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Preface

Since the publication of the first edition of this book in 1998, the realm of optical
frequency measurement has opened up with the development of extremely broad
band frequency combs extending over a full octave on the frequency scale. This
has enabled the direct coherent calibration of the frequency of an optical clock
with respect to the microwave Cs standard. This continues at an accelerating pace
the revolutionary changes that the field of frequency and time measurement has
undergone in recent years, with regard both to its precision and particularly to its
extension to include optical frequencies.

What began as the introduction of techniques to cool atoms and ions through
interaction with suitable laser beams, coupled with methods of particle suspension
in ultra-high vacuum, has been carried forward to an astonishing degree with ultra-
sharp resonances being observed at optical frequencies on individual ions stored in
ultrahigh vacuum for extended periods of time. This brings us to the point of the
ideal first expressed by Dehmelt of making observations on isolated atomic parti-
cles at rest in space. This was the author’s own motivating principle in the initial
experiments on a field-confined mercury ion standard for space applications. The
rapid progress in the stabilization and synthesis of optical frequency signals using
solid-state sources has brought about unprecedented degrees of long and short term
stability, with the prospect of developing a new generation of space-hardened opti-
cal clocks. The implementation of a satellite global navigation system, the Global
Positioning System (GPS), is the most visible example of the enormous impact
that atomic frequency standards have had on the civilian and the military sectors
of society. The crucial elements in this system are the spacecraft atomic clocks,
without which it could not exist. It has become very much part of our culture per-
meating many aspects of our life and technology. The cesium and rubidium clocks
aboard the satellites maintain submicrosecond synchronization, putting the accu-
racy of position determination globally in the submeter range!

As with the first edition, the object is to convey a broad understanding of the
physical principles underlying the workings of these quantum-based atomic clocks,
with introductory chapters placing them in context with the early development of
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mechanical clocks and the introduction of electronic time-keeping as embodied in
the quartz-controlled clocks. While the book makes no pretense at being a history
of atomic clocks, it nevertheless takes a historical perspective in its treatment of
the subject.

Intended for non-specialists with some knowledge of physics or engineering,
The Quantum Beat covers a wide range of salient topics relevant to atomic clocks,
treated in a broad intuitive manner with a minimum of mathematical formalism.
Detailed descriptions are given of the design principles of the rubidium, cesium,
hydrogen maser, and mercury ion standards; the revolutionary changes that the
advent of the laser has made possible, such as laser cooling, optical pumping, the
formation of “optical molasses,” the cesium “fountain™ standard, as well as topics
that bear on the precision and absolute accuracy of standards, such as noise, res-
onance line shape, and the relativistic Doppler effect. Also included are the time-
based global navigation systems: Loran-C and the Global Positioning System, as
well as tests of invariance principles and symmetry in fundamental unified theory,
such as the constancy of physical “constants” such as the fine structure constant in
atomic physics, and tests of Einstein’s Equivalence Principle.

I am greatly indebted to the following for the encouragement I derived from
their willingness to read and provide valuable suggestions on parts of the manu-
script: Professors Norman Ramsey, Claude Cohen-Tannoudji, Gisbert zu Putlitz,
Charles Drake, Hugh Robinson, and especially my friends and former colleagues
Professor Herbert Ueberall, and Claude Audoin of BNM/LPTF Observatoire de
Paris.

Severna Park, Maryland, USA F.G. Major
September 4, 2006



Contents

Chapter 1. Celestial and Mechanical Clocks

1.1 CyclicEventsinNature .................. ... ..
1.2 TheCalendar...........ccoiiuiiiinii i,
1.3 Solar Eclipses as Time Markers ...........................
14 TheTides . ....covuriiie et
1.5 TheSidereal Day ........... ...,
1.6 The Precession of the Equinoxes...........................
1.7 TheSundial ...... ...
1.8 The Astrolabe ........ ... i
1.9 WaterClocks . ... . oov i
1.10 Tower CIOCKS. . ..o vttt e
1.11  The Pendulum Clock ........... ... ...,
1.12  The Spring—Balance-Wheel Clock .........................
Chapter 2. Oscillations and Fourier Analysis
2.1  Oscillatory Motionin Matter..............................
2.2 Simple Harmonic Motion .................cccoiiiieeenn...
2.3 Forced Oscillations: Resonance ...........................
24  WavesinExtended Media ................ ... oL
25 Wave Dispersion .. .........uiiiiiiinn i
2.6 Linear and Nonlinear Media .............. ... ... ...
2.7 Normal Modes of Vibration.........................c.....
2.8  Parametric Excitations ........... ...t
2.9  Fourier AnalysSiS .. ...oouitiir i e
2.10  Coupled Oscillations . ..........cuiveineiineennnennnann.
Chapter 3. Oscillators
3.1  Feedback in Amplifiers ............ ...,
3.2 Conditions for Oscillation ...................coiiiirnn....



viii Contents

33
34
3.5
3.6

Resonators . ...t
The Klystron Microwave Tube ............. ... ... ... ...
Oscillators at Optical Frequency . ......... ...,
Stability of Oscillators ................o ...

Chapter 4. Quartz Clocks

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Historical Antecedents ................ ..ot ..
Properties and Structure of Crystalline Quartz ...............
Modes of Vibration of aQuartzPlate . ......................
X-Ray Crystallography .............cccoiiiiiiiiiiina..
Fabrication of Quartz Resonators ..........................
Stability of Resonance Frequency..........................
The Quartz Resonator as a Circuit Element . .................
Frequency/Time Measurement .................. ... ...

Chapter S. The Language of Electrons, Atoms,

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12

and Quanta

Classical Lorentz Theory .. ...,
Spectrum of Blackbody Radiation .........................
The Quantum of Radiation: The Photon.....................
Bohr’s Theory of the Hydrogen Atom ......................
The Schrodinger Wave Equation. ..........................
Quantum Numbers of Atomic States .......................
The Vector Model . ....... ... .. i,
The Shell Structure of Electron States ......................
The Pauli Exclusion Principle .............................
Spectroscopic Notation . .............coveiiiiiineeennnn..
The Hyperfine Interaction ............. ... ... ... ...
Electrons in Solids: The Band Theory ................... ...

Chapter 6. Magnetic Resonance

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction......... ...
Atomic Magnetism . .........coouiiniiiii
The Zeeman Effect . ........ ... ... . . ... . .. ..
Gyroscopic Motion in a Magnetic Field.....................
Inducing Transitions . . . . ....voie it
Motion of Global Moment: The Bloch Theory ...............
Production of Global Polarization..........................

Chapter 7. Corrections to Observed Atomic Resonance

7.1
7.2
7.3
7.4

Resonance Frequency Broadening .........................
Thermal Doppler Broadening . ............................
Relativistic Effects ........... . ... ..
CONCIUSION . .« - .\ttt e

87

87
88
&9
90
92
94
95
96
99
100
101
106

113

113
113
114
117
119
122
124



Contents

Chapter 8. The Rubidium Clock

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

The Reference Hyperfine Transition........................
The Breit—Rabi Formula ............ ... .. ... . ...
Optical Pumping of Hyperfine Populations ..................
Optical Hyperfine Pumping: Use of an Isotopic Filter . ........
The Use of Buffer Gases ............. ...,
Light Shifts in the Reference Frequency ....................
Rubidium Frequency Control of Quartz Oscillator ............
Frequency Stability of the Rubidium Standard ...............
The Miniaturization of Atomic Clocks......................

Chapter 9. The Classical Cesium Standard

9.1
9.2
9.3
9.4
9.5
9.6

Definition of the Unitof Time .............. ... ... ......
Implementation of the Definition: The Cesium Standard . . . . ...
The Physical Design . ............. i
Detection of Transitions .. ............ .. ..o iiiiiiinaoi..
Frequency-Lock of Flywheel Oscillator to Cesium. ...........
Corrections to the Observed Cs Frequency ..................

Chapter 10. Atomic and Molecular Oscillators: Masers

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

The Ammonia Maser .................uiuiiniinennenna..
Basic Elements of aBeam Maser ..........................
Inversion Spectrumin NHsz ........ ... ... ... ... o ...
The Electrostatic State Selector. ...........................
Stimulated Radiation in the Cavity .........................
Threshold for Sustained Oscillation ........................
Sources of Frequency Instability . ..........................
The Rubidium Maser ................co i,

Chapter 11. The Hydrogen Maser

11.1
11.2
11.3
114
11.5
11.6
11.7

Introduction. ........ .. ..
The Hyperfine Structure of H Ground State..................
Principles of the Hydrogen Maser. .........................
Physical Design of the H-Maser ...........................
Automatic Cavity Tuning. ............coiiiiiiniiinen...
The Wall Shiftin Frequency ................. . ........ ...
The H-Maser Signal Handling. . ........................ ...

Chapter 12. The Confinement of Particles in Fields

12.1
12.2
12.3
12.4

Introduction.......... ... . i i
The Penning Trap . ...
The Paul High-Frequency Trap ......................... ...
Field Distortionduetolons .......... ... ... ... ... .. ...

ix
149

149
150
152
154
157
159
160
163
165

167

167
167
171
183
184
187



X Contents

12.5 The Effectof Collisions . .......................
12.6 TonObservation..............cuuiiiininnnn.n.
12.7 Laser Resonance Fluorescence Detection .........

Chapter 13. Isolated Ion Clock: A New Approach

13.1 The Original Concept . ........c.coovviiinnn. ..
13.2  Hyperfine Resonance in Trapped Hg* Ions .. ...
13.3 A Portable Hg!%? Ton Microwave Standard ... .....

Chapter 14. Optical Frequency Oscillators: Lasers

14.1 Fundamentals ............ ... ... oo,
14.2 Laser Beam Properties .........................
14.3 Laser Optical Elements ........................

Chapter 15. Laser Systems

15,1 TheGasLasers ...........covviiiiiiiennann..
15.2 Liquid DyeLasers ............................
15.3 Semiconductor Lasers .........................
15.4  Solid Crystalline Lasers .. ......................

Chapter 16. Laser Cooling of Atoms and Ions

16.1 Introduction............... ... .. ... ...
16.2 LightPressure ............oiiiiiiiiiinn...
16.3  Scattering of Light from Small Particles ..........
16.4  Scattering of Light by Atoms ...................
16.5 Optical Field Gradient Force ....................
16.6 Doppler Cooling ...........ccovviriviiineenn...
16.7 Theoretical Limit .............................
16.8  Optical “Molasses” and the Magneto-Optical Trap. .
16.9 Polarization Gradient Cooling: The Sisyphus Effect

16.10 Laser Cooling of TrappedIons ..................

Chapter 17. Application of Lasers to Microwave
Standards

17.1 Observation of Individual Ions ..................
17.2  Optical Detection of Hyperfine Transitions . .......
17.3  The NIST Mercury Ion Microwave Standard ......
17.4 The Proposed Ytterbium Ion Standard ............
17.5 The Laser Pumped Cesium Beam Standard . . . ... ..
17.6  The Cesium Fountain Standard .. ................



Contents

Chapter 18. Optical Standards and Measurement

18.1
18.2
18.3
18.4
18.5
18.6

Introduction . . ...... ..t
Definition of the Meter in Terms of the Second .............
Secondary Optical Frequency Standards ...................
Optical Standards Based on Laser Cooled Ions ..............
Optical Frequency Chains ................. ...,
Optical Frequency Comb Generators ......................

Chapter 19. Applications: Time-Based Navigation

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Introduction . ...
“Deep” Space Probes . ...,
Very Long Baseline Interferometry........................
The Motionof the Earth. . ........ ... ... ... ... ...,
Radio Navigation .......... ... ... it
Navigation by Satellite . . ..............ooii ...
The Global Positioning System (GPS) .....................

Chapter 20. Atomic Clocks and Fundamental Physics

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Introduction ....... ...
Einstein’s Equivalence Principle (EEP) ....................
Lorentz Symmetry .............uiiiiiiinniiiiiinnaan
Symmetry in Fundamental Physics........................
The CPT Symmetry . .......couiiiniinniiniinennn.n
The String Theory . ........oo i
Experiments on ISS (International Space Station) ...........
COoNCIUSION . .« . .\ttt

References

Further Reading

Index

xi

387

387
388
389
396
405
410

417

417
417
418
419
420
426
428

445

445
447
448
449
452
455
456
459

461

467

471






Chapter 1
Celestial and Mechanical Clocks

1.1 Cyclic Events in Nature

From the earliest times in the course of human development, a recurring theme
has been the inexorable passage of time, bringing with it ever-changing aspects of
Nature and the cycle of life and death. Only in the realm of mythology do immortal
gods live outside of time in their eternal incorruptible abodes.

The discernment of an underlying order in the evolution of natural phenomena,
and the cyclic repetition of the motions of the sun, moon, and stars, may be taken as
a measure of man’s intellectual development. The ease with which early man was
able to recognize that certain changes in nature were cyclic depended on the length
of the cycle. That of the daily rising and setting of the sun is so short that it must
have soon been accepted with confidence as being in the natural order of things,
that if the sun disappeared below the horizon, there was little doubt that it would
reappear to begin another day. It is otherwise with the much longer period of the
seasons; there is evidence to suggest that for some primitive peoples, a year was so
long and the means of recording the passage of time so imperfect that they were
unable to perceive a cyclic pattern at all in the changing seasons. They must have
watched the changing elements with perpetual wonder. To them the onset of winter
must have been filled with dire foreboding, giving rise, according to Frazer (1922)
in his classic The Golden Bough, to magical, and later religious rites to ensure the
return of spring.

This introduces a connection between the timing of important cultural
events in the life of early man and that of the cyclic events in nature. This
overlays an inherent connection on a biological level: The workings of the
human body and indeed of all living creatures follow rhythmic patterns that shadow
those in nature. The most obvious are the so-called circadian rhythm (from the
Latin circa (about), and dies (day)) with an approximate 24-hour repetitive cycle.
Much research has been conducted in recent years on the human asleep—awake
cycle, with particular interest in the extent to which the cycle is governed by
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some internal timing mechanism, as opposed to the external environment. The
need to adapt one’s schedule of activities to be in harmony with nature, a task
compounded by the differing cycles of natural events, is evident in the early
development of calendars. Of course, the beginnings of agriculture gave a great
impetus to this development in order to keep track of the seasons and accurately
plan the cultivation of the soil, the planting of seeds, and the eventual harvest. The
cyclic succession of the seasons—from the shedding of leaves in the fall to the
cold dormancy of winter, the return to life in the spring, and the warm summer
that followed—bore witness to some order underlying the vagaries of daily life.
For those early societies whose life and livelihood were closely tied to the sea,
the periodic rise and fall of the tide reinforced the same perception of unalterable
periodic changes underlying unpredictable short-term changes.

A cyclic phenomenon clearly allows time to be quantified; the period of time
to complete a cycle, called briefly the period, provides a unit in terms of which any
given length of time can be expressed as so many of those units. An obvious exam-
ple is the use of the (solar) day as a unit, defined as the time between the sun passing
overhead one day until it comes to the same point the next day. Another common
example is the lunar month, which is the time it takes the moon to go from (say) a
new moon to the next new moon. As units of time, it is relevant to ask just how con-
stant these units are, and how accurately they can be measured. Such questions are,
of course, at the heart of our subject and are taken up in the chapters that follow.

1.2 The Calendar

It is unfortunate for those whose primary interest is in keeping track of the sea-
sons that they do not recur after a whole number of days. As we all know, the
year is about one-fourth of a day in excess of 365 days. In terms of the planetary
motions of the earth, this is the same as saying that the period of the earth in its
orbit around the sun does not contain a whole number of rotations of the earth about
its axis. It is this simple fact that throughout history has complicated the lives of
those charged with keeping the calendar. Another such astronomical fact that has
challenged the keepers of the calendar is that the orbital period of the moon does
not contain a whole number of days, nor are there a whole number of periods of the
moon in one year. However, it happens that after a period of 8 years the moon does
return to approximately the same position relative to the earth and sun, that is, to
the same lunar phase. This, according to Frazer, accounts for the period of 8 years
figuring in certain traditions among some ancient peoples. It is not surprising that
the degree to which primitive societies have succeeded in developing a calendar
has become a measure of the state of advancement of these societies.

Perhaps the most celebrated of these is the ancient Mayan calendar, a remark-
able achievement, often described with such lavish admiration as to convey a sense
that this New World culture has surpassed some unspoken expectations. The Maya
had in fact two calendars (Morley, 1946): a sacred calendar and a civil calendar
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with a complicated way of enumerating the days. The sacred year was not divided
into groups of days, such as months, but consisted of 260 days enumerated by
a number from 1 to 13 followed by one of twenty names. However, curiously, the
sequence did not simply run through the numbers from 1 to 13 for each name before
running through the numbers again with the next name, which would be tantamount
to using 20 “months” of 13 days each. Instead, the name was incremented along
with the number in going from one day to the next. After the number 13 was
reached, the number sequence was repeated again, incrementing the name at the
same time. It would be as if we wrote for a sequence of days 1 Feb., 2 Mar.,
3 Apr.,, etc. It is almost as if the Maya were generating a cryptic code! The Mayan
civil calendar was based on groupings of 20 days each, so that there were 18 such
“months” and a closing month of 5 days to yield 365 days in a year. If a particular
day was specified simultaneously using designations according to both calendars,
that specification was repeated every 52 years; that is, within a 52-year span the
designation would be unambiguous. For longer periods the Maya developed an
enumeration system with base 20, a vigesimal system, which is distinguished in
having introduced the zero independently of the Old World discovery of that con-
cept. It will be recalled that the place-value system of representing numbers, and
therefore arithmetic as we know it, would be impossible without the zero. It is curi-
ous that the characters we use to represent the digits, namely what we call Arabic
numerals, are not used in the Arabic language; instead, Indian characters are used,
in which zero is simply a dot.

The Maya also kept detailed watch on the phases of the moon, and the enu-
meration of the lunar months played an important part in their elaborate religious
calendar. In common with other societies of antiquity, the Maya were in awe of
celestial events, which they saw as ominous manifestations in which the mysteries
of the universe and the future of human destiny were to be read.

1.3 Solar Eclipses as Time Markers

The occurrence of astronomical phenomena such as solar and lunar eclipses,
meteors, and comets were recorded with awe from the earliest times and became
associated with religious observances or superstitious omens. The seemingly
eternal constancy of the motions of the heavenly bodies came to define time and
regulate the affairs of many societies, not only in a chronological sense, but also in
a mystical astrological sense.

Because of the superstitions that attached to these observations, evidence has
been found that records of eclipses reach as far back as 2000 B.C. The sifting
of ancient records to discriminate between objectively reported events and those
reported spuriously either by accident or by design is a task that has occupied spe-
cialists for some time. By now, a large body of data has been compiled from which
a chronology of sightings has been constructed, scattered throughout history and
over the entire globe.
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Figure 1.1 The formation of a solar eclipse

If we recall how eclipses are produced, we will be better able to appreci-
ate that recordings of the time and place of their occurrences give sensitive time
markers in establishing a long-term chronology. Figure 1.1 depicts the positions of
the sun, moon, and earth (not to scale) momentarily along a straight line when a
solar eclipse occurs. The three bodies will pass through the aligned condition only
when the moon and earth are simultaneously at particular points in their respec-
tive orbits. These orbits lie in fixed planes: the plane of the moon’s orbit passes
through the earth’s center, while that of the earth (called the ecliptic) passes through
the sun’s center. These orbital planes are inclined at a constant angle of about
5 degrees; hence there will not be a solar eclipse observed on the earth every lunar
month, as would be the case if the orbital planes coincided. However, it can hap-
pen that as the earth travels along its orbit around the sun, it will reach a point
where the sun and earth are in line with where the moon is just crossing the earth’s
orbital plane.

As will be recalled from optics, the shadow produced by the moon on the earth
consists of regions called the umbra and penumbra, corresponding respectively
to total eclipse, in which the complete disc of the sun is obstructed, and partial
eclipse, where the moon obstructs only part of the sun’s disc. Although the sun is
immensely larger in diameter than the moon, it is so much farther away from the
earth that to an observer on the earth, the moon’s disc can cover the sun’s disk that
is, both bodies subtend about equal angles at the earth (about 0.5°). Actually, a
partial eclipse of the sun will not cause “darkness to fall upon the land” unless it is
very nearly total, that is, with over ninety-five percent of the sun’s disc obstructed
The reason that reliable records of total solar eclipses are such useful time-markers
is that they occur only when a very special set of astronomical variables such as the
diameters and distances of the three bodies and the positions of the earth and moon
in their respective orbits fall within very narrow limits. Moreover, these events,
particularly total solar eclipses, are so awe-inspiring and so imprinted themselves
on the minds of the ancients that it is not to be expected that many went unnoticed.
In fact, the problem is to sift out those sightings spuriously injected into records
to lend a supernatural weight to some historical event, such as the death of a king!
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It has been argued that when Joshua refers to the sun as having “stopped in the
middle of the sky” he may have witnessed a solar eclipse.

A detailed analysis (Schove and Fletcher, 1984) of the chronology of eclipses
reported in the historical records, in which times and places of observation are com-
pared to computed predictions, has revealed the remarkable result that the earth’s
rotation about its axis has been slowing down over the centuries, as has the moon in
its orbit around the earth. It has been estimated on the basis of fossil evidence that
over geologic time the length of the day has increased from 390 days per year to
the present 365.25. If, following Stephenson (Stephenson and Morrison, 1982), we
plot the track of totality for a solar eclipse observed at Athens in A.D. 484 and com-
pute a similar plot based on current astronomical data and a constant rotation of the
earth, we would find the path 15° west of where it was recorded, corresponding to
a difference in time of one hour. Based on more recent precision measurements,
about which more will be said in a later chapter, the slowing of the earth’s rotation
about its axis amounts to about one part in 43,000,000 per century, or about 4.5°
of rotation in 1,500 years.

1.4 The Tides

If the earth were a uniform hard sphere spinning about its axis in the vacuum
of space, it would continue spinning at a constant rate indefinitely. In reality, the
earth has topographically complicated bodies of water on its surface, and a molten
interior; even the “solid” regions are to a degree plastic. Furthermore, it is not per-
fectly spherical, having an equatorial bulge with a slight north—south asymmetry.
The tidal action in the world’s oceans—involving as it does the movement of water,
which like most liquids has some viscosity (internal resistance to flow)—can create
a drag on the earth’s rotation, causing it to slow down. In this process the kinetic
energy of the rotational motion of the earth is slowly (and irreversibly) converted
to random motion on the molecular scale, that is, heat, in the waters of the oceans.

The predominant cause of the tidal action referred to above is the gravitational
pull of the moon, with a smaller contribution from the sun. It arises not so much
from the moon drawing towards itself the waters of the earth’s oceans by its gravi-
tational pull as from the variation in the gravitational field across the earth that the
moon superimposes on top of the smaller variation of the sun’s pull. The effect of
such a variation can be illustrated by considering what has now become familiar:
Astronauts aboard a spacecraft orbiting the earth in a circular orbit. Suppose the
spacecraft is equipped with “stabilizing booms,” that is, two long straight poles
fixed to the spacecraft, one pointing toward the earth and the other in the opposite
direction, as shown in Figure 1.2.

As the spacecraft swings quietly along its orbit with all its propulsion systems
shut down, the astronauts in the main cabin may float around in a more or less
“weightless” state. However, if an astronaut is required to go out to attend to some
problem at the ends of the stabilizing booms, then he will notice there that he is
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Figure 1.2 Forces acting on an orbiting spacecraft due to variation in the gravitational field
across it

no longer weightless. At the end nearest the earth he will have a small but posi-
tive weight tending to pull him toward the earth; at the farthest end he will have a
small but negative weight, that is, he will have a tendency to be lifted farther out.
This means also that the booms themselves experience a stretching force tending
to separate the ends. The basic explanation is that for objects in the main cabin
there is a balance between the gravitational force of the earth and the dynamical
centrifugal force due to the curving trajectory of the spacecraft; a balance that tips
in favor of the gravitational force at the end of one boom and the dynamical force at
the end of the other. A similar basic argument can be made to explain the fact that
tidal motion results in two diametrically opposite bulges in the equilibrium water
surface on the earth: one towards the moon and the other away from the moon, as
if the system were being stretched along the line joining the centers of the earth
and moon. Of course, the actual rise and fall of the tide at any given geographi-
cal point is the result of many contributing factors, particularly the topography of
the ocean beds, the coast lines, and the resonant response of the tidal motion to
the twelve-hour periodic lunar force as the oceans are swept around in the earth’s
daily rotation.

1.5 The Sidereal Day

In specifying the period of rotation of the earth and its variability, a certain frame
of reference is of course implied. In our case, the frame of reference is that defined
by “the fixed stars.” The period of rotation so defined is called the “sidereal day,”
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as contrasted with the “solar day,” which is the period between successive transits
of the sun across any given meridian (a great circle with a specified longitude).
Since the earth sweeps around the sun in a nearly circular orbit while it is spin-
ning around its axis, the time between successive passes of a given meridian under
the sun will differ from what the rotation period would be in the absence of the
orbital motion. This is made clear by noting that if the earth had zero spin, the
sun would still cross a given meridian every time the earth completed a revolution
around the sun. The difference in the values of the solar and sidereal days may be
easily approximated if we assume a circular orbit. Referring to Figure 1.3, we note
that the sense of rotation (whether clockwise or counterclockwise) is the same for
the rotation and revolution of the earth. It follows that as the diagram shows, the
sidereal day is shorter than the solar day by the time it takes the earth to turn the
angle that the sun’s direction has turned in one day by virtue of the orbital motion
of the earth. This latter angle is (360°/365.25), and the earth rotates at the rate of
360°/(24 x 60) degrees per minute; hence the difference in the length of the two
days is (360/365.25) x (24 x 60/360) = 3.95 min (sidereal).

In making the simplifying assumption that the orbit is circular, we have ignored
the fact that the orbit in reality is elliptical. According to one of Kepler’s laws of
planetary motion, the empirical pillars on which Newton’s theory stands, the earth
moves with a speed such that the area swept out by a radius drawn from the sun to
the earth increases at a constant rate. Since in an elliptical orbit the length of this
radial arm varies, going from a minimum at the perihelion to a maximum at the
aphelion (a relatively small change for the earth’s orbit), this means that the angle
swept out by the radial arm in a given time varies from point to point along the orbit.
It follows that the length of the solar day varies throughout the year but is always in
the neighborhood of four minutes longer than the sidereal day. This variation of the

Figure 1.3 The motions of the earth and the difference between the lengths of the sidereal
and solar days
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solar day must not, of course, be confused with the seasonal variation of daylight
hours, which has to do with the inclination of the earth’s axis to the ecliptic plane.

1.6 The Precession of the Equinoxes

To complicate matters further, the nonspherical shape of the earth (which would
be symmetric about its axis of rotation if we ignored tidal action) brings into play
a torque, originating from the gravitational pull of the moon, tending to turn the
axis of the earth towards a direction perpendicular to the plane of the moon’s orbit.
To those unfamiliar with gyroscopic motion, the effect of this torque is rather
remarkable: instead of simply turning the axis directly from the old direction
towards the new, it causes the axis to swing around, tracing out the surface of a
geometric cone around the new direction as axis. This motion is familiar to anyone
who has watched a spinning top; as a result of the torque tending to make it fall,
its axis instead swings around in a vertical cone. This motion is called precession
of the axis of spin. In the context of planetary motion, and in particular the earth’s
motion, this motion causes the points along the orbit of the earth where the seasons
of the year occur to shift from year to year along the orbit. The reason for this
is that the direction of the earth’s axis determines the line of intersection of the
earth’s equatorial plane with the plane of its orbit. The two points around the orbit
where this intersection occurs mark the vernal and autumnal equinoxes, which
are conventionally taken to be the beginning of spring and autumn. Thus as the
axis precesses, the equinoxes will also, and for this reason astronomers call this
motion the precession of the equinoxes. Although the rate of precession is small,
amounting to about one cycle in 26,000 years, nevertheless it says something about
the constancy of the solar day, which you will remember varied from point to point
along the earth’s orbit.

The precession was first detected by one who is arguably one of the greatest
astronomers of antiquity, Hipparchus, in the second century B.C. He made careful
measurements of star positions, assigning to each star coordinates analogous to
longitude and latitude. By comparing his observations with astronomical records
dating back over 150 years before his time, he made the incredible discovery that
the point in the night sky about which stars appear to rotate (because of the earth’s
rotation), that is, what is called the celestial pole, had definitely shifted. In view of
how small the rate of precession is, amounting to no more than one minute of arc
per year, this was no mean accomplishment.

1.7 The Sundial

The earliest devices for measuring the elapse of time within the span of a day were
a natural derivative of the notion of time as being defined by the motions of celes-
tial objects. In order to keep track of the sun’s journey across the sky, the shadow
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clock was devised, which later developed into the sundial. In its most primitive
form, it was simply a vertical straight pole, called a gnomon, whose shadow is cast
upon a horizontal plate marked with lines corresponding to different subdivisions
of the day. The principle was applied in many different forms: One of the earli-
est ancient Egyptian shadow clocks used the shadow of a horizontal bar placed in
a north—south direction above a horizontal scale running east-west. These early
shadow clocks did not indicate the time in hours, but rather in much larger subdivi-
sions of the day. Through the centuries these clocks evolved into very sophisticated
sundials, some of which even were designed to be portable.

The division of the day into 24 hours is traceable back to the ancient Sume-
rians, who inhabited the land that was known in classical times as Babylonia
(Kramer, 1963). Their number system was sexagesimal in character, that is, based
on 60, although the separate factors 6 and 10 do occur in combinations such as
6, 10, 60, 600, 3600. They actually had two distinct systems: an everyday mixed
system and a pure sexagesimal system used exclusively in mathematical texts. The
latter had the elements of a place-value system like our decimal system; however,
the Sumerians lacked the concept and notation for zero; furthermore, their way of
writing numbers did not indicate the absolute scale; that is, their representation of
numbers was unique only to within multiplication by any power of 60. Neverthe-
less, the impact of the ancient Sumerian culture is evident in the way we subdivide
the day into hours, minutes, and seconds; and the circle into degrees, minutes, and
seconds of arc.

The Sumerian version of the shadow clock, like those of other ancient cultures,
suffered from the same critical flaw: The shadow of a vertical shaft moves at a vari-
able rate over the span of a day, and what is worse, the variability itself changes
with the seasons and the latitude where the device is used. It would require a sophis-
ticated knowledge of celestial mechanics to derive corrections to the observed
readings for each day of the year and for different latitudes.

A radical improvement in the design of what came to be called sundials was
made by Arab astronomers in the Middle Ages. This consisted in mounting the
gnomon (which you will recall is the name given to the object producing the
shadow) as nearly parallel as possible to the axis of rotation of the earth, that is,
pointing toward the celestial pole, which is currently within 1° of the North Star
(Polaris). This revolutionary change in design transformed the sundial into a seri-
ous instrument for the measurement of time. In order to appreciate the significance
of this innovation, let us recall that the apparent daily motion of the sun, and indeed
all celestial objects, is due simply to the earth’s rotation about its axis; and there-
fore, to the extent that the earth’s rotational motion is uniform, the sun’s apparent
angular position around that axis will also progress uniformly. It follows that the
shadow cast by a shaft parallel to the axis onto a plane perpendicular to it will have
an angular position that follows the sun, and it will therefore reproduce the rotation
of the earth. Of course, it is only during about half of every rotation that the sun’s
rays will reach a given point on the earth’s surface; however, unlike the shadow
clock, the seasonal variation in the relative lengths of daytime and nighttime will
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in this case have no effect. Since the earth’s rotation is very nearly constant, a circle
drawn on the plane with the gnomon as center can be divided into 24 equal parts
corresponding to the 24 hours of the day. In practical portable sundials, such as
might have been used aboard ship at the time of Sir Francis Drake, provision must
be made for setting the direction of the gnomon. This they could achieve by find-
ing north with a magnetic compass and the latitude by means of a forerunner of
the sextant.

The accuracy one can achieve with this type of sundial, while incomparably
greater than the earlier primitive versions, nevertheless is limited by the extreme
accuracy with which angular displacements of the shadow would have to be
measured. Thus the shadow moves only 0.25° per minute; this implies that an error
of 0.1° in angle measurement translates into an error of 24 seconds. This level
of accuracy, though unimpressive by more recent standards, coupled with the fact
that it provided an absolute reference with which to compare mechanical clocks,
ensured the continued use of the sundial, in one form or another, from antiquity
until the Enlightenment.

1.8 The Astrolabe

In this context we should include another astronomical instrument of ancient ori-
gin, also perfected by medieval Arab astronomers and instrument makers, called
the astrolabe shown in Figure 1.4 (Priestley, 1964). It is a combination of an obser-
vational instrument and a computational aid enabling the determination of not only
latitude, but also the time of day. It ultimately spread to Western Europe and was
there in common use by navigators until the advent of the sextant in the eighteenth
century.

The astrolabe consisted of a disk on whose rim was engraved a uniform scale
with 24 divisions, surmounted by a plate engraved with a projection of the celestial
sphere over which arcs of circles were inscribed. Pivoted concentrically were also
a metal cutout star pattern called a refe and a metal pointer called the rule. On
the back were concentric scales graduated in degrees, the signs of the zodiac, and
the calendar months; another pointer was pivoted at the center. It would be out of
place, and probably well beyond the interest of the reader, to devote much space to
describing the intricacies of this instrument and how to get the most information
out of it. Briefly, it may be said that it is assumed that the calendar month and day
are known for the time it is to be used. The altitude of the sun is first observed
using the degree scale on the back of the instrument while sighting the sun. From
that side also one reads, for that date, the position of the sun along the zodiac. Using
this information on the front side of the instrument, the star pattern is turned with
respect to the projection of the celestial sphere until the sun’s position in the zodiac
agrees with its observed altitude. The time is read by appropriately setting one end
of the rule and reading the other end on the 24 division scale. It is interesting that
Geoffrey Chaucer, of Canterbury Tales fame, also wrote a Treatise on the Astrolabe
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Figure 1.4 The astrolabe as depicted in Chaucer’s Treatise on the Astrolabe (a) front side
(b) back side

in 1391. Since it gave both latitude and time of day, the astrolabe was used by
navigators well into the eighteenth century.

1.9 Water Clocks

Among the earliest non-astronomical devices for measuring time was the water
clock, of which rudimentary examples have been found among ancient Egyptian
artifacts dating back to 2000 B.C. It was essentially a conical stone vessel filled
with water that escaped slowly through a small hole at the bottom provided for
that purpose. A uniform scale was marked along the side of the vessel to enable
the elapsed time to be gauged by how far the water level had fallen. The ancients
were led through experience to the need for a conical shape in order to achieve
an approximately uniform scale. It would have been fairly obvious that the level
in a straight cylinder falls faster when nearly full than when nearly empty. How-
ever, that the shape should be conical, rather than spherical or some other shape,
is less obvious and must have been arrived at rather through convention than care-
ful observation. The hydrodynamic problem that the design presents is actually a
fairly complicated one; a lot depends on whether or not the water passes through a
channel-like opening, in which case the viscosity of the water plays an important
role, making the rate of flow of water more or less proportional to the pressure,
and therefore to the height of the surface above the opening. On the other hand,
if the opening is such that the effect of viscosity is negligible, then we have ideal
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conditions where Bernoulli’s principle should apply and the kinetic energy (that
is, the square of the velocity) of the escaping water should be determined by the
pressure, or depth below the surface.

Since the pressure in the water at the depth of the opening is proportional to the
depth, irrespective of the shape of the container, it follows that if the flow rate is
proportional to pressure, a constant rate of fall of the water level will be achieved
if the area of the surface of the water is proportional to the depth of the opening.
This is ideally satisfied by a cylinder whose axial cross section is approximately
parabolic.

Rather than attempt to perfect the shape of the container, which we now
appreciate is a good deal more complicated than would at first appear, the actual
development of water clocks took a much more promising tack in achieving a con-
stant rate of flow by providing, in the words of the plumbing profession, a “constant
head,” that is, a fixed water level above the hole. This advance is attributed to an
Alexandrian by the name of Ktesibios (also given the Latinized spelling Ctesibius),
a celebrated inventor of Ptolemaic Alexandria around 250 B.C. (de Camp, 1960).
His accomplishments included other mechanical and hydraulic devices, such as a
water pump and pipe organ. From his work evolved the Hellenistic type of water
clock, called clepsydra, that was in common use throughout classical times. Such
clocks were commonly used then to allot time to speakers in a debate: When the
water ran out, it was time to stop. Successive speakers were assigned the first water,
second water, and so on. This may have something to do with the expression “of
the first water” as something of the finest quality. The essential design is illustrated
schematically in Figure 1.5.

The constant pressure head is achieved simply by allowing an adequate
continuous flow from some source into the vessel and preventing the level from
rising above a fixed point by having an overflow outlet. The constant flow was
collected in a graduated straight cylinder. The design often incorporated various
time-display mechanisms that were actuated by the constant rise in the water level.
In one instance a float supported a straight ratchet engaging a toothed wheel; to
this was attached a pointer to indicate the time on a circular dial. In other designs
a pointer was joined to the float by a vertical shaft, enabling the rise in the float to
be read on a vertical scale drawn on the surface of a rotatable drum. By varying
the scale at different points around the periphery of the drum, it was possible to
accommodate the seasonal variations in the length of the hour, which was then
defined as a certain fraction of the period from sunrise to sunset.

In China, water clocks are known to have existed at least from the sixth century
of the Christian era; but their development took a more elaborate mechanical turn.
In place of the time being measured by the continuous motion of a simple float
rising in a linear fashion, the Chinese took things to a higher level of sophistication
by introducing the idea of using the flow of water to control the rate of turning of
a water wheel; not continuously, but in discrete steps, much like the crown wheel
in the tower clock escapement mechanism, to be discussed in the next section. The
water flowed at a constant rate into successive buckets mounted on short swivel
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Figure 1.5 Schematic drawing of an ancient Greek water clock

arms between numerous equally spaced spokes of a wheel, free to turn in a verti-
cal plane about a fixed axle. By a clever arrangement of balanced beams, levers,
and connecting rods, the rotation of the water wheel was automatically stopped
by blocking one of the spokes while a predetermined amount of water flowed into
each bucket in succession. When the critical amount of water had been reached,
the bucket arm was able to tilt against an accurate counterweight at the other end
of a balance beam, in effect “weighing the contents of the bucket” before allowing
the wheel to turn until the next spoke was engaged and the wheel stopped again for
the next bucket to fill.

The accuracy achieved in a well-constructed clepsydra was comparable to the
sundial, but of course their time scale was not absolute, in the sense that they had
to be calibrated against a scale based on astronomical observations. A serious limi-
tation of the water clock is its obvious nonportability; it is difficult to imagine how
it could be made suitable for use aboard a ship on the high seas.

Another device that we should mention based on the flow of material through a
small hole is, of course, the hourglass, the universal symbol of the fleeting nature
of time. Sand was not the only substance used; the choice was directed towards
greater reproducibility. Many granular solids are efficient absorbers of moisture,
a property that clearly disqualifies them, since they would have a greater tendency
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to form clusters. The rate of flow through a constriction clearly depends on the
grain or cluster size as well as friction between grains. Hourglasses provided a
convenient way of determining a fixed interval of time, and sets of hourglasses
were used aboard ships to mark the watch, the 4-hour spell of duty.

1.10 Tower Clocks

A great deal has been written about mechanical clocks and clockmaking, a test-
ament to the enduring fascination with which the subject has been regarded through
the ages. We will limit our discussion of this subject to a review of their design and
performance from the vantage point of present-day horology.

In the analysis of the operation of mechanical clocks it is useful to separate the
mechanism into three essential functional parts: first, the energy source, which has
usually taken the form of a falling weight or a coiled spring; second, a mechanical
system capable of inherently stable periodic motion to serve as regulator; third,
a mechanism to derive and display the time in the desired units. The third part
consists of gear trains and a dial. Of these the most critical and challenging is the
regulating system, and the history of the advancement in mechanical clockmaking
is the history of the development of this part of clock design.

The fundamental problems in regulator design reduce to two in number: first,
an oscillatory system must be found whose period of oscillation is constant and
insensitive to changes in the physical environment and operating conditions;
second, a method must be found for the regulator to control the transmission of
power from the energy source to the rest of the clockwork with the least possible
reaction on the regulator. Some interaction is essential to sustain the oscillation of
the regulator. However, this must be small compared to the oscillation energy of
the reference system of the regulator. As with any mechanical system, there will
always be frictional forces present, which in the absence of an adequate source
of excitation energy will cause the oscillator to come to rest. Therefore, a small
driving force must act on it in step with the motion to maintain a nearly constant
level of excitation. But this requirement runs counter to the function of the reg-
ulator as a controller: Rather than controlling, it is being controlled. The ideal
situation would be one in which the reference oscillator was free to execute its
natural oscillations without any external perturbations acting on it.

To reconcile these opposing requirements and achieve the best possible
outcome requires the following: First, the oscillator must have very low inherent
friction, enabling it to continue to execute its motion with only a very weak driving
force; and second, it must exert its control in a “trigger” fashion. This means that
a small force exerted by the controlling element, acting for only a small fraction
of the period of oscillation, must control a much larger force transmitted from the
energy source to the gear train driving the clockwork. The mechanical means of
achieving this is called the escapement.
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Figure 1.6 The foliot and verge escapement for tower clocks

An early version extant in the fourteenth century was widely used in tower
clocks for cathedrals, public squares, etc. for almost three centuries. It is called the
verge and foliot escapement and is shown in its basic form in Figure 1.6. A straight
horizontal beam, the foliot, with equal weights balanced at its ends, is suspended
at its middle. Rigidly attached to the foliot at its point of suspension is a vertical
spindle, called the verge, to which are rigidly attached two small flat projections,
called pallets; these engage at diametrically opposite points a vertical wheel (the
scape or crown wheel) with cogs perpendicular to its face. The planes of the pallets
are parallel to the axis of the verge, but are typically ninety degrees apart. This
balanced foliot—verge system is capable of simple periodic angular motion about
the verge as axis. The torsion in the suspension of the foliot provides the necessary
restoring torque when the foliot is turned away from its equilibrium position. The
action of the pallets as the foliot rotates back and forth is to momentarily block the
cogwheel alternately by one pallet, then the other. The rotation of the cogwheel,
which derives its torque from the energy source, is thereby regulated. The reaction
back on the oscillating foliot occurs at the contact between the pallets and the cogs.
As earlier pointed out, this reaction tends to sustain the oscillation of the foliot. If
the suspension material is chosen to have good elastic properties with a particul-
arly low internal friction and if the foliot is massive to increase the energy and
the period of oscillation, this regulator can be expected to be relatively stable and
insensitive to small perturbations, such as air drafts, noise, and vibration. In judging
these mechanical clocks we should separate the principles upon which the design
is based from the implementation of those principles, that is, the choice of mate-
rials and the level of precision in the manufacture of the clocks. If we consider
the operating principles of the clocks we have been describing, we note that the
foliot—verge system is really a type of torsion pendulum, and as such is capable of
as great a constancy of oscillation period as are later developments, for example the
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pendulum. Its limitations arise principally from the design of its escapement; the
force of reaction is too large and acts for too large a fraction of the period. The
choice of material for the suspension is also critical; a fused quartz fiber suspen-
sion would have excellent elastic properties. Such quartz suspensions have been
widely used in torsion balances since the seventeenth century, because of both
their strength and elastic properties; the restoring torque they provide is linearly
dependent on the rotation angle.

1.11 The Pendulum Clock

Two important advances were made in the seventeenth century: First came the
pendulum as the regulator, and then, of equal importance, came the “deadbeat”
anchor escapement. Let us consider these in turn.

The story of Galileo’s timing the swings of a chandelier at the cathedral in Pisa
using his pulse is well known. The discovery of the “isochronism” of the pendu-
lum, that is, taking an equal time to complete a swing no matter how widely it
swings, dates from 1583 when Galileo was a medical student. The story is usually
repeated as an example of extraordinary resourcefulness in his desire to study the
pendulum. This may be so, but it should be noted that he was at the time also inter-
ested in medicine and in particular the pulse rate as an indicator of fever (Drake,
1967). In fact, there is no published account by him at this time suggesting the use
of the pendulum as a regulator for mechanical clocks. He did, however, use it to
construct an instrument to conveniently measure the pulse rate in patients. It con-
sisted essentially of a pendulum with variable length, which was adjusted to match
the pulse rate of the patient. It was calibrated to read directly conditions such as
“slow” or “feverish.” It was not until a few months before his death, in 1642, that
Galileo suggested the application of the pendulum to clocks. He had become blind
in 1638 and was no longer able to put his idea into practice. He dictated a design
to his son Vincenzo, who made drawings but did not actually complete a working
model. The credit for actually incorporating a pendulum into the design of a clock
around 1656 goes to Huygens, a name associated in the mind of every physics
student with the wave theory of light.

The pendulum is essentially an object pivoted or suspended so that it swings
freely. For purposes of analysis, we distinguish between a simple pendulum, which
consists of a small object suspended by a thin string of negligible mass, and a
compound pendulum, in which the mass distribution along the pendulum is not
negligible. The essential characteristic of the pendulum, as Galileo noted, is that for
small swings the period of oscillation, that is, the time to complete a swing in one
direction and back to the starting point, is the same no matter how wide the swing,
provided that it remains small. This property caught Galileo’s attention because
it appears to run counter to what might superficially be expected: After all, with a
large swing, the pendulum bob has farther to travel, and it is indeed remarkable that
its speed varies in just such a way that the oscillation period is always the same.
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Actually, the same could be said of a beam suspended by a material with suitable
elastic properties, such as fused quartz. They both display simple harmonic motion.
But while the latter depends on the property of the suspension material, the pendu-
lum has no such dependence on materials, which are generally subject to variation.
However, the period of the pendulum does depend on its radius of gyration, which
depends on the distribution of mass along the length of the pendulum. Since all
materials expand and contract with the rise and fall of temperature, the constancy
of the period is limited by any fluctuations in the temperature. We may attempt
to overcome this limitation by taking one or all of the following steps: Choose a
material that has extraordinarily low thermal expansion, such as the alloy invar;
regulate the temperature to reduce its fluctuations; and use a composite pendulum
incorporating two materials of differing expansion coefficients, such as brass and
steel, in such a way that the expansion of one is compensated by the other.

Another important limitation of the pendulum as a reference oscillator is that
its period depends on the strength of gravity, which varies from point to point on
the earth’s surface. This is because the earth is neither spherical nor homogeneous.
As far back as 1672, it was established through pendulum measurements that the
acceleration due to gravity is different for different geographical locations. This
was explained by Newton by assuming a model of the earth as a uniform gravitating
plastic body, which, by virtue of its spin, would bulge around the equator into an
oblate spheroid. The value of the fractional difference between the earth’s radii
at the equator and poles was later computed in 1737 by the Frenchman Clairaut
to be 1 in 299. The acceleration due to gravity is also dependent on altitude in a
way that may be affected by local topography and geology. The differences in the
times indicated by a pendulum clock at different geographical locations could be
on the order of one minute per day. Another source of fluctuation in the period of a
pendulum is air resistance, whose drag on the swinging pendulum depends on the
density of the air and thus the atmospheric pressure.

The other major development, which came around 1670, was a much improved
escapement: the anchor escapement, and later the deadbeat anchor introduced by
Graham in 1715. Figure 1.7 shows the essential design.

Unlike the verge—foliot escapement, where the pallets engage diametrically
opposite points on the scape wheel, the anchor escapement acts on a sector of a
rachet wheel having radial teeth. This geometric difference allows the pallets to be
separated by some distance along the rim of the scape wheel, and in consequence
a smaller angular movement of the anchor about its axis is needed to engage and
disengage the pallets and the wheel. This is advantageous to the performance of
any regulator based on a mechanical oscillator, since its oscillation is simple har-
monic only in the limit of small oscillations. But an even more important differ-
ence to note is that the pallets move at right angles to the direction of motion of
the scape wheel teeth. This means that the force of interaction between the pallets
and the teeth has little torque around the axis of the pallet mount and is therefore
ineffective in disturbing the oscillation of the pendulum. Moreover, the pendulum
is entirely free of the scape wheel for part of its oscillation, a first step toward
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Figure 1.7 The anchor escapement

the ideal condition. The deadbeat design is so called because unlike the anchor
escapement just described, there is no recoil of the scape wheel and the gear train
behind it during a swing, or beat, of the pendulum. This was achieved by a careful
contouring of the faces of the pallets and the teeth of the scape wheel. This refine-
ment further improved the isolation of the pendulum and enhanced its performance
as a regulator.

1.12 The Spring—Balance-Wheel Clock

For fixed installations, such as in observatories or clock towers, the pendulum-
controlled clock became the most widely used, and by the end of the eighteenth
century it had reached an accuracy sufficient to the demands of the day. However,
there remained one area of need that the pendulum clock could not satisfy: ship-
board and, in today’s jargon, other mobile environments, where the clock may be
subjected to erratic inertial forces. Moreover, any attempt to scale down the size
of the clock to make it more portable would aggravate the problems of air resis-
tance, friction, and curvature in the knife edge on which the pendulum is pivoted.
A further disqualification for shipboard use is the variability of the period with
geographical location, as previously described.
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Although brave attempts were made to develop a pendulum clock that would be
reliable in the field, it finally became clear that a new approach was required. This
came in the form of the balance wheel and the spiral hairspring, which ultimately
became universally used in all mechanical watches. The hairspring, or balance
spring, was a spiral of fine resilient metal fixed at the outer end to the body of
the watch and at the center of the spiral to the arbor of the balance wheel, which is
delicately pivoted on jeweled bearings to reduce the rate of wear. The basic advan-
tage of the spiral spring is that it provides a restoring torque on the balance wheel
independent of gravity and permits a reduction in the strain (degree of internal
deformation) in the material of the spring for a given rotation of the balance wheel.
This is important if the restoring torque is to remain proportional to the angle of
rotation of the balance wheel and lead to simple harmonic motion.

With almost every important advance in the world of ideas or in the practical
world of devices one name has, through common usage, become associated as the
one to whom all credit is due. However, we all know that almost always there were
other thinkers and inventors who had made critical contributions to those advances.
When the contest for recognition is between two equally prominent personalities,
the controversy is resolved, if at all, along national lines. In the present instance
there is no doubt that the Englishman Robert Hooke, of Hooke’s law fame, had
indeed proposed a spring—balance mechanism sufficiently accurate to determine
longitude at sea. It seems that Hooke had ambitions of exploiting his ideas in an
entrepreneurial spirit, not commonly avowed by physicists of his day. In any event,
Hooke failed to form a syndicate, and he never actually “reduced his ideas to prac-
tice,” as patent lawyers would say. On the other hand, Huygens, already credited
with implementing the use of the pendulum as a regulator, did in fact have a clock
constructed that was regulated by a balance wheel.

Much has been written about the British Admiralty’s quest in the early
eighteenth century to simplify the solution of an age-old problem in navigation:
the determination of longitude at sea (Sobel, 1995). Unlike latitude, which can be
deduced from straightforward observations, such as the altitude of the sun on the
meridian (at noon) or the altitude of the star Polaris, longitude was computed by
a rather complicated procedure devised by the astronomer Edmund Halley, better
known for his comet. It had been recognized for some time that if a mariner at sea
had a precise clock indicating Greenwich Mean Time (GMT), he could determine
longitude by using it to find the time of local noon, for example. To spur interest
in the development of such a shipboard clock, the British Admiralty established
a Board of Longitude in 1714 that offered a reward of £20,000 to anyone who
could determine longitude at sea with an error less than thirty miles. At the equator
this corresponds to an error of about 1.7 minutes in time. For a voyage lasting
one month this implies an error less than about 4 parts in 10°, beyond the cap-
ability of the existing clocks under shipboard conditions. A Yorkshireman named
John Harrison, a far more gifted instrument maker than politician, perfected his
first chronometer by 1735, an intricate piece of ingenious mechanical design to
minimize friction, etc. Sadly, because of the novelty of his ideas and a prejudice
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in favor of the astronomical technique called lunars, the Board of Longitude
was not much impressed and denied Harrison the award. Not until 1761, after his
chronometers had been generally admitted to have merit, was the Admiralty willing
to try one out on a voyage to Jamaica, during which it lost less than 2 minutes at a
fairly constant rate. It was Captain Cook, another Yorkshireman, who by carrying
Harrison’s timepieces on his long voyages demonstrated finally that old Harrison’s
chronometers had indeed met the Admiralty requirements and had fully deserved
the award.

The principal problem with the balance wheel is its susceptibility to thermal
changes in dimensions and consequent changes in the period of oscillation. As with
the pendulum there are three remedies; of these the most universal is compensation
of expansions and contractions due to temperature fluctuations through the use of
two metals in the form of a bimetallic strip.

The ultimate success of the balance wheel as a regulator in precision mechani-
cal clocks was made possible by further progress in the design of the escapement,
culminating in the détente, or chronometer spring, escapement. This brought the
performance level to a height unmatched until the arrival of electronic timekeeping.
This escapement approximates more closely than any other the ideal of allowing
the regulator to oscillate freely except for a very short period of interaction with
the scape wheel.

-
O

Figure 1.8 A typical escapement design in a high quality mechanical wristwatch
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Over the succeeding centuries timepieces were progressively refined and
made smaller; from the pocket watch to the dainty ladies’ wristwatch. Figure 1.8
illustrates schematically the essential features of the escapement commonly used in
high-quality wrist watches. Where it took Harrison literally years to painstakingly
construct by hand a single clock, it ultimately became possible to mass produce
them, thus making them universally affordable. But it is remarkable that from
the point of view of accuracy, no purely mechanical clock has surpassed some of
Harrison’s later chronometers.






Chapter 2
Oscillations and Fourier Analysis

2.1 Oscillatory Motion in Matter

A universal property of material objects is their ability to vibrate, whether the
vibration results in an audible sound, as in the ringing of a bell, or is subtle and
inaudible, as the motion in a quartz crystal. It can be a microscopic oscillation on
an atomic scale, or as large as an earthquake. Oscillations in any part of an extended
object or medium with undefined boundaries almost always propagate as waves.

If any solid object is struck with a sharp blow at some point, vibrations spread
throughout the body, and waves are set up in the surrounding medium. If the
medium is air, and we are within hearing range, the waves fall on our eardrums and
are perceived as a loud sound, whose quality experience teaches us to differentiate
according to the kind of object and the way it was struck. Unless the shape of the
body and the way it was struck satisfy very particular conditions, the sound pro-
duced will be far from a pure tone. The sounds produced by different objects are
recognizably different; even if we play the same note on different musical instru-
ments, the quality of the sound, or fimbre, as musicians call it, is different. It is a
remarkable fact, first fully appreciated by Alexander Graham Bell, that just from
the rapidly fluctuating air pressure of a sound wave falling on our eardrums we
are able to construct what we should call an “acoustic image.” That is, we are
able to sort out and recognize the various sources of sound whose pressure waves
have combined to produce a net complex wave pattern falling on the eardrum.
To really appreciate how remarkable this facility is, imagine that a microphone is
used to convert the complex fluctuations of pressure into an electrical signal that is
connected through appropriate circuits to an oscilloscope, and you watched these
fluctuations on the screen. Now, without being allowed to hear the sounds, imagine
trying to recognize, just from the complex pattern, a friend’s voice, or even that it
is a human voice at all.

The reason that oscillatory motion is so universally present stems from two
fundamental properties of matter. First, objects as we normally find them are in
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stable equilibrium; that is, any change in their shape brings into play a force to
restore the undisturbed shape. Second, all objects have inertia; that is, once a body
or part of a body has been set in motion, it will tend to continue in that state, unless
forces are impressed upon it to change its state; this is the well-known first law
of motion of Newton. It follows that when, for example, an external force causes
a momentary displacement from equilibrium, the restoring force arising from the
body’s inherent equilibrium will cause the affected part of the body not only to
return to the undisturbed state, but, because of inertia, to overshoot in the other
direction. This in turn evokes again a restoring force and an overshoot, and so on.

2.2 Simple Harmonic Motion

The simplest form of oscillatory motion is simple harmonic motion, as exemplified
by the swinging of a pendulum. This will ensue whenever a physical system is
displaced from stable equilibrium by a sufficiently small amount that the restoring
force varies nearly linearly with the displacement. Thus a Taylor expansion of the
energy U in terms of a small displacement & about the point of stable equilibrium
yields the following:

U="U+a&>+az&’ + ... (a > 0), 2.1

and for sufficiently small  the restoring force F = —dU/d& may be taken as linear
in the displacement. It follows that the equation of motion is given by

d*s  2a,

ﬁ+7£=0 (612>O), 2.2
which has the well-known periodic solution

& = &pcos [wt + ¢0] 2.3

characterized by a unique (angular) frequency w, amplitude &g and initial phase ¢,.
In a useful graphical representation, the displacement & is the projection onto a
fixed straight line of a radius vector &g rotating with constant angular velocity w;
the quantity (wt + @) is then the angular position of the radius vector, giving
the phase of the motion. Such a representation is a phasor diagram, illustrated in
Figure 2.1.

As a corollary, or simply by rewriting the solution in exponential form, it
follows that the motion is the sum of two phasors of equal length rotating in oppo-
site directions, thus

= @e+i(wt + o) + @efi(wt + <P()). 24
In the assumed linear approximation of the equation of motion, if &; and &; are two

solutions of the equation, then any linear combination (a&; + b&;), where a and b
are constants, is also a solution.
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time

Figure 2.1 Simple harmonic motion as a projection of uniform circular motion: phasor
diagram

If the next higher term in the expansion of U is retained, we are led to a non-
linear (or anharmonic) oscillator. The prototypical example is the pendulum when
the finite amplitude of oscillation is treated to a higher order of approximation than
the simple linear one. Thus the exact equation of motion, expressed in terms of the
angular deflection of the pendulum 6, is nonlinear, as follows:

ld29 +gsin® =0 2.5
— SIno = L. .
a2 "8

If 0 <« 1, we may expand sin 0 in powers of 0 to obtain a higher-order approxima-
tion to the equation of motion than the linear one. Thus

d%e 1
I— 60— -0°)=0. 2.6
d12+g( 6 )

Assume now that the amplitude of the motion is 0, so that in the linear approx-
imation the solution would be 8¢ cos (wot + @), where wg = +/(g/1). We can
obtain an approximate correction to the frequency by using the method of succes-
sive approximation; this we do by assuming the following approximate form for
the solution:

0 = 6 cos wt + €cos 3wt, 2.7

On substituting this into the equation of motion and setting the coefficients of cos wt
and cos 3wt equal to zero, we find the following:

9% 1 (69 3
— D )e=—(2) (o 1), 2.8
@ wo( 16)8 3(4)(0<<)

which shows that the pendulum has a longer period at finite amplitudes than the
limit as the amplitude approaches zero.

In the simple pendulum the suspended mass is constrained to move along the
arc of a circle. It was this motion that Galileo thought to have the property of
isochronism (or tautochronism), that is, requiring equal time to complete a cycle
starting from any point on the arc. In fact, the mass must be constrained along a
cycloid, the figure traced out by a point on a circle rolling on a straight line, rather
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than a circle, in order to have this property. A more famous, related problem, one
first suggested and solved by Bernoulli and independently by Newton and Leibnitz,
has to do with the curve joining two fixed points along which the time to complete
the motion is a minimum with respect to a variation in the curve; again the solution
is a cycloid.

Attempts in the early development of pendulum clocks to realize in practice the
isosynchronism of cycloidal motion were soon abandoned when it became apparent
that other sources of error were more significant. In any event, in order to maintain
a constant clock rate it is necessary only to regulate the amplitude of oscillation.

We should note that the presence of the nonlinear term in the equation of
motion puts it in a whole different class of problems: those dealing with non-
linear phenomena. One far-reaching consequence of the nonlinearity is that the
solution will now contain, in addition to the oscillatory term at the fundamen-
tal frequency o, higher harmonics starting with 3w. We will encounter in later
chapters electronic devices of great practical importance whose characteristic
response to applied electric fields is nonlinear.

2.3 Forced Oscillations: Resonance

Although our main concern will be the resonant response of atomic systems, requir-
ing a quantum description, some of the basic classical concepts provide at least a
background of ideas in which some of the terminology has its origins.

Imagine an oscillatory system, such as we have been discussing, having the fur-
ther complication that its energy is slowly dissipated through some force resisting
its motion. This is most simply introduced phenomenologically into the equation
of motion as a term proportional to the time derivative of the displacement. The
response of such a system to a periodic disturbance is governed by the following
equation:

L dE -

el tr o+ W& = oge'’’, 2.9
which has the well-known solution

£ — (o%)) o (P1=0) + Eoe—%le+i(wt+T), 210

V(@ =)+

where ¢ = arctan [Yp/(wo> — p?)] and & = ,/ w(z) — ¥2/4. The important feature of
this solution is, of course, the resonantly large amplitude of the first term, the par-
ticular integral, at wy = p; but an equally significant point is that its phase, unlike
that of the second natural oscillation term, bears a fixed relationship to that of the
driving force. This means that if we have a large number of identical oscillators
initially oscillating with random phases, and they are then subjected to the same
driving force, the net global disturbance will simply be the sum of the resonant
terms, since the other terms will tend to average out.
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2.3.1 Response near Resonance: the Q-Factor

In order to analyze the behavior near resonance of a lightly damped oscillator for
which Y < wp, let us assume that p = wg + A, where A < wp. Then we can write
the following for the amplitude and phase of the impressed oscillation:

(07 1
A= - . q>:arctan(—l), A < wo, 2.11

20)0 /Az + (%)2 2A

which, when plotted as functions of A, show for the amplitude the sharply peaked
curve characteristic of resonance, falling to 1/+4/2 of the maximum at A = —}/2
and A =+7/2, and for the phase, the sharp variation over that tuning range from
T/4 to 31/4, passing through the value ¢ = 7/2 at exact resonance when A = (.
A measure of the sharpness of the resonance, a figure of merit called the Q-factor,

is defined as the ratio between the frequency and the resonance frequency width .
Thus

o
0=—. 2.12
Y

An equally useful result is obtained by relating Q to the rate of energy dissipation
by the oscillating system. Thus from the equation of motion of the free oscillator
we find after multiplying throughout by d &/dt the following:

d[1(de\? 1 ,,|  (dE)?
a[z(z) +§“’5]—‘Y(E)’ a

from which we obtain by averaging over many cycles (still assuming a weakly
damped oscillator) the important result
d(Usor)
dt

From this follows the important result that we shall have many occasions to quote
in the future:

1
= —2Y(Ux); (Ux) = §<Utot)s 2.14

()

dt
Associated with the rapid change in amplitude is, as we have already indicated,
a rapid change in the relative phase between the driving force and the response it
causes. This interdependence between the amplitude and phase happens to be of
particular importance in the classical model of optical dispersion in a medium as
a manifestation of the resonant behavior of its constituent atoms to the oscillating
electric field in the light wave.

