


The Geometry of Physics 

This book is intended to provide a working knowledge of those parts of exterior differ
ential forms, differential geometry, algebraic and differential topology, Lie groups, vector 
bundles, and Chern forms that are essential for a deeper understanding of both classical 
and modem physics and engineering. Included are discussions of analytical and fluid dy
namics,  electromagnetism (in flat and curved space), thermodynamics, elasticity theory, the 
geometry and topology of Kirchhoff's electric circuit laws, soap films, special and gen
eral relativity, the Dirac operator and spinors , and gauge fields, including Yang-Mills, the 
Aharonov-Bohm effect, Berry phase, and instanton winding numbers, quarks, and the quark 
model for mesons. Before a discussion of abstract notions of differential geometry, geomet
ric intuition is developed through a rather extensive introduction to the study of surfaces 
in ordinary space; consequently, the book should be of interest also to mathematics students. 

This book will be useful to graduate and advanced undergraduate students of physics, 
engineering, and mathematics. It can be used as a course text or for self-study. 

This second edition includes three new appendices, Appendix C, Symmetries, Quarks, 
and Meson Masses (which concludes with the famous Gell-MannlOkubo mass formula); 
Appendix D, Representations and Hyperelastic Bodies; and Appendix E, Orbits and Morse
Bott Theory in Compact Lie Groups. Both Appendices C and D involve results from the 
theory of representations of compact Lie groups, which are developed here. Appendix E 
delves deeper into the geometry and topology of compact Lie groups .  

Theodore Frankel received his Ph.D . from the University of California, Berkeley. He i s  
currently emeritus professor of mathematics at  the University of California, San Diego. 
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Preface to the Second Edition 

This second edition differs mainly in the addition of three new appendices: C, D, and 
E. Appendices C and D are appl ications of the elements of representation theory of 
compact Lie groups. 

Appendix C deals with applications to the flavored quark model that revolutionized 
particle physics. We illustrate how certain observed mesons (pions, kaons, and etas) 
are described in terms of quarks and how one can "derive" the mass formula of Gell
Mann/Okubo of 1 962. This  can be read after Section 20.3b. 

Appendix D is  concerned with isotropic hyperelastic bodies. Here the main result 
has been used by engineers since the 1 850s. My purpose for presenting proofs i s  that 
the hypotheses of the Frobenius-Schur theorems of group representations are exactly 
met here, and so this affords a compelling excuse for developing representation theory, 
which had not been addressed in the earlier edition. An added bonus is that the group 
theoretical material is applied to the three-dimensional rotation group SO(3 ) ,  where 
these generalities can be pictured explicitly. This material can essentially be read after 
Appendix A, but some brief excursion into Appendix C might be helpful. 

Appendix E delves deeper into the geometry and topology of compact Lie groups. 
Bott 's extension of the presentation of Morse theory that was given in Section 1 4.3c is 
sketched and the example of the topology of the Lie group U (3) is worked out in some 
detail .  

xix 





Preface to the Revised Printing 

In this reprinting I have introduced a new appendix, Appendix B ,  Harmonic Chains 
and Kirchhoff's  Circuit Laws. This appendix deals with a finite-dimensional version 
of Hodge's  theory, the subject of Chapter 1 4, and can be read at any time after Chapter 
13 . It includes a more geometrical view of cohomology, dealt with entirely by matrices 
and elementary linear algebra. A bonus of this viewpoint is a systematic "geometrical" 
description of the Kirchhoff laws and their applications to direct current circuits, first 
considered from roughly this viewpoint by Hermann Weyl in 1 923.  

I have corrected a number of errors and misprints, many of which were kindly 
brought to my attention by Professor Friedrich Heyl . 

Finally, I would like to take this opportunity to express my great appreciation to my 
editor, Dr. Alan Harvey of Cambridge University Press. 





Preface to the First Edition 

The basic ideas at the foundations of point and continuum mechanics, electromag
netism, thermodynamics ,  special and general relativity, and gauge theories are geomet
rical, and, I believe, should be approached, by both mathematics and physics students, 
from this  point of view. 

This is a textbook that develops some of the geometrical concepts and tools that 
are helpful in understanding classical and modem physics and engineering. The math
ematical subject material is essentially that found in a first-year graduate course in 
differential geometry. This is not coincidental, for the founders of this part of geome
try, among them Euler, Gauss, Jacobi, Riemann, and Poincare, were also profoundly 
interested in "natural philosophy." 

Electromagnetism and fluid flow involve line, surface, and volume integrals. An
alytical dynamics brings in multidimensional versions of these objects . In this book 
these topics are discussed in terms of exterior differential forms. One also needs 
to differentiate such integrals with respect to time, especially when the domains of 
integration are changing (circulation, vorticity, helicity, Faraday's law, etc .) ,  and this 
is accomplished most naturally with aid of the Lie derivative. Analytical dynamics, 
thermodynamics, and robotics in engineering deal with constraints, including the puz
zling nonholonomic ones, and these are dealt with here via the so-called Frobenius 
theorem on differential forms .  All these matters , and more, are considered in Part One 
of tp.is book. 

Einstein created the astonishing principle field strength = curvature to explain 
the gravitational field, but if one is not familiar with the classical meaning of surface 
curvature in ordinary 3-space this is merely a tautology. Consequently I introduce 
differential geometry before discussing general relativity. Cartan's version, in terms 
of exterior differential forms, plays a central role. Differential geometry has applications 
to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical 
systems. Differential geometry occupies the bulk of Part Two. 

Einstein's principle has been extended by physicists, and now all the field strengths 
occurring in elementary particle physics (which are required in order to construct a La-

xxiii 
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grangian) are discussed i n  terms o f  curvature and connections, but it is  the curvature 
of a vector bundle, that is, the field space, that arises, not the curvature of space-time. 
The symmetries of the quantum field play an essential role in these gauge theories, 
as was first emphasized by Hermann Weyl ,  and these are understood today in terms of 
Lie groups, which are an essential ingredient of the vector bundle. Since many quan
tum situations (charged particles in an electromagnetic field, Aharonov-Bohm effect, 
Dirac monopoles, Berry phase, Yang-Mills fields, instantons, etc . )  have analogues in 
elementary differential geometry, we can use the geometric methods and pictures of 
Part Two as a guide; a picture is worth a thousand words ! These topics are discussed 
in Part Three. 

Topology is playing an increasing role in physics .  A physical problem is "well 
posed" if there exists a solution and it is  unique, and the topology of the configuration 
(spherical , toroidal, etc . ) ,  in particular the singular homology groups, has an essential 
influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory 
play roles not only in modem gauge theories but also, for example, in the theory of 
"defects" in materials .  

Topological methods are playing an important role in field theory; versions of the 
Atiyah-Singer index theorem are frequently invoked. Although I do not develop this 
theorem in general, I do discuss at length the most famous and elementary exam
ple, the Gauss-Bonnet-Poincare theorem, in two dimensions and also the meaning 
of the Chern characteristic classes. These matters are discussed in Parts Two and 
Three. 

The Appendix to this book presents a nontraditional treatment of the stress ten
sors appearing in continuum mechanics, utilizing exterior forms .  In this endeavor I 
am greatly indebted to my engineering colleague Hidenori Murakami .  In particular 
Murakami has supplied, in Section g of the Appendix, some typical computations in
volving stresses and strains, but carried out with the machinery developed in this book. 
We believe that these computations indicate the efficiency of the use of forms and Lie 
derivatives in elasticity. The material of this Appendix could be read, except for some 
minor points, after Section 9.5 . 

Mathematical applications to physics occur in at least two aspects . Mathematics i s  
of course the principal tool for solving technical analytical problems, but increasingly 
it is also a principal guide in our understanding of the basic structure and concepts 
involved. Analytical computations with elliptic functions are important for certain 
technical problems in rigid body dynamics, but one could not have begun to understand 
the dynamics before Euler's introducing the moment of inertia tensor. I am very much 
concerned with the basic concepts in physics .  A glance at the Contents will show 
in detail what mathematical and physical tools are being developed, but frequently 
physical applications appear also in Exercises. My main philosophy has been to attack 
physical topics as soon as possible, but only after effective mathematical tools have 
been introduced. By analogy, one can deal with problems of velocity and acceleration 
after having learned the definition of the derivative as the limit of a quotient (or even 
before, as in the case of Newton) ,  but we all know how important the machinery of 
calculus (e.g . ,  the power, product, quotient, and chain rules) is for handling specific 
problems. In the same way, it i s  a mistake to talk seriously about thermodynamics 
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before understanding that a total differential equation in more than two dimensions 
need not possess an integrating factor. 

In a sense this book is a "final" revision of sets of notes for a year course that I 
have given in La Jolla over many years . My goal has been to give the reader a working 
knowledge of the tools that are of great value in geometry and physics and (increasingly) 
engineering. For this it is absolutely essential that the reader work (or at least attempt) 
the Exercises. Most of the problems are simple and require simple calculations. If you 
find calculations becoming unmanageable, then in all probability you are not taking 
advantage of the machinery developed in this book. 

This book is intended primarily for two audiences, first, the physics or engineering 
student, and second, the mathematics student. My classes in the past have been pop
ulated mostly by first- , second-, and third-year graduate students in physics, but there 
have also been mathematics students and undergraduates .  The only real mathemati
cal prerequisites are basic l inear algebra and some familiarity with calculus of several 
variables. Most students (in the United States) have these by the beginning of the third 
undergraduate year. 

All of the physical subjects, with two exceptions to be noted, are preceded by a brief 
introduction. The two exceptions are analytical dynamics and the quantum aspects of 
gauge theories. 

Analytical (Hamiltoni,,!n) dynamics appears as a problem set in Part One, with very 
l ittle motivation, for the following reason: the problems form an ideal application of 
exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part 
Two, after geodesics have been discussed, do we return for a discussion of analytical 
dynamics from first principles . (Of course most physics and engineering students will 
already have seen some introduction to analytical mechanics in their course work any
way. ) The significance of the Lagrangian (based on special relativity) is discussed in 
Section 16.4 of Part Three when changes in dynamics are required for discussing the 
effects of electromagneti sm. 

An introduction to quantum mechanics would have taken us too far afield. Fortunately 
(for me) only the simplest quantum ideas are needed for most of our discussions .  I 
would refer the reader to Rabin 's  article [R] and Sudbery's book [Su] for excellent 
introductions to the quantum aspects involved. 

Physics and engineering readers would profit greatly if they would form the habit 
of translating the vectorial and tensorial statements found in their customary reading 
of physics articles and books into the language developed in this book, and using the 
newer methods developed here in their own thinking. (By "newer" I mean methods 
developed over the last one hundred years ! )  

As  for the mathematics student, I feel that this book gives an  overview of  a large 
portion of differential geometry and topology that should be helpful to the mathematics 
graduate student in this age of very specialized texts and absolute rigor. The student 
preparing to specialize, say, in differential geometry will need to augment this reading 
with a more rigorous treatment of some of the subjects than that given here (e.g . ,  in 
Warner's book [Wa] or the five-volume series by Spivak [Sp D. The mathematics student 
should also have exercises devoted to showing what can go wrong if hypotheses are 
weakened. I make no pretense of worrying, for example, about the differentiability 
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classes o f  mappings needed in  proofs . (Such matters are studied more carefully in 
the book [A, M, R] and in the encyclopedia article [T, T] . This latter article (and the 
accompanying one by Eriksen) are also excellent for questions of historical priorities .)  
I hope that mathematics students will enjoy the discussions of the physical subjects 
even if they know very little physics; after all, physics is  the source of interesting 
vector fields. Many of the "physical" applications are useful even if  they are thought 
of as simply giving explicit examples of rather abstract concepts . For example, Dirac 's 
equation in  curved space can be considered as a nontrivial application of the method 
of connections in associated bundles ! 

This is an introduction and there is much important mathematics that is not developed 
here. Analytical questions involving existence theorems in partial differential equations, 
Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there 
is no discussion of Kaehler manifolds nor the algebraic-geometric notions used in 
string theory. Infinite dimensional manifolds are not considered. On the physical side, 
topics are introduced usually only if I felt that geometrical ideas would be a great help 
in  their understanding or in computations. 

I have included a small l ist of references. Most of the articles and books l isted have 
been referred to in this book for specific details .  The reader will find that there are 
many good books on the subject of "geometrical physics" that are not referred to here, 
primarily because I felt that the development, or sophistication, or notation used was 
sufficiently different to lead to, perhaps, more confusion than help in the first stages of 
their struggle. A book that I feel is  in very much the same spirit as my own is that by 
Nash and Sen [N, S ] .  The standard reference for differential geometry is the two-volume 
work [K, N] of Kobayashi and Nomizu. 

Almost every section of this book begins with a question or a quotation which may 
concern anything from the main thrust of the section to some small remark that should 
not be overlooked. 

A term being defined will usually appear in bold type. 
I wish to express my gratitude to Harley Flanders, who introduced me long ago to 

exterior forms and De Rham's theorem, whose superb book [FI] was perhaps the first to 
awaken scientists to the use of exterior forms in their work. I am indebted to my chemical 
colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin 
for helpful criticisms of earlier versions of my lecture notes . I have already expressed 
my deep gratitude to Hidenori Murakami .  Joel Broida made many comments on earlier 
versions, and also prevented my Macintosh from taking me over. I 've had many helpful 
conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth 
made many helpful comments on various drafts and also served as "beater," herding 
physics students into my course. Above all, my colleague Jeff Rabin used my notes 
as the text in a one-year graduate course and made many suggestions and corrections .  
I have also included corrections to the 1 997 printing, following helpful remarks from 
Professor Meinhard Mayer. 

Finally I am grateful to the many students in my classes on geometrical physics for 
their encouragement and enthusiasm in my endeavor. Of course none of the above is 
responsible for whatever inaccuracies undoubtedly remain. 



PART ONE 

Manifolds, Tensors, and 
Exterior Forms 





C H A P T E R  1 

Manifolds and Vector Fields 

Better is the end of a thing than the beginning thereof. 
Ecclesiastes 7: 8 

As students we learn differential and integral calculus in the context of euclidean space 
]Rn , but it is necessary to apply calculus to problems invol ving "curved" spaces. Geodesy 
and cartography, for example, are devoted to the study of the most familiar curved 
surface of all ,  the surface of planet Earth. In discussing maps of the Earth, lati tude and 
longitude serve as "coordinates," allowing us to use calculus by considering functions 
on the Earth's surface (temperature, height above sea level, etc . )  as being functions of 
latitude and longitude. The familiar Mercator's projection, with its stretching of the 
polar regions, vividly informs us that these coordinates are badly behaved at the poles : 
that is ,  that they are not defined everywhere; they are not "global ." (We shall refer to 
such coordinates as being "local ," even though they might cover a huge portion of the 
surface.  Preci se definitions will be given in Section 1 .2. ) Of course we may use two 
sets of "polar" projections to study the Arctic and Antarctic regions. With these three 
maps we can study the entire surface, provided we know how to relate the Mercator to 
the polar maps. 

We shall soon define a "manifold" to be a space that, l ike the surface of the Earth, can 
be covered by a family of local coordinate systems. A manifold will turn out to be the 
most general space in which one can use differential and integral calculus with roughly 
the same facility as in euclidean space. It should be recalled, though, that calculus in 
]R3 demands special care when curvilinear coordinates are required. 

The most familiar manifold is N-dimensional euclidean space ]RN , that is, the space 
of ordered N tuples (x I , . . .  , XN ) of real numbers . Before discussing manifolds in 
general we shall talk about the more famil iar (and less abstract) concept of a submanifold 
of ]R N , generalizing the notions of curve and surface in ]R3 . 

1 . 1 .  Submanifolds of Euclidean Space 

What is the configuration space of a rigid body fixed at one point of ]Rn? 

3 
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1 .la. Submanifolds of]RN 

Euclidean space, ]RN , is endowed with a global coordinate system (x I , . . .  , xN ) and is 
the most important example of a manifold. 

In our familiar ]R3
, with coordinates (x, y, z), a locus z = F(x ,  y) describes a (2-

dimensional) surface, whereas a locus of the form y = G(x), z = H (x) ,  describes a 
( I -dimensional) curve. We shall need to consider higher-dimensional versions of these 
important notions. 

A subset M = Mn C ]Rn+r i s  said to be an n-dimensional submanifold of ]Rn+r, 
if locally M can be described by giving r of the coordinates differentiably in terms of 
the n remaining ones. This means that given p E M, a neighborhood of p on M can 
be described in some coordinate system (x, y) = (x I, . . . , xn, y I, . . . , yr ) of ]Rn+r by 
r differentiable functions 

a fa( I n) y =  X ,  ... , X , a = 1, . .. r 
We abbreviate this by y = I(x), or even y = y(x). We say that X

l
, • • •  , xn are local 

(curvilinear) coordinates for M near p. 

Examples : 

(i) y I = I (x I , . . .  , xn) describes an n-dimensional submanifold of �n+ I. 

� _______ xn 

Xl • • . .  

Figure 1 . 1 

In Figure 1 . 1  we have drawn a portion of the submanifold M. This M is the graph 
of a function I: IRn � R that is ,  M = {(x, Y) E �n+1 I Y = I(x)}. When n = 1 ,  
M is a curve; while if n = 2, it i s  a surface .  

(ii) The unit sphere x2 
+ y2 + Z2 = 1 in �3. Points in the northern hemisphere can be 

described by z = F(x, y) = (l - x2 - y2)1/2 and this  function is differentiable 
everywhere except at the equator x2 + i = I .  Thus x and yare local coordinates for 
the northern hemisphere except at the equator. For points on the equator one can solve 
for x or y in terms of the others . If we have solved for x then y and z are the two local 
coordinates. For points in the southern hemisphere one can use the negative square 
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root for z. The unit sphere in IR3 is a 2-dimensional submanifold ofIR3 . We note that we 
have not been able to describe the entire sphere by expressing one of the coordinates, 
say z, in terms of the two remaining ones , z = F(x, y). We settle for local coordinates. 

More generally, given r functions Fa (XI, . . . , xn, YI, ... , Yr) of n + r variables, 
we may consider the locus Mn C IRn+r defined by the equations 

PC'(x, y) = ea, (el, . . . , er) constants 

If the Jacobian determinant 

[a(F1, • • •  , p)] 
a( ,I r ) (xo, Yo) 

) , . . . , Y 

at (xo, Yo) E M of the locus is not 0, the implicit function theorem assures us that 
locally, near (xo, Yo) , we may solve Fa (X, y) = ea, a = 1, . . . , r, for the y 's in terms 
of the x ' s  

We may say that "a  portion of  Mn near (xo , Yo) is  a submanifold of IR"+r." If the 
Jacobian i- ° at all points of the locus, then the entire Mn is a submanifold. 

Recall that the Jacobian condition arises as follows . If Fa(x ,  y) = e'" can be 
solved for the y's differentiably in terms of the x 's ,  yf3 = yf3 (x ) , then if, for fixed i ,  
w e  differentiate the identity Fa (x, y (x)) = cct with respect to Xi, w e  get 

and 

aFa [ape, ] ayf3 
- + - - =0 
axi L 

ayf3 axi 
f3 

a yt! 
= 

_ '"' ( [ a F] -I) t! [a Fa ] 
ax' � ay ax' a a 

provided the subdeterminant a(FI, ... , p)/a(yl, ... , yr) is not zero. (Here 
([aF/ay]- I)f3

a is the fJa entry of the inverse to the matrix aF/ay; we shall use 
the convention that for matrix indices, the index to the left always is the row index, 
whether it is up or down.) This suggests that if the indicated Jacobian is  nonzero then 
we might indeed be able to solve for the y's in terms of the x 's, and the implicit func
tion theorem confirms this .  The (nontrivial) proof of the implicit function theorem 
can be found in most books on real analysis .  

Stil l more generally, suppose that we haver functions ofn+r variables, Fa (x I , . . .  , 
xn+r) . Consider the locus Fa (x) = ca. Suppose that at each point Xo of the locus the 
Jacobian matrix 

(apex ) ax ' 
a = 1 ,  .. . , r i=l, . .. , n+r 

has rank r. Then the equations Fa = ea define an n-dimensional submanifold ofIR"+r, 
since we may locally solve for r of the coordinates in terms of the remaining n .  
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grad G 

G(x, y, z)=O 

J-------y 

x 

Figure 1 .2 

In Figure 1 .2 ,  two surfaces F = ° and G = ° in ]R3 intersect to yield a curve M. 
The simplest case is one function F of N variables (x I, . . .  , xN), If at each point 

of the locus F = c there is always at least one partial derivative that does not 
vanish, then the Jacobian (row) matrix [aF lax1, aF lax2, • •  " aF laxN] has rank I 
and we may conclude that this locus is indeed an (N - I) -dimensional submani
fold of ]RN. This criterion is easily verified, for example, in the case of the 2-sphere 

F(x, y, z) = x2 + y2 + Z2 - I of Example (i i) .  The column version of this row 
matrix is called in calculus the gradient vector of F. In ]R3 this vector [ if 1 

of 
iJ: 

is orthogonal to the locus F = 0, and we may conclude, for example, that if this 
gradient vector has a nontrivial component in the z direction at a point of F = 0, 
then locally we can solve for z = z(x, y ) .  

A submanifold of  dimension (N - I) in ]RN, that i s ,  o f  "codimension" 1 ,  i s  called 
a hypersurface. 

(iii) The x axis ofthe xy plane ]R2 can be described (perversely) as the locus of the quadratic 
F(x, y) := y2 = O. Both partial derivatives vanish on the locus, the x axis,  and our 
criteria would not allow us to say that the x axis is  a I -dimensional submanifold of 
]R2 , Of course the x axis  is a submanifold ; we should have used the usual description 
G (x, y) := y = 0. Our Jacobian criteria are sufficient conditions, not necessary ones .  

(iv) The locus F(x, y)  := xy = ° in ]R2 , consisting of the union of the x and y axes, 
is  not a I -dimensional submanifold of]R2 . It seems "clear" (and can be proved) that 
in a neighborhood of the intersection of the two lines we are not going to be able to 
describe the locus in the form of y = f(x) or x = g(y) ,  where f, g,  are differen
tiable functions. The best we can say is that this locus with the origin removed is a 
I -dimensional submanifold. 
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l.lb. The Geometry of Jacobian Matrices : The "Differential" 

The tangent space to �n at the point x , written here as �: , is by definition the vector 
space of all vectors in �n based at x ( i .e . ,  it is a copy of �n with origin shifted to x ) . 

Let X l ,  . . .  , xn and y l , . . .  , yr be coordinates for �n and �r respectively. Let F : 
�IZ -+ �r be a smooth map. ("Smooth" ordinarily means infinitely differentiable. For 
our purposes, however, it will mean differentiable at least as many times as is necessary 
in the present context. For example, if F is once continuously differentiable, we may 
use the chain rule in the argument to follow.) In coordinates, F is described by giving 
r functions of n variables 

y'" = F"' (x) a = 1, . . . , r 

or simply y = F(x ) . We will frequently use the more dangerous notation y = y (x ) .  
Let Yo = F(xo ) ; the Jacobian matrix (ay'" jaxi ) (xo) has the following significance. 

x" 
v = x(O) 

F -

yr 

W =  Y(O) = F.v  

y(t) = F(x(t)) 
image of jR" under F 

4---------- x l , . . .  � _____________ y r - I  

Figure 1 .3 

Let v be a tangent vector to �n at Xo . Take any smooth curve x (t ) such that x (O) = Xo 
and X (O) : =  (dxjdt) (O) = v, for example, the straight line x (t ) = Xo + tv . The image 
of this curve 

y et ) = F(x (t ) ) 

has a tangent vector w a t  Yo given by  the chain rule 

w'" = .V (0) = L � (xo)xi (0) = L � (xo )vi n ( a "' ) 11 ( a "' ) 
i= l ax i= l  ax 

The assignment v � w is ,  from this expression, independent of the curve x (t) chosen, 
and defines a linear transformation, the differential of F at Xo 

F . m il -+ m r  
* . IN..xo IN..)'O ( Ll )  
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whose matrix is simply the Jacobian matrix (ay" /axi ) (xo) .  This interpretation of the 
Jacobian matrix, as a linear transformation sending tangents to curves into tangents 
to the image curves under F, can sometimes be used to replace the direct computation 
of matrices. This philosophy will be illustrated in Section l . l d. 

1.1c. The Main Theorem on Submanifolds of]RN 

The main theorem is a geometric interpretation of what we have discussed. Note that 
the statement "F has rank r at xo ," that is, [ay" /ax i ] (xo) has rank r, is geometrically 
the statement that the differential 

F . jRn � jRr * . Xo yo= F(xo ) 

is onto or "surjective"; that is, given any vector w at Yo there is at least one vector v at 
Xo such that FAv) = w. We then have 

Theorem (1.2) : Let F : jRr+n � jRr and suppose that the locus 

is not empty. Suppose further that for all Xo E F- 1 (Yo ) 

i s  onto. Then F- 1 (Yo) is an n-dimensional submanifold of]Rn
+r. 

]R3 
, X" 

xl I' 
· 

y2 
· 
· w� 

]R2 Yo 
y l  

Figure 1 .4 
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The best example to keep in mind is the l inear "projection" F : JR.3 ----+ JR.2, 
F(X I, X2, X3 ) = (X l , X2), that is ,  i = X l and / = x2 . In this case, X3 serves as 
global coordinate for the submanifold x I = Y6 , X2 = Y& , that is ,  the vertical line. 

1 .1d. A Nontrivial Example: The Configuration Space 
of a Rigid Body 

Assume a rigid body has one point, the origin of JR.3, fixed. By comparing a cartesian 
right-handed system fixed in the body with that of JR.3 we see that the configuration of 
the body at any time is described by the rotation matrix taking us from the basis of JR.3 
to the basis fixed in the body. The configuration space of the body is then the rotation 
group SO(3) ,  that is ,  the 3 x 3 real matrices x = (xij ) such that 

XT  = X - I and det x > 0 

where T denotes transpose. (If we omit the determinant condition, the group is the 
full orthogonal group, 0(3) . )  By assigning (in some fixed order) the nine coordinates 
X I I, X 12, . . .  , X33 to any matrix x ,  we see that the space of all 3 x 3 real matrices, 
M (3 x 3 ) ,  is the euclidean space JR.9 . The group 0(3) is then the locus in  this JR.9 defined 
by the equations X T X = I ,  that is, by the system of nine quadratic equations (i , k) 

(i , k) L Xj iXjk = 8ik 
j = l 

We then have the following situation. The configuration of the body at time t can be 
represented by a point x (t )  in JR.9, but in fact the point x (t )  lies on the locus 0(3) in 
JR.9 . We shall see shortly that this locus is in fact a 3-dimensional submanifold of JR.9 . 
As time t evolves, the point x (t )  traces out a curve on this 3-dimensional locus .  S ince 
0(3) is a submanifold, we shall see, in Section I 0.2c from the principle of least action, 
that this path is a very special one, a "geodesic" on the submanifold 0(3) ,  and this in 
tum will yield important information on the existence of periodic motions of the body 
even when the body is subject to an unusual potential field. All this depends on the fact 
that 0(3) is a submanifold, and we tum now to the proof of this crucial result. 

Note first that since X T X is a symmetric matrix, equation (i , k) is the same as equation 
(k , i ) ;  there are, then, only 6 independent equations. This suggests the following. Let 

Sym6 := {x E M (3 x 3) I XT = x } 

be the space of all symmetric 3 x 3 matrices. Since this is defined by the three linear 
equations Xik - Xki = 0, i =I=- k , we see that Sym6 is a 6-dimensional l inear subspace of 
JR.9 ; that is ,  it can be considered as a copy of JR.6 . To exhibit 0(3) as a locus in JR.9 , we 
consider the map 

F : JR.9 ----+ JR.6 = Sym6 defined by F(x )  = X T  X - I 

0(3) is then the locus F- 1 (0) . Let Xo E F- I (O) = 0(3 ) .  We shall show that F* 
JR.;o ----+ Sym6 i s  onto. 
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" 

curve ," 
x = x(t) : 

Figure 1 .5 

Let w be tangent to Sym6 at the zero matrix .  As usual, we identify a vector at the 
origin of ]Rn with its endpoint. Then w is itself a symmetric matrix. We must find v, a 
tangent vector to ]R9 at xo, such that F* v = w. Consider a general curve x = x (t) of 
matrices such that x (O) = Xo ;  its tangent vector at Xo is X (O) . The image curve 

F(x (t ) )  = x (tl x (t ) - I 
has tangent at t = 0 given by 

d 
dt [F (x (t ) ) ] t=o = X (O) T Xo + x6 x (O) 

We wish this  quantity to be w. You should verify that it is sufficient to satisfy the matrix 
equation xci x (O) = w /2. S ince xo E 0(3), xci = XO I and we have as solution the matrix 
product v =x = xow /2. Thus F* is onto at Xo and by our main theorem 0(3)= F- 1 (0) 
is a (9 - 6) = 3-dimensional submanifold of ]R9 . 

What about the subset SO(3) of 0(3)? Recall that each orthogonal matrix has de
terminant ± 1, whereas SO(3) consists of those orthogonal matrices with determinant 
+ 1 .  The mapping 

det : ]R9 --» ]R 
that sends each matrix x into its determinant i s  continuous (it is a cubic polynomial 
function of the coordinates Xik ) and consequently the two subsets of 0(3) where det 
is + 1 and where det is - 1  must be separated. This means that SO(3) itself must have 
the property that i t  is  locally described by giving 6 of the coordinates in terms of the 
remaining 3, that is, SO(3) is a 3-dimensional submanifold of ]R9 . 

Thus the configuration space of a rigid body with one pointfixed is the group SO(3) . 
This is a 3-dimensional submanifold of]R9. Each point of this configuration space lies 
in some local curvilinear coordinate system. 
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In physics books the coordinates in an n-dimensional configuration space are usu
ally labeled q I , . . .  , q" . For SO(3) physicists usually use the three "Euler angles" as 
coordinates. These coordinates do not cover all of SO(3) in the sense that they become 
singular at certain points, just as polar coordinates in the plane are singular at the origin. 

Problems ----------

1 . 1 (1 ) I nvestigate the locus x2 + y2 - Z2 = c i n  IR3 , for c > 0, c = 0 ,  and c < 0 .  Are 
they submanifolds? What if the orig in is omitted? Draw all three loc i ,  for c = 1 ,  
0 ,  - 1 , i n  one picture. 

1 . 1 (2) SO(n) is defined to be the set of al l  orthogonal n x n matrices x with det x = 1 .  
The preceding discussion of SO(3) extends immediately to SO(n) .  What is the 
d imension of SO(n) and in what eucl idean space is it a subman ifold? 

1 . 1 (3) I s  the special l inear group 

SI  (n) : =  { n  x n real matrices x I det x = 1 )  

a submanifold of some IR N ? H int: You wi l l  need to know someth ing about 3/3xij 
(det x) ; expand the determinant by the j th column .This is an example where it 
m ight be easier to deal d i rectly with the Jacobian matrix rather than the differ
ential . 

1 . 1 (4) Show, i n  IR3 , that if the cross product of the gradients of F and G has a nontrivial 
component i n  the x d i rection at a point of the i ntersection of F = ° and G = 0, 
then x can be used as local coordinate for this curve. 

1 .2. Manifolds 

In learning the sciences examples are of more use than precepts . 

Newton, A rithmetica Universalis ( 1 707) 

The notion of a "topology" will allow us to talk about "continuous" functions and points 
"neighboring" a given point, in spaces where the notion of distance and metric might 
be lacking. 

The cultivation of an intuitive "feeling" for manifolds is  of more importance, at this 
stage, than concern for topological details ,  but some basic notions from point set topol
ogy are helpful . The reader for whom these notions are new should approach them as 
one approaches a new language, with some measure of fluency, it is hoped, coming later. 

In Section 1 .2c we shall give a technical ( i .e . ,  complete) definition of a manifold. 

1 .2a. Some Notions from Point Set Topology 

The open ball in ]R" , of radius E ,  centered at a E ]R" is 

Ba (E ) = {x E ]R" I I I x - a II < E )  
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The closed ball is  defined by 

Ba (E) = {x E �n I I I x - a I I :'S E } 

that is ,  the closed ball is the open ball with its edge or boundary included. 
A set U in �" is declared open if given any a E U there is an open ball of some radius 

r > 0, centered at a, that lies entirely in U. Clearly each Bb (E) is  open if E > 0 (take 
r = (E - II b - a 1 1 ) /2) , whereas Bb (E ) is not open because of its boundary points . �n 
itself is trivially open. The empty set is technically open since there are no points a in it. 

A set F in �n is declared closed if its complement �n - F is open. It i s  easy to 
check that each B a (E ) is a closed set, whereas the open ball is not. Note that the entire 
space �I/ is both open and closed, since its complement is empty. 

It is immediate that the union of any collection of open sets in �I/ is an open set, and it 
is not difficult to see that the intersection of any finite number of open sets in �n is open. 

We have described explicitly the "usual" open sets in euclidean space �n . What do 
we mean by an open set in a more general space? We shall define the notion of open 
set axiomatically. 

A topological space is a set M with a distinguished collection of subsets, to be called 
the open sets . These open sets must satisfy the following . 

1. Both M and the empty set are open. 
2. If U and V are open sets, then so is their intersection U n V .  
3. The union of any collection of open sets i s  open . 

These open subsets "define" the topology of M. 0 
(A different collection might define a different topology.) Any such collection of subsets 
that satisfies I ,  2, and 3 is eligible for defining a topology in M. In our introductory 
discussion of open balls in �n we also defined the col lection of open subsets of �n • 

These define the topology of �I/ , the "usual" topology. An example of a "perverse" 
topology on �" is the discrete topology, in which every subset of �n is declared open ! 
In discussing �n in this book we shall always use the usual topology. 

A subset of M is closed if its complement is open. 
Let A be any subset of a topological space M. Define a topology for the space A 

(the induced or subspace topology) by declaring V C A to be an open subset of A 
provided V is the intersection of A with some open subset U of M, V = A n U .  These 
sets do define a topology for A. For example, let A be a line in the plane �2 . An open 
ball in �2 is simply a disc without its edge. This disc either will not intersect A or will 
intersect A in an "interval" that does not contain its endpoints. This  interval will be an 
open set in the induced topology on the line A. It can be shown that any open set in A 
will be a union of such intervals .  

Any open set in M that contains a point x E M will be called a neighborhood of x . 
If F :M -+ N is a map of a topological space M into a topological space N, we 

say that F is continuous if for every open set V e N, the inverse image F- 1 V := 

(x E M I F(x )  E V }  is open in M. (This reduces to the usual E, 8 definition in the case 
where M and N are euclidean spaces . )  The map sending all of �" into a single point of 
�m is an example showing that a continuous map need not send open sets into open sets . 
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If F : M  ---+ N i s  one to one ( 1  : 1 )  and onto, then the inverse map F- I :N  ---+ M 
exists. If further both F and F- I are continuous, we say that F is a homeomorphism 
and that M and N are homeomorphic. A homeomorphism takes open (closed) sets into 
open (closed) sets . Homeomorphic spaces are to be considered to be "the same" as 
topological spaces ;  we say that they are "topologically the same." It can be proved that 
�n and �m are homeomorphic if and only if m = n .  

The technical definition of a manifold requires two more concepts , namely "Haus
dorff" and "countable base." We shall not discuss these here since they will not arise 
explicitly in the remainder of the book. The reader is referred to [S]  for questions 
concerning point set topology. 

There is one more concept that plays a very important role, though not needed for the 
definition of a manifold; the reader may prefer to come back to this later on when needed. 

A topological space X is called compact if from every covering of X by open sets one 
can pick out a/mite number of the sets that still covers X. For example, the open interval 
(0, I ), considered as a subspace of R is not compact; we cannot extract a finite subcov
ering from the open covering given by the sets Vn = {x I l in < x < l }n = 1 , 2 , . . . . 

On the other hand, the closed interval [0, 1 ]  is a compact space. In fact, it is shown in 
every topology book that any subset X of �n (with the induced topology) is compact 
if and only if 

1. X is a closed subset of lRn , 
2. X is a bounded subset, that is ,  I I x II < some number c, for all x E X . 

Finally we shall need two properties of continuous maps.  First 

The continuous image of a compact space is itself compact. 

P R O O F :  If f : G ---+ M is continuous and if { V; } is an open cover of f (G )  c M, 
then { f - I (Vi ) } is an open cover of G. Since G is compact we can extract a finite 
open subcover { f- I (Va ) } of G,  and then { Va } is a finite subcover of f(G) .  0 

Furthermore 

A continuous real-valued function f : G ---+ lR on a compact space G is bounded. 

P R O O F : f (G) is a compact subspace of �, and thus is closed and bounded. 0 

I.2b. The Idea of a Manifold 

An n -dimensional (differentiable) manifold Mn (briefly, an n -manifold) is a topological 
space that is locally �n in the following sense. It is covered by a family of local 
(curvilinear) coordinate systems { V ;  xt , . . .  , x� } , consisting of open sets or "patches" 
V and coordinates Xu in V, such that a point p E V n V that lies in two coordinate 
patches will have its two sets of coordinates related differentiably 

i ( )  fi ( I n ) Xv P = vu xu ' . . .  , Xu i = 1 , 2 , . . . , n . ( 1 .3) 
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(If the functions fvu are Coo, that is , infinitely differentiable, or  real analytic, . . .  , we 
say that M i s  Coo, or real analytic, . . . .  ) There are more requirements ; for example, we 
shall demand that each coordinate patch is homeomorphic to some open subset of �n • 

Some of these requirements will be mentioned in the following examples, but details 
will be spelled out in Section I .2c. 

Examples: 

(i) Mn = �n , covered by a single coordinate system. The condition (1 .3)  is vacuous . 
(ii) Mn is an open ball in IRn , again covered by one patch. 

(iii) The closed ball in IRn i s  not a manifold. It can be shown that a point on the edge of 
the ball can never have a neighborhood that is homeomorphic to an open subset of 
IRn . For example, with n = I ,  a half open interval 0 :s x < I in  IR I can never be 
homeomorphic to an open interval 0 < x < I in IR I .  

(iv) Mn = sn , the unit sphere in �n+ l . We shall illustrate this with the familiar case 
n = 2. We are dealing with the locus x2 + y2 + Z2 = I .  

r----+��--�--- y 

x 

Figure 1 .6 

Cover S2 with six "open" subsets (patches) 

Ux+ = {p E S2 I x (p) > O} 

Uv+ = {p  E S2 I y ep) > O} 

Uz+ = {p E S2 I z (p) > O} 

Ux - = { p  E S2 I x (p) < O} 

Uy - = {p  E S2 I y ep) < O} 

Uz - = {p E S2 I z (p) < O} 

The point p illustrated sits in [Ux+] n [U\'+] n [Uz+ ] .  Project Uz+into the xy 
plane; this introduces x and y as curvil inear coordinates in Uz+. 

Do similarly for the other patches . For p E [Uy+ ] n [Uz +] ,  p is assigned the two 
sets of coordinates { (u 1 ,  U2) = (x , z) } and { (V I , V2) = (x , y ) }  arising from the two 
projections 

Jrxz : Uy --+ xz plane and Jrxy : Uz --+ xy plane 
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These are related b y  V I  = U I and V2 = + [ 1  - uT - u� 1 I /2 ; these are differentiable 
functions provided uT + u� < I ,  and this is  satisfied since p E U,, +. 

S2 is "locally Il�? "  The indicated point p has a neighborhood (in the topology of 
S2 induced as a subset of JR3 ) that is homeomorphic, via the projection JTx v ,  say, to 
an open subset of JR2 (in this case an open subset of the xy plane). We s�y that a 
manifold is locally euclidean. 

If two sets of coordinates are related differentiably in an overlap we shall say 
that they are compatible. On S2 we could introduce, in addition to the preceding 
coordinates, the usual spherical coordinates e and cp,  representing colatitude and 
longitude. They do not work for the entire sphere (e.g . ,  at the poles) but where they 
do work they are compatible with the original coordinates . 

We could also introduce (see Section 1 .2d) coordinates on S2 via stereographic 
projection onto the planes z = I and z = - I , again failing at the south and north 
pole, respectively, but otherwise being compatible with the previous coordinates. On 
a manifold we should allow the use of all coordinate systems that are compatible with 
those that originally were used to define the manifold. Such a collection of compatible 
coordinate systems is called a maximal atlas. 

(v) If Mil is a manifold with local coordinates { U ;  X I , . . . , x " } and wr is a manifold with 
local coordinates { V ;  Y I , . . .  ,yr } ,  w e  can form the product manifold 

L" +r = Mil X Wr = { (p , q ) I p E Mil and q E Wr } 

by using x I , . . . , x " , Y I , . . . , yr as local coordinates in U x V .  
S I i s  simpl y the unit circle i n  the plane JR2 ; i t  has a local coordinate e = tan - I ( y  / x) ,  

using any branch of  the multiple-valued function e .  One must use  a t  least two such 
coordinates (branches) to cover S I . "Topologically" S I is conveniently represented by 
an interval on the real line JR with endpoints identified; by this we mean that there is a 
homeomorphism between these two models .  In order to talk about a homeomorphism 

identify these two points 

( '\ 
o------------------------�o 
p p 

Figure 1 .7 

we would first have to define the topology in the space consisting of the interval 
with endpoints identified ; it clearly is not the same space as the interval without the 
identification. To define a topology, we may simply consider the map F : [0 ::: e ::: 
2JT 1 -+ JR2 = C defined by F(e )  = ei8 . It sends the endpoints e = 0 and e = 2JT to 
the point p = I on the unit circle in the complex plane. This map is I : I and onto if we 
identify the endpoints . The unit circle has a topology induced from that of the plane, 
built up from little curved intervals .  We can construct open subsets of the interval by 
taking the inverse images under F of such sets .  (What then is  a neighborhood of the 
endpoint p?) By using this topology we force F to be a homeomorphism. 
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S 1 is  the configuration space for a rigid pendulum constrained t o  oscillate in the 
plane 

fixed pin 

Figure 1 .8 

The n-dimensional torus Tn : =  S l X S l X . . .  X S l has local coordinates given 
by the n-angular parameters e 1 , . . .  , en . Topologically it is  the n cube (the product 
of n intervals) with identifications. For n = 2 

rp --

f-- identify --+--� 

«(), rp) - - -I I I I 

o D 

identify 

Figure 1 .9 

T2 is the configuration space of a planar double pendulum. It might be thought that 
it i s  s impler to picture the double pendulum itself rather than the seemingly abstract 
version of a 2-dimensional torus.  We shall see in Section 10 .2d that this abstract 
picture allows us to conclude, for example, that a double pendulum, in an arbitrary 
potential field, always has periodic motions in which the upper pendulum makes p 
revolutions while the lower makes q revolutions. 

fixed pin 

Figure 1 . 1 0  

(vi) The real projective n space lRpn i s  the space of all unoriented lines L through the 
origin oflRn+ 1 . We illustrate with the projective plane of lines through the origin oflR3 . 
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L 

Such a line L is completely determined by any point (x , y ,  z) on the line, other 
than the origin, but note that (ax , ay , az )  represents the same line if a -=I O. We should 
really use the ratios of coordinates to describe a line. We proceed as follows .  

We cover lR pz by three sets: 

Ux : =  those lines not lying in the yz plane 

Uy := those lines not lying in the xz plane 

Uz : = those lines not lying in the xy plane 

Introduce coordinates in the Uz patch; if L E Uz , choose any point (x , y, z) on L 

other than the origin and define (since z -=I 0) 
x Y 

U l = - , Uz = -z z 
Do likewise for the other two patches. In Problem I . 2( I )  you are asked to show that 
these patches make lRpz into a 2-dimensional manifold. 

These coordinates are the most convenient for analytical work. Geometrically, the 
coordinates II I  and Uz are simply the x y coordinates of the point where L intersects 
the plane z = 1 .  

Consider a point in lRPz; i t  represents a l ine through the origin O. Let (x , y, z )  be 
a point other than the origin that l ies on thi s  l ine.  We may represent this l ine by the 
triple [x , y ,  z ] ,  called the homogeneous coordinates of the point in lRP2 where we 
must identify [x , y ,  z] with [Ax , AY, AZ] for all A -=I O. They are not true coordinates 
in our sense. 

We have suceeded in "parameterizing" the set of undirected lines through the origin 
by means of a manifold, M2 = lRP2 . A manifold is a generalized parameterization 
of some set of objects . lRP2 is the set of undirected lines through the origin ;  each point 
of lRP2 i s  an entire l ine in lR3 and lRP2 i s  a global object. If, however, one insists on 
describing a particular l ine L by coordinates , that i s, pairs of numbers (u , v) ,  then this  
can, in general , only be done locally, by means of the manifold 's local coordinates. 

Note that if we had been considering directed lines, then the manifold in question 
would have been the sphere S2 , since each directed line L could be uniquely defined 
by the "forward" point where L intersects the unit sphere . An undirected line meets S2 
in a pair of antipodal points; lRP2 is topologically S2 with antipodal points identified. 
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We can now construct a topological model o f  IRP2 that will allow us to identify 
certain spaces we shall meet as projective spaces . Our model will respect the topol
ogy ; that is, "nearby points" in IRP2 (that is, nearby lines in IR3 ) will be represented 
by nearby points in the model , but we won ' t  be concerned with the differentiability 
of our procedure. Also it will be clear that certain natural "distances" will not be pre
served; in the rigorous definition of manifold, to be given shortly, there is no mention 
of metric notions such as distance or area or angle. 

identify identify identify 

-® -
Figure 1 . 1 2  

I n  the sphere with antipodal points identified, we may discard the entire southern 
hemisphere (exclusive of the equator) of redundant points , leaving us with the north
ern hemisphere, the equator, and with antipodal points only on the equator identified. 
We may then project this onto the disc in the plane. Topologically IRP2 is the unit 
disc in the plane with antipodal points on the unit circle identified. 

Similarly, IRpn is topologically the unit n sphere sn in IR/ + 1 with antipodal points 
identified, and this in turn is the solid n -dimensional unit ball in  IRn with antipodal 
points on the boundary unit (n - 1 )  sphere identified. 

(vii) It is  a fact that every subman(fold of "]R1l is a manifold. We verified this in the case 
of S2 C "]R3 in Example ( i i ) .  In l . l d  we showed that the rotation group SO(3) is  a 
3-dimensional submanifold of "]R9 . A convenient topological model is constructed as 
follows. Use the "right-hand rule" to associate the endpoint of the vector e r  to the 
rotation through an angle e (in radians) about an axis  descibed by the unit vector r. 
Note, however, that the rotation rrr is exactly the same as the rotation -rr r and (rr +a)r 
is the same as  - (rr - a)r. The collection of a l l  rotations then can be represented by 
the points in the solid ball of radius rr in  "]R3 with antipodal points on the sphere of 
radius rr identified; SO(3) can be identified with the real projective space "]R p3 . 

(viii) The Mobius band Mo is the space obtained by identifying the left and right hand 
edges of a sheet of paper after giving it a "half twist" 

__ identify 
Mii 

Figure 1 . 1 3  
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If one omits the edge one can see that Mo is a 2-dimensional submanifold of lR3 

and is therefore a 2-manifold. You should verify (i) that the Mobius band sits naturally 
as the shaded "half band" in the model of lR P2 consisting of S2 with antipodal points 
identified, and (ii) that this half band is  the same as the full band. The edge of the 

disc 

c' 

Figure 1 . 1 4  

Mobius band consists of a single closed curve C that can be pictured as the "upper" 
edge of this full band in lRP2 . Note that the indicated "cap" is topologically a 2-
dimensional disc with a circular edge C/. If we observe that the lower cap is the same 
as the upper, we conclude that ifwe take a 2-disc and sew its edge to the single edge of 
a Mobius band, then the resulting space is topologically the projective plane ! We may 
say that lR P2 is Mo with a 2-disc attached along its boundary. Although the actual 
sewing, say with cloth, cannot be done in ordinary space lR3 (the cap would have to 
slice through itself) ,  this sewing can be done in lR4 , where there is "more room." 

1 .2c. A Rigorous Definition of a Manifold 

Let M be any set (without a topology) that has a covering by subsets M = U U V u . . .  , 
where each subset U is in 1 : 1 correspondence CPu : U ---+ lRn with an open subset 
CPu (U)  of lRn . 

Abstract set M N (not necessarily in 1Ft ) 

Figure 1 . 1 5  
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We require that each C/>U  (u n V) be  an  open subset of  JR." . We require that the overlap 
maps 

fv u = c/>v 0 c/>i / : c/>u (U n V) � JR." ( 1 .4) 

that is ,  

c/>u (U n V) � M � JR." 

be differentiable (we know what it means for a map C/>V 0 c/>u '  from an open set of 
JR." to JR." to be differentiable) . Each pair U, C/>U defines a coordinate patch on M; to 
p E U C M we may assign the n coordinates of the point C/>U (p) in JR." . For this  reason 
we shall call C/>U a coordinate map. 

Take now a maximal atlas of such coordinate patches; see Example (iv). Define a 
topology in the set M by declaring a subset W of M to be open provided that given 
any p E W  there is a coordinate chart U, C/>U such that P E U C W. If the resulting 
topology for M is  Hausdorff and has a countable base (see [S] for these technical 
conditions) we say that M is an n -dimensional differentiable manifold. We say that a 
map F : lR.P � JR.q is of class Ck if all kth partial derivatives are continuous . It is of 
class Coo if it is of class Ck for all k .  We say that a manifold M" is of class Ck if its 
overlap maps fv u are of class Ck . Likewise we have the notion of a Coo manifold. An 
analytic manifold is one whose overlap functions are analytic ,  that is ,  expandable in 
power series. 

Let F : M" � lR. be a real-valued function on the manifold M.  S ince M is  a topo
logical space we know from 1 .2a what it means to say that F is continuous .  We say that 
F is differentiable if, when we express F in terms of a local coordinate system (U , x ) ,  
F = F u (x ' , . . . , x " )  i s  a differentiable function o f  the coordinates x .  Technically this  
means that that when we compose F with the inverse of the coordinate map C/>U 

Fu :=  F 0 c/>(j ' 
(recall that C/>U is assumed I : 1) we obtain a real-valued function Fu defined on a 
portion C/>U (U) of JR." , and we are asking that thi s  function be differentiable. Briefly 
speaking, we envision the coordinates x as being engraved on the manifold M, just 
as we see lines of latitude and longitude engraved on our globes . A function on the 
Earth 's surface is continuous or differentiable if it is continuous or differentiable when 
expressed in terms of latitude and longitude, at least if we are away from the poles. 
Similarly with a manifold.With this  understood, we shall usually omit the process of 
replacing F by its composition F 0 c/>u ' , thinking of F as directly expressible as a 
function F (x )  of any local coordinates. 

Consider the real projective plane JR.p2 ,  Example (vi) of Section I .2b. In terms of 
homogeneous coordinates we may define a map (lR.3 - 0) � lR. p 2  by 

(x , y , z) � [x , y, z ]  
At a point of lR.3 where, for example, z =I- 0 we may use u = x / z and v = y / z 
as local coordinates in lR. p 2 ,  and then our map is given by the two smooth functions 
u = f (x ,  y ,  z) = x/z and v = g (x , y, z) = y/z .  
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1 .2d. Complex Manifolds: The Riemann Sphere 

A complex manifold is a set M together with a covering M = U U V U . . . , where 
each subset U is in 1 : 1 correspondence CPu : U � en with an open subset CPu (U) of 
complex n-space en . We then require that the overlap maps fvu mapping sets in en into 
sets in en be complex analytic ; thus if we write fvu in the form w

k = Wk (Z I , . . . , zn ) 
where Zk = Xk + i l and wk = uk + i vk

, then uk and v
k satisfy the Cauchy-Riemann 

equations with respect to each pair (xT ,  y" ) . Briefly speaking, each wk can be expressed 
entirely in terms of z I , . . . , Zll , with no complex conjugates ZT appearing. We then 
proceed as in the real case in 1 .2c. The resulting manifold is called an n-dimensional 
complex manifold, although its topological dimension is 2n . 

Of course the simplest example is e" itself. Let us consider the most famous non
trivial example, the Riemann sphere MI . 

The complex plane e (topologically ]R2) comes equipped with a global complex co
ordinate z = x + i y. It is a complex I -dimensional manifold e 1 .  To study the behavior of 
functions at "00" we introduce a point at 00, to form a new manifold that is topologically 
the 2-sphere 52.  We do this by means of stereographic projection, as follows. 

(u. v) plane 

N Izl 

S side view 

Figure 1 . 1 6  

In the top part of the figure w e  have a sphere of radius 1 /2, resting on a w = u + i v 
plane, with a tangent z = x + iy plane at the north pole. Note that we have oriented these 
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two tangent planes to agree with the usual orientation of  S 2  (questions o f  orientation 
will be discussed in Section 2 .8) .  

Let U be the subset of S2 consisting of al l  points except for the south pole, let  V be 
the points other than the north pole, let  <Pu and <Pv be stereographic projections of U 
and V from the south and north poles , respectively, onto the z and the w planes. In this 
way we assign to any point p other than the poles two complex coordinates, z = I z l eill 
and w = I w I e-ie . From the bottom of the figure, which depicts the planar section in the 
plane holding the two poles and the point p,  one reads off from elementary geometry 
that I w l  = l / I z l , and consequently 

1 
w = ivu (z) = -z 

( 1 .5) 
gives the relation between the two sets of coordinates. S ince this i s  complex analytic 
in the overlap U n V, we may consider S2 as a I -dimensional complex manifold, the 
Riemann sphere. The point w = 0 (the south pole) represents the point z = 00 that 
was missing from the original complex plane C. 

Note that the two sets of real coordinates (x , y) and (u , v) make S2 into a real analytic 
manifold. 

Problems 
1 .2(1 ) Show that IR p2 is a d ifferentiable 2-manifold by looking at the transition func

tions. 

1 .2(2) Give a coordinate cover ing for IR p3 , pick a pair of patches, and show that the 
overlap map is d i fferentiable. 

1 .2(3) Complex projective n-space C pn is defined to be the space of complex l i nes 
through the orig in  of Cn+

1
. To a point (zo ,  Z1 , . ' "  zn) i n  (Cn+

1 
- 0) we associate 

the l ine consist ing of al l  complex mult iples A (Zo ,  Z1 , . . .  , zn) of this point, A E Co 
We cal l [zo ,  z1 , . . .  , znl the homogeneous coordinates of th is l ine ,  that is, of  th is 
point in  c pn ;  thus [zo , Z1 , . . .  , znl = [j.lZO , j.lZ1 , . . .  , j.lznl for al l  j.l E (C - 0) . If 
zp # 0 on this l ine, we may associate to this point [zo , Z1 , . . .  , znl i ts n complex 
Up coordinates zo/zp, Z1 /Zp, . . .  , zn/zp, with zp/zp omitted . 

Show that C p2 is a complex manifold of complex d imension 2 .  
Note that C p1 has complex dimension 1 ,  that is ,  real d imension 2 .  For Z1  # 0 

the U1 coord inate of the point [zo , z1 1 is Z = zo/ Z1 , whereas if Zo # 0 the Uo 
coord inate is w = Z1 / Zo . These two patches cover C p1 

and in the i ntersection 
of these two patches we have w = 1 /  z.  Thus C p1 

is nothing other than the 
Riemann sphere! 

1 .3. Tangent Vectors and Mappings 

What do we mean by a "critical point" of a map F : Mn ---+ Vr ? 

We are all acquainted with vectors in ]RN . A tangent vector to a submanifold Mn of ]RN , 
at a given point p E Mn , is simply the usual velocity vector i to some parameterized 
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curve x = x (t) of IT{ N that lies on Mn . On the other hand, a manifold Mil ,  as defined in 
the previous section, is a rather abstract object that need not be given as a subset of IT{N . 
For example, the projective plane IT{ p 2  was defined to be the space of l ines through the 
origin of IT{3 , that is ,  a point in IT{ p 2  is an entire line in IT{3 ; if IT{ p 2  were a submanifold 
of IT{3 we would associate a point of IT{3 to each point of IT{ p 2 .  We will be forced to 
define what we mean by a tangent vector to an abstract manifold. This definition will 
coincide with the previous notion in  the case that Mn i s  a submanifold of IT{N . The fact 
that we understand tangent vectors to submanifolds is a powerful psychological tool, 
for it can be shown (though it is not elementary) that every manifold can be realized 
as a submanifold of some IT{N . In fact, Hassler Whitney, one of the most important 
contributors to manifold theory in the twentieth century, has shown that every Mil can 
be realized as a submanifold of IT{2n .  Thus although we cannot "embed" IT{ p 2  in IT{3 

(recall that we had a difficulty with sewing in 1 .2b, Example (vii) ) ,  it can be embedded 
in IT{4 . It is surprising, however, that for many purposes it is of little help to use the fact 
that Mn can be embedded in IT{N, and we shall try to give definitions that are "intrinsic," 
that is, independent of the use of an embedding. Nevertheless, we shall not hesitate to 
use an embedding for purposes of visualization, and in fact most of our examples will 
be concerned with submanifolds rather than manifolds. 

A good reference for manifolds is [G, Pl . The reader should be aware, however, that 
these authors deal only with manifolds that are given as subsets of some euclidean space. 

1 .3a. Tangent or "Contravariant" Vectors 

We motivate the definition of vector as follows. Let P = pet )  be a curve lying on 
the manifold Mn ; thus P is a map of some interval on IT{ into Mn . In a coordinate 
system (U, xu ) about the point Po = p (0) the curve will be described by n functions 
x� = x� (t ) ,  which will be assumed differentiable. The "velocity vector" p (O) was 
classically described by the n-tuple of real numbers dx� /dt ]o ,  . . . , dx� /dt ]o .  If Po 
also lies in the coordinate patch ( V, xv ) ,  then this same velocity vector is described 
by another n-tuple dxUdt ]o ,  . . .  , dx� /dt ]o ,  related to the first set by the chain rule 
applied to the overlap functions ( 1 .3) ,  Xv = xv (xu ) ,  

dx� ] _ t ( ax� ) (Po) (dxt ) 
dt 0 - j = l  axt dt 0 

This suggests the following. 

Definition: A tangent vector, or contravariant vector, or simply a vector at 
Po E M" , call it X, assigns to each coordinate patch (U ,  x)  holding Po , an n -tuple 
of real numbers 

(X�) = (X� , . . .  , X� ) 
such that if Po E U n V,  then 

i '" [ ax� ] j X v = � -j (Po) Xu j axu 
0 ·6) 
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I f  we  let Xu = (X� , . . .  , X� ) T  be  the column of  vector "components" o f  X, we 
can write this as a matrix equation 

Xv = cvu Xu ( 1 .7) 

where the transition function Cvu is the n x n Jacobian matrix evaluated at the 
point in question. 

The term contravariant is traditional and is used throughout physics, and we shall use it 
even though it conflicts with the modern mathematical terminology of "categories and 
functors ." 

1 .3b. Vectors as Differential Operators 

In euclidean space an important role is played by the notion of differentiating a function 
f with respect to a vector at the point p 

( 1 .8 )  

and if (x ) i s  any cartesian coordinate system we have 

Dv (f) = L [::j ] (p) vj 
j 

This is the motivation for a similar operation on functions on any manifold M . A real
valued function f defined on M" near p can be described in a local coordinate system 
x in the form f = f (x ) ,  . . . , xn ) . (Recall, from Section 1 .2c, that we are really dealing 
with the function f 0 ¢u ) where ¢u is  a coordinate map.)  If X i s  a vector at p we define 
the derivative of f with respect to the vector X by 

( 1 .9) 

This  seems to depend on the coordinates used, although it should be apparent from 
( 1 .8)  that this is not the case in ffi.n . We must show that ( 1 .9) defines an operation that i s  
independent of  the local coordinates used. Let (U ,  xu ) and ( V, xv )  be two coordinate 
systems. From the chain rule we see 

v '" ( af ) j '" ( af ) '" ( ax? )  i Dx (f) = � -j X v = � -j � -i Xu j oxv j oxv i oxu 
'" ( Of ) i u 

= � -i Xu = Dx (f) 
i oXu 

This illustrates a basic point. Whenever we define something by use of local coordi
nates, ifwe wish the definition to have intrinsic significance we must check that it has 
the same meaning in all coordinate systems. 
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Note then that there is a 1 : 1 correspondence between tangent vectors X to Mil at 
p and first-order differential operators (on differentiable functions defined near p) that 
take the special form 

XI' = L Xj� ] 
j 

ax} I' 
0 . 1 0) 

in a local coordinate system (x) .  From now on, we shall make no distinction between a 
vector and its associated differential operator. Each one of the n operators a / ax i then 
defines a vector, written 8/ 8Xi , at each p in the coordinate patch. 

The i th component of 8/ 8x'" is ,  from 0 .9) ,  given by 8� (where the Kronecker 8� is 1 
if i = a and 0 if i =j:. a) . On the other hand, consider the £1th coordinate curve through a 
point, the curve being parameterized by x"' . This curve is described by Xi (t )  = constant 
for i =j:. a and x'" (t )  = t .  The velocity vector for this curve at parameter value t has 
components dxi /dt = 8� . The ph coordinate vector 8/8xj is the velocity vector to 
the ph coordinate curve parameterized by xj ! If Mil c �N , and if r = (y l , . . .  , yN) T is the usual position vector from the origin, then 8/ 8xj would be written classically 
as ar/ax j ,  

8�j 
= ::j = ( ��� , . . . , �:: ) T ( 1 . 1 1 )  

A familiar example will be given i n  the next section. 

1.3c. The Tangent Space to Mn at a Point 

It is evident from ( 1 .6) that the sum of two vectors at a point, defined in terms of their 
n -tuples, is again a vector at that point, and that the product of a vector by a scalar, that 
is, a real number, is again a vector. 

Definition: The tangent space to Mil at the point p E Mil , written M� , is the 
real vector space consisting of all tangent vectors to Mil at p. If (x) is a coordinate 
system holding p ,  then the n vectors 

8
8

1 ] , • . . , �] x I' 8x" I' 

form a basis of this n-dimensional vector space (as is evident from ( 1 . 1 0)) and 
this basis is called a coordinate basis or coordinate frame. 

If Mil is a submanifold of�N, then M; is the usual n-dimensional affine subspace of 
]RN that is "tangent " to Mil at p, and this is the picture to keep in mind. 

A vector field on an open set U will be the differentiable assignment of a vector X 
to each point of U ;  in terms of local coordinates 

L · 
8 X = X} (x)-. 

. 8x} } 
where the components X j are differentiable functions of (x) .  In particular, each 8/ 8xj 
is a vector field in the coordinate patch. 
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Example: 

tangent space to 52 at p = 5J 

Figure 1 . 1 7  

We have drawn the unit 2-sphere M2 = S2 i n  lR.3 with the usual spherical coordinates () 

and ¢ (e is colatitude and -¢ is longitude). The equations defining S2 are x = sin e cos ¢,  
y = sin e sin ¢, and z = cos e .  The coordinate vector 818e = B riBe is  the velocity 
vector to a line of longitude, that is, keep <J> constant and parameterize the meridian by 
"time" t = () . 818¢ has a similar description. Note that these two vectors at p do not 
live in S2 , but rather in the linear space S� attached to S2 at p. Vectors at q =1= p live 
in a different vector space S� . 

Warning: Because S2 is a submanifold of lR.3 and because lR.3 carries a familiar 
metric, it makes sense to talk about the length of tangent vectors to this particular S2 ; 
for example, we would say that I I 818e I I  = I and I I 8/ 8<J> I I  = s in e.  However, the 
definition of a manifold given in 1 .2c does not require that Mn be given as some specific 
subset of some �N ; we do not have the notion of length of a tangent vector to a general 
manifold. For example, the configuration space of a thermodynamical system might 
have coordinates given by pressure p, volume v , and temperature T, and the notions 
of the lengths of 818 p, and so on, seem to have no physical significance. If we wish 
to talk about the "length" of a vector on a manifold we shall be forced to introduce an 
additional structure on the manifold in question. The most common structure so used 
is called a Riemannian structure, or metric, which will be introduced in Chapter 2. See 
Problem 1 .3 ( 1 )  at this time. 

1.3d. Mappings and Submanifolds of Manifolds 

Let F : Mil -+ vr be a map from one manifold to another. In tenns of local coordinates 
x near p E Mn and y near F (p) on vr F is described by r functions of n variables 
y" = F" (X I , . . .  , xn ) ,  which can be abbreviated to y = F (x)  or y = y (x) . If, as we 
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shall assume, the functions Fa are differentiable functions of the x 's, we say that F i s  
differentiable. As usual, such functions are, in particular, continuous.  

When n = r ,  we say that F is a diffeomorphism provided F is 1 : 1 ,  onto, and if, in 
addition, F- I is also differentiable. Thus such an F i s  a differentiable homeomorphism 
(see 1 .2a) with a differentiable inverse. (If F- I does exist and the Jacobian determinant 
does not vanish, a (y I , . . . ,y" ) I a (x I , . . . , x" )  =I- 0, then the inverse function theorem 
of advanced calculus (see 1 .3e) would assure us that the inverse is differentiable. )  

The map F : ffi. -+ ffi. given by y = x3 is a differentiable homeomorphism, but it is 
not a diffeomorphism since the inverse x = y l /3 is not differentiable at x = O. 

We have already discussed submanifolds of ffi." but now we shall need to discuss 
submanifolds of a manifold. A good example is the equator S l of S2 . 

Definition: Wr C Mil is an (embedded) submanifold of the manifold Mil 
provided W is locally described as the common locus 

F I (X l 
• . . • , x" ) = O • . . .  , Fn-r (x ' , . . . •  xll )  = 0 

of (n - r)  differentiable functions that are independent in  the sense that the 
Jacobian matrix [a Fa laxi] has rank (n - r) at each point of the locus. 

The implicit function theorem assures us that wr can be locally described (after perhaps 
permuting some of the x coordinates ) as a locus 

r+ 1 fr+ l ( I r ) 11 fn ( I r ) X = X ,  . . . X , . . .  , X  = X ,  . . .  , X  

It is not difficult to see from this (as we saw in the case S2 C ffi.3 ) that every embedded 
submanifold of Mil is itself a manifold !  

Later on we shall have occasion to discuss submanifolds that are not "embedded," 
but for the present we shall assume "embedded" without explicit mention. 

Definition: The differential F* of the map F : Mil -+ vr has the same meaning 
as in the case ffi." -+ ffi.r discussed in 1 . 1  b. F* : M; -+ V;(p) i s  the l inear 
transformation defined as follows.  For X E M; , let p = pet ) be a curve on M 
with p (O) = p and with velocity vector p (O) = X. Then F*X is the velocity vector 
dldt {F (p (t» } r=O of the image curve at F(p) on V. This vector is independent 
of the curve p = p et )  chosen (as long as p (o) = X) . The matrix of this  linear 
transformation, in terms of the bases 8/8x at p and 8/8y at F(p) ,  is the Jacobian 
matrix 

The main theorem on submanifolds is exactly as in euclidean space (Section l . l c) .  

Theorem (1 .12) :  Let F : Mil -+ Vr and suppose thatfor some q E Vr the locus 
F- I (q ) C Mil is not empty. Suppose further that F* is onto, that is, F* is of rank 
r, at each point of F- I (q ) .  Then F- I (q ) is an (n-r)-dimensional submanifold 
of Mil .  
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Example: Consider a 2-dimensional torus T2 (the surface o f  a doughnut), embedded 
in 1R3 . 

F.(v) 

x 

z 

6 

5 
4 . . . . . . . . . . . .  . 

3 . . . . . . .  - _ . .  . 

2 . . . . . . . . . . . .  . 
\-------

-F 
O r------<� a 

Figure 1 . 1 8  

T] = the tangent 
space to T at d. This 
is 2-dimensional 
affine subspace of ]R3 

We have drawn it smooth with a flat top (which is supposed to join smoothly with 
the rest of the torus) .  Define a differentiable map (function) F : T2 ---+ 1R by F (p) = z, 
the height of the point p E T2 above the z plane (1R is being identified with the z axis) .  
Consider a point d E T and a tangent vector V to T at d.  Let p = pet )  be a curve on T 
such that p (O) = d and p(O) = v. The image curve in 1R is described in the coordinate 
z for 1R by z (t ) = z(p (t ) ) ,  and it is clear from the geometry of T2 C 1R3 that z (O) i s  
simply the z component of the spatial vector v. In other words F* (v) is the projection 
of v onto the z axis . Note then that F* will be onto at each point p E T2 for which the 
tangent plane T2 (p) is not horizontal , that is , at all points of T2 except a E F- ' (O) , 
b E  F- 1 (2) , c E F- 1 (4) , and the entire flat top F- 1 (6) .  

From the main theorem, we  may conclude that F- 1 (z) is  a I -dimensional subman
ifold of the torus for 0 :::: z :::: 6 except for z = 0,  2 ,  4, and 6, and this is indeed 
"verified" in our picture . (We have drawn the inverse images of z = 0, I ,  . . .  , 6 . )  
Notice that F- 1 (2) , which looks like a figure 8 ,  is  not a submanifold ; a neighborhood 
of the point b on F- 1 (2) is topological ly a cross + and thus no neighborhood of b is 
topologically an open interval on R 

Definition: If F : Mil ---+ V" is a differentiable map between manifolds, we say 
that 

(i) x E M is a regular point if F* maps M; onto V;(x) ; otherwise we say that 
x is a critical point. 

(ii) y E vr is a regular value provided either F- ' (y) is  empty, or F- ' (y) 
consists entirely of regular points . Otherwise y is a critical value. 

Our main theorem on submanifolds can then be stated as follows .  
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Theorem (1 .13) :  ffy E Vr is a regular value, then F- I ( y )  either is empty or  is 
a submanifold of Mn of dimension (n - r) .  

29 

Of course, if x is a critical point then F(x) is a critical value. In our toroidal example, 
Figure 1 . 1 8 , all values of z other than 0, 2, 4, and 6 are regular. The critical points on T2 
consist of a, b ,  c ,  and the entire flat top of T2 . These latter critical points thus fill up a 
positive area (in the sense of elementary calculus) on T2 . Note however, that the image 
of this 2-dimensional set of critical points consists of the single critical value z = 6 . 
The following theorem assures us that the critical values of a map form a "small" subset 
of vr ; the critical values cannot fill up any open set in vr and they will have "measure" 
o. We will not be precise in defining "almost all" ; roughly speaking we mean, in some 
sense, "with probability I ." 

Sard's Theorem (1.14): If F : Mn -7 Vr is sufficiently differentiable, then 
almost all values of F are regular values, and thus for almost all points y E Vr, 
F- I (y) either is empty or is a submanifold of Mil of dimension (n - r) .  

By sufficiently differentiable, we mean the following. If  n ::: r ,  we demand that F be 
of differentiability class C I , whereas if n - r = k > 0, we demand that F be of class 
CHI . The proof of Sard's  theorem is delicate, especially if n > r; see, for example, 
[A , M, R] .  

1 .3e. Change of  Coordinates 

The inverse function theorem is perhaps the most important theoretical result in all of 
differential calculus. 

The Inverse Function Theorem (1.15): If F : Mn -7 V" is a differentiable 
map between manifolds of the same dimension, and if at Xo E M the differential 
F* is an isomorphism, that is, it is 1 : I and onto, then F is a local diffeomorphism 
near Xo. 

This means that there is a neighborhood U of x such that F(U)  is open in V and 
F : U -7 F(U)  is  a diffeomorphism. This theorem is a powerful tool for introducing 
new coordinates in a neighborhood of a point, for it has the following consequence. 

Corollary ( 1.16): Let x I, . . . , xn be local coordinates in a neighborhood U of 
the point p E Mil. Let y I , . . .  , yn be any differentiable functions of the x 's ( thus 
yielding a map:U -7 lRn) such that 

a (i , . . .  , yn) 
I n (p) =1= 0 

a (x , . . .  , x ) 

Then the y 's form a coordinate system in some (perhaps smaller) neighborhood 
of p· 



30 M A N I F O L D S  A N D  V E C T O R  F I E L D S  

For example, when we  put x = r cos e ,  y = r sin e ,  we  have a (x ,  y ) la (r, e )  = r ,  and 
so a (r, e ) la (x ,  y) = l l r .  This shows that polar coordinates are good coordinates in a 
neighborhood of any point of the plane other than the origin. 

It is  important to realize that this theorem is only local. Consider the map F : ]R2 -+ 
]R2 given by u = eX cos y ,  v = eX sin y . This is of course the complex analytic map 
w = eZ • The real Jacobian CJ (u ,  v )la (x ,  y) never vanishes (this is  reflected in the 
complex Jacobian d w I dz = eZ never vanishing) . Thus F is locally I : 1 .  It is not 
globally so since ez+2rrni = eZ for all integers n. u ,  v form a coordinate system not in 
the whole plane but rather in any strip a :::: y < a + 2n . 

The inverse function theorem and the implicit function theorem are essentially equiv
alent, the proof of one following rather easily from that of the other. The proofs are 
fairly delicate ; see for example, [A , M,  R ] .  

Problems 
1 .3(1 ) What would be wrong in  defin ing I I  X I I  i n  an Mn by 

II X 1 1 2= L(X6)2 ? 
j 

1 .3(2) Lay a 2-d imensional torus flat on a table (the x y plane) rather than standing as 
i n  Figure 1 . 1 8 . By inspection ,  what are the critical points of the map f2 ---+ ]R2 
projecting r2 i nto the xy plane? 

1 .3(3) Let Mn be a subman ifold of ]R N that does not pass th rough the orig in .  Look at 
the critical points of the function f :  M ---+ ]R that assigns to each point of M the 
square of its d istance from the orig i n .  Show, using local coordinates u1 , . . .  , un , 
that a point is a critical point for this distance function iff the position vector to 
this point is normal to the submanifold .  

1 .4. Vector Fields and Flows 

Can one solve dxi I dt = aj laxi to find the curves of steepest ascent? 

1 .4a. Vector Fields and Flows on ]Rn 
A vector field on ]Rn assigns in a differentiable manner a vector v p to each p in ]Rn . In 
terms of cartesian coordinates x I , . . . , xn 

L · 
a 

v = v] (x ) -. 
. ax] ] 

where the components vi are differentiable functions. Classically this would be written 
simply in terms of the cartesian components v = (v I (x ) ,  . . .  , vn (x) )  T . 

Given a "stationary" (i .e . , time-independent) flow of water in ]R3 , we can construct 
the I -parameter family of maps 
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where ¢t takes the molecule located at p when t = 0 to the position of the same 
molecule t seconds later. S ince the flow is time-independent 

¢, (¢t (p» = ¢s+t (p) = ¢t (¢s (p) )  

and ( 1 . 1 7) 
¢-t (¢t (p» = P , i .e . ,  ¢-t = ¢t- 1 

We say that this defines a I -parameter group of maps .  Furthermore, if each ¢t is 
differentiable, then so is each ¢t- 1 , and so each ¢t is a diffeomorphism. We shall call 
such a family simply a flow. Associated with any such flow is a time-independent 
velocity field 

vI' 
:= d¢t (P) ] 

dt t=O 
In terms of coordinates we have 

which will usually be written 

vi (p) = dXi (¢t (P) ) ] 
dt t=O 

. dxi 
v1 (x) = dt 

Thought of as a differential operator on functions f 
_ ""' i of _ ""' dxi af v,, (f) - � v (p) -a j - � -d -a i . x . t x 1 ) 

= :t f (¢t (p»l=o 
is the derivative of f along the "streamline" through p.  

We thus have the almost trivial observation that to each flow {¢t } we can associate the 
velocity vector field. The converse result, perhaps the most important theorem relating 
calculus to science, states, roughly speaking, that to each vector field v in ]R" one may 
associate a flow {¢t } having v as its velocity field, and that ¢t (p) can be found by 
solving the system of ordinary differential equations 

with initial conditions 

dxi 
_ i I " - - v (x (t ) ,  . . .  , x  (t» dt 

x (O) = p 

( 1 . 1 8) 

Thus one finds the integral curves of the preceding system, and ¢t (p) says, "Move 
along the integral curve through p (the 'orbit' of p) for time t ." We shall now give 
a precise statement of this "fundamental theorem" on the existence of solutions of 
ordinary differential equations. For details one can consult [A, M, R; chap. 4] , where 
this result is proved in the context of Banach spaces rather than ]R" . I recommend highly 
chapters 4 and 5 of Arnold's book [A2] . 
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The Fundamental Theorem o n  Vector Fields i n  �" (1.19): Let v be  a Ck vec
tor field, k 2: I (each component vj (x) is of differentiability class Ck) on an open 
subset U of�fl . This can be written v : U -+ �" since v associates to each x E U 
a point v ex ) E �n. Thenfor each p E U there is a curve y mapping an interval 
(-b ,  b) of the real line into U 

such that 
y :  ( -b , b) -+ U 

dy (t) = v (y (t » and y eO) = p dt 
for all t E (-b, b) . (This says that y is an integral curve ofv starting at p.) Any 
two such curves are equal on the intersection of their t -domains ( "uniqueness "). 
Moreover, there is a neighborhood Up of p, a real number E > 0, and a Ck map 

<f> : Up x ( -E ,  E )  -+ �n 

such that the curve t E (-E ,  E ) f-+ ¢t (q ) := <f> (q ,  t )  satisfies the differential 
equation 

a 
a t  ¢t (q ) = V(¢t (q» 

for all t E (-E,  E )  and q E Up. Moreover, ift, s ,  and t + s are all in ( -E , E ) , then 
¢t 0 ¢s = ¢t+s = ¢s 0 ¢t 

for all q E Up, and thus {¢t } defines a local J - parameter "group " of diffeomor
ph isms, or localflow. 

The term local refers to the fact that ¢, is defined only on a subset Up c U e  �n . The 
word "group" has been put in quotes because this  family of maps does not form a group 
in the usual sense. In general (see Problem 1 .4 ( 1 » , the maps ¢t are only defined for 
small t ,  - E < t < E ;  that is ,  the integral curve through a point q need only exist for 
a small time. Thus, for example, if E = I ,  then although ¢ 1 /2 (q) exists neither ¢l (q ) 
nor ¢1 /2 0 ¢ 1 /2 need exist; the point is that ¢1 /2 (q) need not be in the set Up on which 
¢1 /2 is defined. 

Example: �fl = �, the real line, and v ex)  = xd/dx . Thus v has a single component x 
at the point with coordinate x .  Let U = R To find ¢t we simply solve the differential 
equation 

dx - = X dt with initial condition x (O) = p 

to get x (t )  = et p, that is ,  ¢t (p) = et p. In this example the map ¢t is clearly defined on 
all of M I = ]R and for all time t .  It can be shown that this is true for any linear vector 
field 

defined on all of ]R" . 
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Note that if we solved the differential equation dx / dt = 1 on the real line with the 
origin deleted, that is, on the manifold M I = lR - 0, then the solution curve starting at 
x = - 1 at t = 0 would exist for all times less than 1 second, but <PI would not exist; 
the solution simply runs "off" the manifold because of the missing point. One might 
think that if we avoid dealing with pathologies such as digging out a point from lR I , 
then our solutions would exist for all time, but as you shall verify in Problem 1 .4( 1 )  
this i s  not the case. The growth of the vector field can cause a solution curve to "leave" 
lR I in a finite amount of time. 

We have required that the vector field v be differentiable. Uniqueness can be lost if the 
field v is only continuous. For example, again on the real line, consider the differential 
equation dx/dt = 3x2/3 . The usual solutions are of the form x (t )  = (t - C) 3 , but there 
is also the "singular" solution x (t )  = 0 identically. This is a reflection of the fact that 
X2/3 is not differentiable when x = O. 

l .4b. Vector Fields on Manifolds 

If X is a Ck vector field on an open subset W of a manifold Mn then we can again 
recover a I -parameter local group <PI of diffeomorphisms for the following reasons. If 
W is contained in a single coordinate patch (U, xu ) we can proceed just as in the case 
lRn earlier since we can use the local coordinates xu . Suppose that W is not contained 
in a single patch. Let P E W  be in a coordinate overlap, P E u n  V .  In V we can solve 
the differential equations 

as before. In V we solve the equations 

dx� j I n -- = Xv (xv , . . .  , xv ) dt 
Because of the transformation rule ( 1 .6) , the right-hand side of this last equation is 
I:k[Clx� /axt ]Xt ;  the left-hand side is, by the chain rule, I:dax� /axt ]dxt /dt . Thus, 
because a/the trans/annatian rule/or a contravariant vector, the two differential equa
tions say exactly the same thing. Using uniqueness, we may then patch together the U 
and the V solutions to give a local solution in W. 

Warning: Let / : Mn --+ lR be  a differentiable function on  Mn . In elementary 
mathematics it is often said that the n-tuple 

[ a/ a/ ] T 
ax l ' • • •  

, axn 
form the components of a vector field "grad /." However, if we look at the transfor
mation properties in V n V ,  by the chain rule 
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and this is not the rule for a contravariant vector. One sees then that a proposed differ
ential equation for "steepest ascent," dx / dt = "grad f," that is , 

af dxi af 
in U and v 

axi dt axi u v 
in V 

would not say the same thing in two overlapping patches, and consequently would not 
yield afiow ¢t ! In the next chapter we shall see how to deal with n-tuples that transform 
as "grad f." 

l .4c. Straightening Flows 

Our version of the fundamental theorem on the existence of solutions of differential 
equations, as given in the previous section, is not the complete story ; see [A , M, R , 
theorem 4. 1 . 1 4] or [A2, chap.  4] for details of the following. The map (p ,  t) -+ ¢t (p) 
depends smoothly on the initial condition p and on the time of flow t .  This has the 
following consequence. (Since our result will be local, it is no loss of generality to 
replace Mil by JR." . )  Suppose that the vector field v does not vanish at the point p .  
Then of  course it doesn ' t  vanish in some neighborhood of  p in Mil . Let Wn- I be  a 
hypersurface, that is ,  a submanifold of codimension 1 ,  that passes through p .  Assume 
that W is transversal to v, that is, the vector field v is not tangent to W .  

v 

Figure 1 . 1 9  

Let u l ,  . . .  , U " - 1 be local coordinates for W ,  and let p" be the point on W with 
local coordinates u. Then ¢t (p,J is the point t seconds along the orbit of v through 
Pll ' This point can be described by the n -tuple (u , t ) .  The fundamental theorem states 
that if W is sufficiently small and if t is also sufficiently small ,  then (u , t) can be 
used as (curvilinear) coordinates for some n-dimensional neighborhood of p in Mil . 
To see this we shall apply the inverse function theorem. We thus consider the map 
L : wn- 1 X (-E ,  E )  -+ Mil given by L (u ,  t )  = ¢r (p,J . We compute the differential 
of this map at the origin u = 0 of the coordinates on W"- 1 • Then by the geometric 
meaning of L* , and since ¢o (p) = P 

a 
L 
(�) = � [-+' ( 0 0) ]  = 

ap(lI ,o . . . .  , O) I * 
a 1 • '1'0 U , , . . . , 0 

au 1 u au au lI =O 

Likewise L* (a/aui ) = a/au i ,  for i = 1 ,  . . .  , n - 1 .  Finally 
a 

L* (v) = - ¢t (Po) = v 
a t 

Thus L* is the identi ty linear transformation , and by Corollary ( 1 . 1 6) we may use 
u 1 , . • •  , U " - 1 , t as local coordinates for Mil near po . 
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It is then clear that in these new local coordinates near p ,  the flow defined by the 
vector field v is simply <Ps : (u ,  t )  -+ (u , s + t ) and the vector field v in terms of a/au ' , 
. . . , a / aulZ - ' , a/at, is simply v = a/at . We have "straightened out" the flow ! 

Figure 1 .20 

This says that near a nonsingular point of v, that is, a point where v =I- 0, coordinates 
u ' ,  . . .  , un can be introduced such that the original system of differential equations 
dx ' /dt = v ' (x ) , . . . , dXIZ /dt = vn (x ) becomes 

du ' dun- '  
- = 0 , . . . , -- = 0 , dt dt 

dun 
- = 1 dt ( 1 .20) 

Thus all flows near a nonsingular point are qualitatively the same ! In a sense this 
result is of theoretical interest only, for in order to introduce the new coordinates u 
one must solve the original system of differential equations. The theoretical interest 
is, however, considerable .  For example, u ' 

= c" . . . , ulZ- ' = cn-" are (n - 1 )  "first 
integrals," that is, constants of the motion, for the system ( 1 .20). We conclude that 
near any nonsingular point of any system there are (n - 1) first integrals, u ' (x) = 

c ' , . . . , un- ' (x ) = Cn- ,  (but of course, we might have to solve the original system to 
write down explicitly the functions uj in terms of the x 's) .  

P roblems 
1 .4(1 ) Consider the quadratic vector f ie ld problem on R v(x) = x2 d/dx . You must 

solve the d ifferential equation 

dx dt = x2 and x(O) = p 

Consider, as in the statement of the fundamental theorem,  the case when Up is 
the set 1 /2 < x < 3/2 . F ind the largest E so that <1> : Up x (-E,  E )  ---+ IR is defined; 
that is , f ind the largest t for which the integral curve rPt (q) wi l l  be defined for a l l  
1 /2 < q < 3/2. 

1 .4(2) I n  the complex plane we can consider the differential equations dz/dt = 1 ,  where 
t is rea l .  The i ntegral cu rves are of cou rse l i nes paral lel to the real axis .This 
can also be considered a differential equation on the z patch of the Riemann 
sphere of Section 1 .2d. Extend this d ifferential equation to the enti re sphere by 
writi ng out the equ ivalent equation in the w patch . Write out the general solution 
w = w(t) i n  the neighborhood of w = 0 , and d raw in  particu lar the solutions 
start ing at i ,  ± 1 ,  and -i. 





C H A P T E R  2 

Tensors and Exterior Forms 

IN Section l .4b we considered the n -tuple of partial derivatives of a single function 
a F  jaxj and we noticed that this n -tuple does not transform in the same way as the n
tuple of components of a vector. These components a F j axj transform as a new type of 
"vector." In this chapter we shall talk of the general notion of "tensor" that will include 
both notions of vector and a whole class of objects characterized by a transformation 
law generalizing 1 .6 .  We shall ,  however, strive to define these objects and operations 
on them "intrinsically," that is, in a basis-free fashion. We shall also be very careful in 
our use of sub- and superscripts when we express components in terms of bases ; the 
notation is designed to help us recognize intrinsic quantities when they are presented 
in component form and to help prevent usfrom making blatant errors. 

2.1 .  Covectors and Riemannian Metrics 

How do we find the curves of steepest ascent? 

2.1a. Linear Functionals and the Dual Space 

Let E be a real vector space. Although for some purposes E may be infinite-dimensional, 
we are mainly concerned with the finite-dimensional case. Although �n , as the space 
of real n-tuples (x I , . . .  , x n ) ,  comes equipped with a distinguished basis ( 1 , 0 , 0, . . .  , 

0) T , . . . , the general n-dimensional vector space E has no basis prescribed. 
Choose a basis e l , . . .  , eli for the n -dimensional space E. Then a vector v E E  has 

a unique expansion 

v = L e j vj = L vj e j 
j 

where the n real numbers vj are the components of v with respect to the given basis .  For 
algebraic purposes, we prefer the first presentation, where we have put the "scalars" 
vj to the right of the basis elements. We do this for several reasons, but mainly so 
that we can use matrix notation, as we shall see in the next paragraph. When dealing 

37 
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with calculus, however, this notation is awkward. For example, i n  lRn (thought of  a s  a 
manifold), we can write the standard basis at the origin as ej = aJaxj (as in Section 
1 .3c) ;  then our favored presentation would say v = Lj aJaxj vj , making it appear, 
incorrectly, that we are differentiating the components vj . We shall employ the bold a to 
remind us that we are not differentiating the components in this expression . Sometimes 
we will simply use the traditional Lj vjej '  

We shall use the matrices 

The first is a symbolic row matrix since each entry is a vector rather than a scalar. 
Note that in the matrix v we are preserving the traditional notation of representing 
the components of a vector by a column matrix.  We can then write our preferred 
representation as a matrix product 

v = e v (2. 1 ) 

where v is a 1 x I matrix.  As usual, we see that the n-dimensional vector space E,  with a 
choice of basis, is isomorphic to lRn under the correspondence v -+ ( v i ,  . . .  , Vn ) E lRn , 
but that this isomorphism is "unnatural," that is ,  dependent on the choice of basis .  

Definition: A (real) linear functional a on E is a real-valued linear function a, 
that is ,  a linear transformation a : E -+ lR from E to the I -dimensional vector 
space R Thus 

a (av + bw) = aa (v) + ba (w) 

for real numbers a, b, and vectors v, w. 

By induction, we have, for any basis e 

a (:2::ej vj ) = L a (ej ) vj (2.2) 

This is simply of the form L aj vj (where a j := a (ej » ,  and this is a linear function of 
the components of v. Clearly if {ad are any real numbers, then v f--+ L a  j vj defines a 
linear functional on all of E .  Thus, after one has picked a basis, the most general linear 
functional on the finite-dimensional vector space E is of the form 

(2.3) 

Warning: A linear functional a on E is  not itself a member of E; that is ,  a i s  not 
to be thought of as a vector in E. This is especial ly obvious in infinite-dimensional 
cases. For example, let E be the vector space of all continuous real-valued functions 
f : lR -+ lR of a real variable t . The Dirac functional 00 is the l inear functional on E 
defined by 

OO C!) = f(O) 
You should convince yourself that E is a vector space and that 00 is a l inear functional 
on E .  No one would confuse 00 , the Dirac 0 "function, " with a continuous function, 
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that is, with an element of E. In fact 80 is not a function on � at all .  Where, then, do the 
linear functionals live? 

Definition: The collection of all l inear functionals a on a vector space E form a 
new vector space E* ,  the dual space to E,  under the operations 

(a + {J) (v) : = a (v) + {J (v) , a, {J E E* , V E E 

(ca) (v) : =  ca (v) , c E � 

We shall see in a moment that if E is n-dimensional , then so i s  E* .  
I f  e "  . . .  , en i s  a basis of  E ,  we define the dual basis a '  , . . .  , an of  E* by  first 

putting 

and then "extending a by linearity," that is ,  

ai (L ej vj) = L ai (ej ) vj = L 8i j Vj = Vi 
) } } 

Thus ai is the linear functional that reads off the i th component (with respect to the 
basis e) of each vector v. 

Let us verify that the a 's do form a basis .  To show l inear independence, assume that a 
linear combination L. aja j is the 0 functional . Then 0 = L.j ajaj (ek ) = L.j aj 8j k = 
ak shows that all the coefficients ak vanish, as desired. To show that the a 's span E* ,  
we note that if a E E* then 

a (v) = a ( L ej vj ) = L a(ej ) vj 

= L a(ej )aj (v) = ( L a(ej )aj ) (v) 
Thus the two linear functionals a and L. a ( e j )aj must be the same ! 

a = L a(ej )aj 
j 

This very important equation shows that the a 's do form a basis of E* .  

(2 .4) 

In (2.3) we introduced the n-tuple aj = a (ej ) for each a E E* .  From (2.4) we see 
a = L. a p j • a j defines the ph component of a .  

If w e  introduce the matrices 

then we can write 

a = (a I , . . .  , a" ) T and a = (a i ,  . . . , an ) 

a = L aja j 
= aa 

j 
Note that the components of a linear functional are written as a row matrix a .  

(2.5) 
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I f  fJ = (fJi R ) is a matrix of  l inear functionals and i f  f = (fRs ) is  a matrix of  vectors , 
then by fJf = fJ (f) we shall mean the matrix of scalars 

fJ (f) is := 2:: fJi R (fR , ) 
R 

Note then that ae  is the identity 11 x 11 matrix, and then equation (2.3) says 

a (v) = (aa ) (ev) = a (ae) v = a v  

2.th. The Differential of a Function 

Definition: The dual space M�* to the tangent space M� at the point p of a 
manifold is called the cotangent space. 

Recall from ( 1 . 1 0) that on a manifold M" , a vector v at p is a differential operator 
on functions defined near p .  

Definition: Let f : M" -+ JR.. The differential of  f at p,  written df, i s  the 
linear functional df : M� -+ lR defined by 

df (v) = vp (f ) (2.6) 

Note that we have defined df independent of any basis. In local coordinates, ej 
aJaxj ] p  defines a basis for M� and (2:: . a ) 2:: . af df vi -. = vi (p) - (p) 

ax i ax i 
is clearly a l inear function of the components of v .  In particular, we may consider the 
differential of a coordinate function, say Xi 

and 

dx' -- = - = 8 ' . . ( a ) axi . 
axi axj i 

. ( � . a ) � . .  ( a ) . dx' 7 Vi 
axj = 7 vidx ' 

axj = Vi 
Thus ,for each i, the linear functional dxi reads off the til component of any vector v 
(expressed in terms of the coordinate basis) .  In other words 

yields, for i = 1 ,  . . . , n, the dual basis to the coordinate basis . dx I , . . .  , dx" form a 
basis for the cotangent space M�* .  

The most general l inear functional i s  then expressed i n  coordinates, from (2.5) as 

a = � a (�) 
dxj = 

� a ·  dxj (2.7) � axi  � 1 
} } 

Warning: We shall call an expression such as (2 .7) a differential form. In elementary 
calculus it is called simply a "differential ." We shall not use this terminology since, as 
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we learned in calculus, not every differential form is the differential of a function ;  that 
is, it need not be "exact." We shall discuss this later on in great detail .  

The definition of the differential of a function reduces to the usual concept of dif
ferential as introduced in elementary calculus. Consider for example �3 with its usual 
cartesian coordinates x = x ' , y = x2 , and z = x 3 • The differential is there traditionally 
defined in two steps. 

First, the differential of an "independent" variable, that is ,  a coordinate function, say 
dx , i s  a function of ordered pairs of points. If P = (x , y ,  z )  and Q = (x' ,  y' , z') then 
dx is defined to be (x ' - x ) .  Note that this  is the same as our expression dx ( Q  - P ) ,  
where (Q  - P )  is  now the vector from P to  Q .  The elementary definition in �3 takes 
advantage of the fact that a vector in the manifold �3 is determined by its endpoints, 
which again are in the manifold �3 . This makes no sense in a general manifold; you 
cannot subtract points on a manifold. 

Second, the differential df of a "dependent" variable, that is, a function f, is defined 
to be the function on pairs of points given by 

(��) dX + (��) dY + (��) dz 

Note that this is exactly what we would get from (2.7) 

df = L df ( a: i ) dxi = L (:�i ) dxi 

Our definition makes no distinction between independent and dependent variables, and 
makes sense in any manifold. 

Our coordinate expression for df obtained previously holds in any manifold 

df = " (
Of ) dxj L ox) } 

(2.8) 

A linear functional ex : M; ---+ � is called a covariant vector, or covector, or 
i-form. A differentiable assignment of a covector to each point of an open set in Mn 
is local ly of the form 

and would be called a covector field, and so on; df = Lj (of /axj )dxj is an example. 
Thus the numbers of/ax ' , . . .  , af/ax" form the components not of a vector field 
but rather of a covector field, the differential of f. We remarked in our warning in 
paragraph I .4c that these numbers are called the components of the "gradient vector" 
in elementary mathematics,  but we shall never say this .  It is important to realize that 
the local expression (2 .8) holds in any coordinate system; for example, in spherical 
coordinates for �3 , f = f (r, f) , </» and 

df = (��) dr + ( �'� ) df) + (:;) d</> 

and no one would call of/ar, af/of) ,  of/o</> the components of the gradient vector 
in spherical coordinates !  They are the components of the covector or I -form df . The 
gradient vector grad f will be defined in the next section after an additional structure 
is introduced. 
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Under a change o f  local coordinates the chain rule yields 

(2.9) 

and for a general covector I:i a v 
idxv i = I:ij a v 

i (axV i jaxu j )  dxu j must be the same 
as I:j a U  jdxU j . We then must have 

u _ L v ( axv i ) a . a . --} - . 
I axuj 1 

(2. 1 0) 

But I:j (axv i jaxu j ) (axu j jaxvk)  = axv i jaxvk = (1/ k shows that axu /axv is the 
inverse matrix to axv/axu . Equation (2. 1 0) is ,  in matrix form, aU = a V (axv /axu ) ,  
and this yields a v = aU  (axu jaxv ) ,  or 

v 
_ L u ( axu j ) a ·  a · --1 - } a i 

j 
Xv 

(2. 1 1 )  

This is the transformation rule for the components of a covariant vector, and should 
be compared with ( 1 .6) .  In the notation of ( 1 .7) we may write 

v u U - 1 a = a cu v = a cvu (2. 1 2) 

Warning: Equation ( 1 .6) tells us how the components of a single contravariant 
vector transform under a change of coordinates. Equation (2. 1 1 ) , likewise, tells us 
how the components of a single I -form a transform under a change of coordinates. 
This should be compared with (2.9) .  This latter tells us how the n-coordinate I -forms 
dxv 1 , • • •  , dXvn  are related to the n-coordinate I -forms dxu 1 , • • •  , dXu n .  In a sense we 
could say that the n-tuple of covariant vectors (dx I , . . . , dxn )  transforms as do the 
components of a single contravariant vector. We shall never use this terminology. 

See Problem 2. 1 ( I )  at this time. 

2.1c. Scalar Products in Linear Algebra 

Let E be an n-dimensional vector space with a given inner (or scalar) product ( , ) .  
Thus , for each pair of vectors v ,  w of E , (v, w) i s  a real number, i t  i s  linear i n  each entry 
when the other is held fixed (i .e . ,  it is bil inear), and it is symmetric (v,  w) = (w, v) . 
Furthermore (, ) is nondegenerate in the sense that if (v, w) = 0 for all w then v = 0 ;  
that i s ,  the only vector "orthogonal" to  every vector is the zero vector. If, further, 
II v 1 1 2 :=  (v,  v) is positive when v =I- 0, we say that the inner product is positive 
definite, but to accommodate relativity we shall not always demand this .  

If e i s  a basis of E,  then we may write v = ev and w = ew . Then 

(v, w) = (L ei vi , L ej wj ) 
j 

= L Vi (ei , L ej wj ) = L L Vi (ei , ej ) wj 
j 
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I f  w e  define the matrix G = (gij ) with entries 

then 

or 

gij := (ei , ej ) 

(v ,  w) = L Vi gij Wj 
ij 

(v ,  w) = vGw 
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(2. 1 3 )  

The matrix (gij )  i s  briefly called the metric tensor. This nomenclature wi l l  be explained 
in Section 2.4. 

Note that when e is  an orthonormal basis, that is , when gij = oj is the identity 
matrix (and this can happen only if the inner product is positive definite) , then (v ,  w) = 
�j vj wj takes the usual "euclidean" form. If one restricted oneself to the use of 
orthonormal bases, one would never have to introduce the matrix (gij ) , and this is what 
is done in elementary linear algebra. 

By hypothesis, (v, w) is a linear function of w when v is held fixed. Thus if v E E, 
the function v defined by 

v (w) = (v ,  w) (2. 14) 
is a linear functional , v E E*.  Thus to each vector v in the inner product space E we 
may associate a covector v; we shall cal l v the covariant version of the vector v. In 
terms of any basis e of E and the dual basis a of E* we have from (2.4) 

v = L vjaj = L v (ej )a j 
j 

Thus the covariant version of the vector v has components Vj = �i Vi gij and it is 
traditional in "tensor analysis " to use the same letter v rather than v .  Thus we write 
for the components of the covariant version 

(2. 1 5 ) 

since gij = gji .  The subscript j in v j tells us that we are dealing with the covariant 
version; in tensor analysis one says that we have "lowered the upper index i ,  making 
it a j, by means of the metric tensor gi/' We shall also call the (v j ) ,  with abuse of 
language, the covariant components of the contravariant vector v. 

Note that if e is an orthonormal basis then v j = vj • 
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I n  our finite-dimensional inner product space E, every l inear functional v is  the 
covariant version of some vector v. Given v = Lj vjaj we shall find v such that 
v (w) = (v, w) for all w. For this we need only sol ve (2. 1 5) for Vi in terms of the given 
Vj . Since G = (gij ) is assumed nondegenerate, the inverse matrix G- 1 must exist and is 
again symmetric. We shall denote the entries of this inverse matrix by the same letters 
g but written with superscripts 

Then from (2. 1 5 ) we have 

Vi = 2: gij Vj 
j 

(2. 1 6) 

yields the contravariant version v of the covector l! = Lj vjaj . Again we call (V i ) the 
contravariant components of the covector l! .  

Let u s  now compare the contravariant and covariant components of a vector v i n  a 
simple case. First of all ,  we have immediately 

v = 2: ( 2: gij (v, ej ) ) ei i j 

(2. 1 7) 

replaces the euclidean v = Li (v, ei )ei that holds when the basis is orthonormal. Con
sider, for instance, the plane ]R2 , where we use a basis e that consists of unit but not 
orthogonal vectors. 

