hand,
at high temperature, where space charge is negligible and the beam is emittance
dominated, the density profile is Gaussian. (For a bunched beam with linear lon-
gitudinal forces in the rf bucket, the longitudinal line-charge profiles are plotted in
Figure 5.16, with relevant parameters listed in Table 5.4.)

(f) Classical dynamics and thermodynamics: As mentioned above, the beams in lin-
ear or nonlinear systems, in which resonances and instabilities occur, are treated
by the methods of classical dynamics and Maxwell’s equations for the inclusion
of space charge, known in the literature as “Vlasov–Maxwell equations.” The defi-
nitions and laws of thermodynamics, such as temperature, equipartitioning, en-
tropy, free energy, etc., are usually not applicable. This implies that the “high-
temperature” part of the M–B distribution in the range where classical dynamics is
used is not valid. In the “sea of instability,”, on the other hand, one would expect
that thermodynamics governs exclusively the physics of a beam. However, there are
some exceptions, where treatments by both classical dynamics and thermodynam-
ics can describe aspects of the beam behavior. A notable example is the theoretical
and experimental study performed by Wangler et al., in the LEDA transport chan-
nel, which will be discussed in Section 7.3.6.

In 1999, R. C. Davidson and Hong Qin published an article relating to the
transverse thermal distribution, with the title “Single-parameter characterization
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of the thermal equilibrium density profile for intense nonneutral charged particle
beams” [42]. They show that the thermal equilibrium profile can be defined by only
one parameter, �b relating to the tune depression by ν/ν0 = (1 + �b)

−1/2 and, by
implication, not the six parameters listed in Table 5.2. I certainly agree with this
single-parameter characterization and would, however, point out that any one of
the six parameters can be used as the “single parameter,” such as k/k0 = ν/ν0, and
the values of the other five have been calculated, since they are of interest in the
characterization of the beam.

Unfortunately, the M–B distribution is not useful for the mathematical analysis,
and theorists prefer to use the linear (or the equivalent-rms) K–V distribution while
typical studies with particle simulation codes use, in addition to the K–V distribu-
tion, the Waterbag, the semi-Gaussian (uniform in space, Gaussian in the velocity
distribution), and others. Be this as it may, it is important to keep the difference
with the M–B distribution in mind. I think, however, that for numerical simulation
studies one should be able to use the M–B distribution, which would provide a bet-
ter understanding of the limitations of analytical models and better agreement with
the experiments. In the case of our EBTE studies, the spherical aberrations of the
solenoid lenses and in the anode aperture produced a hollow beam. The M–B dis-
tribution must then be modified to include the nonlinear term (see Section 5.4.12).
This was done by Nathan Brown in connection with his calculations for the man-
uscript of Reference 13, Chapter 5, but has not been published. This nonlinearity
could be important in setting up the initial conditions for the numerical simulation
studies.

The theoretical studies of the halo dynamics, equipartitioning, emittance growth,
and high-current linac design, which had been started earlier at LANL, received
new momentum by the five-beamlet observations for an initially mismatched beam
in the solenoidal transport channel, known as the electron beam transport experi-
ment (EBTE) at the University of Maryland. The theoretical models of beam mis-
match and halo formation are discussed in Section 7.3.3. Following the pioneer-
ing work on transverse instabilities reviewed in Section 6.3.1, theoretical studies
of resonances and instabilities continued after the first edition of this book was
published. The major papers on this topic are discussed in Section 7.3.4. Another
important topic of theoretical studies, equipartitioning of anisotropic beams, is pre-
sented in Section 7.3.5. Lastly, several experiments relating to transverse beam dy-
namics of space-charge-dominated beams are reviewed in Section 7.3.6.

Before proceeding with the transverse beam physics theory, I should point out
that, strictly speaking, all three sections, 7.3.2, 7.3.4, and 7.3.5, are to a large extent
interconnected, and the headings were chosen to emphasize the major topics of
the theoretical work.

7.3.3
Theoretical Research on Beam Mismatch and Halo Formation

The halo studies started at LANL were driven primarily by the Accelerator for Pro-
duction of Tritium (APT) project, funded by the DOE. The APT linac was to deliver
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a cw 1-GeV, 100-mA proton beam (100 MW beam power), so halo and beam losses
were a major concern for activation of the linac.

The halo observations at the EBTE facility re-vitalized these earlier theoretical
studies initiated at LANL on halo formation, equipartitioning, resonances and in-
stabilities in anisotropic beams and of modeling the halo formation in an effort to
obtain an understanding of the dynamics of this phenomenon.

O’Connell et al. [43] and independently (coincidentally at the same time), Jame-
son [44] originated the basic concept of halo formation. Both presented this concept
at PAC93 (Jameson in an invited talk). Tom Wangler [45] presented the related core
model with halo particles outside interacting with a mismatched oscillating core in
a paper at the Computational Accelerator Physics Conference (CAP93). His beam
core model is related to the one presented by O’Connel et al. at PAC93, and since
the “seed” particles are not contributing to the charge distribution, this model of
halo formation is not self-consistent. By contrast, Jameson argues that his model
is different in that particles are launched inside of the beam core and contribute
self-consistently to the overall charge distribution. In two exhaustive self-consistent
1D studies with initially equipartitioned beams, Jameson [44] showed how particles
starting on-axis can later be found in the beam halo by traversing a series of reso-
nances, reach a self-limiting maximum amplitude, and then fall back into the core.
It exhibits how single-particle tunes, resonance widths, and exit times can be de-
fined as measurement tools to precisely measure thresholds, count the number
of particles in the halo at any time, and how long they remain in the halo. Fur-
thermore, this self-consistent method shows how halos are regenerated after being
scraped off and how different beam distributions (zero-emittance, equipartitioned,
waterbag, Gaussian) behave in the equipartitioning process of moving toward a
new equilibrium, including in the RFQ, for instance. According to Jameson, the
independently developed model of Wangler [45] and O’Connell et al. [43] provides
a map of the possible phase-space motion of the initially positioned test particles,
but does not explain how the particles physically are launched from their initial
positions. However, it is simpler and amenable to analytical modeling and sim-
ulation, and has subsequently been used by a number of investigators. Wangler,
however, points out that, in his opinion, the self-consistency is fundamentally not
that important since in both models one deals with a very small number of halo
particles, as he explains below, following the discussions of the publications by
Bohn, Gluckstern, and Gluckstern et al.

A different theoretical and numerical treatment of halo dynamics and emit-
tance growth, following the Maryland experiments, was published in 1993 by Court
Bohn [46]. He presented an interesting 1D study of turbulence created by charge
redistribution in a mismatched charged-particle beam resulting in the increase of
entropy and emittance similar to the observations in the Maryland experiment. His
1D theoretical model provided initial growth rates, but did, of course, not fully ex-
plain the saturation level of the emittance as the beam approaches thermal equilib-
rium consisting of a solid core and a stabilized halo, in agreement with the model
of free energy and emittance growth.
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In 1994, Gluckstern published his 2D analytical model for halo formation in
high-current rf linacs [47]. The main result of his analysis was the recognition
and demonstration of a nonlinear parametric resonance, which was responsible
for halo formation. He made a number of approximations that allowed him to ob-
tain approximate results from the equations of motion that illustrated the physics.

This study was followed in 1995 with an article by Gluckstern et al. on the stability
of a uniform-density breathing beam with circular cross section [48]. In this analy-
sis, theoretical results are obtained for the form of the modes involving nonuni-
form charge density. In particular, the mismatch tune depression space is explored
to determine the limits beyond which exponential growth is predicted, and the cor-
responding growth rates are determined. The analytical results for what are con-
sidered to be the most unstable modes are confirmed by numerical particle-in-cell
simulations.

See also in this context the paper by Dorf et al. [76], and the 1999 article by
Masanori Ikegami and references therein, which was referred to by Dorf, David-
son, and Startsev.

According to Wangler (private communication) the most important publication
on the halo model was the 1998 PRST-AB article by Wangler et al. [49]. It is a com-
prehensive presentation of the model, which addressed important issues that had
been missing in the previous papers. Wangler, in his communication, discusses
the key issues that he tried to address in the PRST-AB paper.

First, he wanted to extract formulas and make quantitative predictions from the
model that would be useful for scaling, for design work, could be compared with
simulations, and could be tested experimentally. To do this, he integrated the model
equations of motion, studied the results, and searched approximate empirical for-
mulas that described the results.

Second, he wanted to explain where the halo particles come from that are rep-
resented in the model. His rationale for the model is that it represents a realistic
beam whose initial density distribution includes both a central core and particles in
a Debye tail. The Debye tail particles, not those in the core, lie within the influence
of the 2:1 resonance, and these particles are driven into an extended halo. There is
no mystery about where the halo particles come from in a real beam. They are al-
ready in the Debye tail and are represented in the model by test particles. However,
if there are instabilities in the core, they could feed additional particle into the halo,
but such instabilities are not required to make halo. He felt that this interpretation
needed to be explained.

Third, Wangler wanted to emphasize the model prediction of a maximum am-
plitude as a function of the mismatch for the resonantly driven particles and for a
given mismatch. By numerical integration of the model equation, he obtained an
empirical equation for the maximum amplitude of the halo from the mismatch,
which is given in part VI, Equations (6) through (10) in the PRST-AB paper. Once
they had this result, they had scaling formulas and something that could be tested
experimentally. The maximum amplitude is proportional to the matched beam
size, and they could obtain an empirical formula that related the maximum am-
plitude to the current, emittance, and focusing strength.
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Wangler then pointed out that, with this as background, he thinks that one
should not place too much emphasis on the question of self-consistency. To him
this is really not a very important issue for the model. We are ignoring the effect
of a very small fraction of halo particles on the core motion. From his viewpoint
their model is an excellent approximation, and he would prefer to ignore the self-
consistency issue if this means keeping the model simpler. His main objective of
the model is to obtain the scaling formulas that can be useful to people and can be
tested experimentally.

In 1998, Gluckstern et al. published a self-consistent model, constructed analyti-
cally and numerically, on halo formation in three-dimensional bunches, applicable
to a high-current linac [50], which extends the 1D self-consistent analysis of Jame-
son, and differs from the particle-in-core model of the previous papers by Wangler,
O’Connell, and Gluckstern. For simplicity, the authors chose a nonrelativistic, az-
imuthally symmetric 6D phase space distribution with smoothed external trans-
verse and longitudinal focusing forces defined as

f (x, p) = N(H0 − H)−1/2, (7.15)

where

H = kxr
2/2 + kzz

2/2 + q	s(x) + mv2/2. (7.16)

Here p = mv, r2 = x2 + y2 and kx , kz are the smoothed transverse and longitudi-
nal restoring force gradients. The quantity 	s(x) is the electrostatic potential due
to the space charge of the bunch. After a detailed theoretical analysis, the authors
performed numerical studies with a PIC code. These studies showed that in a mis-
matched elongated bunch, with mismatch in both directions as low as 10%, the
halo formations due to the longitudinal–transverse coupling are comparable, but
the longitudinal halo develops faster than the transverse halo. This effect, which
depends on the bunch length, poses a challenge for the linac designer to shorten
the bunch length as much as possible.

As mentioned above, the particle-core models predict that there is a well-defined
maximum transverse excursion of the halo particles generated from a mismatch.
One can therefore conclude that in a properly designed structure of a high-current
RFQ or rf linac beam losses and activation of the wall can be prevented or min-
imized. Hence, one could handle most components of the linac structure, need-
ing maintenance or replacement, manually, and the much more expensive remote
handling of radio-active parts could be avoided or localized to a few positions in the
high-energy part of the linac.

This prediction of a maximum envelope is understandable in the context of
the model, which represents the nonlinear dynamics of a periodically oscillating
beam core. Like the 1D analyses by Jameson, Gluckstern’s model is self-consistent
and does not depend on “seed particles.” However, in my opinion, these models,
whether self-consistent or not, may represent only part of the behavior of a real
beam, as I will explain below.

First, the assumption that the oscillations of the mismatched core remain con-
stant is not quite correct. These envelope variations will in a few periods of the
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depressed betatron oscillations converge toward thermal equilibrium by converting
the free energy into emittance growth. But in the general ion beam case, metastable
conditions can exist and convergence may be very slow, as shown for the 1D self-
consistent case by Jameson.

Second, in the experiments and simulation of both the matched and the mis-
matched beamlet propagation at Maryland, no sharply defined outer boundary of
the transverse halo was observed. Likewise, Koziol, who measured the beam in-
tensity in the Los Alamos Linac over several orders of magnitude, as mentioned
above [35], did not see a well-defined maximum of the transverse halo tail. Consid-
ering the fact that the particle losses to avoid wall activation must be many orders
of magnitude below the peak beam intensity, <1 W/m at the high energy sections
in the SNS linac, according to Tom Shea (private communication) in Oak Ridge,
the required resolution for experiments and numerical simulations is a major chal-
lenge. Remote handling at the SNS linac is used to replace radioactive parts at high-
energy sections. Also, other factors like misalignments, collective effects, drift-tube
vibrations, resonances in the whole side-coupled linac, etc. may be playing a role
in LAMPF in producing nonlimiting halos, according to Jameson (private com-
munication). These additional effects have been explored to some extent (see, for
instance, LA-UR-92-3033, “Emittance Growth in the New CERN Linac-Studies in
1978” by R. A. Jameson, R. S. Mills, O. R. Sander; error studies including drift-tube
vibrations for SNS, etc.), but further work should be done to obtain a comprehen-
sive overview.

From my perspective, I tend to think that the occurrence of turbulence in the
models by Anderson (see References 5 and 9 in Chapter 6) and Bohn [46] may
provide a more realistic description of the physics of a mismatched, space-charge-
dominated beam, which is propagating through a transport channel, where ν/ν0 is
below 0.4 (see my comments in Section 7.3.5). The more recent PRL article by Bohn
and Sideris, “Large Noise-Enhanced Halos in Charged Particle Beams” [51], points
out that noise, and I would add, random misalignments, do play an important role
in the emittance growth and halo formation, which exceed the predictions for a
perfect focusing system.

My main reservation regarding a finite outer boundary of the halo, however, is
based on my theoretical and experimental studies of the thermal (M–B) distrib-
ution, which has an infinite tail of steadily decreasing particle density that will
be discussed in Section 7.3.5 [58], and which would explain the experimental ob-
servations by Koziol at LANL and in the electron beam studies at Maryland. See,
however, the caveat in Section 7.3.2.2(f).

7.3.4
Resonances and Instabilities

The earlier work on resonances and instabilities predicted by theorists was already
discussed in great detail in the first part of the book. It played an important role in
motivating the development of the periodic solenoid facility consisting of 36 lenses,
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with a length of 5 m, where the first two solenoids were used to match the beam
into the channel.

In a systematic experimental study the matched transported 5 kV, 240 mA beam
current through the system was measured as a function of the magnetic field
strength. It confirmed that the envelope instability predicted for a phase advance
per period of σ0 > 90◦ was real and led to catastrophic beam loss. This fact was
carefully investigated by changing the solenoidal field strength, and hence σ0, as
well as σ/σ0 gradually from below to above 90◦. Below 90◦, no other resonance or
instability, like the third-order (sextupole) mode for σ0 > 60◦, predicted by the the-
ory (Reference 21, Chapter 6) was found, and the electron beam was transported
through the full channel without any beam loss. After the single-beam studies were
completed, an aperture plate near the cathode with different hole sizes to reduce
the beam injected into the transport system from full size of 240 mA to less than
1 mA was used. The aperture plate also included a pinhole array for emittance
measurements and a five-beamlet configuration, with a reduced current of 44 mA,
to study the predictions of the free-energy model. Like the full-beam experiments,
the five-beamlet experiments (both the matched and mismatched case) were per-
formed in the highly space-charge-dominated regime, where the tune depression
σ/σ0 was close to 0.1 for the full beam and 0.3 for the five-beamlet studies. Note
that the matched and mismatched initial beams were not in equilibrium. The ex-
perimental observations and numerical simulations for both cases are discussed
in Section 6.2.1 and related references. In both the full-beam and the five-beamlet
studies none of the predicted unstable third-order or higher order modes were ob-
served. Of course, one can argue that a periodic solenoid channel of 5 m length
is too short to draw firm conclusions. Besides, the theoretically predicted higher
order instabilities are more pronounced in quadrupole periodic focusing systems.
For this reason I decided to build the electron ring with a FODO lattice, where the
electron beam can propagate over distances ranging from 11.3 m in one turn to
1.13 km in 100 turns, which provides much longer distances than was the case
in both the EBTE and the SBT experiment (discussed in the next paragraph), to
search for the predicted higher order modes. The electron ring will be presented in
Section 7.4.

A SBT facility with 82 electrostatic quadrupole lenses arranged in a FODO config-
uration and five additional lenses to match the high-current, high-brightness beam
from a cesium ion source into the FODO channel was built at LBL for the proposed
induction linac driver of heavy-ion inertial fusion targets. In the systematic experi-
ments conducted by Tiefenback and Keefe the injected energy could be varied from
120 to 200 keV and the beam was matched in (x, x′) and (y, y′) and both σ0 and σ ;
hence σ/σ0 was varied from small to large tune depressions. No current-limiting
higher order instability modes (n > 2) below the 90◦ (n = 2) envelope instability,
which could have been driven by perturbations in the current distribution, were
observed [52], as has also been the case in the Maryland EBTE studies.

The first theoretical study of nonlinear resonances in a periodically focused in-
tense charged-particle beam, following the experiments in the SBT and the EBTE
facilities, was published by Chen and Davidson in 1994 [53]. It was essentially an
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important extension of the earlier work by Hofmann et al. (Reference 21, Chap-
ter 6), mentioned in the previous paragraph for a periodical solenoid channel and
by Struckmeier et al. (Reference 2, Chapter 6). Both matched and mismatched
beams were considered by Chen and Davidson, and, as was the case in the the-
oretical model by Hofmann, Laslett, Smith, and Haber, no higher order modes of
the type predicted by Chen and Davidson have been observed in the SBT and EBTE
studies. This applies also to the article by Robert et al. on the stability of a uniform-
density breathing beam with circular cross section [48], already mentioned in the
previous section.

In 2006, Hofmann and Franchetti published an article in PRSTAB [54]. In this ar-
ticle the authors present a comprehensive analysis of the self-consistent, collective
behavior associated with the space-charge-driven Montague coupling resonance
near 2Qx − 2Qy = 0. The behavior differs considerably if the resonance is crossed
from above or from below, and we believe that it can be studied in future experi-
ments in the electron ring.

Also in 2006, Lund and Chawla published a detailed study on “Space-Charge
Transport Limits of Ion Beams in Periodic Quadrupole Focusing Channels” [55],
which relates to the SBT experiment, the topics of resonances and instabilities, and
the core-particle model of halo generation. Extensive self-consistent particle-in-cell
simulations were performed to better quantify properties of the space-charge limits
and to verify core-particle model predictions. See also the related papers by Lund et
al. listed in [55].

7.3.5
Equipartitioning and Stability of Anisotropic Beams

Two of the early papers about emittance growth, resonances, and instabilities in
anisotropic beams were presented at the 1981 IEEE Particle Accelerator Confer-
ence by I. Hofmann and by R. A. Jameson. Hofmann treated a 2D beam in x

and y (see Reference 28, Chapter 6 and references therein). The other, by Jame-
son, studied analytically and numerically the beam-intensity limitations produced
by transverse–longitudinal resonances and instabilities in linear accelerators (see
Chapter 6, Reference 29, and references therein).

More recently, I. Hofmann published a seminal, very comprehensive analyti-
cal study on “Stability of anisotropic beams with space charge” in Phys. Rev. E
(1998) [56]. It was based on 2D self-consistent Vlasov–Poisson equations assuming
that the unperturbed equilibrium beam has uniform density in an elliptic cross
section defined by

x2/a2 + y2/b2 � 1. (7.17)

The assumption of uniform density is consistent with a δ-function distribution
of a linear combination of the two separate Hamiltonians, which is a generalization
of the K–V distribution given by
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F0(x, y, px, py) = (NT νy/νx)/(2π2mγa2)�(H0x + T H0y − mγa2/2),

(7.18)

where

T =
(
a2ν2

x/b2ν2
y

)
(7.19)

and the ratio of the emittances

εx/εy = a2νx/b2νy. (7.20)

Note: A similar study of the generalized K–V equations, treated in a different way,
in 1985 by G. P. Saraph and M. Reiser, is discussed in Section 5.3.2 and Reference
3 at the end of Chapter 5.

To study possible resonances and instabilities produced by linear perturbations,
Hofmann then generates from Equation (7.18) the time-dependent distribution
function. In his quite detailed mathematical analysis, he calculates the coherent
frequencies of second-order envelope modes for an isotropic beam as well as for
even and odd modes for an anisotropic beam. This is followed by the even and odd
third-order and fourth-order modes. The results are then applied to construct insta-
bility charts and equipartitioning for linacs, where he assumed that the transverse
x–y are valid also for transverse–longitudinal x–z coordinates. Hofmann concludes
that linac designs with medium or weak space-charge tune depression can be ex-
pected to be stable and not subject to emittance exchange.

In the Advanced Accelerator Concepts Workshop at Port Jefferson, published in
AIP Conference Proceedings No. 279 (1992), R. A. Jameson presented the paper
“Scaling & Optimization of High-Intensity, Low-Beam-Loss RF Linacs for Neutron
Source Drivers,” in which he treats in considerable detail the effects of resonances
in anisotropic (r–z) beams using the “Hofmann charts” to design a path for avoid-
ing the coupling modes [57]. This paper relates to all three topics of Sections 7.3.3,
7.3.4, and 7.3.5.

In view of the strong interest in high-intensity linac design, I would like to men-
tion the articles by M. Reiser and N. Brown, “Proposed High-Current rf Linear Ac-
celerators with Beams in Thermal Equilibrium”; N. Brown and M. Reiser, “Thermal
equilibrium of bunched charged particle beams”; N. Brown and M. Reiser, “Lon-
gitudinal current losses in rf linear accelerators” [57]. The second of these three
papers includes a calculation of the transverse current losses to the wall for three
bunch aspect ratios and three ratios of wall-to-beam radii due to the M–B tail. The
third paper calculates the longitudinal beam loss due to particles in the longitudi-
nal tail whose amplitudes are larger than the boundary of the rf separatrix, hence
would fall out of synchronism and could get lost to the wall. The interesting fea-
ture of the thermal (M–B) distribution is the fact that the tail is smallest at large
tune depression (zero in the laminar flow limit) and increases with decreasing tune
depression (Gaussian at high temperature).

In the following, I would like to discuss the article of Kishek et al. [58]. Here,
Kishek considered an anisotropic axisymmetric beam with different emittances,
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εx , εy ; hence different temperatures Tx , Ty injected into a cylindrical drift tube
with uniform focusing. The final emittance satisfies the conservation of energy:

2
( εf

af

)2 = k2
0

(
a2 + b2 − 2a2

f

)
+

(εx

a

)2 +
(εy

b

)2 − 4K ln
(a + b

2af

)
, (7.21)

where a, b, εx , and εy are the initial equivalent K–V (effective) beam sizes (2xrms,
2yrms) and emittances (4εx,rms, 4εy,rms) in x and y.

Recognizing that the tunes and the beam sizes will change as the beam equipar-
titions, we favor the following alternative set: (1) the ratio of zero-current betatron
tunes: α0 ≡ ky0/kx0, which is set by the external lattice and is not a free parameter
for practical purposes; (2) the square root of the ratio of the total transverse kinetic
energy to the external field energy:

ξ ≡
√√√√ (εx/a)2 + (εy/b)2

k2
x0a

2 + k2
y0b

2
, (7.22)

which is nearly invariant due to conservation of energy; and (3) the initial ratio of
kinetic energies in the two transverse directions, T ≡ Tx/Ty = εxkx/εyky . The
latter is the only variable measuring the degree of anisotropy and changes as the
beam equipartitions. The tune depressions in x and y are assumed to be the same,
that is α0 ≡ ky0/kx0 = 1 in this discussion.

To obtain an understanding of the evolution of the anisotropic initial beam to-
ward equilibrium, simulation studies with the WARP code, originally developed
by A. Friedman, LBL [59], were performed. For control purposes a 10 kV, 100 mA
electron beam, having a 1 cm radius, is launched into a circular tube with a ra-
dius of 1′′ = 2.54 cm. The anisotropy is introduced by fixing the external focusing
strength at k0 = 3.972 m−1 in both directions and choosing initially different un-
normalized effective emittances εx = 100 mm mrad and εy = 50 mm mrad. This
implies that the tune depressions are different, namely (k/k0)x = λβ0/λβx = 0.25
and λβ0/λβy = 0.13, λβ being the betatron wavelength with space charge and λβ0

without space charge. In subsequent simulations the ratio εx/εy is varied to explore
different degrees of anisotropy, and the beam current is systematically varied to ex-
plore the dependence on space charge. In plans for future studies this work will be
extended to the case of asymmetric external focusing, where k0x differs from k0y .

First, a semi-Gaussian (SG) distribution (uniform density and Gaussian veloc-
ity distribution with a uniform temperature across x or y), was used [case (a)], to
model the aperture, and the simulations have accurately reproduced the density
modulations in Bernal’s experiment (see Section 7.3.6). A K–V distribution was
then also used, case (b). The results for both distributions are shown in Figure 7.2.
The parameter values for these simulations are given in the figure caption.

The primary mechanism driving the equipartitioning process are the Bernal
rings, which will be discussed in the next section. The velocity with which the rings
propagate to the center of the beam is a function of the beam temperature. Thus, if
the temperature in x is not the same as that in y, the ring deforms and breaks the
symmetry of the beam, coupling x and y. This is clear (at least in the semi-Gaussian
simulation) in Figure 7.2.
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Fig. 7.2 Beam density distribution in configuration space at
various distances s for the cases in Figure 1(a): (a) SG
distribution, photos from s = 40 to 280 at 40 cm intervals, and
at 17.3 m; (b) K–V photos at s = 0.8, 1.2, 1.6, 2.2, 2.8, 3.4,
4.2 cm, and 17.3 m. The parameter values in Figure 1(a) are (a)
ξ = (ν/ν0)final = 0.19; (b) ξ = 0.87.

Note that the K–V distribution (b) shows a significantly different behavior than
the SG distribution (b). It displays higher mode structures that are not seen in
the SG distribution, which for large tune depressions resembles the natural M–B
distribution. Figures 7.3 and 7.4 present the major results of the SG simulations.
The first one shows the emittance evolution for different degrees of anisotropy,
and, as can be seen, the distance for equipartitioning is the same.

The major results of our study can be summarized as follows:
1. Halos were observed only when the beam was rms

mismatched; they disappear when the beam is properly rms
matched.

2. The predictions of the K–V stability theory may not
necessarily be applicable to nonequilibrium anisotropic
space-charge-dominated beams. Considering the preference
of linear K–V beams in many theoretical studies for particle
accelerators, like high-current rf linacs or heavy-ion inertial
fusion drivers, this implies that the machine design concepts
for nonequipartitioned high-intensity beams need to be
carefully re-examined.

3. We find that the rate of equipartitioning depends only on the
tune depression of the final isotropic beam. Of course, when
acceleration occurs in real machines the picture would be
different.

In 2002, Franchetti et al. published an article “Anisotropic Free-Energy Limit of
Halos in High-Intensity Accelerators” [60]. In this research work, the authors
study emittance growth and halo formation resulting from mismatch in highly
anisotropic beams depending on the tune ratio. They find that that the free-energy
limit calculated by Reiser in 1991 for an axisymmetric 1D halo [1], applied in the
Maryland five-beamlet experiment (Section 6.2.2), can be extended to 2D if under-
stood as an upper bound to the rms emittance growth averaged per degree of freedom.
The thus obtained “free-energy limit” of an ideal transport system is compared with



532 7 Beam Physics Research from 1993 to 2007

Fig. 7.3 Evolution of emittance for beam with different degrees
of anisotropy: ξ = 0.1875 and α0 = 1 for all beams; T varies
from 1 to 16. The distance for equipartitioning is the same.

Fig. 7.4 The rate of equipartitioning, defined as λβ0/seq. as a
function of ξ : Tx/Ty varies slowly between 2 and 4, and α0 = 1.

the halo emittance growth predicted in simulation studies for the rf linac of the
Spallation Neutron Source. They conclude their work as follows: “Anisotropy adds
a number of new features to the discussion of mismatch induced halo and rms
emittance growth can be very sensitive to kz/kx due to the motion of stable fixed
points for the parametric resonance and due to the appearance of fourth-order res-
onances; beams may be driven away from initial equipartition, but Reiser’s free-
energy model is still applicable if modified; with respect to real accelerators our
emittance growth results may be seen as a lower limit, which practical design
could try to reach within the constraint that such efforts may have to be balanced
against cost.”