As we shall see in the next chapter, the sharp change in the phase ¢ as a func-
tion of frequency near resonance is of critical importance to the frequency stability
of an oscillator, wherever the resonance is used as the primary frequency-selective
element in the system. An important quantity from that point of view is the change
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amplitude

P ) frequency

detuning (A)

Figure 2.2 Amplitude and phase response curves versus frequency for a damped oscillator

in the phase angle produced by a given small detuning of the frequency from exact
resonance. Figure 2.2 shows the approximate shapes of typical frequency-response
curves. If we make the crude approximation that the phase varies linearly in the
immediate vicinity of resonance, then since ¢ varies by T radians as the frequency
is tuned from —Y/2 to /2, it follows that the change in phase A¢ is given approxi-
mately by the following:

(wp — @)
= ——T.
Y
We note that having a very small v, or equivalently, a very small fractional line

width, favors a small change in frequency accompanying any given deviation in
phase; and it is the phase that is susceptible to fluctuation in a real system.

Ad 2.16

2.4 Waves in Extended Media

In a region of space where a momentary disturbance takes place, whether among
interacting material particles, as in an acoustic field, or charged particles in an
electromagnetic field, such a disturbance generally propagates out as a wave. A
historic example is the first successful effort to produce and detect electromagnetic
waves as predicted by Maxwell’s theory. Heinrich Hertz, at the University of Bonn,
detected electromagnetic waves radiating from a “disturbance” in the form of a
high-voltage spark. One of the physical conditions found in the propagation of a
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disturbance as a wave is a delay in phase between the oscillation at a given point
and that at an adjacent point along the direction of propagation; this is inevitably
associated with a finite wave velocity.

The simplest case to analyze is that of transverse waves on a stretched string. It
is evident in this case that the net force on a small element of the string depends on
the difference between the directions of the string at the two ends of the given
small segment and therefore depends on the curvature of the string. It follows
by Newton’s second law that the acceleration of this segment is proportional to
the curvature; or stated symbolically, we have the well-known form of the (one-
dimensional) wave equation:

2 2
T Ty, =0, 2.17
ox2 or?
where T and p are constants, the tension and linear density of the string. If we
rewrite the equation as

02 1 62
gy __2r o, 2.18
ox2 V2 ar?
we can verify that a general solution, called D’Alembert’s solution, can be written
as follows:

y=fi =V + o(x + Vi), 2.19

where f1 and f> are any (differentiable) functions, the first of which represents a
disturbance traveling with a velocity V in the positive x direction, while the other is
one traveling in the opposite direction, without change of shape: This is ultimately
because V was assumed to be a constant.

In the case of the electromagnetic field, Maxwell’s theory, the triumph of
nineteenth-century physics, predicts that the electric and magnetic field vectors
E and B propagate in a medium characterized by the electric permittivity € and
magnetic permeability L according to the following wave equation expressed with
reference to a Cartesian system of coordinates x, y, z:

0’E, 0%E, N 0%E, O%E,

ox2 + oy? 072 arYe

with similar equations for the other components. It follows that for an unbounded
uniform medium, the velocity of propagation V = 1/,/li€ is a constant, which in a
vacuum has a numerical value in the MKS system of units of 2.9979 ... x 108 m/s.

The simplest solutions to the wave equation in an unbounded medium have a
simple harmonic dependence on the coordinates and time, which in one dimension
may be written in the form

E, = Egsin(kz — ot + §). 221

where k is the magnitude of the wave vector, w is the (angular) frequency, and ¢ is
an arbitrary phase.
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The surfaces of constant phase, defined by (kz — wt) = constant, travel with
the velocity V given by V = w/k. If we write, as is conventionally done, V = c/n
where c is the velocity of light in vacuo, then the quantity n, originally defined for
frequencies in the optical range, is the refractive index that appears in Snell’s law.
This is the velocity of propagation only of the phase of a simple harmonic wave
having a single frequency; for any more complicated wave, it becomes necessary to
stipulate exactly what it is that the velocity refers to. Clearly, the concept of a wave
velocity has meaning only if some identifiable attribute of the wave is indeed trav-
eling with a well-defined velocity. If, for example, the wave has only one large crest
like the bow wave of a ship traveling with sufficient speed, then the velocity with
which that crest travels can differ from the phase velocity if the particular medium
is dispersive, that is, if the phase velocity is a function of the frequency. This is
readily seen if we recall that such a waveform can be thought of as a Fourier sum
of simple harmonic waves, which now are assumed to travel at different velocities.
In fact, there is no a priori reason for the wave to preserve its shape as it pro-
gresses; if it does not, the whole notion of wave velocity loses meaning. However,
under some conditions a group velocity given by V = dwl/dk can be defined for a
wave packet. More will be said about dispersive media in the next section.

It will be useful to review some of the fundamental properties of waves. With-
out going into great detail in the matter, we will simply state that at a boundary
surface, where there is an abrupt change in the nature of the medium, waves will
be partially reflected, and partially transmitted with generally a change in direc-
tion, that is, refraction, governed by Snell’s law. The geometric surface joining all
points that have the same phase is the wavefront, and in an unbounded medium the
wavefront will advance at each point along the perpendicular to the surface, called
a ray at that point.

If there is an obstruction in the medium, that is, a region where, for example,
the energy of the wave is strongly absorbed, the waves will “bend around corners”:
the phenomenon of diffraction. This, it may be recalled, was the initial objection
to the wave theory of light, an objection soon removed by the argument that the
wavelength of light is extremely small compared with the dimensions of ordinary
objects, and that diffraction is small under these conditions. The analysis of dif-
fraction problems is based on Huygens’s principle, as given exact mathematical
expression by Kirchhoff, who showed that the solution to the wave equation at a
given field point can be expressed as a surface integral of the field and its derivatives
on a geometrical surface surrounding the field point. The evaluation of that sur-
face integral is made tractable in the case of optical diffraction around large-scale
objects by the smallness of the wavelength, which justifies a number of approxi-
mations. If an incident wave is delimited, for example by the aperture of an optical
instrument or the antenna of a radio telescope, the field, of course, is nonzero only
over the surface of the aperture, and the integral is simply over that surface. Appli-
cation of the theory to the important case of a circular aperture under conditions
referred to as Frauenhoffer diffraction, where the diffracted wave is brought to a
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focus onto a plane, yields the following result for the intensity distribution in the
focal plane:

J{ (ka sin 6)
k2a?sin® @’
where a is the radius of the aperture and 0 is the inclination of the direction of
the field point with respect to the system axis. The Bessel function J; (ka sin 0)
oscillates as the argument increases, implying an intensity pattern that consists of
a central disk, called the Airy disk, surrounded by concentric bands that quickly
fade as we go out from the center. Since the first zero of the Bessel function occurs
when its argument is about 3.8, the radius of the Airy disk is therefore given by
3.8 A

sinf~0~ — =12—. 2.23
ka D

In the approximation where ray optics are used, the image in the focal plane would
of course have been a geometrical point.

I =4I 2.22

2.5 Wave Dispersion

Another fundamental wave phenomenon is dispersion, the same phenomenon that
was made manifest by Isaac Newton in his classic experiment on the dispersion of
sunlight into its colored constituents using a glass prism. It occurs when the refrac-
tive index varies from one frequency to another; this can occur only in a material
medium, never in vacuum, at least according to Maxwell’s classical theory. The
dispersive action of nonmagnetic dielectric materials is wholly due to the frequency
dependence of the electric permittivity €; this ultimately derives from the frequency
dependence of the dynamical response of the molecular charges in the medium to
the electric field component in the wave. This is a problem in quantum mechanics.
However, H.A. Lorentz was able on the basis of his electron theory to account,
at least qualitatively, for the gross features of the phenomenon. He assumed that
the atomic particles exhibited resonant behavior at certain natural frequencies of
oscillation and that the damping arises from interparticle collisions interrupting the
phase of the particle oscillation.

According to this model, the oscillating electric field in the wave induces
an oscillating polarization in each of the atomic particles with a definite phase
relationship to the field, leading to a total global polarization, which for field vec-
tors with the time dependence exp(—iwt) adds a resonant term to the permittivity,
as follows:

02
€ = 1+# €p. 2.24
wy — 0 — Yo
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where G is a measure of the atomic oscillator strength. It follows that the (complex)
refractive index n is given by

¢ Eollg | 1+ o 225
n=—=c _ ], .
Vv oHo a)(z)—wg—iyw

from which we finally obtain, assuming that G is small,

o2 (a)(z) — w?) o2 Yoo
n=14+—— tie—s :
2 (w5 — 0?)? + Ya? 2 (w5 — 0?)? +V?a?

2.26

Finally, substituting this result in the assumed (complex) form for the plane
wave solution,

E, = Ege!(tkz=on) 227

we see that the real part of n determines the phase velocity and hence the dis-
persion, while the imaginary part yields an exponential attenuation of the wave
amplitude, corresponding to absorption in the medium, provided that v is a posi-
tive number. This shows explicitly how the real and imaginary parts of the atomic
response determine the frequency dependence of the real and imaginary parts of
the complex propagation constant through the medium, that is, of the refractive
index and absorption of the wave. The complex propagation constant, as a function
of frequency, exhibits a relationship between the real and imaginary parts that is
an example of a far more general result that finds expression in what are called the
Kramers—Kronig dispersion relations. It is far beyond the scope of this book to do
more than mention that in a relativistic theory these relations are involved with the
question of causality and the impossibility of a signal propagating faster than light.

2.6 Linear and Nonlinear Media

So far we have considered media that are [inear, which means in the case of
acoustic waves that a stress applied at some point produces a proportional strain;
and conversely, a displacement from equilibrium brings about a proportional restor-
ing force, resulting in simple harmonic motion. In the case of electromagnetic
waves the classical theory leads to strictly linear equations in vacuo. A linear
medium has an extremely important property: It obeys the principle of super-
position. This states roughly that if more than one wave acts at a certain point, the
resultant wave is simply the (vector) sum of these. At first, this may sound like pure
tautology. The real meaning of the statement is that it is valid to talk about several
waves being present simultaneously at a certain point as if they were individual
entities that preserve their identity at the point where they overlap. A corollary
is that in a linear medium, a wave is unchanged after it passes a region of over-
lap with another wave. According to classical theory, two light beams, no matter
how powerful, intersecting in a vacuum will not interact with each other: each
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emerges from the point of intersection as if the other beam were not there. In the
realm of quantum field theory, however, it is another story: The vacuum state is far
from “empty”!

However, it is possible to increase the strength of a disturbance in a mater-
ial medium to such a point that the medium is no longer linear, and the principle
of superposition no longer valid. Waves would then interact through the medium
with each other, generating other waves at higher harmonic frequencies. We have
already seen this in the case of the pendulum, where the presence of a nonlin-
ear (third-degree) term in the equation of motion led to the presence of a third
harmonic frequency.

In the more important circumstance where the field equations describing
propagation through a given medium have a significant quadratic term, as in the
frequency mixing devices we shall encounter later, two overlapping waves of
frequencies w; and w, would interact, and the total solution would include the
following:

a[Ei(r) + Ez(t)]2 = aE? cosz(wlt) + 0E3 cosz(a)ﬂ)
+ 20.E| E3 cos(wi1) cos(wit) + . ... 2.28

Using the trigonometric identities:
1
cos®(wt) = E[COS Qwt) + 1],

cos(a)lt) cos(a)zt) = %[cos(a)l + cug)t + cos(cul — a)z) t], 2.29

we see that with the assumed degree of nonlinearity, the second harmonic as well
as the sum and difference frequencies appear in the output. By suitable filtering,
any one of these frequency components can be isolated. We will have occasion to
discuss in a later chapter the use of nonlinear crystal devices to produce intercom-
bination and harmonic frequencies in the radio frequency and optical regions of the
spectrum.

2.7 Normal Modes of Vibration

When waves are set up in a medium with a closed boundary surface, there will be
reflections at different parts of the boundary, with the possibility of multiple reflec-
tions in which reflected waves are themselves reflected from opposing surfaces, all
combining to produce a resultant wave pattern. If the medium is linear, the problem
of finding the resultant is simply a matter of summing over the individual waves. It
is one of the fundamental characteristics of waves that the resultant amplitude at a
given point can be large or small depending on the relative phase of the combining
waves at that point, producing an interference pattern.

Let us consider a homogeneous medium with a pair of parallel planes forming
part of its boundary surfaces; the remainder of the boundary is immaterial. Let us
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assume that a disturbance has been created at some point in this medium, giving
rise to a wave that will travel out and be reflected by each of the plane boundary
surfaces, return to the opposite surfaces, and be reflected again to pass through the
initial point. The total distance traversed in making this round trip will be the same
for all initial points and equal to twice the distance between the plane boundary
surfaces. If this distance happens to be equal to a whole number of wavelengths of
the wave, the waves arriving back at any initial point will, after an even number
of reflections, be in phase with the initial disturbance, and the wave amplitude will
build up at all points, as long as the external excitation continues. By contrast, if the
round trip distance is not a whole number of wavelengths, the reflected waves will
not be in phase with the exciting source, nor with waves from prior reflections, and
the resultant of many even slightly out of phase waves will be weak and evanes-
cent. Note that it is not necessary that the phase difference be near 180° to lead to
cancellation and a weak resultant wave; even a small difference in phase produced
in each round trip will accumulate after many successive reflections to result in the
presence of waves having a phase ranging from 0° to 360°. In that event, for every
wave of a given phase, there will be another wave 180° out of phase with it, leading
to cancellation.
The condition for a buildup of the wave can be simply stated as follows:

2L = nk,, 2.30

where n is any positive integer. This allows us to calculate the corresponding fre-
quencies v, = V/A, = nV/2L. Thus if we know the wave velocity V in the
given medium and the distance between the reflecting surfaces, we can predict
that certain frequencies of excitation will find a strong response, while any other,
even neighboring, frequencies will not do so. Since n can be any whole number,
there is an infinite number of frequencies forming a discrete spectrum, in which
the frequencies have separate, isolated values, as opposed to a continuous spec-
trum in which frequency values can fall arbitrarily close to each other and merge
into a continuum. The simplicity of the result, that the frequencies in the spec-
trum are whole multiples of the fundamental frequency V /2L, is due to the simple
geometry of two plane reflecting surfaces in a homogeneous medium. However,
even for more complicated geometries, part of the spectrum may still be discrete;
but the frequencies will not necessarily be at equal increments.

To further elaborate on these basic concepts, let us consider another system, one
that better lends itself to graphical illustration: a vibrating string stretched between
two fixed points. Note that we can think of the fixed points merely as points where
the string joins another string of infinite mass, and therefore we can regard the
fixed points as the “boundaries” between two media. It has a discrete spectrum
consisting of a fundamental frequency v = V /2L and integral multiples of it called
harmonics. In a musical context the harmonics above the first are called overtones,
whose excitation determines the quality of the sound. These are the frequencies of
the so-called normal modes of vibration of the string, shown in Figure 2.3.
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Figure 2.3 The natural modes of vibration of a stretched string

Each can be excited by applying an external periodic force, and the ampli-
tude resulting from such excitation is qualitatively easy to predict: it is essentially
zero unless the frequency is in the immediate neighborhood of one of the nat-
ural frequencies. At that point, the amplitude would grow indefinitely if it were
not for frictional forces, or the onset of some amplitude-dependent mechanism
to limit its growth. This phenomenon is of course resonance, which provides a
method of determining the normal mode frequencies of oscillation of the system.
At other frequencies the buildup of excitation is weak because of the mismatch in
phase, as already described. Just how complete the cancellation will be depends
on the highest number of reflections represented among the waves contributing
to the resultant. It may be said approximately that for complete cancellation, the
number of waves must be large enough that phase shifts spanning the entire 360°
will be present. Now, the increment in phase per round trip is 360 (Av-2L/V)
degrees, where AV is a small offset in frequency from one of the discrete frequen-
cies in the spectrum. Thus for cancellation, we require a number N of traversals
such that N - 360 (Av-2L/V) = 360; that is, Av - 2NL/V = 1. But 2NL/V is
simply the total time the wave has traveled back and forth, which in reality will be
limited by internal frictional loss of energy in the string and imperfect reflections at
the end points. Thus if we write AT for the mean time it takes the wave to become
insignificant, then the smallest Av for cancellation is given by Av - At~ 1; a
smaller frequency offset gives only partial cancellation. This implies that in deter-
mining the frequency of resonance there is effectively a spread, or uncertainty, in
the result if the measurement occupies a finite interval of time. This result, arrived
at in a simple-minded way, hints at a much more general and fundamental result
concerning uncertainties in the simultaneous observation of physical quantities: the
now famous Heisenberg Uncertainty Principle. This principle applies to the simul-
taneous measurement of such quantities as frequency and time, which are said to
be complementary, for which a determination of the frequency implies a finite time
to accomplish it. Therefore, by its very nature, we cannot specify the frequency of
an oscillation at a precise instant in time. To quantify this idea requires a precise
definition of “uncertainty” in a physical measurement, which Heisenberg did in the
context of quantum theory.
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2.8 Parametric Excitations

The most often cited and certainly most dramatic example of the effects of
resonance is the collapse of the suspension bridge across the Tacoma Narrows
in Washington State, USA. Although its failure was due to violent oscillations,
there was no external periodic force acting on it, but rather a buildup of what are
called parametric oscillations, much like the fluttering of (venetian) window blinds
in a steady wind. Such oscillations are characterized by a buildup resulting from
some dynamic parameter varying in a particular way within each cycle.

There is another interesting phenomenon, in which a steady stream of air
excites sound vibrations in a stretched string: the aeolian (from the Greek aiolios,
wind) harp or lyre. This is a stringed instrument consisting of a set of strings of
equal length stretched in a frame. When a steady air current passes over the strings,
it emits a musical tone. The mechanism by which this occurs is rather subtle, as
shown by the observed fact that the pitch of the tone does not seem to depend on
the length or tension in the string, which would certainly be the case if it were
simply a matter of the resonant frequencies being excited. It is observed, however,
that if the resonant frequencies of the strings are made to equal the tone produced
by the wind, the sound is greatly reinforced. The pitch of the sound depends on
the velocity of the wind and the diameter of the string. According to Rayleigh, the
great nineteenth-century physicist, noted for his theory of sound, the sound arises
from vortices (eddies) in the air produced by the motion of air across the strings.

The simplest example of parametrically driven oscillations is the “pumping” of
a child’s swing, in which the child extends and retracts its legs, thereby varying the
effective length of the suspension, during each swing. If we assume that a para-
meter that determines the frequency wy, in this case the length of the pendulum, is
modulated harmonically at double the oscillation frequency, then the equation of
motion will have the following form:

2

% + §[ 1 + ecos(2wpr) |0 = 0. 231

If we assume €< 1, then we can look for an approximate solution of the following
form:

0 = a(t) cos wot + b(t) sin wot. 2.32

where a(t) and b(t) vary negligibly during an oscillation. By substituting this
form into the equation of motion, we find by setting the coefficients of cos wpt
and sinwpt equal to zero, and neglecting higher harmonic frequencies, that the
amplitudes a(¢) and b(¢) must satisfy the following equations:

da Ewo

— 4+ —b=0,
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—+—a=0,

dt 4

2.33
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from which we obtain finally the possible solution

€m

+aze” 31, 2.34

alt)=a 1e+s%’
with a similar result for b(¢). The presence of the first term, with the positive expo-
nent, shows that the amplitude will grow exponentially. It is important to note
(although our simple discussion does not deal with it) that the excitation of a para-
metric resonance will occur over a precise range of frequencies of modulation of
the parameter; and further, that if the system is initially undisturbed, so that both 6
and d0/dt are initially zero, the system will not be excited into oscillation.

2.9 Fourier Analysis

When a system is subjected to a simple periodic disturbance, its response, in
general, will be an oscillation at the frequency of that disturbance, superimposed
on whatever free, natural oscillations were already present. As we have seen in
the case of a simple physical system consisting of a vibrating string, a large res-
onant response is induced by a simple periodic force only at one of its natural
frequencies. In general, however, when a violin string is excited into vibration, for
example by plucking it, the shape of the string is a complicated function of time.
We might imagine a high-speed movie camera recording this complex wave motion
frame by frame. Predicting the motion of a system produced by an arbitrary initial
displacement from its quiescent state is a fundamental problem of physics. The
term “motion” used here is not restricted to movement in space; it could be, for
example, the variation of temperature throughout a body as determined by the laws
that govern the flow of heat.

Since any given natural frequency can effectively be excited only by an oscill-
atory force at that frequency, it is reasonable to assume that if the excitation is
a complicated function of time, the response at the different natural frequencies
somehow is representative of the “amount” of those frequencies in the excitation
function. From this it seems plausible that to every given excitation function of
time there corresponds a unique set of amplitudes (and phases) of the natural-
mode responses. This would imply that any given excitation function of time can be
regarded as a sum over a unique set of harmonic oscillations at the natural frequen-
cies. In fact, this is given precise mathematical expression in the Fourier expansion
theorem, one of the most useful theorems in physics, named for Joseph Fourier, a
French mathematician who made a systematic study of what is now called Fourier
analysis. It applies equally to the representation of an arbitrary initial shape of the
string as a sum over a unique set of simple harmonic functions of position, making
up the natural modes of vibration. This is of such importance to the understanding
of what we shall encounter in succeeding chapters on atomic resonance that we
must devote some effort to understanding it. The theorem proves that almost any
periodic waveform, of whatever shape, can be expressed as the sum over a series of
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harmonic functions having amplitudes unique to the waveform, and it gives formu-
las for computing those amplitudes. In the context of high-fidelity audio systems
the term “harmonic distortion” is familiar: It refers to the power in the second and
higher harmonics of the given frequency being reproduced. This assumes that a
distorted waveform can be unambiguously specified as consisting of a fundamen-
tal and harmonic components. The theorem is based on a special property called
orthogonality of the functions describing the normal modes of vibration. The term
means the property of being “perpendicular,” as might be applied to two vectors;
for functions, the test for this property is that the average of the product of the
functions be zero, when taken over the appropriate interval. In that sense they are
“uncorrelated.” In the case of the normal mode functions of the vibrating string,
sin (nmtx/L) and sin (mmx/L), where n and m are integers, their product averaged
over the interval 0 < x < L is zero. Thus
L

/sin (mtf) sin (mnf) dx =0, n #m. 2.35
L L
0

In general, for any given periodic function, that is, one satisfying f(x) = f(x+2m),
orthogonality allows the amplitudes of the harmonics in the following Fourier
series expansion of the function to be determined:

f(x)=ap + ay sin (x) + ap sin (2x) 4+ a3 sin 3x) + - - -
+ by cos (x) + by cos (2x) +b3cos (Bx) +--- . 2.36

Thus by multiplying both sides of equation 2.36 by sin (nx) and integrating over
the fundamental interval we immediately obtain the amplitude a;,. Thus

2n

/sin (nx) f(x)dx = may,, 2.37
0

with a similar result for the amplitudes b,, by replacing sin (nx) with cos (nx). We
note that the amplitude is in a sense a measure of the extent to which the given
function correlates with the harmonic mode function.

The theorem proves that by including higher and higher harmonics, the exact
function can be represented as closely as we please. It follows that the amplitudes
must decrease as we go to higher-order harmonics, so that a fair representation
may be achieved with a finite number of harmonics. As an example, in Figure 2.4a
is shown a periodic sawtooth waveform and beside it, in Figure 2.4b, are shown
the amplitudes of the first few harmonics plotted against frequency to display the
spectrum of the wave. The effect of a filter that removes all but the first three
harmonics is shown in Figure 2.4c. We should note that to represent sharp changes
in the waveform requires the inclusion of the higher harmonics in the sum.

It is clear from what has been said that for a plucked string, the extent to which
each of the natural frequencies will be excited will depend first on the amplitude
of each Fourier component in the initial displacement and second on the degree
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Figure 2.4 (a) A sawtooth waveform (b) its Fourier spectrum (c) the sum of the first three
harmonics

to which each component is able to build up its amplitude in the presence of
losses at the boundaries, etc. Since the initial amplitude of a given Fourier com-
ponent according to the theorem is computed as an overlap integral between the
given harmonic function and the function representing the initial displacement, the
excitation of that particular harmonic is favored by having the initial displacement
large where the harmonic displacement is large.

For non-periodic functions, there is a corresponding Fourier integral theorem,
according to which, as a particular example, an even function f(¢) of time (that is,
one satisfying f(t) = f(—t)) can be represented by the following integral:

o]

@) = / F () cos (ot)do, 2.38
0

where F (w), now a function of a continuous variable, rather than the discrete mode
index number 7, gives the amplitude distribution over frequency, that is, the Fourier
spectrum of the function f(¢). F(w) has a unique, one-to-one relationship with
f(¢), which the Fourier theorem proves is a reciprocal one, in the sense that F'(w)
is obtained from f(¢) simply by interchanging their roles. The one function is
called the Fourier transform of the other.

It frequently happens that where we have a complex signal consisting of what
may appear as an unintelligible fluctuation in voltage, we are able to present the
information in a far more useful way by applying the Fourier integral theorem.
To show in a concrete way how this may be accomplished, consider the following
hypothetical experiment. An input signal, which could, for example, be a sound
wave or a microwave of complex waveform, is connected to an infinite number
of ideal resonators tuned to progressively higher frequencies, with only a small
increment in frequency between each resonator and its successor. This, it may be
recalled, is the way it is thought that the human ear processes incoming sounds and
is thereby able to separate the various types of sources that make up the complex
waveform it receives. Let it be assumed that the input signal is switched on for a
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predetermined period, after which it is switched off, and the amplitudes and phases
of the oscillations in all the resonators are measured and then plotted against their
resonant frequencies. Such a plot is the frequency spectrum of the incoming com-
plex waveform, a waveform that begins as zero, jumps to the signal value when
the switch is turned on, and goes back to zero when the switch is turned off. It
is assumed that the frequency difference between consecutive resonators is small,
so that there will be a very large number of them. The two principles that are the
essence of this method of analysis are these: First, the phases and amplitudes of the
resonators are unique to the incoming signal, and second, if we simply add simple
harmonic oscillations at the frequencies of the resonators with those amplitudes
and phases, the sum will reproduce the original signal waveform.

In later chapters we will have frequent occasion to refer to the Fourier spectra
of signals. Two examples of Fourier transforms are shown in Figure 2.5. The first
is a signal in which a simple oscillation is switched on at some point and there-
after slowly decays. The second represents a signal that really contains just one
frequency, but the phase changes at irregular intervals of time.

In some important cases the phases are either indeterminate or inaccessible; in
such cases the power spectrum, showing only the square of the amplitude at each
frequency, is nevertheless very useful. The most obvious example is in the analysis
of optical radiation, where of necessity we are limited to studying the power spec-
trum, since no common detector exists that can follow the extremely rapid oscilla-
tions in a light wave. Thus when sunlight, for example, is passed through a glass
prism to separate the colors of the rainbow, as Newton did in his classic researches
on the composition of white light, we are in a sense transforming the fluctuating
field components in the incoming electromagnetic wave (the optical signal) into
a continuous distribution of intensity over frequency, its Fourier spectrum. In this
particular case, as blackbody radiation, the light from the sun will have phases that
are random, which makes the availability of a representation in the form of a power
spectrum, free of the phases, particularly crucial.

1 -

frequency ——m

T PAN

time — frequency —m

Figure 2.5 Examples of Fourier spectra
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2.10 Coupled Oscillations

An important situation often arises in which one oscillatory system interacts with
another. This often occurs where the oscillations of the one are to be synchronized
with the other, a process familiar in television receivers. There the local sweep cir-
cuits that scan the picture have to be synchronized with the received horizontal and
vertical synchronization pulses to obtain a stable picture. This, however, is syn-
chronization under conditions in which the aspect we wish to consider is clearly
absent: The oscillating systems do not interact directly. Let us consider, instead,
two oscillating systems in which a resonant frequency in one nearly coincides with
one in the other system, and assume that there is a weak coupling between them.
A somewhat contrived example is shown in Figure 2.6, which depicts two pendu-
lums (or is it pendula) of nearly equal natural oscillation period whose suspension
is from a massive body that can slide horizontally without friction. If the coupling
body were so massive that it may be regarded as immovable, then the pendulums
would be independent of each other. However, for a large but finite mass, any oscil-
lation in one pendulum affects the other. Perhaps the most striking phenomenon is
seen in this system if we set one pendulum in motion while the other is left ini-
tially undisturbed. If we watch the subsequent motion of the two pendulums, a
curious thing happens: The pendulum initially at rest will begin oscillating with
increasing amplitude while the amplitude of the other simultaneously decreases.
This will continue until the pendulum that was originally set in motion comes to
rest, and the two have exchanged the initial state. Then the process reverses, and
the two return to the original state. The energy of oscillation would continue to
be exchanged back and forth indefinitely if it were not for the inevitable pres-
ence of frictional forces at the points of suspension and air resistance, which will
cause the energy to be dissipated as heat and the system to come to rest. It is as if
the system cannot “make up its mind” which state to be in; its oscillatory state is
continually changing.

Figure 2.6 Two identical coupled pendula
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An interesting question to ask about the coupled system is whether it can be
set oscillating in some mode in which all parts of the system execute oscillation
at the same frequency, with a stable amplitude. The attempt to answer this type of
question, particularly to more complex systems involving several coupled systems,
has led to a sophisticated theory and the concept of normal vibrations. To illustrate
what is meant by the term, let us go back to the two coupled pendulums. We will
state without proof that if this system is initially set in motion, either with the two
pendulums in phase or the two exactly 180° out of phase, they will continue to
oscillate in those modes with a constant amplitude. These two modes, illustrated
in Figure 2.7, are called the normal modes of vibration for this particular system. It
is important to note that for these modes to be preserved, the two pendulums must
oscillate with a common frequency. This is, in fact, the defining characteristic of
the normal modes: In a given mode, all parts of the coupled system must oscillate
at one frequency belonging to that mode. The common frequency will, in general,
vary from one mode to another. In the case of the two coupled pendulums, the fre-
quencies of the two modes differ to an extent determined by the degree of coupling
between them; this can be shown to be m /M, where m is the mass of the pendulum
bob and M is the coupling mass. In terms of this coupling parameter m /M, the
frequencies of the modes are approximately v, = Vv,(1 + m/M) and v, = Vv,,
where v, is the frequency of free oscillation in the absence of coupling.

It is interesting to view the original bizarre behavior, in which the oscillation
went back and forth between the pendulums, in terms of the normal modes. We see
that when only one pendulum is set in motion, the system is not in a normal mode
but could be looked on as a “mixture” (or more precisely, a linear superposition)
of the two normal modes; that is, the motion of each pendulum in our particu-
lar example is the sum of equal amplitudes of the two normal modes. But these
modes do not have exactly the same frequency, and their relative phase will contin-
uously increase, passing periodically through times when their phases differ by a
whole number of cycles and are in step, and times when they get 180° out of step.
When they are in step, they reinforce each other and produce a large amplitude,
while the opposite is true when they get out of step and cancel each other. Thus
the amplitude of each pendulum alternately rises and falls periodically, a phenom-
enon called “beats,” from the way it is manifested when two musical notes having

Figure 2.7 The normal modes of oscillation of two identical pendula
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nearly the same pitch are sounded together. The number of beats per second can
be shown to equal the difference between the frequencies of the two normal modes
and therefore proportional to the strength of coupling, between the two pendulums;
the tighter the coupling the higher the frequency at which the energy is exchanged
back and forth between the two pendulums.






Chapter 3
Oscillators

3.1 Feedback in Amplifiers

As already noted, an oscillatory system will, in the absence of a driving force to
maintain the oscillation, eventually come to rest. In order to keep a constant level
of oscillation, it is necessary to inject energy into the system, an action most effi-
ciently performed by a periodic force at a resonant frequency. It is not necessary
that the external source of energy itself be periodic, since the oscillating system
can be made to draw energy automatically at its own frequency; it is then called a
self-sustained oscillator. In essence, this is accomplished by driving the oscillator
from a power source from which the transfer of energy to the oscillator is regu-
lated by the oscillator itself. This amounts to using a power amplifier to drive the
oscillator with an amplified version of its own oscillation. To sustain the oscilla-
tion, the amplified power must be fed back to the oscillating system in the proper
phase to reinforce the oscillation already present. This is called positive feedback
and is generally associated with a rapid buildup of energy, which in every practical
situation, however, is always limited by the onset of some degradation of the con-
ditions that led to the buildup, or some imposed limit. Self-sustaining motion (not
perpetual motion) occurs in many kinds of systems. For example, in a very broad
sense a steam engine is a self-sustaining rotator, in the sense that valves controlling
the flow of steam into the cylinders to drive the pistons are in fact acting like power
amplifiers, whose output, the force on the pistons, in addition to driving the train,
also actuates the valves, providing positive feedback.

Positive feedback is familiar to most people as the cause of loud whistling
in a public address system when the amplification is set beyond a certain point
for a given disposition of microphone and loudspeakers. To understand the condi-
tions necessary to produce a self-sustaining oscillation, we must recognize that it
is not sufficient that there be feedback, it must be sufficient and in the right phase.
In a sound system the microphone converts any sound waves impinging on it into
a weak fluctuating electric current, or voltage, which we will simply call a signal.
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This is amplified to a much larger signal, more or less faithfully reproducing the
same fluctuations, and applied to the loudspeakers, which convert the current fluc-
tuations back into sound pressure waves in the surrounding air. At some distance
this sound wave will reach the microphone, completing a feedback loop. Depend-
ing on the directionalities of the microphone and the loudspeakers, and the distance
between them, the feedback signal may be stronger or weaker than the original
signal at the beginning of the loop. To stipulate the conditions for self-sustaining
oscillation, imagine the following experiment: Imagine that a magical shield could
be placed between the microphone and the speakers without in any way affecting
the acoustics, so that the loop is broken by the shield. Now imagine a frequency
synthesizer placed next to the shield, and let a succession of pure tones be sounded
at a known, constant intensity. For each of these tones suppose the level of inten-
sity arriving just on the other side of the shield is measured. Then the ratio of the
two intensities is called the loop (power) gain. Further assume that we could see
and analyze the waveforms of the sound waves on the two sides of the shield and
thereby determine their relative phase. We are now ready to state the conditions
for self oscillation: The loop gain must reach unity, and the loop phase difference
must be zero or a whole number of cycles. The question remains as to why the
oscillation takes place at nearly a single frequency.

To see why the oscillation condition is usually limited to a single frequency
requires a somewhat more detailed study of feedback amplifiers, a subject of great
practical interest and sophistication, not only for oscillators, but especially for the
converse problem of maintaining “stability,” that is, avoiding a system’s break-
ing into oscillation. Systems involving the feed-back of signals for the purposes
of automatic control of devices constitute the whole important subject of servo
mechanisms, a field central to the control of the frequency of free-running oscilla-
tors by atomic resonances, an essential feature of all atomic clocks.

The fundamental question we can ask about an amplifier is the following: If we
apply a time-varying signal at its input terminals, what signal will appear at the out-
put terminals? A perfect amplifier would be by definition one in which the output
signal is just a scale factor times the input signal, so that if the input and output sig-
nals were plotted as functions of time, they would be indistinguishable, apart from
a change of scale. In reality, we can only hope to approach this ideal by careful
design. An actual amplifier can fall short of the ideal with respect to two inde-
pendent requirements: speed and linearity. We have already mentioned linearity
in connection with waves in a medium; a similar definition applies to amplifiers.
It implies that the gain (or scale factor) should be constant, independent of the
amplitude of the signal, and if the input signal is the sum of two signals, the output
will be the sum of the same two signals magnified by a certain factor. In a prac-
tical device this cannot be realized over an indefinitely large input signal; when
driven beyond a certain signal level, the gain starts to decrease, and the output
will become distorted. A single frequency input signal will then yield a distorted
output with higher harmonic frequencies in its Fourier spectrum. We will there-
fore assume that the signal amplitude is in the range where the amplifier is linear.
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There remains the speed; that is, how rapidly the input may fluctuate and yet be
faithfully amplified. On the assumption that the amplifier is linear, we may apply
Fourier analysis, based on the Fourier expansion theorem, which we have already
encountered. Using it we can express any periodic signal having an arbitrary wave-
form as the sum of a series of simple harmonic oscillations having frequencies that
are whole multiples of a fundamental frequency corresponding to the period of the
signal. Since the amplifier is linear, we may treat each simple harmonic frequency
separately, find its output amplitude and phase, and then sum the outputs for all the
harmonics in the Fourier series to get the actual output waveform. In order to be
able to carry out this procedure, we need the gain and phase shift for each harmonic
frequency in the input. For this reason it is customary to specify the performance
of an amplifier by giving its frequency response curves, that is, a plot of its gain
and phase shift as a function of input frequency over the range for which the gain is
significant. Armed with these plots, we can compute the output waveform for any
input, no matter how complex.

An ideal amplifier would have a constant gain and phase shift for all input
frequencies. In reality, amplifiers will have a maximum frequency beyond which
the gain falls gradually to zero, accompanied by a variable phase shift. The aim in
amplifier design is, of course, first to have a stable amplifier, one that will not break
into oscillation; and second, to have the desired frequency response curves.

For example, a high-fidelity audio-frequency amplifier would be designed to
have a constant gain, that is, a flat curve, for frequencies lying in the audible range,
typically around 15 Hz to 15 kHz, and falling to zero outside these limits, as shown
in Figure 3.1. A radio-frequency receiver, on the other hand, may have a tuned
“front-end amplifier” that for station selectivity purposely has a response curve
that rises steeply at the tuned-in frequency to a narrow plateau, perhaps 30 kHz
wide, and falls as steeply on the other side. The 30 kHz band is to permit the
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Figure 3.1 The frequency response curves for a typical high-fidelity audio amplifier
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audio-modulated radio signal to be amplified without distortion. Engineers speak
of “wide-band” and “narrow-band” amplifiers in referring to the gain and phase
plots versus frequency.

3.2 Conditions for Oscillation

If there is positive, or regenerative, feedback present, and the fraction of the signal
fed back is increased from zero, the system at first will not oscillate, but will remain
an amplifier with an enhanced gain and narrower bandwidth. However, as the feed-
back is increased, a point may be reached when the system will break into oscil-
lation, or in the context of servo systems, will become unstable. If the system is
linear, a powerful way to analyze the conditions under which the system becomes
unstable, a way that deals simply with amplitude and phase at the same time, is
to describe the system in terms of its response to the (complex) exponential form
exp(iwt) so that the amplifier gain Ag(w) in the absence of feedback, and B(w), the
fraction of the output fed back to the input of the amplifier, are complex functions
of the frequency. The product Ag(w)B(w) is then called the (open) loop gain, or
better, loop transfer function. The closed transfer function of the system can be
shown to be given by the following:

. Ap(w) _
1+ Ap(0)B(w)

If we plot the locus of the loop transfer function for different values of the fre-
quency, ranging from @ = —o00 to @ = +00, we obtain what is called then Nyquist
diagram, as illustrated in Figure 3.2. The condition for stability can now be stated
under some very broad restrictions: A system is stable if the locus of Ag(w)B(w)
does not encircle the point (—1, i0) as w varies over its entire range.

This criterion predicts that as the loop gain approaches the point (—1, i0), the
gain increases without limit—there would then be an output without an input. What
happens at that point, in fact, is that the circuit breaks into oscillation. This will
first happen at that frequency v where the phase change around the feedback loop
is zero or a multiple of 360° and the loop gain first reaches one. However, once a
buildup of oscillation begins, the amplifier will be driven to voltage levels where
it becomes quite nonlinear, and the gain will begin to fall drastically. This leads to
distortion in the output waveform from the ideal pure sine wave and sets a limit
to the amplitude of oscillation.

We are now in a little better position to understand how positive feedback in a
public address system can cause a whistle, rather than a roar. The loop comprising
the microphone amplifier, loudspeaker, and the air medium has a loop gain and
phase shift that is a function of frequency; there will generally be one frequency
at which the phase shift is zero (or a whole number of cycles), and if the gain at
that frequency is unity or larger, oscillation will take place at that frequency. If this
frequency is in the audible range, a whistle will be heard. So far, we have made

A(w) 3.1
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Figure 3.2 The Nyquist stability diagram

it plausible that if the loop gain is at least unity and the phase shift effectively
zero at a certain frequency, then if a signal is present in the system at that fre-
quency, that signal will build up rapidly and be sustained. But the question remains,
where did this signal come from in the first place? The answer is that it is in the
nature of electrical circuits that there will always be low-level random fluctua-
tions in the current and voltage forming a base on which applied currents and volt-
ages are superimposed. This random fluctuation is electrical noise. Even when all
extraneous sources of noise, whether “brush noise” from electric motors or noise
produced by the mechanical vibration of the circuit itself, called “microphonics,”
or atmospheric “static,” there will always remain two fundamental types of noise:
thermal (or Johnson) noise and shot noise, about which more will be said later in
this chapter.

3.3 Resonators

The fundamental questions in the design of self-sustained oscillating systems,
oscillators for short, that are destined to be used as a reference in the regula-
tion of a clock, are: Precisely what are the factors that determine the frequency,
and how can we minimize any instability in that frequency? From what has been
said, it is clear that the phase shift and gain around the loop should satisfy the
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condition for oscillation only at the desired frequency, even in the presence of
inevitable fluctuations in the operating conditions. This can be achieved if the con-
ditions for oscillation hold only at precisely the desired frequency, where the gain
curve has a very sharp peak rising above unity and the total phase shift at that point
passing through zero. The way this can be accomplished is to incorporate into
the feedback loop a highly frequency-selective element: a resonator. The figure of
merit of a resonator is what was defined in the last chapter as the quality factor, Q.
The higher the Q-value, the sharper the variation with respect to frequency it pro-
duces in amplitude and phase in the feedback, at its resonant value. In fact the
amplitude falls by one half and the phase shift changes by 180° in a fraction of
about 1/Q of the resonant frequency. That is, the resonance width is about vo/Q.
It follows that the higher the value of Q is, the smaller will the frequency of the
oscillator be affected by any fluctuations in the system.

The practical form the resonator takes will, of course depend on the desired
stability and frequency range. One extremely important example in the radio fre-
quency range is the quartz crystal resonator, the subject of the next chapter. A less
stable choice in the radio-frequency range would be a simple combination of an
inductor and capacitor, which would take the form of a copper coil between the
ends of which is connected a parallel plate capacitor, as shown schematically in
Figure 3.3a. The analogous mechanical system is a mass connected to a spring,
shown in Figure 3.3b, in which the energy oscillates between the kinetic energy
of the mass and the elastic energy of the spring. In the case of the inductor and
capacitor, the electrical energy oscillates between that of a current in an induc-
tor (with its associated magnetic field) and that of a charge on a capacitor (with
its associated electric field). If the inductance of the coil is represented by L and
the capacitance by C, then the resonant L—C circuit has a resonance frequency
v = 1/(2n+/LC). Thus for a radio-frequency resonance, a small coil may have typ-
ically an inductance of 10 uH and the capacitor a capacitance of 10 pF. Substitution

(a) (b)

Figure 3.3 (a) Resonant L—C circuit (b) analogous mechanical spring—mass system
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Figure 3.4 An L—C tuned transistor oscillator

into the formula yields for the resonant frequency about 500 kHz. Figure 3.4 shows
an L—C tuned oscillator in which by proper design, there is a net 360° phase shift
in the feedback loop starting (say) at the input to the amplifier, going through the
amplifier, and returning a fraction of its amplified output by way of the feedback
coupling provided by a resistor and capacitor. For suitable quiescent voltages sup-
plied to the amplifier, it will be, for small signals, quite linear, and the condition
for the onset of oscillation can be computed on that basis.

If we wish to construct a resonator with a very much higher resonant frequency
by reducing L and C, a point will be reached when it becomes impossible to use
“lumped” components, that is, objects that are constructed to have predominantly
only inductance or capacitance. A coil designed to have extremely low inductance
takes on the aspect of a U-shaped strip of copper, with not only inductance but
also a significant capacitance between its ends. Such might be the resonant element
in a UHF oscillator operating in the 100 MHz range.

If we consider even higher frequencies, reaching to the microwave region
around 1 gigahertz, that is, 1000 MHz, we note that at that frequency an elec-
tromagnetic wave, which has a velocity of 3x10® meters per second, has a wave-
length of 30 cm, which is on the order of the dimensions of ordinary objects. This
means that the microwave current in a wire of that length would not be the same
at all points, as is taken for granted at lower frequencies. In treating phenomena at
microwave frequencies and above, the focus is on the electromagnetic field in the
space around the conductor, which assumes the role of a boundary surface at which
the electromagnetic wave is reflected or absorbed. Resonators in the microwave
region are generally closed, hollow conductors called cavities, which are usually
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Figure 3.5 The field distribution of the TE(p1; mode in a cylindrical microwave cavity

cylindrical, with either a rectangular or circular cross section and provided with
a plunger for tuning the resonant frequency. Like the natural modes of vibration
of a violin string or the acoustic resonant modes in an organ pipe, these resonators
have a series of characteristic field patterns, called modes of vibration, each with a
discrete frequency. Surface electric currents do flow on the surface of the cylinder,
but the description in terms of the electric and magnetic field patterns is generally
more useful.

The different modes of vibration are classified and labeled with three numerical
indices to indicate the manner in which the field varies with respect to the three spa-
tial coordinates. In the case of the cylindrical resonator, the three mode indices
are related to the number of nodes various components of the field have in
the azimuthal direction (around the axis) and in the radial and axial directions.
A node in the field is simply where the field passes through a zero value. Since
there are two types of fields present, the electric and magnetic fields, a distinction
is made between those modes in which the electric field is perpendicular to the
cylinder axis (called TE modes) and those in which the magnetic field is perpen-
dicular to the axis (called TM modes). Thus a typical mode designation would
be, say, TEq;; for the mode having no variation around the axis (zero nodes) and
going to zero once in the radial direction (at the cylindrical surface) and zero at the
plane end caps. Figure 3.5 shows the field pattern in a cylindrical microwave cavity
oscillating in one of its modes.

3.4 The Klystron Microwave Tube

A common oscillator in the microwave region of the spectrum is the reflex klystron,
a microwave vacuum tube that was developed during the Second World War and
was as critical to the development of radar as the triode vacuum tube had been to
radio.

Like all electron vacuum tubes it has a heated cathode as a source of electrons,
which are formed into a beam drawn towards a positive anode through which it
passes to enter the space between two grids that are part of one end of a reentrant



3. Oscillators 53

microwave
cavity
\ \‘ I;[ repeller
IR
o
[
¥ electron gun
microwave
output

Figure 3.6 The reflex klystron microwave oscillator

microwave cavity, as shown in Figure 3.6. At the opposite end, outside of the cavity,
is a negative electrode called the repeller. To show that it is capable of self-sustained
oscillation, we have to show that any oscillation that may be present from whatever
source will be amplified and fed back with the proper phase to reinforce the oscil-
lation, and make up for any energy losses that may otherwise cause the oscillation
to die away. In the case of the klystron, the amplification comes about through the
interaction of the electron beam with the electric field between the two grids. If a
small oscillation exists in the cavity, the electrons entering the space between the
grids in a constant stream will emerge with different velocities at different times.
During that part of the cycle when later electrons are given a greater velocity than
earlier ones, they will catch up and cause bunching to occur as they travel through
the “drift space” to the repeller electrode. As the name suggests, the electron beam
is repelled by the negative potential on that electrode, and the beam is folded back
on itself, returning in a bunched up form through the space between the two grids.
This will cause an increase in the oscillation if the timing of the bunches is such
as to reinforce the oscillation originally producing it. Since the cavity is in effect
being excited in a pulsed fashion, much like periodically striking a bell, the output
may not be spectrally pure unless a very high Q cavity is used as a filter. The tim-
ing of the electron bunches is sensitive to the repeller voltage, and therefore it is
easy to control the frequency of oscillation; unfortunately, by the same token, any
instability in the repeller voltage will translate into frequency instability.

3.5 Oscillators at Optical Frequency
If we continue our progression to still higher frequencies, we will reach the infrared

region of the electromagnetic spectrum around 10'3 Hz, or a wavelength in free
space of about 30 microns. Beyond that we have the remarkably narrow optical
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Figure 3.7 An optical cavity

region in the approximate wavelength range of 0.7 microns to 0.3 microns, which
perhaps not surprisingly is about where the spectrum of sunlight peaks.

Resonators used in oscillators in this spectral range are still called “cavities,”
although they are far from complete enclosures. As resonant structures, cavities
have to meet standards of precision in their dimensions that are dictated by
the wavelength for which they are designed. It follows that resonant cavities for
the infrared and optical frequency ranges must be fabricated with the precision one
associates with high-quality optical instruments. Cavities in this region usually take
the form of the open structure illustrated in Figure 3.7. M and M’ are two precisely
parallel mirrors, constructed to have extremely high reflectivity at the wavelength
for which the cavity is designed. The distance between the mirrors usually con-
tains a very large number of wavelengths of the resonant radiation, that is, it is a
very high order axial mode. Unlike the microwave cylindrical cavity, these cavi-
ties, because of their open structure, strictly speaking do not “support” an infinite
discrete set of normal modes; nevertheless, as was theoretically shown prior to any
laboratory demonstration, they do support quasi-axial modes, but only the lowest-
order azimuthal and radial ones. The lowest radial mode has the field concentrated
along the center line of the mirrors and is therefore efficiently reflected, whereas in
the higher radial modes, the field is more spread out radially beyond the edges of
the mirrors, and therefore sharply attenuated. The order of the resonant axial mode
depends on the precise distance between the mirrors and for plane mirrors is given
by n = 2L/A. If one of the mirrors is moved parallel to itself towards the other
mirror, the cavity will pass through an axial mode resonance every half wavelength
displacement of the mirror. An oscillator operating at an optical frequency using
such a cavity would most commonly have the amplification take place in the inte-
rior of the cavity itself. Since the amplification is obtained using a process known
as stimulated emission from suitably prepared atoms or molecules, such an oscilla-
tor is called by the acronym LASER (Light Amplification by Stimulated Emission
Radiation), now accepted as a common noun, laser. This designation was a natural
derivative of the original term maser, a low-noise microwave amplifier also based
on stimulated emission of radiation in certain materials. We shall have a great deal
more to say about lasers in succeeding chapters.

The most common process of light emission in everyday experience is through
spontaneous emission; it is the process in all common light sources such as an
incandescent solid or gas flame. Whenever the internal motions of constituents
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of matter are agitated or raised to some excitation level above their ground state,
the excitation energy is eventually given up either through random collisions with
other particles, ultimately being degraded into heat, or in the form of radiation.
Unlike the radiation resulting from stimulated emission, whose phase is linked to
the radiation stimulating it, in spontaneous emission there is no such phase corre-
lation, the result is incoherent light. Unless very special conditions obtain to allow
certain specific modes of the radiation field to build up, spontaneous emission will
dominate; on the other hand, if the excited molecules are placed in a suitable opti-
cal cavity, the optical field strength can build up efficiently in certain few normal
modes of the cavity, and the relative probability of stimulated emission can be
greatly enhanced.

In incoherent light the radiation field is the result of combining a large number
of waves with random phases, so that there is no well-defined orderly variation in
phase as we go from point to point in the field, or from time to time at any fixed
point. A test for coherence is whether it is possible to observe spatial or tempo-
ral interference as manifested in beats. Spatial beats, called interference fringes,
are analogous to moiré patterns, while temporal beats are a periodic rise and fall
in the amplitude. Such interference patterns are not observable between different
incoherent sources and only under very restricted conditions even from the same
source. It is possible to derive a partially coherent wave from an ordinary source,
as Young did in his classic two-slit interference experiment to demonstrate the
wave nature of light, by using light originating from an extremely small area of a
source.

Under conditions obtaining in an optical cavity with carefully aligned highly
reflecting mirrors, where longitudinal modes have a high Q, the radiation field emit-
ted by suitably prepared atoms can build up in just those modes to the point where
stimulated emission is dominant. Although spontaneous emission is always present
to some extent, the stimulated radiation not only has remarkable coherence extend-
ing over large distances, but it is also directed in a characteristically sharp beam
with a strikingly small divergence angle. We are accustomed to seeing light from
ordinary sources spread out in a somewhat diffuse cone even when some provision
is made to concentrate the beam; but the sharpness of a laser beam is extraordi-
nary. One of the few examples of a conventional light source producing a remark-
ably intense beam of relatively small divergence is the searchlight used in World
War II to scan the skies for bombers at night, which used an extremely bright arc
source and collimating optics, which directed the light into a well-defined beam in
order to increase its range. The explanation of the high directionality of the output
light beam of a laser is to be found in the design of the resonant cavity. As already
stated, only the lowest radial modes have a sufficient Q to permit oscillation; all
others would have a radial distribution of intensity that extends beyond the edges
of the mirrors. Nevertheless, even for the lowest radial mode there will be an angu-
lar spread of the optical wave through the phenomenon of diffraction by a mirror of
finite radius. For a mirror of radius R the divergence is, however, only on the order
A/TR radians. For example, if A = 0.5 tm and the mirror radius is 1 cm, we would
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find for the divergence angle only 9x10~* degrees. In practice, this theoretical
limit is rarely achieved; more typically the divergence angle is closer to 0.1 degree,
still an extraordinary degree of directionality.

It must not be assumed that an oscillator based on a resonant structure with
many modes can oscillate in only one mode at a time. It is indeed possible that
the gain is sufficiently high that in addition to the mode with the highest Q, others
may meet the oscillation criterion, and oscillate at the same time. In fact, it often
happens that the total power rather than spectral purity is more important, in which
case the oscillator is allowed to oscillate simultaneously in many modes. On the
other hand, if spectral purity is the primary objective then steps must be taken to
suppress all but the desired mode, by in effect degrading their Q.

3.6 Stability of Oscillators
3.6.1 Definition of Frequency Stability

The frequency of any standard is subject in varying degrees to random variation,
and the indicated time derived from it will ultimately drift. It is of great importance
both to manufacturers and users of standard oscillators to have an agreed-upon fun-
damental way of specifying the frequency stability, or more accurately, instability
of these instruments. In the statistical analysis of their instabilities, it is generally
assumed that the fluctuations obey what is called the condition of stationarity. This
means roughly that the frequency (or phase) as a function of time does not change
if the instant from which we start measuring time is displaced. This complicates
matters, since as we shall see, inherent sources of long-term drift exist in the fre-
quency of, for example, a quartz oscillator; in addition, there are a host of vari-
able environmental and electronic factors that add unpredictably to the instability
of an oscillator, again with the possibility of a steady drift. Such “deterministic”
long-term drift would obviously manifest itself, for example, by the given standard
appearing to continue to gain or lose time with respect to a primary standard over a
protracted length of time. Of course, if we wait long enough, the trend may reverse,
so it may be arbitrary to stipulate a span of time beyond which an instability must
be separated out in order that the residual obey stationarity. Nevertheless, as a prac-
tical matter this must be done, since the duration of a measurement is constrained if
nothing else by the lifetime of the person doing the measuring!. Thus the statistical
development of the theory requires that the time data be numerically fitted by the
sum of a random part and a slowly varying deterministic part.

There are two complementary ways of characterizing the random fluctuations
in the frequency or phase of an oscillator: the frequency domain description in
terms of the Fourier power spectrum of the fluctuations in the measured quantity,
which is obtained using a spectrum analyzer, and the fime domain description,
in which errors in the phase or frequency over different sampling intervals of time
are statistically analyzed.
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The common approach to specifying a random fluctuation in any physical
quantity is to repeat its measurement many times under presumed identical con-
ditions, and then to take as a measure of the fluctuation the standard deviation, in
the sense of ordinary statistical analysis. The case of instabilities in a time stan-
dard is unique in that the physical quantity under study is a time interval and the
measurements are repeated sequentially in time, that is, at different values of the
quantity being measured. Furthermore, the instability arises from different types of
sources, each of which may have a different dependence on time.

To get a complete description of the instabilities in the time domain, therefore,
a large number of sets of repeated measurements must be made, one set for each
selected time interval in a range of time intervals extending perhaps from 1 second
to 10,000 seconds. In the most direct (but not necessarily the most accurate) method
of obtaining these data, the time signals from the reference standard are used to
gate a frequency counter set to count the output frequency at, say, 5 MHz from
the standard under test. The readings of the counter, which can be automatically
recorded, give the number of oscillations of the standard contained in each fixed
interval. If the frequency counter is zeroed after each interval, and its readings

are ni, n», n3, ..., then an accepted measure of the instability, called the Allan
variance, is defined as follows:
oy — )2
6 = <—("’+1 ni) > , 32
2 ave

where the brackets () symbolize the average over many equal intervals and i = 1,
2,3,..., N—1, where N is the total number of times the counts are taken for the
same time interval. We note that the set of numbers (np — ny), (n3 — ny), ...,
(ny — ny—1) is known in the theory of numerical analysis as the first difference
of the set ny, ny, n3, ...ny, and that the variance ¢ can be zero only if all the n’s
are equal, that is, if the system under test tracks precisely the standard being used.
Without attempting to go any deeper into the matter, we will accept the fact that
in defining instability this way, we have a practicable measure that avoids certain
difficulties in the statistical analysis of the long-term behavior of time standards.
This definition, however, cannot be implemented with accuracy for very short
time intervals; it is supplemented by the frequency domain Fourier spectrum of the
fluctuations in frequency (or phase) looked on as functions of time. This presumes
that an electronic circuit is used to convert such fluctuations into a proportional,
time-varying voltage whose square is a positive definite quantity proportional to the
electrical power developed in the circuit. This power is analyzed by an instrument,
called for obvious reasons a spectrum analyzer, to give the power per unit fre-
quency interval (hertz) in its Fourier spectrum. This should not be confused with
the Fourier spectrum of the oscillatory signal of the oscillator itself; rather, it is the
spectrum of frequencies with which the phase of the oscillatory signal varies in
time. Had we been dealing with fluctuations of amplitude rather than phase or fre-
quency, it turns out that we would have had a simple relationship between the spec-
trum of the signal itself and the spectrum of the amplitude looked on as a function
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of time; in fact, the former is simply the latter displaced along the frequency scale
an amount equal to the frequency of the oscillatory signal.

This description of the phase instability in the frequency domain based on
Fourier analysis provides a useful way of distinguishing the different types of noise
that underlie this instability. This is done by specifying the power distribution in
the spectrum of the noise; it turns out that the more common types of noise exhibit
a simple power-law dependence on frequency. Thus if the spectral power distribu-
tion varies as 1/v2, it is a random walk in frequencys; if the dependence is as 1/v,
it is flicker frequency noise; finally, if the distribution is independent of frequency,
that is, the graph is flat, it is called white frequency noise. Of course, these distri-
butions are determined not only by the fundamental sources producing them, but
also by any frequency dependence in the circuitry. These power laws translate into
equally simple dependence of the variance G on the constant time interval used in
its measurement. Thus for the important flicker noise it can be shown that ¢ is inde-
pendent of the length of the interval, whereas for white frequency noise ¢ falls as
1/7'/2. Now, for circuits at ordinary temperatures operating in the radio-frequency
range, thermal (Johnson) noise is very nearly “white” (the same power density at
all frequencies), so that since this is a universal source of noise, we frequently see
a plot of & versus 7T exhibit the 1/t'/% characteristic of this type of noise, at least
up to a certain point, after which flicker noise becomes dominant, and the graph
flattens out.

We will now attempt to develop the concept of stability in the frequency of
oscillators on a more quantitative footing and discuss the factors that may limit it.
An ideal oscillator generates a signal that is a pure sinusoidal oscillation with a
Fourier spectrum consisting of an infinitely narrow line. We use this ideal as the
point of departure and treat any fluctuations in the output of the oscillator as devi-
ations from that ideal. The presumption is that the fluctuations are small, that we
are dealing with an approximately harmonic oscillation on which are superposed
possibly random fluctuations in amplitude and phase. Of course, that leaves the
question open as to what value of frequency the fluctuations should be referred.
This can be answered, at least conceptually, by assuming that we have a very large
number of identically constructed oscillators, all of which are set oscillating at the
same instant t = 0. Suppose that after some arbitrary interval of time ¢ we record
simultaneously the number of oscillations and phase angles for all the oscillators
in the group (or ensemble). We can define a reference frequency as the average
frequency taken over the ensemble; it would follow that the deviations from that
frequency have a zero average.

This assumption deserves examination, since it is clearly possible that there
could be sources of instability that tended to produce fluctuations more in one
direction than another. On this account we draw a distinction between fluctuations
that are reasonably believed to be random and those that are secular, a drift in one
direction. In practice, it is simpler, and a good deal cheaper, to use one oscillator,
rather than a large ensemble, and simply repeat the phase measurement over equal
intervals of time as often as desired. Of course, it is assumed in this case first that
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an acceptable time standard is available, and second, that the fluctuations present
are of a nature that it is irrelevant at what point in time a measurement interval
begins. Random fluctuations for which that is a valid assumption are said to be
stationary; it is generally assumed to be the case for all the sources of fluctuation
that concern us.

3.6.2 Fundamental Noise

In addition to common man-made, or “artificial,” sources of random fluctuation,
or noise, oscillators are subject to two fundamental types that can be traced to
the atomic nature of matter and electrical charge. In a simplified model we may
picture a metal conductor as consisting of positive ions arranged in a rigid lattice,
embedded in a sea of electrons. At all temperatures above absolute zero (—273°C)
the ion lattice and the electrons are in a state of thermal agitation. Imagine a closed
geometric surface enclosing a part of the metal; the number of electrons inside
that surface will fluctuate as electrons cross the surface in their random motion.
This means that part of the metal will have a net electrical charge that fluctuates
between positive and negative but, of course, on the average remains neutral. This
fluctuation in charge with its concomitant fluctuations in voltage and current is
called Johnson noise.

Again because of the fact that the charge carriers are individual particles, they
do not advance like a continuous band of charge, but rather like a disordered mob,
and the number crossing a given surface in unit time, which after all is the electric
current, will fluctuate. The precise degree of fluctuation depends on the extent to
which there is correlation between the positions of individual electrons, due, for
example, to long-range forces of interaction between them. We note that correlation
is in principle never totally absent, ultimately because of the quantum effects of
an overlap of electron wave functions. Since there is a huge number of electrons
in even a moderate current, the current will not, relatively speaking, fluctuate very
much. This fluctuation is distinct from thermal noise, and it was called by Schottky,
who identified it, shot noise. A less sporting metaphor would be raindrops falling
on a roof.

As deviations randomly fluctuating in time, noise current has random phase,
and what information can be gleaned about the type of noise that might be present
can come only from studying the Fourier power spectrum. Thus, for example, shot
noise has a power spectrum that is flat, that is, the amount of power in a fixed
frequency interval is independent of where that interval lies on the frequency scale.
On the other hand, the power spectrum of Johnson noise is flat for all frequencies
until the size of the quantum /v reaches the order of the energy of thermal agitation;
except at extremely low temperatures, this means frequencies in the infrared region
of the spectrum.