Figure 2.1 

We must make some final remarks about linear functionals .  It i s  important to realize 
that given an n-dimensional vector space E, whether or not it has an inner product, 
one can always construct the dual vector space E* , and the construction has nothing 
to do with a basis in E. If a basis e is picked for E, then the dual basis a for E* is 
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determined. There is then an isomorphism, that is ,  a I :  1 correspondence between E* 
and E given by  "L aj aj -7 "L ajej , but this isomorphism i s  said to be  "unnatural" 
since if we change the basis in E the correspondence will change. We shall never use 
this correspondence. Suppose now that an inner product has been introduced into E .  
As  we  have seen, there i s  another correspondence E*  -7 E that i s  independent of 
basis ;  namely to v E E* we associate the unique vector v such that v (w) = (v, w) ; we 
may write v = (v ,  .) . In tenns of a basis we are associating to v = "L Via i  the vector 
"L vi ei ' Then we know that each ai can be represented as a i = (fi , . ) ; that is, there 
is a unique vector fi such that a i (w) = (fi , w) for all w E E . Then f ={fi }  is a new 
basis of the original vector space E ,  sometimes called the basis of E dual to e, and we 
have (fi , e j ) = 8� .  Although this new basis is used in applied mathematics, we shall 
not do so, for there is a very powerful calculus that has been developed for covectors, 
a calculus that cannot be applied to vectors ! 

2.1d. Riemannian Manifolds and the Gradient Vector 

A Riemannian metric on a manifold Mil assigns, in a differentiable fashion, a positive 
definite inner product ( , ) in each tangent space M; . If ( , ) is only non degenerate ( i .e . ,  
(u, v) = 0 for al l  v only if u = 0) rather than positive definite, then we shall call the 
resulting structure on Mil a pseudo-Riemannian metric. A manifold with a (pseudo-) 
Riemannian metric is called a (pseudo-) Riemannian manifold. 

In tenns of a coordinate basis ei = ai := a/axi we then have the differentiable 
matrices (the "metric tensor") 

gij (x ) = / aa

Xl" a

a ) \ Xl 

as in (2. 1 3) .  In an overlap U n V we have 

gi� = ( a:v i ' a:v j ) 

v � ( axur ) ( aXUS ) u 
gij = L ax i ax j grs 

rs V V 

This i s  the transformation rule for the components of the metric tensor. 

(2. 1 8) 

Definition: If Mil is a (pseudo-) Riemannian manifold and f is a differentiable 
function, the gradient vector 

grad f = V f 

is the contravariant vector associated to the co vector df 

df (w) = (V f, w) (2. 1 9) 
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I n  coordinates 

Note then that I I V f 1 1 2 :=  (V f, V f ) = df(V f) = Lij (BflBx i )gij (BflBxi ) .  We 
see that df and V f will have the same components if the metric i s  "euclidean," that 
is, if the coordinates are such that gij = 8� . 

Example (special relativity) : Minkowski space is , as we shall see in Chapter 7, ]R4 but 
endowed with the pseudo-Riemannian metric given in the so-called inertial coordinates 

t = xo , X = X l , Y = x 2 , Z = x3 ,  by 

a - / 0 0 ) _ I if i = J' = 1 ,  2, or 3 
", ij - \ ox i ' oxj -

= _c2 if i = j = 0, where c is the speed of light 

= ° otherwise 

that is , (gij ) i s  the 4 x 4 diagonal matrix 

Then 

(gij ) = diag(-c2 , 1 , 1, I )  

df = ( af ) dt + � ( af ) dxj 
a t  � ax} j= 1 

is classically written in terms of components 

but 

df � [ af , 
Bf

, 
af

, 
af ] 

a t  ax ay az 

. 1 ( af ) 3 ( af ) V j = - - - Or + " -. 0 c2 a t  � ax} } 
j= 1 

Vf � 

[_� af
, 

af
, 

af
, 

af ] T 

c2 a t  ax ay a z  
(It should be  mentioned that the famous Lorentz transformations i n  general are simply 
the changes of coordinates in ]R4 that leave the origin fixed and preserve the form _c2 t2 + 
x2 + y2 + Z2 , just as orthogonal transformations in ]R3 are those transformations that 

preserve x2 + y2 + Z2 ! )  

2.1e. Curves of  Steepest Ascent 

The gradient vector in a Riemannian manifold Mil has much the same meaning as in 
euclidean space. If v is a unit vector at p E M, then the derivative of f with respect to v 
is v (f)  = L(BflBxj ) vi = df (v) = (Vf, v) . Then Schwarz's inequality (which holds 
for a positive definite inner product), I v (f) I = I (V f, v) I :s I I V f I I I I v I I = I I V f I I , 
shows that f has a maximum rate of change in the direction of V f. If f (p) = a , then 
the level set of f through p is the subset defined by 

Mil - I  (a ) := {x E Mil i f(x )  = a } 
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A good example to keep in mind is the torus of Figure 1 . l S . If df does not vanish 
at p then M"- 1  (a ) i s  a submanifold in  a neighborhood of p .  If x = x (t) i s  a curve 
in this level set through p then its velocity vector there, dx / dt ,  is "annihilated" by 
df ; df(dx/dt) = 0 since f (x (t ) )  is constant. We are tempted to say that df is  
"orthogonal" to the tangent space to M"- 1 (a ) at p,  but this makes no sense since df 
is not a vector. Its contravariant version V f is, however, orthogonal to this tangent 
space since (V f, dx/dt ) = df (dx/dt) = 0 for all tangents to M"- l (a) at p. We say 
that V f is orthogonal to the level sets . 

Finally recall that we showed in paragraph l .4b that one does not get a well-defined 
flow by considering the local differential equations dxi /dt = of/oxi ; one simply 
cannot equate a contravariant vector dx / d t with a covariant vector d f. However it 
makes good sense to write dx /dt = Vf;  that is, the "correct" differential equations are 

dx i 
= L ij (!L) 

dt . 
g ax} } 

The integral curves are then tangent to V f, and so are orthogonal to the level sets f = 

constant. How does f change along one of these "curves of steepest ascent"? Well ,  
df / dt = df (dx / dt ) = (V f, V f) . Note then that if we solve instead the differential 
equations 

dx Vf 
dt I I V f 1 1 2 

(i .e . , we move along the same curves of steepest ascent but at a different speed) then 
df / dt = 1 .  The resulting flow has then the property that in time t it takes the level set 
f = a into the level set f = a + t .  Of course this result need only be true locally 
and for small t (see 1 .4a). Such a motion of level sets into level sets is called a Morse 
deformation. For more on such matters see [M, chap. 1 ] .  

Problems ----------

2.1 (1 ) If v is a vector and a is a covector, compute d i rectly in coord inates that L at v� = 

L ay v6 · What happens if w is another vector and one considers L vi wi? 
2.1 (2) Let x ,  y, and z be the usual cartesian coord inates in ]R3 and let u1 = r, u2 = f) 

(colatitude) , and u3 
= I/> be spherical coord inates. 

(i) Compute the metric tensor components for the spherical coord inates 

9,(1 := 91 2 = \ :r ' :f) ) etc . 

(Note : Don't f iddle with matrices; just use the chain rule OIOr 
(ax/an% x + . . .  ) 

( i i )  Compute the coefficients (V' f) i i n  

yo f = (V' f ) '  � + (V' f)1J � + (V' f)rf> � Or Of) 01/> 
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(i i i ) Verify that 818r, 8/8g , and 818¢ are orthogonal , but that not al l  are unit 
vectors. Define the un it vectors ej = (818uj)/ I I  8/8uj I I  and write V' f i n  
terms of  th is  orthonormal set 

V' f = (V' f), r e� + (V' f)'e e� + (V' f) '''' e' '" 

These new components of g rad f are the usual ones found in al l  physics 
books (they are called the physical components) ; but we shall have little 
use for such components; d f, as given by the simple expression d f = 

(a f/a r) dr + . . .  , frequently has al l  the i nformation one needs! 

2.2. The Tangent Bundle 

What is the space of velocity vectors to the configuration space of a dynamical system? 

2.2a. The Tangent Bundle 

The tangent bundle, T Mn , to a differentiable manifold Mn is, by definition , the 
collection of all tangent vectors at all points of M. 

Thus a "point" in this new space consists of  a pair (p ,  v) , where p is a point of  M and v i s  
a tangent vector to M a t  the point p, that i s ,  v E M;: . Introduce local coordinates in T M 
as follows. Let (p , v) E T Mn . p lies in some local coordinate system U, x J , • • •  , x" . At 
p we have the coordinate basis (ai = a / axi ) for M; . We may then write v = Li V

i ai .  
Then (p ,  v) i s  completely described by the 2n -tuple of real numbers 

x J (p) , . . .  , x" (p) , V J , • • •  , vn 

The 2n-tuple (x, v) represents the vector L} v
} a} at p. In this manner we associate 

2n local coordinates to each tangent vector to Mil that is based in the coordinate patch 
(U, x ) .  Note that the first n-coordinates, the x 's, take their values in a portion U of �lI , 
whereas the second set, the v 's, fil l  out an entire �n since there are no restrictions on 
the components of a vector. This 2n-dimensional coordinate patch is then of the form 
(U  C �n ) X �n C �2n .  Suppose now that the point p also lies in the coordinate patch 
(U' ,  x ' ) .  Then the same point (p , v) would be described by the new 2n -tuple 

where 

and 

d (  ) "' ( ) , I  '" x p ,  . . .  , x  p , v , . . .  , V  

, i , i ( J IZ ) X = X  X ,  . . .  , X  

; x . [ a ,; ] v' = L ax } (p) vJ 
J 

We see then that T Mil is a 2n-dimensional differentiable manifold !  

(2.20) 
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We have a mapping 

Jr : TM � M Jr (p ,  v) = p 

called projection that assigns to a vector tangent to M the point in M at which the 
vector sits . In local coordinates, 

Jr (x 1 , . . .  , x" , V I ,  . ' . .  , v" ) = (x 1 , . . .  , xn ) 

It is clearly differentiable. 

[RII 

v 

o 

TM / 
� 

VV 
vV 

rr - I (U) V 
/ 

rr 
x ,v \ -----------r----�O�---.·_+7 --------� M 

I- u  - I 
Figure 2.2 

o sec 

point with local 
coordinates (x, v) 

tion 

We have drawn a schematic diagram of the tangent bundle T M. Jr - 1 (x) represents 
all vectors tangent to M at x, and so Jr - 1 (x ) = M_� is  a copy of the vector space jRn . 
It is cal led "the fiber over x ." Our picture makes it seem that T M is the product space 
M x jRn , but this is not so ! Although we do have a global projection Jr : T M � M, 
there is  no projection map Jr ' : T M � jR" . 

A point in TM represents a tangent vector to M at a point p but there is no way to 
read off the components of this vector until a coordinate system (or basisfor Mp) has 
been designated at the point at which the vector is based! 

Locally of course we may choose such a projection; if the point is in Jr - 1 (U)  then by 
using the coordinates in U we may read off the components of the vector. S ince Jr - 1 (U)  
i s  topologically U x jRn we say that the tangent bundle T M is  locally a product. 
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-7f--""""'-t---+---- 0 section 

section v 

------+----7------+-------- Mil / u 
v = 0 here 

Figure 2.3 

A vector field v on M clearly assigns to each point p in M a point v(p) in n - I (p) C 
T M that "lies over p ." Thus a vector field can be considered as a map v : M -+ T M 
such that n o v is the identity map of M into M. As such it is called a (cross) section of the 
tangent bundle . In a patch n - I (U)  it is described by V i = V i (x I , . . .  , xn )  and the image 
v (M) is then an n -dimensional sub manifold of the 2n-dimensional manifold T M. A 
special section, the 0 section (corresponding to the identically 0 vector field), always 
exists . Although different coordinate systems will yield perhaps different components 
for a given vector, they will all agree that the O-vector will have all components O. 

Example : In mechanics, the configuration of a dynamical system with n degrees of 
freedom is usually described as a point in an n-dimensional manifold, the configuration 
space. The coordinates x are usually called q 1 , . . .  , q lZ , the "generalized coordinates ." 

For example, if we are considering the motion of two mass points on the real line, 
M2 = lR x lR with coordinates q 1 , q2 (one for each particle) . The configuration space 
need not be euclidean space. For the planar double pendulum of paragraph 1 .2b (v), 
the configuration space is M2 = S I X S 1 = T2 . For the spatial single pendulum M2 

is the 2-sphere S2 (with center at the pin) . A tangent vector to the configuration space 
MIZ is thought of, in mechanics, as a velocity vector; its components with respect to the 
coordinates q are written q l ,  . . .  , qlZ rather than v I

, . . . , V IZ . These are the generalized 
velocities. Thus T M is the space of all generalized velocities, but there is no standard 
name for this space in mechanics (it is not the phase space, to be considered shortly) . 

2.2b. The Unit Tangent Bundle 

If MIZ is a Riemannian manifold (see 2. 1 d) then we may consider, in addition to T M, 
the space of  all unit tangent vectors to  Mn . Thus in T M we may restrict ours�lves to 
the subset ToM of points (x ,  v) such that II v 1 1 2= 1 .  If we are in the coordinate patch 
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(X l , • • •  , Xn , V i ,  . • •  , vn ) o f  T M, then this unit tangent bundle i s  local ly defined by 

ToMn : L gij (x ) vi vj = I 
ij 

In other words, we are looking at the locus in T M defined locally by putting the single 
function f (x , v) = Lij gij (x) vi vj equal to a constant. The local coordinates in T M 
are (x , v) . Note, using gij = gji , that 

af � . -k = 2 � gkj (X) VJ 
a v  . J 

Since det (gij ) =I- 0, we conclude that not all af/avk can vanish on the subset v =I- 0, 
and thus TaMn is a (2n - 1 ) -dimensional submanifold of T Mil !  In particular ToM is 
itself a manifold. 

In the following figure, Va = V / I I  v I I . 

o section 

x 
----------�c ----�.----•• ------------------------ M 

vo v 

Figure 2.4 

Example: TOS2 is the space of unit vectors tangent to the unit 2-sphere in IR3 . 

Figure 2.5 

Let v = f2 be a unit tangent vector to the unit sphere S2 C IR3 . It i s  based at some point 
on S2 , described by a unit vector fl . Using the right-hand rule we may put f3 = fl X f2 . 
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I t  is  clear that b y  this association, there i s  a 1 :  1 correspondence between unit tangent 
vectors v to S3 ( i .e . ,  to a point in TO S2) and such orthonormal triples fl , f2 , f3 . Translate 
these orthonormal vectors to the origin ofJR3 and compare them with a fixed right-handed 
orthonormal basis e of JR3 . Then fi = ej Rj i for a unique rotation matrix R E S O (3) . 
In this way we have set up a 1 : 1  correspondence TOS2 -+ S O (3) . It also seems evident 
that the topology of TOS2 is the same as that of S O (3) ,  meaning roughly that nearby 
unit vectors tangent to S2 will correspond to nearby rotation matrices ; precisely, we 
mean that TO S2 -+ S O (3) is a diffeomorphism. We have seen in 1 .2b(vii) that S O (3) i s  
topologically projective space. 

The unit tangent bundle TOS2 to the 2-sphere is topologically the 3-dimensional real 
projective 3-space TO S2 � JRp3 � S O (3) .  

2.3. The Cotangent Bundle and Phase Space 

What is phase space? 

2.3a. The Cotangent Bundle 

The cotangent bundle to Mn is by definition the space T* Mn of all covectors at all 
points of M. A point in T* M is a pair (x , ex) where ex is a covector at the point x . If x is 
in a coordinate patch U,  x I , . . .  , xn , then dx  I , . . .  , dxn ,  gives a basis for the cotangent 
space M;* , and ex can be expressed as ex = L ai (x )dX i . Then (x , ex) is completely 
described by the 2n-tuple 

X
l (x ) ,  . . .  , xn (x) ,  al (x) ,  . . . , an (x ) 

The 2n-tuple (x, a) represents the covector L ai dxi at the point x. If the point p also 
l ies in the coordinate patch U', X i i

, . . . , x tn , then 

and 

X
'i 

= X
,i (X

I
, . . .  , xn ) 

[ axj ] a; = "'"'  -, (x)aj � ax" J 

(2.2 1 )  

T* Mn is again a 2n-dimensional manifold. We shall see shortly that the phase space in 
mechanics is the cotangent bundle to the configuration space. 

2.3b. The Pull-Back of a Covector 

Recall that the differential ¢* of a smooth map ¢ : Mn -+ vr has as matrix the Jacobian 
matrix a y / a x in terms of local coordinates (x I , . . .  , x n )  near x and (y I , . . .  , yr )  near 
y = ¢ (x ) . Thus ,  in terms of the coordinate bases 

(2.22) 
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Note that if we think of vectors as differential operators , then for a function f near y 

simply says, "Apply the chain rule to the composite function f 0 </>, that is ,  f(y(x) ) ." 

Definition: Let </> : Mil --+ vr be a smooth map of manifolds and let </> (x) = y . 
Let </>* : Mx --+ V\, be  the differential o f  </> . The pull-back </>* is the linear 
transformation taking covectors at y into covectors at x, </>* : V (y) * --+ M (x) * , 
defined by 

</>* (f3) (v) : =  f3 (</>* (v)) (2.23) 

for all covectors 
13 

at y and vectors v at x . 

Let (X i ) and (yR ) be local coordinates near x and y , respectively. The bases for the 
tangent vector spaces M, and Vy are given by (818xj ) and (818/) . Then 

Thus 

* _ "'" * ( 8 )
d j _ "'" ( 8 ) j </> 

13 

- � </> (
13
) 8xj x - � 

13 
</>* 8xj dx } } 

( ( ayR ) 8 ) . 
=
L f3 L -. - dx} 
j R ax} 8yR 

( ayR ) ( 8 ) . 
= t= axj 13 8yR dx} 

</>* (
13
) = 

LbR
( a< ) dXj 

jR ax (2.24) 

In terms of matrices, the differential </>* is given by the Jacobian matrix ay/ax acting 
on columns v at x from the left, whereas the pull-back </>* is given by the same matrix 
acting on rows b at y from the right. (If we had insisted on writing covectors also as 
columns, then </>* acting on such columns from the left would be given by the transpose 
of the Jacobian matrix . )  
</>* (dys) is given immediately from (2.24) ; since dys = LR 8s RdyR 

</>* (dys) = 
L (:�� ) dxj (2.25) 

} 
This is again simply the chain rule applied to the composition yS 0 </> ! 

Warning : Let </> : Mn --+ vr and let v be a vector field on M .  It may very well 
be that there are two distinct points x and x' that get mapped by </> to the same point 
y = </> (x ) = </> (x' ) . Usually we shall have </>* (v(x) ) =1= </>* (v(x') ) since the field v need 
have no relation to the map </>. In other words, </>* (v) does not yield a well defined vector 
field on V (does one pick </>. (v(x ) ) or </>* (v(x' ) ) at y ?) . </>* does not take vector fields 
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into vector fields. (There i s  an  exception i f  n = r and ¢ i s  1 :  1 . ) On  the other hand, if 
j3 is a covector field on Vr , then ¢* j3 is always a well-defined covector field on Mil ;  
¢* (j3 (y)) yields a definite covector at each point x such that ¢ (x) = y . As we shall 
see, this fact makes covector fields easier to deal with than vector fields . 

See Problem 2.3 ( 1 )  at this time. 

2.3c. The Phase Space in Mechanics 

In Chapter 4 we shall study Hamiltonian dynamics in a more systematic fashion. For the 
present we wish merely to draw attention to certain basic aspects that seem mysterious 
when treated in most physics texts, largely because they draw no distinction there 
between vectors and covectors . 

Let Mil be the configuration space of a dynamical system and let q 1 , . . .  , qn be local 
general ized coordinates . For simplicity, we shall restrict ourselves to time-independent 
Lagrangians. The Lagrangian L is then a function of the generalized coordinates q 
and the generalized velocities q ,  L = L (q ,  q ) .  It is important to realize that q and q 
are 2n-independent coordinates. (Of course if we consider a specific path q = q (t) in 
configuration space then the Lagrangian along this evolution of the system is computed 
by putting q = d q / d t . ) Thus the Lagrangian L is to be considered as a function on 
the space of generalized velocities, that is, L is a real-valued function on the tangent 
bundle to M, 

L :  TM" -+ lR 

We shall be concerned here with the transition from the Lagrangian to the Hamiltonian 
formulation of dynamics. Hamilton was led to define the functions 

a L 
Pi (q ,  q )  : = 

aq i (2.26) 

We shall only be interested in the case when det(ap; / aqj ) i= O. In many books (2.26) 
is looked upon merely as a change of coordinates in T M; that is, one switches from 
coordinates q ,  q ,  to q ,  p .  Although this is technically acceptable, it has the disadvantage 
that the p 's  do not have the direct geometrical significance that the coordinates q had. 
Under a change of coordinates, say from qu to qv in configuration space, there is an 
associated change in coordinates in T M 

qv = qv (qu ) 

q� = � ( a
a
qf ) q� 

i qv 
(2.27) 

This is  the meaning of the tangent bundle ! Let us see now how the p's  transform. 

I' . _ � _ � { (�) ( aq� ) (�) ( aql ) } Pi .- aqG -
j aql aq� + aq� aqG 

However, ql'  does not depend on qu ; likewise qu does not depend on ql' ,  and therefore 
the first term in this sum vanishes . Also, from (2.27), 

aql aql (2.28) 
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Thus 

(2.29) 

and so the p's represent then not the components of a vector on the configuration 
space Mil but rather a covector. The q ' s  and p 's then are to be thought of not as local 
coordinates in the tangent bundle but as coordinates for the cotangent bundle. Equation 
(2.26) is then to be considered not as a change of coordinates in T M but rather as the 
local description of a map 

p :  T M" -+ T* M" (2.30) 

from the tangent bundle to the cotangent bundle . We shall frequently call (q J , • • •  , q" , 
PI , . . .  , PII )  the local coordinates for T* Mil (even when we are not dealing with me
chanics). This space T* M of covectors to the configuration space is called in mechanics 
the phase space of the dynamical system. 

Recall that there is no natural way to identify vectors on a manifold Mil with co
vectors on Mil . We have managed to make such an identification, Lj qj a/aqj -+ 
Lj (aL/aq j )dq j , by introducing an extra structure, a Lagrangian function. T M and 
T* M exist as soon as a manifold M is given. We may (locally) identify these spaces by 
giving a Lagrangian function, but of course the identification changes with a change of 
L, that is, a change of "dynamics." 

Whereas the q 's of T M are called generalized velocities, the p ' s  are called gener
alized momenta. This terminology is suggested by the following situation. The La
grangian is frequently of the form 

L (q ,  q )  = T (q ,  q )  - V (q )  

where T i s  the kinetic energy and V the potential energy. V i s  usually independent of 
q and T is frequently a positive definite symmetric quadratic form in the velocities 

T (q ,  q) = � L gjk (q )q jqk 
jk 

(2. 3 1 )  

For example, in the case of two masses m I and m2 moving i n  one dimension, M = 
�2 , T M  = �4, and 

and the "mass matrix" (gij ) is the diagonal matrix diag(m I , m2) .  
I n  (2 .3 1 )  we have generalized this simple case, allowing the "mass" terms to depend 

on the positions .  For example, for a single particle of mass m moving in the plane, we 
have, using cartesian coordinates, T = ( l /2)m [i2 + jl2] ,  but if polar coordinates are 
used we have T = ( I  /2)m [;-2 + r2e2 ] with the resulting mass matrix diag (m ,  mr2) . In 
the general case, 

(2 . 32) 
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Thus ,  i f  we  think of 2T as defining a Riemannian metric on  the configuration space Mn 

(g , g) = L gij (q )g ig j 
ij 

then the kinetic energy represents half the length squared of the velocity vector, and 
the momentum P is by (2.32) simply the covariant version of the velocity vector g . In 
the case of the two masses on IR: we have 

and 

are indeed what everyone calls the momenta of the two particles . 
The tangent and cotangent bundles, T M and T* M, exist for any manifold M, in

dependent of mechanics. They are distinct geometric objects . If, however, M is a Rie
mannian manifold, we may define a diffeomorphism T Mil � T* Mn that sends the 
coordinate patch (q , g) to the coordinate patch (q ,  p) by 

with inverse 

Pi = L giA j 
j 

g i = L gij Pj j 
We did just this in mechanics, where the metric tensor was chosen to be that defined 
by the kinetic energy quadratic form. 

2.3d. The Poincare I-Form 

Since T M and T* M are diffeomorphic, it might seem that there is no particular reason 
for introducing the more abstract T* M, but this is not so. There are certain geometrical 
objects that live naturally on T* M, not TM. Of course these objects can be brought 
back to T M by means of our identifications, but this is not only frequently awkward, 
it would also depend, say, on the specific Lagrangian or metric tensor employed. 

Recall that " i -form" is simply another name for covector. We shall show, with 
Poincare, that there is a well-defined I -form field on every cotangent bundle T* M. 
This will be  a l inear functional defined on each tangent vector to  the 2n-dimensional 
manifold T* Mn , not M. 

Theorem (2.33) : There is a globally defined J -form on every cotangent bundle 
T* Mn, the Poincare I-form A. In local coordinates (q ,  p) it is given by 

(Note that the most general I -form on T* M is locally of the form L i a i (q , P )dqi + 
Li bi (q , P )dpi , and also note that the expression given for A cannot be considered a 
I -form on the manifold M since Pi is not a function on M !) 
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P R O O F : We need only show that A i s  well defined o n  an overlap o f  local coordi
nate patches of T* M. Let (q ' , pi) be a second patch . We may restrict ourselves to 
coordinate changes of the form (2. 2 1 ) ,  for that is how the cotangent bundle was 
defined. Then 

i { ( aq1i ) . (
aq1i ) } dq' = L -. dqJ + - dp . aq J apj J 

J 
But from (2 . 2 1 ) ,  q' is independent of p ,  and the second sum vanishes . Thus 

L P'idq 'i = L p/ L ( ��� ) dqj = L pjdqj 0 
I I J J 
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There is a simple intrinsic definition of the form A, that is ,  a definition not using 
coordinates. Let A be a point in T* M; we shall define the I -form A at A. A represents a 
I -form ex at a point x E M .  Let n : T* Mil ----f Mil be the projection that takes a point A 
in T* M, to the point x at which the form ex is located. Then the pull-back n*ex defines 
a I -form at each point of n - 1 (x ) ,  in particular at A. A at A is precisely this form n*ex !  

Let u s  check that these two definitions are indeed the same. In terms of local coor
dinates (q ) for M and (q ,  p) for T*M the map n is simply n (q ,  p) = (q ) .  The point 
A with local coordinates (q , p) represents the form Lj pjdqj at the point q in M .  

Compute the pull-back ( i . e . ,  use  the chain rule) 

n* ( �Pidqi) = LPin* (dq i ) 

{ 
( 

aq i ) . 
( 

aq i ) } = LPi L -j dqJ + -. dpj 
i j aq apJ 

= LPi L 8jdqj = LPidqi = A 0 
j 

As we shall see when we discuss mechanics, the presence of the Poincare J jorm field 
on T* M and the capability of pulling back I -formfields under mappings endow T* M 
with a poweiful tool that is Ilot available all T M. 

Problems 
2.3(1 ) Let F :  Mn -+ Wr and G :  Wr -+ VS be smooth maps. Let x ,  y, and z be local 

coord inates near p E M, F( p) E W, and G( F( p) ) E V, respectively. We may 
consider the composite map G o  F : M -+ V. 

(i) Show, by using bases 818x, 818y, and 8/8z, that 

( i i )  Show, by using bases dx , dy, and dz,  that 

(G o F)* = F* o G* 
2.3(2) Consider the tangent bundle to a man ifold M. 
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(i) Show that under a change of coord inates in  M ,  aJaq depends o n  both 
aJaq' and aJae/'. 

(ii) Is the local ly defined vector f ie ld I:: i qiaJaqi wel l  defined on all of TM? 

( i i i )  Is I:: i qi aJ aqi wel l  def ined? 

( iv) I f  any of the above in  ( i i ) ,  ( i i i )  is wel l  defined, can you produce an intri nsic 
definit ion? 

2.4. Tensors 

How does one construct a field strength from a vector potential? 

2.4a. Covariant Tensors 

In this paragraph we shall again be concerned with linear algebra of a vector space 
E. Almost all of our applications will involve the vector space E = M; of tangent 
vectors to a manifold at a point x E E. Consequently we shall denote a basis e of 
E by a = (a l ,  . . . , an ) , with dual basis a = dx = (dx l , • . • , dxn ) . It should be 
remembered, however, that most of our constructions are simply linear algebra. 

Definition: A covariant tensor of rank r is a multilinear real-valued function 

Q : E x E x · · · x E ---+ lR 

of r-tuples of vectors, multilinear meaning that the function Q (v ] , . . .  , vr ) i s  
linear in each entry provided that the remaining entries are held fixed. 

We emphasize that the values of this function must be independent of the basis in which 
the components of the vectors are expressed. 

A covariant vector is a covariant tensor of rank 1 .  When r = 2, a multilinear function 
is called bilinear, and so forth. Probably the most important covariant second-rank tensor 
is the metric tensor G, introduced in 2. 1 c :  

G (v,  w)  = (v , w) = L gij Vi Wj 
ij 

is clearly bilinear (and is assumed independent of basis). 
We need a systematic notation for indices. Instead of writing i , j ,  . . . , k ,  we shall 

write i i ,  . . . , ip • 
In  components , we  have, by  multilinearity, 

Q (v ] , . . . , vr ) = Q (L v; l ai l , · · · ,  L v� ai') 
' \  1,  

= L V\I Q (ai l , . . . , L v�, ai') 
I I 1 ,  

= L v; 1  . . .  v; Q (ai J ' . . .  , ai, )  
i [ • • • •  , i, 
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That is ,  

Q (V l ,  . . . , Vr) = L Qi , . , I , V ; ' . . .  V�' 
i l . . . . •  ir 

where (2.34) 

We now introduce a very useful notational device, the Einstein summation conven
tion. In any single term involving indices, a summation is implied over any index that 
appears as both an upper (contravariant) and a lower (covariant) index. For example, 
in a matrix A = (a i 

j ) ,  a i i = 2:i a
i 
i is the trace of the matrix. With this convention we 

can write 

(2.35) 

The collection of all covariant tensors of rank r forms a vector space under the usual 
operations of addition of functions and multiplication of functions by real numbers. 
These simply correspond to addition of their components Q i , . .  . ,j and multiplication of 
the components by real numbers . The number of components in such a tensor is clearly 
nr . This vector space is the space of covariant rlh rank tensors and will be denoted by 

E* Q9 E* Q9 . . . Q9 E* = Q9r E* 

If a and f3 are covectors, that is, elements of E* ,  we can form the second-rank 
covariant tensor, the tensor product of a and f3, as fol lows . We need only tell how 
a Q9 f3 : E x E -+ R  

a Q9 f3 (v ,  w) :=  a (v) f3 (w) 

In components , a = aidxi and f3 = bjdxj , and from (2.34) 

(aibj ) ,  where i, j = 1 ,  . . . , n, form the components of a Q9 f3 . See Problem 2.4 ( 1 )  at 
this time. 

2.4b. Contravariant Tensors 

Note first that a contravariant vector, that is , an element of E ,  can be considered as a 
linear functional on covectors by defining 

v(a) := a (v) 

In components v(a) = ai vi is clearly linear in the components of a . 

Definition: A contravariant tensor of rank s is a multilinear real valued func
tion T on s-tuples of covectors 

T : E*  x E* x . . . x E*  -+ � 
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As  for covariant tensors, we  can show immediately that for an s-tuple of  I -forms 

T (a l '  . . . , a.I· ) = a l i, . . .  a.1 i, Ti , .. ' ; , 

where (2.36) 

Ti , . . . i, :=  T (dxi " . . .  , dx" ) 

We write for this space of contravariant tensors 

E ® E ® . . . ® E := ®r E 

Contravariant vectors are of course contravariant tensors of rank 1 .  An example 
of a second-rank contravariant tensor is the inverse to the metric tensor G - I , with 
components (g ij ) ,  

G - I (a , 13) = gij a; bj 

(see 2. 1 c) .  Does the matrix gij really define a tensor G - 1 ? The local expression for 
G- I (a, 13) given is certainly bilinear, but are the values really independent of the 
coordinate expressions of a and f3 ?  Note that the vector b associated to 13 is coordinate
independent since f3 (v) = (v ,  b) ,  and the metric (, ) is coordinate-independent. But 
then G - I (a, 13) = g;ia; bi = alb; = a (b) i s  indeed independent of coordinates, and 
G -I is a tensor. 

Given a pair v, w of contravariant vectors, we can form their tensor product v ® w 
in the same manner as we did for covariant vectors . It is the second-rank contravariant 
tensor with components (v ® w) ;i = Vi wi . As in Problem 2.4 ( 1 )  we may then write 

(2.37) 

2.4c. Mixed Tensors 

The following definition in fact includes that of covariant and contravariant tensors as 
special cases when r or s = o. 

Definition: A mixed tensor, r times covariant and s times contravariant, is a 
real multil inear function W 

W : E* x E* x . . . x E* x E x E x · . .  x E --+ � 

on s-tuples of covectors and r-tuples of vectors . 
By multilinearity 

where 

W (  V V ) Wi , .. I, . . vi, vi, a l , · · · , a." I , · · · , r = a l i , · · · as l, j ,  . . . j, I · · ·  r 

Wi , . . .  i , .  . := W(dxi , . . .  a · )  } I · · ·ir " Jr 

(2.38) 
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A second-rank mixed tensor arises from a linear transformation A : E ---+ E .  Define 
WA : E* x E ---+ � by WA (a , v) = a (Av) . Let A = (Aj ) be the matrix of A, that is, 
A (8j ) = 8i Aj . The components of WA are given by 

WAi j = WA (dxi , 8j ) = dxi (A(8j ) ) = dxi (8kAk j ) = 8[Ak j = Ai j 

The matrix of the mixed tensor W A is simply the matrix of A ! Conversely, given a mixed 
tensor W, once covariant and once contravariant, we can define a linear transformation 
A by saying A is that unique linear transformation such that W(a, v) = a (Av) .  Such 
an A exists since W(a, v) is l inear in v. We shall not distinguish between a l inear 
transformation A and its associated mixed tensor WA ; a linear transformation A is a 
mixed tensor with components (Ai j ) . 

Note that i n  components the bilinear form has a pleasant matrix expression 

W(a, v) = ai Ai j V
j = aA v 

The tensor product w ® fJ of a vector and a covector is the mixed tensor defined by 

(w ® fJ) (a , v) = a (w)fJ (v) 

As in Problem 2.4 ( I )  

A =Ai j 8i ® dx
j = 8i ® Ai j dx

j 

In particular, the identity linear transformation i s  

1 =  8i ® dxi 

and its components are of course 8j . 
(2.38) 

Note that we have written matrices A in three different ways, Aij , A i
j , and Ai j . The 

first two define bilinear forms (on E and E* ,  respectively) 

and only the last i s  the matrix of a l inear transformation A : E ---+ E.  A point of 
confusion in elementary l inear algebra arises since the matrix of a linear transformation 
there is usually written Aij and they make no distinction between linear transformations 
and bilinear forms. We must make the distinction. In the case of an inner product space 
E, ( , ) we may relate these different tensors as follows. Given a linear transformation 
A : E ---+ E, that is, a mixed tensor, we may associate a covariant bilinear form A' by 

A' ( ) . ( A )  i Aj k v, W . = v, w = V gij kW 

Thus A;k = gij Aj k . Note that we have "lowered the index j ,  making i t  a k,  b y  means 
of the metric tensor." In tensor analysis one uses the same letter; that is, instead of A' 
one merely writes A ,  

(2.39) 

It is clear from the placement of the indices that we now have a covariant tensor. This 
is the matrix of the covariant bilinear form associated to the linear transformation A. In 
general its components differ from those of the mixed tensor, but they coincide when 
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the basis is orthonormal, gij = 8� . Since orthonormal bases are almost always used i n  
elementary l inear algebra, they may dispense with the distinction. 

In a similar manner one may associate to the l inear transformation A a contravariant 
bilinear form 

- _ i jk A (a, ,B ) - aiA jg bk 
whose matrix of components would be written 

Aik = Ai jgjk 

Recall that the components of a second-rank tensor always form a matrix such that 
the left-most index denotes the row and the right-most index the column, independent 
of whether the index is up or down. 

A final remark. The metric tensor {gij } ,  being a covariant tensor, does not represent a 
l inear transformation of E into itself. However, it does represent a l inear transformation 
from E to E* ,  sending the vector with components vi into the covector with components 
gij Vj . 

2.4d. Transformation Properties of Tensors 

As we have seen, a mixed tensor W has components (with respect to a basis 8 of E 
and the dual basis dx of E*)  given by 

wi j k . . .  ' = W (dxi , . . .  , dxj , 8k , . . . , 8, ) . 

Under a change of bases, 8', = 8, (ax' lax" ) and dX,i = (ax , i lax')  dx' we have, by 
multi l inearity, 

W,i . .  '; (d , i d ,j 8' 8' k . . .  ' = W  X ' ' ' . ,  x ,  b . " ,  / ) 

= (�:� )  . . . (�:':) (::: ) . . .  (:;:1 ) we d r . . .  , 

Similarly, for covariant Q and contravariant T we have 

Q ' i .j = ( :;� ) . . . (::,� ) QLI 

and 
. .  ( ax 'i ) ( ax ,j ) T'l .  .. } = 

axk . . . axl TLI 

(204 1 a) 

(2A l b) 

(2A l c) 

Classical tensor analysts dealt not with multilinear functions. but rather with their 
components. They would say that a mixed tensor assigns, to each basis of E, a collection 
of "components" Wi . . . j k . . .' such that under a change of basis the components transform 
by the law (2041  a) . This is a convenient terminology generalizing (2. 1 ) .  

Warning: A linear transformation (mixed tensor) A has eigenvalues A determined 
by the equation A v = AV, that is, A � vj = Avi , but a covariant second-rank tensor Q 
does not. This is evident just from our notation ; Q ij vj = Av i  makes no sense since 
i is  a covariant index on the left whereas it is  a contravariant index on the right. Of 
course we can solve the linear equations Q ij vj = Avi  as in linear algebra; that is ,  
we solve the secular equation det( Q - AI) = 0, but the point is that the solutions A 
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depend on the basis used. Under a change of basis, the transformation rule (2.4 1 b) says 
Q'i} = (axk lax 'i ) Qkl (aXi l ax,j ) .  Thus we have 

Q' = 

(::,) T 
Q 
(::' ) 

and the solutions of det [ Q ' - AI ]  = 0 in general differ from those of det [ Q - A I ]  = O. 
(In the case of a mixed tensor W,  the transpose T i s  replaced by the inverse, yielding 
an invariant equation det (W' - AI )  = det (W - A 1 ) . )  It thus makes no intrinsic sense 
to talk about the eigenvalues or eigenvectors of a quadratic form. Of course if we 
have a metric tensor g given, to a covariant matrix Q we may form the mixed version 
gil Q jk = W i k and then find the eigenvalues of this W. This is equivalent to solving 

and this requires 

det (Q  - Ag) = 0 

It is easy to see that this equation is independent of basis, as is clear also from our 
notation. We may call these eigenvalues A the eigenvalues of the quadratic form with 
respect to the given metric g. This situation arises in the problems of small oscillations 
of a mechanical system; see Problem 2 .4(4) .  

2.4e. Tensor Fields on Manifolds 

A (differentiable) tensor field on a manifold has components that vary differentiably. 
A Riemannian metric (gij ) is a very important second-rank covariant tensor field. 

Tensors are important on manifolds because we are frequently required to construct 
expressions by using local coordinates, yet we wish our expressions to have an intrinsic 
meaning that all coordinate systems will agree upon. 

Tensors in physics usually describe physical fields. For example, Einstein discovered 
that the metric tensor (gij )  in 4-dimensional space-time describes the gravitational field, 
to be discussed in Chapter 1 1 .  (This is  similar to describing the Newtonian gravitational 
field by the scalar Newtonian potential function <p . )  Different observers will usually 
use different local coordinates in 4-space. By making measurements with "rulers and 
clocks," each observer can in  principle measure the components gij for their coordi
nate system. S ince the metric of space-time is assumed to have physical significance 
(Einstein's discovery), although two observers will find different components in their 
systems, the two sets of components gij and g;j will be related by the transformation 
law for a covariant tensor of the second rank. The observers will then want to describe 
and agree on the strength of the gravitational field, and this will involve derivatives 
of their metric components, just as the Newtonian strength is measured by grad <p. By 
"agree," we mean, presumably, that the strengths will again be components of some 
tensor, perhaps of higher rank. In the Newtonian case the field is described by a scalar 
<p and the strength is a vector, grade <p) . We shall see that this is not at all a trivial task. 
We shall i llustrate this point with a far simpler example ;  this example will be dealt with 
more extensively later on, after we have developed the appropriate tools .  
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Space-time is some manifold M, perhaps not IR4. Electromagnetism is described 
locally by a "vector potential ," that is, by some vector field. It is not usually clear in 
the texts whether the vector is contravariant or covariant; recall that even in Minkowski 
space there are differences in the components of the covariant and contravariant versions 
of a vector field (see 2. l d) .  As you will ieam in Problem 2.4(3) , there is good reason 
to assume that the vector potential is a covector ex = A jdxj . 

In the following we shall use the popular notations ai¢ : =  a¢ laxi ,  and a 'i ¢ = 
a¢lax'i . 

The electromagnetic field strength will involve derivatives of the A 's, but it will be 
clear from the following calculation that the expressions 

do not form the components of a second-rank tensor ! 

Theorem (2.42): If A j are the components of a covariant vector on any manifold. 
then 

form the components of a second-rank covariant tensor. 

P R O O F : We need only verify the transformation law in (2.42). Since ex = A j dxj 
is a covector, we have Aj = (ajx' )A, and so 

F:j = a;A� - aj A ;  = a; { (ajx' ) Ad - aj { ( a;X' )Ad 

= (ajx i ) (a;A, )  + [ (a; ajx ' )AI 1 - (a;x' ) (ajA , )  - (aj a;x' )A, 

= (ajx' ) (ar A, ) (a;xr ) - (a;x' ) (arAi ) (ajx
r ) 

(and since r and l are dummy summation indices) 

= (a;x' ) (a>r ) (aI Ar - arA,) 

= (a;xl ) (ajx r )Flr D 

Note that the term in brackets [ ] is what prevents ai A j itself from defining a ten
sor. Note also that if our manifold were IRn and if we restricted ourselves to linear 
changes of coordinates, X'i = L �x j , then ai A j would transform as a tensor. One can 
talk about objects that transform as tensors with respect to some restricted class of 
coordinate systems; a cartesian tensor is one based on cartesian coordinate systems, 
that is ,  on orthogonal changes of coordinates. For the present we shall allow all changes 
of coordinates. In our electromagnetic case, (Fij ) is the field strength tensor. 

Our next immediate task will be the construction of a mathematical machine, the 
"exterior calculus," that will allow us systematically to generate "field strengths" gen
eralizing (2.42). 
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P roblems -----------
2.4(1 ) Show that the second-rank tensor g iven in components by ai bjdxi ® dxj  has 

the same values as Oi ® f3 on any pair of vectors, and so 

Oi ® f3 = ai bjdxi ® dx j 

2.4(2) Let A : E � E be a l i near transformation . 

(i) Show by the transformation properties of a m ixed tensor that the trace tr(A) = 

Ai i is i ndeed a scalar, that is ,  is i ndependent of basis. 

( i i) I nvestigate Li Ajj • 

2.4(3) Let v = Vi ai be a contravariant vector field on Mn. 

(i) Show by the transformation properties that Vj = gji vi yields a covariant 
vector. 

For the fol lowing you wi l l  need to use the chain ru le 

a ( a x1j ) ( a2 x'j ) ( a x' ) 
a x'i a xk = 

L 
a x ' a xk a x'i , 

( i i )  Does a j vi yield a tensor? 

( i i i )  Does (ai vj - a j Vi ) yield a tensor? 

2.4(4) Let (q = 0, q = 0) be an equi l ibr ium point for a dynamical system,  that is, a 
solution of Lagrange's equations d/ dt(a L/ a qk) = a L/ a qk for which q and q are 
identically O .  Here L = T - V where V = V(q) and where 2 T = gij( q) qi qj is 
assumed positive defin ite . Assume that q = 0 is a nondegenerate min imum for 
V; thus a v/ a qk = 0 and the Hessian matrix Qjk = (a 2 v/a qjaqk) (o) is positive 
def in ite. For an approximation of smal l  motions near the equi l ibr ium point one 
assumes q and q are smal l  and one d iscards al l  cubic and higher terms in these 
quantities. 

( i) Using Taylor expansions, show that Lagrange' s equations in  our quadratic 
approximation become 

gkl (O) i:/ = - Qkl ql 
One may then f ind the eigenvalues of Q with respect to the kinetic energy 
metric g; that is, we may solve det( Q - Ag) = O. Let y = (y1 , . . .  , yn) be an 
(constant) eigenvector for e igenvalue A, and put qi ( t) :=  sin ( t.fi) yi . 

( i i )  Show that q(t) satisfies Lagrange's equation in the quadratic approximation, 
and hence the eigendirection y yields a smal l  harmonic osci l lation with 
frequency w = .fi. The d i rection y yields a normal mode of vibration .  

( i i i) Consider the double planar pendu lum of  F igure 1 . 1 0 , with coord inates q 1 = 
e and q2 = <p, arm lengths 11 = 12 = I, and masses m1 = 3, m2 = 1 .  Write 
down T and V and show that in our quadratic approximation we have 

9 = 12 [ � � ] and Q = gl [ � � ] 
Show that the normal mode frequencies are W1 = (2g/3/) 1 /2 

and W2 = 

(2g/ I) 1 /2 with d i rections (y1 , y2 ) = (e , <p) = ( 1 , 2) and (1 , -2) .  
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2.5. The Grassmann o r  Exterior Algebra 

How can we define an oriented area spanned by two vectors in IRn ? 

2.5a. The Tensor Product of Covariant Tensors 

Before the middle of the nineteenth century, Grassmann introduced a new "algebra" 
whose product is a vast generalization of the scalar and vector products in use today 
in vector analysis . In particular it is applicable in space of any dimension. Before 
discussing this "Grassmann product" it is helpful to consider a simpler product, special 
cases of which we have used earlier. In 2.4 we defined the vector space Q?f E* of 
covariant p-tensors (i .e . ,  tensors of rank p) over the vector space E; these covariant 
tensors were simply p-linear maps et : E x ·  . .  x E -+ R We now define the "tensor" 
product of a covariant p-tensor and a covariant q -tensor. 

Definition: If et E (;Y E* and {3 E ®q E* ,  then their tensor product et ® {3 is the 
covariant (p + q ) -tensor defined by 

et ® {3 (v / , . . .  , VP+q ) : = et (v / , . . .  , Vp){3 (Vp+ ] ,  . . .  , vp+q ) 

2.5b. The Grassmann or Exterior Algebra 

Definition: An (exterior) p-form is a covariant p-tensor et E ®P E* that is  
anti symmetric (= skew symmetric = alternating) 

et (  . . .  v" . . . , v.,. , . . .  ) = -et (  . . .  vs , . . . , v" . . .  ) 

in each pair of entries. 

In particular, the value of et will be 0 if the same vector appears in  two different entries. 
The collection of all p-forms is a vector space 

p 1\ E* = E* 1\ E* 1\ . . . 1\ E* C ®P E* 

By definition, /\ ] E* = E* is simply the space of I -forms. It is convenient to make the 
special definition /\0 E* : =  JR, that is ,  O-forms are simply scalars . A O-form field on a 
manifold is a differentiable function. 

We need again to simplify the notation . We shall use the notion of a "multi index," 
I = (i / ,  . . .  , i p ) ;  the number p of indices appearing will usually be clear from the 
context. Furthermore, we shall denote the p-tuple of vectors (Vi " . . .  , Vip ) simply by v / .  

Let et E /\" E *  be a p-form, and let a be a basis of E .  Then by (2.34) ( i .e . ,  
multi linearity) et i s  determined by its nP  components 

By skew symmetry 
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Thus a is completely determined by its values a (ai " . . .  ai,, ) where the indices are in 
strictly increasing order. When the indices in I are in increasing order, i l  < i2 < . . . , < 
ip we shall write..! 

..! = (i l < . . .  < ip ) 
The number of distinct ..! = (i I < . . .  < i p ) is the combinatorial symbol, that is, 

p 
dim 1\ E* = n ! / p ! (n - p) ! 

In particular, the dimension of the space of n-forms, where n = dimE,  is I ;  any n-form 
is determined by its value on (a i , . . .  , all ) '  Furthermore, since a repeated ai will give 
0, /1/ E* is O-dimensional if p > n .  There are no nontrivial p-forms on an n-manifold 
when p > n .  

We now wish to define a product o f  exterior forms .  Clearly, i f  a i s  a p-form and 
[3 is a q -form then a 0 [3 is a (p + q )  tensor that is skew symmetric in the first p 
and last q entries, but need not be skew symmetric in all entities; that is, it need not 
be a (p + q) form. Grassmann defined a new product a 1\ [3 that is indeed a form. To 
motivate the definition, consider the case of I -forms a I and [3 1 (the superscripts are not 
tensor indices ; they are merely to remind us that the forms are I -forms) . If we put 

a l l\ [3 1 : = a 0 [3 - [3 0 a 

that is ,  

a 1\ [3 (v, w) = a (v)[3 (w) - [3 (v)a (w) 
then a 1\ [3 is then not only a tensor, it i s  a 2-form. In a sense, we have taken the tensor 
product of a and [3 and skew-symmetrized it. Define a "generalized Kronecker delta" 
symbol as follows 

oj : = I if J = (JI , . . .  , jr ) is an even permutation of I = (i l , " " ir ) 
= - 1  if J is an odd permutation of I 
= 0 if J is not a permutation of I 

F I d26 - I 0 1 26 - 0 d 26 - I or ex amp es, 062 1 - - , 0623 - , 06 1 2  - . 
We can then define the usual permutation symbols 

E[ = Ei " . . . , i n  = E f := 0 ;2, . . . , n 
describing whether the n indices i i , . . . , in form an even or odd permutation of 1 , . . .  , n .  
This appears i n  the definition o f  the determinant o f  a matrix 

det A = Ef Ai , I Ai2 2 . • • Ai.. " 

(From this one can see that the E symbol does not define a tensor. For in lR 2 , if E ij defined 
a covariant tensor, we would have I = E ; 2 = Ers (OXr /OX, I ) (oxs / OX'2) = det(ox/ ox') , 
which is only equal to E I 2 = 1 if det(ox/ox ') = 1 . ) 

We now define the exterior or wedge or Grassmann product 
p q p+q 

1\ : 1\ E* x 1\ E* --+ 1\ E* 
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of  forms .  Let aP and f3q be  forms .  We define aP /\ f3q to be  the (p + q ) -form with 
values on (p + q) -tuples of vectors VI , I = (i l , . .  " i (p+q) given as follows .  Let 
� = (jl < . . .  < jp) and l{ = (k l < . . . < kq ) be subsets of I .  Then 

or 

a /\ f3 (v/ ) : = L L 8{Ka (vj )f3 (vK ) 
F£ 1. 

(a /\ f3) /  = L L 8{Kajf3K 
F£ 1. 

For example, if dim E = 5 ,  and if el , . . . , e5 is a basis for E 

(a2 /\ f3 ! )523 = a2 /\ f3 ! (e5 , ez ,  e3 ) = L L 8�;�arsf31 
r <s t 

�235 f3 �253 f3 d52 f3 = U523 a23 5 + u523 a25 3 + u523 a35 2 

= a23f35 - a25f33 + a35f32 

(2.43) 

In general, one checks easily that a /\ f3 is multi linear. Also, since 8Lj" k . . .  l = 
-8Lk" .j " .l we see that a /\ f3 is again skew symmetric. The wedge product, however, is  
not commutative in general . 

(f3q /\ aP ) / = L L 81' f3Kaj 
1. F£ 

= (- l ) pq L L 8fKajf3K 
1. F£ 

since K J ---+ J K requires pq transpositions.  Thus, 

aP /\ f3q = (- l ) pq f3q /\ aP 
In particular, for forms of odd degree, a2p+ ! /\ a2p+ ! = O. Thus 

dx /\ dy = -dy /\ dx and dx /\ dx = 0 

We may consider the vector space of all forms of all degrees over E* 

A E* : =  ( A E* = � ) EB ( A E* = E*) EB . . . EB ( A E*) 
This is the Grassmann or exterior algebra over E* , and 

dim A E* = ( � )  + ( � ) + . . . + ( � ) = 2n 

(2.44) 

(2.45) 

It is  crucial for computational purposes that the Grassmann algebra is distributive 
and associative. It is trivial to show distributivity ; associativity will follow from the 
following very useful result. 

Lemma (2.46) : 

L 8IJ 8JL = 8�KL 
1. 
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P R O O F : / ,  K ,  L , and M are all fixed. Since J i s  in increasing order, there is at 
most one term on the left-hand side, namely when J is some permutation of K L .  
One then simply verifies that the preceding formula i s  correct i n  the cases when 
J is an even and an odd permutation of K L. 0 

One can now verify that the exterior product is associative. Let M be any (p + q + r) 
multiindex . Look at  the component [a P /\ (fJq  /\ yr ) ] M .  Then 

[aP /\ (fJq /\ yr ) ]M  = L 8'Ja[ (fJ /\ Y ) J  
11. 

= L 8'Ja[ L 8fLfJK YL 
11. n 

= L 8�KLa[ fJK YL 
i n  

I t  is  clear that one would get the same expression for [ (a /\ fJ)  /\ y ] .  
The same type of computation would show that i f  a( I ) , . . .  , a(r) are all I -forms and 

if v( l ) , . . .  , V (r) is any r-tuple of vectors, then 

a( l )  /\ . . . /\ a(r) (v( I ) ,  . . .  , v(r ) ) = L 8 :2 . . .  ra( l ) (vi ( I ) ) . . . a(r) (Vi (r) ) 
[ 

= det[a(j) (Vi ) ]  

Let (Y I , . . .  , (Yn be  the basis of  I -forms dual to  e l , . . .  , en . I f  we  write 

then we have 

(Y [ (eJ ) = 8S 

since this is certainly true, from (2.47), when / and J are increasing. 
The reader should see Problem 2.5 ( 1 )  at this time. This problem says that 

where 

a[ = ai , . . .  ip : = a (e[ ) 

(2.47) 

(2.48) 

(2.49) 

is  skew symmetric in i I , . . .  , i p . The aI are the "components of the covariant tensor a 
with respect to the basis (Y I , . . . , (Y" of E* ." Thus the most general 2-form in ]R3 is of 
the form 

2 '"' . . I 2 I 3 2 } fJ = � bijdx' /\ dXi = b l 2dx /\ dx + b 1 3dx /\ dx + b23dx /\ dx-
i <j 

(2.50) 

We shall see in a moment why we prefer this expression. The reader should see Problem 
2.5 (2) at this point. 
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2.Sc. The Geometric Meaning of Forms in  �n 
Let us look at the geometrical meaning of exterior forms in E = �n in the special case 
when the coordinates X l , . . .  , X" are cartesian ; that is, we shall employ the euclidean 
metric of �" . The coordinate vectors {Oi } form an orthonormal basis of E, with dual 
basis {dX i } for E* . We already know that for these I -forms dx i (v) = Vi , that is, dxi 
reads off the i th component ofv. Next, 

dxi /\ dxJ (v, w) = dxi (v)dxJ (w) - dxJ (v)dxi (w) 

= I �� :� I 
= ± the area of the parallelogram spanned by the projections Jr (v) , Jr (w) of the vectors 
v, w into the Xi x J plane; the + sign is used if these projections determine the same 
orientation of the plane as do Oi and oJ . (We shall discuss the notion of orientation 
more thoroughly in Section 2 .8 . )  

z 

w 

v 

�:------------ y 

]T(V) 
x 

Figure 2.6 

In the figure, dx /\ dy (v, w) i s  the negative of the area of the parallelogram spanned 
by Jr (v) and Jr (w) . Likewise, from (2.47), 

dXi l  /\ . . . /\ dxip (V l , . . .  , vp ) 

= ± the p-dimensional volume of the parallelopiped spanned by the projections of 
these vectors into the Xi i . . . XiI' coordinate plane; the + sign is used only if these 
projected vectors define the same orientation as does ai l '  . . .  , aip .  

2.Sd. Special Cases of the Exterior Product 

Let r
l

, . . .  , r
ll be any n-tuple of I -forms, and expand each in terms of a basis (we are 

not assuming any scalar product) 
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I II _ '\' T I . Til . j] /\ .in Then r /\ . . . /\ r - L.. J J ] '  • • Jn a . . .  /\ a 

that is, 

'" T I Tn �j ] .

. 
J,,'n rT I /\ . . . /\ rT "  = L j ] . . . .in U 1 2 . v v 

J 
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r l  /\ . . . /\ r" = (det T)a 1 /\ • • •  /\ a" (2 .5  I )  

Exterior products yield a coordinate-free expressionfor the determinant! For this reason 
the wedge product is very convenient for discussing linear dependence. 

Theorem (2.52):  The p I -forms r I , . . .  , r P are linearly dependent iff 

r l /\ . . . /\ r P  = 0 

P R O O  F :  If r r = Li#r ai r i then r I /\ . . .  /\ rr /\ . . . r P will be a sum of terms, each 
having a repeated r i , and so the product will vanish. On the other hand, if the r 's are 
linearly independent we may complete them to a basis r I , . . . , rn . Let fl ' . . . , fll 
be the dual basis .  From (2.47) we have r I /\ . . .  /\ r P /\ • • •  /\ rn (fl , . . .  , fn ) = I ,  
showing that r I /\ • • .  /\ rP  i- O .  D 

2.se. Computations and Vector Analysis 

For computations using forms we may use the usual rules of ari thmetic except that 
the commutative law is replaced by (2.44) . In particular dx /\ dy = -dy /\ dx and 
dx /\ dx = O. Consider ]R3 as a 3-manifold with any (perhaps curvilinear) coordinate 
system X l , x2 , x3 • Let f be a O-form, that is ,  a function of x ,  and let ai , hi , and cij be 
functions. Then 

are I -forms 

is a 2-form, and 

is a 3-form. 

y2 = C23dx2 /\ dx3 + C3 1  dx3 /\ dx I + C l 2dx I /\ dx2 

:=  c l dx2 /\ dx3 + C2dx3 /\ dx 1 + C3dx l /\ dx2 

(In cartesian coordinates u} is the "volume form," but note that, for example, in 
spherical coordinates r2 sin edr /\ de /\ d¢ i s  the volume form;  these matters will be 
discussed later. ) 

As we shall see, these are familiar expressions used in vector analysis in the case 
when the coordinates are cartesian, involving line, surface, and volume integrals, where 
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they are usually written, for example, a s  a = a • dx and y = c • dS, and ()) = d V .  We 
then have 

a ' /\ f3 ' = (a ,dx ' + a2dx2 + a3dx3 ) /\ (hdx ' + b2dx
2 

+ b3dx3 ) 

= a , b , dx ' /\ dx ' + . . . + a2b3dx2 /\ dx3 + . . .  + a3b2dx
3 /\ dx2 

= 0 + . . . + (a2b3 - a3b2 )dx2 /\ dx3 

= (a2b3 - a3b2 )dx2 /\ dx3 + (a3b , - a , b3 )dx3 /\ dx ' 

+ (a , b2 - a2bddx ' /\ dx2 

In cartesian coordinates this says 

(a · dx) /\ (b · dx) = (a X b) • dS 

but note that the three components of a /\ f3, which make sense in any coordinate 
system, are not the components of the cross product in curvilinear coordinates ! The 
exterior product replaces the notion of X product (which is not associative ; i X (i X j) 
i- (i X i) X j) .  We shal l  see the exact correspondence between exterior forms and 
vector analysis in Section 2 .9b. 

Problems 
2.5(1 ) Show that if exP is any p-form , we have the expansion 

= L ex (ei1 . . .  , eip )a i1 /\ . . .  /\ a ip 
J 

(H int :  Check values of both sides on e.,f ' )  
2.5(2) Show that i n  ]R

n , i f  i < j < k, then 

that is, one writes down ai b jk and then one cyclically permutes the indices i, j, k .  
I nvestigate ex 1 /\ j3n- 1  i n  ]R

n
, paying special care to the parity of n. 

2.5(3) I n ]R3 , compute ex 1 /\ y2 and ex 1 /\ j3 1 
/\ P 1 , where p is a 1 -form,  and relate these 

resu lts to vector analysis. 
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2.6. Exterior Differentiation 

Does one ever need to wri te out curl A in curvi l inear coordinates? 

2.6a. The Exterior Differential 

In Section 2.4e we saw that if A = A; (x )dx; is a covariant vector field on a manifold, 
that is, a I -form, then Fij = 0; A j - OJ A; are the components of a covariant second-order 
tensor that is clearly skew symmetric .  Thus 

F := 2)Oi Aj - oj Ai )dx; 1\ dxj 
i <j 

is an exterior 2-form. We then have a way of "differentiating" a I -form, obtaining a 
2-form. We also showed that the expressions { Oi A j }  themselves do not form the compo
nents of a tensor. Problem 2.4 (3) indicated that it does not seem to be possible to differ
entiate a contravariant vector field and obtain a tensor field. In this chapter we shall de
fine a differential operator d that will always take exterior p-form fields into exterior (p+ 
I )-form fields. In a sense then, covariant skew symmetric tensors have a richer structure 
than tensors in general, and this  richer structure plays an essential role in physics. 

Recall that if f is a function, that is ,  a O-form, then its differential df = (0; f)dxi 
is a I -form. Also, equation (2.44) says that aO 1\ f3P = f3P  1\ aO .  For this reason one 
ordinarily does not put a wedge 1\ in a product involving a O-form. 

Theorem (2.53): There is a unique operat01; exterior differentiation, 

satisfying 

P 1'+ 1 

d : 1\ Mil ---+ 1\ Mil 

(i) d is additive, d (a + 13)  = da + df3. 

(ii) dao is the usual differential of the function aO. 

(iii) d(al' 1\ f3q )  = dal' 1\ 13'1 + (- 1  ) Pal' 1\ df3Q . 

(iv) d2a := d (da) = O, for allforms a. 

P R O O F : We shall first define an operator dn using a local coordinate system x ,  
and then show that this operator i s  i n  fact independent of the coordinate system . 

Step I. Iff is a O-form, define d, f = df = (oJ )dx ; . We know in fact that 
df is independent of coordinates: Its coordinate-free definition is df(v) = v(f) ; 
see (2.6). Condition (ii) has been satisfied. 

Step II. If a is a function, define, for J = (i 1 , . • .  , i p )  

dAa (x)dx l ] = da 1\ dx l = (oja)dx j 1\ dx l 

We then define d, on any p-form in the coordinate patch x by additivity 

d, L al (X )dx l = L dal l\ dx l 
1 1 
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Condition (i) is automatically satisfied. Consider condition (iii) . Let J = (jl , . . . , }q ) .  

Then 

dALa,dx' /\ L b}dx} ] = dx L a,b}dx ' /\ dx} 
1 1. 11. 

= L(da, b} + a, db} ) /\ dx ' /\ dx} 
11. 

= Lda, /\ dx ' /\ 
L b}dx} 

1 1. 
+ La,dx ' /\ L(- l ) Pdb} /\ dx } 

1 1. 

since db} /\ dx ' = (- l ) Pdx ' /\ db) involves p interchanges .  (iii) is satisfied. 
To verify (iv) , note that if J is a function, then 

dx (d, (f) ) = dx LC3d)dxi = Ldx C3d) /\ dxi = L(3i� f)dxj /\ dxi 
ij 

( 32 J ) 
r s ( 32 J ) d S d r 0 = . . .  + --- dx /\ dx . . .  + --- X /\ X + . . . = 

3xr 3xs 3xs 3xr 
(It is a general and very useful fact that if A : : :�· . .  L: is  symmetric in i ,  ) and skew 
symmetric in r, S then the contraction k:: : : :t: = 0. )  

Then from (iii), for any functions J, g, not simply for coordinate functions, 
we have 

dt CdJ /\ dg) = 0 

and by induction 

dAdJ /\ dg /\ . . .  /\ dh) = 0 

Then, for any p-form a 

d;a = d; L a,dx ' = d, L da, /\ dx ' = 0 
1 1 

(2 .54) 

We have now defined an operator dx in each coordinate patch x and i t  satisfies 
(i), (ii), (ii i) , and (iv) . Let y be another coordinate patch that overlaps x, and let 
dy be the corresponding differential . Then, since dy again coincides with dx on 
functions, in particular coordinate functions, we have, from (iii) and (2.54), 

d,. L a, (x)dx ' = Ldya, [x (y) ] /\ dx' 
1 1 

= Lda, /\ dx' 
1 

= dx L a, (x)dx i 
1 

Thus d := dy = dx is well defined, independent of coordinates . 
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As  to  uniqueness, any operator d' satisfying (i) ,  (i i) ,  (ii i) ,  and (iv) must satisfy 

d' L a, (x )dx '  = L da, /\ dx '  = d L a, (x)dx ' 0 
1 1 1 

2.6b. Examples in ]R3 
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Let x = x ,  y ,  Z be any (perhaps curvilinear) coordinate system in ffi.3 . Then the differ
ential of a function f = fO is 

dfo = 
(
��
)

dX + (��
)

dY + (��) dZ 

If the coordinates are cartesian, then the components are the components of the gradient 
of f, 

df = V f • dx 
If, in general coordinates 

then 

a 1 = a l  (x)dx + a2 (x)dy + a3 (x)dz 

da 1 = da l /\ dx + da2 /\ dy + da3 /\ dz 

[
( 3a l ) ( 3a l ) 

( 3a l ) ] � dx + ay dy + � dz /\ dx 

+ 
[ (�:2 )

dX + 
(�:2 )

dY + ( 3
3:

2 ) dZ] /\ dy 

+ 
[ (��)

dX + (3:;
)

dY + 
( 3

3
a; ) dZ] /\ dz 

= (3ya3 - 3za2)dy /\ dz + (3za l - 3xa3 )dz /\ dx 
+ (3xa2 - 3ya l )dx /\ dy 

In cartesian coordinates the components are the components of the curl of the vector A, 
d (A • dx) = (curl A) • dS 

Finally, for a 2-form f3 (writing b23 = b l , b3 1 = b2 , b l 2 = b3 ) 
df32 = d [b l dy /\ dz + b2dz /\ dx + b3dx /\ dy] 

= db l /\ dy /\ dz + db2 /\ dz /\ dx + db3 /\ dx /\ dy 

= [3xb 1 + 3yb2 + 3zb3 ]dx /\ dy /\ dz 
whose single component in cartesian coordinates is the divergence of the vector B, 

d eB • dS) = div B dV 
d2 = 0 in any coordinate system; in cartesian coordinates this yields the famous 

curl grad = 0 and div curl = O. 
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I t  is  important to realize that i t  is no  more difficult to compute d in a curvilinear 
coordinate system than in a cartesian one. For example, in spherical coordinates, for 
I -form a = Pdr + Qde + Rd¢ 

d[Pdr + Qde + Rd¢l = dP /\ dr + d Q  /\ de + dR /\ d¢ 
= (3e R - 3", Q)de /\ d¢ + (3", P - 3r R)d¢ /\ dr 

+ ( 3r Q  - 3e P )dr /\ de 

Note that (P ,  Q ,  R) form the components of a covariant vector, a, and that the three 
components of da 1 do not form the components of the curl of a vector; they are the 
components of a second-rank covariant skew symmetric tensor. We shall see in Section 
2.9 that it is possible to identify 2-forms in JR.3 (with a given metric) with contravariant 
vectors and then the vector identified with da is the curl of the contravariant version 
of a . This is not only an extremely awkward procedure, it serves no purpose, for we 
maintain that there is never any reason to take the curl of a contravariant vectOl: In 
situations where the "curl " of a "vector " is required, the "vector" will most naturally 
appear in covariant form (i. e. , it will be a 1 -fonn a ) , and then da is all that is required. 
For example, the electric field measures the force on a unit charge that is at rest. Force, 
being the time rate of change of momentum, appears natural ly as a covector (see (2.29)) 
and so the electric field is a I -form G� l .  Then Faraday 's law really states that dl ) i s  the 
negative of the time rate of change of the magnetic field 2-form �jj2 . These matters will 
be discussed in Section 3 . 5 .  

2.6c. A Coordinate Expression for d 
Let aP = I:L aLdxL be a p-form; then daP = I:L (dad /\ dxL .  Now daL is the 1 -
form whose Jih component i s  (dadj = 3jaL . Also d� L i s  the p-form with components 
(dXL ) K = o� .  Then from (2.43) we get 

(da) ,  = 2)daL /\ dxL ) ,  = L L oj K (3jado� 
k k j . /S.  

that is ,  

(2.55) 

Thus for I increasing 

Hence 

(2.56) 
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where the hat � over ir means omit ir . We can also write 

(daP ) ! = 
L
(_ l ) r+ 1 8daP (8i l ' . . . ai, . . .  8i (p+ 1 ) ] 

If, for example, a = Li aidxi is a I -form on Mil , from (2 .55)  

(da l ) ij = aiaj - ajai 
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(2.57) 

(2.58) 

and this of course was the procedure used for defining the field strength in (2.42). 
If fJ2 = 

L
i <j bijdxi /\ dxj is a 2-form in an Mil , from (2.56) 

Problem 

(2.59) 

2.6(1 ) Relabel the components of a 3-form f33 i n  ]R4 (as we d id for a 2-form in  ]R3 , b1 2  = 
� ,  . . .  ) to get a d ivergencel ike expression for df33 . Guess what should be done 
for f3n- 1  i n  ]Rn . Watch for the parity of n. 

2.7. Pull-Backs 

What are the deformation tensors that arise in elasticity theory? 

2.7a. The Pull-Back of a Covariant Tensor 

Let F : Mil -+ Wr be a differentiable map. Sometimes we shall write M � W. In 
local coordinates x for M and y for W we have yj = F j (x) , or briefly y = y (x) . 

If / : W -+ ll{ is a smooth function (O-form) on W we define its pull-back to M, 

written F* /, to be the composition / 0  F : M -+ R that is ,  M � W J, R 

(F* j) (x) = (f 0 F) (x) = /(y(x» 
This is a real-valued function on M, M � R One can always pull back a/unction 
on W. lf F has an inverse G = F- 1 then one can "push forward" a function h on M to 
yield a function h 0 F- 1 on W, W -S. M � ll{, but it should be clear that one cannot 
in general expect to push forward a function on M to get a function on W, unless F- 1 
exists. 

For future needs, we exhibit here how a vector v at x of M, as a differential operator, 
acts on the pull-back of a function. 

. a v(F* j) = v[f {y (x ) } ] = v' -. [f {y (x» ) ] ax' 

= Vi ( ��� ) (:� ) 
v(F* j) = (F*v) (f) = d/(F*v) (2.60) 
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Now let aP be  a covariant tensor a t  y in W. We have just defined the pull-back of 
aP when p = O. When p = I ,  that is, when a is a I -form, its pull-back was defined in 
(2 .23) .  We now define in general the pull-back of a covariant tensor by 

(2 . 6 1 )  

I t  is  clear that F*a i s  alternating i f  a i s ;  that is, the pull-back o f  a p-form on  W i s  a 
p-form on M 

p p 
F* : I\ W -+ I\ M 

Unless otherwise indicated, by pull-back we shall mean the pull-back of an exterior 
form. 

In our warning following (2.25)  we pointed out that one cannot push forward a 
contravariant vector field on M to yield a vector field on W. The ability to pull back 
covariant tensors endows these tensors with a crucial operation that is not available to 
the contravariant ones . It is difficult to overemphasize the importance of this advantage. 

It is clear from (2.6 1 )  that F* is additive; that is, F* of a sum is the sum of the F* ' s o  
This is further enhanced by the following two properties: The pull-back of a product 
of forms is the product of the pull-backs, and the pull-back of the exterior derivative 
of a form is the derivative of the pull-back. We proceed to these matters, for they are 
crucial to writing down coordinate expressions economically. 

Theorem (2.62) : F* is an algebra homomorphism, that is, 

F* (a /\ fJ) = (F*a) /\ (F* fJ)  

For proof see Problem 2.7( 1 ) . 
It is even simpler to prove that for any tensor product of covariant tensors 

F* (a ® fJ) = (F*a) ® (F*fJ) (2.63) 

Theorem (2.64) : F* commutes with exterior differentiation, d 0 F* = F* 0 d, 

F* (da) = d(F*a) 

P R O O F :  When a = aD is a function f on W near F(x) and v is tangent vector 
to M at x , we have from (2.60) and (2.23) 

d(F* f) (v) = v(F* f) = df (F* (v) ) = (F* (df) ) (v) 

Thus (2 .64) has been proved when a is a O-form. When a is a p-form, we have 

d o F* L aj (y)dyi] /\ . . . /\ dyip , which from (2.62) 
1 

= dL (F*aj (y) ) (F*dyi] ) /\ . . . /\ (F*dyil' ) = 
1 
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(since (2.64) has been proved for O-forms) 

as desired. 0 

= d L (F*aJ (y) )d (F* yj l )  /\ . . .  /\ d (F*yjp ) 
1. 

= L (dF*aJ (y)) /\ d (F* yj , )  /\ . . . /\ d (F*y J,, ) 
1. 

= L (F*daJ ) /\ (F*dyj, ) /\ . . .  /\ (F*dyjp ) 
1. 

= F* L (daJ ) /\ dyj, /\ . . . /\ dyjp 
1. 

= F* 0 d L aJ (y)dyj, /\ . . . /\ dyjp 
1. 
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Explicitly, with 1 =  Ci l , " "  ip ) , F*d (y J ) = F* (dyj, /\ . . . /\ dyjp ) = �, (Byj, /BXi , ) 
. . .  (Byj" / Bx ip )dx ' .  But dx ' = �L ofdx L (we are merely putting the dx 's in increasing 
order; for each given I there is only one nonzero term in the sum on the right). Then 

Thus we have 

and so 

where 

F*aP = F* L aJdyJ = L a* L (x)dxL 

1. L: 

a*dx) := L aJ (y (X ) ) det { B (y2 } 
1. B (x ) 

(2.65) 

Let, for example, M2 be a surface in �3 , that is, a 2-dimensional submanifold. We 
have the inclusion map, i : M --+ �3 , which is a fancy way of saying that any point of 
M is also a point in �3 . If v is a tangent vector to M, then i* v is simply the same vector 
v, considered as a vector in �3 . If {J2 is a 2-form on �3 , then the pull-back of {J to M 
is the 2-form i * {J whose value on the pair v, w of tangent vectors to M is given simply 
by i *{J (v, w) = {J (i.v, i*w) = {J (v, w) . In other words, i *{J in this case of inclusion is 
the sameform {J, but we restrict its domain to vectors that are tangent to M.  This  same 
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situation holds whenever Mil is a submanifold of  another manifold. I f  u = (u , v) are 
local coordinates in M2 and x = (x , y ,  z) are coordinates for IR?, then 

i * f3 = i * [b l (x)dy 1\ dz + b2 (x)dz 1\ dx + b3 (x)dx 1\ dy 1 [ B (y , z) B (z , x) B (x , y) ] 
= b l (x(u) ) -- + b2 (x(u) ) -- + b3 (x(u) ) -- du I\ dv B (u , v) a (u , v) a (u ,  v) 

See Problem 2 .7(2) a t  this time. 
Another way to get this coordinate expression for i * f3 is to compute directly, using the 

fact that i * commutes with exterior products and differentiation. For example, putting 
x = (x , y , z) and u = (u , v) 

i * (b l dy 1\ dz) = b l (x(u) ) i * (dy) 1\ i * (dz) 
= b l (x(u) )  [ ( �� ) dU + ( �� ) dV] 1\ [ ( :� ) dU + ( :� ) dV] 

= b l (x(u) )
[ ( �� ) ( :� ) - ( �� ) ( :� ) ] dU I\ dv 

Two final remarks. First, if F : Mil --+ Mil is the identity map but expressed in 
different coordinates, that is ,  if y = y (x )  is  simply a change of coordinates, then 
a = F*a is simply expressing the form a in the two coordinate systems. For example, 
if u , v, w are curvilinear coordinates in JR.3 then from either (2.65) or from (2.5 1 )  we 
see [ a (x , y , z) ] dx 1\ dy 1\ dz = du 1\ dv 1\ dw B (u , v ,  w) 

Finally, we  have defined the Poincare I -form A = Pidqi in phase space T* Mil (see 
(2 .33)) .  We then define the Poincare 2-form by 

(2.66) 

This form, as we shall see, plays a most important role in Hamiltonian mechanics .  If 
F : JR.2 --+ T* Mil is a 2-dimensional surface in phase space, then the pull back of w to 
JR.2 (whose coordinates are u ,  v) is the 2-form 

F*w = { u , v }du 1\ dv 
where 

(2.67) 

defines the Lagrange bracket of the functions u and v .  

2.7b. The Pull-Back i n  Elasticity 

Consider an elastic body �H in JR.3 and a deformation �111 = F UI1) of this body. To describe 
this we shall let X I ,  X2 , X3 be cartesian coordinates in JR.3 and the deformation will be 
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described by functions Xi  = Xi (X) . We may think of X and X as being two identical 
Cartesian coordinate systems in �3 

. A point with coordinates X in �!3 will be sent into the 
point with coordinates x in �!3' . We shall try to follow a co,nmon practice of denoting 
quantities associated with the undeformed body by capital letters , and those of the 
deformed body with lower case. 

pf 
/ F.', 

_01---- �B 
x 

Figure 2.7 

Under the deformation, the orthonormal pair 8 A , 8 B at X is  sent, by the differential 
of F at X, into a pair of vectors F*8 A , F*8 B at x . 

The metric tensor of �3 can be written dS2 = GAB (X)dXA ® dXB , meaning 
d S2 (V, W) = GAB V A W B . It is traditional to omit the tensor product sign ® when 
dealing with symmetric tensors. Thus at X, since the coordinates are cartesian, 

dS2 = GABdXAdXB = OABdXAdXB = 1 )dxA )2 
A 

and this is the usual expression for "arc length" in elementary calculus, ds2 = dx2 + 
dy2 + dz2 . This will be discussed at great length in Part Two. 

We may also write this same tensor, at the point x , as ds2 = 2:a (dxa ) 2 . For the 
pull-back under F we have, from (2.63), 

This tensor, 

F* (ds2) = � [ � (:;: ) dXA 1 ® [ � (:;: ) dXB 1 
= L ( ax: ) ( ax: ) dXAdXB aAB ax ax 

(2.68) 
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when applied to the pair 8c , 8 D ,  reads off the scalar product o f  the pair F*8c , F*8 D ,  
and i s  called the right Cauchy-Green tensor C 

C : = F* (ds2 ) 

One measure of the deformation taking place is given by the Lagrange deformation 
tensor 

I * 2 2 1 [L ( ax )  ( ax )  l A B - [F (ds ) - dS ] = - - . - - DAB dX dX 
2 2 aXA aXB AB 

(2.69) 

A more general discussion of deformations in continuum mechanics will be found 
in the Appendix to this book. 

Problems 
2.7(1 ) Prove (2 .62) . [H int :  Use (2.43)] . 

2.7(2) Let x be cartesian coord inates for IR3 . Then the 2-form f3 is of the form f3 = b ·  dS.  
Show that in  the coord inate patch (u, v )  of  the surface M2 c IR3 we have 

i* f3 = b • n du 1\ dv (2.70) 

where n := Xu x Xv := (3xj3 u) x (3xj3 v) is a (nonunit) normal to M. 

2.8. Orientation and Pseudoforms 

Leave your shoes, labeled R and L, and take a long trip around the universe. Is i t  possible that 
your right foot will only fit into your left shoe when you return? 

2.8a. Orientation of a Vector Space 

Let e = (e 1 ,  . . .  , e,, ) and f = (f1 " ' "  fll )  be two bases of a vector space E ;  we can 
then write f = eP ,  that is, f; = e i p i ; ,  for a unique nonsingular matrix P. We say that 
e and f have the same (resp. opposite) orientation if det P is positive (resp. negative) . 
(It is easy to see, from the continuity of the function P ---+ det(P ) ,  that if a basis e is 
continuously deformed into a basis f while remaining a basis at each stage, then both 
bases have the same orientation . )  

The collection of a l l  bases of E then falls natural ly into two equivalence classes of 
bases . (For example, the tangent space to our physical 3-space at a given point is a 3-
dimensional vector space, and we have the two classes of bases defined by using either 
the right- or the left-hand rule.) We orient a vector space by declaring one of the two 
classes of bases to be positive; the other class then consists of negatively oriented bases. 
In our 3-space it is  usual to declare the right-handed bases to be positively oriented, 
but we could just as well have the left-handed bases as positive. It should be clear that 
except for our prejudices about right and left, neither choice is any more "natural" than 
the other. This is especially clear if we consider a 2-dimensional case instead. If we 
draw a "positive" basis for a sheet of paper by using an xy coordinate system where, 
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as is usual, we rotate through a right angle counterclockwise from x to y, then if we 
view the sheet of paper from the reverse side we see that this basis requires us to rotate 
clockwise from x to y . 

To orient a 2-dimensional vector space is to declare one of the two possible senses 
of rotation about the origin to be positive. Given an oriented plane and a positively 
oriented basis e 1 , e2 , the positive sense of rotation goes from the first basis  vector to 
the second through the unique angle that is less than a straight angle. 

RIl , as a space of n -tuples, comes equipped with a natural basis e 1 = ( l , 0, . . . , O) T ,  
and so on, but i t  i s  important to realize that most vector spaces w e  shall encounter do not 
have distinguished bases and consequently do not have a natural choice of orientation ! 

2.Sb. Orientation of a Manifold 

Now consider a manifold Mil . Of course we may orient each tangent space M� hap
hazardly, but for many purposes it would help if we could do this in a "continuous" 
or "coherent" fashion. For example, let Ux be a coordinate patch with coordinates x .  
Then w e  may orient each tangent space at each point of Ux by declaring the bases 
8 = (8 ] , . . .  , (11 ) to be positively oriented. We have then oriented all the tangent 
spaces at all points of the patch Ut • If a point lies in an overlap U x n U y of two patches, 
the two bases are related by 8y = 8x eJxjJy) , and thus the two orientations agree if 
and only if the Jacobian determinant is  positive. 

We shall say that a manifold Mil is orientable if we can cover M by coordinate 
patches having positive Jacobians in each overlap. We can then declare the given co
ordinate bases to be positively oriented, and we then say that we have oriented the 
manifold. Briefly speaking, if a manifold is orientable it is then possible to pick out, in 
a continuous fashion, an orientation for each tangent space M; to Mil . Conversely, if 
it is possible to pick out continuously an orientation in each tangent space, we can (by 
permuting X 1 and X2 if necessary) assume that the coordinate frames in each coordinate 
patch have the chosen orientation and Mil must be orientable . 

It should be clear that if M is connected and orientable, then there are exactly two 
different ways to orient it. Of course if M can be covered by a single coordinate patch 
it is then orientable. Mobius discovered that there are manifolds that are not orientable 
and we shall consider this in a moment. 

Let p and q be two points of a manifold Mil . Let C be any curve joining these two 
points, p = C(O) and q = C ( 1 ) .  Given a frame e(O) at C (O) we can extend this frame, 
in many ways, to yield a frame e( t) at C (t) for all 0 ::: t ::: 1 such that the assignment 
t 1-+ ei (t) is continuous (we do not ask that e (t 1 ) = e(t2 ) whenever C (t 1 ) = C (t2» .  
For example, i f  C ( t )  lies in a coordinate patch U t  for 0 ::: t ::: a ,  we can insist that the 
components of the fields ei (t ) with respect to the coordinate basis 8 be constant. We 
can extend past t = a by using perhaps a different patch that holds the next portion 
of the curve, and so forth. In this way we can, in a continuous fashion, transport a 
frame at p to a frame at q .  Although thi s  process is in no sense unique, it i s  easy to 
see that the orientation of the frame e ( l )  at the end q = C ( 1 )  of the curve is uniquely 
determined by the orientation e(O) at the beginining p = C (O) , and the reader should 
verify this .  In other words, we have unique transport of orientation along a curve. We 
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do  not claim that the resulting orientation at q i s  independent o f  the curve C joining 
it to p.  If, however, M is  orientable, we may cover M with coordinate patches having 
positive lacobians in their overlaps;  it is then clear that if e(O) is  positively oriented 
then e ( 1 )  will also be positively oriented, independent of the curve C. It follows that 
if, in a manifold, transport of orientation can lead to opposing results when applied to 
two different curves joining p and q, then M cannot be orientable. Thus if transport of 
orientation about some closed curve leads to a reversal of orientation on return to the 
starting point, then Mil must be nonorientable ! 

The Mobius band is thus clearly nonorientable . 

e2(O) 

C(O) I-----I� e l(O) . . • . . • . . • . • . . • . . . • . • . . . . . . . . . . . . . . .  C(l ) t---- e l( l ) 

Figure 2.8 

In this figure we have transported a frame along the midcircle of the Mobius band. 
By the identifications defining the Mobius band we see that e, ( 1 )  = el (0) and e2 ( 1 )  = 
-e2 (0) , and thus orientation is reversed on going around the midcircle. 

This example of the Mobius band is but a special case of a very general situation 
involving "identifications." An accurate treatment of this subject would take us too 
long ; we hope to convey the ideas by means of an example. Before this ,  we must 
discuss an important criterion for orientability of a hypersurface ( i .e . ,  a submanifold of 
codimension I )  of an orientable manifold. 

2.Se. Orientability and 2-Sided Hypersurfaees 

Let Mil be a submanifold of wr • A vector field along M is a continuous tangent vector 
field to W that is defined at al l points of M (it need not be defined at other points) . A 
vector field N along M is transverse to M if it is never tangent to M; in particular it is 
never 0 on M. 

We say that a hypersurface Mil in W"+ ' is 2-sided in W i f  there is a (continuous) 
transverse vector field N defined along M. 

A surface M2 in ]R3 has at  each point a pair of oppositely pointing uni t  normals .  
Suppose that it is possible to make a continuous choice N for the entire surface.  N 
is then a transversal field to M2 and M2 i s  2-sided in ]R3 . For example, the 2-sphere 
S2 is the complete boundary of a solid ball, and consequently it makes sense to talk 
of the outward pointing unit normal . On the other hand, it is a famous fact that the 
Mobius band is " I -sided" ; that is, there is no way to make a continuous selection of 
unit normal field. (If we choose a normal at a point of the midcircle of the band and 
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transport it continuously once around the circle, we find on returning to the starting 
point that the normal has returned to its negative. )  If one can define continuously a 
unit normal field to a surface in JR.3 then the surface must be orientable, for we could 
then make a continuous choice of orientation in each tangent space as follows. JR.3 is 
orientable and so we can choose an orientation of JR.3 , say the right-handed one. We can 
then declare a basis e, , e2 of tangent vectors to M2 to be positively oriented if N, e, , ez 
forms a positively oriented basis in JR.3 . 

More generally, if Mil is a 2-sided hypersuiface of an orientable manifold Wn+' ,  
then Mn is itself orientable ! 

We must emphasize the difference between orientability and 2-sidedness. Orientabil
ity is an intrinsic property of a manifold Mil ;  whether Mn is 2-sided in Wn+ ' depends 
on W and on how M is embedded in W. For example, if Mn is any manifold, orientable 
or not, consider the product manifold W"+'  = Mil X JR., with local coordinates (x ) from 
M and a global coordinate t from R Then M" considered as the submanifold defined 
by t = 0 is automatically a 2-sided hypersurface of wn+ ' with transverse vector field 
a/a t .  Thus the Mobius band Mo is I -sided in JR.3 but it is a 2-sided hypersurface of 
Mo x R  

2.Sd. Projective Spaces 

We have seen in Section 1 .2b(vi) that the real projective plane JR.p2 is the 2-sphere S2 
with antipodal points identified. Since S2 is 2-sided in JR.3 it is orientable; we declare 
a basis e" e2 of tangent vectors to S2 to be positively oriented provided N, e" e2 , is a 
right-handed basis of JR.3 , where N is the outward pointing normal to the sphere. Note 
that the antipodal map a : S2 ---+ S2 is simply the restriction to S2 of the reversal map 
r : JR.3 ---+ JR.3 , r ex) = -x, and in 3 dimensions the reversal map reverses orientation of 
space. Thus if N, e "  eZ , is  right-handed at the north pole n then -e" -e2 , -N is  left
handed at the south pole s .  But -N is the outward pointing normal at s, and so -e"  -ez 
is negatively oriented at the south pole of S2 . This means, since S2 is orientable, that if 
the basis e" e2 at n i s  transported along a curve C on S2 to s (the pair remaining tangent 
to S2 and independent) then the resulting basis f" f2 has the opposite orientation as 
-e" -e2 there. But the basis -e" -e2 at s represents, on JR.p2 , exactly the same basis 
e" e2 at n, and the arc C on S2 becomes a closed curve C' on JR.p2 that starts and stops at 
n. This means that on transporting the basis e" e2 at n along C' on p2 (JR.) , one returns to 
an oppositely oriented basis . Thus JR.p2 is not orientable ! Note that the crucial point in 
the preceding argument was that JR.p2 is  obtained from the orientable S2 by identifying 
points by means of the antipodal map, and this map reverses orientation on S2 . 

In Problem 2.8( 1 )  you are asked to show that JR. P" is not orientable ifn is even. We 
shall see later on that odd-dimensional projective spaces are infact orientable. 

2.Se. Pseudoforms and the Volume Form 

The differential forms and vectors considered so far have not involved the notion of 
orientation of space . However, roughly half of the "forms," "vectors," and "scalars" that 
occur in physics are in fact "pseudo-objects" that make sense only when an orientation 



86 T E N S O R S  A N D  E X T E R I O R  F O R M S  

is  prescribed. The magnetic field pseudovector B i s  perhaps the most famous example, 
and we shall discuss this later. 

Consider ordinary 3-space �3 with its euclidean metric .  We would like to define the 
"volume 3-form" vol3 to be the form that assigns to any triple of vectors the volume of 
the parallelopiped spanned by the vectors ; in particular vol (X, Y, Z) should be 1 if X, Y ,  
and Z are orthonormal . But  if vol is  to  be  a form we must then have vol (Y, X,  Z) = - 1 ,  
and yet Y, X ,  and Z are orthonormal . We have asked too much of vol . In some books 
they get around this by taking absolute value 1 vol (Y, X, Z) I ,  but this does great harm 
to the machinery of forms that we have labored to develop. What we could do is require 
that vol (X, Y, Z) = 1 if the triple is an orthonormal right-handed system. This makes 
the volume form orientation-dependent. There is a serious drawback to this definition; 
what if we are dealing with a space that is not orientable? The physical space in which 
we live is, according to general relativity, curved and perhaps not orientable. If you 
leave your shoes (labeled "right" and "left") at home and take a very long trip, it may 
very well be that on returning home your right foot will fit only into your shoe labeled 
"left." The term "right- handed" might not have an unambiguous meaning in the large, 
just as rotation in "the clockwise sense" has no meaning on the Mobius band. 

We compromise by defining a new type of form (called "form of odd kind" by its 
inventor Georges de Rham) differing from our usual forms (of "even kind") in a way 
that will not seriously harm our machinery. 

First note that the assignment of an orientation to a vector space E is the same as 
the assignment of a function 0 on bases of E whose values are the two integers ± 1 ;  
o (  e) = + I iff the basis e has the given orientation. If (x) is  a coordinate system, we 
shall write o (x)  rather than o(a, ) .  

Definition: A pseudo-p-form (Y o n  a vector space E assigns,for each orientation 
o of E, an exterior p-form (Yo such that if the orientation is reversed the exterior 
form is replaced by its negative 

A pseudo-p-form on a manifold Mil assigns a pseudo-p-form (Y to each tangent 
space M; in a smooth fashion; that is, if (x) is a coordinate system in a patch then 
if we take the orientation 0 in this patch defined by o( ax ) = + 1 ,  we demand that 
the (ordinary) exterior form (Yo be smooth. 

For example, let us write down a volume form for �3 (we shall give a general definition 
later on) . Let x , y, z , be a cartesian coordinate system in �3 (it may be right- or left
handed). Then the volume (pseudo) form is 

vol3 :=  o (a" av ' aJdx ;\ dy ;\ dz 
Thus if 0 is the right-handed orientation of �3 , and if the coordinate system is right
handed then volo = dx ;\ dy ;\ dz , whereas if the coordinate system is left-handed 
volo = -dx ;\ dy ;\ dz = dy ;\ dx ;\ dz .  

Similarly we can define pseudovectors, pseudoscalars, and so  on ,  pseudo always 
referring to a change of sign with a change of orientation. For example, the magnetic 
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field about a current carrying infinite straight wire circulates about the wire, but the 
sense of circulation is undetermined ! If we employ the usual right-handed orientation 
of �3 , then the field (by definition) circulates about the wire in the sense of a right-hand 
screw, whereas if we use the left-handed orientation the direction is in the sense of a 
left-hand screw. This indecisiveness cannot be avoided; it stems from the definition 
of the magnetic field, (see (3 .36)), and the fact that a "sense" can be assigned to a 
X product of vectors v X w only after an orientation is chosen. Thus B is not a true 
vector, but rather changes into its negative when the orientation of�3 is reversed; B is 
a pseudovector. 

Warning: We have defined vectors, forms, orientation and pseudoforms in a manner 
that is independent of coordinate systems. For example, in �3 we may assign the right
hand orientation and still employ a left-handed cartesian coordinate system. This is 
usually not done in physics books. In physics one usually does not talk about the 
orientation of �3 but rather the orientation of a particular coordinate system being 
employed. Where in this book we would say that a vector is unchanged under a change 
of orientation and a pseudovector B changes into -B if the orientation of ffi.3 is reversed, 
a physicist would usually say, for example, that if A' and Bi are the components of 
a vector A and a pseudovector B in a cartesian coordinate system x ,  y, z, then the 
components of A and B in the reversed system - x ,  -y, -z,  are _Ai and Bi . This is 
saying the same thing as in our definition. 

2.8f. The Volume Form in a Riemannian Manifold 

Let p be a point in the Riemannian manifold Mn . The volume (pseudo)-n-form voln 
is by definition the unique n -form that assigns to an orientation 0 of the tangent space 
M; and a positively oriented orthonormal basis e the value + 1 .  (Recall that an n-form 
is determined by its value on a single basis . )  Let us find the coordinate expression for 
voln • 

Clearly, if (x) is a coordinate system that is orthonormal at p, that is ,  (8i ) are 
orthonormal, then 

vol = o (x )dx l 1\ . . .  1\ dxn 

is the volume form at p, since this form, when applied to (8x ) ,  yields o (x ) . 
Let ( y ) be  any coordinate system holding p. Choose any coordinate system (x ) that 

is orthonormal at p. (This can be done as follows. Let e be an orthonormal basis at p 
and let (z) be any coordinate system near p. Then e = 8z P for a unique nonsingular 
P .  Now define coordinates x by zj = pj iXi . We then have 

� _ ( dZj )� 
_ (�) pj . _ 

e 8x; - dXi 8zj - 8zj I - I 

at p, as desired.) Then, at p 

n 1 n d (X ) d I n vol = o (x )dx 1\ . . .  1\ dx = o (x )-- Y 1\ . . .  1\ dy d (Y ) 

= O(y)
i 
3
(x) idy l 1\ . . . 1\ dyn 
3 (y) 
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Now a t  p we have (in the notation of  Section 2.7b) ds2 = orsdx"dxs = gij (y)dyi dyj , 
where 

( axr ) ( aXS ) ( axr ) ( ax" ) gij (y) = 
ayi 

Ors ayj = L ayi ayi r 
Thus if we define, for each Riemannian metric tensor gij (y) ,  

g (y) : = det[gij (y) ] 

we have 

and consequently l a (x )/a (y) 1 = .fi(y) and 

vol" = o(y )Jg(y)dy l /\ . . .  /\ dy" 

(2.7 1 ) 

(2.72) 

is the coordinate expression for the volume form. Since the coordinates (x ) do not 
appear anywhere in this expression, (2.72) gives the volume form at each point of the 
(y) coordinate patch. If we write, as we do for any form, vol" = vol'!2 . . .  n dy 1 /\ . . .  /\dyn , 
we see that 

I" ( ) r;;( ) VO i , i2 . . .  i" = 0 Y v g Y Ei , ;' . . .  i" (2.73 ) 

It is traditional to omit the orientation function o(y) ,  and we shall do so when no 
confusion can arise. 

Note that since vol" is  a pseudo-n -form, we conclude that 

Jg(Y)Ei , i2 . . .  i" 

are the components of an nth rank covariant pseudotensor, but, as we noticed in Section 
2.5 b, the permutation symbol itself is not a tensor! 

Problems 
2.8(1 ) Show that even d imensional projective spaces are not orientable. 

2.8(2) Show that a 1 -sided hypersurface Mn of an orientable man ifold Wn+ 1 is not 
or ientable. (H int: Transport of a normal about some closed cu rve on M must 
reverse this normal (why?) .  Now transport a basis of W about th is same curve . )  

2 .8(3) Use Problem 2.1  (2) to compute the volume 3-form of IR.3 i n  spherical coord inates. 
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2.9. Interior Products and Vector Analysis 

What is the precise relationship between exterior forms and vector analysis in �3 ? 

2.9a. Interior Products and Contractions 

We know that if a is a covariant vector and v is a contravariant vector then a (v) = ai Vi 
is a scalar. Also, if A is  a linear transformation, that is ,  a mixed tensor that i s  once 
covariant and once contravariant, then the trace tr(A) = Ai i is also a scalar. In fact we 
have a general remark, whose proof is requested in Problem 2.9( I ) . 

Theorem (2.74) :  If T··i . . .  are the components of a mixed tensor, p times con-. . .  J . . •  

travariant and q times covariant, then the contraction on a pair of indices i ,  j, 
defined by the components I:i T : :/:: ' defines a tensor (p - I )  times contravariant 
and (q - 1 )  times covariant. 

If v is a vector and a is a p-form, then their tensor product has components vj ai l . . .  ip 

and consequently the contraction vj a ji, . . .  i" defines a covariant tensor, and it is clearly a 
(p - I )-form. There is ,  however, a special machinery for contracting vectors and forms , 
and we tum now to this "interior product." 

Definition: If v is a vector and a is a p-form, their interior product (p - I )-form 
iva is defined by 

ivao = 0 

i vaI  = a (v) 
if a is a O-form 
if a is a I -form 

i vaP (W2 , . . .  , wp) = aP (v, W2 ,  . . .  , wp) if a is a p-form 

Clearly iA+B = iA + iB and iaA = aiA . Sometimes we shall write i (v) . 

Theorem (2.75): i v : I\P � I\P-I  i s  an antiderivation, that is, 
iv (ap /\ (3q ) = [ivaI' ] /\ {3q + (- I )pap /\ [iv{3Q ] 

(Note that exterior differentiation is also an antiderivation.) 

P R O O F : Let us write v = WI . Then 

iv (a /\ (3 ) (W2 , . . .  , WP+q ) = a /\ (3 (W I ' W2 , . . .  , wp+q ) 
= 2:)[.] (p+q)a (wd{3 (w] ) = L + L 

11 l 1 1 E l  l1 1 E] 

+ L L 8rl jt�·j;)a (Wl ){3 (W I ' wj" . . .  Wjq )  
1 j, <  . . .  <jq 
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= L L 8;2 : :i;�q ) [i va] (wi2 ' . . . ' Wip ) /3 (WJ )  
l ;ii2 < . . .  <ip .[ - { I } 

" " ( I ) P r lh- . . }q ( ) [ . /3 ] (  ) + � � 
- u2. .. (p+q)a WI I v wh ' . . .  , Wjq 

I - { I } l ;ih <  . . .  <jq 

Theorem (2.76): In components we have 

that is. 

or 

i va = L L Vjaji2 < . . < ipdxi
2 1\ . . . 1\ dx ip 

i2 <  . . .  <ip j 

(i a) · . - "  vj a . . . V 1 2 < . . .  < 1 1'  - � J I2 < ·  . <1 1' 
j 

[
. ] - j I va K - V ajK 

Thus the interior product of v and a is simply the contraction with the first index of a !  
For proof of (2.76) see Problem 2. 1 0(2). 

We also have the very easy i vca = ci va = icva for a real number c .  
Before proceeding, we should mention that exterior algebra and calculus and interior 

products, and so on, all can be applied to pseudoforms as wel l .  It should be clear, for 
example, if a is a pseudoform, then so is da . Also, if /3 is also a pseudoform then a 1\ /3 
is a (true) form, and if v is a vector then i v /3 is a pseudoform, and so on. 