Hofmann et al., in 2003, published an article “Space Charge Resonances in Two
and Three-Dimensional Anisotropic Beams” [61], which uses both theory and sim-
ulation of coherent resonant coupling due to space charge in coasting and bunched
beams. It is essentially an extension of Hofmann’s 1998 analytical study in Phys.
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Rev. E (Reference 56). The new feature is the claim that the rigorously derived in-
stability stop bands of generalized K–V distributions in x–y can also be applied to
anisotropy in z–x (and z–y). This re-interpretation is confirmed by means of 3D
computer simulation for not too strong tune depression. The authors also claimed
that the stop bands found in x–y coupling can be retrieved also for z–x coupling,
regardless of the underlying distribution function, as shown in their PRSTAB arti-
cle. In this paper, Ji Qiang was using an anisotropic ”Gaussian,” which, of course,
is not self-consistent, because there apparently does not exist (at least nobody has
found one) an analytical fully self-consistent anisotropic distribution in 3D. Thus,
anisotropic K–V distributions are a valid tool to interpret the findings of 2D and
3D self-consistent particle-in-cell simulations for both the K–V and Waterbag dis-
tributions. With reference to rings, they discuss space-charge coherent tune shifts
up to fourth order. With reference to linacs, a detailed discussion of the computer-
generated “stability charts” is presented, which shows the resonant regions where
equipartitioning may occur. The authors’ goal was to deepen the understanding
that the physics of anisotropic beams is controlled by internal resonances lim-
ited to certain stop bands. Alternate “thermodynamic” descriptions of the beam
physics may be applicable to beams very close to the space-charge limit, where res-
onance structure gets lost due to full overlap of resonance bands, and the approach
to equipartion becomes a universal feature. This viewpoint is consistent with my
general remarks above on the large range and characterization of charged particle
beams [see in particular Section 7.3.2.2(f)].

Overall, this publication is a very impressive, comprehensive study, which
presents a wealth of detailed data and theoretical analysis over a wide range of para-
meter space, defined by tune depression, degree of anisotropy (emittance ratios in
two directions), and coupling between the x–y and x–z directions. The findings of
energy/emittance exchange confined to regions, which are relatively narrow for not
too strong tune depressions, confirms, in the author’s opinion, that nonequiparti-
tioned beams for rf linac designs are a “safe” choice from a beam dynamics point
of view, provided that the stop bands are avoided. The proposed stability charts,
with analytically calculated stop bands (nonoscillatory modes) for tune depressions
νx/ν0x versus tune ratios νz/νx for emittance ratios εz/εx ranging from 0.6 to 5.0,
and growth rates (gray scales in equidistant steps) in units of the zero space-charge
betatron tune, ν0 (see Figure 7.5), make it possible to correlate design trajectories
in tune space with the resonant regions, where emittance transfer/growth is pre-
dicted. In the charts the tune ratios νz/νx , where equipartitioning occurs for all
tune ratios νx/ν0x , are marked as vertical lines. The authors conclude their sum-
mary discussion by stating that from a theoretical point of view it may be worth to
extend these studies to beams very close to the space-charge limit (νx/ν0x � 0.2),
where the approach to equipartition may be a universal feature due to complete
overlap of the resonance bands.

With regard to the main theoretical and numerical results of this article, one
would ask the question why nonequipartitioning is considered the “safe” choice
and why it may not be just as safe to work in the “sea of instability,” where equipar-
titioning toward thermal equilibrium is a universal feature, or equally so, equipar-
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Fig. 7.5 (Color) Stability charts with analytically
calculated stop bands (nonoscillatory modes)
for arbitrary νx/ν0x (ordinate), tune ratios
νz/νx (abscissa), and emittance ratio
εz/εx = 2. Other emittance ratios studied in
the paper are 0.6, 1.2, 3, and 5. Growth rates

(grey scales in equidistant steps) in units of
zero space charge betatron tune (in x), where
the darkest area corresponds to approximately
one zero-space-charge betatron period. The
dashed line indicates the equipartition tune
ratio. (Courtesy of Ingo Hofmann).

titioned above the “sea.” According to Jameson (private communication), there is
ample experimental proof in the new LAMPF, BNL, FNAL, CERN linacs of the
emittance growth caused by the “nonequipartitioning approach”; this was the real
driver for developing the design methods based on the Hofmann chart, as it pro-
vided the only known tool which correlates emittance growth observed in these
experiments and in simulations. Certainly, some experiments, like ours at Mary-
land and the proposed design of the driver linac for heavy-ion inertial fusion, are
operating in the equipartitioned space-charge-dominated regime, which is largely
insensitive to higher mode resonances and instabilities. As mentioned below, our
electron ring is designed to operate over a large range of space-charge intensities
and we plan to do experiments, which should reveal the existence of the higher
order modes so that we could compare the nonequipartitioning with the equipar-
titioning approach. As mentioned above, the chart results are based on analytical
work using the generalized K–V distributions and simulation studies with both
K–V and Waterbag distributions for anisotropic beams. Our simulation studies in
the previous paper [58] with a semi-Gaussian distribution clearly indicated a re-
markable contrast with the K–V simulations for very strong tune depression. (See
our summary of the major results at the end of the above Kishek et al. article.)

Jameson finds it a good choice and easier to design a linac in the tune depression
range of say 0.3 to 0.4 with equipartitioned beam. He thinks that one could make
significant gains in efficiency if one could go to the space-charge limit. But in real
ion linacs, with transitions and parameters varying at faster or slower rates, his
design experience is that beam loss goes up if one tries to push the tune depression
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too deep (which appears to be in contradiction with the short M–B tail discussed
above). On the other hand, designs with less tune depression are “harder to control”
because the emittance comes more into play and then the strategy for avoiding the
resonances is more important. A practical problem is that many designers place
their designs (unwittingly) in the tune chart at tune depressions >0.5, or, using
the “conventional” approach, with the transverse >0.5 and the longitudinal <0.5.
Therefore, Jameson has attempted to give linac designers guidance based on an
equipartitioning approach, which of course is good both at moderate and down
to even very strong tune depressions, or to use a mixture of equipartitioning plus
avoidance of resonances, or just avoidance of resonances (R. J. Jameson, private
communication). I would conclude from Jameson’s advice that there is plenty of
room for further experimental, theoretical, and simulation studies, and what may
work for one linac may not necessarily be the best option for another linac.

7.3.6
Related Experiments
(with contributions by Santiago Bernal and Rami Kishek)

In this section several experiments and theoretical/numerical studies relating to
these experiments will be discussed.

7.3.6.1 The Bernal Experiments
In connection with the development of the University of Maryland Electron Ring
(UMER), Bernal performed several experiments on the matching section for the
UMER Injector. Since these studies deal with the transverse beam physics in a
straight beam transport system, they will be listed here rather than in Section 7.4,
on the development of UMER. His experiments were done with the Pierce-type
electron gun (“Hughes gun”), and the aperture plate was at a distance of 12.4 cm
from the cathode, which had been used in the EBTE facility for the five-beamlet
experiments by David Kehne and by Nathan Brown For Bernal’s experiments, the
gun produced 4 keV, 175 mA pulses of 5 µs at a rate of 60 Hz. An aperture of
6.4 mm diameter was used, which results in an almost uniform beam of 17 mA
entering the transport pipe. The beam diagnostics is a 2.54 cm diameter phosphor
screen that can be moved from the aperture plate out to a distance of nearly one
meter. The beam picture can be captured with a charge-coupled device (CCD) and
then digitized and displayed using associated hardware and software.

Bernal studied beam matching in three experiments: 1 solenoid + 5 quadrupoles,
1 quadrupole doublet + 4 quads, and 3 solenoids. In each case he observed that
there was a ring-type peak in the electron density distribution, which we have called
“Bernal rings” in the absence of a better description. This work formed a major
part in his Ph.D. Dissertation, entitled “Study of Transverse Density Waves in an
Electron Beam Experiment” [62].

The results of his observations and the simulations by R. A. Kishek were pub-
lished in two papers. The first one by Bernal et al. at PAC99 [63] and the second
by Bernal et al. in a 1999 PRL article [64]. These two publications presented the
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Fig. 7.6 Schematic of experiment (a) phosphor screen images
at top and WARP simulation at bottom (b) horizontal
trace-space projections from WARP simulations at different
positions (c).

results of the observations and numerical simulations in the 3-solenoid and the
1-solenoid + 5 printed quadrupoles experiments. Both show only the schematic
of the 3-solenoid experiment. Figure 7.6 shows (a) schematic of the 1-solenoid +
quadrupole matching experiment (unpublished), (b) horizontal trace-space projec-
tions from PIC simulations with WARP code downstream from the aperture plate
(from left to right), and (c) phosphor screen images at top and WARP simulation at
bottom. The strengths of focusing elements are adjusted for a zero-current phase
advance σ0 = 85◦ in the matched beams. In all cases, z = 0 is the location of the
aperture plane. The results (b) and (c) and σ0 = 85◦ are presented in [64].

The results of this study are summarized in the abstract of the PRL article [64]
as follows:

“Experiments and particle-in-cell simulations demonstrate the appearance
of wavelike transverse density variations in a space-charge-dominated
electron beam. Simulations show how an aperture located near the source
gives rise to a non-equilibrium phase-space distribution with strong force
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imbalance confined to a sheath near the beam edge. Tracking of particles
in this sheath, starting near the aperture’s edge, reproduces well the onset
of the perturbation. The subsequent evolution of the perturbation over
about one meter suggests the appearance of a transverse wave. For the
parameters investigated, simulations further indicate that the
perturbation damps out over a few plasma periods without causing any
rms emittance growth.”

A third paper relating to the observation of the rings, with the title “Edge imaging
in intense beams” was published in 2002 by Bernal et al. [65]. It was shown in this
article, as stated in the abstract,

“that the appearance of rings of charge observed near the edge of beams
from high-perveance guns is described with a simple ray tracing
technique inspired by the particle-core model. We illustrate the technique,
which has no analog in light optics, with examples from experiments
employing solenoid focusing of an electron beam. The rings of charge
result from the combined effects of external focusing and space-charge
forces acting on paraxial fringe particles with relatively large initial
transverse velocities. The model is independent of the physical
mechanisms responsible for the fringe particles. Furthermore, the focal
length for edge imaging in a uniform focusing channel is derived using a
linearized trajectory equation for the motion of fringe particles.
Counterintuitively, the focal length decreases as the beam current
increases.”

This interesting result demonstrates that ray tracing can explain the appearance
of rings up to a certain distance and provides new insight and understanding of the
observed effect, which, however, is not contrary, but complementary, to the simu-
lation studies showing that the evolution of the rings is a wave-like phenomenon.

7.3.6.2 The Los Alamos Low-Energy Demonstration Accelerator (LEDA)
This project was conceived, constructed, and operated under the leadership of Tom
Wangler in the years 2000 to 2004 to test the models of halo formation caused by
beam mismatch in high-intensity beams: (1) the free-energy model, which for a
given mismatch strength, determines the maximum emittance growth resulting
from the complete transfer of free energy into emittance (see Sections 6.2 and
6.3); (2) the particle-core model, in which beam mismatch produces an imbalance
between focusing, space charge, and emittance, exciting a symmetric or breathing
(xrms and yrms in phase) mode oscillation of the core (see [43–45, 49]).

The experiment was carried out at Los Alamos with a high-current, 6.7 MeV
proton beam, injected from an RFQ into a 52-quadrupole focusing channel (Fig-
ure 7.7). The gradients of the first four quadrupoles were independently adjusted to
match or mismatch the injected beam. rms emittances and beam widths were ob-
tained from measured beam profiles for comparison with the maximum emittance-
growth predictions of a free-energy model and the maximum halo-amplitude pre-
dictions of a particle-core model. The experimental results were also compared
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with multiparticle simulations. Scanners at nine stations, each located midway be-
tween pairs of quadrupoles, measured the horizontal and vertical distributions.
The scanners were labeled with numbers corresponding to the preceding quadru-
pole magnet number. The beam was matched using a least-squares fitting proce-
dure that adjusted the first four quadrupoles to produce equal rms sizes at the last
eight scanner locations. Emittances and beam widths were obtained from mea-
sured profiles for comparisons with maximum emittance-growth predictions of
the free-energy model and maximum halo-amplitude predictions of a particle-core
model. The major results are shown in Figures 7.8 and 7.9.

Fig. 7.7 Block diagram of the LEDA experiment showing the
52-quadrupole-magnet lattice and the nine locations of
beam-profile scanners. (Courtesy of Thomas Wangler).

Fig. 7.8 Measured rms-emittance growth averaged over x and
y for 75 mA at scanner 20 for a breathing-mode mismatch. The
curves show maximum growth from the free-energy model.
(Courtesy of Thomas Wangler).
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Fig. 7.9 Measured beam half widths at scanner 20 (75 mA and
a breathing mode mismatch) at different fractional intensity
levels versus mismatch strength µ for comparison with the
maximum resonant amplitude of the particle-core model.
(Courtesy of Thomas Wangler).

Figure 7.8 shows the x–y averaged rms-emittance growth results (points with
error bars) versus the mismatch parameter µ at scanner 20 for a 75-mA breathing-
mode mismatch. The maximum emittance-growth curves from the free-energy
model are shown for the two tune depression values that bracket the values for the
debunching beam. It can be seen that the theoretical maximum is insensitive to the
tune depression over this range. The breathing-mode data in Figure 7.8 are consis-
tent at all µ values with the maximum emittance growth predicted by the model.
The breathing-mode results at the downstream scanner 45 (not shown) show no
significant additional emittance growth, consistent with the upper limits from the
model and with complete transfer of free energy. Overall, the data from both the
breathing and the quadrupole mode indicate a rapid emittance growth with nearly
complete transfer of free energy occurring in less than 10 mismatch oscillations.

The particle-core model [49] predicts the maximum resonant-particle amplitude
as a function of the mismatch parameter µ. It was not possible to determine ex-
perimental maximum amplitude for direct comparison with the model because
of the halo in the input beam. Instead the measured amplitudes (x–y averaged
half widths of the beam) at three different fractional beam-profile intensity levels
(10%, 1%, and 0.1 of the peak) for a breathing mode mismatch were compared with
the maximum amplitude predicted by the particle-core model. This comparison is
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shown in Figure 7.9 at scanner 20 for 75 mA. The shapes of all three measured
half-width curves are consistent with the shape and magnitude of the maximum
amplitude curve from the particle-core model. Similar results are observed at scan-
ner 51. Although the particle-core model based on a single mismatch mode is a
simple description of the beam dynamics, the agreement of the model for the curve
shapes, and for the consistency of the magnitudes supports the conclusion that the
model describes the main physical mechanism responsible for the halo growth.

The 6D-density distribution of the input beam, needed for multiparticle sim-
ulations, was not experimentally known. It was found that knowledge of the in-
put Courant-Snyder parameters and emittances alone was not sufficient to obtain
agreement with the observed halo distribution. Agreement between simulations
and experiment for the growth rate of the halo will require knowledge of the input
distribution, particularly of the tails of the input beam.

The first results were reported by Allen et al. [66] and Wangler et al. [67].
In the summary at the end of Reference 67 the authors state that “our experi-

mental results strongly support both models and the present theoretical picture of
halo formation in mismatched beams. This result is important because these mod-
els predict upper limits to emittance and halo-amplitude growth in high-current
transport channels and linacs and allow estimation of focusing strength and aper-
ture requirements in new designs.”

7.3.6.3 The Paul Trap Simulator Experiment (PTSX) at the Princeton Plasma Physics
Laboratory
Wolfgang Paul, University of Bonn, shared the 1989 Nobel Prize with Hans G.
Dehmelt, University of Washington “for the development of the ion trap technique”
(1/4 of the prize each) and Norman F. Ramsey, Harvard University “for the inven-
tion of the separated oscillatory fields method and its use in the hydrogen maser
and other atomic clocks” (1/2 of the prize). A detailed review of the electromagnetic
traps for charged and neutral particles was presented by Wolfgang Paul in [68], 3
years before he died in 1993. The original idea was conceived in the early to mid-
fifties. Among several papers at that time, the publication with H. Steinwedel in
Zeitschrift f. Naturforschung 8a, 448 (1953) and the patents with Steinwedel are per-
haps the most important ones [69].

The original idea to design and build a Paul trap configuration to simulate in-
tense beam propagation over large distances through a periodic focusing quadru-
pole magnetic field was proposed by Davidson et al. [70] and by Okamoto and
Tanaka [71]. First results of the PTSX study were published by Gilson et al. in the
proceedings of the 2003 Nonneutral Plasma Physics Workshop [72]. This was fol-
lowed by an article by Gilson et al. in [73], in which a description of the PTSX device
is given, related theoretical analyses are summarized, and experimental results that
examine the effects of varying the amount of injected plasma on the density profile
and temperature of the trapped plasma are presented. These results are then com-
pared with a global radial force balance model. Finally, the long-time confinement
behavior of cesium ions in PTSX is described (see Figure 7.11).
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Fig. 7.10 The radial profile of the axial current streaming from
the ion source to the collector exhibits a shoulder
corresponding to the presence of halo particles in both PTSX
experiments. (Courtesy of R. Davidson et al. [74]).

Next, the paper at the 2006 Heavy Ion Fusion Symposium (HIF06) by Gilson
et al. [74] presents the results of experiments in which the amplitude of the ap-
plied confining voltage is changed over the course of the experiment in order to
transversely compress a beam with an initial depressed tune ν/ν0 ∼ 0.9. Both in-
stantaneous and smooth changes are considered. Particular emphasis is placed on
determining the conditions that minimize the emittance growth and, generally, the
number of particles that are found at large radius (so-called halo particles) after the
beam compression. The experimental data are also compared with the results of
particle-in-cell (PIC) simulations performed with the WARP code (see Figure 7.10).

The data in Figure 7.10 show that halo particles are produced when there is a
mismatch between the beam and the transport lattice. The radial current profile of
a steady-state stream of ions that travels from the ion source 2.4 m to the collector
diagnostic shows a “shoulder,” or an excess of particles, beginning at r = 3 cm.
During this streaming, the ions experience approximately 100 lattice oscillation
periods. The vacuum phase advance is 50◦, and if these ions were trapped the mea-
sured on-axis normalized intensity would be s ∼ 0.6. For this intensity, and for the
PTSX ion source radius and lattice settings, this is badly mismatched. The WARP
3D particle-in-cell simulation results are in good agreement with the measured
data. These results are also in qualitative agreement with the results of Allen et
al. [67].

The PTSX system is useful only if the plasma confinement time corresponds to
large equivalent beam propagation distances through a magnetic alternating gra-
dient transport system. Because the oscillation frequency of the PTSX electrodes
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Fig. 7.11 The radial profile of a trapped plasma with intensity
parameter s = 0.18 is only slightly degraded after 316 ms.
(Courtesy of Davidson et al. [73]).

Fig. 7.12 The PTSX device consists of three cylindrical
electrodes with radius rw = 0.1 m, each divided into four 90
sectors. An oscillating voltage V0(t) confines the plasma in the
transverse plane. Static voltages on the end electrodes confine
the ions axially. The ions are created and injected from one end
of the machine, and are dumped out and measured by a charge
collector on the opposite end. (Courtesy of Davidson et al. [75]).

is typically 75 kHz, a confinement time of over 300 ms, as shown in Figure 7.11,
corresponds to propagation over 20,000 lattice periods.

The most recent paper “Ion injection optimization for a linear Paul trap to study
intense beam propagation” was published in 2007 by Chung et al. [75]. This paper
presents the injection and trapping of externally created cesium ions into the PTSX
device, a schematic of which is shown in Figure 7.12.

The results of the 2007 Chung et al. article [75] can be summarized as follows:
In order to have well-matched one-component plasma equilibria for various beam
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physics experiments, it is important to optimize the ion injection. From the exper-
imental studies reported in this paper, it is found that the injection process can be
optimized by minimizing the beam mismatch between the source and the focusing
lattice, by optimal timing of the injection and trapping of the plasma by minimiz-
ing the number of particles present in the vicinity of the injection electrodes when
the injection electrodes are switched from the fully oscillating voltage waveform
to their static trapping voltage. This initial well-matched plasma formed inside the
trap is used as the baseline for various beam physics experiments of current inter-
est Two-stream interactions are shown to be relatively weak during the injection
stage, but can affect beam quality after a sufficiently long holding time.

The research by the Princeton group under Ron Davidson’s direction has pro-
duced a wealth of publications, which are not only relevant to the PTSX, but,
perhaps more importantly, they are generally useful for the transport of intense
charged particle beams I have already mentioned in a number of papers in the pre-
vious sections of Transverse Beam Physics. In this section, I would like to discuss
one additional paper (within the limited framework of this second edition) which
deals with the topic “Transverse Compression of an Intense Ion Beam Propagating
through an Alternating-Gradient Quadrupole Lattice,” published in 2006 by Dorf
et al. [76]. In this paper envelope equations and full particle-in-cell numerical sim-
ulations using the WARP code have been used to investigate the evolution of the
rms beam radius, the emittance growth, and halo formation during the transverse
compression of an intense ion beam propagating through an alternating-gradient
quadrupole lattice.

It was shown in this publication that when the lattice transition is smooth
(adiabatic) the emittance variation is negligibly small, and therefore a constant-
emittance approximation can be used as a closure condition for the envelope equa-
tions to model the compression process. For the case of a nonadiabatic transition,
it was found that the characteristic time scale for the emittance growth is much
larger than the transition time required for adiabatic compression. Therefore, even
for nonadiabatic compression, the constant-emittance approximation can be used
to estimate the beam mismatch produced in the transition region.

The details of halo formation were investigated self-consistently using the WARP
code, both in the smooth focusing approximation and for a quadrupole lattice. In
the smooth-focusing approximation, a 2:1 resonance structure was observed for
space-charge-dominated beams with almost uniform density profile. For a quadru-
pole lattice, the beam particle motion in the 4D transverse phase space provides
some smearing of the 2:1 resonance structure in the 2D phase-space projection.
Nonetheless the width and location of the resonance islands coincide well with
the results, obtained by Ikegami [see Masanori Ikegami “Particle-Core Analysis of
Mismatched Beams in a Periodic Focusing Channel”, Phys. Rev. E 59, 2330 (1999)
and references therein]. It was also found that during halo formation the energy
transfers from the collective mismatch oscillations to the transverse motion of the
resonant particles (halo particles). The energy transfer time is of order the phase-
mixing (Landau damping) time. Therefore, only a few particles populate the halo
region during beam propagation through the lattice transition region. Generation
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of most of the halo particles, and consequently growth of the transverse emittance,
occurs during the subsequent beam transport. It was also found in the smooth-
focusing approximation (constant focusing frequency) that the collective relaxation
of the mismatch oscillations of a space-charge-dominated beam saturates with the
formation of a stable, transverse, nonlinear wave structure.

Before closing this discussion on the Paul Trap and the brief history and recent
results of the studies in the Princeton PTSX device, I would like to mention the
radio-frequency quadrupole (RFQ) accelerator, which was originally proposed in
the USSR and then developed at LANL. The RFQ operates in a configuration that
is similar to the Paul Trap. The main difference, however, is that it accepts a con-
tinuous beam from the ion source and through gradually increasing a modulation
of the quadrupole vanes this beam is bunched and accelerated to a few MeV and
then injected into an rf linac. The RFQ can handle high currents and is now used
in many laboratories in the USA and all over the world as the injector of choice for
high-intensity linacs. A good overview of the RFQ development was presented by
Stokes and Wangler in [77] and in Thomas Wangler’s book [78].

7.4
The University of Maryland Electron Ring

7.4.1
History and Developments of the Ring Concept

In 1993, I presented an invited talk at the HIF Symposium in Frascati, Italy, to
review our work at Maryland [79]. At the end of my talk, I mentioned that I was
planning to build a 18–20-m-long quadrupole transport channel, in response to
critiques that I should use quadrupoles (in place of solenoids), which are the com-
mon focusing elements in high-energy accelerators, and to have a longer distance
for studying instabilities or other effects that one could not fully explore in the
5-m-long EBTE facility. During the discussion, Dieter Möhl, a well-known acceler-
ator scientist at CERN, suggested that I should think about building an electron
ring, which would provide a much longer path for studying beam physics phe-
nomena and offer the additional benefit to investigate effects like dispersion in
high-intensity beams. This suggestion triggered my decision to pursue this idea as
a top research priority. After returning to Maryland, I immediately began with the
design of such a ring while still working under strong pressure from Wiley and
Sons to finish my book. Due to the heavy workload, I was unable to write a man-
uscript for the Proceedings of the HIF Symposium, which were published in the
Italian scientific journal Nuovo Cimento. Three other papers, which I co-authored,
were, however, published in this journal, namely [7, 80, 81].

When he heard about this idea to build a ring, Terry Godlove offered his collab-
oration. He had been part of a team of co-authors who presented a talk in Frascati
about the possible advantage of a recirculator as an HIF driver [82]. Thus, the idea
of building an electron model of such a recirculator appealed to him immediately.
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Besides, he already had been involved in the electron storage ring at NRL in the
fifties, which had a much higher energy than what I envisioned for our ring and
was terminated in the early sixties. Since I had known Terry for many years and
was impressed with his technical expertise, I did not have any reservations to ac-
cept his offer. He has been a collaborator ever since and made many important
contributions to our ring design, such as the design of the printed-circuit magnets
for UMER, assistance to Santiago Bernal on the prototype experiments, and his
work on the pulsed injection into the ring.

Our design studies for the electron ring progressed rapidly, with the help of a
dedicated team of collaborators, in particular Terry Godlove, J. G. Wang, Irving
Haber, Rami Kishek (who joined our group in 1997), and Richard York from MSU
(whose team collaborated with us in designing the mounting system for the ring),
several graduate students, Santiago Bernal, Marco Venturini (whose Ph.D. Disser-
tation was jointly supervised by Alex Dragt and myself), Hyyong Suk, and Yun Zou,
supported by an excellent group of staff members.

At the Princeton HIF Symposium, September 6–9, 1995, our group presented
five papers, including my invited talk [83], and the three selected papers listed be-
low [84–86].

Following the Princeton Symposium, several papers on the design of the elec-
tron ring were presented at the 1997 Particle Accelerator Conference in Vancouver.
Among them, the paper [87] by Wang et al. presents a good review of the status of
the ring at that time.

The next important event that had its major focus on space charge and disper-
sion in proton rings and synchrotrons was the Workshop on Space Charge Physics
in High Intensity Hadron Rings at Shelter Island, New York, May 4–7, 1998, which
was published in [88]. Our group presented three papers relating to the develop-
ment of the University of Maryland Electron Ring: J. G. Wang et al., “Studies of
Space-Charge Physics in Beams for Advanced Accelerator Applications”, p. 189;
Marco Venturini et al., “Dispersion and Space Charge” (essentially a derivation of
the rms envelope equations), p. 278; Rami Kishek et al., “PIC Code Simulations of
the Space-Charge Dominated Beam in the University of Maryland Electron Ring”,
p. 371. Thirteen interesting papers were presented in the Plenary Talks, and I want
to single out the six papers, which deal with the theory and simulation of space-
charge effects:

1. I. Hofmann et al., “Observation and Interpretation of Space Charge Phenomena
for High Intensity”, p. 15.
2. Bruno W. Zotter, “Early Work on Space Charge Effects in Particle Accelerators”,
p. 26.
3. S. Y. Lee, “Space Charge Dominated Beams in Synchrotron and Linac”, p. 38.
4. Richard Baartman, “Betatron Resonances with Space Charge”, p. 56.
5, Shinji Machida Masanori Ikegami, “Simulations of Space Charge Effects in a
Synchrotron”, p. 73.
6. C. R. Prior, “Simulation with Space Charge”, p. 85.
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Richard Baartman summarizes his work in the Abstract as follows: “The point is
made that betatron resonances do not occur at the incoherent value of the tune,
but rather at the frequencies of the appropriate collective modes. This has im-
portant implications not only for the design of high intensity, low energy pro-
ton synchrotrons, but also for the interpretation of machine studies at exist-
ing synchrotrons of this type.” Practically all beam physics theorists will proba-
bly agree with this statement. I would include the designers of low-energy stor-
age/accumulator rings like the spallation neutron sources, such as the SNQ at Oak
Ridge. It is also in agreement with the theory (Venturini) and simulations (Kishek)
for the Maryland University Electron Ring and the paper by Barnard et al., “Emit-
tance Growth in Heavy Ion Rings due to the Effects of Space Charge and Disper-
sion”, p. 221 of the Proceedings. One of the most important aspects of our electron
ring is the fact that the beam physics can be scaled to proton and heavy-ion rings.