Like many other electronic devices, oscillators exhibit another type of noise:
flicker noise. The term originated in the age of vacuum electron tubes in reference
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to the flicker effect, which is the fluctuation in the tube current on account of
variations in the electron emission from the hot cathode. The term is also applied
to noise observed in solid-state devices such as Schottky barrier diodes, where it is
attributed to multistep tunneling by charge carriers. As a random time process, it
is best characterized by its Fourier spectrum (or to be more precise, the frequency
spectrum of the square of the fluctuation); it varies inversely as the frequency and
is therefore often referred to as 1/ f noise (f for frequency), since its power spec-
trum has a 1/v dependence. In the case of oscillators, this type of fluctuation in the
frequency is particularly unwelcome, since it increases without limit as the noise
frequency approaches zero. This means that slow fluctuations, which correspond to
low v in the Fourier spectrum, are large, and they continue getting larger for longer
and longer times of observation. This implies that we will see the frequency wan-
der off without limit if we wait long enough! This incidentally also invalidates the
assumption that the noise processes are stationary. It would seem to be a discour-
aging prospect; it seems to say we can never build a clock that will not eventually
drift without limit. But let us not overstate the case; it is probably not a funda-
mental type of noise in the sense that thermal and shot noise are fundamental. It
is possible, as was done in the case of vacuum tubes, to reduce the 1/f noise by a
proper choice of operating and manufacturing processes. In Figure 3.8 are shown
the power spectra for the three types of noise.

In practice, the noise present in oscillators may be classified as follows:
(a) Those due to the fundamental shot noise and system parameter fluctuations, for
example, which modulate the signal itself; and (b) so-called additive noise which,
as the name suggests, is noise added to the signal and is therefore independent
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Figure 3.8 The power spectrum of (a) Johnson noise at low temperature, (b) shot noise, and
(c) flicker (1/f) noise
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of the size of the signal. The latter can arise from Johnson noise in the circuits
associated with the resonator, or amplifiers, etc.

In precision oscillators the amplitude of oscillation of the resonator is stabilized
at low levels; it is expected therefore that additive amplifier noise will be significant
for short sampling times but will tend to average out over longer times. In contrast,
parameter fluctuations and shot noise lead to a random walk in phase.

The random walk problem in statistics is a special case of a classical problem
whose solution and its ramifications are associated with such illustrious names as
Newton, Poisson, and Gauss. It is simply stated: What is the probability of having
a number m of successes in n tries, if the probability of success in one try is given
as (say) one in N? Intuitively, we would not be surprised to find that the average
number of successes is simply n/N. Of course, we should not expect that every time
we make a set of n tries we will have the same number of successes; if we repeat
the process over many sets of tries and record each time the number of successes,
we should find that number fluctuating equally above and below the average value.
A measure of this dispersion in the value of the number of successes is obtained
by averaging the square of the deviation of this number from the average value.
The result is always a positive number, whose square root gives what is called the
standard deviation. We state without proof that this quantity, usually denoted by o,
has a value for our problem given by 6> = np(1 — p) where p = 1/N. Now we are
ready to pursue the random walk problem, which can arise in various guises, but
is usually stated in colorful terms such as: A drunk takes equal steps L feet long,
as likely in one direction as in the opposite direction; how far does he get after n
steps? Here we can assume that a forward step is counted a success and occurs
with a probability of 1/2. Now, if m of the total n steps are forward, then he has
advanced mL feet and gone back (n — m)L feet, for a net gain AL as follows:

AL:mL—(n—m)L:Z(m—%)L. 33

Now, the average value of m is simply n/2, and if we substitute for m this average
value in the expression for the net distance, we find that the result is zero, which is
not unexpected. Of course, as stated earlier, the actual distance after a particular set
of n steps can be anything from zero to nL, with a probability distribution charac-
terized by the standard deviation in A L, which we will represent by 6. Using the
expression we have assumed for the standard deviation in the number of steps for-

ward, in this case 62 = n - % (1 — %), we find a formula for the standard deviation

in a random walk that will be cited in many contexts in the future:
2
o2 = 4<(m - ’%) >L2 = 46212 = nL>. 34

where () denotes average value.

This indicates that whereas the average of the distance traveled is zero, being
equally positive as negative, the more steps that are taken the farther he may be
found from his starting point. If these arguments are applied to a process in which
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each step is repeated at constant intervals of time, then n is simply proportional to
the total time, T, and therefore G is proportional to t"2. It may be hard to draw a
comparison between the effect of random noise on the phase of an oscillator and
the random walk of a drunkard, but it can be shown that such is the case, and the
standard deviation in the phase of an oscillator is proportional to t"2, where 7T is
the length of time the oscillator is free to oscillate before its phase is measured. The
corresponding fractional standard deviation in frequency is inversely proportional
to 2.

Now, for circuits at ordinary temperatures operating in the radio-frequency
range, thermal (Johnson) noise is very nearly “white” (the same power density
at all frequencies), so that since this is a universal source of noise, we frequently
see a plot of & versus T exhibit the 1/1!/? characteristic of this type of noise, at least
up to a certain point, after which flicker noise becomes dominant, and the graph
flattens out.



Chapter 4
Quartz Clocks

The use of the stable vibrations of a quartz crystal to control clocks and watches
has become so common in recent years that in this age of digital sophistication,
we tend to take for granted the revolutionary advance these quartz-controlled time
pieces represent. It is true that through the incomparable skill and ingenuity of
Swiss watchmakers, the precision achieved in the fabrication and hence perfor-
mance of mechanical watches has reached truly admirable heights; however, the
microelectronic revolution of the 1960s has made it possible to miniaturize the
far superior crystal-controlled clock into a wrist watch of greater constancy at a
fraction of the cost.

4.1 Historical Antecedents
4.1.1 Frequency Control of Radio Transmissions

The application of high-frequency quartz resonators to regulate electrical oscilla-
tors was originally made to provide a sufficiently stable frequency reference
for radio transmitters. Their need for high stability arises principally from two
considerations: First, any instability in the frequency of the radio wave, whose
frequency or amplitude is modulated to convey the audio signal, would make it dif-
ficult, if not impossible, to recover the signal (that is demodulate) at the receiver.
To understand this, we need to recall the basic design of radio receivers at the
time. When radio waves fall on an antenna, they induce a weak high frequency
current signal, which must be amplified prior to recovering the audio signal super-
imposed on it in the detector stage. To circumvent the difficulties of designing a
stable multistage radio-frequency amplifier, whose stages would have to be retuned
to receive different stations, E.H. Armstrong is given credit for having proposed
around 1918 what came to be called the superheterodyne design. This is based
on generating from the incoming radio-frequency signal a fixed intermediate fre-
quency (IF) signal, impressed with the same audio signal, by a heterodyne method,
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that is, by generating a “beat” frequency in close analogy with the beats heard when
two close notes are sounded together. This down-conversion to a lower fixed fre-
quency is accomplished using a nonlinear circuit element called a mixer. This has
two inputs: the incoming radio signal and a pure single frequency signal, generated
by a tunable local oscillator. The output of the mixer will contain Fourier compo-
nents not only at the input frequencies, but also at intercombination frequencies,
among which is one at the difference, or heterodyne, frequency. This signal, whose
frequency is intermediate between the incoming radio signal and the ultimate audio
output, is filtered and amplified by a multistage amplifier, the IF amplifier, which
is narrowly tuned to a fixed frequency. As the local oscillator is tuned to differ-
ent frequencies, different incoming radio frequencies will produce a heterodyne
signal within the pass-band of the IF amplifier and ultimately produce an audio
output. The audio signal is recovered by passing it through a circuit, the detector
stage, which converts the modulations in frequency or amplitude of the IF signal
(depending on whether it is an AM or FM signal) into simple modulations of a
voltage or current at audio frequencies. Any instability in the radio frequency at
the transmitter end, or in the local oscillator at the receiver, will cause a fluctuation
in the IF frequency signal and a consequent increase in noise and loss of signal.
More recent developments in radio communications techniques may have altered
the place where in the system frequency stability is required, but not the fact of
its need.

The second reason for the need to closely control the frequencies of radio
transmitters is that there are so many users of radio communication, especially
through long-range broadcasts, that it becomes necessary to allocate frequency
bands and require broadcasters to adhere to their assigned frequency within very
narrow limits. The allocation of broadcast frequencies and the specification of fre-
quency tolerance of transmitters form part of the work of the Comité Consultatif
International Radioéléctrique (CCIR). The military services often have even more
stringent requirements on stability.

4.1.2 Discovery of the Piezoelectric Effect

The growing demands for improving the stability of oscillators spurred the search
for a resonator having an isolated mode of vibration of the highest possible Q and
frequency stability. Quartz, among a select class of crystals, was long known to
have excellent elastic properties with very low internal friction. Of equal impor-
tance, crystalline quartz also exhibits a phenomenon called piezoelectricity, an
effect found in some crystals satisfying certain symmetry restrictions in which
the application of pressure along particular directions produces electrical polar-
ization; that is, surface charges develop, which are proportional to the pressure.
This permits any mechanical vibrations in the crystal to produce an oscillating
electric current in an associated electronic circuit. Conversely, if a quartz crystal is
placed between a pair of metal plates carrying opposite electric charge, the crystal
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is stressed as if under pressure. This converse effect provides a way of excit-
ing vibrations in the crystal simply by using an alternating voltage on the metal
plates.

These effects are among a number involving solids that were discovered in the
19" century, including magnetostriction, in which a dimension of certain mate-
rials is increased by magnetization along that dimension; and pyroelectricity, in
which a crystal develops electrical charges through temperature gradients. In 1880
Jacques and Pierre Curie (the latter was to become celebrated as the husband of
Marie Sklodowska, the discoverer of radium) first published their studies on piezo-
electricity, in which they analyzed the conditions under which the effect can be
observed and the restriction on the symmetry of the crystals exhibiting this effect.
It was recognized even then that piezoelectric crystals were potential acoustic
sources and detectors; however, it was not until the means of producing continuous
electric oscillations became available at the beginning of the 20 century through
the invention of the vacuum-tube triode amplifier that the use of these crystals as
acoustic transducers became a reality. It should be noted that it was only four years
prior to the Curies’ published studies that Bell invented the telephone, a develop-
ment that stimulated renewed interest in the science of acoustics, and ultimately
the birth of a new science: ultrasonics.

4.1.3 Ultrasonic Transducers for Sonar

Ultrasonic vibrations and waves are those of sound whose frequency is beyond the
audible range, which for most people extends to around 15 kHz. The immediate
impetus to generate ultrasonic waves came from submarine warfare in World
War I, which led both Britain and France to embark on intense research programs
to develop underwater acoustic receivers for submarine detection, and ultimately
to the idea of sonar. We note that since the velocity of longitudinal sound waves in
quartz is around 6000 meters per second, a quartz resonator say 3 cm long would
have its lowest resonance frequency V /2L at 100 kHz, well beyond the audible
range, and hence ultrasonic. It is interesting to note in passing that this ultrasonic
wave has a wavelength in sea water of A = V /v = 6 cm, the same order of magni-
tude as the microwaves initially used in radar, and therefore would have the same
limits on its ability to “see” detail as those of radar. Of course, radar is impossible
underwater because the electrical conductivity of sea water allows only very low
frequency radio waves to penetrate it. The successful development of sonar is asso-
ciated with the names of the Russian Constantin Chilowsky and Paul Langevin, the
noted French physicist who is best known for his work in magnetism. The use of
piezoelectric sources was considered and rejected a number of times, until finally,
in 1917, pure quartz crystals were successfully used both in the source and receiver
in a demonstration of sonar over a range reaching 6 km.

It was out of that wartime stimulus that came the application of quartz res-
onators to the control of frequency in electrical oscillators. The credit for this
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development belongs to Cady, who as early as 1917 noted that specimens cut
from crystals of quartz and rochelle salt had an unusual effect on an electri-
cal circuit when “driven” by electrical oscillations near their natural modes of
vibration. He further found in researches after the war, published in 1921, that
when placed in the circuit of a vacuum-tube oscillator, these crystals exerted a
remarkable stabilizing effect on the frequency of oscillation. As almost always
happens, when the course of development of a field has reached a certain point, the
stage seems to be set for certain discoveries to be made, and many actors are drawn
into the act. Cady’s patents on the piezoelectric resonator did not go unchallenged:
Nicholson, of Western Electric Company, had been actively exploiting applications
of piezoelectric crystals, for example in microphones, loudspeakers, and phono-
graph pickups, and he applied for patents in 1918 that challenged Cady’s patents.
It was about this time that G.W. Pierce invented an improved crystal-controlled cir-
cuit, also unsuccessfully challenged by Nicholson, which found universal adoption
for the frequency control of radio transmitters and receivers.

4.2 Properties and Structure of Crystalline Quartz

It has long been known that crystals such as quartz have excellent elastic proper-
ties with extremely low internal friction when deformed, as well as exceptionally
high strength and low thermal expansion. In fact, fused quartz fibers have long
been used for suspension in torsion balances, by which small torques acting on
large suspended masses are measured. A fused quartz fiber has the same breaking
strength as a steel wire of the same diameter, but it has a smaller modulus of rigidity
under torsional stress, that is, it twists more easily. But the most important prop-
erty it has, from the point of view of constructing a high-Q resonator, is its nearly
perfect elasticity, in the sense that when a stress is removed it returns to its orig-
inal unstressed form. This implies that whatever work is done in deforming it, is
stored, without loss, as elastic energy, which will very nearly be totally regained
when the stress is relieved. High Q means a low intrinsic rate of loss of vibra-
tional energy, and as we have seen, it is associated with a very sharp resonance
spectrum. This quality confers two important advantages on the resonator: First,
its relatively undamped oscillation requires a minimal amount of coupling to the
amplifier to sustain the oscillations; and second, the sharpness of the resonance is
important to minimize the effects of noise and fluctuations in the gain of the ampli-
fier on the oscillation frequency. However, even with these advantages, the stability
in frequency will be ultimately limited by noise, both short-term noise, which may
be thought of as introducing an uncertainty into the frequency, and long-term drift
in the resonance due to structural “aging” in the resonator. Finally, we should recall
that provision must be made to limit and stabilize the level of oscillation; this also
affects the frequency, since any fluctuation in amplitude shows up as a broadening
of the spectrum and uncertainty in the frequency.
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Other advantages of quartz are first, that its elastic properties are far less sen-
sitive to environmental conditions, such as temperature and humidity, than they
would be for most other solids, and second, the extremely small degree to which
its dimensions change with temperature. It is this fact that explains its extraordi-
nary resilience under extreme thermal stress; for example, a quartz rod heated to
red heat and plunged into cold water will not crack. Of course, the merits of quartz,
or of any material, must ultimately be judged relative to the demands of the appli-
cation to which it is to be put. We will, in fact, see that in order to realize the best
performance in a quartz resonator, the two properties in which it excels over other
candidates are the ones that leave room for further improvement: thermal expan-
sion and long-term constancy in elastic properties.

Crystalline quartz, whose chemical composition is silicon dioxide (SiOy),
otherwise known as silica, is a three-dimensional lattice, held together by what
chemists call covalent bonds, with each Si atom surrounded by four O atoms at
the vertices of a regular tetrahedron, and each O atom joined to two Si atoms. The
term bond refers to an interatomic force that pulls the atoms together up to a cer-
tain equilibrium separation and that requires a certain energy to dissolve. Having an
electrostatic origin, these equilibrium bonds exist only according to quantum the-
ory, as first comprehensively explained by Linus Pauling. In the case of crystalline
quartz, we are dealing nor with the stability of three particles, as the chemical for-
mula SiO, might suggest, but with an entire crystal. That is, the problem does not
separate into small aggregates of atoms we call molecules; the crystal is one big
molecule. Of course, the regular, ordered arrangement of the atoms in the crystal,
and the symmetry it exhibits, will help make the theoretical analysis of its struc-
ture more tractable. It is not our intention to pursue the theory here however, but a
brief sketch of the structure of quartz may help us see the origins of its remarkable
properties.

The valence electrons in Si form four covalent bonds, like outstretched arms
at the mutually maximum but equal angles in three dimensions, which leads to
tetrahedral symmetry, as shown in Figure 4.1. The O atom, on the other hand, has
two unoccupied valence states (orbitals, as the chemists call them), only one of
which lines up with a Si atom, to form a single bond. This leaves the O atom with
its second vacant orbital, which forms a single bond with another Si atom. This
continues indefinitely throughout the solid in one interconnected 3-dimensional
lattice, as shown in perspective in Figure 4.2.

Thus unlike CO3, in which the four covalent bonds of C are satisfied by a pair of
double bonds with two O atoms, thus producing a complete molecule, SiO; forms
a continuously extended 3-dimensional network. The atoms are strongly bonded,
with the crystal having a high melting point at 1710°C.

Like all crystals, that of quartz has its characteristic symmetry properties.
From the tetrahedral arrangement of the Si—O bonds, we can see (especially with
the aid of a 3-dimensional model) that the crystal has a 3-fold axis of symme-
try. What is a little more difficult to see is that there are three 2-fold axes of
symmetry perpendicular to the 3-fold axis. Quartz belongs to a crystal symmetry
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Figure 4.1 The tetrahedral symmetry of the bonds holding the Si atom to the O atoms in
crystalline quartz

OSA
Oo

Figure 4.2 The quartz crystal lattice

group designated by crystallographers as 32, because of the 3-fold symmetry axis
usually designated as the z-axis and the three 2-fold axes, one of which is taken as
the x-axis. An axis perpendicular to both the z-axis and the x-axis is defined as the
y-axis, as shown in Figure 4.3. However, the important symmetry property quartz
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Figure 4.4 The symmetry operation of inversion through a center

has, or we should say does not have, is a center of symmetry. This means that
if we imagine each atom of Si and O moved to a diametrically opposite position
with respect to any fixed point as center, the result would be distinguishable from
the initial configuration. Mathematically, it is lack of symmetry under the oper-
ation of reversing the signs of all the coordinates of all the atoms in the crystal.
The operation of reversing all the signs of the coordinates is equivalent to a rota-
tion through 180 degrees about an axis, followed by taking the mirror image in a
plane perpendicular to that axis, as illustrated in Figure 4.4. Almost all common
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objects have low symmetry and lack a center of symmetry, for example a table or
keyboard, although some do, such as a brick or an American football; however,
among crystalline substances, a center of symmetry is common.

Our venture into the crystallographic symmetry of quartz is intended to pro-
vide some basic understanding of the electromechanical property that makes it so
useful for our purposes: the piezoelectric effect. It is the lack of a center of sym-
metry that makes it possible for crystalline quartz to display this effect. To jus-
tify this statement we can argue that the piezoelectric effect connects a pressure
applied to the crystal with an electrical separation of charge, or electrical polar-
ization as it is called. The crystal as a whole is, of course, electrically neutral and
remains so. However, the balance of charge in the constituent atoms is distorted by
the electrons being displaced in a particular direction relative to the positive inner
cores of the atoms in the crystal lattice. At least this is an adequate model of what
occurs. The result is that unbalanced electrical charges of opposite sign appear on
opposite sides of the crystal. Now imagine the same pressure applied to the crys-
tal along the same line after it has undergone the symmetry operation we have
just described; the electrons should be displaced in the opposite direction, since
pressure is the result of compression and acts symmetrically in both directions.
If, in fact, the crystal had a center of symmetry and the crystal were therefore the
same after the symmetry operation as before, then unless the electron displacement
is zero, we would have a crystal in which the electrons were displaced in opposite
directions under the same conditions, which is impossible. It follows that a prereq-
uisite for a crystal to display piezoelectricity is that it should not have a center of
symmetry.

Actually, we can impose the same restriction on crystals that can display a
dependence of their polarization on a quadratic function of an applied electric field,
E, since like pressure, E2 is not changed under a reversal of the coordinates. This
is extremely important in selecting crystals suitable for nonlinear optical studies,
such as for example producing second-harmonic light waves from intense (laser)
light passing through such a crystal. If the optical frequency polarization induced
in a crystal by an optical wave of frequency v has some dependence on E? of the
incoming wave, so that the time dependence is say sin’(wt), then a wave at the
second harmonic is generated, since sin®(wt) = 15[1 — cos (2wt)]. The first of such
work was published in 1961 and consisted in generating a second-harmonic violet
beam at A = 0.35 um, using a red beam from a ruby laser at A = 0.69 um focused
on a quartz crystal.

4.3 Modes of Vibration of a Quartz Plate

Because of the crystalline structure, the piezoelectric effect and its converse relate
mechanical stress to electrical polarization in ways that depend very much on the
direction these quantities have in relation to the crystal axes. Thus an electric field
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Figure 4.5 The various modes of strain in a quartz crystal plate

along an x-axis is coupled to a longitudinal strain in the same direction, together
with a strain of equal magnitude but opposite in sign along the y-axis. A change in
the sign of a strain is simply to replace, for example a compression with a tension
and vice versa. Furthermore, an electric field applied along the y-axis causes a
shear strain in the x—y plane.

Figure 4.5 illustrates various types of strain, including torsional (twist) and flex-
ural (bending), in addition to the longitudinal (or extensional) and shear we have
already mentioned.

To cover a wide frequency range, from say 1 kHz to 100 MHz, quartz bars
or plates are used in extensional, shear, or flexural modes of vibration. For the
lower end of the frequency spectrum, the flexural mode in a bar can be used up to
around 100 kHz, whereas operating in the extension mode extends the range up
to 300 kHz. A face shear mode allows the range 300 kHz to 1 MHz to be covered,
while a thickness shear mode can extend the range to 30 MHz and beyond. For the
higher frequencies, higher odd-harmonic (overtone) resonances, such as the third
or fifth overtone, are often used to obviate the need to use fragile crystal plates

of extremely small thickness. The best available precision crystals vibrate in the
fifth-overtone thickness shear mode at frequencies of 5 MHz or 2.5 MHz.

In order to efficiently and selectively excite these various modes of vibration,
the electric field must be applied in the proper direction with respect to the crys-
tal lattice. The choice of field direction bears not only on the efficiency of excit-
ing the desired mode, but also on the dependence of the resonance frequency on
the temperature, through the dependence of the elastic properties and dimensions
on the temperature. These properties in a crystalline substance, unlike those that
lack an ordered structure, are different for different directions relative to the crystal

axes. Since the electric field is applied through a pair of parallel plates, the quartz
plate or bar must be cut out of the body of the crystal with the desired orientation.
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y-cuts
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Figure 4.6 The various cuts used in the fabrication of quartz plates

Figure 4.6 illustrates three commonly used cuts: the x-cut and two rotated y-cuts.
The x-cut has faces cut perpendicular to the x-axis, along which the oscillating
electric field is applied. A longitudinal strain is produced in the same direction
as the field, resulting in only a longitudinal (extensional) wave propagating in
this direction. The x-axis is called a pure mode axis for this type of wave. The
two rotated y-cuts are such that the electric field can be applied along directions
inclined at the angles of —59° and +31° to the z-axis in the y — z plane. These are
pure mode directions for shear waves; that is, a field along these directions excites
only shear waves and no other.

4.4 X-Ray Crystallography

To find the orientation of the crystal axes in a piece of crystalline material relative
to some external reference, such as its surface geometry, is a problem for which
crystallographers have developed methods involving the angles between the natural
facets, which generally characterize crystals, and their optical properties. The most
powerful technique, however, involves the use of X-rays: not to produce shadow
pictures, of course, but to produce X-ray diffraction patterns.

It would take us too far afield to attempt more than a cursory description of
this technique, which can be used not only to determine crystal orientation, but
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more importantly, to analyze the crystal structure. In 1912, Max von Laue engaged
his two young assistants, Friedrich and Knipping, in an experiment suggested by
analogy with a technique well known at the time: the use of a fine grating to analyze
an optical spectrum. In this context a grating consists of a mirror (or transpar-
ent plate) on whose surface a large number of closely spaced parallel grooves
are ruled with great precision. Because of its wave nature, light is preferentially
reflected from the grating surface along those directions in which the light waves
diffracted by the narrow reflecting (or transmitting) stripes reinforce each other.
Realizing that the spacing of the fine grooves would have to be scaled in the ratio of
the wavelengths, typically 1/2000, and that therefore it was impossible in practice
to simply repeat the optical experiment with X-rays, von Laue suggested that per-
haps the regularly spaced atoms in a crystal may act as a 3-dimensional “grating.”
This indeed proved to be the case, and the classic “von Laue” X-ray patterns were
soon photographed. After this initial success, W.H. Bragg and W.L. Bragg, father
and son, established X-ray diffraction as a powerful method of analyzing crystal
structure. It was W.H. Bragg who gave a simple way of analyzing the way in which
the X-rays are scattered by a crystal along many discrete directions. The analysis
proceeds by imagining that all the atoms of the crystal are assigned to a set of par-
allel geometrical planes, called atomic planes. The regular ordering of the atoms
in the crystal ensures that this can always be done. By applying the Huygens con-
struction to the secondary X-ray waves scattered from atoms in successive parallel
planes that the X-rays penetrate, one finds that in order that their phases will rein-
force, producing a maximum reflection, the distance between the planes d must
satisfy the following condition:

2d sin©® = nA, 4.1

where 0 is the angle between the incoming X-ray and the atomic plane, and » is any
whole number. To determine the crystal orientation requires an instrument called a
goniometer, which consists essentially of a rotatable crystal mount and a radiation
detector on a rotatable arm designed for precise angle measurements. By applying
the above formula to the possible sets of reflecting atomic planes, based on the
known structure and symmetry, it is possible after a good deal of data analysis to
arrive finally at a precise determination of the crystal orientation.

The application of X-rays to the study of crystals in the context of quartz res-
onators has also proved extremely useful in another direction: that of making it
possible to actually see the distribution of the amplitude of vibration in a crystal
plate or bar under actual conditions of excitation. That this is plausible we can see
from the formula for an X-ray “reflection” from a set of atomic planes: Even a
small relative displacement between the atoms contributing to the reflected beam
would change its intensity. This is an invaluable tool in the development of high-Q
resonators, because it allows the presence of undesirable lossy modes coexisting
with the desired one to be suppressed by various techniques, such as contouring
the shape of the crystal.
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4.5 Fabrication of Quartz Resonators

The actual performance characteristics of a quartz resonator are determined
ultimately by such technical matters as the way the quartz plate is fabricated,
how it is mounted, and how its environment is controlled. To prepare the resonator
plates, the mother crystal is rough cut into wafers with the desired orientation with
respect to the crystal axes. The wafers are then cut into smaller blanks, a little
larger than the desired dimensions, and then reduced by several stages of lapping,
until the final dimensions are nearly reached. They are then cleaned and etched, the
metallic-film electrodes baked on or vacuum deposited, and the plate mounted in a
hermetically sealed holder. The blanks are sometimes subjected to heating cycles
to accelerate the long-term approach to greater stability, which might appropriately
be called aging, although the term usually also includes any long-term drift.

Synthetic quartz has been available for many years on the market; unlike
diamond, which can be produced only as tiny grains, quartz and sapphire (crys-
talline aluminum oxide) can be grown to sizable crystals from the melt in special
high-temperature furnaces. By a proper choice of seeds and control of the crystal
growth, manufacturers are even able to cut the desired plates with little waste.

A good deal of effort has been devoted in the past to improve the Q-value of
resonators made of synthetic quartz. A study of the temperature variation of Q,
under conditions where Q is known to be limited by the vibrational energy losses
in the quartz rather than some extraneous factors, shows a strong peak in those
losses at —223°C. This has been attributed to the presence of sodium impurity,
whose amount varies from one sample to another. It has been found that the inter-
nal energy loss it causes can be reduced significantly by electrolytically remov-
ing this impurity ion. This can be accomplished by applying a voltage between
electrodes in the molten silica, or more slowly by applying a voltage between the
electrodes on the finished plate at an elevated temperature. The realization that the
presence of this impurity ion is responsible for some of the internal energy loss
has led to ways of improving the purity of synthetic quartz and hence of the Q
of quartz resonators. The control of quality in the manufacturing process has been
greatly aided by the use of the infrared absorption spectrum as an indicator of
acoustic energy loss in the crystal.

4.6 Stability of Resonance Frequency
4.6.1 Aging

The resonance frequency of a quartz resonator typically exhibits a long-term
drift extending over perhaps years, a phenomenon called aging. The aging rates
of high-frequency thickness-shear mode resonators designed for precision clocks
have reached impressively low values. Typical aging rates for solder-sealed metal
holders range from as high as a few parts per million per month to as low as one



4. Quartz Clocks 75

or two parts per million per year for the first two years. The lowest aging rates
have been achieved in units in metal holders that allow high-temperature bake-out
to drive out contaminant gases prior to being sealed from the vacuum system by
a cold-weld. The actual aging of a particular resonator is determined by several
factors, such as: the process control used in its manufacture, the degree of strain in
the mount, thermal stress relaxation resulting from prior temperature gradients, the
adsorption and desorption of gas on the surface of the crystal affecting its mass,
and slow structural changes involving imperfections in the crystal.

4.6.2 Surrounding Atmosphere

It is a remarkable fact that the adsorption of what presumably is just a monolayer of
gas one molecule thick on the surface of the crystal can produce a very significant
change in the natural resonance frequency of the resonator. Here is the basis for a
sensitive gas pressure gauge! Of course, it is not that the adsorbed layers of gas are
so heavy, but that the precision in frequency measurement has reached such a high
level. As is well known from the experience of a half-century when electronics was
dependent on vacuum tube technology, the surfaces of all materials, particularly
metals, continue to evolve gases into a vacuum and must be “out-gassed” at as high
a temperature as possible. The out-gassing is never really complete; gas diffuses out
from deeper and deeper layers within the material. The method used in the vacuum
tube industry to control the loss of vacuum due to out-gassing, particularly from
the incandescent cathode, was to use a “getter,” which was typically pure metallic
barium evaporated from a small nickel source by an induction heater. This formed a
silvery layer onto the inner surface of the glass envelope of the vacuum tube. Most
gases, except the inert gases like helium, react chemically with barium, producing
nonvolatile compounds that remain on the surface.

4.6.3 Temperature

The most important physical parameter affecting the frequency of a quartz res-
onator is the temperature of the crystal. By a proper choice of the orientation of the
cut with respect to the crystal axes, the dependence of the frequency of resonance
on the temperature can be made minimal at the normal operating temperature of
the resonator. The general dependence of frequency on temperature is shown as
a set of graphs for various cuts in Figure 4.7. Naturally, the plate orientations in
common use have been chosen to have the minimum change in frequency occur
around 25°C, as seen in the figure. We also note that the curves marked AT and
GT have an inflection point rather than a maximum with respect to Av/v, the frac-
tional change in frequency per degree centigrade; for these the possibility exists of
having nearly zero frequency change over a range of temperatures. However, even
when the change in frequency is near the minimum, a great deal can be gained
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Figure 4.7 The temperature dependence of the frequency of various cuts of quartz (Gerber,
1966)

by temperature compensation techniques, as well as tight control of the tempera-
ture of the crystal unit, by placing it in a constant-temperature oven. In the case
of precision quartz-controlled oscillators, the emphasis is usually on controlling
the temperature, rather than compensating for it. Not only must the temperature be
held constant in time, but also it must be spatially constant across the crystal holder.
This usually requires a double oven. The use of the word “oven” suggests operat-
ing at high temperature; in fact; the oven is stabilized at a temperature above room
temperature, but only moderately so, in order to obviate the need for refrigeration,
and make it possible to use natural cooling when the temperature deviates above
the set value. Furthermore, precision proportional control is used rather than the
familiar on—off control used in home thermostats. Proportional control means that
the rate of increase of the amount of power delivered to the oven is proportional
to how far the temperature is below the set temperature. To implement this type
of control requires some electronics that go well beyond the mercury switch and
bimetallic strip used in some on—off controls.

4.6.4 Excitation Level

Another source of frequency instability, related to the amplifier and the coupling
circuits to the crystal, is the power level driving the crystal, which of course deter-
mines the level of mechanical vibration of the crystal. While this naturally affects
the rate of heat dissipation in the crystal, which could cause some shift in the fre-
quency, there are indications that other possible mechanisms such as changes in
the effective elastic properties may play a role. Based on experience, high preci-
sion crystal units should be driven at the lowest possible power levels. In order
to ensure that the oscillation level is maintained at a constant low level, a special
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feedback circuit, of a type known from the early days of radio as automatic gain
control (AGC), is used. Essentially, this is a feedback control loop that samples
the oscillation level, derives a voltage proportional to its amplitude, compares this
voltage to some constant reference voltage to produce an error signal, and applies
this at some point in the oscillator circuit that can affect the oscillation level and
bring the error to zero.

4.6.5 Actual performance

Figure 4.8 shows a plot of the fractional Allan variance of frequency for a space-
craft quartz oscillator, showing a minimum at around 10 seconds of 1013

From the somewhat lengthy discussion we have given of the sources of
instability in a quartz-controlled oscillator, it might seem that such oscillators
are plagued with errant behavior; that is far from the truth. To help regain our
sense of proportion in the matter, let us recall that a precision quartz oscillator, for
example a fifth-overtone 5 MHz crystal with Q as high as 1,000,000, may well be
stable over a period of an hour to better than one part in 10'!. Or to put it another
way, while oscillating at the rate of 5,000,000 oscillations per second, it may gain
or lose only one oscillation in 5.5 hours! In fact, the quartz oscillator has no equal
with respect to short-term frequency stability and spectral purity, which is really a
statement about the extremely low noise that accompanies its undistorted output.
This unique property makes it invaluable in a number of applications in addition
to time measurement. One such application is Doppler radar, in which the shift
in the frequency of the echo from a moving target due to the Doppler effect is
exploited to discriminate against “ground clutter,” since the frequency of the latter
is unchanged. The ability to detect small changes in echo frequency and hence
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Figure 4.8 Allan variance of frequency versus sampling time for an ultrastable spacecraft
quartz oscillator (Norton, 1994)
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in target velocity, as well as the range, depends on the frequency stability of the
transmitted microwaves. A viable approach is to start with a precision 100 MHz
quartz oscillator and generate the desired microwave frequency as a harmonic,
using established frequency-multiplying techniques. Since the line width and other
frequencies present in the spectrum are spread out by the same multiplying fac-
tor, it places such stringent requirements on the short-term frequency stability
and spectral purity that quartz controlled oscillators are looked to as superior
candidates for such an application.

4.7 The Quartz Resonator as a Circuit Element
4.7.1 Equivalent Circuit

To design the electronic circuits required to operate a quartz crystal oscillator we
need the equivalent circuit of the crystal in its holder, that is, a circuit made up of
the basic elements of inductance, capacitance, and resistance that simulates exactly
the voltage—current relationship in the vibrating crystal at all frequencies. It can-
not be presumed a priori that such an equivalent circuit exists; but recalling that
mechanical vibrations universally involve the oscillation of energy from an elastic
(potential) form to a kinetic form, obeying a second order differential equation,
it is reasonable to draw a parallel with an electric circuit having inductance and
capacitance. We will accept that an analysis of the mechanical vibration of a quartz
resonator, taking into account the piezoelectric effect, leads to the equivalent circuit
shown in Figure 4.9.

The capacitance C; represents that of the crystal between its metal electrodes.
The resistance R accounts for the energy losses in the crystal itself as well as its
mount. The inductance L and capacitance C; represent the inertia and elastic terms
that determine the resonance frequency. In general, R is very small, C1 > C,, and
L is very large, being comparable to the inductance of a coil one meter in diameter

Figure 4.9 The equivalent circuit of a quartz plate
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and a winding of several thousand turns! The high ratio C1/C> implies very loose
coupling between the crystal and the circuit driving it.

4.7.2 Frequency Response

As with any other type of feedback oscillator whose frequency is controlled by a
high-Q circuit, the quartz crystal is part of a feedback loop of an amplifier with
sufficient gain for oscillation. As we emphasized in a previous chapter, the ideal
would be to have the frequency-determining high-Q resonator execute its natural
oscillation with minimum coupling to the amplifier, whose operating conditions
may fluctuate over time. The higher the Q-value, and values reaching 10° are not
uncommon in precision quartz crystals, the greater the variations in the amplifier
phase shift that can be tolerated. The reason is that such phase shifts can be com-
pensated in a high-Q circuit by a very small shift in frequency.

We note parenthetically that although a quartz crystal has only two elec-
trodes, we can think of it as having an input between one electrode and a com-
mon ground conductor, and an output between the other electrode and ground, as
shown schematically in Figure 4.9. If we imagine an oscillating voltage whose
frequency we could vary being applied between one electrode of the crystal and
ground, and we measure the relative phase of the voltage appearing on the other
electrode, we would find that the phase changed very abruptly as we pass through
the resonance frequency, going from —90° through zero at resonance to +90°
on the other side of resonance, as shown in Figure 4.10. Almost the entire change
in the phase shift occurs within the width of the resonance, which for Q = 100
means a frequency width of 1 Hz in a 1 MHz oscillation frequency.
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Figure 4.10 The change in impedance and phase as a function of tuning of a quartz crystal
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4.8 Frequency/Time Measurement
4.8.1 Measurement of Time Intervals

We will now take up briefly the electronics essential to the normal function of a
clock, namely the “gear train”, or what functions electronically as a gear train. But
before we do, let us first consider the use of our stable quartz oscillator simply to
measure the time interval between two events. We may assume the frequency of the
oscillator has been calibrated against an acceptable commercial reference, whose
frequency is presumably traceable back to a national standard. We’ll leave open for
the time being the question of how the frequency of the national standard is estab-
lished; we shall have a great deal more to say on this subject in succeeding chapters.
Unlike a common stopwatch, which is started at the first event and stopped at the
second, an oscillator requires time to stabilize; and therefore it must be allowed
to continue uninterrupted while its connection to an oscillation counter is made
through a gate circuit, which is opened and closed by the two events. To keep
matters simple we will assume that it is sufficient for the accuracy to be limited
to within a whole number of oscillations; to interpolate fractions of an oscillation
would require additional techniques.

4.8.2 Digital Circuits

In this age of digital electronics, the required gates and counters are common as the
basic building blocks of more complex digital circuits. These circuits process all
signals in binary form; that is, there are only two discrete voltage levels, represent-
ing 0 and 1 in the binary system used to represent the numerical magnitudes of sig-
nals. In order to use binary circuits to count harmonic oscillations, we must reshape
the waveform so that it conforms to the two-level binary format. There are several
ways in which this can be done; one possibility is to use a circuit called a Schmidt
trigger, whose output is a sudden step in voltage when the input passes smoothly
a certain preset trigger level, and will step back to its former level if the input
returns to pass through the preset value in the other direction. We could, for exam-
ple, set the trigger level at the zero crossing of the oscillator waveform, thereby
generating a square wave alternating between the “low” level and the “high” level
of the binary circuits. We can now use standard binary gates and counters to mea-
sure a time interval. It is not our intention to venture far into what has come to be
extremely sophisticated digital electronics, but merely to give a hint of what might
be involved.

A counter is formally referred to as a sequential logic machine; it is based
on a bistable circuit whose history precedes digital computers, integrated circuits,
and even solid-state electronics itself. This bistable circuit, once called an Eccles—
Jordan pair, is now generally referred to as a flip-flop, which probably first came
into wide use with the invention of nuclear radiation counters, such as the Geiger
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counter, in 1913. It belongs to a distinct class, quite unlike the usual linear ampli-
fiers, in which the voltages and currents at different points in the circuit may assume
any of a continuous range of stable values controlled by a continuous input signal.
The flip-flop has two discrete stable states and no others, a fairly uncommon prop-
erty for a physical system. It can pass through intermediate states only in a sudden
transit from one state to the other when triggered by a change in voltage appro-
priately applied to it. It can serve as one bit of memory. The obvious mechanical
analogue is a common electrical switch, which has only two stable states: on or off.

A bistable circuit can be constructed from two (inverting) single-stage ampli-
fiers with overall regenerative, or positive, feedback; the output of each amplifier
is connected to the input of the other in such a way that a downward fall in the
current of either amplifier goes precipitously all the way to zero because of the
feedback. It is instructive to consider what distinguishes this circuit from the kind
of feedback amplifiers we have described in a previous chapter as oscillators. The
difference lies essentially in the frequency dependence of the amount of feedback;
for a harmonic oscillator the feedback must reach a maximum at only one nonzero
frequency, whereas if we are to speak in such terms, we would say that the flip-flop
has feedback extending from zero frequency (DC) up to frequencies that determine
the speed of switching. A “zero frequency” signal is simply a constant, or DC,
voltage, and the feedback in a flip-flop affects constant DC levels on the amplifiers,
causing one to shut off while the other draws the maximum current the circuit
will allow. Furthermore, we must remember that a feedback amplifier designed to
serve as a pure single-frequency oscillator must be provided with a means of lim-
iting the amplitude of oscillation. Otherwise, it would swing between two extreme
states, producing a square wave output. In that case it would be called a free running
multivibrator.

In this “information age” of integrated microelectronics and computers, logic
circuits come in the form of encapsulated semiconductor devices with an array of
external pin connections. Whole families of devices based on different technologies
using semiconductors in different ways have multiplied into a bewildering array
filling entire catalogs. The functions of any given device are specified in terms of
the binary level outputs on specified pins as functions of the levels on different
inputs pins.

Figure 4.11 shows an example of what is called an RS latch using two cross-
coupled NOR gates. A NOR gate is a “black box” with two input terminals and
one output, typical of logic gates, in which the logic values true and false are
represented by two voltage levels: high and low, typically separated by 5 volts.
In the NOR gate the output is high only when neither of the two inputs is high.
Like all other embodiments of latches, this has two stable states; one in which the
output at Q is high and at Q* low, and the other in which the outputs are reversed.
A momentary high applied to the S input will put the circuit in the former state,
independent of what state it was in; and similarly, a momentary high at the R input
results in the reverse output state, again, we should emphasize, independent of its
former state. Such a latch can be made into a “scale-of-two,” that is, one stage of
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Figure 4.11 An RS Flip-Flop circuit

a binary counter, by providing an input gating circuit that in effect alternates the
input trigger between the two terminals, R and S, so that on each input trigger the
latch changes state. This may be accomplished by using two input NOR latches,
creating what is called a D-type flip-flop. With a square wave input, the trigger is a
negative edge, where the binary level goes from high to low. The resulting output
at Q*, for example, is then a square wave with the transition from (say) low to high
occurring every second input transition. The output result is a square wave of half
the frequency of the input. If the input were in the form of a pulse train, then the
output would consist of pulses similar to the original train, except that for every
output pulse, two of the original pulses are required.

If we connect, for example, 24 such binary units in tandem, to form what is
called a binary ripple counter, then since we are dividing by 2 in each stage, it
requires 22% incoming pulses to result in a pulse reaching the last stage, and 224
pulses before all stages return to their original state.

If the input is a square wave of fewer than 223 oscillations, then connecting to
each binary unit a light emitting diode (LED) to indicate its binary state, we could
read the number of oscillations as a binary number.

To measure the time between two events, a similar flip-flop may be used to
provide a gate signal, that is, a constant logic high level starting at the first event
and ending at the second event, but otherwise at the low level. This gate can then
be applied to one input of an AND logic gate, while the other is connected to
the pulse-shaped output of the oscillator. The output of the AND gate will be a
finite square wave starting at the first event and ending at the second. By reading
the binary number indicated by the counter, we obtain the interval of time between
the events.

We should note at this point that the same procedure we have just been describ-
ing could obviously be turned around to measure the frequency of the oscillator if
the time interval between the two events is independently known with the desired
accuracy. In fact, this is the basis of most frequency counters commonly available
on the market. In these the time intervals, which can be selected according to the
frequency to be measured, are derived from an internal reference.
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4.8.3 Frequency Synthesizers

From what has been said we may have created the impression that we are limited to
the division of the oscillator frequency by powers of 2, which of course would not
give us output displays in seconds, minutes, and hours. This is far from the present
reality; we can in fact synthesize almost any required frequency while maintaining
coherence with the oscillator.

There are two common approaches to synthesizing a sinusoidal signal of arbi-
trary frequency that is coherent with a given reference source. The first is referred
to as the phase locked loop (PLL) method, and the second is the direct digital syn-
thesis (DDS) method. Again we will attempt no more than enough to suggest the
complexity of the subject.

In addition to the given reference oscillator the phase locked loop method
is based on three types of circuits: a voltage controlled oscillator (VCO), a
phase/frequency detector (PFD) or more precisely, comparator, and frequency
dividers.

The VCO is an oscillator characterized by having in the frequency-determining
circuit a varactor, a voltage sensitive capacitor by which the frequency of the oscil-
lator can be controlled with a voltage signal. The phase/frequency detector in a dig-
ital PLL system may be constructed from two (D-type) flip-flops, whose function
is to measure the difference in the phase/frequency between two input signals and
produce an output whose average magnitude and sign serve as a corrective error
signal to control the frequency of the VCO. In one basic PLL circuit design the
frequency of the reference oscillator is divided by an integer N and the frequency
of the VCO is digitally divided by a variable integer M (which may include a
fixed prescaler) prior to the feed-back connection to the phase/frequency detector
whose output error signal is connected to the control input of the VCO. Closing
the loop should lead to a phase lock between the two inputs to the PFD. In the
locked condition the output frequency will be given by fou;/M = fref/N. It fol-
lows that this simple PLL circuit allows the output frequency to be varied in steps
Of (1/N) fres-

This simple design suffers from the important drawback that in order to achieve
good resolution (small step size in the output frequency) it is necessary to make the
integer N very large, which incurs increased phase noise. This limitation could
be avoided if division by a non-integer could be realized in the feedback; this
would allow a higher f,.r to be used while still maintaining a small step size in
the output. Fractional N frequency synthesizers do in fact exist, but it would take
us too far into the realm of specialized communications electronics to pursue that
subject.

The other approach to frequency synthesis we will consider is direct digital
synthesis, which has become a more widespread choice in recent years through
advances in the speed of integrated circuits. It synthesizes the desired waveform
simply by storing its values as (for example) a sine function in digital form, and
sequentially recalling the values of that function to generate the waveform.
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The phase variable is held in digital form in the phase accumulator and is incre-
mented at regular intervals, corresponding to the uniform advance of the phase in
time. The phase accumulator is essentially a counter which adds a preset count
every time it is clocked until it is full, corresponding to a complete oscillation.
Corresponding to the phase values, there are stored in a digital memory (ROM)
of large capacity the values of the sine function in fine increments; these are read
out and passed through a digital-to-analog (D/A) converter to a low pass filter to
smooth the sine waveform. The frequency is tunable by varying the size of the
phase increments addressed to the waveform “map” (ROM) from the accumula-
tor. Since there are a finite number of phase increments possible in a given binary
counter, for example about 16 million for a 24 bit counter, there is a finite resolution
in the output frequency. If a 10 MHz reference frequency is used, the smallest fre-
quency increment would be about 0.7 Hz. The construction of a sine function from
discrete points is not unique; the reason is a phenomenon called aliasing, a com-
mon problem in digital-to-analog conversion. A set of discrete points following the
outline of a sine wave can be fitted not only by a curve joining consecutive points,
but also a high frequency sine wave having crests between the points. This wave
is at the clock (reference) frequency and is amplitude modulated at the synthesizer
output frequency, giving rise to two spurious frequencies in the output spectrum.

4.8.4 Quartz Watch

We conclude this chapter with a brief description of what has become common-
place since the early 1970s: the quartz watch. Thanks to the revolutionary develop-
ment of microelectronics, a quartz-controlled clock of miniature dimensions is not
only possible, it is commercially available at a cost for the quartz movement of less
than 10% of the price of a good mechanical watch! Its time-keeping accuracy is
typically a few parts in 10°, which translates into a few seconds per month!

quartz crystal
(32.768 kHz)

:

£|HF

stepper-motor

Figure 4.12 Schematic circuit diagram of a typical quartz movement
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The immediate predecessor of the quartz watch was an expensive, high-
quality electronic model based on an acoustic resonator: the tuning fork. It had an
accuracy that surpassed the best mechanical spring—balance movement; however;
the improvement was not commensurate with its high cost, and it was soon
superseded by the quartz movement. Figure 4.12 shows schematically the basic
elements of a quartz watch. The quartz crystal generally vibrates at a relatively
low frequency, and it is incorporated into a miniaturized circuit board on which
is mounted an integrated circuit frequency divider and driver for a stepper motor,
that is, one that turns a fixed angle (in this case 6°) each time it receives an
electrical pulse.






Chapter 5
The Language of Electrons, Atoms,
and Quanta

5.1 Classical Lorentz Theory

When we speak of oscillations at optical frequencies and their amplification, we
are indeed a long way from the world of swinging pendulums and oscillating bal-
ance wheels. It is true that classical theory based on Newton’s laws of motion and
Maxwell’s theory of electromagnetic radiation are inappropriate to deal with the
interaction of radiation with atoms and molecules; for this we need the quantum
theory. However, from a background of classical theory, certain aspects can be
sketched in a semiclassical way, in which quantum ideas are superimposed on a
classical base. Historically, this characterized the early development of the theory
of radiation and the general features of the theory of optical dispersion. In this con-
text “dispersion” refers to the dependence of the refractivity of a medium on the
wavelength, which leads to the dispersion of, for example, white light by a glass
prism into the colors of the rainbow.

Prior to the advent of quantum theory early in the last century, the interaction
of radiation with matter was explained on the basis of the electron theory of H.A.
Lorentz, in which the response of matter to an electromagnetic wave was expressed
in terms of “atomic oscillators” pictured as electrons elastically bound to the atomic
centers. The interaction of atoms with an electromagnetic wave was imagined as
consisting in these electrons being driven into forced oscillation by the oscillat-
ing electric field component of the wave. It can be shown, however, that in order
to have continuous absorption of energy from the wave (as opposed to a fleeting
absorption when the wave first interacts with an electron, setting it in motion), it
is necessary to assume that during the interaction with the wave, the driven elec-
tron oscillation must in effect experience a resistive force. This clearly cannot be a
frictional force in the usual sense; and the radiation reaction force, which accounts
for the energy radiated by the vibrating electron, proves to be too small to account
for the degree of light absorption that can occur. Lorentz attributed the net absorp-
tion to the repeated interruption of the electron oscillation by collisions with other
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atoms, resulting in the randomization of the oscillation phase. In the absence of
this, the phase of the periodic electron velocity remains in quadrature with the
driving force, and the average work done on the electron averages to zero over
a period of oscillation of the field. The result would be that no net absorption of
energy takes place. Through those phase-randomizing collisions, there is a contin-
uous transfer of energy to the electrons that appears, through the same collisions,
as random kinetic energy of the colliding atoms, that is, heat.

The same model was also used to describe the process of emission of radia-
tion by atomic oscillators, when set into vibration by collisions with other atoms
in an electrical discharge, or in a state of thermal agitation, as in a flame. It is
well established classically, on the basis of Maxwell’s theory, that an oscillating
electric charge will radiate electromagnetic waves. In this case, since we have a
negative charge (the electron) oscillating with respect to an equal positive charge,
the wave that is generated is that of an oscillating electric dipole. This has a char-
acteristic radiation pattern, that is, distribution of intensity in different directions,
similar to that from a simple radio transmitter antenna. The frequency of the radi-
ated electromagnetic wave is classically the same as the frequency of oscillation
of the supposed atomic oscillator. If through some nonlinearity the atomic oscil-
lator excitation results in some second or higher harmonics, at twice or a higher
multiple of the fundamental frequency, the radiation will also contain those har-
monic frequencies. It was one of the fatal flaws of classical theory in explaining
atomic spectra that the observed frequencies emitted by atoms do not bear a simple
harmonic relationship to each other.

5.2 Spectrum of Blackbody Radiation

But the breakdown in the classical theory of radiation, which finally led Planck to
postulate the quantum of energy, first came in the explanation of the spectrum of
the radiation in thermal equilibrium with matter, the so-called blackbody radiation.

This is radiation whose spectrum is characteristic of the equilibrium tempera-
ture, and it is independent of the nature of the matter interacting with it. It can be
observed only under conditions where the interacting matter can thoroughly absorb
and re-emit radiation at all frequencies. In practice this is achieved by studying the
radiation inside an enclosure, which is provided with a small hole to allow a sample
of the radiation to be analyzed outside the cavity. The observed continuous spec-
trum, showing the radiated intensity in a small fixed frequency band as a function
of the center frequency of that band, is shown in Figure 5.1. Contrary to classical
predictions, the graph tends to zero at the upper and lower ends of the frequency
scale, with a maximum intensity at some intermediate frequency, which, in accor-
dance with common experience, depends on the temperature: the color varies from
red toward the blue as the temperature is raised. This is given precise expression in
Wien’s displacement law: the frequency at which the intensity is maximum shifts to
higher values, in direct proportion to an increase in the temperature. Wien derived
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Figure 5.1 The spectrum of blackbody radiation showing the shift in the maximum with
temperature

his law on the basis of classical arguments, prior to Planck’s work, and it is borne
out by experiment. The spectrum of sunlight is approximately that of a “black
body” at a temperature of about 6000°K, with the maximum intensity occurring at
around a wavelength of 0.5 um, in the middle of the visible region of the electro-
magnetic spectrum.

5.3 The Quantum of Radiation: The Photon

After all attempts based on the classical theory of thermal equilibrium and the
exchange of energy between radiation and matter failed to explain the observed
spectrum, Max Planck in 1901 published a radically new theory, which was able to
predict a spectrum in close agreement with experiment. It was based on the postu-
late that matter contained an immense number of electromagnetic “resonators” that
could exchange energy with the radiation field not continuously in arbitrarily small
amounts, but only in discrete units he called quanta, whose energy is proportional
to the frequency: E = hv, where h is a universal constant of nature, now called
Planck’s constant, with a numerical value in our system of units of 6.6 x 10734
joule - second.

A greater understanding of the physical processes that result in the emission
of blackbody radiation came with the reinterpretation of the process by Einstein,
who introduced the concept of a quantum of electromagnetic radiation, called a
photon, which in some circumstances manifests a discrete particle nature. On this
basis, blackbody radiation results when equilibrium has been reached between the
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photon gas and the atoms of matter through continual absorption and re-emission
of photons by the atoms. When this model was applied to derive Planck’s formula,
it was found that the well-known spontaneous emission process, in which an atom
gives up its energy of excitation spontaneously by emitting a photon, alone would
not lead to an equilibrium consistent with Planck’s formula. Einstein found it nec-
essary to postulate that an atom that has absorbed a photon may not only re-emit
it spontaneously, but may also be stimulated to re-emit it, with a probability that
depends on the number of photons already present. When a group of such atoms or
molecules undergo spontaneous emission, they do so independently of each other;
there is, therefore, no correlation between the phases of their several contributions
to the radiation emitted. In contrast, emission induced by existing photons, that is,
stimulated emission, has a phase dictated by the phase of the existing radiation
field, and hence all atoms subjected to this field will have more or less a common
phase. This results in the radiation field remaining coherent in phase and increasing
or decreasing in amplitude depending on whether the rate of emission is greater or
less than the rate of absorption.

5.4 Bohr’s Theory of the Hydrogen Atom

The success of the radically new quantum postulate of Planck soon saw the spread
of quantum ideas to the hitherto intractable problem of explaining optical emission
spectra of atoms. A wealth of accurate experimental data had been accumulated on
the wavelengths of the many series of lines that form atomic spectra. Each chemical
element emits its own characteristic, and for all but the simplest atoms, complex
line spectrum. Intensive efforts had been devoted to finding regularities in these
spectra, and a number of empirical rules were enunciated, all of which brought
some order to their practical analysis.

The theoretical breakthrough came after the success of the nuclear model of
the atom, which was postulated by Ernest Rutherford around 1911 to explain unex-
pectedly large angles of scattering of high-speed o-particles (a product of natural
radioactivity of certain elements) by atoms in a gold foil target. The model was
strikingly confirmed in subsequent years in his laboratory, a feat he announced as
possibly more important than the outcome of what was then called the Great War.
For this he received the Nobel Prize and given the title Lord Rutherford of Nelson
(his birthplace in New Zealand). Prior to that, there was intense speculation as to
just how electrons and protons, the elementary particles known at the time, were
arranged in atoms. As is now familiar to everyone, the basic arrangement is that
almost the entire mass of an atom resides in a small, positively charged nucleus,
which is surrounded by a cloud of negatively charged electrons.

Around 1913, the Danish physicist Niels Bohr, by a set of ad hoc quantum
notions superimposed onto a classical planetary model of the hydrogen atom, was
able to obtain with remarkable accuracy the wavelengths of a series of lines in
the spectrum of that atom. The most radical of Bohr’s postulates was that there
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exist certain orbits in which electrons could circulate indefinitely without radiat-
ing energy, contrary to the classical prediction that an orbiting charge should lose
energy by radiation and eventually spiral into the nucleus. These he called sta-
tionary orbits, and he postulated that of all the possible orbits that classical theory
allows, only those are stationary that satisfy the following condition on their angu-
lar momentum L:
nh
-
where n is an integer and £ is the same constant Planck had used to define the
quantum of energy. For a circular orbit of radius r, L = mVr, where m is the
mass of the electron and V its velocity. He further postulated that the frequency of
radiation emitted by the atoms is not the vibration or rotational frequency of the
electron in the classical sense, but is derived from Planck’s formula. Thus, when
an atom makes a quantum transition from a stationary state of energy E, to one
having energy E1, the frequency of the radiation is that of the radiated quantum,
that is,

5.1

v (EZ—EI)'
h

Of course, these radical postulates were not made lightly. The line spectra of atoms
show remarkable regularities, with series of lines forming striking patterns, plau-
sibly reminiscent of the classical vibration spectra of complex structures. It would
be natural to assume that these vibration spectra should form the basis of an expla-
nation of the spectrum. Unfortunately, of all of the precise experimental data that
was available and some empirical formulas that were discovered relating the wave-
lengths in the spectra, none was consistent with the harmonic relationships charac-
teristic of classical vibration frequencies.

Bohr’s ad hoc postulate identifying stationary orbits became a little less so
through the work of de Broglie, published in 1924. In this de Broglie argued on
the basis of the dual particle—wave nature of light, which was then the subject
of much speculation and debate, that material particles have the same duality. The
success of Bohr’s theory seemed to hint at a wave property of electrons, since at the
time the only context in which equations contained integers was in normal modes
of vibration, and the interference of waves. On the basis of the special theory of
relativity de Broglie was able to find the connection between the particle and wave
nature of all matter and radiation, in a theory called wave mechanics, the precursor
of quantum mechanics. According to de Broglie, a particle of mass m moving with
a velocity V has a wave associated with it “guiding” its motion, whose wavelength,
now called the de Broglie wavelength, is given by A = h/mV , where h is, as usual,
Planck’s constant. If we use this result in Bohr’s equation for the stationary orbits,
we find (h/AM)r = nh/2m; that is, 2nr = nA. But this is precisely the condition
for a resonant mode of vibration of a circular string supporting oscillations with
a wavelength A; any other radius would not have the wave reinforcing itself as it
traveled around the circle.

52
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The theory of Bohr, elaborated by Sommerfeld, and now referred to as the
“old quantum theory,” dealt only with “stationary” quantum states and quantum
numbers; it had little to say about nonstationary phenomena such as transitions
between states and collisions between particles. This situation changed with the
coming of quantum mechanics.

5.5 The Schrodinger Wave Equation

The spirit of de Broglie’s description remains in the subsequent quantum theory of
Schrodinger. The concept of a wave determining the motion of a particle implies
the radical notion that the amplitude of a wave, given as a function of the coordi-
nates and called a wave function, is to be used to describe the motion of a particle,
rather than regarding a particle as a point mass occupying a certain position in space
specified by its coordinates. The physical interpretation of the wave function, con-
ventionally represented by the Greek letter y, lends itself to some speculation in
the minds of some, hinting at a mysterious wave that guides the motion of matter.
However, a probabilistic view prevails in which [y(x, y, z)|? is taken as the space
density of the probability that the particle is at the coordinates x, y, z, in the sense
that |y(x, y, z)|>dx dy dz is the probability of the particle being found in a cell
of sides dx, dy, and dz centered at the point (x, y, z). Since the particle must be
somewhere with a 100% certainty, it follows that the wave function must satisfy
the following normalization condition:

+00 400 400

///|\|I|2dxdydz:1. 53
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This, of course, imposes a mathematical restriction on the wave function: Its inte-
gral must be finite.

In Schrédinger’s wave mechanics, which is one mathematical representation of
quantum mechanics, the equations of motion of classical mechanics are replaced
by a differential equation, called the Schrodinger equation, to determine the wave
function. Thus, for example, the equation for a free electron having energy E in a
one-dimensional world would be as follows:

d’y  8m’mE
dx? h?

Of all the mathematical solutions of the Schrédinger equation, those that may
be accepted as representing the stationary states of a physical system are defined
as those particular solutions, called eigenfunctions (German for proper functions),
that are finite and satisfy certain conditions at the boundaries of the system. For
example, if an electron obeying the above equation is confined between two plane,
parallel, “impenetrable walls” forming the boundaries at x = 0 and x = L, the
stationary solution of the Schrodinger equation describing that electron would be

v = 0. 5.4
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equal to zero at those points and beyond. One can readily verify that the following
are solutions:

Y, = N sin (k,x), 5.5
where
T , h?
K, = nz, E,=n SLim’ 5.6
andn =1, 2,3, .... We note that were it not for the boundary conditions y(0) = 0

and y(L) = 0, the equation would have been satisfied by sin (kx), where k, and
therefore E, are continuous variables, and not “quantized” to have the discrete val-
ues labeled with the index n: k, and E,,. The functions N sin (k,,x) are the station-
ary wave functions, the eigenfunctions of Schrédinger’s equation for the particular
system we have assumed. They are analogous to the classical normal modes of
vibration of a system.

For the 3-dimensional case of a particle confined in a rectangular box with sides
L1, Ly, L3, the eigenfunctions have the form

[ 8 . . .
Yimn = m sin (k;x) sin (kp, y) sin (k,2), 57

kl:_akm:_,knz_, 5.8
1 2 3

where

and the quantum energy levels are given by

2
Epmn = 87}:_2m [+ K2+ k2] 5.9
We note that we now have three quantum numbers [, m, and n to distinguish
the various possible stationary states, and that these appear in the quantization of
the components of the wave vector k along the three coordinate axes. If we recall
the formula for the de Broglie wavelength, we find that k = 2/ h)mV; that is,
it is the linear momentum that is quantized. The constant factor /8(L|L>L3) is
introduced to meet the normalization condition.