2.9b. Interior Product in ]R3 
In 2.Se we mentioned that in JR.3 with cartesian coordinates one can associate to a vector 
v a l -form Li vidxi and also a 2-form v l dx2 1\ dx3 + v2dx3 I\dx I + v3dx l I\dx2 • These 
correspondences do not make sense in general coordinates; for instance, two different 
coordinate systems will yield different I -forms associated to a given vector v (not just 
different coordinate expressions) . We wish to give a correct correspondence that works 
in any coordinates. We have already done this for I -forms in a Riemannian manifold; 
associated to the vector v = Vi ai is the covector v = Vi dxi , where Vi = gij vj . (We will 
write v = ( , v) since v (w) = (w , v) . )  We shall indicate this correspondence simply by 

v {:} V i = v l dx l + V2dx2 + V3dx 3 

What is the 2-form corresponding to v? We claim v {:} the pseudo-2-form v2 . 
i v vol3 . Let u s  look at the coordinate expression for this interior product. I n  curvilinear 
coordinates u (with ai = a/aui , and omitting the orientation function 0) we have the 
volume form (2.72) and 

ivJg(u)du l 1\ du2 1\ du 3 = Jg L vj ia/du i 1\ du2 1\ du3 ) 
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Repeated use of C2.75) then gives 

i C8j ) Cdu l i\ du2 i\ du3 ) 
= i C8j ) Cdu l )du2 i\ du3 - du l i\ i C8j ) Cdu2) i\ du3 + du l i\ du2i C8j ) (du3 ) 
= du l C8j )du 2 i\ du3 - du2 C8j )du l i\ du3 + du3 C8j )du l i\ du2 

= 8 1 jdu2 i\ du3 - 82jdu 1 i\ du3 + 83jdu 1 i\ du2 

Thus to the vector v we associate the pseudo-2-form 

where C2.77) 

i v vol3 = �(v ldu2 i\ du3 + v2du3 i\ du l + v3du l i\ du2) 

is the correct replacement for v l dx2 i\ dx3 + v2dx3 i\ dx l + v3dx l i\ dx2 • Note, 
conversely, that if 

f32 = b23du2 i\ du3 + b3 1 du3 i\ du l + b 1 2du 1 i\ du2 

is a pseudo-2-form, then we may associate to it a vector B with components 

C2.78) 

Two things should be noted about (2.77). First, of course i v vol3 does not use the 
full Riemannian structure of ]R3 ; rather only the volume form is used. Second, the same 
procedure will work in any manifold Mil having some distinguished volume form (not 
necessarily coming from a Riemannian metric) 

vol" = p (u)du l i\ . . .  i\ dun (2.79) 

where p #- O. To the vector v we may associate the pseudo- en - I ) -form 

(2.80) 

One can easily work out the coordinate expression for this form, as in (2.77). 
Back now to ]R3 . Given a pair of vectors v, w, with associated covectors V i = ( , v) 

and Wi = ( , w) ,  we know that 

(2.8 1 ) 

We can also associate to our vectors their pseudo-2-forms v2 and w2 . In cartesian 
coordinates we know that V i i\ w2 is a 3-form whose coefficient is  again (v, w) . We 
claim that in general we have 

(2.82) 

We give two proofs . For the first we simply notice that both s ides are pseudo-3-forms. 
Since they are equal in cartesian coordinates they are always equal . 
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Our second proof illustrates the machinery of  interior products. 

V I /\ ()} = V I /\ iw  vol3 = iw (voI3 ) /\ V I 

= i w (vol3 /\ V I ) + vol3 /\ i w V I 

= i w (v I ) vol3 (Why?) 

What about the X product of the vectors? We know that in cartesian coordinates, 
the 2-form V I /\ W I has as coefficients the three components of v X w. We should like 
then to say that V I /\ W I is the 2-form associated to the vector v X w, but we only have a 
pseudo-2-form associated to a vector. Thus we should say that the pseudo vector v X w 
is associated to the 2-form v I /\ w2 

(2 . 83) 

This makes sense when we recall that the direction of v X w is  given usually by the 
right-hand rule; that is ,  it uses the orientation ofll�? Although not usually mentioned in 
elementary books, the vector product is defined in �3 as follows: v X w is the unique 
pseudovector such that 

( v  X w) , c) = vol\v, w, c) (2. 84) 

for each vector c. 
We may ask now for the I -form version of v X w, that is ,  the pseudo- i -form asso

ciated to the vector product. We claim 

is the covariant version of v X w 

This follows from (2.84) 

(v X w ,  c) = voe (v, w, c) = - voI3 (w, v, c) 
= - [i w (voI3 ) ] (v , c) = -w2 (v , c) 
= [- i vw2 ] (c) 

2.9c. Vector Analysis in ]R3 

(2 .85) 

Vector algebra in �3 is easily handled by use of interior and exterior products; the 
only question is, should one associate to a vector B its I -form 13 1 = ( , B) or its 2-
form 132 = i B vol3 ? For example, consider an expansion of the vector triple product 
A x (B x C) .  The fol lowing works. Let B {:} 13 1 ,  C {:} Y I . Then 

A X (B X C) {:} -iA (f3 I /\ y
I ) = [- iA (f3 I ) ] y

I + f3 1 [i A y
l ] 

{:} - (A, B) C + (A , C)B 
the familiar vector identity. 

So much for vector algebra ! Now for calculus .  We already know that 

df = ( , Vf)  
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We define curl A by using A {:> a 1 and then curl A {:> da 1 

da I = icurl A vol3 (2. 86) 

and define div B by using B {:> f32 and 

df32 = (div B) vol3 (2. 87) 

for these are surely identities when expressed in cartesian coordinates. Note that in 
(2 .87), since B is a vector, f32 is a pseudoform. Since vol3 is a pseudoform we conclude 
that div B is a (true) scalar. On the other hand, if A is a vector then curl A must be a 
pseudovector ! 

Warning: Given a vector field A, one can write out the components of the vector 
curl A in a curvilinear coordinate system; one takes A, one converts it to a I -form a I 
using the metric tensor gij (this is generally complicated) ,  then takes da l , and then 
uses (2.78) .  To my knowledge, however, there is no reason for ever writing out the 
components of the vector curl A in curvilinear coordinates;  if the expression curl A 
appears, it is a sure sign that the vector in question was not the contravariant A but 
rather the covariant vector a l {:> A !  But then da 1 is as simple to write down in 
curvilinear coordinates as in cartesian. A similar remark applies to the components of 
grad f in curvilinear coordinates ; df is all that is needed. 

It is a different story with div B. div B is the scalar coefficient of vol3 in (2.87), 
and its expression in coordinates u is needed. Since B {:> i B  vol3 (and omitting the 
orientation function 0) 

Thus 

d[i B vol3] = d [Jgb ldu2 /\ du3 + Jgb2du3 /\ du 1 + Jgb3du l /\ du2 ] 
a a a 

= [-I (Jgb ' ) + -2 (Jgb2) + -3 (Jgb3) ]du 1 /\ du2 /\ du3 
au au au  

= _l_ � [Jgbi ]Jgdu l /\ du2 /\ du3 
.,;g au '  

1 a . 
div B = --. [Jgb' ] .,;g au ' 

Note again that only the volume form appears, not the ful l  metric tensor. 
We define the Laplacian of a function f by 

V2 f = /:'if : =  div(grad J) 
1 a [ . .  ( af )] 

= .,;g au i Jgg'} auj 

(2.88) 

(2.89) 

To continue with vector identities i t  is  useful to associate a pseudo-3-form to each 
scalar f, namely 
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Then, for example, from (2.82) 

Let 

div(A X B) -¢} div(A X B) vol3 = d ea l  /\ 13 ' ) = da ' /\ 13 ' - a ' /\ df3 ' 

= (curl A ,  B) voe - (A, curl B) vol3 

-¢} (curi A ,  B) - (A , curl B) 

2.10. Dictionary 

vol3 = dx /\ dy /\ dz = volume form 
0-form f = function f 

I -form a '  = covariant expression for a vector A 
1 -form y ' = covariant expression for a vector C 
2-form 132 be associated to a vector B through 

132 = iB vol 

Then we may make the fol lowing rough, symbolic identifications 

a ' /\ y ' 
= i A x c vol3 -¢} A X C 

2.1 0(1 ) Prove (2 .74) .  

2 .1 0(2) Prove (2 .76) . 

a '  /\ 132 = A .  B vol3 -¢} A • B 
i ca '  = C · A  
icf32  -¢} -C x B 

df -¢} grad f 

da ' = icur' A vol3 -¢} curl A 
df32 = div B vol3 -¢} div B 

digradf vol3 = ('12 f) vol3 -¢} '12 f 

Problems 

2.1 0(3) Compute \72 f i n  spherical coord inates. 

2 .1 0(4) Derive the fol lowing identities using forms 

( i) grade fg) = f grad 9 + 9 grad f 
( i i )  dive f8) = f div 8 + (g rad f, 8) 
(i i i) cur l (  fA) = f curl A + grad f x A 
(iv) (A x 8, e x  0) = . . .  ? 

2.1 0(5) Use (2.73) and i nvoke (2 .76) twice to show 

v x 8 ¢} y/gL vi Bifiik dxk 
k 
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Integration of Differential Forms 

EXTER [0 R differential forms occur implicitly in all aspects of physics and engineering 
because they are the natural objects appearing as integrands of line, suiface, and 
volume integrals as well as the n-dimensional generalizations required in, for example, 
Hamiltonian mechanics, relativity, and string theories. We shall see in this chapter that 
one does not integrate vectors; one integrates forms. If there is extra structure available, 
for example, a Riemannian metric, then it is  possible to rephrase an integration, say of 
exterior I -forms or 2-forms, in terms of a vector integrations involving "arc lengths" or 
"surface areas," but we shall see that even in this case we are complicating a basically 
simple situation . If a line integral of a vector occurs in a problem, then usually a deeper 
look at the situation will show that the vector in question was infact a covector; that is, a 
I -form! For example (and this wilI be discussed in more detail later) , the strength of the 
electric field can be determined by the work done in moving a unit charge very slowly 
along a small path, that is, by a line integral . The electric field strength is a I -form. 

Integration of a pseudoform proceeds in a way that differs slightly from that for a 
(true) form. We shall consider pseudoforms later on. 

3.1 .  Integration over a Parameterized Subset 

How does one integrate the Poincare 2-form w over a surface in  phase space? 

3.1a. Integration of a p-Form in ]RP 
We are familiar with the notion of a multiple integral of afunctionfover a region in JR.P 

1 f (u)du l . . .  duP 

(Of course we shall assume that the integral makes sense; for example, this will be the 
case if U is a closed bal l and f is continuous on U .) This integral does not involve any 
notion of orientation, and it is immaterial in which order the du i 's appear. 

95 
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We now define the integral o f  a p-form aP = a (u )du I /\ . . .  /\ duP over an  oriented 
region (U,  0) c ]RP . 

r a = r a (u)du l /\ • • •  /\ duP 
J(U,O) J(U.O) 

:= O(ll) 1 a (u)du I . . . duP 

(3 . 1 )  

where the last integral i s  the ordinary multiple integral of the function a over the region 
U, disregarding the orientation, and where o(u)  = ± 1 ,  the + sign being chosen if and 
only if the coordinate basis 

( a� l " " ' a�p ) 
has the same orientation as given by o. Clearly the integral of a p-form changes into 
its negative if the orientation of U is reversed 

r a - - r a 
J(U, -O) J(U,o) 

(3 .2) 

We shall see shortly that the definition (3 . 1 ) , in spite of its appearance, is in fact 
independent of the coordinates u used in ]RP.  

3.1b. Integration over Parameterized Subsets 

We define an oriented parameterizedp-subset of a manifold Mn to be a pair (U,  0; F) 
consisting of an oriented region (U,  0) in ]RP and a differentiable map 

We shall also call the point set F(U) C Mn a p-subset. 
When p = 1 we simply have a curve on Mn with a specific parameterization, 

expressed locally by Xi  = Xi (t ) ,  and when p = 2 we have a suiface on Mn again with 
a specific parameterization Xi = X i (U ,  v) . 

It should be noted that we make no requirements on the rank of the differential 
of the map F; for example, it may be that the curve has a vanishing tangent vector, 
dx/dt = 0, at some or perhaps all parameter values t .  Consequently, the p-subset 
F (U)  need not have dimension p everywhere (that is why we do not use the term 
p-dimensional subset, rather than p-subset). In the most important cases, F* will have 
rank p "almost everywhere." For example, the map ]R2 -+ ]R3 defined by F (e ,  <p) = 
(sin e cos <p ,  sin e sin <p ,  cos e)  defines a parameterized 2-subset of ]R3 that covers the 
unit sphere an infinity of times, and with F* of rank 2 everywhere except at the poles, 
that is ,  the lines e = mr of ]R 2 . 

If a P  is a p-form on Mn , defined at least in some neighborhood of the image F (U)  
of  U ,  we define the integral of  af' over the oriented parameterized p-subset by 

r aP : = r raf' 
J(U,O; F) J(U.O) 

(3 .3)  
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Thus we pull the form a P  back to the oriented region (U, o) and integrate there by 
means of (3 . 1 ) .  In all detail 

r a" : = r F*a P  
JW.o: F) Jw.O) 

i ( * P [ a a J d I " F a ) -, , ' ' ' ' -a u /\ . . . /\ du 
. (U .o)  au uP 

= o(u)  1 ( F*a ")  [ aa , ' . . .  , aa J du l • • •  du" 
U U uP 

Note that we can also write this as 

j. " _ ! P [ a a J I " a - o(u) a F* -a I " ' " F* -a du . . .  du 
(U .o ; F) . U U u"  

3.1c. Line Integrals 

(3 .4) 

(3 .5)  

Consider a curve C : x = F(t ) ,  for a ::: t ::: b, in �3 (with x any coordinates), oriented 
so that d/dt defines the positive orientation in U = � I . If a I = a l (x)dx l + a2 (x )dx2 + 
a3 (x )dx3 is a I -form on �3 then its integral or line integral over C becomes 

(3.6) 

Thus (3 .3) is the usual rulefor evaluating a line integral over an oriented parameterized 
curve ! We may write this as 

(3 .7) 

and so the integral of a I -form over an oriented parameterized curve C i s  simply the 
ordinary integral of the function that assigns to the parameter t the value of the I -form 
on the velocity vector at x(t ) .  This of course is simply (3 .5) ,  since F* (d/dt) = dx/dt .  

Note that there is no mention of arc length nor dot product. If  we wish to use a 
Riemannian metric in �3 , for example, if the x's are cartesian coordinates, then to the 
I -form a I is associated the contravariant vector A and (3 .6) or (3 .7) says 

r a l  = lb A . (dX ) dt Jc a dt (3 .8)  

If the coordinates are not cartesian, then although (3 .7) remains the same, 
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1: ai (dXi /dt)dt , (3.8) becomes the more complicated 

1b [gij Aj ] ( �i ) dt 

Thus if one insists on integrating a vector over a curve, rather than a I -form, one is going 
to need a Riemannian metric to convert the contravariant vector first into a covariant one, 
that is, a I -form. Line integrals of I -forms do not involve a metric, whereas integrals 
of vectors must involve one ! 

dldl 
.. 

o a 
I IR 
b 

Figure 3.1  

A 

Use of a Riemannian metric allows us to write a line integral in the more usualform 

[ a l = [ A . dX (3 .9) 

= 1" A ·  (�;) dt 

= 1" I I  A I I I I �; I I COS L ( A, �;) dt 

= lL AIds 

where AI is the tangential component of A, ds := 1 1  dx/dt I I  dt is the element of arc 
length, and L is the length of the curve. Although this appears simpler than (3 .6) ,  to 
compute using (3 .9) one would have to introduce a parameterization, leading effectively 
back to (3 .6) ! There are times when one needs to compute the arc length of a curve, 
but, usually, it is completely irrelevant to either the computation or the concept of a line 
integral! Line (and, as we shall see, surface) integrals are independent of any metric 
notions in space. This is one case where the usual elementary treatment given in many 
calculus texts is harmful and misleading and should have been discarded lOng ago. 



I N T E G R A T I O N  O V E R  A P A R A M E T E R I Z E D  S U B S E T  99 

3.1d. Surface Integrals 

Consider now an oriented parameterized surface in ffi.3 , with x any coordinate system. 

B 

= ax/au l  
= (OX I/alll, ax2/au� iJx3/au ll 

= ax/a u 2 
--1-======�U'1 = (ax l/au� ax2/au� ax3/ai{ 

Figure 3.2 

Suppose that 8/8u ' , 8/8u2 has the given orientation o .  Let f32 be a 2-form on ffi.3 
and put b ,  = b23 , b2 = b3 " b3 = b ' 2 ' Then, as in (2.65) 

r f32 = r b ,  dx2 1\ dx3 + b2dx3 1\ dx ' + b3dx ' 1\ dx2 
JF(U) JF(U) 

or, as in  (3 .5) ,  

j ['" a (Xi , Xi ) ] , 2 
= � bij (x (u ) )  , 2 du du U i <j a (u , u )  

r f32 = j f32 ( ax 
, 
�) dU ' du2 

JF(U ) U au ' au2 

(3 . 1 0) 

(3 . 1 1 )  

Suppose that one insists on writing this in terms of the vector, or rather the pseudovector 
B, associated to f32 

j 3 ( ax ax ) , 2 = vol B,  -, ' -2 du du 
U au au (3 . 1 2) 

Recall that an orientation of U C ffi.2 has already been given (it is inherent in the 
definition of the surface integral) ,  but not one for ffi.3 . Since both vol} and B change sign 
under a change of orientation of ffi.3 , it i s  clear that (3 . 1 2) i s  independent of the choice 
of orientation of ffi.3 . 



100 I N T E G R A T I O N  O F  D I F F E R E N T I A L  F O R M S  

We now proceed to the usual expression of (3 . 1 2) .  Choose an  orientation of�3 and 
let x be a positively oriented cartesian coordinate system for this  chosen orientation. 
(In our Figure 3.2 we have perversely chosen a left-handed orientation.) 

In the "classical" case discussed in elementary texts, the surface is regular; that is ,  the 
map F has maximal rank and thus the coordinate vectors ax/au  l , ax/au2 are linearly 
independent. In this case we can transfer the orientation 0 from the "parameter plane" 
U C ]R3 to the surface F (U) ; since 8/8u l , 8/8u2 are positively oriented in U we 
declare ax/au l , ax/au2 to define the positive orientation for F(U) . We then pick the 
unique unit normal N such that N, ax/au 1 , ax/au2 is positively oriented in �3 . We then 
have a unique decomposition B = (B . N)N + T, where T is tangent to the surface (and 
consequently is a linear combination of ax/ au l and ax/ au2) .  From (3 . 1 2) 

Now 

r f32 = r vol3 ( B . N)N, i;, aX
2 ) dU l dU2 

JF(V) Jv au a u  

(3 . 1 3) 

is simply the area 2-form for the surface, for its value on the (positively oriented) pair 
of tangent vectors ax/au l , ax/au2 is  simply the area of the parallelogram spanned by 
them, I I  (ax/au I ) x (ax/au2 I I .  We shall write (with a classical abuse of notation since 
d S is not the differential of a form) 

. 3 ( ax ax ) 1 2 dS : = [ IN vol ] � '  au2 du du 

= I I n I I  du l du2 
(3 . 1 4) 

where n = (ax/au l ) x (ax/ au2 ) is the (non-unit) normal to the surface. Bn :=  B • N is  
the normal component of B. Thus we have the usual expression for the surface integral 

r f32 = 1 BndS (3 . 1 5) JF(V) v 
This can all be said as follows. Given a pseudovector B and an oriented parameterized 

surface in �3 , choosing an orientation of �3 simultaneously picks out a specific vector 
field B and a definite unit normal N. Then Iv BndS is the desired surface integral . 

Surface integrals arise in higher dimensional manifolds . For example, in Hamiltonian 
mechanics, one sometimes needs to integrate the Poincare 2-form w over an arbitrary 
parameterized surface q = q (u ,  v ) ,  p = p (u ,  v) in phase space. 

= jj { U , v }dudv 

becomes an integral of the Lagrange bracket of u and v (see (2.67)) . Note that there is 
no mention of a Riemannian metric, dot products, nor area elements ! 
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3.1e. Independence of Parameterization 

We have defined our integral in terms of a parameterized subset of an Mil . What if we 
decide to consider the same subset ( i .e . ,  point set in Mil ) but parameterized in a different 
fashion. We claim that if, in a sense to be prescribed later, the orientations are the same 
then the integrals will be the same; that is ,  the integral is independent of the parameteri
zation. This is "clear" in the case of line or surface integrals in JR.3 , for in JR.3 with the stan
dard metric our integrals have been put in the geometric form J AIds or J BlldS .  These 
involve length or area integrations, and so the original parameterizations have "disap
peared." It is not easy to make this proof "honest" in the case of surface or higher dimen
sional integrals .  We shall instead give a general proof relying directly on the famous 
Jacobi formula for change of variables in a multiple integral (whose proof is not trivial) .  

First, what do we mean by an orientation preserving reparameterization? Let F : 
(U C JR.P) � Mil be an oriented parameterized p-subset of a manifold Mil . We say 
that G : ( V  C JR.P) � Mil is a reparameterization of this subset if there is an 
orientation preserving diffeomorphism H : U � V such that F = G 0 H ,  that is ,  
F(u) = G[H (u) ] , or, in terms of local coordinates x for Mil , F(u)  = x (v (u ) ) .  

F G 

� �-----------�- H �  
__ -1 ________________ u l ----+------------- V l 

Figure 3.3 

Since H is orientation preserving, H is of the form v = H (u )  = v (u ) where 

(l (v) (l (v l , . . .  , vP ) 
-- = > 0  (l (u ) (l (u l , . . . , u P ) 

provided u and v are positively oriented coordinates for U and V, respectively. 
Recall now Jacobi 's formula. If H : U � V is a diffeomorphism of unoriented 

regions then 

l I d " - 1 f 1 (l (V) 1 I P f (v)dv . . .  v - [H(u) ] - du . . .  du 
V = H ( U )  U (l (u )  

(note the absolute value of  the Jacobian determinant) . 

(3 . 1 6) 

Now we can consider our integrals of forms.  If G is a reparameterization of F 
(with positively oriented coordinates u and v in U and V ,  respectively) and x are local 
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coordinates on  Mil l aP = { G*aP = ( G* [al (x)dx / ] 
(V , G) lv lv 

= 1 a/ [F (u) ] 
J
(x / ) du 1 • • •  duP = 1 F*a l' = ( al' 

u -
J
(u) u l(u , F)  

which shows that the integral is independent of the parameterization. 

3.lf. Integrals and Pull-Backs 

Let ¢ : Mil -+ Wr be a smooth map of manifolds, and let F : U -+ Mil be an 
oriented parameterized p-subset of Mil . Then clearly 1ft = ¢ 0 F : U -+ Wr is an 
oriented parameterized p-subset of Wr , Then if aP is a p-form on Wr ,  we have, from 
Problem 2.3( 1 ) 

{ al' = l 1ft*al' = j' (¢ 0 F)*aP = 1 F* 0 ¢*aP = r ¢*aP 
.fcu ,1/r)  u u u .f(U, F) 

We shall write briefly a for the oriented subset (U, F) of Mil and then ( U, 1ft)  = 
(U , ¢ 0 F) will be written simply as ¢ (a ) ,  a subset of wr . We then have the general 
pull-back formula (generalizing (3 .3»  

(3 . 1 7) 

In words, the integral of a form over the image ¢ (a) c wr of a subset a C Mil is the 
integral of the pull-back of the form over a .  

3.1g. Concluding Remarks 

Again I must remark that (3 . 1 0) is ordinarily much simpler than (3 . 1 5) .  Of course 
there are very special situations when (3 . 1 5) is simpler. For example, let our surface 
be the unit sphere. Consider the vector B = x, the position vector. Then (3 . 1 5) gives 
immediately J x • Nd S = J 1 d S = 4n . This is "simpler" because we already know 
the area of S2 . 

Final ly, note that we have only defined the integral of a form over an oriented param
eterized subset of a manifold Mn , and these subsets are basically covered by a single 
coordinate system, We would ideally like to integrate p-forms over p-dimensional 
submanifolds of Mil . We shall discuss thi s  in our next section. 
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Problems ----------

3.1 (1 ) Let us say that a parameterized p-subset ( U, F) of Mn is "i rregular" at Ua if rank 
F < p at Ua .  Show that if a P is a form at  such a Ua then F*a P = O .  

3.1 (2) We know that dS = 1 1  n I I  du1 du2 . Show that in cartesian coordinates x for ]R3 

3 (X2 , x3) 8 3 (X3 , x 1 ) 8 3 (X1 , x2 ) 8 n = - + - + -

3 (u1 , u2 ) 8x1 3 (u1 , u 2) 8x2 3 (u1 , u 2) 8x3 

and so II n 1 1 2= Li< j [3 (xi , xj) / 3 (u1 , u 2 ) ]2 

Show that when the su rface is s imply the graph of a function , that is ,  

we recover the classical expression for the area element. What do we get for 
the area element when the surface is g iven in the form F(x, y, z) = 0 and we 
assume that we can solve for z in terms of x, y? 

The fol lowing problem investigates the area element for a hypersurface and 
may be omitted.  

3.1 (3) The formula dS = 11 n I I  du1 du2 fol lowed from the fact that the area spanned by 
3x/3u1 and 3x/3 u 2 is the length of the x product (3x/ 3u1 ) x (3X/ 3u2 ) . Although 
we cannot define a vector A1 x A2 for a pair of vectors in  ]Rn we can define a 
general ized x product of (n - 1 )  vectors i n ]Rn as fol lows (see (2 .84) ) :  

A1 x . . .  x An- 1 i s  the un ique (pseudo) vector B such that 

C ·  B = voln (C ,  A1 , . . . , An- 1 ) for each vector C 

( i) Show that B is orthogonal to A1 , . . . , An- 1 . 
Suppose we consider a hypersurface of ]Rn parameterized by u1 , . . .  , 

un- 1 . Let n : = (3x/3u1 ) X . . . x (3x/ aun- 1 ) where the x's are cartesian 
coordinates for ]Rn , and let N be the un it vector i n  the d i rection of n. 

( i i) Show that we can then express the (n - 1 ) -d imensional area element 
dSn- 1 : = [iN voln] (3x/3 u1 , . . . , ax/3 un- 1 ) du1 • . .  dun- 1 as 

dSn- 1 = 1 1  n II du1 . . .  dun- 1 

( i i i )  Let iCY) := iv . Show that we can also say that the covariant version i n  ]Rn of 
the vector n is the 1 -form 

. ( ax ) . ( ax ) 
I n ( , n ) = I 

a un- 1 0 . . .  0 I aLJ1 vo 

( I t  is i nteresting that this 1 -form uses only the volume form, not the metric 
of ]Rn ,  and it van ishes on vectors tangent to the hypersurface.) 

( iv) Now i n  cartesian coordinates, voln has components g iven by the permuta
tion symbol (see 2.73) .  Use (2.73) repeated ly to show that ( axi1 ) ( 3x il n- 1 ) ) 

( , n ) j = Ei, .. i1n_ , ) j au1 
. . . 

a un- 1 

3 ( 1 2 � j n) 
_ 

x ,  X , . . .  x , . . . x 
_

. D .  - 3 (u1 , . . . , Un- 1 ) - .  J 
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where OJ is the determinant of the Jacobian matrix with the jth row omitted . 
We conclude 

dSn-1 = [L Dj 1 1 /2 du1 . . .  dun- 1 
j 

(v) Show that if the x coord inates are not necessari ly cartesian , with metric 
tensor (gij) ,  then the correct formula for I I  n I I  is g iven by 

I I  n 1 1 2= g(X)gij Di Dj 

(this is also the correct expression i n  a Riemannian manifold ) .  

3.2. Integration over Manifolds with Boundary 

Does every manifold carry a Riemannian metric? 

In 3 . 1  we defined how one integrates a (true) p-form over an oriented parameterized 
subset of a manifold. We would like to be able to integrate over objects that cannot 
be covered by a single parameterized subset, for example p-dimensional oriented sub
manifolds. A common way of doing this is indicated in the following figure. 

z 

r-------- y 

x 

Figure 3.4 

We have indicated a submanifold W2 of JR.3 together with its boundary. It is oriented 
and we have indicated its orientation by giving the positive sense of rotation. We wish 
to integrate a 2-form f32 of JR.3 over this object. We first restrict the form f3 to the 
submanifold W:  thus if i : W ---+ JR.3 is the inclusion map, we consider the pull-back 
i* f3 instead of f3. This restricted form i* f3 has the same values on tangent vectors to 
W as the original form f3. We then break up W2 into a finite union of coordinate 
patches that overlap only at edges or vertices. A theorem (whose pr;)of is difficult) 
on "triangulations" shows that this can always be done. We have indicated two of the 
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patches (as drawn, we can use y and z as local coordinates in each) .  We can assume 
that the coordinates u in U, v in V ,  and so forth, are such that the orientation of the 
patches agrees with the given orientation of W2 (in our drawing, y, z ,  in that order yield 
the given orientation) .  We know how to integrate i* f32 over each of these patches, for 
if <Pu : U --+ JR(2 is the coordinate map for U,  as in 1 .2c, <Pu t : <Pu (U) --+ W2 is our 
parameterized map. We then compute these integrals and add the results . This is the 
integral of f32 over W2. 

We emphasize that this is a perfectly acceptable way, and in fact the usual way to 
evaluate the integral . For theoretical purposes, however, we wish to define the integral 
in a different way. Instead of breaking the object W up into nonoverlapping coordinate 
regions, we shall rather write the form i * f3 as a sum i * f3 = Lu f3u of differential forms 
f3u , each of which vanishes outside its associated coordinate patch U (this requires a 
"partition of unity" ; see 3 .2b) . This is simpler than triangulating W since we no longer 
demand that the patches fit together carefully. We know how to integrate f3u over the 
oriented patch U .  The integral of f3u over W should then be the same as the integral of 
f3u over U, since f3u is zero outside U .  Then we shall define the integral of f3 over W 
to be the sum of the integrals of the f3u over their patches U .  

We now proceed with this  program. Our first step i s  to generalize the notion of 
manifold so as to be able to include, as in Figure 3 .4, the boundary of the object. 

3.2a. Manifolds with Boundary 

The closed 3-ball II x I I :::: 1 in JR(3 is not a 3-manifold, for although interior points, 
(i .e . ,  points for which I I x I I  < 1 )  do have neighborhoods diffeomorphic to open balls 
in JR(3 , I I u I I  < 1 ,  points on the boundary 2-sphere have neighborhoods that resemble 
half open balls, I I  v I I  < 1 and v3 � o. 

interior point 

�"' ul 1---r-- v 2 
open ball 

I l u l l < ! 

boundary point 

Figure 3.5 
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We shall check that boundary points do have such neighborhoods, a s  this illustrates a 
typical use of the inverse function theorem. For simplicity we consider the south pole on 
the boundary 2-sphere. This sphere, near the pole, can be described as z + I (x , y) = 0, 
where I (x , y) = J ( I  - x2 - y2) .  Thus a neighborhood of the south pole in the closed 
unit ball is given, say, by x2 + y2 < E together with ° :s z + I (x , y) < 0 where E and 
o are positive. The "bottom" boundary consists of a curved disc, a portion of the unit 
sphere. We would like to straighten this into a flat disc. Consider the three functions 
V i = x ,  v2 = y, and v3 = Z + I(x , y) . From dv l 1\ dv2 1\ dv3 = dx 1\ dy 1\ dz, that is, 
a (v l ,  v2 , v3 ) ) / a (x ,  y, z) = I =1= 0, we conclude (see Corollary ( 1 . 1 6» that the v's form 
a smooth coordinate system for ]R3 near the south pole. Thus the above neighborhood 
of the south pole can be described by (v 1 ) 2 + (V

2 )2 < E and ° :s v3 < 0, which is a 
cylindrical "can" (with sides and top removed) in a v I , v2 , v3 space (see the figure) . By 
then removing the points in the can with I I  v I I :::: E we have the desired half open bal l .  

Briefly speaking, an n-manifold with boundary Mil has an interior that is a genuine 
n-manifold, and a boundary or edge, usually written 

aM 

Points on the boundary have neighborhoods diffeomorphic not to open sets in ]Rn but 
rather to half open sets, that is, sets of the form I I  v I I  < E and ° :s vn < o. We still 
call such a neighborhood a coordinate patch. For more details the reader may consult 
[G, P, p .  57] or [A, M, R, p .  406] . It is an important fact that the boundary or edge aM 
is itself always an (n - I )-dimensional manifold without boundary, although it need 
not be connected; that is ,  it may consist of several disjoint manifolds , as in Figure 3 .4.  
Local coordinates for aM are given by the V i , • • .  , vn- I .  In the example of the closed 
ball ,  V i = x and v2 = y are local coordinates for aM = S2 near the south pole. 

Of course if the boundary is empty, aM = ¢ , M is a genuine manifold. 
Concepts such as orientability and l -sidedness apply to manifolds with boundary 

as well .  An actual Mobius band constructed from a sheet of paper is a surface with 
boundary, the boundary in this case consisting of a single closed curve diffeomorphic 
to a circle S I . 

3.2h. Partitions of Unity 

We discussed some elementary point set topology in Section I .2a. Some further notions 
will ,  I hope, be helpful even if only lightly touched upon. If you find this discussion 
too brief to follow, you should consider the special familiar case of ]Rn rather than an 
abstract manifold. In ]Rn an open ball ( i .e . , a ball without its boundary sphere) centered 
at a point x is the most important example of a neighborhood of x .  Given a point p in an 
Mil , let { U, Xi } be a coordinate patch with origin at p. Then the set where r: (xi ) 2 < E

2 

is an open E -ball neighborhood of p on Mil . 
A point x in Mn is an accumulation point of a subset A of Mn provided every 

neighborhood of x contains at least one point in A other than x itself. It is a fact that if 
one adjoins to A all of its accumulation points, then the resulting set, called the closure 
of A, is a closed subset; its complement is open. (It is a fact that a subset of a topological 
space is closed if and only if it contains all of its accumulation points . )  
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Recall that a real -valued function f : M -+ JR is continuous if the inverse image 
of every open set in JR is itself open in M. The nonzero real numbers clearly form an 
open subset of lR, and so the subset of M where f i- ° is an open subset of M, being 
f- I (JR - 0) . The closure of this set is called the support of f. Note that f may be ° 
at some points of the support of f. For example, for the function whose graph is given 

L 
- E/ 2 - E / 4  o E / 4 E/ 2 

Figure 3.6 

in Figure 3 .6, the support is all t with I t I ::: E /2.  Similarly, we can define the support 
of any tensor field on M as the closure of the set of points on M where the tensor is 
different from 0 .  

Given a point p E Mn , it is easy to construct an n-form on M" whose support is 
contained in an E-ball neighborhood of p. Let p be the origin of local coordinates x ,  
and let f = f(t )  be the function whose graph i s  depicted i n  Figure 3 .6 .  This i s  an 
example of a bump function. We can then define an n-form wn on Mn , a bump form, 
by putting " x , , 2= L(xi ) 2 and 

and 

wn := f ( I I  x I I )dx i /\ • • •  /\ dxn , for x in the ball II x I I ::: E 

w" = ° for x outside the ball 

Now for the notion of a partition of unity. We shall restrict ourselves to manifolds 
(perhaps with boundary) that can be covered by a finite number of coordinate patches .  
In fact this restriction i s  not necessary, but we would have to be more careful (see [G, 
P, p. 52] ) .  

Given a finite covering { Va } ,  a = 1 ,  . . .  , N ,  of  Mil by coordinate patches Va , a 
partition of unity subordinate to this covering will exhibit N real-valued differentiable 
functions fa : M" -+ JR having the following properties. 

1. fa (x) � 0, all a and all x 
2. the support of fa is a (closed) subset of the patch Va (in particular fa vanishes outside 

Va ) .  
3. La fa (x) = I for all x i n  Mil . 

Such partitions always exist (it is clear that only the third condition is going to be 
difficult) ; they are constructed in the general case in [G, Pl . We shal l ,  instead, illustrate 
the construction in the simplest possible case. Let M I be the closed unit interval [0, 1 ]  
on R This i s  a I -dimensional manifold with boundary consisting of the two endpoints . 



108 I N T E G R A T I O N  OF D I F F E R E N T I A L  F O R M S  

Consider the covering given by  the two patches VI = {x 1 0 < x < 3/4} and 
V2 = {x 1 1 /2 < x :'S  I } . 

0 M 
0 112 3/4 

I - V I  " I  
I - V2 .. I 

Figure 3.7 

We first construct two bump functions gl and g2 whose supports are in VI and V2 , 
respectively, and such that they do not vanish simultaneously. We have indicated their 
graphs in the figure. S ince gl (x) + g2 (X) > 0 everywhere on M I we may define 

!cxCx) = 
g

,,
(x ) 

[g l (x ) + g2 (X) ] 
a = 1 , 2 

yielding the desired partition, La fa (x) = I .  It is evident that keeping the g 's from all 
vanishing simultaneously might be difficult in a general covering of an M" , but it can 
be done. 

3.2c. Integration over a Compact Oriented Submanifold 

Recall from Section 1 .2a that a topological space is compact if from every open cover 
one may extract a finite subcover. This means in particular that every compact manifold 
can be covered by a finite number of coordinate patches. If it is a subset of lR" , then it 
is compact iff it is closed (as a point set) and bounded. Thus M l = lR is not compact 
since it is not bounded. M I = (0, 1 ] ,  the half open interval {x 1 0 < x :'S I } , is not 
compact; see 1 .2a. On the other hand, the closed interval [0, 1 ]  is  a compact manifold 
with boundary, being a closed, bounded subset of R 

The Mobius band in lR3 including its edge is compact, but without its edge it is not 
a closed subset and is thus not compact. The 2-sphere S2 is  a compact manifold. The 
closed ball in lR3 is a compact 3-manifold with boundary. 

Warning: The Mobius band without its edge, when considered as a subset of lR3 , is  
not a closed subset of lR3 , and is  thus not compact. The same set, but considered as a 
manifold or a topological space in its own right (with the induced topology), is closed, 
as are all topological spaces (this is because its complement is the empty set, which is 
open ; see 1 .2a) .  In this topology, however, the strip is not compact. 
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We first define the integral of a p-form f3P over a compact p-dimensional oriented 
manifold (with or without boundary) V P, that is ,  the integral of a form of maximal 
degree. Let { V  (a) } , a = I ,  . . . , N, be a finite covering of V P by coordinate patches, 
each positively oriented. Let { fa } be a partition of unity subordinate to this covering. 
Since each such chart is  an oriented parameterized p-subset we then know how to 
evaluate JU(a) faf3 " . We then define 

r f3P : = L 1 faf3P Jv a U ral 
(3 . 1 8) 

It is easy to show then that the integral so defined is independent of the coordinate cover 
and partition of unity employed (see [B ,  T, p. 30] ) .  Of course the crucial ingredient is 
l:a fa = 1 .  

Finally, if M" i s  any manifold and if f3 P  i s  a p-form on M" , we define the integral 
of f3P over any compact oriented p-dimensional submanifold V P C M" (perhaps with 
boundary) by 

1 f3P := J: i * f3"  (3 . 1 9) 

where i : V P -+ M" is the inclusion map (note that i * f3"  is a p-form on the oriented 
manifold VP ) .  

We emphasize again that one does not real ly evaluate integrals by  means of  a partition 
of unity ; it is merely a powerful theoretical tool, as we shall see. 

3.2d. Partitions and Riemannian Metrics 

If a manifold Mn is a submanifold of some ffi.N we may let i : M" -+ ffi.N be the 
inclusion map .  If we let ds2 = Li (d/ )2 be the usual Riemannian metric of ffi.N , then 
the pull-back or "restriction" i *ds2 will be a Riemannian metric on Mn , the "induced" 
metric .  For example, if a surface M2 in ffi.3 is  given in the form Z = z (x ,  y ) ,  then we 
may use x ,  y as coordinates for M2 and then 

i * (dx2 + d/ + dz2) = dx2 + d/ + [zxdx + zydyf (3 .20) 

= [ 1  + z; ]dx2 + 2zx zydxdy + [ 1  + z; ]d/ 

How can we assign a Riemannian metric to a manifold that is not sitting in ffi.N ? Let 
{Va , x� } be a coordinate cover for Mil (again assumed finite for simplicity) .  In each 
patch Va we may (artificially) introduce a metric ds; = La (dx� )2 , but of course ds; 
need not be the same as ds� in Va n Vf) .  If, however, we introduce a partition of unity 
{fa } subordinate to the cover we may define a Riemannian metric for M" by 

a 

(Note that fads; makes sense on all of M" since fa = 0 outside Va .) Although this 
metric is again highly artificial, it does show that any manifold admits some Riemannian 
metric .  This is a typical example of how a partition of unity is used to splice together 
local objects to form a global one. 
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3.3. Stokes's Theorem 

r dwp- I = r wp- I 
Jv Ja v 

3.3a. Orienting the Boundary 

Let Mil be an oriented manifold with nonempty boundary a M ;  we state again that a M  

i s  an (n - I ) -dimensional manifold without boundary. A triangle i s  not a 2-manifold 
with boundary since its boundary is only piecewise differentiable. 

2-manifold with boundary not a manifold with boundary 

Figure 3.8 

Given the orientation of M" we can orient the boundary a M" as follows. Let 
e2 , . . .  , en span the tangent space to a Mil at x .  Let N be a tangent vector to Mil at 

Vo N 

< "  
0 

N VI 
e2 

M2 

N 

Figure 3.9 

x that is transverse to a Mn and points out of Mn . We then declare that e2 , . . .  , en is 
positively oriented for a Mil provided N ,  e2 , . . . , ell is positively oriented with respect to 
the given orientation of Mn . In Figure 3 .9, we have indicated the positive orientation for 
M2 by the basis V I , V2 ; then the indicated e2 is positively oriented for the I -dimensional 
manifold a M .  In the right-hand figure we indicate the orientation of M2 by describing 
the positive sense of rotation and the orientations of the boundary curves by simply 
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giving arrows .  Although this works only for 2-manifolds we  shall use the same sort of 
symbolic picture even for n-manifolds . 

3.3b. Stokes's Theorem 

Theorem (3.21 ) :  Let V I' C Mn be a compact oriented submanifold with bound
ary a V in a manifold Mn . Let wp- 1 be a continuously differentiable (p - 1 ) -form 
on Mn. Then 

Versions of this for p = 2 and 3 in ]R3 were proved in the first half of the eighteenth 
century by Ampere, Lord Kelvin, Green, Gauss and others. (Unfortunately Kelvin's 
theorem is traditionally attributed to Stokes . )  The general theorem stated previously is 
again called Stokes 's theorem. 

P R O O F  OF S T O K E S ' S  T H E O R E M : Let i : VI' ---+ Mn be the inclusion map . 
Then from (3 . 1 9) and (2 .64) we have 

and also 

Iv dwp- 1 = Iv i *dwp- 1  = Iv di *wp- 1 

1 Wp- l = 1 i *wp- 1  
a v  a v  

Thus to prove (3 .2 1 )  we need only prove the same formula where w i s  replaced 
by i *w. In other words, it is  sufficient to prove 

f d{3p- l = 1 {3p- l 
Jv a v  

for any continuously differentiable form {3p- l o n  V 1' ,  forgetting M n  altogether ! 
Since V P is compact we may choose afinite cover of V I' by coordinate patches 

{ Y ea ) } .  Let 1 = La fa be the associated partition of unity ; we may then write 
{3 = La {3a , {3a = fa{3 .  Then 

and 

1 d{3p- l 
= f d L {3a = L f d{3:- 1  v Jv a a JV(al 

1 {3 p
- l = L 1 {3:- 1 a v  ex a v  

We see then that we need only prove 

f d{3:- 1 = 1 {3:- 1 JV(al a v  
for the form {3t- 1 whose support lies in Y ea ) .  There are two cases. 

(3 .22) 
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Case (i) : y ea)  is a full coordinate patch lying i n  the interior o f  V ,  that is ,  
disjoint from the boundary of V .  

----1r-------- u 1 

Figure 3.1 0 

Then, when everything is expressed in terms of the parameterization ¢ 
U (a) ---+ y ea) 

( df3a = 1 ¢*df3a = 1 d(¢*f3a ) JV (a)=¢U (a) U ta ) U ta)  

Denote ¢* f3a by y p- I . 

Then 

A.*f3 - 1'- 1 - ""' ( 1 ) i - l  d 1 d! /\ /\ d I' 'f' a - Y  - � - Yi U /\ . . . /\ U . . .  U 

( dy P- 1 = L (- 1 ) i - 1 1 d(Yidu l /\ . . .  /\ d;) /\ . . . /\ duP )  JU (a) i U ta)  

= L (_ 1 ) i- 1 1 ( aY� ) dUr /\ du l /\ . . . /\ d;) /\ . . . I\ dup 
. U ta )  au 
, 

- ""' 1 ( aYi ) 1 I' 
- � -

i 
du /\ . . . 1\ du 

. U ta)  au 
, 

(3 .23) 

We may assume that the coordinate patch V (a) carries the positive orientation 
of V. Then the last integral becomes an ordinary multiple integral and since the 
support of d¢*f3a lies entirely in U (a) ,  we may replace U (a) in the right-hand 
integral by all of JR.p . 

1 dyp- '  = L { ( ay, ) du l . . .  duP 
U (a) , Jfil.P au '  

, 

- ""' 1 d I d! d I' JOO ( aYi ) d i - 0 - � ll . . . U . . .  ll -, ll -
, IR" - ' -00 all' 
, 
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since Yi vanishes outside U (a) .  Thus the left-hand side of (3 .22) vanishes. But 
the right-hand side of (3 .22) vanishes since a v does not meet the support of (Ja 
in the case considered. This finishes Case (i) .  

Case (ii) : Y ea) is a "half patch" that meets the boundary. 

Figure 3. 1 1 

We proceed exactly as in case (i), reaching (3 .23) .  The only nonvanishing term 
here is i = P since the other terms will involve jcxooo (a Yi /au i )du i , which again 
vanishes if i < p. Thus 

1 dP. - 1 ( a yp ) d I d P !Ja - U . . .  U V eal U (a) aup  

= { du l . . . dup- I roo ( a yp ) dU P 
Jlff.I'- 1 Jo aup  

- - 1 ( I 1'- 1  O)d 1 d 1'- 1 - Yp u , . . .  , u , u .  . . U 
lff.p- l 

(3 .24) 

If we restrict 4> : U (a)  ---* V to the subset Y of U (a )  defined by u P = 0 we 
get a (p - I )-dimensional coordinate patch W (a) for a V ;  4> (y) = W; see the 
preceding figure. Then the support of {Ja meets a V in W, and so 

{ {Ja = { {Ja = { 4>* {Ja = ( Y JA V JW=<I> ( Y) Jy Jy 
- { � (_ l ) i - l  . ( 1 P )d 1 1\ di d P - Jy � y, u , . . .  u u . . .  1\ u 1\ . . . 1\ U y i 

But uP  = 0 on Y and so duP = 0 and the only surviving term is 

/ {Ja = { (- l ) P- I Yp (u l ,  . . .  u p- l , O)du l l\  . . .  l\ duP- 1  Ja v Jy 
Now since a/au 1 , • • •  , a / auP is positively oriented on V (by assumption), and 
-a / auP is the outward pointing normal to a V we conclude from Section 3 . 3a  
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that a/au 1 , • • •  , a / aup- 1 carries the orientation (- 1 ) 1' on  a v (there is one minus 
sign for -a/au!' and p - 1 minus signs to get a / aup into the first position) . 
Consequently 

Since this coincides with (3 .24) we are finished. 
Finally a note about the case p = I .  An oriented I -manifold with boundary is 

simply a curve C starting at some P = x (a)  E Mn and ending at Q = x (b) E Mn . 
The fundamental theorem of calculus says that 

1 df = 1 ( aj ) dX i = lb (aflaxi ) (dxi /dt)dt 
c c ax' a 

= lh [d{f�(t ) ] } ] dt = f (Q) - f(P) 

If we define the oriented boundary of C to be a C = Q - P and define f (a C) = 
f(Q )  - f(P ) ,  then formally Stokes 's  theorem holds even when p = l . 1t is then 
simply the fundamental theorem of calculus ! 0 

Problems 

3.3(1 ) Write out i n  ful l  i n  coord inates what (3 .21 ) says in  1R3 for p = 2 and 3 .  

3.3(2) Write out i n  fu l l  i n  coord inates what (3.2 1 ) says i n  ]R4 for p = 2 ,  3, and 4. 

3.4. Integration of Pseudoforms 

How do we measure "flux"? 

We would like to integrate pseudo-p-forms fJP of Mn over parameterized subsets F : 
U --* Mil , U C ffi.!' . If we orient U,  we would l ike F* fJ to be a well-defined p
form on U,  but fJ is really a pair of forms ±fJ on Mil and we would have to have a 
prescription for picking out one of the fJ 's to pull back. In general there is no way of 
accomplishing this ;  we would need, somehow, a way of picking out an orientation of 
Mn near F (u )  whenever we pick an orientation of U,  and if Mn is nonorientable this 
might be impossible. If one can associate an orientation on Mn near F(u )  whenever 
one assigns an orientation to U, the map is said to be oriented (de Rham).  This is a 
restriction on the map F and in general one cannot pull back a pseudoform! We are 
not going to be able to integrate a pseudoform over an oriented submanifold, as we did 
with a true form. 
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3.4a. Integrating Pseudo-n-Forms on an n -Manifold 

We claim that any pseudo-n-form (j)" can be integrated over any compact n-dimensional 
manifold Mil , orientable or not ! First note that if U is a coordinate patch on such an 
Mil , then we can define Iv (j)" as follows. Pick an orientation of U ;  this picks out a 
specific choice for (j)" and then the integral of the form (j)" over the oriented region U 
is performed just as in the case of a true form. Note that if we had chosen the opposite 
orientation of U ,  then the integral would be unchanged since although the region of 
integration would have its orientation reversed we would also automatically have picked 
out the negative _ (j)" of the previous form. One can then define the integral of (j)" over 
all of Mil by use again of a partition of unity as in (3 . 1 8) .  

This should not be surprising. Certainly the Mobius band has an area and this can 
be computed using its area pseudo-2-form. 

3.4b. Sub manifolds with Transverse Orientation 

Let V I' be a p-dimensional submanifold of a manifold Mil . At each point x of V" the 
tangent space to Mn is of the form M� = V!, EB Nil-I' , where the vectors in N are 
transverse to V p . Let us say that V I' is transverse orientable if each transversal N"-I' 
can be oriented continuously as a function of the point x in V p . If V I' is a framed 
submanifold, that is, if one can find (n - p) continuous l inearly independent vector 
fields on V I' that are transverse to V 1' ,  then clearly V I' is transverse orientable. 

Since every manifold carries a Riemannian metric (see 3 .2d) one can always replace 
"transverse" by "normal" in some Riemannian metric. 

Note that if V"- I is a hypersurface, then V is framed if and only if V is 2-sided 
(see 2 .8c). It is also clear that in the case of a hypersurface, transverse orientability is 
equivalent to being framed by a normal vector field; in particular, the Mobius band in ffi.3 
is not transverse orientable. For V" C Mn for p < n ,  however, transverse orientability 
is a weaker condition than being framed. 

Given a point x on V" we may (since V" is an embedded submanifold, see 1 .3d) 
introduce coordinates x I , . . .  , x" near this point x = 0 on Mn (in a patch W) such that 
vpn w is defined by XU = fU (x I , . . .  , xp) , ex = p+ 1 ,  . . .  , n . Then the n -p coordinate 
vectors Nu = 8/8xu are defined in W and are transverse to V" at V I' n W.  A sufficiently 
small piece of a submanifold can always be framed and is thus transverse orientable. 
V I' n W is  a coordinate patch for V 1' ; in fact x I , . . .  , x I' could be used as local coordinates 
there. In particular, given an orientation for V I' n W, we can always find p tangent vector 
fields X I , . . . , XI' that are positively oriented in this patch and these vector fields can 
be extended to all of W by keeping their components constant as we move off V. We 
may then define an orientation of W by insisting that N 1'+ 1 , . . .  , N" , X I , . . .  , XI' define 
the positive orientation. Thus to an orientation of V P n Won V I' we may associate an 
orientation of W on Mil , and thus if fJP is a pseudo-p-form on W, we may pull it back 
to a pseudo-p-form i * fJ I' on V I' n W. To say that V I' is transverse orientable is to say 
that we can patch these local constructions together in a coherent or continuous fashion. 
(We shall certainly fail in the case of a Mobius band in  ffi.3 . )  In summary, if fJP is a 
pseudoform in W, we may pull back this form via the inclusion map i : V I' -+ Mn to 
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yield a pseudo-p-fonn i *  I F  o n  V P  n W and if VP is transverse orientable we may pull 
back a pseudo-p-form f3P of MI7 to i * f3P on all of V p .  

3.4c. Integration over a Submanifold with Transverse Orientation 

Let i : V P --+ MI7 be a submanifold of the compact manifold Mil (perhaps with bound
ary) with transverse orientation, and let f3P be a pseudo-p-form on Mil .  We have seen 
in the previous section that we may pull this pseudo-p-form back to i *f3P on VI' .  Let 
{ U  (a) }  be a finite coordinate cover of V P with associated partition of unity { fa} .  Then 
we define (since i * f3 is a p-form on VI' )  

( f3P := L 1 (i * f3 ") fa Jv a U (a) 
In summary, we have the fol lowing contrast. 

(3 .25) 

A true p-form on MI7 is  always integrated over an oriented submanifold V",  whereas 
a pseudo-p-form f3" is always integrated over a submanifold V "  with transverse 
orientation. 

Consider, for example, the Mobius band V2 sitting in JR.3 and one also in Mo x lR. If 
f32 is a true 2-form on JR.3 or Mo x lR, then we cannot define the integral of f32 over either 
Mobius band since the Mobius band is not orientable. If f32 is a pseudo-2-form then we 
cannot integrate f32 over the strip in JR.3 since this strip is I -sided, and we cannot pull 
f32 back to the strip. On the other hand Mo is 2-sided in Mo x JR.  (see 2 . 8c), and thus 
we can integrate f32 over Mo C Mo x JR. once we have chosen one of the two possible 
normals a/at or -a/at , where t i s  the coordinate in lR. 

In the case of a surface integral of a pseudo-2-form f32 in JR.3 we have the following 
simple prescription. Let F(U)  be an unoriented parameterized surface in JR.3 with a 
prescribed unit normal N. We know that f32 is of the form f32 = iB vol3 for a unique 
(true) vector B. Then B o N  is a true scalar and from (3 .25) and (3 . 1 5) 

( f32 = f B o Nds = l BndS JF(U) .N . U U 
(3 .26) 

This i s  sometimes called the flux of B through the surface with given normal N. This 
result is independent of any choice of orientation of JR.3 or of orientation of the surface. 
Only the normal was prescribed. 

Let a I be a pseudo- I -form and F (l )  an unoriented curve with framing in JR.3 ; thus 
there are two mutually orthogonal unit normals N I and N2 defined along the curve 
F (l ) .  (We shall see in Section 1 6. 1  d that such a framing exists for any curve in JR.3 .) Let 
A be the contravariant pseudovector associated to the pseudoform a I . If we pick out 
arbitrarily an orientation, that is, a direction, for the curve F ( l ) ,  then a specific vector 
A is chosen through the orientation of JR.3 determined by the triple N I ,  N2 , T, where T 
is the unit tangent vector to the directed curve. We then have for a line integral 

( a 1 = JA o TdS 
J F(l ) . N ,  ,N2 I 

and this is again independent of the orientation chosen for the curve. 

(3 .27) 
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3.4d. Stokes's Theorem for Pseudoforms 

Let wn- 1 be a pseudo- en - 1 ) -form on a compact unoriented manifold Mil with boundary. 
Then dwn- 1 is a pseudo-n -form on Mn and we may compute the integral JM dw as in 
3 .4a. Now aM has a natural transverse orientation in Mil since there is clearly an 
outward pointing transversal N; if Mil has a Riemannian metric we may even choose 
N to be a unit normal . In any case we may then form the integral JaM wp- 1 (we have 
omitted indicating the transversal since it will always be assumed to be the outward 
one). The proof of Stokes's theorem in the previous section carries over to yield again 
JM dw = JaM wp- 1 , but we emphasize that no orientation has been assumed for M !  

If you are used to proving Stokes's theorem by breaking up Mil into nonoverlap
ping patches U, V, . . .  , you are familiar with the cancellations in J w over boundaries 
common to two adjacent patches. This still happens with pseudoforms in spite of the 
arbitrariness in picking orientations in the patches. 

. '  

M 
'. 

Figure 3.1 2 

In Figure 3 . 1 2  we have given opposite orientations to the patches U, V for the 
evaluations of Jv dwn- 1 and Jv dwn- 1 •  It appears as if the boundary integrals  along the 
common part of their boundaries would not cancel, but this is not so since the w's used 
in U and V would be negatives of each other ! 

Suppose now that V p is a compact submanifold with boundary of Mil , and suppose 
that V is tranverse oriented in M: for simplicity we shall assume that V has a normal 
framing N 1 ,  . . . , Nn-p ' Let n be the unit vector that is tangent to V ,  normal to a V ,  and 
points out of V .  Then we may frame a v by using N t ,  . . .  , Nn- p , n. Thus a transverse 
orientation of V leads in a natural way to a transverse orientationfor its boundary a V !  
With this understood we may state 

Stokes's Theorem (3.28) : Let fJP- 1 be a pseudo-(p - I ) -form on any manifold 
Mn. Let V P be a compact transverse oriented submanifold (with boundary) of 
Mn . Then 

The proof i s  similar to that given for true forms. We emphasize that no orientation i s  
required for V p or  Mil .  
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3.5. Maxwell 's Equations 

Suppose that our space is really a 3-torus T3 . How does the electric field behave when a constant 
current is sent through a wire loop? 

3.5a. Charge and Current in Classical Electromagnetism 

We accept as a primitive notion the charge Q on a particle and we assume that there 
is a 3-form (]'3 defined in ]R3 whose integral over any region U will yield the charge 
contained in the region 

Q(U) = i (]'3 (3 .29) 

We shall assume that Q (U) i s  a scalar independent of the orientation of ]R3 . This means 
that (]' 3 is a pseudoform. Note that (3 .29) does not require and is independent of the use 
of any Riemannian metric in space. If we do introduce a Riemannian metric, say the 
standard euclidean one, then we have 

(3 .30) 

where p is the charge density O-form (a scalar) . Note that to define p only a volume 
form is required, not a full metric .  In the following, whenever vol3 or some object 
constructed from a Riemannian metric appears, it will be assumed that a choice of 
volume form or metric has been made, but it is  intriguing to note which objects (such 
as (], 3 ) do not require these extraneous structures. 

Let W2 be a 2-sided surface. If we prescribe one of the two sides, that is , if W 
is transverse oriented by, say, a transverse vector field N, then we shall also assume 
that the rate at which charge is crossing W (in the sense indicated by N) is given by 
integrating a (necessarily pseudo-) 2-form f, the current 2-form 

(3 .3 1 )  

We assume that charge is conserved; thus if W2 = a u3 is the boundary of a fixed 
compact region U (with outward pointing transversal N), then the rate at which charge 
is leaving U, Iau f, must equal the rate of decrease of charge inside U, 

d j 3 j a(],3 
r ' 2 - dt u (]' = - u ----at = JautY  

This must be true for each region U . If f is continuously differentiable we have 
Iou f = Iu df, and so 

a(],3 
- + d ·2 = 0 
a t  t 

We have introduced here two notational devices . First 

(3 .32) 

We have used a bold d to emphasize that this exterior derivative is spatial, not using 
differentiation with respect to time; this distinction will be important when considering 

space-time later on. 
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Second 

We have defined the time derivative of an exterior form by simply differentiating 

each component 

(3 .33)  

Since jJ i s  a pseudo-2-form we can associate a current vector J such that / = iJ vol3 . 
We can then write (3 .32) ,  using (2.87), as the "equation of continuity" 

ap . 4 - + dlV J = 0 (3 .3  ) a t  
In  many cases the current is  a convective current, meaning that J is of  the form 

J =  pv 

where v is  the velocity of a charged fluid. In this case, in cartesian coordinates, 

jJ = p [v 1 dy /\ dz + v2dz /\ dx + v3dx /\ dy] 

(3 .35)  

and by inserting a factor y'g we have the correct expression in any coordinates (see 
(2.77». 

3.Sb. The Electric and Magnetic Fields 

We isolate the effects of the electromagnetic field by assuming that no other external 
forces, such as gravity, are present. The electric and magnetic fields are defined opera
tionally. In the following we shall use the euclidean metric and cartesian coordinates of 
]R3 (where there is no blatant distinction between covariant and contravariant vectors) 
and then we shall put the results in a form independent of the metric .  

We suppose units chosen so that the velocity of light is unity, c = 1 .  The electro
magnetic force on a point mass of charge q moving with velocity v is given by the 
(Heaviside-) Lorentz force law 

F = q [E + v x B] (3 .36) 

Thus to determine the electric field E at a point x and instant t, we measure the force on 
a unit charge at rest at the point x. To get B,  we then measure immediately the forces on 
unit charges at x that are moving with velocity vectors i ,  j, and k. This information will 
determine B since E has already been determined. Thus the Lorentz force law serves 
to define the fields B and E !  It is interesting that the "correct" magnetic force qv x B 
was first written down by Heaviside only in 1 889 ! (For a history of electromagnetism 
I recommend Whittaker' s  book [W] . )  

The force F has a direction that is independent of orientation of ]R3 and so must be 
a true vector. S ince q is a scalar both E and v x B must be vectors . But the velocity 
v is certainly a vector, and so B must be a pseudovector whose sense is orientation
dependent (agreeing with our discussion in 2 .8e) ! 

We shall now redefine the electric and magnetic fields to free them from cartesian 
analysis and orientation. First note that force naturally enters in line integrals when 
computing work, and in fact force can be measured by looking at the work expended. We 
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then prefer to consider force a s  a I -form f l .  This is in agreement with our considering 
force as the time derivative of momentum and the fact that momentum is to be considered 
as covariant; see (2.32). From (3 .35) we are then to consider the covariant versions of E 
and v X B.  We think then of the electric field as again a I -form /:� I . To the pseudovector 
B in euclidean �3 we may associate the true 2-form H32 defined by 

and then the magnetic force covector is -qiv�B2 ; see (2.85) . We consider the magnetic 
2-form m2 as being more basic than the pseudovector B, since �R is independent of the 
choice of volume form. We then have for the Lorentz force covector 

f l ( ,- I . ,,2 ) = q �, - I v · 1.>  
and this equation is independent of  any metric or  orientation. 

Our view is then that the electric field intensity is given by a i -form (;� I 

magnetic field intensity is given by a 2-form �jj2 . In any coordinates 

(;� I = El dx 1 + E2dx2 + E3dx3 
and 

�1\2 = B23dx2 1\ dx3 + B3 1 dx3 1\ dx l + B12dx l 1\ dx2 

(3 .37) 

and the 

(3 .3 8) 

If we introduce a metric, then we may consider the associated vector field E and the 
pseudovector B. The pseudovector B has components B 1 = B23 /,Jg, and so on. See 
Problem 3 .5 ( 1 )  at this time. 

3.Sc. Maxwell 's Equations 

First some terminology. 

A closed manifold is a compact manifold without boundary. 
The 2-sphere and torus are familiar examples in �3 . We have the 2: 1 continuous map 
S2 -+ IRp3 of the 2-sphere onto the projective plane, and so �p2 is compact. � p2 is 
a closed manifold that is not a submanifold of �3 . 

We accept the fol lowing empirical laws governing the electromagnetic field in �3 . 
The name given to the first law is traditional and will be better understood after Gauss's 
law is given. 

The Absence of Magnetic Charges. For each compact oriented region U3 in �3 we 
have 

J!au 
�B2 = 0 (3 .39) 

Assume that the field H32 has continuous first partial derivatives .  Then fffu d�B2 = 

ffau �jj2 = O. Since this is true for arbitrarily small regions U we conclude that 

dH12 = 0 (3 .39') 

which is simply the familiar vector analysis statement div B = 0 (see (2. 87» . 
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Faraday's law. Let V2 be a compact oriented surface with boundary a V2 . Then 

i - I - 11 a�i\2 /;, - - -

a v v a t  (3 .40) 

If &1 has continuous first partial derivatives we may conclude that ffv d& 1 + a �jp la t  = 0 
for all such surfaces V2 . By  applying this to small rectangles parallel to the xy ,  X Z ,  and 
yz planes we may conclude 

- I  a�i\2 
dt;, = - 

a t  

which is the vector statement curl E = - aB/a t .  

( 3 .40') 

Warning: Equation (3 .40) holds for any surface, moving or not. However, the right
hand side can be written -d I dt JJv �B2 , that is, as a time rate of change of flux of �B2 , 

only if the surface is fixed in space. We shall see (Problem 4.3 (4)) that in the case of a 
moving surface we may write fa v [�� 1 - iv �B2 ] = -did! ffv m2 . (3 .40') of course holds 
under all circumstances. 

For the remaining equations we must assume a Riemannian metric in ]R3 . (We shall 
see later on that our 3-space does inherit a Riemannian metric, the one we use in daily 
life, from the space-time structure of general relativity.) 

We may then introduce two pseudoforms 
(3 .4 1 )  

and 

Note that *& is a 2-form and * �i\ is the I -form version of B. 

Gauss's law. If U3 is any compact region 

(3 .42) 

measures the charge contained in U .  

We again conclude, when [, is  continuously differentiable, that 

(3 .42') 

or div E = 41lp. 

Ampere-Maxwell law. If M2 is a compact 2-sided surface with prescribed normal, 
then 

(3 .43) 

Thus 

(3 .43') 
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(assuming �g continuously differentiable) with vector expression curl B = 4n J +aEj a t .  

Note that the integral versions o f  Maxwell 's  equations are more general than the 
partial differential equation versions since spatial derivatives do not appear in the 
equations. In particular, their continuity is of no concern ! 

3.Sd. Forms and Pseudoforms 

There is a general rule of thumb concerning forms versus pseudoforms ;  a form measures 
an intensity whereas a pseudoform measures a quantity. (� and �R measure the intensities 
of the electric and magnetic fields (they are "field strengths"). a3 measures the quantity 
of charge, as does *(� through (3 .42) .  / measures essentially the quantity of charge 
passing through a (transverse oriented) surface in unit time. In Ampere's law, d*�B = 
4n /'  d*�g measures again this flux of charge. 

Our conclusions, however, about intensities and quantities must be reversed when 
dealing with a pseudo-quantity, i .e . ,  a quantity whose sign reverses when the orientation 
of space is reversed. If this quantity is represented by integrating a 3-form over an 
oriented region, then the form must, by our definition of integration, be a true form. For 
example, in section 1 6 .4e we shall discuss the hypothetical Dirac magnetic monopole. 
When such magnetic charge distributions are allowed, the Maxwell equation d�B = 0 
should be replaced by d�1l = '1' vol3 , where cr is the magnetic charge density, d�R 
is a true 3-form, '1/ is a pseudo-scalar, and the total magnetic charge in a region, a 
pseudo-quantity, is given by the integral of this true 3-form over the oriented region. 
Furthermore, the classical "definition" of the magnetic field strength B(x), before the 
Heaviside-Lorentz force law was known, was the force acting on a "magnetic pole" of 
unit charge at the point x. Thus the work done against the magnetic field in transporting 
a magnetic pole of charge q along a curve is the true scalar given by the line integral 
J q *�Il . In terms of these hypothetical poles, the magnetic field strength is measured 
by the pseudo-form *�Il or contravariantly by the pseudo-vector B. Thus magnetic field 
strength, when measured by a (true) electric charge, is given by the true 2-form �B , but 
when measured by a magnetic pseudo-charge it is given by the pseudo- i -form * �B .  

Problems 
3.5(1 ) If the magnetic f ie ld is a 2-form,  not a vector, how do you expla in the curves 

generated by i ron f i l ings near a bar magnet ( i . e . ,  the B l i nes) when we have not 
informed the magnet of which metric we are using? 

3.5(2) Assume that Maxwell's equations (3 .39') ,  (3.40') ,  (3.42' ) ,  and (3.43') for �B  and 
t" hold in every 3-manifold M3 , not just ]R3 . This wi l l  be discussed in more deta i l  
in  Chapter 1 4. 

The 3-d imensional torus T 3 is obtained from the sol id un it cube in ]R3 by iden
tify ing opposite faces pai rwise; for example, top and bottom faces are identified 
by identifying (x, y, 0) with (x, y, 1 ) , and so on. Note then that each face has its 
opposite edges also identified;  thus on the bottom face, (x, 0, 0) is identified with 
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(x, 1 , 0) .  In this way we see that each face of the cube becomes a 2-torus. We 

have indicated the top (= bottom) T2 = Top .  

".- - - - - - -

p 

Figure 3.1 3 

Consider a current f lux of magnitude j through the top torus for al l  t imes 
t 2: 0; ffTOP/ = j. We can real ize th is by attaching a battery (del iver ing a current 
J) at time t = 0 to a c/osedwire loop that p ierces the top face. Show that for t 2: 0 

and thus, un l ike the case of a wi re loop carry ing a constant current i n  JR3 , the 
electric field must tend to infinity, with time, at some points of the torus! 

(Warn ing:  The top torus T2 is not the boundary of any 3-dimensional reg ion ! )  
On the other  hand ,  i t  can be shown , though it is more d ifficu lt, that if one has a 

loop that yields no net f lux of current th rough the top, side, or back toroidal faces, 
for example, if the loop lies in the i nterior of the cube or if i t  can be "contracted to 
a point" in the torus, then a constant current will lead to an electric field that must 
remain bounded for al l  t ime. Thus the behavior of the electric field is dependent 
on the "topological position" of the loop. ( I t  can be shown that the magnetic f ie ld 
remains bounded i n  a l l  cases. )  I n  a sense, g iven a closed 2-sided mathematical 
su rface such as Top, and a closed wire loop that p ierces it exactly once, the 
surface wil l i ncreas ing ly resist a current through the w i re by forcing an electric 
field to be generated, via Ampere-Maxwel l ,  that will oppose the e .m .f. in  the wi re. 
On the other hand, an ord inary closed surface, one that bounds a 3-dimensional 
region U, can never be p ierced exactly once by a wire loop;  if the loop p ierces 
the surface and enters the reg ion U then it must eventual ly leave the reg ion , 
result ing i n  a zero net f low of current through the surface. For this and other 
strange behavior i n  spaces other  than JR3 , see [0 ,  Fl . We shal l  have more to say 
about topology in Chapters 1 3  and 1 4. 
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The Lie Derivative 

4.1. The Lie Derivative of a Vector Field 

Walk one mile east, then north, then west, then south. Have you real ly returned? 

4.1a. The Lie Bracket 

Let X and Y be a pair of vector fields on a manifold Mn and let ¢> (t )  = ¢>r be the 
local flow generated by the field X (see 1 .4a) . Then ¢>rx is the point t seconds along 
the integral curve of X, the "orbit" of x, that starts at time 0 at the point x .  We shall 
compare the vector Y </J,x at that point with the result of pushing Y x to the point ¢>rx by 
means of the differential ¢>t* . The Lie derivative of Y with respect to X is defined to 

Y(I/> (t )x) 

1/>(- t). Y(I/>(t)x) 

Figure 4.1 

be the vector field i'x Y whose value at x is 

(4. 1 )  

125 
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(4.2) 

since ¢o* is the identity. We must first show that the limit exists. In the process we shall 
discover an important alternative interpretation of the Lie derivative. First we shall 
need a very useful version of the mean value theorem in our context. In a sense this is 
a replacement for a Taylor expansion along the orbit of x .  

Hadamard's Lemma (4.3) : Let f b e  a continuously differentiable function de
fined in a neighborhood U of xo. Then for sufficiently small t, there is a function 
g = g (t , x) = gl (x ) , continuously differentiable in t and point x in U, such that 

and 
f (¢,x )  = f (x ) + tgl (x) 

that is, 
f 0 ¢I = f + tgl 

If we accept thi s for the moment we may proceed with the existence of the limit. At x 

[i'x Y] (f) = lim [Y"" x  - ¢I*Y., ] (f) 1_0 t 
which from (2.60) is 

= l im [Y"" Af) - YAf 0 ¢, ) ] 
1_ 0 t 

= lim [Y"" x (f) - Y, (f + tg, ) ]  
1 _ 0 t 

- I ' [Y"" x (f) - YAf)]  I ' Y ( ) - 1m - 1m x gl 1 _ 0  t 1_0 

= Xt {Y(f) } - Yx (go) 

= X, {Y(f) } - Yx {X(f) }  
Thus not only have we shown that the limit exists, but also we have the alternative 
expression 

i'xY = [X,  Y] (4.4) 

where the Lie bracket [X, Y] = - [V, X] is the vector field whose differential operator 
is the commutator of the operators for X and Y 

(4.5) 



T H E  L I E  D E R I V A T I V E  OF A V E C TO R  F I E L D  

In particular, for any two coordinates x,y w e  have 
B (,' - 0 '''-8/8x By -

127 

In Problem 4. 1  ( 1 )  you are asked to show that by expressing the right-hand side of (4.5) 
in local coordinates one gets , ""' {  , ( aYi )  , ( aX i ) } 

[X, Yl' = � X) axj - Y) axj ) 
We remark that (4.2) can be written 

.\:'xYx = { d
d 

(q>-r ) *Vt/>lx
} 

t r=O 
Note that (<P-r ) . V "'IX is a vector that is always based at the point x . 

(4.6) 

(4 .7) 

PROOF  O F  H A D A M A R D ' S  L E M M A :  Define F(t , x) = (J 0 <Pr ) (x ) .  Fix t and 
x and put :res ) = F(st , x ) . Then 

(J 0 <Pr ) (x ) - I(x) = :f( l )  - :f(O) = 11 :f ' (s )ds 

= r ' �F(st , x)ds = r ' t F1 (s t , x )ds io ds io 
where F\ denotes derivative with respect to the first variable. Thus if we define 

then 

Furthermore 

gr (x ) := 1\ F\ (st , x)ds 
(J 0 <Pr ) (X ) - I(x) = tgr (x) 

gO (x ) = 1 \ F\ (0, x)ds = F\ (0, x) 

. [F (t , x ) - F(O, x )] = hm -------r-O t 

= lim [ (J 0 <Pr ) (x) - I(x) ] = xx (J) 0 r_O t 

4.1b. Jacobi's Variational Equation 

If, in (4.6), we use the fact that xj = dxj /dt along the orbit, we can write 

[ . .rx y] i = 
dyi _ ""' ( aX ) yj 
dt � ax) ) 

(4.8) 

We then notice that this makes sense even when V is a vector field that is  defined only 
along the orbit <p (t)x of the vector field X! (4. 1 )  and (4.7) also make sense in this case. 
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The same derivation that yielded (4.5) will yield (4 .8)  and we  shall accept (4.8) in this 
extended sense. 

This equation thus even applies in the case when the vector field X vanishes at the 
point x .  In this case the vector Y <p,x is a time-dependent vector based forever at the 
point x ;  note then that .�x Y need not vanish at x .  For example, consider the vector field 
X = -y8/8x + x8/8y in 1l�2, vanishing at the origin. The flow (/Jt generated by X 
satisfies dx/dt = -y and dy/dt = x [X (t) ] = [ C?s t  - sin t ] [x ] = (/Jr [x ] y (t ) SIn t cos t y y 
Since (/J is l inear, (/Jr. = (/Jr . Let Y = 8/ 8x sit at the origin; then .�x Y is the vector at 
the origin given by d/dt {(/J-t .8/8x } t=o . In components 

and so .'s..)x8/8x = -8/8y . 
In the case when Y is defined only along an orbit of X, it makes no sense to consider 

S)yX, since Y has no integral curves .  We shall reserve the notation [X, Y] = - [V, X] 
for the case in which both X and Y are vector fields defined in an open subset in Mil .  

We shall say that a vector field Y defined along an orbit of X i s  invariant (under the 
flow generated by X) provided 

From (4. 1 )  we see that Y then sati sfies the Jacobi variational equations 

[.s:'X y]i  = d yi _ '" ( a X' ) yj 
= 0 dt � ax) } 

(4.9) 

The reason for this classical terminology is the following. Classically one worked only 
in ]Rn . Consider a solution curve x = x (t )  to the differential equation dx/dt = Xx 
that starts at the initial point x (0) . To discuss the stabil ity of solutions ,  one would 
then, in classical language, consider a second integral curve y = y et) that starts at 
an "infinitesimally nearby" y eO) = x (O) + 8x (0) . One would then write this solution 
in the fonn y et )  = x (t ) + 8x (t ) .  The solution curve y is  called a variation of the 
solution x, and 8x is  called an infinitesimal variation vector. Now dx / dt = X(x)  and 
d(x + 8x) /dt = X(x + 8x) are both satisfied. 

y(t) x 

8x x 

x(t) 

Figure 4.2 
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subtracting, o (dxldt) := d(x + ox) ldt - dxldt = d(ox) ldt becomes 

d (OXi ) . . "  ( aXi )  . . 
-d- = X�+8x - X� = � -a } ox} + /).' t } X .« 1 ) 
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where /).i contains terms of higher order in ox. This is a nonlinear system of ordinary 
differential equations for the infinitesimal variation vector ox ; it is assumed that the 
base solution x = x (t )  is known. If we linearize this system, that is ,  throw away the 
high-order terms /). ,  we obtain the "infinitesimal" variational equations .  Finally if we 
denote ox by Y we return to the equations (4.9) .  In our development of (4.9) the vector 
field Y replaces the obscure notion of infinitesimally near points. Instead of seeing how 
two nearby points are pushed along by the flow, we observe how a vector Y at x (O) is 
pushed by the differential 411* ' This differential , being the linear approximation to 411* , 
leads to a linear equation for Y along the orbit x (t ) .  

I f  x = x (t )  is  a given solution to the system dx  I dt  = Xx > and i f  Yo  is  a vector at 
the point x (O) , then there is a unique solution to the variational equations 

with 

dyi [ aXi ] . 
- = 2: -. 

y} 
dt } ax } xU) 

yi (0) = y� 
(4. 1 0) 

and, since this system is l inear, this solution exists for al l t for which the integral curve 
x (t) is defined. Y is sometimes called a Jacobi field along the solution x .  

We can also reinterpret (4. 1 )  as follows. Let '.lJ1>,x : =  411* Yt  be the Jacobi field along 
the orbit with initial value Y x '  Then 

d 
S'x Y = dt [Y 1>,x - '.1]1>, x ] 1=0 (4. l 1 )  

Warning: Neither side of (4. 1 0) has intrinsic meaning, independent of coordinates ;  
for instance, we know that axi lax} do not form the components of a tensor. Never
theless, (4. 1 0) has intrinsic meaning since it expresses J'x Y = 0, and S'x Y is a vector 
field (defined without the use of coordinates) . 

4.1c. The Flow Generated by [X, YJ 

Let X and Y be vector fields on Mn . Let 41 (t) and ljr (t) be the flows generated by X 
and Y. [X, Y] is also a vector field; what is its flow? We claim that the flow generated 
by [X, Y] is in the following sense the commutator of the two flows. Let x E Mn . 

Theorem (4.12): Let (Y be the curve 
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Then for any smooth function f 

Y 

[X ,  Yld = l im 
f[o- (Jt) ]  - f [o- (O) ] 

1 --> 0  t 

_-------,2 = 1/r(t) 1 

4 = 1/r(- t)3 
Y x 

[X, Y] (x) is tangent to this curve 

Figure 4.3 

P R O O F  (Richard Faber) : As in the preceding figure, let 0, 1 , 2 , 3 , 4  be the vertices 
of the broken integral curves of X and Y. Let f be a smooth function. Form 

f(o- (t) )  - f (O) = [f (4) - f(3) ]  + [f (3) - f(2) ]  

+ [f (2) - f ( 1 ) ]  + [f ( l ) - f(O) ] 

By Taylor's theorem, letting Xo denote X(O), and so on, 

f ( 1 ) - f (O) = tXo C!) + C;)Xo {XC!) } + 0 (3) (i) 

where 0 (3) (t ) / t 2 -+ 0 as t -+ O. Also 

f(2) - f ( 1 )  = tY t C!) + C;)YdYC!) } + 0 (3) 

Note YdYC!) } = Yo {YC!) } + tXO [YI {YC!) } ]  + 0 (2) , where YI {Y(f) } is the 
function t -+ Yc/>,o {YC!) } . Thus 

Likewise 

and 

f(2) - f ( 1 )  = tY I C!) + (�)Yo {YC!) } + 0 (3) (i i) 

f (3) - f (2) = -tX2 C!) + (�) Xo {XC!) } + 0(3) (i i i) 

f(4) - f (3)  = -tY3 C!) + (�)Yo {YC!) } + 0 (3) (iv) 
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Adding (i) through (iv) we  get 

But 

Also 

f (4) - f(O) = t [Xo (f) + YI (f) - X2 (f) - Y3 (f) ] 

+ t2 [Xo {X(f) } + Yo {Y(f) } ]  + 0(3) 

X2 (f) - Xo (f) = X2 (f) - X I (f) + Xl (f) - Xo (f) 

= tY I {X(f) } + 0 (2) + tXo {X(f) } + 0 (2) 

= tYo {X (f) } + tXo {X(f) } + 0 (2) 

Y3 (f) - Y I (f) = Y3 (f) - Y2 (f) + Y2 (f) - Y I (f) 

Thus 

and then 

= -tX2 {Y(f) } + 0 (2) + tYdY(f) } + 0 (2) 

= -tXo {Y(f) } + tYo {Y(f) } + 0 (2) (from (v)) 

f (4) - f (O) = t2 [XO {Y(f) } - Yo {X(f) } ] + 0 (3) 

f {a (t ) } - f {a (O) } -+ Xo {Y(f) } - Yo {X(f) } t2 
as t -+ O. This concludes the proof. D 

We may write, in terms of a right-handed derivative, 

d .fxY = [X, Y] = -a (J(nr=o dt+ 
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(V) 

(4. l 3 )  

Corollary (4.14) : Suppose that the vector fields X and Y on Mil are tangent to a 
submanifold V P of Mn at all points of V p . Then since the orbits of X and Y that 
start at x E V P will remain on V P, we conclude that the curve t f-+ a (t ) , starting 
at x, also lies on VP and therefore the vector [X,  Y] is also tangent to VP .  

Warning: Many books use  a sign convention opposite to  ours for the bracket [X ,  V] . 

---------- Problems ----------

4.1 (1 )  Prove (4.6) . 

4.1 (2) Prove Corol lary (4. 1 4) by i ntroducing coordinates for Mn such that VP is local ly 
defined by XP+1 = 0, . . .  , xn = 0, and then using (4.6) .  
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4 . 1  (3) Consider the un it 2-sphere with the usual coordinates and metric ds2 = d()2 + 
sin2 () d¢2 . The two coordinate vector fields 8e and 8¢ have , of cou rse, a van ishing 
Lie bracket . G ive a graph ical verification of this by examin ing the "closu re" of the 
"rectangle" of orbits used in  the Theorem (4. 1 2) .  Now consider the unit vector 
fields ee and erp associated to the coordinate vectors. Compute lee , e¢ ] and 
i l lustrate this misclosure graph ical ly. Verify Theorem (4. 1 2) in  this case. 

4.2. The Lie Derivative of a Form 

If a flow deforms some attribute, say volume, how does one measure the deformation? 

4.2a. Lie Derivatives of Forms 

If X is a vector field with local flow <P (t) and if f is a function, we shall define the 
Lie derivative of f with respect to X by :fxf := XU) = Li Xi fJflfJx i . Thus at x , 
from 2.7a, 

d 
·'f.xf = dt f [<Ptx] t=o = d/dt [<p; J] t=o 

This simply describes how f changes along the orbits of X. 
If a i' is  a p-form we define, putting ax = a (x ) 

,,, rvP . _ d [A.*rvP] 
·",- X u- . - dt 'VI u- 1=0 

I . <p;arptX - ax = Im ----'--"""""'-'----1-+0 t 
By this we mean the following. Let Y I , • • •  , Y P be vectors at x . Then 

[ d * 1'] . _ d * p 
- <pt a (Y j , . • •  , Yp) · - - [<pl a (Y 1 , . . .  , Yp) ] dt dt 

_ d I' 
- - {a [<Pt.Y l " " , <PI *Yp] } dt 

(4. 1 5) 

(4. 1 6) 

(4. 1 7) 

In particular, if we extend the vectors Yi to be invariant fields along the orbit through 
x , <PI. Yt = Y ¢tX , then we can write 

d 
,'t'xap (y 1 , • • •  , Yp) = dt [a:t x (Y 1 , • • •  , Yp ) ] I=O (4. 1 8) 

that is  

.'l.'xa (Y I , . . .  , Y 1' )  measures the derivative (as one moves along the orbit of X) of the 
value of a evaluated on a p-tuple of vector fields Y that are invariant under the flow 
generated by X. 

The reader should note that although one cannot pull back a pseudoform by means 
of a general map, one can do so if the map is a diffeomorphism, or a I -parameter 
group of such, that is ,  a flow. Thus it makes sense to talk about the Lie derivative of a 
pseudoform. For example, if 

all = volll = Jgdx I /\ dx2 /\ • . • /\ dxll 
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is the volume form for a Riemannian Mn and if X i s  a vector field on Mn , then .rx voln 

is the n-form that reads off the rate of change of volume of a parallelopiped spanned 
by n vectors that are pushed forward by the flow ¢t . Schematically 

x 

x 

Figure 4.4 

In other words, ,5:'x voln measures how volumes are changing under the flow ¢t 
generated by X. One usually thinks of voln as a given form; then ,s:'x voln is "really" 
describing a property of the vector field X, namely, how the flow generated by X is 
distorting volumes ! 

We need convenient methods for computing Lie derivatives. First note that for a 
(p + q ) -tuple Y 1 and their "push-forwards" ¢t* Y 1 

d 
,�x (aP /\ (3Q ) (Y/ ) = dt [aP /\ {3q (¢tS/ ) ] t=o 

d '" '" JK  = - L L 81 a (¢t* Y J ){3 (¢t* Y K ) t=o dt l£ 1. 

'" '" JK  d 
= L L 81 T [a (¢t* Y J ) ](3 (Y K )  

l£ 1. t 

'" '" JK  d 
+ L L 81 a (YJ ) - [{3 (¢t*YK ) ]t=o 

l£ 1. dt 
and so £x is a "derivation" (to be discussed shortly) ,  

Theorem (4.20) : ,�x commutes with exterior differentiation d 
,s:'x 0 d = d 0 S'x 

(4. 1 9) 

P R O O F : We first verify this for O-forms, that is ,  functions f.  In our computations 
we shall omit indications of location, such as, x or ¢tx .  Also, all derivatives with 
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respect to time will b e  evaluated at t = O .  Let Y be  a fixed vector at x E Mn . 

From (2.60) 
d d ctx (df ) (Y) = dt { [¢;df] (Y) }  = dt {df [¢,* V] }  

= :t {Y[¢; f] } 

= Y { :t [f 0 ¢ (t) ]  } (since Y is time-independent) 

= Y{X(f) } = Y{X'x (f) } = [dctx (f) ] (Y) 
and we have verified (4.20) for O-forms.  When applied to p-forms 

,'i'xdaP = ctxd L a,dx'  = }tx L da, /\ dXi l /\ . . . /\ dxi l' 

= L (ffxdal ) /\ dXi l /\ . . . /\ dxil' 

+ L dal /\ (!{'XdXi l )  /\ . . .  /\ dxi/' + . . .  

= L d (.�'xal ) /\ dXi l  /\ . . .  /\ dxil' 

+ L dal /\ d (.�)XX i l ) /\ . . .  /\ dx il' + . . . 
= d L (.txal ) /\ dXi l /\ . . .  /\ dxip 

+ d L a1 d(.I:.'xx i l ) /\ . . . /\ dxil' + . . .  

= d L (ffxal ) /\ dX i l /\ . . . /\ dxil' 

+ d L al (.txdXi l )  /\ . . . /\ dxip + . . . 
= dffx L a1dx l = dctxa" D 

In particular, we have 
(4 .2 1 )  

Thus i f  t i s  any one of the coordinate functions xi w e  have ,�'al8,dxi = O .  Hence i f  a" 
i s  any p-form and if t is  a coordinate function 

,) 1' - "  1 _ � 1 _ ( aa l ) aal' ,� a/ata - .l:.8/8taldx - - dx - -
� a t a t 

simply differentiates the coefficients with respect to the coordinate ! 
See Problem 4.2( 1 )  at this time. 

4.2b. Formulas Involving the Lie Derivative 

(4 .22) 

Let 1\1' Mil be the space of p-forms on Mil . This is an infinite dimensional vector space 
since the components are functions. A l inear map A: 1\1' Mn -+ I\I'+r Mn is  said to be 
a derivation if r is even and 

(e.g . ,  S_'x) 
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and is said to be an anti derivation if r is  odd and 

(e.g . ,  d and ix )  

Suppose we know the value of  a derivation or  antiderivation on any function and on d 
of any function. Since the general p-form is of the form aP = L. al (X)dXi l /\ . . . /\ dx ir , 
we then know the value of A on any form: 

If A and B are both derivations or antiderivations , then to prove AaP = BaP for all 
forms we need only prove this for a a function and for a = d (a function). 

See Problem 4.2(2) .  
The following is perhaps the most often used formula involving Lie derivatives .  

H. Cartan's Formula (4.23) : When acting on exterior forms 

.I:'x = ix 0 d + d 0 ix 

P R O O F : Both sides are derivations, by Problem 4.2(2) . We need only verify 
(4.23) on functions and differentials of functions .  

On functions, ix f = 0 and ixdf = X(f) = };'x (f) ;  we have verified the 
function case. On differentials of functions 

[ ixd + dix ]df = dix (df) = d[ix (df) ]  = d[X(f)] 

= d:S:x (f) = -"-'xdf 0 

Theorem (4.24): When applied to forms 
S.'x 0 iy - iy 0 c�x = i [x ,y] 

The reader is asked to supply the proof in Problem 4 .2(3 ) .  
The following is an  intrinsic ( i . e . ,  coordinate-free) expression for the exterior deriva

tive of a I -form. It is extremely useful. 

Theorem (4.25):  Let a I be a I jorm and let Xx and Y x be vectors at x. Extend 
these vectors in any smooth way to be fields near x .  Then 

da l (Xt , Yt ) = X, {a 1 (y) } - Yx {a l (X) } - a l ( [X, V]) 

P R O O F : We shall use (4.23) and (4,24) 

da (X, Y) = Uxda } (Y) = {S)xa - dixa } (Y) = iy .'i'xa - Y{a (X) } 

= . ..I:)xa (Y) - a ([X,  V] ) - Y{a (X) } 

= X{a (Y) } - a ([X, V] ) - Y{a (X) } 0 
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See Problem 4.2(4) a t  this time. 
The following proposition says that if V'S are vector fields, one can differentiate 

the function ap (y " . . . , Yp ) = a/ (x ) Y{ '  . . .  Y� by using a "Leibniz" rule for Lie 
derivative. 

Theorem (4.26) : For a form aP and vector fields X, Y ,  , . . .  , Y I' we have 

X{ap (y "  . . .  , Yp ) } = (t'xap } (y"  . . . , Yp ) 

+ L a I' (Y " . . . , Ctx Y r ) , . . . , Y 1')  

P R O O F : For I -forms we have 

= X {a (Y) } - a Ctx Y) 

as desired. By induction, assuming true for (p - I ) -forms, 

But iy ,  a is  a (p- I ) -form and so we may apply (4.26) to compute { .S'.'X iy, a } (Y2 , . . . , 
Yp ) .  This wil l  complete the proof. 0 

Finally, we have a formula that generalizes (4 .25) to p-forms .  For vector fields 
Yo , . . .  , Yp 

(4.27) 
+ L(- l )r+sap ([y" Ys ] " "  Y" . . .  , Ys ,  . . . , Yp) 

r <s 

This  can again be proved by induction. Note that from the left-hand side we see that 
this result depends only on the values of the V's  at the given point ! 

4.2c. Vector Analysis Again 

Let vor be a volume form for an Mn , that is ,  a pseudo-n-form that never vanishes on 
any basis of tangent vectors . If X is a vector field on Mil , the divergence of X is the 
scalar div X defined by the formula 

.S'.'x voln = (div X) vol" (4.28) 
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If y" . . . , Y n are fields invariant under the flow generated by X then from (4. 1 7) 

d 
.s:'x (voW (Y 1 , • • • , Yn ) = dt voln (y 1 , • • • , Yn ) t=o 

and so div X measures the logarithmic rate of change of volumes along the flow. In 

local coordinates voln = pdx ' /\ . . .  /\ dxn , p (x) > 0, and by Cartan 's fonnula 

i'x ( volt = dUx von = d L(- ly- l pdx ' /\ . . .  ixdxr /\ • • •  /\ dxn 

and thus 

= d L( _ 1 ) r- l  (pxr )dx l /\ . . . ([;r /\ . . .  /\ dxn 

= L(_ l )r- l {� (pxr)dxs } /\ dX I /\ . . . ([;r /\ . . .  /\ dxn ax" r 

. 1 a 
d,v X = - L _ (pXr) (4.29) 

p r axr 
generalizing (2.88) of 1R3 . 

Note also that to the vector X and the volume form vol" we may associate the 
(n - 1 )  fonn 

j3n- 1 = ix vol" (4.30) 

and then Cartan's  formula gives 

dj3n- 1  = (div X) voln (4.3 1 )  

generalizing (2.87) of 1R3 . 
We now use the Lie derivative formalism to complete our discussion of classical 

vector analysis in 1R3 . Consider, for example, the vector identity for curl (A X B) . 

curl (A x B) {} diBa2 = 'S:'Ba2 - iBda2 

Now use (4.24) . 

Thus 

,,' 2 (., ' 13 ' ,,> 13 + . 
13 ·->-Ba = .->-B IA VO = IA .->-B VO I rB ,A] vo 

d' B '  13 . 13 = IV IA vo +1[B,A] VO 

{} (div B)A + [B , A] 

curl (A x B) = (div B)A + [B , A] - (div A)B (4.32) 
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I n  vector analysis books the term cs.'BA = [B, A ]  is  written differently. We can write, 
in cartesian coordinates, 

, , ( aA i ) , ( aBi ) , , 
[B , A]' = B} -, - A} -, = (DBA)' - (DAB) ' ax} ax} 

where (DBA)i : = B • grad A i . Thus they write the tenn [B . A] as B • grad A -
A • grad B as if it made sense to talk about the gradient of a vector ! This makes 
sense only in cartesian coordinates. 

Problems 

4.2(1 ) Show that i f  a 1 = I:i 8i dxi is a 1 -form then 

which should be compared with (4 .6) . 

4.2(2) Show that if e is a derivation and A an antiderivation then 

e o A - A o e 
is an antiderivation .  If A and B are antiderivations then 

A o B + B o A 
is a derivation . 

4.2(3) Prove (4.24) . 

4.2(4) Prove (4.25) by expressing both sides in coordinates and using (2.58) and (2.35). 

4.3. Differentiation of Integrals 

How does one compute the rate of change of an integral when the domain of integration is also 
changing. 

4.3a. The Autonomous (Time-Independent) Case 

Let a P be a p-form and V P an oriented compact submanifold (perhaps with boundary a V)  of a manifold Mn . We consider a "variation" of V P arising as follows. We suppose 
that there is a flow CPt : Mn ---+ Mn , that is, a I -parameter "group" of diffeomorphisms 
CPr . defined in a neighborhood of V P for small times t , and we define the submanifold 
V P (t )  : =  CPt V p . 
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v 

Figure 4.5 

Let Xx = d¢, (x ) / d t ] '=0 be the resulting velocity field. We are interested in the time 
variation of the integral 

l (t ) = r aP =  r ¢;a 
JV( t ) Jv 

(see (3. 1 7». Differentiating 

Thus 

I ' ( t ) = l im [ / (t + h) - I (t ) ]  
h - O  h 

= l im [ r ¢;Wj,a - a } ] 
1z_0 Jv h 
r [ r {¢;;a - a} ] 

= Iz� JV(t ) h 
r r {¢;;a - a}  

= 

JV(t ) h� h 

� r aP = 
r S!xaP 

dt JV(t )  JV(t ) 
a remarkably simple and powerful formula ! From Cartan 's formula 

� r aP = 
r 

ixdaP + dixaP dt JV (t ) JV(t ) 

= 
r 

ixdaP + 1 ixaP 
J V (t ) !a V (I) 

When a is the volume form and vn is a compact region in Mn we have 

� r vol" = 

r 
dix voln = r divX voln 

dt JV (t )  JV (t )  JV (t ) 

= 
r 

ix vol" 
Ja v  

(4 .33) 

(4.34) 

(4.35) 
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a fonn of  the divergence theorem. Let the volume form come from a Riemannian 
metric. Then, as in the derivation of (3 . 1 5) in the 2-dimensional case, letting N be the 
outward pointing normal to the boundary of V" and XI the projection of X into the 
tangent space to a V 

r ix vol" = r i (x,N)N+x, vol" = r (X, N) iN vol" 
Jav Jav Jav 

On a V ,  the form iN vol" , when applied to n - 1 tangent vectors to a V ,  reads off the 
(n - ] ) -dimensional "volume" of the paral lelopiped spanned, that is ,  

(4.36) 

is  the area form for the boundary, We then have the usual fonn ofthe divergence theorem 

r div X Vo]" = r (X, N) vol�v I (4.37) 
Jv Ja v 

We emphasize that the divergence theorem, being a theorem about pseudo-n-fonns, 
holds whether Mil is orientable or not. 

4.3b. Time-Dependent Fields 

Consider a nonautonomous flow of water in IR3 , that is, a flow where the velocity field 
v et , x) = dx/dt depends on time. We define a map ¢t : IR3 � IR3 as follows,  If we 
observe a molecule at x when t = 0, we let ¢tX be the position of this same molecule 
t seconds after O. Consider ¢s [¢tx] . If we put y = ¢t x then ¢s y is  the point where the 
flow would take y s seconds after time O. This is usually not the same point as ¢t+sx 

since the flow is time-dependent. A time-dependent flow of water is  not a flow in the 
sense of l .4a since it does not sati sfy the I -parameter group property. A time-dependent 
vector field on a manifold Mil does not generate aflow ! 

Consider for example the contractions of lR defined by x 1-+ X (t )  = ¢IX :=  ( 1  - t )x ,  
each of which is a diffeomorphism if  t ¥- 1 .  This does not define a flow, because it does 
not have the group property. The velocity vector at x (t) and time t are determined from 

dx (t) x (t )  
-- = -x = - -- (4.38) dt ( 1  - t) 

Thus v (t , y) = -y / (1 - t)  is a time-dependent velocity field . 
Suppose then that v = v (t , x )  is a time-dependent vector field on Mil . We apply a 

simple classical trick; any tensor field A(t,x) on Mil that is time-dependent should be 
considered as a tensor field on the product manifold lR x Mil , where t is the coordinate 
for R lR x Mil has local coordinates (t = xO , X I , . . .  , x" ) .  A time-dependent vector 
field on Mil is now an ordinary vector field v = v(t , x )  on lR x Mil since t is now a 
coordinate on lR x M. By solving the system of ordinary differential equations 

dxi . ds = v ' (t , x ) ,  

dt 
- = 1 ds ' t (s = 0) = to 

i = I ,  . . .  , n  
(4.39) 

we get a flow ¢s : IR x Mil � lR x Mil . If v et , x )  is  the velocity field of a time-dependent 
flow of fluid in Mil , then the integral curves s 1-+ ¢s (to , xo ) on IR x Mil project down 
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to yield the time-dependent "flow" on M" ; ¢s (to , xo) is the position of the molecule at 
time s + to that had been located at the point Xo at time to · 

In our example (4.38)  we need to solve the s-independent system 

The solution is  

dx 
- = -x/O - t )  ds 
dt 

x es = 0) = Xo 

- = I ds t (s = 0) = to 

x es ) = [ 0 - to - S) ] xo o - to) 
t (s ) = to + s 

and one verifies that ¢ (s) : ]R2 � ]R2 given by 

¢s (t ,  x) = (t (s ) , x es ) )  

(4.38' )  

(4.38/1 )  

is indeed a flow. To see the path in ]R of a point that starts at Xo at time 0, we merely 
put to = 0, getting x (s) = 0 - s )xo , and forget the t equation. 

We now return to the general discussion. Note that the curves s 1-+ ¢s (to , xo) of 
(4.39) are integral curves of the s -independent vector field 

a X = v + -at 
To disuss the flow of a time-dependent vector field v on Mn we introduce the vector 
field X = v + a/at on lR x M" and look at the flow on lR x Mn generated by this 
field. The path in M" traced out by a point that starts at t = ° at Xo consists of the 
projection into Mn of the solution curve on ]R x Mn starting at (0, xo) . 

We now recall an important space-time notation introduced in Section 3 .Sa. First 
note that in any manifold the operation of exterior differentiation 

d (b1dx l )  = ( ab1 ) dXi /\ dx l 
� ax) 

can be written symbolically as d = dxi /\ a/axi ; the operator a/axi acts only on the 
coefficients . In a space-time ]R x Mil with local coordinates (t = xO , • • •  , xn ) we have, 
for any form on ]R x M" (which may contain terms involving dt) 

d b1dx l = dt /\ ( ab1 ) dx l + dxi /\ ( ab1 ) dx l 
� a t ax} 

which we write symbolically as 
a d = dt /\ - + d a t 

where d is the spatial exterior derivative . We shall also write a X = v + -a t 
using a boldfaced v to  remind us that v i s  a spatial vector. 