Marco Venturini [89] and Santiago Bernal [62] completed their Ph.D. Disserta-
tions in 1999. Their work was published in several journal articles, including two
Physical Review Letters. Bernal’s Dissertation and the publications relating to the
“Bernal rings” were already discussed in the Transverse Beam Physics section.

I had concerns about the effect of dispersion in the presence of space charge
since Equation (5.489) in my book shows that it scales as R/ν2, where ν is the
betatron tune and R is the average ring radius, and hence should increase signifi-
cantly when space charge depresses the tune. Venturini started to investigate this
problem immediately and, much to my relief, the rms envelope equations he de-
rived, showed that the dispersion effect with space charge was not as severe as I
thought [90, 91]. Following these studies, Marco Venturini and Robert L. Gluck-
stern performed a “Resonance analysis for a space charge dominated beam in a
circular lattice,” which was published in [92]. Venturini also conducted invaluable
studies of the lattice design. Marco’s theory on dispersion [91] accounts for coupling
only between x and y, and therefore leads to predictions regarding the growth in
x-emittance, while assuming no change to the y-emittance. Kishek’s simulations,
however, consistently observed an oscillation and growth in the y-emittance as well.
He finally solved this problem by his study of anisotropic beams [56], which was
discussed in Section 7.3.6. A beam with dispersion is basically anisotropic, and the
simulation with anisotropic “Bernal rings” leads to the equipartitioning process
when the initial emittances differ in x and y.

The basic electron ring concept was essentially completed by 1999 and presented
by Reiser et al. in an invited talk at the PAC99 [93]. A schematic of the design is
shown in Figure 7.13.

The focusing lattice consists of 36 FODO periods of length 0.32 m, and the ring
circumference is 11.52 m. Each FODO period contains two printed quadrupole
magnets and one printed dipole. The zero-current phase advance per period is
σ0 = 76◦, corresponding to a tune of ν0 ∼ 7.6. The maximum tune depression,
ν/ν0, is expected to be about 0.2, depending on the emittance, for a design current
of 100 mA and a beam voltage of 10 kV from a gridded electron gun. There are
15 diagnostic parts containing capacitive BPMs and phosphor screens; three in-
duction modules provide fast-rising “ear fields” to prevent expansion of the bunch
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Fig. 7.13 Layout of the University of Maryland Electron Ring (UMER).

ends and acceleration to 50 kV in a future extension of ring operation. The elec-
tron bunch is injected into the ring at a repetition rate of 60 Hz or less from the
injector system with the help of two pulsed Panofsky quads and a pulsed dipole.
The bunch can be extracted within the first turn or after any number of turns with
a system that duplicates the features of the injector line except that the electron
gun is replaced by a large diagnostic chamber with phosphor screen, emittance
meter, and energy analyzer. Details of the design are presented in five papers at the
conference:

1. D. Kehne et al., “The 10 keV injector for the University of Maryland Electron
Ring Project.”
2. Y. Zou et al., “Development of a prototype capacitive BPM.”
3. Y. Li et al., “Calculation of particle motion at the head and tail of a bunch for the
University of Maryland Electron Ring.”
4. Y. Li et al., “Design, simulation and test of a Panofsky quadrupole.”
5. W. W. Zhang, “Magnetic field measurement of printed circuit quadrupoles and
dipoles.”

Zhang et al. published an article in PRSTAB 2000 [94]. A paper on the injector
design for the electron ring was published in 2001 by Kehne et al. in Nuclear In-
struments and Methods [95]. In my invited talk I also presented the scaling laws for
charged particle beams, which will be discussed in Section 7.4.2.
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7.4.2
Scaling Laws for Charged Particle Beams
(with contributions by Santiago Bernal)

The major motivation in the design of the electron beam transport experiment
and the electron ring was to use high-intensity electron beams to explore and un-
derstand the physics of space-charge-dominated low-energy proton and heavy-ion
beams in the nonrelativistic regime, where space-charge effects are most signifi-
cant. I had an early interest in scaling of the beam parameters that reveal the un-
derlying physics, which is usually not apparent in experimental observations, theo-
retical analysis, and numerical simulations. The price one pays for such simplified
scaling laws is that they are approximations to the more complex mathematical
models and simulations. In a periodic channel with solenoid or quadrupole lenses,
one uses the “smooth approximation” for the beam envelope by averaging over the
oscillations due to the discrete lens spacing. This procedure is equivalent to the
“uniform beam” often used for theoretical analysis. In either case, the radius and
the emittance for a round (axisymmetric) beam can be defined in terms of the rms
values of the “equivalent” K–V beam as a = 2xrms and ε = 4εrms. The envelope
equation for a matched beam in this approximation can be written in the algebraic
form [see Equation (4.88a), p. 190], with which I started the derivations presented
in my PAC99 talk [93] and which will be repeated here for convenience:

k2
0a − K

a
− ε2

a3
= 0. (4.88a)

Here, k0 = (σ0/S) = 2π/λ0 is the wave number, σ0 is the phase advance of the
betatron oscillations without space charge, and S the length of a focusing period.
K is the generalized perveance, defined in Equation (??) as

K = I

I0

2

β3γ 3
. (4.27a)

Here, I is the beam current and I0 = (4πε0mc3)/q is the characteristic current,
which to good approximation can be written as I0 ∼ (mc2)/(30q), or I0 ∼ 1.7×104

A for electrons and I0 ∼ 3.1 × 107(A/Z) A for ions with mass number A and
charge number Z, as defined in Equation (4.17); β = v/c and γ are the relativistic
velocity and energy factors, where γ = (1 − β2)−1/2. Introducing the space-charge
depressed wave number k, one can write [ from Equation (4.89a)]

k2 =
(

2π

λ

)2

= k2
0 − K

a2
(4.89a)

or

k

k0
= ν

ν0
=

√
1 − K

k2
0a2

. (7.23)
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Fig. 7.14 Beam physics scaling diagram showing the tune
ratios versus χ and indicating the UMER Operating Region for
ν/ν0 in red and for νp/ν0 in blue.

In the paper [93] at PAC99, I introduced the dimensionless intensity parameter
χ , which I defined already in the late 1970s, but had not remembered this when
I wrote the PAC99 paper (see discussion in paragraph below Figure 7.14, with
Equations (7.27) to (7.32)). It is defined as

χ = K

k2
0a2

(7.24)

In Equation (7.23), ν and ν0 are the number of betatron oscillations with and
without space charge in the ring. χ can be related to the betatron tune depression,
ν/ν0, and the equivalent plasma tune depression, νp/ν0, as

ν

ν0
= √

1 − χ, (7.25)

νp

ν0
= √

2χ. (7.26)

For χ = 0, where the space charge is 0, we have ν = ν0 and νp = 0, and for
χ = 1, which corresponds to the laminar, zero emittance case, we have ν/ν0 = 0
and νp/ν0 = (2)1/2.

Figure 7.14 shows the two ratios ν/ν0 and νp/ν0 as functions of the intensity
parameter χ (see Figure 1 in [93]). The operating range for UMER is indicated, and
the limit achieved experimentally at Brookhaven by Maschke (see Reference 2 in
our PAC99 paper) is marked. The large UMER range of operation is achieved with
our variable perveance gun and the use of different circular beam apertures in a
masking “aperture” plate outside of the anode.
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It is interesting to note that there is a long history in beam scaling, dating back
to the seventies. In the 1976 ERDA Summer Study of Heavy Ion Inertial Fusion,
Report LBL-5543, Maschke and Courant proposed a scaling law for the maximum
beam power that can be transported through a periodic quadrupole channel [96]
and focused on a small target (“pellet”) at the center of a nuclear reaction chamber,
which is of the form:

P = const (A/Z)4/3ε2/3(βγ )7/3(γ − 1)B
2/3
0 , (7.27)

where B0 is the pole tip magnetic field, which like all other parameters in this
equation is a measurable quantity.

I could not understand this scaling law, which motivated me to carry out a study
presented at PAC77 [97]. I obtained a scaling for the beam power, which differed
significantly from the Maschke–Courant formula and had the form

P = const βγ (γ − 1)(B0a)2
[
1 − (ε/α)2

]
. (7.28)

Here, α is the acceptance, corresponding to the maximum emittance εmax that the
beam can have to fit into the linear region of the channel. The constant in each case
depends on the details of the channel design. After this, I carried out a more de-
tailed and rigorous study, which was published in Particle Accelerators in 1978 [98].
A major part of this work is presented in Sections 4.4.1 and 4.4.2 of this book. The
important relation for a uniform channel is Equation (4.95), which I repeat here:

K = (σ0α)/S
[
1 − (ε/α)2

]
. (4.95)

Using α = σ0(a
2/S) [Equation (4.150)], ε/α = σ/σ0 [Equation (4.99)] and k0 =

(σ0/S), we can rewrite (4.95)) in the form

K/(k0a)2 =
[
1 − (k/k0)

2
]

=
[
1 − (ν/ν0)

2
]
. (7.29)

We recognize that the left-hand side of this equation is identical to the intensity
parameter χ that I used in the PAC99 paper. Thus, the fundamental scaling relation
between “χ” and the betatron tune depression ν/ν0 was already presented in [98].
As it turns out, the parameter χ was first explicitly defined in Equation (14) of [99].
Equation (14) reads χ = 1 − (ω/ω0)

2, where ω and ω0 are the betatron oscillation
frequencies with and without space charge, respectively. With ω/ω0 = ν/ν0, we can
write

χ = 1 − (ν/ν0)
2. (7.30)

Introducing the plasma frequency ωp [Equation (4.89c)], we can write the last equa-
tion in the equivalent form

χ = (νp/ν0)
2/2. (7.31)

Hence,

ν/ν0 = (1 − χ)1/2 and νp/ν0 = (2χ)1/2. (7.32)

The last equation is identical to (7.25) and (7.26). The new feature in the PAC99
paper was the introduction of the beam physics scaling diagram in Figure 7.14, in
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which ν/ν0 and νp/ν0 are plotted as a function of χ and the UMER operating range
is indicated. Note that for χ > 0.5 the beam is “space-charge dominated,” while for
χ < 0.5 it is “emittance dominated.”

Obviously, this linear rms-matched beam model is based on the “smooth approx-
imation” in an axisymmetric focusing channel and assumes that resonances and
instabilities are absent.

Recently, I learned that R. C. Davidson and H. Qin in their book [100] used the
dimensionless intensity parameter sb, which is identical to χ (see pages 99–101).
In my communication with Ron Davidson, he pointed out that he has been using
the normalized self-field intensity parameter sb as a natural dimensionless mea-
sure of the ratio of self-field strength to applied focusing field strength since the
1970s, both in research publications and in books, e.g. Theory of Nonneutral Plas-
mas (Benjamin, 1974) and Physics of Nonneutral Plasmas (Addison Wesley, 1990).

In the 1974 book, I could not find the self-field intensity parameter sb, explic-
itly mentioned. Apart from that, I might have missed some early publications,
in which sb is used. In those days, there was a communication gap between the
plasma physicist, who described beams in terms of “moving nonneutral plasmas,”
and the accelerator physicist, who describes them as “charged particle beams.” The
nomenclature on each side of the gap was also different. Instead of “emittance,”
the plasma physicist talked about “temperature,” to name one example. In recent
years this gap has been largely bridged, and Davidson deserves most of the credit
for succeeding in this effort.

There are of course other scaling parameters, such as u, which I defined in Equa-
tion (4.92) as

u = K

2k0ε
. (4.92)

In his Ph.D. Dissertation [62], Santiago Bernal related u to the Intensity parameter
χ , pointing out that the definition of χ does not include explicitly the “warm” char-
acter of beams expressed by the beam emittance. The parameter u, on the other
hand, is useful when dealing, for example, with different beam currents obtained
with collimating apertures (see Problem 7.14). Since K is proportional to the radius
of the collimating aperture squared, while the emittance varies linearly (to a good
approximation) with the same radius, the parameter “u” is simply proportional to
the collimating aperture radius.

The relation between “u” and χ is given by

χ = 2
[
1 +

√
1 + u−2

]−1
, (7.33)

which can be easily obtained from Equations (7.23), (7.24), and (4.93b), a =
a0(u + √

1 + u2)1/2, a0 = √
ε/k0, expressions valid in the smooth or uniform-

focusing approximation of beam transport. Note from (4.92) that u ranges from
zero (for K = 0) to infinity (for ε = 0) while χ ranges from 0 to 1.

It is interesting to note that R. C. Davidson and Hong Qin, in their article “Single-
parameter characterization of the thermal equilibrium density profile for intense
non-neutral charged particle beams,” published in PRSTAB, 1999 [42], which I dis-
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cussed in the Transverse Beam Physics section, show that the thermal equilibrium
profile can be defined by only one parameter, δb, relating to the tune depression by
ν/ν0 = (1 + δb)

−1/2.
I want to point out that δb has the same range as our parameter u, from 0 to infin-

ity. Also the intensity parameter sb is not explicitly listed in this article. Obviously,
we are all having occasional memory lapses.

The parameter, δb, is related to u, according to Bernal’s “Note on the Beam In-
tensity Parameter” [101] by the relation

u = δb/2√
1 + δb

, or δb = 2u
[
u +

√
1 + u2

]
. (7.34)

Further, one can easily prove that

δb = χ

1 − χ
, or χ = δb

1 + δb

. (7.35)

The intensity parameter χ is equal to δb only in the limit of zero current. Finally,
Davidson and Qin define a parameter “sb,” which is identical to χ in the nonrela-
tivistic limit.

The purely algebraic aspects of the expressions above aside, it is important to
realize that χ in Equation (7.35) and u in Equation (4.92) have simple interpreta-
tions [101]. To understand these, we recall the form of the envelope equation in the
smooth approximation:

k2
0R − K

R
− ε2

R3
= 0, R0 =

√
ε

k0
, (7.36)

where R0 is the zero-current beam radius. (The second equality is included to stress
the fact that emittance in this model is not somehow coupled to beam current
through K ; in other words, linear space charge does not affect the emittance.) It
follows from the first equality in Equation (7.36) that the intensity parameter χ is
just the ratio of the space-charge force to the external force at the effective beam
radius. The emittance is then only implicitly included in “R.” The parameter “u,”
on the other hand, is proportional to the ratio of the space-charge force to the geo-

metrical mean of external and “emittance” forces,
√

k2
0R × ε2/R3. This latter fact

may not have a deep meaning, but it can be a useful mnemonic.
In searching the literature, I found that the history of scaling dates even further

back than I thought. R. L. Gluckstern, in his paper “Oscillation Modes in two di-
mensional Beams,” published in the Proceedings of the 1970 Linear Accelerator
Conference (see Reference 19 in Chapter 6 of this book) used the ratio of (ωp/ν0)

2,
which ranges from 0 to 1, as a parameter to scale the beam intensity (see Figures
1 and 2). He used, however, the one-dimensional plasma frequency ωp , and was
therefore off by the factor 2 in comparison to the correct relation (7.31) above.
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7.4.3
Construction and Initial Operation of UMER

Patrick O’Shea et al. presented an invited talk on “The University of Maryland Elec-
tron Ring (UMER)” at the PAC01, which was published in the Proceedings of the
2001 Particle Accelerator Conference, Chicago [102], and which, following the PAC99
meeting, provides further details and an update of the UMER Project as the con-
struction got underway. In a contributed paper at this conference, Li et al. reported
about new developments in the printed-circuit magnets for UMER [103].

With regard to the construction and operation of the electron ring, our philoso-
phy was to proceed in sections that allow graduate students to do research toward
their doctoral dissertation. This strategy began already with the construction of the
electron gun and the injector. Of special help is the additional support from the
DOE Inertial Fusion Program, which supplements the major grant from the DOE
High Energy Physics Program and allows us to operate the LSE for the new ex-
periments and diagnostic development for UMER; LSE will remain in operation
as the development of UMER progresses. The ring was constructed in sections,
and a fluorescent screen moved along from section to section for taking images of
the beam profile, which together with the nonintercepting beam position monitors
and current monitors, allowed us to diagnose the properties of the beam.

The requirements of UMER led to the development of new diagnostics and ex-
perimental techniques. The energy analyzer development and its application to
Coulomb collision research in LSE were already discussed in Section 7.2.2. In ad-
dition, we have developed fast capacitive beam position monitors (BPMs) [104], a
slit-scanner [105], a pepper-pot emittance meter, a skew-quadrupole corrector that
was built, simulated, and experimentally tested by one of our graduate students,
Hui Li, as a major part of his Ph.D. Dissertation [106] (see discussion of this topic
in the paragraph following the next one), and more recently a novel tomographic
phase-space mapper [107].

Although the pipe sections and magnet mounts were delivered by Michigan State
University toward the late 1999s, the installation of UMER did not really begin un-
til the delivery of the electron gun and diagnostic chamber from FM Technologies,
Inc. in April 2000. Due to the special scientific challenges that such an extreme
beam poses, we decided to proceed with a phased installation, as already mentioned
above, where we move the diagnostic chamber around the ring, recording detailed
measurements of the beam along the first turn. This effort came to close in the late
2004, when the novel injection Y-section was tested and installed. Thereafter we
have proceeded to recharacterize the beam and attempt multiturn circulation. The
multiturn commissioning effort is in progress, and results are rapidly improving.
As of May 2005, we have propagated our lowest current beam well over 100 turns,
satisfying one of our project goals. At about 0.5 mA, this beam still contains signifi-
cant space charge to produce a tune shift of around 1.0. With higher current beams
in the space-charge-dominated regime, we have achieved over 50 turns, albeit with
a significant beam loss during the first five turns. Beyond the 10th turn, about 5
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Fig. 7.15 Photo of the University of Maryland Electron Ring (UMER), taken on July 2007.

mA remains propagating for the remainder of the 50 turns. That’s about 0.5 nC of
charge surviving for 10 µs.

In computer simulations for the design of the ring, Kishek has determined very
early in the design phase that skew-quadrupole errors are likely the most dangerous
for the beam quality [108]. In previous studies it was shown that a skew-quadrupole
mismatch can lead to halo in a similar way to rms envelope mismatches [109].
Halos are thought to develop from parametric resonances between particle orbits
and envelope modes. Whereas in uncoupled systems there are only two envelope
modes, in systems with skew mismatches (linear x–y coupling), there are four
envelope modes [110], each with distinct frequencies that can lead to resonances.

In order to achieve circulation of the beam, we have invested in development of
several sophisticated control algorithms (see [106, 111]). Due to the intense space
charge, the quadrupole magnets are so closely spaced that we have an insufficient
number of beam position monitors. To compensate for that, we developed formal-
ized computer-controlled methods for scanning quadrupoles in order to infer beam
position data. This multiplies the number of position measurement locations from
13 up to over 80. In his Invited Talk, Bernal et al. at the 2006 Advanced Accelerator
Concepts Workshop, published in AIP Press 877 (2006), p. 94, covers the commis-
sioning of UMER and the low-current 100-turn result [112].

Figure 7.15 shows a recent photo (July 2007) of the UMER facility.
A major topic for future research in UMER is the behavior of asymmetric beams,

which is obtained from asymmetric focusing or different emittances, or both, in
the two transverse directions. One experiment being planned is the Montague res-
onance, which was already discussed in Section 7.3.2 in connection with the ar-
ticle by Hofmann and Franchetti, published in PRSTAB [54]. In this article the
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authors present a comprehensive analysis of the self-consistent, collective behav-
ior associated with the space-charge-driven Montague coupling resonance near
2Qx −2Qy = 0. The behavior differs considerably if the resonance is crossed from
above or from below, and we believe that it can be studied in future experiments in
the electron ring. To obtain a basic understanding of the beam physics in an asym-
metric channel, H. Li and myself used the “smooth approximation” with different
intensity parameters χx, χy and emittances εx , εy and published the results [113].
In the following section, we will outline the major features of the analysis in this
article and we will make changes and additions that were suggested by S. Bernal.

For a matched K–V beam in the smooth approximation of a periodic channel, or
in a uniform focusing channel, the external focusing is constant along the channel
and can be represented by k2

x0 and k2
y0, where kx0 and ky0 are the wave numbers

of the betatron oscillations without space charge for the x and y directions, respec-
tively. The envelopes X and Y are then also constant, that is they do not vary with
axial distance s, and the coupled matched beam equations can be written in the
form

k2
x0X − 2K

X + Y
− ε2

x

X3
= 0, (7.37a)

k2
y0Y − 2K

X + Y
− ε2

y

Y 3
= 0. (7.37b)

We start, for subsequent reference, with the well-known solution of the axisymmet-
ric case, where kx0 = ky0 = k0, εx = εy = ε and the beam has a circular boundary
with radius a. The envelope equation is

ak2
0 − K/a − ε2/a3 = 0. (4.88a)

From Equation (4.88a) and Equations (4.90) to (4.92), the radius a of a matched
K–V beam in a uniform focusing channel has the alternate exact solution:

a = aB

(
1/2 + 1/2 ·

√
1 + u−2

)1/2
, (4.93a)

a = a0

(
u +

√
1 + u2

)1/2
. (4.93b)

Here, aB = K1/2/k0, a0 = (ε/k0)
1/2, and u = K/(2k0ε) are defined in Equations

(4.90) to (4.92), respectively.
However, an approximate formula that shows the scaling with the space charge

and emittance terms in a more transparent form is of practical interest. In the two
limits of zero space charge (K = 0) and zero emittance (ε = 0), we obtain for the
envelope radius a the exact solutions: a = a0 and a = aB , respectively. We will now
try to find an approximate solution of Equation (4.88a) that has the form

a ≈ (
an

0 + an
B

)1/n
, (7.38a)

where n is an integer greater than 1. For n = 2, one obtains the formula (see
Equation (5.293) on p. 344), which we write in the form
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a ≈
(
a2

0 + a2
B

)1/2
, (7.38b)

a ≈
[
(ε/k0) +

(
K/k2

0

)]1/2
(7.38c)

for which the largest error is about 12%. Although the case n = 3 was found to
be somewhat more accurate and treated in the article, I will change the analysis to
the case of n = 2, which for both the symmetric and asymmetric cases is simpler
mathematically, hence easier to understand for the reader (S. Bernal, private com-
munication). This modification has no effect for the remainder of the theoretical
treatment following the next two equations.

In the general asymmetric case of a matched K–V distribution, we must use the
coupled Equations (7.37a), (7.37b) for the average beam envelopes X and Y . Follow-
ing the procedure used in the axisymmetric case, we first solve the two equations
in the two limits of zero space charge (K = 0) and zero emittances (εx = εy = 0);
then we obtain with n = 2 the approximations

X ≈
[
(εx/kx0) +

(
K/k2

0

) (
k2
y0/k2

x0

)]1/2
, (7.39a)

Y ≈
[
(εy/ky0) +

(
K/k2

0

) (
k2
x0/k2

y0

)]1/2
, (7.39b)

where k2
0 ≡ (k2

x0 + k2
y0)/2. The errors between these approximations and the exact

numerical solutions for X and Y depend on the ratios k2
x0/k2

y0, and ε2
x/ε2

y .
We can significantly improve the accuracy of the solutions by introducing the

aspect ratio A defined as

A ≡ Y/X. (7.40)

By substituting this relation into Equations (7.39a) and (7.39b), we find that A obeys
the following mathematical relationship:

A = Y

X
= k2

x0

k2
y0

·
1 +

√
1 + k2

y0ε
2
y(1 + 1/A)2K−2

1 +
√

1 + k2
x0ε

2
x(1 + A)2K−2

· (7.41)

One can determine the exact value of A by solving the relation A = F(A) via some
numerical iterative method, i.e., An+1 = F(An), with an initial value A0 = 1 (sym-
metric case), or by using a better initial guess obtained from the ratio Y/X of Equa-
tions (7.39a) and (7.39b). By inserting the value of A found from Equation (7.41),
the envelope equations (7.39a) and (7.39b) can be decoupled and easily solved by
the exact solutions analogous to Equations (4.93a) and (4.93b). The decoupled K–V
envelope equations have the same forms as in the symmetric case,

k2
x0X − Kx

X
− ε2

x

X3
= 0, (7.42a)

k2
y0Y − Ky

Y
− ε2

y

Y 3
= 0, (7.42b)

where we define Kx ≡ 2K/(1 + A) and Ky ≡ 2A · K/(1 + A) = A · Kx . The two
equations (7.42a) and (7.42b) can be solved numerically to yield X and Y .
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A different approach used by S. Bernal will be presented below the paragraph
following Figure 7.16.

Equation (7.41) for the aspect ratio is particularly useful for determining the rela-
tion between the external focusing and the beam perveance and emittances in the
asymmetric case for a given design value of A. We will show two design examples
in the last section.

The question arises what scaling procedure should be used in the asymmet-
ric case. Let us, for example, compare two beams, an ion beam and an electron
beam in an asymmetric quadrupole lattice, which have different parameter sets
K, k2

x0, k
2
y0, εx , and εy . The question is: under what conditions do they have the

same tune depressions in the x and y directions and hence describe the same
beam physics? In order to answer this question, we must normalize the K–V enve-
lope equations (7.42a) and (7.42b) by some properly chosen parameters. We will do
that by first introducing the following relations:

ν ≡ (k2
x0 − k2

y0)/2k2
0, −1 � ν � 1, (7.43a)

w ≡ (ε2
x − ε2

y)/2ε2, −1 � w � 1, (7.43b)

ε2 ≡ (ε2
x + ε2

y)/2, (7.43c)

k2
0 ≡ (k2

x0 + k2
y0)/2. (7.43d)

Here, k2
0 and ε2 define the averages of the focusing strengths (represented by the

squares of the wave numbers) and of the squares of the emittances, respectively,
while the parameters ν and w define the degree of the asymmetry for the focus-
ing strengths and emittances in the x and y directions, respectively. We call ν the
asymmetry parameter of the focusing strengths and w the asymmetry parameter
of the squares of the emittances. Both ν and w range from −1 to +1. Using k2

0 and
ε2, we can define, by analogy to the symmetric case, an “average” beam radius as

in the asymmetric channel, which obeys the equation

k2
0as − K

as

− ε2

a3
s

= 0. (7.44)

Note that the “average” beam radius as is normally not equal to the arithmetic
average of X and Y , that is as �= (X + Y )/2. It can be calculated from Equation
(7.44) by the same method that was used in the axisymmetric case, with ε2 and k2

0
defined in Equations (7.43c) and (7.43d), respectively, and u = K/(2k0ε), where
K is the generalized perveance. The radius as can serve as a good parameter to
normalize the beam envelopes X and Y . Using relations (7.43a) to (7.43d), we can
express the two envelope equations (7.42a), (7.42b) in the dimensionless forms:

ξ − 2/(1 + ν)

ξ + η
χ − (1 + w)/(1 + ν)

ξ3
(1 − χ) = 0, (7.45a)

η − 2/(1 − ν)

ξ + η
χ − (1 − w)/(1 − ν)

η3
(1 − χ) = 0, (7.45b)
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where ξ ≡ X/as and η ≡ Y/as are the normalized beam envelopes. The intensity
parameter χ , which measures the ratio of the space-charge force to the external
focusing force, has the range 0 � χ � 1 and is defined in Equation (7.24) above.

χ ≡ K

k2
0a2

s

.

If we substitute for as the analytic result given in Equation (7.44), we obtain for χ

the alternate form

χ = 2

1 + √
1 + 4(k0ε/K)2

= 2

1 + √
1 + (1/u)2

, (7.46)

which shows that χ depends only on the parameter u that has a range from 0 (for
K = 0, where χ = 0) to infinity (for ε = 0, where χ = 1).

Equations (7.45a), (7.45b), and (7.46) represent the desired scaled K–V enve-
lope equations in normalized forms. They replace the system of multiple variables
K, k2

x0, k2
y0, εx , and εy , which vary widely from zero to infinity, by an equivalent

parameter space ν, w, χ , k2
0 , and ε2. Since Equations (7.45a) and (7.45b) depend

only on ν, w, and χ , we can easily test the approximations like Equations (7.39a)
and (7.39b) in a more restricted variable space, where the numerical values of the
scaling parameters are limited to −1 � ν � 1, −1 � w � 1, and 0 � χ � 1, while
the physics is still the same. Furthermore, they clearly show the balance between
the space-charge and emittance terms in the asymmetric case, and they reveal that
the basic beam physics is the same for all stationary K–V beams as long as they
have the same values of ν, w, and χ . We will also show in the later part of this
section that the stationary K–V beams with the same values of ν, w, and χ have the
same x and y betatron tune depressions even if the average focusing k2

0 and the
average ε2 are different.