We note that the stationary states we found for an electron in a box are far
from the classical picture of a point mass bouncing back and forth between the
boundaries. A particle moving back and forth would be represented as a time-
dependent wave function that, at any moment is small everywhere except in the
neighborhood of the particle position. Such a wave function, called a wave packet,
can be synthesized as a sum over the harmonic eigenfunctions, following the spirit
of the Fourier expansion theorem. Each eigenfunction corresponds to a different
energy, and therefore a different frequency (since Planck’s formula £ = hv still
holds), with the result that the wave packet will have a time dependence reflecting
the motion of the particle.
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5.6 Quantum Numbers of Atomic States

If a particle is subjected to a central force, that is, one directed toward a fixed
point, such as the electrostatic Coulomb force that a nucleus exerts on the elec-
trons surrounding it in an atom, three quantum numbers will again be required to
specify a stationary state. In this case the spherical symmetry of the equation sug-
gests that the solution is most naturally expressed using the spherical polar coor-
dinates r, 0, ¢. The quantum numbers conventionally designated as n, [/, m play
a role in close analogy to the indices used to label the various normal modes of
vibrations of a sphere. The values of the quantum numbers are restricted as fol-
lows:n=1,2,3,...,whilel <(n—1)andm=1,(—-1),(—-2)...—( —2),
—( — 1), —1. The part of the wave function that is a function of the r-coordinate
has a number of nodes (zeros) given by (n — [ — 1), and the part that is a function
of the co-latitude 6 has (I — m) nodes off-axis. Following spectroscopic conven-
tion, electrons in an atom having/ =0, 1, 2, 3, ... are called s-, p-, d-, f-electrons,
etc., respectively. The quantum numbers / and m, which are associated with the
angular part of the wave function, in fact reflect the quantization of the angular
momentum and its component along the polar axis, respectively. In Figure 5.2 is
shown the probability distribution for a particle in a central field in the n = 3,
| = 2,m = 0 quantum state. According to the theory, a system having nominally an
orbital momentum quantum number / actually will have orbital angular momentum
of /I(I + 1) in units of h/2w, whereas the maximum component along the polar
axis is only /. (We will usually omit the unit #/27 unless we are doing a numerical
calculation.) Thus the theory predicts that the maximum component the angular
momentum can have along any given axis is somewhat less than the magnitude

n=3
=2

m=20

Figure 5.2 Example of the probability distribution for a particle in a central field
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of the angular momentum itself. This is a strictly quantum effect, since classically
the angular momentum is a vector that can assume any direction, and in particular
can point exactly in the direction of any given axis. The effect can be interpreted
in terms of vectors by saying it arises from a quantum uncertainty in the angle the
angular momentum vector makes with the axis. The quantization of the compo-
nent of angular momentum along an axis arises mathematically from the condition
that the solution to the Schrédinger equation must be a simple periodic function of
the angle ¢ around the axis; that is, it must repeat itself every 360°. This physical
requirement imposed on the mathematical solution bears some resemblance to the
implied condition for normal modes in the Bohr circular orbits. In any event, it
constitutes one of the most radical breaks with classical mechanics: It implies that
the angular momentum of a system can only assume certain discrete orientations
with respect to a given axis; this is sometimes called space quantization, and it is
of profound importance in the quantum theory of atoms subjected to an external
magnetic field, and the attendant shifts in energy levels: the Zeeman effect.

Since an atomic angular momentum will have associated with it a magnetic
moment (both due to the orbital motion of the charged electron and its intrinsic
spin), the energy shift produced by a magnetic field is expected to depend on the
component of the angular momentum along the field and therefore, with the axis
chosen along the field direction, on the quantum number m. For this reason m
is called the magnetic quantum number, and to reiterate, for a state with a toral
angular momentum (including spin) quantum number J (which, as we shall see,
may be integral or half-integral) the magnetic quantum number m ;, can have one
of the following (2J + 1) discrete values: J, (J — 1),(J —2),...,—(J = 2),
—(J — 1), —J. For example, a particle in an angular momentum state described
nominally as a J = 5/2 state may have as its component along a given axis one of
the following values: +5/2, 4+3/2, +1/2, —1/2, —-3/2, —=5/2.

5.7 The Vector Model

It should be emphasized that the quantum numbers, while they represent in quan-
tum mechanics the results of measurement of a particular dynamical quantity, such
as angular momentum, it is only in systems involving very large quantum num-
bers that they approximate classical behavior. It happens that we can, according
to what is called the vector model, retain the concept of angular momentum as a
classical vector, provided that we give these vectors properties that are peculiar to
quantum mechanics. The uncertainty in pointing the angular momentum exactly
along a given direction is one of them. The other concerns combining different
angular momenta to obtain a resultant: the result of adding two angular momenta
whose quantum numbers are, for example J; and J,, where J> < Ji, would clas-
sically be any value between (J; — J2) and (J; + J2), depending on the angle
between the two angular momentum vectors, whereas in quantum theory the resul-
tant is one of a discrete set that starts with (J; — J3) and by increments of one



96 The Quantum Beat

Figure 5.3 Vector diagram for the addition of angular momenta

unit reaches (J; 4+ J»). For example, suppose a system in an angular momentum
state with quantum number J; = 3 and another with J, = 1 interact in such a
way that results in stationary states of the combined angular momenta. The quan-
tum numbers belonging to this combined representation would be 2, 3, 4, implying
according to the vector model that the angular momentum vectors can make only
certain discrete angles with respect to each other, as illustrated in Figure 5.3.

If the particle is an electron, a complete specification of its quantum state
requires not only the dependence of its wave function on the space coordinates,
but also the state of another attribute of the electron called the spin. This is an
intrinsic angular momentum of 15 (4/2x), part of what it is to be an electron. It was
first introduced to explain atomic spectra and later brilliantly shown by Dirac to be
a logical necessity, forming an integral part of a relativistic quantum theory. For a
free electron, the spin component along any given axis can only be +1/2 or —1/2,
corresponding to only two possible directions of spin.

For electrons in an atom, a total angular momentum larger than 1/2 can result
from the spin combining with the orbital angular momentum of its motion around
the nucleus, which is conventionally represented by / and is always integral. It can
be shown that the magnetic field produced by the orbital motion of the electron can
exert a torque on its own spin, a coupling called the spin—orbit interaction, which
is extremely important in understanding atoms. In the absence of other torques act-
ing separately on the two types of angular momentum, such as a strong external
magnetic field, the two will give a resultant angular momentum represented con-
ventionally by j, which is conserved, and quantized both in magnitude and spatial
orientation. For example, an electron in an orbit with orbital angular momentum
! = 2 will have a resultant, when combined with its spin of 1/2, equal to either
241/20r2—1/2, thatis, 5/2 or 3/2. Recall that these numbers give the maximum
component observable along any given axis in units of 4/27.

5.8 The Shell Structure of Electron States

When there is a large number of electrons in different orbits, the prediction of the
possible combined angular momentum states quickly becomes very complicated;
not only is there spin—orbit coupling, but also interactions between the spin and
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orbital magnetic moments of different electrons. Fortunately, it happens that elec-
trons in an atom can be grouped into shells, which, as we shall see, can contain
only a certain maximum number of electrons. When completely filled, a shell has
zero resultant angular momentum; so that only electrons in any incomplete shells
need be considered in arriving at the overall atomic angular momentum state.

The reason for venturing a little into the abstruse realm of quantum theory is
that it is essential for any basic understanding of atomic and molecular structure
and dynamics. We recall that the atoms of the chemical elements have small pos-
itive nuclei, where most of the mass resides, surrounded by a cloud of negative
electrons that occupy available quantum states, each state labeled by a set of three
quantum numbers, plus a fourth specifying the spin state. We have already seen that
for a given value of the quantum number / there are (21 4 1) states with different m;
if we include the two possible directions of the spin, this number is doubled. (The
presence of spin—orbit coupling requiring a description in terms of the total (spin
plus orbital) quantum numbers does not affect the number 2(2/ + 1).) These states
correspond to different orientations of the orbital and spin angular momenta with
respect to a fixed axis. In the absence of an external field, such as a magnetic field,
all directions in space are identical, and the energy of electrons in these states is the
same; they are all at one energy level. They are called degenerate states. Further-
more, it is found that for a pure Coulomb (inverse square law) electrostatic field,
such as we have in the hydrogen atom, the solution to the Schrédinger equation
yields possible values of energy that depend only on the quantum number n, and
so there is degeneracy with respect to the / quantum number as well. Now, for each
value of n, the quantum number / can assume any of (n — 1) values, and as we
have seen, to each [ value there are 2(2/ + 1) degenerate states. The total number
of degenerate states having the same # is therefore

ol n(n—1)
22(21 ) =d4——F—+;m= 2n. 5.10
0

The common energy of these states can be shown to be

2m2mZz%et 1
E,=— —r— )z ) 5.11

in agreement with the old quantum theory of Bohr, which was already known to be
in remarkable agreement with experiment. There is an infinite number of energy
levels corresponding to n ranging from 1 to oo; Figure 5.4a shows some of the
lower states. Unlike the Bohr theory, the electrons are not localized along particular
orbits but must be regarded as spread out with a radial density given by 4mr? |2,
which is illustrated for several states in Figure 5.4b. We note that the average radius
increases with n, the outermost electrons having the highest n and the smallest
binding energy.

For atoms having a large nuclear charge, and therefore many electrons, the
exact solution of the Schrodinger equation becomes impossible, and approximate
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Figure 5.4 (a) The energy levels of the H-atom, and (b) the radial dependence of some of
the lower energy wave functions

numerical methods have been developed. An approximation that has proved very
useful is to assume that each individual electron moves in an electrostatic field pro-
duced by the nuclear charge and an average spherically symmetric distribution of
charge due to the other electrons. Of course, after solving the Schrédinger equation
using this approximate field and obtaining the charge distribution of each electron
from its calculated wave function, the combined charge distribution so derived must
agree with the one assumed in the first place. The important point for us is that if the
field acting on the electrons can indeed be taken to be spherically symmetric, then
the same quantum numbers n, [, m can still be used with the same significance,
except that the radial distribution of electrons is no longer purely hydrogen-like,
and the energy is no longer a function of the principal quantum number # alone,
but depends on [ as well. That is, the /-degeneracy is removed. However, the depen-
dence of the energy on [ is still generally weaker than that on n, aside from some
important exceptions for larger /-values. The m-degeneracy remains, and levels are
grouped around the different /-values; these groupings are the shells mentioned
earlier. It is one of the early triumphs of quantum theory that it was able to predict
the number of quantum states in each shell. Thus, for example, states having n = 4
and [/ = 2 would be said to belong to the 4d shell, and those havingn = 5,1 =0
are in the 5s shell; the former would number 2(2 x 2 4+ 1) = 10 states, and the
latter just 2(2 x 0 + 1) = 2 states.
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5.9 The Pauli Exclusion Principle

Starting with a nucleus having a given number of protons, in order to construct a
neutral atom in its ground state we must take the same number of electrons and allo-
cate them one by one to progressively higher-energy quantum states beginning with
the lowest-energy state first. This atomic building principle is based on the condi-
tion that no two electrons can occupy the same quantum state, that is, have the same
set of quantum numbers. This is a statement of the Pauli exclusion principle, which
is at the heart of the quantum explanation of atomic structure and spectra. It can
be deduced from a symmetry property of wave functions representing a system of
electrons and some other elementary particles. Since individual electrons are indis-
tinguishable, in the sense that we cannot know which electron occupies a particular
position and spin state, an exchange of the assignment of these between any two
electrons in the wave function y cannot change the observable |y|?. Therefore, an
electron exchange must either leave y unchanged (symmetric wave function) or at
most change its sign (antisymmetric wave function). It happens that photons have
the former symmetry, while electrons the latter. For electrons this means that the
probability of finding two electrons in identical states is zero, since in that event
an exchange of the two electrons must on the one hand leave the wave function
unchanged, but on the other its sign must change; this can happen only if it is zero.
Once an electron occupies a certain state, that state is said to be filled. This means
that in constructing the ground state of an atom, each state must be filled before
the next higher energy state is filled. The assignment of electrons to the different
possible quantum states is analogous to the assignment of passengers to single-
occupancy berths on a cruise ship; each berth has a number, and the fare schedule
is based mainly on which deck the berth is located, with some differences within
a given deck depending on its location. For the electrons in an atom, the “decks”
are the shells, and the “fare” is the energy. Unlike a cruise ship, however, the elec-
trons of an atom are in the stable ground state when their total energy (“fare”) is a
minimum.

Since we shall be concerned with crystalline quartz (SiO;) in the next chapter,
let us consider the elements oxygen and silicon as examples. They have (positive)
nuclear charges of 8 and 14 respectively, in units of electronic charge. Therefore,
oxygen will have the shells 1s, 2s filled and be two short of filling 2p, while silicon
will have the 1s, 2s, 2p filled and have two electrons in each of the 3s and 3p outer
shells.

It is the outermost electrons in an atom that determine its chemical proper-
ties and its interaction with radiation in the optical region of the spectrum. The
inner electrons are unable to take part in any small exchange of energy, since all
neighboring energy states are filled. Of course, if sufficient energy is involved,
as in electron bombardment in an X-ray tube, inner electrons do play a part; but
ordinary chemical reactions and optical transitions involve relatively little energy.
The Mendeleev periodic system of the chemical elements finds a ready explana-
tion in terms of the filling of shells as the nuclear charge (atomic number, Z) is
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incremented. Thus the property of having a completely filled outer p-shell cor-
responds to the noble gases and will recur at Z = 2 (He), Z = 2 + 8 (Ne),
Z = 2+ 8 4+ 8 (Ar), etc. Next would be the alkali elements with a single elec-
tron outside a closed shell; theyareat Z =1 (H), Z=2+1(Li), Z=2+8+1
(Na), Z = 2+ 8+8+1 (K), etc. Then the alkaline earths, Be, Mg, Ca, Sr, ..., with
two electrons outside closed shells, and so on. This simple progression is inter-
rupted when we reach a point where it becomes “cheaper” in energy to go to a
higher n-value than to add to a shell with a high /-value. This leads to the so-called
transition elements, for example, those involved in filling the 3d shell (after the 4s
shell has been filled), Mn, Fe, Co, Ni.

In all the elements, the inner closed shells and the nucleus form a tightly held
inner core, with an unbalanced positive charge equal to the charge of the outer
electrons. In the context of chemical bonding, the outer electrons are referred to as
the valence electrons, of which silicon has four and is therefore tetravalent, and of
which oxygen lacks two to complete a shell and is thus divalent. Without going into
the subject any more deeply than we absolutely have to, we will simply state that
the bonding between atoms to form compounds can be characterized according
to the extent that the valence electrons (a) overlap between the atoms (covalent
character) or (b) are transposed from one atom to the other, forming positive and
negative ions that attract each other (ionic character). Whether the bond between a
particular pair of atoms is predominantly covalent or predominantly ionic depends
on the relative energy “cost” of the electrons arranging themselves according to
the one or the other; recall that stability belongs to the lowest energy. The covalent
bond may involve one valence electron, as in the bond between Si and O in quartz,
or more than one electron, as typified by the bond between C and O in carbon
dioxide (COy), in which the carbon atom has a double bond with each oxygen
atom.

Now, in a covalent bond, where the dominant feature is the overlap of valence
electrons belonging to the two atoms (recall that the electrons are to be viewed as
smeared over all space according to the magnitude of their wave function), it is
reasonable to expect that the possible distribution of the valence electrons around
the inner core will determine the directions along which the bonds occur.

5.10 Spectroscopic Notation

A central problem in the quantum mechanical treatment of atomic observables is to
find how the angular momenta of the constituent particles must be coupled in order
that the energy and angular momentum are simultaneously in stationary quantum
states. Because of the magnetic interactions between the particles, the individual
particles will not maintain a constant direction with respect to some fixed axis
and cannot define a “stationary” quantum state. In a system comprised of many
interacting particles, the total angular momentum of the system will always be
conserved, remaining constant in magnitude and direction, like an ideal gyroscope.
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It may also happen that the angular momenta of particles within subsets of the
total may be coupled to form conserved parts of the total angular momentum. The
magnitude of such conserved angular momenta and their components along an
arbitrary axis can serve to describe a stationary quantum state. Thus in one scheme
of coupling angular momenta of electrons in a complex atom, called the Russell—
Saunders coupling, the orbital angular momenta of the electrons are combined,
then separately all the spin angular momenta are combined, and finally a resultant
of the total orbital and spin angular momenta is obtained.

We recall that in combining angular momentum in quantum theory, we may
use the vector model representation, provided that we remember that we are deal-
ing with quantum numbers and that special quantization rules must be observed.
Let us consider two examples that will be of considerable interest to us later: the
alkali atoms rubidium and cesium. In their ground state, they have only one elec-
tron outside closed shells. In the ground state we are considering, this electron has
no orbital angular momentum and therefore only the spin angular momentum of
1/2, with two possible components along a given axis, +1/2 or —1/2, and g = 2.
If this single outer electron occupies the next higher energy state, it would have
an orbital angular momentum of one unit, that is, / = 1, in addition to its spin.
These angular momenta are not individually constant in direction, but the total
angular momentum is conserved; according to quantum rules, the total can be only
J = 1/2 or J = 3/2. Because of the relative weakness of the magnetic interac-
tions compared to electrostatic pull of the nucleus, there is a difference in energy
between these two states much smaller than would accompany a change in orbit,
and this difference is therefore called the fine-structure splitting. It is due in this
case to the spin—orbit interaction we mentioned earlier in this chapter.

The notation used by spectroscopists to designate these two states in the alkali
atoms is 2P; ,2 and 2p, /2. The letter indicates that the orbital angular momentum
L = 1, the superscript 2 is the value of (2S + 1), where S is the spin angular
momentum (in this case S = 1/2), and finally, the subscripts 1/2 and 3/2 are the two
values of total angular momentum J. In this notation the ground state is designated
as 231 /2

5.11 The Hyperfine Interaction

The electron is by no means the only fundamental particle with intrinsic spin
and magnetic moment; both the proton and neutron, which are the constituents
of atomic nuclei, also have these attributes. These particles have the same mag-
nitude of spin as the electron, but since their charge-to-mass ratio is 2000 times
smaller, we would expect, at least classically, that their magnetic moment is also
smaller in approximately the same ratio. In fact, as with the magnetic moment of
the electron, classical theory is inapplicable, but the classical moments are used as
units; for the electron it is the Bohr magneton; here it is the nuclear magneton. As
with the electron, the magnetic moments of the proton and neutron are expressed
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in terms of g-factors defined as follows: U = g, I, where [, is the classical value
of the magnetic moment of a particle with the charge and mass of a proton and an
angular momentum of one unit, #/27. The measured value for the proton is about
gp = 5.586 and for a free neutron g, = —3.82. Again we see that classical theory
is invalid, particularly for the neutron, which, being neutral, should have no mag-
netic moment at all. The question of what spin and magnetic moment a particular
nucleus as a whole exhibits is a complicated one of nuclear structure, involving
in general a large number of interacting protons and neutrons. The existence of
a nonzero nuclear spin, which like total electronic angular momentum is limited
to integral or half-integral values, further complicates the question of the angu-
lar momentum states of an atom, since the nuclear magnetic moment associated
with it can interact with that of the outer electrons. Since the magnetic moment of
the nucleus is so much weaker than the electron moment, it is expected that the
different possible orientations of the nucleus will lead only to narrow splitting of
the energy states. In recognition of that fact, the interaction between the electron
and nucleus is referred to as the hyperfine interaction. It is precisely transitions
between states separated by this hyperfine interaction that give rise to the sharp
resonances used in the atomic standards in the microwave region of the spectrum.
The assignment of angular momentum quantum numbers to the quantum states of
an atom is very much affected by the addition of the nuclear spin, with impor-
tant consequences, as we shall see, for any process involving exchange of angular
momentum between an atom and radiation, for example.

It is a remarkable fact that in the 2S; /2 ground state of the alkali atoms, the elec-
tron has zero orbital angular momentum, which classically would be interpreted as
a collapsed electron orbit passing right through the nucleus; even the quantum pic-
ture is one of an electron spread out in a spherically symmetric way around the
nucleus, with a finite probability of being found in the nucleus itself. A thought-
ful reaction to this revelation might be, Why is there no nuclear reaction between
the electron and the particles that make up the nucleus. The answer is that elec-
tron capture by the nucleus can occur in some species of nuclei; but where it is
allowed, it is far more likely to involve the innermost electrons in the atom, in
a process called K-capture because the innermost shell of an atom is called the
K shell. Unlike s-electrons, all others in/ = 1, 2, 3. .. orbital angular momentum
states have a vanishingly small probability of being in the nucleus. The spherical
symmetry of the electron distribution in the 2S; /2 state and its finite value in the
nucleus have an important bearing on the computation of the interaction energy
between the magnetic moment of the nucleus and that of the electron. They mean
that we are not dealing with two separated magnetic dipoles, like two little magnets
interacting with each other; rather it is a magnetic dipole embedded in a magne-
tized, spherically symmetric medium, as shown in Figure 5.5.

The problem is to compute the amount of energy that would be required to
remove the embedded magnet from the center of that magnetized medium. Clas-
sically, reversing the relative directions of the magnetization of the magnet and
medium merely changes the sign of the energy, the interaction changing from one
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Figure 5.5 The magnetic moment of the nucleus interacts with that of the electron cloud
surrounding it
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=52
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Figure 5.6 The quantum addition of angular momenta 5/2 and 1/2 according to the vector
model

of attraction to one of repulsion; however, as we have become accustomed by now,
this contradicts quantum mechanics. Simply put, the two possible angular momenta
given nominally as / + 1/2 and I — 1/2 cannot be regarded as having the relative
directions of the nuclear and electron spins reversed. Figure 5.6 illustrates the addi-
tion of an angular momentum of 5/2 with one of 1/2 according to the vector model.
We see that since the magnitudes of the vectors have the form /5/2(5/2 4+ 1)
and +/1/2(1/2 4 1) , the vectors for the angular momenta, which are nominally
(5/2+1/2) and (5/2 — 1/2), do not have the 1/2 angular momentum in opposite
directions relative to the 5/2.

The quantum-mechanical solution to the problem of the magnetic interaction
between a nuclear moment and an overlapping electron distribution is associated
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with the name of Fermi, who obtained it as an early application of what was then
the new quantum mechanics. The expression he obtained for the energy, in terms
of the probability density of the electron at the nucleus and the magnetic moments
of the nucleus and electron, is as follows:

E= (2—7;) WAL WO P[F(F+ 1) =TT+ 1) —J( +1)], 512

where |y(0)|? represents the electron density at the nucleus. For zero orbital angu-

lar momentum states having the same total electron angular momentum J, we can

write for the energy separation between adjacent F values the following:
E(F)—E(F—1)= %ueunw(mﬂ (?) : 5.13

The application of these formulas to such complex atoms as rubidium and
cesium is not expected to yield very accurate results, since many simplifying
assumptions have been made; among the more serious are these: A point magnetic
dipole was assumed for the nucleus, as was a single electron in an unperturbed
state. Even for the hydrogen atom, where these assumptions should be far more
tolerable, the drive for accuracy in the theoretical ground state hyperfine separation
has led to ever more sophisticated higher-order corrections being computed. As
we shall see, thanks to the hydrogen maser this hyperfine separation in hydrogen
is undoubtedly the most accurately measured quantity in physics: to better than
twelve significant figures! One of the early triumphs in this field was the evidence
that there was an “anomaly” in the magnetic moment of the electron; the value
deduced experimentally did not agree with the then most advanced relativistic the-
ory of the electron, the Dirac theory, which predicted that the electron g-factor
should be exactly 2. In fact, it was found that g = 2(1.00114...), a number that
has been the subject of precise studies by Dehmelt et al. (Dehmelt, 1981).

In the case of the rubidium atom, there are two naturally occurring isofopes, that
is, atoms having the same electronic structure (which identifies them as rubidium)
and therefore the same nuclear charge, but with a different nuclear mass because of
a difference in the number of neutrons (see Figure 5.7). Natural rubidium is about
72% mass 85 with nuclear spin I = 5/2 and 28% mass 87, which has an extremely
weak radioactivity and nuclear spin I = 3/2. If we follow the quantum rules for
combining angular momentum, we will find that the ground state of Rb® splits into
energy levels with angular momenta equal to (5/2 — 1/2) and (5/2 + 1/2); that is,
F =2 and F = 3. Note that we can write symbolically J = L+S andF = J+1to
represent the (vector) addition of orbital and spin angular momentum to obtain the
total electronic angular momentum, and then the addition of the nuclear moment I
to get the total conserved angular momentum F.

The assignment of angular momentum quantum numbers to the first energy
level above the ground state in Rb® is somewhat more complicated, since we have
to combine J = 3/2 with I = 5/2 in addition to the combination of I = 5/2 with
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Figure 5.8 Hyperfine structure of low-lying states in Cs!33

J = 1/2, which leads to the values we have already found for the ground state. In
general, we simply write all values between I +J and I — J, thatis, F = 4,3,2, 1.
Similar arguments may be used to find the angular momenta for the ground
state and first excited states of the cesium atom (see Figure 5.8). There is only
one stable isotope of cesium, mass 133, with a nuclear spin / = 7/2. Hence in the
electronic ground state, which has J = 1/2, the possible total angular momenta are
F = 4 and F = 3. For the first excited electronic state, which has two electronic
angular momentum states, J = 1/2 and J = 3/2, the coupling with the nuclear spin
leads to F = 4, 3 for the first J value and F = 5, 4, 3, 2 for the other J value.
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As already indicated, the magnetic interaction of the nuclear moments with
the electrons is expected to be very small compared to the other interactions that
determine the quantum energy levels of an atom. Nevertheless, it is precisely the
magnetic hyperfine separations in the ground states of rubidium and cesium that
have come to be distinguished as fiducial quantities, the latter defining the unit
of time.

5.12 Electrons in Solids: The Band Theory
5.12.1 Origin of Energy Bands

In order to understand the principles on which the operation of semiconductor
lasers is based, we must review briefly the concepts underlying the theory of elec-
trical conduction in crystalline solids. Apart from some special cases such as the
interior of a battery, electrical conduction is a manifestation of the flow of elec-
trons. The conditions, therefore, that determine to what extent a given substance
can conduct electricity have to do with the extent to which electrons are able to
move freely under the action of an applied electric field.

A crystalline solid is composed of atoms (or ions) arranged in a 3-dimensional
array that repeats in a regular pattern. The motion of the electrons and their quan-
tum states are no longer determined just by the electrostatic forces within each atom
individually, but rather, particularly the outer valence electrons, by the interaction
with all the atoms or ions in the crystal. Instead of the atomic structure problem,
where electrons are more or less attracted to a central nucleus, we now have a regu-
lar 3-dimensional array of attracting centers. To see what the quantum states of the
electrons should be for such an array, let us start with just two centers initially far
apart being brought together to their actual separation in the crystal. Since the two-
center system is symmetric with respect to an interchange of the positions of the
centers, in quantum theory it follows that the wave function representing the two-
atom system must be either symmetric (unchanged) or antisymmetric (only change
sign) when the electron coordinates with respect to the two centers are exchanged.
Initially, when the atoms are very far apart, the energy levels computed on the basis
of the two symmetries are equal, and therefore the levels are the same as in the iso-
lated atom, except that to each energy level belong rwo possible quantum states.
However, when the atoms approach each other, the energies are no longer the same
for the two symmetries, and the levels are split into two close levels. If now a
third atom is brought into position from a large distance, it would lead to a 3-fold
exchange symmetry and a consequent splitting into three levels. By extension, if N
atoms are brought into position to form a crystal, the levels are split into N levels,
the widest splitting coming from nearest neighbors. Since the atomic separation
determines the maximum splitting, and N for even the smallest visible piece of the
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crystal is extremely large, on the order of 10'° atoms, the result is effectively a con-
tinuous band rather than a discrete multiplet. On the basis of this band structure we
can now broadly draw the essential distinctions between a conductor, an insulator,
and a semiconductor.

5.12.2 Conductors and Insulators

In the lowest-energy state of the system, the electrons fill all the available states,
from the lowest up to the energy band that arises from electron states in the out-
ermost shell of the isolated atom. If the last band containing electrons is only par-
tially filled, then there will be within that band a continuum of higher-energy states
available to the electrons to go into as a result of gaining kinetic energy from an
external electric field, and the crystal is a conductor. For that reason the partially
filled band is called the conduction band. For example, an isolated sodium atom has
one electron in its outermost 3s shell, which can accommodate, according to the
Pauli principle, two electrons. The band that results from this state can therefore
accommodate 2N electrons, whereas N sodium atoms have only half this number.
Therefore, sodium is a good electrical conductor; in fact, the crystal is metallic
and like all metals is a good conductor. On the other hand, a crystal is an insulator
if all the bands up to a certain uppermost one, called the valence band, are com-
pletely filled in the sense of the Pauli principle, and the next higher empty band is
so high in energy that no electrons can reach it by thermal agitation. In this case
there are no electrons in a position to go into contiguous vacant states in response
to an applied electric field, and no change in electron velocity can occur. Hence no
current is produced, and the crystal is an insulator.

Finally, we have what are called semiconductors, such as pure silicon, germa-
nium, and gallium arsenide. In these the valence band is filled like an insulator,
and the band above it would be empty were it not for the circumstance that it is so
close in energy to the top of the valence band that at ordinary temperatures there
are appreciable numbers of electrons in it due to thermal agitation. Thus because
of the thermal distribution of energy among the electrons, a semiconductor has
electrons in a band that would otherwise be empty at absolute zero temperature.
The vacancies left behind in the valence band by the electrons that are thermally
raised to the conduction band are called holes and act like positive electrons. This
can be made plausible by thinking of the analogy of a row of seats in a theater all
occupied except one; if the person next to the vacant seat gets up and sits in it, the
effect is the movement of the vacancy one seat in the opposite direction to that of
the person. Clearly, the number of holes left in the valence band must equal the
number of electrons in the conduction band. This number depends on the temper-
ature according to the quantum analogue to the Maxwell-Boltzmann distribution,
the Fermi distribution, which applies to thermal equilibrium of electrons in any
system. If the probability of an electron occupying a state of energy in the interval
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dE centered on the value E is defined as F(E)dE, then the distribution function
F(E) is a function of temperature of the form

1
exp (E;TE’) + 1
where EF is a parameter called the Fermi energy. Noting that at absolute zero Ef
marks the energy at which F'(E) abruptly changes from one to zero, we see that the
Fermi energy can be described as the highest level reached if all the electrons are
distributed one to each of the lowest available states. From Figure 5.9 we see that
in order that the number of electrons raised to the conduction band be equal to the
number of holes left behind in the valence band, the Fermi energy must be assumed
to be midway in the gap between the two bands. The importance of the Fermi level
for us is that when a junction is formed between two types of semiconductor, the

energy levels on the two sides of the junction must adjust themselves in such a way
that the Fermi levels are brought into coincidence.

F(E) = 5.14

5.12.3 p-Type and n-Type Semiconductors

So far we have been considering ideally pure semiconductor crystals, the so-called
intrinsic semiconductors, with impurities well below a few parts in a million. In
fact, what made transistors possible and the solid-state revolution in electronics that
they brought with them, are the technological advances in purifying and controlling
the purity of these materials. By adding minute controlled amounts of “impurities”
to the melt during the growth of the semiconductor crystals, a process called dop-
ing, the electrical conductivity of these semiconductors can be radically altered in
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Figure 5.9 The Fermi distribution of electrons in a semiconductor
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useful ways. The result of doping is what is called an extrinsic semiconductor, with
the number of electrons exceeding that of holes (n-type), or with a preponderance
of holes over electrons (p-type).

To understand better the effects of doping, we note first that elements such as
silicon and germanium have a valence of four, and they crystallize in the diamond
structure in which each valence electron is shared in a covalent bond with one
electron from each of four nearest neighbor atoms. These covalent bonds account
for all the valence electrons, and therefore at 7— 0 the valence band is completely
filled, while the band above it, the conduction band, is empty. Suppose now that
as a result of doping, some of the lattice sites in the crystal are occupied not by
an atom of the host element, but by an impurity atom with a valence of five, such
as arsenic. Four of these five valence electrons will be taken up in forming the
four covalent bonds, leaving the fifth electron moving in the field of the remaining
ion. This electron and the other such electrons belonging to impurity atoms are
more weakly bound to the ions in the crystal environment than they would be in
free space and therefore are in discrete states very close to the continuum of free
electron states, that is, the conduction band. These discrete states are called donor
states, because at temperatures above zero they give up electrons to the conduction
band, making the crystal n-type with a high conductivity due predominantly to
electron flow. The presence of the additional donor electrons puts the Fermi level
closer to the conduction band.

Suppose now that the silicon or germanium crystal is doped with an impurity
having a valence of three, such as aluminum or gallium. Then where an impurity
atom occupies a lattice site there will be one too few electrons to satisfy the four
covalent bonds. In this case, an electron from the top of the valence band supplies
the missing electron to form a negative ion and leave a hole in the valence band,
which, acting like a positive electron, will have weakly bound discrete states, like
the mirror image of an electron in the field of a positive ion. These states will
be for negative electrons slightly above the top of the valence band, and they are
called acceptor levels, because they receive electrons from the valence band, leav-
ing holes there to act like positive charge carriers. The resulting semiconductor
is called p-type, since the predominant charge carriers responsible for conduction
are positive. With fewer electrons in the valence band, the Fermi distribution must
be moved lower, with EF closer to the top of the valence band, in order again to
conform with the requirement on the electron number. Figure 5.10 shows schemat-
ically the relative positions of the boundaries of the two energy bands, the impurity
levels, and the Fermi levels.

5.12.4 Energy-Momentum Relationship

So far we have dealt only with the possible energy states of electrons in the crystal;
but a complete dynamical description must include their momentum. This is nec-
essary if we are to deal with the electron transitions accompanying the absorption
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Figure 5.10 Energy bands and impurity levels in a doped semiconductor

or emission of radiation. In the case of radiative processes in atoms, conservation
laws lead to certain selection rules determining which transitions are allowed and
which are forbidden. Here the conservation of linear momentum between the elec-
tron making a transition and the photon absorbed or emitted will impose conditions
on the crystalline properties that we must now address.

The problem of the motion of electrons acted on by a spatially periodic force
such as they experience on an atomic scale from the atoms or ions in the crystal
lattice is a quantum-theoretical problem. Their behavior is dominated by their wave
nature, and rather than speak of the momentum of an electron, it is more useful to
use the de Broglie wave vector k = mV/(h/2rn), whose magnitude is defined
as k = 2m/A. The classical (nonrelativistic) relationship between kinetic energy
E=1/m V2 and the wave vector for a free particle is as follows:

1 (kh\?
E=— (=) . 5.15
2m \ 2@

However, motion in a periodic crystalline field is totally different; in fact, even
the most essential attribute of a material particle, namely its mass, is no longer
a constant. The change in kinetic energy that a force imparts to an electron, that
is, its “inertia,” depends on its quantum state, and the concept of an “effective
mass” is introduced to frame the problem where possible in Newtonian terms. The
way in which the E—k relationship for a free particle is modified in an ideal crystal
with a lattice spacing of a between atoms is shown schematically in Figure 5.11.
We notice the band structure and the appearance of “forbidden™ gaps around the
points k = nm/a, where n is a whole number. These can be given an electron
wave interpretation as the inability of the electron wave to propagate through the
crystal with these wave numbers because of coherent reflections from the lattice
sites causing destructive interference.
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Figure 5.11 The E—k graph for an electron in a one-dimensional periodic field: a simple
model of a crystal
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Figure 5.12 The energy—momentum graphs for silicon and gallium arsenide crystals. The
indices (100) and (111) specify directions with respect to the crystal axes

In a real crystal the detailed E—k relationship is in general much more compli-
cated. Figure 5.12 compares graphically the features of that relationship that are
of particular relevance to us for two semiconductors: silicon and gallium arsenide.
Note that the curves are for specified directions of the electron wave vector with
respect to the crystal axes, since most physical properties, including electronic
properties, are different in different directions in a crystal. Of particular importance
is the fact that the upper boundary of the valence band for GaAs has a maximum
at the same value of k as a minimum in the lower boundary of the conduction
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band, whereas for Si this is not the case. Semiconductors that are like GaAs in this
respect are said to have a direct band-gap, while the others have an indirect one.
We shall see later that in order that electrons may undergo radiative transitions
between bands, involving the emission or absorption of photons, and do it with
high probability, it is crucial that the semiconductor be a direct one.



Chapter 6
Magnetic Resonance

6.1 Introduction

In the evolution of clocks through the ages, there has been a progression from
the use of periodic systems on a large scale with relatively slow movement to
increasingly smaller, delicately operated devices running at very much higher
frequencies. The large, elaborately built water clocks of China and the pendulum
clocks of a later age were by the very nature of their mechanical design vastly
more susceptible to environmental sources of error than the balance wheel and
ultimately the quartz-controlled clock. The next step in this progression is no less
revolutionary than the one from a pendulum to the quartz oscillator; it is clocks
based on atomic resonators.

While the quartz resonator involves the vibrations of a single crystal, which
is a kind of macromolecule, an atomic or molecular resonator involves the reso-
nant interaction of individual atoms or molecules with electromagnetic oscillations
in a microwave or light field. When the resonance occurs in the particle motion
in a magnetic field, we have magnetic resonance, a technique that was originally
applied to the measurement of the magnetic properties of atoms and their nuclei.
However, as a laboratory tool, it has found important analytical applications in
chemistry, and more recently in the form of (nuclear) magnetic resonance imaging
as a powerful, non-intrusive diagnostic tool in medicine.

Although pure magnetic resonance in an external field is not used per se as a
reference in clocks, nevertheless, as we shall see, the magnetic interactions within
atoms, as well as their interaction with an external magnetic field, are very much
involved in atomic resonators. It is for that reason that we will devote this chapter
to magnetic resonance and the techniques used to observe it.

6.2 Atomic Magnetism

The outward magnetic properties of matter are the average manifestations of the
magnetism of the constituent fundamental particles that make up the atoms of
matter. As mentioned in a previous chapter, one of these fundamental particles, the
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electron, must be attributed with a certain intrinsic angular momentum, namely a
spin of 14 (h/21). Although the inescapable image of a tiny electrically charged
sphere spinning like a top is not in keeping with the quantum picture, nevertheless,
the classical prediction that a rotating charge should produce a magnetic field is
qualitatively correct; an electron does act like a small magnet, or more formally,
it has a magnetic dipole moment. However, the strength of that little magnet is not
what a classical (nonquantum) calculation would predict for a spinning particle
having the charge and mass of the electron; in fact, it has almost exactly twice
that strength. If we represent the classical magnetic moment of a body having the
mass and charge of an electron and revolving with angular momentum //27 by
Ug, called the Bohr magneton, then we can write for the magnetic moment of the
electron W = glg/2, where g is a numerical constant yet to be determined. We
note that a classical particle with spin 1k/21 would have, by the definition of g,
a magnetic moment of p/2, and therefore g = 1. In the case of the electron, how-
ever, with the same spin !24/27 the magnetic moment is g rather than 15 g, that
is, for the electron g ~ 2, showing just how far classical predictions are invalid in
this connection. On the other hand, an electron moving in a closed orbit produces
a magnetic field like that of a classical particle executing that motion, for which
g=1

In all but the simplest atoms, we have generally a large number of electrons
in the outer structure as well as many nucleons (protons and neutrons) in the
nucleus, all interacting—the electrons with other electrons predominantly through
their electrical repulsion, the electrons and the nucleus through their electrical
attraction, and the nucleons with other nucleons through nuclear forces. While the
nuclear electrostatic attraction is responsible for the gross energy-level structure,
it is the electrical electron—electron interaction and the spin—orbit interaction that
can involve the orbital and spin motions of the same electron, which is responsible
for the detailed energy structure and the stationary angular momentum states of the
atom. The magnetic dipole—dipole interactions between particles are much weaker;
however, because of their involvement in the hyperfine structure, they play a major
role in the present context of atomic clocks.

As we saw in the last chapter, it is in the outermost incomplete electron shell in
an atom that we find the electrons whose angular momenta may combine to yield
a finite overall resultant; and it is this that can endow an atom with a permanent
magnetic moment, making it a so-called paramagnetic atom.

6.3 The Zeeman Effect

We must now inquire into the stationary energy states of an atom having a
permanent magnetic moment by virtue of its being placed in a static uniform
magnetic field. Classically, there is no doubt that its interaction with the field gives
it potential energy, since the torque that acts on it can clearly be made to do work in
turning towards the direction of the field. By computing the work done in rotating
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through an arbitrary angle 6, we can show that the potential energy can be written
as follows:

E, = —uBgcosH, 6.1

where UL is the magnetic moment; that is, the energy is proportional to the compo-
nent of the dipole moment vector in the direction of the field. If that direction is
taken to be the axis of quantization, then we see that the energy depends on the
component of the magnetic moment, and therefore angular momentum, along that
axis.

It happens that as long as the applied magnetic field is a weak perturbation com-
pared with the electron interactions within the atom, (in the case of the spin—orbit
interaction this will remain true even for relatively intense fields), the stationary
quantum states are still correctly described with the same set of quantum num-
bers we have previously introduced; the only change is that states with different
components of angular momentum along the field axis will have different ener-
gies. That is, the (2J 4 1) substates with my = —J,—(J — 1), —(J — 2)...
+(J = 2),+(J — 1), +J that overlap in energy (and are called degenerate) in
the absence of a magnetic field will now be separated in energy by an amount
that varies with the intensity of the magnetic field. The extent of this splitting also
depends on the ratio between the magnetic moment and angular momentum, called
the gyromagnetic ratio v, for the particular quantum state. This ratio can be writ-
ten in terms of an effective g-factor, which for an atomic state is referred to as
the Landé factor. Since in general, for an atom, the total angular momentum may
be the resultant of both spin and orbital types, for which, as we saw, the g-factors
are different, the Landé factor will depend on the angular momentum quantum
numbers of the given state. In terms of the Landé factor g(L, S, J), the energies
of the substates having different components m; of the total electronic angular
momentum J are as follows:

Em = _m.]g(La Sa J)MBB()y 6.2

justifying the designation magnetic quantum number for m;. We note that since the
energy is proportional to m;, which is incremented in equal unit steps, the effect
of the magnetic field on the energy levels of an atom is to split them into 2J + 1
equally spaced magnetic sublevels.

It follows that in the presence of a magnetic field, what was one energy level
becomes a complex of several levels, from which the atom may make optical transi-
tions to other similar complexes at lower levels, as shown in Figure 6.1 for an alkali
atom such as rubidium. Under high spectral resolution, the lines in the spectrum of
the emitted light will for most atomic species be seen to be split into several closely
spaced lines, a phenomenon first noticed by Zeeman around 1896 as a broadening
of the lines in the spectrum of light from a sodium flame when placed between the
poles of a magnet. The effect was ultimately resolved as a splitting of spectral lines,
now called the Zeeman effect. Lorentz applied his now classical theory of the elec-
tron to explain the effect, with only partial success; the use of the unique classical
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Figure 6.1 The Zeeman effect in the rubidium atom

value of g = 1 for all electron states will always lead to a splitting into just three
lines, corresponding to a change in m; = +1, —1, or 0. In reality, the effect in the
spectra of many atoms exhibits a far more complex pattern, inexplicable according
to classical theory; hence such cases were dubbed anomalous. Attempts to explain
this “anomalous” behavior ultimately led to the discovery of electron spin and the
assignment of the nonclassical value of 2 for its g-factor.

Of all the initial and final magnetic substates between which we might con-
sider possible transitions to occur, involving the emission or absorption of light,
only those will occur with any significant probability that satisfy certain conditions
on their quantum numbers, called selection rules. The selection rules depend on
the mode of vibration within the atom or molecule giving rise to the emission of
radiation. We shall limit ourselves to what is called electric dipole radiation, which
may be pictured as being produced by a linear oscillation of the negative electronic
charge in the atom relative to the positive nucleus. An atom can make a transition
from a state with energy E; and angular momentum quantum numbers (L1, S1, Ji,
m1) to another energy state E, with quantum numbers (L3, S», Jo, m2) by radi-
ating one quantum of radiation of frequency v = (E| — E3)/h, provided that the
following selection rules are obeyed:

Li—Ly==%+1; $1—5%=0; J1—J =0, £1; m;—m, =0, £1. 6.3

In complex atoms it often happens that transitions occur between states that do
not conform to these selection rules; this arises because in such complex structures
the assignment of quantum numbers may be an approximation. These selection
rules are arrived at from a computation of the transition rate, or more precisely, the
probability that a given atom will undergo an electric dipole transition in unit time,
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which is a function of the quantum numbers of the initial and final states. It is found
that the probability of such a transition taking place is zero unless these selection
rules are obeyed. The physical basis for the condition on the orbital quantum num-
ber L is rather subtle; it has to do with a symmetry property of the initial and final
atomic states of the atom. The condition on the spin angular momentum S states
that the process giving rise to this type of radiation cannot affect the total spin. The
conditions on J and m have to do with the conservation of angular momentum in
the atom—photon system; the radiated photon carries away one unit (£/27) of angu-
lar momentum, and this combined (vectorially) with the final J value must give a
resultant equal to the initial J value. Similarly, the component of angular momen-
tum along any given axis must be conserved, and again the final combined value
must equal the initial value. It is this last selection rule that is of special interest
for the Zeeman effect: m| — my = 0, £1; it severely limits the number of possible
transitions between the two states.

Transitions in which m; —my = 0 produce radiation in a pattern similar to that
emitted by a simple radio broadcasting antenna, consisting of a straight vertical
rod carrying a high-frequency current. On the other hand, the radiation pattern of
transitions in which m; — m> = =1 resembles that emitted by a circular loop
antenna, in which a high-frequency current is induced. Figure 6.2 illustrates these
radiation patterns using the common practice of representing intensity versus angle
in a polar diagram.

6.4 Gyroscopic Motion in a Magnetic Field

We shall now take up the subject of magnetic resonance on systems of free
paramagnetic atoms. Some of the fundamental ideas are also applicable to nuclear
magnetic resonance in condensed forms of matter. Let us assume that we have
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paramagnetic atoms placed in a uniform static magnetic field, such as might be
produced between the poles of a suitable magnet. We will assume at first that the
atoms are free to move without colliding with each other or other particles.

It is fortunate that we can obtain a sufficiently valid description of the motion
of such free atoms in a magnetic field using the vector model, and are able later
to draw a correct correspondence with the proper quantum treatment. After the
magnetic field has been established, we can picture the atomic dipole moments,
like little compass needles, experiencing a torque tending to turn them towards the
direction of the field.

If it were not for the angular momentum associated with the magnetic moments
of the atoms, they would simply swing back and forth, again like the needle of a
magnetic compass. However, such a torque acting on a spinning body will produce
a gyroscopic motion; thus the atoms will precess around the magnetic field direc-
tion in such a manner that their angular momentum will sweep out a cone with the
field as axis, as shown in Figure 6.3. In this case the torque is proportional to the
field strength and the magnetic moment, and hence the angular momentum; but by
Newton’s laws of motion, the amount of torque needed to produce a certain rate of
precession is also proportional to the angular momentum. It follows that the rate
of precession depends only on the field strength, and not the amount of angular
momentum. This argument is rendered considerably more lucid stated mathemati-
cally; thus using the conventional symbols, let By represent the static uniform mag-
netic field, p the magnetic dipole moment, and J the associated angular momentum.
Now the torque, which we will represent by I', acting on the magnetic dipole in our

AB

Figure 6.3 A precessing atomic moment according to the vector model
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magnetic field is given in vector notation by I' = 1 x By, and by Newton’s laws
dJ/dt = I'; hence we can write the following:

— = u x By. 6.4

But p is proportional to J; hence we can write L = —YJ, where we have introduced
a minus sign because the electron is negatively charged and u and J are therefore
in opposite directions. The quantity 7 is called the gyromagnetic ratio. Recalling
that the vector product obeys —yJ x Bg = yBg x J, we can rewrite the equation as
follows:

% =vBo x J. 6.5
Now, dJ/dt for an angular momentum precessing uniformly around a fixed axis at
a constant angular velocity c can be shown to be simply wxJ, and hence we see
that such a constant precession satisfies Newton’s equation of motion, provided that
we put w = YBg. Thus we are led to the conclusion that the effect of a magnetic
field is simply to cause all systems with the same y value to precess with the same
angular velocity about the field axis, independent of their detailed structure or their
initial orientation relative to the field direction. Hence for a system of identical
particles, the motion in the magnetic field is indistinguishable from what it would
be in the absence of the field, but referred to a set of coordinate axes rotating
uniformly with an angular velocity of —yBy. This result is contained in Larmor’s
theorem of classical theory.

6.5 Inducing Transitions

Let us now take up the phenomenon of magnetic resonance in the simple case of a
free paramagnetic atom in a uniform magnetic field. We will assume that J = 1/2
so that there are two possible directions for the angular momentum with compo-
nents along the field direction given by my = +1/2 and my = —1/2. Let us
assume that initially the atom was somehow put into the state with my = +1/2;
this would require a deliberate physical selection of that state, since in a “natural
state” there would be no more reason for an isolated atom to be in one state or the
other. We would like to show that if a weak oscillating magnetic field is suitably
applied to our atom, we could cause the spin to flip to the opposite direction, that
is, into the my = —1/2 state. To do this we shall use classical theory, confident that
results based on the precession of the atom and Larmor’s theorem, are also valid in
quantum theory.

We must digress a little, however, to think about ways in which an oscillating
field might be applied to the atom to induce the supposed transition. This devolves
around the question of the polarization of the oscillating field. If the field vector
oscillates along a fixed direction, it has linear polarization; if on the other hand,
the magnetic field keeps a constant magnitude but its direction rotates at a constant
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angular velocity, we say it is circularly polarized. Clearly, there are two possible
senses (clockwise or counterclockwise) for the rotation, which can be unambigu-
ously stated only with reference to a specified direction along the axis of rota-
tion. According to convention, for an electromagnetic wave, circular polarization
is called right-handed or left-handed according as the field vector rotates clock-
wise or counterclockwise as seen by someone looking in the direction opposed to
the direction in which the wave is traveling, as shown in Figure 6.4a. It is interest-
ing to note that an electromagnetic wave carries not only linear momentum, about
which we shall have a great deal more to say in a later chapter, but, when circularly
polarized, angular momentum as well. In terms of the quantum of radiation, the
photon, this angular momentum is an intrinsic property of each photon amounting
to h/2m. A material particle having this spin would, according to quantum theory,
have three possible components along any given axis; the photon is unique in that
it has only rwo, corresponding to the types of circular polarization, right-handed
(—h/2m) and left-handed (+//2m).

Now we recall a useful relationship between these three types of polarization:
If we add two equal but oppositely rotating circularly polarized fields of the same
frequency and coherent in phase, the result is a linearly polarized field, as shown
in Figure 6.4b. Conversely, a linearly polarized oscillation can always be resolved
into two equal counter-rotating circularly polarized components.

We are now ready to consider the possibility of inducing a transition from
my = +1/2tom; = —1/2. Since the two spin states correspond to more or less
opposite directions with respect to the field, to bring about such a transition clearly
needs a torque to act on the spin; a weak magnetic field at right angles to the main
uniform field would create such a torque. Obviously, a static perpendicular field
would merely combine with the main field to give a slightly tilted resultant about
which the spin would precess, without causing any spin flip. To be precise, the stip-
ulation that the perpendicular field be “static” not to cause transitions means that

: i s right-handed
@jthanded
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Figure 6.4 (a) Circular polarizations (b) the sum of counter-rotating circular polarizations
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it must be established slowly compared with the rate of precession; otherwise, a
sudden change in the field could cause a transition from one spin state to the other,
although obviously not in a resonant manner.

What is needed is a small field whose direction precesses in the same direction
and at the same frequency as the spin, since then the field and spin would keep their
relative directions constant as they both precessed around the main field. But from
our digression above this is simply a circularly polarized field rotating in the same
sense as the precession, and it can be generated as one of the two counter-rotating
components of a field having linear polarization. The other component rotating in
the opposite sense would have only a secondary effect on the spin, which we will
ignore. Let us assume then that an oscillating magnetic field is applied perpendic-
ular to the main field, resulting in a component of magnitude B; rotating in the
same sense as our spin with a frequency w. It simplifies the analysis considerably
to imagine turning with the rotating field vector around the axis; that is, refer the
motion to a rotating coordinate system, with respect to which the B field is sta-
tionary. According to Larmor’s theorem, the motions with respect to such a system
are indistinguishable from one subject to a magnetic field B, given by B, = —w/y,
so that the total axial field in the rotating coordinate system is By — w/y. On adding
this vectorially to the transverse field B; we get the result,

2
Beff = \/[Bo — ﬂ + B2, 6.6

as illustrated in Figure 6.5. The spin will precess about this resultant as axis with an
angular velocity wef = YBest. If the frequency w is chosen to equal YBy; then the
spin will precess around the direction of By, continuously going from m; = +1/2

Bgtr A Bo—o/y
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Figure 6.5 The resultant magnetic field in the rotating frame
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to mj = —1/2 and back. In the laboratory frame of reference the spin vector
sweeps out a cone whose apex angle increases until the cone becomes the median
plane at 90°, then continues as a cone in the opposite direction.

In a quantum sense the transverse field rotating at the frequency yBy causes the
initial wave function representing the state with m; = +41/2 to evolve into one
consisting of a linear superposition of the two spin states with m; = +1/2 and
myj = —1/2. This is a characteristically quantum feature in which, in a sense, the
description of a system can include simultaneously more than one possible state. It
is analogous to the coupled pendulums going back and forth between two modes of
oscillation: During the transition it is in neither one nor the other. It is not expected
that the motion would stop after the first transition from +1/2 to —1/2 had been
completed. However, if a mechanism is present, such as randomizing collisions
with other particles, that enables the system to “relax” into thermal equilibrium,
then a stationary state is possible. The frequency given by w = VB is called the
magnetic resonance frequency; an offset from this frequency would cause the spin
direction to sweep out a cone (in the rotating frame) whose axis is tilted from
the perpendicular direction, and the spin does not quite reach the negative field
direction.

It remains to make the correspondence between the classical and quantum
descriptions correctly. To find the quantum theory probabilities of the spin being
observed in one or the other of the two states, we can require that the average com-
ponent of spin along the direction of the main field be the same as the classically
computed component. If we call the angle between the spin direction and the main
field at a given time 0, then its component along the field is (1/2) cos 6; on the other
hand, if P(1/2) and P(—1/2) are the probabilities that the spin is in the +1/2 and
—1/2 states, respectively, then we must have

(+1/2)P(+1/2) + (—1/2) P(—1/2) = (1/2) cos 6. 6.7
Since the spin is certain to be in one state or the other, we must also have
P(+1/2)+ P(—1/2) = 1. 6.8

Hence finally we have for the probability of finding the spin in the —1/2 state the
following:

P(—1/2) = (1/2)(1 — cos 6). 6.9
At resonance, 9 oscillates between 0 and 180 degrees, so that the probability of

finding the spin in the —1/2 state oscillates between 0 and 1. Off resonance 6 does
not reach 180 degrees, so that P(—1/2) never reaches the value 1.

6.6 Motion of Global Moment: The Bloch Theory

We should notice a fundamentally important feature of the argument we have just
developed for the probability of inducing transitions, a feature inherent in all quan-
tum transition probability calculations. There is a symmetry between the initial
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and final states, in that it is immaterial which state we assume as the initial state; in
either case the probability of a transition to the other state is the same. Stated more
broadly, if a process has a high probability of proceeding one way, it will have an
equally high probability of proceeding the opposite way. This imposes an impor-
tant condition on our ability to observe any large-scale manifestation of transitions
occurring in atoms in a large group, as in a volume of gas. Thus if the atoms in a
group are assumed to be equally likely to be in one magnetic state as the other, then
transitions induced in the manner we have described will not alter the number in
each state but merely exchange states of particular atoms, to which we are insensi-
ble. It follows that in order to detect the transitions on a group of atoms, they must
initially be prepared with a preponderance of atoms in one state or the other. Such
a group of atoms is said to be “polarized,” with a net global magnetic moment that
can easily be calculated if we know the probabilities P(1/2) and P(—1/2); it is
given by

M = Nu[P(+1/2) — P(—1/2)], 6.10

where N is the number of atoms in the group. This is reasonable, since NP (1/2)
and NP (—1/2) are respectively the average numbers of atoms with their magnetic
moments pointing with and against a fixed direction, such as defined by a magnetic
field.

In the presence of a resonant oscillating magnetic field, because of the coherent
response of the individual atoms, the global polarization vector for a large group
of atoms will execute a motion not unlike a single atom. A theory due to F. Bloch,
originally developed to explain the dynamic behavior of magnetic moments under-
going magnetic resonance in solids, can, by drawing the correct correspondence
with quantum theory, adequately describe our system. In it an equation of motion
is set down for the mean global magnetic moment, which is basically similar to
the one given earlier for a free atom whose solution yields gyroscopic motion. The
theory is described as phenomenological in that it is formulated in terms of global
average parameters that are directly observable; it is characterized by the inclusion
of relaxation terms that account for the time decay of components of the global
vector due to random perturbations. Two characteristic relaxation times, denoted
by T and 7>, are necessary. The term “relaxation” derives from the original appli-
cation of the theory to nuclear magnetic resonance, in which nuclear magnetic
polarization is achieved by the system reaching (or “relaxing” to) thermal equi-
librium in a strong external magnetic field. The theory defines the first, 77, called
the longitudinal relaxation time, as the mean decay time of the global polarization
vector, without regard to any particular mechanism, such as collisions, causing the
decay. The other time, 7>, called the transverse relaxation time, is the mean decay
time of any precessing global polarization of the atoms, such as may be induced
by an oscillatory field resonant with the precession frequency. Under the action of
such a field, the magnetic moments of individual atoms tend to move in concert,
driven by the common magnetic field, producing a net global precessing moment.
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Any mechanism that causes random fluctuations in the phase of the response of the
atoms or depletes the number of atoms contributing to that response will reduce 7>.

It can be shown that Bloch’s theory, introduced in the context of a vector model
description of precessing magnetic moments, can be equally useful in a quantum
description, in which the reorientation of a magnetic moment really amounts to
transitions between (the magnetic) quantum states. In fact, if the system has only
two states between which transitions may be induced, its behavior corresponds to
a spin 1/2 particle with its two possible orientations with respect to a given axis.

6.7 Production of Global Polarization

The various techniques for observing magnetic resonance in gases or condensed
forms of matter are distinguished essentially by the means used to achieve a
polarization in order to render the resonance transitions observable. Other factors
such as the frequency range and sample density further differentiate the various
techniques.

6.7.1 Thermal Relaxation in Strong Magnetic Fields

The method of producing a polarization common to all magnetic-resonance studies
on condensed matter, that is, solids or liquids, whether nuclear or electron reso-
nance, is through the use of very intense magnetic fields. As already pointed out,
the different magnetic substates, having different orientations with respect to the
external magnetic field, will have different energies. For atoms in a state of ther-
mal agitation and exchanging energy through their mutual interaction, according
to a fundamental result in statistical mechanics due to Boltzmann, an equilibrium
state is reached (irrespective of the initial conditions) that is characterized by the
(absolute) temperature 7', in which the ratio of the number of atoms having energy
E to that having energy E» is given by

N(E1) exp [_(E1 - Ez)}

= 6.11
N(E») kT

where k is Boltzmann’s constant, which has the value 1.38 x 10723 in the SI
system of units. If we substitute the numerical values for the magnetic energies
typical for the field produced by a large laboratory electromagnet, we find that
(E1 — E2)/kT « 1 at ordinary temperatures. This shows that the populations of
the magnetic states are very nearly equal; that is, the polarization is exceedingly
small. The use of high fields to attain polarization of a sample is therefore useful
only for condensed forms of matter, in which a sample of reasonable size can con-
tain a sufficient number of atoms to detect the resonance; even then, the highest
possible fields, and therefore resonant frequencies, are used to improve the sen-
sitivity. The strength of the field produced by a conventional electromagnet using
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copper windings is ultimately limited by the amount of electrical power required
to maintain the current against the electrical resistance of the windings. The use
of superconducting magnets solves the power problem but requires extremely low
temperatures to be maintained, incurring a different kind of problem and expense.

There are essentially two approaches to detecting magnetic resonance signals
in condensed matter::resonance absorption and free induction. In the former the
resonant absorption of energy is detected by the damping of the level of oscillation
on a sharply tuned circuit, such as the Pound marginal oscillator.

In the latter a pulsed transverse rf magnetic field is applied to the sample, induc-
ing a transverse precessing magnetic moment, that is then detected by a suitable rf
pick-up coil, set orthogonal to the former induction coil. The signal-to-noise ratio
is small even in a solid sample, and many specialized techniques have been devel-
oped to enhance it, typically involving lock-in amplifiers.

The inevitable magnetic dipole interaction between neighboring spins in the
sample will limit the phase coherence time 7 of the precessing moment, random-
izing its phase, or even cause spin flips, at randomly distributed intervals, thereby
broadening the resonant frequency response. Also, in practice the magnetic field
may differ slightly from point to point, and therefore the oscillating transverse field,
applied to induce transitions, cannot be on exact resonance with all the spins. The
effect of this last circumstance is easy to predict; it simply means that in a solid
sample in which the particle positions are fixed, different atoms are brought into
resonance as the applied magnetic field is swept across the resonance, giving what
is called an inhomogeneously broadened spectral line. One effect of real transitions
caused by the spin interaction is only slightly more difficult to predict; it tends to
counter the action of the oscillating detection field by redistributing the populations
of the states in the direction of restoring thermal equilibrium, and a smaller polari-
zation. Clearly, if the oscillating field is to induce a strong polarization, which
constitutes our “signal,” it must favorably compete with this thermalizing effect.
Again a broadening of the resonance frequency occurs; this time because the oscil-
lating field is only allowed a finite time to act coherently on the precessing spin.
As we saw in a previous chapter, this means that the frequency of the oscillating
field can differ slightly from the precession frequency and still cause transitions;
the longer the coherent interaction, the closer the frequencies must be to avoid their
getting out of phase during that time.

6.7.2 Deflection of Atomic Beams

The second important technique for achieving a polarization of atomic moments
applies to materials in a gaseous form or that can be suitably vaporized. Such
materials can, by a suitable nozzle and series of apertures, be formed into a fine jet,
called an atomic or molecular beam, which in passing between the pole pieces of a
special magnet will fan out into a number of separate components each according
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Figure 6.6 Apparatus used by Dunoyer to study the formation of atomic beams

to its magnetic state. A particular component in the chosen magnetic state can then
be isolated using beam stops.

It is interesting that the origins of atomic beams go back to around 1911, early
in the history of vacuum technology, when an account was published by Dunoyer
of an experiment using the apparatus shown schematically in Figure 6.6, in which
sodium vapor issued from a small opening in a heated reservoir of sodium metal
at one end of a glass vacuum system equipped with apertures and a cooled surface
at the opposite end. From the distribution of the sodium deposited on the cold
surface, it was clear that under sufficiently high vacuum conditions the sodium
atoms traveled in straight lines like rays of light, in the form of a beam. An early
exploitation of atomic beams was by optical spectroscopists to reduce Doppler
broadening of spectral lines. Since the atoms in a beam have been selected to have
velocity directions only in a narrow cone, the absorption or emission of a light
wave perpendicular to the beam axis will not, to a first approximation, have any
Doppler shift in frequency.