(4.40) 

( 4.4 1 )  
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4.3c. Differentiating Integrals 

Let </>1 : Mn -+ Mil be a I -parameter family of diffeomorphisms of M ;  we do not 
assume that they form a flow (i .e . ,  they might not have the group property) , but we do 
assume that </>0 is the identity and that (t , x) -+ </>IX is smooth as a function of ( t ,  x) on 
� x M .  (In our previous example, </>IX = ( l  - t )x . )  

Let ai (x) = aP (t ,  x) be a I -parameter family of forms on M and let  V I' be a p
dimensional submanifold of M. We wish to consider the t derivative of JV (t )  a where 
V et )  = </>1 V .  

d</>Ix/dt i s  some t-dependent vector function wet , x )  = wet , </>1- 1 </>IX) = :  vet , </>IX) 
on M. This yields a time-dependent velocity field dy / dt = v(t ,  y) on M. We consider 
this  as a field on � x M and we let a (t , x) be considered as a p-form on � x M (with 
no dt term).  

Solving dx/ ds = v(t ,  x) , dt / ds = I on � x M ( i .e . ,  finding the integral curves of 
X = v+ a/at )  yields a flow ¢s on � x M and the curves <Ps (x) on M are simply the pro
jections of the curves ¢s (O, x) on � x  M .  The I -parameter family of sub manifolds V p es) 
of M i s  the projection of the I -parameter family ¢, (0, VI') of submanifolds of � x M. 

Theorem (4.42) : Let </>1 : Mn -+ Mil be a i -parameter family of diffeomor
phisms of M; we do not assume that they form a flow. Let ai (x) = aP (t ,  x) be 
a i -parameter family of forms on M, let V I' be a p-dimensional submanifold of 
M, and put V et )  : =  </>1 V. Then 

d i p - 1 aa . . - a - - + / vda + diva dt V (n V( t l  a t  
where vet , <PIX) = d</>Ix/dt is the t -dependent velocity field on M .  

P R O O F :  We again form � x Mil . aP  is now a p-form on  � x Mil . Vp (t )  is now 
the projection of the submanifold Wet) : =  ¢I (O, V )  of � x Mil that lies in the 
"spatial section" { t } x Mil . Then dt = 0 when restricted to W(t) . The flow ¢I 
on � x M is generated by X = V + a/a t .  We then have, from (4.33) ,  

d 1 d l 1 1 - aP = - a P = !fxai' = !�)v+alala P 
dt v (t) dt W(t )  w(t )  w (t) 

(4.43) 

We now write out (4.43) in the case at hand. Using (4.22) and d = dt /\ a/a t  + d 

= r aa + ivda + diva 
}W(t )  at 

(since v does not involve a/at and dt = 0 on W(t» 

= r aa + ivda + diva 0 
}V (I )  at 

(Note that �'va is the Lie derivative of a with respect to the vector field v "frozen" at 
time t ,  that is ,  we look at both a and v as fields fixed forever at time t ! ) 
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a * * { aa . 
d 

. } - <PI a = <PI - + I v  a + diva 
at at 

This follows from dldt Iv <p;aP = Iv <p; r aala t  + ivda + diva } with V arbitrary. 

Problems 
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Let A and B be t ime-dependent vector f ields on IR3 and let p e t, x) be a function .  Show 
that (4.43) yields the fol lowing classical expressions for the t ime derivatives of l ine,  
surface, and volume integrals over moving domains. 

4.3(1 ) d/dt le A . dx = Ie [aA/a t - v x curi A + grad(v . A)] . dx 
4.3(2) d/dt lIs B • dS = ffs[aB/a t  + (d iv B)v - curl (v x B)] . dS 

4.3(3) d/ dt IIIu p vol3 
= IIIu[ap/a t  + d iv (pv) ] vol3 

4.3(4) Show Faraday's law says d/dt lIs B • dS = - ias[E + v x Bl · dx for a moving 
surface. E + v x B is the electromotive force. 

----- Add itional  Problems on F lu id  Flow -----
Consider a f lu id flow in IR3 with density p ( t, x) and velocity vector v(t, x) . Problem 4.3(3) 
says conservation of mass is equivalent to 

or 

ap 
d' 0 at + IV(pV) = 

1'x (p v013) = 0 

These two expressions are equ ivalent since ix (pf3 P) = ipxf3 P. 
In this section we shal l use cartesian coordinates, but we shal l sti l l  make an attempt 

to use the correct "variance" of the tensors involved. 
Consider the l inear momentum of a smal l  reg ion U. I f  v is the velocity covector, v = 

v; dx; , the density of momentum is pv .  In IR3 with cartesian coordinates we attribute phys
ical significance to the ind ividual components of the momentum P of the moving reg ion 

A = fu ViP vol3 

Since .fx (p vo I3) = 0 , we get ( Vi being a function) 

d;: = fu ,<f'x e V;P VO,3) = fu Xev; )p voI3 = fu [v +  :
t
] e V; )P VOI3 

= 1 [ a vi + vj ( a vi ) ] p voI3 
u a t  ax' 
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dP  j d t  must equal the total force acting o n  U .  (Newton's second law appl ies to parti
cle mechanics. The general ization to continuum mechanics is due to Eu ler ;  see [T,T, 
footnote , p. 531 ] . )  Under the assumption of a "perfect" fl u id ,  th is consists of a body 
force (e.g . ,  gravity) with mass density t ,  and the pressu re forces arising from the part 
of the flu id  outside U. This latter is a vector integral w = - Ia u  pNdS. Vector integrals 
make no sense on general manifolds (how cou ld we add two vectors located at d ifferent 
points?) but they can be defined in cartesian coord inates componentwise, that is, by 
putting Wi = - Ia u  pNidS. I f  the su rface has local coord inates u ,  v, then , as  in (3. 1 4) ,  
dS = .j§du 1\ dv = 1 1  n I I  du 1\ dv. Thus NidS = ddu 1\ dv. For example,  from Prob
lem 3 . 1  (2) we have that N1 dS = a (y, z)j a (u, v) du 1\ dv = dy 1\ dz. Thus in  cartesian 
coord inates we may consider the symbolic vector 2-form dS with "components" 

dS = N dS = (dy 1\ dz dz 1\ dx dx 1\ dy) T 
and then we could write - Iau pNdS = - fcw p dS. The fi rst component of Jau p dS is 

1 p dy 1\ dz = 1 dp 1\ dy 1\ dz = 1 pxdx 1\ dy 1\ dz 
a u u u 

and l i kewise for the other components. Thus 1 p dS = 1 grad pvol3 a u u 
(4.45) 

We conclude from Eu ler's version of the second law, appl ied to the arbitrari ly smal l  U 

a Vi j ( a vi ) _ ( 1 ) ap ¥. - + v -. - - - -' + " 
a t  ax}  p ax' 

where f is the force density (per un it mass). These are Euler's equations. 

(4.46) 

4.3(5) Assume that the body force density is derivable from a potential t = - grad cp .  
Assume that the pressu re i s  functional ly related t o  the density, p = pep) .  (Th is 
is an "equation of state .") Then let G (p) be a specific antiderivative of dpj p ; we 
write th is symbolically as G (p) = J dpjp = I p- 1 (dpjdp) dp . Then a Gjaxi = 

G' (p) apjaxi = p- 1 (dpjdp)apjaxi = p-1 apjaxi . 
( i) Show that Eu ler's equations can then be written 

or 

a v 
+ .S:'v ( v )  = d { � I I  V 1 1 2 - cp - J dP } 

a t  2 p 

'S"Y+iJ/iJ t (v ) = d { � II V 1 1 2 - cp - J ;} 
(4.47) 

where now .s:'y (v )  is the Lie derivative of the 1 -form v (we are no longer taking 
the L ie derivative of  a function) .  Note that (4.47) makes sense in any Rie
mannian manifold, un l ike (4.46) where vj(a v;jaxj) are not the components 
of a covector. 

( i i )  Conclude with Lord Kelvin that if C(t) is a closed cu rve that fol lows the 
motion of the fluid, then the circulation :fe(t) v is constant in time. 

A time-dependent form a P  o n  Mn is said to b e  invariant under the flow 
of the t ime-dependent vector field v provided 

(0' aa ,<> aa . d d '  0 '>'Y+iJ/iJt (a )  = a t  + _>.ya = at + Iy a + tya = 
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( i i i )  The vortic ity 2-form for a flow in  ]R3 i s  defined by 

w2 := dv 
145 

Show (using d o  a/a t = a/a t 0 d) that for a perfect f lu id with p = pep) that 
the vorticity form w2 is invariant under the flow (Helmholtz) . 

(iv) Warning:  The vorticity vector w = curl v, defined as usual by w2 = iw v013 , 
is not usual ly invariant s ince the flow need not conserve the volume form . 
The mass form , p vol3 , however, is conserved. From w = i (w/p)p voI3 we 
see that the vector w/ p should be invariant; that is ,  S:V+O/A t (W/ p) = O. Show 
that this follows from (4.24) . Note that the direction of w is invariant under 
the flow; physic ists say that the " l ines of w " are "frozen" i nto the fl u id .  

(v) Let V3 ( t) be a compact reg ion moving with the fl u id .  Assume that at t = 0 
the vorticity 2-form w2 vanishes when restricted to the boundary a V3 (0) ; 
that is , i* w2 = 0, where i is the inclusion of a v i n  ]R3 . (Th is does not say that 
w2 itself van ishes, rather only that w (u .  w) = 0 for u. w tangent to a V3 (0) .) 
Show that the hel icity i ntegral 

is constant in  t ime. 

r v .  wdx 1\ dy 1\ dz 
} V(t) 

4.3(6) Magnetohydrodynamics. Define a perfectly conducting fl u id as one with van
ishing "electromotive i ntensity" [,1 _ iv�p,2 = 0 (otherwise there would be an i nf in ite 
cu rrent flow) . 

( i) Show that �p,2 is invariant under the flow, i)v+o/ a t �p,2 
= 0 (and thus the l i nes 

of B are frozen into the fl u id) .  

We are concerned with the case when the charge density a van ishes. 
Then the Lorentz force density (per un it volume) on the fluid is _iJ �p,2 and 
so the external force density (per un it mass) is f = _iJ �p,2 / p . This is not 
derivable from a potentia l ,  and so Euler's equations become 

av , ) d { I I  V 1 1 2 J dP } iJ �J32 - + .1:. V (v) = -- - - - --a t 2 p p 
( i i )  Consider then a blob U of perfect ly conducting f lu id with (moving) boundary 

a u (e. g . ,  the interface between the fl u id  and vacuum) .  Frequently one takes 
as boundary condition that �j12 restricted to the boundary vanishes ( i . e . ,  
Bn = 0) . Show then that 

:t fu v 1\ �g = 0 

This result is due to Woltjer. See and compare with Moffat's treatment in [Maj .  

4.4. A Problem Set on Hamiltonian Mechanics 

Why phase space? 

In Section 1 0.2 we shall talk about Lagrangian (i .e . ,  tangent bundle) mechanics from 
first principles. In the present section we shall simply assume Lagrange's equations, 
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and proceed t o  the Hamiltonian formulation i n  phase space. The following problems 
involve much of the machinery of forms and Lie derivatives that we have developed, 
and should be worked by the readers even if Hamiltonian mechanics is not their primary 
interest. 

Let Mn be the configuration space of a mechanical system; M has local coordi
nates q I , . . .  , qn . The phase space is the cotangent bundle T* M with local coordinates 
q I , . . .  , q" , P I , . . .  , PII . Introduce the notation 

i = 1 ,  . . . , n 

On T* M we have the Poincare I -form (see 2 .3d) 

and the resulting Poincare 2-form 

(j} := d"A = dPi !\ dqi 

Warning: Many books call this form -u} ! 

Definition: A 2-form u} on an even dimensional manifold M2n is called sym
plectic (and then M is called a symplectic manifold) provided it satisfies 

(i) dw = 0 
(ii) w is nondegenerate that is ,  the linear transformation associating to a vector 

X the I -form ixw2 is nonsingular. In local coordinates x ,  since [ixw]j = Xi Wij , 
this merely says det (wij ) =I- O. 

As we shall see, every cotangent bundle is a symplectic manifold. 
If M2 is an orientable Riemannian sUljace, then an area 2-form vol2 = w2 is a 

symplectic form ! The plane lR2 = lR x lR and the cylinder S l x lR are the cotangent 
bundles, respectively, of the line lR and the circle S I . Closed (compact) orientable 
suifaces are symplectic but are never cotangent bundles since the vector space fibers 
of a cotangent bundle are never compact. 

(Note that we demand that W be a true form, not a pseudoform. On an orientable 
manifold, a pseudoform defines a true form by using a coordinate cover with positive 
lacobians in each overlap . )  

Warning: A symplectic form w2 allows us to associate to each contravariant vec
tor X a covariant vector ixw with components Xi wij , and in this sense is similar to a 
Riemannian metric .  This similarity is very misleading since the matrix W i s  skew sym
metric rather than symmetric .  The remark (ixw) (X) = w (X, X) = 0 shows in fact that 
in any Riemannian metric that one imposes on a symplectic manifold, the contravariant 
version of ixw is orthogonal to X ! 

4.4(1)  Show that the Poincare 2-form is symplectic .  (You need only show that the 
I -forms ia/8xi w are l inearly independent.) 

4.4(2) Show that wn := w !\ . . . !\ w = ±n !dq I !\ . . .  !\ dqn !\ dp l !\ . . .  dPn 
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Since (J) is a well-defined 2-form on any cotangent bundle, this 2n-form is actu
ally independent of the local coordinates q used on Mil . We call wI! the Liouville or 
symplectic volume form for the phase space . 

4.4(3) Clearly wI! never vanishes. Show why this implies that T* M is always ori
entable, whether or not M itself is orientable. 

Since phase space i s  orientable we need not distinguish between forms and pseudo
forms. 

4.4a. Time-Independent Hamiltonians 

Let L = L (q , q) be a time-independent Lagrangian, a function on the tangent bundle. 
We have a map (see 2 .3c) P : T M ---+ T* M given by q i = qi and BL Pi = Bq i 
For our purposes we shall insist that this  map is a diffeomorphism. Locally this means 
the following. S ince for the pull-back 

P*dPi = ( B:;�qi ) dq j + ( o:;�q i ) dqj 
we have, from (2.5 1 )  and Theorem 2.62, 

p* (dq l /\ . . .  /\ dqn /\ dp i /\ . . . dpll ) 

= det ( �2L . ) dq l /\ . . . /\ dq l! /\ dq l /\ . . . /\ dq l! Bql Bq' 
Locally then, we have a diffeomorphism if the Lagrangian is "regular," that is, 
det(02Lj Bqj Bq i ) i:- O. 

Lagrange's equations, BLjBq i - djdt (oLjoq i ) = 0 in T M, translate to Hamil
ton's equations in the phase space T* M 

dqi o H  
dt 0Pi 

dPi 
dt 

where the Hamiltonian function is defined by 

H (q ,  p) : = Piq i - L (q ,  q )  

(4.48) 

(4 .49) 

It is assumed in this expression that q is expressed in terms of q and P by means 
of the inverse T* M ---+ T M. For a proof one proceeds as follows, with an obvious 
notation. dH = Hqdq + Hpdp . But from (4.49) dH = pdq + qdp - L q dq - pdq . 
From Lagrange's equations, Lq = dpjdt . Comparing the two expressions for dH 
yields Hamilton's equations. (The same proof works also when L and H are time 
dependent.) 0 

Let X be a time-independent vector field on T* M, . 8  . 8 
X = X' - + X'+I1 -8qi 8Pi 
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4.4(4) Show that the integral curves of X, that is, the solutions to 

dq i . - = x ' dt and 

satisfy Hamilton's  equations if and only if the vector field X satisfies 

ixw = -dH (4.50) 

We shall refer to (4.50) again as Hamilton's  equations and X will be called a Hamil
tonian vector field. The flow CPt : T* M ---* T* M generated by X will be called a 
Hamiltonian flow. 

4.4(5) Show that if X is  Hamiltonian then 

(4.5 1 ) 
The right-hand side shows that volumes in phase space are invariant under a Hamilto
nian flow; this is Liouville 's theorem. 

Under this time-independent Hamiltonian flow, H is  a constant a/the motion, that is, 
dH 
- = X(H)  = ixdH  = ix Ci-xw) = 0 dt 

This is merely a fancy way of saying 

dH 
= 

( 3 H ) dq i 
+ 

( 3 H ) dPi = 0 dt 3q ' dt 3Pi dt 
from (4 .48) . H is also called the total energy. 

Look now at the "level sets" of the function H in T* M 

Vi"- '  : =  {x = (q , p) E T*M I H (q ,  p) = E }  

I f  d H i- 0 on V E ,  then w e  know that V E i s  a (2n - I )  dimensional submanifold of 
T* M ;  it is called the hypersurface of constant energy E .  By Sard's theorem of 1 .3d, 
we know that for almost all E, E is a regular value. In the fol lowing we shall assume 
that V E is a hypersurface of constant energy with d H i- O. 

Since d H / d t = 0 along the flow lines of X, we conclude that X is tangent to V E .  

Figure 4.6 
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We know that .�xw = d/dt [</>;w] /=o = O .  Then, for small t 

�[</>;W]I = l im h- I [</>;+hW - </>;w] 
d t 11--+0 

that is, 

= </>* lim h- I [</>*w - w] 1 h--+O h 

d - [</>;w] = </>; .�xw dt 
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(and this is true for any form, any vector field) . This also follows directly from Corollary 
(4.44) . In our case then </>;wx(t) = wx(O) ,  and so 

(4.52) 

holds for all small t in any Hamiltonian flow. 

Definition: A map </> : M -+ M of a symplectic manifold is canonical if </> 
preserves w, that is, ¢*w = w. 

Thus 

A Hamiltonian vector field X generates a local I -parameter group of canonical trans
formations of phase space. 

Since X is tangent to V E, the integral curves of X that start on V E remain on V E .  
Consequen tl y 

We know that </>1 preserves Liouville volume on T* M.  We claim that there is a (2n-l)
form T = Tv on V E that is nonzero and is also invariant under </>1 ! We see this as follows. 

d H =J 0 on V E, and so d H =J 0 in some T* M neighborhood of x E VE . We shall 
first construct a form O'2n- 1 in a neighborhood of x so that 

wn = dH /\ O'2n- 1 (4 .53)  

Since dH =J 0, some aH/axi =J O. For simplicity we shall assume a H/aq l  =J O .  
Introduce a local change of coordinates y 1 = H, i = Xi for i > 1 .  Then 

d H /\ dq2 /\ . . .  /\ dq" /\ dPl /\ . . . dPn 

= ( �; ) dq l /\ dq2 /\ . . .  /\ dq" /\ dp i /\ . . . dPn =J 0 

shows that this is an admissible change of coordinates. Put then 

�- I 2 n ( aH ) - 1 
a = aqt dq /\ . . . /\ dq /\ dP l /\ . . . dPn (4.54) 
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Multipying by  ±n ! we  shall get the desired form (J .  Since we  are not concerned a t  all 
with this factor ±n! we shall simply omit all mention of it. 

The form (J so constructed is a form on T* M defined near x E VE . Its construction 
was highly arbitrary. In an overlap of coordinate patches for T* M there is no hope for 
agreement. Problem 4.4(6) shows, however, that this defect i s  not serious .  

4.4(6) Let i : VE ---* T* M be the inclusion map. Let (J2n- 1 be any form satisfying 
(4.53) .  Show that the restriction (pull-back) 

(4.55)  

of (J to VE is independent of the choice of (J.  (Hint: Let (J ' be another choice. Show 
i *(J = i *(J ' by evaluating d H  1\ «(J - (J')  on a 2n -tuple of vectors (N, T2 , . . .  , T2n ) 
where N is transverse to VE and the T's are tangent to VE . )  

To show that r is invariant under the flow generated by  X on VE , we need only 
show that r (T2 ' . . .  , T2n ) is constant when the T's are tangent vectors to VE that are 
invariant under the flow. Let N be an invariant vector field that is transverse to V E .  

Let T denote the (2n - I ) -tuple (T2 , . . .  , T21l ) .  Then w eN, T) i s  constant under the 
flow and so (dH 1\ (J ) (N,  T) = dH (N)(J (T) = d H (N)r (T) is constant. S ince H 
is invariant, S!x H = X(H)  = 0, d H  is also invariant. Thus r eT) = constant, as 
desired. 

We now write down an expression for r2n - 1 that is found in books on statistical 
mechanics. In a coordinate patch (q , p) of T* M near x E VE we consider any Rie
mannian metric whose volume form is w" (modulo ±n ! ) .  For example we can choose 
ds2 = L { (dq i ) 2 + (dpi ) 2 } ; since � = I we have 

1211 d i d n d d vo = q 1\ . . . 1\ q 1\ PI 1\ . . .  PII 

Of course these local metrics do not agree on overlaps, but from Problem 4.4(6) our final 
result will be independent of such choices. In any Riemannian metric, grad H = V H 
is normal to the level sets H = constant, and so V H / I I V H I I is a unit normal field to 
these submanifolds . Then the (2n - 1 )  forms dS't:, - 1 = i'VHI I I 'VH l l w" on T* M have the 
property that they restrict to the (2n - 1 )  area forms on each H = constant. Whereas 
d H is an invariant I -form, the unit normal V H / I I V H I I is not invariant since the 
metric ds2 is not invariant (why should it be?) . We claim, however, that the restriction 
r211 - l of 

(J211 - 1 
' - 1 1 V H 1 1 - 1 dS211- 1 - t' /.," .- - 'VH / II 'VH II 2cv 

to  VE i s  an invariant form for VE • 

(4.56) 

4.4(7) Show this .  (Evaluate d H 1\ (J on (V H / I I V H I I , T) , for T orthonormal and 
tangent to VE . )  

The expression (4.56) can be "understood" heuristically as  follows.  
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Figure 4.7 

To flow from the level set VE tO V E+ I along the gradient l ines of H, in 1 second, we 
solve the differential equations dx / dt = V H / I I  V H 1 1 2 ; see 2. 1 e. The right-hand side 
is a vector field of length I I  V H I I - I . The region between these level sets is invariant 
under the Hamiltonian flow. A cylinder of gradient lines will have base area tl S21l- 1 and 
altitude I I  V H I I - I . This will be sent by the Hamiltonian flow into an oblique cylinder 
of the same volume. Thus tl S2n- 1 I I V H 1 1 - 1 is constant under the Hamiltonian flow, 
as required. 

4.4b. Time-Dependent Hamiltonians and Hamilton's Principle 

When H = H (q , P , t) depends explicitly on time we consider H as a function on the 
extended phase space T* M x R It is sometimes convenient to call the coordinates 

Hamilton 's equations are still (4.48) but note now that 
dH = ( aH ) dq i 

+ ( a H ) dPi + a H  
= 

aH  
d t  a q '  d t  api d t  a t  a t  

and H i s  n o  longer a constant of the motion. Introduce new Poincare forms o n  T*  M x ffi. 
(for interpretation see section 1 6 .4b) by 

A I = Pidq i - Hdt 
and 

Q2 = dA = dPi /\ dq i - dH /\ dt 
where now dJ = (aJ/aq i )dq i + (af/api )dpi + (af/at )dt ,  and so on. 

Consider a vector field on T*  M x ffi. of the type 
a a a X = X' - + X'+I1 _ + -aq' ap, a t  

and thus along the integral curves of  X we have (dqi ) a (dPi ) a a X = dt aq i + dt api 
+ a t  

(4.57) 

(4.58)  
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4.4(8) Show that Hamilton's equations together with dH/dt = aH/at are equiva
lent to 

(4.59) 
Such an X will again be called a Hamiltonian vector field. It is 

X = ( �; ) a:i - ( �;) a:i + :t (4.60) 

Let <Px : T* M x lR ---+ T* M x lR be the Hamiltonian flow generated by the field X 
given by (4 .60). 
4.4(9) Show that 

(4 .6 1 ) 
for X Hamiltonian. 

4.4(10) Let C be a closed curve in T* M x R (C need not be the boundary of 
any surface.) 

c 

)--+-+----::o�------ PI ' , P" 

Figure 4.8 

Let C', as shown, be another closed curve that meets each orbit through C once and 
only once (it need not be the push-forward of C) .  Show that 

1 Pidqi - Hdt = 1 Pidqi - Hdt (4.62) 
Ie Ie 

(Hint: Look at the indicated surface with boundary swept out by the orbits through C) 

Definition: Let C be any oriented compact curve in T* M x R The action 
associated to C is the l ine integral 

S(C) = 1 A = 1 Pidqi - Hdt (4.63) 



A P R O B L E M  S E T  O N  H A M I L  T O N I A N  M E C H A N I C S  153 

Remark: As all physics students know, and as we shall see in Section 1 0.2, La
grange's equations result from Hamilton 's principle, namely that the first variation of 
the "action" Ie L (q ,  q ,  t)dt vanishes for the actual dynamical path q = q (t) in config
uration space. This integral should be thought of as being the integral of the Lagrangian 
function L (q , q ,  t ) in T M x IR and where the curve C in T M x IR is the lift of a curve 
q = q (t) obtained by putting q = dq/dt . Since we are restricting q to be dq/dt in 
T M x 1R, L (q ,  q ,  t )dt ,  though a I -form on the lifted curve, is not to be considered 
a I -form on T M x R On the other hand, along this lifted curve we do have, from 
(4.49), Ldt = (pq - H )dt = pdq - H dt . This is the reason for calling the integral 
I pdq - H dt the action integral in T* M x R We shall not restrict our curves in 
T*M x IR to be lifted from M. Lagrange's equations are simply the Euler-Lagrange 
equations for I Ldt ,  and we are now going to look at the result of putting the first vari
ation of I pdq - H dt equal to O. It is not necessary to consider the Euler- Lagrange 
equations for this since pdq - H dt is a I -form on T* M x IR and we already know how 
to differentiate integrals offorms from (4.33) .  We proceed to the details .  

Consider a curve Co = Co ( u) ,  a ::: u ::: b, in T* M x IR parameterized by u = t (in 
particular it i s  not a closed curve). 

Definition: A variation of Co is a map C of a rectangle in a (£I , a) plane 1R2 into 
T*M x IR such that C ( u ,  0) = Co (u) .  

C( ,a) 
u 

Co 

b t--,--r----, C 

a/au 

�---------- p 
a t---I...-l......-I 

q 
-�---------- a 

Figure 4.9 

u need not be t when a i- O. Denote the curves u � C ( u ,  a) ,  a fixed, by C" . 
The vectors 

C* 
(�) = ax (u , a) 

au au 

are tangent to the varied curves and the vector field 

C* 
(�) = ax (u , a) 
aa aa 

at a = 0 is called the variation field. We denote it by J .  
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We may compute the action along the varied curve C", ; call i t  Sea ) .  Suppose now 
we restrict ourselves to variations that change neither q nor time t at the endpoints 
(as indicated in our diagram). Thus J has no a/aq nor a/at component at t = a and 
at t = b.  

The first variation of action is  by definition 

S' (O) := [� { Pidqi - Hdt] = ( <'fax/a",A da JCa ",=0 JeD 
4.4(11 )  Show that S' (O) = ICn iJ Q . 

(4.64) 

4.4(12) Suppose that S' (0) = 0 for all such variation fields J. Co i s  parameterized by 
t. Show then that the tangent vector T to Co must satisfy iT Q = 0 and thus Co must be 
a solution to Hamilton's  equations .  Thi s  is Hamilton's principle of stationary action 
as formulated by Poincare. (Hint: You may use the "fundamental lemma of the calculus 
of variations" ;  if f is  continuous and if I: f(t)a (t)dt = 0 for all smooth functions a 
that vanish at a and b, then f (t )  = 0 for all a :::: t :::: b . )  Classically one writes 

8 J pdq - Hdt = 0 

iff Co satisfies Hamilton 's equations. 

4.4c. Poisson Brackets 

Given a time-independent function F on T* M we may associate a unique vector field 
XF by 

dF = - iXF w 
(when F = H is the Hamiltonian, X F = X is the Hamiltonian vector field) . This 
simply means that along the integral curves of XF we have dqi jdt = O FjOPi and 
dPi jdt = -oF  joq i . Suppose that G , XG is another pair, dG = -ixc w. We define the 
Poisson bracket of the functions F and G, written ( F, G) ,  by taking the derivative of 
F as we move along the integral curves ofG, (F ,  G)  : =  XdF) . In particular, the rate 
of change of a function F along a Hamiltonian flow is 

:� = (F, H )  

4.4(13) Show that X F generates canonical transformations,  and 

and in coordinates 

(F ,  G) = -W (XF ' Xa ) = - (G,  F)  

(F  G) - L o (F, G)  , - . o (q ' , p; ) , 
4.4(14) Show, using Theorem (4.24) , that i rxr ,xc lw = d (F, G ) ,  and thus the vector 
field associated to (F, G) is - [XF , Xa J ,  



C H A P T E R  5 

The Poincare Lemma and 
Potentials 

5.1.  A More General Stokes 's Theorem 

We shall accept the following technical generalizations of results already proven. 
Let VI' be a compact oriented submanifold (perhaps with boundary) of Mn and let 

F : Mn -+ wm be a smooth map into a manifold Wm . The image F ( V) in W need not 
be a submanifold. It might have self-intersections and all sorts of pathologies. Still, if 
fJP is a form on W, it makes sense to talk of the integral of fJ over F ( V )  and in fact 

r fJ P =  r F*fJP 
J F(V )  Jv 

(5 . 1 )  

which generalizes (3 . 1 7) .  In a sense, the right-hand side i s  the definition of the left-hand 
side. Then 

r dfJp- 1 = r F*dfJP- 1  = r d F*fJp- 1 
JF(V )  Jv Jv 

= 1 F* fJp- 1 = r fJp- 1 
a v  J F(a V)  

Then if we define a F (V)  = F(a V) ,  we have the generalized Stokes's theorem 

r dfJP- 1 = 1 fJp- 1  
J F (V )  ii F(V )  

(5 .2) 

Actually one needs to integrate over manifolds with only "piecewise smooth" bound
aries, such as a triangle, and also manifolds such as a solid cone. It is not easy to give 
a careful description of these objects . It is important that Stokes's theorem hold for 
very general objects, basically by approximating the object and its boundary by, say, 
manifolds with piecewise smooth boundaries ( [A, M, R, box 7 .2B] ) .  

155 
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5.2. Closed Forms and Exact Forms 

A form f3P is closed if df3 = O. Thus 

df3° = 0 � 13° is a constant function 

df3 ' = 0 � ( a;bj - ajb; ) = 0 in ]R3 curl B = 0 
df32 = 0 � (a;bjk + aj bk; + akbij ) = 0 in ]R3 div B = 0 

A form f3P is exact if f3P = daP- ' , for some form a P- ' .  
The following observations are easy and important consequences of these definitions, 

d2 = 0, and Stokes's theorem. 

1.  Every exact form is  closed. 
2. The product of two closed forms i s  closed. 
3. The product of a closed form and an exact form i s  exact. (You are asked to prove this in 

Problem 5 ( 1 ) .) 
4. The integral of an exact form over an orientable closed manifold (i .e . ,  compact without 

boundary) is O. 
5. The integral of a closed form over the boundary of an oriented compact manifold i s  O. 

Although every exact form is closed, 13 = da ::::} df3 = d2a = 0, i t  is not true that 
every closed form is exact. A most important example is given by the I -form 

in ]R2 . First note that this form is not defined in all of ]R2 ; certainly we must omit the 
origin. Thus the manifold in question is ]R2 - O. One easily checks directly that 13 ' is 
closed but it is easier to note that 

13 ' = d "arctan (�) " = d"e" 

This makes it seem as though 13 is in fact exact, but this is not so; the O-form "e" is not 
a single-valued function, and that is why we have introduced the quotation marks ! It is 
single-valued if one introduces a "branch cut," say the positive x axis .  Thus 13 '  is  exact 
on the portion ]R2 -(positive x axis) .  In particular 13 is closed here. Clearly by choosing 
a different branch cut we can see that df3 1 = 0 on all of ]R2 - O. But 13 '  cannot be 
exact on all of ]R2 - 0, for if we consider the closed curve C = x2 + y2 = 1 , oriented 
counterclockwise, then (dropping " ") 

and then observation 4 shows that 13 '  is  not exact. Note that there is no contradiction 
with observation 5 since the circle C is not the boundary of any compact surface in 
]R2 - O. It is true that C = a (unit disc) in ]R2 but the unit disc has had its origin removed 
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in ]R2 - O. Thus the crucial point is that C is a closed curve in ]R2 - 0 but it is not the 
boundary of a compact suiface in ]R2 

- O !  
Let u s  say that a manifold Mn has first Betti number 0 ,  written b l = 0 ,  if, basi

cally, every closed oriented piecewise smooth curve C is the boundary of some com
pact oriented "surface"; that is, there is some piecewise smooth oriented surface (with 
boundary) V2 and a map F : V2 -+ Mn such that a F( V) = C .  This concept, and its 
higher dimensional analogues (to be discussed more thoroughly in Chapter 1 3) was 
first introduced by Riemann. (The Italian mathematician Betti was a close friend of 
Riemann's . )  

Theorem (5.3) : Let Mn be a manifold with first Betti numberO. Then every closed 
l-form f3 1 on Mn is exact. 

PRO O F :  The proof is essentially found in every calculus book in the case Mn = 
]R3 . We give a proof that uses our previously developed machinery for differenti
ating integrals .  

We wish to exhibit a function f such that df = f3 1 . Let x E M and let y be a 
fixed point in M. Fix an oriented curve C(y ,  x )  that starts at y and ends at x and 
define 

f (x) := r f3 1 
lc (y .x ) 

We note first that f is in fact independent of the curve chosen to join y to x, for 
if C' (y ,  x )  is another, then C - C' , that is , C followed by C' with orientation 
reversed, is a closed oriented curve. By hypothesis there is an oriented compact 
surface F ( V )  such that a F ( V )  = C and so 

x 

c' 

y 
Figure 5.1 

r f3 - I f3 = r f3 = 1 f3 = r df3 = 0 
lc le lc-e hF(V ) 1 F(V )  

We can now compute df at the variable point x .  Let Vx be a vector at  x .  Take 
any vector field v that coincides with Vx at x ,  is defined in some neighborhood of 
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the curve C (y , x )  and which vanishes at y .  I f  <Pt i s  the flow generated by  v then 
<Pt C (y ,  x) is a curve joining y to <PtX , and we also have that d<ptx/dt] t=o = V.L 
Then 

df(v) = !!.-f {<Ptx } t=o = [!!.- r f3] dt dt Ipr c(y ,x ) t=O 

= 1 Xvf3 = 1 ivdf3 + divf3 = 1 divf3 C(y ,x ) C(y ,x ) C(y ,x ) 

Thus df(v) = f3 (v) , and so df = f3 .  D 

The following was the crucial ingredient of the proof. 

Corollary (5.4) : In any manifold Mil, if f3 1  is a I -form whose integral over all 
closed curves vanishes, then f3 1  is exact, f3 1  = df. 

If a p-form f3P is exact, f3P = daP - I , we say that f3P is derivable from the potential 
p- l a . 

5.3. Complex Analysis 

In the complex plane M2 = <C, we introduce the complex coordinate z = x + iy .  Then 
dz = dx + idy is a complex valued I -form with values I and i ,  respectively on 8/8x 
and 8/8y . We may also consider the complex conjugate I -form dz = dx - idy ,  and 
then 

dz /\ dz = -2idx /\ dy 
Let f (z ,  z) = a (x ,  y) + i b (x ,  y) be a complex valued function on some open subset 
U of C. Then we can consider the I -form 

f(z ,  z)dz = (a + i b) (dx + idy) = (adx - bdy) + i (ady + bdx ) 
(This is not the most general I -form since we have not included a term involving dz.) 
If C, z = z (t ) ,  is a curve, we may form the integral 

1 fdz := 1 (adx - bdy) + i 1 (ady + bdx ) 

For exterior differential we get 

Thus 

d[fdz] = (da /\ dx - db /\ dy) + i (da /\ dy + db /\ dx) 
= (-ay - bx )dx /\ dy + i (ax - by )dx /\ dy 

f d z is closed iff a and b satisfy the Cauchy-Riemann equations, in U, that is ,  iff f 
is complex analytic or holomorphic. 
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This can also be seen by the following formal calculation . By the chain rule we have 
the two differential operators 

� .- � (� - i �) az  
.

- 2 ax ay 

:z := � ( a

a

x 
+ i 

a

a

y ) 
Then d[jdz] = (aflaz)dz /\ dz + (afl az)dz /\ dz = (af/az)dz /\ dz, and so fdz is  
closed iff aflaz = 0, that is ,  "f does not depend on z," and so f is complex analytic. 

af 
= 0 

az 

is another form of the Cauchy-Riemann equations. 
If fdz is closed and we put a (z)  = t fdz, the integral from a fixed point to z 

along an arbitrary path, then a is the potential, da = f dz,  provided it is single-valued, 
that is, provided the integral is independent of the path chosen . From (5 .3 ) this will be 
the case provided U has first Betti number O. We shall see in Section 1 3 . 3  that asking 
hi = 0 for a manifold is a weaker condition than demanding that the manifold be simply 
connected. Simple connectivity is the usual condition imposed in complex analysis to 
ensure single-valuedness of the potential a .  

Note that t o  consider the behavior o f  f at infinity we  should consider f a s  being 
defined on the Riemann sphere (see Section 1 .2d) except perhaps at 00 itself, that is , 
except at w = I /z = O. Since z is  a complex analytic function of w,  a z/aw  = 0, and 
since dz/dw #- 0 for our change of coordinates, we see from 

that 

a ( az ) a ( az ) a 

a w  
= 

o w  oz  
+ 

ow oz 

iff 
of 

= 0 
aw 

This means that the notion of a function being complex analytic is  well defined on the 
Riemann sphere, independent of which coordinate z or w is used. 

In the complex plane C, the residue of a function f plays an important role in 
evaluating line integrals of f, but in the Riemann sphere it i s  the I -form fdz that is 
important, not its component f. For example, the function f (z) = 1/ z has residue 1 
at the simple pole z = 0, and so fc dz/z = 2:n: i for any closed curve C circl ing once 
z = 0 in the positive sense. But this curve also circles z = 00 on the Riemann sphere, 
and the function f = I /z is described near 00 by fez) = l /z = w near w = O. Thus 
the function f = I /z has a simple zero at Z = 00; its "residue" there is O. One might 
then be mistakenly led to the contradiction that fc dz/z = O. The resolution lies with 
the I -forms, not the functions: 

which is again 2:n: i since C circles 00 in the negative sense. We associate a residue to 
a i-form, not afunction! 



160 THE  PO I N C A R E  L E M M A  A N D  P O T E N T I A L S  

5.4. The Converse to the Poincare Lemma 

A closed I -form f3 1 on Mil is exact if the first Betti number of M" vanishes, that 
is, if every closed oriented curve is the boundary of an oriented surface. On the 2 
dimensional torus, neither closed curve C nor C' bounds a surface and thus we may 

2rr l--_--...... 

c' 

c 

2rr 

Figure 5.2 

not expect that every closed I -form is exact. In fact d"&" and d"fjJ" are closed and 
f d"&" = 2;rr = f d"fjJ". 

The fact that exact forms are closed, that is ,  dd = 0, is usually called Poincare 's 
lemma. It should be appreciated that Poincare utilized this result before the machin
ery of exterior calculus had been developed ! There is a partial converse to this result, 
namely, every closed form is locally exact. Precisely 

Theorem (5.5) :  If d{3" = 0, p :::: 1, in a neighborhood V of x E Mil, then there 
is some perhaps smaller neighborhood V' ofx and a (p - l )form aP- 1 such that 
f3P = dap- I in V'. 

The following proof is basically a simple application of Cartan's formula for Lie deri
vatives. We give this proof because the same method is useful for other purposes. 
The reader might enjoy more an older proof, as is given, for example, in the book by 
Flanders [FI] . For historical remarks about exterior forms see [Sam H] . 

P R O O F : It is sufficient to prove this result in the case M" = JR." . This is because 
a sufficiently small neighborhood V" of x E Mn is  diffeomorphic to an open 
ball V in JR." under a coordinate map fjJ : V" -+ V .  Since fjJ : V" -+ V is a 
diffeomorphism, fjJ- 1 exists and f3P = (fjJ- 1 0 fjJ) *f3P = fjJ* 0 fjJ-hf3P . Then if f3 i s  
closed on M, fjJ - I * f3 i s  closed on V c JR." . If  we have the converse of Poincare 
on V C JR." then fjJ- I *f3 = da shows f3 = fjJ*da = dfjJ*a as desired. 

We may assume then that f3P is  a closed form on an open ball V ofJR./ . Consider 
(as in 4.3b) the deformation fjJ,x = ( 1  - t )x ;  this time-dependent "flow" has fjJo = 
the identity and fjJl is the map that sends every x to the origin. The veloci ty field 
is v(t , y) = -y / (1 - t ) ,  for t i= 1 .  First note that fjJ� is  the identity map and fjJi is 
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the 0 map. Then considering f3 = f3 (x) as a time-independent p-form on ]R1l , we 
have 

f3 (x) = ¢�f3 (x) = ¢�f3 (¢ox) - ¢�f3 (¢ l x) 

= 1° � [¢;f3 (¢sx) ]ds 
1 ds 

To avoid subscripts upon subscripts upon . . .  , let us introduce the following nota
tion in this proof. We shall denote the vector v at x by v(x)  and we shall sometimes 
replace ¢t by ¢ (t) .  Also, for interior product we put iv = i {v} . Then the previous 
expression for f3 (x) becomes, using (4.44), df3 = 0 and af3 / at = 0 

1° ¢;d[i {v (¢sx) }f3 (¢sx) ]ds = 1° d[¢; i {v (¢sx) }f3 (¢sx)]ds 

We should remark that this is not quite true. The vector field v(t ,  x) blows up at 
t = 1 (but note that ¢; = 0) . We should take the integral from s = c to s = 0 
and then let c � 1 .  It will be apparent in our final formula (5 .6) that the factor 
( 1  - t) - I disappears . We proceed as if this difficulty were not present. 

We may take the operator d outside the s integral, yielding 

f3 = da p- I , aP- 1 := 1° ¢; [i {v (¢,\x) }f3 (¢sx)]ds D 

Let us now write out the expression for a in detai l .  Put y = ¢s (x) = ( 1  - s )x. Then 
(in coordinates y for ]R1l ) 

, yj 
i {v(¢sx) }f3 (s ,  y) = Vi (y)bjdy)dyK = - --bjdy)dyK 

- ( 1 - s )  � 

To take ¢,; of this (p - I ) -form we must put everywhere yj = ( 1  - s )xj . We get 
-xjbj(( (( 1 - s)x)dxK ( 1  - S )p- I . Putting r = ( 1  - s) gives 

aP- 1 = 11 [r P- 1 xj bH: (rx)dx K ]dr (5 .6) 

Note that the essential ingredient of the proof of the existence of a potential was 
the fact that at any point 0 of a manifold Mil there is a neighborhood of 0 that can be 
contracted to the point 0; that is, there is a deformation x H- 1/! (t)x = ( 1  - t)x that 
collapses the neighborhood to the point 0 in 1 unit of time. 

Note also that since all of ]R1l can be contracted to the origin, the result in ]R1l is 
global; if df3P = 0 in all of ]R" then f3P  is  globally exact (if p > 0). 

Corollary (5.7) :  If div B = 0 in ]R3 then B = curl Afor some A. 

(See Problem 5 .5(2) at this time . )  

Corollary (5.8) : In Mil, a necessary and sufficient condition that one can solve 
locally the system of partial differential equations 

(with bji (x ) = -bij (x ) given) 
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i s  that 

5.5. Finding Potentials 

In some simple situations one may exhibit potentials with very little effort. For ex
ample, consider the simplest case of the electric field due to a charge q at the origin. 
In spherical coordinates E = (q /r2)8/8r for r > 0. Using the euclidean metric in 
spherical coordinates in JR.3 - 0, 

ds2 = dr2 + r2 (de2 + sin2 edqi) 
we see that t,� = (q / r2 )d r = d( -q / r ) ,  for r > 0, exhibiting the scalar potential . The 
2-form associated to E is the pseudoform 

From Gauss's law d*t" = 47rp vol3 we see that *�, is closed for r > ° since the charge 
density vanishes outside the origin. We compute directly a vector potential for E as 
follows. In spherical coordinates, 

vol3 = r2 sin edr /\ de /\ d¢ 
and so 

*G� = i (:2 :r ) r2 sin edr /\ de /\ d¢ = q sin ede /\ d¢ 

Thus ,  for example, *l-� = d(  -q cos ed¢) and (f l = -q cos ed¢ is a possible choice for 
potential .  Note that spherical coordinates are badly behaved not only at the origin but 
at e = ° and e = 7r also, that is ,  along the entire z axis .  Hence (fl is a well-defined 
potential everywhere except the entire z axis .  Note however that we can also write 
*l:� = d[q ( I  - cos e)d¢] , and since I - cos e = ° when e = 0, this expression 

(II = q ( 1  - cos e)d¢ (5.9) 
is a well-defined potential everywhere except along the negative z axis ! 

We certainly do not expect to find a potential (f l in the entire region JR.3 - 0, for if 
such an Cf l  existed we would have 

J 1 *ti = J 1 dCf I = tv (fl = ° 

for any closed surface V2 in JR.3 - O. But if we choose V2 to be the unit sphere about 
the origin we must have, by Gauss's law, that ffv *(� = 47rq ! The singularities 0[(i1 
prevent us from applying Stokes's theorem to V .  

We get the same result when we  consider the magnetic field �B2 due to a hypothetical 
magnetic monopole at the origin. This will be used when we discuss gauge fields in 
Section 1 6 .4. The vector potential has a Dirac string of singularities along the negative 
z axis .  
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Problems ----------

5.5(1 } Prove that the product of a closed and an exact form is exact . 

5.5(2} Write out what (5.6) says in terms of vectors, for f32 i n  ]R3 . 

5.5(3} Consider the law of Ampere-Maxwel l  i n  the case of an inf in itely long straight 
wire carrying a cu rrent j. 

J 
B 

Figure 5.3 

The steady state has a*[,j a t = 0 and we are reduced to Ampere's law f *fB = 

4JT j for a cu rve as indicated, and d�g2 = o. An immediate solution is suggested, 
*Hl = 2jd</J . I ntroduce appropriate coordinates, show that dfJj2 = 0, and exh ibit 
directly the vector potential ("/1 in ]R3-wire. (You m ight wish to compare this with 
the usual treatments in textbooks.) 

5.5(4} The un it 3-sphere S3 c ]R4 can be parameterized by three angles a, (J , and </J, 
where (J and </J are the usual spherical coord inates on the 2-sphere S2 (a) of 
radius sin a .  

N 

'\) ds = da 

Figure 5.4 
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The Riemannian metric o n  s3 i s  "clearly" 

dtl = da2 + s in2 a (de2 + sin2 e dqi) 

Put a charge q at the pole N of S3 , E wi l l  certain ly have the form E = E(a)818a , 
Write down the result ing *i:� = iE vol3 , What form mustthe function E = E(a) have 
in order that d*i:� = 0 for a =I 0, rr ?  Finish the determination of *t,; by computing 
J sea) */:; (note that essential ly no integration is needed if you know the area of the 
un it 2-sphere) , Write down the electric covector {,� and verify d/:; = 0 and exhibit 
the scalar potential for &, all for a =I 0, rr .  Put �il2 = O. You have just verified 
Maxwell's equations in the region outside the two poles. Note that a "ghost" 
charge of - q  has appeared at the south pole! 

One could consider placing a charge + q at the "north pole" of the projective 
space IRp3 , 

q 

q 
Figure 5.5 

Since the "south pole" is now the same point, we have ind icated the same 
charge there. The "equator" is real ly a projective plane IR p2 , since IR p3 is S3 
with antipodal points identified. A 3-dimensional E -neighborhood of IR p2 , that is, 
points on IR p3 that have distance < E from IR p2 , has the indicated 2-sphere S2 as 
boundary. (It is a 2-sphere since it is also the boundary of a 3-disc neighborhood 
of the north pole . )  Gauss's theorem,  appl ied to th is neighborhood with boundary 
S2 , shows that there is a total charge of - q  ins ide S2 . Note that there is a jump 

discontinuity of E on IRp2 , This shows that a ghost surface charge - q  must 
be distributed on the "equator" IR p2 ! 

5.5(5) Show that in any closed manifold M3 , the total charge vanishes! 
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Holonomic and Nonholonomic 
Constraints 

6.1 .  The Frobenius Integrability Condition 

Can one always find a surface orthogonal to a family of curves in  ]R3 ? 

6.1a. Planes in ]R3 
Given a smooth nonvanishing vector field in ]R3 , by solving a system of ordinary differ
ential equations one can always locally find a smooth family of integral curves, that is ,  
nonintersecting curves that fill up a region and are always tangent to the vector field. 

Given a smooth family of 2-planes !1 in ]R3 , can one always find a smooth family of 
integral surfaces, that is, nonintersecting surfaces that fill up a region and are everywhere 
tangent to the planes? It is rather surprising that this is not always so ! Suppose that one 
could find such integral surfaces. 

Figure 6.1  

Let C, x = x(t) be a parameterized curve that is transverse to the family of supposed 
integral surfaces (we can certainly find such a curve locally). Then locally we can define 

165 
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a function f = f (x) whose level surfaces are surfaces of  the family, namely, the level 
surface where f = t, consists of the supposed integral surface that is pierced by the 
transversal curve at parameter value t = t , . But then V f must be along the given 
normal n to the planes, n = A V f for some function A (an "integrating factor") .  In 
cartesian coordinates, the "normal" covector v = n;dx ; must satisfy v = Adf and then 
dv = dA /\ df = (d log A) /\ v, and we then recover Euler's integrability condition; 
if such integral surfaces exist, then 

v /\ dv = 0, i .e . ,  n ·  curl n = 0 

This condition, given entirely in terms of the field of normals, must be satisfied if 
integral surfaces are to exist. 

Of course if dv = 0,  v = dg locally, and so n is normal to the surfaces g = constant. 
Consider the planes � normal to the vectors 

a a a T n = y - - x - + - � (y , -x , 1 )  ax ay az 
Then v = ydx - xdy + dz and so v /\ dv = -2dx /\ dy /\ dz i- 0; the vectors n are 
not the normals to a family of surfaces ! 

Classically, in cartesian coordinates, the planes � orthogonal to the vector n would 
be written 

v = ydx - xdy + dz = 0 

meaning not that the form v is the form 0 but rather that at each point (xo , Yo , zo) we 
are looking at all vectors A = (a ' , a 2 , a 3 ) T that satisfy 

0 =  v (A) = iA v = yoa ' - xoa2 + a3 

clearly a 2-dimensional plane at (xo , Yo , zo ) .  The collection of all these planes at all 
points x in JR.3 is called the distribution associated to the I -form v. (This is not to be 
confused with the generalized functions also called distributions . )  

In general in JR.3 one would describe a family of planes by writing 

(6. 1 )  

where P" P2 , and P3 are smooth functions. To "solve the total differential equation" 
(6 . 1 )  means to find surfaces x = x(u " U2 ) such that the pull-back of v to these surfaces 
vanishes identically, that is , Pi ax; laue> = 0 for a = I ,  2. We have seen that v /\ dv = 0 
is a necessary condition for this system of partial differential equations for x = x (u ' , u2) 
to possess a I -parameter family of solutions. (We shall see shortly that this condition 
is also sufficient.) If we are given such a family of solutions, by taking a transversal 
curve x = x(t) as earlier, this family of solutions can be described as the level sets 
t = constant. 

Definition: A k-dimensional distribution �k on Mil assigns in a smooth fashion 
to each x E Mil a k-dimensional subspace �k (x) of the tangent space to Mn at x .  
A n  r-dimensional integral manifold of �k i s  an r-dimensional submanifold of 
Mil that is everywhere tangent to the distribution. The distribution �k is said to be 
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(completely) integrable if locally there are coordinates x ' , . . .  , Xk , y ' , . . . , y"-k 
for Mil such that the "coordinate slices" y ' = constant, . . .  , yn-k = constant are 
k_dimensional integral manifolds of b.k . Such a coordinate system (x , y) will be 
called a Frobenius chart for M.  

The fundamental question i s  clear. When i s  b.k  completely integrable? 

6.1b. Distributions and Vector Fields 

Suppose that we are given a distribution b.k and a pair of vector fields X and Y on Mn 
that are in the distribution X E b. and Y E b. at each point in an open set. Suppose now 
that the distribution is integrable. Then the two vector fields are always tangent to the 
integral manifolds. By the Corollary in 4. 1 c  we conclude that the Lie bracket [X, Y] 
is also in the distribution. We can describe this symbolically by saying that if b.k is 

integrable then 

[b. , b.] c b. 

It will tum out that this condition is also sufficient for showing integrability ! 

6.1c. Distributions and I-Forms 

Let 0 1 be a I -form that does not vanish at a point x E Mil . The annihilator or null 
space of 0 at x is the (n - I ) -dimensional subspace of M; defined by those vectors 
X E M� such that O (X) = O. Classically one writes 0 = 0 for this null space. (When 
discussing distributions it is common to call a I -form 0 a Pfaffian; e = 0 is then called 
a Pfaffian equation.) If 0"  . . . , Or are r = n - k l inearly independent I -forms at each 
point of an open subset of Mil , 0, 1\ . . .  1\ Or -=I- 0, then at each point the intersection of 
their null spaces forms an n - r = k dimensional distribution b.k .  Thus 

iff 0, (X) = . . .  = Or (X) = 0 
We may again write this distribution locally as 0, = 0, . . .  , Or = O. We do not claim 
that every distribution can be globally defined by r Pfaffians. 

Definition: The distribution b. is in involution if [b. ,  b.]  C b. ,  that is ,  if the 
distribution is "closed under brackets." 

We know that an integrable distribution is in involution . 
If b.k is in involution, then for a = 1 ,  . . . , r we must have that for any pair of vector 

fields X, Y that are in the distribution (see (4.25» 

dOa (X, Y) = X{Oa (Y) } - Y{Oa (X) } - Oa ( [X, Y) ) = 0 
We say then that if b. is in involution, then "dOa = 0 when restricted to the distribution," 
that is, when we allow dOa to be evaluated only on vectors of the distribution. 

Conversely, suppose that dOa = 0 when restricted to b. ,  a = I ,  . . .  , r. Then 0 = 

d8a (X, Y) = X(O) - YeO) - 8a ( [X, V]) shows that [X, Y] E b., and so [b. , b.] C b. .  
We now give several rewordings o f  this result, all o f  which are important. 
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Theorem (6.2) : The following conditions are locally equivalent. 
(i) b. is in involution, that is, [b. , b.] C b.. 

(ii) dBa is the zero 2-form when restricted to b.. 

(iii) There are i -forms AafJ such that dBa = LfJ AafJ /\ BfJ . 

(iv) dBa /\ Q = 0, where Q = Bl /\ . . .  /\ Br •  

P R O O F : We have already proved ( i )  {} (ii) . (iii) ::::} (ii) since 

dea (X, Y) = L AafJ /\ efJ (X, Y) 
fJ 

= L AafJ (X) /\ efJ (y) - L AafJ (Y) /\ efJ (X) = 0 
fJ fJ 

Conversely, suppose that all dea = 0 when restricted to b. .  Complete el , . . . , er 
locally to a basis for I -forms by adjoining er+ I , . . . , en . Let e l , . . .  , ell be the dual 
basis for vector fields . Then ea (ei ) = 0 for Ci = 1 ,  . . . , r and i = r + 1 ,  . . .  , n 
shows that er+ 1 , • • .  , en spans b. .  Now expand d ea in terms of the basis el , • • . , en . 

(6 .3) 

for some coefficients A and fL. Thus for r < i < j we have 0 = dea (ei , e j )  = fL� 
and so dea = L 1 ::ofJ Y AafJ /\ efJ . This shows (ii) ::::} (iii) and so (ii) {} (iii) . 

It is immediate that (iii) ::::} (iv) . Assume (iv) .  From (6 .3) 
o = dea /\ Q = L fL� ei /\ ej /\ Q = L fL� ei /\ ej /\ e1 /\ • • • /\ er 

r < i <j r < i <j 

But the e 's are independent; hence fL� = 0 for r < i < j .  Thus (iv) ::::} (iii) and 
we are finished. 0 

In summary, we have seen that a distribution b.k can locally be described by either 
exhibiting k l inearly independent vector fields 

X l , . . . , Xk 

that span b.k at each point in a region, or by exhibiting r = n - k linearly independent 
I -forms 

whose common null space is b.k . The system is in involution if either 

[b. , b.] c b. 

or dea = LfJ AafJ /\ efJ for some I -forms AafJ . In this case we write 

dea = 0 mod e 

meaning that dea becomes 0 when all of the ea are put = O. 
We know that an integrable distribution is in involution. We now sketch a proof of 

the converse (usually attributed to Frobenius). 
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6.1d.  The Frobenius Theorem 

Let D.k be any smooth distribution of k-planes in Mn and let (locally) {XA } ,  A 
1 . . . .  , k be smooth vector fields that span the distribution in some open set U of Mn . 

Let ¢A be the local flow generated by the field XA . Given x E U ,  we construct a 
k_dimensional submanifold of Mn passing through x as fol lows. 

Let Vk C IRk be a small disc about the origin of IRk and let t l , . . .  , tk be coordinates 
for JRk • Define 

by 

This is certainly defined if t? + . . . + t} is  small enough . We illustrate this for k = 2 

Figure 6.2 

It should be clear (see Problem 6. 1 ) that for the differential of <I> at t = 0, we have 

<I> • IRk -7 Mn * .  0 x 

<1>. ( f)�A ) = XA at x = <I> (0) 

and thus <I>.IR� = �k (X) . Thus <I> (Vk ) is tangent to �k at the single point x .  

(6 .4) 

Definition: A smooth map of manifolds F : Wk -7 M" is an immersion and 
F(W) is an immersed submanifold provided 

F Wk " 
. :  w -7 MF(w) 

is 1 : 1  ( i .e . ,  ker F. = 0) at each W E  Wk . 

In our case <1>. is 1 :  1 at 0 E IRk and consequently 1 :  1 in some neighborhood of O. Thus 
the map <I> : Vk -7 Mn defines an immersed submanifold <I> (Vk) of Mn provided Vk 
is small enough. 
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Frobenius Theorem: (6.5) : If the distribution f}.k i s  i n  involution 

then each such immersed disc ct> (Dk) is an integral manifold of f}. and this dis
tribution is completely integrable. 

P R O O F : In the following computation we shall denote the vector X at x E Mn 

by X(x )  rather than Xv Since we are not using X as a differential operator there 
should be no confusion. 

The essential point is to show that if f}. is in involution then f}.k is  tangent 
to ct>(Dk ) at each point of this immersed disc. We already know, without any 
assumption, that f}. i s  tangent to the disc ct> (D) at x = ct> (O) . From the definition 
of ct> (and again denoting ¢t by ¢ (t» 

ct> (t )  = ¢k (tk ) 0 ¢k- I (tk- I ) 0 . . .  0 ¢I (t 1 ) (X ) 
we see that ct>. takes the tangent vector a/atA at t into the vector 

a 
ah [¢k (td 0 ' "  0 ¢A (tA + h)  0 ' "  0 ¢ 1 (tl ) (X ) ]h=O 

= ¢dtk) . 0 ' "  0 ¢A (tA ) .XA (at the point ¢k- l (tk- l ) 0 ' "  0 ¢I Ct l ) (X »  

" .  

Figure 6.3 

But this simply says that the tangent space to ct> (Dk ) at ct>(t) has a basis given by 

¢k Ctd. 0 ' "  0 ¢2 (t2 ) .X 1 (¢ I Ct l )X) 
¢k (tk ) . 0 ' "  0 ¢3 (t3 ) .X2 (¢2 (t2 ) 0 ¢I (tl )X ) 

Thus we need only show that each flow ¢A (t )  sends (via its differential) the distri
bution f}.k into itself ! This will follow from [f}. ,  f}.] C f}. in the following manner. 
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Let Y E .6.(y) . We must show that [4>A (t)Sl E .6. (4)A (t )y ) .  Let .6. be defined 
by the Pfaffians el = 0, . . .  , er = 0. We know that ea (Y) = 0, ex = 1 ,  . . .  , r. Let 
VI : = 4>A (t )* Y and put X := XA .  By construction, YI is invariant under the flow 

CPA (t) ,  and so 

along the orbit 4> A (t) Y 

Consider the real-valued functions 

ex = 1 ,  . . .  , r 
Then, differentiating with respect to t 

f� (t) = X{iy, ea l = .t'x {iy, ea } ,  which by (4.24) 

= iY, { ixdea + dixea l = iY, ixdea 
since ixea = 0. Since .6. is in involution, from part (iii) of (6.2) we have 

f� (t) = iy, ix ( L Aa,B 1\ e,B) = iy, ( L Aa,B (XW,B) 
,B ,B 

= L Aa,B (XWfij (YI ) = L Aa,B (X)f,B (t) 
fij ,B 

Thus the functions fa satisfy the linear system 

f� (t) = L A",,B (X)f,B (t) 
,B 

fa (O) = e", (Y) = 0 

By the uniqueness theorem for such systems fa (t) = ° and so e", (YI ) = 0. Thus 
YI E .6. for all t, as desired. Then .6.k is tangent to ct> (Dk ) at each point of this 
immersed disc. 

To show complete integrability we must introduce coordinates for which our 
immersed discs are "slices" y l = c l , . . .  , y" -k = C"-k . The procedure is very 
much like that followed in our introductory section (6. 1 a) ,  where we introduced 
a coordinate f = t by considering a curve transverse to the distribution. Here 
we must introduce a transverse (n - k)-dimensional manifold W"-k and we can 
let y l , . . . , yn-k be local coordinates on W.  It can be shown, just as with integral 
curves of a smooth vector field, that the integral discs , through distinct points of 
W, will be disjoint if they are sufficiently small .  This will be discussed more in 
Section 6.2. We shall not go into details .  0 

Problems 

6.1 (1 ) Verify (6.4) . 

6.1 (2) Show that a 1 -d imensional distribution in Mn is integrable. Why is this evident 
without using Froben ius? 
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6.2. Integrability and Constraints 

Given a point on one curve of a family of curves, can one reach a nearby point on the same 
curve by a short path that is always perpendicular to the family? 

6.2a. Foliations and Maximal Leaves 

We know that if a distribution 11k on Mil is in involution, [11 ,  Do] C 11, then the 
distribution is integrable; in the neighborhood of any point of M one may introduce 
"Frobenius coordinates" X l ,  . . .  , Xk , Y I , . . . , y"-k for Mil such that the "coordinate 
slices" 

Y 1 = constant, . . . , y"-k = constant 

are k-dimensional integral manifolds of 11k • The integral manifold through a given 
point (xo , Yo) , of course, also exists outside the given coordinate system and might 

Figure 6.4 

even return to the coordinate patch. If so, it will either reappear as the same slice or 
appear as a different one. For example, in the usual model of the torus T2 as a rectangle 
in the plane (this time with sides of length 1 ) with periodic identifications, consider the 

---to==�----..L-- e 

Figure 6.5 

distribution 11 1 defined by d¢ - kde = 0, where k is a constant. The integral manifolds 
in this case are the straight lines in the rectangle with slope k. If k = p / q is a rational 
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number (we have illustrated the case k = 1 /2) then the slice through (0, 0) is a closed 
curve winding q times around the torus in the e direction and p times around in the 
rP direction. On the other hand, if k is irrational, then the integral curve leaving (0, 0) 

will never return to this point, but, it turns out, will lie dense on the torus .  The integral 

curve will leave and reenter each Frobenius chart an infinite number of times, never 

returning to the same slice. 

-of""',"""",,--_...L..-- (! 

Figure 6.6 

If a distribution fik C Mil is integrable, then the integral manifolds define a foliation 
of Mn and each connected integral manifold is called a leaf of the foliation. A leaf that 
is not properly contained in another leaf is called a maximal leaf. It seems clear from 
the preceding example with irrational slope that the maximal leaf through (0, 0) is not 
an embedded submanifold (see I .3d) ; this is  because the part of a maximal leaf that lies 
in a Frobenius chart consists of an infinite number of "parallel" line segments . There 
is no chance that we can describe all of these segments by a single equation y = f (x) .  
However, each "piece" of the leaf does look like a submanifold. The leaf through (0, 0) 
is the image of the real line under the map F : JR ---+ T2 given by e ---+ (e , ke ) ;  this is 
clearly an immersion since F* is 1 :  1 (see 6. 1 d). 

We have just indicated one way in which an immersed submanifold can fail to be an 
embedded submanifold. There are two other commonly occurring instances. 

F(O) 

Figure 6.7 

Both illustrated curves are immersions of the line JR into the plane JR2 . In the first 
curve the map F is not 1 : 1 (even though F* is if the curve is parameterized so that 
the speed is never 0), whereas in the second curve, F is 1 : 1 but F(O) is the limit of 
points F(t) for t ---+ 00. In neither case can one introduce local coordinates x ,  y in JR2 
near the troublesome point so that the locus is defined by y = y (x ) .  

A s  we have seen i n  the case of  T2 , a maximal leaf need not be  an embedded sub
manifold. Chevalley, however, has proved the fOllowing. 
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Theorem (6.6) : A maximal leaf of a foliated manifold Mn is a 1 : 1 immersed 
submanifold; that is, there is a 1 : 1 immersion F : Vk 

� Mn of some Vk that 
realizes the given leaf globally. 

6.2h. Systems of Mayer-Lie 

Classically the Frobenius theorem arose in the study of partial differential equations . 
An important system of such equations is the "system of Mayer-Lie" ; we are to find 
functions yP = y.ll (x) , f3 = 1 , . . . , r ,  satisfying 

ay.ll .Il -a . = bi (x , y) , x' i = I , . . . , k  (6.7) 

with initial conditions 

where b is a given matrix of functions .  By equating mixed partial derivatives 
a2y.ll /axj axi a2y.ll /axi axj and using (6.7) we get the immediate integrability 
conditions 

[ abf _ abJ ] = � [ ( abJ ) bCX _ ( abf ) bCX ] axj ax i � ayCX ' aycx ] (6.8) 

We wish to show that (6. 8) i s  also a sufficient condition for a solution to exist. 
Let x I , . . .  , Xk be coordinates in ]Rk and y I , . . .  , yr be coordinates in ]Rr . Then in 

Mn = ]Rk X ]Rr we consider the distribution f!.k defined by the Pfaffians 

(6.9) 

In Problem 6.2( 1 )  you are asked to show that these I -forms are independent. 
The Frobenius integrability condition de.ll = 0 mod e is simply the statement that 

de.ll becomes 0 when all of the e 's are put equal to O. In our case 

de.ll = -dLbf (x , y)dxi = -
Ldbf I\ dXi 

'" ['" ( abP ) . . '" ( ab.ll ) 
. ] 

= - L L -' . dx] I\ dx' + L -' dycx I\ dx' . . ax] ayCX , ) cx 
To put ecx = 0 is to put dya = Lk b'kdxk , and so, mod e ,  

'" ( ab.ll ) . . '" ( ab.ll ) . . de.ll = - L � dx] 1\ dx' - L -;; bjdx] 1\ dx' . . ax . .  ay ') a, ' , ] 
= _ 

'" _i + _i bex. dxj 1\ dxi [ ab.ll ( ab.ll ) ] 
� ax) aya ) ') 

and thus de.ll = 0 mod e is simply the statement that the 2-form de.ll above must be O. 
This means that the coefficients of dxj 1\ dxi ,  made skew symmetric in i and j, must 
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vanish. This gives exactly the naive integrability condition (6.8) .  Hence the distribution 

in ]Rk X ]Rr defined by (6.9) is completely integrable. 

maximal leaf through lio,yo) 

/ 
Yo 1 /  / 

/. I 

]R.k 
Xo 

Figure 6.8 

Let Vk be the maximal leaf through (xo , Yo) .  One can easily see from (6.9) that the 
distribution is never "vertical" :  No nonzero vector of the form af! 8 I 8yf! is ever in the 
distribution. It seems clear from the picture (and it is not difficult to prove) that this 
implies that the leaf through (xo , Yo) can be written in the form yf! = yf! (x) .  For these 
functions we have that f}f! = 0 when restricted to the leaf. Thus dyf! = L:: bf (x , y)dxi 
and then ayf! lax i = bf (x , y )  as desired. 

6.2c. Holonomic and Nonholonomic Constraints 

Consider a dynamical system with configuration space Mil and local coordinates 
q 1 , . . .  , q" . It may be that the configurations of the system may be constrained to 
lie on a submanifold of Mil . For example, a particle moving in JR.3 = M3 may be 
constrained to move only on the unit sphere. In this case we have a single constraining 
equation F (x , y, z) = x2 + y2 + Z2 = 1 .  We may write this constraint in differential 
form dF = 0 = xdx + ydy + zdz .  More generally we may impose constraints given 
by r exact I -forms, d FI = 0, . . . , d F,. = 0, constraining the configuration to lie on an 
n - r-dimensional submanifold v"-r of Mil , at least if d FI /\ . . . /\ d Fr i= 0 on v"-r . 
The constraints have reduced the number of "degrees of freedom" from n to n - r .  
Still more generally, we  may consider constraints given by  r independent Pfaffians that 
need not be exact 

f}1 = 0, . . . , f}r = 0 (6. 1 0) 

Definition: The constraints (6. 1 0) are said to be holonomic or integrable if the 
distribution is integrable; otherwise they are nonholonomic or nonintegrable. 
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Of course, if the constraints are holonomic, then by the Frobenius theorem we may 
introduce local coordinates x , y so that the system is constrained to the submanifolds 
y l = const. ,  . . . , yr = const . ,  and then the constraints can be equivalently written as 
dy i = 0, . . .  , dyr = O. Nonholonomic constraints are more puzzling. Consider the 
classic example of a vertical unit disc roll ing on a horizontal plane "without slipping." 

...----- y 

x 

Figure 6.9 

To describe the configuration of the disc completely we engrave an orthonormal pair 
of vectors e l , e2 in the disc and consider the endpoint of e, as a distinguished point on 
the disc. The configuration is then completely described by 

(x , y , 1ft, cp) 
where (x , y) are the coordinates of the center of the disc, cp i s  the angle that e l  makes 
with the vertical (positive rotations go from el to e2) , and 1ft is the angle that the plane 
of the disc makes with the x axis .  (The line of intersection of the disc and the xy plane 
is directed such that an increase of the angle cp will roll the disc in the positive direction 
along this line.) It is then clear that the configuration space of the disc is  

M4 = ]R2 X S ' X S ' = ]R2 X T2 

The condition that the disc roll without slipping is expressed by looking at the motion 
of the center of the disc. It i s  

e, : = dx - cos 1ftdcp = 0 

e2 : = dy - sin 1ftdcp = 0 

(6. 1 1 ) 

It would seem that the constraints would reduce the degrees of freedom by 2, but in a 
certain sense this is not so. We can see that the constraints are nonholonomic as follows: 
de, = sin 1ftd1ft /\ dcp yields 

de, /\ (el /\ e2 ) = sin 1ftd1ft /\ dcp /\ dx /\ dy i= 0 

By (6.2), part (iv), the distribution i s  not integrable. Recall that in the case of integrable 
constraints we have integral manifolds, the leaves Vk , on which the system must remain. 
If we move (from a configuration point p) a small distance in a direction that violates 
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the constraints, that is ,  along a curve whose tangent vector is not annihilated by all of 

the constraint Pfaffians e1 , • • •  , en then we automatically end at a point q on a different 
leaf. There is no way that one can move from p to q while obeying the constraints and 

Figure 6.1 0 

remaining in the given Frobenius coordinate patch. It is possible that an endpoint q ' 
lies on the same maximal leaf as p, but to go from p to q ' while obeying the constraints 
requires a "long" path, that is, a path that leaves the coordinate patch. This is the 
meaning of the statement that in a holonomic system one has locally only n - r degrees 
of freedom; we must stay on the (n - r) -dimensional leaf. It is also a fact that although 
a maximal leaf can return to an infinite number of different slices globally (as in T2 
with irrational slope) it cannot return to every slice in the coordinate patch. Some points 
in the patch cannot be reached from p while obeying the constraints .  

This is not the case in our nonholonomic disc ! Recall that the constraints demand 
rolling without sliding. Consider the disc in an initial state at the origin and lined up 
along the x axis .  Now violate the constraints by sliding the disc in the y direction for 
an arbitrarily small distance. If the system were holonomic we could not roll the disc 
along a small path from the initial to the final configuration. But here we can ! 

Figure 6.1 1 

We have indicated a path in Fig. 6 . 1 1 .  You should convince yourself that you can obey 
the constraints and end up at a configuration that differs from the initial configuration by 



178 H O L O N O M I C  A N D  N O N H O L O N O M I C  C O N S T R A I N T S  

an increment i n  only one of  the coordinates. We have illustrated the case when only y has 
been changed. (A change in 1/f only is very easy since dx = dy = d¢ = 0 satisfies the 
constraints ; this is simply revolving the disc about the vertical axis . )  Thus, although the 
two constraints limit us "infinitesimally" to 2 degrees of freedom, we see that actually 
all neighboring states in a 4-dimensional region are "accessible" (by means of piecewise 
smooth curves) while obeying the constraints. In the general case of r nonholonomic 
constraints in an Mn , there will be a set of states of dimension greater than n - r that 
will be accessible from an initial state via short piecewise smooth paths obeying the 
constraints. The actual dimension is given by "Chow's theorem," to be discussed in 
Section 6.3g. We shall discuss a very important special case in thermodynamics in our 
next section. 

For an application of holonomy to the problem of parking a car in a tight spot, see 
Nelson 's  book [N, p. 34] 

Problem 
6.2(1 ) Show that the Pfaffians in (6.7) are l inearly i ndependent. 

6.3. Heuristic Thermodynamics via Caratheodory 

Can one go adiabatical ly from some state to any nearby state? 

6.3a. Introduction 

In this section we shall look at some elements of thermodynamics from the viewpoint 
of Frobenius's theorem and foliations .  This was first done in 1 909 by Caratheodory, 
who attempted (at the urging of Max Born) an axiomatic treatment of thermodynamics. 
His treatment had shortcomings; some were purely mathematical, stemming from the 
local nature of Frobenius's theorem. A careful axiomatic treatment of Caratheodory's 
approach has been given by 1 .  B. Boyling [Boy] . My goal here is much more l imited. I 
only wish to exhibit the geometrical setup that gives, in my view, the simplest heuristic 
picture for the construction of a global entropy, using the mathematical machinery 
that we have already developed. (My first introduction to the geometrical approach 
for a local entropy was from Bob Hermann; see his book [H] . )  I restrict myself to 
systems of a very simple type; I employ strong restrictions, which, however, are not 
uncommon in other treatments . I will use very specific constructions, for example, I 
will make use of familiar processes such as "stirring" and "heating at constant volume." 
We will accept Kelvin 's version of the second law. This leads, through Caratheodory 's 
mathematical characterization of a nonholonomic constraint, to the existence of the 
global entropy. 

For supplementary reading I suggest chapter 22 of the book of Bamberg and Stern
berg [B , S ] ,  but it should be remarked that their thermodynamic entropy i s  again only 
locally defined. 
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6.3b. The First Law of Thermodynamics 

Consider, for example, a system of regions of fluids separated by "diathermous" mem
branes :  membranes that allow only the passage of heat, not fluids. We assume the 
system to be connected. 

Figure 6.1 2  

We assume that each state of the system i s  a thermal equilibrium state . Let P; , V; 
be the (uniform) pressure and volume of the i th region. The "equations of state" (e .g . ,  
Pi Vi = n; R1i )  at thermal equilibrium wil l  allow us to eliminate a l l  but one pressure, 
say PI ; thus a state, instead of being described by P I , V I , . . .  , PIl ,  Vn , can be described 
by the (n + I ) -tuple P I , V I , V2 , . • •  , Vn • It is important to assume that there is a global 
internal energy function U of the system that can be used instead of P I . Our states 
then have n + I coordinates 

More generally, the state space is assumed to be an n + I -dimensional manifold MIl+ 1 

with local coordinates of this type; U ,  however, is a globally defined energy function. 
In Section 6.3c we shall define the state space Mn+ 1 more carefully, but for the present 
we shall only be concerned with local behavior. 

A path in M"+ I represents a sequence of states, each in equilibrium. Physically, we 
are thus assuming very slow changes in time, that is, quasi-static transitions. We shall 
also need to consider non-quasi-static transitions, such as, "stirring." Such transitions 
start at some state x and end at some state y,  but since the intermediate states are not 
equilibrium states there is no path in Mn+ 1 joining x to y that represents the transition. 
These are "irreversible" processes. Schematically, we shall indicate such transitions by 
a dashed line curve joining x to y .  

On Mn+ 1 we  assume the existence o f  a work I-form W I describing the work done 
by the system during a quasi-static process .  

II n 

;= 1 ;= 1 
Since we do not assume that W I is closed, the line integral ofW I is in general dependent 
upon the path joining the endpoint states. 

We also assume the existence of a heat I-form 
n 

Q I = L Q; (U,  V I , V2 , . . . , VIl )dVi 
; =0 
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(with again Va = U) representing heat added or removed from the system (quasi
statically). Again Q I is not assumed closed. We shall assume that Q I never vanishes. 
(In [ B ,  S] , Q I is derived, rather than postulated as here.) 

We remark that in many books the I -forms Q I and W I would be denoted by d Q 
and dW, respectively. We shall never use this misleading and unnecessary notation; Q I  
and W I are i n  no sense exact. 

The first law of thermodynamics 

dU = Q I - WI 

associates a "mechanical equivalent energy" to heat and expresses conservation of 
energy . 

6.3c. Some Elementary Changes of State 

1. Heating at constant volume 

U= Vo 

W( y ) = 0, and so 

dU = Q along YI 

state space M 

y' 

x 

YI I I stir at constant 
volume 

)-----------------------------------�----,-------------- V n  
Q( Y I I) = 0 

adiabatic d U =  - W along YII 

Figure 6.1 3 

y 

If YI is a path representing heating at constant volume, then dV I = 0, . . . , dVll = 0, 
and thus the work I -form W vanishes when evaluated on the tangent 'YJ .  From conser
vation of energy d V = Q along YI . 

2. Quasi-static adiabatic process, Since no heat is added or removed in such a process we 
have Q (YI I ) = ° and so dV = - W, 

3.  Stirring at constant volume. This i s  an  adiabatic process but since i t  is not quasi-static 
we cannot represent it by a curve in state space, We schematically indicate it by a dashed 
curve YI I I  joining the two end states x and y ' .  Q and W make no  sense for this process, 
but work is being done by (or on) the system, the amount of work being the difference 
of the internal energy V (y') - V ex ) .  

The preceding considerations suggest the following structure of  the state space. We 
shall assume that there is a connected n-manifold, the mechanical manifold Vn , and 
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a differentiable map Jr of M"+ 1  onto VIZ having the property that the differential Jr* is 
always onto. (Such a map is called a submersion. )  Schematically 

v --------�--------v 

Figure 6. 1 4  

By the main theorem o n  submanifolds o f  Section 1 .3d, i f  v E vn then Jr- I (v) i s  a 
i -dimensional embedded submanifold of M"+ I . We shall assume that each Jr- I (v) is  
connected. The manifold vn wil l  be covered by a collection of local coordinate systems, 
typically denoted by V i ,  . . . , v" . V" takes the place of the volume coordinates used 
before. The curves Jr - I (v )  are the processes "heating and cooling at constant volume" 
employed previously. Since we have assumed that each such curve is connected, we 
are assuming that given any pair of states lying on Jr - I (v ) ,  one of them can be obtained 
from the other by "heating at constant volume." It is again assumed that the work I -form 
W I on Mn+ I is 0 when restricted to Jr - I (v) . On the other hand, the heat I -form Q I is 
not 0 when restricted to these curves. The first law then requires that d U = Q =1= 0 
for such processes. In particular it would be possible to parameterize each Jr - I (v) by 
internal energy U .  Then U, V I , . . •  , vn forms a local coordinate system for Mn+ 1 (with 
U a global coordinate) . 

6.3d. The Second Law of Thermodynamics 

A cyclic process is one that starts and ends at the same state. The second law of 
thermodynamics, according to Lord Kelvin, can be stated as follows. 

In no quasi-static cyclic process can a quantity of heat be converted entirely into its 
mechanical equivalent of work. 

The second law of thermodynamics, according to Caratheodory ( 1 909), says 

In every neighborhood of every state x there are states y that are not accessible from 
x via quasi-static adiabatic paths, that is ,  paths along which Q = O. 

Caratheodory 's assumption is weaker than Kelvin ' s :  

Theorem (6.12) : Kelvin 's version implies CaratheodOlY 's. 
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P R O O F :  

cool at constant volume 
W = O 

Figure 6.1 5 

Given a state X ,  take a process of type I by cooling at constant volume, W = 0, 
ending at a state y. We claim that there i s  no quasi-static adiabatic process II going 
from x to y. Suppose that there were. We would then have 

r W = r Q - dU  = - r dU = 1 dU = 1 dU = 1 Q il l il l il l - I I  -I - I 
But this would say that the heat energy pumped into the system by going from y 
to x along - I , that is ,  by heating at constant volume, has been converted entirely 
into its mechanical equivalent of work II I  W by the hypothetical process I I ,  
contradicting Kelvin. D 

Note in fact that no state on I between x and y is quasi-statically adiabatically 
accessible from x .  

A n  adiabatic quasi-static process i s  a curve characterized b y  the constraint Q I = O. 
We know that if Q = 0 were a holonomic constraint then of course there would exist, in 
any neighborhood of a state x, other states y not accessible from x along such adiabatic 
paths, because the accessible points would all lie on the maximal leaf (integral manifold 
of codimension 1 )  through x. Does the existence of inaccessible points ( i .e . ,  the second 
law of thermodynamics) conversely imply that the distribution Q = 0 (the "adiabatic" 
distribution) must be integrable? Caratheodory showed that this is indeed the case by 
proving the following purely mathematical result. 

Caratheodory's Theorem (6.13): Let () I be a continuously differentiable non
vanishing I-form on an Mil , and suppose that () = 0 is not integrable; thus at 
some Xo E Mil we have 

() 1\ d(} =j:. 0 

Then there is a neighborhood U of Xo such that any y E U can be joined to Xo by 
a piecewise smooth path that is always tangent to the distribution. 

P R O O F  S K E T C H : An indication of why thi s  should be is easily given. Since 
() = 0 is not integrable near xo, we know that there is a pair of vector fields X and 
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Y defined near Xo , always tangent to the distribution e = 0 but such that [X, Y] 
is not in the distribution. 

Xu 

Figure 6.1 6 

Let <p and 1fr be the flows generated by X and Y respectively. From 4. l c  we 
know that the piecewise smooth integral curves 

have smooth segments tangent to the distribution e = 0, and have final endpoints 
lying on a curve whose tangent is  [X, V] .  This direction is transverse to the 
distribution. Thus, not only are points "along " e = 0 accessible from xo , but a 
curve of points transverse to e = 0 is accessible also. It is not difficult to show 
(using the machinery of the proof of the Frobenius theorem) that in fact all points 
in some neighborhood of Xo are accessible (see [H]) .  0 

We thus conclude from Caratheodory 's  mathematical theorem together with his 
version of the second law that 

Theorem (6.14) :  The adiabatic distribution Q I = 0 is integrable. 

Note that when the state space is 2-dimensional (with coordinates, say, PI and V I )  
this i s  a tautology since every I -form in a 2-manifold defines an integrable distribution 
of curves. 

6.3e. Entropy 

Since Q I = 0 is integrable, we know from 6. 1 a that there are locally defined functions 
S, called a local entropy, and A -=I- 0, on the state space Mn+ 1  such that Q I = AdS. 
Since 

Q = dS A 
We say that Q I admits a local integrating factor A (since d S is exact, J Q / A is locally 
path-independent, that is, "integrable"). For thermodynamic purposes it is  imperative 
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that A and the entropy S be  globally defined, but the Frobenius theorem only yields local 
functions .  If, for example, the foliation defined by Q = 0 has leaves that wind densely 
(as in a torus) then there is no way that a global function S can exist, since such an S must 
be constant on each maximal leaf. It is easy to see, however, that Kelvin 's second law 
of thermodynamics rules out the possibility of not only dense adiabatic leaves, but even 
leaves that "double back " !  For in the proof that "Kelvin implies Caratheodory," we saw 
that two states related by heating at constant volume cannot be joined by a quasi-static 
adiabatic .  This says that no Jr - I (v )  can meet a maximal adiabatic leaf twice . 

It might be thought that the space MI/+ I and the adiabatic foliation must then be of a 
completely trivial nature. The fol lowing foliation of I�? by curves Q I = 0 gives some 
indication of the complications that could arise. 

Figure 6.1 7 

We have exhibited an "adiabatic" foliation of the plane M2 = �2 consisting of two 
horizontal bands of leaves separated by a nested sequence of "paraboliclike" leaves 
asymptotic to two of the horizontal ones . The processes "heating at constant volume" 
are the orthogonal trajectories of these leaves .  We have depicted a particular leaf Lo and 
a particular transversal curve y .  We consider V I = Lo ,  with projection Jr : M2 � V I  
defined as follows: Move each point i n  the plane along the orthogonal trajectory through 
that point until you strike the leaf Lo.  In particular, if we parameterize Lo by a coordinate 
v and if we let v be constant on each orthogonal trajectory, then v becomes a global 
"mechanical" coordinate on the state space M2 . 

Return now to our quest for a global entropy. We attempt to construct a function 
S such that S is constant on each maximal adiabatic leaf Q = 0, as follows. As in 
6 . l a, we need a curve that is transverse to the leaves. Let Xo be a given point in MI/+ I , 
fixed once and for al l ,  and let y = y (U)  be the curve Jr - I (Jr (xo ) )  obtained from Xo 
by heating and cooling at constant volume, parameterized by internal energy U .  Since 
Q =I=- 0 along this curve (we are heating or cooling), it is transverse to the adiabatic 
leaves . This is our transversal !  Let L be a leaf that strikes y at the point y (U ) .  We then 
define S(x )  = U for all x in this leaf. This definition makes sense since we have already 
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seen that the leaf L cannot strike y a second time. We have defined S for all states that 
lie on adiabatic leaves that strike the basic transversal y . If every maximal adiabatic 
leaf on Mn+1 met the basic transversal y then the function S would be globally defined. 
A general foliation will not have this property. For example, in our illustrated foliation 

of ]R2, we have exhibited the basic transversal y through Xo and it is clear that this 
transversal does not meet any of the horizontal leaves at the top ! Consequently, no state 
v on one of these top leaves can be adiabatically deformed to have the same volume 
�oordinate as xo ! 

sufficiently simple thermodynamical systems do not exhibit this behavior. Given two 
states Xo and y, consisting of collections of contiguous bags of fluids, as in Fig. 6 . 1 2, we 
ought to be able to "massage" the bags in state y, quasi-statically and adiabatically, so 
that the final state y' has the same volume coordinates as the state Xo .  Thus the adiabatic 
leaf through y would indeed strike the transversal through Xo at the state y' . 

� __ ----o y 

----�--------------------- LO Xo 

Figure 6.1 8 

Furthermore, if, for instance, U (y') � U (xo ) ,  then by stirring at constant volume 
we could go adiabatically (but not quasi-statically) from Xo to y' . If U (y') S U (xo) we 
could stir from y' to Xo .  This would say that given any pair of states x and y, either y 
is adiabatically accessible from x or x is adiabatically accessible from y ,  though not 
necessarily in quasi-static transitions .  

Thus we shall assume that a basic transversal wil l  strike every adiabatic leaf; we are 
then assured of the existence of a global entropy function S, which we assume smooth. 
By construction, then, Q I = AdS for some globally defined integrating factor A. A #- O  
since Q never vanishes . S ince S = U on y and dU = Q along y ,  we see A > O. As 
we shall see, S is non-decreasing for each adiabatic process. S is called an empirical 
entropy. 

6.3f. Increasing Entropy 

Experience shows that if we start at a state y and "stir" the system adiabatically at 
constant volume (this cannot be done quasi-statically) we shall arrive at a state x 
having the property that no adiabatic process (quasi-static or not) can return us to y ;  
We cannot "unstir" the system. 
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Figure 6.1 9 

In Figure 6 . 1 9  we have stirred from y to x .  V ex)  > V (y ) .  Note that x can also be 
reached from y by heating at constant volume. 

We assume that if x and y are on Jr - 1 (v)  and if V ex )  > V (y) ,  then there is no 
adiabatic process, quasi,static or not, that will take us from x to y .  

Theorem (6.15) : If a state y results from x by any adiabatic process (quasi-static 
or not), then S(y) 2: S ex) .  

(Of course if the process is  quasi-static then dS = Q/A = 0 in the process .) 

P R O O F : Suppose that Sex) > S(y) and that there is some adiabatic process 
x -+ y leading from x to y .  

- , I 'I 
� \ \ I 

x 

Figure 6.20 

By deforming adiabatically we may move x and y quasi-statically to x' and y' 
on the basic transversal y through Xo . Then 

Sex') = Sex )  > S(y) = S(y') 

But along the basic transversal y we have S = V, and so V (x') > V (y') .  We 
could then stir adiabatically from y' to x' . But then we could "un stir" by the 
adiabatic going from x' to x to y to y' , a contradiction ! Thus the adiabatic from 
x to y cannot exist. 0 
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By assuming the existence of an empirical temperature and by combining simple 
systems into a single compound system (while introducing no "adiabatic" membranes) 
one can show that there is a specific universal choice for the integrating factor A,  called 
the absolute temperature T, that depends only on the empirical temperature. The 
resulting empirical entropy function S is then the entropy 

Q 
= dS 

T 
This is indicated in most books dealing with thermodynamics, for example, [B , S ] . A 
careful mathematical treatment is given in Boyling's paper [Boy] .  

6.3g. Chow's Theorem on Accessibility 

Let Y" , a = 1 ,  . . . , n ,  be vector fields on an Mil that are linearly independent in the 
neighborhood of a point P .  Then any point on M sufficiently close to P is accessible 
from P by a sequence of broken integral curves of the fields Y ,, ; this was the significance 
of the computation (6.4), when coupled with the inverse function theorem. 

In our sketch of Caratheodory 's theorem (6. 1 3) we have indicated a proof of the 
following: If vector fields X l and X2 are tangent to a distribution 11 on an Mil , but 
[XI ,  X2] is not, then by moving along a sequence of broken integral curves of X I and 
X2 the endpoints trace out a curve tangent to [X l , X2 ] ,  which is transverse to 11 .  Thus 

points on integral curves of [X l , X2 ] are accessible by broken integral curves of X l  

and X2 . 

Let vector fields X" ' a = 1 ,  . . . , r span an r-dimensional distribution 11 on some 
neighborhood of P on an n-manifold Mil . Suppose that 11 is not closed under brackets. 
Adjoin to the vector fields X" the vector fields [X" ' Xt d obtained from al l the brackets . 
It may be that the new system of vector fields is still not closed under taking brackets ; 
adjoin then all brackets of the new system, yielding a still larger system. Suppose that 
after a finite number of such adjoinings one is left with a distribution D(I1) that has 
constant dimension s :::: n and is closed under brackets, that is, is  in involution. By 
Frobenius there is an immersed integral leaf V' of this  distribution passing through P .  
From Caratheodory 's theorem (6. 1 3 ) ,  points of this  submanifold that are sufficiently 
close to P are accessible from P by broken integral curves of the original system X" . 
Further, no points off the maximal leaf V are accessible. This is the essential content 
of Chow's theorem. See [H] for more detail s .  
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}R3 and Minkowski Space 

7.1 .  Curvature and Special Relativity 

What does the curvature of a world line signify in space-time? 

7.1a. Curvature of a Space Curve in ]R3 
WE associate to a parameterized curve C, x = x(t) in Il�?, its tangent vector x(t) = 
(x , y ,  iY .  When t is considered time, this tangent is the velocity vector v, with speed 
I I  v I I  = v. Introduce the arc length parameter s by means of 

s et ) = lr I I x(u) I I du 

We then have the unit tangent vector T : =  dx/ds = x dt/ds = v/v ,  that is ,  v = vT. 
For acceleration a we have 

dT 2 dT 
a = V = vT + v - = vT + v -dt ds 

Since T has constant length , dT / ds is  orthogonal to T and so i s  normal to the curve 
C. If dT/ds i= 0, then its direction defines a unique unit normal to the curve called the 
principal normal n 

dT - = K (s)n (s ) ds (7 . 1 )  

where the function K (s ) � 0 i s  the curvature of C at (parameter value) s .  Then the 
acceleration 

(7 . 2) 

lies in the osculating plane, the plane spanned by T and n. To compute K in terms of 
the original parameter t rather than s ,  note that 

v x a = vT x (vT + v2K (s )n) 
= V3KT x n 
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and so 

See Problems 7. I ( I )  and (2). 
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K =  I I  
v x a I I  

V3 

We define the curvature vector by 
dT 

K, = - = Kn 
ds 

We remark that when dealing with a plane curve, that is, a curve in lR?, a slightly 
different definition that allows the curvature to be a signed quantity is usually used. If 
T = (cos a, sin al is the unit tangent (where a is the angle from the x axis to the 
tangent) then T-L = (- sin a ,  cos a )T is the unit normal resulting from a counterclock
wise rotation of the tangent. Then dT / ds = KT-L defines a signed curvature K = ±K. 
But then 

gives the familiar 

dT d da - = - (cos a,  sin a) T = (- sin a ,  cos al 
ds ds ds 

da K = 
ds 

It is shown in books on differential geometry that K and the osculating plane have 
the following geometric interpretations. To compute K (S )  we consider the three nearby 
points xes - E ) ,  xes ) ,  and xes + E )  on C. If these points are not colinear (and generically 
they aren 't) they determine a circle of some radius PE passing through xes) and lying in 
some plane PE • Under mild conditions, it is shown that l imE-+o PE is  the osculating plane 
and P (s )  = limE->o PE = 1 /  K (s) is the radius of curvature of C at s .  (If dT / ds = 0 
at s ,  we say K (S )  = 0, P = 00, and the osculating plane at s is undefined.) Then (7.2) 
becomes 

a = vT + (�) n 

the classical expression for the tangential and normal components of the acceleration 
vector. 

7.lh. Minkowski Space and Special Relativity 

Minkowski space Mg is JR.4 but endowed with the "pseudo-Riemannian" or "Lorentz ian" 
metric or "arc length" (as discussed in Section 2. I d) 

(7.3) 

Here c i s  the speed of light, and the coordinates t = xo , x = X I , y  = x2 , Z = x3 
for which ds2 assumes the form (7 .3 )  form an inertial coordinate system. (For phys
ical motivation and further details see, for example, [Fr] . )  The metric tensor gij = 
(O/OXi , % xj ) is then 

(7.4) 

Warning: Many books use the negative of this metric ! 
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Let x == ( t ,  x )  and let dx - dx  be  the usual dot product i n  �3 . Then 

Then a 4-vector, that is ,  a tangent vector to Mri, 

is said to be 

spacelike 
timelike 
lightlike 

if ( v ,  v) > 0 
if ( v ,  v ) < 0 
if ( v ,  v ) = 0 
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The path x = x Ct )  of a mass point in Mri is called its world line. Its tangent vector 
dx/dt == ( l ,  dx/dt ) T  = ( 1 , V) T is timelike since 

/ dx dX ) 2 2 2 
\ dt ' dt = -c + V - V  = -c + v 

and, as we shall see, v < c. Thus the tangent vector to the world line of a mass particle 
lies inside the light cone x - x = c2 t2 • 

We shall call V =dx/dt the classical velocity vector. 
The analogue of the arc length parameter in �3 for the world line of a particle in Mri 

is the proper time parameter r defined by pulling back the tensor -c-2ds2 to the curve 

dr2 : = -c-2ds2 = dt2 - c-2dx - dx 

( 1 - �: ) dt2 

Define the Lorentz factor y by 

( V2 )- 1 /2 
y := 1 - 2" c 

dt 
dr 

An analogue of the unit  tangent in �3 i s  the velocity 4-vector u 

Note that 

dx ( dt dX ) T T u := dr = dr ' dr = y ( l , v) 

(7 .5) 

(7 .6) 

(7.7) 

(7 .8) 

We define, as usual, I I A 1 1 2 := ( A ,  A )  even though this may be negative ! (When it 
is negative we shall never use its square root I I  A I I . )  A is said to be a unit vector if 
I I A 1 1 2= ±c; u is a unit vector in  the sense that one usually uses units i n  which the 
speed of light c = 1 . The physical interpretation of the proper time parameter r along 



194 

" " " " " " " " " 

1R3 A N D  M I N K O W S K I  S P A C E  

" " " " " " 

c 

u 

" " 
---"r---::,4-------- x 

Figure 7.1 

a world line C is  as follows (see [Fr, p .  1 8] ) :  ( V2 ) 1 /2 
r = J 1 - c2 dt 

is  the time kept by an "atomic clock " moving with the particle along the world line C. 
In particular, coordinate time t is  the proper time kept by an atomic clock fixed at the 
spatial origin x = 0 of the inertial coordinate system. 

Associated with any particle is its rest mass mo;  this is an invariant (independent of 
coordinates, i .e . ,  observers) .  

The (linear) momentum P of the particle is the 4-vector 

where 

m := maY = mo
( 

1 _ �: ) - 1 /2 

(7.9) 

is sometimes called the relativistic mass; m is interpreted as the mass of the moving 
particle as viewed from the "fixed" inertial coordinate system. Note that m -+ 00 as 
v -+ c, and, as we shall see in (7. 1 5 ) ,  an infinite classical force would be required to 
accelerate a mass to the speed of light. This is the justification for the assumption that 
v < c for all massive particles. 

Note that the momentum 4-vector has constant "length" 

I I P 1 1 2= ( P ,  P) = -m�c2 

If we define the classical momentum by p :=  mv (with a variable mass ! )  then we can 
write P = (m , p) T and then (P ,  P )  = -c2m2 + p2 , and so 

(7. 10) 

The analogue of the curvature vector dT/ds in ]R3 is the curvature or acceleration 
4-vector 

du 
dr  
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The Minkowski force is the 4-vector defined by 

Thus 

dP d(mou) f ·- - - --.- dr - dr 

d 
T (

dm dP
) 
T ( )  T f = dr (m , p) = d;" '  Y dt = (f , yfc) 
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(7 . 1 1 ) 

(7 . 1 2) 

where fc := dp/dt is the classical force in JR.3 and where fa is the t = XO component 
of f. Since (P ,  P) is a constant, f = dP /dr must be orthogonal to P (and thus to u )  
in the Minkowski metric 

that is, 

(7 . 1 3) 

The time component of the Minkowski 4-force is ,  except for a factor, the classical 
power (rate of doing work) . Finally 

f = y (c-2(. · V , fc) T 

Note that fO = dm/dr = ydm/dt shows that 

and so 

dm -2 - = c  fc · v  
dt 

(7. 1 4) 

(7. 1 5) 

is  the element of work done by the classical force. Classical ly this is  the energy imparted 
to the particle. This leads us to associate to a mass m an energy E = mc2 and a rest 
energy moc2 • (7 . 1 0) becomes 

(7 . 1 6) 

and we have 

P = (� , p)
T 

Since E / c2 appears as the time component of the momentum 4-vector, we see that spe
cial relativity unites the energy and classical momentum into a 4-vector, the momentum 
4-vector. 

The familiar startling effects of special relativity, such as length contraction and time 
dilation, are consequences of the geometry of Mink ow ski space. Their explanation rests 
on Einstein 's simple analysis of the concept of time and simultaneity. This analysis was 
Einstein's monumental contribution to special relativity, and gave meaning to the ad hoc 
assumptions put forth previously by Lorentz, Poincare, Larmor, and Fitzgerald; see [Fr J .  
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7.lc. Hamiltonian Formulation 

Consider a mass particle moving in ]R3 and suppose that the classical force is derivable 
from a time-independent potential CC = - V V .  From (7 . 1 5 ) ,  dmldt = -e-2V V . v = 
-e-2d V  Idt along the world line, and consequently 

H := me2 + V 

is a constant of the motion and deserves the name total energy. In the phase space ]R6, 
V is a function of x = q alone, and from (7. 1 0) me2 = (m�e4 + p2e2) 1 /2 is a function 
of p alone. From (7. 1 0) we have 2me2 amlap", = 2p"" showing that a (me2) lap", = 
POi lm = VOl ' where a = 1 , 2, 3 .  Then 

and 

dx'" a (me2) - = v'" 
dt ap", 

a (me2 + V)  

dp", c a v  a 2 aH - = !, = -- = - - (me + V) = - -
dt '" axOi ax'" axOi 

and thus we are able to put the equations of motion in Hamiltonian form provided we 
define the Hamiltonian H to be the total energy. 

Problems 

7.1 (1 ) Compute the cu rvature of the hel ix x = cos wt,  Y = sin wt, z = kt,  where w and 
k are constants. 

7.1 (2) Assume K #- 0; then n is wel l  defined and we can define the binormal vector B 
to be the normal to the oscu lating plane, B = T x n .  Show that dB/ds l ies along 
n, and hence the torsion r is wel l  defined by dB/ ds = r (s) n .  Then show that 
dn/ ds = -K (s)T - r (S) B .  (The equations for the arc length derivatives of T, n ,  
and B constitute the Serret-Frenet formulas . )  

7 . 1  (3) Show that the action for a particle wi th H = mc2 + V is  

J p", dx'" - Hdt = -moc2 J dr - J Vdt 

7.2. Electromagnetism in Minkowski Space 

How can i:� 1 and �il2 be united to yield a 2-form in space-time? 