In the asymmetric case, the betatron tune depressions, kx/kx0 and ky/ky0, are
different. We can calculate the two tune depressions by rewriting Equations (7.37a)
and (7.37b) to read

[
k2
x0 − 2K

(X + Y )X

]
X − ε2

x

X3
= k2

xX − ε2
x

X3
= 0, (7.47a)

[
k2
y0 − 2K

(X + Y )Y

]
X − ε2

y

Y 3
= k2

yY − ε2
y

Y 3
= 0, (7.47b)

where kx = [k2
x0 − 2K

(X+Y)X
]1/2, ky = [k2

y0 − 2K
(X+Y)Y

]1/2 are the wave numbers with
space charge for the x and y directions. The tune depressions for the two directions
are then given by the relations

kx

kx0
= νx

νx0
=

[
1 − 2K

k2
x0(X + Y )X

]1/2

= [1 − χx]1/2, (7.48a)

ky

ky0
= νy

νy0
=

[
1 − 2K

k2
y0(X + Y )Y

]1/2

= [1 − χy ]1/2, (7.48b)
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where χx and χy are the intensity parameters for the x and y directions, which are
identical to χ of Equation (7.24) when X = Y = as (symmetric case). We can also
rewrite Equations (7.48a) and (7.48b) in terms of the dimensionless envelopes ξ , η,
asymmetry parameters ν, w, and the intensity parameter χ :

kx

kx0
=

[
1 − 2/(1 + ν)

(ξ + η)ξ
χ

]1/2

= [1 − χx]1/2, (7.49a)

ky

ky0
=

[
1 − 2/(1 − ν)

(ξ + η)η
χ

]1/2

= [1 − χy]1/2. (7.49b)

For an axisymmetric K–V beam, the tune depression is determined solely by the
intensity parameter χ and given by the relation k/k0 = (1 − χ)1/2. However, for
an asymmetric K–V beam, the tune depressions in the two transverse directions
are functions of ξ , η, v, and χ according to Equations (7.49a) and (7.49b). Noting
that ξ and η are only dependent on ν, w, and χ from Equations (7.45), we can con-
clude that the tune depressions for an asymmetric K–V beam are determined by the
asymmetry factors ν, w, and the intensity parameter χ . Thus, two K–V beams with
the same degrees of asymmetry, ν and w, have the same x and y tune depressions
as long as they have the same values of the intensity parameter χ .

Finally, we will rewrite Equation (7.41) for the aspect ratio A = Y/X = η/ξ in
terms of the dimensionless parameters ν, w, and χ , which yields

A = 1 + ν

1 − ν
· 1 + √

1 + (1 − ν)(1 − w)(1 − χ)/χ2 · (1 + 1/A)2

1 + √
1 + (1 + ν)(1 + w)(1 − χ)/χ2 · (1 + A)2

. (7.50)

This relation can be solved to any desired degree of accuracy by numerical iteration,
as discussed in connection with Equation (7.41).

Below is a design example for two UMER operating points to illustrate the ap-
plication of the theoretical results for the tune depressions (vertical axis) versus χ

(horizontal axis) from Equations (7.49a) and (7.49b) in the x and y directions of an
asymmetric channel. Case A is for large intensity, case B is for very low intensity,
compared with the corresponding axisymmetric case (Figure 7.16).

In this example the intensity parameter χ is larger in x than in y, so that the tune
depression νx/νx0 is smaller than νy/νy0. The axisymmetric case, ν/ν0, is between
the two. The emittances in both directions are the same (εx = εy) in this case.

In the second approach, the one presented in [114], the ratio A is not specified; in-
stead, the coupled smooth-approximation equations (7.37a) and (7.37b) are solved
directly for X, Y. In a final step, the depressed wave numbers, kx , ky , tune depres-
sions, kx/kx0, ky/ky0, and associated intensity parameters, χx , χy , are obtained
from Equations (7.48a)–(7.48b).

Table 7.1 summarizes additional results for asymmetric beams in UMER (at 10
keV). The transverse emittances in each individual case are the same, and focusing
is asymmetric with kx0 = 4.15 m−1, ky0 = 3.27 m−1, corresponding to zero-current
phase advances of 76◦ and 60◦, respectively. We solve Equations (7.37a) and (7.37b)
for X and Y directly and employ other relations defined above. Note that a broad
range of intensities is possible despite the fact that the aspect ratio A changes over a
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Fig. 7.16 Tune depressions for the two UMER operation points
with the highest intensity, A (K = 1.6 × 10−3), and the lowest
intensity, B (K = 0.01 × 10−3). The asymmetry parameters are
ν = −0.2, w = 0.

Table 7.1 Results for asymmetric focusing, identical emittances, εx = εy , in UMER.

Current, X (mm) Y/X as χ u

Emittance Y (mm) (mm)

0.55 mA, 1.30 1.16 1.39 0.31 0.18
6.0 µm 1.51

7.2 mA, 2.71 1.35 3.10 0.80 0.90
16 µm 3.65

24 mA, 4.43 1.46 5.29 0.92 1.60
30 µm 6.46

85 mA, 7.80 1.55 9.66 0.98 3.09
55 µm 12.1

narrow range, from 1.2 to 1.5, approximately. The case 7.2 mA, 16 µm corresponds
to parameters actually used in an experiment reported in PAC05 (see S. Bernal et
al., Proc. PAC05, p. 892) [115].

Beams with asymmetric emittances can also be designed for UMER. In principle,
“flat beams” can be produced directly by photoemission from the UMER cathode
by placing narrow slits in front of the driving laser. The slits would be 4 mm long
and 0.8 mm, 0.4 mm, and 40 µm wide for emittance ratios εx/εy = 5, 10, and
100, respectively. This method differs from the one employing the special transfor-
mation of an angular-momentum dominated beam by means of skew quadrupoles
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Table 7.2 Results for “flat beams” with large ratios of X/Y and εx/εy in UMER.

Current, X (mm) Y/X as εY /εX ε χ u

Emittance Y (mm) (mm) (µm)

6.37 mA, 4.70 0.52 3.36 0.20 33.5 0.49 0.34
εX = 75 µm, 2.44
εY = 15 µm

3.18 mA, 4.50 0.35 2.70 0.10 23.7 0.38 0.24
εX = 75 µm, 1.64
εY = 7.5 µm

318 µA, 4.28 0.11 1.40 0.01 7.5 0.14 0.08
εX = 75 µm, 0.46
εY = 0.75 µm

(“Derbenev’s transform” – see [116]) or the more standard use of damping rings.
Flat beams can be used for experiments on emittance exchange and equipartition-
ing and also for validation of ILC design parameters.

Table 7.2 summarizes results of flat beams in UMER. The third case in the table
would be very challenging to achieve in UMER, but has been reported in experi-
ments by Piot et al. [117]. A different expression for the average emittance is em-
ployed for the calculations presented in the table [compare with Equation (7.43c)]:

ε = √
εXεY . (7.51)

This expression works better for the type of flat beams which we envision in UMER,
and it is plausible that it is correct for all cases of beams with asymmetric emit-
tances. In fact, the product of transverse emittances represents the phase space
volume in 4D space, which can be shown to be an invariant (see for example [118]).
The average beam size is still defined as in Equation (4.93), with the understanding
that the average emittance is now defined as in Equation (7.51). In addition, the
individual “u” parameters can be defined as

uX = KX

2k0XεX

, uY = KY

2k0Y εY

, (7.52)

with KX, KY defined below Equations (7.42a) and (7.42b). With these definitions,
the intensity parameters become

χX = 2

1 +
√

1 + u−2
X

, χY = 2

1 +
√

1 + u−2
Y

. (7.53)

Note from the columns of average emittance and “u” parameter that the former
is simply proportional to the latter. This correlation reflects the fact that the “u”
parameter is proportional to the size of the collimating aperture.

All three cases of flat beams in the table correspond to emittance-dominated
transport, on average. But, from calculations of the individual intensity parameters
[Equations (7.53)], it seems possible to have emittance-dominated transport in “x”
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but space charge-dominated transport in “y.” Naturally, this is not always possi-
ble in practice because of processes that may lead to emittance exchange and/or
equipartitioning.

7.4.4
Other Ring Experiments and Theory

In this section several ring and recirculator experiments and theoretical/numerical
studies relating to these experiments will be discussed.

7.4.4.1 The LLNL Heavy Ion Recirculator
A recirculating induction accelerator, or “recirculator,” has been proposed in 1995
at LLNL. The article by Barnard et al. [119] describes the design and physics cal-
culations in great detail. Recirculating induction accelerators (recirculators) have
been investigated as possible drivers for inertial fusion. They offer the prospect of
reduced cost relative to a conventional linear accelerator because the accelerating
and focusing elements are re-used many times per shot. The circumference of the
recirculator can be much less than the length of the equivalent linear accelerator

Fig. 7.17 Schematic of the recirculator that has been proposed
at Lawrence Livermore National Laboratory (LLNL) in 1995.
(Courtesy of J. J. Barnard).
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and the accelerating cores can be smaller because there is no need to accelerate the
beam at the maximum gradient. A small recirculator had been developed at LLNL
to explore the beam dynamics of a full-sized fusion driver in a scaled manner. This
research is being carried out as a sequence of experiments that will lead to the
construction of a complete prototype.

Electric dipole plates were chosen for the prototype to minimize costs. However,
the size of the plates is constrained by space considerations and voltage-holding
requirements. The key dimensionless parameters that characterize the beam are
similar to those of a driver-scale ring. The planned ring (see Figure 7.16) will have
a circumference of 14.4 m, made up of 40 “half lattice periods,” each with a perma-
nent magnetic quadrupole for transverse confinement, an electric dipole for beam
bending, and an induction acceleration gap (except in the insertion/ extraction re-
gion). A beam of singly charged potassium ions will be accelerated from 80 to 320
keV over 15 laps, at a current increasing from 2 to 8 mA. With its low temperature,
the beam is strongly influenced by the self-electric fields arising from its own space
charge. Although a full-scale driver will use magnetic dipole elements for bending
the beam, electric dipole plates were chosen for the prototype to minimize costs.
However, the size of the plates is constrained by space considerations and voltage-
holding requirements. As a result, they introduce significant nonlinear fields us-
ing WARP3d, the plate shape was adjusted to minimize 3D field nonlinearities and
their influence on beam quality.

In contrast to the UMER facility, the LLNL Recirculator has a major goal not
only to study the physics of space-charge dominated heavy ion beams, but, equally
important, of the technology issues of induction-linac drivers for heavy-ion inertial
confinement fusion and of the cost advantages of using a recirculator rather than a
straight linac (Figure 7.17).

Unfortunately, the recirculator could not be completed as planned, as budgetary
consideration led to the termination of the project after one quarter of the ring
(90◦) had been constructed. However, a number of important research results were
obtained in the experiments, in theory and in simulations with WARP program. A
summary of this work was presented by Ahle et al. in 2001 [120]. The achievements
of the final experiments are summarized as follows:

“Experiments on the 90◦ bend section of the LLNL Recirculator have been
completed with a successful demonstration of coordinated bending and
acceleration of the beam. Control of the 2 cm diameter beam has been
demonstrated to the millimeter level and that emittance growth is below
the acceptable level. Some dependence on beam quality and emittance is
seen with the matching solution used in the ESQ section of the lattice.
With these experiments, all the necessary technologies, except for
insertion and extraction, have been demonstrated.”
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Fig. 7.18 Plan and side view of the small isochronous ring (Courtesy of R. York et al.).

7.4.4.2 The Small Isochronous Ring (SIR) Project at Michigan State University
(MSU)
This project at the National Superconducting Cyclotron Laboratory (NSCL) at
Michigan State University has been designed in 2001 and in operation since 2003.
A schematic layout of the SIR is shown in Figure 7.18.

The development of the SIR from conceptual design to construction and early
operation is reported in the following three papers.

The first one was presented by Eduard Pozdeyev at the 2001 Particle Accelerator
Conference in Chicago [121]. It represents essentially his Ph.D. Dissertation, for
which he received the 2005 Outstanding Doctoral Thesis Research in Beam Physics
Award.

The basic motivation for the development of the SIR, as stated by Pozdeyev, is
the fact that “the longitudinal–radial space charge effect is the main cause of cur-
rent limitation in high-intensity isochronous cyclotrons. The space charge force
increases the energy spread within beam bunches and tends to destroy turn separa-
tion. This leads to beam losses and extraction deflector overheating and activation.
There is very little theoretical and experimental knowledge of high-intensity beam
dynamics in isochronous accelerators. To study the space charge in the isochro-
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nous regime experimentally we intend to build a low-cost, low-field, low-energy
isochronous ring.”

The second paper was presented by Pozdeyev et al. [122]. Figure 7.18 was copied
from this article.

The third paper [123] was presented by Rodriguez et al. at EPAC 2004.

7.4.4.3 The Proton Storage Rings (PSR) of the Institute for Nuclear Physics (INP) at
Novosibirsk1)

The idea of non-Liouvillean injection of H− ions through stripping in “lavsan”
film to produce protons, proposed by Budker in 1959, motivated him to build a
small proton storage ring for investigating this concept and, if successful, to use
H-stripping for producing high-brightness proton beam accumulation as the first
stage of a proton–antiproton high-energy collider. The experimental development
of such a ring was started by Dimov and completed in 1965 by G. Budker, G. Di-
mov, and V. Dudnikov. This first small circular proton storage ring consisted of a
continuous, cyclotron-type magnetic field with weak focusing, radius R = 42 cm,
field index n = 0.6, vertical betatron frequency Qz = (0.6)1/2, radial betatron fre-
quency Qr = (1−0.6)1/2 and started to perform experiments with a bunched beam
(Figure 7.19). A thin “lavsan” film was tested for its stripping capability in a direct
beam line.

Two important observations were made in the experiments with this first small
ring:

1. In view of the low injection energy of only 1.5 MeV in the
ring design, the scattering in the “lavsan” film was too high,
as had already been recognized before starting the ring
operation.

2. In the first experiments the team discovered the unexpected
instability, subsequently identified as electron–proton (e–p)
instability. Coherent betatron oscillations and beam losses
occurred above a threshold proton intensity of
(1.0−1.5) × 1010, as is illustrated in Figure 7.20.

Budker with his team then built a second small ring with a continuous (coasting)
beam (Figure 7.21). H− injection through a supersonic hydrogen jet with density
of up to 1×1019 molecules /cm3 for the stripping injection, as in the first ring. The
H− ions were produced from a gas discharge source.

In this second ring, which was designed for space-charge compensation, the
stripping process produced a higher proton current. But the negative mass insta-
bility and the e–p instability prevented it from reaching the desired space-charge
compensation limit of a high current beam.

Soon Budker and co-workers concluded from their observations that the insta-
bility was driven by the electron cloud interacting destructively with the proton

1) The INP is now named as the Budker Institute for Nuclear Physics (BINP) in honor of its Founder,
G. Budker, who died in 1977. The current Director of BINP is Academician Alexander Skrinsky.
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Fig. 7.19 First small ring with a bunched beam, continuous
cyclotron type magnetic field and stripping ionization (H− to
H+) by use of a supersonic H2 gas jet and a “Lavsan” film.
(Courtesy V. Dudnikov).

beam. Further experimental studies showed that this instability could be damped
by a transverse feedback system. This work was first published by Budker et al.
[124–126].

About two years later, another proton storage ring (PSR), shown in Figure 7.22,
was built with a race-track type magnetic field configuration, a larger circumfer-
ence of about 6 m and a coasting proton beam. It also suffered an electron-cloud
instability. In this case, the threshold corresponded to 1.2 × 1010 protons [128].
The coasting-beam instability was suppressed (self-stabilized) by increasing the
beam current and the gas density. This compensation scheme allowed storing up
to 1.8 × 1012 protons, i.e., about 150 times the initial threshold value, and the cir-
culating current was about 1 A, or up to nine times greater than the space-charge
limit [127, 128]. As pointed out by Dudnikov in his paper at PAC01 [128], the fast
accumulation of secondary plasma by gas ionization was essential for the stabiliza-
tion. The existence of an “island of stability” above the threshold was consistent
with an analysis based on the publication by Chirikov [129].

The diagnostics is used for the observation and stabilization of the e–p instability.
The proton energy was in the range of 1 to 1.5 MeV; injection up to 8 mA; bending
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Fig. 7.20 Development of e–p instability in the BINP proton
storage ring with charge-exchange injection. Time history:
1. beam accumulation (0–1 ms); 2. beam storage (1–5 ms);
3. development of coherent betatron oscillations and beam loss
after 5–6 ms. (Courtesy of V. Dudnikov).

Fig. 7.21 Second small ring with a coasting beam. Like the first
one, this ring is a simple uniform circle with radius R = 42 cm,
index n = 0.6, vertical betatron frequency Qz = (0.6)1/2, radial
betatron frequency Qr = (1 − 0.6)1/2. H− injection through a
supersonic hydrogen jet with density of up to 1 × 1019

molecules/cm3, was developed for the stripping injection. The
H− ions were produced from a gas discharge source.



568 7 Beam Physics Research from 1993 to 2007

Fig. 7.22 Schematic of the large BINP proton storage ring. The
ring circumference was 6 m. (Courtesy of V. Dudnikov).

radius = 42 cm; magnetic field – 3.5 kG; index – n = 0.2–0.7; Qz = 0.85; Qr = 1.2,
corresponding to our notation of νy = 0.85 (in the vertical direction); νx = 1.2
(radial direction).

The four graphs in Figure 7.23 show (from top to bottom) the proton number
Np, the injection current Ii, the number of ions Ni, the amplitude of the dipole
oscillations D, and the amplitude of quadrupole oscillations Q in arbitrary units,
a.u. versus time in microseconds (markers 1.9 and 2.9 are levels of space-charge
limits, shifting Qz to 0.5 and to 0).

Apart from his other contributions, the invention of the H− source was V. Dud-
nikov’s most important achievement. Dudnikov performed his Ph.D. thesis,
“Charge exchange injection” under the supervision of G. Dimov (1965–1967). He
discovered that proton accumulation up to the space-charge limit of a bunched
beam (∼300 mA) was reached with the injection intensity of ∼0.5 mA and with
increasing multiturn brightness. Dudnikov explained the e–p instability, unexpect-
edly discovered experimentally in 1965, as interaction with compensated particles.
A cesium catalysis of negative ion formation in gas discharge was discovered by
Dudnikov in 1971 during the work for H− source development for the larger ring,
mentioned above. (See V. G. Dudnikov, “The Method for Negative Ion Production,”
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Fig. 7.23 Accumulation of circulating coasting proton beam in
the large INP PSR below a critical threshold injection (dotted
lines) and above a critical threshold (solid lines) with
self-stabilization of instabilities and high proton beam intensity
above the space charge limit. (Courtesy of V. Dudnikov).
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Russian Patent, No. 411542, 1973.) This H− source is now generally known as the
“Dudnikov source” and used worldwide for basically all proton accumulator rings.

R. L. Martin of ANL presented a review of the history of non-Liouvillean injec-
tion at the 1991 meeting in College Park, MD [41] in the Panel Discussion, pp.
232–235. He had visited Novosibirsk in late 1968 and saw the laboratory experi-
ment by G. Dimov on charge exchange injection of H−-ions. Martin pointed out
that Dimov injected 1.5 MeV H− ions into a small storage ring (2.5 m circumfer-
ence) in a two-stage process (H− to H0 to H+) by gas stripping. Although Dimov
accumulated only a few ×1010 protons (actually 3 × 1011 according to Dudnikov,
(private communication), this impressed Martin because it was at the space-charge
limit of the ring at 1.5 MeV and required many turns of injection. It was therefore
clearly non-Liouvillean. Even more impressive to him was an H− source of 16 mA
output. This was far superior to any other H− source in the world at that time, and
the current was adequate to make charge exchange injection practical on an operat-
ing physics machine at high intensity. The 16 mA charge exchange H− source was
developed by Roslyakov and Dimov, while Dudnikov developed the surface plasma
sources with H− current > 100 mA (private communication by Dudnikov).

Martin therefore began a program on H− charge exchange at Argonne, where the
ZGS injector was a 50 MeV Alvarez Linac. At 50 MeV one could make plastic foils
thin enough (2000 Å) so that the complication of gas stripping could be avoided. In
the initial experiments at the ZGS, a transverse instability was found, which was
later (in 2000) identified as the e–p instability by Dudnikov.

An excellent comprehensive review of single bunch instabilities driven by
an electron cloud with a detailed list of references was published by Zimmer-
mann [130], who in April 2007 was appointed as editor of PRST-AB. From this
publication of Zimmermann, it is obvious that the e–p instability has been, and
still is a problem in practically every accumulator ring and can usually not been
cured by increasing the background gas, as was the case in the PSR at the Insti-
tute of Nuclear Physics in Novosibirsk. It is well known that the large rings used
for high-energy-physics colliders or spallation neutron sources require extremely
good vacuum to avoid emittance growth due to gas scattering and other effects.
So far, any success in damping the instabilities had to rely on clearing electrodes
and sophisticated control systems for various modes and frequencies observed in
the experiments. Negative feedback was successfully used for suppressing the e–p
instability at INP and in Los Alamos. With high injection current and feedback, su-
perintense, space-charge compensated beam can be stable even in good vacuum.

Vadim Dudnikov presented a paper at PAC01 entitled “30 Years of High-Intensity
Negative Ion Sources for Accelerators,” which contains a review of the development
of the H− source he invented and which he also named surface plasma source
(SPS), with an account of the complicated chemistry and technology involved and
a list of 17 references [131].

It is interesting to note that essentially all high-energy physics machines at Bud-
ker’s Institute for Nuclear Physics (INP) have been electron–positron colliders. The
exception, VAPP-3, did not work as an antiproton–proton collider, as originally
designed. However, it was used as a proton test device where the protons were



7.4 The University of Maryland Electron Ring 571

Fig. 7.24 Schematic diagram of the proton synchrotron (PS) and the ISR. (Courtesy of CERN).

produced by charge exchange injection (V. Dudnikov, private communication). Ac-
cording to Alexander Skrinski in his invited talk at PAC95, it was called NAP-M,
designed and built, together with a high quality electron beam, to successfully pro-
duce electron cooling of the proton beam. After this accomplishment, the VAPP-3
was changed into an electron–positron collider, VEPP-4. Thus, the first proton–
proton collider was the Intersecting Storage Ring at CERN, which will be discussed
in the next section.

7.4.4.4 The Intersecting Storage Rings (ISR) at CERN
At CERN the concept of the intersecting proton storage rings as a future hadron
collider was studied by a group led by Kjell Johnsen since 1960. The ISR was to
be a facility for hadron research. The ISR should remain the only proton–proton
intersecting storage ring for a long time until the advent of the LHC. The project,
approved in 1965, was presented by Johnsen in a paper in 1967 [132]. Four years
later, he described the experience in the initial phase of operation of the ISR [133].
In the ISR two rings with proton beams moving in opposite directions collide with
each other at several intersection points.

I communicated with Kurt Hübner at CERN as to whether the ISR could be
considered for beam physics research to be included it in the new book edition.
Hübner pointed out that the ISR should definitely be included, listing a number
of experimental studies falling into the beam physics category, even though the
ultimate goal for the ISR was to be a facility for hadron collider research. He men-
tioned that a year ago he wrote a CERN Yellow Report entitled, “Fifty years of re-
search at CERN, from the past to the future: The Accelerators,” which was based
on a series of lectures given in the Academic Training Program on the occasion of
CERN’s 50th anniversary at CERN, and which also includes a section on the ISR
project [134]. It is a very impressive and comprehensive document, which scientists
and collaborators interested in the history of accelerators at CERN should have as
a useful reference. Kurt Hübner also sent me Figures 7.24–7.29.

In regard to the history of the ISR, Hübner writes:

“While the SC and the PS were being built, the study for the second genera-
tion of CERN accelerators started at the end of 1956 and gradually swung toward a
proton–proton collider. In addition, from 1961 onwards, a study of a 300 GeV pro-
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ton synchrotron was conducted. In 1965, at the end of a lengthy and intense debate,
it was decided to first construct the ISR, though a number of physicists were not in
favor as the ISR would not provide secondary beams and was considered to be too
much of a shot into the dark. The ISR were constructed from 1966 to 1970 on land
in France, adjacent to the original CERN site in Switzerland. It operated from 1971
to 1983 for physics. The combined-function magnet lattice, providing AG focus-
ing, formed two independent, interleaved rings, intersecting in eight points. Five of
these points were used for experiments. The ISR were housed in a big tunnel con-
structed by the cut-and-fill method. A schematic of the ISR with the proton injector
on the left and the proton synchrotron (PS) on the right is shown in Figure 7.24.
The circumference of the ISR was 943 m, exactly 1.5 times the circumference of
the PS. The maximum beam momentum was 31.4 GeV/c. With dc proton currents
up to 40 A (single beam up to 57 A!) it reached a luminosity of 1.4 × 1032 cm−2s−1

Fig. 7.25 State of construction in April 1969. In the foreground,
work has started on the building housing the control room, and
also on the Experimental Hall I4. To the right, Octant 3 is
already being covered and the tunnel is complete as far as
Octant 7. On the far side, the steel work for Hall I1 is in position
and in the background the tunnel of the booster is about half
complete. Top right is the PS itself. (Courtesy of CERN).
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in the superconducting low-beta insertion, a factor 35 above the design luminosity.
It was a pioneer of accelerator technology:

• ultrahigh vacuum and ion clearing (residual pressure 10−13

Torr in the experimental areas),
• low-impedance vacuum envelope,
• high-stability power supplies (only 0.1 ppm ripple in the

dipole current),
• superconducting low-beta insertion to squeeze the beam in

the intersection point (increasing the luminosity by a factor
of 6.5).”

The state of construction in April 1969 is shown in Figure 7.25.
Figure 7.26 shows a layout of the ISR with a photo inset of the magnets in the

tunnel at an early stage of construction.

Fig. 7.26 Layout of the ring and straight sections, with a photo
of the magnets in Octant 3 of the ISR tunnel before cabling has
begun (inset). (Courtesy of CERN).
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Following is a list of the components of the ISR:

FKI Fast Kicker at injection F Radially focusing unit
OE Special quadrupole for slow integral D Radially defocusing unit

ejection H Horizontal field magnet
SE Sextupole for slow ejection T Terwilliger quadrupole
STE Thin septum magnet for ejection Q Scew quadruople
SME Thick septum magnet for ejection S Sextupole
FKlD Fast kicker internal beam dumping V Vacuum sector valve
FKED Fast kicker external beam dumping P Beam position pick-up station
SMED Septum magnet external beam dumping PP Phase pick-up station
ID Internal beam dump PI Special pick-up station for injection
ED External beam dump PIDC DC intensity pick-up
FKE Fast kicker for ejection PIWB Wide band intensity pick-up
* Special design PIUWB Ultrawide band intensity pick-up
F* Must be with reversed yoke for ejection rf cavity.

and external beam dumps (rf) Space reserved for future RF
S1 Scraping target cavity SMI Steel septum magnet fir injection
PP Radial position pickup

Figure 7.27 shows a photo at intersection point 5. Recall that the AG focusing
system of the ISR formed two independent, interleaved rings, intersecting in eight
points. Five of these points were used for experiments.

Fig. 7.27 View of the ISR at intersection point 5. (Courtesy of CERN).
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Figure 7.28, published by Kjell Johnsen in 1984 [135], shows as an example the
evolution of the pressure in the vacuum chamber averaged over the circumference.
The design figure was 10−9 Torr. The excellent vacuum allowed physics runs with
the beam coasting for 60 h with beam lifetimes in excess of many months, which
rendered excellent background conditions.

Since it was the first hadron collider, the ISR provided a unique opportunity to
study effects which were predicted by theory, such as beam–beam effects, space-
charge detuning, beam–equipment interaction, and intrabeam scattering, and to
discover unexpected phenomena such as pressure rise due to multipactoring. Two
prominent examples are given. The invention of nondestructive beam diagnostics
for coasting beams with Schottky noise was of enormous impact. Figure 7.29, pub-
lished in 1974 [136], shows the beam noise picked up by an electrode.

The signal is proportional to the square of the proton density as a function of
beam momentum. The scan with 19 A beam current (bottom trace) shows a dent
in the distribution due to beam loss at a nonlinear resonance. This Schottky noise
signal became an indispensable tool for monitoring the average momentum, the
momentum spread, and the density evolution of the coasting beam without dis-
turbing the beam. Online correction of the space-charge tune-shift became possible
because the betatron tunes of the stack edges or of a resonance could be determined
with high precision from the fast and slow transverse-wave Schottky signals (not
shown here).