However, a more significant application of atomic beams was the classic Stern—
Gerlach experiment. In this the particles in the beam are made to pass at right
angles to the field of a special magnet, whose pole shapes are designed to pro-
duce a steep gradient in the field strength, as shown in Figure 6.7. This gradient
in the field strength translates into a gradient in the magnetic potential energy of
the different magnetic substates; this is analogous to rocks placed on the sides of
hills of different slopes. The result is that particles in different magnetic substates
are deflected by different angles from the initial direction of the beam. Obviously,
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Figure 6.7 The Stern—Gerlach apparatus to show space quantization in a beam of silver
atoms

in order to achieve good separation, the beam must have a very narrow divergence.
This method of state separation was first demonstrated by Stern and Gerlach around
1923 in an experiment that ranks as a milestone in the history of physics. As a result
of passing through their magnet, the silver beam was split into two distinct beams
as quantum theory predicted. The ground state of a silver atom is designated as
%Sy ,2, with J = 1/2, and only two possible orientations with respect to the field
axis, corresponding to m; = +1/2 and m; = —1/2. Classically, of course, the
atomic magnetic moment could assume any orientation with respect to the field,
and the beam would simply have been smeared out; the fact that it was split into
just two components showed for the first time the quantum phenomenon of space
quantization: that an angular momentum can be observed only with discrete direc-
tions relative to a given axis.

This was followed by the introduction of magnetic resonance on atomic beams
in Rabi’s laboratory just prior to the Second World War. However, it was shortly
after the war that Ramsey introduced the technique of applying the resonant field at
two separated points along the beam, a development that made possible the ultimate
adoption of the Cs clock as the primary standard.

In a Rabi-type magnetic resonance beam apparatus, the beam that emerges
from the high-gradient magnet will have the atoms in the various Zeeman substates
fanning out in slightly different directions; and by suitable apertures, particles pre-
dominantly in certain substates are selected, in effect producing a polarized beam.
The beam then enters the resonance transition region, comprising an extended
uniform magnetic field and high-frequency current loops, to produce the oscillating
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magnetic field. Finally, in order to detect whether transitions have occurred in the
transition region, the beam is made to pass through another high-gradient magnet,
acting this time as an “analyzer.” There are two possible ways in which to analyze
the beam: The analyzer magnet and the detector that follows it may be disposed
either such that (1) particles that do make a transition are detected (flop-in type),
or (2) particles that do not make a transition are detected (flop-out type).

6.7.3 Optical Pumping

The last type of magnetic resonance technique we shall treat is one based on the
transfer of polarization from an optical beam to atoms in a process called reso-
nance fluorescence. It is a technique that originated in the laboratory of the French
spectroscopist Kastler, a technique that has proved extremely fruitful in its appli-
cations, not only to atomic timekeeping, but also to magnetometry. To understand
the principles underlying this technique, we must digress briefly to consider the
interaction of polarized light with atoms.

If an atom experiences a collision with a high-speed electron, as in a neon
tube, or with another atom, as in a flame, it may be excited to one of the quantum
states above its ground state. However, only if it happens to find itself in a special
metastable state will it remain excited for long; within possibly less than a frac-
tion of a microsecond it will spontaneously radiate as it makes transitions towards
lower-energy states in a cascade fashion. The radiative process is described as spon-
taneous, since it occurs even in an isolated atom, although according to quantum
theory, even in “vacuum” the electromagnetic field is not absolutely zero but has
zero point oscillations that induce an atom to make a transition to a lower energy
state. In doing so, of course, it emits a photon, and the resulting cascade produces
an emission spectrum consisting of discrete lines characteristic of the particular
atom; hence the use of spectrum analysis as an analytical tool in chemistry. As we
learned earlier, if the environment of the atoms is such that there is a strong buildup
of only a few modes of vibration of the light waves as in a laser, then stimulated
emission, which is negligible under “normal” conditions, can become significant;
but as we have seen, that requires very special conditions to obtain.

Of particular interest to us in laying the background for an understanding of
the optical method of observing magnetic resonance is the polarization of the light
emitted in different directions. We have already encountered the term polarization;
it is one that is used in several contexts in physics: We have already used it once
to mean an unequal population of spin directions relative to a magnetic field. The
term also applies to the displacement of the positive charge relative to the negative
in individual atoms, as when an electric field is applied to a dielectric material,
such as glass. The term is most familiar in the optical context through the com-
mon use of polarization filters as sunglasses. It refers to the degree to which the
electric (and associated magnetic) field components in a light beam are coherent
in direction. The question of polarization arises only because in free space, the
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fields in a light beam lie in a plane perpendicular to the direction of the beam,
and may have any angle around the beam as axis; that is, the waves associated
with photons are transverse waves. An unpolarized beam, such as one from an
ordinary light bulb, has the electric (and magnetic) fields oscillating in random
directions in any transverse plane, so that if the fields are resolved into any pair
of perpendicular components, the intensities of these components would be equal.
There are only two pure polarization states a photon can have: right-handed and
left-handed circular polarizations. The other common polarization is called linear
or plane polarization, in which the field oscillates along a unique direction, which
lies in a plane drawn through the beam axis. It may be regarded as a (linear) super-
position of equal and coherent right- and left-handed circular polarizations. It does
not mean that we can take any two oppositely polarized light beams and produce a
linearly polarized beam by combining them; it will work only if the two waves are
coherent, that is, have a well-defined phase relationship.

The two circular polarizations correspond to the photon intrinsic angular
momentum of A4/27 pointing with and against its direction of travel, respectively.
The experimental confirmation of this was established early in the history of quan-
tum theory by observing the mechanical torque produced on a delicately suspended
quartz plate when circularly polarized light is allowed to fall on it. It should be
apparent now why a transition in which m; — my = =1 involves the emission
of circularly polarized photons: the law of conservation of angular momentum
requires it.

So far, we have dealt only with the two types of atom—photon interactions:
spontaneous and stimulated emission of photons with the simultaneous transition
of the atom from a higher-energy state to a lower one. There remains the reverse
process to stimulated emission, namely absorption, in which a photon disappears
and the atom makes a transition from a lower state to a higher one. Since energy
must be conserved in these processes, an atom will make a “real” transition to an
upper state only if the photon energy hv satisfies hv = E; — E5, which is a kind of
resonance condition on the frequency of the light. The resonant nature of this con-
dition is amply demonstrated by the fact that the probability of such a transition is
the same sharp function of frequency as in the reverse emission process. This sharp
function, the spectral line shape, is, as we have already pointed out, fundamentally
broadened by the finite radiative lifetimes of the quantum states between which the
transition occurs. This inherent spectral line width is, as previously noted, called
the natural line width.

We have on a number of occasions used the phrase “probability of a transition”;
this requires closer examination, since as we saw in the case of a precessing mag-
netic moment subjected to a resonant magnetic field, the response of the magnetic
moment was not simply a one-time transition from one state to the other. The mag-
netic moment alternated between the two states at a rate dependent on the strength
of the resonant transition-inducing field. In spite of the fact that in that case we were
dealing with what is called magnetic rather than electric dipole transitions, as we
have here, nevertheless the same behavior would result under similar conditions.
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These are that the atom be subjected to a single-frequency coherent light beam of
such intensity that the atom can alternate between the two states in a time short
compared to the radiative lifetimes of those states. This would never have been
contemplated as a practical possibility in the optical range until lasers became
available; and now the manipulation of optical transitions has become as common
as those performed by Ramsey and others in magnetic resonance, where strong
coherent resonant rf fields were readily available decades before lasers. The ques-
tion remains: how does an atom respond when excited by a relatively weak field
that is not of a single frequency but has a relatively broad spectrum? In this limit,
it can be shown that the atom has a finite probability, less than 1, of making a tran-
sition from its initial state, which increases in proportion to the length of time the
atom is subjected to the exciting field. Of course, in quantum theory, if a measure-
ment is made to determine which state it is in, it will be found to be in one or the
other; it cannot be found somewhere in between! If the measurement is repeated
on a large number of atoms under identical conditions, then the fraction that are
observed to have made the transition will increase in proportion to the time they
had been subjected to the resonance field.

The constant probability per unit time for absorption of a photon, which applies
under “broad excitation,” is fundamentally the same as that for stimulated emis-
sion, a reflection of a more profound principle called detailed balancing on a
microscopic scale. Even the probability of spontaneous emission bears a close
relationship to stimulated emission, their ratio being independent of the particu-
lar properties of any atom. However, their ratio does have a strong dependence on
the frequency of the photon involved, according to the following formula attributed
to Einstein:

Apm/Bam = 8Thv3 /3, 6.12

where A, and B, are respectively the so-called Einstein A- and B-coefficients
for spontaneous and stimulated emission, defined such that (A, + pyBun) is the
total rate of downward transitions, where p,, is the number of photons of frequency
v already present, per unit volume, stimulating transitions. The strong v? depen-
dence of the ratio of spontaneous to stimulated emission explains why spontaneous
emission is negligibly weak at or below the microwave region of the spectrum,
becoming dominant at optical frequencies, unless special conditions are created
to enhance the density of radiation, as in a laser. A consequence of equation 6.12
is that the selection rules governing the quantum numbers of the initial and final
states for electric dipole transitions apply equally to absorption. This means, for
example, that if an atom is subjected to a light beam with the resonant frequency
and pure circular polarization, then transitions occur only if the magnetic quantum
number m obeys the selection rule m; — my = =£1. If the light has a pure linear
polarization, then m| — m> = 0 must be obeyed.

In the technique developed by Kastler for magnetic resonance by optical means,
these selection rules are exploited to produce a magnetic polarization in certain
species of atoms, particularly the alkalis: sodium, rubidium, cesium. This is done
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by a process that is called optical pumping of the populations of magnetic sub-
states. It works as follows: Suppose a group of free sodium atoms are somehow
confined in such a way that they remain unperturbed in their magnetic substates
and are illuminated by a resonant parallel light beam after it has been circularly
polarized. Prior to the laser age, such a resonant beam would have been obtained
from a sodium vapor lamp, designed to provide the highest possible spectral inten-
sity at the resonance fluorescence wavelength. The selection rules will now apply
to the magnetic quantum numbers referred to the light beam as axis for space quan-
tization: Absorption is allowed only if m; — my = +1, but not m; — my = —1
or 0. Then we see from Figure 6.8 that atoms in the m = +1/2 state have nowhere
to go and will remain in that state unless perturbed by collisions. However, atoms
in the m = —1/2 state can make a transition to the m = +1/2 substate in the
electronic excited state, from which it can return to either substate in the ground
state by spontaneous emission. The net effect of this “pumping cycle” is that atoms
in the ground state are transferred from the m = —1/2 to the mp = +1/2 state,
eventually all ending up ideally in that state. But in this state the outer electron
has its spin pointing in the direction of the light beam; thus a spin polarization has
been achieved by purely optical means, without the need for strong magnetic fields.
Furthermore, the same process can be used to monitor the degree of polarization
in the group of atoms, since the rate at which photons are absorbed and re-emitted
depends on the number of atoms in the my = —1/2 absorbing substate. Ideally,
if 100% polarization is achieved, none of the atoms in the group are in an absorb-
ing substate; interaction with the beam effectively ceases, and the sample becomes
quite transparent. If now a resonant high-frequency magnetic field induces transi-
tions between the two magnetic substates, resulting in an increase in the number of
atoms in the absorbing m, = —1/2 substate, the transmitted intensity of the pump-
ing light will decrease, providing a way to monitor the occurrence of transitions
and the frequency of the inducing field at which magnetic resonance occurs.

+1/2
A my
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Figure 6.8 Kastler optical pumping of magnetic state populations
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The beauty of this technique is that no large electromagnets are involved;
indeed, the spins can in principle be polarized along the light beam axis, in zero
magnetic field. More than any other technique it is capable of very large degrees of
polarization; not only electron spin polarization, but also nuclear polarization. This
has been demonstrated, for example, in those isotopes of noble gas atoms such as
He? and Xe'?®, which have a nuclear moment, in electronic states with zero angu-
lar momentum. This has made possible the application of NMRI to the diagnosis
of the lung using inhaled optically pumped He> gas!

The successful implementation of the optical pumping technique critically
depends on the ability first, to have a group of atoms whose spins are more or
less free of disorienting collisions, and second, to realize a light source with the
desired polarization and spectral properties. The first requirement is far more dif-
ficult than might at first appear; collisions with surfaces of containers are found to
disorient electron spin directions, and the thermal velocities of atoms are gener-
ally so high that the orientation of an atomic spin would be randomized in a very
short time. The development of special surface coatings to reduce the randomiz-
ing effect has met with enormous success in the case of atomic hydrogen and to a
lesser extent with the heavy alkali atoms, which will be discussed at greater length
in later chapters.

The first experiments on magnetic resonance using optical pumping were done
in Kastler’s laboratory on atoms in an atomic beam, in which, as we have already
mentioned, the number density of particles is small, and consequently, consider-
able time elapses between disorienting collisions, thus fulfilling one of the essen-
tial requirements of particle containment. However, this is achieved at the cost of
having a severely limited number of atoms contributing to the resonance detection
signal and aggravated problems in the optics arising from the fact that the atoms are
spread over some distance. It is, of course, to the credit of the early experimenters
that in spite of these difficulties, they were able to successfully demonstrate a new
technique; but in that form it was of limited value for practical applications. It was
the introduction of the alkali vapor diffusion cell by Dehmelt that gave the tech-
nique its practical importance. This is based on the known inertness of the noble
gases—helium, neon, argon, krypton, xenon—due to their closed electron shell
structure in the ground state. In that state they are spherical and “rigid” like bil-
liard balls, since it takes a considerable amount of energy to raise an electron to the
next available state; moreover, they have no resultant spin or magnetic moment.
Therefore, it was reasoned, in a collision with an alkali atom (in the ground spher-
ical state) there should be no magnetic interaction to cause the spin to flip, and
yet the colliding atoms could undergo strong momentum-deflecting collisions. To
exploit this fact, the atoms under study are contained in a glass cell with a suffi-
cient amount of an inert gas, acting as a buffer, to lengthen their diffusion time to
the walls, thereby enabling the optical pumping process to develop a significant
degree of polarization of the spins.



Chapter 7
Corrections to Observed Atomic
Resonance

All the atomic standards we shall be dealing with are based, in one form or another,
on the resonant excitation of atoms or ions, by which they make transitions from
one quantum state to another. From the observed resonance spectrum we must
arrive at the intrinsic, or proper, frequency of the atoms’ response, as it would be
observed if they were at rest and free from any outside perturbation. Such pertur-
bations will alter and broaden the resonance spectrum and put a limit on the degree
of precision with which the intrinsic atomic frequency can be deduced.

It might be thought that a detailed knowledge of the frequency response curve,
no matter how broad, should be sufficient for a theoretical analysis to obtain the true
resonant frequency. In fact, this is not so; there will inevitably be sources of noise,
some fundamental, some instrumental, present in any system, and the observed
response curve will always suffer from a degree of uncertainty. The sharper the
response curve, the less important becomes the noise in finding the resonance fre-
quency. A quantitative expression of this fact obviously depends on the detailed
shape of the resonance curve; for a Lorentzian line profile we find the following:

N

Av Ao
where € is the error in finding the line center, Av is the line width, and A, A,
are the mean amplitudes of the signal at resonance and the noise, respectively.
The linear dependence on the ratio of amplitudes comes from the usual practice of
defining, in effect, the position of the resonance line center in terms of the mid-
point between the nearly linear portions on the two sides of the resonance curve at
the inflection points. As a general rule, the 0.77 is ignored.

An understanding of the effects of the physical environment on the resonance
line shape and position is crucial in finding ways to minimize these effects in
practice, and in correcting for any displacement in frequency they may cause. Ulti-
mately, the stability and reproducibility of the standards depend on how success-
fully this is accomplished. Such theories have also been developed from the inverse
point of view: namely, for what they can reveal about the mechanisms that broaden

7.1
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and/or shift the resonance frequency. The incredibly high degree of spectral res-
olution that has been reached has raised the level of significance of a number of
subtle effects, some involving quantum theory, others Einstein’s Theory of Relativ-
ity, about which more will be said later in this chapter.

7.1 Resonance Frequency Broadening

For resonances observed on a large group of atoms, it is useful to distinguish
between line-broadening mechanisms according to whether all atoms have the
same broadened spectrum, or the spectrum of the whole group is broadened
because each atom has a slightly different frequency and the global spectrum
merely reflects the distribution of frequencies among the particles. The former
is called homogeneous broadening, as exemplified by broadening, common to all
atoms, due to a finite radiative lifetime, while the latter is inhomogeneous broaden-
ing, as exemplified by a group in which each atom has a slightly different frequency
because of its differing environment.

7.1.1 Homogeneous Broadening

The most common source of homogeneous broadening is the finite time of coherent
interaction of the atom with the exciting field. This can be due to the finite radia-
tive lifetime of a quantum state involved in the transition or to phase-randomizing
collisions, as was postulated by Lorentz to explain optical dispersion in his elec-
tron theory. Unfortunately, as Lorentz realized, collisions could not solely explain
the width of optical resonance lines; we now know that the radiative lifetimes in
optical transitions are usually so short compared to average times between col-
lisions, except at extreme pressures, that the observed broadening is evidence of
the “natural” radiative lifetime, and not collisions. The situation is quite different,
however, in the radio-frequency and microwave regions of the spectrum, where
radiative lifetimes are extremely long. In this case collisions play a dominant role,
and by making collisions rare, as in the ion standards, extremely narrow resonances
are possible.

The spectral line shape that results from a finite radiative lifetime or collisions
that only interrupt the phase is the same Lorentzian function L(Vv), illustrated in
Figure 7.1, that we introduced in connection with the response of a damped simple
harmonic oscillator, namely

i
Lv) = — L 72

(v =2+ (5

where the factor 1/(2m) is included so that [L(v) dv = 1. In terms of the mean
time between phase-randomizing collisions AT, the expression for y agrees with
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Figure 7.1 The Lorentzian resonance line shape

the approximate result we previously derived for the coherent buildup of oscilla-
tion in a resonant structure, namely A Ty & 1, which, as already indicated, has a far
more general application to the simultaneous measurement of frequency and time.
As already mentioned, in the optical part of the spectrum, it is the radiative lifetime
of quantum states that usually sets the line width, the so-called natural line width,
typically in the megahertz range. For a driven oscillator the connection between
phase-randomizing collisions and damping can be shown to arise from the energy
dissipation that the continual interruption of phase produces even when each colli-
sion is perfectly elastic. The net effect is as though a resistive force were present;
in fact, it was shown by Lorentz that Y = 2/A7. In the absence of collisions, an
undamped oscillator does not, on the average, continuously absorb energy from a
driving field, nor does it dissipate energy if left alone.

7.1.2 Inhomogeneous Broadening

The inhomogeneous class of broadening applies to a large number of atoms or
ions that have slightly varied resonance frequencies by virtue of, for example, non-
uniformities in the distribution of some field that acts on them and displaces the
energies of their quantum states. This is of particular concern in nuclear mag-
netic resonance on solid substances, where an important source of spectral line
broadening is the inhomogeneity in the applied magnetic field intensity; in fact, in
the original use of the term it was understood to refer to this particular case. The
circumstance that makes spatial variations in the applied magnetic field particu-
larly objectionable in solids is that each nucleus is constrained to vibrate with a
small amplitude about a fixed lattice site, where the magnetic field may differ from
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other lattice sites. However, our concern will be with quasi-free individual parti-
cles, which far from being constrained, are more or less free to move with their
thermal velocity and only rarely collide with other objects. Under these conditions,
the most important source of inhomogeneous broadening is the Doppler shift in the
frequency of a moving source, a subject that requires us to think about the descrip-
tion of physical phenomena in terms of coordinate frames of reference in relative
motion.

7.2 Thermal Doppler Broadening

7.2.1 Short Wavelength Limit

The term Doppler is of course familiar to everyone in the context of checking the
speed of vehicles on our highways. It is, in general, the variation in the observed
frequency of any wave whenever the observer and source of the wave are in relative
motion. According to a principle enunciated by Christian Doppler in 1842, which
applies equally to sound waves and light waves, frequencies observed with respect
to reference frames in relative motion are shifted by what is now called the Doppler
effect. It is a particularly important universal effect in the context of high-resolution
spectroscopy because of the ever-present thermal agitation of atoms and molecules.

The frequency shift predicted classically is easily derived: Assume first that
we use a frame of reference in which the source of the wave is stationary and
the observer is moving relative to this frame in the direction of the source with
a velocity V. We find v= (1 + V/c)vg, showing that the frequency is increased
fractionally by V /c. If the observer had been assumed to be moving away from the
source, we would obviously have found v = (1 — V /c)vg. In general, if the relative
velocity vector makes an angle 6 with the direction of propagation of the wave, we
can write the following for the classical change in the observed frequency:

Vkcos0
Vo= o

where k = 21/A is the wave number. If we use a frame of reference in which the
observer is stationary but the source of the waves has a velocity V in the direction
of the observer, then we would find v = vo/(1 — V/c¢).

The Doppler effect is manifested in any type of wave motion. However, in
anticipation of the fact that we are concerned here only with light waves, we have
used the conventional symbol for the velocity of light, c. We notice that we have
obtained different results depending only on whether we chose a frame of reference
in which the source is at rest or the observer is at rest. If we had been considering
only waves on the surface of water, the difference in the two results would not
have been unexpected, since the water itself uniquely defines a frame of reference,
and having the observer move in the water is not necessarily the same as having
the source move. However in the case of light, the principle of relativity, one of the

> 7.3
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pillars of Einstein’s theory, denies the existence of any “absolute” frame of refer-
ence, and the two cases dealt with above must yield the exact same result. This is
true in our classical derivation only if we neglect terms of order (V /c)? and higher.

The Doppler broadening of spectral lines is familiar to spectroscopists working
in the optical region of the spectrum because it is generally the limiting factor in
the attempt to achieve high spectral resolution, and it is universally present. Under
conditions where the wavelength of the wave is very much smaller than the average
distance a particle travels between collisions, the Doppler shift in the resonance
frequency of each atom will result in a spectral profile for the whole ensemble that
simply reflects the distribution among the atoms of the frequency shifts associated
with their individual thermal velocities. Such conditions commonly exist for light
waves, since their wavelength is only on the order of 0.5 um, compared to mean
free paths 100 times longer, at pressures below say 100 Pa. The exact line profile
when collisions are not negligible is far more complicated; we will not concern
ourselves with that, but in the next section we will consider the opposite extreme,
where the wavelength is large compared with the average distance an atom is free
to travel.

For atoms in thermal equilibrium at absolute temperature 7', the components of
the velocity of atoms along a given direction, taken to be the z-axis, are distributed
among the atoms in accordance with the Maxwell-Boltzmann distribution, in which
the number of atoms having a z-component of velocity in an infinitesimal range
between V and (V; + dV;) is given by f(V,)dV,, where f(V;) is the following
function:

V) =N/ —2 MV; 74
FV) =Nysm7 P\~ 7 ) :

where M is the atomic mass and k is the Boltzmann constant. Now suppose a
monochromatic light beam of frequency Vv is directed along the z-axis through an
ensemble of atoms whose resonance frequency would be v, measured in their rest
frame of reference. We recall that an atom having a velocity component V, will see
(to first-order of approximation in V,/c) a Doppler shifted frequency v(1 — V. /c).
Therefore, the light will be in resonance with such an atom not when v = v, but
rather when v = vo/(1 — V,/c), or to the same first-order approximation we have
been assuming: Vo & V(1 4+ V,/c). Therefore, the atoms, regarded as a whole, will
behave as one entity with a broadened resonance line shape, obtained by rewriting
the velocity distribution function as a frequency distribution function by using the
fact that the number of atoms having a z-component of velocity in the range d'V,
will equal those having a displaced frequency in the interval dv = (vo/c)d V. Now,
if we let g(v) represent the frequency distribution function, then

2 2
o vV —Vy dv Mc

v)dv =,/ — —Q —; = —. 7.5
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Figure 7.2 The Gaussian line shape for atoms in thermal equilibrium

Because this function has the form exp(—x?) it is called a Gaussian line shape,
and plotted as a function of frequency, it has the well-known bell shape, shown in
Figure 7.2 for Rb vapor at a temperature of 300°K.

7.2.2 Long Wavelength Limit: the Dicke Effect

Extremely narrow resonances, far below the Doppler width derived above, are actu-
ally observed at microwave frequencies on atoms diffusing in a buffer gas, in spite
of their thermal agitation. This is due to what has been called the Dicke effect
(Dicke, 1953). If we substitute in the formula for the first-order Doppler shift,
namely v—vg = (V/c)vg, the numerical values for a Rb atom diffusing through an
inert buffer gas with an average thermal velocity of about 10* meters per second,
we find a Doppler frequency shift in its microwave resonance at 6.8 GHz of about
200 kHz, or 10,000 times the frequency width of the resonance actually observed.
Clearly, the conditions for “normal” Doppler broadening are not met.

The first theoretical analysis of the narrowing of Doppler widths through colli-
sions in an inert gas was published by Dicke in 1953. To understand the conditions
under which the Dicke effect is expected to be important, let us reexamine our
assumptions in arriving at the formulas for the Doppler shifts in frequency. It was
assumed that the observer and source continue indefinitely in their state of relative
motion, with the observer crossing many undulations of the wave, that is, many
wavelengths. To bring out the effects of not fulfilling this condition, consider the
contrived example of an observer who is constrained to oscillate back and forth in
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simple harmonic motion with finite amplitude. The question we have to address is:
How does the magnetic field component, for example of the microwave, vary with
time as seen by our peripatetic observer; from this we can arrive at the spectrum
seen by him using Fourier analysis. Since the relative velocity of the observer is
assumed to oscillate with a simple frequency, it follows that the Doppler effect will
cause the observer to see a wave whose frequency oscillates about a fixed value.
But this is nothing more than a frequency modulated (FM) wave, whose theory is
familiar from its common use in radio broadcasting to provide static-free recep-
tion of high quality sound. There are three quantities aside from its amplitude that
characterize a frequency modulated wave: first, its mean frequency; second, the
frequency of modulation; and third, the maximum deviation of the frequency from
its unmodulated value, that is, the depth of modulation. We will not reproduce here
a derivation of the Fourier spectrum of such a wave, but merely state some of the
salient results, some of which may not be altogether intuitive. The most striking
is that the spectrum is discrete; it consists of a central line at the unmodulated
frequency and sidebands consisting of equally spaced lines extending with dimin-
ished amplitude to infinity on both sides of the central undisplaced line, as shown
in Figure 7.3.

The constant spacing of the lines is just the modulation frequency, so that each
line is simply a multiple (harmonic) of the modulation frequency away from the
central line. It might be thought that since the frequency “passes” through all val-
ues between the limits of modulation, that therefore the spectrum ought to contain
all these frequencies; in fact, it does not. Curiously, the sideband amplitudes are
not zero even for frequencies that extend beyond the “instantaneous” values the
frequency passes through as it swings between its limits. However, if the modula-
tion is infinitely slow, then the sidebands approach each other and will finally merge
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Figure 7.3 The Fourier spectrum of a frequency modulated wave
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into a continuum. The amplitude distribution of this continuous spectrum reflects
the relative amount of time the frequency spends at different values between the
modulation limits.

The way that the amplitudes of the sidebands fall away as we go away from
the central line depends on what is called the modulation index, which is defined
as the ratio of the maximum frequency deviation to the modulation frequency.
If the deviation is small in relation to the modulation frequency, that is, if the
modulation index is small, then the sidebands will be weak and the central line
will predominate.

Let us then compute the modulation index for our oscillating observer. From
the Doppler formula, the maximum deviation is the following:

Vimax 27V, a
Av = Vo =

Vo, 7.6
C C

where v, is the frequency of the observer’s to-and-fro motion, and a is his maxi-
mum distance traveled. It follows that the modulation index, which by definition is
AV /vp, is given by the following:

Av  2ma a

— = —Vp = 27[2—, 7.7

Vm c Ao
where Ag is the wavelength of the unmodulated wave. This last result contains the
essential key to understanding the narrowing of the Doppler effect through colli-
sions, because it tells us that as long as the observer, that is, the atom under study,
moves only distances that are small compared to the wavelength, the modulation
index will be small, and it will see mainly the undisplaced central frequency, with
weak sidebands having an amplitude distribution and spacing determined by the
parameters of its particular motion.

Quantitatively, the amplitude of the sideband at the frequency (v +nv,,) is pro-
portional to J, (2ma/Ag), where as usual, J,, represents a Bessel function of order n.
If the particle is constrained to oscillate with an amplitude below one wavelength,
that is, if a/Ay < 1, then all the amplitudes rapidly approach zero for increasing
n above zero, as can be seen from Figure 7.4. In this case the power resides prin-
cipally in the undisplaced center frequency, which is itself free of the (first-order)
Doppler effect. Although following Dicke, we chose a very special kind of confine-
ment for our observer in the cause of mathematical lucidity, he went on to show that
under broad conditions, a rigorous quantum treatment leads to essentially the same
qualitative result; namely, whatever the detailed motion of the observer, as long
as the motion does not continue uninterrupted for distances much greater than the
wavelength, the Doppler spectrum has a sharp central line superimposed on a base
that reflects the detailed motion of the observer. In the case of a Rb atom diffusing
through a noble gas buffer, a given atom makes frequent random collisions with the
gas atoms, collisions that are far more effective in deflecting a Rb atom in its path
than in disturbing its internal quantum states. As a consequence, the atom executes
a 3-dimensional “random walk” with a net average progress in any direction a slow
function of time, a form of statistical confinement, we might say.
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Figure 7.5 The Dicke effect; resonance line shape of an atom diffusing in a buffer gas

Figure 7.5 shows the average spectrum seen by particles of a gas in thermal
equilibrium irradiated by a wave of a single frequency, whose spectrum seen by a
stationary particle would be just the single central line. The base of the line has the
shape expected of particles freely crossing many wavelengths of the wave, that is,
the “normal” Doppler line shape. This Doppler base broadens out with increase in
temperature, since the thermal velocities of the particles increase, but the central
line remains unchanged.
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7.3 Relativistic Effects
7.3.1 Einstein’s Special Theory

A fundamental source of frequency broadening and shift in the observed reso-
nance of an atomic system arises from the state of relative motion of the atoms and
observer, a subject that underwent a revolution at the beginning of the 20 century.
The origins of the radical theory published by A. Einstein in 1905 are found in the
attempt to reconcile the way the laws of classical mechanics and electromagnetism
are “seen’ by observers in different states of motion. The equations of the classical
theory of electromagnetism, the beautiful theory of Maxwell, are spectacularly suc-
cessful in unifying the fields of optics, electricity, and magnetism and are one of
the great triumphs of the 19" century. Unfortunately, under the classical coordinate
transformation (x — x4, etc.) corresponding to going from the coordinate axes
of one observer to another in relative motion, they do not retain the same form. This
would imply that the state of motion of different observers can be inferred by them
by the way they see the fundamental laws of nature operate. This would in turn
imply, for example, that a particular observer could be singled out as being “at
absolute rest,” a possibility whose denial defines the principle of relativity. Now,
the equations of classical mechanics (Newton’s laws of motion), on the other hand
can easily be shown to preserve their form under such a transformation of coordi-
nates. Faith in Newtonian mechanics ran so deep that at first it was assumed that
either Maxwell’s theory was at fault or that for electromagnetic phenomena perhaps
not all observers are equal; perhaps there is a special frame of reference. In fact,
it had long been thought that light consists of waves in an all-pervading medium
called the ether. If so, then for example, since the earth is in constant motion, pre-
sumably there should be experienced on the earth’s surface an ether drift. Such a
drift would cause light waves to appear to travel at different speeds depending the
direction of propagation, just as the velocity of waves on a river relative to the shore
would depend on their direction with respect to the flow. It was to test whether there
was any detectable ether drift that the famous Michelson—-Morley experiment was
designed to do; none was found. Efforts to modify Maxwell’s theory to explain this
result were overtaken by a radical approach sought by Einstein to modify the coor-
dinate transformations themselves. This was prompted by the work of Minkowski
and Lorentz, who found and interpreted transformation equations (now known as
the Lorentz transformation) under which Maxwell’s equations do keep their math-
ematical form. We owe it to Minkowski for the interpretation of this transformation
as an angular shift in the orientation of coordinate axes in four-dimensional space.
Einstein’s contribution was to take the Lorentz transformation as the correct one,
and to modify Newton’s equations of motion to preserve their form under this trans-
formation. The ramifications of this theory go to all our fundamental concepts of
space, time, energy, mass, etc. For us the most relevant result is the transformation
of the time variable ¢. If one coordinate system has a constant velocity V along the
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x-axis of another system, the space and time coordinates in the two systems are
related through the Lorentz transformation as follows:

, x—=Vt , , Y t—Vx/c?

X =, =Y =23, - T — "
\/1—V2/C2 Y Pt < \/1—V2/C2

This shows explicitly through the presence of /1 — V2/c? in the denominators
the physically radical departure from classical physics (and common experience)
that the time scale itself varies according to the state of motion of the observer:
Clocks will literally run at different rates! The clock reading ¢’ will be ahead of
the clock reading ¢ in the system in which the spatial coordinate x is fixed. The
latter clock therefore runs slower; hence the effect is called time dilation. It would
not be in keeping with the spirit of the theory of relativity to say that the observed
resonance frequency of a moving atom “only appears” to be lower; we must accept
the fact that the time scale itself is not absolute, and a clock or atomic oscillation
that defines time in a coordinate frame moving with respect to the observer simply
runs slower. This radical break with the classical concept of time was not accepted
lightly; it naturally stimulated strenuous efforts in the early establishment of the
theory to find direct experimental evidence in the laboratory to support it.

Since the velocity of light is so large (2.99797 x 10® meters/sec) compared to
velocities ordinarily encountered in the laboratory, the detection, let alone the mea-
surement, of the dilation of the time scale is very difficult. For all ordinary veloci-
ties, V /¢ < 1, and the departure from the classical ¢’ =  is extremely small; it is
crucial that this be so, of course, since we know that Newtonian mechanics cannot
be far from the truth. Nevertheless, the Lorentz transformation does represent a rad-
ical break from the classical concepts of space and time, but by now it has become
such an integral part of modern physical theory, which has been validated exper-
imentally at so many points, that the invariance of the velocity of light has been
taken as a matter of definition: The standard meter is now defined as the distance
traveled by light in vacuo in a certain (very small) fraction of a standard second.
It is no longer in principle meaningful to measure the velocity of light, except as a
determination of the meter. In spite of the fact that relativistic effects are extremely
small, except for extreme velocities, in the case of atomic clocks, the precision has
reached such a level that corrections for such effects are not negligible.

In the early years of the theory when the ramifications of it were being thought
through, considerable debate centered on what became a famous “paradox”: the
so-called Twin Paradox (See Figure7.6). This “paradox,” which has long since
been resolved, is the following: Imagine that identical twins decide that one of them
will “slip the surly bonds of Earth” and journey at high speed in a spacecraft to a
distant point in space and then return to rejoin his twin brother, who has remained
on Earth, many years later. If, as relativity theory predicts, the returning twin finds
that his Earthbound brother has noticeably aged more than he has, we are led to
what appears to be a paradox; that is, it appears we can be led to contradictory con-
clusions even starting from equivalent premises. (If this were actually the case, then
of course it would be a fatal flaw in the theory.) Thus it might be argued that from

7.8
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Figure 7.6 The “Clock Paradox”: the views of twins A and B

the point of view of the astronaut-twin, the Earthbound twin recedes at high speed
and then returns along a trajectory that is the astronaut’s trajectory inverted with
respect to their common starting point. The apparent symmetry between the trajec-
tories as seen by the two twins would seem to predict that the astronaut would find
that his Earthbound twin had aged less than he! This contradicts the earlier con-
clusion. If the symmetry assumed between the experiences of the two twins really
exists, then there is only one logical conclusion: The twins must have aged pre-
cisely the same amount when they are reunited. This conclusion would, however,
contradict a fundamental logical consequence of the underlying postulates of the
theory of relativity. The argument has been made successfully, however, that the
circumstances of the two twins are not symmetrical: One twin actually has to fire
up his rocket engines, while the other does not, and this, after protracted analysis
and debate, finally was accepted as providing the basis for resolving the “paradox.”

7.3.2 The Relativistic Doppler Effect

In the context of atomic resonance standards, even at relatively low atomic veloc-
ities an important correction to the resonance frequency is the relativistic Doppler
effect, by which is meant the second-order term in an expansion of the following
relativistically correct Doppler formula in powers of V /c.
, 1= % cos©
0= ———o. 7.9
1=
2
Since we are concerned only with cases in which V/c <« 1, we can expand in
powers of V/c retaining only the second-order term, the so-called “relativistic
Doppler effect”:

14 1v?
w’:w(l——cosﬁ+——2~|—...). 7.10
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There was intense interest during the early establishment of the theory in putting
this result to the test in the laboratory. The most convincing early experiments were
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those of Ives, published in 1938. The success of these experiments was largely due
to the method developed of bringing out any second-order departure from the ever-
present (even classically) linear Doppler effect. This he did by observing a partic-
ular line in the spectrum of light emitted by high-speed hydrogen atoms in such
a way that he could simultaneously register on a photographic plate the spectrum
as seen directly from the atoms and as reflected by a plane mirror to effectively
reverse the observed velocity of the atoms. On the same photographic plate the
spectrum of slow hydrogen atoms was also registered, providing a fiducial wave-
length to compare with the two Doppler-shifted spectral lines on either side of it.
Contrary to classical expectations, which are that the Doppler shift simply reverses
sign with the velocity and that the two lines from the fast atoms must therefore
be symmetrically situated about the center line, he found that the Doppler-shifted
lines are both displaced slightly towards the red (lower frequencies) relative to the
unshifted line.

7.3.3 Gravitational Red Shift: The Pound—Rebka Experiment

Einstein’s General Theory of Relativity predicts that in a static gravitational field
such as that of the earth (if we neglect its relatively slow rotation) the specific
proper time scale that attaches to a particular point in the field differs from the
coordinate time scale, which belongs to a general frame of reference defined far
from the field region. This means that two identical oscillators placed at points
in a gravitational field that differ in the value of the gravitational potential @ will
oscillate at different frequencies. To a first approximation, the theory predicts a
difference in frequency given as follows:

(OJEE ()]
Vl—VQZ%Vz. 7.11

Thus if one oscillator is placed at height L above another oscillator at the surface
of the earth, we should expect a difference in frequency between them amounting
approximately to

gL
Vi—V2 ==V (L < Rg). 7.12

c2
where g is the acceleration of gravity at the surface of the earth, and Rg its radius.
The gravitational potential is negative in the neighborhood of a gravitational mass;
the proper frequency of an oscillator near such a mass is lower than at a point infi-
nitely far from it, hence the name gravitational red shift. The effect is small: even
for the gravitational field of the sun, the fractional shift is only about 2 x 107°.
To observe shifts in the lines of the solar spectrum is unfortunately less than con-
vincing as a test of the theory, since there are known to exist severe differences of
environment between the sun and earth, in addition to the gravitational field.

In the earth’s gravitational field the effect is far from insignificant when com-
paring clock rates aboard high-orbit satellites with ground-based stations. For
example, a clock aboard a satellite in a circular orbit of radius (say) 26,000 km,



146 The Quantum Beat

typical of the GPS satellites, would run faster than a ground-based clock by the
fractional amount given by the following:
V=V GMg
Vo T 2R’
where G is the gravitational constant, Mg is the mass of the earth, and R is the
radius of the satellite orbit. If we substitute numerical values, we find a fractional
difference of 1.7 x 10710, a large number in the context of atomic time keeping!

For a terrestrial experiment the effect is, of course, very much smaller; for
L = 30 m we get a fractional difference of only 3 x 10~!>! Fortunately, an experi-
mental breakthrough in y-ray spectroscopy in 1958 by Mdssbauer made it possible
to reach the incredibly high level of spectral resolution that a terrestrial red shift
experiment requires. It is only in recent years that atomic clocks have reached com-
parable resolution. In the y-ray region of the spectrum there are nuclear transitions
with long radiative lifetimes and narrow natural line widths. However, the photon
momentum is sufficiently high that when it is emitted by a nucleus, part of the
transition energy is taken up by the recoil of the nucleus. In fact, the consequent
displacement in the photon energy makes it no longer able to be absorbed effi-
ciently by another identical nucleus at rest. What Mossbauer discovered was that if
the nuclei are constrained within a suitable crystal lattice in the right temperature
range, the recoil is effectively taken up by the entire mass of the crystal, leading
to essentially recoilless emission and absorption, and hence a degree of spectral
resolution unheard of at the time. The y-ray spectral resolution is so high that even
the Doppler effect caused by a slow linear movement is sufficient to provide a
sufficient sweep of its energy.

Pound and Rebka, in a classic experiment, exploited this new development in
a terrestrial experiment to measure any frequency shift that might be exhibited
by photons emitted at one point in a gravitational field and absorbed at another
by identical nuclei. Initially, it proved difficult to reach conclusive results; little
progress was possible until it was realized that temperature differences between the
emitter and absorber can lead to significant second-order Doppler shifts, and that
the temperatures must be stabilized and taken into account. Fluctuations as small as
+1°C were computed to cause frequency shifts nearly as large as the gravitational
shift. They used the Mossbauer effect in the resonance absorption of 14.4keV
y-rays of Fe>’; the sensitivity of their apparatus allowed them to observe the effect
by placing the Fe®’ source in the tower of the physics laboratory at Harvard Uni-
versity at a height of only about 20 m above the resonant absorber.

As with any other experiment designed to test a theory, the salient questions are:
first, just how crucial is a positive result to the theory, and second, to what extent
does a positive result preclude other theories? It is the uncertainty in answering
the latter question that dictates a certain restraint in stating what the experiment
actually proves. This is far from a simple matter: A careful analysis is required
to strip away all the assumptions that are not in fact proved by the test. Of the
elegant mathematical structure that is Einstein’s theory of general relativity, this

7.13
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particular test probably only proves that the equivalence principle, which states,
in effect, that a gravitational field is indistinguishable from an appropriate coordi-
nate transformation, is valid for photons. Falling under gravity is indistinguishable
from motion with respect to a frame of reference accelerating upwards. Hence the
photons develop a Doppler shift with respect to the accelerating frame of reference
given by (V/c)v, where V = gL /c, and we have the same formula as before.

7.3.4 The Sagnac Effect

We should mention at this point an interesting relativistic effect on time measure-
ment associated with the rotation of the earth. Since the coordinate system fixed in
the earth is noninertial because its rotation with respect to “the fixed stars” consti-
tutes an accelerated motion (not of speed, but direction), again the theory of general
relativity is involved. According to the theory, if we imagine we have two identical,
precise clocks at some point on the earth’s equator, and one remains fixed while the
other is taken even slowly (with respect to the earth) along the equator all the way
around until it reaches its starting point, then the times indicated on the two clocks
will not agree. The difference At can be shown to be given by the following:

20
At=+=08, 7.14
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where Q is the angular velocity of the earth (7.3 x 107 rad/sec) and S is the area
(TRe? = 1.3 x 10"m?2) enclosed by the path of the moving clock. The formula
yields a significant time difference of about +1/5 microsecond, depending on the
direction the moving clock takes around the equator. This effect is often referred
to as the Sagnac effect, after the Frenchman G. Sagnac, who in 1911 detected by
optical interference a difference in the time taken by a light wave to complete a
round trip in the two possible directions around the mirror arrangement shown in
Figure 7.7, when the latter is made to rotate.
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Figure 7.7 The mirror arrangement used by Sagnac to study the propagation of light in a
rotating system
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Since the velocity of light in free space is constant, this is usually interpreted
as a difference in the effective optical path length due to the finite movement of the
mirrors in the time it takes the light wave to go from one mirror to the next. In the
reference frame of the mirrors themselves, however, it must be interpreted as time
itself advancing at a changing rate as we go around from one mirror to the next.

7.4 Conclusion

There are a number of other mechanisms that can affect the spectral profile of
an atomic resonance in the microwave and optical regions of the spectrum, but
none as universal as the relativistic Doppler and gravitation red shifts. The atomic
resonance used as standard in each of the different types of atomic clocks will
have its own hierarchy of important factors affecting its width and position on
the frequency scale. Thus we shall see in a later chapter that for the rubidium
standard it is collisions with the buffer gas atoms and light shifts produced by the
light used to observe the resonance that are dominant; for the hydrogen maser it
is the wall shift, and so on. We will discuss these and other cases at greater length
in the chapters dealing with specific standards. There is one subtle effect deserves
mentioning here, though extremely small it may nevertheless become significant in
the future in ultrahigh resolution optical clocks. It is the frequency shift due to the
recoil of an atom or ion as it absorbs or emits a resonant photon. As we have already
mentioned in connection with the Mdssbauer effect and will again encounter when
we come to discuss the laser cooling of atoms, photons carry momentum, and
to conserve linear momentum the atom must recoil. Since the momentum of a
single optical photon is exceedingly small, the kinetic energy an atom gains through
the recoil is also minuscule and is expected to be near the outer limits of what is
observable.



Chapter 8
The Rubidium Clock

8.1 The Reference Hyperfine Transition

Of the atomic clocks, or more appropriately, frequency/time standards, since their
accuracy and sophistication, not to mention their cost, places them far above any
ordinary keepers of time, the rubidium clock has the distinction of being the most
compact, and therefore the most portable. Rugged versions of the rubidium stan-
dard have long been developed for shipboard use as well as for tactical military and
missile-borne applications.

The rubidium standard is based on the resonance at microwave frequency of
the free rubidium atom between a pair of its quantum states whose separation
in energy is due to the electron—nuclear hyperfine interaction. Its compactness is
a result of confining the rubidium vapor in a small absorption cell filled with a
noble gas to act as a buffer, as mentioned in the last chapter. While this method
of confining the atoms of rubidium in order to lengthen their free interaction time
with the applied resonant field has been very successful, there are unfortunately
residual effects on the frequency of resonance due to the collisions with the buffer
gas and to the pumping light itself that disqualify it as an absolute standard. Never-
theless, its general adoption for a variety of applications attests to its usefulness as
a secondary standard.

In order to appreciate how the reference transition was chosen from among
the many possible resonances observable in the ground state of Rb, we must
examine the way in which the energies of the various magnetic substates may
depend on the environment, since the resonance frequencies are directly deter-
mined by the difference in energy between quantum states. The most important
environmental factor is the magnetic field; as earthbound beings immersed in the
earth’s magnetic field and surrounded by man-made magnetic fields from machin-
ery, etc., it would require elaborate special shielding or active field-cancellation to
reduce all static and time-varying magnetic fields. Fortunately, a particular choice
of a resonant transition exists, whose frequency is very much less sensitive to the
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magnetic field than all the others. To see this we must consider how the energy
of the atom in the various hyperfine states varies with magnetic field intensity. We
recall that Rb%” has a nuclear spin / = 3/2 and electron angular momentum in
the ground state J = 1/2, leading to total angular momentum (hyperfine) states
with F = 2 and F = 1. Each of these states comprises a set of substates labeled
by their magnetic quantum number mr = 2,1,0, —1, =2, and mp = 1,0, —1,
which give the projections (or components) of the angular momentum, and hence
magnetic moment, along an assumed magnetic field direction. In the presence of
a magnetic field, this can be only an approximate way to describe the states, since
the angular momentum F obtained by adding (vectorially) the nuclear and elec-
tron spins will no longer be strictly constant in magnitude and direction, due to
the torques exerted on the particles by the magnetic field. In trying to compare the
relative strength of the “coupling” between the spins with their tendency to precess
independently around the magnetic field direction, the appropriate measure is the
amount of energy that would be required on the one hand to turn one spin relative
to the other as compared with turning it with respect to the field.

The coupling energy of the spins is the difference in energy between the F' = 2
and F = 1 hyperfine states in zero magnetic field, and it is precisely the transition
between these states that gives rise to the sharp microwave resonance used as the
frequency reference. Now, the energy of coupling of the spins to the magnetic field
is simply the Zeeman energy, which we have already encountered; it is given by
Ey = — B, where W, is the component of the magnetic moment of the electron
along the magnetic field direction. We are now ready to express the condition on
the strength of the magnetic field for the representation in terms of F and m r to be
a good approximation; we must have Ep—y — Ep—1 > W, B.

For magnetic fields weak enough to satisfy this condition, the combination of
two spins acts as one, with a single angular momentum F precessing around the
magnetic field; however, the magnetic moment associated with this differs from the
electron moment by only the small contribution from the nucleus. Thus it is approx-
imately as if we had a single particle with the ratio of magnetic to angular momen-
tum smaller than a free electron in the ratio (1/2):F, and a correspondingly slower
precession around the magnetic field. Thus in the limit of a vanishingly small mag-
netic field, the energy of the magnetic substates is simply E,, = (m/F)uB; that
is, the plots of E,, versus B start from B = 0 with a different slope for each m, as
shown in Figure 8.1.

8.2 The Breit—Rabi Formula

The behavior of E,, as the magnetic field intensity is increased from zero requires
an exact quantum treatment; the result is referred to as the Breit—Rabi formula,
which can be written as follows:
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Figure 8.1 The energies of the magnetic hyperfine substates of the ground state in Rb37 as
a function of applied magnetic field intensity

where the plus and minus signs refer to the upper and lower hyperfine state respec-
tively, and x ~ gjUpBo/E)ys is the ratio of the Zeeman to the hyperfine energy
splitting, and By is the strength of the magnetic field.

There are two features of this solution of great importance to the operation of
the rubidium standard: First, the plots of the energies of atoms in levels (F = 2,
mrp = 0)and (F = 1, mr = 0) versus the magnetic field start in a horizontal
direction before they start curving gently, which means that to a first approxima-
tion in x the energy does not change if the magnetic field departs slightly from
zero; second, the difference in energy between consecutive Zeeman sublevels near
B = 0 is proportional to the magnetic field.

Since, as we have already stated, it is difficult in practice to totally shield out
the perturbations of a magnetic field or even variations in its intensity over all
points in the rubidium absorption cell, the field-insensitive transition between the
two mpr = 0 levels belonging to F = 1 and F' = 2 is used as the standard. Even
the presence of a small inhomogeneity in the magnetic field, which would result in
a given rubidium atom in motion “seeing” a variable magnetic field, would cause
little spectral broadening of the resonance between these states. The same cannot be
said obviously of the “field-dependent” transitions between other substates. Thus
the resonance between the mr = 0 states is much sharper than the other Zeeman
transitions, a fact of obvious importance for a frequency standard.

The field independence of the energy of the mr = O states is true only to a
first-order approximation in the immediate vicinity of zero field; beyond that we
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must use the exact Breit—Rabi formula to calculate the frequency of the transition
between these states. A second order approximation in x for that frequency derived
from that formula yields

(gs1p — 811,
2h2vg
where g; and g; are respectively the g-factors of the atomic electron and nucleus,
numbers that are measures of the strengths of their magnetic moments in the given
states. They specify the moments in terms of the fundamental units, the Bohr
magneton Up and the analogous nuclear magneton |, defined as the classical
magnetic moment of a particle having the charge and mass of a proton. This pro-
vides a convenient way to make a fine adjustment to the frequency of the standard:
simply vary the current in a magnetic field-producing coil provided for the pur-
pose. As a secondary standard, it is necessary to set the field at such a value that
the time scale generated agrees with the atomic time scale, defined in terms of the
primary standard. Even after the initial calibration against the primary standard,
a readjustment may be necessary after some length of time because of possible
long-term drift in the resonance frequency. Furthermore, to estimate the size of
the field correction, which is proportional to B2, we have ready at hand the “field-
dependent” Zeeman transitions my —m| = %1, whose frequency gives directly the

magnitude of the magnetic field.

vV=vo+ B2, 8.2

8.3 Optical Pumping of Hyperfine Populations

Recall that in our discussion of magnetic resonance in Chapter 6 we argued that in
order to be able to observe a magnetic transition between two states, there must be a
difference in the populations in those states. This is ultimately because the inherent
probabilities (per atom) per unit time for absorption and stimulated emission of a
quantum of radiation are identical, and unlike transitions in the optical region of the
spectrum, the probability for spontaneous transitions is extremely small; the result
is that no net global exchange of energy is observed unless the number of atoms in
the lower state differs from the number in the upper state. Here we wish to observe
the transition between the (F = 1, mg = 0) and (F = 2, mg = 0) states near
zero magnetic field intensity. There are a number of possible ways of achieving
this using optical resonance; the choice generally adopted reflects the inevitable
concern for commercial viability, which is ultimately a question of performance
versus cost. Before describing in detail the method that has been widely exploited
commercially, we can get a broader perspective by first considering alternative, but
more complex, approaches.

The first among them is simply to carry out the usual Kastler optical pump-
ing with circularly polarized light directed along the magnetic field axis, thereby
ideally putting all the atoms in one of the extreme m f-states, that is, mrp = +2
or —2, depending on the sense of the circular polarization. We are assuming here,
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as we did in the last chapter, that the spectrum of the pumping light is limited to
resonance with the transition to the upper Pj/; electronic state but otherwise is
broad enough in frequency to satisfy energy conservation for all hyperfine tran-
sitions that satisfy the angular momentum selection rules. Once we have a large
proportion of the atoms in, say, the m p = +2 state, we can apply a high-frequency
magnetic field resonant with transitions among the magnetic substates in the F = 2
hyperfine state, in the manner described in the last chapter. The desired population
difference between the mp = 0 substates can be achieved under suitable condi-
tions, the most important of which are first, that the atoms be sufficiently free of
perturbations; second, that the high-frequency field be strong and uniform; and last,
that the static magnetic field be sufficiently uniform. The global effect on the atoms
can be pictured classically as a magnetized gyroscope whose axis precesses around
the static magnetic field, sweeping out ever wider cones. If the high-frequency
magnetic field is on for exactly the short interval it takes the angle of the cone to
reach 90°, a so-called 90° pulse, then the axis of the gyroscope precesses in the
plane perpendicular to the static field, and the projection of its angular momentum
along the field is zero. In quantum terms this is described as having put the atoms in
a (linear) superposition of substates with different m  in which the desired mr = 0
substate has the largest amplitude. Having a significant fraction of the atoms in the
(F =2, mp = 0) substate, a fraction far greater than would ideally be present in
the (F = 1, mr = 0) substate, meets the first requirement for observing transitions
between them.

A second and equally critical requirement is the ability to detect the occurrence
of transitions; this can be met in principle by the inverse process of applying a
90° pulse of the opposite phase, or a 270° pulse of the same phase, to complete
a full circle, bringing the global moment back into alignment with the static mag-
netic field. If nothing perturbs the atoms in the interval between the two pulses,
the atoms would ideally return to their original state, namely, the nonabsorbing
mp = 2 into which they were pumped, and the amount of pumping light scattered
or absorbed would be the same as it was. However, if in the interval between pulses
a resonant microwave field causes transitions to the (F = 1, mr = 0) hyperfine
state, then they do not all return to their nonabsorbing state, and the amount of
pumping light absorbed/scattered will be increased. This change in the interaction
between the atoms and the pumping light can be used to monitor the transitions
and their resonant dependence on the frequency of the microwave field.

Another technique, which avoids the practical complexity of pulsed opera-
tion, is a variant of Kastler optical pumping, in which the circularly polarized
beam is directed not along the magnetic field direction, but perpendicular to it,
and is therefore called transverse pumping. In order to simplify the explanation
of this technique, let us assume that the transverse light beam consists of a regu-
lar succession of powerful flashes and that the magnetic field is extremely weak.
Under these conditions each flash produces a global magnetic polarization in the
direction of the beam, that is, perpendicular to the field, which then causes it to
precess continuously around the field axis passing periodically through its original
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direction. Now, if the interval between flashes is adjusted so that each flash coin-
cides in time with the passing of the polarization vector through its original
direction, then the polarization is reinforced and will build up to a significant
degree. Again, having the polarized atoms precessing predominantly perpendicular
to the field implies a preponderance of population in the mr = O state, essentially
the same state as was produced by a 90° pulse. In the actual implementation of the
transverse pumping technique it is not necessary to pulse the light source. Instead,
a high-speed electro-optic modulator can be used to impose a harmonic oscillation
in the transmitted intensity at the frequency of precession of the atoms in the given
magnetic field. If during the pumping process the desired microwave transition is
resonantly induced between the hyperfine states having mr = 0, then the distribu-
tion of populations of atoms in the different m  states changes in the direction of
increasing those in the absorbing F = 1 substates. It will be recalled that the opti-
cal pumping process leads to a preponderance of atoms in substates that by reason
of the selection rules are unable to absorb light from the pumping beam. Hence
by imposing a different distribution with the resonant microwave transitions, the
amount of pumping light scattered by the atoms will increase, providing a way of
monitoring the resonance. As with the previous technique then, the desired reso-
nance is observed by monitoring the transmitted light intensity as the microwave
frequency is swept through resonance; a dip in the intensity of the pumping light
transmitted through the absorption cell signals a resonance. It is interesting to note
in passing that the original use of a circularly polarized light beam perpendicu-
lar to the magnetic field was first introduced by Hans Dehmelt (Dehmelt,1957)
as the inverse process to the foregoing: It was to modulate the intensity of the
beam by interaction with a precessing global polarization induced by a resonant
high-frequency magnetic field, such as would be used in the 90° pulse, acting on
polarization produced by an axial beam. This modulation occurs at the precession
frequency and is a direct measure of the (static) magnetic field. Since frequency is
measurable with high precision, this has been exploited commercially as an atomic
magnetometer of great sensitivity and precision.

8.4 Optical Hyperfine Pumping: Use of an Isotopic Filter

We will now direct our attention to the principle of operation actually implemented
in commercial Rb standards; it is called hyperfine pumping. Instead of relying on
quantum selection rules governing transitions between states of different angular
momentum, it is really based on selection of transitions according to the conser-
vation of energy. We focus on the spectrum of the pumping light rather than its
polarization; transitions will occur only if the energy and therefore wavelength
of the photons in the beam equals the energy difference between the initial and
final states. The method therefore relies on having a pumping light source whose
spectrum overlaps only one of the two hyperfine components in the resonance
optical spectrum of Rb, components that arise from transitions whose initial states
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are either the ' = 1 or F = 2 hyperfine state. Having a spectrum overlapping only
one component, the light from the source can be absorbed by atoms in only one
of these states. However, once in the optically excited state, the atoms will spon-
taneously re-emit photons to both hyperfine states of the electronic ground state,
independently of how they came to be in the excited state, and therefore ideally
they would all be pumped into the nonabsorbing hyperfine state.

As mentioned in connection with light sources for Kastler pumping, laser
sources properly stabilized would be ideal were it not for the added complexity that
that would entail. It might be thought that we should be able simply to filter out one
of the hyperfine components of the optical resonance line in the spectrum of a Rb
vapor lamp; unfortunately, the difference in wavelength between the two compo-
nents is so small that it would be difficult, if not impossible, using the sharpest type
of optical filter available, the interference filter, to separate them without a great
loss of intensity.

The original experiments on hyperfine pumping predate lasers, and a suitable
light source was achieved through a fortuitous coincidence in the hyperfine struc-
ture of the optical resonance spectra of the two isotopes of rubidium, Rb® and
Rb¥. The difference in nuclear structure and mass of the two isotopes leads to
a slight relative shift in their spectra, called, not surprisingly, the isotope shift. It
happens that one of the two hyperfine components in the Rb% spectrum nearly
coincides with the corresponding component in the Rb87 spectrum, while the others
are well separated, as shown in Figure 8.2. Thus starting with a rubidium vapor
lamp filled with enriched Rb%7 isotope, whose output contains both hyperfine lines,
we can partially remove one of them by passing the light through a cell containing
enriched Rb%> vapor, which will absorb out of the beam (and re-emit in all direc-
tions) the line coincident with the Rb® hyperfine component just mentioned. The
match in wavelengths can be improved by a process that, however, we shall see is
detrimental to the long-term stability of the standard: It is the so-called pressure
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Figure 8.2 The hyperfine structure of the dominant emission lines in Rb33 and Rb®7
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broadening and shift in spectral lines caused by collisions between the Rb atoms
themselves and with others, principally the atoms of the noble gas introduced as a
buffer. The direction of the shift, whether to higher or lower wavelengths, depends
on which noble gas is used, as does its sensitivity to temperature fluctuations. By
using a mixture of two noble gases, which alone would produce opposing shifts,
it is possible to choose their proportion in the Rb3> vapor absorption cell so as to
reduce the temperature dependence as well as improve the wavelength match.

The earliest successful observations of resonance between hyperfine states in
the alkali atoms by optical means date from 1958. Of these, the one of particular
interest, because of its adoption for further commercial development, was pub-
lished by Bender, Beaty, and Chi (Bender et al., 1958), in which the use of the
isotope filter in Rb was introduced. Their experimental arrangement is shown in
Figure 8.3. The optical hyperfine pumping source was a Rb spectral lamp whose
strongest emission occurs at the two “resonance” lines in the red part of the spec-
trum at wavelengths A = 780 nm and 795 nm (1 nm = 1 nanometer = 10~ meter).
These correspond, in terms of the states between which the transitions occur, to the
strong emission lines in a sodium vapor lamp, giving it its familiar yellow color.
They arise from radiative transitions between the first two excited electronic states
and the ground state, forming a fine structure “doublet.” The two hyperfine states
with F = 1 and F = 2, into which the first excited electronic state is split, are much
closer in energy than the two corresponding hyperfine states in the ground state, so
that under the usual degree of resolution the spectrum appears to have each member
of the doublet split into two hyperfine components rather than four. An ordinary Rb

photomultiplier
— Rb®’ absorption cell f Rb®® filter

/

—— microwave horn Rb%” lamp —/

* to source

Figure 8.3 The experiment of Bender, Beaty, and Chi on optical hyperfine pumping of Rb87
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vapor lamp, containing a natural mixture of the two isotopes, will therefore emit a
spectrum in which each line of the doublet consists of four hyperfine components,
two from each isotope. The hyperfine separation in Rb% is about half that in Rb%7,
with the lower components of the two isotopes much closer in frequency than the
upper, as Figure 8.2 attempts to make clear. In the actual experiment, the light from
an enriched Rb%” spectral lamp is passed through a filter cell containing enriched
Rb® vapor and typically 10* Pa of argon buffer gas, whose presence broadens
the spectral lines and somewhat shifts their centers in a direction to enhance the
differential filtering of the two hyperfine lines of Rb%’. Ideally, if the filter cell con-
tained only Rb%, it would be almost transparent to the upper component in the
output spectrum of the Rb® lamp, while strongly scattering the other component,
so that the transmitted light satisfies the basic inequality of intensities required for
hyperfine pumping. The repeated cycle of absorption and re-emission of this light
by the Rb%” in the resonance absorption cell will pump the atoms into the upper
hyperfine state of the electronic ground state, thereby reducing the number left in
the lower absorbing state. This has the effect of decreasing the amount of pumping
light scattered. If an applied microwave magnetic field causes transitions between
the hyperfine states, tending to equalize their populations and thus increasing the
number in the lower absorbing state, then more of the pumping light is scattered
out of the beam, and the transmitted intensity drops, signaling the occurrence
of resonance.