7.2a. Minkowski's Electromagnetic Field Tensor 

The Heaviside-Lorentz force law (3 .36) becomes C = q [E + (v Ie) x B] when we use 
units for which the speed of light e i s  not necessarily 1 .  This spatial force vector can 
be completed to a Minkowski force 4-vector by using the prescription (7 . 1 4) 

f = y (e-2C . v, f) T = yq (e-2E . v, E + G) x B) T 



E L E C T R O M A G N E T I S M  I N  M I N K O W S K I  S P A C E  

The covariant expression for f, that is, the associated I -form f l , is, from (7.4), 

f l = - yq [iv�; I ]dt + yq [i;; 1 

-
iv/c UJ.l2 ) ] 
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Recall that the velocity 4-vector is u = y aja t  + yv. In Problem 7 .2( 1 )  you are asked 
to shoW that f I can be written 

where (7 . 1 7) 

is the electromagnetic field strength 2-form. 
The velocity 4-vector u is intrinsic to the world line; since it is constructed using 

proper time i rather than coordinate time t, all inertial coordinate systems will agree on 
the vector u even though their local coordinate expressions for it will differ. The Lorentz 
force covector is intrinsic ; this is a consequence of the assumption that q [E +  (v jc) x B] 
is an accurate discription of the classical force fc acting on a charged particle even when 
moving at relativistic speeds ! It follows then, from (7. 1 7) ,  that F2 is intrinsic ; that is, 
F2 is a covariant second-rank tensor! This skew symmetric tensor was first introduced 
in 1 907 by Minkowski . 

From this point on we shall revert to units in which the speed of light is unity 
c = 1 

Written in full 

F2 = (E ldx + E2dy + E3dz ) /\ dt (7 . 1 8) 

+ Bl dy /\ dz + B2dz /\ dx + B3dx /\ dy 
(Since the spatial part of the metric is eucl idean we have Eu = EU , etc . )  If we write, 
as usual, F2 = Li <i Fijdxi /\ dxi , we see 

(Fij ) = r i: ��: -
�3' =:i ] 

E3 B2 - B I  0 

The Lorentz force law (7 . 1 7) can then be written (from (2.76)) 

fi = q Fu ui (7 . 1 9) 

Consider a second inertial coordinate system t ' ,  x' (with identical orientation) ,  repre
senting an observer moving along the x axis of the first observer with constant speed v .  
We assume that their spatial origins coincide when t = t' = O. Elementary arguments 
(as in [Fr] ) show that y = y' and z = z

'
. We shall then only be concerned with the rela

tions between t ,  x and t ' ,  x ' . The basis vectors for the unprimed system are eo = ( 1 ,  O)T 
and el = (0, l l .  The basis vector e� is of the form (t , xl in the unprimed system; it 
must satisfy _t2+x2 = - 1 ,  and so it is of the form (cosh a,  sinh a )T . Likewise, to main
tain Lorentz orthogonality, e'l must be (sinh a,  cosh a) T . Thus,  assuming a linear coor
dinate change, the coordinate systems are related by t ' = t cosh a + x sinh a and x' = 
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t sinh a + x cosh a .  The spatial origin of  the primed system, x' = 0, is  moving so  that 
x = vt . Thus tanh a = - 1 /  v . This allows us to express sinh a and cosh a in terms of v, 
yielding the usual expressions for the Lorentz transformations (with constant v and y) 

t = y et ' + vx') x = y (x' + vt') (7.20) 
y = y' z = z' 

One can check immediately that under such a coordinate change the volume form 

vol4 = dt 1\ dx 1\ dy 1\ dz = dt' 1\ dx' 1\ dy' 1\ dz' 
is unchanged. 

I wish to emphasize that Lorentz transformations in general are simply the changes 
of coordinates in ]R4 that leave the origin fixed and preserve the form _t2 +x2 + yl + Zl . 

If we make a Lorentz transformation (7 .20), the local expression for the form Fl in 
(7. 1 8) will pull back to an expression F2 : =  /::.' 1 1\  dt + �g'2 . In Problem 7 .2(2) you are 
asked to compute that 

E; = E1 
E; = y (El - vB3 ) 
E� = y (E3 + vB2) 

B; = B1 
B� = y (Bl + VE3 ) 
B; = y (B3 - vE2) 

(7 .21 ) 

showing, for example, that a pure electric field in a "fixed" system will yield both an 
electric and a magnetic field when viewed from a moving system. S ince (see Problem 
7.2(3» 

F 1\ F = -2E • B vol4 (7 .22) 
we see that E • B is an invariant of such Lorentz transformations! (If, however, we had 
allowed a change of orientation, then E ·  B would be replaced by its negative since 
F 1\ F is a true 4-form and vol4 is a pseudoform.)  

7.2b. Maxwell 's Equations 

In Minkowski space we have (see (4.42» 
a d = d + dt 1\ at 

Then, for F2 = 1::, I (t , x) 1\ dt + �g2 (t , x) , we have 

and so 

d F = d1::' 1\ d t + d�g + d t 1\ - = d& + - 1\ d t + d�g 
a �B ( a �H ) 
a t  a t  

Thus d F = 0 is equivalent to the first pair of Maxwell 's equations. 

(7.23) 

(7.24) 
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If there are no singularities in the field F2 , then, since Minkowski space is simply 
JR4, the converse to the Poincare lemma assures us that F2 = dA I for some I -form A .  
(Away from singularities, such an A I will exist locally. ) Write 

F2 = dA I (7.25) 

A I = </Jdt + (fl 

where (fl = A" (t , x)dxfX and where Greek indices run from 1 to 3 .  Then (;� I 1\ dt + �B2 = 
(d + dt 1\ a I a t )  (</Jdt + (I I ) = d</J 1\ dt + defl + dt 1\ aul /a t  yields 

a(:1 1 
i:� 1 = d</J - -

a t  

and (7 .26) 

This yields the vector expressions E = V </J - aAI at and B = curl A. </J i s  the scalar 
and A the vector potential. (In most physics books V</J occurs with a negative sign. )  

Consider a charged flu id  (with charge density p) moving in JR.3 with local velocity 
vector v. The current vector is j = pv; p is  the charge density as measured in the inertial 
system x. If Po = Po (t , x) is the rest charge density, that is ,  the density as measured by 
an observer moving instantaneously with the fluid, then 

p = Po y 

since the charge contained in a moving region must be independent of the observer and 
yet volumes are decreased by a factor of y when viewed from a system in (relative) 
motion with speed v (see [Fr, p.  1 1 2) .  Thus j = Po y v.  Since Po is, by definition, 
independent of observer, we may construct an intrinsic 4-vector, the current 4-vector 

J : = pou = (Po y ,  PoYV) T = (p , pvl = (p , Jl (7 .27) 

We may then construct the associated current 3-form 

y,3 = iJ vol4 = i (p ! + J ) dt 1\ dx 1\ dy 1\ dz (7.28) 

= pdx 1\ dy 1\ dz - (j l dy 1\ dz + hdz 1\ dx + hdx 1\ dy) 1\ dt 
d 3 · 2 d c1 = a - J/ 1\ t 

In an important sense, y,3 is more basic than J (see Section ( l4. 1 c) ) .  
We may now consider the second set  of Maxwell equations. Define the pseudo-2-

form *F (where the star is not bold) as follows (the reason for this notation will be 
explained in Chapter 14) :  

(see (3 .4 1 )) . Then, as in (7.23) 
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Gauss's law and the law of Ampere-Maxwell then give 

d * F2 = 4JT (a 3 - / /\ dt) = 4JT S3 (7 .29) 
In particular 

(7.30) 

and this is a reflection of conservation of charge (see [F, p .  1 1 1 ] ) .  
We wish to make two final remarks. 
1 .  Maxwell 's  equations are traditionally thought of as four independent axioms, but, 

remarkably, special relativity says that this is not so. Consider (7 .23) .  Suppose, for 
instance, that every inertial observer notes that d�g = O. Then every inertial observer 
will see the 3-form d F = (dt� + ami a t )  /\ d t ,  which is of the form i w vol4 , where the 4-
vector W can have no time component, WO = O. But under a Lorentz transformation we 
will have W,o = w'" (ax'o lax"' ) , and thus unless W = 0, some Lorentz transformation 
will yield a WI() =1= O. Thus, if every inertial observer sees d�j1 = 0, then d F = 0 and so 
Faraday 's law holds! Likewise, if Gauss 's law is observed by every inertial observer, 
then so is Ampere-Maxwell. This is comforting, since Gauss's law, for example, seems 
less sophisticated then Ampere-Maxwell .  

2 .  We wish to emphasize the Maxwell 's equations dF  = 0 and d * F = 4JT S  hold 
universally, in all materials. Physicists and engineers usually introduce two material 
dependent fields, in our language a pseudo- I -form :rC1 and a pseudo-2-form �12 , together 
with a material dependent current pseudo-3-form (,,3 , and then write for Maxwell 's 
equations d F = 0 and d(  - :lC /\ dt + �l) = 4JT(". In the case of a "noninductive 
material ," for example the vacuum, we have :'if = * �g and �l = *t; and (" = S, but 
in general the macroscopic fields :'it and �1 are related to the true microscopic fields 
H1 and t� by complicated "constitutive relations ." We shall have no need for these new 
fields. For an opposing view, see [H, 0] . 

7.2(1 ) Derive (7. 1 7) .  

7.2(2) Derive (7.2 1 ) .  

Problems 

7.2(3) Show (7.22) and show that P /\ * P = ( 1 8 1 2 - IE I 2 )  vol4 .  

7.2(4) Show that (3.32) is equ ivalent to dS3 = o .  
7.2(5) Al l Lorentz transformations leave the 3 d imensional "un i t  hyperboloid" t 2  - x 2 _ 

y 2  _ Z 2 = 1 of M inkowski space invariant. Show that 

dx /\ dy /\ dz 
1 t 1 

is a volume form on th is hyperboloid that is invariant under Lorentz transforma
tions. (H int: H = t 2  - x 2 - y 2  - z 2 is an i nvariant function.  Use the method 
expressed by equation (4.53) of Hami ltonian mechanics.) 
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The Geometry of Surfaces in }R3 

The geometry or kinematics of this subject is a great contrast to that of the flexible line, and, in 
its merest elements, presents ideas not very easily apprehended, and subjects of investigation 
that have exercised, and perhaps overtasked, the powers of some of the greatest mathematicians. 

Kelvin and Tait, Elements of Natural Philosophy 

8.1 .  The First and Second Fundamental Forms 

What is the length of a curve that leaves the north pole, ends at the south pole, and makes a 
constant angle with each meridian of longitude? 

8.1a. The First Fundamental Form, or Metric Tensor 

Let M2 C ]R3 be a parameterized surface in space, M2 = F (U) ,  where U C ]R2 and 
F* has rank 2. Frequently we shall write u l = u and u2 = V • 

• 8/8UZ U 

� 8/8U ' 
F. ( iJ/8u2) 

= 8x/8u2 = (8X ' /81 12, (JX2/(i1l 2, (ix 3/ilu 2{ 
--11--------- 1I '  

J---------- x2 

Figure 8.1 

A curve x = x(t ) that lies on M2 is the image of some curve uiX = uiX (t) and so 
x = x[u (t ) ] .  For velocity vector we have 

dx 
dt 
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where 
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ax x", := -, au'" 
ex = 1 , 2 , 

form a basis for the tangent space to M2 at each point. A pair of tangent vectors has a 
euclidean scalar product 

where, as usual, 

g"'fi = (x"" xfi ) = t (:�: ) ( :�� ) (8 . 1 )  

We can then write, as in Section 2.7b, 

ds2 = (dx, dx) = (x",du'" , xfidufi ) = g"'fidu"'dufi (8 .2) 

and this quadratic form associated to the metric tensor is called the first fundamental 
form. Note that we are, as usual, considering the coordinates u'" as functions on M2, 
and du'" are I -forms on M with du"' (xfiAfi ) = A"' , and ds2 is simply another name for 
the metric tensor ds2 = g",{Jdu'" ® dufi since 

g"'fidu'" ® dufi (A , B) = g"'fiA'" Bfi 

The reason for this notation will become clear in a moment when we shall use a picture 
and ordinary arc length ds to write down, with no computations, the metric tensor for 
the 2-sphere. But first, you must do it the hard way, from the definition (8 . 1 ) . 

The sphere of radius a can be parameterized (except at the poles) by colatitude 
e = u I and the negative of the longitude, ¢ = u 2 • You are asked to show, in Problem 
8 . 1 ( I ) , that for the sphere of radius a we have 

ds2 = a2 (de2 + sin2 ed(2) (8 .3)  

We define the length of a parameterized curve u = u (t) on M2 by 

L = J I I dx/dt I I dt = J [g"'fi (U (t ) ) (d;t"' ) (d;:) ] 1 /2dt 
The cosine of the angle between tangent vectors A and B is given by 

(A , B) 
I I A 1 1 1 1 B I I 

(8 .4) 

and the angle between intersecting curves is the angle between their tangents . Thus the 
coordinate curves v = constant and u = constant are orthogonal iff gllv := g l 2 = 0; in 
general they intersect at an angle 

_ I gil V cos [ ] 1
/2 gllll gVV 

When the coordinate curves are orthogonal we interpret ds2 = glllldu2 + gvvdv2 as 
an "infintesimal" version of Pythagoras ' s  rule. On the sphere of radius a ,  for exam
ple, we see immediately that (8 .3 )  is the Pythagoras rule applied to the infinitesimal 
curved triangle. 
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I 
I 

. . . . . . . . . . . . . . . . . . . e· · . . . . .  : . . . . . . . . . . . . . . 

See Problem 8 . 1 (2) at this time. 
For element of area, from (2.72), 

I 
... � 

Figure 8.2 

dS = Jgdu !\ dv 
See Problem 8 . 1 (3 ) .  

a dB 

a sin B dlj> 

203 

Finally, we would l ike to make a remark on the classical notation dx appearing 
in (8.2) . Classically dx is the "infinitesimal vector" with components (dx , dy , dZ) T ,  
joining two infinitesimally distant points, and when we restrict the position vector x to 
end on the surface M2 this vector dx is tangent to the surface. In our language, dx is a 
mixed tensor; in local coordinates for M2 , 

(classically the tensor product sign is omitted). We shall think of this  mixed tensor 
(linear transformation) as a vector-valued I -form, that is ,  a I -form whose value on 
any tangent vector v is a vector, rather than a scalar. For this particular vector valued 
I -form, the value is again the vector v, 

dx(v) = (x" 18) du" ) (v) := x,, (du" (v» = x" v" = v 

8.1b. The Second Fundamental Form 

Whenever we discuss the normal to a surface we shall assume that one of the two 
possible local normal fields has been chosen. 

Let N = XII x xvi I I  XII x XV II be the unit normal to M2 at a point (u I ,  u2) .  Given 
any tangent vector X = x" X" at (u l , u2 ) ,  let u" = u" (t) be a curve on M2 having 
X as tangent at u" = 0; X" = du" /dt . Then the derivative of N with respect to X is 
dN/dt = (aN/au" ) (du" /dt) = N"du" /dt = N"X" (where again N" : = aN/au" ) 
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and this vector is a tangent vector to M2 since N is a unit vector. The assignment (the 
minus sign being traditional) 

X f-+ -N" X" = - X" 
aN 

=: b (X) 
au" 

defines then a l inear transformation 

b ·  M2 � M2 • (II . V )  (II , V ) 
(Note that under b , x" is sent into -N" and that ifwe reverse the choice of normal field, 
b will be sent into its negative. )  Let (ba fl ) be its matrix with respect to the basis {xa } 

(8 .5) 

These are called the Weingarten equations. 
The bilinear form B associated to the l inear transformation b is (as usual) defined 

by B (X , Y) = (X, b(Y) } = (X , -Nfl yfl ) = - (xyXY , Nfl yfl ) . Thus, as a tensor, B is 
g iven by the second fundamental form 

- (dx, dN) = - (xv , Nfl }duY 0 dufl 

and the tensor product sign is usually omitted. Weingarten's equation can be written in 
terms of the vector-valued i -form 

dN = [:�] 0 dufl = -xab" fl 0 dufl (8 .6) 

Thus, along any curve u = u (t )  on the surface, 

dN 
= -xaba fj 

(dufl ) 
dt dt 

We may write for the second fundamental form, 

B = bafjduadufj 
where bafl = g"ybY fl i s  the covariant tensor associated to the linear transformation b. 
Then bafl = B(xa, xfj ) = (xa , b(xfj ) } = - (xa ' Nfi ) ,  that is ,  

(8 .7) 

This expression is inconvenient for computations since it involves the derivative of the 
unit vector N (which usually involves a complicated expression with square roots) ;  we 
shall exhibit now a more useful formula, Put 

a2X x"fj : 
= -

a u
-
"-a-u

-:'
fl 

Since N is a normal vector, 0 = ajaufJ (xa ,  N} = (xafj , N) + (xa , Nfj ) = (xafj , N) - bafJ ' 
that is ,  

which is the formula for computing B , In full ,  we have 

bafJ = ( auaa2;ufJ ' au:2;ufj ' au:2aZufJ ) (N t
, N2 , N3 ) T 

The linear transformation b may then be  computed from ba fJ = gay byfi , 

(8 ,8) 
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Problems ----------

8.1 (1 ) Compute the metric for the sphere of radius a. 
8.1 (2) A "Ioxodrome" on a sphere of rad ius a is a curve that makes a constant angle w 

with each meridian of longitude. Usually it eventual ly winds around each pole. 
Compute the length of such a loxodrome by using 0 as a parameter. (The tangent 

vector then has components ( 1 , d¢/dO)  and you may use (8.4) to determine 

d¢/dO) . )  

8.1 (3) Compute the area o f  the reg ion on  t he  Earth's surface bounded by  latitudes 0° 
and 30° and long itude 00 and 45° . 

8.1 (4) Consider the surface z = x2 - 2y2 near the orig i n .  Use x = u1 , Y = u2 for 
local coord inates. Compute the matrices (9a{3 ) and (ba {3 )  at (0, 0) . Save your 
computations for problem 8.2(2 ) .  

8.1 (5) Let M2 be a surface in  �3 and let Xo be a point on this surface. Choose new 
cartesian coord inates for �3 having Xo as orig in  and such that the new x 1 , x2 
plane is the tangent plane to M at xo . Use x 1 = U 1 and x2 = u2 as local 
coordinates near Xo . Show that M near Xo is described by the equations 

X3 = Z(X1 , X2 ) = ( 1 /2) L ba{3 (O)Xax{3 

a,fJ=1 .2 

+ higher order i n  x 1 , x2 

exh ibit ing another geometric aspect of the second fundamental form. 

8.2. Gaussian and Mean Curvatures 

What do we mean by the curvature of a surface? 

8.2a. Symmetry and Self-Adjointness 

We recall from linear algebra that if ce is a linear transformation in a vector space 
with scalar product, then the adjoint (t* of (/ is the linear transformation defined by 
(ctX, Y) = (X, (f*Y) ,  and (f is self-adjoint if cr = cr* . In terms of the bilinear form A 
associated to (I, (t is self-adjoint provided 

A (X,  Y) = (X, crY) = (cIX, Y) = (Y, UX) = A (Y, X) 

that is, a linear transformation cr is self-adjoint iff the associated bilinear form A is 
symmetric. In components, (/ is  self-adjoint iff (AafJ )  is symmetric, Aa{3 = AfJa . (You 
should convince yourself from the transformation laws for covariant and mixed tensors 
that such an equality is in fact independent of basis, whereas A a {3 = A{3 a might hold in 
some basis but not another; it makes no sense to say that a mixed tensor is symmetric.) 

From (8 .8)  we see that the second fundamental form B is  symmetric and thus the 
linear transformation b : M,; -+ M,; is self-adjoint! As we shall now see, the special 
eigenvalue behavior of a self-adjoint transformation will have remarkable geometric 
consequences in the case of the l inear transformation b .  
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8.2h. Principal Normal Curvatures 

Let x = x(s) define a curve C, parameterized by arc length, on the surface M2 in ]R3 . 
The unit tangent at x(O) i s  then T = dxlds = xadua Ids . The curvature vector for C, 
as a space curve, at x(O) is 

_ _ dT _ (dua ) (duf! ) d2ua 
"" - K n  

- ds - xaf! ds ds + Xa ds2 
where n is the principal normal to C .  The component of the curvature vector "" = Kn 
in the direction of the unit surface normal N is then 

that is, 

(dua ) (duf! ) (Kn ,  N) = (xaf! ' N) ds ds 

(dua ) (duf! ) (Kn ,  N) = haf! ds ds = B (T, T) (8.9) 

There are, of course, an infinity of curves on M2 that pass through x(O) with tangent T, 
but (8 .9) tells us that although these curves may have very different curvatures as space 
curves, the component of the curvature vectors normal to the surface depends only on 
the tangent T and is the value of the second fundamental quadratic form B on T! 

In particular, let T be a unit tangent vector to M at a point p.  

Figure 8.3 
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Let P be the plane spanned by T and N at p .  P cuts out a curve C on M, whose 
unit tangent is T. C is a normal section of M and of course it is a plane curve, lying 

as it does in P. Its curvature vector K, = Kn (as a space curve) points from p towards 
the center of curvature (at a distance K- ] ) .  Thus, for this normal section, from (8 .9) 

B (T, T) = ±K 

where the + sign is used only if the curve C is "curving" toward the chosen surface 
normal; for the indicated normal in our figure B (T,  T) = -K is negative. 

Now keep p E M fixed but rotate T in the tangent plane M� ; the curvatures B (T,  T) 

will change in general . We define the principal (normal) curvatures of M at p by 

K] (p) = max B (T, T) 

K2 (P) = min B (T, T) 

(8 . 1 0) 

for unit T E M� . The two directions Ta , a = 1 ,  2, yielding these extrema are called 
the principal directions for M at p. But b is self-adjoint ( i .e . ,  B is  symmetric), and 
linear algebra (see Problem 8.2( 1 )) tel ls us the following: 

Theorem (8.11 ) :  K] and K2 are the eigenvalues of b and the corresponding prin
cipal directions Ta are the eigenvectors 

a = I , 2 

If K] f. K2 then automatically the principal directions are orthogonal. 

(The orthogonality of the principal directions was known to Euler ! )  
Of course i f  K ]  = K2 then all the normal curvatures at p coincide; p i s  then called 

an "umbilic" point. The usual round 2-sphere consists entirely of umbilic points . 

S.2c. Gauss and Mean Curvatures : The Gauss Normal Map 

We now define two measures of curvature of a surface M2 at p .  
det(bajJ )  

Gauss curvature = K :=  det b = = K] K2 det(gajJ ) 

Mean curvature = H : =  tr b = L bOl a = K ] + K2 
Note that since b is sent into -b under a change of normal , H will be sent into its 
negative but K is invariant under choice of normal ! 

Warning: Many authors define H to be the true average (K] + K2) /2 . 
Before discussing the significance of these quantities, we need some experience with 

computing them. See Problems 8 .2(2) , 8 .2(3) ,  and 8 .2(4) at this time. 
Note now the following. If A : JR." -+ JR." is a linear transformation and w" is any 

n-form, then 

A*w = det(A)w (8 . 1 2) 
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This follows from (2.65), or directly 

W (Ae l , . . . , Aell ) = w (ei Ai l , " "  ej Ajn ) 

= w (ei ,  . . . , ej )A i l . . . Aj n 

= w (el , . . .  , en ) Ei . . .  j A
i 1 . . . Aj n = w (e l , . . .  , en ) det A 

If M2 C �3 is a surface with given normal field, we define the Gauss (normal) map 

n : M2 -+ unit sphere 52 
by 

n (p) = N(p) , the unit normal to M at P 

N 

Figure 8.4 

Define the positive orientation of 52 by using the outward pointing normal . Let 
vol� = iN vol3 and w2 = vol� = in vol3 be the area forms for M2 and 52 respectively. 
Let u ,  v, be local coordinates for M. We wish to compute the pull-back of w2 under the 
Gauss normal map. Note that the tangent plane to M2 at p i s  parallel to the tangent plane 
to 52 at n (p) and we shall identify these two 2-dimensional vector spaces by parallel 
translation in �3 . (Note that under this identification, w2 at n (p) is the same as vol� at 
p ! ) Thus, for example, ax/au  and b(ax/au )  may be identified with tangent vectors to 
52 , and b at p can be considered as a linear transformation of the tangent plane to 52 
at n (p ) .  By the geometric meaning of the differential of the map n : M2 -+ 52 

n * - = - (N(u» = -( ax ) a aN 
auU auU auU 

and so ,  using (S . 1 2), 

Thus 

(n *w2 ) ( ax , ax ) 
= w2 (n* 

ax , n * 
ax ) au a v  au  a v  

= w2 (�: , ��) = w2 ( -b ( �: ) . -b ( �:) )  
= (det b)W2 ( �: , �:) = K vol� ( �: , �: ) 

n* vol� = K vol� 

(8 . 1 3) 

(S . 14) 

This tells us that the Gauss map is a local diffeomorphism in the neighborhood U of 
any pE M2 at which K (p) #- 0, and furthermore, if U is positively oriented then n (U) 
will be positively oriented on 52 iff K > 0. 
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n(3) 

Figure 8.5 

(8 . 1 4) exhibits the Gauss curvature as a "magnification factor" for areas under the 
normal map n : M2 ---* 52 , provided we consider area "signed" by the orientation. 

and thus 

"signed" area of n(U) : = 1 vol� = 1 n* vol� n(U) U 
= 1 K vol� 

lim [signed area of n(U)/area of U] = K (p) U�p 
as the region U shrinks down to the point p. This was Gauss 's original definition of 
K. Note that n reverses orientation iff the principal curvatures K J and K2 at p are of 
opposite sign, that is, iff M2 is "saddle-shaped" at p .  

Problems 
8.2(1 ) This problem gives a proof of the fundamental theorem on symmetric matrices. 

Let b : IRn ---+ IRn be any self-adjoint l i near transformation with symmetric b i l inear 
form B. Let sn- 1 be the un it sphere in IRn and let f :  IRn ---+ IR be the quadratic 
function f(x) = B(x. x) = (x . bx) but restricted to the un it sphere sn-1 . Since 
sn-1 is compact (for this it is important that the metric on IRn is positive defi
nite; we could not use a Minkowski metric where the "un it sphere" is in  fact a 
hyperboloid) , f takes on its m in imum value at some e1 E sn- 1 . Let x = x(t) be 
a curve on Sn-1 starting at x (O) = e1 ' Let x denote the derivative with respect 
to t at t = O. 

( i )  Show that (x .  be 1 ) = O. Since any tangent vector to sn- 1 at e1 is of the form 
x,  this shows that be1 is normal to sn- 1 at e1 , that is, be 1 = ). 1 e1 for some 
real number ). 1 . Thus ). 1 = f(e1 ) '  This argument shows in  fact that every 
critical point of f on Sn- 1 is an eigenvector of b with a real eigenvalue and the 
eigenvalue is simply the value of f. 

Let E1 be the subspace of IRn spanned by e1 and let Et be the orthogonal 
subspace to E1 • 
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(i i) Show that b : Et ---+ Et and thus the restriction of b to Et is again a self. 
adjoint l inear transformation (which we shal l  again call b) . Then f restricted to 
the unit sphere Sn-2 := Sn- 1 n Et wil l  again have a min imum value ).2 � ).1 
attained at an eigenvector e2 E Et . Proceed then to the subspace orthogonal 
to both e1 and e2 , and so on .  I nduction wi l l  then show that b has a basis of 
orthonormal eigenvectors. 

8 .2(2) Compute K and H at the or ig in for the su rface in Problem 8 . 1  (4) . 

8 .2(3) What is the normal cu rvature for the di rection y = x at the orig i n  for the surface 
z = x2 - 2y2 of Problem 8 . 1 (4)? 

8.2(4) Show that the normal curvatu re for a d i rection on an M2 that makes an angle () 
with the principal di rection T1 is g iven by 

K (e)  = K1 cos2 e + K2 sin2 e 

8.2(5) For a su rface M2 given in "non parametric form" z = f(x, y) we can , of course, 
introduce x = u and y = v as coordinates. Show that 

K = det( fafJ ) W2 
and 

H = W-3/2 [ ( 1 + f� )  fxx - 2 fx fy fxy + ( 1 + f; ) fyy] 

where W := 1 + r; + fi 

8.3. The Brouwer Degree of a Map: A Problem Set 

Can you map a closed ball into itself so that every point i s  moved? 

8.3a. The Brouwer Degree 

In our previous section we discussed the Gauss normal map n : M2 -+ S2 . The 
situation of mapping a compact oriented manifold into another of the same dimension 
plays an important and recurring role in mathematics and its applications. We shall 
discuss the topological implications of this situation, first studied in detail by the Dutch 
mathematician L. E. J. Brouwer around the turn of the twentieth century. 

Since our manifolds are oriented, we shall make no distinction between forms and 
pseudoforms. 

Let ¢ : Mn -+ vn be a smooth map from one closed oriented manifold to another 
of the same dimension. Let wn be any n -form on V subject to the single condition that 
it be normalized 

(Of course if Iv w #- 0 we may trivially normalize it.) The (Brouwer) degree of ¢ is 
defined by 

deg(¢) = i ¢*w (8 . 1 5) 
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Note that we  may also write deg(¢) = Iq, (M) w; this tells us (in a sense to  be  clarified 

later) how many times, algebraically, the image of M wraps around V. 
Our first task is to show that deg( ¢) is well defined, independent of the choice of 

the form w. We shall give only the barest sketch of this ,  relying on some "familiar" but 

nontrivial facts. 

Lemma (8.16) :  An n -form y " on a closed oriented vn is exact iff its integral 
vanishes 

PRO O F : Certainly if y = df3n- 1 ,  then, since V has no boundary, Iv df3 = O. 
Suppose then that Iv Y = o. We shall attempt to exhibit f3 .  Introduce a Riemannian 
metric. We may assume that Iv vol" = l .  Write j3,,- 1 = iB voln for an as yet 
undetermined vector field B. If we write y = g voln in terms of a function g ,  
we shall be  done if we can solve div B = g for B. We shall determine B by 
writing B = grad f and then solving \72 f = g .  I t  is a fact (see [W, p .  256] ) that 
the Laplace operator on a compact manifold has a uniformly complete system of 
eigenfunctions ;  we have eigenfunctions {ad , V2ak = -Akak , 0 = Ao < A I ::: 
).,,2 ::: • . .  , where Ak ---+ 00, and any smooth f can be expanded in terms of them, 
f = E fkak ' This expansion converges pointwise, not just "in the mean." The 
only eigenfunction needed for the lowest eigenvalue Ao = 0 is the function ao = I ,  
since Iv II grad ao 1 1 2 vol = Iv div[ao grad ao] vol - Iv aoV2ao vol = 0 shows 
that ao must be constant. The higher eigenvalues might have (finite) multiplicity 
greater than l .  We then expand g = E gkak . Then to solve \72 f = g we need 
only solve for fk in the infinite system - Ak !k = gb k = 0, I ,  . . . . This is trivial 
except for k = 0. Note, however, that the "Fourier coefficient" go is the Hilbert 
space scalar product (g , ao) = Iv g vol = Iv y ,  which by assumption vanishes. 
If we put fo = 0, then the desired f has been exhibited. One can then show that 
the resulting f is a solution to '172 f = g. 0 

We can now show that deg(¢) is independent of the choice of wn . This follows 
immediately on noting that if Wi is another choice, then, by the lemma, w - Wi is exact, 
so ¢* (w - Wi) is also exact and thus J� ¢* (w - Wi) = 0. 

The geometric significance of the degree is given by the following. 

Theorem (8.17):  Let y E V be a regular value of ¢ ; Mn ---+ V";  that is. ¢. at 
¢- l (y) is onto. (Recall that Sard 's theorem says that the regular values of ¢ are 
dense in V . )  For each x E ¢- I (y) , ¢. : Mx ---+ V, is also 1 : 1 ;  that is, ¢* is an 
isomorphism. Put 

. 

sign ¢ (x )  := ± 1  

where the + sign is used iff ¢* : Mx ---+ Vy is orientation-preserving. Then 
deg(¢) = L sign ¢ (x)  

XEq,- 1 (y) 
(8 . 1 8) 
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x' 

Corollary (8.19): deg(¢) is an integer. From (8. 15) we see that the sum in (8. 18) 
is independent of the choice of the regular value y. Finally, since (8. 15) shows 
that deg(¢) varies continuously with ¢, and since it must be an integer; deg(¢) 
remains constant under deformations of the map ¢. 

P R O O F :  First, we claim that since y is regular there are only a finite number of 
pre images x E ¢- I (y) .  We can see this as follows. It is known that compactness 
implies that every infinite sequence of points has a convergent subsequence. Thus 
if ¢- I (y) were infinite we could find a sequence {xd C ¢- I (y) that converges 
to some Xoo' But then ¢ (xoo) = y and Xoo would be a regular point of M . Since 
¢* : Mxoo -+ Vy is 1 :  1 ,  ¢ is (by the inverse function theorem) a diffeomorphism 
on some neighborhood Uoo of Xoo . But since Xk -+ XOO , Xk E Uoo for all k ::: 
some integer R .  But then the two points XR and Xoo would both be sent to y by ¢, 
contradicting ¢ is 1 :  1 on U 00 '  

For the rest of  the proof it is  good to have a simple example i n  view to keep 
track of the construction. We shall draw the case when V I = S is the unit circle in 
the plane, and M I is a simple closed curve in the plane outside S whose interior 
holds the origin. The map ¢ : M -+ S moves each point of M radially toward the 
origin until it strikes S. In this case the degree of ¢ is called the winding number 
of the curve M about the origin. 

L 

Figure 8.6 
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In our drawing we see that our indicated y is a regular value since the radial line 
passing through y is never tangent to M. (The line L, on the other hand, is tangent 
to M at a critical point of ¢.)  We have indicated the three inverse image points Xi 
of y. Each is contained in a neighborhood Wi that is projected diffeomorphically 
bY

'
¢ onto a neighborhood Vi of y on S. These Wi are indicated by thick segments 

on M. The complement of the union of these sets on M is indicated by the fuzzy 
set, and the projection of this complement on S is also made fuzzy. Note that only 
the neighborhood W2 is such that its image has orientation opposite to that of S, 
and so (8. 1 8) would yield deg(¢) = 1 - 1 + 1 = 1 .  This is  also obvious from the 
choice y' for regular value ! 

It is clear in our picture that the point y has a neighborhood VI' whose inverse 
image consists of a disjoint union of neighborhoods of the preimages Xi of y ,  
each being a diffeomorphic copy of  V, . This is  the main fact that we shall need 
in the general case . The proof of this requires a topological argument, which we 
now present for those readers with a little background in topology. 

Let Xi , i = 1 ,  . . .  , N be the preimages of the regular y E M and let Wi 
be disjoint neighborhoods of the Xi that are sent diffeomorphic ally by ¢ onto 
neighborhoods Vi of y .  Let Vv C ( VI n V2 n . . .  n V N ) be a neighborhood so 
small that it does not meet the "fuzzy" set ¢ [M - ( WI U W2 U . . . U W N ) ] .  (This is 
possible for the following reasons: M - ( WI U W2 U . . .  U W N ) is a closed subset of 
the compact M and is hence itself compact. The continuous image of a compact 
set is compact, and hence closed in V" . The point y is in the complement t' of this 
closed set, and ti is indeed a neighborhood of y . Then define the neighborhood 
Vy of y by V, := t' n ( VI n V2 n . . .  n VN ) .  Vy has the property that its inverse 
image under ¢ consists of disjoint neighborhoods Ui := (¢- I t,) n Wi of Xi ,  each 
of which is diffeomorphic to VI' under ¢ .  

Now we  shall take advantage of  the fact that we  may compute deg( ¢)  by  using 
any normalized form on V" . Let w" be a normalized form on V" whose support 
lies in Vy , that is ,  w = 0 outside V\, (e .g . ,  we may use a "bump form" as in 
3.2b) and let  y l ,  . . .  , y" be local coordinates in V\, , Under the diffeomorphism ¢ 
restricted to each Ui , we may use the functions yO: as coordinates in Ui (we are 
really using yO: 0 ¢) and the map ¢ : Ui -+ V\, is then the identity map in these 
coordinates ! Note that ¢ (Ui ) has the same orientation as V,. iff sign ¢ (Xi ) = + I .  
We then have, since ¢*w = 0 outside the union of the Ui ' s 

( w = { w = 1 
Jvn Jv\' 

and 

deg(¢) = { ¢*w = L1 ¢*w = L ( w = L sign (xi ) / w 
1M i Ui i l", ( ui )  i lv, 

as desired. 0 

8.3(1) The volume form on the unit sphere S" in lR"+ I is i. dx 1 1\ . . .  1\ dX,,+ 1  = 
l:( _ I ) i Xi dx I 1\ . . .  -;;; . . .  1\ dx"+ 1 . Show that the antipodal map S" -+ S" has degree (_ l )n+l . 
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8.3b. Complex Analytic (Holomorphic) Maps 

Consider a map 1 : C -+ C given by analytic function Z = 1 (z) in the complex plane. 
We consider C to be a complex I -dimensional manifold ;  see Section I .2d and Section 
5c .  If we write z = x + iy and Z = u + i v ,  then this map may be considered as a map 
F : ]R2 -+ ]R2 given by u = u (x ,  y )  and v = v ex ,  y ) ,  u and v satisfying the Cauchy
Riemann equations. The differential 1* of the map 1 at a point Z I is a 1 x 1 matrix 
operating on complex I -vectors, obtained as usual from dl (z (t» ldt = I' (z l )dzldt, 
that is , at Z I 

8.3(2) Let 1 : C -+ C be analytic. Show that the differential 1* = I' (z I ) : C -+ C 
as a complex I x I matrix is related to the real differential :  ]R2 -+ ]R2 by 

J (u ,  v ) = 1 I' (z l ) 1 2 J (x , y )  
and thus 1* is orientation-preserving if I' (Z I ) =f O. 

Consider a polynomial map P : C -+ C of the complex plane to itself of the form 
Z = x + iy -+ Z = u (x ,  y ) + i v (x , y)  = P (z) = Zn + an_ I Zn- 1 + . . . + ao .  C 
is not compact and we therefore cannot discuss the Brouwer degree of this map. But 
1 Z I n-+ 00 as 1 z 1 -+ 00 and since P behaves like zn for 1 z 1 large, we can see that 
P extends to a continuous map (again called P)  of the Riemann sphere (see Section 
5c) into itself by putting P (00) = 00. (Note, e .g . ,  that eZ does not extend to such a 
map; why?) We need to discuss the smoothness at 00. Near Z = 00 we introduce the 
coordinate w = l iz , and then our map can be expressed in the form 

w -+ W (w) 

by 

w" 
= = W (w) (aow" + . . . + all_ l w + 1 )  

which i s  clearly smooth near w = O .  In fact W i s  an analytic function of w near w = O. 
We may now discuss the Brouwer degree of this polynomial map of the Riemann sphere 
into itself. 

8.3(3) Show that z = 00 is neither a regular value nor a regular point of a polynomial 
P if n = degree of P is > 1 .  

Deform the polynomial map by considering, for 0 :s E :s 1 ,  the smooth deformation 
z -+ z" + E (a,, _ l z"- 1 + . . . + ao) .  In the w patch this means w -+ wn 1 [ 1  + E (aown 
+ . . . + a,, _ 1 w)] .  Note that this is smooth as a function of w and E near w = 0, and so 
we have defined a smooth deformation of the original polynomial map of the Riemann 
sphere . 

8.3(4) Show that the Brouwer degree of the n th-degree polynomial map of the Riemann 
sphere is the same as that of the map Z -+ z" , w -+ wn . Then the value Z = 1 shows 
that this degree is n .  
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8.3(5) Show that if F : M" ---+ V" has degree =I- 0, then F is onto .  Hence if P 

is a nonconstant polynomial , then for some Z I , P (Z I ) = O. This is the fundamental 

theorem of algebra. 
By factoring the polynomial by (z - Z I ) ,  we see that P has n (not necessarily distinct) 

roots, and P (z) = (z - Z I ) . . . (z - Zn ) ·  
8.3(6) Use this to show that 0 i s  a regular value of P iff P has distinct roots . 

8.3c. The Gauss Normal Map Revisited: The Gauss-Bonnet Theorem 

From (8. 1 4) we see that if M2 is a closed submanifold of IR3 then 

_1 1 KdA = deg(n : M2 ---+ S2) 
4rr M 

(8 .20) 

is the degree of the Gauss normal map and in particular is an integer! If we smoothly 
deform M, this integer must vary smoothly and thus it remains constant, even though 
K itself will change ! Recall, again from (8 . 1 4) ,  that u E M is a regular point for the 
Gauss map provided K (u )  =I- 0 and that n preserves orientation iff K (u) > O. This, 
together with (8 . 1 8) ,  allows us to evaluate the left-hand side of (8 .20), the so-called 
total curvature of M, merely by looking at a picture, as fol lows.  

8.3(7) Show that J M K d A = 4 rr ( 1  - g) for a surface of genus g, that is ,  the surface 
of a multidoughnut with g holes 

a surface of genus 3 

Figure 8.7 

This Gauss-Bonnet theorem is remarkable;  a deformation of the surface might 
change K pointwise and likewise the area form, yet the total curvature J M K d A remains 
unchanged and is a measure of the genus of the surface! 

8.3d. The Kronecker Index of a Vector Field 

Let Mn be a closed submanifold of ]R"+ I .  It is a fact that Mn is the boundary of a 
compact region U of ]R,,+ I , Mn = a un+ l • Then the orientation of ]RII+ I together with 
the outward-pointing normal defines an orientation of M. Let v be a unit vector field 
defined along M; it need not be tangent to M. It then defines a map v : M" ---+ S" by 
x E M" � v(x) E S" (if v is always normal to M then this is the Gauss map). 
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v 

Figure 8.8 

We define the (Kronecker) index of v on M by 

index of v := Brouwer degree of v : M ---+ 5 

If v is any vector field on M that never vanishes on M, we define the index of v to be 
the Kronecker index of v / I I  v I I .  

The following are four examples in the plane with M I itself the circle. 

index = 1 index = 1 index = - I  index = - 3 

Figure 8.9 

8.3(8) The vector fields on 5n analogous to the first two depicted in the figure above 
are vex) = x and -x, respectively. Compute their Kronecker indices. 

8.3(9) Use the integral definition of the Brouwer degree to show that if v can be 
extended to be a nonvanishing vector field on all of the interior region Un+ l , then 
index (v) = O. Thus none of the four fields illustrated can be extended to be nonvanishing 
on the disc. 

8.3(10) Suppose that the unit vector field v on Mil can be extended to be a smooth 
unit field on all of U except for a finite number of points { Pa } .  Excise a small ball B" 
centered at each Pa from U . Then v has an index on Mn and also on each of the spheres 
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B Ba (with normal pointing out of Ba ) .  Show that the 

index of v on Mn = L (index of v on 0 Ba ) 
a 

We may then say that the index of v on M is equal to the sum of indices inside M. 
We have an immediate important fact .  

Theorem (8.21) : Ifvt is a smoothfamity of non vanishing vector fields on Mn 
with Vo = v and V I = w, then, since the index is an integer varying continuously 
with t, we have 

index(v) = index(w) 

8.3(11) Let v be a unit vector field on M" = S" that never points to the center O. 
Show that 

index (v) = index (N) = + 1 
In particular, if the nonvanishing v is always tangent to M, then its index is + 1 .  

8.3(12) The Brouwer fixed point theorem: Show that every smooth map </J of the 
closed (n + 1 )  - ball B"+ I = {XE ]RI!+ I : I I x I I ::: 1 } into itself has a fixed point. (Hint: B 
is a manifold with boundary sn . Consider the vector field on B given by v(x ) = vector 
from x to </J (x ) .  On sn , v never points toward the outer normal . )  

Here is a simpler proof of the Brouwer fixed point theorem. If there is no fixed 
point, then the vector v from x to </J (x ) is never O. We can then get a smooth map 
r : B ,,+ I -+ sn by letting r ex )  be the point on Sl! where the directed line from </J (x) 
to x strikes sn . Note that r is a retraction, that is ,  r ex )  = x for all x on S" . Let wn be 
any n-form on S = S" such that Is w = I . w is a form on S and dw = 0; it need not 
be defined on Bn+ l . Then r*w is an n-form on Bn+ 1 that agrees with w on S. Note that 
r eS) = S = OB"+ I . Then 

1 = j w = j r*w = r r*w = r dr*w 
s s JaB JB 

= is r * dw = is rOO = 0 

This is a contradiction, as promised. 0 
Now let u I , . . .  , u" be local coordinates for M. Just as in (8 . 1 3) ,  since v(u)  represents 

both the vector at u and the position vector on SI! at v(u ) ,  we have 

8.3(13) Show that 

ov 
oua 

i ndex (v) = (An ) - I  i vol,,+ 1 (v ,  
av

l , . . .  , 
av  ) du l 1\ . . . 1\ dun 

au au" 
where voln+ 1 is the volume form for ]RI!+ I , An is the area of the unit sphere sn , and we 
are using the traditional notation expressing the integral of an n-form an in terms of 
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generic local coordinates, J M a" = J M a l . .. " (u )du I /\ . . .  /\ du" . Note that 

this expression for index (v) is in fact a generalformulafor computing the degree of 
any smooth map v : Mn """"* sn of any compact oriented Mil into sn c IR/+ I ! 

8.3(14) If v is nonvanishing but perhaps not unit, show that the integral on the right 
becomes 

r I I v(u ) 1 I - (n+ l ) vol/+ 1  
(
v, �, . . .  , av  ) du l /\ . . . /\ dun 

JM au au" 
(This is not as completely trivial as it seems . )  We then have 

Kronecker's Corollary (8.22): Let (n + I )  smooth functions fl , . . . , fn+ 1 be 
defined on Mn and its interior U,,+ I  C IRn+ 1 with no common zeros on Mn. Let 
det(f, df) be the determinant of the (n + 1 )  x (n + 1 )  matrix whose ph row is 
(fj ,  ah/au l , . . .  , afj /aun ) . Then if 

1 (f? + . . . + f}+ I ) - (Il+ I )/2 det(f, df)du l /\ . . .  /\ du" f. 0 

we may conclude that fl = 0 ,  . . . , fn+ 1  = 0, has a solution in Un+ 1 •  

8.3e. The Gauss Looping Integral 

Let Cl! : S I """"* IR3 , a = I ,  2, be a pair of nonintersecting smooth closed curves in 
space, given by r = r l (e) and r = r2 (</J) ,  respectively. Gauss wrote down an integral 
describing how the curves "link." 

_f---------''---- e 

Figure 8.1 0 

Consider the abstract torus T2 = S l  X S l  with coordinates e ,  </J ,  and the map 

L : T2 """"* S2 defined by 
r n(e , </J) [r2 (</J) - r l (e ) ]  

L (e ,  </J) = : =  -----
rn( e ,  </J) II r2 (</J) - r l (e ) I I 

The Gauss looping or linking number of CI and C2 is defined to be the integer 

Lk(CI , C2) : =  deg(L) : T2 --+ S2 
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8.3(15) Show that the fonnula of Problem 8 .3( 14) translates to Gauss's integral 

Lk(Ct . C2) = (4Jr ) - 1 i, { i, r;;3 (r I 2 X dr I 2) } . dr l 
= (4Jr ) - 1 12IT [12IT 

r;;3 { r I 2  X (d:�2) }dq)] . (:� ) de 
where we choose the right-handed orientation for �3 . 

219 

8.3(16) Now let W2 be any orientable surface in �3 whose boundary is C I . Choose 

the orientation of W so that a w2 = C I .  For the given orientation of �3 this picks out 
a preferred unit nonnal N to W. 

Figure 8.1 1 

It is a fact that C2 can always be moved slightly if necessary to ensure that it meets 
W transversally. We may then consider the intersection number W2 0 C2 , defined to 
be the signed number of intersections of C2 with W2, an intersection carrying a + sign 
only if C2 is traversing W2 in the same direction as N. Then the linking number has the 
following interpretation. 

8.3(17) Show that 

Lk(C 1 , C2) = W2 0 C2 
Hint: A current of I = 1 in C2 gives rise to a magnetic field at r l given by the law 

of Biot-Savart 

B(r l ) = 1 r l-lr l 2 x dr2 fe, 
See Feynman's lectures [F, S ,  L, vol . II, pp. 14-10] .  

The intersection number W2 0 C2 is a measure of  how the curves link. 
It should be remarked that two wires can have linking number 0 and yet be physically 

inseparable, as is  indicated in our last i l lustration. 
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The preceding proof of 8 .3 ( 1 7) is very simple because of our acceptance of the 
Biot-Savart law;  that is ,  we are assuming that the preceding integral for B indeed does 
satisfy Ampere's law !  This law itself follows from Maxwell ' s  equations, but the Proof 
is not trivial . There are, for example complications arising from the familiar potential 
solutions of Poisson 's  equation since a wire is a limiting case of a volume distribution 
of current. A sketch of a purely mathematical proof, in terms of "solid angle," can be 
found in [C, J, p. 6 1 9  ff. ] or in [Sp] . I prefer the following proof, which I learned from 
Michael Freedman; it uses Theorem (8. 1 7) directly instead of Gauss 's looping integral . 
For this we shall replace the intersection number by another measure of linking. We 
proceed as follows: 

c o----\ 

Figure 8.1 2  

Two linking curves are shown. Move C I  i n  a direction aa' and keep moving it until 
it is far removed from C2 . We shall show that deg(L) : T 2 � 52 i s  the (algebraic) 
number of times CI cuts through C2 in thi s  process .  

First we must decide on a direction of motion. Pick any regular value of L : T2 � 52 . 
This will be our direction ! We have drawn (a , a') as a preimage on T2 of this regular 
value; thus the segment from a E CI to a' E C2 is in this regular direction. We have 
drawn the two other preimages (b , b') and (c, c' ) .  As we move C I in this given direction, 
in our picture, first b will hit b' , then a will hit a' , and finally c will hit c' , and these will 
be the only meetings of these two curves in this example. 

Look more closely at a and a ' . We have the two tangents dr , lde and dr21dcp at 
a = rl (e ) and a'  = r2 (cp) , respectively. 

Again, the vector aa' is  r ' 2 ' Since r l 2 1 rl 2 i s  a regular value, it must be that L.  (81 8e) 
and L. (818cp) are linearly independent, and of course they are orthogonal to r 1 2 . Thus 
the vector r ' 21 r l 2 = [r2 (cp) - rl (e ) ] 1  r l 2  is a regular point of the map L iff 

and hence 

vol (r 1 2  _ dr , dr2 ) 
, de ' dcp 

are not 0, using, say, the right-hand orientation. 
We shall say that C ,  cuts C2 positively (resp. negatively) at r2 (cp) if this  "volume" 

is positive (resp. negative) .  
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In our picture (a'  - a ,  -dr l I de , dr21 d¢) yields a positive cut. Similarly, b' is again 

ositive cut and c' is a negative cut. 
a p Thus the degree of the map L is precisely the number of times that the translated C I 
cuts C2, and we say that the curves are linked if the number of cuts is =1= O. In our case 

the net number of cuts is + 1 .  

8.4. Area, Mean Curvature, and Soap Bubbles 

How can you determine the pressure inside an i rregular bubble? 

8.4a. The First Variation of Area 

How does the area of a surface change as we move it in space? We consider this very 
heuristically at first. In the following picture we consider a very small curved rectangle 
on a positively curved surface whose sides, of length I I and 12 , are made up of lines of 
curvature; that is, they are in the two principal directions at the point p.  

Figure 8.1 3  

They are approximately arcs of circles o f  radius P I and Pz , the radii o f  principal 
curvatures. The area is approximately A = I l lz . Move the whole rectangle in the normal 
direction a distance 8n .  The area changes approximately by 8A = 8 (1 l lz ) = 81 1 Iz +/ 1 812 • 
But 8/ 1 "'-' c¥ 1 8n = (I I I pd8n and likewise for 81z .  Thus 

8A "'-' A (pj l + p:; I )8n  = - A H8n 
since the surface curves away from the normal . We now make a more careful study, for 
any surface, where the displacement need not be normal to the surface and can have a 
magnitude that varies on the surface. For this we simply consider a I -parameter family 
of surfaces M2 (t )  in JR.3 , a variation of an M2 (O) . 
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M(t) 

Figure 8.1 4 

We assume that M (0) is a compact manifold, perhaps with boundary. We wish to 
calculate how the area of M(t)  varies with t .  There is a technical complication due to the 
fact that the surfaces M ( t ) need not be disjoint. Schematically, reducing dimensions by 1 

N 

M(ri) 

L=------=--- M(O) 

Figure 8.1 5  

I n  this case the unit normals to the various M (t) would not yield a well-defined 
vector field in ]R3 , nor would the velocity ("variation") field ax/a t .  To prevent these 
complications we introduce an extra coordinate t to the existing ]R3 , as we did in 4.3b. 

�. 
-- <1> - . 

• � I 

Figure 8.1 6 
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If u I ,  u2 are local coordinates on the base surface M (0) and if we assign the same 

coordinates to corresponding points of M (t) , we then have a map <1>(u l , u 2 , t) = 
(x(a l ,  u2 , t ) , t) into ]E.4 = ]E.3 X R There is then no trouble in extending the normals 

to define a vector field (again called N) in some neighborhood of the image of <1>. 

Figure 8.1 7 

We may even keep the field N "horizontal," that is ,  with no t component. 
The same may be done with the velocity vectors v = ax/a t .  Finally we may add 

a/at to this horizontal field to yield the space-time variation field X = v + a/at ,  as in 
(4.4 1 ) .  

We are now ready to compute the first variation of area. vol3 = dx 1 !\ dx2 !\ dx3 
can be considered a 3-form in ]E.4 , and for area we have 

A (t )  = r iN ( t )  vol3 
JM(t) 

It would be possible to write down the Euler-Lagrange equations for this problem in 
the calculus of variations since iN (t)  voe = .jgdu I !\ du2 has a "Lagrangian" 

but it would be difficult to interpret geometrically the resulting expressions . We proceed 
instead directly, taking advantage of our machinery for differentiating integrals of forms 
in 4.3. From (4.43) we have 

AI (t )  = r � iN (t )  vol3 + r iydiN (t)  vol3 
J M(t ) at J M(t ) 

+ 1 iyiN (t)  vol3 
aM( t )  

Look at each integral separately. First, since aN/at is tangent to M (t )  

r � iN (t)  vol' = r i aN/at vol3 = 0 
J M(t ) at  J M(t )  

Next, diN (t)  vol3 = div N vol3 , and the second integral becomes 

r (v ,  N) div N vol2 
JM(t) 
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Finally, in the last integral, use arc length s for parameter along 0 M (t) and let n(s) be 
the unit vector field that is tangent to M(t ) ,  normal to oM(t ) ,  and points out of M(t) ;  
thus i n  JR3 , n(s)  = (dx/ds) X N.  

Then 

Thus 

N 

Figure 8. 1 8  

= laL (n, v)ds 

= J (n ,  v)ds 
JaM(t ) 

n 

A' (t ) = r (v , N) divN vol2 + J (n ,  v)ds .J M(t ) JaM(t) 

dx 
ds 

(8.23) 

This formula confirms the rather obvious fact that there are two ways to increase the 
area of a surface with boundary. First, if the normals to the surface are diverging we 
should move the surface in the direction of the normals (note that this does not affect 
the boundary integral) .  Second, we may move the boundary outward at the boundary. 

It is important for many purposes to real ize that div N can be replaced essentially 
by the mean curvature of the surface. 

div N = - H  (8 .24) 
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P RO O F :  We shall give first a very useful expression for the divergence of any 
vector field in JR." . 

If X is a vector field and if A is a vector at a given point in JR." , then the 
expression in cartesian coordinates ( aXk ) 

DA (X) = (A, DX) : = Aj -. (h 
ax] 

is simply the derivative of X with respect to the vector A.  We claim that div X is 
the trace of the linear transformation Lx : JR.n -+ JR.n defined by 

(S .25) 

For, in our cartesian coordinates, tr Lx = L i (Lx (8i ) , 8i ) = ( ( axk /axi ) 8k o  8i ) = 
Ei axi /ax i = div(X) , as desired. 

To compute div N we compute tr (A -+ DA N) , and linear algebra tell s  us that 
we may compute the trace of a linear transformation using any basis ! We choose 
a basis adapted to the surface M2 (t ) ,  namely e, = ax/au ' ,  e2 = ax/au2 ,  and 
e3 = N. Then from (S .S)  

and we also have DNN i s  orthogonal to N. 
Thus 

as claimed. D 

We then have Gauss's formula for the first variation of area 

A' (t) = - r H (v ,  N) vol2 + j (n , v)ds 
JM(t) 1aM(t ) 

In the classical notation of the calculus of variations 

8x = yeO) 8XN := (8x, N) 8Xn := (8x, n) 

8A : = A' (O) = - r H8xNdS + 
j 

8xnds 
J M(O) 1aM(O) 

(S .26) 

(S .27)  

Note in particular that A' (0)  depends only on yeO) , that is ,  the velocity vector at  points of 
M(O) .  In other words, given a surface M(O) and a vector field yeO) defined along M(O) , 
extend yeO) in any smooth way you wish to be a vector field v in some neighborhood 
of M(O) . The flow generated by this vector field will define a variation M(t) of M (O) , 
and the first variation of area, A' (O) , is given by Gauss's formula and is independent of 
the extension v chosen ! 
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8.4b. Soap Bubbles and Minimal Surfaces 

Consider a soap bubble blown on a pipe with perhaps irregular rim. (For the following 
physical considerations we shall use rather heuristic reasoning . )  

Figure 8.1 9 

By blowing air in very slowly (quasi-statically, so that air inside has spatially constant 
pressure) , the rate at which work is being done is given, in classical notation, by 

8 W  = pd V 

where V is the volume of the bubble and p is the difference in pressure, inside and out. 
Consider a small piece of the soap film M(O) as it sweeps out a small "cylinder" 

while being blown up for a short time. 

Figure 8.20 

The pressure will force a normal displacement of the film of small amount 8x == 
8xNN. It is not hard to see that the small volume swept out will be approximately 

8 V  = r 8xNdS JM(O) 
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8 W  = p r 8xNdS 
JM(O) 
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On the other hand, the work done against surface tension during the stretching of the 
film is approximately 

8 W  = 2a8A = -2a r H8xNdS 
JM(O) 

Here a is the coefficient of surface tension, the factor 2 arises since the film has an 
inside and an outside surface, and we have used Gauss's formula with 8xn = 0 since the 
displacements are normal to the surface.  We conclude that fM(O) (P + 2a H)8xNdS = 0, 
and this must hold for each piece M (0) of the bubble. Taking M (0) to be an "infinites
imal" neighborhood of a point on the bubble, we conclude that p + 2a H = 0 at each 
point of the bubble. We then have Laplace's formula for the pressure inside the bubble 

p = -2a H (8 .28) 

(An air bubble in water has only one surface, in this case p = -a H). 
A soap bubble in equilibrium has spatially constant pressure inside (otherwise air 

would be in motion) . Thus 

A soap bubble in equilibrium describes a surface of constant mean curvature H.  

For a spherical bubble o f  radius R ,  H = K)  + K2 = -2/ R if  the outer normal is  used. 
Then p = 4a / R; the larger the bubble the smaller the pressure ! 

A soap film spanning a wire frame has the same pressure on both sides, and so 
p = O. A soap film spanning a given curve C describes a surface with mean curvature 
H = O. 

Any surface with mean curvature 0 is called a minimal surface. The name stems 
from the fact that a soap film spanning a curve tries to adjust itself so as to minimize 
its area. Mathematically we have the fol lowing. 

Theorem (8.29) : Let M2 be a compact surface in JR.3 with boundary curve C = 
a M. Then M is a minimal surface, H = 0, if and only if the first variation of area 
vanishes 8 A = 0 for all variations of M that leave the boundary C fixed. 

This variational problem was first successfuly investigated by Lagrange. Experimental 
studies using soap films were carried out by the physicist Plateau. 

The variational theorem is an immediate consequence of Gauss 's formula. First note 
that the boundary integral vanishes since 8x = 0 on C.  Next note that at a point of 
M away from C ,  the variation 8XN is quite arbitrary ; this assures us that if the surface 
integral vanishes for all variations then we must have H = O. 

The preceding theorem assures us that a minimal surface yields a critical point for 
the area functional . To investigate the nature of the critical point (minimum, maximum, 
minimax, . . .  ) one should look at the second variation A" (O) . One should also discuss 
whether a minimum is relative or absolute.  It turns out that a sufficiently small piece 
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of minimal surface yields an absolute minimum for area (keeping its boundary fixed) . 
There are soap films that give a relative, though not absolute minimum for area. There 
are minimal surfaces that do not give even a relative minimum (i .e . ,  they are "unstable," 
but such unstable surfaces cannot be realized by soap films) .  It would be better to call 
a surface with H = 0 a "stationary" surface, with no indication of minimality. 

We conclude with two remarks. First, if H = Kl + K2 = 0 then K = K I K2 :'S 0, 
showing that a minimal suiface is always saddle-shaped. Finally, a minimal surface of 
the form z = f (x ,  y) satisfies, from Problem 8 .2(4) , the nonlinear partial differential 
equation 

the so-called minimal surface equation. 

Problem 

8.4(1 ) Let M2 be a m in imal surface with boundary a M  = C, and let M be given in 
parametric form x = x(u, v) . Consider the variation ("di lation") of M g iven by 

x = x(u, v; t) = ( 1  + t)x (u, v) 

Note that th is variation moves the boundary cu rve also. 

( i) Show from A = J M I I  XU x XV II dudv that A( t) = (1 + t)2 A(O) . 
( i i) Show that 2 area M2 = .fc voI3 (N,  x, dx/ds)ds = .fc det(N ,  x, dx) . 
This formula is due to H .  A. Schwarz and has the remarkable consequence 
that the area of any minimal surface spanning C is completely determined by 
the normals to the surface at points of the boundary alone! 

8.5. Gauss's Theorema Egregium 
Must every plane map of the Earth 's surface have distortion? 

8.5a. The Equations of Gauss and Codazzi 

Let M2 be a surface in ]R3 with local coordinates u = u 1 and v = u2 . Then the vectors 
Xa = ax/aua , for a = 1 , 2 ,  give a basis for the tangent planes at each point of the 
coordinate patch. Of course xafJ = a2x/aufJ aua = xfJa need not be tangent to M. 
Decompose into tangential and normal parts 

or 

(8 .30) 
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where the coefficients r�fi = r;a are still to be  determined. Now 

(xafi , xJL ) = (xy , x, J r;a = gyf.1 r;a =: rfia.f.1 

Note that 

dfigaJL = dfi (Xa , XJL ) = (Xafi , XJL ) + (Xa , XJLfJ ) 
= rfia.f.1 + rfif.1.a 

We conclude dga,, / dUfi + dgfJa/dU li - dgJLfi/dUa = 2r f.1fi.a = 2r�fJgra and so 

rr = � ar ( dgaf.1 + dgfJa _ dgJLfi ) 
lifi 2 

g 
dUfJ duf.1 dU'" 

the Christoffel symbols ("of the second kind") .  
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(8 .3 1 ) 

(8 .32) 

Thus all the coefficients in Gauss's surface equations (8 .30) have been evaluated in 
terms of the first and second fundamental forms g and b . Gauss now took a further step 
by calculating the consequences of the identity xafJy = dy dfJ daX = xayfJ . In Problem 
8.5 ( 1 )  you are asked to show that 

xafJy - X"'yfJ = xr (Rr ayfJ - U�fiY ) + VafiyN 
where (8 .33) 

RrayfJ := dyf/J", - dfJ r�a + r�f.1 r:a - f/J
f.1r

�a 

is now called the Riemann or Riemann-Christoffel curvature tensor. U and V are 
given by 

and 
VafJy = r�fJbr y + dybafJ - r�ybrfJ - dfJbay 

We then conclude that 

and 
dybafJ - r�ybrfJ = dfJbay - r�fJbry 

(8 .34) 

The first equations are called Gauss's equations and the second are called the equations 
of Codazzi and Peterson. 

Only after Problem 8 .5( 1 )  will the reader fully appreciate that we have been using 
a very condensed notation that was not used at the time of Gauss .  Gauss did not 
use indices. He wrote ds2 = Edu2 + 2Fdudv + Gdv2 instead of gafJduadufJ , and 
Ldu2 + 2Mdudv + Ndv2 instead of bafJduOldufJ , and so on. 

The equations (8 .34) are integrability conditions, that is ,  conditions that must be 
satisfied by gafJ (u , v) and bafi (u , v) in order for these two matrices to be the first 
and second fundamental forms for a surface in ]R3 . In fact, Bonnet showed that these 
conditions are also sufficient to ensure the local exi stence in ]R3 of a surface having a 
prescribed g"'fJ (u , v) and b"'fJ (u , v) . 
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8.Sb. The Theorema Egregium 
Gauss's calculation of the first equation in (8 .34) led him to one of the most impor_ 
tant and surprising discoveries in all of mathematics. First , however, we need some 
background. 

We are all familiar with geographical maps 

¢ : S; � a portion of the plane ]R2 

where Sa is a portion of the sphere of radius Q .  (We shall not be concerned here with 
the inaccuracies in approximating the Earth by a sphere.) Ideally one would hope for 
a map that preserves distances, up to a constant factor that for simplicity we shall take 
to be 1 .  The length of a curve x = x(t) on the Earth 's surface is 

and its image in ]R2 has length 

l' ( dX dX )
' /2 

- - dt 
o dt ' dt 

We say that a local mapping ¢ : Mil � V" of Riemannian manifolds is a local 
isometry if ¢* preserves lengths of vectors 

for all tangent vectors X to M. Note that ¢* then automatically preserves all scalar 
products, thanks to the identity 

(X, Y) = � { I I X +  Y 1 1 2 - I I X 1 1 2 - I I Y 1 1 2 } 

If ¢ is a local isometry, then all lengths of curves, areas of regions, and angles between 
curves are preserved; in other words the map is distortion-free. Since ¢*Mp � Vq,cp) 
is then an isomorphism ( i .e . ,  1- 1  and onto), the inverse function theorem assures us 
that ¢ itself is a local diffeomorphism in the neighborhood of each point of M. 

A familiar example is when a flat sheet of  paper is rolled up  into a cylinder or  a cone; 
though the paper is "bent" there is basically no "stretching." Although the distances 
between points of the sheet are changed (considered as points in the ambient ]R3), the 
length of any curve on the flat sheet is the same as when it is rolled up; this is the 
meaning of bending without stretching ! 

If ¢ is a local isometry, one may transplant a local coordinate system y near ¢ (p) 
back to a coordinate system x near p by 
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Figure 8.21 

In tenus of these associated coordinates, ¢ is given simply by yi = X i and so 
8 a 

¢* axi = ayi 
Since ¢ is assumed to be a local isometry 

gi� (y) = \ a�; '  a�j ) v = \ ¢* 8:; ' ¢* a�j ) v 

= \ a: ; '  a�j ) M = g� (x ) 
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that is, in the associated coordinates the metric tensors of M and V are identical at 
corresponding points . But then the Christoffel symbols and the Riemann tensor, which 
are defined in any Riemannian manifold using (8 .32) and the second equation in (8 .33) ,  
are also identical at corresponding points since they are constructed from the metric 
tensor alone ! 

Return now to our case of a surface M2 in JR.3 . Look carefully, with Gauss ,  at the 
first equation in (8 .34) . We have 

R ' 2 ' 2 : = g2a R ' a ' 2 = g2a (b l , ba2 - b l 2 ba l ) 
= (b ' , b22 - b l 2 b2 1 ) = det b = K 

But since R ' 2 1 2 is expressible entirely in terms of the metric tensor we have 

Gauss's Theorema Egregium (8.35) : The Gauss curvature 
K = K , K2 = R ' 2 ' 2 

is an isometry invariant. In particular, if a suiface is bent without stretching, then 
although the principal curvatures K, and K2 may change, their product will not! 

flat sheet 

K, =O, K2=0 
K= O = H 

Figure 8.22 

N 

el K= 0, H =  -l/a 
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(Note that the mean curvature H is not invariant ! )  We have an immediate familiar 
consequence for maps of the Earth. Since a sphere of radius a has K = 1 /  a2 f. 0 
we conclude that every plane map of a portion of the Earth 's surface must introduce 
distortions, that is ,  cannot be an isometry. 

Gauss ' s  theorema egregium says that one measure of the curvature of a surface, K 
can be expressed in terms of an object R l 2 1 2 that is completely determined by the metri� 
tensor of the surface. We call such an object intrinsic. In Equation ( 1 0.27) we shall 
exhibit geometric intrinsic formulas for K .  (We shall see later that R l 2

1 2 is essentially 
the only independent component of Rafj y8 . )  

Riemann's generalization Ra {Jyr  (the second equation in (8 .33)) to  n-dimensional 
manifolds defines, as we shall see again, an intrinsic measure of curvature. Curvature, 
in the space-time manifold of Einstein's general theory of relativity, as we shall see in 
Chapter 1 1 , is a measure of the strength of the gravitational field. 

Cartan generalized the notion of intrinsic curvature to general "vector bundles ." In 
Yang-Mills 's  gauge theories, as we shall see, curvature becomes a measure of the 
"strength" of the gauge field. 

This is just part of the legacy of Gauss 's discovery. 

Problems 
8.5(1 ) Using the su rface equations (8 .30) and the Weingarten equations (8 .5) ,  derive 

the Gauss and the Codazzi-Peterson equations (8 .34) . 

8.5(2) Compute the curvatu re of the sphere with metric (8.3) the hard way: that is ,  show 
R1 2 1 2 = 1 /a2 d i rectly from the second equation in (8 .33) . Later on we shall have 
much more efficient ways to compute. 

8.6. Geodesics 

How can we describe the "straightest" curves on a surface? 

8.6a. The First Variation of Arc Length 

Let C be a curve on a surface M2 . We shall consider the first variation of arc length as 
we vary the curve. A variation x of C is a map of a rectangle R2 = [0, L ]  x (- 1 ,  + 1 )  
into M ;  x : R2 -+ M 

ex . • . • . • . • . • . . . . • . • . •  

L 

-I 1----1.--...J 

Figure 8.23 
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The map is described by x = x(s, a ) ,  where x = x(s) = x(s, 0) is the original curve 

C ::::: Co parameterized by arc length, whose length is L .  On the other hand, s is not 
ssumed to be arc length parameter for the curves Ca , x = xes ,  a) ,  for fixed a #- 0, 

:ince such a parameterization would force all the Ca to have the same length L. The 

length of Ca is 

and so 

iL ( ax(s , a) ax(s , a»
)

1 /2 
L �) = , � 

o as as 

, iL a ( ax ax ) 1 /2 
L (a) = - - ,  - ds 

o aa as as 

= loL I I �; r1 (a:;s '  �; )dS 

Since s is arc length when a = 0, we have I I ax(s ,  0) j as I I = 1 and iL ( a2x ax ) iL ( a2x ax ) L' (O) = -- , - ds = -- , - ds 
o aaas as 0 asaa as 

r L a / ax ax ) rL / ax a2x ) = 
Jo as \ aa ' as ds - Jo \ aa ' as2 

ds 

Thus we have the first variation of arc length formula 

L' (O) = (J, T} Q - (J, T} p - loL (J, ��)dS (8 .36) 

where T = axjas (s , O) is the unit tangent to C = Co and J = axjaa (s , O) is the 
variation vector along C.  

J = x" 

p 

Figure 8.24 

C is said to be a geodesic if L' (0) = 0 for all variations that vanish at the endpoints 
P and Q, that is, x(O, a) = P and x(L , a) = Q for all a. For such variations J = 0 at 
P and Q and the first variation vanishing yields 

loL (J , ��)dS = O  

Both T and J are tangent vectors to the surface M, but of course aT j as need not be. 
Since the variations allowed are very general (except at P and Q) 
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J =Xa 

p 

Figure 8.25 

we conclude, by the fundamental lemma of the calculus of variations, that if C is 
a geodesic then (J, aT/as ) = 0, 0 < s < L , for every vector J that is tangent to 
M along the geodesic C.  Thus aT/as must be normal to the surface M2 along C.  But 
aT las = Kn;  we have derived John Bernoulli 's characterization of geodesics of 1 697: 

Theorem (8.37) : C on M2 is a geodesic ijfC, when considered as a space curve, 
has a principal normal n that is normal to M. 

N 

---�""'�-- N 

Figure 8.26 

Thus if we cut out a circle on S2 by slicing the sphere with a plane, the resulting 
circle will be a geodesic on S2 iff it is a great circle. 

8.6b. The Intrinsic Derivative and the Geodesic Equation 

Let X be a vector field defined along a curve C (parameterized by t ) and tangent to M2. 
dX/dt of course need not be tangent to M; we define a new derivative 

VX : = 
dX _ / dX 

, N)N dt dt \ dt (8 .38) 



G E O D E S I C S  235 

ThuS VX/dt is the tangential part of dX/dt ,  that is, the projection of dX/dt into the 

tangent space to M2 at the given point. VX/dt is called the intrinsic derivative (or 

sometimes the covariant derivative) of X along the curve C. This new type of derivative 
will be discussed in great detail shortly, but for the present we shall simply note that 

VT / ds is the projection of the curvature vector dT / ds = Kn = K- of C, considered as 
a sp

ace curve, into the tangent plane. We shall denote this tangent vector by K-g and call 

it the geodesic curvature vector; its magnitude K-g i s  called the geodesic curvature. 
Since dT / ds = Kn is orthogonal to T, so is K-g . 

Geodesics are characterized by being curves x = x(s ) for which 

VT 
K- :=  - = 0 g ds (8 .39) 

A geodesic C is then a curve for which the derivative of the unit tangent has no 
component tangent to the swface. 

The first variation formula (8 .36) then shows us that if C is any curve, we may 
shorten it by moving the endpoints inward. If C is not a geodesic in a neighborhood of 
some point C(s ) ,  we may also shorten it by moving a small portion near C(s) in the 
direction of its geodesic curvature vector K-g . 

Finally, let us write out the geodesic equation VT / ds = 0 in local coordinates. For 
our curve x = x(u (s» 

and so 

VT 
= x [d2uV  + rV (dua ) (dufJ )] 

ds v ds2 afJ ds ds 
Thus a curve u = u (s )  parameterized by arc length i s  a geodesic iff 

d:;t; + r:fJ 
( d;s

a ) ( d;:) = 0 

(8 .40) 

(8 .4 1 )  

The fundamental theorem on differential equations tells u s  that this system, that is, 

duV - = Tv ds 
dTY 
-- = -r:fJ (u (s» r TfJ ds 

has a unique solution UV = UV (s ) for given initial data UV (0) = ub and du Y /ds (O) = 

rci. Furthermore, as we shall see in the next section, T(s) automatically will have 
constant length, and thus s will automatically be the arc length parameter if we start 
with a unit initial T. Thus there is a unique geodesic starting at each initial point with 
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given initial unit tangent. Since the system is nonlinear, we may not insist that the 
solution exist for all parameter values s !  

A geodesic i s  a critical point for the length functional for curves joining two end. 
points P and Q .  In Chapter 1 2  we shall discuss the nature of the critical point but We 
simply remark here that if P and Q are sufficiently close then there is a unique geodesic 
joining them whose length is an absolute minimum. A great circle on the 2-sphere that 
goes three-quarters of the way around the sphere is clearly a geodesic that does not 
yield an absolute minimum for the length of curves joining the endpoints ; in fact, as We 
shall see in Chapter 1 2, it does not yield even a local minimum!  A thorough analysis 
of geodesics is given in Milnor's book [M] . 

8.7. The Parallel Displacement of Levi-Civita 

What should it mean to move a vector on a curved surface "parallel to itself" while it remains 
tangent to the surface? 

Let v be a vector field in ]R;n defined along a curve x = x (t) . The derivative of this field 
is another vector field dv j dt along the curve, defined, as usual, by 

I dv(t) 1 .  [vet + h) - v(t) ] v (t)  = -- = 1m ------dt h-+O h 
We are clearly comparing a vector at one point, x (t ) ,  with another vector at the second 
point x (t + h ) .  This is possible because ]R;n , being an affine space, allows us to parallel 
translate a vector at a given point to any other point in ]R;n . This process is not available 
to us in a general manifold Mil ;  the use of a local coordinate system to define parallelism 
(namely, keeping the components of a vector constant) would yield a definition strongly 
dependent on the coordinates used. This is intimately related to our discovery in Section 
2.4e that the obvious notion of the derivative of a vector field a vj j axk using coordinates 
does not yield a tensor field. 

If Mn C ]R;N is  a submanifold of euclidean space, can we use the ambient space to 
define the notion of derivative of a vector field? Consider, for example, a surface in 
3-space. Let X be a tangent vector to M2 C ]R;3 at a point P .  Given a second point Q 
on M, we may consider the vector Y at Q obtained by parallel displacing X in ]R3 to 
the point Q.  Of course Y in general will not be tangent to M at Q;  in fact, it may even 
be normal. If we used our previous definition to define the derivative dXj d t of a vector 
field along a curve, we would only recover the derivative in ]R;3 , yielding a vector field 
along the curve that is not tangent to the surface.  Levi-Civita remedied this, yielding 
what we have called the intrinsic derivative VXjdt .  If X is a vector field defined along 
a curve C on M2 C ]R;3 , X being tangent to M, we have defined VXjdt to be the 
projection of dXjdt into the tangent plane to M.  Writing 

we get 

X = X"' (t)x", (u (t ) )  

dX dX'" '" dufJ 
- = --x", + X x"'fJ --dt dt dt 
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The Gauss surface equations (8 .30) then yield 

where 

VX = (VXY )
x dt dt Y 

VXY : = dXY + ( dUfJ ) rY XCi dt dt dt fJet 
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(8 .42) 

is the ylb component of the intrinsic derivative of X. (As such, it would be more 

reasonable to write (VX/dtY , but we have used the traditional notation.) 
Given the parameterized C,  u = u (t ) , and given an initial vector Xo tangent to M2 at 

u (O) ,  there is a unique tangent vector field X(t) to M along C that satisfies the system 
of differential equations 

VXY - = 0 dt (8 .43) 

with initial conditions XY (0) = xi; . This solution exists for all parameter time t 
since the system is linear. The unique solution X is called the parallel translate or 
displacement or transport of Xo along C, and (8 .43) is called the equation of parallel 
translation. 

Equation (8 .4 1 )  then tells us that the tangent vector to a geodesic parameterized by 
arc length is parallel displaced along the geodesic. 

Note that (8 .43) merely tells  us that dX/dt is  always normal to the surface along the 
curve when X is parallel displaced. 

The notion of intrinsic derivative is seen, from (8 .42), to involve only the metric ten
sor, not the second fundamental form. This is the reason for the description "intrinsic." 
In particular, the notions of intrinsic derivative and parallel displacement make sense 
on an abstract Riemannian suiface, even though the original motivation relied on a 
specific embedding M2 C ]R3 . Note also that the definition (8 .43) makes sense in a Rie
mannian manifold Mn of any dimension, since the definition of the Christoffel symbols 
(8.32) makes sense in any Riemannian manifold. It is not immediate, without looking 
at the transformation properties of the Christoffel symbols, that V XY / dt ,  as given in 
(8.43), transforms as a contravariant vector, but this is indeed true. This discovery of 
Christoffel, in 1 869, was the real beginning of tensor analysis . It wasn't  until 1 9 1 8  that 
Levi-Civita interpreted the intrinsic derivative in the case of an embedded surface as 
the tangential component of the usual derivative. 

Since parallel displacement is intrinsic, if ¢ : M" -+ V" is an isometry and if X is 
parallel displaced along C of M, then ¢*X is parallel displaced along ¢ (C) in V .  

Furthermore, i f  M2 C ]R3 and W2 C ]R3 are two surfaces in space that are tangent 
along a common curve C, we see from (8 .38)  that if X is parallel displaced along C in 
M, then X is also parallel displaced along C in W. 

For example, let M2 = 52 be the standard 2-sphere in ]R3 and let C be a "small" 
circle of latitude. We wish to parallel displace a tangent vector Xo along C; we have 
chosen Xo to be pointing north. 
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Figure 8.27 

Let V2 be the cone that is tangent to S2 along C. Parallel translation along C of M is 
the same as parallel translation along C considered as a curve on V .  Any small portion 
of the cone that omits the vertex is isometric with a portion of the flat plane, as we see 
from cutting the cone along a generator and laying it out flat .  This flattened version of 
the cone will have an "opening angle" a that is easily computed from the latitude of C. 
Parallel translation along C is  then the same as on the flattened cone. In the flattened 
cone one can introduce cartesian coordinates x .  y, and in these coordinates the metric 
of the cone is ds2 = dx2 + dyl . Clearly the Christoffel symbols for this flat metric 
all vanish and the equations of parallel translation are simply dXY /dt = 0; that is, 
parallel translation in the flat plane is the usual parallelism of the euclidean plane. 
We have indicated in our figure the parallel translation of Xo around the flattened cone, 
returning to P with a final vector X f that makes the opening angle a with the generator 
through P .  When this flattened cone is then wrapped around the sphere again we see 
that when Xo is parallel translated around the small circle of latitude C on the sphere, 
the vector X does not return to itself but rather to a vector X f of the same length but 

rotated through the opening angle af 

We should note that if C had been an equator of S2 , then the tangent cone would have 
been replaced by the tangent cylinder and then Xo would have then coincided with Xf' 

Since parallel displacement around a closed path does not necessarily return a vector 
to itself we conclude that, in general, 

parallel displacement from a point P to a point Q will be dependent upon the choice 
of path joining P to Q !  

x 

p 

Figure 8.28 
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For this reason it makes no sense to ask whether a vector at P is parallel to a vector 
at Q; one can talk about parallelism only with respect to a specific path joining the two 
points. 

Finally, consider a pair of vectors X(t) and yet) defined along a curve u = u (t )  of 
a surface M2 c JR.) and tangent to M.  Then, since V /dt i s  the tangential part of d/dt ,  
we see 

yields 

d ( dX ) ( dY ) - (X(t ) ,  Y (t» )  = - , Y + X, -dt dt dt 

!£ (X(t ) ,  yet» )  = I VX , Y) 
+ lx, VY ) 

dt \ dt \ dt (8 .44) 

(Although this important equation is in fact true in any Riemannian manifold, as we 
shall see, we have derived it only in the case of an embedded surface in JR.3 . )  In particular, 
if both X and Y are parallel displaced along C we see that 

(X(t ) ,  Y(t » )  is a constant under parallel displacement! 
If we let Y = T be the unit tangent vector to a geodesic, we see that a vector parallel 
displaced along a geodesic on a suiface in ]R3 will make a constant angle with the 
geodesic. 

Problems 

8.7(1 ) The upper half  plane { (X, y) : y >  OJ can be endowed with a particular abstract 
Riemannian metric, the Poincare metric 

ds2 = y-2 { dx2 + dy2 j 
Paral le l d isplace the in it ial vertical vector X = a/a y at (0, 1 )  along the parameter
ized horizontal curve C; x( t) = t, y(t) = 1 ;  that is, solve the d ifferential equations 
(8.43) . 

8.7(2) (i) Let w be a un it vector, tangent to the surface, and defined along a curve C. 
Show that VWjds is orthogonal to w. 

(ii) Let v be a vector that is paral le l  displaced along C and let e := L(v, T) be 
the angle that C makes with v. Recall that the geodesic cu rvature vector of 
C is g iven by "'g = VT/ds, with length Kg. Show that 

Kg 
= I �: I 



B. Riemann 



C H A P T E R  9 

Covariant Differentiation and 
Curvature 

WE saw in Section 2.4 that the partial derivatives aj Vi of a vector field v do not form 
the components of a tensor. For a covariant vector field ex l we did show that we can 
construct a tensor by taking a combination of partial derivatives ,  a jak - cha j , the exterior 
derivative, but that ajak by themselves do not yield a tensor. Our goal in this chapter is 
to introduce an added structure to the notion of a manifold, a structure that will allow 
us to form a generalized derivative, a "covariant" derivative, taking vector fields into 
second-rank tensor fields . 

9.1.  Covariant Differentiation 

9.1a. Covariant Derivative 

Let us reformulate the concept of the intrinsic derivative of the last chapter. 
Let M2 be a suiface in �3 , and let v be a vector field that is tangent to M and defined 

along a parameterized curve. Then the intrinsic derivative Vv / dt was defined to be the 
tangential part of the ordinary � 3 derivative dv / d t, and as such was again a tangent 
vector field to M along the curve. We then define a covariant derivative as follows. 
Let v be a tangent vector field to M defined now in some neighborhood of a point p,  and 
let X be a tangent vector to M at the single point p. Choose any curve on M through 
p whose tangent at p is the vector X, and define the covariant derivative Vxv at p to 
be the intrinsic derivative Vv / dt .  In terms of coordinates we easily get 

(Vxv)" = ( a v'" 
+ r'" VY) xfJ 

aufJ fJy (9 . l )  

which is clearly independent of the curve chosen to realize the given tangent vector 
X at p. The intrinsic derivative can then be expressed as the covariant dervative with 
respect to the tangent field T = dx/dt to the curve 

241 
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We have thus constructed the notion o f  a derivative of a tangent vector field v with 
respect to a vector X at p ;  the result is again a tangent vector at p. It is furthermore 
clear that if X is itself a tangent vector field, then V' xV is again a vector field. All 
this was possible because M was a surface in ]R3 , one already has a notion of derivative 
dv / dt in ]R3 , and one also has the notion of orthogonal projection into the tangent space 
Mp in ]R3 . 

A little reflection will show that we can again define V'xv when Mn is any sub
manifold of any ]RN , using exactly the same procedure. In fact the coefficients r , the 
Christoffel symbols, are defined exactly as before. 

Since the formulas for rpy make sense for any Riemannian manifold Mn , indepen
dent of whether or not it i s  embedded in some ]RN , it is reasonable to try to define the 
covariant derivative in a Riemannian Mn again by the Formula (9. 1 ) , and indeed this 
does work. (In this case one would have to show, using the transformation properties of 
the metric tensor, that the components (9. 1 )  do transform as the components of a vector, 
something that is geometrically immediate in the case of an embedded submanifold 
of ]RN . )  

A covariant differentiation operation, defined fully i n  a moment, is also called a 
connection . 

The connection in a Riemannian manifold in which the r�k are given by the 
Christoffel symbols is called the Levi-Civita connection, though Christoffel would 
be the natural name to associate with this connection. 

It is  important that we develop the concept of covariant derivative even when the 
manifold is not Riemannian. Later on we shall see that we shall need to differentiate 
objects that are much more general than tangent vector fields, and then the Christoffel 
symbols will be replaced by other quantities . For example, when discussing particle 
physics we shall have to differentiate wave functions, and we shall see that it is natural 
to define a covariant derivative in which the role of the Christoffel symbols is played 
by the electromagnetic vector potential A !  Part Three will be devoted to this concept of 
covariant differentiation in a "vector bundle," and the role of Christoffel symbols will be 
played frequently by certain physical fields, that is ,  by extra structures that are foreign 
to the unadorned notion of "manifold." For the present we shall only be dealing with 
quantities related to tangent vector fields . For this purpose, we generalize our preceding 
situation as follows. (The reader should verify that the indicated properties are indeed 
satisfied in the familiar case of a surface in ]R3 with the Levi-Civita derivative. )  

Definition: Let Mn be  a manifold. An  affine connection or  covariant differen
tiation is an operator V' that assigns to each pair consisting of a vector X at p 
and a vector field v defined near p, a vector V'xv at p that satisfies 

and 

V'x (av+bw) = aV'xv + bV'xw 
V'aX+bYV = a V'xv + bV'yv 

V'x (jv) = X(j )v + fV'xv ("Leibniz rule") 

(9 .2) 
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for all vector fields v and w, functions f, and real numbers a and b. We also 
demand that if X is a smooth vector field then V x v is also a smooth vector field. 

From the second equation we have that if X = I:i Xi ei then V x = I:i Xi Vei . 
We shall write out what this says in terms of components . In our work up until now 

we have always used local coordinates x to yield a basis 8/8xi for the tangent vectors in 
a patch U. For many purposes , however, it is advantageous to use a more general basis .  
A frame of vector fields in a region U consists of  n linearly independent smooth vector 
fields e =( e j , . . .  , en ) in U .  A special case is a coordinate frame, where ei = 8/ 8xi , 
for some coordinate system x in U .  First note that a frame e usually is not a coordinate 
frame, since [ei , ej ] is usually not 0 while [8i , 8j ] = O. In fact we have 

Theorem (9.3): A frame e is locally a coordinate frame iff 
[ei , ej ] = O for all i , j 

PR O O F : We need only show that this bracket condition implies the existence of 
functions (X

i ) such that ei = 8/8xi . Let (J be the dual form basis .  From (4 .25) 

(9.4) 

and so d(J i = 0, for all i .  Locally then each (J '  is exact, (J i  = dX i , for some 
functions x j , . . .  , X

li
. Since dx j /\ . . . /\ dx" = (J j /\ . . . /\ (In =f:. 0, we see, from 

Corollary ( 1 . 1 6) ,  that the x 's do form a local coordinate system. Since (J = dx it 
follows that e = 8/8x . D 

Let now e = (e j , . . .  ell ) be a frame of vector fields in a region U .  We then have 
X = ej Xj and then from (9 .2) 

(9 .5) 

where Wjk is defined by 

(9.6) 

In our surface case, when ej = 8j was a coordinate frame, we had W�k = r�k ' 
Warning: As we shall see, it is not generally true that w is symmetric in j and k, 

i ....J. i 
cvjk T W kj · 

Since X (Vk ) = dvk (X) ,  we may rewrite (9.5) as 

Vxv = eddv i (X) + XjW�k V' } 

The symbols wJ, are called the coefficients of the affine connection, with respect to the 
frame e. Using the dual basis (J of I -forms, we have V x v = ei {d Vi (X) + wj k (J j (X) vk

) 
or 

'I'"'l' _ {d i + i j ' } (X) v xV - ei V wjk(J  V (9.7) 

We wish to emphasize that this makes sense in any frame e, and, as we shall see, for 
many purposes it will be important to employ frames that are not coordinate. For the 
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present, however, i t  i s  an unnecessary complication. (For example, in a general frame, 
df = f, ) a )  for some coefficients f, ) but f, ) are not partial derivatives .)  

For the remainder of this Section 9. 1 we shall restrict ourselves to the use of 
coordinate frames. 

When the frame e is a coordinate frame, e; = a; = a/ax; , a; = dx; ,  

that is ,  

{ av; ' k } ' 
Vxv = a; -, + w}k V dx} (X) 

ax } 
, [ av ;  ' k ] ' 

(Vxv), = - + Wi, V X} ax) } k 

j ust as in (9. 1 ) .  Since V'xv is assumed to be a vector, we conclude that 

(9 .8) 

(9.9) 

form the components of a mixed tensor, the covariant derivative of the vector v. 

9.1h. Curvature of an Affine Connection 

In the surface case, from (8 .33) we see that curvature is at least related to the commu
tation of second covariant derivatives of vector fields . In Problem 9. 1 ( 1 )  you are asked 
to verify Equation (9. 1 1 ) . 

Theorem (9.10) : Let Xp , Yp , and v p be vectors at a point p of Mn and let X, Y, 
and v be any extensions of these vectors to vectorfields in some neighborhood U 
of p. Form the vector field 

R (X, Y)v := Vx (Vyv) - Vy (Vxv) - V[X,Yj V  

in U. lfwe expand the vector fields i n  terms of a coordinate basis a, then 
_ ; k I ) R(X, Y)v - { R)kIX Y v }a; 

where, as in (8.33), (9 . 1 1 ) 

Thus the value of the vector field R (X ,  Y)v  at p is independent of the extensions 
afX, Y, and v. From (9. 1 1 ), the assignment 

v p -+ R (Xp , Yp )vp 

defines a linear transformation R (X ,  Y) : M; -+ M; called the curvature 
transformation for the pair X, Y; its matrix is given by R (X, Y) ; ) = RjklX

k yl . 

Consequently, Rjkl are the components of a mixed tensor of the fourth rank, the 
Riemann tensor. We may write 

R (X, Y) = [Vx , Vy] - V[X,Yl (9. 1 2) 
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where [X, Y] is the Lie bracket of the extended vector fields and [V x , Vy] = 
VxVy - VyVx is the commutator bracket of the covariant derivatives. 

(We have used the fact that since R�kl Xk yl are the components of a second-rank mixed 

tensor for all X and Y, it must be that Rjkl are the components of a fourth-rank tensor. 

See Problem 9. 1 (2) . )  
From its definition it is clear that R (X, Y) = -R (Y, X) , that is, 

9.1c. Torsion and Symmetry 

Recall that the Lie bracket has components in a coordinate frame given by 

[X, y]i = Xj aj yi _ yj aj xi = X(yi )  _ Y(X i ) 

(9. l 3) 

Compare this with the i th component of the difference of covariant derivatives. From 
(9.8) 

(VxY - VyX) i = Xj aj yi - yj aj xi + Xj (W�k - Wi)yk 

Now if X and Y are vector fields then so are V x Y - V y X and [X, Y] . We see that 
their difference, at a point p, is a vector, 

T(X y)i . =  Xj (wi _ Wi . ) yk , . Jk kJ 
that depends (bilinearly) only on X and Y at p. In other words, we have a well-defined 
"vector-valued 2-form" T the torsion form, defined by 

T (X, Y) := VxY - VyX - [X, Y] (9. 14) 

(We started a discussion of vector-valued forms in Problem 4.3(5) and in Section 8 . 1 a. 
We shall discuss this notion in more detail in Section 9 .3a.) In terms of a general frame, 

_ i _ I  T i j k T - ei ® r - lei ® jkO" /\ 0" 
where Tjk are the components of a mixed tensor, the torsion tensor. In a coordinate 
frame, as we have seen, 

Ti . i i jk . = wjk - wkj (9. 1 5 ) 

(This is rather surprising since, as we shall see, the W�k themselves do not form the 
components of a third-order tensor. ) 

We shall say that the connection is torsion-free, or symmetric, if the torsion tensor 
vanishes identically, T = O. In this case we have 

VxY - VyX = [X, Y] (9. 1 6) 

The reason for the description "symmetric" is as follows. From (9. 1 5 )  we see that in a 
coordinate frame, Tjk = 0 means that the connection coefficients are symmetric in the 
two lower indices , 

i i Wjk = W kj (9. 1 7) 
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Warning: I n  a noncoordinate frame, (9. 1 5) does not hold and consequently w need 
not be symmetric in the lower indices when the torsion vanishes. 

The Levi-Civita connection for a Riemannian manifold is symmetric because the 
Christoffel symbols satisfy rjk = rL . 

Problems 

9.1 (1 ) Verify (9 . 1 1 ) . 

9 .1 (2) Show that if AjklXk yl 
transforms as a m ixed tensor B} for al/ vectors X and Y, 

then Ajkl transforms as a fou rth·rank m ixed tensor. 

9.2. The Riemannian Connection 

What di stinguishes the Christoffel connection from the others? 

In any manifold Mn with an affine connection, that is, with a covariant differentiation 
operator V, we can consider parallel displacement of a vector Y along a parameterized 
curve x = x (t ) , defined again by 

VY . (dxk ) { o Y; . . } (dxk ) 
0 =  dr = 8; Yik dt = 8; oxk + {J)�j YJ dt 

Warning: The connection coefficients W�k are usually denoted by rjk '  We, how· 
ever, shall reserve this notation for the Christoffel symbols, that is, the Levi-Civita 

connection coefficients, with respect to a coordinate frame. 

As we shall see later, there are an infinite number of distinct affine connections on any 
manifold. (In �3 , e.g . ,  one may choose functions (J)�k arbitrarily in the single coordinate 
patch. )  If the manifold i s  Riemannian, however, there i s  one connection that i s  of special 
significance in that it relates parallel displacement with the Riemannian metric in an 
important way. In the case of a surface M2 in �3 , the Levi-Civita connection, first of 
all ,  was symmetric ,  and second, had the property that parallel displacement preserved 
scalar products of vectors (a consequence of Equation (8 .44)) .  

Theorem (9.18) :  On a Riemannian manifold there is a unique symmetric con
nection that satisfies 

d / VX \ / VY \ 
dt (

X
, 
Y) 

= \ dr '  Y / + \ 
X

, dr / 
for any pair of vector fields defined along a parameterized curve, and this con· 
nection is the Riemannian connection; that is, in a coordinate frame, W}k = rjk 
are the Christoffel symbols (8.32). 
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PR O O F :  Consider the kth coordinate curve of a local coordinate system, param

eterized by Xk , and let X and Y be two vector fields defined in a neighborhood of 

this curve. By hypothesis we have 
a 

( Xi yj ) _ Xi yj + Xi yj axk gij - gij /k gij /k 

[ aXi . I] .  . [ a yj j ] = gij axk + W�I X yi + gij X' axk + wkm ym 

comparing this with the product rule expansion of a j axk (gij Xi Y j ) we see that 
(agij jaxk )Xi y j - gijWLX' y  j - gijwfmXi ym = O. Changing dummy indices we 
get [agij jaxk - gljwi; - gi/WL ]X' Y i = O. Since this holds for all X and Y we 
conclude that 

agij { { 
axk - gljWki - gi/Wkj = 0 (9. 1 9) 

If we define Wkj, i = gi/WL we then see that (9. 1 9) is the same as Equation (8 .3 1 )  
in the surface case. If we now assume that wlj i s  symmetric in k and j ,  as it is 
in the surface case, we are again led to (8 .32) ;  that is , the connection coefficients 
are indeed the Christoffel symbols. This shows that if a Riemannian connection 
exists, it is given by the Christoffel symbols. 

We can then define a connection in each coordinate patch by putting W�k equal 
to the Christoffel symbol rjk for that patch. Our uniqueness result (that we have 
just proved) then shows that the local covariant derivatives in the patches agree 
in each overlap and thus we have a connection defined globally. D 

The requirement djdt (X, Y) = (VXjdt , Y) + (X, VYjdt )  easily implies the fol
lowing. For two vector fields X and Y, and vector T, we may differentiate the function 
(X, Y) with respect to T and 

(9 ,20) 
The operation of covariant differentiation in a Riemannian manifold was introduced 

by Christoffel in 1 869, following Riemann's paper of 1 86 1  in which the curvature 
tensor was introduced. Levi-Civita, Hessenberg, and Weyl systematized the notion of 
manifold with an affine connection, independent of a Riemannian structure, in 1 9 1 7  
and 1 9 1 8 .  

9.3. Cartan's Exterior Covariant Differential 

How can we express connections and curvatures in terms of forms? 

9.3a. Vector-Valued Forms 

Cartan extended the notion of the exterior derivative of a p-form to that of the exterior 
"covariant" derivative of a "vector-valued p-form." This remarkable machinery is, as we 
shall see, ideally suited for computations involving the Riemann curvature tensor, and 
also seems to be the natural language for dealing with the gauge fields of present-day 
physics and the stress tensors of elasticity. 



248 C O V A R I A N T  D I F F E R E N T I A T I O N  A N D  C U R V A T U R E  

Let A be  a mixed tensor that is once contravariant and p times covariant and that is 
skew symmetric in its covariant indices. Locally 

A = ei 0 L Al, . . . J" (J J, /\ . . .  /\ (JJp 
1 

Thus A is of the form A = ei 0 ai where ai is the p-form coefficient of ei · To A We 
may then associate a vector-valued p-form, that is ,  a p-form (written A or a), whose 
values are vectors rather than scalars 

a(v I , . . .  , vp) := eiai (v I , . . . , vp) 

We shall make no distinction between the tensor A and its associated vector-valued 
p-form 0: .  

Vector-valued forms occur frequently in classical vector analysis. In terms of carte
sian coordinates, dr = (dx l ,  dx2 ,  dX3 ) T  is the vector-valued I -form with values 

dr(v) = (dx I , dx2 , dx3 )  T (v) = (dx 1 (v) , dx2 (v) , dx3 (v) l 

= (V i ,  v2 , v3l 

that is ,  dr is the form that assigns to each vector the same vector ! This comes from 
the mixed tensor (linear transformation) I = 8i 0 dxi whose matrix is the identity. 
Physicists think of (dX ' ,  dx2 , dX3 ) T  as a generic "infinitesimal" vector. The vector
valued 2-form (introduced in Problem 4.3(5)) 

dS = (dy /\ dz, dz /\ dx , dx /\ dyl 

assigns to any pair of vectors the vector whose components are the signed areas of the 
parallelograms resulting from the projections of the vectors into the coordinate planes, 
that is, dS(A, B) = A X B. 

A vector-valued O-form is of course simply a vector. 