This discovery of the transverse Schottky signals led to another unique accom-
plishment, the resurrection of the idea and the first experimental test of stochastic
cooling invented by S. van der Meer in 1968. Figure 7.30 shows the result of the first

Fig. 7.28 The evolution of the average vacuum pressure in the ISR [135]. (Courtesy of CERN).
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Fig. 7.29 Longitudinal Schottky scans of coasting proton
beams of 10, 15, and 19 A [136]. (Courtesy of CERN).

Fig. 7.30 Measurement of relative beam height as a function of
time with stochastic cooling on and off [137]. (Courtesy of
CERN).

test in 1975 [137]. The beam height is blowing up on account of multiple scattering
on the rest gas when the cooling is off.

Later, physics runs with colliding proton–antiproton beams took place with a
more refined cooling system so that an antiproton beam (see Section 4.2) could
circulate up to 345 h without any significant deterioration.
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I would like to note here that the history of high-energy colliders is discussed in
numerous publications, conference proceedings, and books. Hübner’s 2006 Yellow
Report [134] provides an excellent review of the developments at CERN. A general
discussion on the developments of colliders worldwide prior to 1995 is presented in
the book by Pellegrini and Sessler (D.11) listed in the Bibliography. This history of
high-energy physics accelerators is of course beyond the scope of this book, which
is about beam physics with emphasis on the role of space charge.

7.5
Issues Related to Electron Photoinjectors

7.5.1
The Problem

Emittance growth in guns and injectors has long been a limiting factor in the per-
formance of particle accelerators. As our theoretical and experimental understand-
ing of beam transport and manipulation has improved there are still unresolved
issues in regard to the space charge dominated dynamic of beams. Much attention
has been paid to transverse dynamics over the years. Recently, the study of lon-
gitudinal dynamics and longitudinal space charge waves has become increasingly
important.

The increased interest in longitudinal dynamics has coincided with the rise of
laser-switched photoinjectors as a source of choice for bright electron beam appli-
cations.

Photoinjectors use laser-driven photocathodes to generate intense/bright elec-
trons beams. These electrons are then accelerated to several MeV using rf fields.
In practice the term photoinjector refers to the apparatus required to generate and
accelerate the electrons to about 10 MeV. Higher energies are achieved by inject-
ing these electrons into conventional rf accelerating structures. The electrons are
accelerated with rf power at frequencies typically on the order of a gigahertz. Only
electrons in phase with the peak of the rf are accelerated in the right direction,
so the electrons are ideally generated in short “bunches” which should occupy no
more than a few degrees of phase of a given rf cycle. Thermionic sources are able
to produce electron bunches typically of nanosecond on longer pulse lengths, but
are not well suited for applications where the duration of the electron bunch is
only picoseconds and the switching on and off must be sharp. Laser-switched pho-
toelectron sources allow the electrons to be produced in picosecond pulses that can
be repeated at the accelerator frequency so that electrons are generated in bunches
with the proper timing to be accelerated effectively with minimal emittance growth.

The understanding of the physics of beams in photoinjectors is of importance
to several applications including intense electron beam-driven x-ray sources, visi-
ble and infrared free-electron lasers, and high-energy physics linear colliders. It is
important to achieve high brightness (i.e., high current and low emittance) in the
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photoinjector. The development of bright electron sources will have impact on the
broad field of developing probes for nanotechnology and biological research.

A practical difficulty has arisen in that many experimental groups have had dif-
ficulty operating their photoinjectors at the performance levels predicted by the
codes. The reason for this relates to the problem of correctly modeling space-charge
forces and distributions. Small errors in the initial electron distribution can lead
to substantial disagreement between simulation and experimental result down-
stream. Of particular concern in this regard are modulations of the beam current at
or near the cathode resulting from drive-laser fluctuations or space-charge waves,
or combinations of the two. Because it is often difficult to diagnose the beam at low
energy in rf guns, facilities such as UMER can play an important role in the study
of longitudinal space-charge dynamics, where there is a close coupling between
experiment, simulations, and theory.

7.5.2
Background

The longitudinal electric field from space charge is ESC ≈ Q/A in units of MV/m
where Q is the bunch charge in nC and A is the cathode emission area in cm2.
Unless ESC � EA, the longitudinal dynamics in the gun will be heavily influenced
by space charge, and more so than existing guns which either have lower charge
or much higher accelerating electric field. Transverse dynamics are also strongly
influenced by space charge. Even the results of experiments with high-gradient
(EA ≈ 100 MV/m) guns have shown discrepancies when the bunch charge is at the
nC level.

All beams of interest will be space charge dominated at some stage in the acceler-
ator, and most so in the gun. Space-charge forces in the gun/injector can be a sub-
stantial source of nonlinear effects. If left unchecked, perturbations that result from
space charge or emission instabilities in the gun impact the peak beam brightness
though transverse emittance growth, longitudinal emittance growth with increased
energy spread, reduced peak current, and adverse wake field, higher order mode,
and coherent synchrotron effects downstream. Once entropy growth occurs irre-
versible damage is done [136]. These factors will result in reduced performance as
manifested by reduced light output in free-electron lasers or reduced luminosity in
high-energy physics experiments. An important consideration for high duty beams
is beam spill resulting from beam halo formation.

Attempting to approach the space-charge limit in photoinjector guns has been
shown to result in adverse longitudinal instabilities [137–139]. Even at intensities
well below the space-charge limit there are factors that can lead to adverse longitu-
dinal fluctuations [140]. The fundamental reason for these problems is that space
charge creates a mechanism by which density or current modulations can be con-
verted to energy modulations. The conversion to energy modulations arises from
electrons that are accelerated in the beam from regions of higher space charge to
regions of lower space-charge density. As a beam is accelerated away from a cathode
current modulations may be partly or completely converted to energy modulations
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and back again. The state of the modulations will depend on the particulars of the
space-charge density of the beam and the applied accelerating gradient. The modu-
lations do not disappear. They are simply redistributed in phase space. Typically an
intermediate case will result consisting of a mixture of density (current) and energy
modulations. Once the beams reach relativistic energies and enter dispersive sec-
tions, i.e., bends, these modulations can seed coherent synchrotron emission and
result in emittance growth [141]. The flip side of this is that there are cases where
modulations are desirable, e.g., when one is interested in generating coherent ra-
diation at THz frequencies, and in such a case one may endeavor to enhance the
modulations. In either case it is important to understand the longitudinal beam
dynamics.

Beams from photoinjectors are particularly susceptible longitudinal modulations
because they operate below the space-charge limit, but still in the space charge
dominated regime. The reason why beams from rf photoinjectors, unlike conven-
tional thermionic emission injectors, typically operate below the space-charge limit
is explained in Section 7.5.3 in some detail. A major factor is that the pulse length
of a typical electron beam from a photoinjector is much shorter than the transit
time of the electron in the gun, i.e., the beam is at all ends, and therefore very
susceptible to the influence of longitudinal space-charge fields.

7.5.3
Space-Charge Limited Current and Instabilities in Photoinjectors

The subject of virtual cathode formation and limiting currents in charged particle
beam diodes has been explored for almost a century. The advent of laser-driven
electron photoinjectors has created renewed interest in the topic.

In conventional electron guns with thermionic cathodes, the normal mode of
operation is in the space-charge limited regime. In many long pulse guns, greater
beam stability is achieved when the gun is operated at the Child–Langmuir limit.
Photocathodes in rf photoinjectors, however, are normally operated in the source-
limited regime, i.e., the beam current is limited by the laser illumination intensity
rather than by space charge. Another factor that makes the photoinjector differ-
ent from a conventional diode is that in a photoinjector the pulse length is usu-
ally much less than the transit time of the electrons across the gun, whereas in
a conventional diode the opposite is the case. There has been limited experience
with operation of photoinjectors in or near the space-charge limited regime. In
principle, one would like to extract as much current as possible from a given pho-
tocathode, however, in short pulse photoinjectors, experiments have shown that as
the current is increased the beam develops longitudinal structure, which is in most
cases undesirable. This behavior is the result of the formation of an unstable virtual
cathode near the photocathode. Virtual cathode formation, which in the long pulse
limit leads to stable operation, in the short pulse limit can lead to virtual cathode
oscillations, and to longitudinal break up of the micropulse. Previous work [138–
140] has shown that significant degradation in the quality of the beam occurs as the
space-charge limit is approached. As the current is increased the beam degradation
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is manifested by a sudden onset on longitudinal structure in the pulse, i.e. a pulse
which was initially a smooth quasi-Gaussian sharp will split into several sub-pulses.
Therefore, in photoinjectors there is a practical current limit somewhat below the
space-charge limit. An estimate of this practical limit was calculated by Valfels et
al. [139] and is summarized below.

The familiar Child–Langmuir formula gives the maximum current density that
can be transported – without virtual cathode spacing of d and potential difference,
V0. The maximum current density that can be achieved before virtual cathode for-
mation is given by Equation (2.135) reproduced below:

JCL = 4ε0

9d2

√
2e

m
V

3/2
0 , (2.135)

where e and m are the electron charge and mass, respectively. As shown in Section
2.5.2, this law is derived using a planar model of a parallel plate diode of infinite
area, and a steady state with the diode gap filled with charged particles. Note that
there is also no consideration of the effects of the initial velocity of the particles
injected into the diode nor of focusing effects.

The assumption that the diode is filled with charge, and that there are no end-
effects is violated in the case of short electron pulses. Thus, an important concern
is how well the Child–Langmuir formula applies in a situation where the length of
a micropulse is less than the gap spacing of the diode, or equivalently where the
pulse length (τp) is less than the transit time (TCL), the electron transit time in a
Child–Langmuir limited diode.

Valfels et al. have shown that the Child–Langmuir limited current must be mod-
ified as follows in the short pulse regime [144]:

JCRIT = 2
1 −
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1 − 3

4X2
CL

X3
CL

JCL, (7.54)

where XCL = τp/TCL.
Therefore, the limiting current is increased in the short pulse case over that of

the conventional Child–Langmuir limit. In the case of photoinjectors it is useful
to consider the total charge Q in the micropulse. Equation (2) can be rewritten in
terms of charge as follows:

QCRIT = 2
1 −
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1 − 3
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QCL, (7.55)

where QCRIT = JCRITτp , and QCL = JCLTCL

In the case of XCL � 1, which is typically found in photoinjectors, Equations
(7.54) and (7.55) reduce to

JCRIT ≈ 3

4XCL
JCL (7.56)

and

QCRIT ≈ 3

4
QCL (7.57)
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Therefore, even though the short pulse photoinjector beam has a higher peak cur-
rent than the Child–Langmuir case, the total charge in the micropulse for the onset
of virtual cathode formation is less than the Child–Langmuir case. This result is
consistent with the experimental results in Valfels et al. [139]. In experiments the
onset of virtual cathode oscillation is manifested by a perturbations is the beam
current as measured downstream of the gun [137–139]. Below the onset point the
beam current pulse closely resembled that of the drive laser, i.e. a quasi-Gaussian
pulse. As the drive laser intensity is increased beyond that point the pulse develops
temporal structure characterized by several sub-pulses. Therefore, it appears that
in the case of photoinjectors there is a practical current limit that is lower than the
Child–Langmuir limit. Attempts to operate at bunch charges above this limit will
lead to pulses with undesirably modulated temporal structure.

7.5.4
UMER and Related Experiments on Longitudinal Perturbations

The case discussed above shows how space charge effects could introduce longi-
tudinal structure in a single isolated pulse. In practice, even at bunch charges be-
low the virtual cathode limit, pulses can start with structure imposed on them by
drive laser fluctuations [140]. For example a typical beam pulse is not perfectly flat,
but possibly has some coherent structure such as a tilt or oscillation and some
noise. Transversely, a realistic beam is not uniform or Gaussian but frequently has
bumps, rings, and hot spots. Therefore, a major goal of our experiments on UMER
is not only to study beam dynamics in ideal situations, but also to understand how
intense beams respond to deviations from this ideal state. The concern is that these
perturbations could grow through interaction with the accelerating cells or through
coherent synchrotron radiation interactions in bends [141]. Such interactions will
reduce beam quality. Therefore, the ability to introduce such imperfections in a
controlled fashion is a great diagnostic tool for understanding intense beam behav-
ior. We have experimented with three distinct techniques for generating perturba-
tions. The first technique of using the cathode grid pulser is the same historical
method our group has used successfully in the past for a number of experiments,
including the aforementioned resistive-wall instability [11–16]. It involves apply-
ing a short voltage pulse across the cathode-grid gap during the beam pulse. This
causes the creation of a current perturbation that is driven by a change in parti-
cle velocity. This technique is being used with the long solenoid experiment (LSE),
in conjunction with the energy analyzers, to investigate energy-spread growth as-
sociated with perturbations. Experiments so far [6, 31, 32] have demonstrated the
presence of a velocity wave and, by measuring the rate of separation between the
fast and slow waves, enabled us to measure the wave speed (the so-called sound
speed from the literature in analogy with longitudinal sound waves). The incredi-
ble precision of the new energy analyzer has allowed us for the first time to make
precise measurements, leading to some fascinating results. Simulations using the
WARP PIC/accelerator code show reasonable agreement with experimental mea-
surements given our available knowledge of the beam.
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The second technique of perturbation generation requires the UMER gun to be
operated in the thermionic triode-amplification mode, which is not the normal
mode of operation [140]. In this mode, any ripple or oscillations in the UMER
pulse-forming system will be amplified by the gun, producing a beam that is mod-
ulated. The modulation was found to split into a forward-traveling and a backward-
traveling wave. The two waves interfered with each other, and the sound speed cal-
culated based on the location at which the waves fully canceled. The sound speed
that was measured agreed to within 3% of the theoretical value [142].

Finally, the laser-driven photocathode method is the most flexible of all, as it
allows us to arbitrarily vary the relative intensities of the main beam and the per-
turbation, and also to combine longitudinal and transverse perturbations (by in-
cluding masks in front of the laser) [143–145]. The perturbations are generated
by applying one or more short-duration laser pulses to the UMER cathode. This
causes a change in beam current due to the injection of photoelectrons into the
cathode-grid region. Depending on gun operating parameters, the beam current
can either be increased or decreased by this technique. UMER’s long drift distance
allows a careful measurement of the propagation speed of these current-dominated
perturbations.

In 2002 exploratory experiments using photoemission from a dispenser cathode
were performed [139]. These experiments yielded some interesting results regard-
ing the effects of the area of emission and of the ratio between the pulse length and
the gap transit time on the amount of current that may be drawn from an electron
gun before a virtual cathode forms. The experiments showed that a much higher
current density may be drawn from a short pulse or limited emitter area than is
anticipated by the Child–Langmuir limiting current. As described above, there was
also evidence that the current may be increased even after virtual cathode forma-
tion, which leads a distinction between a limiting current density and a current
density critical for virtual cathode formation. The experiments also yielded some in-
teresting results on the longitudinal structure of the current pulse passed through
the anode. Some empirical and theoretical scaling laws regarding the formation of
virtual cathodes in an electron gun were formulated as part of this work [139].

Experiments of UMER were performed using the perturbations generated by
applying one or more short-duration laser pulses to the UMER dispenser cath-
ode [142–144]. This causes a change in beam current due to the injection of photo-
electrons into the cathode-grid region in conjunction with thermionic emission.
Depending on gun operating parameters, the beam current could either be in-
creased or decreased by this technique. UMER’s long drift distance allowed a care-
ful measurement of the propagation speed of these current-dominated perturba-
tions. In sub-one-turn experiments it was shown that a single laser–driven the per-
turbation sitting on a thermionic pedestal splits into a fast wave and a slow wave,
as expected on theoretical grounds. The rate of this splitting, calculated from exper-
imental data gathered from 12 consecutive ring beam current monitors, gives us a
good measurement of the wave speed which corresponds closely to the calculated
speed of sound for the beam.
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WARP simulations of these experiments, using the measured initial beam cur-
rent trace for input, show very good agreement at the end of 2/3 of one turn, given
the approximations in this simulation.

Since the initial experiments, we have also been able to generate a train of
up to four laser-induced perturbations using a laser beam splitter [145]. The re-
sults demonstrated similar agreement with the theoretical predictions for the wave
speed.

7.6
Concluding Remarks

The major focus in our research on the physics of space-charge dominated beams
has been experiments, which reflect my background as an experimental physicist.
As pointed out in the Preface, I had an early interest in understanding the theoreti-
cal models, in particular the scaling of the theory with the experimental parameters,
and later on the role of particle codes like WARP in simulating the measurements.
The goal always was to achieve agreement between theory, experiment and simu-
lation. In some cases the measurements were ahead of theoretical understanding
and simulation, like the anomalous behavior of the energy spread in the Coulomb
collision studies reported in Section 7.2.3, which so far have not been explained by
theory or simulation. In other cases the experiments were motivated by theoretical
modeling, like the concept of free energy and emittance growth in nonstationary
(mismatched) beams, which led to the design of the multiple beam experiment
discussed in Section 6.2.

Since its inception in 1993, the University of Maryland Electron Ring (UMER),
has become the major research facility for the investigation of the physics of space-
charge dominated beams. After the design, the construction evolved in stages,
where experiments could be performed using a fluorescent screen, which was
moved from stage to stage until the beam reached about 2/3 of the first turn. There
are 14 Diagnostic Chambers, most spaced at 20◦ intervals around the ring. They
contain capacitive Beam Position Monitors (BPM), which can be pulled out of the
chamber far enough to make space for fluorescent screens to intercept the beam
and obtain beam images (e.g., see book cover). After 1 turn, in the multi-turn op-
eration, the fluorescent screens can no longer be used, and the non-intercepting
BPM’s provide the only information on beam behavior vs. distance. In the future,
the beam will be inflected on a turn-by-turn basis into a large diagnostic tank con-
taining a variety of diagnostic tools (current monitors, fluorescent screen, emit-
tance and energy spread meters, etc.).

At the time of writing these Concluding Remarks in early January, 2008, we
have achieved over 250 turns with low current (<1 mA), 10 keV electrons, un-
der emittance-dominated conditions but with significant transverse space charge
effects. Beam transport with high injected current (7, and 23 mA) has also shown
progress, with 5 turns without losses (7 mA) and close to 0.5 mA after 50 turns.
In this case, the intensity parameter at injection is χ = 0.82, with an unprece-
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dented incoherent space charge tune shift of �ν = −3.5, corresponding to a tune
depression of ν/ν0 = 0.42 (ν0 = 6.17). Beam-edge erosion from longitudinal space
charge seems to be the main long-term limiting factor in the high intensity exper-
iments. Currently, the roles of halo formation, resonance crossing and scattering
with the background gases are also under study, both in experiments and calcula-
tions/simulations.

Our long-term plans are to increase the beam energy from 10 keV to 50 keV. This
will be done by ramping the energy with the help of fast-rising voltages in the 3
induction gaps and simultaneously increasing the field strength in the quadrupole
and dipole magnets. This will permit us to study resonance traversals and other
effects. As shown in Section 7.4.3, following Equation (7.50), we can also produce
asymmetric beams, which are of theoretical as well as practical interest.

In recent years, the design and construction of Fixed Field Alternating Gradi-
ent (FFAG) accelerators for a variety of applications have excited renewed interest
of the accelerator community in Japan, USA, Canada, U.K. and continental Eu-
rope. The principle of FFAG acceleration was first pursued in the early fifties with
the advent of sector-focused, isochronous cyclotrons. If the straight radial sectors
(wedges), shown in Figure 3.28, are replaced by the spiral-ridge magnets, shown in
Figure 3.29, one obtains an additional alternating-gradient focusing force, which
increases the kinetic energy significantly over the limit of the radial sector fields.

In the current FFAG accelerator designs, the central region of the cyclotrons is
eliminated and replaced by an external small cyclotron or a linear accelerator, which
inject the beam at low energy into a ring-shaped configuration, with outward spiral-
ing separated orbits. The kinetic energy is increased by rf acceleration or induction
acceleration gaps along the circumference of the ring. Like in a “separated-orbit”
cyclotron, the radius of the orbits increases, which means that one needs a larger
vacuum chamber and larger magnets than in a fixed-orbit AG synchrotrons, where
the main magnetic field strength is increased by ramping it up with time in syn-
chronism with the gain in kinetic energy. In FFAG machines, the magnetic field is
fixed, the beam pulses are injected with a much higher rf repetition rate, and hence
one can achieve much higher beam intensities and acceptances, as well as higher
energies than in synchrotons.

In general, the costs of an FFAG machine are higher than that of a synchrotron
because of the wider vacuum chamber, magnets, and rf cavities. A comprehensive
review of the status of current work on FFAG projects is given in Volume No. 43
of the ICFA (International Committee for Future Accelerators) Beam Dynamics
Newsletter [146]. The “Introduction to FFAG Accelerators and Storage Rings” by
M. K. Craddock (Section 4.1 of the Newsletter) represents an excellent discussion
of the field, with a comprehensive list of References [147]. As Craddock mentions
in his review, 4 proton machines have been built. Two more, 3 electron machines,
and a muon/alpha cooling ring are under construction. More than 20 designs are
being studied for a variety of applications such as cancer therapy, materials irradia-
tion, drivers for subcritical reactors, and intensity boosters for high energy hadron
colliders and neutrino production.
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In the many types of FFAG’s, one distinguishes between scaling and non-scaling
designs. For the scaling designs, the average magnetic field index k and the spiral
angle follow the Equations (3.370) to (3.373) with increasing energy. Note that in
the rings the number of sectors N is very large, hence the factor N2/(N2 + 1) ∼ 1
in Equation (3.371). See also the discussion following Equation (3.373). Among the
non-scaling designs, all of which do not obey the scaling equations, there are linear
non-scaling FFAG’s and nonlinear non-scaling FFAG’s, and the lattice configura-
tions with associated beam dynamics differ for each of the many designs being
built or studied depending on the type of application. The field is still in a develop-
mental stage, where new designs are being proposed almost every year. The most
important project to be singled out appears to be the EMMA Experiment being
constructed at Daresbury Laboratory, U.K. which is discussed in [146] by J. Scott
Berg. It is a relativistic electron model, with kinetic energies from 10 to 20 MeV, for
a possible future muon collider and will be the world’s first non-scaling FFAG ma-
chine. With regard to design studies, I would mention the article by Alessandro G.
Ruggiero in [148], “FFAG-based Proton and Heavy-Ion High-Power Drivers”, with
energies from the nonrelativistic to the low relativistic range and high power.

The role of space charge in resonance traversals has been studied experimentally
and theoretically for relatively low-intensity beams in connection with the Mon-
tague resonance, mentioned in Section 7.3.4, and a few other areas [149]. Two
theoretical studies (analysis and simulation) of the role of space charge were pub-
lished in 2006, one by S. Y. Lee, G. Franchetti, I. Hofmann, F. Wang and L. Yang,
“Emittance growth mechanisms for space-charge dominated beams in fixed field
alternating gradient and proton driver rings”, in the New Journal of Physics [150]
and another one by S. Y. Lee, “Fundamental Limit of Nonscaling Fixed-Field
Alternating-Gradient Accelerators” in Phys. Rev. Lett. [151]. However, essentially no
experimental data is available on resonance traversals in space-charge dominated
beams, as we begin to investigate in UMER. We believe that we can relate our stud-
ies to phenomena occurring in advanced accelerators, such as FFAG accelerators
and other machines.

The research being performed on UMER is also relevant to emerging 4th-
generation light sources, e.g., linac and energy-recovery linac driven free-electron
lasers and similar light sources. In these devices there is little or no synchrotron ra-
diation damping of the beam phase space. Therefore, the electron beam maintains
a strong memory of its origin in the space charge dominated regime. The beams in
such devices are particularly sensitive to density and energy modulations. In many
cases such modulations will have their origin at or near the electron source where
the beam will have sub-keV energy, yet they will still manifest themselves even
when the beam is at GeV or higher energies, through coherent synchrotron radi-
ation driven emittance growth, for example. Therefore, the work on UMER which
was initially driven by the motivations of high-energy physics and heavy ion inertial
fusion is very relevant to the new intense 4th-generation light sources.
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Problems

7.1 Consider Figure 7.1 and use the beam parameters 3 keV,
4 keV, 5 keV, and currents of 70 mA, 100 mA, and 135 mA,
respectively, and the length L = 2.3 m of the solenoid
channel. Assume that the solenoidal focusing strength is
increased, hence the radius a is decreased and (IL/I0a) is
increased as one moves along the abscissa from left to right
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and that all measurements of the rms energy spread are
taken at L = 2.3 m. For each of solenoidal focusing
strengths, the three short solenoids were used to match the
beam radius into the long solenoid. Calculate the number of
plasma periods (wavelength λp) for the onset of the
“instability” (deviation from linearity).

7.2 Using the parameters of the previous problem, calculate the
“equivalent K–V” beam radius a, the tune depression
k/k0 = ν/ν0, the Debye length λD, the “equivalent” 4× rms
emittance of a K–V beam, and the transverse temperature
kBT⊥ (in eV) at the point where the “instability” starts.

7.3 With the parameters and the curves relating to Figure 7.1
and assuming the numerical value 9 for the Coulomb
logarithm, calculate the final longitudinal rms value for the
energy spread �Ẽ‖f at the abscissa point Log IL

I0a
= −6 for

the 4 keV beam case.
7.4 Consider the case of an anisotropic beam treated by R.

Kishek, which is discussed in Section 7.3.5. Derive the two
Equations (7.21) and (7.22).

7.5 For a beam with an elliptical cross-section (semiradii a and b

in x and y, respectively) and uniform density: Derive the rms
beam sizes xrms, yrms.

7.6 Show that the electric field and the electrostatic potential
(Equation 5.147) for the beam in Problem 3 satisfy Gauss’
law and the Poisson equation, respectively. X and Y are the
envelopes in x and y.

7.7 Prove that rms emittance, as defined in Equation (5.205), is
conserved under linear forces (of the form x ′′ = −κ(s)x),
and is not conserved under nonlinear forces. Assume no
acceleration.

7.8 The University of Maryland Electron Ring (UMER) uses
short quadrupoles whose on-axis gradient profile can be
approximated for many practical purposes by the formula

g(z) = g0 exp(−z2/d2),

where g0 = 3.61 G/cm per Amp, and d = 2.1 cm. The profile
given by the above equation is “all edges”, i.e., it does not
have the recognizable “flat” top of more standard magnets.

(a) Calculate the effective length of the UMER quadrupole
using the standard definition from Chapter 3.

(b) A more rigorous calculation of the effective length of the
third generation UMER quadrupole yields 5.164 cm (see
Ref. [114], which applies to a slightly different UMER
quadrupole). If a hardedge model for the quadrupole is
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employed (as in Figure 3.27), what should be the effective
hardtop gradient value, as a fraction of g0, if the rigorous
model is employed? (Hint: consider the quadrupole focal
length).

(c) A simple hardedge model employing the standard result
in (a) yields a peak gradient of 7.63 G/cm to focus a 10
keV electron beam in UMER with a zero-current phase
advance per period (S = 32 cm) equal to 76◦ [see
Equation (3.354)]. Find the hardtop gradient value in the
rigorous hardedge model, and the corresponding peak
gradient (smooth gradient profile). Also calculate the
required current in the UMER quadrupole.

7.9 Prove that, in an axisymmetric cylindrical geometry,
Bθ = βEr/c for any particle distribution n(r).

7.10 Find the linear space charge force u(s)x that best
approximates the generally nonlinear Fs(x, s), by
minimizing the least-squares function:

D(u, s) =
∫

[u(s)x − F(x, s)]2
∫

n(x, x′, s)dx′dx.

7.11 Translate between the following beam and plasma
parameters:

(a) Express the plasma frequency in terms of K, a

(b) Express the Debye length in terms of ε, K

(c) Express the intensity parameter χ in terms of K, ε, a

(d) Express the intensity parameter in terms of λD, a

Here K is the generalized perveance, ε the effective
unnormalized emittance, a the effective (2× rms) beam
radius, and λD the Debye length. For parts (c) and (d),
assume a uniform focusing force set to produce a matched
beam of radius a.

7.12 Prove the relations (7.34) and (7.35).
7.13 Consider the radial density profiles of the

Maxwell–Boltzmann distribution in a uniform focusing
channel in Figure 5.12 and the related parameters in Table
5.2. Show that the M–B profiles can be defined by any single
one of these parameters, including the intensity parameter
χ , not listed in Table 5.2.

7.14 In the discussion prior to Equation (7.33), it is stated that the
parameter “u” defined in Equation (4.92) is useful when
dealing with collimated beams. Visualize a charged-particle
source with a collimating aperture of radius ra , followed by a
matching section and a periodic focusing lattice. Define the
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average beam radius of the matched beam in the smooth
approximation by “a.”