8.5 The Use of Buffer Gases

In those early experiments, the absorption and filter cells were made of relatively
large (=500 ml) Pyrex bulbs, which were cleaned and baked according to standard
vacuum practice, and a small quantity of pure metallic Rb distilled into each bulb.
The element Rb, like the other alkalis, is very chemically reactive with air and
water; it must be handled either in an inert atmosphere or under vacuum. The cells
are back-filled with pure gas before being sealed from the vacuum system.
Experiments carried out with different species of gases at different pressures
showed that the hyperfine frequency is shifted in proportion to the pressure,
being raised by the light gases—hydrogen, helium, neon, and nitrogen—while for
the larger atoms—argon, krypton, xenon, and methane—the frequency is lowered.
The linear pressure dependence is to be expected, at a fixed temperature, if the
shifts are due to pairs of atoms colliding. There is also an important temperature
dependence, however, which is more complicated to predict. An important practical
application of these findings is to the reduction of the sensitivity of the frequency
to temperature, since some gases cause an increase in frequency with temperature,
while others have the opposite effect. It has been found that a mixture of about 12%
Ne and 88% Ar gives a temperature dependence of about —10 hertz per degree C
at a pressure of about 5.320 x 10° Pa (1 mm Hg= 133 Pa). The sharpest reso-
nance seen for the hyperfine transition at 6.8347...GHz (1 GHz = 10° Hz) was
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only about 20 Hz! This is a Q-value of about 300 million; compare this to the best
quartz crystal currently available, which may reach a Q-value of 1 million.

The effects of a buffer gas on spectral line shapes and center positions are
the large-scale average manifestation of interaction between the Rb atoms and the
noble gas atoms; during the collision we have in effect a transient Rb—noble gas
“molecule.” Under the rarefied conditions obtaining here there would be little error
in assuming what may be called the binary collision approximation. In this, it is
assumed that all the particles have negligible interaction except very briefly during
relatively infrequent encounters when the particles come within typical molecular
dimensions of each other. This radically simplifies the problem of predicting the
effect of the presence of the buffer gas by permitting the problem to be separated
into two tractable parts: first, the collision of just two particles under general con-
ditions, and second, the statistical problem of finding the observable averages over
a large number of such collisions. Another circumstance that allows an important
simplification in the analysis of the collision process is that the relative velocity of
the Rb and noble gas atoms at the temperatures under consideration is very much
smaller than the speed with which the electrons in the outer structure of the atoms
can adjust to the changing internuclear distance. This means that the colliding pair
can be thought of as quasi-static at different distances apart, and the energy of
the quantum electron state for the two-atom system can be regarded as potential
energy in computing the change in kinetic energy of the two particles. The poten-
tial energy for the Rb—noble gas collisions, in common with most binary atomic
collisions and in a broader sense all matter, corresponds to an attractive force as
the particles first approach each other; but as their electronic structures start to
interpenetrate, the force turns repulsive and they fly apart. It turns out that during
the initial attractive part of their trajectory, the distortion of the electronic state of
the Rb atom is accompanied by a reduction in the electron—nuclear interaction,
that is, a “red” shift (to lower frequency) in the hyperfine frequency separation,
while the repulsive part has the opposite effect. In the heavier noble gases the attrac-
tive force is of longer range and leads to a net red shift, while for the lighter gases,
He and Ne, it is a blue shift (to higher frequency) because the short-range repulsive
force dominates. The length of time a typical collision lasts is extremely small, as
can easily be verified: The average relative velocity of the particles due to thermal
agitation is on the order of 10* meters per second, while the range of interatomic
force is typically 10~ meter, so that the time is r = d/V = 10~!2 second. On the
other hand, the average time between collisions at the typical gas pressure of 1000
Pa is about 10~7 second, or about 100,000 times the duration of a collision. This
confirms that the impact approximation is indeed valid for the assumed conditions.
Of course, if very much higher buffer gas pressures are used, then the approxi-
mation would become invalid and the prediction of the pressure shifts would be
very much more difficult. The temperature dependence of the frequency shifts has
to do with degree of mutual penetration of the colliding particles; the higher their
thermal kinetic energy, the more violent the collisions.
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The susceptibility of the resonance frequency, which is to be our standard, to
temperature, pressure, and nature of background gases detracts from its accuracy
and reproducibility. However, the presence of the buffer gas not only performs
the essential function of lengthening the interaction time between the atoms and
the resonant field, but also limits broadening of the resonant response by another
phenomenon, namely the Doppler effect.

The frequency width at half maximum of the optical resonance line in rubid-
ium is about 700 MHz, which is about 1/10 the hyperfine splitting of the ground
state. On the other hand, we can easily verify that for the microwave transition the
conditions for the Dicke effect are well satisfied; thus the wavelength of microwave
resonance at around 6.8 GHz is A = ¢/v, or A &~ 4.3 cm, and the average distance
between collisions at pressures on the order of 10* Pa is no more than 0.01 cm,
or about 1/400 of the wavelength. Finally, on the subject of the Doppler effect we
should note that if the resonant microwave field is applied in the form of an advanc-
ing wave, as was done in the experiments of Bender, Beaty, and Chi, the observed
resonance will exhibit a small Doppler shift due to a general drift of Rb atoms
across the absorption cell. This arises from the fact that Rb reacts chemically with
the glass surfaces of the cell, and atoms continually diffuse from their source, a
droplet of liquid Rb, towards the walls of the cell. A good deal of effort has been
devoted in the past to finding a suitably inert coating for the inner surfaces of the
cell, not only to reduce this chemical reaction, but indeed to dispose of the need
for a buffer gas altogether. Special aluminosilicate glazes have been developed by
the lamp industry to coat the inner surfaces of sodium lamps used for street light-
ing, lamps that operate at much higher temperatures than the Rb cell, in order to
prevent the sodium vapor from chemically attacking the glass and eventually turn-
ing it black. The ideal of a cell with surfaces totally unreactive with Rb, which
may therefore be “dry filled,” that is, not requiring a liquid droplet to maintain
the vapor density, has never been achieved. Nevertheless, wax coatings made of
high molecular weight paraffins were shown by H. Robinson et al. around 1957 to
be highly successful in preventing a randomization of Rb spin direction when the
atom collides with the coated surface. Their use instead of a buffer gas to increase
the free interaction time between the Rb atoms and the resonant field offers, how-
ever, no particular advantage, since like the buffer gases, these coatings also cause
frequency shifts. In any event, whether the glass surfaces are coated or not, there
will be long-term chemical reaction with the Rb, resulting in the slow evolution of
gases, which will cause the resonance frequency to drift. The use of sapphire and
other exotic materials to solve this problem continues to be investigated.

8.6 Light Shifts in the Reference Frequency
An equally serious but far more subtle phenomenon that affects the resonant

microwave frequency is associated with the pumping light itself; this com-
plex effect is labeled simply the light shift. It was anticipated theoretically by
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Cohen-Tannoudji and Barrat in 1961 and was soon observed in Kastler’s labora-
tory in the radio-frequency spectrum of Hg!%°. Its detection in studies of microwave
resonance in Rb and Cs was first published in the same year by Arditi and Carver.
Although the shift is exceedingly small—its discovery in itself representing no
mean accomplishment—yet in the context of a frequency standard it is significant.
In addition to the obvious dependence of the shift on the intensity of the light,
it also depends on the detailed spectrum of the light, particularly its position in
relation to the absorption spectrum of the Rb atoms. In trying to understand the
physical origin of light shifts we must distinguish between two types of quantum
transitions involved in the optical pumping cycle: real transitions and the so-called
virtual transitions. A transition is virtual if the probability of the atom being in the
final state returns to zero when the external perturbation is removed rather than
stay there, as in a real transition. In the case of Rb subjected to the optical pumping
cycle, real transitions would take the atoms up to the first excited electronic state,
where they would stay were it not for another mechanism, spontaneous emission,
by which they re-emit photons and return to the ground state. At the same time
there are virtual transitions in which the electric field of the light wave distorts
the electron cloud, and as long as that field is there the atoms are in a quantum
state that in terms of the undisturbed Rb stationary states can only be described as
a linear superposition of them. Once the perturbing electric field is removed, the
atom returns to its initial state. This distortion in the electron distribution manifests
itself in a shift in the position of lines in the optical spectrum called the (quadratic)
AC Stark effect, and it depends in general on E2, where E is the amplitude of
the electric field in the light wave. Because of the quadratic dependence on E,
the effect does not average to zero for an oscillating optical field that swings
symmetrically through positive and negative values about zero. Unfortunately, the
energy shift of the quantum states is not the same for the initial and final hyperfine
states of the microwave transition we are interested in, resulting in a light shift
in the frequency of that transition. Since this source of change in our standard
frequency is affected by the many complex factors that determine the detailed
spectrum of the light source and absorbing Rb atoms, it seriously detracts from the
quality of the Rb standard.

8.7 Rubidium Frequency Control of Quartz Oscillator

We will now take up the subject of the electronic configuration of clocks controlled
by the Rb resonance. There are two ways in which the microwave resonance can be
used: first, in a passive mode as a resonator or frequency discriminator, and second,
in an active mode as an oscillator (maser) generating a signal at the standard fre-
quency. The passive Rb standard is the one that has been commercially developed
and is in general use; we will therefore treat it in this chapter, leaving the Rb maser
for a later chapter.
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As with other standards using an atomic resonator in a passive mode, notably
the cesium standard, which we shall study in the next chapter, the resonant response
of the atoms to an external microwave field must be monitored. Specifically, it
must be possible to discern whether the frequency of the field is below, above,
or precisely at the center of the resonance curve. This may be accomplished by a
slow periodic modulation of the frequency (or phase) of the microwave field over
a small portion of the resonance line profile, as shown in Figure 8.4. We recall
that if the modulation is slow enough, it is legitimate to think of the frequency as
assuming continuously all frequencies between the limits of the modulation, so that
the optical signal will vary in step with the modulation on the side of the resonance
curve with a positive slope, and will vary in the opposite direction on the side with
the negative slope. If the modulation occurs symmetrically about the center of the
resonance, then since the optical signal falls whether the field frequency swings in
the positive direction or the negative, the optical signal will oscillate at twice the
frequency of modulation. If the modulation is exactly centered on the peak of the
resonance, then the optical signal will have no Fourier component at the modulation
frequency, but only one at double that frequency.

For the ultimate purpose of controlling the frequency of the microwave field
so that it remains locked to the peak of the resonance, we need to derive from the
optical signals described above a voltage that can serve as an error signal indicat-
ing whether the frequency of the field is too high or too low. This requires a circuit
that can selectively amplify signals at the modulation frequency and be sensitive
to the relative phase of these signals with respect to the modulating signal. Such a
phase-sensitive amplifier is called a lock-in amplifier, which in a sense correlates
an incoming signal with a reference frequency signal; if the two are in phase, a
positive output voltage is given: On the other hand, if they are of opposite phase,
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Figure 8.4 The reversal of detector output phase for microwave frequency above and below
resonance
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Figure 8.5 The output of the lock-in amplifier as the frequency is swept through resonance

we get a negative output voltage. Moreover, if they are not exactly the same fre-
quency, the output will oscillate as the two signals go in and out of phase; in this
case the average over a sufficiently long time will be zero. With such a lock-in
amplifier we can obtain just the desired error signal for our control circuit; we
simply use the signal producing the frequency modulation of the microwave field
as the reference, and the optical signal as our input to the lock-in amplifier. Its out-
put as the center frequency of the field is very slowly scanned across the resonance
frequency will resemble the plot shown in Figure 8.5 A graph of that form is usu-
ally called a dispersion curve, and in the sense used in calculus, it is the derivative
function of the bell-shaped absorption curve. We see that the output is indeed neg-
ative when the frequency is too high, positive when too low, and zero when at the
peak. This is precisely what we need as an error signal in a feedback control loop
that seeks to make the error zero by controlling the center frequency of the field.

The field is derived ultimately from a high-quality quartz-controlled oscillator
operating typically at 5 MHz (see Figure 8.6). The desired microwave frequency is
produced by a frequency synthesizer, which, starting with the 5 MHz oscillation
as reference, generates signals at multiples and submultiples of that frequency and
then by deriving other signals at the sum or difference of various harmonics, ulti-
mately yields an output signal whose frequency can be preset in fine increments on
a front panel keyboard.

These arithmetical operations on the frequencies of signals are realized through
the use of nonlinear solid-state devices, which can act as harmonic generators and
frequency mixers. Throughout these operations phase relationships are preserved
so that the output is coherent with the stable 5 MHz reference signal. Coherence
here simply means that the outputs of two identical synthesizers, sharing the same
reference signal but set at different frequencies, can produce a stable “beat,” that is,
a pure signal whose frequency is the difference between those of the two outputs.
Clearly, if the frequency of the reference is changed, the frequency of the output of
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Figure 8.6 Block diagram of basic rubidium frequency standard design

the synthesizer will change accordingly. Therefore, a voltage-sensitive element in
the quartz crystal oscillator circuit is provided to control its frequency and hence
that of the microwave field applied to the atoms. If that frequency is too low, the
resulting positive error signal must cause the oscillator frequency to rise steadily
in order to reduce the error. This requires the voltage appearing on the frequency-
controlling element, which is derived from the output of the lock-in amplifier, to
increase steadily in magnitude in the proper direction. The circuit that converts a
steady (DC) voltage into a linearly increasing one is an integrator, which must be
included in the feedback loop for stable operation. As the error signal approaches
zero at the peak of the resonance, the output of the integrator tends to become
constant just at the value to keep the error at zero. Needless to say, a high degree
of stability in the operating voltages of the integrator is critical; any drift in DC
levels would cause frequency offsets from the atomic resonance, degrading the
performance of the standard. Just how closely the frequency is held to the true
center of the atomic resonance depends on a large number of factors, some of
which are of a fundamental nature, while others are a matter of the performance
characteristics of particular devices and the circuits around them.

8.8 Frequency Stability of the Rubidium Standard

We have already mentioned a number of physical phenomena that affect the fre-
quency of the atomic resonance; these are known systematic sources of error, as
distinguished from uncontrollable random fluctuations. Among the latter are the
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various types of electrical noise discussed in a previous chapter. Because of the
high order of multiplication of frequency in going from that of the quartz oscillator
at 5 MHz to the microwave frequency at 6,800 MHz, any residual fluctuations in
the phase of the quartz oscillator are greatly magnified. Therefore, attaining the
highest phase stability in the microwave field and hence the sharpest spectrum puts
a great burden on the spectral purity and low noise of the quartz oscillator. It is the
availability of high-performance quartz oscillators, with extremely high Q-values
and low output noise that has contributed immensely to the success of these
atomic standards.

In discussing the accuracy and stability of any type of standard, questions
must be addressed that would not arise for ordinary instruments. When we use
an ordinary voltmeter, for example, we assume that its calibration and accuracy are
traceable ultimately to some acceptable standard. But if the standard be in doubt
what then? This question is really relevant only to the cesium standard, which
has been elevated to the status of primary time standard. However, as an atomic
resonance-based system, the rubidium clock qualifies, for many applications, as a
secondary standard and as such, absolute accuracy is not expected of it; its fre-
quency must be set by reference to a primary standard. But how is one to know
whether the primary standard is drifting? This question lies at the heart of what is
expected of a standard: Standards are not supposed to drift! The pragmatic answer
is to have a large collection of embodiments of the standard all purporting to dis-
play a unit of time in accordance with its atomic definition. To the extent that there
is agreement among the members of this collection, we can have confidence in
their accuracy and stability.

The accepted method of specifying the stability of frequency standards, useful
particularly for relatively long-term performance, is, as we saw in a previous chap-
ter, in terms of the Allan variance of phase or frequency plotted as a function of
the sampling time over which that quantity is measured. We recall that this analysis
presumes that the condition of stationarity is satisfied, and therefore any long-term
drift in the data must first be separated out. We also noted previously that some
of the fundamental types of noise can be accurately modeled as having a Fourier
spectrum that has a simple power-law dependence on frequency. These power laws
translate into equally simple dependence of the Allan variance 6(t) on the time
interval T used in its measurement. Thus for the important flicker noise it can be
shown that ¢ is independent of the length of the interval, whereas for white fre-
quency noise & falls as 1/1'/2. Now, for circuits at ordinary temperatures operating
in the radio-frequency range, thermal (Johnson) noise is very nearly “white” (the
same power density at all frequencies), so that since this is a universal source of
noise, we frequently see a plot of G versus T exhibit the 1/t!/? characteristic of
this type of noise, at least up to a certain point, after which flicker noise becomes
dominant and the graph flattens out.

Figure 8.7 shows plots of the Allan variance for a typical Rb standard together
with, for the sake of comparison, several other types of atomic standards we shall
be dealing with in succeeding chapters. It is not unusual for a Rb standard to
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Figure 8.7 Allan variance plotted versus sampling time for different types of frequency
standards

have ¢ bottom out at around 10~'2? for time intervals longer than 100 seconds,
after systematic drifts have been separated out. This represents an error of about
30 millionths of a second in a year!

8.9 The Miniaturization of Atomic Clocks

The optically pumped alkali vapor gas-diffusion cell resonator lends itself
admirably to miniaturization, particularly since the development of semicon-
ductor lasers that are tunable and can be stabilized on the rubidium or cesium
optical resonance wavelengths while operating at room temperature. This develop-
ment obviated the need for the UHF driven lamp and isotope filter of the conven-
tional rubidium standard. Coupled with microelectronic integrated circuitry this
has enabled atomic clocks to be built no larger than a walnut! One such clock is
shown in Figure 8.8.

The fundamental consequences of size reduction are an increased frequency of
wall collisions or the need for a higher collision frequency with the molecules of the
buffer gas. In either case the undesirable shifts in the reference transition frequency
are aggravated, and long-term stability is expected to suffer. The other important
consideration is the size of a resonant microwave cavity. For Rb® and Cs'3 the ref-
erence microwave wavelengths are about 4.4 cm and 3.3 cm respectively. Since Rb
has fewer magnetic substates than Cs, a larger fraction of Rb atoms can contribute
to the signal arising from transitions between one particular pair. In either case the
cavity must be “loaded” with a low-loss dielectric material to lower its resonant
frequency as its size is made smaller. It has been shown (I. Liberman, 1992), for



166 The Quantum Beat

Figure 8.8 Small “industrial” Rb clock developed by the Neuchatel observatory (Rochat,
1994)

example, that a miniature standard based on a cesium gas cell not exceeding 4 mm
in diameter and 18 mm long, operating under relatively high vapor pressure, so that
Cs—Cs collisions are dominant in limiting the free lifetime of the Cs states, would
have theoretically a short-term stability 6(t) on the order of 5 x 10~ 2t~/ where
7T is in seconds.



Chapter 9
The Classical Cesium Standard

9.1 Definition of the Unit of Time

We will now take up the type of atomic clock that has been elevated to the status of
the primary standard of time, displacing the historical role of astronomical observa-
tions in the definition of the unit of time, the second. In 1967 the 13th General Con-
ference on Weights and Measures, attended by delegates from about 40 countries,
signatories of the Treaty of the Meter, adopted a new definition of the international
unit of time. At that conference there was overwhelming support to the idea that
the time had come to replace the existing definition, based on the earth’s orbital
motion around the sun, by an atomic definition. The wording of the new definition
is as follows: “The second is the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the fundamental
state of the atom of cesium-133.” The ten-digit number assigned in the definition
was chosen to agree with the then existing definition of the second, known as the
“ephemeris second,” which had been adopted in 1956. This latter definition was
based on the length of the so-called tropical year, that is, the length of time for the
earth to complete its orbit around the sun and return to a point where its axis again
makes the same angle with respect to the earth—sun direction; it is the repetition
period of the seasons. The obvious drawback to this definition is the practical one
of not being available except through the intermediary of stable clocks that must
be checked after the fact. But more importantly, a decade after its adoption it had
become evident that the accuracy of atomic clocks, which had to be used to imple-
ment the ephemeris time, had reached the point where they had become de facto
standards against which astronomical observations were compared.

9.2 Implementation of the Definition: The Cesium
Standard

This new definition is based on the same type of microwave resonance as in the
Rb standard, but because of some advantages in detail, the resonance chosen is in
the heavier alkali atom, cesium. We should point out, however, that the labels Rb
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standard and Cs standard in common use do not refer merely to the species of atom
used, but rather imply certain ways in which they attempt to extend the interaction
time between the undisturbed atom and the resonant microwave field. In the com-
mon Rb standard we recall that a noble gas is used as a buffer to prevent the free
flight of the Rb atoms to the walls of the cells, where their coherent response to
the field would be interrupted, and the resonance thereby broadened. By contrast,
in the cesium standard the atoms move freely as a beam in a chamber from which
the air has been pumped out, that is, in a vacuum. (The use of the word “beam”
is more than metaphorical; after all, a light beam can be looked on as a stream of
photons.) There is, of course, no fundamental reason that precludes observing the
Cs resonance in a diffusion cell by optical methods, or of observing the Rb reso-
nance in an atomic beam machine; in fact, both possibilities have been explored in
the past.

In the early development of these devices, they differed not only in the
“containment” of the atoms, but also in the way the microwave resonance was
made observable: The Rb clock detected resonance by optical hyperfine pumping
using a “conventional” uhf-excited vapor lamp as a source, and the Cs standard
used magnetic deflection as in the Stern—Gerlach experiment. We will describe
in this chapter what might be justly called the classical Cs beam standard using
magnetic deflection and reserve to a later chapter the laser-based systems.

Observing atoms in free flight ensures that they suffer only the desired interac-
tion with the resonant field, and not with background particles or optical pumping
radiation, both of which, we have seen, produce shifts in the resonance frequency.
It is precisely this freedom from unpredictable frequency shifts that made the Cs
standard uniquely suitable as a primary standard. Ideally, such a standard must
make possible the faithful observation of the sharpest possible resonance with the
highest possible signal-to-noise ratio, on a system insensitive to operating con-
ditions. In fact, we can quantify this statement by recalling the result cited in
Chapter 7 that for any resonator acting as a frequency reference, the uncertainty
in finding the center frequency is Av/(S/N), where Av is the frequency width of
the resonance, and S/ N is the signal-to-noise ratio. A figure of merit that increases
with decreasing uncertainty can therefore be defined as F = (S/N)(vo/AV). In the
case of the Cs standard, S/N is ultimately limited by shot noise due to the atomic
nature of Cs and S/N = /i, where n is the number of atoms contributing to the
resonance signal.

In the classical Cs standard the atoms undergoing the resonant transitions move
in vacuo with thermal velocities, acted on by only a weak uniform magnetic
field and the probing resonant microwave field. To deduce the “true” transition
frequency of Cs at rest in zero magnetic field, free of interaction with a microwave
field generator, involves deterministic or systematic corrections based on well-
established theory. Thus as long as we believe that a cesium atom is a cesium
atom no matter what its provenance, we have a universally reproducible standard.
Of course, we can always speculate as to whether it is possible that the fundamental
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Figure 9.1 The energy of magnetic hyperfine states in cesium 133 as a function of an applied
magnetic field

properties of atoms may be slowly evolving relative to a time scale established by
other dynamical processes in the universe; however, this is of no practical concern.

The two hyperfine states between which the resonant frequency of transition
defines the standard second are indicated in Figure 9.1, which shows the energies of
all the hyperfine substates plotted as a function of the intensity of an external mag-
netic field. The cesium atom has only one stable isotope, mass 133, with nuclear
spin I = (7/2)h /2w, which coupled with the outer electron spin J = (10)h/2n
yields according to quantum rules the following total angular momentum: F = 4
or F = 3 in units of #/2w. We saw in an earlier chapter that for magnetic field
intensities near zero, the atoms in these two hyperfine states act like bar magnets,
which however obey space quantization rules; that is, they can be observed to have
only (in this case) integral values (in units of //2m) for their components along the
field axis. Thus an atom in the F' = 4 state is further characterized by the magnetic
quantum number m , giving the discrete components of the angular momentum,
which can have only the integral values +4, +3, +2,+1,0, —1, —2, —3, —4; and
similarly for the F' = 3 state. Near zero magnetic field intensity, the energies of the
states with different mp increase initially in a linear fashion with the field, with a
gradient proportional to mp, as would a bar magnet, to give us straight-line graphs.
In particular, the substates having mg = 0 have zero slope, and therefore a transi-
tion between them, the so called “0-0 transition” is not broadened by small field
inhomogeneity. It is therefore chosen to define the second. As the magnetic field is
made more intense, the energies of all but two of these states no longer increase
in proportion to the intensity of the field; instead, the graphs start curving until
for large field intensity they become grouped in two nearly parallel sets, as shown
in Figure9.1. The total angular momentum vector is no longer constant in time
(because of the torque exerted by the field), and a different set of quantum numbers
is required to specify the substates. In the limit, for very intense magnetic field, the
electronic moment and the nuclear moment separately have constant components
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along the field. The appropriate quantum description is in terms of quantum
numbers giving the integral or half-integral components of each separately along
the field axis. In the present case we have for I = 7/2 the following 8 possible com-
ponents, withm; = +7/2,4+5/2,43/2,+1/2,-1/2,-3/2,—=5/2, =7/2, and for
J = 1/2 only two possible components, m; = +1/2, and my = —1/2. There are
8 x 2 = 16 possible combinations of m; and my, the same number as we have in
terms of F' and mp, where we had 9 substates with FF = 4 and 7 substates with
F =3:9+7 = 16. This is as it should be, since increasing the field strength alone
cannot generate new quantum states; it can only change their energy.

The way the energy of the substates varies with the intensity of the magnetic
field is of particular interest for us, since that energy constitutes the potential energy
whose gradient determines the force with which the magnetic field acts on an
atom to accelerate it. It follows that atoms in the group of substates whose energy
increases with magnetic field will experience a force in the direction of decreasing
field intensity, while conversely, atoms in the other group of substates will tend to
move in the direction of increasing field intensity. Thus atoms acted on by nonuni-
form magnetic fields will not only execute the usual precessional motion but also
experience a body force affecting the motion of their center of mass. There is a
further essential point that must be made before we describe the beam machine in
more detail: Atoms remain in the same quantum state as long as they move in a
smoothly varying magnetic field without going through zero value, ensuring at all
times that the time-varying field they see has negligible amplitude in the Fourier
spectrum at the precession frequency. These facts are exploited in the atomic beam
machines to deflect the atoms selectively according to their quantum state.

We have already been introduced to the idea of atomic beams, their forma-
tion and use in the study of magnetic resonance in free atoms and molecules.
We have noted the culmination of that technique in the introduction by Ramsey
(Ramsey, 1949) of the two separated field regions to induce transitions, which
ultimately led to the adoption of the Cs standard as the primary one. The essen-
tial elements of a Cs beam machine using magnetic state selection are exemplified
by the PTB (Physikalisch-Technische Bundesanstalt) standard designated as CS1,
shown schematically in Figure 9.2. In a generic design, atoms from the source enter
the strong magnetic field of the polarizer A-magnet, where because of a steep trans-
verse gradient, atoms in the two groups having opposite energy-field dependence
are deflected in opposite directions. By suitable beam stops, the atoms in the F' = 3
group, including mr = 0, can be removed, leaving only those in the other group
with F = 4, among which are atoms in the desired mp = 0 substate. These atoms
leave the intense field of the polarizer magnet with greater number in the (F = 4,
mp = 0) state than in the (F = 3, mp = 0) state, and remain in their respective
quantum states as they continue to the much weaker, uniform C-field. If the oscil-
latory field applied there is off resonance with the desired quantum transition, they
will again be deflected by the analyzer B-magnet in the same direction as in the
polarizer and away from the detector. On the other hand, if the oscillatory field in
the C-region is on resonance, some of the atoms in the (F = 4, mp = 0) state will
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Figure 9.2 General layout of a Cs beam atomic standard as exemplified by the CS1 primary
clock at PTB (A. Bauch, et al. 2000)

make the transition to the (F = 3, mg = 0) state, which are deflected in the oppo-
site direction by the analyser, towards the detector. This mode of design is called
“flop-in,” since only atoms that have made the desired transition are detected, to
distinguish it from designs in which resonance leads to atoms being deflected away
from the detector. In general a number of different configurations are possible; the
choice is ultimately determined by considerations of signal-to-noise ratio.

9.3 The Physical Design
9.3.1 The Vacuum System

The entire space through which the atoms pass must be under high vacuum, and
therefore a vacuum shell encloses that space, and suitable vacuum pumps and vac-
uum monitoring instrumentation must be provided. It happens that Cs has, for a
metal, a relatively low melting point at 28.5°C and has an equilibrium vapor pres-
sure as high as 1073 Pa at 24°C. This dictates that a means must be provided to
remove background Cs vapor, since that vapor density is comparable to that in the
beam. In laboratory installations this formerly took the form of “cold traps,” liquid
containers forming part of the vacuum shell that are cooled by filling them with
liquid nitrogen at —196°C. More commonly now, particularly in compact systems
designed to be more or less portable, getters are used; these are materials onto
whose surface the Cs either physically attaches in a process called adsorption, or
with which it chemically combines, thereby removing it from the volume. In com-
mon vacuum practice molecular adsorbents such as carbon, or zeolites, which are
alkali-metal aluminosilicates, are used. For a chemically reactive element such
as Cs, any number of substances will serve as getters; a secondary criterion must
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be used to make a selection, such as low vapor pressure, temperature stability,
and cost. Carbon surfaces are commonly placed at points where unwanted cesium
atoms must be removed from the volume.

The element that occupies a unique position as a getter is titanium, either as
a film deposited by evaporation from a titanium filament or as plates forming the
negative electrodes in an electrical discharge. In the latter case the getter action is
achieved by having the particles to be pumped impinge on the titanium surface as
high-speed ions. The ions are formed in an electrical discharge made possible under
very high vacuum conditions by the entrapment of electrons using a special elec-
trode configuration in a strong magnetic field. This class of ion pump, illustrated
in Figure 9.3, is effective in pumping all gases, including the noble gases. It has,
since its introduction in the 1950s by Varian Associates, revolutionized vacuum
technology, making it possible to reach the vacuum of outer space. It is universally
used now to maintain the requisite high vacuum in Cs beam systems. The need
to operate under high vacuum in a system whose length essentially determines the
accuracy, largely dictates the physical size and aspect of the Cs standard, and in par-
ticular implies that the highest accuracy can be reached only in a fixed laboratory
installation.

9.3.2 The Atomic Beam Source

The source of the Cs beam is a small constant temperature enclosure, the oven, in
which the vapor density of the atoms is raised by heating a small quantity of the
silvery metal to around 100°C. The Cs vapor from the oven passes through a colli-
mator, or effuser, consisting often of a bundle of capillary tubes or finely crinkled
metal foil forming a multichannel nozzle that is intended to cause atoms to emerge
in as narrow a ribbon (or sometimes cone) as possible. The operating temperature
is such that the vapor density is below the point where collisions between atoms
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Figure 9.4 A recirculating Cs beam source. (Drullinger, et al. 1981)

can occur with significant probability within the collimator. Under this condition
the movement of the atoms through it is described as thermal effusion, to distin-
guish it from the case in which the vapor density is very much higher, in which
case the flow is called hydrodynamic, as in a gas jet. The most critical part of the
source is obviously the collimator, and a great deal of care in the design and oper-
ation of the source must be taken to ensure that no buildup of Cs occurs in the
collimator, causing fluctuations in the beam intensity. This requires that the tem-
perature of the collimator be maintained sufficiently high, with the consequence
that Cs atoms originating from the interior surfaces of the channels themselves add
to the emitted beam. For this reason this type of source is sometimes referred to as a
bright-wall oven to distinguish it from a less common design using an effuser made
of Cs-adsorbing carbon, for example, which would be called a dark-wall oven.

In spite of all efforts in the design of the collimator to project a sharply narrow
beam, it is inevitable in practice that a not inconsiderable amount of the cesium is
sprayed out and lands uselessly on the first beam-defining aperture. This, of course,
limits the useful life of the charge in the oven. In an attempt to overcome this limi-
tation, refluxing, or re-circulating, ovens have been designed, in which the heat
applied to the oven establishes a falling temperature gradient along a single colli-
mator tube, reaching a value just above the melting point of cesium at the tip. The
liquid cesium that would accumulate in the collimator and would be intolerable
in a conventional bright-wall oven, is drawn back, in this design, into a reservoir
filled with a tungsten sponge impregnated with cesium, by a clever use of capillary
action. A form of re-circulating Cs oven is represented schematically in Figure 9.4.

9.3.3 The Polarizing and Analyzing Magnets

The powerful polarizing A-magnet has pole faces specially contoured in order to
produce a steeply varying intensity from one point to another. The purpose of this
magnet, we recall, is to act on the magnetic moments of the atoms to deflect them
and thereby spatially separate them according to their magnetic quantum state.
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There are essentially two different types of state-selecting magnets: focusing and
non-focusing. The original Stern—Gerlach magnet and its later variants are non-
focusing 2-pole magnets, with pole faces contoured to produce the steepest possi-
ble descent in the field intensity as we go from one pole to the other. Since not all
atoms enter the field along precisely the same trajectory, clearly if the field gradi-
ent, and hence the force they experience is not the same at all points in the field,
then the beam “profile,” that is, the distribution of atoms over a cross section of the
beam will be affected. The main object of magnet design is to produce a field gradi-
ent over the cross section of an atomic beam that if anything distorts the profile in a
beneficial way that is, reduces natural divergence. One variant of the Stern—Gerlach
magnet is shown in Figure 9.5.

There are two types of focusing magnets: the quadrupole with a 2-fold axis of
symmetry, and the hexapole magnet with a 3-fold axis of symmetry. First let us
dispose of the simpler quadrupole type of magnet, which has been exploited far
more in the focusing of ion beams than neutral atomic beams. In the neighborhood
of the magnet axis it can be shown that the field components are well approximated
by H, = kx, H, = —ky, where x, y are coordinates referred to Cartesian axes
X, Y chosen to bisect the north and south poles of the magnet. The resultant field is
therefore H = k(H,* + Hyz)l/2 = k(x> + yz)l/2 = kr, where k is a measure of the
overall strength of the magnet and r is the radial distance from the axis to the field
point. The motion of Cs atoms in such a field is complicated by the fact that their
magnetic energy, which acts as potential energy analogous to the potential energy
of an object moving under gravity, is not simply proportional to the magnetic field

\ atomic beam

Figure 9.5 A constant gradient state selecting magnet



9. The Classical Cesium Standard 175

intensity, as it would be for a bar magnet, but rather is a nonlinear function of
the field, given by the Breit—Rabi formula we have already encountered. It is as if
we were dealing with the motion of a magnet whose strength varied from point to
point according to the strength of the magnetic field it is passing through. We recall
that at sufficiently high field intensities the plots of the energy versus field strength
do tend to become linear, and moreover, in that limit the electronic and nuclear
moments separately maintain a constant (quantized) angle with the direction of the
magnetic field. In this high field limit, it follows that the force experienced by the
atoms is simply proportional to the gradient in the magnetic field intensity, which is
constant and in the radial direction. Under the assumed conditions, then, the atoms
issuing from the source in the quantum states whose energy increases with field
intensity would converge towards the axis, while the others would diverge away
from it. The particle trajectory in a axial plane is similar to that of a particle falling
under gravity.

In the same limit of high field intensity, the focusing properties of the important
hexapole magnet, shown in Figure 9.6 are equally simple to predict. In this case
the field in the neighborhood of the axis is approximated by H, = k(x> — y?)
and H, = —2kxy, which lead to a resultant field H = k(x> + y?) = kr* and a
force that is radial and converging or diverging according to the same condition on
atomic state cited above. In this case we see that the gradient of the field, and hence
the force, is proportional to the distance from the axis, analogous to the force of
an elastic spring. In fact, the radial motion will be a simple harmonic oscillation
for atoms in one group of hyperfine states, and rapidly (exponentially) diverging
from the axis for the other group. More will be said about the hexapole magnet in
connection with the hydrogen maser in a later chapter.

Since the field intensity tends to zero on the axis for both types of focusing mag-
nets, beam stops must be used to eliminate atoms that would otherwise go through
without state selection. Unfortunately, since the beam-forming effuser of the source
commonly produces a beam profile that peaks on the axis, such a beam stop would
seriously diminish the utilization efficiency of the Cs. A possible solution would
be an off-axis ring-shaped source.

We should note one very important limitation of both focusing magnets: unlike
the 2-pole magnet, there is no choice as to which states are focused and converge
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Figure 9.6 The hexapole atomic beam focusing magnet
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towards the axis and which diverge away from it. In our case, atoms in the F = 4
state will always converge, and those in the other FF = 3 state will diverge from
the axis. This makes it impossible to have both the A- and B-magnets focusing in
a “flop-in” design.

9.3.4 The Uniform C-Field

After leaving the intense field of the state-selecting A-magnet, the atoms must pass
through a gradually decreasing intensity to the uniform C-field, without changing
their quantum states. This requires that the time-varying field seen by a moving
atom have negligible amplitude in the Fourier spectrum at the transition frequen-
cies between the magnetic substates. Failure to meet this requirement leads to
undesirable transitions between the magnetic substates, given the name Majorana
transitions. Such transitions would cause relaxation between the desired mp = 0
substates, defeating the state-selecting function of the magnet. The same situa-
tion is encountered in the subsequent transition from the C-field to the powerful
analyzer B-magnet.

In the elongated C-field region, transitions between the two hyperfine states are
resonantly induced by an oscillatory magnetic field. In this region the magnetic
field must be relatively weak to take advantage of the first-order insensitivity of
the energy of the mr = 0 substates to magnetic field intensity in the neighborhood
of zero field. On the other hand, the field must be intense enough to produce a
sufficient separation among the m-substates, mr = 0, 1, 2, 3, etc., so that the reso-
nant field does not also cause field-dependent Amp = =1 transitions; otherwise,
field variations would further broaden the transition frequency. Needless to say, the
C-field must be as uniform and stable as possible, and therefore magnetic shielding
from extraneous magnetic fields is necessary. This is accomplished by enclosing
the region with one or more thicknesses of high-permeability magnetic alloys such
as mu-metal or supermalloy. A highly uniform magnetic field (the C-field) is pro-
duced typically by current flowing in a pair of rectangular coils placed symmet-
rically parallel to the beam; their separation is chosen to produce a constant field
of the highest possible uniformity over the section of the atomic beam where the
transitions are induced. Alternatively, an electromagnet with precisely machined
plane parallel pole faces could in principle be used; however a properly designed
coil system can realize adequate homogeneity of the field.

9.3.5 The Transition Field

As already indicated, the one refinement of the Cs beam resonance apparatus
that put it in the class of a primary standard is the successive oscillatory field
geometry introduced by Ramsey in 1949 for probing the atomic resonance. To
appreciate this, we must go back to the Rabi field and examine the problems atten-
dant upon the attempt to observe a microwave resonance in atoms traveling in a
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beam with thermal velocities on the order of 250 meters per second (about 600
mph). These problems arise from the fact that the length of time the atoms interact
with the resonant field is determined by the length of the field region. We recall
that the frequency width of the resonance is increased as this time is made shorter;
hence the length should be made as great as possible. In fact, the length must be on
the order of one or two meters to yield resonance line widths small enough to be
interesting for a frequency standard. If L is the length of the transition region and V
the average thermal velocity of the atoms, then the average transit time is L/V, and
the resonance line width is about Av ~ 14(L/V) = V/(2L). Hence for L = 1 m
and V = 250m/s we find Av =~ 125 Hz. This is a fundamental width, which can
be derived simply from the Fourier spectrum of a pure oscillation of finite duration,
as seen by any given atom. This oscillation starts from zero and rises to a constant
amplitude for a finite period L/V while the atom is in the transition region, then
falls again to zero; its Fourier spectrum is illustrated in Figure 9.7.

A serious consequence of the need to have an extended interaction region is
the Doppler shift arising from the directed motion of the atoms though the oscilla-
tory field. It may be thought that this may be overcome simply by using a stationary
wave pattern in the interaction region. However, aside from the practical difficulty
of ensuring a strictly stationary field, even if there were no net displacement of
the resonance frequency, there would nevertheless be a broadening of the spec-
trum. This may be seen from the following argument: Since the wavelength of the
microwave field is only about 3 cm, the atoms would pass through a field whose
amplitude and phase vary periodically along their path; that is, they see a mod-
ulated field, the frequency of the modulation depending on their velocity. Such a
modulation has a Fourier spectrum consisting of two equal sidebands separated
from the center frequency by the Doppler frequency (V/c)vyg. We can reach this
same conclusion by thinking of the standing wave as a superposition of two equal
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Figure 9.7 An oscillatory field of finite length and its Fourier (power) spectrum
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waves traveling in opposite directions, as when a wave on the surface of water is
reflected back on itself by a straight wall; each wave would have a Doppler shifted
frequency in the direction opposite to the other. Since the atoms do not all have
the same velocity but are distributed continuously over a wide range of velocity,
characteristic of the temperature of the oven, the spectrum would consist of a line
broadened out by the Doppler effect.

9.3.6 The Ramsey Separated Fields

These problems are removed, following Ramsey, by applying the resonant oscil-
latory field coherently (that is, with a definite phase relationship) in two separated
narrow regions, one at the entrance and the other at the exit to the extended C-field
transition region. Although the actual length of time a given atom interacts with
the oscillatory field is thereby drastically reduced, it can be shown that since the
fields in the two regions are in phase, the frequency width of the net response of the
atoms traversing the whole transition region is determined by the much longer time
the atoms spend in the intervening space. In order to ensure that the fields in the
two regions maintain a constant phase relationship, a common microwave source
is used, and the fields are symmetrically located at the ends of a single resonant
microwave cavity, as shown in Figure 9.8. Thus the field in each narrow region can
be limited to one with a single phase and nearly constant amplitude over the cross
section of the beam.

The resonant cavity, the microwave analogue of an echo chamber, is usually
a section of rectangular wave-guide with 90-degree bends at its ends, where aper-
tures are provided for the Cs beam to pass through the standing microwave field
pattern. The cavity is terminated at the two ends by a short circuit and the atoms
pass through an antinode of the standing microwave field pattern. In order to inhibit
the leakage of the microwave field parallel to the atomic beam, small sections
of waveguide are mounted on the beam apertures parallel to the beam. As in all
resonant structures, the resonant modes, with their characteristic frequencies and
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Figure 9.8 The Ramsey separated field atomic resonance cavity
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field patterns, are determined by a formula relating the resonant frequencies to the
dimensions of the cavity, a formula that contains three integers, the mode indices.
A particular mode that might be used is designated as TEjq,, which represents
what is called a Transverse Electric mode, that is, one in which the electric com-
ponent of the electromagnetic wave is everywhere perpendicular to the length of
the cavity. The indices 1, 0, n give the number of times the electric field passes
through a maximum amplitude of oscillation as we go in the directions of the three
principal dimensions of the wave-guide. Thus if the cross section of the cavity is a
rectangle with sides A and B, where A > B, and the length is C, then the indices
indicate that in this particular mode the field rises to one maximum in the middle
of the A dimension, has no maximum (is constant) along B, and has n maxima
along the length C. For the dimensions A, B, C to be compatible with this mode,
it can be shown that the following condition must be satisfied: C = n¢/2, where

Ae =No/(1 — 7\% /4B%)1/2 and Ay is the free-space wavelength of the microwaves.
Thus in our case the wavelength of the microwaves resonant with the Cs transition
is Ag = 3.26 cm; if we assume, for example, B = 2.5 cm, then A, = 4.3 cm and
a choice of n = 48 would make the length of the cavity 103.2 cm, appropriate
for a fixed installation. To be effective in inducing transitions between the sub-
states F =4, mr = O and F = 3, mfp = 0, it is not enough for the frequency of
the microwaves to satisfy the conservation of energy condition hv = A Ej s, where
AEps, represents the difference in energy between the two hyperfine states; the
microwave field must also have the correct directional properties, that is, polariza-
tion. We recall that to observe magnetic resonance between Zeeman substates in
which m r increases or decreases by one, the field inducing transitions must have
an angular momentum component along the constant field axis to satisfy the con-
servation of angular momentum law as it applies to the combined system of atom
and radiation field. To have such a component of angular momentum, the radiation
field must have a component rotating about the constant field axis. Similarly here,
since there is no change in m r, being zero before and after the transition, and since
only one quantum of radiation is involved, it must have zero component of angular
momentum along the constant field axis. This will be the case if the radiation field
oscillates parallel to the constant field; this determines the relative orientation of
the microwave cavity and the coils producing the constant field.

To help gain a broader perspective on the use of separated fields we should
mention a closely parallel case in radio astronomy of the use of two separated radio
antennas, as shown in Figure 9.9, to increase the angular resolution in observing
distant sources. By maintaining a common phase reference for the receivers at the
two antennas, the system’s ability to distinguish neighboring sources, that is, its
resolving power, is made to approach that of a much larger antenna having a diame-
ter equal to the distance between the two small antennas. To see this we must recall
that even if an antenna were perfectly parabolic, so that rays coming in parallel
to its axis would geometrically converge to a point focus, physically the reflected
wave pattern does not converge exactly to a point; it approaches this ideal only to
the extent that the aperture, that is, the diameter of the antenna, is large compared
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to the wavelength of the radio waves. The wave pattern near the geometric focus
will be a series of maxima and minima resulting from the antenna cutting off the
incoming wave at its outer rim, whence it spreads in a pattern dictated by inter-
ference from different parts of the aperture. The angular width of this diffraction
pattern is set by the difference in the phase of an incoming wave across the aper-
ture; the first minimum will occur when that difference in phase is on the order
of 360°. The larger the aperture, the smaller will be the required increment in the
direction of the incoming wave to produce that phase difference, and the greater the
resolving power. We now see that by comparing the signals arriving at two widely
separated antennas, a smaller difference in the angular position of distant sources is
distinguishable because the longer base line magnifies the difference in the phase
of the wave reaching the two antennas, as shown in Figure 9.9.

The same principle is used in the much older “stellar interferometer” of
A.A. Michelson, of the velocity of light fame. In this, two optically flat mirrors are
mounted some distance apart to receive starlight and the light reflected from them
combined through precise optics to a common detector whose output depends on
the relative phase between the two interfering reflected beams. By this interfer-
ometer Michelson was able to determine the (angular) diameter of stars that were
smaller than could be resolved with telescopes available at the time.

Although in the years following its introduction in 1949 the principle of the
separated field method has been applied in a variety ways in spectroscopy, it was
originally developed to achieve greater accuracy in the measurement of atomic
and molecular magnetic moments by the molecular-beam resonance method of
I. Rabi. It is that application that provides the most visual explanation of the special
properties of inducing transitions this way.

We recall that in an earlier discussion of magnetic resonance we described the
gyroscope-like precession of an atomic angular momentum (with an associated
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Figure 9.9 The use of separated antennae in radio astronomy to increase resolution
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magnetic moment) about a static magnetic field, and how the application of a weak
magnetic field oscillating at the frequency of precession will cause the axis of spin
to tilt away from the static field so that the cone it sweeps out opens out to a larger
apex angle. In the Ramsey arrangement, the atoms see an oscillating field in the first
narrow transition region of sufficient strength to produce, for example, a 90-degree
apex angle for atoms with the average thermal velocity. On leaving this first transi-
tion region, the atoms pass through a relatively long region free of any oscillating
field, in which they continue to precess at the same frequency appropriate to the
static uniform C-field. The atoms then enter the second narrow region, where they
are again subject to an identical oscillatory magnetic field, which has a definite
phase relationship with the first, usually the exact same phase. If the frequency
of the oscillating fields is exactly the same as the average precession frequency
appropriate to the static field, then the atoms will enter with the same phase as the
field, and the direction of the spin axis will continue to tilt toward a cone angle of
180 degrees, corresponding to a complete reversal in the direction of the angular
momentum. Note that the phase of the precessing moment relative to the oscilla-
tory field will determine the direction and degree of tilt the latter produces; hence if
the precession frequency in the C-field differs only slightly from the frequency of
the oscillatory field, a large phase difference can develop in the intervening space,
and the degree of tilt will be strongly reduced.

If the atoms all had precisely the same velocity, then there would exist a dif-
ference in frequency between the precession and the oscillatory field that will lead
to a phase difference of exactly 360 degrees being developed between them in the
space between the two transition regions; that is, the atoms would again enter the
second region in phase with the field. In fact, the same would happen at frequencies
leading to a phase difference of any multiple of 360 degrees. However, in reality,
the atoms do not all have the same velocity, and these multiple “sidebands” occur
at frequencies that depend on velocity, since a slow atom spends more time in the
field and requires a smaller difference in frequency to develop the 360-degree phase
difference than does a faster atom. The resonant frequency has the unique property
of being independent of velocity; no phase difference can develop if the oscilla-
tory field and the precession have the same frequency, no matter how long it takes
an atom to reach the second transition region. Moreover, since there is a continu-
ous distribution of velocity among the atoms, the sidebands form a continuum of
reduced strength leaving a prominent central peak at exact resonance.

A quantitative analysis of the probability that an atom passing through the two
separated field regions will emerge having made a transition to the other substate
requires an exact quantum treatment of the problem, as was initially carried out by
Ramsey. It would be inappropriate to attempt to reproduce that theory here; rather,
we will try to gain some insight as to the shape of the resonance signal using a
quantum result that is strictly valid only where the “perturbation” acting on an
atom is weak. It is that the transition probability is proportional to the square of
the Fourier amplitude of the field at the transition frequency. Although the per-
turbation of the atoms here is far from weak, nevertheless it serves to provide
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Figure 9.10 Field seen by an atom in the Ramsey cavity and its Fourier spectrum

some general basis for understanding the system. In any event, since the exact
results are known for this case, there is little danger of being misled by an invalid
approximation.

The time dependence of the assumed separated field is shown with its Fourier
spectrum in Figure 9.10. If this is compared with the Fourier spectrum of an oscil-
latory field extending the full length of the C-field, we find that in fact the central
maximum in the frequency spectrum is even narrower for the two separated fields
than for the single extended one, a fact proved rigorously by Ramsey in a full
quantum-mechanical treatment of the problem.

Since the duration of a given atom’s interaction with the separated fields and
the time spent between them depends on the atom’s velocity, the signal produced
by a beam consisting of a large number of atoms having a thermal distribution of
velocities is obtained by summing over the contributions from individual atoms.
This has been analyzed rigorously by Ramsey, including the effect of introducing
phase differences between the two separated field regions; the result for zero phase
difference is shown in Figure 9.11.

The Ramsey arrangement alleviates another problem: that of ensuring a suffi-
ciently uniform and constant magnetic C-field over an extended space. This would
clearly involve a complex array of compensating coils and impose severe tolerances
on the mechanical and electrical parameters, and particularly the shielding from
external magnetic fields, etc. Fortunately, the phase difference that accumulates
between the atomic moments and the oscillatory field, as the atoms travel between
the two transition regions, depends on the spatial average of the C-field taken
over the path of the atoms. It is reasonable to expect that this average fluctuates
from atom to atom far less than the field strength itself along the path of any
given atom.
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Figure 9.11 Theoretical signal shape for thermal atoms passing through Ramsey field
(Ramsey, 1949)

9.4 Detection of Transitions

Next the atoms pass through the powerful analyzing B-magnet, which serves to
analyze the magnetic states of the atoms, thereby monitoring the occurrence of the
desired microwave transition by the change in the number of atoms reaching the
final element, the detector. Since the greatest challenge in the design of an atomic
beam machine is to achieve a high signal-to-noise ratio, which means, because
of shot noise, a high beam intensity, it would seem advantageous to use focus-
ing magnets for the A- and B-magnets. However, this presents a dilemma, since
both magnets would focus atoms that are in the same state, so that ones that have
made a transition in the C-region to the other state would diverge from the axis. If
the detector is placed on the axis, then it would be exposed to the atoms that had
not made a transition; to detect ones that had made a transition, it would have to
accept atoms over an extended circular area. Neither option is particularly desir-
able, the first because the signal to noise ratio is compromised by the shot noise
due to the larger number of atoms that have not made a transition, and the second
because the increased area may incur greater noise from background Cs vapor.
The availability of an efficient low-noise Cs detector played a critical part in the
development of the Cs beam resonance apparatus It is the so-called hot wire detec-
tor (which in fact is more typically a ribbon) which is based on the phenomenon of
surface ionization of the alkali atom, in which a Cs atom impinging on certain pure
metallic surfaces (which must be maintained at high temperature to prevent surface
layers of adsorbed gases) loses an electron to the metal and emerges as a positively
charged ion. The phenomenon is permitted by the energy conservation law for met-
als whose binding energy of an electron to the interior of the metal (the so-called
work function) is greater than the binding of the outer electron in the Cs atom (3.87
electron volts). This is true of such metals as tungsten, niobium, molybdenum and
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the alloy Pt-Ir. It is remarkable not only that the process occurs at all (the electron
has to pass through a classically forbidden barrier to do it), but that it does so with a
very high probability, so that very nearly all atoms reaching the surface of the metal
become ions. The main difficulty in the early application of this type of detector
was that other ions, particularly those of potassium, are also emitted. Thus for the
highest possible signal-to-noise ratio, not only were the purest available materials
used, but also a mass filter was incorporated into the detector design. The mass
filter often took the simple form of a 60°-sector magnetic deflection type (now one
would opt for a Paul RF quadrupole mass filter) with the output focused on the
cathode of an electron multiplier capable of counting individual ions.

However this form of detector design has been supplanted in recent years
through advances in the fields of materials science and solid state electronics.
Thus for example the machine designated as NBS-6 at the National Institute
of Science and Technology NIST, Boulder, uses a double ribbon of Pt-Ir detec-
tor and low noise field-effect transistor preamplifiers, without a mass filter. This
design is admissible because of a sufficiently high beam intensity, which simulta-
neously reduces the relative importance of impurities in the ribbons and the thermal
(Johnson) noise that an electron multiplier is designed to overcome.

9.5 Frequency-Lock of Flywheel Oscillator to Cesium

Like the Rb standard, the Cs beam resonator is a passive device, which does not
itself generate any microwave power but merely serves as a frequency reference.
This reference can in principle be used in one of two ways: first, one may attempt
to manually tune to the atomic resonance a frequency synthesized from the source
under test, or more usefully, to automatically control the frequency of a flywheel
oscillator by means of one or more servo loops to provide a convenient reference
frequency output signal. This involves synthesizing from a stable radiofrequency
source a microwave frequency that can be set with the utmost precision at the peak
of the resonant response of the cesium atoms.

We will limit ourselves to the essentials of a Cs clock, in which a high-
quality quartz oscillator, commonly operating at 5 MHz, has its frequency servo-
controlled, so that a synthesized microwave frequency derived from it is locked
to the center of the Cs resonance. The basic ingredients of such control circuitry
have already been described as they apply to the Rb standard. We recall that
in order to obtain an error signal for the servo-control, that is, a measure of
how far, and in what direction, an applied microwave frequency is away from
the center of the resonance curve, we begin by modulating the phase/frequency
of the probing microwave field (or the C-field) at a frequency small compared
with the frequency width of the atomic resonance, and far from any harmonic
or subharmonic of frequencies commonly present in the environment. The form
of modulation, once commonly sinusoidal, is more likely to be binary now with
the probing frequency switched symmetrically between two values, in order to be
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more naturally compatible with the digital synthesizer and processor of the cesium
resonant response. In the case of analog modulation, the component of the output
from the detector at the modulation frequency is zero when the modulation is sym-
metric about the center of the resonance curve (assuming it is symmetrical), and
is of opposite phase on the two sides of the center. For the digital modulation the
output would be ideally zero if the frequency is switched symmetrically about the
resonance center. The detector output is connected to a synchronous demodulator
whose output is the average product of the incoming signal and a reference signal of
the same frequency. By using as reference the signal producing the phase/frequency
modulation, we obtain an error signal that is a negative or positive voltage depend-
ing on whether the applied frequency is too low or too high. The optimum depth of
modulation can be shown to be half the frequency width of the resonant response.

In the case of the Cs beam standard, the modulation of the phase/frequency
poses a problem not encountered in the Rb standard: The transit time of the atoms
between the two separated transition regions allows the phase of the microwave
field (or C-field intensity) seen by the atoms to be different in the second region
from what it was in the first. Now, such a difference is known to cause a shift
in the observed resonance; however, over a modulation cycle, the shift oscillates
symmetrically about zero and merely changes the effective width and phase of
the modulation over the resonance curve. Furthermore, there is a delay between
the time a given atom passes the second transition region and the time it reaches the
detector; these and other possible sources of phase shift dictate that a compensating
phase shifter be included to adjust the reference phase in the synchronous detector.

There are, not unexpectedly, numerous possible circuit designs for deriving
a microwave field resonant with the Cs transition that is phase coherent with a
5 MHz quartz oscillator serving as a convenient frequency standard. The extent of
the sophistication in the electronic design is obviously determined by the tolera-
ble residual phase noise in the probing microwave signal applied to the Cs atoms.
In recent years there has been rapid development of sophisticated digital synthe-
sizer techniques to produce signals with extremely low phase modulation (PM)
noise, and highly stable low-noise microwave generators, spurred by advances in
the spectral resolution of atomic and ionic resonators.

There are broadly two approaches: a multiplication chain synthesis of the fre-
quency to probe the Cs resonance based on a precision 5 MHz voltage controlled
crystal oscillator (VCXO), or using the output of a low-noise microwave generator
(for example a dielectric resonator oscillator (DRO)) and a direct digital synthesizer
(DDS) to synthesize the Cs resonance frequency. An advanced example of a design
that can be spacecraft qualified is shown in Figure 9.12.

The microwave source is a 6.4 GHz voltage controlled DRO whose output
drives a regenerative divider that is expected to have low phase noise and low tem-
perature sensitivity. Its outputs at 3.2 GHz and 9.6 GHz are separated by a diplexer
(not shown in the figure). The 3.2 GHz signal is frequency divided, buffered and
filtered in two stages to yield a 100 MHz reference frequency. A 50 MHz clock
signal for the DDS is derived by dividing the 100 MHz reference by 2. The DDS
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Figure 9.12 Simplified schematic diagram of the Cs frequency synthesizer intended for
space applications (Gupta, et al. 2000)

output is a sine wave with a 2 uHz resolution and range of 20 MHz. It is designed
to have phase continuity and low switching transients. The frequency output is set
at 7.368 MHz and mixed with 400 MHz to obtain 407.368 MHz. This is finally
mixed with the 9.6 GHz from the regenerative divider to obtain the Cs frequency
of 9.192.... GHz. Since the use of the DRO avoids the use of high multiplication
of frequencies, it has particularly low phase noise, and the DDS has a very fine
resolution (frequency increments) in order to interrogate the resonance line with
high precision. The output of the cesium beam detector is connected to the syn-
chronous detector and integrator, and the servo loop is closed by connecting to
the 5 MHz VCXO. In order for the VCXO to be phase-locked to exactly 5 MHz
on the atomic time scale, it is necessary to allow for the various frequency off-
sets of the observed Cs resonance frequency from the intrinsic frequency of an
isolated atom at rest. There are several such sources of deterministic frequency
deviations, the more important of which are described in what follows. The devia-
tions determine the setting of the DDS.
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9.6 Corrections to the Observed Cs Frequency

Prior to being adopted as the basis for the definition of the second, exhaustive
studies had been conducted to identify and analyze possible sources of systematic
errors in the observation of the Cs resonance. These, we recall, are persistent errors,
arising from usually subtle factors, affecting the frequency at which the Cs reso-
nance is observed in a deterministic way, rather than as an unpredictable random
fluctuation. It is a primary quest of those responsible for the establishment of phys-
ical standards to seek out all conceivable sources of these errors and to attempt to
correct them. Having a number of systematic errors does not in itself detract from
the acceptability of a standard, provided that they are well understood and calcu-
lable. However, the discovery of previously unsuspected sources would obviously
be disastrous. In order to gain some appreciation of the complexity of establishing
that what is measured is in fact what is called for in the definition of the standard,
we list in what follows some important corrections.

9.6.1 Magnetic C-Field

The transition frequency in weak magnetic fields, v, is given by
(V) = Vo +427(B)c, 9.1

where () ¢ represents the average taken over the transition region of the C-field
expressed in gauss. This equation, of course, applies only to Cs and specifically
to our hyperfine transition. Typically, B is on the order of 50 milligauss, giving a
correction of around 1 Hz. Since it is generally much easier to measure B rather
than B2, some error is incurred if (B)2C is used in equation 9.1, and B is not exactly
uniform.

9.6.2 Unequal Phases of Ramsey Fields

If the phases of the oscillating fields in the two separated transition regions of the
Ramsey arrangement are not exactly the same, the detector output will not be at its
maximum at resonance. To estimate the displacement in frequency, we note that a
180° difference in phase reduces the detector output to its first minimum, that is,
corresponding to a shift in frequency equal to the width of the resonance. If the
latter is, say, 125 Hz, a 1° difference in phase would cause a shift in frequency of
about 125/180 = 0.7 Hz, which is not negligible in the context of a frequency
standard. This asymmetry in phase and other asymmetries in the apparatus with
respect to a reversal of the beam direction may have any number of causes; for
example, inertial forces acting on the atoms or strains in the mechanical structure
due to acceleration, such as might be experienced in a spacecraft. Where the envi-
ronment dictates it, or where the utmost accuracy is sought, as in large standards
laboratory installations, the effects of such asymmetries are corrected by providing
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for Cs beams to traverse the apparatus in opposite directions. Any spurious fre-
quency shift due to asymmetry will reverse direction, and a corrected frequency
can be obtained as the average of the two frequencies at which the signal is at its
maximum. To provide for the reversal of the atomic beam without opening up the
vacuum system obviously requires that both an oven and detector be provided at
both ends of the machine, and the ability to move parts and relocate them precisely
under vacuum using bellows or sliding seals.

9.6.3 Relativistic Doppler Shift

As we discussed in Chapter 7, the Doppler effect as manifested by electromagnetic
waves is not accurately described by classical theory; the formula that is in accord
with the principles of relativity cannot differ between situations where only the
frame of reference is different. We saw that Einstein’s theory yields the following:

9.2

In the present case, V/c is only on the order of 107°, and so in a power series
expansion in V/c, terms beyond the second power are negligible; thus the Doppler
correction to the frequency is given by

\Y% 1V?
v—voz—?v0+ic—2vo+-~-. 9.3

The first term on the right, which involves V /c to the first power and is the domi-
nant effect, agrees with classical theory and is called the linear Doppler effect.
We have already seen how the Ramsey separated field technique circumvents this
linear effect; however, at a level of accuracy on the order of 1 part in 1012, the
second term, involving (V /c)?, becomes significant. The first thing we note about
this second-order Doppler effect is that the shift does not change if the sign of V is
changed; that is, it is the same whether the source and observer are approaching or
receding from each other. Secondly, we note that as “seen” by the moving atoms,
the microwave frequency is higher than would be observed if the atoms were not
moving. Therefore, if a moving atom “sees” a microwave field that is resonant with
its quantum transition, that same field would be below resonance for a stationary
atom; that is, the observed frequency is lower than the “proper frequency” of the
Cs transition.