9.3b. The Covariant Differential of a Vector Field 

If v is a vector field in a manifold Mn with affine connection, then we have seen that 
the coordinate patch expressions 

. . a v i . k 
V'J v' = vIJ := ax J + wlk v 

fit together to define a mixed tensor field, which we shall call the covariant differential, 
denoted by Vv 

Vv = 8i 0 V'J vidxJ = 8i 0 v/JdxJ 

This can be considered a vector-valued I -form. 

that i s ,  

Vv(X) : =  Vxv 

(9.21 ) 

(9.22) 
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In particular, if � is any frame of tangent vectors, we have, from (9.6),  Ve j (
.
ei ) = ekw7j · 

But ek ® w�/r' IS a vector-valued I -form that has the same value when applIed to ei . We 

conclude that Ve j = ek ® w;Fr . Finally, if we define the local matrix W of connection 
I-forms by 

we then have 

k k ,  W j :=  wrjer 

Vej = ek ® Wk j 

Note that we may then write (9.7) in the form 

Vxv = e; {dvi + Wi k Vk } (X) 

and consequently 

where 

(9.23) 

(9.24) 

(9.25) 

It is immediate from (9.2 1 )  that if/ is a smooth function, then (recall that we occasi
onally prefer to write v / to the more usual /v) 

v (v f) = v ® d/ + /Vv (9.26) 

which we shall again refer to as the Leibniz rule. 

9.3c. Cartan's Structural Equations 

Let er be the basis of I -forms dual to a given frame e. Then deri can of course be written 
down with no mention of a connection, but if there is a connection we can write deri in 
the following manner. From (4.25) and (9 . 1 4) 

deri (ej , ed = ej {er i (ed } - eder i (ej ) }  - eri ( [ej , ed) 

= _eri ( [ej , ed) = _er i  {Vej ek - Ve, ej - T(ej , ek ) } 

= -eri {erWJk - e,w�j } + Tjk = - {w}k - (1) + TJk 
where T = 1 /2e, ® Tjker j /\ erk is again the vector-valued torsion form. Then 

deri = � � deri (e · ek )er j /\ erk = _ (Wi er j ) /\ erk + � Ti er j /\ erk 
2 L J ' Jk 2 Jk 

In terms of 

we can write 

J . k 

r i = L Tjker
j /\ erk 

j <k 

der i = _Wi k /\ erk + r i 

Equations (9.23) and (9 .28) are Cartan's structural equations. 

(9.27) 

(9 .28) 
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We shall abbreviate these a s  follows.  Denote (as i n  (2. 1 »  the row matrix (e l , . . .  , en )  
by the matrix e and the column (a  I , . . .  , a n )  T by a .  The n x n matrix of  connection 
I -forms will be denoted by w 

and the column vector of torsion 2-forms by T .  

Then we may write 

Ve = e 0 w  

and (9 .29) 

da = -w /\ a + T 

By w /\ a ,  for example, we mean the column matrix with 2-form entries (w /\ a ) i = 
Lj Wi j /\ a j , whereas da is the column (da l , • . .  , da n ) T .  

I n  our new notation, i f  v i s  a vector we  may write v = e v where v i s  the column of 
components of v, and then we may write (9.25) as 

Vv = V (ev) = e 0 Vv = e 0 (dv + wv)  (9.30) 

9.3d. The Exterior Covariant Differential of a Vector-Valued Form 

Let a be a vector-valued p-form. Locally we have (in terms of a frame e) a = ei 0 ai , 
where each ai = ai 1. (x ) a J  is a locally defined p-form. We define its exterior covariant 
differential, the vector-valued (p + I ) -form Va, by demanding a Leibniz rule 

where the product 0/\ is defined as follows: 

We drop this complicated notation and write 0 rather than 0/\. Thus 

In abbreviated notation with the column of p-forms a = (a i , . . . an)  we may write 

Va = e 0 (da + w /\ a)  (9 .3 1 ) 

generalizing the vector field (i .e . ,  vector-valued O-form) case (9 .30) .  
We have defined Va in terms of a local decomposition a = ej 0 ai . It is not clear 

from this that Va is well defined, independent of the frame e, but in fact we shall see 
later that this is indeed the case. We should remark that one can give a coordinate-free 
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definition of V that is in the same spirit as the formula (4.27) for the exterior derivative 
of a scalar-valued exterior differential form 

Va:P (Yo , . .  · ,  Yp) = L(- I ) 'Vy, {a:p (yo , . . .  , Yr , . . .  , Yp) } (9 .32) 

+ L(- I ) '+sa:I' ( [Yr ,  Ys ] ,  . . .  , Yr , . . .  , Ys , . . .  , Yp) 
r <s 

where we have again extended the vectors Yr to be vector fields . 
Notation: When dealing with vector-valued forms, we shall usually use Cartan's  

device of simply omitting the tensor product sign in equations such as  (9 .3 1 ) ;  thus 
(9 . 3 1 )  will now be written 

Va: = e(da + W 1\ a)  (9 .3 1 ') 

Furthermore, Cartan used the notation d rather than V' ;  for example, Cartan would write 
his structure equation Ve = e ® w as simply 

de =ew 

de would not be confused with an ordinary exterior derivative since it makes no invariant 
sense to take the exterior derivative of a vector field; one must use a covariant derivative. 
This notation is very convenient and is also used by many people, but we shall not use 
it in this book. 

9.3e. The Curvature 2-Forms 

Ve = e ® w = ew is a row matrix of local vector-valued I -forms Vei . We can then 
take the exterior covariant differential again 

VVe = V(ew) = (Ve)w + edw 

= e(w l\ w + dw) 

Thus if we define the local matrix e of curvature 2-forms by 

e := dw + w 1\ w 

we have 

In full 

VVe = e ® e = e e 

e i d i + i k 
j = W j W k l\ W j 

Since the ei j are 2-forms we may expand 
. 1 .  e' . = - R'. a r 1\ as J 2 J rs 

(9 .33) 

(9.34) 

(9 .35) 

for some coefficients R�rs . You are asked to show in Problem 9 .3( 1 )  that when e = a 
is a coordinate frame, then the R�rs are given by Equation (8 .33) ,  

(9.36) 
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that i s ,  the R�rs are the components of the Riemann curvature tensor !  This o f  course is 
the reason for calling e the matrix of curvature 2-forms. 

Consider now a vector field V = ev .  We have Vv = e(dv  + wv) and so from (9.30) 
we have 

VVv = e[d (dv + wv) + w ;\  (dv + wv) ] 

Since w is a matrix of I -forms we then have 

VVv = e[dwv - w ;\ dv + w ;\ dv + w ;\ wv] 

that is , 

VVv = e 0 ev = e e  v (9 .37) 

Note the remarkable fact that VVv depends l inearly on v and not at all on the deriva
tives of v !  

Some concluding remarks. Suppose that M" is  a manifold that (like lRn ) can be cov
ered by a single distinguished frame field e . (Such a manifold is called parallelizable.) 
Define an affine connection by defining w = 0 for the distinguished frame e, that is, 
Ve = O. Thus each of the vector fields ei is covariant constant, or globally parallel. 
By construction the curvature of this connection vanishes, e = O. Mn is then said to 
admit a distant parallelism. Consider the I -forms 0' dual to the frame e. In general the 
forms 0' will not all be closed. Then dO' = -w ;\ 0' + , = , and the connection in 
general will have torsion. We thus see in this case of distant parallelism that torsion of 
the connection is a measure of misclosure of the orbits of the distinguished frame fields 
e (see Problem 4. 1 (3)) .  

Surveyors could introduce a frame of 3 orthonormal vectors in a small 3-dimensional 
neighborhood of a point on the irregular Earth's surface as follows :  e3 is an upward 
pointing unit vector defined by a plumb line, e ]  is a horizontal unit vector pointing 
magnetic north, and e2 = e3 x e ]  points "west." It is thus natural for surveyors to 
introduce (locally) a distinguished frame of vectors defining a distant paral lelism with 
curvature 0, and this frame is not associated with any coordinate system; the torsion 
does not vanish ! (For example, 0'3 = A (x)d¢ where ¢ is the gravitational potential .) 
When measuring, for instance, the difference in altitude of two nearby points they are 
essentially computing Ie 0'3 along a curve joining the points. Note that if C = au  is 
a closed curve, then ic 0'3 = IIu dA ;\ d¢ = IIu ,3 will not vanish in general ; there 
is bound to be a natural misclosure in geodetic measurements ! For more discussion of 
the use of Cartan 's  machinery in geodesy see Grossman 's article [G] . 

Problems 

9.3(1 ) Verify (9 .36) . 

9.3(2) e @ (]' is a vector-valued 1 -form that we have symbolical ly denoted by dr. ( In 
�n it is the derivative of the vector-valued O-form r , but on a general manifold it 

isn't the derivative of anyth ing . )  Show that V dr = e @ r: = r is the vector-valued 
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torsion 2-form. (Cartan would write d2 p = ddp = T, where p is the "position 

vector.") 

9.4. Change of Basis and Gauge Transformations 

What is a gauge transfonnation? 

9.4a. Symmetric Connections Only 

In the remainder of Part Two we shall be concerned almost exclusively with symmetric 
connections, T = O. Cartan 's  equations then become 

Ve = e w 

and (9 .38) 

da = -w /\ a 

9.4b. Change of Frame 

We have defined the connection coefficients w = (W�k ) in terms of a given frame e. If 
we demand that V have a basis-free significance, we shall have to require the w's to 
have a special transformation property under a change of basis .  

Let e '  = eP ( i .e . ,  e ;  = e) p
) i ) be a change of  basis, where P = P (x) i s  a nonsingular 

n x n matrix function . Then for a vector v we have v = ev = e'v' = ePv' .  Thus 

e' = eP (9 .39) 

v' = p- 1 v 

and s ince ea = I = e'a '  = ePa' ,  we see that a = Pa' 

(9 .40) 

We demand that V be well defined, independent of basis .  Thus Ve = ew and 
Ve' = e'w' must be compatible. Then Ve' = VeeP)  = (Ve) P + edP = ewP + edP 
must be the same as e'w' = ePw' . We must then have wP + d P  = Pw', or 

(9.4 1 )  

This is the transformation rule for the matrix of connection i -forms. In terms of two 
coordinate frames, we have dxti = (ax,i /ax) )dx) , and so P is the inverse Jacobian 
matrix P = ax/ax' ,  and (9.4 1 )  states 

wti . = ( ax'i ) wr (�) 
+ 
( ax'i ) ( a2xr ) dX'S J axr S ax ') axr ax ') ax 's 

If we write, as usual, Wi
) = W�)dxk , then we could easily write out from this the 

transformation rule for the connection coefficients w[J ' found in all books on tensor 
analysis. We shall have no use for this expression. We do wish to point out that a linear 
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transformation has a matrix that transforms a s  A' = p- l  A P ,  that is, as the first term 
in the right-hand side of (9.39) . Thus w does not transform as the matrix of a linear 
transformation and consequently wkj are not the components of a mixed tensor ! 

Look, on the other hand, at the matrix of curvature 2-forms O .  0 ' = dw' + w' 1\ w' == 
d ( P - 1 wP + P - 1 d P )  + ( P - 1 w P  + P - 1 d P )  1\ ( P - 1 w P  + P - 1 d P ) .  From p - 1 P == I 
we see d P- 1 P + P - 1 d P  = 0, or 

(9 .42) 
You are asked in Problem 9.4( 1 )  to put this in the expression for 0 ' and compare this 
with 0 = dw + w 1\ w, yielding finally 

(9.43) 
Thus the matrix of curvature 2-forms transforms as the matrix of a linear transforma
tion ! From (9 .35) we can see from this that R�rs are the components of a mixed tensor, 
once contravariant and three times covariant. 

This has the following consequence; if 0 = 0 in some frame then 0 = 0 in every 
frame ! The same cannot be said of the connection forms w, as is evident from (9 .4 1 ) . 
See Problem 9.4(2). 

Let us look at V applied to a vector field v. We have seen in (9.30) that Vv = e(dv+  
wv ) .  One checks immediately from this that V (ev) is indeed equal to V (e'v ' ) .  I n  terms 
of the column matrices involved we have, from (9 .25) , Vv = eVv = e'V'v' ,  where 
V'v'  = dv' + w'v ' .  This says that V'v' = p - 1 Vv :  that is, the column Vv = dv + wv 
transforms as the column of components of a (contravariant) vector. 

Let us introduce a more systematic notation . Let eu and ev be frames in open sets 
U and V ,  respectively. We then have 

ev = eucu v (9.44) 
in U n V ,  where Cu v (formerly P) ,  the transition matrix function, 

cu v : u n  V � Gl (n ;  JR.) 

is a nonsingular matrix-valued function. Here Gl (n ; JR.) is  the general linear group, 
the group of all nonsingular real n x n matrices. Of course Cvu = cu � . Then 

If v is a vector field in U n V ,  then v = eu Vu = ev Vv says 

Vv = Cv u Vu (9 .45) 

is simply the transformation rule for the (column) components of a contravariant vector. 
The components w transform as 

Wv = Cv u Wu Cu v + cv udcu v (9.46) 

and for curvature 

(9 .47) 
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To say that Vv is a vector-valued I -form is to say the following: Put (dvu + Wu vu ) = 
'ilu vu . and so on. Then 

vv = Cvu Vu implies 'Vv vv = cvu 'Vu vu 

In other words. 'Vvcvu vu = Cvu 'Vu vu . or 

'Vv 0 Cvu = Cvu 0 'Vu 

We may then say that if v transforms as a vector then so does 'V v . 

(9.48) 

(9.49) 

Finally a remark on physical terminology. A frame field eu can be considered as 
giving a basis for the sections of the tangent bundle over the open set U C Mil ;  that 
is the meaning of the expansion vex) = eu (x ) vu (X) .  Physics deals, as we shall see, 
with other "vector bundles ." A frame of n "vectors" in physics is sometimes called an 
n-bein. Thus a frame in Minkowski space is referred to as a 4-bein, or, in German, a 
vier-bein. A local change of basis, such as ev = eucu v , is called in physics a gauge 
transformation. A connection is an example of a gauge field, to be discussed at great 
length in Part Three. Equation (9.4 1 )  then tel ls how this particular gauge field transforms 
under a "change of gauge." Finally, (9 .48)  or (9.49) is said to exhibit covariance of the 
operation of covariant derivative. 

Problems 

9.4(1 ) Prove (9 .43) . 

9.4(2) Consider ]R2 with the standard metr ic ds2 = dx2 + dy2 . Thus 9ij = 8ij i n  the 
coordinate frame e =(a/ax , a/ay) . Thus w = 0 and e = o. Now introduce polar 
coord inates e' = (8/8r, 8/8e) = ([ax/a rj8/8x + [ay/arj8/8y, . . .  ) .  Write down 
the change of basis matrix P and use w' = � 1 d P to give 

w' = [ �  -�:e l 

Verify that e' = o. 
9.4(3) Let a = euae be the local expression, in terms of the frame eu, of a vector

valued p-form. If a is g lobally defined , we must have that a v = c vuau ;  that is, 
a transforms as the components of a vector. If we define, as in  (9 .30) , '\luau = 

dau + Wu /\ au ,  show that (9.49) holds again .  This shows that '\la,  defined in  
(9.30) , is wel l  defined. 

9.5. The Curvature Forms in a Riemannian Manifold 

Why bother with noncoordinate frames? 

9.5a. The Riemannian Connection 

Note that in a Riemannian manifold, one can take any frame and convert it to an 
orthonormal frame by applying the Gram-Schmidt process .  We shall see that many 
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computations become much simpler i f  a n  orthonormal frame is employed. Let u s  look 
first at the connection forms. 

Let us express the fundamental relation (9.20) in terms of a general frame e. We 
may write d (ei , ej ) (ek ) = (V'ek ei , ej ) + (ei , V'ek ej )  = (erwki , ej ) + (ei , erwr ) ,  that is, 
(dgij ) (ed = grjWL + girWkj ' But wL = wrJed and wkj = wj (ed .  We conclude that 
dgij = grjWr i + girwr j . If we define, as usual, 

then we have 

(9 .50) 

as the basic relation for the compatibility of the connection with the Riemannian metric 
(i .e . , parallel displacement preserves scalar products). 

In particular, if the frame is orthonormal, gij = 8ij , then the matrix of the connection 
I -forms (with both indices down) is skew symmetric 

(9.5 1 ) 

for an orthonormal frame. 
Look now at the curvature 2-forms in any frame. We define 

(9.52) 

In an orthonormal frame of course we have Wi j = Wij ,  8i j = 8ij , and so forth. Thus in 
an orthonormal frame we have 8ij = dWij + Wir /\ Wrj = -dWji - Wjr /\ Wri = -8ji . 
Hence in an orthonormal frame the 8 matrix, with both indices down, is also skew 
symmetric. We claim that this is true in any frame ! The matrix (8ij ) is ,  from (9.52), of 
the form G8 , where G is the matrix (gij ) ' Under a change of basis 8 transforms, from 
(9.4 1 ) , as 8'  = P - I 8 P ,  and the covariant tensor (gij )  transforms as G' = P T G P .  Thus 
G'8' = pT G P P - 1 8  P = pT (G8 ) P . But this says that if G8 is skew symmetric in one 
frame (as it is in an orthonormal one) then it is skew symmetric in every frame. 

(9.53) 

From (9.35) we see that for the purely covariant version of the Riemann curvature 
tensor 

(9.54) 

is skew symmetric not only in the second pair of indices, but also in the first ! 

Theorem (9.55) : Let e be an orthonomal frame field on a Riemannian mani
fold Mn and let a be the dual frame field. Then the Riemannian (Levi-Civita) 
connection is given by the unique matrix W of I -forms that satisfies 

da = - w /\ a 

and 
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P R O O F :  Introduce local coordinates x in the region covered by the frame. The 
Riemannian connection r in these coordinates is given uniquely by the Christoffel 
symbols, r� = rtdxk . Under the change of frame to the frame e, we get new 
unique connection forms w. Since the frame is orthonormal , w is skew symmetric. 
Since the torsion vanishes, the second Cartan structural equation gives da = 
-(t) 1\ a . This shows the existence of the matrix w. For the uniqueness of such w, 

see Problem 9 .5(3) .  0 

9.Sb. Riemannian Surfaces M2 
Let e be an orthonormal frame over a portion of a 2- dimensional Riemannian manifold 
M2. The matrix of Riemannian connection forms, w = (wij ) ,  is a skew symmetric 2 by 2 
matrix of I -forms.  Thus Wl 2 = -W2 1 and W I I = W22 = 0; W is completely characterized 
by the single entry CU1 2 · The same is true of the matrix of curvature 2-forms e = (eij ) .  
Furthermore, el 2 = dW I 2 + CUl 2 1\ CU22 , that is, 

(9.56) 
In particular, the curvature matrix of 2-forms is exact, e = dcu, in the entire region 
covered by the orthonormal frame. 

In Section 8.5 we discussed curvature, but always in the context of a coordinate 
system, that is, the frame was always a coordinate frame. We should note a simple fact 
about coordinates, in any dimension . If x is a coordinate system with origin at p and if 
P is any nonsingular constant matrix, then x'  = P x defines a new coordinate system 
x' for which 8' = 8(axjax' )  = 8P- I . In particular, given any frame e at p, by an 
appropriate choice of P we may find a new coordinate system x' such that 8'= e at p ;  
thus if e  i s  a frame field i n  a region holding p, w e  may always find a coordinate system 
x' whose coordinate frame at the single point p is e !  

Let e b e  an orthonormal frame at the point p of M2 (with dual frame a ) .  Let x '  b e  a 
coordinate system whose frame 8' coincides with e at p.  Since this coordinate system is 
orthonormal at p, we have, in the coordinate frame at p ,  e ' I 2 = e , I 2 = 2::r<s R' �rsdx'r 1\ 
dx's = Rt l 2 1 2dxt l  1\ dX ,2 = Rt l2 1 2 vol2 = K (p) vol2 , where K = Rt l\2 is the Gauss 
curvature of the Riemannian metric. But under the identity change of frame at p,  8 = e, 
we have e l2 = e ;2 . We thus have 

(9 .57) 
in any orthonormal frame. 

This is a remarkable formula for it says that one can compute the Gauss curvature 
by simply computing the single I -form entry CUl2 in an orthonormal frame ! 

9.Sc. An Example 

Let us compute (using what we shall call Cartan's method) the Gauss curvature of a 
surface with a metric of the form 

(9 .58) 
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This includes, for instance, the case of the sphere ds2 = a2de2 +a2 sin2 ed¢2 computed 
in Problem 8 .5(2) . In fact, we shal l see later that on any suiface we can introduce local 
coordinates in which the metric takes the form (9 .58) .  

The coordinate frame 8/8u, 8/8v is orthogonal but not unit. For an orthonormal 
frame we would have ds2 = <r I ® <r I + <r2 ® <r2 , that is , ds2 = (<r 1 ) 2 + (<r2 ) 2 . (These 
are not exterior products . )  Clearly we should define 

<r ' = du and <r2 = G (u , v)dv (9 .59) 

( i .e . ,  e l = 8/8u , e2 = G- 1 8/8v ) .  We wish to find the unique Wl 2 = -W2 1 satisfying 
(9 .55) .  Put then WI 2 = a (u , v )<r l + b(u ,  v )<r2 for as yet unknown functions a and b. 
Then 

But d<r l = d (du) = 0, and so a = ° and WI 2 = b<r2 . Also 

is to be compared with d<r2 = d(Gdv) = G"du ;\ dv = (G,, / G)<r l ;\ <r2 . Thus 
b = -Gli / G  and so 

( Gu ) 2 WI 2 = - G <r = - GlIdv 

e 1 2  = dWI2 = -Gu"du ;\ dv = - (Guu / G)<r l ;\ <r2 . From (9 .57)  we see 

K = - Guu for metric ds2 = du2 + G2dv2 
G (9.60) 

The reader interested in elasticity might glance at Appendix A, section g, where 
Cartan 's methods are applied to Cauchy 's equations of equilibrium. 

Problems 

9.5(1 ) Use Cartan 's method to compute the Gauss cu rvature of the Poincare metric 
ds2 = y-2 (dx2 + dy2) in the upper half plane and check your resu lt by fi rst 
making a coordinate transformation and using formula (9 .60) d i rectly. Save your 
calculations for later use. 

9.5(2) A cu rve in  the plane, y = f(x) ,  with f(x) > 0, is revolved about the x axis yielding 
a surface of revolution . Write down the metric of the su rface in  terms of x and 
the angular parameter ¢ (using the pictorial inf in itesimal version of Pythagoras's 
ru le, as we i l lustrated for the 2-sphere in Section 8 . 1 a) . Compute the curvature. 

9.5(3) To show uniqueness of the connection form matrix W it is enough to show that 
the only solution to w l\ a  = 0 and Wij = -wji is W = o. Expand Wij = aijka k where 
a is skew symmetric in (i j ) .  But 0 = Wij 1\ a j 

= aijka k 1\ a j then shows that a is 
symmetric in Uk) . Show that such a three- index symbol a must vanish.  
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9.6. Parallel Displacement and Curvature on a Surface 

When is parallel displacement independent of path? 

We saw in Section 8 .7 that parallel displacement of a vector between two points of a 

surface is path-dependent; that is, parallel displacement of a vector Vo around a closed 

curve results in a final vector v f that might disagree wi th Vo . This phenomenon is referred 
to as holonomy (and, as we shall see, is indeed related to the concept of holonomic and 
nonholonomic constraints studied in Chapter 6) .  We gave as an explicit example parallel 
displacement around a small circle on the 2-sphere. There is a remarkable result, in the 
case of surfaces, relating this holonomy vf =f. Vo with Gaussian curvature. 

Theorem (9.61) :  Let U C M2 be a compact region in a Riemannian surface 
with piecewise smooth boundary a u. Assume that U can be covered by a single 
orthonormal frame field e (e.g. , U may be contained in a coordinate patch). Let 
a unit vector v be parallel translated around a u, starting with an initial Vo and 
ending with vf ' e defines an orientation in U. Then the angle �a between Vo and 
vf is given by 

PR O O F : 

u 

Figure 9.1 

Parameterize au ,  let T be the tangent, and let a = L (e " v) . Although a 
(like v) is not single-valued on a u, da = (dajds)ds is well defined and �a = 
,{(vo , Vf) = Jau da . Now v = e ,  cos a + e2 sin a and so 

= e, (- sin ada + WI l sin a)  + e2 (cos ada + W2 ' cos a)  

= (-e,  sin a + e2 cos a ) (da - W'2 ) 
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To say that v i s  parallel displaced around a u  i s  to say Vv(T) = 0 ,  that is ,  from 
the preceding, 

da - Wl 2  = 0 along a u  

(meaning that da (T) = wI 2 (T) ) .  Then 

!1a = J da = J WI 2 = Jr r dW1 2 �u �u Ju 

Note that from (8 . 1 4) we have the following: 

(9 .62) 

Corollary (9.63) : If M2 C JR3, then !1a = the signed area of the spherical image 
of U under the Gauss normal map. 

A connection is said to be flat if the curvature = 0 

for all vectors X and Y. 
e = 0,  or R eX , Y) = 0 

Corollary (9.64): Parallel displacement on a Riemannian suiface is locally in
dependent of path iff M2 is flat, that is, K = O. 

By "locally" we mean that we must restrict our closed path to be the boundary of 
a compact region, C = a u ,  that is covered by an orthonormal frame. Consider, for 
example, the Mobius band obtained by bending and sewing a flat strip of paper. Although 
the usual picture of the band in JR3 appears curved, this 2-manifold with boundary has 
K = 0 since K is a bending invariant. If, however, one paral lel translates the vector e2 
along the midcircle of the band one ends up with e2 ( 1 )  = -e2 (0) . 

ceO) 1---- e ,(O) " " " " " " " " " " " " " " " " , . ,  C( 1 ) t--_ e , ( l )  

Figure 9.2 

This does not contradict Theorem (9 .6 1 )  since the midcircle C does not bound any 
surface. 

We remark further on the hypotheses of the theorem. It is crucial that there be an 

orthonormal frame that covers U ,  for we measure the variation of v by comparing v 
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with el along av .  This requires e to be defined at least along a v .  In order for (V1 2 

to be defined inside V we need. however, e to be defined in all of V . It turns out, 
however, that this is not a serious constraint, at least in the case of an orientable V , for 

the following reason. It can be shown that one can always find an orthonormal frame 

in any noncompact orientable 2-manifold. (It is not true that one can always cover it 
by a coordinate patch.) For example, given a closed orientable surface of genus g, if 

one removes a disc, however small, one can always cover the remaining surface with 
an orthonormal frame. 

This has a remarkable consequence. Let M2 be a compact oriented surface, and let 
U be a small region on M, covered by an orthonormal frame e, and with boundary an 
oriented curve C = a V .  The complementary region M - V is also a compact surface 
whose boundary is the oppositely oriented curve - C .  As mentioned, M - V can also 
be covered by an orthonormal frame e' . Parallel displacement of a vector v around C 

then gives an angular change �a = ffu KdS. But this vector is also being translated 
around C = -a (M - V) ,  and so �a' = - ffM-U KdS, where a' = L (e'l •  v) . Thus 

But d(a - a') = dL(e " v) - dL (e'" v) = dL (e , . e', ) , and so 

In particular, 

_
1
_ Jr r K d S = total number of revolutions that e; makes 

2IT 1M 
with respect to e ,  on going around C. 

_
1
_ Jr r K d S is an integer ! 

2IT 1M 

(9.65) 

(9.66) 

Note that this "Gauss-Bonnet" theorem seems weaker than the Gauss normal map result 
(8 .20), which says that ( l /4IT ) JIM KdS is  an integer, but it should be appreciated that 
(9.66) holds for any (perhaps abstract) closed oriented Riemannian surface, whereas 
(8 .20) holds only for surfaces embedded in lR3 . (We shal l see in Section 1 2 .2a that the 
real projective plane has a metric of curvature 1 that it inherits from the 2-sphere that 
covers it twice. The area of lRP2 is half that of the sphere, that is, 2IT . Thus the integer 
in (9.66) is in this case 1 .  This tel ls us that lRP2 cannot be embedded in lR3 with this 
metric of curvature I !) In Part Three we shall spend a great deal of time discussing this 
topological quantization rule and its generalizations and applications to physics. In 
particular we shall identify the integer involved in (9.66). 

Finally, some remarks about fiat manifolds. Even a closed surface can be fiat accord
ing to ourdefinition ! The torus T2 with the abstract Riemannian metric ds2 = de2 +d¢2 
clearly has curvature O. This is certainly not the usual metric induced from an embedding 
in 1R3 . In fact, we have the following: 

Theorem (9.67): The induced metric on any closed surface M2 C lR3 must have 
some point where K > O. 
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P R O O F :  We shall merely give a sketch. Let x be a point of ]R3 that is  not on  M2. 
Since M is compact, there is a point y on M that is  farthest from x (since every 
continuous function on a compact space achieves its maximum and minimum at 
points of the space). Then the 2-sphere centered at x and passing through y i s  
tangent to M at y 

--------1 y 

Figure 9.3 

and M lies entirely within the sphere . It should be geometrically clear that both 
principal curvatures of M at y are of the same sign (since M must be bending 
toward x at the farthest point) and of magnitUdes greater than or equal to those of 
the 2-sphere. Thus, at y we have KM 2: 1 1 Y - x 1 1 -2 > O. D 

Although the flat metric on the torus is not that induced from an embedding in ]R3, it 
is remarkable that this metric is induced from the following embedding in ]R4 , the so
called Clifford embedding: 

X l 
= cos e ,  X3 = cos cp ,  

for certainly then ds2 = 'L,(dx i ) 2 = de2 + dcp2 . Note also that this torus is in fact a 
2-dimensional submanifold of the 3-sphere 'L, (Xi )2 = 2 in ]R4 . 

Problems 

9.6(1 ) What is wrong with the fol lowing argument found i n  many books? A vector v 
is paral le l  d isplaced around a small closed cu rve C = a u2 in an n-dimensional 
manifold Mn. Then dvi = _wi jvj along C. Thus the total change in  vi on going 
around C is g iven by 

"" Vi = i dvi = - j jjvj 

= - J fu d(jjvj) 
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9.7. Riemann's Theorem and the Horizontal Distribution 

9.7a. Flat Metrics 

Linear algebra tells us that a constant quadratic form Q = Qijdxi dxj in ]R1l can always 
be reduced to diagonal form Q = L: Ai (dZi ) 2 by an orthogonal change of coordinates, 
Zi == pi jxj (see Problem 8 .2( 1 )) .  If Q is  positive definite, we can make a further (non
orthogonal linear) transformation / = Zi A that will reduce Q to a sum of squares 
Q == L:(dyi )2 . We may say that a constant Riemannian metric can always be reduced 
to the "flat" or "euclidean" form. Suppose now that we have a variable Riemannian 
metric gij (x )dXi dxj in a coordinate patch of an Mil . By the previous arguments, we 
may always make a linear change of coordinates i = pi jxj SO that the metric will 
take the form L: (d/ )2 at a single point, say the origin. Is i t  possible that by making 
perhaps a non-linear change of coordinates y = y (x ) we can put the metric in the 
locally euclidean or flat form L: (d/ )2 in the entire coordinate patch,  or at least in 
some neighborhood of the origin? 

It was for precisely such considerations that Riemann was led to introduce his 
curvature tensor; we know that if one could introduce such coordinates y, then gij = Dij 
in those coordinates, the Christoffel symbols would vanish and so the curvature tensor 
in the y coordinates would vanish. S ince the curvature tensor is a tensor, it would have 
to vanish in the x system as wel l ;  in order that a Riemannian metric can be reduced to 
the locally euclidean form, the Riemann tensor must vanish. Riemann also noted that 
the converse is also true. We shall now discuss all these matters from a more geometrical 
viewpoint. 

9.7b. The Horizontal Distribution of an Affine Connection 

Parallel displacement of a vector v along a parameterized path C in Mil is described by 
the local system of differential equations 

dvi . (dxj ) dt + W}k (X) Vk dt = 0 

The functions (x (t ) ,  v et ) )  define a curve C' in the tangent bundle TM to M that lies 
"over" the curve C (recall that (x , v )  are local coordinates for TM). 
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v 

x 
c 

Figure 9.4 

Since the projection map 7r : T M -+ M is  of the form (x , v) -+ x, that is, since we 
are allowing ourselves to use x for coordinates in both M and TM, the pull-back of the 
connection forms W on M to TM is given by the same expressions as W in M 

* ( i ) * ( i d j ) i d j 7r W k = 7r wjk X = wjk X 

For this reason we shall frequently omit the pull-back symbol 7r * . Then parallel dis
placement tells us that the lifted curve C' is that curve in TM over C having the property 
that the following I -forms in TM 

vanish when restricted to C', JLi [ (dxr /dt )8/8xr + (dvr /dt)8/8vr ) ] = O. We write 
simply 

(9.68) 

as the equations describing parallel displacement. 
The Pfaffian equations JLi = 0, i = I , . . .  , n ,  define a distribution H in TM. Since 

JL 1 /\ • • •  /\ JL" = dv 1 /\ • • •  /\ dvn + terms involving the dxj , we see that JL I , • • •  , JL" are 
linearly independent, and thus the distribution is a distribution of n-planes in the 2n

dimensional TM. Furthermore, it i s  clear that no nonzero "vertical" vector aj {) / {)vj,  
that is, a vector tangent to a fiber 7r - I (x ) ,  is ever in this distribution . This implies that 

at every point the n-plane distribution is complementary to the vertical n -planes that 
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are tangent to the fibers . There is usually no natural Riemannian metric in TM and thus 

it makes no sense to talk of H as being orthogonal to the fibers ; still , we shall refer to 
H as being the horizontal distribution. 

We should remark that although H has been defined using local coordinates and 
while we certainly cannot expect the individual forms f.Li to have intrinsic meaning, the 
distribution H does have global meaning, since it has been constructed using parallel 
displacement. Analytically, if f.L" = dv" + w" k V'k are the forms in an overlapping 
patch, then, under the change of frame 8' = 8 P in M, we have v' = P - , v and then, 
from (9.4 1 )  

J.L' == dv' + w'v' = d (P- ' v)  + (P - ' wP + P- ' d P) P- ' v = dP- ' v + P- ' dv 
+ P- ' wv + P- ' dP  P- ' v = P- ' (dv + wv) = P- ' f.L 

Thus J.L == 0 iff f.L' = 0, and H is well defined. Hence 

Theorem (9.69) : A connection for M yields a distribution ofn-planes H in TM 

(the horizontal distribution) that is transverse to the fibers. A curve C' in TM 

represents parallel translation of a vector along a curve C in M iff C' covers 
C, rr C' = C, and C' is tangent to the distribution H. 

To say that v returns to itself after being parallel translated around a closed curve C 

in M is to say that the "lift C' of C to TM via v," that is ,  x = x (t ) , v = v et ) ,  is itself a 
closed curve tangent to H.  

---------- � TM 

Figure 9.5 

leaf of H through (,<0. vo) 

M 
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lfthe distribution H i s  integrable, and i f  we  choose a closed curve Cl that is so smau 
that its lift C; lies in a Frobenius chart (see 6. 1 a), then C; will also have to be closed 
since it wil l have to lie on a small portion of a leaf of the foliation ; see the figure. This 
need not be the case if the curve C is "long," as illustrated. On the other hand, if H is 
not integrable, we do not expect a closed curve C to have a closed lift C' .  

When is the horizontal distribution H integrable? 

Theorem (9.70) : The horizontal distribution H is integrable (and consequently 
parallel displacement is locally independent of path), iff the curvature vanishes, 
that is, Mn is flat. 

P R O O F :  H is defined briefly as fL = dv + wv = O. Then 

dfL = d2v + dwv - w /\ dv = dwv - w /\ (fL - wv) 
= (dw + w /\ w)v - w /\ fL = ev  mod fL 

where by "mod fL" we mean the result of putting fL = 0 (see 6. 1 c) .  Thus dfL = 
e v  = 0 mod fL if e = O. Thus H is integrable if the curvature vanishes. On the 
other hand, if H is integrable, then, from Theorem (6.2), 

0 = dfLi /\ fL l /\ . . . /\ fLn 
= (e i j Vj - Wi j /\ fLj ) /\ fL l /\ . . .  /\ fLn 
= e i j Vj /\ fL l /\ . . . /\ fL" 
= e i j Vj /\ (dv l + W l k Vk ) /\ . • •  /\ (dv" + Wn r Vr ) 
= e i j Vj /\ d v I /\ . . .  /\ d Vn + terms where some d vj is missing 

Hence e i j vj = 0 for i = 1 ,  . . .  , n ,  and all v .  Thus e = o. 0 

9.7c. Riemann's Theorem 

Theorem (9.71 ) :  In a Riemannial1 manijold, one can introduce local coordinates 
y such that the metric assumes the euclidean or ''flat '' form 

iff the curvature vanishes, e = o. 

P R O O F : The "only if" part has already been discussed in 9.7a. Suppose now that 
the curvature vanishes . Then the horizontal distribution H 

is integrable. (Here r are the coefficients of the affine connection with respect to 
the coordinate frame a/ax , that is , the Christoffel symbols . )  Since H i s  transverse 
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o the fibers Jr- I (x) of TM, this means (as in the system of Mayer-Lie of Section �.2b) that we may locally solve the system of partial differential equations 

(9.72) 

Vi (xo) = v� prescribed 

In particular, given Xo and given n l inearly independent vectors e? , . . .  , e� at Xo , 

we may find vector fields e l , . . .  , ell coinciding with eO at Xo and each satisfying 
(9.72); that is, each is covariant constant 

Ver : =  Ver (a 
a . ) = 0 (9.73) 

ox} Xl 

for all r and j .  Thus if we let w be the connection forms with respect to the new 
frame e, we have Ve = ew = 0, and so w = O. 

Note that we have actually shown, so far, the following . 

Theorem (9.74) : For any affine connection with curvature 0, one can find a local 
frame of covariant constant vector fields. 

Finally, consider the I -forms u dual to the frame e. If the connection is sym
metric, as it is in the Riemannian case, we have du i = -Wi j 1\ uj = 0, and 
so each of the I -forms ui is closed and, by Poincare, locally exact. Thus there 
are local functions y l , . . . , yn such that ui = dyi . This means that ei = a j ayi . 
In the Riemannian case, if the eO had been chosen orthonormal at Xo,  then the 
frame fields e would also be othonormal in the entire y coordinate patch since 
d(ej , ej }  = (Vei , ej ) + (ei ' Vej ) = O.  Since the coordinate frame ajay is 
orthonormal we have ds2 = (dy l ) 2 + . . .  (dyn)2 . D 

A final remark. Let M2 be the frustum of a cone that is tangent to a small circle C 
on the round 2-sphere. The cone is flat, yet we have seen, when first discussing parallel 
displacement, that parallel displacement of a vector along C does not return the vector 
to itself; there is no covariant constant vector field on the flat cone ! This does not violate 
Riemann's theorem since that theorem only locally exhibits a flat frame. 
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Geodesics 

How rapidly do nearby geodesics separate? 

10.1.  Geodesics and Jacobi Fields 

10.la. Vector Fields Along a Surface in Mn 
Let x :U C �2 -+ Mil be a differentiable map of a rectangle in the plane into Mil .  We 
call this map a (parameterized) surface even though we put no demands on the rank of 
the differential X* ; that is ,  dX/dU 1 and dX/dU2 may be dependent. 

v 

u 

Figure 1 0. 1  

Let u s  again put u 1 = u and u2 = V .  
A smooth map v : U C �2 -+ M that assigns to each Cu , v) in  the rectangle a 

tangent vector v(u , v) to M at x(u , v) will be called a vector field along the surface x. 
In particular, dX/dU  and dX/ dV  are both vector fields along x that happen to be "tangent" 
to the surface. Of course [8/8u , 8/8 v ] = 0 in U, but we cannot talk of [dX/ dU ,  dX/dV ]  
since the two entries in the bracket are not vector fields on  Mil . I f  they were vector 
fields, we could consider their bracket, and if Mil had a torsion-free connection this 
bracket could be expressed in terms of covariant derivatives (see (9. 1 6» .  Even when 
they are not vector fields we stil l have that, for example, dX/dV  is defined along the 
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orbit o f  ax/au ,  that i s ,  the u-curves. The following is  an  important computational tOol 
that replaces (9. 1 6) .  

Theorem (10.1 ) :  Let x be a surface in a manifold Mn with a symmetric connec
tion. Then we have, as vector fields along the surface, 

v ( ax ) v ( ax ) 
au  a v  = a v  au  

P R O O F :  Let x I , . . .  , xn be  local coordinates for M. Then, for example, ax/av == 
(ax i /av )8i , where 8i = 8/8xi . If we fix v, then taking the covariant derivative 
of ax/a v along the u -curve gives , from Leibniz, 

Now ax/au = (axj / au )8j and using V 8j 8i = WJi 8k yields V /au «axi /av )8i ) 
= (a2xi / auav)8i + (aXi /av ) (axj /au )w� i 8k > which is symmetric in u and v since 
WJ i = wfj ' 0 

The next result is a replacement for Theorem (9. 1 0) .  

Theorem (10.2) : Ifw is a vector field defined along the surface, 

where R(ax/au, ax/av) is the curvature transformation defined in Theorem (9. 10). 

P R O O F :  w = wi (u , v )8i . Then 

and so 

V (VW )
= 

v { ( awi )
8i + wi V8i } 

au  a v  au  a v  a v  

_ ( a2wi )
8 

( aWi ) V8i ( aWi ) V8i 
- -- i + - -- + - --auav  a v  au  a u  a v  

i V (V8i ) 
+ w - --

au av  

V (VW ) V (VW ) 
au a v  a v  a u  

= Wi { V (V8i ) _ V (V8i ) }  
au  a v  a v  a u  

( 1 0. 3) 



But 

Thus 

Then 
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V { (V8i ) _ V (V(8i » ) } au av av au 
= { ( aaX; ) ( aa:

k ) _ ( aaX: ) ( aaXvk ) }VokVoj 8 i 

= ( aa:
k ) ( aaX; ) {V Ok V OJ 8i - V OJ V 8k 8d 

= ( aa:
k ) ( aaX; ) R (8b 8j ) (8J 

= R ( :: ' ::) (8J 

Putting this in ( 1 0.3)  yields ( 1 0.2) .  D 

IO.lh. Geodesics 

271 

We now return to the discussion of geodesics initiated in Section 8 .6 ,  but now we shall 
carry out the calculation intrinsically and in an n-dimensional Riemannian manifold 
Mn. Since our definition of covariant differentiation was tailored after the discussions 
in that section it should come as no great surprise that we can essentially mimic the 
calculations given there. 

Let C be a curve in the Riemannian Mil . To "vary" C is to consider a surface 
x : [0, L] x (- 1 ,  + 1 )  -+ Mn parameterized by s and a 

D! - - - - - 1- - - - -

�------�----� s L 

-l r-----�----� 

Figure 1 0.2 
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such that x(s, 0 )  describes the original curve C.  The varied curve Ccx i s  given by 
s � xes, a ) ,  where s is arc length for a = 0, that is, along the base curve, but 
not necessarily so when a =f. O. We proceed as in 8 .6 .  The length of C", is L (a) _ 

L -
fo ( ax/as , ax/as } I /2ds .  

Since M i s  Riemannian, we have 

a
: (v, w) = (;: ' w) + (v,  ::) 

In the derivation of (8 .36) we used a2x/aaas = a2x/asaa ;  this is now replaced by 
( 1 0. 1 ) , that is ,  V /aa(ax/as) = V /as (ax/aa) .  In Problem 1 0 . 1 ( 1 )  you are asked to 
show that 

and 

r _ lL ( ax ax ) - 1 /2 ( V ( ax ) ax ) L (a) - - , - - - , - ds 
o as as as aa as 

( 10.4) 

Here T = axes ,  o) /as is the unit tangent along C, J = axes ,  O) /aa is the variation 
vector, and P = x(O, 0) and Q = x(L , 0) are the beginning and endpoints of C .  

We now shall call any parameterized curve C,  x = x (t ) ,  a geodesic i f  
V (dX ) dt dt = 0 ( 10.5) 

Note then that 

:t ( �; , �;) = 2 ( �; , : (�;) ) = 0 

This shows that II dx/dt 1 1 =  constant, and so the parameter t is, exceptfor an additive 
constant, proportional to arc length. We shall call such a parameter a distinguished or 
affine parameter. 

A geodesic thus gives, from ( l0.4), first variation zero for variations that vanish at 
the endpoints. 

to.te. Jacobi Fields 

Let C now be a geodesic, and let us vary C by curves C", where each C", is itself a 
geodesic, parameterized by a parameter s that is proportional to arc length. The best 
example to keep in mind is probably the family of great circles on the round 2-sphere 
all passing through the north pole. 

In talking about geodesic "separation" we are interested, as far as local coordinates x 
go, in the behavior of a pair of points x (s ,  a) and x (s , 0) as we increase s ,  that is, as we 
move along both geodesics at unit speed. The n -tuple x i  (s , a) -xi (s , 0) has usually non
l inear behavior as a function of s .  Jacobi 's equation, to be derived later, is the linear equa
tion governing the linear approximation aJ = a [ax (s , a )/aa]",=o to [x (s , a) -xes ,  0) ] . 

Let us use the notation T = axes , a)/as  for the tangents to the geodesics along the 

curves and J = axes ,  a)/aa for the variation vectors ; although these usually are not 
vector fields on M, they are vector fields along the surface of variation. A differential 
equation satisfied by the variation vector field J(s , 0) can be obtained as fol lows .  
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Since each Ca is a geodesic we have VT las = 0 for all a . Thus, from ( 10.2) and 
( 1 0. 1 ) we have 

or 

V (VT ) V (VT) 
o = - -- = - - + R(J, T) (T) 

aa as as aa 

= 
V { V ( ax ) } + R (J, T) (T) 
as aa as 

= 
V { V ( ax ) } + R (J , T) (T) 
as as aa 
V (VJ) 

= - - + R (J, T) (T) 
as as 

V2J 
-2 + R (J, T) (T) = 0 
as 

( 1 0.6) 

This i s  Jacobi's equation of geodesic variation. If we put a = 0, it i s  a (complicated) 
second-order system of linear ordinary differential equations for J in terms of s .  Any 
field J along a geodesic C that satisfies ( 1 0.6) will be called a Jacobi field along C. It is 
not difficult to see that a Jacobi field always arises as the variation vector field resulting 
from varying the given geodesic by some I -parameter family of geodesics. For such 
matters see [M] .  

In the case of a 2-dimensional surface M2 this  equation reduces to a simple form 
discovered by Jacobi .  Let C be a geodesic with unit tangent T and let T-L be a unit vector 
field along C that is orthogonal to T. T is parallel displaced along C and, consequently, 
so is T-L (why?). Let J be a Jacobi field along C .  We may expand 

J(s) = x (s )T + y (s )T-L 
where x and y are the tangential and normal components of J. S ince VTlds = 0 = 
VT-L Ids , Jacobi 's equation becomes 

Then 

V2 J d2 X d2 Y -L -L 
- = -T +  -T = -R (xT + yT T)T 
ds2 ds2 ds2 ' 

= -R (yT-L , T)T = -yR(T-L , T)T 

d2 Y -L -L 
ds2 

= -y (R (T , T)T, T ) 

Let us express everything in terms of the orthonormal frame e j  = T, e2 = T-L along 
C. Since ( R (X, Y)Z, W) = R�klX

k yl Zj Wi we see from (9 . 54) and (9. 1 3) that 

( R (e2 , e j )e l , e2 ) = Rf2 1 = R2 1 2 1 = R I 2 I 2 = K 
Jacobi's equation becomes 

( 1 0.7) 

The function y represents , roughly, how the "normal" separation of nearby geodesics 
is Changing as we move along the geodesics .  Consider, for example, the great circle C 
of longitude zero on the 2-sphere defined by ¢ = 0, starting at the north pole e = 0 
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and ending at the south pole e = rr . We can vary C by the meridians o f  longitude 
¢ = constant; our parameter ex = ¢ in this case. Equation ( l 0 .7) in this unit sphere 
case becomes d2 y / de2 + y = 0 and since y = 0 at e = 0, the solution is y = A sin e 
We see just from this that the geodesics that were originally separating at the north pole 
tend to come together at the south pole. In fact, J = ax/ a¢ ,  T = ax/ ae ,  and T.l is 
ax/ a¢ made unit. Then y = II ax/ a¢ II = sin e .  

In the n-dimensional case, J represents how the geodesics, i n  a I -parameter family of 
geodesics, are separating. It is not true, however, even in 2 dimensions, that if J (so) ::: 0 
for some arc length value so , the geodesics have actually come together (as they did 
in the round S2 case) ; it means only that the separation distance vanishes in the linear 
approximation at so . 

From ( l 0.7) it is clear that the sign of the Gauss curvature K is crucial for un
derstanding the behavior of nearby geodesics on a surface .  If K (u , v )  > a -2 > 0 is 
positive on M2 then the Sturm theory of differential equations tells us that if y eO) ::: 0 
then y (so) = 0 for some So < rra ,  and thus a family of geodesics that start at the same 
point will meet again,  in the linear approximation, before traveling a distance rra .  On 
the other hand, if K (u , v) s 0, and if y eO) = 0, then y es )  will never vanish again 
unless y is identically o. This does not mean that a pair of geodesics starting out from 
a point will not meet again; on the flat torus ds2 = de2 + d¢2 , the geodesic ¢ = 0, 
and the geodesic e = 0 start at (0, 0) and meet repeatedly at (2rrm ,  2rrn ) .  It means 
only that a I -parameter family will not come together. There are similar statements 
about the influence of the Riemannian curvature tensor on the "stability of geodesics" 
in n dimensions .  Arnold [A, p. 340 ff. ] discusses the problem of long-range weather 
prediction using an infinite-dimensional version of Jacobi 's equation. 

lO.ld. Energy 

We have discussed geodesics in terms of yielding a critical point for the length functional 
f II dx / dt I I dt ,  that is , first variation zero ; in classical language 8 f I I dx / dt I I  dt = O. 

It is not difficult to see (in fact the computation is even simpler) that one also gets 
geodesics by varying the integrand II dx / dt 1 1 2 instead 

(It should be noted that unlike the case of arc length, this integral depends on the 
parameter t employed. )  This new functional is called the action or energy for reasons 
that will become apparent in the next section . Some books (e.g . ,  [M] ) discuss energy 
rather than length, with final equations that are always rather similar to ours . 

Problems 

1 0. 1  (1 ) Derive ( 1 0.4) . 

1 0. 1 (2) Consider the Poincare upper half plane, ds2 = y-2 (dx2 + dy2 ) .  As in Problem 
9 .5( 1 ) we have an orthonormal frame e1 = ya/ax,  e2 = ya/ay. Show that 
the vertical l i nes are geodesics, Ve2/ds = 0, by using Cartan's equations 
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Ve2/d5 = e1 w1 2 (e2) .  Then J = a/ax is a Jacobi f ield along the geodesic x = O.  

Verify that Jacobi 's equation ( 1 0.7) is i ndeed satisfied.  Note that I I J 1 1 --+ 00 as 
y --+ 0; that is, the vertical geodesics are separating as we approach the x axis. 

1 0.1 (3) Show that a Jacobi field J that is orthogonal to its geodesic at two distinct 

parameter  values 5 = 0 and 5 = 51 =I 0 (e .g . ,  if J van ishes at 5 = 0 and 

5 = 51 ) must always be orthogonal to the geodesic. (H int :  Derive from ( 1 0 .6)  

a second-order d ifferential equation that is satisfied by (J, T) . )  

10.2. Variational Principles in Mechanics 

Consider a double planar pendulum with arms of different lengths. Is  there always a periodic 
motion where the top arm makes p revolutions and the bottom makes q ?  

I n  Section 4.4 we discussed analytical dynamics i n  phase space, that i s ,  the cotangent 
bundle T* M to the configuration space Mil . Our main purpose was to exhibit the 
usefulness of both exterior differential forms and the fact that Hamiltonian mechanics 
is, in a sense, the discussion of a particular vector field on T * M x lR and its effect 
on the symplectic form {j}. Hamilton's variational principle in phase space, Problem 
4.4( 12) ,  due, I believe, to Poincare, was carried out using Lie derivatives to calculate 
the variations. In the present section we shall return to these considerations, but we 
shall emphasize more both the physical and geometric motivation and also the classical 
language of the variational calculations .  We shall also include the relation between 
Hamilton's principle and the geodesics on the configuration space. We shall defer the 
tensorial properties of the variational calculus to Section 20. 1 .  

We shall use a brief notation, omitting indices whenever possible; for example, we 
shall write pdq rather than Pidqi . 

10.2a. Hamilton's Principle in the Tangent Bundle 

The configuration space of a dynamical system is an n-dimensional manifold Mil . Let 
q I , . . . , qn be local coordinates in Mil . 

The kinetic energy is frequently of the form T = ( 1  j2)gij (q )(/  qj , where gij (q ) is a 
positive definite matrix constructed out of a metric tensor for Mil and also the masses 
of the particles of the system. For example, in the case of a particle moving in the plane 
with polar coordinates q I = r and q2 = e we have gee = mr2 since 

It is sometimes convenient to use 2T to define a new Riemannian metric for Mil , 
ds2 = gij (q )dqidqj . Thus (iJ ,  q )  = 2T .  The momentum p is the covariant version of 
the velocity, Pi = gij q

j . The obvious expression of Newton's law of motion in the case 
when the forces are derived from a potential , dPi jdt = -0 V joqi , makes no sense since 
the right-hand side gives the components of the covector -dV ,  whereas the usual deriva
tive ofa covector (or a vector) along a curve has no intrinsic meaning. To remedy this we 
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write the proposed "law" i n  contravariant form, dqk / dt = _gki 0 V / oqi = - (grad V)\ 
and then replace the ordinary derivative by an intrinsic or covariant derivative 

In coordinates 

Vq - = - grad V dt 

dq i 
+ ri . j ' k _ _ i k O V 

dt jkq q - g oqk 

( 10.8) 

It should not be surprising that Newton's law can be put in the form of a variational 
principle since the intrinsic derivative arose, in our treatment, when considering the 
variation of arc length. 

Consider a variation q = q (t , a) of a parameterized curve q = q (t) in M ;  we write 
q (t , a) = q (t) + al1 (t ) ( 10.9) 

for some function 11. Then oq (t , a)/oa = l1 (t ) .  Classically [oq (t , a)/oa]a=O = l1 (t) is 
written oq , and is called a virtual displacement. Then the first derivative of the integral J: V (q)dt is classically written 

o lb V (q )dt = (:a ) a=Jlb V (q )dt] 

= lb [ O V (q) ] [ Oq ] dt 
a oq aa a=O 

= lb [ a V (q) ] I1dt = lb [ O V
(q ) ] oqdt 

a aq a aq 

Consider now the variation of the kinetic energy 1: ( 1 /2) (q , q )dt . The integrand is  now 
a function T of both q (which appears in the metric tensor) and q .  We have computed 
the first variation of the more complicated 1: ((1 ,  q )  1 /2dt in ( 1 0.4) . Essentially the same 
computation (but easier ! )  wil l  give 

lb 1 o - (q , q )dt = (oq , q ) (b) - (oq , q ) (a )  
a 2 

- lb \ :; , oq )dt 

We then see that Newton's law ( l 0.8 )  is  equivalent to the variational principle 

provided 

o lb Ldt := o lb (T - V)dt = 0 

oq = 0 at t = a and t = b 

( 10. 10) 

( 1 0. 1 1 ) 

We now accept as a generalization Hamilton's principle ( 1 0. 1 1 ) ,  for systems with a 
general Lagrangian L = L (q ,  q ,  t ) ,  at least in the case where all the forces are derived 
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from a potential. We shall write down the associated Euler-Lagrange equations using 

classical notation. 
L is a function in the extended tangent bundle T M x lR of the configuration space 

M. Then a variation ( 1 0.9) of a curve C in M will yield a variation of the velocities. 
From ( 1 0.9) , q (t . a) : = aq (t , a) /a t  = q (t )  + a � (t )  and so 

8q = � = (8q ) "  ( 1 0. 12) 

Thus a curve q (t )  in M yields a lifted curve {q (t) , q (t ) ,  t }  in T M x lR and we shall 
consider a variation of this l ifted curve that arises, from ( 1 0. 1 2) ,  as the lift of the variation 
in M !  We make no variation of the time parameter t. Then, in cIassical language (all 
integrations going from t = a to t = b) 

8 J L (q , q , t)dt = J { (�� ) 8q + ( �� ) 8q }dt 

= J { ( �� ) 8q + ( �� )  :
t 

(8q ) }dt 

= J { ( �� ) 8q + :
t [ ( �� ) (8q )] }dt - J [:

t 
( �� ) ] 8qdt 

= J { ( �� ) - :
t 
( �� ) } 8qdt + [ ( �� ) (8q )] I : ( 1 0. 1 3 ) 

Since we assume that the variations vanish at the endpoints, 8q (a )  = 8q (b) = 0, and 
since the variations 8q inside are arbitrary, we get Lagrange's equations 

aL _ !!.- ( a L ) = 0 
aq dt aq 

( 1 0. 1 4) 

Since the parameter a no longer appears (we are evaluating the derivative at a = 0) we 
have written d/dt rather than a/a t .  

to.2b. Hamilton's Principle in  Phase Space 

( 10. 1 1 ) ,  that is, Hamilton's principle in T M, was the starting point of our treatment of 
mechanics in Section 4.4a. 1t led, in Problem 4 .4( 1 2) to Poincare's version of Hamilton's 
principle in phase space T* M. In cIassical language, 

8 J pdq - H dt = 0 ( 1 0. 1 5) 

They are equivalent (at least when the map p : T M ---+ T* M given by p = a L /aq 
i s  invertible) since Lagrange's equations and Hamilton' s  canonical equations (4.47) 
are equivalent. However, the differences in these two versions of Hamilton ' s  principle 
should be kept in mind. 

In the variational principle leading to Lagrange 's  equations earlier we considered a 
curve q = q (t) in M, its unique lift to T M x lR (using q = dq / dt) ,  and variations in the 
velocity variables that arose from the time derivatives of the variation of the coordinates, 
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oq = djdt (oq ) .Thus a variation o f  the configuration space curve led to a unique 
variation of the lifted curve in T M.  The variations of q and q are not independent! 

In PoincanS's version we deal directly with an arbitrary curve C ,  q = q (t ) ,  p == p(t), 
lying in T* M x JR, that does not necessarily correspond to a lifted curve in T M. Thus 
if we solve for q in terms of q and p = aLjaq ,  that is , when we look at the curve 
in T M corresponding to C, q is not necessarily dq j dt ! Furthermore, the variations 
8q and op are arbitrary: We deal with variations that are not the lifts of variations of 
curves in M. Although we do again require that oq = 0 at the endpoints, we make no 
such requirements on op . Not only this, in the phase space version we may even vary 
the time parameter t ,  provided ot = 0 at the endpoints. Hamilton's principle in r*M 
is simpler; for one thing, pdq - H dt is simply a I -form in the space T* M x lR, and it 
is a simple matter to differentiate the integral of a form using the Lie derivative. This 
is the reason why the symplectic form (J} is conserved under the canonical flow. 

Let us reproduce the derivation of (4.48), but given now in classical notation. Instead 
of ( 1 0. 1 2) one writes 0 dq = d oq , and so forth. Then 

o J pdq - Hdt = J opdq + podq - o Hdt - Hodt 

= j·
OPdq + pd(oq ) - ( a H  oq + aH op + aH ot) dt - Hd(ot ) aq ap at 

= J opdq + {d (poq) - dpoq } 

( a H  a H  a H ) - -oq + -op + -8t dt - {d (Hot)  - dHOt } aq ap a t  

= J [-dP - (�;) dt] oq + [dq - ( a
a;) dt] 8P 

+ [- ( a
a�) dt + dH] ot + J d [poq - Hot] ( 1 0. 1 6) 

Since oq = 0 = ot at the endpoints, the last integral vanishes . Since oq , op, and 8t 
are now otherwise arbitrary, we conclude that 0 f pdq - H dt = 0 is equivalent to 
Hamilton 's equations. 

to.2c. Jacobi's Principle of "Least" Action 

The kinetic energy T, as a function on T M, yields a Riemannian metric on M 

/ dq dq ) = ( . . )  = 2T 
\ dt ' dt q, q 

We have already defined L = T - V ,  and so, since p is the covector associated 
to q ,  H = pq - L = (q , q )  - (T - V) = T + V is the total energy. Assume that 
H = H (q , p) is independent of time, a H j a t  = O. We know from Hamilton 's  equations 



V A R I A T I O N A L  P R I N C I P L E S  I N  M E C H A N I C S  279 

t H is a constant of the motion. Thus the trajectory C of the dynamical system, that is ,  :� q (t), p = p et) satisfying dq jdt = oH jop and dpjdt = -o H  joq in T* M,  lies 
on the constant energy locus 

VE = { (q , p ,  t )  : H (q , p) = constant E }  

Furthermore, assume that dH =1= 0 on VE (by Sard's theorem this i s  generically so) . 
Then this locus V E is a 2n-dimensional submanifold of T*  M x R We shall assume 
that the given trajectory C is such that E - V is always positive along C. Project the 

curve C down into the configuration space M, obtaining the curve C', which describes 
the spatial configurations traced out by the dynamical system. We shall now vary the 

curve C in T* M x lR as follows. In Figure 1 0.3 we illustrate the special case of the I 

dimensional harmonic oscillator with H = p2 + q2 . 

T*Mx IR 

r��,L--r--T----- P 

q 

q 
Figure 1 0.3 

Let C� be a variation of the curve C' always starting and ending at the same points 
as e', that is, 8q = 0 at the endpoints q (t l ) and q (t2 ) .  We are going to lift the varied 
curves C'(ex) to yield a variation ofC that always lies on the hypersuiface H = E, by 
merely changing the speed at which we traverse C' (ex) in M. We do this as follows. The 
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curve C' (a ) is  some parameterized curve qOl = q (r ) .  Consider the velocity q = dq /dr 
at the point q (r ) .  This determines a specific Pr = 3 L/3ij in the momentum fiber OVer 
q (r ) ,  that is ,  the vector space �" of all covectors at q (r ) ,  but this point in the fiber 
need not lie on H = E .  The hypersurface H = E intersects this fiber in the quadratic 
(n - I ) -dimensional ellipsoid T(p) = E - V (q (r »  defined by the kinetic energy. We 
may assume that the constant E - V (q (r»  is positive, since this was true for the original 
curve C.  Thus Pr is a nonzero vector in the fiber �" and so a un ique positive multiple 
of it will end on the ellipsoid T (p) = E - V (q (r ) .  This is the new momentum that We 
assign to the point q ( r )  on C� ; it is simply a positive multiple of the original Pr on C� . 
By doing this at each q (r ) on COl we define a lift of C� that lies on H = E ;  that is, we 
have covered each C� by a curve COl representing a motion with total energy H = E. 

By construction, each COl starts at the same q and t = t ,  as does C (with perhaps 
different p) and although all end at the same q they needn 't all end at t = t2 ' The time 
t = t2 (a) is determined by the fact that the spatial locus C� is given together with the 
speed along this locus ,  since H = E .  

Look now at Hamilton 's principle i n  phase space and the variational calculation 
( 1 0. 1 6) .  

If  all of  the COl ended at  the same t = t2 , then Hamilton's principle would give 
8 Ie pdq - Hdt = 0 since C = C (O) is a Hamiltonian trajectory, but now we can 
expect the boundary term .f d[p8q - H8t l  to play a role .  From ( 1 0. 1 6) 

8 1 pdq - Hdt = [p8q - H8t li 
where 1 is the beginning point and 2 is the endpoint, all in T* M x R But 8q vanishes 
at both ends, and 8t = 0 at the beginning, and so 

8 1 pdq - Hdt = -E8t2 

rather than O. On the other hand, since our varied curves all lie on H = E, we have 
directly 

8 1 pdq - Hdt = (8 1 pdq ) - EOt2 

Comparing these expressions gives the fol lowing : 

Theorem (10.17): Consider all parameterized smooth curves C' in configuration 
space M, q = q (t ) ,  starting at qo and ending at q , .  each parameterized so that the 
total energy H is a given constant E along the path. Then rq, pdq is afunctional J qO 
of the path. A path C' is the projection of a Hamiltonian trajectory in T* M x � 
(i. e. , C' is the trace in M of a path of the dynamical system) iff 

8 J pdq = 0 at C' 

for all variations having H = E and 8q = 0 at the given endpoints. 
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This principle can be put in the fol lowing form. Along the curves q = q (t ) in M 
arameterized by time, we have pdq = p (dq/dt)dt = 1 1 q 1 1 2  dt = 2Tdt ,  where T is fhe kinetic energy. Thus, vaguely speaking, the trace of the dynamical system point in 

q_space is such that 

8 j Tdt = 0 

among all  curves with the same total energy E. (Note, however, that the t interval of 

integration changes for curves in a variational family. ) This is the principle of least 

action of Maupertuis and Euler ( 1 744) . Jacobi restated and proved the following 
version, using the language of geodesics. 

If we have H = E along the path, then T = H - V (q )  = E - V (q ) .  Now 

ds = 1 1 if I I dt = v'lJTdt ( 1 0. 1 8) 

is the element of arc length in M given by the kinetic energy, and so ..fiT dt = 
,JiJfJfdt = JTds = [E - V (q ) ] 1 /2ds . We then have 

Theorem (10.19) : Jacobi 's Principle of "Least" Action 
The trace in M of a Hamiltonian trajectory of constant total energy E is a 

geodesic in M for the Jacobi metric given by dp : =  --Ifds = [E - V (q ) ] 1 /2ds, 
where ds is the standard metric given by the kinetic energy 

8 j dp = 8 j[E - V (q ) ] 1 /2ds = 0 

Note that this metric is only defined on the part of M where E > V (q ) ( i .e . ,  where the 
kinetic energy T is > 0) . If V is bounded above on M, V (q ) < B for all points of M 
(e.g., if M is compact), then the metric makes sense for total energy E > B .  

As we know, geodesics yield a vanishing first variation, but this need not be a 
minimum for the "action" J I I q 1 1 2 d t .  

lO.2d. Closed Geodesics and Periodic Motions 

A geodesic C on a manifold Mil that starts at some point p might return to that same 
point after travel ing some arc length distance L. If it does, it will either cross itself 
transversally or come back tangent to itself at p. In the latter case the geodesic will 
simply retrace itself, returning to p after traveling any distance that is an integer multiple 
of L .  In such a case we shall call C a closed geodesic . This is the familiar case of the 
infinity of great circles on the round 2-sphere. 

If a 2-sphere is not perfectly round, but rather has many smooth bumps, it is not 
clear at all that there will be any closed geodesics, but, surprisingly, it can be proved 
that there are in fact at least three such closed geodesics ! The proof is difficult. 

Closed geodesics in mechanics are important for the following reason. The evolution 
of a dynamical system in time is described by a curve q = q (t )  being traced out in 
the configuration space M,  and by Jacobi 's  principle, this curve is a geodesic in the 
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Jacobi metric dp = [E - V (q ) ] 1 /2ds . Thus a closed geodesic i n  the configuration space 
corresponds to a periodic motion of the dynamical system. A familiar example is given 
by the case of a rigid body spinning freely about a principal axis of inertia. 

Not all manifolds have closed geodesics .  

Figure 1 0.4 

The infinite horn-shaped surface indicated has no closed geodesics. It is clear that the 
horizontal circles of latitude are not geodesics since the principal normal to such a curve 
is not normal to the surface .  Furthermore, it is rather clear that any closed curve on this 
horn can be shortened by pushing it "north," and such a variation of the curve will have 
a negative first variation of arc length, showing that it could not be a geodesic. (One 
needs to be a little careful here; the equator on the round 2-sphere is a geodesic and it 
i s  shortened by pushing it north. The difference is that in this  case the tangent planes 
at the equator are vertical and so the first variation of length is in fact 0 ; it is the second 
variation that is negative ! We shall return to such matters in Chapter 1 2. )  

One would hope that if a closed curve is not a geodesic, it could be shortened and 
deformed into one. A "small" circle of latitude on the northern hemisphere of the sphere, 
however, when shortened by pushing north, collapses down to the north pole. Somehow 
we need to start with a closed curve that can not be "shrunk to a point," that is, perhaps 
we can succeed if we are on a manifold that is not simply connected (see Section 2 1 . 2a). 
But the circles of latitude on the horn-shaped surface in Figure 1 0.5 show that this is 
not enough; there is no "shortest" curve among those closed curves that circle the horn. 
We shall now "show" that if M is a closed manifold (i .e . ,  compact without boundary) 
that is not simply connected, then there is a closed geodesic. In fact a stronger result 
holds. We shall discuss many of these things more fully in Chapter 2 1 .  

We wish to say that two closed curves are "homotopic" if one can be smoothly moved 
through M to the other. This can be said precisely as follows. Let Co and C I be two 
parameterized closed curves on Mn . Thus we have two maps fa : S I -+ Mn ,  a = 0, 1 ,  
of  a circle into M. We say that these curves are (freely) homotopic provided these maps 
can be smoothly extended to a map F : S I x ffi. -+ M of a cylinder S l x ffi. into M. 
Thus 

F = F(e ,  t ) ,  with F (e , 0) = fo (e) and F(e , 1) = fl (e ) 
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Figure 1 0.5 

Thus F interpolates between fa and f, by mapping the circle SI into M by the map 
f, (e) = F(e , I ) .  

Clearly the circles of latitude on  the horn are homotopic. 
Homotopy is an equivalence relation ; if C is homotopic to C' (written C � C') and 

C' '" C", then C � C", and so on. Thus the collection of closed curves on M is broken 
up into disjoint homotopy classes of curves. All curves C that can be shrunk to a point 
(i.e., that are homotopic to the constant map that maps S' into a single point) form a 
homotopy class, the trivial class .  If all closed curves are trivial the space M is said to 
be simply connected. 

On the 2-torus, with angular coordinates ¢, and ¢2 , the following can be shown. The 

Figure 1 0.6 

two basic curves ¢2 = 0 and ¢,  = 0 are nontrivial and are not homotopic . The closed 
curve indicated "wraps twice around in the ¢ ,  sense and once in the ¢2 sense"; we write 
that it is a curve of type (2, 1 ) . Likewise we can consider curves of type (p ,  q ) .  All 
curves of type (p ,  q) form a free homotopy class and this class is  distinct from (pi , q ') 
if (p, q )  # (pi , q ') .  

Theorem (10.20) : In each nontrivial free homotopy class of closed curves o n  a 
closed manifold Mn there is at least one closed geodesic. 

The proof of this  result is too long to be given here but the result itself should not be 
sUrprising; we should be able to select the shortest curve in any nontrivial free homotopy 
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class ;  the compactness of M i s  used here. I f  i t  were not a geodesic we  could shorten i t  fur. 
ther. If this geodesic had a "corner," that is ,  if the tangents did not match up at the starting 
(and ending) point, we could deform it to a shorter curve by "rounding off the comer." 

Figure 1 0.7 

Finally we give a nontrivial application to dynamical systems ( [A, p.  248 ] .  
Consider a planar double pendulum, as  in  Section 1 .2b, but in  an  arbitrary potential 

field V = V (4)1 , 4>2) .  The configuration space is a torus T2 . Let B be the maximum 
of V in the configuration space T2 . Then if the total energy H = E is greater than B, 
the system will trace out a geodesic in the Jacobi metric for the torus .  For any pair of 
integers (p ,  q )  there will be a closed geodesic of type (p ,  q ) .  Thus, given p and q ,  if 
E > B there is always a periodic motion of the double pendulum such that the upper 
pendulum makes p revolutions while the lower makes q .  

An application to rigid body motion will be given in Chapter 1 2. 
Finally, we must remark that there is a far more general result than ( 1 0.20). Lyustemik 

and Fet have shown that there is a closed geodesic on every closed manifold! Thus there 
is a periodic motion in every dynamical system having a closed configuration space, 
at least if the energy is high enough. The proof, however, is far more difficult, and not 
nearly as transparent as ( 1 0 .20) . The proof involves the "higher homotopy groups"; 
we shall briefly discuss these groups in Chapter 22. For an excellent discussion of the 
closed geodesic problem, I recommend Bott 's treatment in [Bo] . 

10.3. Geodesics, Spiders, and the Universe 

Is our space flat? 

10.3a. Gaussian Coordinates 

Let y = y (t) be a geodesic parameterized proportional to arc length ; then I I dxj dt II 
is a constant and V'ijdt = 0 along y . There is a standard (but unusual) notation for 

this geodesic .  Let v be the tangent vector to y at p = y (0) ; we then write 

Then we have 
y et) = expp (tv) 

d dy 
dt [expp (tv) ]  = dt 

is the tangent vector to y at the parameter value t .  

( 1 0.2 1 ) 
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The point expp (v) is the point on the geodesic that starts at p. has tangent v at p. 

and is at arc length I I v II from p. 

Of course if t < 0, we move in the direction of -v. When v is a unit vector, t is arc 

length along y . 
Since geodesics need not be defined for all t ,  expp (tv) may only make sense if I t I 

is sufficiently small .  
Given a point p and a hypersurface V"� l C Mil passing through p,  we may set up 

local coordinates for M near p as follows .  Let y2 , . . .  , y" be local coordinates on V 

with origin at p.  Let N (y) be a field of unit normals to V along V near p .  If from each 
v E V we construct the geodesic through y with tangent N(y) ,  and if we travel along 
this geodesic for distance I r I , we shall get, if E is small enough, a map 

by 

(-E ,  E) X Vn� l  -+ Mn 

(r, y )  � expy (rN(y) )  

and it can be shown ( [M])  that this map is a diffeomorphism onto an open subset of Mn 

Figure 1 0.8 

if vn� l and E are small enough. This says, in particular, that any point q of M that is 
sufficiently close to p will be on a unique geodesic of length r < E that starts at some 
Y E V and leaves orthogonally to V . If then q = expy (rN(y) ) , we shall assign to q the 
Gaussian coordinates (r, y2 , . . .  , y" ) .  

(As mentioned before, w e  recommend Milnor's book [M] for many of the topics 
in Riemannian geometry. We should mention, however, that Milnor uses an unusual 
notation. For example, Milnor writes 

A f- B  

instead of the usual covariant derivative V A B. Also Milnor 's curvature transformation 
R(X, Y) is the negative of ours. ) 
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We can then look at the hypersurface V;,- I of all points exp/rN(y))  a s  y runs through V but with r a small constant; this is the parallel hypersurface to V at distance r .  

Gauss 's Lemma (10.22): The parallel hypersurJace V;,- I to Vn- I is itself Or
thogonal to the geodesics leaving V orthogonal to V .  

Put another way, this says: 

Corollary (10.23):  The distribution �n- I oJhyperplanes that are orthogonal to 
the geodesics leaving Vn- I orthogonally is completely integrable, at least near 
V. 

This  is a local result; �1l - 1  isn ' t  defined at  points where distinct geodesics from Vn-I 
meet ( look at the geodesics leaving the equator V I C S2) .  

P R O O F  O F  G A U S S ' S  L E M M A : Let y" be the geodesic leaving V,,- I at the point 
y .  It is orthogonal to V at y and we must show that it is also orthogonal to Vr at 
the point (r, y ) .  Consider the I -parameter variation of y given by the geodesics 
s 1--+ V" ,a (s) := eXP r (sN (y2 + a,  y3 , . . . , y" ) ) ,  for 0 :::: s :::: r, emanating 
from the y2 curve through y .  The variation vector J, in our Gaussian coordinate 
system, is simply 81 8y2 . It is a Jacobi field along y .  By construction, all of these 
geodesics have length r .  Thus the first variation of arc length is 0 for this variation. 
But Gauss's formula ( l 0.4) gives 0 = L' (O) = (J ,  T) (y (r ) )  - (J, T) (y (O)) = 
(J, T) (y (r ) ) . Thus y is orthogonal to the coordinate vector 818y2 tangent to Vr 
at (r, y) .  The same procedure works for all 818yi . 0 

Corollary (10.24) : In Gaussian coordinates r, l, . . . , yn Jor M" we have 
" 

ds2 = dr2 + L gap er, y)dyadyi3 
a .p=2 

since (818r, 818r ) = I and (818r, 818ya ) = O. 

In particular, when V I is a curve on a surface M2, the metric assumes the form 

promised in (9 .58) .  

Corollary (10.25) : Geodesics locally minimize arc length Jor fixed endpoints 
that are sufficiently close. 

This fol lows since any sufficiently small geodesic arc can be embedded in a Gaussian 
coordinate system as an r curve, where all y 's are constant. Then for any other curve 
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. ,'n the Gaussian coordinate patch, joining the same endpoints, and parameterized lytng 
by r 

n dya dyP 
ds2 = dr2 + L gap er, y) - - :::: dr2 

a ,fl=2 dr dr 

since (gaP)  is positive definite. The restriction that the curve be parametrized by r can 

be removed ; see [M] . 

lO.3b. Normal Coordinates on a Surface 

Let p be a point on a Riemannian surface M2 . Let e, f be an orthonormal frame at p .  We 
claim that the map (x , y )  E ]R2 � <I> (x , y) = exp p (xe + yO E M is a diffeomorphism 
of some neighborhood of 0 in ]R2 onto a neighborhood of p in M2 . 

Figure 1 0.9 

To see this we look at the differential <1>* at O. From ( 1 0.2 1 )  

� I <I> (x , y )  = � I expo (xe) = e 
ax (x , )' )=o ax x=o 

Thus <I>* (818x) = e and likewise <I>* (818y) = f, showing that <I> is a local diffeo
morphism and thus that x and y can be used as local coordinates near p .  These are 
(Riemannian) normal coordinates, with origin p.  We can now introduce the analogue 
of polar coordinates near p by putting r2 = x2 + i and x = r cos e ,  y = r sin e .  
Thus i f  w e  keep e constant and let r :::: 0 vary, w e  simply move along the geodesic 
expp [r (cos ee + sin eo ] ,  whereas if we keep r constant, expp [r (cos ee + sin ef)] traces 
out a closed curve of points whose distance along the radial geodesics is the constant 
r. We shall call this latter curve a geodesic circle of radius r, even though it itself is 
not a geodesic . We shall call (r, e) geodesic polar coordinates . These are not good 
coordinates at the pole r = O. 

We can express the metric in  terms of (x , y )  or (r , e) . In (x , y) coordinates we have 
the form ds2 = g l l dx2 + 2g 1 2dxdy + g22dy2 , whereas in (r, e )  we may write the 
metric in the form ds2 = grrdr2 + 2gredrde + G2 (r, e )de2 , for some function G.  
Now by  keeping e constant we  move along a radial geodesic with arc length given 



288 G E O D E S I C S  

by  r ,  and thus grr 1 .  By exactly the same reasoning a s  i n  Gauss ' s  lemma this 
radial geodesic is orthogonal to the 8 curves r = constant; therefore gre == 0 and 
dsz = drz + CZ(r ,8 )d8z . By direct change of variables x = r cos 8 and y = r sin e in 
dsz = g l ldxZ + 2g1 2dxdy + gzzdyZ we readily see that 

CZ = rZ [g l l sinz 8 - g lz sin 28 + g22 cosz 8 ] 
where g i l = 1 = gzz and g l 2 = 0 at the origin, since (e, f) is an orthonormal frame. 
Note then that CZ (r, 8 ) /rz � 1 ,  uniformly in 8 ,  as r � 0; in particular C � 0 as 
r � O. Thus 

��L = lim � = 1 

Also, aZc / ar2 = - K C follows from (9.60). We then have the Taylor expansion along 
a radial geodesic 

r 3 
C (r, 8 )  = r - K (0) 3 !  + . . .  

Thus the circumference L (C) of the geodesic circle of radius r i s  lbr r3 
L (C) = heed8 = 2:rr r - 2:rr K (0) - + . . . 

o 6 
Likewise the area of the geodesic "disc" of radius r i s  

A (Br )  = ff hdrd8 = ff C(r, 8 )drd8 = :rr rz - ;2 K (0)r4 + . . .  

( 10.26) 

These two expressions lead to the formulae, respectively, of Bertrand-Puiseux and of 
Diguet of 1 848 

K (O) = l im (-;) [2:rr r - L (Cr ) ] r->O :rr r 

= l im ( 1 2
4 ) [:rr rz - A (Br ) ] r->O :rr r 

( 1 0.27) 

telling us that the Gauss curvature K (p) is related to the deviation of the length and 
area of geodesic circles and discs from the expected euclidean values.  See Problem 
1 0.3 ( 1 ) .  

There are analogous formulae i n  higher dimensions involving the curvature tensor. 

lO.3c. Spiders and the Universe 

The expressions ( 1 0.27) give a striking confirmation of Gauss ' s  theorema egregium 
since they exhibit K as a quantity that can be computed in terms of measurements 
made intrinsically on the surface .  There is no mention of a second fundamental form 
or of a bending of the surface in some enveloping space. A spider living on MZ could 
mark off geodesic segments of length r by laying down a given quantity of thread and 
experimenting to make sure that each of its segments is the shortest curve joining p to 
its endpoint. 
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Then it could lay down a thread along the endpoints, forming a geodesic circle Cr of ra
dius r , and measure its length by the amount of thread used. Having already encountered 
the fonnula of Bertrand-Puiseux in its university studies, the spider could compute an 
approximation of K at p, and all this without any awareness of an enveloping space!  

What about us? We live in a 3-dimensional space, or a 4-dimensional space-time. To 
measure small spatial distances we can use light rays, reflected by mirrors , noting the 
time required on our atomic clocks (see Section 7 . 1 b) .  A similar construction yields ds2 
for timelike intervals (see [Fr, p . I O] ) .  Our world seems to be equipped with a "natural " 
metric. 

In ordinary affairs the metric seems flat; that is why euclidean geometry and the 
Pythagoras rule seemed so natural to the Greeks, but we mustn ' t  forget that the sheet of 
paper on which we draw our figures occupies but a minute portion of the universe. (The 
Earth was thought flat at one time ! )  Is the curvature tensor of our space really zero? Can 
we compute it by some simple experiment as the spider can on an M2 ? Gauss was the 
first to try to determine the curvature of our 3-space, using the following result of Gauss
Bonnet. Consider a triangle on an M2 whose sides C) , C2 , C3 , are geodesic arcs .  Parallel 

.... �_�_-- v 

Figure 1 0.1 1 
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translate around this triangle the unit vector v that coincides with the unit tangent to C1 
at the first vertex . Since T I is also paral lel displaced, we have v = TI along all of C1 • 
Continue the parallel translation of v along the second arc ; since this arc is a geodesic, 
we have that v will make a constant angle with this arc . This angle is E I , the first exterior 
angle. Thus at the next vertex the angle from v to the new tangent T3 will be E I +Ez . When 
we return to the first vertex we will have L (v f '  T I ) = E I +E2+E3 . Thus 2IT - L (vo , v f) === 
E I +E2+E3 and so L (vo, v f )  = 2IT -(E I +E2+E3 ) = (the sum of the interior angles ) -IT .  
But from (9.6 1 )  w e  have that L (vo , v f)  = JJ K dS over the triangle . We conclude that 

J J K d S = (the sum of the interior angles of the triangle 

with geodesic sides ) - IT ( 1 0.28) 

This formula generalizes Lambert 's formula of spherical geometry in the case when 
M2 is a 2-sphere of radius a and constant curvature K = 1 /  a2 • Of course the interior 
angle sum in a flat plane is exactly IT and ( 1 0.28)  again exhibits curvature as indicating 
a breakdown of euclidean geometry. 

Gauss considered a triangle whose vertices were three nearby peaks in Germany, 
the sides of the triangle being made up of the light ray paths used in the sightings. 
Presumably the sides, made up of light rays, would be geodesics in our 3-space. An 
interior angle sum differing from IT would have been an indication of a noneuclidean 
geometry, but no such difference was found that could not be attributed to experimental 
error. (This story is apocryphal ; see [0, p. 66] . )  

Einstein was the first to describe the affine connection of the universe as  a physical 
field, a gauge field, as it is called today. He related the curvature of space-time to a 
physical tensor involving matter, energy, and stresses and concluded that space-time is 
indeed curved. We turn to these matters in the next chapter. 

Problem 

1 0.3(1 ) Use the fi rst expression i n  ( 1 0 .27) to compute the Gauss curvature of the round 
2-sphere of radius a, at the north pole. 

Figure 1 0. 1 2  
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Relativity, Tensors, and Curvature 

1 1 . 1 .  Heuristics of Einstein 's Theory 

What does gOO have to do with gravitation') 

1 1 . l a. The Metric Potentials 

Einstein's  general theory of relativity is primarily a replacement for Newtonian gravita
tion and a general ization of special relativity. It cannot be "derived" ; we can only spec
ulate, with Einstein, by heuristic reasoning, how such a general ization might proceed . 
His path was very thorny, and we shall not hesitate to replace some of his reasoning, 
with hindsight, by more geometrical methods. 

Einstein assumed that the actual space-time universe is some pseudo-Riemannian 
manifold M4 and is thus a generalization of Minkowski space. In any local coordinates 
Xo 

= t , X l ,  x2 ,  x 3 the metric is of the form 

ds2 
= goo (t ,  x)dt2 + 2go/3 ( t ,  x)dtdxfi 

+ga,B (t , x)dxadxfi 

where Greek indices run from 1 to 3 ,  and goo must be negative. We may assume that 
we have chosen units in which the speed of light is unity when time is measured by the 
local atomic clocks (rather than the coordinate time t of the local coordinate system). 
Thus an "orthonormal" frame has (eo , eo ) = - I ,  (eo , e,B ) = 0, and (ea , e,B ) = Da,B . 

Warning: Many other books use the negative of this metric instead . 
To get started, Einstein considered the following situation . We imagine that we have 

massive objects, such as stars, that are responsible in some way for the preceding 
metric, and we also have a very small test body, a planet, that is so small that it doesn ' t  
appreciably affect the metric .  We shal l assume that the universe i s  stationary i n  the 
sense that it is possible to choose the local coordinates so that the metric coefficients 
do not depend on the coordinate time t, gij = gij (x) . In fact we shall assume more .  A 
uniformly rotating sun might produce such a stationary metric; we shall assume that the 
metric has the further property that the mixed temporal-spatial terms vanish, gOfi = O. 

291 
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Such a metric 

0 1. 1) 
is called a static metric .  

Along the world line of  the test particle, the planet, we may introduce i t s  proper 
time parameter r by 

dr2 := -ds2 
As in Section 7 . 1 b, it is assumed that proper time is the time kept by an atomic clock 
moving with the particle. Then (dr ) 2 dxa dxf3 

dt = -goo - gaf3 dt dt  
We shall assume that the particle is  moving very slowly compared to light; thus We 
put the spatial velocity vector equal to zero, v = dx/dt '" 0, and consequently its unit 
velocity 4-vector is 

u := �: = (:� ) [ 1 ,  �;r '" (:� ) [ l , Of 
or 

where, as is common, we allow ourselves to identify a vector with its components . 
We shall also assume that the particle is moving in a very weak gravitational field 

so that M4 is almost Minkowski space in the sense that 
goo '" - 1  

We shall not, however, assume that the spatial derivatives of goo are necessarily small. 
Thus we are allowing for spatial inhomogeneities in the gravitational field. 

The fact that all (test) bodies fall with the same acceleration near a massive body 
(Galileo's law) led Einstein to the conclusion that gravitational force, l ike centrifugal 
and Coriolis forces, is afictitious force. A test body in free fall does not feel any force 
of gravity. It is only when the body is prevented from falling freely that the body feels a 
force. For example, a person standing on the Earth' s  solid surface does not feel the force 
of gravity, but rather the molecular forces exerted by the Earth as the Earth prevents 
the person from fol lowing its natural free fall toward the center of the planet. 

Einstein assumed then that a test body that is subject to no external forces (except the 
fictitious force of gravity) should have a world line that is a geodesic in the space-time 
manifold M4. Then, since dr '" dt ,  the geodesic equation yields 

d2 Xi d2 X i . dxi dxk 
dt2 '" dr2  '" -rjk dt dt '" -rbo 

In particular, for a = 1 ,  2, 3, we have 
d2x" '" _ ra _ _ � a} ( agO) agO} _ 

agOo ) 
dt2 00 - 2 g axo + axo ax} I a} agoo 

2g ax} 
1 af3 agoo 
2g axf3 
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thUS 
-- "-' 

dt2 

If noW we let <jJ be the classical Newtonian gravitational potential, then we must 

compare the preceding with d2x
a /dt2 = [grad <jJ]a . (Note that physicists would write 

this in terms of V = -<jJ.)  This yields goo/2 "-' <jJ+constant. We have assumed goo '" 
- 1 ; if we now assume that the gravitational potential <jJ -+ 0 "at infinity," we would 
conclude that 

goo "-' (2<jJ - 1 )  ( 1 1 .2) 

Thus Einstein concluded that goo is closely related to the Newtonian gravitational 
potential !  But then what can we say of the other metric coefficients? Surely they must 
play a role although we have not yet exhibited this role .  We then have the following 
comparisons:  

1.  Newtonian gravitation is governed by a single potential <jJ .  Newtonian gravitation is a 

scalar theory. 

2. Electromagnetism is governed by a 4-vector potential A ;  see (7.25) .  Electromagnetism 
is a vector theory. 

3. Einstein 's gravitation is governed by the 1 0  "metric potentials" (gij ) .  Gravitation is then 
a symmetric covariant second-rank tensor theory. 

In ( 1 ) , the potential <jJ satisfies a "field equation," namely Poisson 's  equation 

( 1 1 .3)  

where p is the density of matter and K is the gravitational constant. 
In (2), A can be chosen to satisfy a field equation of the form of a wave equation. 

If o is the d' Alembertian, the Laplace operator in Minkowski space, we have 

oA = 4rr J 

where J is the current I -form, the covariant version of the current 4-vector in (7.27). 
These matters will be discussed in more detail later. 

What are the field equations satisfied by the (gij ) ? 

1l .lb. Einstein's Field Equations 

Consider now, instead of a single test particle, a "dust cloud" of particles having a density 
p. By dust we mean an idealized fluid in which the pressure vanishes identically. Lack 
of a pressure gradient ensures us that the individual molecules are falling freely under 
the influence of gravity. Each particle thus traces out a geodesic world line in M4. We 
shall again restrict ourselves to static metrics ( 1 1 . 1 ) .  

First consider the Newtonian picture of this cloud in ]R3 . Follow the "base" path Co 
of a particular particle and let oXt be the variation vector, which classically joins the 
base particle at time t to a neighboring particle at time t .  
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Figure 1 1 . 1 

From 4. 1 b  we know (d/dt) 0 8 = 8 0 (d/dt) ,  and so (d2/dt2) 0 8 = 8 0 (d2/dt2) . 
Thus from Newton's law (in cartesian coordinates) 

( 1 1 .4) 

This is the equation of variation, a linear second-order equation for 8x along Co. 
Now look at the same physical situation, but viewed in the 4-dimensional space

time M4 . 

Co 

Figure 1 1 .2 

The particles now trace out world l ines C' in M4 with unit 4-velocity u .  The variation 
4-vector iT "joins" the base particle at proper time r to a nearby particle at the same 
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roper time (we shall assume that all nearby particles have synchronized their atomic �lockS at an initial r = 0 when t = 0). Since all of the world lines are geodesics, 
arameterized by "arc length," that is , proper time r, the variation vector J is a Jacobi field and satisfies V2 J /dr 2 = -R (J, T )T .  In a weak field and with small spatial 

velocities, we expect again that r is approximately the coordinate time t ,  r "-' t .  Then 
the Jacobi field J will essentially have no time component, JO "-' 0, since it "connects" 
events at a common time t. By again looking at the Christoffel symbols with our 
smallness and static assumptions, we have (see Problem 1 1 . 1 ( 1 ) ) 

V J'" d J'" d J'" 
- "-' - "-' - ( 1 1 .5 )  dr dr  d t  

and Jacobi's equation becomes 
d2 J'" "-' Ra Jf! 
dt2 - 0f!0 

If we now put Jf! = 8xf! and compare this with ( 1 1 .4) we get 
a2¢ _ Ra "-' __ _ 

OfJO axfJ axa 
Consequently, since R£oo = 0, 

In any Mil with an affine connection we define the Ricci tensor, by contracting the 
full Riemann tensor 

( 1 1 .6) 

We shall show in Section 1 1 .2 that Rjk = Rkj in the case of a (pseudo)-Riemannian 
manifold. We then have 

Poisson's equation yields 

V2¢ = -4JT KP "-' - Roo ( 1 1 .7) 

for a slowly moving dust in a weak field. We see from this simple case that 

space-time M4 must be curved in the presence of matter! 
As it stands, ( 1 1 .7) "equates" the 00 component of a tensor, the Ricci tensor, with what 
is classically considered a scalar, a multiple of the density p .  But in special relativity the 
density is not a scalar. Under a Lorentz transformation, mass mo gets transformed by 
the Lorentz factor, m = moy (see (7 .9)) .  Also, 3-volumes transform as voe = vol6/y 
"since length in the direction of motion is contracted." Thus density transforms as 
p = POy2 . This suggests that density is also merely one component of a second-rank 
tensor. Indeed just such a tensor, the stress-energy-momentum tensor, was introduced 
into special relativity. In classical physics there is the notion of the 3-dimensional 
symmetric "stress tensor" with components safJ (see [Fr, chap. 6] for more details of 
the following). Consider the case of a perfect fluid; here safJ = - p8afJ where p is the 



296 R E L A T I V I T Y ,  T E N S O R S ,  A N D  C U R V A T U R E  

pressure. Let p be  the rest mass-energy density o f  the fluid and let u be  the velocity 
4-vector of the fluid particles. Note that 

projects each 4-vector orthogonally into the 3-space orthogonal to u. Then the stress... 
energy-momentum tensor for the fluid is defined by 

Tij : = pui u j + p (gij + ui uj ) = (p + p )u i uj + pgij 0 1 .8) 
In the case of a dust p = ° and in the case of slowly moving particles the only 
nonvanishing component of u is essentially UO 

'" 1 .  Thus T has essentially only one 
nonvanishing component TOo ", p. Finally T;j = girgjs T'S also has one component 
Too = p ,  since goo '" - 1 .  

Equation ( 1 1 .7) then can be stated as Roo = 47TK Too . Clearly this suggests a tensor 
equation, for all i , j 

These were the equations first proposed by Einstein in early November of 1 9 1 5 , for 
all types of matter undergoing any motion, although his path to these equations was 
far more tortuous than that indicated here . Furthermore, these equations are incorrect! 
In special relativity the tensor T is known to have "divergence" 0, whereas the Ricci 
tensor does not usually have this property. These equations need to be amended in 
the same spirit as when Ampere's  law was amended by the addition of Maxwell 's 
displacement current in order to ensure conservation of charge.  We shall discuss these 
matters in Section 1 1 .2.  Einstein arrived at the "correct" version at the end of that same 
November with Einstein's equations 

1 
R

ij - 2. gij 
R = 87TK T;j 0 1 .9) 

In this equation we have introduced a second contraction of the Riemann tensor, the 
(Ricci) scalar curvature 

R '- gij R · · - Rj . - l J  - .1 ( 1 1 . 1 0) 

In order to handle the Einstein equations effectively we shall have to learn more 
about "tensor analysis," which was developed principally by Christoffel (covariant 
differentiation, the curvature tensor) and by Ricci . We turn to these matters in our next 
section. 

H.le. Remarks on Static Metrics 

Some final comments . 

1. Note that a light ray has a world line that, by definition, is always tangent to the l ight 

cone and so ds2 = 0 along the world line. From ( 1 1 . 1 ) we conclude that -goo == 
&tf3 (dxa /dt2) (dxf3 /dt2) = c2 , the square of the speed of light when measured using 
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coordinate time t. Thus although the speed of light is by definition I when time is mea
sured by using atomic clocks ( i .e . ,  proper time), its speed c measured using coordinate 
time in a static universe varies and is given by �---

c = J(-goo ) � J( I - 2¢) � ( I - ¢) 

Thus the coordinate speed of light decreases as the gravitational potential increases . 

Einstein realized this in 1 9 1 2, three years before his field equations, and before he was 

aware of Riemannian geometry, and proposed then that c be used as a replacement for 

the Newtonian potential ! 
2. Although the world line of a l ight ray is assumed to be a geodesic in space-time, its spatial 

trace is not usually a geodesic in space! We have just seen that .J -goo is essentially the 

index of refraction. It can be shown (see [Fr] ) that the spatial trace satisfies Fermat's 
principle of least time 

8 J � = O 
.J-goo 

where da2 = gcxf3dxctdxf3 is the metric of the spatial slice. This is the "reason" for the 

observed curvature of light rays passing near the sun during a total eclipse. 

3. We have given a crude heuristic "derivation" of ( 1 1 .2) ,  the relation between the metric 

coefficient goo and the classical Newtonian potential ¢ . Note that in the "derivation" of 
V2¢ � -Roo the Laplacian L a2¢ / axcx axcx that appears uses the flat metric rather than 
the correct Laplacian for the spatial metric 

V2¢ = _1 _a_ (-Jhgaf3 a¢ ) 
-Jii axa 

c axil 
where we have put h = det(gajJ ) .  In my book [Fr, p .22] ,  I give a heuristic argument 
indicating that the classical potential ¢ is related to goo by 

¢ � 1 - .J-gOO 

rather than ( 1 1 .2) .  These two expressions are very close when goo is very near - 1 .  The 
advantage of this new expression for ¢ is that it satisfies an exact equation in any static 
space-time, Levi-Civita 's equation 

V2.J-gOO = - Ro
o.J-gOO 

where the Laplacian is the correct one for the spatial metric. goo itself, without the 
square root, does not satisfy any simple equation such as this .  Poisson's  equation then 
suggests an equation of the form 4n Kp* = - Roo.J-go .  I n  the case of a perfect fluid 
at rest, by using ( 1 1 . 8 )  and ( 1 1 .9) it is  shown [Fr, p .  32J that the "correct" density of 
mass-energy is, in this case 

p* = (p + 3p) .J-goO 

4. Finally, in my book I give a heuristic "derivation" of Einstein 's  equations that automat
ically includes the term involving R. This is accomplished by looking at a spherical 
blob of water instead of a dust cloud. This more complicated situation works because 
it involves stresses, that is, pressure gradients , that were omitted in the dust cloud. The 
derivation also has the advantage that it does not use Einstein 's  assumption that free 
test particles have geodesic world lines ; rather, this geodesic assumption comes out as a 
consequence of the equations. 



298 R E L A  T 1 V I T Y ,  T E N S O R S ,  A N D  C U R V  A T U R E  

Two other books that I recommend for reading i n  general relativity are [M, T, W] 
and fWd] .  

Problems -

1 1 . 1 (1 )  Verify ( 1 1 .S ) .  

1 1 . 1 (2) Show that i n  the Schwarzschi ld spatial metric, with coordinates r , e , <P,  and 
constant m 

gafJ dxa dxfJ = (1 - 2�) -1
dr2 + r2 (de2 + Sin2 e d<P2 ) 

the function U = ( 1  - 2m/ r) 1 12 satisfies Laplace's equation v2 U = o .  

1 1 .2.  Tensor Analysis 

What is the divergence of the Ricci tensor? 

11 .2a. Covariant Differentiation of Tensors 

In Equation (9.7) we have defined the covariant derivative Vv of a vector field v; it is 
the mixed tensor with components in a coordinate frame given by 

V) V i = vii . = 
aV i

. + U/k v
k 

} ax} } ( 1 1 . 1 1 ) 

(We must mention that many books use the notation v �) rather than vI) ' ) We have 
also defined the exterior covariant differential of a (tangent) vector-valued p-form in 
Section 9.3c, taking such a form into a vector-valued- (p + I ) -form. We are now going 
to define, in a different way, the covariant derivative of a general tensor of type (p, q) ,  
that is ,  p times contravariant and q times covariant, the result being a tensor of type 
(p ,  q + I ) . In the case of a vector-valued p-form (which is of type ( I , p) )  the result will 
be different from the exterior covariant differential in that it will not be skew symmetric 
in i ts covariant indices and so will not be a form. 

The covariant derivative of a scalar field I is defined to be the differential, V I = dl, 
with components Iii : =  af/ax) . 

We have already defined the covariant derivative v�) of a contravariant vector field. 
We define the covariant derivative ail) of a covector field ex so that the "Leibniz" rule 
holds ; for the function ex (v) = ai Vi we demand a/ax) (ai Vi ) = (ai vi ) I) = ai l) vi +ai v�j ' 
Using ( 1 1 . 1 1 ) we see that 

and so 

( aai ) ' ( a vi ) . ( a v i . k) -. v' + a ·  -. = a · / · v ' + a ·  -. + w'. V ax} I ax} , } I ax} }k 

aai k V)ai = ail) : = ax) - akW)i 
Note that ai /i is not skew in i ,  j .  

( 1 1 . 12) 
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Finally, we define the covariant derivative of a tensor of type (p ,  q )  by generalizing 
(l U 1 ) and ( 1 1 . 1 2) 

+ Tr i, . . . il' . . Wi l + Ti l r  . . .  ip . wi2 + J I . . .  Jq kr J I . . j'l kr . • •  

_ Ti l . . .  ip . . wr _ T i l . . .  i p .  . wr - . . •  r J2 . . . Jq kl 1  J l r . . . Jq kJ2 ( 1 1 . 1 3) 

Thus one repeatedly uses the rules ( 1 1 . 1 1 ) and ( 1 1 . 1 2) for each contravariant and each 

covariant index occurring in T . 
One can show that this operation does indeed take a tensor field into another whose 

covariance has been increased by one. Furthermore it has the following two important 

properties. 