(a) Prove that the parameter “u” is proportional to the radius
of the collimating aperture.

(b) Show that “a” is simply proportional to the aperture
radius, in the regime of strong space-charge dominated
transport (i.e., when u � 1), but proportional to the
square root of the aperture radius in the regime of
emittance dominated transport (i.e., when u � 1).

(c) Show that the tune depression (smooth approximation) is
inversely proportional to the radius of the collimating
aperture in the regime of strong space-charge dominated
transport. [See the paper by S. Bernal et al., Nucl. Instrum.
Methods Phys. Res. A 519, 380–387 (2004).]

7.15 The beam with intensity parameter χ = 0.5 is neither
space-charge dominated nor emittance dominated. The
nominal parameters for the full beam at the University of
Maryland Electron Ring (UMER) are I = 100 mA,
ε = 60 µm (unnormalized, 4rms emittance) at 10 keV, initial
beam radius r0 = 3.2 mm near the electron gun output. The
full-lattice period is S = 0.32 m, and the standard
zero-current phase advance per period is σ0 = 76◦.

(a) Calculate the radius of a collimating aperture at the gun
output that will yield an intensity parameter equal to 0.5
in the UMER periodic lattice.

(b) Calculate the beam current and emittance of the
collimated beam.

(c) Calculate the resulting average beam radius in the UMER
lattice.

Hint: start by solving Problem 7.14 (a) and calculating the
parameter “u.”

7.16 (a) Using the appropriate matrices for a FODO lattice,
generalize Equation (3.354) to the case of unequal
zero-current phase advances per period in the two
transverse planes, i.e., for σ0x �= σ0y . Use the notation,
θx = κ

1/2
0x l and θy = κ

1/2
0y l, where κ0x , κ0y are the peak

strengths of the hard-edge quadrupoles, and l is the
quadrupole effective length.

(b) Numerically solve the resulting coupled transcendental
equations for κ0x , κ0y , assuming zero-current phase
advances per period equal to σ0x = 57.16◦, σ0y = 73.41◦,
in a FODO lattice with period S = 0.32 m and
l = 5.04 cm.
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(c) Calculate the average beam radii ax and ay in the two
transverse planes by numerically solving the
smooth-approximation equations (7.37); assume
K = 0.0015, and εx = εy = 60 µm.

(d) (bonus) Use an envelope or matrix computer code (e.g.,
TRACE) to find the matched envelope in one FODO cell
with the parameters of part (b) and compare the average
beam radii with those found in part (c). Compare your
results with those obtained in Reference [114].
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Appendix 1
Example of a Pierce-Type Electron Gun with Shielded Cathode

Electron guns with magnetically shielded cathodes producing high-perveance solid
beams are used for high-power microwave devices such as klystrons and traveling-
wave tubes, electron linacs, and many other applications. Since the effect of tem-
perature or emittance on the beam radius is negligibly small compared to the
space-charge force, such beams can be modeled with good accuracy by the Brillouin
laminar-flow theory discussed in Section 5.2.2 [case (a), Brillouin solid beam]. In
most of those guns it is desirable to compress the beam radially so that it fits into
the aperture of the rf cavity structure being employed for microwave generation
or for acceleration of the beam. The compression is achieved by shaping the elec-
trodes in the gun to introduce a focusing transverse electric field near the cathode
and by utilizing the focusing action of the magnetic fringe field. By choosing ap-
propriate electrode angles, one can obtain a transverse focusing force at the beam
edge that either exactly balances the space-charge force to keep the radius constant
or exceeds the space charge to obtain a converging beam (for radial compression)
in the gun region. This concept was first proposed and examined theoretically by
Pierce (see [C.3, Chap. X]). It is used in all modern high-perveance, solid-beam
electron guns as well as in the design of ion sources. In the literature these devices
are known as electron guns or ion sources with Pierce-type geometry, or in the elec-
tron case, simply as Pierce guns. A schematic of an electron gun with Pierce-type
geometry producing a parallel beam is given in Fig. 1.1. In this particular case, a
mesh covers the anode hole to suppress the transverse electric field components,
which would defocus the beam in this aperture region if the mesh were absent.

The electron gun employed in the beam transport experiments described in Sec-
tion 6.2.2 and shown in Fig. 6.8 represents an example of a compression-type Pierce
gun. It is a reduced version (scale factor 1:5) of a SLAC-type klystron gun, designed
with the help of W. Herrmannsfeldt and built by the Hughes Electron Dynamics
Division in 1980. The dispenser-type cathode disk is concave and has a diameter
of 1 inch. Beam current and voltage can be changed over a wide range, with 200
to 250 mA and 5 kV being typical for most experiments. The contours of the elec-
trode geometry and equipotential surfaces as well as typical electron trajectories are
shown in Fig. A1.1. The potential and trajectory computations were performed for
a 5-kV, 244-mA beam with Herrmannsfeldt’s code, which is widely used in electron
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Fig. A1.1 (a) Electrode boundaries, equipotential contours, and
particle trajectories in a compression-type Pierce gun;
(b) equipotentials with and without space charge; (c) current
density versus radius at the waist (z = 6 cm) of the beam.
(Courtesy of D. Kehne.)
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gun and ion source design [1]. Figure A1.1(a) shows the equipotentials and trajec-
tories for the full beam (244 mA). In Fig. A1.1(b) are the equipotential contours
without the beam (I = 0) and with the beam (I = 244 mA). From the curvature
of these contours one can envision the electric field lines, which have a focusing
radial component Er from the cathode, where Er is a maximum, to a distance of
z ≈ 2 cm, where Er becomes zero. In the region z > 2 cm of the anode aperture
the radial electric field has a defocusing polarity, but the overall effect of the elec-
tric field in this gun is focusing, producing a converging beam that reaches a waist
radius of about 0.6 cm at a distance of 6 cm from the cathode. On closer inspection
one finds that the focusing electric field is nonlinear and has a strong third-order
(spherical aberration) component, which is typical for these electrostatic lenses. A
laminar beam adjusts its density profile such that the transverse space-charge force
exactly balances the external focusing force. Consequently, the beam assumes the
hollow shape shown in Fig. A1.1(c), where the computed current density is plotted
versus radius at the waist position.

Measurements confirm these theoretical expectations and computer results [2].
Indeed, most electron guns with such a Pierce-type geometry produce hollow beam
profiles. When such beams are injected into a linear focusing channel where the
equilibrium state has a uniform density profile (in the laminar limit), emittance
growth occurs due to conversion of free energy (see Section 6.2.2). Note that Prob-
lems 5.17 and 6.2 relate to this hollow-beam phenomenon.
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Appendix 2
Example of a Magnetron Injection Gun

Magnetron injection guns (MIGs) have been used successfully in a number of
different applications, including switch tubes [1] and microwave sources (gy-
rotrons) [2]. For the former application, the equilibrium is essentially as described
in this book (see Fig. 5.5). For the latter application, MIGs are used to generate
beams that give up energy in a microwave circuit via the cyclotron resonance in-
stability [3]. To achieve efficient operation, the required equilibrium differs from
the one described in this book in several ways. First, the beam is usually tenuous
and is dominated by magnetic field effects. Second, although individual electrons
essentially perform helical orbits, each center of gyration is sufficiently large that
the electrons never encircle the axis. Furthermore, although some designs produce
beams that are laminar near the cathode, all gyrotron MIG beams eventually evolve
to a phase-mixed [4] state where the orbits cross. Finally, the emitter strips do not
necessarily follow the magnetic fluxlines.

The electrode configuration for a high-power coaxial gyrotron MIG is shown in
Fig. A2.1. The applied axial magnetic field profile and sample ray trajectories for
the beam are also indicated in the figure. The design beam voltage and current
are 500 kV and 480 A, respectively. The average cathode radius is 7.5 cm and its

Fig. A2.1 Schematic of the MIG electrode and field
configurations and the simulated beam trajectory. (Courtesy of
W. Lawson.)
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Fig. A2.2 Axial evolution of (a) average velocity ratio (v⊥/vz)
and (b) axial velocity spread. (Courtesy of W. Lawson.)

slant angle with respect to the axis is approximately 37◦. The evolution of the av-
erage ratio of the beam electron’s perpendicular to parallel velocity is depicted in
Fig. A2.2(a). When the flow has nearly reached the anode plane (z = 16 cm), the
beam is laminar, most of the energy is in the axial motion, and the spread in axial
velocity is nearly zero [see Fig. A2.2(b)]. However, as the beam progresses through
the increasing magnetic field, energy is adiabatically pumped into the perpendic-
ular motion until the velocity ratio reaches about v⊥/vz = 1.5. The average beam
radius also decreases toward its final value of 2.6 cm. Toward the end of the MIG
(z � 40 cm), the electron orbits begin to cross and space-charge effects fuel a spread
in axial velocity. The final rms spread of nearly 6.5% is well in the suitable range
for efficient microwave production.
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Appendix 3
Four-Vectors and Covariant Lorentz Transformations

The four-vector covariant form of Lorentz transformations is discussed in standard
textbooks such as Panofsky and Phillips [A.1, Chaps. 17 and 18] or Jackson [A.4,
Chap. 11]. For convenience, we will present here a few definitions and relations
that are relevant to our work.

The four-momentum vector is defined as

P i =
(

Px, Py, Pz,
E

c

)
, (A3.1)

where E = γmc2. The Lorentz transformation from the laboratory frame (sub-
script l) to the beam (rest) frame (subscript b) for a beam moving in the positive
z-direction is given by

P i
b = Qi

jP
j
l , (A3.2)

where

Qi
j =




1 0 0 0
0 1 0 0
0 0 γ0 −β0γ0

0 0 −β0γ0 γ0


 . (A3.3)

Thus 


Pbx

Pby

Pbz
Eb

c


 =




1 0 0 0
0 1 0 0
0 0 γ0 −β0γ0

0 0 −β0γ0 γ0







Plx

Ply

Plz
El

c


 . (A3.4)

The center-of-momentum velocity of the beam measured in the laboratory frame
is v0, and β0 = v0/c, γ0 = (1 − β2

0 )1/2.
The inverse transformation from beam frame to laboratory frame is

Plj = (
Qi

j

)−1
Pbj , (A3.5)

with

(
Qi

j

)−1 =




1 0 0 0
0 1 0 0
0 0 γ0 β0γ0

0 0 β0γ0 γ0


 . (A3.6)
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Hence

Plx = Pbx, Ply = Pby, (A3.7a)

Plz = γ0

(
Pbz + β0

Eb

c

)
, (A3.7b)

El = γ0(Eb + β0cPbz). (A3.7c)

Transformations of the type (A3.2) and (A3.5) are called Lorentz covariant. A four-
vector quantity Aj that transforms as Eq. (A3.5) is called a covariant four-vector. On
the other hand, a quantity Bi that transforms as Eq. (A3.2) is called a contravariant
four-vector. By means of the relation

Bi = gijB
l, (A3.8)

where

gij =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , (A3.9)

one can define for any contravariant four-vector Bj its covariant partner Bi , and
vice versa. As we can see from the form of the matrix gij , the transformation (A3.8)
merely changes the sign of the first three components of the four-vector.

The product of a contravariant four-vector and a covariant four-vector is Lorentz
invariant. As an example, for the four-momentum one has

P iPi = const,

or

−P 2
bx − P 2

by − P 2
bz + E2

b

c2
= −P 2

lx − P 2
ly − P 2

lz + E2
l

c2
= m2c2, (A3.10)

since E2/c2 = P 2 + m2c2.
The four-vector potential Aj is composed of the three spatial components of

the ordinary vector potential (A) and the scalar potential divided by the speed of
light (φ/c):

Aj =
(
Ax, Ay, Az,

φ

c

)
. (A3.11)

The four-velocity is defined as

ui = (γ vx, γ vy, γ vz, γ c). (A3.12)

Its covariant partner is

ui = (−γ vx,−γ vy, −γ vz, γ c), (A3.13)

where γ is defined in terms of the total velocity v = (v2
x + v2

y + v2
z )

1/2 as γ =
(1 − v2/c2)−1/2.

The Lorentz-invariant product uiui is

uiui = −γ 2v2 + γ 2c2 = ( − γ 2β2 + γ 2)c2 = c2 (A3.14)

since γ 2 − γ 2β2 = 1.
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The center-of-momentum four-velocity in the beam frame is

Ui
b = (0, 0, 0, c). (A3.15)

The corresponding velocity in the laboratory frame is

U
j
l = (

Qi
j

)−1
Ui

b = (0, 0, β0γ0c, γ0c), (A3.16)

where γ0 = (1 − β2
0 )−1/2, β0 = v0/c, and v0 is the center-of-momentum velocity

along the z-direction in the laboratory frame. For completeness we also present the
four-coordinate vector, which is defined as

xi = (x, y, z, ct), (A3.17)

and which also transforms like any other four-vector, such as P i in (A3.2) or (A3.5).
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Appendix 4
Equipartitioning in High-Current rf Linacs

As discussed in Section 6.3.1, collective instabilities due to coupling between the
longitudinal and transverse direction via space-charge forces can cause emittance
growth if the bunches in an rf linac have different longitudinal and transverse tem-
peratures. This effect was first demonstrated in a theoretical study by Jameson [1].
Using a realistic model of a high-current deuteron rf linac and PARMILA-code sim-
ulation of the particle dynamics, Jameson found that significant emittance growth
occurred when the temperatures differed and that this growth became negligibly
small when the beam was equipartitioned.

In related work, Hofmann analyzed the eigenmodes of an anisotropic K–V dis-
tribution due to coupling between two orthogonal directions [2]. He found that un-
stable collective modes occur if the tune depressions in both directions fall below a
threshold curve that differs for each mode and depends on the ratio of the two par-
ticle oscillation frequencies. This analysis is consistent with the results obtained by
Jameson, who showed that the emittance growth observed in his computer simula-
tion for anisotropic beams can be correlated with Hofmann’s coupled instabilities.

These findings are also consistent with the thermodynamic description pre-
sented in this book. Most beams have different longitudinal and transverse tem-
peratures. Various effects, such as mismatch, instabilities, and collisions, tend to
drive the particle distribution toward three-dimensional thermal equilibrium. In
space-charge-dominated beams, the relaxation times can be very short, as discussed
in Section 6.2. The equipartitioning effect is therefore particularly strong in high-
current rf linacs with anisotropic temperatures.

Theoretically, for a matched (stationary) bunch in a smooth-focusing system, the
temperatures can be related to the rms beam widths and normalized rms emit-
tances. From Eqs. (5.290a) and (5.317) one obtains for the ratio of the transverse
and longitudinal temperatures the relation

kBT⊥
kBT‖

= ε̃2
nx

γ0x̃2

γ 3
0 z̃2

ε̃2
nz

= γ 2
0

ε̃2
nx

ε̃2
nz

z̃2

x̃2
. (A4.1)

We can express this relation also in terms of the effective normalized emittances
εnx = 5ε̃nx , εnz = 5ε̃nz and the effective widths a = √

5x̃, zm = √
5z̃ of the
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equivalent uniform-density ellipsoidal bunch (see Problem 5.21) as

T⊥
T‖

= γ 2
0

ε2
nx

ε2
nz

z2
m

a2
. (A4.2)

Alternatively, we can introduce the focusing wave numbers with space charge, kx

and kz. Using a′ = kxa and z′
m = kzzm, we get

εnx = β0γ0εx = β0γ0kxa
2, (A4.3)

εnz = β0γ
3
0 εzz′ = β0γ

3
0 kzz

2
m, (A4.4)

so that Eq. (A4.2) may be written in the form
T⊥
T‖

= kxεnx

kzεnz

. (A4.5)

The beam is equipartitioned (T⊥ = T‖) when

γ0
εnx

εnz

zm

a
= 1, (A4.6)

or, alternatively, when
εnx

εnz

kx

kz

= 1. (A4.7)

The wave numbers kx and kz depend on the beam widths a and zm, as given in
Eqs. (5.498) and (5.499), so that relation (A4.6) is more explicit than (A4.7). In
any case, one must calculate a and zm, from the coupled envelope Eqs. (5.496)
and (5.497) for a given set of beam parameters.

If the beam is space-charge dominated and the conditions mentioned in Sec-
tion 5.4.11 are satisfied, one obtains the analytical approximations (5.506) to (5.508)
for a, zm, and zm/a, which are repeated here for easy reference:

a =
[(3

2

)2 Nrc

β2
0γ 2

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)−2]1/3

, (A4.8)

zm =
[

2

3

Nrc

β2
0γ 5

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)]1/3

, (A4.9)

zm

a
= 2

3γ0

(
k2
x0

k2
z0

+ 1

2

)
, (A4.10)

Using (A4.10), one can express the equipartitioning condition (A4.6) in the form

εnx

εnz

2

3

[
k2
x0

k2
z0

+ 1

2

]
= 1. (A4.11)

The wave numbers kx0 and kz0 represent the external focusing forces in the trans-
verse and longitudinal directions. They can be controlled to a certain extent while
the emittances depend on the history of the beam. Solving (A4.11) for kx0/kz0, we
obtain the relation

kx0

kz0
=

(
3

2

εnz

εnx

− 1

2

)1/2

(A4.12)

for a space-charge-dominated beam.
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As an example, consider a high-current rf linac accelerating protons from a non-
relativistic initial energy of 2 MeV (γ0 ≈ 1, β0 = 0.065) to a relativistic final energy
of 938 MeV (γ0 ≈ 2, (β0 = 0.866). Assume that the normalized longitudinal emit-
tance is twice as large as the normalized transverse emittance, so that εnz/εnx = 2.
To satisfy the equipartitioning conditions, the transverse and longitudinal focusing
strengths must be designed so that kx0/kz0 = √

2.5 ≈ 1.58 at injection (2 MeV).
If this beam is to remain equipartitioned and the emittance ratio does not change,
the focusing-strength ratio must remain constant through the linac system to sat-
isfy Eq. (A4.12) as the energy γ0mc2 increases. The bunch size ratio has the values
zm/a = 2 at injection, zm/a ≈ 1.33 at γ0 = 1.5, and zm/a = 1 at full energy,
in agreement with the condition (A4.6). Note that the bunch eccentricity zm/a be-
comes smaller with increasing energy and that in our particular example the bunch
shape becomes spherical (zm = a) at full energy in the lab frame.

So far, these calculations have been rather general, and we need to examine
whether the equipartitioning conditions for the focusing-strength ratio can in fact
be satisfied in practice [4]. Since rf linacs employ magnetic quadrupoles for trans-
verse focusing, there is, in principle, no difficulty in varying the value of kx0. On
the other hand, one does not have much flexibility with the longitudinal focusing
strength, which, according to Eq. (5.395a), is defined by

kz0 =
(

− 2πqEm sin ϕ0

λmc2β3
0γ 3

0

)1/2

. (A4.13)

The synchronous phase angle ϕ0 and the maximum electric field strength Em are
usually fixed so that Em sin ϕ0 is constant. Consequently, kz0 varies with increasing
energy as

kz0 ∝ 1

(β0γ0)3/2
. (A4.14)

The preferred design method in such rf linacs is to keep the transverse phase ad-
vance without space charge, σx0, constant. Since kx0 ∝ σx0/β0λ, we then have the
scaling

kx0 ∝ 1

β0
. (A4.15)

Consequently, we find for this linac design scenario that the focusing-strength ratio
varies as

kx0

kz0
∝ β

1/2
0 γ

3/2
0 . (A4.16)

Clearly, this variation with energy does not satisfy Eq. (A4.12). The beam does
not remain equipartitioned, the transverse temperature T⊥ becomes higher than
the longitudinal temperature T‖, and longitudinal emittance growth occurs, as ob-
served in the computer simulation studies of Jameson [1] and more recently by
Wangler et al. [3]. Since we have no control over the longitudinal focusing strength,
it is clear from the above analysis that we must change the transverse focusing
conditions so that the ratio kx0/kz0 meets the requirements for equipartitioning.
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For the space-charge-dominated equipartitioned beam being discussed here, one
finds from (A4.12) and (A4.14) that the transverse wave number kx0 should obey
the scaling

kx0 ∝ 1

(β0γ0)3/2
. (A4.17)

This implies that the transverse phase advance σx0 must decrease with energy as

σx0 ∝ 1

(β0γ
3
0 )1/2

(A4.18)

and not remain constant, as is usually the case in many rf linac designs.
The required decrease with energy of the transverse focusing strength to keep

the beam equipartitioned has the consequence that like zm, the bunch radius a

increases along the linac. By substituting (A4.11) into (A4.8), (A4.9), one obtains
the relations

a =
[

ε2
nx

ε2
nz

1

k2
z0

Nrc

β2
0γ 2

0

]1/3

, (A4.19)

zm =
[

εnz

εnx

1

k2
z0

Nrc

β2
0γ 5

0

]1/3

, (A4.20)

for a space-charge-dominated equipartitioned linac. For a given emittance ratio and
particle number, one then gets the scaling

a ∝ 1

k
2/3
z0

1

β
2/3
0 γ

2/3
0

, (A4.21)

zm ∝ 1

k
2/3
z0

1

β
2/3
0 γ

5/3
0

(A4.22)

or, in view of (A4.14),

a ∝ β
1/3
0 γ

1/3
0 , (A4.23)

zm ∝ β
1/3
0

γ
2/3
0

. (A4.24)

Thus, in the linac example above, the bunch size increases from 2 MeV to 938 MeV
by the factors

a(938 MeV)

a(2 MeV)
= 2.98

in radius and by

zm(938 MeV)

zm(2 MeV)
= 1.49

in the axial length.
The increase in beam radius is particularly troublesome. The bore radius b of the

drift tubes is usually fixed, and one wants to maintain a safe ratio of say b/a � 5 to
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avoid particles from striking and (if the energy is high enough) activating the tube
walls. This problem can be alleviated somewhat by making a transition at an appro-
priate energy to a linac operating at twice the frequency (i.e., half the wavelength)
as the injector linac.

Since the electrical breakdown threshold in rf systems increases with frequency,
one can increase the accelerating field accordingly, and the scaling is approximately
given by Em ∝ (1/λ)1/2. Combined with the factor λ in the denominator of (A4.13),
one thus finds that kz0 scales with the rf wavelength as

kz0 ∝ 1

λ3/4
, (A4.25)

so that the radius varies as

a ∝ λ1/2. (A4.26)

Thus by decreasing the wavelength by a factor of 2, the increase in the bunch radius
can be reduced to

a(938 MeV, λ/2)

a(2 MeV, λ)
= 2.98√

2
= 2.11.

The bunch length is, of course, also reduced by the factor 1/
√

2. In such a sce-
nario a bunch radius of, say, a = √

5x̃ = 2 mm at 2 MeV would then grow to
a = 4.22 mm at full energy. In view of (A4.23), most of the bunch-size increase oc-
curs in the low-energy part of the linac system. Thus it would be important to make
the transition to the high-frequency linac at low enough energy that the radius does
not exceed the above limit. In our case this transition point occurs at an energy of
about 162 MeV. Nevertheless, it is not clear whether such a significant increase in
bunch radius is tolerable in practice. As already mentioned, the customary design
philosophy is to increase the transverse focusing and hence to reduce the radius
with rising energy. Consequently, the temperature anisotropy T⊥/T‖ and the bunch
aspect ratio zm/a become larger. The price one pays is an increase in longitudinal
emittance. For the future high-power linacs being considered, this conventional
approach may not be acceptable, and a design of a system that is either equiparti-
tioned, if this is feasible, or at least closer to thermal equilibrium may be required.

In closing, we note again that the above analysis is based on three assumptions:
(1) the bunch is perfectly matched in the transverse and longitudinal directions
and the acceleration process is adiabatic; (2) the beam is space-charge dominated
through the entire linac; (3) the values for the bunch aspect ratio zm/a and for the
ratio b/a of drift-tube radius b to bunch radius a are in the range where the ap-
proximation ḡ ≈ g0 ≈ 2γ0z0/3a for the geometry factor is valid. If assumption
(1) is not satisfied, the free energy associated with mismatch will lead to emittance
growth in both directions due to the space-charge coupling forces. If assumptions
(2) and (3) are not satisfied, the envelope equations for a and zm must be solved
numerically, as discussed in Section 5.4.11. On the other hand, if the effect of emit-
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tance on beam size is not negligible, so that assumption (2) is not met, but (1) and
(3) hold, we find the approximate solutions

a ≈
[(3

2

)2 Nrc

β2
0γ 2

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)−2

+
(

εnx

β0γ0kx0

)3/2]1/3

, (A4.27)

zm ≈
[

2

3

Nrc

β2
0γ 5

0

1

k2
z0

(
k2
x0

k2
z0

+ 1

2

)
+

(
εnz

β0γ
3
0 kz0

)3/2]1/3

. (A4.28)

By dividing these two equations and using the equipartitioning condition (A4.6),
one obtains a single equation that defines the parameter space for which the beam
is in thermal equilibrium (i.e., T⊥ = T‖) [6]. Alternatively, we can solve either of
the two equations to get the relation for the particle number N or average current
Ī = qNf = qNc/λ. Thus, we obtain from (A4.27) for the average beam current

Ī =
(2

3

)2
I0

a3

λ
β2

0γ 2
0 k2

z0

(
k2
x0

k2
z0

+ 1

2

)2

+
[

1 −
(

εnx

β0γ0kx0

)3/2 1

a3

]
, (A4.29)

where I0 = 4πε0mc3/q, as defined in Eq. (4.17). The bunch radius a and half
length zm are of course coupled by the two envelope equations and cannot be cho-
sen independently. In the space-charge dominated case, where the emittance term
in the bracket is negligibly small compared to unity and the current has its max-
imum, we can replace a by zm from Eq. (A4.10), and use zm = β0λ(�ϕm/2π)

[Eq. (5.401)] to introduce �ϕm and (A4.13) for k2
z0. This yields the relation

Īmax = π

10
λβ2

0γ 2
0

(
�ϕm

2π

)3
Em| sin ϕ0|

(k2
x0/k2

z0) + 1/2
. (A4.30)

If, furthermore, the beam is equipartitioned we can use (A4.12) and write this re-
lation for the maximum current in the form

Īmax = 2π

30
λβ2

0γ 2
0

(
�ϕm

2π

)3

Em| sin ϕ0|εnx

εnz

. (A4.31)

Since Em ∝ 1/
√

λ, we get for fixed values of �ϕm and ϕ0, the scaling Imax ∝
λ1/2β2

0γ 2
0 (εnx/εnz). If ϕ0 and radius a are fixed, we have Ī ∝ λ−5/2 × (β0γ0)

−1

(εnz/εnx)
2, �ϕm ∝ (λβ0γ0)

−1(εnz/εnx). Thus, the allowable maximum values for
�ϕm and a determine the maximum current for an equipartitioned beam.

In the parameter regime where image forces become important, the equilibrium
bunch shape must be determined self-consistently by numerical methods [5, 6].
One finds, for instance, that in the zero-temperature limit the bunch assumes a
non-ellipsoidal equilibrium boundary. This restores the linearity of the total space-
charge forces (including images) and the balance with the applied linear forces that
is required for the T = 0 equilibrium state while keeping the charge density ρ0 con-
stant [5]. The equivalent linear ellipsoid bunch in Section 5.4.11, and the parabolic
line-charge model and g-factor calculations (Fig. 5.15) in Section 5.4.7 are good
approximations that can be used to determine the average (rms) bunch behavior
and dimensions for the general case with images and different temperatures. Fig-
ure A4.1 shows the self-consistent, numerically calculated Boltzmann density pro-
file for a spherically symmetric, space-charge dominated (low-temperature) bunch
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Fig. A4.1 Self-consistent three-dimensional
Boltzmann density profile of a spherically
symmetric bunch in thermal equilibrium in the
space-charge dominated (low-temperature)
regime with tune depression of
kx/kx0 = kz/kz0 = 0.3. The density n(r, z)

and coordinates r, z are in units of the density
n0 and the radius a0 of the zero-temperature
case (ideal uniform ellipsoid), respectively.
Boundary is at b = 2a0, but has no significant
effect in this case. (Courtesy N. Brown.)

(for γ0 = 1) in thermal equilibrium (see figure for details). It illustrates that the
uniform-density ellipsoid is a good model for such bunches.

If thermal equilibrium is not possible within the constraints of a particular
design, one should try to minimize the deviation and the associated emittance
growth, as was done in the computer studies mentioned above [1, 3]. In any case,
our analysis and the relations derived in this section should serve as a useful guide
for designers of rf linacs.