9.6.4 Spectral Impurity of Microwave Field

An ideal standard would have a microwave field whose spectrum consists of a
single, infinitely narrow line at a frequency that can be controlled to lock on to the
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maximum of the Cs resonance curve. In reality, the microwave field has a distri-
bution of frequencies determined by the microwave oscillator and frequency syn-
thesizer from which it is derived. The potential contributors to this distribution
are transients originating in the synthesizer as well as discrete sidebands spaced
at intervals of 60 Hz, the commercial power frequency, due to modulation of the
crystal oscillator frequency by the ubiquitous AC fields and possibly residual rip-
ple on its DC power supply. This latter source of spectral impurity is aggravated
by high orders of frequency multiplication, since the relative amplitude of the side-
bands can be shown to increase with the order of multiplication. Serious error is
incurred if the sideband amplitude distribution is not symmetrical about the cen-
tral (unmodulated) frequency. Presumably, proper shielding and the use of battery
power would largely eliminate this problem. Of course, just to be able to analyze
the spectrum of microwaves at a frequency around 9 GHz with a resolution in the
sub-Hertz range is no mean challenge, but such is required nowadays to match the
spectral resolution attained in atomic resonances.

9.6.5 Neighboring Transitions

We recall that in addition to the desired (F =4,mr =0) — (F =3,mr = 0)
transition, there are atoms in the beam in neighboring mr = =1 states that con-
tribute to the signal by making magnetic-field-dependent transitions in which the
magnetic quantum number m r changes by one unit. While the application of a uni-
form magnetic field in the transition region will separate these transitions from the
desired one, there will nevertheless remain a finite probability of their contributing
to the signal. Ideally, these transitions have an amplitude distribution that is sym-
metrical about the center of the desired one; however, in reality it can happen that
the way the atomic trajectories fit within the magnet geometries leads to an asym-
metric overlap between the desired transition and its neighbors. The consequence
is a signal intensity distribution that is distorted, and whose maximum is displaced
with respect to the true resonance frequency.

9.6.6 Residual Linear Doppler Effect

This arises from failure to meet the ideal conditions under which the linear Doppler
effect is eliminated in the Ramsey cavity. In particular, if there is an asymmetrical
flow of microwave power from the source to the two ends of the cavity through
which the atoms pass, the resonance signal will be broadened asymmetrically and
the maximum will be shifted. If we examine closely the microwave field at the
shorted ends of the Ramsey cavity, we see that in the presence of power loss in
the walls, the quasi-stationary field pattern can be analyzed into counter-traveling
components of slightly different amplitudes. The (small) transverse component
of velocity of the Cs atoms passing through the field will lead to a small linear
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Doppler shift; but because the two traveling components are of different ampli-
tudes, the transition probabilities at the two Doppler-shifted frequencies will not
be equal, leading to an asymmetry in the resonance signal profile and a shift in the
maximum. The presence of such a shift and other possible power-related effects
can be ascertained by varying the microwave power.

9.6.7 Final Word

The listing of so many possible sources of systematic error must not be allowed
to leave the impression that this type of atomic clock is fraught with uncertainties.
Quite the contrary, the sources listed and the many more subtle effects not listed
merely show the exhaustive degree of scrutiny to which this standard has been
subjected. As a primary standard, of course, the achievement of the highest possible
accuracy and reproducibility requires that this be done.

Since the 1970s, when the classical beam machines described in this chapter
had reached a high degree of development and general acceptance, thanks to the
laser there have been fundamental developments that have radically changed the
design of Cs standards, a subject we will take up in a later chapter.



Chapter 10
Atomic and Molecular Oscillators:
Masers

10.1 The Ammonia Maser

The idea of a device using quantum transitions induced in molecules by a radiation
field to achieve microwave amplification by stimulated emission of radiation, now
familiarly known by the acronym maser, was first described by Gordon, Zeiger, and
Townes, of Columbia University (Gordon ef al., 1954) and independently proposed
by Basov and Prokhorov, of the Lebedev Institute for Physics, in 1954. Townes,
Basov, and Prokhorov shared the 1964 Nobel Prize in physics, “for fundamental
work in the field of quantum electronics, which has led to the construction of oscil-
lators and amplifiers based on the maser—laser principle.”

The maser was conceived from the beginning as a high—resolution spectrome-
ter for the microwave region of the spectrum, or as a microwave oscillator of great
stability. It combines the techniques of molecular beams and microwave absorption
spectroscopy, in which resonances in the absorption of microwave energy by matter
are studied. The initial experimental implementation was on the so-called inversion
spectrum of ammonia (NH3), a molecule that because of the strength and abun-
dance of its resonances in the microwave region of the spectrum played an impor-
tant role from the beginning in the development of microwave spectroscopy. This
field of study burgeoned in the early postwar period as a result of the rapid develop-
ment of microwave techniques for radar applications during World War II. In fact,
the first operational molecular frequency standard, as developed by Lyons and his
associates at the U.S. National Bureau of Standards in 1948, was based essentially
on the use of a strong absorption line in the ammonia spectrum as a reference to
electronically stabilize the frequency of a quartz crystal oscillator. Following the
initial successful demonstration of the maser principle, it was soon exploited in
a greatly expanded range of applications, including solid-state microwave ampli-
fiers and atomic beam maser oscillators, culminating in the hydrogen maser, about
which a great deal more will be said in the next chapter.
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10.2 Basic Elements of a Beam Maser

To illustrate the principle, we can do no better than follow the original descrip-
tion given by Gordon, Zeiger, and Townes of a molecular (or atomic) beam maser.
Figure 10.1 shows schematically the essential parts of such a maser, with partic-
ular reference to ammonia. A beam of ammonia molecules is formed much as a
Cs atom beam is formed, except that being a gas at room temperature, ammonia
is supplied to the source at reduced pressure (around 100 Pa), and the molecules
effuse through narrow channels into a vacuum sufficiently high to form a beam.
This requires that the background concentration of gas be kept sufficiently low by
high-speed vacuum pumps; otherwise, it would be meaningless to speak of a mole-
cular beam. Since ammonia is a gas at room temperatures (boiling point —33°C),
there is a greater burden on the vacuum pumps than for solid materials. In addi-
tion to the standard molecular diffusion pumps and turbo-pumps, based on the tur-
bine principle, cryogenic pumping is practical in this case, since the freezing point
is a readily achievable —78°C (it is near the temperature of dry ice, solid CO,).
Thus by providing for the quadrupole electrodes to be cooled with liquid nitrogen
(—196°C), for example, ammonia molecules striking them would mostly be frozen
on the surface, rather than accumulate as background gas.

The ammonia molecule, like all molecules, has a vast number of quantum
energy states, corresponding to the complex rotational and vibrational motions
of such a multi-atom system. Among these is a particular pair of states between
which transitions fall in the microwave region and for which there is strong cou-
pling to the radiation field, making it easier to observe and exploit in building a
maser. However, from a source in equilibrium at ordinary temperatures, the popu-
lations of these states are very nearly equal, with the lower-energy state having a
slightly greater population. Therefore, to observe a net transfer of energy to a reso-
nant field requires a means of reducing the population of the lower-energy state in
relation to the upper one. This is accomplished by having the beam pass through a
quantum state selector analogous to the A-magnet in the Cs standard. In this case,
however, the molecules are acted upon through an electric dipole moment, rather
than a magnetic one as in Cs, and therefore the state selector consists of a strong
electrostatic field, as described in more detail in Section 10.4. It is a focusing field
with quadrupole symmetry, in which molecules in the upper energy state converge
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Figure 10.1 A schematic diagram of a beam maser oscillator
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toward the axis and enter a resonant microwave cavity through a small opening on
the axis, while the ones in the lower state diverge away from the axis and do not
enter the cavity. Since the probability that the molecules will spontaneously make
a microwave transition to the lower state is small, they will therefore be predomi-
nantly in the upper state inside the cavity.

The existence of a weak resonant microwave field in the cavity, introduced
from an external source, will stimulate the molecules to emit radiation at the same
frequency and in phase with the stimulating field, thereby increasing the amplitude
and providing an amplified output. If the Q-factor of the microwave cavity is high,
there will be a threshold number of state-selected molecules entering the cavity per
unit time beyond which self-sustained oscillation will take place, and we have a
maser oscillator.

10.3 Inversion Spectrum in NH3

We will treat the ammonia maser in some detail, not only because of its obvious
historical importance as the first molecular frequency standard, but also because of
the broader application of some of the ideas involved in its development.

The quantum transition it uses at around 24 GHz occurs between energy states
that are interesting in that they have no classical analogue; they can be pictured only
as a superposition of two classical states, as if one had double vision! To make a
little more sense of this statement, we have to study the quantum implications of
the symmetry properties of the ammonia molecule. The geometrical arrangement
of atoms in ammonia is known to be as shown in Figure 10.2; that is, the chemical

Figure 10.2 The ammonia molecule
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bonds lie along the edges of a triangular pyramid; the three hydrogen atoms are
in one plane at the vertices of an equilateral triangle, and the one nitrogen atom
is on the symmetry axis perpendicular to that plane. If we imagine the chemical
bonds to be elastic bands, we could pull the nitrogen atom along the symmetry
axis through the center to a position diametrically opposite to where it was; that is,
we can invert the molecule, and the resulting molecule would be indistinguishable
from the original. The quantum description of the molecule must properly take
this symmetry into account, so that no prediction based on that description will
distinguish between these symmetrical states. Now, it happens that the minimum
energy of the system (and therefore its ground state) occurs when the nitrogen
atom is some distance (in either direction) from the plane passing through the H
atoms. This means that if we imagine the nitrogen atom to be placed at different
points along the symmetry axis, the energy of the system, as a function of the
N-atom position, would have minima at equal distances from the H-plane and a
local maximum in that plane. This system energy for an assumed (static) position
of the N atom, which ultimately has its origin in the electrostatic forces between
the fast moving electrons in the molecule, acts as a potential energy governing the
relatively slow motion of the N atom. The consequence of the inversion symmetry
is that the stationary quantum states must also reflect the same symmetry, and a
configuration in which the N atom is located asymmetrically at just one of the
potential minima cannot be a stationary state; that is, it will not remain in that
state indefinitely. In fact, the two states that are stationary are represented by wave
functions giving the N atom equal probability of being in either position! However,
one stationary state is represented by an even wave function, and the other by an
odd wave function with respect to inversion; that is, one is unchanged, and the other
reverses sign when the molecule is inverted. This is analogous to having a pair
of pendulums of exactly the same period of oscillation with a weak exchange of
excitation between them. We have already seen that the only “stationary” states of
motion are those where the two pendulums either swing together in step or exactly
out of step; and if we start only one pendulum swinging while the other is initially
at rest, soon they will exchange roles, with the first pendulum coming to rest and
the second taking up the action, and so on. In the case of the N atom in ammonia,
oscillation is possible about either of the two potential minima on opposite sides
of the hydrogen plane; but there is quantum-mechanical funneling by the atom
through the potential hill separating them (which they would not be able to cross
classically), providing a coupling between the two oscillations. If somehow we can
place the molecule initially at the minimum of potential on one side of the plane,
then in the course of time it will oscillate from one side to the other through the
potential barrier.

The two stationary inversion states (symmetric and antisymmetric) have differ-
ent energies, and the transition frequency between them is, in fact, around 24 GHz,
as we have already mentioned. If we recall that in quantum theory a frequency
is associated with energy by the equation v = E/h and that the state in which the N
atom is on one side of the H-plane is a “mixture” of two wave functions of different
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Figure 10.3 Inversion of ammonia as reversal of relative phase of wave functions

frequencies, we would find that as time passes, the two wave functions go period-
ically in and out of phase at the beat frequency. Now, as illustrated in Figure 10.3,
these two phase conditions yield total wave functions with a large amplitude first
on one side of the H-plane, then the other; that is, the N atom oscillates back and
forth across the H-plane at the beat frequency. But the transition frequency, being
given by v = (E; — E3)/h, where E| and E; are the energies of the stationary
states, can also be written as v = V| — V»; that is, the microwave transition fre-
quency is equal to the beat frequency with which, we have just seen, the N atom
oscillates across the H-plane.

Of course, this so-called hindered vibration of the N atom along the symmetry
axis is not the only degree of freedom we can visualize classically; in addition to the
orbital angular momentum of the electrons and the nuclear spin of its constituent
atoms, the molecule can rotate about its symmetry axis, which may itself rotate
about the (constant) total angular momentum vector. As has become familiar, the
conserved total angular momentum of the molecule is quantized, and it is conven-
tionally designated by the quantum number J (if nuclear spins are excluded), so
that the observable components along any axis fixed in space are an integer My
in units of 4/2xn, where My = —J,—(J — 1),...,+(J — 1), +J. Furthermore,
the angular momentum of the molecule about its symmetry axis is designated by
the quantum number K ; since this is a component of the total angular momentum,
clearly K cannot exceed J. Thus to specify the rotational part of the quantum state
of a molecule, ignoring vibration and electronic excitation, we use the quantum
numbers (J, K).

Since the maser action is based on stimulated radiation from the molecules in
undergoing transitions from an upper to a lower energy state, it is clearly impor-
tant that there exist states for which the probability of those stimulated transitions
is sufficiently large. Unlike Cs, where the interaction with the radiation field was
magnetic in nature, here the interaction is through the electric dipole moment of the
molecule, which therefore involves the electric component of the radiation field.



196 The Quantum Beat

The chemical bonds between the nitrogen atom and the hydrogen atoms in the
molecule are somewhat polar. This means that the center of the negative charges of
the electrons is displaced relative to the positive charges of the nuclei; the measure
of this polar property is the electric dipole moment. This will, in general, cause the
energy of the molecular quantum states to be modified if the molecule is placed
in an external electric field, the Stark effect. The detailed way in which the energy
depends on the electric field intensity is interesting in that it confirms the pecu-
liarly quantum nature of the description necessitated by the inversion symmetry. If
the molecule had a permanent electric dipole moment as might be computed in the
usual classical sense, then the Stark effect shift in the energy of a molecular state
would vary in a linear manner with the electric field intensity; in fact, it does not.
A quantum description is required to properly take into account the symmetry. Our
present interest is limited to how the energy of given quantum states of the mole-
cule varies with the intensity of an electric field, and how strongly the molecule
is coupled to a radiation field inducing transitions. It turns out that the state desig-
nated as J = 3, K = 3 exhibits the largest effective dipole moment, and therefore
the strongest coupling to a resonant microwave field, in the inversion spectrum of
ammonia.

10.4 The Electrostatic State Selector

Molecules issuing from a source in thermal equilibrium have not only a special
distribution of velocity among them, but also a similar distribution among all the
internal quantum energy states. This, according to the Boltzmann theory, means
that there is a certain distribution of molecules among the energy states that through
random collisions will eventually be reached no matter what their initial distribu-
tion might have been. Of course, any individual molecule will in the course of time
be constantly changing its state, but the number of molecules in each of the quan-
tum states will fluctuate about a value appropriate to it. Let E,, represent the energy
of a molecular state, where the index n stands for a set of quantum numbers that
identify the state, including J, M, K, the nuclear spin / of the H atoms, and a
vibrational quantum number. The Boltzmann equilibrium distribution can now be
given as follows:

E
Pn ™ €Xp (_ﬁ) s 10.1

where p, is the probability that a molecule is in a state with energy E,, k is
Boltzmann’s constant, and 7 the absolute temperature. As is commonly the case,
the states may fall into groups of degenerate states having the same energy; thus
in the absence of an external field, for example, all the states that differ only in
the value of M, and there are (2J + 1) of them, will have the same energy. If we
now use the index ¢ to differentiate only the energy, we can write the Boltzmann
distribution as follows:
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where g,, the number of states having the same energy E,, acts as a statistical
weight. It follows that the ratio of the populations N/N, of states having energy
E1 and E; is given by

N @ E, — E;
— = Zexp| ——|.
N kT

There are two physically important conclusions to be drawn from this: First, levels
separated by energy in the microwave region are nearly equally populated at room
temperature, since (Ey — E1)/kT = 0.001 in that case; and second, No < N
if E, > Ej; that is, the lower-energy state has the greater population. The latter
conclusion means that a gas in thermal equilibrium can never lead to maser (or
laser) action. For maser amplification to occur there must be a population inversion;
that is, there must be a non-equilibrium distribution of populations in which the
upper energy level is more populated, rather than less than the lower energy level.
Hence there is a need for a state selector, which in effect produces the inverted
population by eliminating molecules in the lower-energy state.

A focusing electrostatic state selector is used based on the Stark effect, that
is, the change in the molecular energy states due to an externally applied electric
field. We will state without proof that the Stark effect for the rotation—vibration
(inversion) states of ammonia computed to the second order of approximation is
given by the following:

o\ > MK \?
E=Ey+.,/(=2 E— 2 10.4
R )

where Vv is the inversion frequency, [ the electric dipole moment computed for
a fixed N atom, E the electric field intensity, and (M, K, J) angular momentum
quantum numbers specifying the molecular state. The plus sign applies to the upper
and the minus to the lower energy of the pair of inversion states. We will not be
making any quantitative use of this result beyond observing that the energy of
the upper state increases with the electric field, while the energy of the lower one
decreases. This is the basis of the electrostatic state selector, in which molecules in
predominantly the upper state are selected to interact with the resonant field in the
microwave cavity. It is based on the quantum-state-dependence of the electrostatic
force that an ammonia molecule experiences in a static electric field having a steep
gradient. Molecules in the upper states are deflected from regions of strong field
towards regions of weak field, and conversely for the lower states.

A focusing electrostatic field having a quadrupole symmetry is ideally suited in
this case. Unlike the magnetic analogue in a magnetic resonance machine, only one
state selector is involved, which simply focuses the desired upper state molecules
into the microwave cavity. The field is produced by applying a high voltage (in
the tens of kilovolt range) between two pairs of equally spaced parallel cylinders,

10.3
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Figure 10.4 The electrostatic quadrupole state selector of the ammonia maser

as shown in Figure 10.4. To attain a pure quadrupole field distribution extending
significantly away from the axis, the cylindrical electrodes should have a hyper-
bolic cross section. The field components are given by

Vi Vi
E, = ——Sx; E, = —gy, 10.5
o o

where V) is the voltage applied between opposite electrodes and ry is the inner
quadrupole radius. The resultant electric field depends only on the radius and
increases linearly with it from zero on the axis to a maximum of Ep.x = Volrg
atr = ry.

In order to predict the possible trajectories of the molecules, we must com-
pute the gradient in the Stark energy, which plays the role of potential energy in so
far as the motion of the molecules is concerned. That energy function has already
been cited; for moderate electric fields it can be approximated to give a simple
quadratic dependence, which leads to a gradient, and hence force, that increases
linearly with radial distance from the axis. In this approximation the molecules in
the upper inversion states are drawn towards the axis as if by an elastic spring,
causing molecules diverging from the axis at the source to follow trajectories that
converge back on the axis at a point that depends on the applied voltage. By adjust-
ing that voltage, these molecules are made to enter the microwave cavity. Molecules
in the lower inversion states, on the other hand, will follow trajectories that diverge
exponentially away from the axis. Of the molecules effusing from the source, those
whose trajectories are bent to just graze the cylindrical electrodes define a critical
direction of motion with respect to the axis, such that those with a greater initial
angle will strike the electrodes and be lost to the beam, while those with a smaller
angle will continue to be focused back towards the axis. This critical angle, the
acceptance angle, corresponds to the radial part of the thermal kinetic energy of
the molecules being equal to the Stark energy at the points of maximum electric
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field. Those that emerge from the source with greater radial kinetic energy than the
maximum Stark energy will strike the electrode structure and join those making up
the background gas in the surrounding space. The dynamics of the radial motion
are analogous to those of a mass suspended by an elastic spring: If the mass is pro-
jected with a certain kinetic energy in a direction to stretch the spring, the mass will
reach its maximum displacement when the (elastic) potential energy of the spring
equals the initial kinetic energy of the mass.

The detailed analysis of the performance of the state selector is complicated by
the fact that the molecules emerging from the source may be in any of a multitude
of quantum states, each possibly having a different Stark energy, and their kinetic
energy is spread over a wide range characteristic of their temperature. Of critical
importance to the practicability of the technique is the ability to single out mole-
cules in the one particular quantum state (J = 3, K = 3), from among the many
in other states, to enter the resonant cavity in sufficient number per unit time. To
estimate this rate we start with the fact that the ammonia gas in the source is in
thermal equilibrium at some temperature, typically assumed to be 20°C.

In the case of the symmetric-top ammonia molecule, the determination of the
degeneracy factors g, involving as it does the counting of the quantum states that
are compatible with the symmetry of the molecule, would take us far beyond the
compass of this book. However, we can attempt to convey the kind of reasoning
that quantum theory invokes where symmetry and statistics are involved. First, the
nuclei of the three H atoms (which are, of course, protons) have each an intrinsic
spin of 1/2: This fact already imposes a restriction on the wave function that can
represent the molecule, since according to the Pauli principle, which applies to
protons as well as electrons, an exchange of the positions and spin states of any
two H atoms should only reverse the sign of the function, and two such exchanges
should leave the sign unchanged. If we label the atoms 1, 2, 3 and two exchanges
are made in succession, for example 1 — 2 followed by 2 — 3, the final result is a
rotation of the molecule through 120°, equivalent to increasing the angle coordinate
about the axis of symmetry by 120°. In quantum theory the dependence of the wave
function on this angle is determined by the value of the “conjugate” variable K, the
angular momentum along the same axis. It is for K values that are multiples of 3
that the wave function returns to the same function with the same sign after the
rotation. Moreover, it can be shown that wave functions having K a multiple of
3 can be constructed to have the correct symmetry under an exchange of a single
pair of H atoms by combining functions with opposite sign for K, corresponding
to inverted states. We recall that the states between which our transition occurs
are superpositions of such states. When all the admissible functions having the
proper symmetry are counted and their energy known, it becomes possible to find
what proportion of the molecules in thermal equilibrium will be present in a given
quantum state. Of particular interest to us is the finding that in ammonia, the states
with K a multiple of 3 have twice the statistical weight that states with other values
of K have. A combined measure of the fraction of molecules in the desired state,
and the electric dipole moment coupling the two states, is the resonant absorption
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coefficient of microwave power ¥ = 8 x 10~% cm™!, which is the highest among
the microwave inversion lines in ammonia.

10.5 Stimulated Radiation in the Cavity

The state-selected molecular beam emerges from the quadrupole field and enters
a microwave cavity tuned to resonance in a suitable mode of oscillation at the
frequency of the 3-3 inversion line at around 23,870 MHz. The scale of the res-
onant cavity dimensions is governed by the free-space wavelength of microwaves
at this frequency, which is A = 1.25 cm. The geometry of the cavity is that of
a cylinder, having either a circular or rectangular cross section, with ends closed,
apart from a hole to admit the ammonia beam. An output waveguide is coupled
to the cavity to draw out a part of the microwave power generated by the maser
action. The essential criteria in the design of the cavity are first, that the molecules
pass through regions where the electromagnetic field in the cavity is strongest, to
ensure the greatest possible interaction; and second, to lengthen as much as possi-
ble the duration of the interaction by extending the length of the cavity, to reduce
the width of the resonance. The first condition dictates the diameter of the cavity
in relation to the diameter of the molecular beam, while the second requires that
the cavity, regarded as a section of waveguide, is near cut-off; that is, the diam-
eter of the waveguide is reduced to almost the free space wavelength, tending to
extend the wave pattern along the length of the wave-guide. Following the work of
the Townes group, a figure of merit M may be defined as follows: M = LQq/A,
where L, A are the length and cross-sectional area of the cavity and Qo its free
(unloaded) quality factor, which, we recall, is defined as Qg = 2nE/AE, where E
is the energy stored in the cavity and A E is the energy lost in one cycle of the field,
mainly as heat in the walls of the cavity. Among the possible resonant modes, with
their characteristic field distributions, the TMp19 mode, illustrated in Figure 10.5,
has been shown by the same group to have a significantly higher figure of merit
than the others.

magnetic electric
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Figure 10.5 Cavity mode TMg( used in the ammonia maser
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In order to achieve sustained oscillation, the power dissipated in the cavity
must be compensated by the microwave power emitted by the ammonia molecules
as they are induced to make quantum transitions from the upper energy state to the
lower. We will not attempt to present the quantum theory of the radiative process
that the molecules undergo, but will be content with a plausible approximation,
which in fact leads to a result that is not far from the truth. We imagine that the
electric dipole moment of a molecule is subject to a resonant electric field and
thereby induced to radiate energy as it makes a quantum transition from the upper
inversion state to the lower. It can be shown that the time dependence of the tran-
sition can be described as a rotation of the dipole at the rate of 2w E/h, where E
is the electric field amplitude and W is the dipole moment. If we call 8 the angle
of rotation as the molecule traverses the cavity, then to establish the correct cor-
respondence with the quantum theory of the process, we must make the following
assumptions:

p1+ p2=1; py — p2 = cos®, 10.6

where pj and p; are probabilities of the molecule being in the upper and lower state,
respectively. This is reasonable, since the probability of the molecule being in one
or other of the states is obviously 100%. The second assumption, however, seems
more arbitrary, but at least it leads to the expected results in the particular cases of
6 = 0°,90°, and 180°, which correspond respectively to all molecules in the upper
state, an equal number in the upper and lower states, and all molecules in the lower
state. If we accept this interpretation of the angle 0, we easily find that as a molecule
traverses the cavity, the probability of the molecule having radiated one quantum
of e;nergy and gone to the lower state increases from zero to (1/2)(1 —cos 0), that is,
sin“6.

10.6 Threshold for Sustained Oscillation

We are now able to derive an expression for the rate at which microwave power
is radiated by the molecules in the cavity, assuming that, say, n molecules pass
through the cavity per second. Since we are only concerned with the threshold con-
dition for self-sustained oscillation, we note that initially, we may assume that £
and hence 0 are very small, and may therefore approximate sin 6 by 0 (in radians).
Now, the amount of energy radiated by a molecule when it undergoes a quantum
transition is AV, and so it follows that the power radiated is simply given approxi-
mately by the following:

Prag = un (£ LY 10.7
=hvn|\nt——) , .
rad hv
Now we must express the power loss in the cavity in terms of the field strength
in the cavity and its quality factor, Q. We will state without proof that the

energy density in the field of the cavity is given by E2/2, and therefore the total
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electromagnetic energy stored in the cavity is on the order of VoE?/2, where V; is
the volume enclosed by the cavity and equals AL, where A is the cross-sectional
area. Finally, from the definition of Q, we have for the power loss in the cavity

AL ,
Ploss = T—VE?. 10.8
0

We can finally state the threshold condition on the strength of the molecular beam
for sustained oscillation; we simply equate the power loss to the power radiated, to
obtain after some reduction

()0

To obtain the level of oscillation as the beam intensity is raised above threshold,
we simply retain in this approximate theory the probability p; as sin>@ rather than
approximating it as 2. This leads to the following:

n 6’

—=—. 10.10

N sin”@
We note that as 0 ranges between 0 and 7 (radians), n ranges from n,, to infinity.
Thus according to this theory, 0 and therefore the electric field in the cavity cannot
exceed a certain limiting value obtained by setting ® = 7. This tendency of the
microwave field amplitude not to continue increasing with the beam intensity is
called saturation.

To gain an appreciation of the scale of the physical quantities involved, we
draw on the early experimental results published by the Townes group on the rel-
ative merits of cavities oscillating in the TEg;; and TMg9 modes. For a cavity
of Q = 12,000 operating in the TE(p1; mode, the minimum state-selector voltage
required to start oscillation was 11 kV for a source pressure of 800 Pa, whereas
for a TMyj¢ cavity with Q = 10,000, the minimum voltage was only 6.9 kV at
the same source pressure. Since for given source parameters, the number of mole-
cules entering the cavity is roughly proportional to the square of the state-selector
voltage, it follows that the threshold number of molecules per second, n;j, for the
TMp10 mode cavity, is about one-third of the value for the TEq;; mode cavity. The
actual number of effective molecules per second in their experimental apparatus
was n = 5 x 10'3 per second for a source pressure of 800 Pa and state-selector
voltage of 15 kV.

10.7 Sources of Frequency Instability
10.7.1 Cavity Pulling

From the threshold condition for sustained oscillation it is evident that the higher
the Q of the cavity, the lower is the threshold number of molecules that must pass
through the cavity in unit time. Unfortunately, if the cavity is not tuned to precisely
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the molecular frequency, the actual microwave field in the cavity will not oscillate
at the free molecular resonance frequency, but rather the frequency will be pulled
by the cavity resonance to an extent that depends on the relative value of the Q of
the cavity and the sharpness of the molecular resonance line.

To understand the underlying causes of this effect, we must recall two facts dis-
cussed in Chapter 2 concerning resonant systems and the conditions that determine
the frequency of an oscillator. The first is that when a signal near the resonance fre-
quency is injected into a resonant element such as a microwave cavity, the result-
ing output signal will have the same frequency but a shifted phase ranging from
0° to 180° as the frequency is swept through resonance, as shown schematically
in Figure 2.2. The important feature to note is that the phase varies approximately
linearly at the center frequency, between the maximum and minimum, a frequency
range that can be taken as the line width of the resonance, Av. It follows that
an input signal whose frequency happens to be slightly displaced from the cen-
ter of the resonance will be shifted in phase by an amount A¢ on the order of
180° x (Vv — vg)/Av.

Now, as we noted in the chapter on oscillators, the important condition that
determines the frequency of oscillation is the phase change around the feedback
loop. In the present case it is reasonable to assume that the oscillation of the maser
will occur at such a frequency that the combined phase change in the cavity and
the amplifying NH3 molecules is zero. We can express this condition in practical
terms using the Q-factor of the cavity Q¢ and an equivalent Q-factor for the mole-
cular resonance line O, defined in a somewhat more general way than was done
originally for a resonant circuit; namely in terms of the fractional frequency width
Av/v of the resonance: 1/Q; = Av/v. If we assume that the cavity is tuned to
within the line width of the molecular resonance and that Q7 /Q¢ > 1, we arrive
at a relationship for the frequency pulling that can be shown more rigorously to
hold, namely

v—vozAg(vc—vo), 10.11

where A is a constant that depends on the level of oscillation, (v — vg) is the
deviation from the molecular frequency, and (v¢c — Vg) is the amount of mistuning
of the cavity. This is a very general result, but it has particular relevance to the
ammonia maser and, as we shall see, to the hydrogen maser, since the resonance
line width, and hence the line Q, is not so large compared with the cavity Q that
this frequency pulling is insignificant for a frequency standard. On the contrary,
unless some scheme is used to correctly tune the cavity, the maser frequency will
be dependent on all the factors that could affect the cavity tuning, for example
temperature. For an ammonia standard that is supposed to reach a stability beyond
one part in 10'? this is intolerable.

One test of whether the cavity is properly tuned consists in varying the fre-
quency width of the molecular resonance, that is, the line Q. When this is done,
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the maser oscillation frequency will vary also unless (V¢ — Vo) = 0, in which case
(v — vp) = 0 no matter what value the line Q assumes. Thus a condition for the
proper tuning of the cavity is that the maser frequency remain constant if the line
Q is modulated.

In one ammonia beam maser described in 1961 by Barnes, Allan, and
Wainwright, of the U.S. National Bureau of Standards (Barnes,1972), automatic
tuning of the cavity was achieved by modulating the molecular resonance line
width using the Zeeman effect. That is, a weak magnetic field is applied to the
molecules in the cavity, causing a splitting of the ammonia line, as shown in
Figure 10.6, effectively broadening it. By modulating the magnetic field at a low
frequency, any mistuning of the cavity leads to a modulation of the output fre-
quency of the maser at double the field modulation frequency; this doubling is due
to the Zeeman broadening being identical for opposite directions of the magnetic
field. For the purposes of this automatic tuning technique, the short-term stability
of a high-quality quartz crystal oscillator is sufficiently high to serve as a refer-
ence in obtaining the modulation of the maser frequency. In the actual ammonia
beam maser cited, the maser frequency is not compared directly with a synthe-
sized frequency based on the crystal frequency, but rather through an intermediary
klystron, phase-locked to the crystal-based frequency. A servo loop controls the
tuning of the cavity by activating a motor-driven funing stub, so as to annul the
modulation of the maser frequency; this occurs when the cavity is tuned exactly to
the molecular resonance. It might appear that in our attempt to construct a stable
frequency standard, we have assumed that we already have one of equal stability
to serve as a reference to detect the frequency pulling of a mistuned cavity. In fact,
the frequency reference for the automatic tuning of the cavity must only have suf-
ficient stability in the short term, that is, over periods on the order of 1/10 second.
For such short-term stability, the quartz oscillator can be superior to other types
of frequency standards. On the other hand, the maser is intended to have not only
short-term stability, but more important for a time standard, long-term stability
extending over periods of years.

|<—~7 MHz———]
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Figure 10.6 The Zeeman splitting of the ammonia line (Barnes, 1961)
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10.7.2 Doppler Shifts

The ammonia beam maser is susceptible to a number of other systematic errors,
which include Doppler shifts due to nonstationary field patterns in the cavity.
Unbalanced traveling wave components in the cavity can arise from asymmetry
in the position of the output coupling hole in the cavity, causing asymmetric power
flow to the output. But a more insidious effect is the variation of the molecular
emission of radiation along the path of the beam in the cavity, which gives rise to
unbalanced traveling waves and a consequent shift in frequency. Since the power
emitted by the molecules is of the same order of magnitude as the output power,
the frequency shift due to this effect will be comparable to that due to the asymmet-
ric coupling to the output. To further complicate the matter, the distribution of the
molecular emission along the beam in the cavity depends on the level of oscillation
(saturation) in the cavity. For weak oscillation near threshold, the emission is more
toward the end of the path in the cavity, in contrast to the case of high saturation,
when the emission is mostly near the entrance to the cavity. Thus the direction of
the unbalanced traveling wave depends on the flux of ammonia molecules in the
beam and the corresponding power level in the cavity. The flux of molecules, in
turn, depends on the pressure of ammonia gas at the source and the voltage on the
quadrupole state-selector. In an attempt to minimize these frequency shifts, ammo-
nia masers with two beams traversing the cavity in opposite directions have been
studied.

10.7.3 Molecular Collisions

Another source of frequency shifts in the molecular resonance is the perturbing
effect of collisions between ammonia molecules, either between those in the beam
or with background molecules. As with any other atomic or molecular system, such
collisions can cause a broadening of spectral lines as well as a shift in the center
of those lines. Again, this would make the maser output frequency susceptible to
fluctuations arising from possible instabilities in any of the parameters that affect
the beam density or background pressure in the cavity. Of course, the same collision
effects are present in the Cs beam standard; however, there the beam intensities can
be very much lower since there is no requirement to go over a threshold value for
oscillation.

10.7.4 Ambient Electric and Magnetic Fields

Again, as with all atomic and molecular spectra, the inversion spectrum of ammo-
nia is affected by external electric and magnetic field; the Stark effect in ammonia
consists not only of shifts in the energy of inversion states; it also induces changes
in the coupling of the various nuclear spins to the molecular rotational motion. The
transition of interest is between states in which the effect of the nuclear spins is the
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same for both the upper and lower inversion states, and the transition frequency is
not altered on that account. Nevertheless, there remains the quadratic Stark shift in
frequency, which is fractionally on the order of (Eu/hvo)?, where E is the electric
field strength, W is the electric dipole moment, and Vg is the inversion frequency.
Substitution of numerical values leads to shifts on the order of one part in 10'? for
fields in the range of a few volts per meter. It is clear from this that some care must
be exercised in preventing static electrical potentials from developing in the cavity.
As for the Zeeman effect, the first-order effect produces a symmetric splitting that
does not shift the center, but merely results in a broadening of the resonance, as
already indicated in connection with the automatic tuning of the cavity. To second
order of approximation there is a shift in line center having a quadratic dependence
on the magnetic field intensity; however, it is about 10° times smaller than in the
Cs atom, since the molecular magnetic moment arises from the nuclear moments
rather than those of electrons, and is negligible.

Since it was the first molecular oscillator, a great deal of effort was invested in
realizing its promise as the first of a new class of stable oscillators. However, as
a primary standard it proved to have fatal drawbacks: its frequency depended on
many operating parameters; and there was no fundamental prescription to define
what values these parameters should be assigned. For example, the frequency
depends on the source pressure and operating voltage of the state-selector; how
is one to decide what values to use? If arbitrary choices are made, the definition
of the standard would have to include in detail all the dimensions and operating
conditions of the device. Furthermore, the standard would be subject to all the
uncertainties and instabilities that all these parameters may have. Nevertheless, the
ammonia beam maser ushered in the age of stable atomic and molecular oscillators
and a new level of stability approaching one part in 10'2.

10.8 The Rubidium Maser

Efforts to realize an active, oscillating form of the rubidium standard in the 1960s
are associated with the names of F. Hartmann, at the Ecole Normale Supérieure in
Paris, and P. Davidovitts and R. Novick, at Columbia, who announced their success
in 1966. Later, the same goal was pursued by J. Vanier, then at Laval University,
and E.N. Bazarov, then of the Soviet Union.

The essential difference in the design of the rubidium maser, as compared to
the passive gas cell resonator, lies in the need to allow the microwave radiation
emitted by the atoms, as they make the reference hyperfine transition, to build up
in a high-Q microwave cavity. Unlike the ammonia maser, this type of transition
involves a magnetic interaction with the microwave field to stimulate emission,
rather than the much stronger electric dipole interaction we have in the ammonia
maser. This raises the threshold for oscillation and makes it necessary to achieve
the greatest possible number of contributing atoms interacting coherently for the
longest possible time in a high-Q resonant cavity.
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Figure 10.7 The essential elements of an optically pumped Rb maser

Of the two isotopes of rubidium, Rb%> has the longer transition wavelength at
around 10 cm, making it the easier of the two to achieve a high Q in its resonant
cavity. The connection between cavity size and Q will be discussed at somewhat
greater length in the next chapter.

The essential elements of an optically pumped gas cell maser are shown
schematically in Figure 10.7. In the original experiments, which predate lasers,
one of the greatest challenges was to achieve a sufficiently intense pumping light
source, with the proper spectral distribution to achieve efficient and rapid pumping
of the hyperfine state populations. The threshold value of atomic number density
is so high that Rb—Rb collisions in which spin states are exchanged can cause
rapid relaxation of the hyperfine populations, counteracting the pumping action
of the light. More is said about spin-exchange collisions in the next chapter. As
discussed in connection with the rubidium clock, another difficulty is that the ref-
erence frequency is shifted by the pumping light itself, an effect that is aggravated
here because of the need to use high-intensity sources to reach the threshold.

Recent developments in optically pumped alkali vapor masers include using
laser pumping sources and circumventing the light shifts using separated regions
for pumping and cavity field interaction. Thus an evacuated double bulb design
was proposed in 1994, in which an inert wall coating, a long-chain hydrocarbon
tetracontane, rather than buffer gases, is used to prevent relaxation of hyperfine
populations at the walls of the container. The atoms are free to travel throughout
the combined volume of the bulbs, which are joined by a short passage tube. The
atoms are optically pumped in one bulb and radiate inside a resonant cavity in the
other.

Residual shifts in the oscillation frequency due to collisions with the walls,
which are strongly dependent on detailed surface conditions, would still preclude
this type of standard from being considered as a primary standard. Nevertheless, it
was felt that a relatively high signal-to-noise ratio could be realized in the output
of such standards, and that they would therefore have excellent short-term stability.






Chapter 11
The Hydrogen Maser

11.1 Introduction

We come now to consider what proved to be the culmination of efforts to enhance
the spectral resolution of atomic resonance machines: the hydrogen maser, one
of the most stable of all present-day atomic frequency standards. Few other
microwave quantum devices exceed its overall mid-term frequency stability.
Conceptually, the H-maser was a natural outgrowth of the continuing experimen-
tal drive to improve the spectral resolution of atomic beam resonance machines
by increasing the interaction time between the atoms and the resonant field.
Since this long predates the development of techniques for cooling atoms with
laser radiation, this was to be achieved by confining the atoms interacting with
the field within a space defined by inert walls; however, few would have pre-
dicted the degree of inertness exhibited by one fluorocarbon polymer named
Teflon and the extraordinary length of perturbation-free interaction time it made
possible.

We recall that in the atomic beam resonance technique, in which transitions are
observed on atoms in free flight such as in the Cs beam standard, the frequency
width of the resonance is determined by the length of time the atoms are free
to interact with the resonant field. The natural line width, caused by the limited
observation time imposed by spontaneous emission, is negligibly small for the
microwave transitions involved here, because years may pass before such transi-
tions occur! But there is obviously a practical limit to how far the time spent by the
atoms interacting with the field can be lengthened simply by increasing the length
of the apparatus. A way must be found either to slow down the atoms or deflect
them from their straight-line path without disturbing their coherent response to the
resonant field, so that the duration of that response can be lengthened in a con-
fined space. As we shall see in later chapters, subsequent developments in laser
techniques have been exploited to cool and manipulate atoms and ions, with far-
reaching advances in the design of atomic frequency standards. However, at the



210 The Quantum Beat

time, the “classical” approach was to constrain the motion of the atoms through
elastic collisions with other inert atoms or molecules, either in a gaseous form or
as a solid surface; clearly, in a beam apparatus, reflection from an inert surface is
more compatible.

Accordingly, a series of experiments was carried out around 1958 in Ramsey’s
laboratory at Harvard University on a Cs beam apparatus in which reflect-
ing surfaces of various materials were tried. It was realized that since the
microwave transitions of interest involve changes in magnetic states, the sur-
face atoms or molecules must not be capable of any magnetic type of inter-
action with the colliding atom; this rules out all metallic surfaces and any
surface that has “free radicals” and unsaturated compounds, that is, chemi-
cal entities with unsatisfied bonds. As we pointed out in connection with the
optically pumped Rb standard, where coatings for the absorption cells were
sought for the same purpose, long-chain paraffins were studied as good possi-
ble candidates. Encouraging results were also found with a silicone compound
(dimethyl-dichlorosilane) named Dri-Film. However, it was realized that Cs, a
heavy alkali atom, has a high polarizability; that is, the one outermost electron,
which in the ground state surrounds the inner shells in a spherically symmet-
ric way, is easily distorted in a collision into a nonspherical state. In this state,
the atom has angular momentum that has associated with it a magnetic field
that will interact with the electron spin, thereby inducing transitions between
the magnetic states of interest. The hydrogen atom, on the other hand, although
it is alkali-like in having a single electron, has a very much smaller polariz-
ability, since a great deal more energy is required to put the electron in the
first available nonspherical quantum state. For hydrogen then, surface mate-
rials that lack “dangling” chemical bonds and interact only through a mutual
polarization (van der Waals force) will cause very much smaller perturbation
of the magnetic hyperfine states than in Cs. However, few would have pre-
dicted that hydrogen atoms can make on the average an incredible 100,000
collisions with a specially prepared Teflon surface before a radiating hydro-
gen atom loses coherence. This means, as we shall see, that atoms at ordi-
nary temperatures contained in a bulb of convenient dimensions would remain
with their internal quantum states undisturbed, on the average, a full second
before leaving the bulb. In an atomic context that is a long time. The possi-
bility of such a long storage time means not only a very sharp resonance, but
also the practicability of observing sustained maser oscillation using the rela-
tively weak magnetic dipole coupling to a resonant radiation field. This is in
contrast to the ammonia maser, which is based on a far stronger electric dipole
transition.

We recall that the short-term frequency stability of any quantum oscillator
is determined as much by the signal-to-noise ratio as the width of the atomic
or molecular resonance. The presence, for example, of the fundamental Johnson
(thermal) noise introduces random fluctuations in the oscillation waveform that
can be interpreted as amplitude and phase noise. It has been shown by Townes
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(Townes, 1962) that for the ideal case of an oscillator subject only to the funda-
mental thermal noise, the fractional standard deviation of the frequency is of the
form

(Bv2Z), 1 kT

Vo - 2 QrV Pt ’
where P is the power radiated by the atoms well above threshold, 7 is the averag-
ing time for the () average, Q is the Q-factor of the atomic resonance, and the
product kT, as usual, is a measure of thermal energy. We see from this that whereas
the ammonia maser has the advantage of more power than is to be expected of the
hydrogen maser, the frequency fluctuations of the latter can nevertheless be smaller,
since its Qp-value is several thousand times larger. In practice, the fundamen-
tal limitation of thermal noise is rarely reached; many other sources of noise and
instability are usually present, but on balance, the hydrogen maser is unmatched.
As such (although as we shall see, not the most absolutely reproducible), the
hydrogen maser will be described in sufficient detail to appreciate how it achieved
that status.

11.1

11.2 The Hyperfine Structure of H Ground State

Its active medium is atomic hydrogen; not the diatomic molecular form H; in
which it is ordinarily encountered. Hydrogen is the simplest of the elements,
consisting of only one electron surrounding a nucleus that is simply a proton. There
is another stable isotope, deuterium, or heavy hydrogen, with a nucleus consist-
ing of a proton and neutron, but this does not concern us here. As a two-body
problem the quantum energy states of hydrogen can be worked out to any desired
degree of accuracy, taking into account not only the electrostatic Coulomb force
between the electron and the nucleus, but also the magnetic interaction between
them. This latter magnetic interaction arises from the fact that both the proton and
electron have magnetic moments associated with their spin. The electrostatic inter-
action determines the gross features of the energy level structure of the atom, while
its fine structure is due to the magnetic interactions between the magnetic fields
produced by the orbital motion of the electron and its own magnetic moment;
the weaker electron—nucleus magnetic interaction leads to a hyperfine structure.
We have already treated the classification of the quantum states of the hydrogen
atom as the starting point in discussing more complex atoms; we know the set of
quantum numbers necessary to specify them. All but one of these quantum num-
bers, the principal quantum number, n, relate to angular momentum. In the absence
of torques produced by external fields, the total angular momentum of the atom is
conserved, and its component along any fixed axis obeys the space quantization
rules with which we have by now become familiar. Since the electron has spin
angular momentum of 1/2(units of 4/2m) and the proton similarly has a spin of
1/2, then for an H atom in its (L = 0) ground state, free of any external magnetic
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field, there are two possible values of total angular momentum: In the notation we
have already introduced for the alkali atoms, these are F = 1/2 + 1/2 = 1, and
F =1/2—1/2 = 0. The corresponding observed components along any fixed axis
aremp = +1,0, —1 and mr = 0, respectively.

Atoms in the F' = 1 state differ in energy from those in the F' = 0 state by what
we know as the hyperfine splitting, the operating frequency of the hydrogen maser.
The difference in energy comes, we recall, from the magnetic interaction between
the proton and electron magnetic moments, leading to the F =1 state with the
magnetic moments opposed being higher in energy than F =0, for which they are
parallel. Note that because the proton and electron have opposite charge, states with
parallel spin have the magnetic moments opposed, and vice versa. We have seen
that classically the problem may be thought of as that of finding the potential energy
of a small bar magnet embedded in a spherically symmetric magnetized medium,
whose direction of magnetization is either with or against the direction of the bar
magnet. Note that this is very different from the energy of two magnets side by side.
As mentioned in an earlier chapter, the quantum formula for the hyperfine splitting
of the ground state of any hydrogen-like system was first given by Fermi around
1930; however, a more intuitive derivation based on a classical picture happens to
yield the same result. The derivation hinges on the expression for the magnetic field
inside a uniformly magnetized medium, which is given classically by the formula
B = (2uy/3)M, where L is a scale factor (called the permeability of free space,
and defined as 47 x 10~7), B is the intensity of the magnetic field (measured inside
an imagined small spherical cavity), and M is the magnetization, defined as the
magnetic (dipole) moment per unit volume. Recalling that the magnetic moment
of the electron is one Bohr magneton, Uz, we find

M = g.pg|¥(0)[s, 112

where s, the electron spin, is 1/2, and |'¥|? is the probability density of the electron.
Here the one electron is pictured as a continuous (magnetized) charge cloud whose
density is distributed around the nucleus according to the probability density for the
ground state of the electron. We can now derive the intensity of the magnetic field
acting on the proton: It is the field in a vanishingly small spherical cavity drawn
around the proton, where the density in the immediate vicinity may be taken to be
uniform and represented by | ¥ (0)|?; it has the value

2
B = (%) gellp | P (0)[s. 113

Now, using the classical expression for the (potential) energy of a magnetic dipole
in a magnetic field, E = —uB cos 6, where 0 is the angle between the direction of
the dipole and the magnetic field, we find

2 (F2 _ [2 _ 52
E(F) = (ﬂ) gpgeunuBPP(o)lzf). 11.4

3
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Apart from the quantum numbers, this in fact is the correct Fermi formula for
the electron—nucleus “contact” interaction, giving rise to the magnetic hyperfine
splitting of the ground state. To correct the dependence on the angular momentum
quantum numbers, we must follow the prescription for correcting results obtained
using the vector model, namely, F2 must be replaced by F(F + 1), etc.

As a first approximation, this correctly gives the frequency of transitions
between these hyperfine states as 1,420 MHz, corresponding to a free-space wave-
length of about 21 cm. Thanks to the success of the hydrogen maser, the actual
frequency of this hyperfine transition has been measured to better than one part in
a trillion! Such precision has naturally spurred ever-increasing refinement in the
theoretical computation of the frequency, and in so doing has put the theory to an
extraordinarily stringent test. The theory of quantum electrodynamics has thereby
proven itself to be one of the greatest intellectual achievements of our time.

As the hyperfine interaction between the electron and nucleus considered here
involves magnetic dipoles, we must take into account the unavoidable presence
of external magnetic fields and the way they affect the frequency and line width
of the hyperfine transition that is to be used as a standard. Figure 11.1 shows the
dependence of the energy of the F = 1, mp = +1,0,—land F = 0, mp =0
states of the ground state of hydrogen on the intensity of an applied magnetic field.
We note as we did in the case of Cs that the graphs for the mr = 0 states are
curves that start in a horizontal direction at B = 0, indicating that their energy is
stationary, that is, unchanging with respect to small changes in the magnetic field
at that point. This, we recall, is the property on which the choice of the standard
transition in Rb and Cs was based, because for B nearly zero, any small variation in
its intensity over the region where the atoms interact with the resonant field will not
broaden the resonance. This is in contrast with transitions involving the mr = *1

m

}

..... GHz

maser transition

Figure 11.1 The energy dependence of the hyperfine states of H on an external magnetic
field
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state, where the energy changes in proportion to the field, and the lines involving
them are broadened by any inhomogeneity in the magnetic field. Thus the maser
operates on the “field-independent” F = 1, mr = 0 — F = 0, mr = 0 transition
near zero magnetic field.

It is important to note that, as with Cs, atoms in a given state will remain in
that state as their energy varies with magnetic field, provided that the change in
field intensity “seen” by an atom is sufficiently slow; this implies the absence of
abrupt changes in the magnetic field either in space or time. We further note that in
the limit of very strong magnetic fields, the graphs reduce to two pairs of parallel
lines of opposite slope, which would be expected of the energy of the electron
and nucleus independently pointing with or against the applied magnetic field. In
this high field region, the interaction between the electron and nucleus is negligi-
ble compared with the interaction of each with the applied field. Again, following
an argument we already made in connection with Cs, if atoms of hydrogen pass
through a region where the magnetic field intensity varies from point to point,
those whose energy increases with magnetic field will be deflected towards regions
of weaker field, since the magnetic energy must be taken as potential energy in
predicting the motion of the atoms. Conversely, those whose energy falls with mag-
netic field will be deflected toward regions of stronger field. This is the basis of the
magnetic state-selector used to separate atoms in the upper F' = 1 state from those
in the lower F = O state.

11.3 Principles of the Hydrogen Maser
As with the original ammonia maser, the essential components of the hydrogen

maser, shown schematically in Figure 11.2, are (1) a source of hydrogen atoms
collimated into a beam, (2) a quantum state selector, which removes most of the
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Figure 11.2 The basic elements of a hydrogen maser
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atoms in the lower of the two energy states between which maser action is to take
place and (3) a resonant cavity, in which the atoms, predominantly in the upper
state, are induced to make transitions to the lower state by emitting radiation.
Sustained oscillation will occur when the power radiated by the atoms is sufficient
to make up cavity losses as reflected in its loaded Q-factor.

The formulation of the conditions for oscillation and analysis of the properties
of the maser, based on the treatment of the ammonia maser by Shimoda, Wang, and
Townes, were published first in 1962 by Kleppner, Goldenberg, and Ramsey, of
Harvard University, followed in 1965 by an article coauthored with Vessot, Peters,
and Vanier of Varian Associates (Kleppner et al., 1965), in which the theory is
extended and experimental techniques are discussed.

Contrary to intuition, there is not only a threshold rate at which atoms in the
beam must enter the cavity in order for the maser to oscillate, but there is also an
upper limit on the rate of atoms entering, beyond which oscillation will cease!

11.3.1 Lifetime of Atoms in the Bulb

There are two fundamental processes, among others, that contribute to the shorten-
ing of the interaction time. First is the escape of atoms from the cavity; this obvi-
ously limits their interaction time with the resonant field and contributes equally to
the relaxation times 77 and 75> of Bloch’s theory (see Chapter 6). To find the prob-
ability (per unit time) of an atom escaping from the bulb through the opening by
which it enters, we assume it makes many random collisions with the surface of the
bulb and therefore has equal probability of occupying any (equal) element of vol-
ume within the bulb. Under the low pressure conditions in the maser bulb, the atoms
are relatively free of collisions among themselves, and we may further assume that
the atoms striking the opening by which the beam enters actually leave the bulb.
If the cross-sectional area of the opening is represented by S, then in order to strike
the opening in unit time the atom must be somewhere within a space defined by a
cylinder of cross-sectional area S and length equal to the average distance it can
travel in unit time perpendicular to S, that is, Vj.e/4, where V,,. is the average
3-dimensional velocity. If we denote the volume of the bulb by Vj, it follows that
the desired probability is given by SVuye/4V), and therefore the probability of a
given atom remaining in the bulb will decay exponentially as follows:

(t)=e ( ! ) T, = Vb 1.5
=exp|— ) D= : :
P P Tb SVave

In terms of the absolute temperature T of the bulb, the average velocity is given by
Vave = +/8kT /(M. For example at T = 300 K we have a mean thermal veloc-
ity of about 2.5 x 103 m/sec; hence for a bulb having a diameter of 0.25 m and
a 4 mm diameter opening, the characteristic decay time is very nearly 1 second.
Incidentally, in that time an atom would have made on the order of 20,000 colli-
sions with the surface of the bulb. While the remarkable property of Teflon permits
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the approximations we have made, the actual system is more complicated, in that
some adsorption and recombination into molecular hydrogen do occur on the bulb
surface, and some atoms are scattered back at the opening.

11.3.2 Spin Exchange Collisions

The second inevitable contribution to the broadening of the resonance, which is
essentially different from the first in that it depends on the number density of atoms,
comes from collisions between atoms. These can both randomize the phase of the
radiating atoms and cause nonradiative transitions, thereby reducing the relative
number of radiating atoms. The type of collision between atoms that dominates
under the ordinary operating conditions of the maser is one in which the electrons
of the two colliding hydrogen atoms exchange spin directions. An exchange of
spins manifests itself only when the electrons approach in opposite states, and the
collision results in a mutual spin-flip; so our concern is with a process that we can
write symbolically as follows:

AMM) + B() = A() + B(D). 11.6

The duration of such collisions is short compared to the average time between
collisions; so short, in fact, that the nuclei do not have time to be affected; that is,
for the purposes of predicting the resulting states of the atoms, it is as if the hyper-
fine interaction between electron and nucleus were not there. The whole process is
strictly a quantum-mechanical effect; the interaction of the electrons by virtue of
their magnetic dipole moments is far too weak to explain the large cross section
the atoms present each other in encounters that result in spin exchange. The inter-
action between charges ultimately arises from the electrostatic Coulomb force,
which, although not spin-dependent itself, nevertheless manifests itself in a spin-
dependent way because of a certain symmetry requirement on the two-electron
wave functions, which we encountered earlier in connection with the Pauli exclu-
sion principle. The likelihood of an atom undergoing a spin-exchange collision is
expressed in terms of the effective cross section it presents as it travels through the
cloud of other atoms, sweeping out a volume containing all those atoms with which
it will make such a collision. If the number density of the hydrogen atoms in the
bulb is represented by n, the cross section by Gex, and the mean relative velocity
of the atoms is V, then the volume swept out per second is Gex Vi, and the number
of atoms in that volume will be nGe V,. This then is the average number of spin-
exchange collisions a given atom will undergo per unit time, and the average time
between collisions is the reciprocal of that, namely
1

Ty = 11.7
GextVy

showing explicitly the dependence of 7, on the number density of atoms in the
bulb, and hence on the rate at which atoms enter the bulb. The spin-exchange
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process contributes to both types of relaxations; however, not to the same extent.
It can be shown that 77 = T, while T, = 2Ty.

11.3.3 Threshold for Sustained Oscillation

We begin by considering the power radiated by the atoms in the cavity. Following
Ramsey et al., we use a result derived from a solution of Bloch’s phenomenologi-
cal equation for the response of the global magnetic moment of a group of atoms
subject to a time-varying magnetic field. The resonant response of the H-atoms
to a microwave magnetic field, inducing transitions between the hyperfine states,
is through the magnetic dipole moment of the atoms, and to the extent that we
may regard the transitions as occurring between just two quantum states, a vector
description in terms of a spin 1/2 particle gives valid results. In the present case
one finds that the net power P radiated by atoms entering the cavity in which the
field amplitude is B, with an excess of flux A7 of atoms in the upper state over
those in the lower state is as follows:

x2

1
P = EAI hv - 5 11.8
7 X2+ (ﬁ) [2n(v — vo)]

where x = 27t B,/ h, Vo is the frequency of the atomic hyperfine transition, and
L, is the magnetic moment of the atom. Note the presence of an x? term in the
denominator of the expression for P, which has the effect that for amplitudes of B,
such that x2 becomes dominant, the value of P reaches saturation, thatis, no longer
increases with the field amplitude in the cavity. The graph of P has the shape of a
typical resonance curve with a maximum at v = v and a (full) frequency width at
the half power level given by

1 1 T
AV = — —+(—)x2. 11.9
n\ 1} b3
The presence of the term involving x2, and hence B.2, in the expression for the
resonance width shows power broadening of the resonance, which can be thought
of as due to the shortening of the time each radiating atom spends in a transition
due to the strength of the inducing field.

Finally, we are in a position to understand the reason it is possible to have
too large a flux of atoms entering the cavity to have oscillation. To that end
we will simplify matters by including only the two fundamental contributions to
the relaxation times and write

1 1 1 1 1 1

T, T, T, T, T, 2Ty
This way of combining relaxation times is justified on the basis that for example,
1/T is the average probability per unit time of a certain event taking place. It
follows that if there are two independent ways in which that event can come about,

11.10
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and we wish to have the probability of one or the other taking place, then we should
add the individual probabilities. Now we see that since 1/ T, is proportional to n, it
also depends on Ii,, the atomic flux entering the bulb. This is evident from the fact
that under steady conditions the total number of atoms in the bulb, N, depends on
the total flux according to the following:

dN N
=l — — =0 11.11
dt Ty
and hence the relaxation time 7y depends on [y, as follows:
1 Cex Vi T
_ZC"—”’Itot' 11.12
Tx Vb

The atoms entering the bulb from the state selector are of equal number in the states
designated as (F =1, mp =1) and (F =1, mr =0), and ideally none in the other
states. If we assume this ideal condition, then the flux of atoms in the radiating
state entering the bulb is Iio/2.

Now, the condition for a sustained level of oscillation can simply be stated as
follows: The power radiated by the atoms must equal the sum of the microwave
power dissipated in the cavity and the power delivered as output. Using the
definition of the Q-factor of the (loaded) cavity, the condition can be formulated
as follows:

E
Prad=27w§’ 11.13
where P.,q is the power radiated by the atoms at resonance and E is the electro-
magnetic energy stored in the cavity, energy that resides in the field and in classical
theory can be expressed (in SI units) in terms of the field amplitude B as follows:

1
21y
where the notation (). designates an average over the volume of the cavity, equal
elements of volume being given equal weight. There remains the question of relat-
ing (B?). to the appropriate average, over the volume of the bulb, of B, the field

component responsible for stimulating transitions. This is done by defining a filling
factor, given the symbol 1, as follows:

E (B%) Ve, 11.14

_ (B.)%Vp
(B) Ve~

where Vj, is the volume of the bulb and the notation (); denotes, as before, an
average over the volume of the bulb. The ratio 1 is important in the analysis of the
conditions for oscillation of the maser—this is hardly surprising, since the numer-
ator is, in fact, proportional to the rate at which the atoms are stimulated to emit
radiation, while the denominator is proportional to the energy stored in the cavity.

11.15
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The salient point in this definition of 1 is that the average in the numerator is taken
to be (B;) »2, rather than (B .25, which would be true for fixed atoms. We will not
attempt to pursue the question beyond saying that the explanation is to be found in
the fact that the atoms rapidly cross the bulb back and forth many times during the
emission process, randomly sampling the field throughout the space in the bulb.
The atoms are confined to a space where the radiation field has almost constant
phase but varying amplitude according to the field pattern of the particular mode.
Under these conditions we further expect the Dicke effect to be observed in the
atomic resonance line: a sharp line center free of (first-order) Doppler broadening
on a broadened pedestal.

In terms of the filling factor, and the (loaded) Q-factor of the cavity, we can now
relate the power loss to (B.)? and therefore x2, the saturation factor; the result is a
simple proportionality: Pj,ss = 0x2, where o is a constant involving the physical
parameters of the maser. But we have also the formula for the power radiated at
resonance (V — Vo) = 0 in terms of x2, hence equating the power loss to the power
radiated, we find that for a sustained level of oscillation we must have

P=Ltarn L(14 30, 1% 11.16
2T\ tan e ) ‘
in which we have substituted for 77 and 7> in terms of T, and Tj. Recalling that
T, is proportional to Iio, we see already from the presence of the quadratic term
(T, / Ty)? that there may be two real solutions for /i to the equation obtained by
setting P = 0; this means that there may be, in addition to the threshold value of I
where oscillation begins, another where it ceases, as indeed proves to be the case
experimentally. The range of values of atomic flux for which oscillation occurs
depends on the coefficients of the quadratic equation, and it is useful to write these
in dimensionless form. To that end an important design quantity g is defined as
follows:

_Ger h 1 Itot

q= — — . 11.17
4y pug nQ Al
This leads to an expression for the power P in a useful form:
2P/hv Al Al _ , ( AT
—=——|14+3¢ 2g° | — , 11.18
Al Aly Al Aly

where Aly, is the threshold difference in the flux of the two maser states in the
absence of spin exchange, given by

Lk Y
2mug pi ONTP

This represents a theoretical limit; the actual threshold will always be higher
because of the spectral broadening effect of spin exchange between atoms. We note

11.19
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Figure 11.3 The oscillating range of the H-maser as a function of the parameter g
(Kleppner, 1965)

the importance of a large perturbation-free storage time 7}, in the bulb in realizing
maser oscillation, in view of the smallness of L. It can be shown that the roots are
real if gsatisfies in our case the following condition:

g <3—2v2. 11.20

In Figure 11.3 is reproduced a set of graphs showing the dependence on g
of the range of I, over which oscillation occurs. We note that as g approaches
3 — 24/2(x0.171), the range tends to zero.