1. Covariant differentiation obeys a product rule 

2. Covariant differentiation commutes with contractions. For example, the covariant deriva

tive of the mixed tensor T i j is 

i a Ti j r i i r T jlk  = axk + T j Wkr - T r Wkj 
which is a third-rank tensor. Contract on i and j to get a covector 

i a Ti i r i i r a Ti i T i lk = --k + T i Wkr - T r Wki = --k ax ax 
On the other hand, if we first contract on i and j in T ,  we get the scalar Ti i , whose 
covariant derivative i s  ( Ti i ) I k = a / axk ( Ti i ) again .  

Warning: As a result of the presence of the connection coefficients, the covariant 
derivative of a tensor with constant components in some coordinate system need not 
vanish. 

See Problems 1 1 .2( 1 ) , 1 1 .2(2), and 1 1 .2(3) at this time. 

1 l .2h. Riemannian Connections and the Bianchi Identities 

The principal property of the Riemannian connection is expressed by 
B . .  . . . . 

BXk (gij X'  yJ ) = gij X/k YJ 
+ gij X'  Y!k 

and the left-hand side can now be written (gij Xi Y j ) Ik . On the other hand, we now know 
that this latter should be 

(gij X i yj ) l k = gijlk X i y j  + gij X � k yj + gij X i Y!k 
This says that the metric tensor is covariant constant !  

Bgij I I gijj k = BXk - glj Wki - gil Wkj = 0 
See Problem 1 1 .2(4) at this time. 

( 1 1 . 1 4) 
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We define the divergence of  a symmetric contravariant p-tensor field T to be the 
symmetric (p - I ) -tensor 

( 1 1 . 1 5) 
We shall soon see that this agrees with div V when T is a vector v. See Problem 

1 1 .2(5) at this time. 
We shall now derive two very important identities satisfied by the Riemann tensor. 

At first we shall not restrict ourselves to Riemannian or even symmetric connections. 
From Cartan's structural equations (9.27) we have 

O = d (da )  = d(-w /\ a + r) = -dw /\ a + w /\ da + dr 
= -dw /\ a + w /\ (-w /\ a + r)  + dr = -0 /\ a + dr + w /\ r 

or, using problem 9.4(3) 

Vr = dr + w /\ r = 0 /\ a ( 1 1 . 1 6) 
We are especially concerned with the case of a symmetric connection (i .e . ,  r = 0). 
Then 

( 1 1 . 17) 
But then 0 = Oi j /\ aj = I /2R�kra

k /\ ar /\ aj . This means that the coefficient of 
ak /\ ar /\ a j , made skew in k ,  r and j ,  must vanish. S ince R�kr is already skew in k 
and r ,  this  means 

( 1 1 . 1 8) 
Both ( 1 1 . 1 7) and ( 1 1 . 1 8) will be referred to as the first Bianchi identities, and we 
emphasize that they require a symmetric connection. 

Recall that we have defined the Ricci tensor by Rjr = Rjir . From ( 1 1 . 1 8) we have 
Rjr = -R�ji ' since Rirj = gim Rmirj = 0 from skew symmetry of R in m , i .  But 
R�ji = -R�ij = - Rrj . We have thus shown that 

( 1 1 . 19) 
in a (pseudo-) Riemannian connection . 

For our second identity we again start out with a general connection. Then dO = 
d(dw + w /\ w) = d(w /\ w) = dw /\ w - w /\ dw = (O - w /\ w) /\ w - w /\ (O - w /\ w) = 
e /\ w - w /\ e , or 

de + w /\ e - e /\ w = 0 ( 1 1 .20) 
which we call the second Bianchi identity, for all connections. Thus dOi j + Wi m /\ em j - e i m /\ wm j = O. Writing this out in a coordinate frame we get 

__ J _ dxs /\ dx /\ dxr + w' Rm dx P /\ dxu /\ dx v  - R' wm dxa /\ dx /\ dxc = 
( a Ri kr ) k ' . b 0 

ax' pm J U V  mab CJ 
Then 
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But when the connection i s  symmetric ,  

(Ri m + Ri m )d s d k d r 0 jmrWsk jkmWsr X /\ X /\ X = 

Subtracting this from our previous expression gives 

Ri d s d k d r 0 jkr/s X /\ X /\ X = 

Since R�kr/s is already skew in k and r we conclude 

R�kr/s + R�sk/r + Rjrs/k = 0 
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0 1 .2 1 )  

which we again call the second Bianchi identity for a symmetric connection. You are 
asked to show in Problem 1 1 .2(6) that a consequence of 0 1 .2 1 )  is 

a R . 
- = 2R' s/ i 
ax"' 

where R is the scalar curvature 0 1 . 1 0) .  

0 1 .22) 

Note that the mixed tensor version of Einstein's equation is Ri j - ( l /2)8� R 
8rrKTi j . In special relativity the tensor T has divergence 0 (see [Fr, p. 70] ) .  Its di
vergence, from Einstein's equation, is given by 8n:K Ti j/ i = Ri j/ i - ( l /2)8 i j/ i R -
( 1 /2)8� R/ i = Ri j/ i - ( l /2) R/j = O !  Thus the mysterious R term was included in 
Einstein's equation in order to ensure that Div T = 0 in general relativity also. See 
Problem 1 1 .2(7) at this time. 

Warning: In the case of a velocity field, the divergence theorem gives Iv div v vol = 
Jau (v, n}dS . In particular, if div v = 0 we have a conservation theorem: The rate of flow 
of volume into a region U equals the rate leaving the region . There is no analogue o/this 
for the divergence of a tensor! For example,  Iv Ti j / i vol makes no intrinsic sense; one 
cannot integrate a covector Ti j/ i over a volume since one cannot add covectors based 
at different points . In spite of this, many books refer to Div T = 0 as a conservation 
law. 

H.2c. Second Covariant Derivatives : The Ricci Identities 

The covariant derivative of a vector field Z is a mixed tensor with components z�j ' The 
covariant derivative of this mixed tensor is a tensor of of third rank with components 
Z�j/k ' which is traditionally written 

Zi . Zi /jk '= /j/ k 

We wish now to investigate Z�jk - Zj kj ' Let X and Y be vectors at a point. Extend them 
to vector fields. We have Z = Zi ai , and so on. Then 

Vx (,VyZ) = Vx (Z�j yj ai ) = (Z�j yj ) /kxkai 
= (Z�jk yj + Z�j Yfk ) Xkai 

Then, using symmetry of the connection, 

[X, y]i = (V x y - Vy X)i = X j yjj - y j X/j 
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we get 
i i j k i k j k j 

VX (VyZ) - Vy (VxZ) = [(Z/jk - Z/k) Y  X + Z/j (X Y/ k - Y X/k ) ]8i 
= (Zjjk - Z�k) yj Xk8i + Z�j [X, y] j 8i 
_ i i j k - (Zjjk - Z/k) Y  X 8i + V[x.YjZ 

or (Z�jk - Z�k) yj Xk8i = R (X ,  Y)Z = (R (X, Y)Z/ 8i = R�'kj xk yj zm 8i ' Thus 

Zi Zi ZIIl Ri /jk - /kj = IIlkj ( 1 1 .23) 

the Ricci identities for a symmetric connection. Mixed covariant derivatives do not 
commute. Note carefully the placement of the indices j and k !  This placement is more 
easily remembered if we write 

'hVj Zi - Vj VkZi = zm R�kj 
In many books, the covariant derivative of a tensor is intrvduced before the notion of 
curvature, and then ( 1 1 .23) is used to define the curvature tensor. 

Warning: We may write 

( 1 1 .24) 

(Recall that Va; operates on vectors whereas Vj operates on the components of vectors.) 
It is easily seen, however, that in general 

Va; Va, X =1= (Vj VkXi )8i = X�kj8i 
It is true, however, that Va; Va, X  - Va, Va; X =(X�kj - X�jk )8i = XIII R�jk8i .The 
second and third terms are equal by ( 1 1 .23) ;  the first and the third terms are equal by 
( 1 0.2) when u = xj and v = Xk . 

Problems 

1 1 .2(1 ) Show that the identity tensor o j is covariant constant, oj/ k = O. 
1 1 .2(2) Show di rectly from (9. 1 8) that gij! k = O. 
1 1 .2(3) Show that the Codazzi equations i n  (8 .34) say that ba/3/y = bay //3 .  
1 1 .2(4) Use gij gjk = o �  to show that g?, = O. 
1 1 .2(5) Show that for a su rface M2 c lR,3 with mean cu rvatu re H, grad H = Div b where 

the second fundamental form b is now considered as contravariant, bij . 
1 1 .2(6) Use ( 1 1 .2 1 ) and contract several t imes to derive ( 1 1 .22) . 

1 1 .2(7) Let Tij : = p ui uj + P(gij + ui uj) be the stress-energy-momentum tensor for a 
perfect f lu id .  Show that T:� = 0 yields the two sets of equations 

d iv(pu) = - p div u 

and 

(p + P) Y' uu = - (grad p).l 



H I L B E R T ' S  A C T I O N  P R I N C I P L E  303 

where 1- denotes component orthogonal to u. The fi rst equation replaces the 
flat space conservation of mass-energy, apl a t  + div(pv) = 0 ;  since div u mea

sures the change i n  3-volume orthogonal to u (see the 2-dimensional analogue 
in 8.23) , - P div u gives the rate of work done by the pressu re during expan
sion. The second equation is Newton's law, with mass density p augmented 
by a smal l pressu re term p ( real ly plc2 ) .  Thus T;j = 0 yields the relativistic 

equations of motion . 

1 1 .2(8) Show that in a symmetric connection ,  in the exterior derivative of a Horm 
da1  = L j<k (ajak - 3k aj) dx' /\ dxk , we may replace the partial derivatives by 
covariant derivatives 

da = L (ak/j - aj/ k ) dx ' /\ dxk 

j<k 

Show that if the connect ion is symmetric, then in the formula (2 .55) one may 
replace partial derivatives by covariant derivatives 

(da P) ,  = L ofKaK/j = Lo{KVjaK 
jlS. jlS. 

1 1.3. Hilbert's Action Principle 

How does the scalar curvature R vary with the metric .  

11 .3a. Geodesics in a Pseudo-Riemannian Manifold 

Geodesics play an important role in relativity. We know that a geodesic in a Riemannian 
manifold is characterized by the property that there is a whole class of parameterizations 
t such that V (dx/ dt) / dt = 0 and all of these parameters are linear functions of the arc 
length parameter. 

In general relativity we deal with a pseudo-Riemannian manifold. In our heuristics 
of relativity we needed to consider the world line of a "freely falling" moving body, and, 
since such bodies always travel at a speed less than that of light, the path is timelike 
(Le., dr2 = -ds2 > 0).  In terms of the proper time parameter r we have, as the 
equation of the geodesic, V(dx/dr )/dr = O. For a spacelike geodesic we may use s 
instead of r as parameter. A light ray, being the path of a photon, is the limiting case 
of a freely falling particle of vanishingly small mass;  it is  assumed that its world line 
is also a geodesic, called a null geodesic since ds2 = O. We may use neither s nor r 
for parameter. A parameter ).. for a null geodesic, for which V(dx/d)")/d)" = 0, will 
be called, as before, a distinguished or affine parameter (see, e.g., [Fr, p. 92] ) .  

1 l .3b. Normal Coordinates, the Divergence and Laplacian 

Let p be a point in a (pseudo-) Riemannian manifold Mil and let e l , . . .  , ell be an 
orthonormal frame at p. As in the 2-dimensional case considered in Section 1 0 .3b, we 
may then introduce normal coordinates y near p by defining <I> : (�II = M;; ) --* Mil by 
<P(y) = expp (ei i ) , for all sufficiently small y. The differential <1>* : Mp --* M again 
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has the property that <t> * (ei ) = ei , and so the coordinate vectors B I Byi are orthonormal 
at the origin p ;  (gij (O» = diag(± I ,  1 ,  . . .  , 1 ) .  The arguments to be given later hOld 
in general , but we shall work in the case of a 4-dimensional space-time, as this is Our 
immediate concern . 

It should be clear that the geodesic that starts at p with tangent vector ei Ai is given 
in these normal coordinates by the linear equations 

/ (t) = Ai t ,  i = 0, . . . , 3 

It is also clear from the definition of the exponential map that II dy I dt 1 1 2= Ai + A� + 
A� - A5 is a constant along each of the geodesics starting at p and this constant vanishes 
only for the null geodesics tangent to the light cone, a submanifold of the vector space 
M� of codimension 1 .  By continuity, we conclude that t is a distinguished parameter 
for each of the geodesics emanating from p. Since the preceding linear equations must 
satisfy the geodesic equations 

d2yi i dyj dl 
dt2 = -rjk (y (t» dt dt 

we must have r�k (A °t , . . .  , A 3 t )Aj A k = 0 for all  t .  In particular this holds at p ,  that is, 
t = 0, and for all Ai . We conclude that 

r�k (p) = 0 

at the "pole" of the normal coordinate system. From ( 1 1 . 1 4) we have 
Ogij ( ) = 0 
oyk P 

All first partial derivatives of the metric tensor vanish at the pole ! 

( 1 1 .25) 

( 1 1 .26) 

As an application of the use of these coordinates, consider the divergence of a vector 
field v. As in the Riemannian case 

div v = ( l g l - l /2) � [ l g l l /2 Vi ] 
ox' 

At the pole of the normal coordinates we clearly have oloyi l g l (p) = 0 and thus at 
the pole we have div v = 0 Vi 10 yi . Consider now the scalar v� i ' At the pole v� i = 
o vi l oyi + vj rij = ov i l oyi . But div v and Vi i are well-defined scalars, independent of 
coordinates; we conclude that in any coordinate system 

This in turn means that 

and so 

�log lg l l /2 = ri 
oxk , k  

which is a frequently used formula. 

( 1 1 .27) 

( 1 1 .28) 
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We have already defined the gradient of a function f to be the contravariant vec
tor (grad!)i = gij aflaxj = giJ fli ' The Laplacian of f is then the scalar \72 f = 
div gradf = (gIl fli ) / i , or, since gll i k = 0, 

D2f - ij I · ·  - ij I · ·  Y - g il l - g i ll 

ThuS V2 f = giJ [a/ax i (af/axj ) - rfj (aflax
k ) ] , or 

\72 = ij [--'!L _ rk � ] f g 
axi axl Il axk 

( 1 1 . 29) 

( 1 1 .30) 

As an example, consider a surface M2 with local coordinates u I , u2 , sitting in ]R3 , 
with Cartesian coordinates X l , x2 , x3 • For each i ,  X i is a function on M. In Problem 
1 1 .3( 1 )  you are to show that 

( 1 1 .3 1 ) 

where V2 is the surface Laplacian, H is the mean curvature, and N is the unit normal .  
In  particular, 

Theorem (11 .32) : M2 C ]R3 is a minimal surface iff each coordinate function X i 
is a surface harmonic function on M. 

11 .3c. Hilbert's Variational Approach to General Relativity 

Although the following approach will work in any dimension, we shal l write out ev
erything in the case of a 4-dimensional pseudo-Riemannian manifold M4 . 

Let R = gik Rik = gik Rj ijk be the scalar curvature. Since the determinant g = detgiJ 
is negative in a pseudo-Riemannian manifold, the volume form is 

J(-g)d4x := J(-g)dxo I\ dx l I\ dx2 1\ dx3 

We shall ,  with Hilbert, take the first variation of the functional 

L RJ(-g)d4x 

for a I -parameter family of metrics. For our purposes, it will be more convenient to 
vary the inverse of the metric 

g� = g� + ex"iJ 
giJ = "ij 

( 1 1 .33)  

where the dot denotes differentiation with respect to ex at  ex = O. We must compute 

[:ex J RJ(-g)d4x] = J [RJ(-g) ]
"d4x 

and where all integrals are over M. Now 

[RJ(-g) ] " = [gik Rik J(-g) ]
" 

= [g ik Rid"J(-g) + R [J(-g) ]
" 

( 1 1 .34) 

( 1 1 .35) 
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and 
[ ik R ] · . ik R ik R' g ik = g ik + g ik 

We then need Rik . From (9. 1 0), omitting some indices, 

and so 

( a rjk ) ( a rj ) Rik = __ I , - __ I} + rr  - rr  ax} axk 

Rik = (��� ) - (��� )  
+ rr + rr - r r  - rr  

We shall compute everything at the pole of a geodesic normal coordinate system for 
the base metric gbk • Since r = 0 at the pole 

( 1 1 .36) 

at the pole. Although erIk ) is not a tensor, we claim that (rfk ) is a third-rank tensor. To see 
this we look at the transformation law (9.4 1 )  for a connection, w' (a)  = p - l w (a)P  + 
P - l dP . Differentiating and putting a = 0 give w' = p - l wP,  and from this the 
tensorial nature of r follows.  Thus at the pole we may write 

R· r' j  r' j ik = ik/j - ij/ k ( 1 1 .37) 

and since this is a tensor equation it holds everywhere, in every coordinate system. In 
this equation, all covariant derivatives are with respect to the base metric at a = O. 
We may then write 

ik R' ( ik r' j ) ( ik r' j ) d' W g ik = g ik /j - g ij /k = IV 

where wr : = gik r;k _ gir rlj . 
( 1 1 .38) 

Look now at the second term in ( 1 1 .35) , R [ J (-g) r To differentiate a determinant 
we use agjagik = Gik where Gik is the cofactor of the entry gik . This is clear upon 
expanding g by the kth column. But the inverse matrix satisfies gik = Gki j g = Gik j g, 
and so 

ag 'k _ = g' g agik 
Likewise ag- I jagik = gikg- I ,  that is ,  agjagik = -gikg .  Thus 

a ( -g ) 1 /2 1 1 /2 = --2gik (-g) agik 
and so J(-g) ] " = (a (_g) I /2jagik ) (agik jaa) = - ( 1 j2)gikJ(-g)gik . Thus 

v(-g)( = - �gikV(-g)gik 2 

( 1 1 .39) 

( 1 1 .40) 
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o J R vol4 = [!£ J RJ( -g)d4x] da a=O 
= J [Rik - �gik R] gik J(_g)d4X 

+ J div WJ(-g)d4x 
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( 1 1 .4 1 )  

By choosing a variation gik that vanishes outside some compact subregion of M and 
applying the divergence theorem to a slightly larger region, we see that the last integral 
vanishes . Thus 

o r R vol4 = [!£ r RJ(-g)d4X] 1M da 1M a=O 
= L [Rik - �gik R] gik J(_g)d4X 

for all variations with compact support. 
We define the (Hilbert) action for the gravitational field by 

Sgrav = L Lgravd4X : = (8JT K) - 1 L R vol4 

( l l A2) 

( 1 1 .43) 

(where K is again the gravitational constant), a nonlinear functional of the metric tensor. 
Let Snongrav be the action for the nongravitational fields that might be present, such as 
the electromagnetic fields ; it is given by some Lagrange density 

Snongrav = r Ld4x = r ff vol4 
1M 1M 

where L = cs:>y'( -g). The variational or functional derivative oS /ogik of a functional 
S = J M Ld4 x of the metric is defined through 

oS = 0 r Ld4x = r ( OL 
) gikd4x ( 1 1 .44) 

1M 1M ogl k 

where the variation is assumed to have compact support. In other words, putting f,j : = 
aj /axj , and so forth, 

oL rJL 
[
rJL

] [
rJL

] ogik = rJgik - rJ (gik ) . + rJ (gik ) , } ' J  ,}r  'jr 
is the usual Euler-Lagrange expression. Thus, from ( 1 1 .4 1 )  

o Lgrav _ I [ 1 ] � 
ogik 

= (8JTK)  R;k - "2gik R Y (-g) ( 1 1 .45) 

The (stress)-energy-momentum tensor of the gravitational field is defined to be 
o (since gravitation is a fictitious field) ; that of the nongravitational fields , 1ib is de
fined by 

T,. . �_ ) : = _ o Lnongrav 
I k Y \-g) ogik 

( 1 1 .46) 
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The total Lagrangian i s  L = Lgrav + Lnongrav , and so 

:g�k = { (8JrK ) - 1 [Rik - �gik R] - 1jk } J(-g)  

Then Einstein's equations are equivalent to Hilbert's action principle 

8 L [ (8JrK )- 1 R + .S:']voI4 = 0 

It is natural to call R.J ( -g) the Lagrangian of the gravitational field. 

( 1 1 .47) 

To understand the geometric meaning of Einstein's equations we must return to OUf 
study of second fundamental forms and curvature. We proceed to these matters in OUf 
next two sections .  

Problems 

1 1 .3(1 ) Use Gauss's surface equations to prove ( 1 1 .3 1 ) .  

1 1 .3(2) ( i )  Let v b e  a vector f ield i n  IR3 defined along a surface M2 i n  IR3 . I f  x 1 , x 2 , x 3 ,  
are cartesian coord inates for IR3 , we define the vector integral 11M vd S to 
be the vector w with components wi = 11M vidS. Show that if M2 is a closed 
surface with un it normal N ,  then 

fL H Nd8 = O  

We considered the special i ntegral JJ Nd 8 = II dS d irectly before Euler's 
equation (4.45) .  For a closed su rface M we have 

11M Nd8 = O  

since, for example, 11M N 1 d8 = .rfM dy /\ dz = O. Thus, for any closed surface 

i n  IR3 , not only is the surface average of N zero, which is geometrically "clear;' 
but also this average, when weighted by the mean curvature, also van ishes! 

1 1 .3(3) Let 

1 . .  � !.em := - 877: FijF IJ V (-g) 

define the Lagrangian for the pure electromagnetic f ield, with associated action 

8em := _ �  r F;j FrsgrigSjJ(-g)d4X 8 77:  J M 
Show ( recal l i ng that F;j is independent of the metric) that the stress-energy
momentum tensor for the electromagnetic f ield is M inkowski's 

(Recal l  that locally F2 = dA1 , where A is the covector potentia l ;  we shall see 

later on that A is usual ly global ly def ined. Thus 8em can be expressed as a 
functional of A and the metric. We shal l see in Section 20.2c that 8 8em/8 A == 0 
is simply a statement of Maxwel l 's equations in free space. Thus one obtains 
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the equations of motion of the electromagnetic f ie ld ,  Maxwel l 's equations, by 
putting the fi rst var iation of the total action with respect to the potential equal to 0 

13 � [Sgrav + Seml = 0 
J 

Thus one varies the metric potentials in the total Lagrangian to obta in the gravi
tational (E inste in)  f ield equations and one varies the electromagnetic potentials 
to obtain the electromagnetic (Maxwel l )  f ield equat ions!) 

11.4. The Second Fundamental Form in the Riemannian Case 

If you fold a sheet of paper once, why is the crease a straight l ine? 

11.4a. The Induced Connection and the Second Fundamental Form 

Let V' C Mil be a submanifold of a Riemannian manifold M . If we restrict the 
Riemannian metric of M , ( , ) ,  to vectors tangent to V,  we obtain a Riemannian metric 
for V, the induced metric. 

Let V be the Riemannian connection for Mil and let v n - I be an (n - I ) -dimensional 
hypersurj'ace of M . Define a new connection for V as follows. Let X be tangent to V at 
p and let Y be a vector field tangent to V near p .  Let x I , . . . , x

" and u I , . . .  , U "- I , be 
local coordinates for M and V ,  respectively, near p .  Then V x Y = XaVY / aua makes 

N 

__ ��------ir--______ M 

y 

v 

Figure 1 1 .3 

sense since Y is a vector field defined along V .  Let N be a unit vector field along V"- 1 
that is normal to V and let Z be any vector field defined along V (it needn ' t  be tangent 
to V). Define, at p in V 

V V  xZ : = projection of VxZ into the tangent space V" ( 1 1 .48) 

= VxZ - (VxZ,  N)N.  

In particular, to  the vector fields X and Y tangent to  V we associate another tangent vec
tor field V v x Y. One checks immediately that (9.2) is satisfied by V v and thus ( 1 1 .48) 
defines a connection for V"- I . We claim more: V V is the Riemannian connection for 
the induced metric on V"- I . You are asked to prove this in Problem I l .4( 1 ) . Notice that 
we have merely imitated Levi-Civita's construction in the case of a surface V2 C ]R3 . 
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What i s  the generalization of the second fundamental form? We proceed a s  i n  Section 
8 . l b. In the following X, Y, Z, are tangent to Vn- I and N is a local unit normal to V. 
We define 

by 

b(X) = -VxN 
Put 

B(X,  Y) := (X ,  b ey) ) 
Extending X and Y to be fields on M,  we have 

B(X, Y) = (X, b eY) ) = (X, -VyN) 
= Y« (X, -N) ) - (VyX, -N) 
= (VyX, N) = (VxY,  N) = B(Y, X) 

( 1 l .49) 

( 1 1 .50) 

(why?). Then b is again a self-adjoint linear transformation; b has (n - 1 )  real eigenval
ues K I , • • .  , KIl - 1 called principal (normal) curvatures. The eigen directions are called 
the principal directions, and they can always be chosen to be mutually orthogonal. 

From ( 1 1 .48) and ( 1 1 .50) we have the Gauss equations 

VxY = V�Y + B (X,  Y)N ( 1 1 .5 1 ) 

generalizing the surface equations (8 .30). 
We shall say that vr C Riemannian Mn is geodesic at p provided every M -geodesic 

through p, tangent to V at p, lies wholly in V .  Thus all of the V -geodesics through p 
are also M-geodesics !  

Mn 

p 
. . . . : : : :  . . . r plane in M; p 

Figure 1 1 .4 

Then V (if connected) is made up of geodesic segments of M emanating from p, 
tangent to an r -plane in M; . A plane in JR.3 and an equatorial r-sphere sr in sn are 
examples. Unlike in these examples , it is not true in general that a V -geodesic starting 
at a point differentfrom p will still be an M-geodesic. 

If V"- I is geodesic at p, then at p 
B (X, X) = (VxX, N) = 0 ( 1 1 .52) 

since X can be extended to be the tangent to a geodesic of V that is then also a geodesic 
of M .  Thus the secondfundamentalform B of V at p is identically 0 if V is geodesic at p. 



T H E  S E C O N D  F U N D A M E N T A L  F O R M  I N  T H E  R I E M A N N I A N  C A S E  3 1 1  

As in the case o f  a V2 c lR\ w e  define the mean curvature H o f  V"- 1 c M il  by 

H := tr b = KI  + . . . + KI1- 1 

and this is again significant for considering variations of the (n - 1 ) -volume of V"- 1 • 

(In fact, you should be able to guess the generalization of Gauss's formula (8 .26) . )  
Vn-1  C Mn is said to be  a minimal submanifold of  M if H vanishes at all points of  V .  

Note that if V i s  geodesic a t  every point p of  V (we then say that V i s  totally geodesic) 
then V is a minimal submanifold of M .  Thus the equatorial S"- 1 C S" is minimal in 
S" . (Note, however, that S2 does not have minimum area in S3 ! ) 

The other invariants L"' <tl K"Ktl , . . .  , K I K2 . . .  KI1 - I , are also useful ,  though not to the 
same extent as K and H for V2 C lR3 • The last invariant of b, det b = K 1 K2 • . .  KI1- h i s  
not called the Gauss curvature. We shall talk more about some of these matters in  our 
next section on relativity. 

1 l.4b. The Equations of Gauss and Codazzi 

Mil has a connection V and curvature tensor R; V " - 1 has a connection V V and curva
ture tensor R v 

RV (X, Y) : =  [V� ,  V� J  - V�.Yl 

How are their curvatures related? In other words, if X, Y, and Z are tangent to Vn - I , 

how are the vectors R(X, Y)Z and RV (X, Y)Z related? 
RV (X, Y)Z is certainly tangent to V but there is no reason why R (X, Y)Z should 

be. We can see their relation as follows. 
Let a" = a/au" , ex = 1 ,  . . . , n - 1 ,  be a local coordinate basis for vn- I . Since 

these fields can be considered as vector fields defined along the sub manifold V, we 
have, from ( 1 0 .2) 

On the other hand, 

[V�. V�� - V�� v�J ay = RV (a"" atl ) Oy 

Now insert va. ay = v�" ay + (Vau ay , N)N,  and take second derivatives, using 
VOpN = -b (0tl ) . By a calculation entirely similar in spirit to Gauss 's and yours in 
Problem 8 .5 ( 1 )  we get 

[Va. V a� - V a� Vau JOy 
= [V�" V�# - V�# v�J ay + B (a"" ay )b(0tl ) - B (atl , oy )b (a,, )  

The expression i n  the curly braces { } can b e  simplified. Our prescription ( 1 1 . 1 3 ) for 
taking the covariant derivative of a covariant tensor field can be shown to be equivalent 
to the following version of Leibniz 's rule . For any p-times covariant tensor T, for vector 



312 R E L A T I V I T Y , T E N S O R S ,  A N D  C U R V A T U R E  

X, and for vector fields Y 1 ,  . . . , Y p '  then T (Y 1 ,  . . .  , Y,, ) i s  a scalar field and w e  may 
differentiate it with respect to X. Then ( 1 1 . 1 3 ) says 

XT (Y 1 , · · · ,  Y,, )  = (VXT) (Y 1 , • • •  , Yp) 

( 1 1 .54) 

(with a similar rule for any mixed tensor) . Apply this to the manifold VIZ- l and the 
covariant tensor B to get 

a 
v - B (8(3 , 8y )  = (Va B) (8(3 , 8y )  a ua " 

+B (V�" 8f! '  8y )  + B (8fJ , V�" 8y )  
Thus the expression i n  braces { } in ( 1 1 .53 )  becomes, using ( 1 0. 1 ) , 

(V�" B) (8(3 , 8y )  - (V�� B) (8a , 8y )  = BfJy//a - BaY//(3 ( 1 1 .55) 
where we use the double slash II for covariant differentiation using the connection V V .  
(This should be  no  surprise after Problem 1 1 .23 . )  Then ( 1 1 . 53)  can be  written 

R (8a , 8(3 )8y = RV (8a , 8(3 )8y 

+ B(8a , 8y )b (8(3 ) - B (8(3 ,  8y )b (8a ) 

+ [BfJy//a - BaY//(3 ]N 
Finally, we may multiply by xa yfJ zy and sum over ex ,  {3 , and y to  get 

R (X, Y)Z = RV (X, Y)Z + B(X, Z)b (Y) - B(Y, Z)b (X) 
+ [ (V� B) (Y ,  Z) - (V� B) (X,  Z) ]N 

which is a Riemannian generalization of (8 .34) . 

( 1 1 .56) 

( 1 1 .57) 

On the right-hand side, only the last line is a vector normal to V .  Since X, Y, and Z 
are tangent to V ,  we have two consequences . First 

(R (X ,  Y)Y, X) = ( R v  (X, Y)Y, X) 

+ B(X, Y) (b (Y) , X) - B (Y, Y) (b (X) , X) 
or 

( R (X, Y)Y, X) = ( R v  (X, Y)Y ,  X) ( 1 1 .58) 
+ [B (X, y) ]2 - B (Y ,  Y) B (X, X) 

Now note that if we make a substitution, X f--+ X' = aX + bY and Y � Y' = cX +dY, 
then it is easy to see that 

(R (X' , Y')Y' ,  X') = (ad - bc) 2 ( R (X, Y)Y, X) 
On the other hand, if we let II X /\ Y I I denote the area of the parallelogram spanned by 
X and Y 

I I  X /\ Y 1 1 2 = I I X 1 1 2 1 1  Y 1 1 2 sin2 LX,  Y 

= I I  X 1 1 2 1 1  Y 1 1 2 - (X ,  y) 2 
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then under the substitution we have I I X' 1\ Y' 1 1 2= (ad - bc)2 I I  X 1\ Y 1 1 2 . Conse

quently, if X and Y are independent and if we let X 1\ Y denote symbolically the 2-plane 
spanned by X and Y, we then have that 

K (X 1\ Y) : =  (R (X, Y)Y, X) I I X 1\ Y 1 1 -2 ( 1 1 .59) 

depends only on the plane X 1\ Y and not the basis X, Y itself. This number, which is a 
function of 2-planes in the tangent spaces to Mil ,  is called the (Riemannian) sectional 

curvature for the plane X 1\ Y. By taking X and Y to be orthonormal, ( 1 1 .58)  can be 
written 

KM (X 1\ Y) = Kv (X 1\ Y) + [ B (X, y)]
2 - B(Y, Y)B (X, X) ( 1 1 .60) 

which we shall call Gauss's equation for the hypersurface V"- 1 C Mn . 
Our second consequence of ( 1 1 .57) is what we shall call the Codazzi equation 

( R (X, Y)Z, N) = (Vi B ) (Y, Z) - (V� B) (X, Z) ( 1 1 .6 1 )  

We now will show that these two equations reduce to the surface equations of the 
same name. 

H.4c. The Interpretation of the Sectional Curvature 

Suppose now that we consider a submanifold vr C Mil that need not be of codimension 
1. We define, for any vector field Z defined along V and for any vector X tangent to V 
at p  

viz : = projection of VxZ into the tangent space V; 
The induced connection for vr is again defined at p E V by applying this formula in 
the case that Z = Y is  tangent to V .  

The normal space to vr at p,  ( V,, ) -1 C M" now has dimension n - r ;  let NA,  
A = 1 ,  . . .  , n - r ,  be  normal vector fields along V that are orthonormal. These will 
exist in some small V -neighborhood of p. Then 

viY := VxY - L(VxY, NA )NA ( 1 1 .62) 
A 

For each normal NA we shall define a second fundamental linear transformation bA : 
Vp -+ V" by 

( 1 1 .63) 

(Note that although VXNA is orthogonal to Nil , we need ViNA in order to assure that 
it is tangent to V ! ) A calculation similar to that leading to ( 1 1 .60) will now lead to 
Gauss's equations 

KM (X 1\ Y) = Kv (X 1\ Y) + L{[BA (X, y) ]2 - BA (Y' Y) BII (X, X) } ( 1 1 .64) 
11 

Now let X,  Y be any orthonormal pair of vectors tangent to Mn at a point p .  Consider 
the 2-dimensional surface V2 C Mil generated by all the geodesics of M that are 
tangent to the 2-plane X 1\ Y at p. This surface is geodesic at p ,  and just as in ( 1 1 .52), 
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all second fundamental forms must vanish at p ,  bA = 0 at p .  Thus, from ( 1 1 .60) 
KM (X /\ Y) = Kv (X /\ V) .  Putting X = e l , Y = e2 , we see 

K M (X /\ Y) = K v (X /\ Y) 

= (Rv (e l ' e2 )e2 , e l ) = R i2 l 2 = K 

is the Gaussian curvature of V2 with its induced Riemannian metric. Thus 

Theorem (1 1.65) : KM (X /\ Y) is the Gaussian curvature of the 2-dimensional 
geodesic disc V2 generated by the geodesics of Mn that are tangent to the plane 
X /\  Y. 

In the special case when M3 = lR3 and V2 is a surface in lR3 , K v (X, Y) is simply the 
Gauss curvature K v = R V 1 2 1 2 of V2 and ( 1 1 .60) says that 0 = K + (b I 2 ) 2 - bl l b22 = 
K - det b, since X and Y are orthonormal. This is Gauss's theorema egregium. For the 
Codazzi equations ( 1 1 .6 1 ) , in our V2 C lR3 case, R = 0 and the right-hand side say, 
from ( 1 1 .55) ,  bpy//a = bayllfi . From Problem 1 1 .2(3) this is the usual Codazzi equation. 

1 1.4d. Fixed Points of Isometries 

Let ct> : Mn ---+ Mil be an isometry. The fixed set, that is ,  the set F = {x E M I ct> (x) = 
x }  of points left fixed by ct> ,  can consist perhaps of several connected pieces or "compo
nents." Consider two points x and y in F and consider the minimal geodesic y joining 
x to y .  We know from ( l 0.25) that such a minimal geodesic will exist if x and y are 
sufficiently close, and furthermore this minimal geodesic i s  unique, again if x and y are 
sufficiently close. S ince the length of ct> (y )  is the same as the length of y ,  we see that 
ct> (y )  is again a minimal geodesic joining x to y .  By uniqueness ct> (y )  = y ,  that is, 
the entire minimal geodesic joining x to y lies in the fixed set F provided that x and 
y are in F and sufficiently close. In other words, if two fixed points of an isometry are 
sufficiently close, then the entire geodesic joining them is fixed. It is not difficult to see 
then (see [K ]  ) that in fact 

the fixed set of an isometry consists of connected components, each of which is a 
totally geodesic submanifold. 

As an example, the isometry of the unit sphere x2 + y2 + Z2 = 1 that sends (x ,  y, z) 
to (x ,  y ,  -z )  has the equator as fixed set. The "same" isometry of lRP2 has fixed set 
consisting of the "equator" and the "north pole." 

Problems 

1 1 .4(1 ) Let X, Y, Z, be tangent vector f ie lds to vn- 1 . Extend them in  any way you wish 
to be vector f ields on Mn. Show that 
(i) V�Y - v�X is the Lie bracket [ X, Y] on V and thus the connection V V  is 
symmetric. 



T H E  G E O M E T R Y  O F  E I N S T E I N ' S  E Q U A T I O N S  315 

( i i )  Show that 

X(V, Z) = ('��V, Z) + (V, V�Z) 

and hence V v is the Levi-Civita connection for V. 

1 1 .4(2) I f  you fold a sheet of paper once, why is the crease a straight l ine? 

1 1 .5. The Geometry of Einstein's Equations 

What does the second fundamental form have to do with the expansion of the universe? 

11 .5a. The Einstein Tensor in a (Pseudo-)Riemannian Space-Time 

Let eo ,  . . .  , e3 be an "orthonormal" frame at a point of a pseudo-Riemannian M4. The 
following relations can be found in [Fr, chap .  4]) .  There are sign differences from the 
Riemannian case (considered in every book on Riemannian geometry) . 

Recall that a null vector X has (X, X) = O. For any nonnull vector X we define its 
indicator E (X) = sign (X, X) . If ei is  a basis vector we shall write E (i )  rather than 
dei ) ;  thus E (O) = - 1 .  

The Ricci tensor in its covariant form defines a symmetric bilinear form 

In particular 

Ric(X, Y) :=  Rij Xi Y j 

The Ricci quadratic form can be expressed in terms of sectional curvatures 

Ric (ei , ei ) = E (i ) L K (ei 1\ ej ) 
Hi 

( 1 1 .66) 

( 1 1 .67) 

that is, the Ricci curvature for the unit vector ei is  (except for a sign) the sum of the 
sectional curvatures for the (n - I )-basis 2-planes that include ei . In particular, for a 
Riemannian swiace Ml, Ric (e l , e , )  = K (el 1\ el) = K is simply the Gauss curvature. 

The scalar curvature R is also the sum of sectional curvatures 

R = R
i 
i = L K (ei 1\ e j ) 

i . j . with i=Jj 

In the case of a surface R = K (e l 1\ el) + K (el 1\ e l )  = 2K .  
The Einstein tensor is defined to be 

( l 1 .68) 

( 1 1 .69) 

with associated quadratic form G (X, X) = Rij Xi Xj - ( l j2) (X, X) R .  One then has 
that the Einstein quadratic form is again a "sum" of sectional curvatures, G (ei , ei ) = 
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-E (i )  L K(ef) ,  where ef i s  a basis 2-plane that i s  orthogonal to e; .  For example, for 
the timelike eo 

G (eo , eo) = K (e l /\ e2 ) + K (e l /\ e3 ) + K (e2 /\ e3 ) 
871:KT (eo , eo) = K (e l /\ e2) + K (el /\ e3 ) + K (e2 /\ e3 ) 

The second equation follows from Einstein's equation ( 1 1 .9) . 

( 1 1 .70) 

In particular, if we are dealing with an electromagnetic field, the energy-momentum 
tensor (as given in Problem 1 1 .3(3» is  

( 1 1 .7 1 ) 

Let us write out Too = T (eo , eo) in the case of Minkowski space. (We continue to 
use the convention that Greek indices run from I to 3 while the Roman run from 0 
to 3 ;  unfortunately this is counter to the notation in most physics books.) First, from 
Equation (7 . 1 8) ,  note that FOk Fok = FoOl FOOl = FOOigOlf3 FOf3 = EOI EOI = E2 . Also 
Frs Frs = 2(Fop F0f3 + LOI<f3 FOIp FOIP ) . But FOP = gf301 Faa gOO = EP and so 2Fof3 F0f3 ::: 
-2Ef3 Ef3 = -2E2 . Since FI 2 = B3 , and so on, we have LOI<f3 FOIf3 FOlf3 = BOl BOl = B2, 
and so 

Thus in Minkowski space, Too = (471: ) - 1 [E2 + ( 1 /4)2(B2 - E2) ] ,  or 
1 2 2 Too = - (E + B ) 871: 

( 1 1 .72) 

( 1 1 .73) 

which is the classical energy density of the electromagnetic field (see Problem 1 1 .5 ( 1 » . 
In general, Too is called the energy density of the nongravitational fields, as measured 
in the frame e, and will be denoted by p 

( 1 1 .74) 
Einstein's equation ( 1 1 .9) implies that the indicated sum of sectional curvatures is a 
measure of the total nongravitational energy density ! 

1 l .Sb. The Relativistic Meaning of Gauss's Equation 

In the space-time manifold M4 we may introduce local coordinates xO = t ,  X I , x2, 
and x3 in many ways. After such a selection has been made, the submanifolds y3(t) 
defined by putting xO = the constant value t are called the spatjal slices of the coordinate 
system. These spatial slices are spatial in the sense that (X, X) > 0 for each nonzero 
tangent vector to Y et ) .  On the other hand, the "unit" normal N to Y (t )  will always be 
a timelike vector, (N, N) = - 1 .  Of course we could also consider other hypersurfaces, 
such as, those where X l  = constant and N is then spacel ike, but our main concern here 
is with the spatial slices. The reader may refer to chapter 4 of [Fr] for further discussion. 

Let N = eo be the unit normal to the spatial slice Y\t ) .  Complete N to an or
thonormal basis. We may consider the second fundamental form b of Y (t ) ,  defined as 
in Section 1 1 .4. We must now, however, be very careful with "signs ." For example, 
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' f e is an "orthonormal" basis ,  then when we expand a vector in terms of this basis, � :::: � ei vi , we get va = (v, ea )  but va = - (v,  eo ) ! Thus for our spatial slice V (t) we 

have, rather than ( 1 1 .48) ,  

VxY = V�Y - (VxY, N)N = V�Y - B (X, Y)N ( 1 1 .75) 

This will then introduce minus signs into the Gauss equation ( 1 1 . 60) 

KM (X 1\ Y) = Kv (X 1\ Y) - [B (X, y)]2 + B(Y, Y)B (X, X) ( 1 1 .76) 

We must now make a comment about self-adjoint linear transformations, for ex
ample, b, in the case of our pseudo-Riemannian metric ( , ) . When M is pseudo
Riemannian, the proof in Problem 8 .2( 1 )  of the fundamental theorem on self-adjoint 
transformations A : JR.n -+ JR.n fails because the scalar product is not positive definite. 
The crucial point is that in this case the "unit sphere" (x, x) = I i s  really a hyper
boloid, and is thus not compact; there is, e .g . ,  no assurance that the continuous function 
j(x) == (x, Ax) will attain its maximum at any point of this hyperboloid ! Thus a self
adjoint A need not have real eigenvalues ! For example, in Minkowski 2-space with 
metric diag( - 1 ,  1 ) the linear transformation with matrix 

is self-adjoint (since its covariant version is symmetric) with eigenvalues ± i .  We, 
however, are concerned here with the self-adjoint b that maps the tangent space to V (t ) 
into itself. Since V (t ) is spacelike, V (t) is a Riemannian submanifold of the pseudo
Riemannian space-time, and thus b will have 3 real eigenvalues, and the corresponding 
eigenvectors, the principal directions, can be chosen orthonormal . By applying ( 1 l .76) 
to an orthonormal basis of eigenvectors e l ,  e2 , and e3 of b, we get 

( 1 1 .77) 

Put this now into ( 1 1 .74), where the sectional curvatures K there are for M4, that is , 
K = KM • Einstein's equation becomes 

or, from ( 1 l .68) 

87rKP = KV (e l 1\ e2) + Kv (e l 1\ e3 )  + KV (e2 1\ e3 ) 

+ (K I K2 + K I K3 + K2K3 )  

( 1 1 .78) 

We shall think of this as the geometric version of Einstein's equation involving Too . 
Let us put it in the proper perspective . 

For a Riemannian surface V2 C JR.3 we have K == K I K2 , which we may now write as 

I 
0 = - Rv - KI K2 2 

This is simply Gauss's theorema egregium, and, as we have just seen, is a consequence 
of the fact that the Einstein tensor G of the flat JR.3 vanishes. 
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Consider a 3-dimensional submanifold V3 of the flat euclidean 4-space ]R4. The 
statement that the Einstein tensor G of ]R4 vanishes can be written 

0 1 .79) 
This is a 3-dimensional version of Gauss's theorema egregium. 

If we consider instead a 3-dimensional space/ike submanifold V3 C Mri of Minkow_ 
ski space, then there is only a simple sign change, yielding 

I 
0 =  2 Rv + (KI K2 + K ] K3 + K2K3 ) 

This is the theorema egregium for such a hypersurface of Minkowski space. 
Consider now a 3-dimensional spatial section V 3 in the actual space-time manifold 

M4 of our physical world. Einstein ' s  equation 0 1 .78) then says that 

the combination ( 112) Rv + (K] K2 +KI K3 + K2K3 ) is not 0, as it was in Minkowski space, 
but is rather a measure of the total nongravitational energy density of space-time! 

Note that Rv  is an intrinsic measure of curvature of the spatial section V 3 , since it is 
constructed from the Riemann tensor of the Riemannian V 3 . On the other hand, the 
Ka 's ,  being principal normal curvatures, measure how V3 curves in the enveloping M4; 
thus (KI K2 + K I K3 + K2K3 ) is a measure of extrinsic curvature. As J .  A .  Wheeler put it, 
Einstein 's  equation ( 1 l .78) may be stated as follows :  

The sum of the intrinsic and the extrinsic curvatures of a spatial section is  a measure 
of the nongravitational energy density of space-time. 

Finally, I wish to elaborate on ( 1 1 .78) ,  putting it in the spirit of Gauss 's  theorema 
egregium. Let p be a point of space-time and let N be a given unit time l ike vector at 
p .  Let V3 be any spacelike hypersurface that is orthogonal to N at p ;  only its tangent 
plane at p is prescribed. V 3 will have a scalar curvature Rv at p that depends strongly 
on the choice of V3 . V 3 will also have normal principal curvatures Ka at p, and these 
again will depend on the choice of V3 . Gauss ' s generalized theorema egregium states 
that the combination ( 1 j2) Rv + (K I K2 + K I K3 + K2K3) does not depend on the choice 
of V 3 , but is in fact equal to the value G(N, N) = Rij N i Ni + ( l j2) R of the Einstein 
quadratic form for M4 evaluated on the given normal ! 

H.Sc. The Second Fundamental Form of a Spatial Slice 

Consider in space-time M4 a coordinate system in which the metric assumes the fonn 

( 1 1 .80) 

Thus gOfJ = 0 and ga{3 = ha{3 is the Riemannian metric induced on the slice V3 (t) 
defined by putting t constant. (Such coordinates always exist; e.g. , if we take an i nitial 
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slice V3 (0) and introduce Gaussian geodesic coordinates as in 1 0.3a, we can even make 
_ - l ! )  As we proceed along the t- lines we may contemplate a/atga{3 (t ,  x) . goo -

Put 
cp := (-goo) 1 /2 

then N == cp- I Ot is the unit normal to each spatial slice V3 (t) .  
a (ha{3 )  

= 
/ V (cpN) 0 ) /0 V (cpN) ) 

a t  \ oxa ' fJ + \ a , 
oxfJ 

Thus 

In words, 

( 1 1 . 8 1 )  

bafJ is essentially the measure of the rate of change of the spatial metric hafJ as one 
moves along the normal to the slices, that is, in time! 

It should be clear from this that the second fundamental form will play a crucial role 
in discussing the expansion a/ the universe (see [Fr, chap.  1 2] ) .  

Equation 0 1 .8 1 )  i s  useful in  the Riemannian V"- 1 C Mn case as  well. See Problem 
1 1 .5(2) . 

1l .Sd. The Codazzi Equations 

So far, in this section, we have discussed mainly the geometry of the Einstein equation 
Goo = 8JTK 7(1O , where Too is the (nongravitational) energy density. We now wish to 
discuss the geometry of GOfJ = 8JTK 7(1fJ . 

Recall that we have already demonstrated certain symmetries of the covariant Rie
mann tensor; for example, Rijkl is skew in (ij ) and also in (kl ) .  The latter is Equation 
(9.54). Using the Bianchi identity, you are asked in Problem 1 1 .5(3)  to show that there 
is also the symmetry 

0 1 . 82) 

Back to relativity. Assume a metric of the form ( 1 1 . 80) . The Codazzi equations are 
given in ( 1 1 .6 1 ) . If you write these out in coordinate form (as you are asked to in 
Problem 1 1 .5(3» you will get 

( ) - 1 /2 R - b b -goo OyafJ - yfJ//a 
- ya//fJ 0 1 .83)  



320 R E L A T I V I T Y ,  T E N S O R S , A N D  C U R V A T U R E  

the double slash again denoting covariant derivatives i n  V 3 ( t )  (recall that b i s  a tensor 
on V3 (t ) ,  not M4) .  Then 

bllf3//a - blla//p = hIlY (byf3//a - bya//f3 ) = hlly</>- I ROYaf3 
where (hIlY ) is the inverse matrix to the 3-dimensional tensor (haP) '  Since (gij ) is a 
matrix of the form 

we may write 

A.- l hIlY R - A.- I IlY R - A.- I lli R - A.- I RIl 'f' Oyap - 'f' g Oyap - 'f' g Oiaf3 - -'f' Oaf3 
and so RIlOaf3 = -</> (bllp//a - blla//f3 ) . Then 

ROf3 = Ri OiP = RaOaf3 = _</> (ba f3//a - ba a//p ) 
Since goP = 0, Einstein 's GOf3 = 8nK Top gives 

8n K Tof3 = V(-goo) (Ho"'p - ba f3 ) //a 
which perhaps should be called the Einstein-Codazzi equation. 

( 1 1 .84) 

In the case of electromagnetism, in Minkowski space, Top = (8n ) - 1 FOk F/, and 
FOk F/ = FOa Ff3a = - Ea Ff3a = _Ea Fpa = Ea Faf3 = Ea Baf3 = the f3th component 
of iE �g2 , that is , - E x B. By Problem 1 1 .5 (  1 ) , this is the negative of the momentum 
density of the field. In general, -TOf3 is defined to be the f3th component of the momen· 
tum density of the nongravitational fields and the Einstein-Codazzi equation ( 1 1 .84) 
relates this to the second fundamental form of the spatial slice. 

H.Se. Some Remarks on the Schwarzschild Solution 

We refer the reader to [Fr, chap. 5] for details of the following. 
The Schwarzschild solution is a static solution of Einstein 's  equations corresponding 

to the gravitational field exterior to a single spherically symmetric static mass ball (e .g . ,  

the region outside the sun) in an otherwise empty universe. It is not hard to see that the 
metric for the entire universe must be of the form 

( 1 1 .85) 

in spherical coordinates r, e, </> with the mass center at the origin. Note that dr does 
not measure radial distance from the origin; the unknown rg dr does !  On the other y 6 rr 
hand, r2 (de2 + sin2 ed</>2 ) is exactly the standard metric on the 2-sphere S2 (r) of radius 
r in JR.3 ( i .e . ,  the sphere of constant Gauss curvature K = l / r2 ) .  This sphere has area 
4n r2 . Thus r is a radial coordinate that is normalized not so that it is di stance from 
the origin but rather so that the 2-sphere r=a has area 4na2 . 

The metric coefficient grr can be obtained as follows. From ( 1 1 .78) we see that 
Rv + 2(K I K2 + K I K3 + K2K3 ) = 1 6nKp , where V3 is the spatial slice t = constant and 
Rv is the Ricci scalar curvature of V .  But, from ( 1 1 . 8 1 ) , the second fundamental fonn 
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f a spatial slice vanishes in a static universe. We conclude that RI! = 1 67rKp and in 
o articular Rv = 0 in the region outside the ball of matter. 
P We wish then to determine the metric coefficient grr on the spherically symmetric 

V3 with Rv = 1 67rKp (r) .  We may try to real ize such a Riemannian V3 as an embedded 
3_manifold (again called V3 ) in euclidean IR,4 = IR, X IR,3 with coordinates w, r, e , ¢ ,  
which respects spherical symmetry, that is ,  i s  invariant under the rotation group SO(3) 

acting on the space IR,3 . 

w 

Figure 1 1 .5 

We assume a graph of the form w = w (r, e ,  ¢) = w (r ) .  Thus the slices w = constant are 
simply 2-spheres, and the function w of r is to be determined so that Rv = 1 67rKp (r) ; 
since we are interested here in the region exterior to the ball ,  we shall not be concerned 
that p is not known explicitly as a function of r .  

For the entire V3 sitting i n  IR,4 , we  may again apply Gauss 's equation ( 1 1 .79), where 
now the K 'S are the principal curvatures of V3 C IR,4 . It is easy to compute the normal 
curvatures for this 3-dimensional analogue of a surface of revolution, and in Chapter 
5 of [FrJ it is shown that exterior to the bal l ,  w takes a parabolic form, yielding the 
Flamm paraboloid 

w2 = 8m (r - 2m) and 
( 2m ) - ' 

grr = 1 - 7 
where 

m = K loa 47rr2p (r)dr 

is a measure of the "total mass" of the ball of coordinate "radius" a. Thus V3 carries 
the spatial metric ( 1 - 2m/r)- ldr2 + r2 (de2 + sin2 ed¢2) .  

In Problem 1 1 . 1 (2) i t  was shown that U = ( 1  - 2m/r) I /2 i s  a solution to Laplace 's 
equation in the spatial Schwarzschild metric ,  and, for large r, U is of the form U '"" 
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1 - mfr .  Thus 1 - ( 1  - 2m/r) I /2 i s  a good candidate for the "correct" gravitational 
potential in the exterior region. As in Section 1 1 . I c, this suggests that -J= goo = 1 - U == 
( 1 - 2m/r) I /2 and so goo = - ( 1  - 2m/r ) .  In [Fr] it is shown that this is in fact the 
solution demanded by the remaining Einstein equations. Thus in the external region We 
have the Schwarzschild solution ( 2m ) ( 2m ) - 1  

ds2 = - I - ""7 dt2 + 1 - ""7 dr2 + r2 (de2 + sin2 ed¢2) 

Problems 

( 1 1 .86) 

1 1 .5(1 ) Consider the classical e lectromagnetic f ield in IR3 , as in Section 3.5 .  Note that 
(�/\* 1;; = E • E VO/3 , and so differentiating with respect to time gives a j a  t (0M�;) == 
20 /\ a* t;ja t. Likewise, we may compute aja tUJ.l /\ *�il ) .  Show that for a fixed 
compact reg ion U of IR3 , we have 

d 1 1 c ,- (0  () 1 1 C ( 0  1 <' · 2 - - �, /\ * l" + , h  /\ *. h = - - l" /\ *. h - l" /\ J' 
dt 8n v 4n av v ( 1 1 .87) 

The integrand on the left-hand side is (8n )- 1  ( E2 + 82) 2: 0 and is the claSSical 
energy density of the fie ld .  Note that Iv (; 1 /\ / = Iv E • J VO/3 

� Iv E • pvvoJ3 

represents the rate at which the field does work on the charges in the current. 
Then (4n ) - 1  J�V (� 1 /\ *�il2 = Iau (4n )- 1 E x B .  dS is interpreted as the f lux of 
energy th rough a u. Relativistical ly, energy is the same as mass. But the flux 
of mass through a surface is given classically by the surface i ntegral of the 
momentum dens ity. (For example, in  the case of a fluid with mass density p we 
have Iau pv · dS = -dj dt Iv p vo/3 . )  Thus we may consider (4n ) - 1 E x  B, the 
Poynting vector ,  to be the momentum density of the f ield. Equation ( 1 1 .87) 
is  Poynting's theorem.  

1 1 .5(2) I n  the Riemannian case one puts 4> = (goo) 1 /2 , but ( 1 1 .8 1 ) sti l l  holds. Show 
that 

(see ( 1 1 .39» . Since Vdet(g"fi ) dx1 /\ . . .  /\ dxn- 1 is the "area" form d Sn-1  for 
Vn- 1  we may write for the fi rst variation of area 

:!..- r dSn- 1 = _ r 4> HdSn- 1  
dt ) V(t) } V( t) 

This is the (n - 1 ) -dimensional version of (8 .26) ,  but where is the boundary 
term? 

1 1 .5(3) Prove ( 1 1 . 82) . 

1 1 .5(4) Prove ( 1 1 .83) . 
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Curvature and Topology: Synge's 
Theorem 

In Problem 8 .3 (7) it was shown that if M2 is  a closed surface in ]E.3 then its curvature 
K and its "genus" g are related by 

_1 r KdS = 2 - 2g ( 1 2. 1 )  
2JT JM 

This is the Gauss-Bonnet theorem. In particular, when M2 is a (perhaps) distorted torus 
(i.e. , a surface of genus 1 ) , then (2JT )- 1 iM KdS = O. Thus it is  not possible to embed 
the torus in ]E.3 in such a way that its Gauss curvature is everywhere positive. This is  
not surprising; a few sketches of tori wil l  "convince" one that there wil l  always have 
to be saddle points somewhere. However, in Part Three, we shall see that ( 1 2 . 1 )  is true 
even for an abstract Riemannian metric (without any question of an embedding in ]E.3) .  
This i s  an example of a global or topological result, relating the purely "infinitesimal" 
notion of curvature to the topological notion of the genus of the surface. 

In this  brief chapter we will discuss a relation between curvature and the topological 
notion of simple connectivity, namely the theorem of J. L. Synge, one of the most 
beautiful results in global differential geometry of the twentieth century. In the process 
of proving Synge 's theorem, we shall derive a formula, also due to Synge, for the second 
variation of arc length along a geodesic. 

Figure 1 2.1  

323 
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I n  the figure, we  have drawn a closed geodesic C, first on a surface with negative 
curvature and then on a positively curved sphere. If we consider only variations of C 
by smooth closed curves (where P = Q and the tangents match up at P) ,  it is clear 
from ( 1 004) that the first variation of arc length vanishes in both cases, the endpoint 
contributions cancel in the case of a closed geodesic. Still , we can shorten the equator 
C on the sphere by pushing it north ! We could say that in the "space QS2 of all 
smooth closed curves on S2 ," the length functional L has first derivative 0 at the point 
representing the equator C but C does not yield a relative minimum for L . We shall 
see, from Synge's formula, that in thi s  case of positive curvature the second variation is 
negative for the variation pushing C north, explaining why this geodesic is unstable. (A 
slippery rubber band stretched along the equator would contract if disturbed slightly.) 
It seems evident that the equator in the negatively curved surface is stable, yielding an 
(absolute) minimum for L ,  and this will also follow from Synge's formula. 

12. 1 .  Synge's Formula for Second Variation 

What does curvature have do with the stability of a geodesic? 

12.1a. The Second Variation of Arc Length 

We first introduce a notation that will simplify the appearance of our calculations. 
Consider, as in Section 1 0. 1  b, the variation of arc length . We have the tangent vector field 
T = ax/as and the variation field J = ax/aa, both defined along the 2-dimensional 
variational surface. We shall write with some misgivings 

V'J V'T V'TJ :=  - and V'JT := -as aa ( 1 2.2) 

even though T and J are defined only along the variational surface. We shall also write, 
for instance, V'TW rather than V'w las when W is a field defined along the variational 
surface. Thus Lemmas ( 1 0. 1 ) and ( 1 0.2) of Section 1 0. 1  then take the form 

V'TJ = V'JT 
and ( 1 2.3) 

V'TV'JW - V'JV'TW = R(T, J)w 
We now return to our consideration of  arc length variation, started in  Section l O. l .  

We suppose now that the base curve Co , given by  a = 0 ,  i s  a geodesic o f  length L. 
Recall that the parameter s need be arc length only when a = O. 

We shall only be concerned with the case in which the first variation vanishes, 
L '  (0) = O. From ( 1 004) we see that this requires, in this case of a geodesic base curve, 
that 

(J , T) Q = (J,  T) p 
From the first equation of ( l OA) we have, in our new notation 

L ' (a) = lL (T, T) - 1 /2 (V'TJ, T)ds 
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Then 
L" (a) = i\- (T, T) -3j2 (V'TJ, T) 2 

+ (T, T) - 1 /2 { (V'JV'TJ, T) + (V'TJ, V'JT) } ]ds 

Since I I  T 1 1 = I when a = 0, and since V'TJ = V'JT 

L"(O) = iL
[- (V'TJ, T) 2 + { (V'JV'TJ, T) + (V'TJ, V'TJ) } ]ds 

Note that 

where () is the angle between V'TJ and T. But this  is simply the square of the area 
I I (VTJ) /\ T 1 1 2 of the parallelogram spanned by these two vectors . Thus 

L" (O) = lL
{ (V'JV'TJ, T)+ I I  (V'TJ) /\ T 1 1 2 }ds ( 1 2 .4) 

Look now at the first integrand 

(V'JV'TJ ,  T) = (V'TV'JJ, T) + (R (J ,  T)J, T) 

But (VTV'JJ, T) = Cl/ Cls (V'JJ, T) - (V'JJ, V'TT) , and so 

iL 
(V'TV'JJ ,  T)ds = (V'JJ , T)� 

Equation ( 1 2.4) then becomes 

L" (O) = (V'JJ , T) � + iL { (R (J, T)J, T)+ I I (V'TJ) /\ T 1 1 2 }ds 

The statement that the covariant Riemann tensor is  skew in the first two indices translates 
to the statement 

(R (J, T)J, T) = - (R (J, T)T, J) 

as one easily sees by expressing this in terms of components. Thus we finally have our 
principal formula, dating from the year 1 925 . 

Synge's Formula (12.5) : For a variation of a geodesic in which the first varia
tion vanishes, (J , T) Q = (J , T) p, we have 

L" (O) = (V'JJ , T) �  + iL 
{ I I (V'TJ) /\ T 1 1 2 - (R (J, T)T, J) }ds 

Note also that when the variation is orthogonal to the geodesic, that is, when (J , T) = 
0, then (V'TJ, T) = T(J , T) - (J, V'TT) = 0, and II (V'TJ) /\ T 1 1 2 becomes simply 
I I VTJ 1 1 2 . 
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Corollary (12.6) : For an  othogonal variation of a geodesic we  have 

Recall (from ( 1 1 .59)) that in a Riemannian manifold Mil , I I A 1 1 2: 0 for all A and 
M has negative sectional curvature if (R (J , T)T, J) is  negative whenever T and J are 
l inearly independent. Consider a geodesic C in such a space joining distinct points p 
and Q .  To see whether C locally minimizes arc length between P and Q we consider 
a variation J that vanishes at P and Q.  Thus the endpoint contribution vanishes in 
Synge's formula. If J and T are not everywhere dependent along C the integral will be 
positive . If J = f (s )T  along C ,  then the variation associated to J does not change the 
curve C at all .  From ( 1 2 .5 ) .  

Corollary (12.7) : In a negatively curved Riemannian Mil , a nontrivial variation 
of a geodesic C joining distinct points P and Q yields LI/ (0) > 0 and so C is 
stable, that is, locally minimizes arc length. 

In the case of a closed geodesic, J need not vanish at P = Q, but both T and J match 
up at P = Q,  and so the first variation still vanishes. Furthermore, ('�7JJ, T)& = O. 
We conclude that LI/ (O) 2: 0, and = 0 only if J is a multiple of T along C ;  this would 
simply move the geodesic into itself. 

Corollary (12.8) : In a negatively curved Riemannian Mil , each closed geodesic 
is stable. 

12.1b. Jacobi Fields 

We shall reconsider the case of distinct endpoints when the variation field J vanishes 
at the endpoints and is orthogonal to T. Then, as we have seen, 

and so 

a (J ,  T) 
(VTJ, T) = T(J, T) - (J, VTT) = -- = 0 as 

Synge's formula then reads 

( 1 2.9) 
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(� J VTJ) = T(J,  VTJ) - (J , VTVTJ) and the first term integrates to 0 since But V T  ' 
J vanishes at the endpoints . We then have 

LI/ (O) = - foL { (VTVTJ + R (J, T)T, J) }ds ( 1 2. 1 0) 

to variations that vanish at the endpoints and are orthogonal to the geodesic. '
Note that if J is a Jacobi field, then LI/ (O) = O. Thus, from Problem 1 0. 1 (3) ,  ifwe 
rY the geodesic C by a I -parameter family of geodesics passing through P and Q, :tj, the first and the second variations vanish ! 
This has the following consequence. (Our treatment will be very brief; for a more 

careful treatment see, e .g . , [Do, p. 423] . ) 

First note that given any vector field X = Xes )  defined along a curve C , we can define 

a variation of C having variation vector given by X. There are many ways of forming 

such variations .  For x (s ,  a) we may merely put x (s , a) = expx(s ) aXes ) ;  that is, x (s , a)  

is the point on the geodesic starting a t  x es )  on C in the direction of X(s ) ,  and a t  distance 

I I aXes) I I from x es ) .  

Xes) 

x (O) 
Figure 1 2.2 

Suppose that there is a nontrivial Jacobi field J along the geodesic C that vanishes 
at P and at :mme point p' between P and Q; we do not assume that J vanishes at Q .  
We call pI a conjugate point to P along the geodesic C . 

;@ �---- - - - - -p ' Q '  
p 

Figure 1 2.3 

Q 
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Using J we may construct a variation of  the portion P p'  of  C as before. Note that 
different variations having the same variation vector J at ex = 0 will yield the same 
second variationformula ( 1 2 . 1  O) ! The varied curves Ca pass through p' and, by ( 1 2. 10), 
have the same length, to second order, as the arc P p' of the base curve C.  

The varied curves Ca meet C = C (0) transversally i f  ex is  small enough; we see this 
as follows. �e have already m�ntioned that a Jacobi field can �e realized by varying 
C by geodeslcs Ca . If a geodeslc Ca were tangent to the geodeslc C at some point pi 
then Ca would coincide with C and so J == O. Thus Ca is transversal to C at P' . 

' 

Let then P" be a point on Ca , and Q' a point on C, that are so close that there is a 
unique minimal geodesic P" Q' joining them. Then the geodesic arc P" Q' is strictly 
shorter than the broken arc P" p i  Q' . This says then that the curve of broken arcs 
p P" Q' Q is shorter than the original geodesic P pi  Q' Q = p Q .  The broken P P" Q' Q 
can then be smoothed off to yield a smooth curve that is again shorter than C.  We have 
"shown" that 

Theorem (12. 1 1 ) : If a geodesic arc C contains a point pi conjugate to the be
ginning point P in its interior. then C is not a minimizing geodesic; that is, C is 
not stable. 

Thus a geodesic cannot be minimizing after passing a point conjugate to the initial 
point! 

In fact Marston Morse has shown the following (see [MD. Let us say that the point 
pi  conjugate to P has (Morse) index A iff there are exactly A linearly independent 
Jacobi fields along C that vanish at both P and P' .  (This makes sense since the Jacobi 
equation is linear in J . )  Suppose that P{ , . . .  , P; are exactly the conjugate points to P 
that are between P and Q ,  and that P( has index A (i ) .  We define the (Morse) index of 
C to be Li AU ) ,  the sum of the indices of all conjugate points pi interior to P Q .  Then 
in a certain well-defined sense, there are essentially Li A( i )  independent variations of 
C that strictly decrease the arc length of C. 

For example, consider on the n sphere the geodesic (great circle) C that starts at the 
north pole P,  passes through a point Q on the equator, goes all the way around to P 
again, and continues on to the point Q .  

p = p "  

Q 

Figure 1 2.4 
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Th first conjugate point to P is the south pole pi ;  the next and last is pI! = P itself earc length 2Jr) .  For the arc P pi  there is an (n - 1 ) -dimensional family of great 
(�tc1es (parameterized by the equator S,, - I ) ;  these yield an (n - I )-dimensional space �� Jacobi fields vanishi�g at pi.' a

.nd thus the index of the conjugate point .p '  is � - 1 .  
These geodesics also Yield vanatlOns of the segment P p i  P", and so pI! IS  conjugate 

p with index n - 1 .  Thus the Morse index of the geodesic P Q pi pI! Q is 2 (n - 1 ) ;  ��ere are basically 2n - 2 independent variations of C that decrease the length of C .  

Problem 

12.1 (1 ) Use ( 1 1 .82) and [ R(J , T)T]8 = Tb R8bcd Jc Td to show that the Jacobi l i near 
transformation 

J f-+ R(J ,  T)T 

is self-adjoint. 

12.2. Curvature and Simple Connectivity 

How is positive curvature related to simple connectivity? 

12.2a. Synge's Theorem 

Theorem (12.12) :  Let M2n be an even-dimensional, orientable manifold with 
positive sectional curvatures, K (X /\ Y) > O. Then any closed geodesic is unsta
ble, that is, can be shortened by a variation. 

For example, the equatorial great circle on the round 2-sphere can be shortened by 
pushing it north. 

PRO O F  O F  S Y N G E ' S  T H E O R E M :  Let C ,  x = x es ) ,  be a closed geodesic. We 
first claim that we can find a unit vector field J along C that is normal to C and 
parallel displaced along C. This is proved as follows. Since parallel translation 
around C will send the geodesic tangent T into itself, paral lel translation around 
C will also take the (2n - I ) -dimensional plane of vectors normal to T into itself. 
Let T-L be the normal plane at x (0) . Parallel translation around C will give a map 
p : T-L -+ T-L .  This map is l inear since the differential equations of parallel 
translation are l inear. We know that this map is an i sometry ; thus P is given by 
an orthogonal matrix, P T = P - I . P cannot reverse the orientation of T-L ,  for 
if it did, since T i s  sent into itself, parallel translation would have reversed the 
orientation of the 2n-dimensional tangent space to M at x (O) , contradicting the 
assumption that M is orientable. Thus det P = + 1 .  But the eigenvalues of P 
either are real or occur in complex conjugate pairs, and since there are 2n - 1 of 
them, we conclude that there are an odd number of real eigenvalues . But each of 
these must be ± 1 ,  and yet det P = (the product of all the eigenvalues) = 1 .  Thus 
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there is a t  least one eigenvalue A = + 1 .  But this means that some normal vector 
J must be sent into itself under the parallel translation;  J (s ) is a normal paral lel 
displaced vector along C !  

We may then construct a variation of C by again considering the geodesics 
tangent to the vectors J, that is ,  

x es ,  a )  : = expx(s) {aJ(x (s ) } 

By construction (3x /oa) (s ,  0) = J (x (s ) ;  that is ,  this variation has J as its vari
ation vector. Look at Synge's formula ( 1 2 .9) .  The boundary term vanishes since 
we have a closed curve. Further, V TJ = 0 since J is parallel displaced. Thus 

L"(O) = - rL K (T 1\ J)ds in ( 1 2. 1 3) 

since T and J are orthonormal . We conclude that L" (0) < O .  Since L' (0) = 0 for 
the geodesic we conclude that such a variation would decrease the length of the 
curve for small a. 0 

There are spaces with positive sectional curvatures. The usual paraboloid in lR3 has 
positive curvature, and any deformation of it, if sufficiently smal l ,  will also. Likewise for 
the unit sphere (which is compact) . The unit sphere S" C lR/+ 1 has sectional curvatures 
all unity. To see this we use the Gauss equation 0 1 .60) applied to M = lR/+ 1  and 
V = S" .  Since KM = 0 for M euclidean we have Kv (X, Y) = B (Y,  Y) B (X, X) 
{B (X, y» )2 . For two orthogonal principal directions X = e I and Y = e2 we would 
have KV (e l ' e2 ) = K I K2 . But by symmetry, all principal curvatures for the round unit 
sphere must coincide, Ki = - 1  (using the outward-pointing normal) .  Thus all sectional 
curvatures for the unit n -sphere are + 1 .  

For another example, consider the real projective n-space lRpll . This is the space 
resulting from the unit n -sphere when antipodal pairs are identified. Any tangent vector 
X to lRpn corresponds to a pair of tangent vectors, Y and -Y, to S" at antipodal points. 
These vectors have the same length, and thus there is no ambiguity in defining I I  X I I 
to be the length in the Riemannian S" of either of the tangent vectors ± Y "covering" 
X. This defines a Riemannian metric for lRP" . It should be clear that the 2: 1 projection 
(identification) map Jr : S" ---* lRP" is then a local isometry, and thus the Riemann 
tensors of the two spaces agree at corresponding points , if we use local coordinates in 
S" that result from pulling back local coordinates in lRP" (see Section 8 .Sb) .  Thus lRP" 
carries a Riemannian metric with sectional curvatures K = I again ! 

We have mentioned in Section 1 0.2d that if a compact manifold i s  not simply con
nected, then among a free homotopy class of closed curves that cannot be shrunk to 
a point, there will be a shortest curve and it will be a closed geodesic. Thus we have 
Synge's theorem of 1 936. 

Corollary (12.14) : A compact, orientable, even-dimensional manifold with pos
itive sectional curvatures is simply connected. 
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12.2b. Orientability Revisited 

The example ]E.P" is especially interesting with regard to Synge's corollary because 
RP" is not simply connected ! This can be seen as follows .  An arc C' on S" going 
from the north to the south pole projects down to yield a closed curve C on ]E.P" since 
the north and south poles project to the same point (call it N) on ]E.pn . We claim that 
C cannot be deformed to a point on ]E.pn . Let C be parameterized, x = x (t ) ,  with 
x(O) = x ( I )  = N. It should be clear that any deformation of C can be "covered" by a 
deformation of C' on sn , using the identification. Under a deformation of C, the point 
N might move to another point Na , and then the covered curve C� would start at one 
of the two points on S" covering Na and end at its antipodal point - Na . If C could be 
deformed to a point, then eventually we would have to cover thi s  single point curve C1 
at NI by a whole arc on S" going from a point over NI to its antipode. This  i s  impossible 
since NI is covered only by two points on S" . 0 

The fact that ]E.p3  is not simply connected has the following application to mechanics 
([A, p. 248] ) .  

Theorem (12.15) : A rigid body, free to rotate in ]E.3 about a fixed point of the 
body and subject to any time independent potential field, has a periodic motion 
for any sufficiently large total energy E. 

CO M M E N T :  A rigid body fixed at one point in ]R3 has the rotation group S O (3)  
as  configuration space (see Section l . l d) .  S O (3)  is an  example of  a Lie group, 
and we shall study them in detail in this book, starting with Chapter 1 5 .  One 
then looks at the phase space, i .e . ,  the cotangent bundle to S 0 (3) . In Section 28 
of Arnold's book it is  shown how the classical moment of inertia tensor is used 
to relate (angular) velocities on the manifold SO (3) to (angular) momenta, and 
thence to define the kinetic energy on the phase space. Using the given potential 
field on SO (3) we can form the Jacobi metric of Theorem ( 1 0. 1 9) .  For sufficiently 
large total energy H = E, the Jacobi metric defines a Riemannian metric on all 
of SO (3) in which the geodesics represent the motions of the system. But SO  (3) 
is topologically ]E.p3 (see 1 .2b, example vii) .  Since ]E.p3 i s  not simply connected, 
there exists a closed geodesic, and this corresponds to a periodic motion of the 
body. 0 

Does the fact that ]E.p2/l is not simply connected contradict Synge's Corollary I ? 
lRp2n is compact, even-dimensional , and has positive sectional curvatures. Thus even
dimensional projective spaces cannot be orientable ! This reaffirms the result of Problem 
2.8( 1 ) . 

Synge's method has another striking consequence for orientability. First note that if 
Mn is not orientable then there is some closed curve C that cannot be deformed to a 
point (in particular M is not simply connected!) and such that orientation is reversed 
on transporting an orientation around C. To see this , suppose that M is not orientable. 
Then it must be that transporting an orientation around some closed curve must lead 
to a reversal of orientation; otherwise it would be possible to transport an orientation 
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uniquely from a given point t o  every other point, implying that M was orientable. Let 
now orientation be reversed upon traversing a closed curve C. If we deform C slightly 
to a curve Cx , then, by continuity, orientation must be reversed also on traversing CO/ . 
Thus orientation would be reversed for every closed curve that is freely homotopic to 
C (see Section l O.2d). But if we could deform C to a point curve C I ,  where orientation 
cannot be reversed, we would have a contradiction. 0 

Thus if Mil is not orientable, there is ,  from Section 1 0.2d, a closed geodesic C having 
the property that orientation is reversed upon traversing C and C is the shortest curve 
in its free homotopy class .  In Problem 1 2 . 1  ( 1 )  you are asked to prove the following: 

Corollary (12.16) : If M21l+ 1 is a compact, odd-dimensional manifold with posi
tive sectional curvatures, then M is orientable. 

This shows that the odd-dimensional projective spaces are orientable. 

Problem 

1 2.2(1 ) Use Synge's method to prove Corollary ( 1 2 . 1 6) .  
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Betti Numbers and De Rham 's 
Theorem 

When can we be certain that a closed form will be exact? 

THE lack of simple connectivity is but one measure of topological complexity for a 
space. In this chapter we shall deal with others, the Betti numbers, and their relations 
with the potentials for closed exterior forms initiated in Chapter 5. This subject is a part 
of the discipline called algebraic topology. 

13.1 .  Singular Chains and Their Boundaries 

What does Stokes 's theorem say for a Mobius band? 

13.1a. Singular Chains 

The standard (euclidean) p-simplex in lR,P is the convex set !1p C lR,P generated by 
the p + 1 points 

Po = (0 ,  . . . , 0) , PI = ( 1 , 0, . . . , 0) , . . .  , Pp = (0, . . .  , 0, 1 )  

11 2 

*Po It J ..... ____ .....;L..... __ It J  
Po Po 

333 
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113 

}-"""'-------::r---- 112 

II I 

Figure 1 3. 1  

We shall write 

A singular p-simplex in an n-manifold Mn is a differentiable map 

of a standard p-simplex into M. 

Figure 1 3.2 

Note that a singular simplex is a special case of a parameterized subset discussed in 
Section 3 .4b. This is the natural object over which one integrates p-forms of M via the 
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pull-back 

We emphasize that we put no restriction on the rank of the map ap ;  for example, the 
image of D.p , which we shall also denote by aI" may be a single point of M. 

Note that the kth face of D.p 
(k ) . _ 

� 

D. p_ 1 .- (Po ,  . . . , Pk , . . .  , Pp )  

that is, the face opposite the vertex Pk .  i s  not a standard euclidean simplex , sitting as it 
does in �p instead of �p- I . We shall rather consider it as a singular simplex in �p . In 
order to do this we must exhibit a specific map 

of D.p_ 1 into �P, having the face as image. We do this in the following fashion. fk is 
the unique affine map (i .e . ,  a linear map followed by a translation of origin) of �p- I 
into �p that sends Po --+ Po , . . .  , Pk- I  --+ Pk- I ,  Pk --+ Pk+ I ,  . . .  , Pp- I --+ Pp . 

If a : D.p --+ Mil is a singular simplex of M and if ¢ : Mil --+ Vr is a differentiable 
map, then the composition ¢ 0 a : D.p --+ vr defines a singular simplex of V .  In 
particular a 0 fk : D. p_ 1 --+ Mil defines a singular (p - I ) -simplex of M, the kth face 
of the singular p-simplex a . 

We define the boundary a D.  p of the standard p-simplex, for p > 0, to be the formal 
sum of singular simplexes 

= L(- I )
k D.(�_ 1 ( 1 3 . 1  ) 

k 

whereas for the O-simplex we put aD.o = 0. For example, a (Po , PI , P2) = (PI , P2) -
(Po , P2) + (Po ,  PI ) . 

+ 

Figure 1 3.3 

D.2 = (Po ,  PI , P2) i s  an ordered simplex ; that is, it is ordered by the given ordering 
of its vertices . From this ordering we may extract an orientation; the orientation of D.2 
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is defined t o  be  that o f  the vectors e l  = P I  - Po and e2 = P2 - Po · Likewise, each of its 
faces is ordered by its vertices and has then an orientation. We think of the minus sign in 
front of ( Po ,  P2 ) as effectively reversing the orientation of this simplex . Symbolically, 

a 

Figure 1 3.4 

In this way the boundary of �2 corresponds to the boundary as defined in Section 
3 . 3a, and, in fact, Stokes 's theorem for a I -form a I in the plane says, for this � = �2, 

A similar result holds for � 3 .  �3 = ( Po ,  PI , P2 , P3 ) is an ordered simplex with orien
tation given by the three vectors PI - Po , P2 - Po , and P3 - Po . As drawn, this is the 
right-hand orientation. a �3 has among its terms the "roof" ( PI , P2 , P3 ) and it occurs 
with a coefficient + I .  The orientation of the face + ( PI , P2 , P3 ) is determined by the 
two vectors P2 - PI , and P3 - PI , which is the same orientation as would be assigned 
in Section 3 . 3a. 

a fi p ,  as a formal sum of simplexes with coefficients ± I ,  is not itself a simplex .  It is 
an example of a new type of object, an integer (p - I )-chain. For topological purposes 
it is necessary, and no more difficult, to allow much more general coefficients than 
merely ± I or integers . Let G be any abelian, that is , commutative, group. The main 
groups of interest to us are 

G = Z, the group of integers 

G = JR, the additive group of real numbers 

G = Z2 = Z/2Z, the group of integers mod 2 

The notation Z2 = Z/2Z means that in the group Z of integers we shall identify any 
two integers that differ by an even integer, that is ,  an element of the subgroup 2Z. Thus 
Z2 consists of merely two elements 

Z2 = {O ,  I }  where 
o is the equivalence class of 0, ±2, ±4, . . .  

I i s  the equivalence class of ± 1 ,  ±3,  . . .  

with addition defined by 0+0 = 0 ,  0+ f = f ,  I + I = O. This of course is inspired by the 
fact that even + even = even, even + odd = odd, and odd + odd = even. We usually write 
Z2 = {O, I }  and omit the tildes-: Likewise, one can consider the group Zp = ZI p'/t, 
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the group of integers modulo the integer p, where two integers are identified if their 
difference is a multiple of p. This group has p elements, written 0, 1 , . . . , p - 1 .  

We define a (singular) p-chain on Mil , with coefficients in the abelian group G ,  to 
be afinite formal sum 

( 1 3 .2) 

of singular simplexes ap' : b.p -+ M, each with coefficient go E G. This formal 
definition means the following. A p-chain is a function c I' defined on all singular p
simplexes, with values in the group G ,  having the property that its value is 0 E G for 
all but perhaps a finite number of simplexes . In ( 1 3 .2) we have exhibited explicitly all 
of the simplexes for which cp is (possibly) nonzero and 

cl' (a/ )  = gs 
We add two p-chains by simply adding the functions, that is ,  

(cl' + c� ) (ap )  := cp (al' )  + c� (ap) 

The addition on the right-hand side takes place in the group G .  In  terms of  the formal 
sums we simply add them, where of course we may combine coefficients for any simplex 
that is common to both formal sums. Thus the collection of all singular p-chains of 
Mn with coefficients in G themselves form an abelian group, the (singular) p-chain 
group of M with coefficients in G, written Cp (M" ; G) .  

A chain with integer coefficients will be  called simply an  integer chain. 
The standard simplex b.p may be considered an element of C p (l�P ;  Z) ; this p

chain has the value 1 on b.1' and the value 0 on every other singular p-simplex . Then 
a!:J. p = �k (- I )k !:J. (�;_ , is  to be considered an element of C p_ ' (JR.p ; Z) . 

A homomorphism of an abel ian group G into an abelian group H is a map f : G -+ 
H that commutes with addition ( i .e . ,  f (g + g') = f (g) + f (g'» . On the left-hand side 
we are using addition in G ;  on the right-hand side the addition is in H.  For example, 
f : Z -+ JR. defined by f en)  = n,Ji is a homomorphism. F : Z -+ Z2 , defined 
by F(n)  = 0 if n is even and I if n is odd, describes a homomorphism. The reader 
should check that the only homomorphism of Z2 into Z is the trivial homomorphism 
that sends the entire group into 0 E Z. 

Let F : Mn -+ vr • We have already seen that if a is a singular simplex of M then 
Foa is a singular simplex of V .  We extend F to be a homomorphism F. : Ck (M;  G) -+ 
Ck ( V ;  G) ,  the induced chain homomorphism, by putting 

F. (g , aI" + . . . + gr a/ ) : = g , ( F 0 aI" ) + . . . + gr (F 0 a/ ) 

For a composition F : Mil -+ vr and E : vr -+ WI we have 

(E 0 F).  = E. 0 F. ( 1 3 .3 )  

If  a : !:J. p -+ M is a singular p-simplex, let its boundary aa be the integer 
(p - I ) -chain defined as follows. Recall that a b. I' is the integer (p - 1 ) -chain a !:J.  I' = 

Lk ( - 1 )k b. (�L , on !:J. p .  We then define 

aa := a. (ab.) = L(_ l )ka. (b.(k) 1'- , )  ( 1 3 .4) 
k 
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Roughly speaking, the boundary of the image of t>.. i s  the image of the boundary of Ll ! 
Finally, we define the boundary of any singular p-chain with coefficients in G by 

a L gra � := L gr aa � ( 1 3 .5) 

By construction we then have the boundary homomorphism 

a : Cp (M;  G) � Cp_ 1  (M;  G) ( 1 3 .6) 
If F : Mn � vr and if cp = L: gr a� is a chain on M, then for the induced chain 
F*c on V we have a ( F*c) = a L: gr F* a r = L: gr a (F* a r ) = L: gr (F 0 ar ) * (a t>.. ) == 
L: gr F* [a: (a t>.. ) ] = F* [L: gr a: (a t>.. ) ] = F* acp . Thus 

a 0 F* = F* 0 a ( 1 3 .7) 
(Again we may say that the boundary of an image is the image of the boundary.) We 
then have a commutative diagram 

F* 
Cp (M;  G)  � Cp ( V ;  G) 

a t a t 
Cp_ 1  ( M ;  G) � Cp_ 1  ( V ;  G)  

F* 
meaning that for each c E Cp (M ;  G) we have F* acp = a F. (cp ) . 

Suppose we take the boundary of a boundary. For example, a a ( Po ,  PI , Pz) = 
a { ( p\ ,  Pz) - (Po ,  Pz) + ( Po ,  PI ) } = P2 - PI - (Pz - Po) + PI - Po = O. This 
crucial property of the boundary holds in general . 

Theorem (13.8) : 

aZ  = a 0 a = 0 

P R O O F :  Consider first a standard simplex t>..p . From ( 1 3 . 1 )  
'" k � 

a a t>.. p = L.,,(- l )  a ( Po , · · · ,  Pk , . . .  , PI' ) 
k 

= L(-ll  L (- l )j (Po ,  . . . , Pj , . . .  , Pk ,  . . .  , PI') 
k j <k 

= 0 (cancellation in pairs) 

But then, for a singular simplex, a (a a )  = a (a* (a t>..» ,  which, from ( 1 3 .7) , is 
a* a (a t>.. ) = a* (O) = O.  D 

13.1h. Some 2-Dimensional Examples 

1. The cylinder Cyl is the familiar rectangular band with the two vertical edges brought 
together by bending and then sewn together. We wish to exhibit a speci fic integer 2-chain 
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on Cyl.  On the right we have the rectangular band and we have labeled six vertices. The 

Pz 

Po 

Figure 1 3.5 

labels on the two vertical edges are the same, since the band is to be bent and the two 
edges are to be sewn, resulting in Cyl. On the band we have indicated six singular 2-
simplexes. We shall always write a singular simplex with vertices in increasing order. For 
example, ( Q " Q3 , Q4)  is the singular simplex arising from the affine map of the plane 
into itself that assigns ( Po , P" P2) -+ ( Q " Q3 ,  Q4) . After the band is bent and sewn 
we shall then have a singular 2-simplex on Cyl that we shall again call ( Q " Q3 , Q4 ) .  
We have thus broken Cy l  up  into 2-simplexes, and we have used enough simplexes so 
that any 1 - or 2-simplex i s  uniquely determined by its vertices . 

We wish to write down a 2-chain where each simplex carries the orientation indicated 
in the figure. Since we always write a simplex with increasing order to its vertices, we put 

Then 

C2 = ( Qo , Q " Q2 ) - ( Qo ,  Q " Q3 ) + ( Q "  Q3 , Q4 )  - ( Q3 ,  Q4,  Qs ) 

+ ( Q2 , Q4 , Q5 ) + ( Qo , Q2 , Qs )  

We write this as JC2 = B + C,  where B = ( Qo , Q3 ) + ( Q3 , Qs) - ( Qo , Qs )  and 
C = ( Q2 , Q4 )  - ( Q " Q4)  + ( Q " Q2) .  B and C are two copies of a circle, with 
opposite orientations; B is the bottom edge and C the top. Denote the seam ( Qo ,  Q2 ) 
by A ,  and omitting all other simplexes, we get the following symbolic figure. 

c 

B 

or 
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a{ } =  
C) 

C 

B 

C) 
B 

Figure 1 3.6 

Note that in the lower figure the result is  the same as would be obtained if we think 
of the cylinder as an oriented compact manifold with boundary, the boundary being then 
oriented as in Section 3 .3a. 

In the upper figure we have a rectangle with four sides. By denoting both vertical 
sides by the same curve A we are implying that these two sides are to be identified 
by identifying points at the same horizontal level . The bottom curve B and the top C, 
bearing different names, are not to be identified. As drawn, the bottom B, the top C, and 
the right-hand side A have the correct orientation as induced from the given orientation 
of the rectangle, but the left-hand A carries the opposite orientation. Symbolically, if we 
think of the 2-chain C2 as defining the oriented manifold Cyl, we see from the figure that 

a Cyl = B + A + C - A = B + C 

the same result as our calculation of aC2 given before with all of the simplexes. From 
the rectangular picture we see immediately that all of the "interior" I -simplexes, such 
as (QJ , Q4 ) ,  must cancel in pairs when computing a c2 . 

2. The Mobius band Mo. We can again consider a 2-chain C2 

Figure 1 3.7 

Note that the only difference is the right-hand edge, corresponding to the half twist 
given to this edge before sewing to the left hand edge; see Section 1 .2b (viii) . This 
C2 is the same as in the cylinder except that the last term is replaced by its negative 

- ( Qo ,  Q2 , Q5 ) .  We can compute aC2 just as before, but let us rather use the symboliC 

rectangle with identifications. 
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c 

A A 

Qo B 

Figure 1 3.8 

The boundary of the oriented rectangle i s  now 

a Mo = B + A + C + A = B + C + 2A 

This is  surely an unexpected result !  If we think of the Mobius band as an integer 2-

B 

B 

Figure 1 3.9 

chain, as we did for the cylinder, then the "boundary," in the sense of algebraic topology, 
does not coincide with its "edge", that is ,  its boundary in the sense of "manifold with 
boundary." As a chain, one part of its boundary consists of the true edge, B + C,  but 
note that al though the point set B + C is topologically a single closed curve it changes 
its orientation halfway around. It is even more disturbing that the rest of the boundary 
consists of an arc A going from Q2 to QQ, traversed twice, and located along the seam 
of the band, not its edge ! 

The reason for this strange behavior is the fact that the Mobius band is not orientable. 
It i s  true that we have oriented each simplex, just as we did for the cylinder, but for 
the cylinder the simplexes were oriented coherently, meaning that adjacent simplexes, 
having as they do the same orientation, induce opposite orientations on the I -simplex 
edge that is common to both. This is the reason that aC2 on the cylinder has no I -simplex 
in the interior; only the edge simplexes can appear in aC2 . On the Mobius band, however, 
the oriented simplexes ( QQ ,  Q I ,  Q2) and - ( QQ ,  Q2 , Qs)  induce the same orientation to 
their common ( QQ ,  Q2) = - A since these two 2-simplexes have opposite orientations ! 
This is a reflection of the fact that the Mobius band is not orientable. We shall discuss 
this a bit more in our next section . 
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We have defined the integral o f  a 2-form over a compact oriented surface M2 in 
Chapter 3 ,  but we mentioned that the integral i s  classically defined by breaking up the 
manifold into pieces . This is what is accomplished by construction of the 2-chain C2 ! Let 
a ' be a I -form on the cylinder, oriented as in Example ( 1 ) .  The integral of da over Cyl 
can be computed by writing Cyl as the 2-chain C2 . Applying Stokes ' s  theorem to each 
simplex will give J" r da ' = r a ' = r a ' = r a ' + r a '  

lcy, lacy, lB+C lB lc 

just as expected. However, for the Mobius band, written as C2 , J" r da ' = r a ' = r a ' = r a '  + r a ' + 2 r a ' 
lMa la Ma lB+C+2A lB lc lA 

This formula, although correct, is of no value. The integral down the seam i s  not intrinsic 
since the position of the seam is a matter of choice . The edge integral is also of no value 
since we arbitrari ly decide to change the direction of the path at some point. It should not 
surprise us that Stokes's theorem in this case is of no intrinsic value since the Mobius 
band is not orientable, and we have not defined the integral of a true 2-form over a 
nonorientable manifold in Chapter 3 .  If, however, a '  were a pseudoform, then when 
computing the integral of da ' over the Mobius C2 , Stokes 's  theorem. as mentioned in 
Section 3 .4d, would yield only an integral of a ' over the edge B + c .  The fact that B 
and C carry different orientations is not harmful since the a that is integrated over B will 
be the negative of the a that is integrated over C ;  this is clear from the two simplexes 

( Qo ,  Q "  Q2 ) and - (Qo .  Q2 , Q s ) .  

13.2. The Singular Homology Groups 

What are "cycles" and "Betti numbers"? 

13.2a. Coefficient Fields 

In the last section we have defined the singular p-chain groups C p (Mil ; G) of M with 
coefficients in the abelian group G, and also the boundary homomorphism 

Given a map F : Mil --+ Vr we have an induced homomorphism 

and the boundary homomorphism a i s  "natural" with respect to such maps, meaning that 

a 0 F* = F* 0 a 

We also have a2 = O. Notice the similarity with differentia/forms, as a takes the place 
of the exterior derivative d ! We will look at this similarity in  more detail later. 

Many readers are probably more at home with vector spaces and linear transforma
tions than with groups and homomorphisms. It will be comforting to know then that in 
many cases the chain groups are vector spaces, and not just abelian groups. 
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An abelian group G is a field, if, roughly speaking, G has not only an additive 

structure but an abelian multiplicative one also, with multiplicative identity element 
J , and this multiplicative structure is  such that each g =I- 0 in G has a multiplicative 

inverse g- I such that gg- I = 1 .  We further demand that multiplication is distributive 
with respect to addition. The most familiar example is the field 1ft of real numbers. The 
integers 2 do not form a field, even though there is a multiplication, since for example, 
2 E 2 does not have an integer multiplicative inverse. On the other hand, 22 is a field 
if we define multiplication by 0 . 0 = 0 ,  0 . I = 0, and I . I = I. In fact 2p is a field 
whenever P is a prime number. In 25 , the multiplicative inverse of 3 is 2.  

When the coefficient group G i s  a field, G = K, the chain groups Cp (Mn ; K) 
become vector spaces over this  field upon defining, for each "scalar" r E K and chain 
cp = (L. gia i ,, )  E C,, (M" ; K) 

rcp = L (rgi )a ip 
The vector space of p-chains is infinite-dimensional since no finite nontrivial l inear 
combination of distinct singular simplexes is ever the trivial p-chain O .  

From ( 1 3 .5 )  we see that when G = K is a field, 

is a linear transformation . 
Finally, a notational simplification. When we are dealing with a specific space Mn 

and also a specific coefficient group G, we shall frequently omit M and G in the 
notation for the chain groups and other groups to be derived from them. We then write, 
for example, a : C" --+ C ,, - 1 .  

13.2h. Finite Simplicial Complexes 

At this point we should mention that there is a related notion of simplicial complex with 
its associated simplicial (rather than singular) chains. We shall not give definitions, but 
rather consider the example of the Mobius band. We have indicated a "triangulation" 
of the band into six singular 2-simplexes in Example (2) of the last section. Each of 
these simplexes is a homeomorphic copy of the standard simplex, unlike the general 
singular simplex . Suppose now that instead of looking at all singular simplexes on 
Mo we only allow these six 2-simplexes and allow only I -simplexes that are edges 
of these 2-simplexes, and only the six O-simplexes (i .e . ,  vertices) that are indicated. 
We insist that all chains must be combinations of only these simplexes ;  these form 
the "simplicial" chain groups C p '  Then Co(Mo; G) is a group with the six generators 
Qo , . . .  , Q 5 ;  C1 has twelve generators ( Qo ,  Q d ,  ( Qo ,  Q2) " ' "  ( Q4 ,  Q s ) ;  and C2 has 
the six given triangles as generators . If we have a field K for coefficients, then these 
chain groups become vector spaces of dimension 6, 1 2, and 6, respectively, and the 
simplexes indicated become basis elements . In terms of these bases we may construct 
the matrix for the boundary linear transformations a : C p --+ C p _ l . For example 
a ( Qo , Q I )  = Q I  - Qo tells us that the 6 by 1 2  matrix for a : CI (Mo; 1ft) --+ Co (Mo; 
lR) has first column (- I ,  1 ,  0, 0 ,  0 ,  ol . The simplicial chain groups are of course much 
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smaller than the singular ones, but i n  a sense to be  described later, they already Contain 
the essentials, as far as "homology" is concerned, in the case of compact manifolds. 

13.2e. Cycles, Boundaries, Homology, and Betti Numbers 

Return to the general case of singular chains with a coefficient group G .  We are going 
to make a number of definitions that might seem abstract. In Section 13.3 we shall 
consider many examples. 

We define a (singular) p-cycle to be a p-chain zp whose boundary is O. The collection 
of all p-cycles, 

Zp (M; G) : = {zp E Cp l azp = O} ( 1 3 .9) 

= ker a : Cp -+ Cp_ 1 

that is, the kernel a - I (0) of the homomorphism a ,  is a subgroup of the chain group C p 
(called naturally the p-eycle group). When G = K is a field, Z I' is a vector subspace 
of C 1" the kernel or nullspaee of a ,  and in the case of a finite simplicial complex this 
nullspace can be computed using Gauss elimination and linear algebra. 

We define a p-boundary f3p to be a p-chain that is the boundary of some (p + 1 ) 
chain. The collection of all such chains 

Bp (M; G) : = (f3p E Cp l f3,) = aCp+ l , for some Cp+ 1 E Cp+d ( 1 3 . 10) 

= 1m a : Cp+ 1 -+ Cp 

the image or range of a ,  is a subgroup (the p-boundary group) of C p '  Furthermore, 
af3 = a ac = 0 shows us that Bp C Z" is a subgroup of the cycle group.  

Consider a real p-chain cp on M" , that is , an element of Cp CM ; JR) . Then cp = 
2:: bi a/), where bi are real numbers . If aP is a p-form on M, it is natural to define 

( 1 3 . 1 1 ) 

Then 

( 1 3 . 1 2) 

We shall mainly be concerned with integrating closed forms, daP = 0, over p-cycles 
zp .  Then if zp and z'p differ by a boundary, z - z' = aCp+ l , we have 

laP - 1 aP = 1 aP = r aP = ida " = 0 
z Z' .:;: - z '  Jae c 

( 1 3 . 1 3) 

Thus ,  as far as closed forms go, boundaries contribute nothing to integrals. When 
integrating closed/orms, we may identify two cycles if they differ by a boundary. This 
identification turns out to be important also for cycles with general coefficients, not just 
real ones. We proceed as follows .  

If G is  an abelian group and H is  a subgroup, let  us say that two elements g and g'  
of G are equivalent if they differ by some element of H, 

g' '" g iff g' - g = h E H 
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Sometimes we will say g' = g mod H .  The set of equivalence classes is denoted by 

G / H, and read G mod H. If g E G we denote the equivalence class of g in G / H by 
[g] or sometimes g + H. Such an equivalence class is called a coset. Any equivalence 
class [ ] E G / H is the equivalence class of some g E G , [ l  = [g l ;  this g is called a 

representative of the class but of course [g 1 = [g + h 1 for all h E H .  Two equivalence 
classes can be added by simply putting [g + gil :=  [g 1 + [g i l . In this way we make G / H 
itself into an abelian group, called the quotient group. This is exactly the procedure 
we followed when constructing the group Z2 = Z/2Z of integers mod 2 .  

We always have a map :rr : G -+ G / H that assigns to each g its equivalence class 
[g] == g + H. :rr is ,  by construction, a homomorphism. 

When G is a vector space E, and H is a subspace F,  then E / F is again a vector 
space.  If E is an inner product space, then E / F can be identified with the orthogonal 
complement F1. of F and :rr can be identified with the orthogonal projection into the 

E F 

v 

� Fl. 

, 0 '  
---.:. .. , __ ......;..1.' _____ ElF 

7l" V =  [v]  

Figure 1 3. 1 0 
subspace F 1. .  If E does not carry a specific inner product, then there is no natural way 
to identify E / F with a subspace of E ;  any subspace of E that is transverse to F can 
serve as a model, but E / F is clearly more basic than these non unique subspaces .  