References

1 Jameson, R. A., IEEE Trans. Nucl. Sci.
NS-28, 2408 (1981).

2 Hofmann, I., IEEE Trans. Nucl. Sci.
NS-28, 2399 (1981).

3 Wangler, T. P., Bhatia, T. S.,
Neuschaefer, G. H., Pabst, M., Con-
ference Record of the 1989 IEEE Particle
Accelerator Conference, 89CH2669-0,
March 20–23, 1989, p. 1748.

4 Jameson, R. A., AIP Conference Pro-
ceedings 279, 969 (1993), ed. Wurtele,
J. S.

5 Allen, C. K., Reiser, M., “Zero-
Temperature Equilibrium for
Bunched Beams in Axisymmetric
Systems,” Part. Accel. 48, 193 (1995).

6 Brown, N., Reiser, M., “Thermal
Equilibrium of Bunched Charged
Particle Beams,” Phys. Plasmas 2, 965
(1995).





619

Appendix 5
Radial Defocusing and Emittance Growth in High-Gradient rf
Structures (Example: The rf Photocathode Electron Gun)

In Sections 1.3 and 6.6 we mentioned the laser-driven photocathode electron gun
as a new high-brightness electron beam source for linear colliders, free electron
lasers (FELs) and other advanced accelerator applications [1–3].

The photocathode is located inside of a high-gradient (20–100 MV/m) rf resonant
cavity structure operating in a TM01 mode and consisting of (n + 1/2)λ/2 cells,
where n is an integer. Most rf guns are designed with n = 1 and n = 2; at Los
Alamos the rf gun is an integral part of a high-gradient rf linac for FEL experiments
with n = 10. Figure A5.1 shows the schematic of a two-and-a-half cell design, with
the electron bunch and lines of force during the accelerating half-cycle in the first
cell. The laser beam is focused on the photocathode at an angle with respect to the
cavity axis through the apertures in the rf structure from downstream or through a
special port in the cavity wall. The timing and pulse length of the laser is designed
to produce short electron bunches during the rising part of the accelerating field.
Resonator frequencies are typically in the range of 0.4 to 3 GHz.

A major problem in these rf guns is emittance growth due to rf defocusing and
space charge. This problem was first analyzed theoretically by Kim [4] and Kim and
Chen [5], by McDonald [6], Sarafini [7], and others; there has also been extensive
computer simulation work. (See Reference [3] for a review of recent studies.) There
is, in general, reasonably good agreement between simulation and emittance mea-
surements while the analytical theory tends to overestimate the emittance growth
significantly [3]. A major reduction of emittance growth can be achieved by using
solenoidal focusing, first suggested by Carlston [8] and experimentally verified at
Los Alamos [9, 10].

A more detailed description of rf guns and related ongoing research is beyond
the scope of this book. We will instead present a brief and more general discussion
that extends the theoretical concepts developed in Sections 5.4 (especially 5.4.7,
5.4.8, and 5.4.11), 6.2 and Appendix 4 to the behavior of intense bunched electron
beams in high-gradient, high-frequency rf linac structures like the one depicted in
Fig. A5.1. The situation here differs from the self-consistent treatments given in
these preceding sections in several ways:

1 The strong electric fields accelerate the electrons very rapidly
to relativistic energies; the motion can in general no longer
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Fig. A5.1 Schematic of a laser-driven rf photocathode electron gun in a 5λ/4 rf structure.

be treated as adiabatic, and the equations governing the
beam physics must be solved numerically or by simulation.

2 The radially defocusing rf forces due to the high electric
fields, which we tacitly ignored in our preceding discussions,
may cause significant emittance growth unless strong
external magnetic focusing is applied.

3 Thermodynamically, the electron bunches are far from
three-dimensional equilibrium; the drive towards an
equipartitioned state via the coupled space-charge forces is
offset by the rapid acceleration.

4 At increasingly relativistic energies wakefield effects come
into play. These are treated in Chao’s book [D.11] and are
included in the simulation codes. We are limiting ourselves
here to electron acceleration in the rf injector systems (i.e.,
energies in the range of a few MeV). This is where
space-charge effects are most pronounced and wakefields
can be neglected.

Let us now begin our theoretical analysis with a review of radial defocusing in
rf fields. We will consider an axisymmetric TM01-type standing wave in a structure
such as the one depicted in Fig. A5.1. Space-charge effects will be ignored first, but
included subsequently. Let the axial electric field be of theform

Ez(s, t) = Em(s) cos ks cos ωrft. (A5.1)

Here s denotes the distance of travel along the system and z = s − s0 will be
used to define the relative position of a particle with respect to the bunch center,
s0, as in Section 5.4.8. Furthermore, k = 2π/λ = ωrf/c is the wavenumber, λ

the wavelength, and ωrf the radian frequency. The peak field Em(s) is essentially
constant except near the apertures and at the exit of the cavity structure (where
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it falls to zero). From Maxwell’s equations one obtains for the radial electric and
azimuthal magnetic field the first-order relations

Er(s, t) = − r

2

∂Ez

∂s
, Bθ (s, t) = − r

2c2

∂Ez

∂t
. (A5.2)

The radial force is given by

Fr = dPr

dt
= qEr − qvBθ , (A5.3)

and, using the first two equations, we obtain (with β = v/c)

dPr

dt
= −qr

2

×
[

∂Em

∂s
cos ks cos ωrft − Emk sin ks cos ωrft

−ωrf

c
βEm cos(ks) sin(ωrft)

]
. (A5.4)

By introducing the phase of the particle with regard to the rf wave,

ϕ = ωrft − ks, (A5.5)

we can write Eq. (A5.4) in the alternative form

dPr

dt
= − r

2
kqEm

×
[
− 1

kEm

∂Em

∂s
cos ks cos(ks + ϕ) + 1

2
(1 + β) sin(2ks + ϕ)

− 1

2
(1 − β) sin ϕ

]
. (A5.6)

This equation shows that the radial momentum change depends on the phase ϕ

with respect to the wave, i.e., on the relative position of a particle within the bunch.
It can be integrated if the variation of the velocity βc and the phase ϕ of the parti-
cle are obtained by solving independently the longitudinal momentum and phase
equations, (5.378) and (5.376a). The form of Eq. (A5.6) is sufficiently general that it
can be applied to different types of rf systems. A detailed analysis shows that the ra-
dial rf forces are generally defocusing in the phase interval −π/2 < ϕ < 0 required
for longitudinal focusing (see the discussion in Section 5.4.8). Furthermore, this ef-
fect is significant only in low-energy ion linacs and in the high-gradient structures
of electron injector linacs, rf guns and bunching systems. We will limit our discus-
sion to electron-beam defocusing in high-gradient structures where the electrons
are rapidly accelerated to relativistic velocities so that β ≈ 1 can be assumed. The
term involving ∂Em/∂s is usually not very important in this case, and we will ne-
glect it. With these assumptions we obtain from (A5.6) to good approximation the
result

dPr

dt
= + r

2
keEm sin(2ks + ϕ), (A5.7)

where we introduced the electron charge (q = e).
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If ϕ0 denotes the phase of the bunch centroid, ϕ = ϕ0 + �ϕ the phase of any
other particle, and if the bunch width is short compared to the rf period, we can
express Eq. (A5.7) as

dPr

dt
= + r

2
keEm sin(2ks + ϕ0 + �ϕ)

≈ + r

2
keEm[sin(2ks + ϕ0 + �ϕ) cos(2ks + ϕ0)]. (A5.8)

This relation shows very clearly that the rf force is defocusing radially (sin ϕ0 < 0)
in the phase interval −π/2 < ϕ < 0 where the accelerating force is rising with
time, and furthermore, that the defocusing force depends on the particles relative
position �ϕ within the bunch. Using dt = ds/v ≈ ds/c, and assuming r ≈ const,
Pr = 0 at s = 0, we can integrate Eq. (A5.7) over the length of a cavity structure,
say from s = 0 to s = 5λ/4 in the case of Fig. A5.1, and obtain

Pr = erRm

2c
cos ϕ1, (A5.9)

where ϕ1 denotes the phase of the particle at the cavity entrance. In a more accurate
calculation taking into account that β < 1 near the entrance (cathode of rf gun),
one finds that it is better to take ϕ1 as the phase at the cavity exit [5]. We can express
ϕ1 as ϕ1 = ϕ0 + �ϕ and �ϕ ≈ −k(s − s0) = −kz and write (A5.9) in terms of
Px, x in place of Pr, r . One then obtains from (A5.9) for the momentum difference
�Px = Px(x, s) − Px(x, s0) between a particle at position (x, s) in the bunch and
the bunch centroid (x, s0) the result

�Px = −eEmk

2c
(sin ϕ0)xz, (A5.10a)

or

�Px = eEmk

2c
| sin ϕ0|xz for0 < ϕ0 <

π

2
. (A5.10b)

This relation for the rf defocusing effect shows the transverse-longitudinal cou-
pling (xz) that causes an undesirable increase in the effective emittance. By aver-
aging over the entire particle phase-space distribution in the bunch, we obtain for
the increase of the normalized rms emittance the expression [5]

�ε̃rf
nx =

[
x2 �P 2

x − x�Px
2]1/2

mc
= eEmk

2mc2
x̃2z̃| sin ϕ0|, (A5.11)

where z̃ = (z2)1/2 denotes the longitudinal rms width of the beam and x̃, �̃Px are
the rms width and rms momentum spread in the x-direction.

If ε̃th
nx denotes the intrinsic (thermal) normalized rms emittance, we obtain for

the total emittance in an rf gun (not including space-charge effects)

ε̃nx = [(
ε̃th
nx

)2 + (
�εrf

nx

)2]1/2
. (A5.12)

In view of the high peak fields in rf guns the effective emittance increase due
to rf defocusing can be very significant. As an example, suppose that ε̃th

nx =
x̃(kT /mc2)1/2 = 3 × 10−6 m-rad, Em = 50 MV/m, x̃ = 2 mm, z̃ = λ/50 = 2π/50k,
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ϕ0 = −30◦. With these numbers one gets from (A5.12) an effective emittance in-
crease due to rf defocusing of ε̃nx/ε̃th

nx = 4.1, which is quite dramatic. In practice,
this effect could be much worse in view of radial beam expansion due to rf defocus-
ing and space charge forces. The obvious answer is that the beam must be confined
radially by strong magnetic focusing forces (from solenoid or quadrupole lenses)
which significantly exceed the rf defocusing forces. In a solenoid, for instance, the
radial focusing force is given by

dPr

dt
= −r

eB2

2γm
, (A5.13)

and the ratio of the rf defocusing force and solenoidal focusing force is from (A5.7)
with ϕ = ϕ0 and (A5.13) found to be

Fr(rf)
Fr(sol)

= Emπγmc2| sin ϕ0|
λeB2c2

. (A5.14)

For a system with Em = 50 MV/m, λ = 0.015 m, | sin ϕ0| = 0.5 and an electron
energy of 1 MeV (γ = 3) a magnetic field strength of B = 0.4 T makes this ratio
less than 0.1.

How can we now incorporate the rf defocusing and rapid acceleration in high-
gradient structures into our self-consistent theory of bunched beams with space
charge? In view of what has been said in points 1–4 above, the adiabatic coupled
envelope equations of Section 5.4.11 and Appendix 4 cannot be used without qual-
ification even if rf defocusing is added. We must instead turn to the more general
envelope equations that include the effect of acceleration and rf defocusing. Thus,
one obtains for the radial motion with ds/dt = β0c

dPr

dt
= ds

dt

dPr

ds
= mc2(γ ′

0r
′ + β2

0γ0r
′′), (A5.15)

and hence [see Eq. (4.78)]

r ′′ + γ ′
0r

′

β2
0γ0

+ κ0r − keEm

mc2

| sin ϕ0|
β2

0γ 3
0

r

2
+ K

a2
r = 0, (A5.16)

where the third term represents the rf defocusing effect. Using relation (5.493) for
the perveance K , we then obtain in place of (5.494) the radial envelope equation

a′′ + γ ′
0a

′

β2
0γ0

+ k2
x0a − πeEm| sin ϕ0|

λmc2β2
0γ 3

0
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− ε2

nx

β2
0γ 2

0 a3
= 0. (A5.17)

For the longitudinal motion we must retain the general form (5.384) without the
adiabatic assumption. The corresponding envelope equation replacing (5.495) is
then

d

ds

[
β2

0γ 3
0

dzm

ds

]
+ β2

0γ 3
0 k2

z0zm − 3

2

gNrc

γ 2
0 z2

m

− ε2
nz

γ 3
0 z3

m

= 0. (A5.18)
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The corresponding adiabatic equations are obtained by setting γ ′
0 = 0 in (A5.17)

and (β2
0γ 3

0 z′
m)′ = β2

0γ 3
0 z′′

m in (A5.18). Note that the semi-axes of the elliptical bunch
are related to the rms width by a = √

5x̃, zm = √
5z̃, and the emittances by εn =

5ε̃n.
To integrate the general coupled envelope equations we must solve simultane-

ously the two equations for the change of the energy γ0mc2 (5.379) and phase
ϕ0 (5.376) for the beam centroid. The set of the four equations [(A5.17), (A5.18),
(5.376), and (5.379)] determines self-consistently the bunch widths a and zm for a
given number of particles, N , radial and longitudinal focusing forces, emittances,
rf structure parameters Em, λ, g-factor curves (Fig. 5.15 and Table 5.3), and initial
conditions. These equations must be solved numerically. They can serve as a guide
for computer simulation studies. More importantly, they have an advantage in that
scaling with the various parameters is much more transparent than with simula-
tion, where many runs are required to obtain such information in an empirical
way.

For the space-charge dominated beams desired in rf guns and injector linacs
the emittance terms in (A5.17) and (A5.18) can be neglected. Furthermore, since
the electron bunches are usually very short, so that the aspect ratio zm/a is close
to unity or even less than unity, the free-space expression for the geometry factor
(g = g0) and the relation g0 = 2γ0zm/3a can be used to good approximation. The
two coupled envelope equations then take the simpler form

a′′ + γ ′
0a

′

β2
0γ0

+ k2
x0a − πeEm| sin ϕ0|

λmc2β2
0γ 3

0
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2
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0γ 3

0

1
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(
1 − 1

3

1

γ0zm

)
= 0, (A5.19)

and
(
β2

0γ 3
0 z′

m

)′ + β2
0γ 3

0 k2
z0zm − Nrc

aγ0zm

= 0. (A5.20)

Finally, we need to discuss the problem of emittance growth if free energy is cre-
ated due to deviations of the density profiles from the ideal Boltzmann distribu-
tion, beam mismatch and off-centering, or if the beam is not in three-dimensional
thermal equilibrium. From our analysis of the Maxwell–Boltzmann distribution
in Section 5.4 it is clear that for a space-charge dominated (i.e., low-temperature)
bunch in a linear focusing system the uniform-density ellipsoidal bunch with par-
abolic line-charge profile is a good approximation for the stationary state. Thus, if
the beam is launched with this shape there should be little or no emittance growth
provided that the transverse and longitudinal temperatures do not differ too much.
(See the discussion in Appendix 4 on equipartitioning in rf linacs when there is a
significant difference between T‖ and T⊥.)

Emittance growth occurs if the three-dimensional density profile of the bunch
deviates from the uniform ellipsoid. To obtain an upper limit for this growth one
must determine the free energy, which is defined as the difference of the total
energy per particle between the nonstationary (e.g., Gaussian) and the stationary
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ellipsoidal distribution. The procedure is similar to the continuous-beam case dis-
cussed in Section 6.2; but the actual calculations are more involved because of
the three-dimensional bunch geometry. We note that the space-charge model used
widely to explain emittance growth in rf guns relates the growth to the total rms
space-charge forces in both directions [4, 5] and not to the energy difference be-
tween the nonstationary and the stationary case. This explains why the theoretical
predictions from this model always overestimate by a significant factor the emit-
tance growth observed in simulation studies and experiments [3].

A more accurate theoretical description based on the thermalization of the field-
energy difference U = Wn − Wu between a nonlinear distribution and the linear
uniform ellipsoidal distribution yields for a spherically symmetric bunch (zm = a)

the approximate emittance-growth relation [11, 12]

ε̃nf

ε̃ni

=
[

1 + Nrcx̃

15
√

5γ0ε̃
2
ni

U

W1

]1/2

. (A5.21)

Here ε̃ni and ε̃nf are the initial and final normalized rms emittances, W1 =
Q2(40πε0a0), a0 = √

5x̃ is the radius of the uniform-density ellipsoid, Q = eN

is the charge, N is the number of particles in the bunch, rc is the classical parti-
cle radius. For the dimensionless quantity U/W1 one finds [11] U/W1 = 0.308
for a Gaussian distribution and U/W1 = 0.0368 for a parabolic distribution
n(r) = n0[1− (r/a0)

2]. When the bunches are not spherically symmetric one must
use a more general formula [11] that also includes the emittance growth due to
equipartitioning when the bunch is not in thermal equilibrium. As an example,
take an electron bunch (rc = 2.82 × 10−15 m) with N = 3 × 1010, x̃ = 3 × 10−3 m,
γ0 = 3 (1 MeV), ε̃ni = 3 × 10−6 m-rad. From (A5.21) one then obtains an emit-
tance growth of ε̃nf /ε̃ni = 9.3 for a Gaussian distribution and ε̃nf /ε̃ni = 3.4 for a
parabolic distribution.

It is obvious from the general discussion in this appendix that much more work
is needed to obtain a better understanding of the beam physics in rf guns or high-
current electron injector linacs and to explain the empirical scaling of emittance
growth with beam current deduced from experimental observations [10]. Only
when this is accomplished and the parametric dependences are apparent can one
determine the ultimate fundamental limits to the particle number per bunch and
to the achievable brightness in such devices.
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List of Frequently Used Symbols

The list presented here contains those symbols that are frequently used in this
book. Symbols that are used only within a particular context of one section are
defined locally and not listed here. Where appropriate, the units of measurements
are given and reference is made to the section(s) and/or equation(s) where the
symbol is discussed.

A Ampere
A Atomic mass number
A Vector potential
A Trace-space area [m-rad]
A Amplitude in phase-amplitude variables [Eq. (3.337); Sec-

tion 4.4.1]
a Radius of cylindrical beam
a Radius of ellipsoidal bunch (semiaxis in transverse direction)
a Semiaxis in x-direction of continuous beam with elliptical cross

section (Section 4.5.3), also denoted by X (e.g., Section 4.5.3; Sec-
tion 5.3.2)

as Average beam radius for anisotropic beam [Eq. (7.44)]
B, B Magnetic flux density [T]

B Brightness [A/(m-rad)2]
Bn Normalized brightness
b Radius of conducting tube surrounding beam
b Semiaxis in y-direction of continuous beam with elliptical cross

section (Section 4.5.3), also denoted by Y (e.g., Section 4.5.3; Sec-
tion 5.3.2)

C Circumference of orbit in a circular accelerator
Cc Chromatic aberration coefficient (Section 3.4.6)
Cs Spherical aberration coefficient (Section 3.4.6)
C Coulomb

C∗ Capacitance per unit length [C/m] (Problem 6.1)
C+ Capacitance associated with longitudinal space-charge impedance

[C · m] (Section 6.3.2)
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c Speed of light
cs Phase velocity of space-charge wave in beam frame, also called

“speed of sound” (Section 6.3.2)
D, D Electric flux density [C/m2]

D Diffusion coefficient (Section 5.4.2)
De Dispersion function [m] in circular accelerator lattice (Sec-

tion 5.4.10)
d1 (d2) Distance of object (image) side principal planes from center of

lens (Section 3.4.2, Fig. 3.4)
E, E Electric field intensity [V/m]

E Energy
EA Longitudinal accelerating field in photoinjector (Section 7.5.2)

ESC Longitudinal electric field from space charge in photoinjector
(Section 7.5.2)

e Electron charge
F, F Force

F0 Generalized K–V distribution for anisotropic beams [Eq. (7.18)]
f Focal length of a lens

f ( ) Particle distribution function, with variables defined locally in text
fe Electric (charge) neutralization fraction of a partially charge-

neutralized beam (Section 4.2.1; Section 4.6.2; Section 4.6.6)
fm Magnetic (current) neutralization fraction of beam, e.g., electron

beam with comoving ions (Section 4.2.3)
G Ripple factor of matched beam in a periodic focusing channel

[Eq. (4.157)]
g Geometry factor associated with the longitudinal field of bunched

beams [Section 5.4.7, Eqs. (5.354) to (5.365), Fig. 5.15, Table 5.3]
or line-charge perturbations on continuous beams [Section 6.3.2;
Section 6.3.3; Eq. (6.68) and subsequent discussion]

H, H Magnetic field intensity [A/m]
H Hamiltonian (Section 2.3.4)
h Planck’s constant
h Free-energy parameter (Section 6.2.1)
I Current

IA Alfvén current (Section 4.2.3)
IL Space-charge current limit (Section 4.2.3)
I0 Characteristic current, 4πε0mc3/q [Eq. (4.17)]
i

√−1
J, J Current density [A/m2]

JCRIT Modified Child–Langmuir current density for short bunches [Eq.
(7.54)]

Ji Action integral (Section 2.3.4)
K Generalized dimensionless perveance [Eq. (4.24)]

KL Longitudinal perveance parameter [m], (Section 5.4.8)
kB Boltzmann’s constant
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k0 Wave number, 2π/λ0, associated with particle oscillations in
a smooth focusing channel without space charge: transverse
(“betatron”) oscillations (Section 4.3.2), and longitudinal (“syn-
chrotron”) oscillations (Section 5.4.8; Section 5.4.9)

k Wave number, 2π/λ, of particle oscillations with space charge
(Section 4.3.2; Section 5.4.8; Section 5.4.9)

k Wave number of space charge waves (Section 6.3.2)
k Wave number of rf wave, 2π/λ = ωrf/c

k1 Intensity parameter associated with waterbag distribution
[Eq. (5.171)]

ke, km Electric and magnetic field indices in E × B fields (Section 3.6.3),
km = −n

k̄ Average field index in sector-focusing cyclotrons (Section 3.8.4),
k̄ = k̄m = −n̄

L Lagrangian (Section 2.3.1)
L Length of drift space between lenses of periodic focusing channel

(Section 3.8.3; Section 4.4)
L∗ Inductance per unit length [H/m] (Section 6.3.2, Problem 6.1)

L1 (L2) Distance between object (image) side focal point and the respec-
tive principal planes (Section 3.4.2, Fig. 3.4)

l Length of lens in “hard-edge” approximation of periodic focusing
channel (Section 3.8.3; Section 4.4)

M̃ Transfer matrix in a linear focusing system (Eq. (3.85); Section
3.4.1)

m Mass of particle (Section 2.1)
m∗ Effective mass of particle [Eqs. (3.265) to (3.267) in Section 3.6.4]
N Number of particles in a bunch

NL Number of particle per unit length of beam [m−1]
N Number of focusing periods in a circular accelerator lattice
n Particle density [m−3]
n Field index [Eq. (3.193)]
P Momentum
P0 Momentum of centroid particle (Section 5.4.3; Section 5.4.6; Sec-

tions 5.4.8–5.4.10)
P Radiated power [Eq. (6.195)]
p Canonical momentum

pθ Canonical angular momentum
p Pressure [Torr] or [Pa], defined in Eq. (4.286)
Q Total charge of a bunch

QCRIT Maximum bunch charge allowed by space charge in photo-
injector with short bunches [Eq. (7.55)]

Qx , Qy Betatron tunes in the x, y directions, respectively (p. 528, also
p. 555)

Qz, Qr Vertical and radial betatron tunes, respectively (Section 7.4.4.3)
q Charge of a particle
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q Generalized coordinates (Section 2.3.1)
R Radius or envelope of uniform cylindrical beam, also “effective

radius” (R = √
2r̃ = 2x̃) of beam with nonuniform density profile

R Dimensionless beam radius, rm/r0 [Eq. (4.30)]
R Reduced variable for radial coordinate, (βγ )1/2r (Section 3.3.3)
R Orbit radius in circular accelerator
R Average orbit radius (C/2π) in circular accelerator, C/2π

R0 Orbit radius of “centroid” particle in circular accelerator
R∗

w Beam tube wall resistance per unit length [�/m] [Eq. (6.79)]
r Radial variable
rc Classical particle radius, q2/4πε0mc2, [Eq. (5.244)]
rm Envelope radius of uniform beam [Eqs. (4.48), (4.49)]
S Length of one period in a periodic focusing channel (Section 3.8.1;

Section 4.4.1; Section 4.4.2)
s Coordinate along direction of beam propagation in curved sys-

tems (e.g., circular machines) for bunched beams and in some
cases for straight focusing systems in place of z

s Longitudinal displacement of particle from equilibrium position
due to perturbation (plasma oscillations, space-charge waves, Sec-
tion 6.3.2)

sb Intensity parameter defined by Davidson (Section 7.4.2), equiva-
lent to χ

T Kinetic energy
T Temperature, usually in the combination kBT where kB is Boltz-

mann’s constant
T Ratio of two transverse temperatures, Ty/Tx [Eq. (7.19)]

Tl, Tt Longitudinal and transverse temperatures, respectively (Section
7.3.2.2)

TCL Transit time across A–K gap (Section 7.5.3)
T⊥ Transverse temperature of a beam
T‖ Longitudinal temperature of a beam (in direction of propagation)
t Time

U Potential energy (Section 2.2)
U Nonuniform field energy per unit length of beam [Eq. (6.14)]
U ′ Dimensionless parameter related to imaginary part of longitudi-

nal impedance in circular machines [Eq. (6.143)]
u, v Independent principle solutions of paraxial ray equation (Sec-

tion 3.3.3)
u Space-charge parameter [Eq. (4.92)]

uX , uY Generalization of the “u” parameter for anisotropic beams [Eq.
(7.52)]

V Volt
V Potential on the axis of electrostatic focusing system (Section

3.3.2; Section 3.4.3)
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V ′ Dimensionless parameter related to real part of longitudinal im-
pedance in circular machines [Eq. (6.143)]

v, v Particle velocity
W Wronskian determinant of paraxial ray equation (Section 3.3.3)
W Total field energy per unit length of beam [Eqs. (4.67), (4.68)]
w Amplitude function in a linear focusing channel; in Chapter 3

where beams without space charge are treated (Section 3.8.3);
when space charge is included in beam dynamics, as in Chapter
4 and elsewhere, w denotes amplitude function with space charge
(Section 4.4).

w0 Amplitude function in linear focusing channel without space
charge in Chapter 4 and elsewhere where beam theory includes
space charge (Section 4.4).

w0 Field energy parameter, w0 = I 2/16πε0β
2c2 [Eq. (6.14)]

X, Y Transverse beam envelopes in a quadrupole focusing channel
(Section 4.4.2)

Xs Space-charge impedance [�] in circular accelerator [Eq. (6.114)]
Xw Imaginary part of wall impedance [�] in circular accelerators

[Eq. (6.115)]
x̃ rms width of beam density profile in transverse x-direction, i.e.

x̃ = (x2)1/2; for uniform-density beam x̃ = X/2

x̃′ rms divergence defined as x̃′ = (x′ 2)1/2, where x′ is the slope of a
particle trajectory

ỹ rms width of beam density profile in transverse y-direction, i.e.
ỹ = (y2)1/2; for uniform-density beam ỹ = Y/2

Z Charge state of ion
Z‖ Longitudinal impedance [�] in circular machines [Eq. (6.115)]
Z∗‖ Longitudinal impedance per unit length [�/m] in linear accelera-

tors or beam transport systems [Eq. (6.102)]
Z∗

s Space-charge impedance per unit length of beam [�/m]
[Eqs. (6.88) to (6.94)]

z Coordinate in the direction of beam propagation for axisymmetric
and quadrupole focusing systems (occasionally s is also used in
place of z)

z Relative coordinate of particle in a bunch with respect to centroid
position s0, i.e. z = s − s0 (Section 5.4.6 to Section 5.4.9; Sec-
tion 5.4.11)

zm Longitudinal half length (semiaxis) of ellipsoidal bunch
[Eq. (5.416)]

z̃ rms width of bunch in longitudinal direction, i.e. z̃ = (z2)1/2; for
a uniform-density ellipsoidal bunch, z̃ = zm/

√
5 [Eq. (5.411)]

z̃′ Longitudinal rms divergence defined as z̃′ = (z′ 2)1/2; where
z′ = dz/ds is the slope of the longitudinal trajectory in the frame
moving with the bunch centroid
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α Momentum compaction factor [Eq. (3.256)]
α Acceptance (or admittance) of a focusing system [Eqs. (3.311),

(3.353), (4.94)]
α0 Ratio of transverse zero-current betatron tunes, ky0/kx0 (p. 530)

α̂, β̂, γ̂ Courant–Snyder (or Twiss) parameters describing trace-space el-
lipse in linear focusing systems in Chapter 3 where beams with-
out space charge are treated (Section 3.8.3); when space charge is
included in the beam dynamics, as in Chapter 4 and elsewhere,
these symbols denote the ellipse parameters with space charge.