11.4 Physical Design of the H-Maser
11.4.1 Atomic Hydrogen Source

We take up now a somewhat more detailed description of the physical apparatus.
We begin with the source of the atomic hydrogen beam. Hydrogen gas naturally
occurs in the diatomic molecular form H», and therefore the first task is to dissoci-
ate the two atoms that make up a molecule; this requires that the molecule be given
an energy of about 4.4 electron volts to break the bond between the two atoms.
This may be done in one of two ways: either by collisions with free electrons in an
electrical discharge or collisions between molecules at high temperature.

The high temperature approach is relatively more predictable in design and
performance; however, it is now mainly of historical interest in having been
used in some classical experiments on the spectrum of the hydrogen atom by Lamb
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and Retherford. A degree of dissociation of 64% was reported in their experiments
using a tungsten oven operated at 2,220°C and gas pressure of 10> Pa. Tungsten
has the highest melting point, at about 3,370°C, but even at this high a temperature
the average kinetic energy of a molecule is only about 0.5 electron volt. For a gas
in thermal equilibrium at a given temperature, the distribution of kinetic energy (or
equivalently, thermal velocity) is the Maxwell-Boltzmann distribution, which may
be written as follows:

d—Nzii £exp(—ﬁ)dE, 11.21
N JRKTV KT

where d N/ N is the fraction of the molecules having kinetic energy in the interval
dE centered at the value E, T is the absolute temperature, and k = 1.38 x 1023
joules/degree is Boltzmann’s constant. The distribution reaches a maximum at
E=kT/2 and falls toward zero, but remains finite as E increases, reaching
increasingly higher energies as the temperature is raised. Because of this fact there
can be significant dissociation of molecular hydrogen in a heated tungsten oven,
the actual degree of dissociation depending not only on the temperature, but also
on the competing rates of recombination and influx of molecular hydrogen into
the oven.

There was at one time some effort devoted to developing high temperature
ovens, because there was evidence that there may be a problem with the stability
and aging of the electrical discharge sources then in use. However, these drawbacks
have largely been eliminated, and the high-frequency electrical discharge source is
universally used in hydrogen masers.

The earliest application of an electrical discharge for the production of atomic
hydrogen was first described by R.W. Wood around 1920, and a discharge tube
designed for that purpose was called a Wood’s tube. It essentially consists of a
long, narrow glass tube provided with internal metal electrodes at its ends and
containing hydrogen at low pressure, typically around 10? Pa. The application of
a high DC voltage between the two electrodes results in a glow discharge, much
like the familiar neon signs. Apart from a small region near the negative electrode,
the tube is filled with a glowing column, called the positive column, which con-
sists of a neutral mixture of free electrons, positive ions, and neutral gas particles.
The ions and electrons in this mixture are strongly “coupled” because of the long-
range Coulomb force between opposite charges, causing them to act like a fluid;
hence the name plasma. The ions in the plasma have a Maxwellian distribution of
energy corresponding to a temperature only slightly greater than the neutral gas.
The electrons, however, can have a very much higher temperature and are thus able
to impart enough energy to the gas molecules through collisions to ionize them,
and thereby replace ions that are neutralized on the walls of the tube. Of particular
interest here, of course, is the fact that the electrons will also have enough energy
to cause dissociation of the Hy molecules through collisions, mostly according to
the following reaction:

Hy+e— H+H+e.
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The resulting hydrogen atoms will, however, readily recombine to form molecular
hydrogen, provided that the atoms come together in the presence of a third body,
such as a solid surface. Two isolated atoms coming together in space cannot form a
bound system, since that would violate the conservation of momentum. The prob-
ability of two hydrogen atoms coming together in the presence of a third particle
is extremely small at the number densities contemplated here; however, many sur-
faces, including all metals, will have adsorbed layers of gas and other impurities
that readily provide the “third body” and allow the atoms to stabilize in molecular
form. Therefore, special care must be exercised in cleaning the inner surfaces of
the glass tube to reduce the recombination rate.

The Wood’s tube has been totally supplanted by the more efficient and compact
electrodeless high-frequency discharge source. In this a glass bulb or tube no more
than one or two centimeters in overall dimensions is placed in the high-frequency
electric field of a resonant circuit tuned to a frequency in the range 100-200 MHz.
The principal advantage is that a high electron flux can be sustained in the plasma
without incurring great dissipation of heat caused by electrons hitting the walls of
the bulb. Great care must be exercised in the design and fabrication of the tube; it
is cleaned, and evacuated according to standard vacuum practice, and connected to
a source of hydrogen gas through a heated palladium-silver “leak.” This consists
of a thin-walled tube of the alloy closed at one end and sealed around its rim to
the vacuum shell at the other. It separates the discharge tube from the hydrogen
source and has the remarkable property when heated of acting as a filter admitt-
ing only pure hydrogen from the source. The pressure in the discharge, and hence
the beam intensity, can conveniently be varied by controlling the temperature of
the palladium-silver leak; typically the pressure is in the range 10 to 100 Pa. This
capability of rapidly changing the beam intensity is, as we shall see, of great impor-
tance in the automatic tuning of the maser cavity. The detailed mounting of the tube
in the coil, as well as the matched coupling of the coil to the source of the UHF
power, are crucial factors in achieving a stable discharge. The UHF input power
required is typically in the 10 to 20 watt range. There is a complicated interdepen-
dence between the level of excitation of the coil and the temperature of the bulb
and the electrical characteristics of the plasma. This could easily lead to instabil-
ity; however, in the absence of any useful analysis of the system, there have been
many long-term experimental studies made, and apart from a disconcerting condi-
tion known as the whites, observed in some of the early work, this type of source
has proven itself completely satisfactory. When the source is working normally, the
discharge has a clear bright red color due to lines in the atomic hydrogen spectrum,
whereas the presence of molecular hydrogen gives the glow a bluish-white hue. It
is found that the Pyrex glass surfaces will become discolored due to chemical reac-
tions after prolonged operation of the discharge; however, this does not seriously
affect the operation of the source.

Unlike the other beam sources we have encountered, the beam-forming colli-
mator in the hydrogen source, consisting either of a single narrow tube or a bundle
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of capillary tubes, is limited by the possibility of the atoms recombining into mole-
cules through collisions on the capillary tube walls.

The angular width of the emergent beam is typically very much wider than
the acceptance angle of the state-selecting magnet that follows, making the utiliza-
tion factor of the hydrogen no more than perhaps 0.01%. This results in the need
for high-capacity vacuum pumps to maintain the background pressure in the main
body of the maser at a tolerably low level, such as 10~ Pa. Fortunately, the back-
ground will be mostly molecular hydrogen which is so different from atomic hydro-
gen that its presence will obviously not contribute to the populations of the atomic
states in the resonant field, and apart from scattering the beam atoms or possibly
causing small frequency shifts in the hydrogen hyperfine frequency through colli-
sions, there are no objectionable effects resulting from its presence. Nevertheless,
the system requires continuous pumping with a large pressure differential main-
tained between the source chamber and the rest of the system. For this purpose ion
pumps are commonly used, since they are highly efficient in pumping hydrogen.
However, their powerful magnets compound the problem of shielding the radiat-
ing atoms from external magnetic fields and add considerably to the weight of
the system.

11.4.2 The Hexapole State-Selecting Magnet

The state-selector that is ideally suited to the hydrogen maser, and is commonly
used, was originally proposed in 1951 by Friedburg and the Nobel laureate
W. Paul for applications in magnetic resonance. It is the hexapole focusing mag-
net already mentioned in connection with the Cs standard (See Figure 9.6). The
somewhat different focusing properties of the quadrupole magnet have also been
exploited for the same purpose. The object is to separate atoms in the F =1 state
from those in the F =0 state, and to allow only those in the upper F =1 energy
state to enter the resonant cavity and be stimulated to radiate at the 1,420 MHz
transition frequency.

We recall that the magnetic field distribution of the hexapole magnet has a
3-fold axis of symmetry; its components in polar coordinates r, 6 can be written as
follows:

B, = kr2 cos 30; Bg = —kr? sin 30. 11.22

This shows that at a given radius, as the angle 0 goes through a full circle, the field
components will repeat themselves three times. The total field is given simply by
B =kr?, a function only of the radial distance of the field point from the axis. If
we represent by By, the field at the radius r,, that reaches the pole tips of the mag-
net, then the expression for the field at any point r < r,, becomes B = (B, /1 >)r>.
In practice, the magnetic field is made sufficiently strong that the energy of the
atoms, which in low field start in the F =1, mp =0 and F =0, mr =0 states, is
proportional to the field, as indicated by the approach to linear form with oppos-
ing slopes of the graphs in Figure 11.1. Thus in the high field region we can write
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the energy as +U,B and —u,B for these states, where | is an effective magnetic
moment. Introducing the radial dependence of B, we find for the magnetic energy
+W(By /rm?)r?. Since this energy plays the role of potential energy in determin-
ing the trajectories of the atoms, it follows from the conservation of energy law
that atoms in the upper state with radial kinetic energy 1/omV,? = Yo By, will just
graze the poles of the magnet before curving back towards the axis, as shown in
Figure 11.4.

Atoms with any greater initial radial energy will hit the poles and be lost from
the beam. Those leaving the source at an angle of ¢ (radians) to the axis have
a radial component of velocity of V. ~ V¢, and therefore the maximum (planar)
angle ¢,, accepted by the magnet is

1
iMV%izmﬁw 11.23

A more useful measure in determining the flux of atoms in the focused beam is
the solid angle defined by a cone having a half-angle ¢,, at its apex. We imagine a
unit sphere drawn with the atom source as center; the solid angle is the area on the
sphere enclosed by the circle in which the cone intersects the sphere. In our case
¢,, < 1, and the solid angle is simply Q,,, ~ 70,2, that is,

21t By,

"TomMv?
In arriving at this maximum acceptance solid angle we have assumed a magnet
design that is universally used in practice, namely one in which the pole-pieces
are straight cylinders, so that the magnetic field is constant along lines parallel to
the axis. However, it can be shown that in principle by making the inner radius of
the magnet r,,, vary in a particular way with axial distance, the acceptance angle can
be significantly increased. Unfortunately, fabricating the contoured pole-pieces of
such a magnet is difficult, and the implementation of this refinement has not been

11.24

Figure 11.4 The acceptance angle of a hexapole magnet
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seriously pursued. In practice, permanent magnets are used, and the limit on By,
is set by the saturation value in the magnetic material used for the pole pieces,
typically in the range 0.5 T to 1.0 T. The total flux of atoms from a collimated
source is on the order of 10! atoms /sec, of which a small fraction, perhaps 5 x 1012
atoms/sec, in the upper state are focused towards the axis.

Now, the force on the atoms, being given by the gradient of the energy, will
be £2U,(Bm/ rm?)r, according as they are in the upper or the lower state. Thus
atoms that in low field are in the upper F = 1, mr =0 state are drawn toward the
axis with a force that is proportional to the distance from the axis, a force that
produces simple harmonic motion about the axis. The atoms in the lower state,
on the other hand, diverge exponentially away from the axis and are lost from the
beam, becoming part of the molecular background. The question remains, however,
as to whether the atoms in the upper state, issuing from the source in a narrow cone,
are indeed focused back to a point on the axis. We will not attempt to give here
a rigorous description of the focusing action of the hexapole magnet but will be
content with some simplified general arguments. First we point to the simplifying
fact that the acceptance angle of the magnet is in practice very small, since the
magnetic (potential) energy of the atoms at the strongest point in the field is still a
small fraction of the thermal kinetic energy of the atoms as they emerge from the
source. Furthermore, we will assume that the atoms emerge from a point source
rather than a significant area; this allows us to ignore skew off-axis trajectories and
consider only the radial motion of the particles.

To show that atoms of a given velocity are focused to a point on the
axis, we must show with reference to Figure 11.5 that the trajectories emerg-
ing from the magnet intersect the axis at the same point. Now, the trajectory of an
atom in the hexapole field can be shown to be represented by the following:

r = rosin (Qé—}—oc); V, = Qrg cos (Qé—i—(x), 11.25

1 atoms in
"right" state

atoms in
wrong state

Figure 11.5 The converging and diverging paths of atoms in a hexapole focusing magnetic
field
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where ro and o are constants that must be chosen to conform to the given initial
values of the particle position and velocity, and € is given by

2uB
o= |HoPm 11.26
Mr2

If all the particles can be assumed to originate from the same point on the
axis, then we may take that point to be z =0, leading to the choice oo=0, and
the trajectories of all atoms having a given velocity V and rg < r,, will return to
the axis at the same point where Qz/V =m. This assumes, of course, that the par-
ticles remain in the hexapole field, whereas in fact, they must converge to a focus
some distance away from the magnet, at the entrance to the cavity. In that event,
QL/V <=, where L is the length of the magnet. On emerging from the magnet
they will of course travel in straight lines, and therefore, in order to intersect the
axis at the same point, they must travel in directions at the exit plane of the mag-
net satisfying r/(dr/dz) = constant. This ratio in fact is constant for motion in a
hexapole field, but only for a given velocity; there is a different focal point for
each velocity. Of course, we know that they do not all have the same velocity;
the velocity has a distribution characteristic of the source temperature. The depen-
dence of the focal distance on velocity is analogous to the dependence in optics of
the focal length of a simple glass lens on the color of the light, a deficiency called
chromatic aberration. This leads to some broadening of the exit-beam image of
the source produced by the magnet. It is tempting to draw on the analogy with
optics to design an achromatic pair of lenses; unfortunately, for the atomic states of
interest the hexapole magnet is necessarily analogous to a converging lens, and two
such lenses cannot be made achromatic in the true sense. Experimentally, the optics
of the hydrogen beam, its profile as a function of distance along the axis, can be
studied with a screen coated with white molybdenum oxide. The hydrogen atoms
falling on the screen chemically reduce the oxide, resulting in a blue spot whose
density gives some indication of the relative distribution of atoms in the beam. In
this way the beam-profile at various crucial points can be analyzed to optimize the
distances between the source, magnet, and cavity.

11.4.3 The Storage Bulb

The heart of the maser is the storage bulb, which confines the atoms to the cen-
tral part of the interior of a microwave cavity tuned to the 1,420 MHz transition
frequency between the hyperfine states. To minimize the loss of microwave power
in the cavity through its conversion to heat in the material of the bulb, the latter is
typically made of a low-loss dielectric material such as fused quartz. It is usually
a spherical bulb, on the order of 15 cm in diameter, provided with a collimator
similar to that used in the source, to admit the atomic beam. As already mentioned,
the inner surface of the bulb is coated with an inert copolymer designated by the
Dupont trade name FEP Teflon. The formation of a satisfactory coherent Teflon
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film on the quartz surface begins by a thorough cleaning of the quartz surface, once
achieved with concentrated chromic and sulfuric acids, but now more commonly
by the use of an organic solvent. After this it is wetted with a liquid suspension
of the Teflon. The bulb is then dried by heating it while circulating clean, dry air
through it. Then it is heated to 360-380°C to fuse the particles of Teflon into a
coherent coating, while circulating clean air or oxygen through it to aid in oxidiz-
ing contaminants and removing the resulting gases. The bulb is kept at the fusing
temperature for about 20 minutes. The collimating tube in the neck of the bulb may
be a solid Teflon plug drilled with many holes or a Teflon coated Pyrex tube. From
this description of the procedure for preparing the surface of the bulb it is appar-
ent that we are dealing with a recipe that leads to a surface that is not absolutely
defined in physical terms. We might speculate about using an electron microscope
to determine the physical structure of the surface, but unless we can also specify
a procedure that will always lead to that precise structure, it would fall short of
establishing an absolute standard.

11.4.4 The Microwave Cavity

The microwave cavity in which the stored atoms interact with the resonant radiation
field to sustain maser oscillation must do so in a stationary mode such that the
atoms move in an oscillatory field of constant phase. It would do little good to have
a long interaction time if the conditions are such that the Doppler effect can shift
and broaden the spectral line. The cavity commonly used is a right circular cylinder
operated in the TEp;; mode; it will resonate at the desired hyperfine frequency if
both the length and diameter are chosen to be about 27.6 cm. The axially symmetric
pattern of the electromagnetic field in this mode is illustrated in Figure 11.6, which
also outlines the space defined by the storage bulb.

As pointed out already in connection with the ammonia maser, while the
Q-factor of the cavity must be high in order to get over the threshold for sustained
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Figure 11.6 The magnetic field pattern in the TEp;; mode of the H-maser cavity
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oscillation, this introduces the undesirable possibility of cavity pulling of the oscil-
lation frequency. The Q-factor of an isolated, unloaded cavity is determined by
power loss in the form of heat on the inner surfaces of the cavity walls; a silver-
plated cavity in the above mode has a theoretical Q-factor of 87,000. The presence
of the quartz storage bulb has little effect on the Q-factor, but it will significantly
detune the cavity, lowering its resonance frequency. Output microwave power is
coupled to a 50 ohm coaxial cable by a hairpin loop mounted in one of the end
plates, at a point of strong magnetic component in the cavity field. The plane of the
loop must, of course, be set at right angles to the direction of the magnetic field for
optimum induced current in the loop.

The phenomenon of cavity pulling adversely affects the stability of the maser
frequency by making it dependent on the tuning of the cavity, and hence on the
changes of dimensions of the cavity due to temperature fluctuations. There are two
approaches to minimizing this source of instability in the maser frequency. First
is to use a material for the cavity whose dimensions are particularly insensitive to
temperature changes; such a material is CER-VIT, the Owens-Illinois Company
designation for a ceramic-vitreous material whose dimensions are remarkably con-
stant with respect to temperature fluctuations. As with any other dielectric cavity
material, a thin film of silver or gold on the inner surfaces provides sufficient elec-
trical conduction, since at these high frequencies the fields penetrate only a micro-
scopic distance into a metallic conductor. The second approach is to use a metallic
cavity whose temperature is monitored at many points with ultimate sensitivity,
and electronically stabilized with a fast-responding servo control loop. In general
practice, however, fused quartz is used, whose coefficient of thermal expansion is
0.25x107° per °C, approximately 1/100 that of aluminum; nevertheless, temper-
ature stabilization is still used in an electronically controlled oven.

11.4.5 Magnetic Shielding

As already pointed out, the (F=1, mp=0)— (F=0, mg=0) hyperfine
transition frequency is “field-independent” only in the neighborhood of zero
static magnetic field By. It is therefore necessary to reduce the ambient field at the
storage bulb to the lowest possible value. However, there are two conditions on the
static magnetic field that impose, in effect, a lower limit on the intensity at which
the maser will operate. First, the static field must be in the direction parallel to the
microwave magnetic field in the bulb, that is, for the TEy;;-mode along the axis
of the cavity. This condition on the polarization of the microwave field in relation
to the magnetic field axis, which serves as the axis of quantization for the atomic
states, arises from the fact that in the transition involved, m r is unchanged. There-
fore, the inevitable nonuniformities in the static field intensity must not involve a
reversal of the direction of the field at any point; that is, the average field must be
larger than the fluctuations. The second condition is a little more subtle: It is based
on the fact that atoms moving through a field that varies from point to point can
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undergo Majorana transitions to other hyperfine states. The likelihood of such tran-
sitions diminishes if the magnetic field is sufficiently strong in comparison with
the spatial variations in it. In practice, several layers of high magnetic permeability
material, such as Moly Permalloy, are placed coaxially around the cavity to shield
it from external fields. These materials will develop “hard spots™ as a result of spot
welding and shaping and must therefore be properly annealed; furthermore, they
must be thoroughly demagnetized by taking them through cycles of magnetization
by an alternating magnetic field whose amplitude is brought to zero. Inside the
innermost layer a solenoid, wound on a nonmagnetic form, provides an adjustable
uniform magnetic field over the storage bulb. The maser frequency depends on
this magnetic field according to the Breit—Rabi formula, which in the present case
yields:

V=vy+2761 x 10""B> —2.68 x 10°B* + ... 11.27

Clearly, for magnetic fields in the milligauss range (=10~ tesla), terms higher
than the third are negligible. In order to correct the observed frequency to the
zero-field value, the field intensity is deduced from the frequency of transitions
involving a change in the magnetic quantum number mp, for example (F =1,
mp = +1)— (F =1, mp =0). To induce these transitions requires typically an
oscillatory magnetic field in the kilohertz range perpendicular to the cavity axis,
a field readily generated by passing a current of that frequency through a wire
loop. Since the static field inevitably has some residual variation from point to
point, we should note that the Amp =31 magnetic resonance lines (observed by
their effect on the maser oscillation) have center frequencies determined by the
average of the magnetic field, rather than the average of the square of the magnetic
field, as required for the hyperfine frequency correction. However, it is possible
from the width of the magnetic resonance line to estimate the field inhomogeneity
and ascertain that indeed we are permitted to assume (B() »2 =~ (Bo2)p.

11.5 Automatic Cavity Tuning

It is no exaggeration to say that the development of the hydrogen maser into a
standard of exceptional long-term as well as short-term stability hinged on the
ability to electronically control its cavity to remain precisely tuned to the atomic
frequency, thereby avoiding cavity pulling.

The original method for the automatic tuning of the H-maser cavity followed
the principle used in the ammonia maser; namely, to modulate the width of the
atomic resonance and use a high-quality oscillator as a short-term frequency refer-
ence to detect any consequent change in the pulling of the maser output frequency.
The formula for frequency pulling, we recall, is the following:

v—v():%(vc—vo), 11.28
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where as before, the fractional line width of the atomic resonance has been written
in terms of a quality factor QO , and Q. is the cavity quality factor. Accordingly,
if the atomic line width, and hence Qj, is modulated, the maser output frequency
will remain constant and equal to the atomic resonance frequency if and only if
(Ve — Vo) =0; that is, the cavity is tuned to the atomic frequency.

In this method of automatic tuning, it is common to modulate Q; by mod-
ulating the flux of atoms in the beam entering the cavity. As we have seen, this
will vary the number density of atoms in the bulb and consequently the spin-
exchange time T, which contributes to the transverse relaxation time 7> and there-
fore the frequency width of the atomic resonance. If we could ideally vary only
the flux of atoms entering the cavity, all other properties of the beam remaining
constant, we would thereby vary not only the atomic resonance width, but also
to a smaller degree a shift in the center frequency, which also results from spin-
exchange collisions. Fortunately, this is an added bonus, for it allows us not only
to tune the cavity, but to do so in a way to compensate for the small spin-exchange
shift in the atomic frequency. The main difficulty in implementing this method of
tuning the cavity is the requirement of an oscillator sufficiently stable to serve as a
reference in detecting any change in the maser output frequency.

This problem is avoided by another approach successfully designed by
Audoin’s group at what was the Laboratoire de I’Horloge Atomique, in Orsay,
which is to inject a frequency-modulated stable signal near the resonance fre-
quency (derived from a crystal oscillator phase-locked to the maser output) into
the maser cavity. It can be shown that the maser output will provide an error signal
if the cavity is not exactly tuned to the center of the atomic frequency. The ten-
dency of the maser oscillator to lock on to the frequency of the injected signal must
be avoided; it can be shown that with the proper Fourier spectrum of the injected
signal (center frequency suppressed), this can be achieved.

11.6 The Wall Shift in Frequency

The collisions of the radiating hydrogen atoms with the Teflon wall coating cause
a residual shift in the atomic frequency, aptly called the wall shift. First let us
recall that the atoms are confined in an enclosed space, assumed to be a spherical
quartz bulb coated on its inner surface with Teflon. It is provided with a small
opening through which the beam enters, and atoms effuse out, after making many
collisions with the Teflon surface. In order to estimate the wall shift in the atomic
resonance frequency, it is necessary to know the relative time a given atom spends
interacting with the wall as a fraction of its free time between wall collisions. If
then we can estimate the shift in phase that occurs during a collision, we will be
able to derive the mean frequency shift. Now, the distance of free travel between
collisions should clearly be proportional to the radius of the bulb; in fact, one can
show that it is 4R /3, and the mean free time between wall collisions is therefore
T =4R/3V,e. Surfaces are generally complex physical and chemical structures



11. The Hydrogen Maser 231

with adsorbed layers of whatever gaseous material they have been exposed to, not
to mention other unintended “impurities.” In addition, the solid substrate itself is
not necessarily uniform throughout. Therefore, it is not only difficult to develop a
satisfactory detailed analysis of the wall shift, it would have to be based on such
an idealized model as to be of very limited value. It is possible, however, to make
some general observations that are useful in understanding some of the factors on
which that shift depends. When a hydrogen atom approaches the Teflon surface,
one of several types of collisions can ensue; but whatever the outcome, it is fairly
certain that it will dwell on the surface for a finite time, trapped in a potential well,
shown schematically in Figure 11.7. It is formed by a force of attraction as the atom
approaches the surface, which however turns repulsive as the atom penetrates into
the surface.

If, on the other hand, it does not get involved in a chemical bond, but rather
only suffers the strong electric forces at the surface derived from the potential well
alluded to above, the electron distribution around the nucleus is distorted, thereby
changing the electron density at the nucleus, and hence the hyperfine frequency
interval, that is, our maser frequency. The duration of these forces is extremely
short, being on the order of the range of intermolecular forces divided by the
average thermal velocity of the atom, that is, on the order of 1013 sec. In real-
ity, the dwell time at the surface can be considerably longer than this, depending
on the depth of the potential well and the degree to which the atom loses kinetic
energy during the collision, since it has to climb out again by a set of favorable
gains in thermal energy from the surface. Nevertheless, it is only a fraction of the
period of oscillation of our atomic frequency; hence the disturbance of the atomic
state is in the nature of a sharp impulse. It can cause real nonradiative transitions

potential

energy
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Figure 11.7 Schematic representation of the potential well at a solid surface



232 The Quantum Beat

phaseT

wall shift

0 time ——p»

Figure 11.8 Frequency shift due to accumulation of phase shifts at wall collisions

between the hyperfine states, but more seriously, it causes a small shift in the phase
of a radiating atom. This phase shift not only leads to dephasing of the radiating
atoms due to statistical distribution of the phase shift, but also, more significantly,
to a shift in their mean frequency due to the constant accumulation of phase shift,
as illustrated in Figure 11.8.

Thus if the mean phase shift per collision is A¢ and the mean time between
collisions is T, we can write for the mean phase of the atomic transition

A
(0) = 2mvot + —t. 11.29
Te
The second term on the right increases linearly with time and represents a shift in
frequency amounting to Av = A¢/2nt., which may be rewritten in terms of the
bulb geometry as follows:
Ao

DAvy =3Vae—, 11.30
41

where D = 2R. It has been experimentally confirmed that D Avy is temperature
dependent and ranges from 0.38 Hz - cm at 31.5°C to 0.35 Hz - cm at 40°C. Further-
more, studies have indicated that in certain coatings the wall shift passes through
zero at a particular temperature.

11.7 The H-Maser Signal Handling

As already indicated, the power output of the hydrogen maser is very low, typically
on the order of 10~!2 watt; therefore, to obtain a useful signal, the maser output is
phase-locked to a synthesized frequency derived from a high-quality 5 MHz quartz
crystal oscillator. The challenge is to do this without significantly affecting the free
oscillation of the maser, a situation analogous, of course, to the problem of the
escapement in mechanical clocks. Whatever is connected to the output port of the
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maser cavity must cause a minimum of detuning and additional noise. This requires
that the maser be presented with a constant low-noise load, that is, a circuit element
drawing little power and with minimal changes in its input capacitance or induc-
tance. Great care is therefore taken to ensure temperature stability of the solid-
state circuitry used in the processing of the maser output. A selected low-noise
preamplifier is typically used to amplify the maser output and to isolate the maser
from subsequent circuits. The figure of merit of such amplifiers, the noise figure, is
roughly defined as the ratio (on a decibel scale) of the actual noise power at the out-
put of the preamplifier to what it would be if only the fundamental Johnson noise
were present. Solid-state preamplifiers are available that operate at the desired fre-
quency of 1,420 MHz with a noise figure around 3 db; that is, the noise power
is 10%/1922, or about twice the ideal. In systems where a second maser is used
as reference in the tuning of the cavity, extraordinary steps must be taken to iso-
late the one maser from the other; otherwise, frequency locking will take place, in
which the two masers pull each other to a single common frequency. To avoid this,
microwave devices called circulators, based on a special property of ferrites, may
be used as isolators.

The detailed design of the receiver and synthesizer necessary to phase-lock a
5 MHz quartz oscillator to the maser output in order to obtain useful standard sig-
nals can, of course, vary widely. However, we can illustrate the general principles
by describing briefly the pioneering system developed by H.E. Peters for NASA
satellite tracking stations. The system is shown schematically in Figure 11.9. The
output of the precision 5 MHz quartz oscillator is multiplied to 1,400 MHz and
mixed with the preamplified output of the maser to give a heterodyne frequency at
an intermediate frequency (IF) of 20.405 MHz. This is passed through a tuned IF
amplifier, followed by two further heterodyne stages with IF frequencies at around
405 kHz and 5 kHz. The amplified signal at 5 kHz is connected to a phase detector
(comparator), whose reference phase is derived from the 5 MHz quartz oscillator
through a digital frequency synthesizer. The frequency of the latter, which can
be advanced in steps of 0.0001 Hz, determines the precise frequency to which

H-maser
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Figure 11.9 An example of an H-maser receiver—synthesizer (Peters, 1969)
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the quartz oscillator will be stabilized, since its actual setting depends on the
corrections for the magnetic field and wall shift. The output of the phase
comparator, which constitutes the error signal for the control loop, then passes
through a filter to ensure stability before closing the loop by connecting it to the
frequency-control input of the quartz oscillator. From the phase-locked 5 MHz
quartz oscillator, frequency dividers provide standard outputs at 1 MHz and
100 kHz as well as one-second pulses to drive a clock.

Finally, we consider the frequency stability actually achieved in masers built at
national standards laboratories around the world. In an earlier chapter we saw that
a conventional “time domain” definition of frequency stability (really instability)
is the so-called Allan variance of the frequency deviation. A typical plot of this
quantity as a function of the measurement period for an actual hydrogen maser is
reproduced in Figure 11.10.

The required stability in the standard used as a reference in obtaining the devi-
ations in frequency is so great that only another hydrogen maser can qualify. As
already emphasized, great care must be taken to isolate the masers from each other.
Otherwise, they will lock on to the same frequency, and the “deviation” would
always be zero! Looking at the graph in Figure 11.10, we cannot but be impressed
by the extraordinary stability this device exhibits; a clock stable to one part in 10!
will gain or lose only 1 second in about 32 million years!

When all the anticipated systematic corrections have been made to the observed
maser frequency, such as the magnetic field correction, the wall shift, and the
second-order Doppler effect, we get the following for the hydrogen hyperfine fre-
quency in terms of the international atomic time scale as defined by the Bureau
International de I’Heure:

vu = 1,420,405,751.778 £+ 0.003 Hz.
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Figure 11.10 A plot of the Allan variance in frequency of a typical H-maser (Peters, 1992)
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This is arguably one of the most precisely measured quantities in all of physics.
While the hydrogen maser set new standards of performance in the metrology of
frequency and time, standards that will not be easily surpassed, nevertheless, for
certain applications it suffers from two deficiencies: First, it lacks portability, and
second, the wall shift limits its absolute accuracy. The size and mass of the maser
are a necessary consequence of the relatively large wavelength (21 cm), which
sets the scale of its dimensions. This is further aggravated by the need for elabo-
rate shielding from ambient magnetic fields and the need for a large vacuum shell
and massive vacuum pumps to maintain the required degree of high vacuum in
Earth-based systems. The size would not, of course, be objectionable for laboratory
installations, but it renders it unsuitable for mobile systems. In the one application
where portability is not an important requirement, namely as a primary standard,
the wall shift unfortunately limits its absolute accuracy.






Chapter 12
The Confinement of Particles in Fields

12.1 Introduction

The development of atomic standards based on quantum resonance in neutral atoms
confined by diffusion through a buffer gas, or collisions with inert walls, culmi-
nated in the hydrogen maser, a standard of astonishingly high stability. However,
as explained in the last chapter, for certain applications the hydrogen maser suf-
fers from two deficiencies: First, its lack of portability due to its size and the need
for elaborate magnetic shielding, and second, a wall shift that limits its absolute
accuracy, and disqualifies it as a primary standard.

It is possible to remove all contact between the reference atomic particles and
any other material objects, whether an inert gas or surface, through the use of elec-
tric and/or magnetic fields. We note, however, that the use of such fields for the
purpose of confining otherwise free neutral particles at ordinary temperatures, is
ruled out on the basis that they would perturb the internal quantum states on whose
energy separation the frequency standard depends. Such a method of confinement
of neutral atoms would not even be practicable with static or low-frequency fields;
however with optical frequency fields, the situation is quite different; however,
although, as we shall see in a later chapter, laser optical fields can be made to cool
and entrap neutral atoms, this can be exploited only by techniques that avoid light
shifts in the energy states of the reference atoms.

On the other hand, ions, particularly ones of low kinetic energy, can have their
motion significantly deflected by relatively weak electric and magnetic fields; but
the point which sets field confinement apart from the use of reflecting surfaces
for neutral atoms, is that the fields can be precisely created and measured, and
the perturbation they cause, unlike the wall shift, can be calculated to any desired
degree of accuracy.

We may recall that the hydrogen maser evolved as a frequency standard from
the effort to push to the limit the frequency resolution and sensitivity of beam
machines designed for magnetic resonance spectroscopy. In the same way, the use
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of fields for particle confinement has its origin in the drive to increase the resolution
and accuracy of radio-frequency spectroscopy on charged particles. Since the rate
of spontaneous microwave (magnetic) transitions is extremely small, high spec-
tral resolution can be obtained by lengthening the observation time by suspending
the particles under observation free from perturbations, for as long as possible.
By using the restraining force that a suitably designed field exerts on the particle,
it can ideally be suspended for an indefinite time, provided it moves in a suffi-
ciently good vacuum. Therefore the ultimate success of field confinement hinged
on an essential technological development: the ion vacuum pump, which we have
already encountered. This is simply another example of a general truth that empiri-
cal science advances only as technology makes it possible, and conversely. The ion
pump made possible the attainment of pressures below 10~!0 Pa, a pressure region
called ultrahigh vacuum. In this pressure range, an ion would travel on the average
1,000,000 km before colliding with another particle, were it not for collisions with
the walls of the vacuum chamber!

In considering the use of electromagnetic fields to confine ions, first let us
recall a theorem in the theory of electrostatics, namely, Earnshaw’s theorem, which
states: a charged body placed in an electrostatic field cannot be maintained in stable
equilibrium under the influence of electric forces alone. This can be shown to be
a consequence of the fundamental equations governing the electrostatic field: in
charge-free space the electrostatic potential energy of a test charge cannot be a
minimum at an isolated point in space. This means that there is no point from
which a displacement of a test charge in any direction would cause an increase
in potential energy; at most, we can have the potential energy increasing in some
direction but decreasing in another. Since electrostatic potential energy is analo-
gous to the potential energy of an object acted on by gravity, our statement on the
absence of a minimum is analogous to saying that it is impossible to have a bowl-
shaped valley, but at most a saddle-shaped one, such as we would find between
two peaks. In the neighborhood of a saddle point in the potential distribution, the
charge would be restrained in one direction but repelled in the other. This would
seem to be fairly discouraging to someone trying to trap an ion; but in fact, we are
not limited to static electric fields; we simply have to look to either non-static fields
or combinations of electric and magnetic fields.

12.2 The Penning Trap

We will begin with a brief description of the field configuration that has come to be
called the Penning trap. We do this in spite of the fact that this method of confining
ions, involving as it does a strong magnetic field, is unsuitable for an atomic fre-
quency standard. Nevertheless it has had many other important applications and is
included here primarily for its intrinsic and historical interest in the area of particle

trapping.
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Figure 12.1 The field configuration of a Penning vacuum gauge

The name derives from the fact that it is reminiscent of the Penning vacuum
gauge in its arrangement of electrodes and the use of a magnetic field. The gauge,
first described by Penning in 1936, is illustrated schematically in Figure 12.1.
It extends the range of operation to much higher vacuum than previous types by
the use of a strong magnetic field, in conjunction with high voltage electrodes to
maintain an electrical discharge in what is called the “blackout” vacuum region. In
ordinary discharges, such as we have in a neon sign tube, blackout occurs when the
pressure of neon is reduced below a certain point. The action of the magnetic field is
to cause the electrons in the plasma to move in tight spirals, thereby increasing their
path length, and hence the probability of ionizing collisions with background gas
molecules, before striking and losing energy to the electrodes and other surfaces.

12.2.1 Field Configuration

The pure quadrupole electric field geometry illustrated in Figure 12.2, originally
used for ion confinement was in fact first described by J.R. Pierce of the Bell
Telephone Laboratories (Pierce, 1954). For the confinement of positively charged
particles, an electrostatic field is produced by applying a negative voltage to an
hourglass-shaped cylinder, with coaxial bowl-shaped end caps carrying a common
positive voltage. By placing the electrode system between the pole pieces of a
magnet, a strong axial magnetic field is superimposed on this electric field. If the
charges to be confined are negative, then of course the polarity on the electrodes
would have to be reversed; the direction of the magnetic field along the axis is
immaterial. In terms of circular cylindrical coordinates r, z with the z-axis along
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Figure 12.2 The quadrupole electric field geometry

the axis of symmetry of the system, the electric potential of the field between the
electrodes has the form

V= L()z(zz2 —r?). 12.1
2ry
The surfaces of equal potential in this field are figures of revolution about the
axis with hyperbolic cross section; the field can be generated by having hyper-
bolic conducting surfaces coinciding with a set of equipotential surfaces. Note that
we have chosen a potential field symmetric about the origin, in the sense that the
potential there is zero, and the potentials on the electrodes are £V/2; the total
voltage applied between the cylinder and the end caps (the two sheets of one hyper-
bola) is V. Along the z-axis (r = 0) the potential varies as z2, increasing as we
go in either direction, and reaching the maximum of V{y/2 at the electrodes where

z=ro/V2.

12.2.2 Ion Motion

If the magnetic field is truly uniform and everywhere in the axial direction, then
the ion motion parallel to the axis is not affected by the magnetic field, since the
Lorentz force comes into play only if the particle has a velocity component per-
pendicular to the magnetic field. The equation of motion for the z-coordinate of a
particle having charge ¢ and mass M at any point (r, z) is therefore as follows:

I T S KA () 12.2
dt2 ZZ 4 (M) Vg'

which is the equation for simple harmonic motion. The particle therefore oscillates
with a finite amplitude about the origin with a frequency v, = w,/2x. To avoid hit-
ting the end caps, the amplitude of the particle must be less than z¢, since otherwise
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the radial motion of the ion would cause it to strike an end cap. It follows that the
maximum energy an ion can have by virtue of its axial motion is g Vy/2, so that
Vo/2 is the depth of the “potential well” for the axial motion. The radial component
of the motion is considerably more complicated and is more easily described in
terms of Cartesian coordinates x, y. If the magnetic field were absent we, would
have for the equations of motion of the x- and y-coordinates the following:

dzx_ (6)@

az =) 2

X3 (Bz = 0), 12.3

with an identical equation for the y-coordinate. Because of the plus sign on the
right-hand side, the solution of this equation is the exponential function, which
rapidly goes to infinity. This shows explicitly that in the absence of a magnetic
field, the x- and y-coordinates would continue to increase until the particle hits an
electrode. If the sign of Vj were reversed in order to make the motion along the
x- and y-axes oscillatory, then the motion along the z-axis would diverge expo-
nentially. The same applies, of course, if the sign of the charge on the particles is
reversed; from this we get the important conclusion that the Penning arrangement
does not trap both positive and negative particles simultaneously.

The effect of a magnetic field is to introduce a Lorentz force that causes ions
having a radial component of velocity to swing around in more or less cycloidal
orbits. A cycloid is the geometric figure traced out in space by a point on the rim
of a rolling wheel. In our axially symmetric field geometry, the wheel must be
assumed to lie in a plane perpendicular to the axis and roll around on a circle in
that plane centered on the axis. Thus we see that there are two periodic motions
involved: The wheel turns about its center, making a certain number of revolutions
per second, while its center revolves with uniform speed around the axis of the
system. If the chosen field strengths are such that the magnetic Lorentz force is
dominant over the electrostatic one, then the former motion of the wheel about its
center can be shown to have nearly the frequency v, given by

B
oy, = &2 12.4
M

which is simply the frequency with which a charged particle executes a circular
orbit in a uniform magnetic field in the absence of any electric field. Since this
frequency is a central quantity in the design of the cyclotron particle accelerator,
it is referred to as the cyclotron frequency. The cyclotron is made possible by the
fact that this frequency is independent of the velocity of the particle (provided that
it is much smaller than the velocity of light) or the size of its circular orbit. This
allows an oscillatory electric field at that frequency to remain in synchronism with
the particle motion as it gains energy from the field and its orbit expands.

The other, slower, motion of the center of the wheel around the axis of the sys-
tem can be shown to occur at the velocity at which the Lorentz force in the magnetic
field is balanced by the electrostatic force. Since the electric field is proportional
to the radial distance, a balancing Lorentz force requires the (linear) velocity to
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increase the same way; this implies a constant angular velocity around the axis.
The frequency of this motion, sometimes referred to as the magnetron motion,
is as follows:

Vo

v 12.5
2
BrO

21V, =
The magnetron is a high-power microwave tube used in radar transmitters and
microwave ovens. Its field configuration differs from the Penning trap in having
a radial electric field between a tubular electron-emitting cathode and a coax-
ial copper ring forming the anode. A strong axial magnetic field causes elec-
trons emitted by the cathode to curve around and across the openings of a series
of microwave cavities machined out of the anode, thereby inducing oscillations
in them at microwave frequencies. Note that this frequency v,, does not depend
on the properties of the particles, but only on the geometry and field intensities of
the trap.

This separation into a fast cyclotron motion on which is superposed a slower
magnetron motion is only an approximation valid when v, > v,,. Moreover, there
are other possible orbits, namely, circular ones around the axis as center; curiously,
these also have two possible frequencies. The general result for the two frequencies
is as follows:

+ Ve Vel 2 5
vE= 2t (2) V2, 12.6
where v, would be the radial frequency if the electric field were acting alone. From
this result we see that only if 14V, > v, are the frequencies v* real in a mathemat-
ical sense and the motion oscillatory with a finite amplitude. This establishes the
equivalent “binding” potential of a magnetic field, that is, the equivalent electrical
potential well depth created by a magnetic field. If the condition v, > Vv, is met,
the two frequencies v* may be approximated as follows:

VIRV, =V, VvV RV, 12.7
where
Vi = —;

_Y o2 €0 12.8
Vc r 4752Mr§

We should note that vt and v~ are in a sense frequencies of the “normal modes”
of vibration of the ion, and further that v is a mixture of cyclotron and magnetron
motions.

Since the fields acting on the confined particles are static, in the absence of
collisions the system has the property of being conservative, which means, among
other things, that the kinetic energy of a particle at any point is determined by
the electrostatic potential at that point, no matter how the particle got there. This
has the important consequence that if a particle enters the field with some energy
through a hole in one of the electrodes, it will not remain in the trap, but pass
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through to strike another electrode, or even to return to strike the same electrode
with the same energy. In order to be trapped in the field, an ion must either sustain a
sufficient loss of energy in the trap or be created in the trap with sufficiently small
initial energy. The situation is analogous to rolling marbles on a smooth surface
at a depression in that surface; they will not settle in the depression unless they
lose some kinetic energy, for example by friction, as they cross the depression. In
the case of atomic or molecular ions, capturing them is readily accomplished by
one of two approaches: First, injecting the ions into the trap, where some make
inelastic collisions with particles in the trap, losing energy to the colliding partner;
or second, having the parent atoms or molecules fill the trap at a very low pressure,
and passing an electron beam through one of the end caps along the axis to ion-
ize them through collisions. The latter method is more convenient, but it has two
objectionable aspects: First, the electron beam adds its own electric field, causing a
deviation from the proper field distribution; and second, the presence of the parent
gas, as we shall see, limits the lifetime of the ions in the trap through collisions.
The disturbing effect of an electron beam can be addressed by separating in time
the operation of filling the trap from that of observing the ion spectrum.

12.3 The Paul High-Frequency Trap

The most important type of trap for ion frequency standards is one named for
Nobel laureate Wolfgang Paul the Paul trap, and its many later variants, such as
the Paul-Straubel trap, about which more will be said later. It achieves ion confine-
ment through the use of high-frequency alternating electric fields. Its precursor, first
described by W. Paul and M. Raether in 1955, was an ion beam mass filter using
a high-frequency electric field between a quadrupole of cylindrical electrodes, as
shown in Figure 12.3. Ions in a narrow mass range are focused by the field, while
all others diverge exponentially from the beam and are lost.
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Figure 12.3 The Paul high-frequency ion mass filter
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12.3.1 The Classic Paul Trap

Early in the development of the quadrupole filter it was realized that the focusing
action in two dimensions could be generalized to trap charged particles in three
dimensions. A comprehensive description of the successful realization of a rota-
tionally symmetric form of such a device appeared in a government report in 1958,
written by W. Paul, O. Osberghaus, and E. Fischer (Paul et al., 1958), followed by
an account by E. Fischer in the Zeitschrift fiir Physik, 1959. Figure 12.4 illustrates
the device, designated in German as an lonen Kdfig (ion cage).

The electrode geometry consists of an hour glass-shaped cylinder between two
end caps of hyperbolic cross section, the latter being held electrically at the same
potential. Since the main driving field has a polarity that alternates at high fre-
quency, the sign of the charge is immaterial to the trapping function. Along any
given coordinate axis, a charged particle experiences a force alternately towards
the center and away from it. If the strength of the electric field were the same at
all points, then the motion of a particle would be simply an oscillatory one driven
by the field, superposed on any original uniform motion. Thus it is clear that a uni-
form high-frequency field would not do, since the original uniform motion would
continue undeterred.

The essential property of the quadrupole field is that it is not uniform, having
a minimum at the center; the fact that the field strength varies simply in propor-
tion to the distance from the center merely bestows the advantage that it leads to
ion motion lending itself to exact mathematical analysis. A charged particle placed
in such an alternating quadrupole field will, along any given coordinate direction,
experience a force that alternates but is not entirely symmetric between directions
away and toward the center; it happens that under certain conditions the net result
can be an average force toward the center. This can be anticipated on the basis of
something called the strong focusing principle, which was originally enunciated
in terms of a set of static ion lenses, alternating between focusing and defocusing,

Figure 12.4 The Paul high-frequency 3-dimensional ion trap



12. The Confinement of Particles in Fields 245

positioned sequentially in space, so that a particle passing through them experi-
enced a time sequence of focusing and defocusing forces. This evolved into the
single lens alternating in time. It can be made plausible that such an alternating
focusing—defocusing sequence can yield a net focusing action by noting that on the
average the defocusing starts nearer the center where the field is weaker, while at
the end of the defocusing half cycle, when the focusing begins, the ion is farther
from the axis where the field is stronger.

The analysis of the ion motion in the Paul trap begins with the definition of the
field, which may include a DC voltage applied between the cylindrical electrode,
sometimes called the ring, and the end caps. The components of the electric field
in the neighborhood of the trap center are as follows using cylindrical co-ordinates

(r, 2):

r Z
E, = (Uy — Vycos Qt)—zg E. = —2(Uy — Vpcos Qt)—z, 12.9

"o "o
where U is a constant voltage, and V) and Q are respectively the amplitude and
(angular) frequency of the high frequency voltage. The surfaces of equal potential
in this field are figures of revolution about the axis with hyperbolic cross sec-
tions; the field can be generated by having hyperbolic conducting surfaces coin-
ciding with a set of equipotential surfaces, as illustrated in Figure 12.2. Note that
by choosing zg = *rg/ V2. we have a potential field symmetric about the origin,
in the sense that the potential there is zero, and the potentials on the electrodes are
+Vp/2; the total voltage applied between the cylinder and the end caps (the two
sheets of one hyperbola) is Vy. Along the z-axis (- = 0) the potential varies as z,
increasing as we go in either direction, and reaching the maximum of Vp/2 at the

end cap electrodes.

The motion of the ions is governed by Newton’s F = ma equation of motion,

which in this case takes on the following form for the r-coordinate:

d*r
— + (a, — 2q, cos20)r =0, 12.10
de
where
4el 2eV) Qt
a, = ; = ;0= —. 12.11
S V7o A VTow 2
The a and g coefficients for the z-equation are given by a, = —2a, and g, = 2gq,.

Equations of this form are referred to as Mathieu equations after the French math-
ematician E. Mathieu, who in 1868 published his study of the vibrations of an
elliptical membrane, in which this form of equation arises. In fact, this equation
arises in many important practical applications, for example parametric amplifiers,
among other things. We note that it has the form of the equation for a simple har-
monic oscillator, in which, however, the frequency-determining parameter is itself
an oscillatory function of time. The “pumping” of a child’s swing is an example of
such a parameter being modulated at twice the frequency of the swing and leading
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unstable

Figure 12.5 The a—q stability diagram of the Mathieu equation

to parametric excitation, as we saw in Chapter 2. It is not our purpose, of course, to
delve into the mathematical properties of this equation and its solutions, but rather
to state the results pertinent to the design of the trap.

The most important property of the Mathieu equation for our purposes is that
its solutions are stable or unstable depending on the values of the parameters a
and ¢. Here the question of the stability of a solution refers to whether or not
there is an upper bound on how far a particle may move away from the center. All
the solutions are oscillatory (but not necessarily simply periodic) about the center.
However, the unstable ones have an amplitude that increases in time without limit.
If the values of a and g are plotted with respect to a set of Cartesian axes, then the
plane is divided into areas where the equation has stable solutions and areas where
they are unstable, as shown in Figure 12.5. Whether a solution for given values
of a, q is stable or unstable depends on whether the point with these coordinates
lies in a stable or unstable region. In nearly all applications, only the first stability
region has been used; in fact the parameters a and ¢ are often chosen to be much
less than one.

For the particle to be confined in all three dimensions it is necessary that not
only a,, g, lie in a stable region, but a;, g, also. Since the latter differ only by
a factor of —2, it is convenient, following Paul, to make a composite plot of the
stability boundaries in which those for a;, g, are drawn to half scale and inverted
along the a-axis, as in Figure 12.6. Inverting along the g-axis produces no change
because of symmetry. If then the point a,, g, lies in the region of overlap between
the r- and z-stability regions, then the motion will automatically be stable in three
dimensions. As a numerical illustration, suppose we choose a point well within the
stability region a, = 0.01 and ¢, = 0.2, and we wish to operate a trap with radius
ro = 1 cm at a frequency of 500 kHz, then to trap (say) mercury ions (mass number
199), the voltages we would require are Uy = 5 volts and V() = 200 volts.
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Figure 12.6 A composite plot of the first stability region for both r- and z-stability

From the theory of the Mathieu differential equation, for a, ¢ in a stable region,
the general solution shows that the spectrum of the ion motion consists of a discrete
set of frequencies given by

=(er2)

w, = | xn + > Q, 12.12
where 7 is an integer and the relative amplitudes and the constant (3 are functions
of the operating point a, g. (We have for brevity dropped the r and z subscripts and
will do so in all cases where it would not cause ambiguity).

To illustrate the particle trajectories typical of those described by this solution,
we reproduce from the work of W. Paul et al. plots for the special case of a trap
operating at the point a = 0, ¢ = 0.631, B = 0.5, and ions created with zero
initial velocity (see Figure 12.7). The plus and minus signs indicate the focusing
and defocusing half cycles of the field. It is seen, for example, that the ion cre-
ated when the phase of the high-frequency field is 7/4 is first defocused and then
focused back at a point farther from the center where the field is stronger and is
thereby caused to swing back more strongly. This results in a finite oscillation of
complicated form reflecting the presence of many frequency components in the
Fourier spectrum. However, one frequency component is evident: the lowest fre-
quency at BQ/2, which for B = 0.5 corresponds to one-fourth the frequency of the
field. We should note also the strong dependence of the amplitude on the phase of
the field at the time the ion is created.

Although the operation of a Paul trap does not depend on a magnetic field,
nevertheless when used for microwave frequency standards based on a magnetic
hyperfine transition, a weak magnetic field is essential for the proper functioning
of the standard. From the point of view of the motion of the trapped ions, the effect
of a weak axial magnetic field can be predicted from the Larmor theorem, which we
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Figure 12.7 Particle oscillation in the Paul high frequency quadrupole electric field (Paul,
1958)

encountered in the discussion of magnetic resonance. It states that the effect of an
external field of strength B on the motions of identical ions moving about in finite
orbits is entirely equivalent to what would be observed if the motion was referred to
a frame of reference rotating uniformly with an angular velocity of e B/2M about
the field axis. The component of the motion along the field axis, taken as usual to
be the z-axis, is not affected by the magnetic field; however, the radial component
behaves as if there were a centrifugal “potential,” with a quadratic dependence
on r simply added to the constant potential term Up applied to the Paul trap. In
consequence, the parameter a,, which is a measure of the constant potential, is
shifted as follows:

- 201 \*
ar = a + E , 12.13

where w; = eB/2M is the Larmor frequency. The spectrum of the ion motion
is also made more complicated; as implied by the Larmor theorem, the equivalent
rotation (or precession) frequency is added to the spectrum of radial frequencies.

It can be shown in general that if the parameters a and g are much less than one,
the amplitudes of the higher frequencies in the motional spectrum rapidly become
negligibly small as n increases beyond n = 1. Therefore, a reasonable approxi-
mation is obtained by retaining only oscillations at frequencies corresponding to
n = 0 and n = =1; in this case, the theory shows that we have the following
approximate solution:

o) 2
rit)y=A (1 + q?r CcoS Qt) coS B’Tt; [32 = (a + q?) > 12.14

showing that indeed the motion is bounded, with an upper limit of A(1+¢/2). This
result can be interpreted as representing a slow secular oscillation (since under our
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assumption < 1) at a frequency BQ/2, with a micromotion at the frequency of
the field, having an amplitude that is proportional to the low-frequency displace-
ment from the origin.

This last result could have been derived much more simply if the assumed
condition that @ and g are very small is used from the beginning, instead of starting
with the general solution for all values of those parameters. To do this we must
recognize that from its definition, g equals the amplitude of oscillation (as a frac-
tion of rg) that a charge would have in a uniform high-frequency field of intensity
Vo/ro, which is the maximum it reaches in the trap, at r = rg. Thus a small value of
g means that the field causes only a small high-frequency jitter; that is, the motion
can be analyzed as a superposition of two motions, a fast oscillation at the field
frequency and a slow motion of the center of that oscillation. Under conditions
where this separation of the motions is justified, it was first shown by Kapitza that
a general solution is possible, and not just the specific case of a quadrupole field.
If a charged particle is acted on by a high-frequency electric field Eg(x, y, z) cos Qt,
whose amplitude is a slowly varying function of space, such that it varies little
over the particle jitter, then its motion in the field can be written in the form

eEo(R)

MQ?
in which the high-frequency jitter is about a point R(¢) that moves according to the
following equation of motion:

d*R _ dUp & d(Ej(R))

a2 = “drR T aMQ? dR
This result shows explicitly that in the adiabatic approximation the secular ion
motion is governed by a static potential, sometimes called the pseudo-potential,
given by:

I(t) = R(@) — cos Qt 12.15

12.16
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To obtain the particular solution for the Paul field we would substitute £ =
VoR/ rg. The result agrees with the earlier theory; the oscillation frequency of R(¢)

op 12.17

is the lowest frequency B€2/2 in the spectrum, where [32 = a + ¢*/2. We should
note that while the secular (slow) motion may have random phase and amplitude,
having some thermal distribution, the micromotion is driven by the high frequency
field, and is determined by the value of that field at the position of the ion. It is
important to note that in this form of the Paul trap the high frequency field is zero
at only one point, namely the center of the trap. This means that the micromotion
is zero at only one point. The significance of this is that in the drive to cool trapped
ions to the ultimate degree, namely to the lowest quantum state in the trapping field,
there can in principle be only one ion brought to the ground state at the center.

An instructive result, one that gives some insight into the behavior of the
particle motion in a high-frequency field, is obtained by computing the average
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kinetic energy over many cycles of the field. Under conditions where the approx-
imation we used above is valid, and assuming that only a high-frequency field
acts on the particle, so that @ = 0, we find that the total kinetic energy aver-
aged over many cycles of the high-frequency field remains constant; it merely
goes over into the high-frequency jitter form as the center of that oscillation slows
down, and it continues to alternate between the two forms of motion as the par-
ticle executes its slow oscillation between regions of strong and weak field inten-
sity. Because the total energy is unchanged, this is sometimes called the adiabatic
approximation.

An analogous exchange of kinetic energy between different components of par-
ticle motion occurs in an axial magnetic field that has a weak axial gradient in its
intensity. In this case, a charged particle with an axial component of velocity will
have that component reduced or increased as the particle cyclotron motion around
the axis gains or loses kinetic energy, depending on whether the gradient is positive
or negative. This is the basis of the magnetic bottle, an ion confinement device con-
sisting of an axial magnetic field, uniform over a certain length but becoming more
intense at the two ends. For ions moving along certain angles with respect to the
axis there exist conditions when they would not only be slowed down in approach-
ing the more intense magnetic fields at the ends, but will in fact be reflected back
and forth between the two ends.

The question of what initial position and velocity an ion may have and still be
confined in the available space is somewhat complicated in the Paul trap. The two
most important complicating circumstances are first, the particle trajectory depends
on the phase of the high-frequency field when the ion is created, and second, the
particle trajectories are not even simply periodic. However, limits can be found to
the amplitude of the motion as a function of initial ion position and velocity at any
given phase of the high-frequency field. For a given initial phase it can be shown
that the particle trajectory will have a given upper limit, provided that the initial
position and velocity are related by a certain quadratic expression; if we plot this
initial velocity versus position, the resulting graph is an ellipse whose parameters
depend on the phase when the ion was created, as shown in Figure 12.8. For each
phase, those initial values of velocity and position that fall within the ellipse lead
to an amplitude smaller than would reach the electrodes.

Changing the operating point in the a—q stability diagram results in signif-
icant changes in the ellipses, as might be expected. From these graphs, no matter
what the initial velocity or phase may be, the ion must be created within the space
defined by the electrodes. It is useful in practice to know what fraction of ions cre-
ated uniformly throughout the trap, say by electron collisions or ionizing radiation
acting on the parent atom or molecule, will in fact be trapped. Since the energy of
ions resulting from these processes is not expected to be much above the thermal
energy of the parent particle, an energy negligibly small compared with the hun-
dreds of volts present in the trap, we may, without appreciable error, assume the
initial velocity to be nearly zero. In terms of the velocity-position ellipses, all points
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Figure 12.8 The initial positions and velocities leading to confinement in a Paul trap (Paul,
1958)

representing ions actually created will lie in a narrow band along the position axis.
It becomes a simple matter to determine for each ellipse the fraction of the number
of points falling inside it.

12.3.2 Cylindrical Traps

In practice it is not necessary to shape the trap electrodes to approximate the hyper-
boloids used in the early constructions of the trap; that was done simply to be able
to predict more accurately the spectrum of the ion motion and the limits of stability.
It is not difficult to show that any axially symmetric electric field having a saddle
point in the potential will have approximately the Paul field in the neighborhood
of that point. Thus, let us expand the potential function in a Taylor series about the
saddle point. Since the gradient of the potential is zero at that point, we have on
applying the given symmetry and Laplace’s equation:
2 2
b=do+ T L2 gt CO@ -2 1218
0x; 0xy
Since a saddle point can be produced by an unlimited variety of electrode shapes,
the choice of geometry can be made to accommodate the requirements of, for
example, laser beam access to the ions.

One of the earliest geometries used is that of replacing the hyperboloids of the
Paul trap with a right circular cylinder and planar end caps. The relative ease with
which precise cylindrical electrodes could be fabricated, and particularly the avail-
ability of analytical expressions for the microwave field modes in such a cavity,
were strong inducements to use this geometry.

The first theoretical treatment of the motion of ions in a straight cylindrical
trap was given by M-N. Benilan and C. Audoin (Benilan 73). They performed a
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numerical analysis of the motion of an ion in a trap consisting of a right circular
cylinder of radius rg and length 2z¢ with flat end plates at z = £z¢. The calculation
was carried out for the two cases rg = 4/2z¢ which conforms to the electrically
symmetric option, and ro = zo which is favorable for the Q of the trap, viewed as
a microwave cavity. They found the calculated trajectories to be similar to those in
a Paul field, as should be expected, at least for small amplitudes. If the analytical
solution is expanded about the center with respect to r and z, we find the following:

2 2
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where @ is the potential applied to the cylindrical trap and the coefficients a and
b are functions of zg/rg. For the two choices of that ratio we find » = 1.103
for zo/ro = +/2 and 0.712 for the other. If the expansion of the potential func-
tion is carried further we obtain higher order non-linear terms involving products
of the co-ordinates, leading to amplitude-dependent frequencies of oscillation, and
broadening of resonances. By interposing co-axial “guard rings” between the cylin-
der and end caps with adjustable potentials, it is possible to compensate for higher
order terms in the expansion of the potential function.

12.3.3 The Linear Paul Trap

Long after the original rotationally symmetric design, which we will in future
simply refer to as the Paul trap a linear rod version became popular for atomic
clock development since the application of laser resonance fluorescence with its
enormous signal-to-noise advantage supplanted all other detection techniques in
trapped ion spectroscopy. This meant that the ultimate electrode design must meet
the optimal needs of laser cooling and detection of individual ions at the zero-point
energy. The classical Paul trap is unsuitable for multiple ions, since the high fre-
quency field with its attendant micromotion is zero at only one point, the center,
and no more than one ion can occupy the center. We shall see in a later chapter
that to efficiently cool the trapped ions, a minimum condition must be met by the
frequency separations in the motional Fourier spectrum of the ions. If we look at
the expression for the Mathieu parameter g we see that if Q is made large, then
ro must be made very small, otherwise the required potential amplitudes would be
impractically high. Thus it was that the introduction of the laser has totally trans-
formed the scale of ion traps to the microscopic realm. In the linear form of the Paul
trap, the high frequency potential on the four conductors is used to achieve what
would be called “focusing” in the context of a mass filter, that is, confinement of
the ion motion in the transverse x—y plane. For axial confinement, various arrange-
ments of electrodes of different geometries have been used, all design