α̂0, β̂0, γ̂0 Courant–Snyder parameters without space charge in linear focus-
ing systems in Chapter 4 and elsewhere where beam theory in-
cludes space charge.

β̂ Amplitude (betatron) function with space charge, β̂ = 1/w2

(see w)
β̂0 Amplitude (betatron) function without space charge, β̂0 = 1/w2

0
(see w0)

β Particle velocity divided by speed of light, β = v/c

γ Total energy of particle, E = E0 + T , divided by rest energy,
E0 = mc2, i.e. γ = 1 + T/mc2 = (1 − β2)−1/2; also known as
Lorentz factor

γ0 Value of γ on beam axis (Section 5.2.3), or for “center of momen-
tum” particle [Eq. (5.259)] in a beam with momentum distribution

γa Value of γ at beam edge (Section 5.2.3)
γb Value of γ at injection into beam tube (Section 5.2.3)
ε0 Permittivity (dielectric constant) of free space: 8.854 × 10−12 F/m

� (1/36π) × 10−9 F/m
εx , εy Emittance in x or y direction; defined as total emittance of a K–V

beam (uniform charge density) [Eqs. (3.4), (3.5c), (5.138)], or as the
“effective emittance,” ε = 4ε̃, of a nonuniform beam [Eq. (5.206)]

ε̃x , ε̃y rms emittance in x or y direction [Eqs. (3.2a), (3.2b); Section 5.3.4]
εn Normalized emittance, defined as εn = βγ ε [Eq. (3.21b)]
ε̃n Normalized rms emittance, defined ε̃n = βγ ε̃ [Eq. (3.21a)]

εzz′ Longitudinal emittance of an ellipsoidal bunch with parabolic line
charge profile (uniform volume charge density) or “effective lon-
gitudinal emittance,” εzz′ = 5ε̃zz′ , of a bunch with nonuniform
volume charge density [Eqs. (5.416), (5.427), (5.429)]

ε̃zz′ Longitudinal rms emittance, z̃z̃′ [Eq. (5.316)]
ε̃z Longitudinal rms emittance defined in terms of the momentum

spread: ε̃z = z̃�̃P z/P0 = γ 2
0 ε̃zz′ [Eqs. (5.314), (5.316)]

ε̃nz Normalized longitudinal rms emittance; ε̃nz = β0γ0ε̃z = β0γ
3
0 ε̃zz′

in linear accelerators [Eq. (5.317a)], and ε̃nz = β0γ0ε̃z =
β0γ0ε̃zz′/|η| in circular accelerators [Eq. (5.444)]

εnz Normalized longitudinal emittance defined as εnz = 5ε̃nz

η Slip factor in a circular accelerator [Eq. (3.262)]
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θ Angular coordinate
θ Focusing-strength parameter, θ = √

κl [Eq. (3.357)]
θr Angle rotation in a solenoidal lens [Eqs. (3.140) to (3.142)]
κ Focusing function [Eq. (3.312)]; when space charge is included in

beam dynamics, κ and κ0 denote the focusing functions with and
without space charge, respectively [Eqs. (4.111) to (4.116)]

� In � = Coulomb logarithm [Eqs. (5.242) to (5.248)]
� Line-charge density (Section 6.3.2), defined as ρL in Chapters 4

and 5
λ Wavelength of electromagnetic wave (Section 5.4.8)
λ Wavelength of betatron oscillation with space charge (see k)

λ0 Wavelength of betatron oscillation without space charge (see k0)
λD Debye length [Eq. (4.1)]
µ Mismatch parameter, defined as the ratio of the initial beam size

to the matched beam size, i.e., µ = a0/ai (Section 7.3.6.2 and Fig.
6.4)

µ0 Permeability of free space: 4π × 10−7 H/m
ν Betatron tune, betatron oscillation frequency normalized to or-

bital frequency in a circular accelerator in Chapter 3; in the context
of beam theory that includes space charge (Chapter 4 and else-
where), ν also denotes the betratron tune with space charge.

ν0 Betatron tune without space charge in Chapter 4 and elsewhere
where beam theory includes space charge (Section 4.5).

νx , νy Betatron tunes in the x, y directions, respectively
νB Budker parameter [Eq. (4.18)]
νp Plasma tune [Eq. (7.26)]
ξ Generalized tune depression ratio for anisotropic beams [Eq.

(7.22)]
ρ Volume-charge density [C/m3]

ρL Line-charge density [C/m], defined as � in Chapter 6
σ Phase advance of betatron oscillations in one period of a periodic

focusing channel in Chapter 3 where beams without space charge
are discussed (Section 3.8.2); when space charge is included in
beam dynamics, as in Chapter 4 and elsewhere, σ denotes phase
advance with space charge (Section 4.4)

σ0 Phase advance of betatron oscillations in one period of a periodic
focusing channel without space charge in Chapter 4 and elsewhere
where beam theory includes space charge (Section 4.4)

σ Conductivity [Eq. (4.240)]
σi Ionization cross section (Section 4.6.1)
τ Relaxation time in Coulomb collision (Section 6.4)

τN Neutralization time (Section 4.6)
τp Pulse length (Section 7.5.3)
φ Potential [Eq. (2.13)]
φ Phase, in phase-amplitude variables [Eq. (3.337); Section 4.4.1]
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ϕ Phase of particle in rf field [Section 5.4.8, Eqs. (5.375), (5.376)]
χ Intensity parameter [Eq. (7.24)]

χx , χy Intensity parameters in the x and y directions (Section 7.4.3)
ψ Magnetic flux [T/m2], [Eq. (2.77)]
ψ Phase function in a linear focusing channel [Eq. (3.337); Sec-

tion 4.4.1]
ω Angular frequency (often simply referred to as “frequency”)

ωc Cyclotron frequency [Eq. (2.81)]
ωL Larmor frequency [Eq. (2.83)]
ωl Synchrotron frequency [Eq. (5.395b)]; also ωz0 [Eq. (5.440)]
ωp Plasma frequency [Eq. (4.2)]
ωrf Angular frequency of rf field (Section 5.4.8)
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Index

a
Aberrations

– chromatic 95, 96, 390
– geometrical 94
– spherical 94–95

Acceleration
– adiabatic 152, 373–374
– collective 256
– wakefield 257

Acceptance 126–127, 134, 192
– of FODO channel 137

Action integrals 32
Admittance, see Acceptance
Alfvén current (or Alfvén–Lawson current)

6, 182–183, 278
Alternating-gradient principle 127, 143–

144
Amplitude function 130–131, 135, 159,

199–203, see also Betatron function;
Courant–Snyder parameters

– maximum in FODO channel 137
– maximum in periodic solenoid chan-

nel 207
Anisotropy 519

– degree of anisotropy 530
– anisotropic axisymmetric beam 529
– anisotropic free-energy limit of halos

531
Asymmetric case of a matched K–V distribu-

tion
– decoupled K–V envelope equations

556
– flat beams 560

b
Barber’s rule 158
Beam(s)

– bunched, see Bunched beams

– charge-neutralized relativistic elec-
tron 181

– emittance-dominated 193
– equivalent, see Equivalent beams
– intense relativistic electron (IREB)

5, 254, 290–297
– laminar, mismatched 297–300
– laminar, in uniform magnetic field

275
– matched, in a FODO channel 209–

213
– matched, in a periodic solenoid chan-

nel 126, 134, 198–208
– matched, in a uniform channel

190–193
– mismatched, emittance growth

427–428, 439–442
– mismatched, in periodic channel

214–224
– mismatched, in uniform channel

193–194
– off-centered 224–232, 428
– space-charge dominated 193

Beam breakup instability 232
Beam centroid 225, 335
Beam cooling

– electron beam 420, 487–488
– longitudinal, due to acceleration

357–359
– radiation 420, 487, 491–497
– stochastic 420, 487, 489–490

Beam current
– average 389, 404

– in rf linac 403, 616–617
– maximum, in rf linac 616–617
– maximum, in transport channel

192
– peak, in ellipsoidal bunch 399

Beam frame 326, 336
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Beam matching 193, 271, 404–406
Beam radius (continuous beams)

– approximate relation in uniform (or
smooth) channel 344

– in drift space 176–181
– effective 322
– matched, average, in periodic chan-

nel 203
– matched, in uniform channel 192
– rms 321

Bennett pinch 186
Bernal rings 530

– edge imaging in intense beams 537
– transverse density waves 535

Betatron 48 (Problem 2.13), 103
– modified 237
– plasma 237

Betatron function 130, 134, 347, 391, 478,
485–486, see also Amplitude function

Betatron oscillations 103–107
– coherent 224
– incoherent 240

Betatron tune 105
– coherent 238, 241
– forbidden values of 150
– incoherent 238

Betatron wavelength 105
Betatron wave number 105
Boersch effect 358, 420, 472–476
Boltzmann density profile

– longitudinal (or line-charge) 369–
370

– transverse (or radial) 168, 339, 342,
345

Boltzmann equation 328
Boltzmann relation 168, 305, 339

– longitudinal, for line-charge density
360

Brightness 13, 55
– average 56
– normalized 13, 57, 60, 348

Brillouin beams
– hollow 285, 288
– solid 285, 286

Brillouin flow 191, 192, 283
Budker condition of self-focusing 175
Budker parameter 174
Bunched beams

– approximate solutions for semi-axes
400–404, 417 (Problem 5.20), 615–
616

– coupled envelope equations 400–
403

– ellipsoidal model 361, 400, see also
Ellipsoidal bunch; Parabolic bunch
model

– half-length of ellipsoid 361, 400–
404, 417 (Problem 5.20), 615

– image effects, see Geometry factor
– radius of ellipsoid 361, 400–404,

417 (Problem 5.20), 615
Busch’s theorem 30, 281

c
Canonical angular momentum 27

– conservation of 30
– relation to normalized emittance

188
Canonical momentum 26
Center-of-momentum energy 355
Center-of-momentum frame 335
Center-of-momentum particle 353, see also

Beam centroid
Central limit theorem 332, 484
Charge-neutralization effects

– in intensive relativistic electron
beams 254–258, 263–264

– linear beam model 248–250
– in low-energy p and H− beams

250–254
– in storage rings 258

Charge-neutralization factor 171–176, 184
Charge-neutralization time 244
Charged-particle beam lithography 5, 410,

412
Characteristic current 174
Child’s law (or Child–Langmuir Law) 6, 10,

39–40
Chromaticity parameters 117, 390
Classical particle radius 174, 331
Collisions

– Coulomb 326–329, 472
– elastic 483
– inelastic 483

Cooling, see Beam cooling
Conjugate momentum, see Canonical

momentum
Conservation

– of canonical angular momentum
30

– of energy 19
– of magnetic moment 33

Conservative systems 18, 23, 28
Coulomb collisions, see Collisions
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Coulomb collisions (Boersch effect)
– longitudinal–longitudinal (LL) effect

511
– longitudinal–transverse (LT)

relaxation 511
Coulomb parameter (or Coulomb logarithm)

331–332
Courant–Snyder parameters 130, 195
Current neutralization 184–185
Cusped magnetic field 47
Cyclotron

– classical 103–104
– isochronous 117, 139
– sector-focusing 137
– superconducting 142

d
Debye length 58, 165, 328–329

– definition of 165
– in a relativistic beam 165

Debye shielding 164, 326–329
Debye sphere 329
Diamagnetic field 291
Differential algebra 151
Diode, see Planar diode
Dispenser cathodes 9
Dispersion 391

– effect on tune shift, see Tune shift,
incoherent

Dispersion function 391
Dispersion in high-intensity beams 544

– beam with dispersion is basically
anisotropic 546

– dispersion and space charge 545
– resonance analysis 546

Dispersion relation
– for longitudinal space-charge waves

450
– for negative mass instability 466
– for relativistic beam with trapped par-

ticles of opposite charge 259–260
– for resistive wall instability 458, 467

Distribution
– conical (nonstationary) 322–323
– Gaussian 319, 347

– nonstationary 322–323
– Kapchinsky–Vladimirsky (K–V) 6,

56, 169–170, 306–311, 314–315, 399
– stability in periodic solenoid

and quadrupole channels
442–448

– stability in a uniform focusing
channel 443

– Maxwell–Boltzmann 167, 305, 333,
339

– longitudinal 359–360
– longitudinal for circular

machines 387
– for a relativistic beam 333–337
– two-temperature 338

– Maxwellian velocity 10, 331
– microcanonical 306
– Neuffer 382, 399
– parabolic (nonstationary) 322
– thermal 165–166, 167, 305, see also

Distribution, Maxwell–Boltzmann
– two-temperature 338
– waterbag 56, 315

– nonstationary 322–323
Divergence

– effective 54
– flow 350
– rms 53
– thermal 350

Dudnikov source
– surface plasma source (SPS) 570

e
Effective divergence 54
Effective emittance 54, 322, 348
Effective width 54
Electrical breakdown in rf systems 615
Electron gun

– Pierce-type 7, 599–601
– rf photocathode 12, 619–620
– thermionic cathode 7

Electron microscope 4
Electron photoinjectors

– bright electron beam applications
577

– laser-switched photoelectron sources
577

– laser-switched photoinjectors 577
– probes for nanotechnology and

biological research 578
Electron–proton (e–p) instability 565

– electron-cloud instability 566
– stabilization 566

Electron ring 544
– University of Maryland Electron Ring

(UMER) 507, 547
Electron ring accelerator 250
Electrostatic analyzer 42
Ellipsoidal bunch, see also Bunched beams;

Parabolic bunch model
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– longitudinal half-width 400–403,
429

– longitudinal rms width 369–370
– rms emittance 401, 417

– geometry factor 362–368
– potential due to image charges

361
– transverse half-width (radius) 400–

403, 429
– transverse rms width 401, 417

Emittance 52–54
– effective 54, 322, 348
– and entropy 441
– four-times rms, see Emittance, effec-

tive
– longitudinal 353–354

– unnormalized 380
– normalized 11, 56, 59

– relation to canonical angular
momentum 188

– rms 52, 59, 320–321, 348, see also
rms emittance

– six-times rms 348
– unnormalized 13

Emittance growth
– in drift space 501
– and equipartitioning 448
– and free energy 422
– in a mismatched beam 427–428,

439–442
– due to nonuniform charge distribu-

tion 426
– in off-centered beams 428
– due to rf defocusing 619, 622–623
– in spherical bunch 625
– time scales of 440

Energy
– conservation of 19
– difference between mismatched and

matched beam 427
– difference between nonuniform and

uniform beam 426
– free 169, 422, 428
– of off-centered beam 429
– rest (definition) 20
– total (kinetic and potential) average

per particle 408
– total field (electric and magnetic) of

beam 185
– transition 116, 145, 385
– voltage-equivalent of kinetic 64

Energy analyzer
– cylindrical energy analyzer 513

– deflecting energy analyzer 508
– energy analyzer (EA) 509
– parallel-plate EA 511, 513
– parallel-plate energy analyzer 509

Energy spread 510
– anomalous energy increase 515
– evolution of the energy spread 512
– resolution of the energy-spread

measurements 515
– rms energy spreads 514
– total rms energy spread 511

Envelope equations
– in a circular machine 386
– coupled for a bunched beam 400–

403, 624
– in drift space 93, 176, 181
– longitudinal 380
– longitudinal rms 382
– nonadiabatic for a bunched beam

623–624
– in a periodic focusing system 131,

198, 210
– rms 325
– in a uniform focusing system 111,

189
Envelope oscillations due to mismatch

– fundamental modes 215
– in-phase mode 195, 216
– instabilities in a periodic channel

216–224
– out-of-phase mode 195, 215

Equipartitioned beam 534
Equipartitioning 338, 420, 472

– and emittance growth in rf linacs
448, 611

Equivalent beams 164, 321, 322
– and rms emittance 320

Equivalent linear beam for longitudinal
distribution 371

Equivalent ellipsoidal model for bunched
beams 400

Euler equations 35

f
Field index 105
Fixed Field Alternating Gradient (FFAG)

Accelerators 584
– linear non-scaling FFAG’s 585
– nonlinear non-scaling FFAG’s 585

Floquet functions 130
Floquet’s theorem 130
Focal points of a lens 73
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Focusing
– edge 119–120
– gas 170, 250, 262, 420
– periodic 122

– of intense beams 197
– with thin lenses 122

– strong 127, 310
– weak 127, 310

Fokker–Planck equation 329–330
Four-coordinate vector 609
Four-momentum vector 335, 607
Four-times rms emittance 54, 348
Four-vector potential 335, 608
Free electron lasers 5–6, 500, 619
Free energy 169, 422

– and emittance growth 422
Frequency slip factor 116, 145

g
Gabor lens, see Lenses
Gas focusing, see Focusing
Gaussian density profile 340
Geometry factor or g-factor

– definition for bunched beams 362,
365

– definition for line-charge perturba-
tions 455

– for ellipsoidal bunch in free-space
362

– for emittance dominated beams
455

– for space-charge dominated beams
455

Generalized coordinates and velocities 22
Generalized momenta 26
Generalized potential 24
4th-generation light sources 585
Grids 86–87
Gyrotron 6, 603

h
H− beams 250
Halo 430, 439–442, 498
Halo observation

– details of halo formation 543
– halo-amplitude growth 540
– halo particles 541
– minimize the emittance growth 541
– upper limits to emittance 540

Halo observations
– halo formation in high-current rf

linacs 524

– maximum amplitude of the halo
524

– noise-enhanced halos 526
– self-consistent model 525
– self-limiting maximum amplitude

523
Hamiltonian for relativistic particle 30
Hamilton’s equations 27
Hamilton’s variational principle 30
Hard-edge approximation 205
Harmonic oscillator 43, 331
Heavy-ion inertial fusion 5, 394, 462
Herrmannsfeldt’s code 599
High-voltage breakdown in ion sources 12
Hofmann charts 529

– stability charts 534

i
Image forces

– in bunched beams, see Geometry fac-
tor

– effects on betatron tune 238, see also
Tune shift

– in off-centered beams 222–231
Image formation 75–78, 410, 412
Immersed flow 285
Impact parameter 331
Intensity parameter χ 549
Intersecting Storage Rings (ISR)

– facility for hadron research 571
– intersecting in eight points 574
– proton beams moving in opposite

directions 571
– Schottky noise signal 575
– stochastic cooling 575
– two independent, interleaved rings

572
Instability

– in beams with trapped particles of
opposite charge 259–262

– head–tail 391
– longitudinal microwave 463
– negative-mass 7, 117, 466
– in periodic focusing systems 216–

223, 442–448
– resistive-wall 457, 459, 461–462

– in circular machines 467
Instability stop band 142
Intense relativistic electron beam (IREB) 5,

290
– charge neutralization effects in

254–258
Interparticle distance 166
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Intrabeam scattering 476–483
– emittance change by 478
– invariant for 477
– theory of 478

Ion implantation 5
Ionization cross sections 243–248

– for electron and proton beam in
hydrogen gas 246

Ion propulsion 184
Ion shaking 262
Ion sources 9–10

k
Kapchinsky–Vladimirsky distribution, see

Distribution, Kapchinsky–Vladimirsky
Keil–Schnell stability criterion 469
Kerst–Serber equations 106
Kinetic equation, see Vlasov equation
Klystron 451

l
Lagrange equations of motion 23
Lagrange function (or Lagrangian) 22

– generalized 48
– for relativistic particle 25

Laminar flow 39
– beams in uniform magnetic field

275
– model 169

Landau damping 262, 448, 463, 468
Larmor frame 67, 68
Laser beat-wave acceleration 257
Laslett tune shift, see Tune shift, Laslett
Lattice in synchrotrons 144
LEDA 538
Lenses

– bipotential (or immersion) 79,
81–82, 155 (Problems 3.4–3.5)

– cathode 81, 85
– einzel (or unipotential) 79, 81, 155
– electrostatic 78
– Gabor (or space-charge) 263
– plasma 263
– quadrupole 98–103
– sextupole 391
– single-aperture 81
– solenoidal magnetic 88–92

Lie operators 151
Limited current and instabilities

– longitudinal break up 579
– virtual cathode oscillations 579

Linear aperture 192

Linear colliders 12, 263, 270 (Problem
4.15), 491, 500, 619

Linear induction accelerator 5
Line-charge density 360, 369–370, 452

– parabolic profile 379
– of uniformly populated ellipsoid

362
Liouville’s theorem 57–59
LLNL Heavy Ion Recirculator

– drivers for inertial fusion 562
– reduced cost 562
– technology issues 563

Longitudinal envelope equation in a circular
machine 386

Longitudinal equation of motion in a circular
machine 385–386

Longitudinal space-charge waves
– localized 508
– localized slow and fast 509
– propagation of space-charge waves

515
– reflection and transmission 508
– solitary 509

Longitudinal temperature
– longitudinal temperature relaxation

511
Lorentz factor 16
Lorentz force 15
Lorentz transformations 607–609

m
Magnetic diffusion time 230–231
Magnetic neutralization 184
Magnetron 48 (Problem 2.14)
Magnetron injection gun 285, 603–604
Magnification (image) 75–78
Mass

– effective 16, 114–117
– longitudinal 16, 116
– negative 132
– relativistic 16
– rest 16
– transverse 16

Matching, see Beam matching
Mathieu–Hill equation 128, 130
Mathieu stability diagram 149
Maxwell’s equations 15
Mean free path 244
Mechanical momentum 15, 28–29
Meridional plane 67
Meta-equilibrium state 404
Method of images 238–239
Micromachining 5
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Mismatch, see Beams, mismatched; Envelope
oscillations

Momentum compaction factor 115
Momentum-energy four-vector, see Four-

momentum vector
Multiple scattering 483

– emittance growth 484–486

n
Necktie diagram 160 (Problem 3.24)
Negative-mass instability, see Instability
Negative mass regime 386
New diagnostics

– beam position monitors (BPMs)
553

– novel tomographic phase-space
mapper 553

Newton’s equation 15
Nonlinear beam optics 2

– experimental investigation 151
Non-Liouvillean injection 394
Non-Liouvillean injection of H− ions 565

– history of non-Liouvillean injection
570

Nonneutral plasma 2, 165
Nonuniform charge distribution, see

Emittance growth

o
Oscillations

– beam mismatch 193–195
– betatron, see Betatron oscillations
– coherent due to injection errors and

misalignments 224–232
– envelope, see Envelope oscillations
– incoherent 225
– synchrotron, see Synchrotron oscilla-

tions

p
Parabolic bunch model 369, 371, 379, see

also Ellipsoidal bunch
Parabolic line-charge density, see Parabolic

bunch model
Paraxial ray equation 63–69
Paul Trap Simulator Experiment (PTSX)

540
Periodic solenoid channel 197–209
Perveance 176, 277

– generalized 175–176
– longitudinal 380
– maximum, in uniform focusing

channel 191–192

– hollow electron beam 289
– solid electron beam 288

Phase advance 125, 134
– with/without space charge 198
– zero current 204

Phase-amplitude form of solution to
Mathieu–Hill equation 131, 198

Phase shift, see Phase advance
Phase space 11, 43, 57
Phase-space density 348
Phase stability 145
Photocathode rf electron gun, see Electron

gun
Pierce-type electron gun, see Electron gun
Pierce-type geometry 599
Piwinski invariant, see Intrabeam scattering,

invariant
Planar diode 7, 38–40, 48 (Problems 2.10,

2.15), 413 (Problem 5.1)
Plasma channel 263
Plasma frequency 164–165, 174
Plasma lenses, see Lenses
Plasma wave number 195
Power-balance equation 185
Principal planes of a lens 72–74
Principle of least action 33

q
Quadrupole doublets 102
Quadrupole lenses, see Lenses
Quadrupole triplets 103

r
Radioactive waste transmutation 345
Radio-frequency (rf) bucket 374–376, see

also Separatrix
Radio-frequency (rf) linear accelerators (or rf

linacs) 5, 372, 611
Radio-frequency quadrupole (RFQ) accelera-

tors 6, 250
Random walk 227, 333
Relaxation time

– for Coulomb collisions 472–474
– for electron beam cooling 488
– for intrabeam scattering 480–481

Resonances
– in circular accelerators 146–151
– confluent and parametric in K–V

beam instabilities 219
Resonances and instabilities 526

– 3D computer simulation 533
– coherent resonant coupling due to

space charge 532
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– linear perturbations 529
– Montague coupling resonance 528
– nonlinear resonances 527

Rest energies of some isotopes and ions 21
RFQ 544
Richardson–Dushman equation 8
Rigid-rotor equilibrium 280, 282–283
Ripple factor

– in an axisymmetric periodic focusing
channel 205, 207–209

– in a FODO channel 213
rms average dispersion 398
rms beam width 320
rms emittance 52, 59, 320–321, 347

– normalized 321
– normalized longitudinal 353, 388
– total or 100% 321
– unnormalized longitudinal 353,

387
rms energy spread 355
rms momentum spread 355
Robinson’s theorem 494
Ruggiero–Vaccaro stability diagram 470
Rutherford formula 483

s
Scaling of the beam parameters 548

– history in beam scaling 550
– scaling diagram 550

Sea of instability 519
– equipartitioning toward thermal

equilibrium 533
Sector magnets 119–120
Separatrix 374–376, see also Radio-fre-

quency (rf) bucket
Sextupole lenses, see Lenses
Shielded source 283, 292

– magnetically 283
Six-times rms emittance 347
Slip factor, see Frequency slip factor
Slow-wave structure 451
Small Isochronous Ring (SIR)

– current limitation in high-intensity
isochronous cyclotrons 564

– longitudinal–radial space charge
effect 564

Smooth approximation 137, 197, 200, 304
Space-charge current limit 278, 294
Space-charge effect

– emittance dominated 520
– space-charge dominated 520

Space-charge impedance (longitudinal)
459–460

Space-charge waves
– fast and slow 450
– growth rate of 461, 463
– negative-energy 452
– positive-energy 451

Spallation neutron sources 345
Stochastic cooling, see Beam cooling
Stochastic effects 333, 425, 498
Stop bands 150
Storage rings 330, 382
Strong-focusing principle, see Alternating-

gradient principle
Synchrocyclotrons 138
Synchronous particle 352, 372
Synchrotron(s) 138, 382

– Fermilab booster 235, 394, 395
– strong-focusing 143

Synchrotron frequency 376
Synchrotron oscillations 353
Synchrotron principle 138
Synchrotron radiation 491

– energy loss 492
– energy spectrum 496

Synchrotron radiation damping 585
Synchrotron tune with space charge 387

t
Temperature

– beam-frame 166, 336, 338
– laboratory 166, 336, 338

– longitudinal 338, 351
– transverse 338, 351

– longitudinal 355
– in a circular machine 384–385
– cooling, due to acceleration

357–358
– effective 385
– negative 385, 478
– and rms energy spread 355

– relativistic definition of 166, 336,
338

Tevatron 4, 18
Theorem of adiabatic invariance 32
Theorem of magnetic flux conservation 33
Thermionic cathode 7
Thermonuclear fusion 5
Thin-lens approximation 75, 136
Total field energy 185
Touschek effect 482
Trace space 52

– area 53, 59, 71
– ellipse 92–94, 133
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– in a betatron-type field 107–
109

– longitudinal emittance 353
Tracking codes 151
Transfer matrix 71–75
Transition energy 116, 145, 385
Transverse wakefield effect 232
Triplet, see Quadrupole triplets
Tune 134, 144
Tune depression, due to space charge

– longitudinal 381, 386
– transverse 191, 193, 343

Tune shift, coherent, due to images 242
Tune shift, incoherent

– above and below transition 386
– due to charge neutralization 258–

259
– Laslett 7, 243
– longitudinal, due to space charge

387, see also Synchrotron tune
– resonance traversal due to space

charge 235
– rms 398
– due to space charge 233–236, 394–

395
– due to space charge and dispersion

395–397

– due to space charge and images
241, 242

Twiss parameters, see Courant–Snyder para-
meters

v
Velocity analyzer 42
Velocity of space-charge waves

– group 451
– phase (fast and slow wave) 450–451,

457
Virial theorem 45
Virtual cathode 254–257, 278
Vlasov equation 300–301, see also Vlasov–

Maxwell equations
– relativistic 301

Vlasov–Maxwell equations 303, 309
Voltage-equivalent of kinetic energy 64, 289

w
Wakefields 3, 499
Weak-lens approximation, see Thin-lens

approximation
Welding with particle beams 5

z
Z-pinch 262
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