Return now to our singular cycles . We say that two cycles zp and z;, in  Zp (M ;  G) 
are equivalent or  homologous if they differ by a boundary, that is , an element of the 
subgroup Bp (M ; G) of Zp (M;  G) .  In the case of the cycles Zp and the subgroup Bp , 
the quotient group is called the pth homology group, written HI' (M;  G) 

Z (M ·  G) H (M · G) := I' , 
( 1 3 . 1 4) 1" Bp (M; G) 

When G = K i s  a field, Zp ' Bp ' and HI' become vector spaces. We have seen that Z 
and B are infinite-dimensional, but in many cases HI' is finite-dimensional ! It can be 
shown, for example, that this is the case if M" is a compact manifold. Before discussing 
this, we mention a purely algebraic fact that will be very useful .  

Theorem (13.15):  If <p : G I -+ G2 is a homomorphism of abelian groups and 
if <p sends the subgroup HI of G I into the subgroup H2 of G2, then <p induces a 
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homomorphism of the quotient groups 
G ,  G2 <fJ* : - � -

H, H2 

P R O O F : The composition of the homomorphisms <fJ : G ,  � G2 followed by 
n : Gz � Gzi Hz is a homomorphism n 0 <fJ : G ,  � Gzi Hz . Under this 
homomorphism (g + h , ) � <fJ (g) + <fJ (h 1 ) + Hz = <fJ (g) + H2 , since <fJ (h 1 ) E Hz. 
Thus n o  <fJ sends elements that are equivalent in GI (mod HI ) into elements that 
are equivalent in Gz (mod Hz) and so we then have a homomorphism of G d  HI 
into Gd Hz ; this is the desired <fJ* . 0 

We then have the following topological situation. If Mn is a compact manifold, there 
is a triangulation of M by a finite number of n -simplexes each of which is diffeomor
phic to the standard n-s implex. This means that M is a union of such n -simplexes and 
any pair of such simplexes either are disjoint or meet in a common r-subsimplex (vertex, 
edge, . . .  ) of each. (We exhibited a triangulation explicitly for the Mobius band in Section 
1 3 . 1  b). These simplexes can be used to form a finite simplicial complex, for any coeffi
cient group G , just as we did for the Mobius band. Since C 1" Zp , and Rp are then finitely 
generated groups, so is HI' := Zpl Rp . Now any simplicial cycle can be considered a 
singular cycle ( i .e . ,  we have a homomorphism from Z I' to Z 1' )  and this homomorphism 
sends Rp to Bp . Thus we have an induced homomorphism of the simplicial homology 
class HI' to the singular homology class Hp . It is then a nontrivial fact that for compact 
manifolds HI' = HI' ; that is ,  the plh singular homology group is isomorphic to the 
pllz simplicial homology group ! (A homomorphism is an isomorphism if it is 1 : 1 
and onto. )  In particular the singular homology groups are also finitely generated (even 
though the singular cycles clearly aren ' t) and if G is a field K ,  HI' i s  finite-dimensional. 

When G is the field of real numbers , G = JR, the dimension of the vector space HI' 
is called the plh Betti number, written bp = bp (M) 

bp (M) : =  dim Hp (M ; JR) ( 1 3 . 16) 

In words, bp is the maximal number of p-cycles on M, no real linear combination of 
which is ever a boundary (except for the trivial combination with all coefficients 0). 

Let F : Mn � V' be a map. Since, from ( 1 3 .7) ,  F* commutes with the boundary a, 
we know that F* takes cycles into cycles and boundaries into boundaries. Thus F* sends 
homology classes into homology classes, and we have an induced homomorphism 

( 1 3 . 17) 

Finally, we can see the importance of the homology groups. Suppose that F : Mn � 
V" is a homeomorphism, then we have not only ( 1 3 . 1 7) but the homomorphism F-;I : 
Hp ( V ; G) � Hp (M, G) induced by the inverse map, and it is easily seen that these two 
homomorphisms are inverses. Thus F* is an isomorphism; homeomorphic manifolds 
have isomorphic homology groups. We say that the homology groups are topological 
invariants. Thus if we have two manifolds M and V ,  and if any of their homology 
groups differ, for some coefficients G,  then these spaces cannot be homeomorphic ! 
Unfortunately, the converse is not true in general ; that is ,  nonhomeomorphic manifolds 
can have the same homology groups .  
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13.3. Homology Groups of Familiar Manifolds 

Is projective 3-space diffeomorphic to the 3-torus? 

13.3a. Some Computational Tools 

AnY point p E Mn can be considered as a O-chain. By the definition of the boundary 
operator ap = 0, and each point is a O-cycle. 

A smooth map C : [0 , 1 ] -+ M is a curve in M; the image is  compact since the 
image of a compact space (e .g . ,  the unit interval) under a continuous map is again 
compact (see Section I .2a) . C of course can be considered a singular I -simplex, and 
we have a C = C ( 1 )  - C (0) . If g E G, the coefficient group, then a (g C) is the O-chain 
gC ( ! )  - gC (O) . 

Suppose that C : [a , b] -+ M is a piecewise smooth curve. We may then break up the 
interval [a , b] into subintervals on each of which the map is smooth . By reparameteriz
ing the curve on each subinterval, we may consider the mappings of the subintervals as 
defining singular simplexes .  We may then associate (nonuniquely) to our original curve 
a singular I -chain, associating the coefficient + I to each of the I -simplexes. The bound
ary of this chain is clearly C (b) - C (a ) ,  the intermediate vertices cancelling in pairs . 

Figure 1 3. 1 1 

A manifold M" is said to be (path-)connected if any two points p and q can be 
joined by a piecewise smooth curve C : [0, 1 ] -+ M ;  thus C (O) = p and C( 1 ) = 
q .  This curve then generates a I -chain, as in Figure 1 3 . 1 1 .  But then ac  = q - p .  
Likewise a (gC) = gq - gp , where gC is the I -chain that associates g E G to each 
of the I -simplexes . This shows that any two O-simplexes with the same coefficient, in 
a connected manifold, are homologous.  Also, since a I -chain is merely a combination 
C = L gi Ci , ac = L {gi qi - gi Pi } , we see that no multiple gp of a single point is a 
boundary, if g #- 0. Thus any particular point p of a connected space defines a O-cycle 
that is not a boundary, and any O-chain is homologous to a multiple gp of p. We then have 

Ha (M" ; G) = Gp for M connected ( 1 3 . 1 8) 

meaning that this group is the set {gp i g  E G } .  For example, Ha (M" ; Z) is the set 
{a, ±p , ±2p , ±3p ,  . . .  } and Ha (M" ; JR) is the I -dimensional vector space consisting 
of all real multiples of the "vector" p. This vector space is isomorphic to the vector 
space JR, and we usually write Ha (M" ; JR) = R In particular, a connected space has 
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oth Betti number bo = 1 .  I f  M is not connected, but consists of k connected pieces, 
then Ho (M" ; JR.) = JR.P I + JR.P2 + . . .  + JR.Pb where Pi is a point in the i th piece. In this 
case bo (M) = k .  

(We should mention that in topology there is the notion of  a connected space; M is 
connected if it cannot be written as the union of a pair of disjoint open sets . This is a 
weaker notion than pathwise connected, but for manifolds the two definitions agree.) 

Next, consider a p-dimensional compact oriented manifold V P without boundary. 
By triangulating V P  one can show that V P always defines an integer p-cycle, which we 
shall denote by [ Vp ] '  For example, consider the 2-torus T2 . 

Qo r----------------, Qo 
A 

B B 

A 
Qo L..-______ --------' Qo 

Figure 1 3. 1 2  

If we associate the integer + I to each o f  the eighteen indicated oriented 2-simplexes, 
we get a chain [T 2 ] ,  for example, [ T2 ] ( Q s ,  Q7 , Q s )  = - I .The boundary of this chain 
is clearly 0 

a [T2 ] = A + B - A - B = 0 

and this same procedure will work for any compact orientable manifold. 
On the other hand, consider a nonorientable closed manifold, the Klein bottle K2. 

Thi s  surface cannot be embedded in JR.
3 but we can exhibit an immersion with self

intersections. This is the surface obtained from a cylinder when the two boundary edges 
are sewn together after one of the edges is pushed through the cylinder. Abstractly, in 

Figure 1 3. 1 3  
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termS of a rectangle with identifications, we have the following diagram; note especially 
the directions of the arrows on the circle B . 

_---------------, Qo 
Qo A 

B B 

Qo A 1-_________ -----..... Qo 

Figure 1 3. 1 4  

Orient each o f  the triangles as indicated and give to each oriented triangle the coef
ficient + 1 ,  yielding a singular 2-chain [ K2] . Now, however, we have 

a [ K2] = A + B - A + B = 2B i= 0 

[K2] is not a cycle, even though the manifold has no boundary, that is ,  edge. This is a 
reflection of the fact that we have not been able to orient the triangles coherently; the 
Klein bottle is not orientable. 

Note another surprising fact; the I -cycle B = ( Qo , Q2) + ( Q2 , Q3 ) - ( Qo ,  Q3 ) is 
not a boundary (using Z coefficients) but 2B is , 2B = a [K2] ! Note also that if we had 
used real coefficients then B itself would be a boundary since then B = a ( l /2) [K2] , 
where this latter chain assigns coefficient 1 12 to each oriented 2-simplex. Furthermore, 
if we had used Z2 coefficients, then [K2 ] would be a cycle, since 2B = 0 mod 2. All 
these facts give some indication of the role played by the coefficient group G .  

The fol lowing theorem in algebraic topology, reflecting the preceding considerations, 
can be proved. 

Theorem (13.19) : Every closed oriented submanifold VI' C Mil defines a p
cycle g[ VI'] in HI' (Mil ; G) by associating the same coefficient g to each oriented 
p-triangle in a suitable triangulation of V 1' . 

Thus a p-cycle is a generalization of the notion of a closed oriented submanifold. 
Rene Thom has proved a deep converse to ( 1 3 . 1 9) in the case of real coefficients. 

Thorn's Theorem ( 13.20) : Every real p-cycle in Mil is homologous to a finite 
formal sum I: ri v/ of closed oriented submanifolds with real coefficients. 
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Thus, when looking for real cycles, we  need only look at submanifolds. 
Our next computational tool i s  concerned with deformations. In Section l O .2d we 

discussed deforming closed curves in a manifold. In a similar fashion we can deform 
submanifolds and more generally p-chains. We shall not go into any details, but merely 
mention the 

Deformation Theorem (13.21) :  If a cycle zp is deformed into a cycle z�. then 
I • h l I zp IS omo ogous to zp , Z p '" zp . 

Figure 1 3.1 5 

This follows from the fact that in the process of deforming zp into z� one sweeps 
out a "deformation chain" cp+ J such that acp+ ! = z;, - zp . 

Our final tool is the following. For a closed n-manifold Mil , we know from Section 
1 3 .2c that the singular homology groups are isomorphic to the simplicial ones. But in 
the s implicial complex for Mil there are no simplexes of dimension greater than n .  Thus, 

Hp (M" ; G) = 0 for p > n ( 1 3 .22) 

13.3b. Familiar Examples 

1 .  S" , the n -sphere , n > 0. HO (S" ; G) = G since S" is connected for n > O. Since sn is a 
2-sided hypersurface of lR"+ ! it is orientable, and since it is closed we have Hn (sn ; G) = 
G .  If zp is a p-cycle, ° < p < n ,  it is homologous to a simplicial cycle in some 
triangulation of S" . (The usual triangulation of the sphere results from inscribing an (n+ 
I ) -dimensional tetrahedron and projecting the faces outward from the origin until they 
meet the sphere . )  In any case, we may then consider a zp that does not meet some point 
q E S" . We may then deform zp by pushing all of sn - q to the antipode of q ,  a single 
point. Z p is then homologous to a p-cycle supported on the simplicial complex consisting 
of one point. But a point has nontrivial homology only in dimension O. Thus zp '" ° and 

Ho (S" ; G)  = G = H,, (S" ;  G)  

Hp (sn ;  G) = 0 ,  for p :f.: 0, n 
The nonvanishing Betti numbers are bo = 1 = bll • 

2. T2 , the 2-torus . Ho = H2 = G .  

( 1 3 .23) 



H O M O L O G Y  G R O U P S  O F  F A M I L I A R  M A N I F O L D S  351 

Qo 
_-----------..., Qo 
Qo A 

---,l Q, 

B B 

Qo A 1------__ -----..... Qo 
Qo 

Figure 1 3. 1 6  

Orient each 2-simplex a s  indicated, as w e  did i n  Section 1 3 .3a. o [T2 ] = A + B -
A - B = 0, confirming that we have an orientable closed surface. Any I -cycle can 
be pushed out to the edge. It is clear that if we have a simplicial I -cycle on the edge 
that has coefficient g on, say, the simplex ( Q I , Q4) ,  then this cycle will also have to 
have coefficient g on ( Qo ,  Q I )  and -g on ( Qo , Q4) ,  since otherwise it would have a 
boundary. Thus a I -cycle on the edge will have the coefficient g on the entire I -cycle 
A. Likewise it will have a coefficient g ' on the entire I -cycle B .  It seems evident from 
the picture, and can indeed be shown, that no nontrivial combination of A and B can 
bound. (For example, in Figure 1 3 . 1 6  we may introduce the angular coordinate e going 
around in the A direction . Then JA "de" #- 0 shows that A does not bound as a real 
i -cycle.) We conclude that 

Ha (T2 ; G)  = G = H2 (T2 ; G) ( 1 3 .24) 

HI (T2 ; G)  = GA + GB 

In particular, HI (T2 ; JR.)  = JR.A + JR.B i s  2-dimensional, bo = b2 = 1 ,  b l  = 2 .  

Qo 

Figure 1 3. 1 7  
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I n  the figure we  have indicated the basic I -cycles A and B .  The cycle B' is homol
ogous to B since B - B' is the boundary of the cylindrical band between them. The 
cycle C is homologous to 0 since it is the boundary of the small disc. 

3 . K2 , the Klein bottle. Look at integer coefficients. 

Qo A 

B B 

A 

Figure 1 3. 1 8 

Ho = Z but H2 = 0 since a [K2 ] = A + B - A + B = 2B #- 0, the Klein bottle 
is a closed manifold but is not orientable. Again any I -cycle can be pushed out to the 
edge, Z I � rA  + sB ,  r and s integers. Neither A nor B bound, but we do have the 
relation 2B � O. A satisfies no nontrivial relation. Thus A generates a group ZA and 
B generates a group with the relation 2B = 0; this is the group Z2 . Hence 

Ho(K2 ; Z) = Z, H2 (K2 ; Z) = 0 

HI (K2 ; Z) = ZA + Z2B 

If we used lR coefficients we would get 

s ince now B = a ( l /2) [K 2] bounds . Thus bo = 1 ,  bl = 1 ,  and b2 = O. 

( 1 3 .25) 

( 1 3 .26) 

4. lRP 2, the real projective plane. The model is the 2-disc with antipodal identifica
tions on the boundary circle. The upper and lower semicircles are two copies of the same 
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Qo 

Figure 1 3. 1 9 

closed curve A .  One should triangulate ffi. P 2 but we shall not bother to indicate the trian
gles. Orient all triangles as indicated. Clearly HO (ffi.p2 ; .'2:) = .'2:. Since 3 [ffi.p2 ]  = 2A , 
we see that the real projective plane is not orientable and H2 (ffi.p2 ; .'2:) = O. A is a 
I -cycle and 2A � O. 

With real coefficients 

HO (ffi.p2 ; .'2:) = .'2:. 
HI (ffi.p2 ; .'2:) = .'2:2 A 

and bo = I ,  b l = 0, and b2 = O. ffi.p2 has the same Betti numbers as a point !  

( 1 3 .27) 

( 1 3 .28) 

5 .  ffi.p3 , real projective 3-space . The model is the solid ball with antipodal indenti
fications on the boundary 2-sphere . Note that this makes the boundary 2-sphere into a 
projective plane ! 

A 
. . . . . . . . . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Qo Qo 

Figure 1 3.20 
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Orient the solid ball using the right-hand rule. The upper and lower hemispheres B2 
are two copies of the same projective plane lRP2 . Orient the identified hemispheres B2 
as indicated. Note that the orientation of the ball (together with the outward normal) 
induces the given orientation in the upper hemisphere but the opposite in the lower. 
Orient the equator A as indicated. 

Ho(lRP3 ; lR) = R A is a I -cycle, but a B2 = 2A and so HI (lRp3 ; lR) = O. B2 is 
not a cycle since a B2 = 2A #- 0, and so H2 (lRP\ lR) = O. a [lRp3 ] = B2 - B2 = O. 
Hence lRp3 is orientable (see Corollary ( 1 2 . 1 4) )  and H3 (lRp3 ; lR) = R 

HO (lRp3 ; lR) = lR = H3 (lRp3 ; lR) 

all others are 0 

lRp3 has the same Betti numbers as S3 ! See Problem 1 3 .3 ( 1 )  at this  time. 

( 1 3 .29) 

6 .  T3 , the 3-torus. The model is the solid cube with opposite faces identified. 

A 

� 
A 

C B 

B ~ 0 B 

A B 

A 

Figure 1 3.21 

Note that the front, right side, and top faces (which are the same as the back, left 
side, and bottom faces) p2 , S2 , and T2 become 2-toruses after the identification. Orient 
the cube by the right-hand rule. This  induces the given orientation as indicated for the 
drawn faces but the opposite for their unlabeled copies. Orient the three edges A , B,  
and C as indicated. A ,  B, and C are I -cycles . p2 , S2 , and T2 have 0 boundaries just 
as in the case of the 2-torus. a [T3 ] = p2 + S2 + T2 - p2 - S2 - T2 = 0 and so T3 is 
orientable. We have 

( 1 3 .24') 

Using real coefficients we would get bo = 1 ,  b l = 3 = b2 , b3 = 1 .  



D E  R H A M ' S  T H E O R E M  355 

Problems 

13.3(1 ) Compute the homology g roups of lR. p3 with Z coefficients. 

13.3(2) A certain closed surface M2 has as model an octagon with the ind icated iden
tifications on the boundary. Note carefu l ly the di rections of the arrows. 

c 
Figure 1 3.22 

Write down Hi (M2 ; G) for G = lR. and G = Z. What are the Betti numbers? Is  the 
surface orientable? 

13.4. De Rham '8 Theorem 

When is a closed form exact? 

13.4a. The Statement of De Rham's Theorem 

In this section we shal l only be concerned with homology with real coefficients lR for a 
manifold Mn . The singular chains C 

P
' cycles Z p ' and homology groups H p then form 

real vector spaces . 
We also have the real vector spaces of exterior differential forms on Mn . 

A P :=  all (smooth) p-forms on M 
FP :=  the subspace of all closed p-forms 
EP := the subspace of all exact p-forms 

We have the l inear transformation a : C P � C p- l , with kernel Z p and image B p- l 
yielding Hp = Zp/ Bp . We also have the l inear transformation d : AP � AP+ l  with 
kernel FP and image EP+ l C FP+ l , from which we may form the quotient 

FP 
�RP : =  - = (closed p-forms)/(exact p-forms) 

Ep ( 1 3 .30) 
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the de  Rham vector space. �J�p is thus the collection o f  equivalence classes o f  closed p_ 
forms; two closed p-forms are identified iff they differ by an exact p-form. De Rham's 
theorem ( 1 93 1 ) relates these two quotient spaces as follows. 

Integration allows us to associate to each p-form f3l' on M a linear functional I f3P 
on the chains Cp by If3l' (c) = Ie {F .  We shall , however, only be interested in this linear 
functional when f3 is closed, df3P = 0, and when the chain c = Z is a cycle, dZ ::::: O. 
We thus think of integration as giving a linear transformation from the vector space of 
closed forms F I' to the dual space Z; of the vector space of cycles 

by 

I . FP -+ Z* • P 

(I f3P) (z )  : = 1 f3P 
( 1 3 .3 1 )  

Note that Iz+ae f3P = Iz f3P , since f3 is closed. Thus I f3P can be considered as a linear 
functional on the equivalence class of Z mod the vector subspace Bp . Thus ( 1 3 .3 1 )  
really gives a linear functional on  HI' 

I : F f' -+ H; 

Furthermore, the linear functional I f3 P  is the same linear functional as I (f3P + daP- 1 ) , 
since the integral of an exact form over a cycle vanishes. In other words, ( 1 3 .3 1 )  
really defines a linear transformation from FP / EP to H;, that is , from the de Rham 
vector space to the dual space of HI" This latter dual space is commonly called the ih 
cohomology vector space, written HI' 

( 1 3 .32) 

Thus 

( 1 3 .33) 

In words, given a de Rham class b E HiP ,  we may pick as representative a closed fonn 

f3p . Given a homology class J' E HI" we may pick as representative a p-cycle zp .  
Then I (b )  (J') : = I: f3 1' , and this answer is independent of  the choices made. Poincare 
conjectured, and in 1 93 1  de Rham proved 

de Rham's Theorem (13.34) : I : �iU' -+ Hp (M; �) is an isomorphism. First, I 
is onto; this means that any linear functional on homology classes is of the form 
I f3P  for some closed p-form f3. In particular, if HI' is finite-dimensional, as it is 
when Mil is compact, and if 

( I )  (b) Zp , . . . , Zp b = the pth Betti number 
is a p-cycle basis of HI" and iflrl , . . .  , lrb are arbitrary real numbers, then there 
is a closed form f3P such that 

1 . f3P = lr; , i = I ,  . . . , b 
z.p ( 1 ) 

( 1 3 .35) 
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Second, I is I: I ;  this means that if I (fJl' ) (z,, )  = r f3" = ° for all cycles z ,, '  then 
(JP is exact, 

jor someform a ,,- I . 

The number :rri in ( 1 3 .35) is called the period of the form f3 on the cycle z ,,(i ) . Thus 

a closed plorm is exact iff all of its periods 011 p-cycles vanish. 

A finite-dimensional vector space has the same dimension as its dual space. Thus 

Corollary (13.36) : If Mn is compact, then dim �J1P = b", the pth Betti l1umba 
Thus bp is also the maximal number of closed p-forms on MI1 , no linear combi
nation of which is exact. 

The proof of de Rham's theorem is too long and difficult to be given here. Instead, we 
shall illustrate it with two examples. For a proof, see for example, [Wa] .  

13.4h. Two Examples 

1 . T2 , the 2-torus. T2 is the rectangle with identifications on the boundary. 

A 
21l' 1-------., 

B B 

-------..1...---- e 
o A 21l' 

Figure 1 3.23 

�lO consists of closed O-forms, that is, constant functions, with basis f = 1 .  
ffil consists of closed i -forms.  Certainly de and d¢ are closed I -forms and these 

are not really exact since e and ¢ are not globally defined functions, being multiple
valued. Since HI (T2 ; �) = �A + �B,  A and B give a basis for the I -dimensional 
real homology. But then fA de 12:rr = 1 ,  fn de 12:rr = 0, fA d¢l2:rr = 0, and 
18 d¢ 12:rr = i ,  show that de 12:rr and d¢ 12:rr form the basis in �J( I = H I = H I * that 
is dual to the basis A , B !  
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�R2 consists of closed 2-forms, but of course all 2-forms on  T2 are closed. de  1\ d¢ 
is closed and has period J J�T ] de 1\ d</J = (27r )2 . (Thus, in particular, it is not exact.) 
Since H2 ( T2 ; JR) = JR [T2 ] , we see that de 1\ d</J/47r 2 i s  the basis of y/2 dual to [T2] . 

This was all too easy because e and </J are almost global coordinates on T2 . 
2. The suiface of genus 2 .  

Figure 1 3.24 

�JLO has generator the constant function f = l . ,R2 has generator any 2-form on 
M2 whose integral over [M2 ] is different from 0, for example, the area 2-form in any 
Riemannian metric .  We need then only consider Ul1 . 

This surface can be considered as an octagon with identifications on the edges. This 
can be seen as fol lows. 

Figure 1 3.25 

In the first step we merely narrow the neck. In the second step we cut the surface 
in  two along the neck; the result is a left and a right torus, each with a disc removed, 
the disc in each case having the original neck circle E as the edge. Of course these two 
curves must be identified. 

We now represent each punctured torus as a rectangle with identifications and with 
a disc removed. All vertices are the same Qo. 
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D A 

c 
E 

D A 

Figure 1 3.26 

B 

E 

We now open up the punctured rectangles 

Figure 1 3.27 

where again all vertices are the same Qo .  Final ly we may sew the two together along 
the seam E, which now disappears 

Figure 1 3.28 

leaving the desired octagon with sides identified in pairs . (Note that this is not quite the 
surface that appeared in Problem 1 3 .3(2) because of the identifications on the sides B . )  

From this diagram the first homology i s  clearly 

HI (M2 ; JR.) = JR.A + JR.B + JR.C + JR.D, hi = 4 
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We now wish to exhibit the dual basis in �,� I . Suppose, for instance, we  wish to 
construct a closed I -form whose period on A is I and whose other periods vanish. 
Take a thin band on M2 stretching from the interval pq on A to the same points on the 
identified other copy of A .  

q 
A 

Qo p q 
/ = 0  here 

-1---- / = I here 

Qo q 

Figure 1 3.29 

Define a "function" f on M2 as follows. Let f = 0 to the "left" of the band, let 
f = I to the "right" of the band, and let f rise smoothly in the band to interpolate. 
This is not really a function on M2 s ince, for example, the side B is in both the left and 
the right regions. It does define a multiple-valued function ; we could have f starting 
with the value 0 to the left, and f increases by I every time one crosses the band from 
left to right. Although f is multiple-valued, its differential df is a well-defined I -form 
on all of M2 ! By construction we have 

1 df = I , and f df = 0 
} B or C or D 

We have then exhibited the dual I -form to the class A .  Using other bands we can 

construct the remaining dual basis forms for �,� I .  

Problem 

1 3.4(1 ) (i) Show that every map F : 82 � T2 of a sphere i nto a torus has degree O. 
Hint: Use "de" /\ "d¢" on T2 and show pul l -bacK is exact. 

( i i) Put condit ions on a closed Mn to ensure that deg F :  Mn � Tn must van ish. 
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Harmonic Forms 

14.1 .  The Hodge Operators 

What are Maxwell 's  equations in a curved space-time? 

14.1a. The * Operator 

On a (pseudo-)Riemannian manifold Mn we introduce a pointwise scalar product be
tween p-forms by 

( 1 4. 1 )  

where, as usual , I = (i " . . .  , i 1' ) , and ---r denotes that i n  the implied sum we have 
i, < i2 < . . .  < i p ' It is not difficult to check that if e = e" . . .  , en is an orthonormal 
basis for tangent vectors at a point, then a ' , . . . , a n is an orthonormal basis of I -forms 
and also that 

yields an orthonormal basis for p-forms at the point for i ,  < . . .  < ip • 
We now introduce a global or Hilbert space scalar product by 

(aP , f3P ) :=  i (a I' , f3p ) voln ( 1 4.2) 

whenever this makes sense; this will be the case when M is compact, or, more generally, 
when a or f3 has compact support. 

We should remark at this time that the space of smooth p-forms on a Riemannian M 
that satisfy (aI' ,  a p) < 00 form only a pre-Hilbert space since it is not complete; a limit 
of square integrable smooth forms need not even be continuous ! To get a Hilbert space 
we must "complete" this space. We shall not be concerned here with such matters, and 
we shall continue to use the inaccurate description "Hilbert space." We shall even go a 
step further and use this denomination even in the pseudo-Riemannian case, when (,) 
is not even positive definite ! 

361 
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I f  a ' i s  a I -form, we  may look at its contravariant version A, and to this vector We 
may associate the pseudo (n - 1 ) -form iA vol" . In this way we associate to each I -fonn 
a pseudo (n - I ) -form. We are now going to generalize this procedure, aSSOCiating 
to each p-form aP a pseudo (n - p) -form *a, the (Hodge-) dual of a ,  as follows. If 
aP = a1dx i then 

where ( 14.3) 

If f is a function we have 

( 14.4) 

Written out in ful l  

and where the upper indices K in a K indicate that all of the covariant indices in a have 
been raised by the metric tensor, 

For an important special case, the O-form that is the constant function f = 1 has 

* I = JjgTE'2 . . .  "dx ' /\ . . .  /\ dx" = vol" ( 1 4.5) 

Note that for a given i, < h < . . .  < ill -p , there is at most one nonvanishing term 
in the sum on the right side of ( 1 4.3) , namely when k ,  < . . .  < kp is the complementary 
multi index to i, . . . ill-I"  

We then have 

and 

and so 

( 14.6) 

This shows that indeed * takes forms into pseudoforms and conversely. 
We have claimed that * generalizes the map a ' � iA vol" . To see this ,  iA voln == 

iAME1dx i = MAjEg:dxk2 /\ • • •  /\ dXk" 
iA vol" = *a ' ( 14.7) 

Equation ( 1 4.3) is frequently awkward to apply; many times it is more convenient to 
use directly ( 14.6) together with the following. Let e = (e "  . . .  , en ) be an orthonormal 
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frame of vectors (allowing II e l 1 1 2= - I in the case of a pseudo-Riemannian manifold) ;  
as we  have mentioned, a I , for I = ( i  I , . . .  , i p ) , are then al s o  orthonormal and a I /\ . . .  
/\ (J" :::: ± vol" . Thus, from ( 1 4.6), 

*a l 
= ±a J ( 14 .8) 

where J = (jl , . . . , ill -I' ) is complementary to I = (i I , . . . , i p ) . 

Look, for example, at the electromagnetic field in a perhaps curved space-time 
manifold M4. This will be discussed in more detail in Section 14 . l c. We shall see there 
that the field is again described in local coordinates (t , x) by the 2-form 

where 

and 

�g2 = B23dx2 /\ dx3 + B3 1 dx3 /\ dx l + BI 2dx l /\ dx2 

Then, using the space-time metric, * F2 will again be a 2-form, and so will be of the 
form 

*F = * (i:� 1 /\ dt) + *�g2 = [*l-� I ] - [*�Jl2 /\ dt] 
for some spatial I -form *�Jl2 and some spatial 2-form *(:� I . Let us find these forms in 
the special case of Minkowski space, without using ( 1 4.3) .  

* takes p-forms into pseudo (4 - p) -forms.  �t12  = B ldx2dx3 + B2dx3 /\dx l + B3dx l /\ 
dx2, is a 2-form in Minkowski space-time. S ince the coordinates are orthonormal and 
M = I , we can probably avoid the use of ( 14 .3) .  * (dx2 /\ dx3 ) has the property that 
(dx2 /\ dx3 ) /\ * (dx2 /\ dx3 ) = 1 1 dx2 /\ dx3 1 1 2 dt /\ dx l /\ dx2 /\ dx3 • Since the dx'" 
are orthonormal and I I dx'" 1 1 2= + I for a = 1 ,  2, 3, we see that I I  dx2 /\ dx3 1 1 2 = 
I I  dx2 1 1 2 1 1  dx3 1 1 2= + I ,  and so * (dx2 /\ dx3 ) = dt /\ dX I . Likewise for the other two 
terms. We then have, from Equation (3 .4 1 ), 

*�il2 = - (B l dx 1 + B2dx2 + B3dx3 ) /\ dt = _ (*�t12) /\ dt 
Note that * �jj2 is simply the star operator in JR.3 (which takes p-forms to (3 - p ) -forms) 
applied to the 2-form �jI2 . In our older notation it is simply ( , B) ,  as in Equation (3 .4 1 ) !  

Look now at the term l-� I /\ d t  = (E ldx l + E2dx2 + E3dx3 ) /\ dt . For example 

* (dx 1 /\ dt) = - I I dx 1 /\ dt 1 1 2 dx2 /\ dx3 = dx2 /\ dx3 

since I I dt 1 1 2= - 1 . Thus * (i:� 1 /\ dt) = E l dx2 /\ dx3 + E2dx3 /\ dx 1 + E3dx 1 /\ dx 2 , 
that is, 

* (i:� l /\ dt) = *I;} 
where *<'i,1 = iE vol3 results from applying the star operator ofJR.3 to (:� l . 

This explains our use of the notation *F2 in Section 7.2h and the use of* in Section 
3.5c. This concludes our electromagnetic excursion for the moment. 
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I n  Problem 1 4. 1 ( 1 ) you are asked to  show that 

* (*aP) = (_ l )p (n -p)a if Mn is Riemannian ( 1 4.9) 

- ( _ l ) p (n-p)a if Mn is  pseudo-Riemannian 

It is sufficient to verify these for terms of the form a I and to assume these are ortho
normal . 

Finally, note the following. If A is a vector and a is its associated I -form, then *a 
is a pseudo- en - I ) -form, and if vn- 1 C Mil is a transversally oriented hypersurface, 
then 

( 14. 10) 

In particular 

Iv *dj = Iv (V j, N}dSIl- 1 

for any function j, and this last integral is the "surface" integral of the normal deriva
tive df / dN over the hypersurface. 

14.1h. The Codifferential Operator 8 = d* 
Exterior differentiation d : I\P Mn ---+ I\P+ l Mn sends p-forms to (p + I ) -forms; in 
this section we shall exhibit an operator that decreases the degree of a form by one, 
and, in the case of a compact manifold, serves as the pre-Hilbert space adjoint of d. We 
thus want an operator 

such that 

p p- l 
d* : /\ ---+ /\ 

( 14. 1 1 )  

Now (daP- 1 , f3 P )  = fM daP- 1  /\ *f3 P .  Consider first the Riemannian case; we may 
then use the first equation in ( 1 4.9). Note then 

d (a /\ *13) = da /\ *13 + (- l ) p- 1 a  /\ d * 13 

= da /\ *13 + (_ l ) p- l  (_ l ) (n -p+ l ) (p- l )a /\ * * d * 13 

= da /\ *13 + (_ l )n (p+ l )a  /\ * * d * 13 

and so 

with a similar result for the non-Riemannian case. We then define whether M is compact 
or not and whether or not M has a boundary 

d* f3P : = (- l r(p+ l )+ l  * d * f3P Riemannian 

(_ l ) n (p+ l ) * d * f3P  pseudo-Riemannian 

( 1 4. 1 2) 
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(daP- 1 , fJ P) - (aP- 1 , d* fJP ) = L d(aP- 1  1\ *fJP ) 
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( 1 4. 1 3 ) 

at least if a or fJ has compact support. If Mn is a closed manifold, then d* , as defined 
in ( 14. 1 2) ,  is the pre-Hilbert space adjoint of d. 

If M is a compact manifold with boundary a M ,  let i : aM ---+ M be inclusion. Then 

(daP- 1 , fJ P) - (aP- 1 , d* fJ P) = 1 aP- 1 1\ *fJP ( 1 4. 1 4) 
a M 

and then d* is again the adjoint of d if we restrict ourselves to one of two types of 
foOlls: those forms y that are 0 when restricted to the boundary, that is ,  i * y = 0, or 
those forms y whose dual *y is 0 when restricted to the boundary, i * * Y = o. 

The operator d* is called the codifferential operator. The traditional notation for d* 
is 8 

8 : =  d* 

but we shall avoid this notation since the symbol d* is more informative and we prefer 
to reserve 8 for the variational symbol. 

We shall need a coordinate expression for the (p - I )-form d* fJP . 

Theorem (14.15): (d*{3P)K = -fJj 
Kjj 

We shall call the negative of the right-hand side the Divergence (with a capital D) of 
the form fJ 

although sometimes it wil l  look more like a curl ! Note that this is the same definition as 
we gave for the Divergence of a symmetric tensor in Equation ( 1 1 . I 5 ) !  We only define 
the Divergence of a tensor that is  either symmetric or skew symmetric. 

P R O O F :  To show that two (p - I ) -forms y and p are identical we need only 
show given any small closed coordinate ball B (disjoint from aM if M has a 
boundary) then for all (p - 1 ) -forms a whose support lies in the interior of the 
ball ,  IE (a , y )  * 1 = IE (a, p)  * 1 ,  for if the volume integral of al (y T - p T ) vanishes 
for all smooth a and for each small bal l ,  then y - p = O. We shall verify ( 14. 1 5 )  
by showing that 

is (aP- 1 , d* fJP ) * 1 = is (aP- 1 , -DivfJP ) * 1 

We may consider the new manifold-with-boundary B instead of M.  For this 
manifold the preceding integrals are inner products, and we must show, since a 
vanishes on the boundary of the ball, 

(aP- 1 , d* fJP ) = (aP- 1 , -Div fJP) 
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Using Problem 1 1 .2( 1 )  

(aP- 1 , d* f3P) = (daP- 1 ,  f3 P )  = is (da, (3 )  * 1 = is (da)lf3 ' * 1 

But 

and so 

= is 8rafWf3 ' * 1 = is (8ralif3' ) fj * 1 - is ali8r f3;j * 1 

8r f3 ' = f3jK (why?) 

(aP- 1 , d*f3P ) = is (alif3jK )/j * l - is alif3jK /j * l  

In the first integral, Cj : =  alif3jK = [ (p - 1 )W 1aKf3jK are the components of 
a contravariant vector C, and then the integrand is the divergence of this vector. 
But JB div C * 1 = JaB (C ,  N)d S = 0, since C vanishes on a B .  Thus 

(aP- 1 ,  d* f3P ) = - j� alif3jK /j * I = is (a, -Div(3 ) * 1 

as desired. D 

14.1c. Maxwell 's Equations in Curved Space-Time M4 
We shall assume that the electromagnetic field is again described by an electromagnetic 
2-form F2 . In any local coordinates (t = xo , x) we may decompose F2 into a part that 
contains dt and a part without dt ;  thus F2 defines an electric I -form � ) and a magnetic 
2-form �Jl2 through 

but of course this decomposition depends on the coordinates used. We postulate that 
for any bounding 2-cycle Z2 = a u3 in space-time M4 we have 

/' F2 = 0 ( 14. 1 6) 
Jau 

If F is continuously differentiable, we conclude that Ju dF = O. Since U can be chosen 
to be an arbitrari ly small hypersurface with arbitrarily chosen normal, we see that we 
must then have 

This is the first set of Maxwell equations. If we write, as usual, d = d + dt 1\ a/at ,  
d F = 0 yields the usual Maxwell equations (3 .39) and (3 .40), together with their 
primed differential versions . Note that the operator d is independent of the metric of 
space-time. 

We postulate that there is a current pseudo-3-form, with associated decomposition 

",3 _ a 3 · 2 1\ dt c '  - - J" 
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Since the notion of the charge contained in a region is independent of the metric, S3 is 
assumed given independent of the metric. Of course, y,3 can be written in the form 

but the current 4-vector J will depend on the metric ! It is for this reason that S3 i s  more 
basic than J . 

We then postulate that for any 3-cycle Z3 , bounding or not, we have 

h j',3 = 0 ( 14 . 17)  

If one applies this to the boundary of a solid space-time cylinder Z = a { V3 x [0, T ] }  
one sees that this i s  conservation of charge (this i s  Problem 14. 1 (4». 

We now postulate that 

f *F  = 4n f y,3 
Jau Ju ( 1 4. 1 8) 

for all 3-chains U .  Note that this  is compatible with ( 1 4. 1 7) .  This  is the second set of 
Maxwell equations .  When y, is smooth we see from the same argument as used after 
(14. 1 6) that y,3 is closed, d;!,3 = O. Since the periods of ;!,3 vanish, we conclude from 
de Rham that y,3 is in fact exact, and postulate ( 1 4. 1 8) says essentially that * F2 is a 
"potential" for ;!,3 ! 

Since *F i s  a 2-form we may define pseudoforms *(� I  and *fJ}2 by 

*F = _ (*Hl2 ) 1\ dt + *(� I 

( 1 4 . 1 9) 

( 14.20) 

It is no longer true that *(� I  and *f1l2 are the Hodge duals (using the 3-space metric 
gafJ of the spatial section t = cons tant ) ,  of the forms i:� 1 and fJ}2 ! If, for example, 
gOfJ =I- 0, *fH2 may involve &. as well as fil l 

In the smooth case the second set of Maxwell ' s equations ( 14 . 1 9) are exactly as in 
Minkowski space, that is, (3 .42') and (3 .43 ') .  Maxwell 's equations in curved space are 
exactly as in fiat space, once we accept * F as defining the fields *f1l2 and *i:� I . 

14.1d. The Hilbert Lagrangian 

The Hilbert action for Einstein 's theory is essentially iM R * 1 .  Although the curvature 
matrix e is a matrix of 2-forms, we haven ' t expressed either the Ricci tensor (which 
is symmetric) or the scalar curvature in terms of forms. Still it is possible to write the 
action in terms of forms ;  although the expression is awkward, it does occur in physics 
papers and the reader should be aware of it. We shall be very brief. 

ea b = Ra b(r <s)dxr 1\ dxs is a matrix of 2-forms. Then *e a b is defined to be the 
matrix obtained by taking the * of each of the 2-forms , that i s ,  * does not affect the 
indices a h. Then 

ell I 1 1 /2 Ra cd d r d S * h = g h E(c<d)(r <s) X 1\ x 
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and 

Thus 
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d a d b e R cd I 1 1 /2 d a d b d r d s X 1\ X 1\ * ah = ah g E(c<dlCr <s) X 1\ X 1\ X 1\ X 

= RahCd lg l l /2Eabrs E(c<dl Cr <l' ) dxo 1\ dX I 1\ dX2 1\ dx 3 

R cd ahrs 1 2R cd abrs 1 = ab E E(c<dl Cr <s) * = a <b E E(c<d) (r <s) * 

= 2Ra <ba
b * 1 = Rab ab * 1 = R * 1 

Problems 

1 4. 1 (1 )  Verify ( 1 4.9) . 

1 4. 1  (2) Show that for any p-form fJ P 

(D ivfJ P)K = {3jK/j = 1 9 1 - 1 /2alaxj ( 1 9 1 1 /2fJ jK) 

1 4. 1  (3) Note that if f and 9 are functions then v2 f = -d* d f and if M is compact 
( f, v2 g) = J M fV2 9 * 1 .  Apply Equation ( 1 4. 1 4) in the case when Mn is a 
compact manifo ld with boundary to obtain Green's theorem r ( fV2g _ gv2 f) * 1  = r f * dg - g * d f JM JaM 

1 4.1  (4) Show that ( 1 4. 1 7) does imply conservation of charge. 

14.2. Harmonic Forms 

Among all closed forms with a given set of periods, which one has the smallest global norm? 

14.2a. The Laplace Operator on Forms 

In ]R1l with cartesian coordinates, the Laplacian of a function f is the familiar V2 f = 
Lea2 f jax i axi ) .  We have given two equivalent invariant expressions for V2 on a Rie
mannian manifold in Equations e2.89) and e 1 1 .29) . 

The Laplacian of a p-form field is a more complicated matter. Consider a vector 
field A. In JR.n with cartesian coordinates, one could define V2 A to be the vector field 
whose components eV2A)i = Lj ea2A ijaxjaxj ) are simply the Laplacians of the 
components of A, considered as functions. In JR.3 this can be expressed in the usual 
form found in physics books, 

V2 A = grad div A - curl curl A ( 14.2 1 )  

We can write this expression in intrinsic form i f  we  consider the covector a I associated 
to A, instead of A itself. Note first that from Equation ( 1 4. 1 5)  

d*a l = - div A 
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and so the covariant version of the first term in ( 1 4.2 1 )  is -dd*a .  Furthermore, da ' 
is the 2-form version of curl A. For any 2-form /32 = i (B) vol we have, from ( 1 4. 1 2) ,  
d* {32 == (_ 1 ) (3 ) (3)+ 1 * d * /32 = *d * /32 . */32 is the I -form version of B and so d * /32 is 
the 2-form version of curl B and *d * /32 is the I -form version of curl B .  Thus -d* da 1 
is the I -form version of -curl curl A. Finally then ( 1 4 .2 1 )  has as covariant version 

V2a l = -(dd* + d*d)a ' 

We shall define the Laplace operator � on p-form by the negative of the preceding, 
that is, 

p p 
� : 1\ -+ 1\ by � : = dd* + d* d 

Occasionally we shall write V2 : = -�. 
Note that from d2 = 0 and * * = ± 1 ,  we have 

d*d* = ±(*d*) (*d*) = 0 and so 

� = (d + d*) 2 

( 14 .22) 

( 1 4.23) 

In Problem 14 .2( 1 )  you are asked to show the following in ffi.3 , using brief explanations 
as we did in deriving part 6 in the following 

� in ffi.3 

1. d* fa = o. 
2. d*a l = - div A. 
3. d* f32 = d* iB vol3 = *icurlB vol3 i s  the I -form version of curl B. 
4.  d* y 3 = d* (*go) = - * dg i s  the 2-form version of - grad g .  5 .  �fo = _ \72 fa

. 
6. �ex l is the I -form version of curl curl A - grad div A.  
7 .  �f32 = is  the 2-form version of  curl curl B - grad div B. 
8 .  � (* fa) = - * (\72 f) .  

14.2h. The Laplacian of a I-Form 

Let ex l = aidxi be a I -form on a Riemannian Mil . We shall compute a coordinate 
expression for �a = (dd* + d*d)a . First 

da == 2 )aiaj - ajai )dxi /\ dxj = 2 )ajl i - ai/j )dx i /\ dxj 
i <j 

where we have put 

i <j 
= : LCijdxi /\ dxj 

i <j 
(d* ) - i _ I i + i C j - -Cjl i - -a/j I i alji 
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Thus 

Also 
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(d*d ) - I i + i a j - -
aj I i alj i 

d*a = -air 
and so d (d*a) = -a� ijdxj , that is ,  (dd*a)j = - a/ ij ' Thus 

By Ricci 's  identity ( 1 1 .23) 

( A ) _ I i + k Ri _ I i + k R ua j - -aj I i a kij - -aj I i  a kj 
We conclude 

( 14.24) 

( 14.25) 
The first term in ( 14.24) looks, at first glance, as if we are taking the negative of the 

usual Laplacian of the componentfunction aj , but this is not so since ajl i = aiaj -akrr, 
and this connection coefficient would not occur in the covariant derivative of a functio�. 
The first term in ( 1 4.25) is sometimes called a "rough" Laplacian, written VVa. It differs 
from the Laplacian �a (defined first by Kodaira and independently by Bidal and de 
Rham) by the second term in ( 14 .25) ,  which does not involve any derivatives of a ! 

- - k (�a)j = - ('V'Va) j + akR j 
( 1 4.25) and ( 1 4.26) are called Weizenbock formulae. 

14.2c. Harmonic Forms on Closed Manifolds 

( 14.26) 

Let Mn be a compact Riemannian (rather than pseudo-Riemannian) manifold. Then 
the global inner product ( ,) is positive definite, for 

(aP , f3P)  = 1 a 1\ *f3 = 1 (a , f3 )  * 1 

and at the pole of a geodesic coordinate system (a , a ) = I:(alY ' Thus (a, a) ::: 0, 
and vanishes only if a vanishes identically. 

We say that a form aP is harmonic if �a = O. For a function (i .e . , O-form) this 
reduces to the usual notion. 

Let Mn be a closed manifold. If we again denote the formal adjoint of an operator A 
on forms by A * , then since � = (d +d*) (d +d*) , we see that � is formally self-adjoint, 
� * = � . Furthermore, 

(�aP , aP) = (dd*a + d*da, a) = (d*a, d*a) + (da, da) = 1 1  da 1 1 2 + II d*a 1 1 2 

which is :::: 0 in our Riemannian case. Thus 

�a = 0 iff da = 0 and d*a = 0 

Harmonic forms on a closed manifold are both closed and coclosed ! 
( 14.27) 
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This is far different from the situation in ]Rn . For example, a closed O-form is simply 
constant function, yet harmonic functions in ]R" need not be constant; the real part of 

any complex analytic function in the plane is harmonic ! 
a "The Laplace operator � : I\P -+ I\P is an elliptic operator on a Riemannian manifold 
(for the notion of ellipticity and for the proof of Hodge's theorem later, see [W, chap. 6]) ;  
the main ingredient is that the metric tensor is positive definite. In Minkowski space, 
however, the Laplacian of a function becomes the d' Alembertian 

a2f �f = - - V2f a t2 
where "172 is the spatial Laplacian; � in this case is the wave-operator and is hyperbolic. 
Difficult results in elliptic operator theory are needed for the following fundamental 
result: 

Hodge's Theorem (14.28) : Let M" be a closed Riemannian manifold. Then the 
vector space of harmonic p-forms 

:fCP = { h E A Idh = 0 = d*h } 
is finite-dimensional, and Poisson 's equation 

�aP = pP 
has a solution a iff p is orthogonal to :lfP 

(pP , h P ) = 0 for all hP E :1[1' 

The finite dimensionality of:i{P is  a deep result on elliptic operators on closed manifolds. 
On the other hand, it is  easy to see the necessity of the condition on p in order that there 
be a solution to Poisson 's equation; if �a = p, then for h E :fCP , 

(p , h )  = (�a, h )  = (a, � *h )  = (a, �h) = 0 

The deep part is showing the sufficiency of this  condition. Note also that in the case 
p = 0, that is, when we are dealing with functions, the harmonic function h is  then a 
constant, and the condition on p is simply that 

L p vol" = (p , 1 )  = 0 

that is, p must have mean value 0 on M. This is of course necessary since 

L �ao voln = - L div (grad an) vol" = 0 

by the divergence theorem. 
Suppose now that fJP is an arbitrary p-form on the closed M" . Let h I , h2 ' . . .  , hr be 

an orthonormal basis for the harmonic forms :fCP .  Then 
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i s  orthogonal t o  :J(P and so, by Hodge's theorem, we can solve 

D.aP = fJl' - hP 

for aP . In  other words, for any f3P on  M" we can write 

( 14.29) 

Thus, any plorm f3 on the closed M" can be written as the sum of an exactform d(d*a) 
plus a coexactform d* (da) plus a harmonic form. Hence 

P p- I p+ l /\ = d /\ + d* /\ + :J(p 

Note further that the three subspaces are mutually orthogonal 
(dy , d*/J.,) = (dy , h) = (d*f.L , h )  = 0 

( 1 4. 30) is called the Hodge decomposition of /",P. 

( 1 4.30) 

Note that the decomposition ( 1 4.30) is unique . If we write f3 = dy + d*f.L + h = 
dy ' +d*f.L' +h' , then orthogonality gives dy -dy' = 0, d*f.L-d*f.L' = 0, and h - h ' = O. 
Note also that we are not saying, for example, that y is unique, for clearly we can add 
to yp- I any closed (p - I ) -form; we are only saying that dy is a unique summand. 

At first glance it might appear that ( 1 4.30) is a triviality, for we can see immediately 
that xl' is the orthogonal complement in /'/ to the direct sum of the exact and coexact 
forms ;  if for some p-form h ,  (d y , h) = 0 and (d* f.L , h) = 0 for all y and f.L, then indeed 
d* h = 0 = d h and so h is harmonic and thus [d /\ p- I +d* /\ 1'+ 1 ]1- = :-1(1' . However, I\P 
is an infinite-dimensional space, and in infinite dimensions it is not necessarily true that 
if A is a subspace then A + A 1- is the entire space ! It is true that if A is a closed subspace 
of a Hilbert space, then A +A 1- is the entire space. Thus to get the decomposition ( 14.30) 
one might first complete the pre-Hilbert space /\P to a Hilbert space, say the square 
integrable forms on Mn ; we would have to consider forms that are not even continuous, 
and for such forms d is not defined ! In any case [d /\p- I +d* /\P+ I ] would not be a 
closed subspace. All these difficulties can be overcome by invoking elliptic operator 
theory, and we refer the reader again to [W] for this difficult material .  

In the case of a closed 3-manifold we have f31 = d¢o + d* f.L2 + h I , that is, 

B = grad ¢ + curl M + H 

that is, a smooth vector field can be written as the sum of a gradient, a curl, and a vector 
field that has both vanishing curl and divergence. Thus it is true that any vector field B 
can be written as the sum of a vector field with vanishing curl and a vector field with 
vanishing divergence. This version is also true in the noncompact JR;3 , at least when the 
growth of B at infinity is controlled; this is the classical Helmholtz decomposition, 
which is so useful in vector analysis. 

14.2d. Harmonic Forms and De Rham's Theorem 

We now have the following picture illustrating the orthogonal Hodge decomposition 
on a closed manifold. 
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Figure 1 4.1  
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Any p-form fJ may be written in the form fJP = daP- 1 + d*y p+ 1 + hP where h is 
harmonic. In particular, since the decomposition is orthogonal, 

Corollary (14.31) :  If fJP is closed, dfJP = 0, on a closed manifold Mn, then 
fJP = dap- I + hP 

where h P i s  harmonic. 

Now fJ and fJ - da are in the same de Rham class. Thus 

Corollary (14.32) : In each de Rham class [fJ ] there is a unique harmonic repre
sentative h (fJ) . Thus there exists a unique harmonic p-form with bp prescribed 
periods on a homology basis for the real p-cycles on Mn. 

Riemann was aware of this in the case of a closed surface. A "proof" goes along 
the fol lowing lines. Assume that one has a closed p-form fJP  on a closed manifold 
Mn .  (Closed I -forms on an M2 with prescribed periods are easy to construct, as we 
did in Section l 3 .4b. ) The I -parameter family of forms fJP (E )  := fJP + Edap- I are 
closed, with the same periods, for all (p - I ) -forms a .  This yields a variation of fJ with 
8fJ = da . Suppose that fJ is  the closed form with the prescribed periods whose norm is 
a minimum. Dirichlet 's principle presumed that such a minimum norm element had to 
exist. Look then at the first variation as we vary a 

0 = 8 (fJ ,  fJ )  = 2(8fJ ,  fJ ) = 2(da, fJ )  = 2(a ,  d*fJ) 
Since this holds for a l l  a we conclude that fJ is not only closed, it is coclosed, d* fJ = 0,  
and thus harmonic ! 
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It was pointed out by  Weierstrass that Dirichlet 's principle was not always reliable 
and thus the indicated proof is defective. • 

Note that the (difficult) Hodge decomposition justifies the norm claim since I I f3 1 1 2:::: 
I I da 1 1 2 + I I h 1 1 2 shows that in the de Rham class [,8] ,  the harmonic repreSentative h 
has the smallest norm! 

14.2e. Bochner's Theorem 

Let us say that M" has positive Ricci curvature if the Ricci tensor is positive definite , 

This is a weaker condition than positive (sectional) curvature since this quadratic fonn 
represents a sum of sectional curvatures (see ( 1 1 .67)) .  

Bochner's Theorem (14.33) : If the closed Riemannian Mn has positive Ricci 
curvature, then a harmonic i -form must vanish identically, and thus M has first 
Betti number b l = O. 

P R O O F : Let us compute, with Bochner, the Laplacian of the square of the point
wise length (h , h )  = hi h i of any harmonic I -form h .  First, 

[grad (h , h )L = 2h,/j h' 

and so 

2 1 
_ / . i _ / . , /j i \7 2 (h , h )  - (h , J h ) /j - h i J /j h + h, h /j 
= h/j /j h ' + h i/j h i /j 

By ( 1 4.25) we have, since f..h = 0, h, /j /j = hk Rki , and thus 

2 1 / \7 2 (h , h )  = Ric (h , h)  + h'/jh l  J ::: Ric(h , h)  ::: 0 

But then 0 = JM \72 ( 1 /2) (h , h )  * 1 ::: JM Ric(h , h) * I shows, since Ric is positive 
definite, that h = O. 0 

Bochner's theorem should be compared to Synge's  corollary ( 1 2 . 1 0) .  Before doing 
so, we need a general observation about closed curves. 

A closed (oriented) curve C on Mn represents an element of the first homology 
group HI (M ;  G) for any coefficient group G .  If C is contractible to a point, then in the 
process of shrinking, the curve will sweep out a surface, of which it is the boundary. In 
other words, if a closed curve can be contracted to a point then this curve bounds, that 
is ,  trivial as a I -cycle. (In particular, if M is simply connected, then HI (M;  G) == 0.) 
The converse is not true. 
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Figure 1 4.2 

The edge C of the punctured torus M is clearly the boundary of the surface M, and 
so is homologically trivial, but it seems rather clear (and can be proved) that C cannot 
be shrunk to a point because of the presence of the "hole ." 

As far as Betti numbers are concerned then, Bochner's theorem is stronger than 
Synge's corollary since positive Ricci curvature is weaker than positive sectional cur
vature, and also we do not require even dimensionality nor orientability, but it should 
be kept in mind that simple connectivity is a stronger notion than hI = O. 

Problems 

14.2(1 ) Derive al l  those equations ( 1 ) through (8) that have not been discussed previ
ously. 

1 4.2(2) Show that Ll commutes with d, d* , and * .  

1 4.2(3) Show that if Mn i s  closed and orientable then bp = bn-p .  This is a special case 
of Poincare d ual ity . Why do we need orientabi l ity? I l l ustrate with bo for the 
2-torus and the Klein bottle. 

14.3. Boundary Values, Relative Homology, and Morse Theory 

What does topology have to do with the existence and uniqueness of physical fields? 

The prime example of a manifold with boundary is the case of a bounded region in 
]R3 with smooth boundary. If a fluid fills such a domain, with smooth walls forming 
the boundary, then the velocity vector field v is tangent to the boundary. If the flow is 
incompressible, then the velocity field has divergence O .  If further the flow is  irrotational, 
then the velocity has curl 0 and the resulting velocity I -form field l! is harmonic. We 
are interested in the existence of such fields and we shall find that with some type of 
prescribed topological restriction the solution becomes unique. 

Note that in a compact manifold with boundary, Equation ( 14 . 1 4) shows that the 
operators d and d* are not necessarily adjoints, and it is no longer true that b.a = 0 
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iff  da = 0 = d * a .  Furthermore, � i s  no  longer self-adjoint. For physical problems 
involving forms we shall reserve the term harmonic field for forms that satisfy 

da = 0 = d*a 
Thus a harmonic O-field is constant, whereas a harmonic function, that is O-form

, 
of 

course, need not be. 

14.3a. Tangential and Normal Differential Forms 

Let Mil be a compact Riemannian manifold with boundary. 

A form aP on M is said to be normal to a M, or simply normal, provided the restriction 

i *a of a to the boundary vanishes, i *a  = 0 

where i : aM � M is the inclusion map. Recall that this simply means that a (v, . . . , w) 
= 0 when v, . . .  , w are all tangent to aM.  If we suppose that a M is locally defined in 
the coordinate system x I , . . .  , xn by putting xn = 0, then 

aP is normal iff aP = dx" /\ y p- I 

for some form y .  
For example, a I -form a l i s  normal provided a l = an (x )dxn (no sum ! )  at points of 

aM .  If T is tangent to a M, then 0 = a (T) = (a, T) shows that 

a l is normal iff a is normal to aM 

where a i s  the contravariant version of a l . If, however, /3"- 1 i s  an ( n  - I )-form, /3n- 1 = 
iB voln , then /3 is normal provided /3 (T2 , . . .  , Tn ) = vol/ (B , T2 , . . .  , Til ) = 0 for 
tangent T; ;  and so 

/3n-1 = iB voln is normal iff B is tangent to aM 

A form aP i s  said to b e  tangent to aM ,  or simply tangent, provided *a  i s  normal, 
i *  * a = O. 

Thus 

while 

a I is tangent iff a is tangent to aM 

/3n- 1 = iB voln is tangent iff B is normal to aM 

Note that from the remark following ( 1 4. 14), d *  is the adjoint of d if we restrict 
ourselves either to tangential or to normal forms !  

I n  the following we shall quote, without proofs, the versions of Hodge's theorem 
that have immediate applications to physical problems. My principal guide for the ap
plications has been the mimeographed NYU notes [B , F, G) by A. B lank, K. Friedrichs, 
and H. Grad of 1 957.  For the (difficult) mathematics of harmonic forms on manifolds 
with boundary, the reader may consult [D, S) and [Fk) . 
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14.3b. Hodge's Theorem for Tangential Forms 

Theorem ( 14.34): Let Mn be a compact manifold with boundary. Let Z I ,  . . . , Zbp 
be a basisfor the pth homology vector space HI' (M; JR). Then there exists a unique 
tangent harmonic p-form field a" 

da " = d*a"  = 0 

with prescribed periods Jz a l' on the given basis. 

In other words, Hodge's original theorem holds for tangential harmonic fields in the 
case of a manifold with boundary ! 

Example 1 :  Let v be the velocity field for a steady incompressible, irrotational fluid flow 
inside a closed surface V2 of genus g. As we have seen, v i  i s  harmonic, d v = d* v = 0, 
and v is tangent to a M. 

Figure 1 4.3 

We shall illustrate the case for genus 2 .  M3 is the solid "pretzel ," and a M is the surface 
of genus 2. It should be rather clear that a homology basis for HI (M;  lR) is given by 
the two indicated I -cycles circling the "holes ." The period of v i  on a I -cycle z, Jz v i , 
is called the circulation of v around z .  Thus Hodge's theorem yields the following 
corollary, known to W. Thomson (Lord Kelvin). 

Corollary (14.35) : There exists a unique incompressible irrotationalflow inside 
a suiface of genus g with prescribed circulations around the g holes. 

In particular, if all circulations vanish, then the fluid must be at rest ! This is the only 
possibility in the case of a spherical surface since the solid ball has first Betti number O. 

Example 2:  Let M3 be the region inside a closed conducting surface Vo and outside 
closed conducting surfaces VI and V2 . 
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Figure 1 4.4 

We have drawn the case when Vo i s  a large ellipsoid, VI is an interior 2-sphere, and 
V2 is an interior 2-torus . Consider an electrostatic problem in which there are no charges 
inside M3 ; of course there may be charges interior to VI and/or V2 or exterior to Vo.  
Then the electric field inside M3 satisfies d*�� = 4JT(J 3  = ° and d* *G� = *d * *6 == 
*d{� 1 = * [-a �J32/a t ]  = 0, and so *�, is a harmonic 2-form in M3.  Since a tangential 
component of E would give rise to currents , that is ,  moving charges, in a conductor, the 
natural boundary condition for electrostatics is that E be normal to conducting surfaces. 
Thus *�; is a tangent harmonic 2 -form field in M3 . 

Note that a M3 = Vo + VI + V2 , and thus a plausible (and correct) basis for H2 (M3;  lR) 
is ,  for example, VI and V2 . Thus there exists a unique electric field in M3 with prescribed 
periods J J *c; over VI and V2 • But the integral of *�� over Vi is 4JT Qi , where Qi is the 

total charge inside Vi . 

Corollary (14.36): There exists a unique static electric field E in M3 with preas
signed charges in the cavities VI and V2 . The field is thus independent not only of 
charges outside Vo ( "shielding "), but also of the exact placement of the charges 
in VI and in V2 • 

We should mention that Theorem ( 14.34) is a special case of a more general result. 
First recall that to say that aP is "tangent" is to say that the restriction i * (* a) of *0' to 
the boundary vanishes . More generally, we could ask for a harmonic field a P that has 
prescribed periods and such that i * (* a) is a prescribed form y" -P on a M. The special 
case y = ° would make a a tangent form. We must put some restrictions on the form 
y for the following reason. On a M  we have dy = di *  * a = i *d * a = 0, since a is 
coclosed. Hence y is closed. Furthermore, y is only defined on aM,  but suppose that 
Z,,-P is a cycle on a M that bounds in M, that is ,  i*z = ac , for some (n - p + I ) -chain c 
on M. Then since the integral of y over z is the same as the integral of * a over z, this 
integral must vanish, * a being closed on M. The fol lowing notion is due to A . Tucker. 

Definition (14.37) : An admissible boundary value form y r on a M  is a closed 
form on aM whose integral vanishes on every cycle Zr on a M  that bounds on M. 
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The generalization of ( 1 4.34) is as follows .  (For more along these lines see [D, S ] . )  

Theorem (14.38) : There exists a unique harmonic field aP on M with prescribed 
periods and whose dual * a restricts on a M to a prescribed admissible boundary 
value form yn-p • 

The uniqueness of a is simple (and was known to Lord Kelvin in the case p = 1 ) . 

PROOF  O F  U N I Q U E N E S S : Let aP be a solution and suppose f3P  is another with 
the same periods and whose dual * f3 has the same boundary values i *  * f3 = y .  
Then fL := a - f3 is a tangent harmonic field with 0 periods . S ince dfLP = 0, fLP = 

dvp- I for some v (this is elementary if p = 1 ;  otherwise it requires de Rham's 
theorem) . We wish to show that dv  = O.  But 

(dv , dv) = r dv  /\ *dv = 1 (v /\ *dv) ± r v /\ d * dv  
1M aM 1M 

Since fL = dv is tangent, * dv is normal and the boundary integral vanishes. Also 
d * dv = d * fL = 0 since fL is harmonic . 0 

14.3c. Relative Homology Groups 

The topological "cycles" that we have been involved with so far are called absolute 
cycles . Given a compact manifold Mn perhaps with boundary we can define a 

relative p-cycle (mod a M) 

to be a p-chain on M whose boundary, if there is one, lies on a M .  Of course every 
(absolute) cycle is also a relative cycle. 

Figure 1 4.5 

In Figure 14.5 the curves C1 , C2 , and C3 are all relative I -cycles (mod aM = 

Vo + VI + V2) .  We shall systematically disregard any chain that lies on a M .  That is 
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why we  may think of  a relative cycle a s  a cycle; we  may disregard its boundary since 
it lies on aM .  

We shall say that two relative p-cycles c and c' are homologous (mod a M) provided 
they differ by a true boundary plus, perhaps, a p-chain that lies wholly on a M; in other 
words, a relative boundary is an absolute boundary plus any chain on a M  

where vp C a M  

Figure 1 4.6 

In Figure 1 4.6  we have drawn three more curves F1 , F2 , and F3 , all lying on aM, 
and also an oriented 2-chain W2 • Clearly aw = -C1 + FI + C3 + F2 + C2 + F3 • But 
the F curves all lie on aM,  and so we may say 

We could then say that C3 is homologous to C1 - C2 (mod a M) 

Thus only C1 and C2 are independent relative cycles. (Of course we could have used 
C1 and C3 , say.) Are there any more? 

Figure 1 4.7 
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consider the absolute I -cycle z that threads through the toroidal hole. It is an absolute 
cycle of M that does not bound in M. However, as a relative I -cycle it is trivial, that 
is, it bounds, since it is easily deformed in M to lie on the torus V2 c a M .  

It can, i n  fact, b e  shown that CI and C2 form a basis for the relative homology 
group, HI (M,  a M ;  ffi.) , defined to be the relative cycles modulo the relative boundaries 

HI (M,  a M ;  ffi.) = ffi.C1 + ffi.C2 

14.3d. Hodge's Theorem for Normal Forms 

Theorem (14.39) : Let Mil be a compact manifold with boundary. Let C I , . . . , c,. 
be a basis for the relative p-cycles of M (mod a M) 

Then there exists a unique normal harmonic p- form aP with prescribed periods 

Note that if c' '" c (mod a M ) ,  that is ,  if c' - c = a w p+ 1 + u " , where u lies on a M, 
then if aP is closed and normal j a - ja = la = o  

c' C II 
since a" = 0 when a is restricted to a M !  Thus the indicated periods do not change 
when a Ci is replaced by a homologous C; . 

Example 2' : In Example 2 earlier, consider the electric field I -form t:; 1 for the elec
trostatic field. It is  a harmonic normal I -form on M3 . Thus we may prescribe the line 

integrals fc, �� l and fc, �� I . This means that instead of the charges in VI and V2 , the 
electric field in M3 is uniquely determined equivalently by prescribing the electrostatic 
potential differences between the "inside" and the "outside" conductors ! 

Example 1 ' : In Example 1, we may consider the velocity vector v as defining a 2-form 
f32 = iv vol3 . This is then a normal harmonic 2-form on M3 . 

Figure 1 4.8 
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I t  should b e  "clear" that a basis for H2 (M, aM ;  IR )  i s  given, say, b y  the two dis 
W I and W2 . Thus the harmonic normal fJ2 is determined by prescribing the fiUidfiu.x: 
1, fJ2 

= 1, v ·  dS, i = I , 2, rather than the two circulations. Wi Wi 

14.3e. Morse's Theory of Critical Points 

We give here another application of relative homology groups . We shall be very brief 
referring the reader to Milnor's book [M] and Bott's expository paper [Bo] for mo� 
details and applications .  Bott's generalization of the Morse theory of this section will 
be sketched in Section E. b of Appendix E. 

z 
5 

4 

3 

2 

"/----- y 

x 

Figure 1 4.9 

We have indicated here the height function f = z on a bumpy torus. The critical 
points are at levels 0 (minimum) ; 1 , 2, and 3 (saddles) ; and 4 and 5 (maxima). For any 
manifold Mil with smooth real-valued function f, let us put 

We define 

Ma : = {x E M l f (x )  :::: a } 
M;; : = {x E M l f (x ) < a } 

a value a of the function f as homotopically critical if some relative homology 

group Hi (Ma , M;;) is nonzero. 

(For simplicity we shall use the real numbers IR for coefficient group, but any coefficient 
field can be used . )  We claim that the homotopic ally critical values in our example are 
exactly the critical values in the sense of Section l .3d. Thus in this example the critical 
values are precisely the levels at which new relative cycles appear as we move "up" 
the manifold from the minimum to the maximum. 
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In our torus example, the relative maximum at level z = 4 has Hz (M4 , M;; ) = lR and 

we have exhibited a 2-disc e2 at the critical point that is a generator for this  homology 

group. We shall "prove" this later, but it should be plausible since any effort to slide 
this disc entirely into the lower region M;; will require the boundary of the disc (which 

lies below z = 4) at some time to pass through the critical point; that is, the boundary 
will have to leave the lower region at some time. It should be clear that any I -disc or 

O-disc (point) on the level M4 can be pushed away from the critical point into the lower 

region, so that Hi (M4 , M;; ) = 0 for i :j:. 2.  
At a noncritical level b, say z = 2 .5 ,  it is "clear" that any chain on Mb can be pushed 

into Mb by a deformation along the negative gradient lines, similar to the Morse 
deformation of Section 2. l e. Thus Hi (M2.S , M2.s) = O. In fact, if the regions Ma are 
all assumed compact, and if there are no critical points Xo with d + E ::: I (xo ) ::: c - E ,  
then it can be  shown that a modified Morse deformation (which does not move points 
x with I(x)  ::: c - E) can deform Md diffeomorphically into Me· 

At the level z = 3 ,  it is again "clear" that the part of any chain away from the saddle 
point can be pushed down by following the negative gradient lines, but the critical point 
itself remains fixed. There is no continuous way to push the entire indicated I -disc 
e ] below level z = 3; HI (M3 , M; ) = lR with generator e] and the value 3 is again 
homotopically critical . 

We have also indicated the remaining disc generators at the other homotopically 
critical levels. At the minimum we have a O-disc (point) since Mo is empty. We have 
verified our claim. 

Note that the height function on the I -dimensional manifold pictured 

z 

--t----"-_=--- x 

Figure 1 4. 1 0  

has a critical point at z = 0 ,  an  inflection point, but i t  i s  clear that this does not yield 
a homotopically critical value since any chain on z ::: 0 can be slid below z = O. 
In a sense this critical point is inessential since a slight change in the function, say 
by tilting the z axis very slightly (in the "correct" direction), will remove the critical 
point. In our toral example all the ordinary critical values are homotopically critical, 
and vice versa, and in fact as we shall see, this is true whenever the critical points are 
nondegenerate in the sense of having nonsingular Hessian matrices of second partial 
derivatives Hij = (a2 flaxi axj ) ,  
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I n  this nondegenerate case we  can, with Morse, write down the dimension o f  the 
nontrivial relative cycle at the critical point as follows. Since the Hessian is nonsingular 
there is a maximal subspace of the tangent space at the critical point on which H i� 
negative definite, Hij Vi vj :::: O. In terms of a Riemannian metric we are looking at the 
sum of the eigenspaces corresponding to the negative eigenvalues of H i j = gik Hkj • The 
dimension of the resulting subspace is called the (Morse-) index of the critical point, 
A : =  number of negative eigenvalues (counted with multiplicity) and represents crudely 
the dimension of the space of directions, at the critical point, in which the function is 
decreasing. Then the relative cycle is the A-cell e),. starting out tangent to the subspace. 
(We shall indicate in our next paragraph why e),. does not bound as a relative cycle.) 
For example, for the critical point at level 4, we can introduce new local coordinates 
x ,  y (with origin at the critical point) on the torus such that f = z = 4 - x2 - i+ 
higher order, and so the Hessian is negative definite on the entire tangent space to T2 
at the critical point, the index is A = 2, and the disc x2 + i < E2 is the required 
generator for E sufficiently small .  For the critical point at level 3, in local coordinates 
f = z = 3 - x2 + y2+ higher order, the Hessian has the new x axis for negative 
eigenspace, the index is A = I ,  and x2 < E2 is the generating I -disc . 

Let us indicate why, for example, the relative I -cycle e ,  at level f = I is not 
trivial. First note that near the critical point f = I - x2 + y2+ higher order. The 
Morse lemma [M, p. 6] states that near a nondegenerate critical point, one may always 
introduce coordinates so that f becomes exactly this form with the higher order terms 
removed; thus in new coordinates, which we shall again call x , y ,  f is exactly 

f (x , y) = I - x2 + l  
Look then at g (x , y) : = f (x , y) - I = -x2 + y2 . We are interested in relative cycles 
of the region f :::: I mod f < 1 .  Away from the critical point x = 0 = y any chain on 
f :::: I can be pushed down into f < 0, and so discarded. We are then only interested 
in f :::: 0 near the critical point. In terms of the new coordinates we may deal with 
relative cycles on g = y2 - x2 :::: 0, that is , the shaded region in Figure 1 4. 1 1 .  

\ - - -\ - " )==--c- /- - - - - - - - - I 

�::::: - - - - - - - - -r---- y eo 
x x 

----�---- y 

Figure 1 4. 1 1 
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Now any chain on this shaded region y2 :": x2 can be deformed to lie on the x axis, 
with no point (x , y)  with g < 0 ever leaving g < O. Thus we are reduced to chains 
on the segment of the x axis with I x I :": 1 modulo x #- O. But x #- O  on this segment 
can be pushed into the boundary x = ± 1 .  Thus we are interested in the relative cycles 
of the segment I x I :": 1 modulo the boundary points .  In the case of a critical point of 
index A we are interested in the relative homology of a closed A-disc B;" modulo its 
boundary (A - I ) -sphere S;"- I .  This rather clearly (as we shall see in Problem 22.3(3)) 
has only one nontrivial generator, B\ H;,. (B\ S;"- I ) = IRB;,. . In our toral case the only 
nontrivial generator of relative homology at the level f = I is the indicated I -cell e I ,  

as claimed. 
The fact that the nondegenerate critical points are homotopic ally critical, and so 

have topological significance, allowed Morse to give relations between the number of 
critical points on M and the Betti numbers of M. Briefly we can proceed as follows. 
Introduce the A t h  Morse type number 

m;,. : =  number of critical points of index A 

For bookkeeping purposes only we form the formal polynomial in a variable t with the 
type numbers as coefficients, the Morse polynomial 

II 
�)n(t )  := L m;,.t;" 

;"=0 

We also have the Betti numbers b;,. = dim. H;,. (M;  IR) and the formal Poincare poly
nomial 

Il 
P (t) : = L b;,.t;" 

;"=0 

Morse's Theorem (14.40) : Let Mil be a closed manifold and f : M -+ IR a 
smooth function with only nondegenerate critical points. Then the Morse poly
nomial dominates the Poincare polynomial; there is a polynomial Q (t )  with 
nonnegative coefficients and 

�)n(t )  - P (t) = ( 1  + t) Q (t ) 

In particular we have the "weak " Morse inequalities 

and equality 
Il Il 

In particular, the total number of critical points on M is bounded below by the sum of 
all the Betti numbers. 
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I n  our toral example b a  = 1 = b2 and b 1 = 2, while ma = 1 , m 1 = 3 ,  and m 2  :::: 2 
and 

�')ll (t )  - p (t ) = ( 1  + 3t  + 2t2) - ( 1  + 2t + t2 ) = t + t2 = ( 1  + t ) t 

By writing out Q (t ) = 'L::6 ql-.tl-. with ql-. :::: 0 it is not hard to see that We can 
successively derive the 

Strong Morse inequalities ( 14.4 1 )  

ma > ba 

mn - mll- l + . . .  ± ma = bn - bn- 1 + . . .  ± ba 

P R O O F  S K E T C H  O F  ( 1 4 . 40 ) : For simplicity we assume that there is only one 
critical point at each critical level (this is generically so) . At any level f = a 
(critical or not) we shall consider the space Ma , the Morse polynomial 91l(Ma ; t ) , 
for this space, and the Poincare polynomial , again just for this space, and we shall 
observe how these polynomials change, /}. P, and so forth, as we pass through 
a critical point. It is clear, since topology changes only when passing through a 
critical point, that /}.�')1l and /}. P are nonzero only when passing through a critical 
point. 

Let �')ll (t )  and P (t) have the value 0 on the empty set, that is, below the absolute 
minimum At the absolute minimum we have a point and its index is O. Thus on 
passing from the empty set to the set consisting only of the minimum point we 
have /}.011 = 1 and /}. P = 1 .  (We shall keep our toral example in mind.)  As we 
continue to higher values of f we see the fol lowing. Consider passing though a 
critical point of index A at f = a ,  with its associated relative cycle, a disc el-. of 

dimension A .  There are two possibilities :  

1. The boundary of this disc is a (A - I ) -cycle (sphere) that bounds in M;; . (In the toral 
example the boundary of the I -cell e 1 from the saddle at f = I is a pair of points that 
clearly bounds a I -chain on MI ' )  Let then ael-. = acl-. where c lies on M;; . Then eA - c). 
is an absolute cycle on Ma . It cannot bound in Ma ; if it did, el-. - Cl-. = aCHI  would 
yield that el-. = a CH I + CA and so el-. would be a trivial relative cycle, a contradiction. 
Thus in this case we have t.�)ll = [I-. and also t. P  = (A and so t. (�')ll - p) = O. 

2. The boundary of the disc is a (A - I ) -cycle (sphere) S on M;; that does not bound in 
M;; . But this says that S is a nontrivial (A - I ) -cycle on M;; that bounds in Ma . Thus 

in this case t.01l = [A and t. P  = _[1-.- 1 , and so t. (�')ll - P) = (A + tl-.- 1 = (l + t ) tH . 
These two cases show that on crossing a critical point of index A ,  �')ll - P changes 

either by 0 or by ( 1  + [ ) t l-.- 1  • Since �)ll and P start out equal on the empty set we have 
demonstrated ( 1 4.40) . D 
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Note that in case ( 1 ) we can say that the relative cycle eA on M" mod M; is com

pletable to an absolute cycle on Ma . In this case we have shown that � (,'Jll - P) = o. 
thus 

Corollary (14.41) :  If all the relative cycles from all the critical points are com
pletable, then the Morse inequalities are equalities, mA = bA • 

In our toral example the 2-cell at level f = 4 is the only relative cycle that is not 
completable. This is reflected in m2 = 2 > b2 = 1 and m 1 = 3 > b 1 = 2. 

If some critical points are degenerate, the Morse inequalities need not hold. In 
Problem 1 4.3(4) you wil l  study a smooth function on the 2-torus T2 that has only 3 
critical points. (Of course there are always a max and a min on any compact space. )  

A final comment. For a continuous, nondifferentiable function on a closed manifold 
M we still have the notions of the absolute maximum and minimum values, but we 
cannot talk about minimaxes since we don' t  have partial derivatives at our disposal . 
Note, however, that we may define a homotopically critical value as earlier. We can 
also define a homotopic ally critical point to be a point y, at level fey) = a, such that 
some homology group Hj (M; U {y } ,  M; ) i= O. 

Problems ----------

1 4.3(1 ) Consider a conducting su rface of genus 9 bound ing a reg ion M3 

Figure 1 4. 1 2  

Let there b e  constant cu rrent loops in the exterior region , some of which 
th read through the holes. Assume that the appropriate boundary condit ion is 
that the normal component of B must vanish on the surface. Show that there is 
a unique static magnetic field inside M3 , determined completely by the currents 
in the loops that thread the holes. 

14.3(2) Show that d sends normal forms into normal forms and that d* sends tangent 
forms to tangent forms. 
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1 4.3(3) Let /\nor be the normal forms, and let /\tan be the tangent forms. It can be 
shown that the g lobal orthogonal decomposition that replaces the HOdge de
composition ( 1 4 .30) is 

P ( P-1 ) ( P+1 ) 1\ = d 1\ + d* 1\ + harmonic p-fields 
nor tan 

Show that these subspaces are indeed orthogonal . 

1 4.3(4) We have d rawn i n  Figu re 1 4. 1 3  a few level curves of a smooth function f on 
the torus J2 having a max at f = 2, a min at f = -2, and a s ing le other critical 
point (at the four  identified corners) at f = O. It is clear that the corner point is 
critical since the level curves comprising f = 0 i ntersect there (and so grad f 
must vanish there) . 

j= O 

j= O 
Figure 1 4. 1 3  

Continue this pictu re periodical ly in  the plane s o  that the corner point i s  at 
the center. Show that from this center there are three directions for which the 
function decreases as one leaves the crit ical point, each pair being separated 
by a d i rect ion i n  which the function is increasing. This shows that the critical 
point is degenerate. This critical point is of the type of a monkey saddle; see 
[M , p. 8] . Find two independent relative 1 -cycles in H1 ( T02 ; Tl"- )  emanating from 
this critcal point. ( I n  a sense, then , this critical point counts as 2 critical points 
of index 1 each . )  

1 4.3(5) Prove Morse's lacunary pr incip le :  i f  in the nondegenerate case we have m)..-1 
= 0 = m)..+1 for some A, then m).. = b).. . (H int: Write out the polynomial equation 
7)1l ( t) - pe t) = (1 + t) a( t) expl icit ly. )  
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C H A P T E R  15 

Lie Groups 

15.1 .  Lie Groups, Invariant Vector Fields, and Forms 

Is the unitary group S U (n )  connected? 

lS.la. Lie Groups 

Let M (n x n) be the set of all n x n real matrices. As in Section 1 . 1  d, we shall associate 
to the matrix x the point in n2 -dimensional euclidean space whose coordinates are 
XI I , X l 2 ,  . . .  , xnn · Topologically then, M(n x n)  is simply euclidean n2 space ! The 
general linear group GI(n , JR) is the group of all real n x n matrices x = (xij ) with 
determinant det x i=- O. Since det x is an n th-degree polynomial in the coordinates, it is 
a smooth function on M (n x n ) .  Since the real numbers differing from 0 form an open 
set in JR, and since the inverse image of an open set under a continuous map is open, 
GI(n , R) is an open subset of M (n x n ) .  (This says that if det x i=- 0 then det Y i=- 0 if 
y is sufficiently near x .) Topologically GI(n , JR) is an open subset of euclidean space, 
and as such is an n2-dimensional manifold. It is clear from (xY) ij = L Xik Ykj that the 
product matrix has coordinates that are smooth functions of the coordinates of x and 
y.  From the formula for the inverse 

- 1 X X = --
det x 

where Xu is the signed cofactor of x ji , and the fact that det x i=- 0, we see that the 
coordinates of x - 1 are also smooth functions of those of x .  This leads us to the concept 
of a Lie group . 

A Lie group is a differentiable manifold G endowed with a "product," that is ,  a map 

G x G �  G (g , h )  � gh 

making G into a group. We demand that this map, as  well as  the "inversion map" 

be differentiable . 

391 



392 L I E  G R O U P S  

I n  the following examples, the reader should verify that the given manifolds are ind 
groups. For example, GI(n , JR.) is a group because, first, det x =j:. 0 and det y :f:. 0 imp� 
det (xy)  = (det x ) (det y) =j:. 0, and second, det X - I = (det X ) - I =j:. O. es 

Examples: 

1. G = JR., the additive group of real numbers . The product here is addition of real 
numbers . This group is commutative, or "abelian." 

2. G = JR.+ , the multiplicative group of positive real numbers . This is again abelian. 
3. G = Gl (n,  JR.) ,  the general l inear group of all n by n real matrices g with det 

g =j:. O. Simil�rly, we have the nonsingul
.
ar comte

.
x mat�ces Gl(n , C). By writing 

Zjk, = Xjk t lYjb we see that Gl(n , <C) IS a 2n -dimensIOnal open submanifold of 
<cn- = JR.k . The notation Gl(n) refers to either of the cases JR. or <C. Gl(n) is not 
abelian for n > 1 .  

4. G = SI (n , IR) , the special linear group i s  the subgroup of Gl(n , IR) of matrices x 
with det x = 1 .  From Problem 1 . 1 (3) ,  we know that it is a submanifold of dimension 
(n2 - 1 ) .  For any matrix group, the adjective special means that det x = 1 . 

5. G = O (n) ,  the orthogonal group of all real n x n matrices x with xxT = I .  (Thus 
det x = ± l . ) O (n )  is clearly a subgroup of Gl(n , IR) . In Section 1 . 1 we saw that 
it is also a submanifold of dimension n (n - 1 ) /2. We also saw there that O (n) is 
not connected, consisting of the subgroup 5 0  (n ) ,  the rotation group, where det 
x = + 1 ,  and the disjoint submanifold where det x = - 1 .  We shall show in Example 
(8) that, in fact, these two subsets are each connected. G = 5 0  (2) , the rotation group 
of the plane, is especially easy to visualize. We are dealing with the matrices 

R2 (e) = 
[ c�s e  

sm e 
- sin e ] 

cos e ( 1 5. 1 )  

and as such, 5 0 (2) is a curve parameterized by e in 1R4, defined by X I I  = cos 9, 
X l 2  = - sin e, X2 1  = sin e, and X22 = cos e. As a manifold this curve is diffeomorphic 
to the circle 5 I in the plane defined by X l = cos e and X2 = sin e ,  and this is the way 
we usually think of 5 0  (2) ; to a rotation of the plane through an angle e we associate 
the point on the unit circle 5 I at angle e .  Sometimes we think of 5 0 (2) as the points 
exp(i e )  = eili of the complex plane . To compose two rotations eili and eirj) we simply 
multiply eiliei¢ = ei (liHl , that is ,  we add their angles . 5 0 (2) is abelian, whereas 
5 0 (n ) ,  for n > 2, is not. 

6. G = V (n ) ,  the unitary group, consisting of complex n x n matrices Z = (Zjk) 
with zt  : =  ZT = Z - I . The overbar denotes complex conjugation; the dagger denotes 
(hermitian) adjoint. The same type of argument that was used for O (n)  in Section 
1 will show that V (n ) is a submanifold of complex n2 space or real 211 2 space, and is 
thus a Lie group. We easily see that det z has absolute value 1 .  Note that V ( 1 ) is the 
group of complex numbers z = eie of absolute value 1 ,  and thus V ( l )  i s  isomorphic 
with 5 1 , that is ,  5 0 (2) . V ( l )  is the only abelian unitary group. 

7. G = 5 V (n )  is  the special unitary group; det z = + 1 .  
8. G = Tn i s  the abelian group of diagonal matrices of the form 

z = diag[exp(ie l ) ,  . . .  , exp(iell ) ] ( 1 5 .2) 
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This group is topologically S l x . . . X S l , the topological product of n copies of the 

circle, and as such is an n-torus. Since the circle is connected (each point can be 

joined to the identity by a curve) ,  it follows easily that Til is  connected . From this we 

may see that the far more complicated group U(n)  is also connected ! Before doing 

so, we note the following. 
As a manifold, a Lie group is very special for the fol lowing reason . A Lie group 

always has two families of diffeomorphisms, the left and right translations. For 
g E G, these translations are defined by 

Lg : G -+ G  
and ( 1 5 .3 )  

Rg  : G -+ G 
It is clear that the mapping inverse to L g is simply L g _ l . 

Theorem (15.4) : U (n )  is connected. 

P R O O F :  Note that Til is clearly a subgroup (and consequently a subset) of 
U (n ) .  The familiar "principal axes theorem" of linear algebra states that any 
g E U (n )  can be diagonalized by a unitary matrix .  (Proof: Each such g has 
eigenvalues of absolute value l .  Let e l be an eigenvector with eigenvalue 
exp(itl ) ) .  Let et be the orthogonal subspace to e l in the Hermitian metric 
(v, w) = � vkuh . Since g is an isometry, g sends et into itself and so g has 
an eigenvector e2 in this subspace with eigenvalue exp(itl2 ) .  Continue with thi s  
process .  In the eigenvector basis e l ,  e2 , . . . , en , the linear transformation g has 
matrix Z = diag(exp(itl ) ) ,  . . .  , exp(i tlll ) ) ,  as desired.) This means that given 
g E U (n) ,  there exists an h E U (n) such that h - I gh = z = diag (exp (i tl l , . . .  , 
exp(itln ) .  Then g = hzh - I • (This says that g E (h T" h - I ) ,  i .e . ,  g lies on the 
diffeomorphic copy of Til that results from left translating Til by h and then 
right translating by h - I .)  Thus g can be joined to the identity by a curve, by 
putting tlj (t) = ( I - t )ej .  U (n )  is connected . D 

The subgroup yn of U (n) given by ( 1 5 .2) is called a maximal torus of U (n ) .  Any 
conjugate h Tn h - I of this maximal torus is also called a maximal torus.  

By the same type of reasoning we may deal with the rotation group. 

Theorem (15.5) : 0 (n) consists of two connected " components " and S O  (n) is 
the component holding the identity. 

P R O O F : Consider first the case S O (2n ) .  The principal axes theorem states 
that any g E S O (2n) is "conjugate" to a block "diagonal" matrix with 2 x 2 
rotation matrices down the diagonal 

( 1 5 .6) 

where R2 (tlk ) i s  as in ( 1 5 . 1 ) . This simply says that after a suitable orthogonal 
change of basis in ]R21l 

, the rotation takes on the form of rotations in n orthogonal 
2-dimensional planes . In the case of S O (2n + I )  one adds a final diagonal 
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entry o f  + I .  We can arrive at this canonical form a s  follows. The possible real 
eigenvalues of g E S O (2n) are ± I ,  whereas the complex eigenvalues appear 
in complex conjugate pairs . If + 1 is an eigenvalue then it must be a double 
eigenvalue since det g = 1 .  The eigenspace for this double eigenvalue is a 2-
plane E I on which g takes the form R2 (0) . Likewise, if - 1  is an eigenvalue, it 
also must be a double root and we get a 2-plane E- l on which g takes the form 
R2 (n) . In both cases g leaves invariant the orthogonal complementary (2n - 2)

space. By continuing in this complementary subspace we either exhaust the 
entire 2n-space or have left a remaining 2k-space ]R2k on which g has only 
complex eigenvalues. Let S2k- 1 be the unit sphere in this subspace. The function 
f (x )  : = (gx , x )  takes on its minimum at some point Xo of the sphere. Now 
gxo does not lie along Xo since g has no real eigenvalue in  ]R2k

. We claim 
that the plane spanned by Xo and gxo is sent into itself by g .  By definition, g 
sends Xo into this plane; where does it send gxo ? Let x (t )  be a curve on S2k-l 

starting at Xo and put v = x ' (O) . Then 0 = f' (O) = (gv,  xo ) + (gxo , v) == 
( v ,  (g T + g)xo) = ( v ,  (g- I + g)xo )  for all tangent v .  Thus (g- l + g)xo = AXo 
and so g2xo = AgXo - Xo. Thus g sends g (xo) into the plane spanned by Xo and 
gxo , as desired. But it is immediate that g takes the form R2 (8) on any invariant 
2-plane. We may then continue with the complement of this plane in  ]R2k

. 
Finally, in the case S O (2n + I ) ,  any g has + 1  as an eigenvalue, with a 

corresponding eigenvector. We proceed with the complementary ]R211 as earlier. 
We continue with the proof of Theorem ( 1 5 .5 ) .  The collection of all rotations 

of the form ( 1 5 .6) (with a+ I included in the odd-dimensional case) forms again 
an n -dimensional torus S I x . . . X S I , a maximal torus Til of the rotation group. 
One then proceeds as in the V (n) case to show that S O (n)  is connected. 

o (n) consists of the rotations S O  (n) and the improper orthogonal matrices 
O - (n )  where the determinant is - l . But if we let h = diag(- I , 1 , . . .  , 1 ) E 

0 - ,  then left translation Lh by h is a diffeomorphism of O (n)  that interchanges 
S O (n )  and O - (n ) ,  showing that these two subsets are diffeomorphic. 0 

Our final example, although not as intrinsically important as the preceding ones, 
will play an important role in our treatment because it will be possible to perform 
explicit calculations. It i s  a nonabelian, noncom pact, 2-dimensional Lie group. 

9. G = A ( l ) ,  the affine group of the line, consists of those real 2 x 2 matrices 

with x > O. The manifold for A( l )  can be considered as the "right half plane," those 

(x , y) E ]R2 , with x > O. 
A matrix group i s  a subgroup of GI(n) that i s  also a submanifold of GI(n). 

All of our previous examples are groups of matrices. Although there are important 
Lie groups that cannot be realized as matrix groups, for our calculations we shall 
occasionally pretend that our group is indeed a matrix group, since the constructions 
and proofs are easier to visualize. 
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IS.lb. Invariant Vector Fields and Forms 

Lie groupS are special as manifolds for the following reason . Given a tangent vector Xe 
to G at the identity e, we may left or right translate Xe to each point of G ,  by means of 
the differentials 

resp. ( 1 5 .7) 

Xg :=  Rg*Xe 

yielding two nonvanishing vector fields on all of G !  In fact, if we take a basis X" . . . , 
Xn for Ge (the tangent space to G at e) , then we can left or right translate this basis to 
give n linearly independent vector fields, such as, 

( 1 5 . 8) 

on all of G !  In particular, every Lie group is an orientable manifold! Consider for 
instance, a closed orientable surface M2 of genus g .  We shall see in Section 1 6 .2 that of 
these surfaces only the torus (genus 1 )  can support even a single nonvanishing tangent 
vector field. In fact T2 supports two vector fields 8/ 8e , 8/ 8¢, and the torus is indeed 
the commutative group S ' x S I with multiplication 

Topologically, the only compact Lie group of dimension 2 is the torus.  (The Klein bottle 
is nonorientable and admits a nonvanishing vector field, but not two independent ones ! )  

We shall say that a vector field X on G is left (right) invariant i f  i t  is invariant under 
all left (right) translations ,  that is ,  

resp. ( 1 5 .9) 

You should convince yourself that if Xe is given, then ( 1 5 .7) exhibits the unique left 
(resp. right) invariant field generated by Xe .  

Similarly, for example, an exterior p-form a o n  G i s  left invariant if 

( 1 5 . 1 0) 

and to get a left invariant form on all of G one translates a form at e over the entire 
group by 

( 1 5 . 1 1 ) 

In the case of a matrix group, Lg*Xh is especially simple. Let t H- h (t )  be a curve of 
matrices in G with h (O) = h and h' (O) = Xh • Since G c GI (n) ,  this curve is simply a 
matrix h whose entries h jk (t) are smooth functions of the parameter t .  h (t )  describes 
a curve in n2-dimensional euclidean space (real or complex) .  Then Xh , the tangent to 
this curve, is simply the matrix whose entries are the derivatives at t = 0, h jk (0) . There 
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is  no  reason to believe that this new matrix h' associated to  the point (matrix) h . 
belong to the group G (this will be illustrated in the case A( I ) later) . Then for�1I 
constant matrix g ,  the curve t � g h (t) will have for tangent vector at t = 0 the matri� 

Lg.Xh = gh' (O) = gXh 

that is simply the matrix product of g and Xh . 

Example: G = A ( l ) ,  (Example (9». We may consider A ( l )  either as a submanifold of �4 or as the right half plane, since the entries 0 and 1 at the bottom contribute nothin 
to our knowledge of the matrix. Since 

g 

we see that the right half plane is endowed with a rather unusual multiplication given in 
the top row of this  matrix equation. 

We shall identify 

[ � n E A ( 1 )  with (x ,  y) E R2 

and for tangent vectors we identify 

[ �  <!.l ]  
dt 

o 

. (dX 
wIth -

dt 

dy )T 

dt 

which i s  the tangent vector (dx /dt ) a/ax + (dy /dt ) a/ay .  Now let us left translate the 
vectors 

a 

ax 
and 

a 

ay 

at the identity e to the point (x ,  y) . For a/ax we consider the curve h (t ) given by 

[ 1 ; t n 
whose tangent at e is a/ax .  Then, letting g be the matrix 

we have 

a d [xo 
0

0] Lg' -
a 

= - (gh (t ) } t=o = x dt 

and this is indeed the left translate of a/ax at the identity to the point (x ,  y) 

[ � n [ � � ] 
(Note that this  matrix is not in A (  I ) ;  it is a tangent vector to A (  I ». Thus the left translate 

of a/ax to (x ,  y) is  

a 
X = x 

ax 
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To construct the left translate of a / ay at (l , 0) to the point (x ,  y) we form 

The result is the vector x a / ay. Thus a basis for the left invariant vector fields on A ( 1 )  
is given by the pair 

a 
X I = x 

ax 

a 
X2 = x 

ay 
( 1 5 . 1 2) 

Next note that in any Lie group, if X I , . . . , XI! is a basis for the left invariant vector 

fields and if CJ I , . . .  , CJ
n is the dual basis of I -forms, then this dual basis is automatically 

left invariant, since 

L;CJg (Xe) = CJg {Lg*Xe }  = CJg (Xg ) = CJe (Xe) 

shoWS that L;CJg = CJe · The same argument shows that if aP is any p10rm whose values 

on any p-tuple of left invariant vector fields are constant on G, then a is left invariant. 
Thus the basis of left invariant I -forms dual to ( 1 5 . 1 2) is given by 

I dx 
CJ = 

x 
2 dy 

CJ = 
x 

( 1 5 . 1 3) 
If a and fJ are invariant under left translations then so are da and a !\ fJ .  Thus in A (  1 )  

I 2 dx !\ dy 
CJ !\ CJ = ----'-x2 

( 1 5 . 14) 
is a left invariant area form or left Haar measure ; for any compact region U C A (l ) ,  
and for any g E A ( l )  

J 1 d x  � dy 
= J 1 dx � dy 

gU x U x 

where g U : = L g U is the left translate of the region U .  This would not hold if the factor 
x-2 were omitted. 

Problems 

1 5.1 (1 )  For the group A(1 ) ,  f ind the right i nvariant vector f ie lds coincid ing with 8/8x 
and 8/8 y at e ,  f ind the dual r ight invariant 1 -forms, and write down the r ight 
Haar measure. 

15.1 (2) jR4 can be identified with the space of al l  real 2 x 2 matrices, identify ing x = (x 1 , 
x2 , x3 , x4) with the matrix (again called x) 

81 (2 ,  jR) can be considered as the subman ifold M3 of jR4 def ined by det(x) = 1 .  
81 (2 ,  jR» acts linear/y on jR4 , g :  jR4 -+ jR4 , by g(x) = gx (matrix multipl ication) . 

( i) Compute the 4 x 4 matrix diffe rential g* of 9 and show that det g* = 1 .  This 
shows that the action of G on jR4 preserves the eucl idean volume form . 
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( i i) H(x) :=  det (X) i s  of course a function on JR.4 that i s  invariant under t 
action of G. Use Equation (4.56) to write down a left i nvariant volume 3'fO� 
for a l l  of 81 (2 ,  JR.). 

---

15.2. One-Parameter Subgroups 

Does eO} = (cos 9 ) /  + (sin 9 ) 1  look familiar? 

A homomorphism of groups is a function 

J : G �  H 

that preserves products 

In Section 1 3 . 1 ,  we defined the special case of a homomorphism when the groups were 
abelian, and when the group "multiplication" was "addition ." 

As an example, the usual exponential function J (t )  = el defines (since eHI = eSer) 
a homomorphism 

exp : lR. � lR.+ 

of the additive group of the reals to the multiplicative group of positive real numbers. 
Note that exp is also a differentiable map, and in this case it is 1 :  1 ( the homomorphism 
is injective), and also onto (surjective) .  We then say that exp is an isomorphism of 

Lie groups. exp is a diffeomorphism with inverse log : lR.+ � R 
A 1 -parameter subgroup of G is by definition a differentiable homomorphism (in 

particular, a path) 

g : lR. � G t � g et )  E G 
of the additive group of the reals into the group G.  Thus 

g (s + t) = g (s )g (t )  = g (t )g (s )  ( 1 5 . 15) 

Consider now a I -parameter subgroup of a matrix group G.  

Figure 1 5.1  
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As matrices g( t  + s) = g (t )g (s ) ,  that is, gij (t + s) = Lk gik ( t )gkj (s ) .  Differentiate 
both sides with respect to s and put s = 0, 

g' (t )  = g et )  g' (O) ( 1 5 . 1 6) 

Since g' (O) is a constant matrix, the solution to this is 

g et)  = g (O) exp ( tg' (O) } 

where 
52 53 

exp(5) = eS := I + 5 + - + - + . . . 2 !  3 !  ( 1 5 . 17 )  

It can be shown that this infinite series converges for all matrices 5. Since g (O) = e for 
any homomorphism g : IR. -+ G,  we conclude that 

g et ) = exp { tg' (O) } ( 1 5 . 1 8) 

is the most general form for a I -parameter subgroup of a matrix group G .  
Equation ( 1 5 . 1 6) tells us how to proceed even if G i s  not a matrix group, for i t  really 

says 

g' (t) = Lg(t ) *g' (O) ( 1 5 . 1 9) 

that is, the tangent vector X to the I -parameter subgroup is left translated along the 
subgroup. Thus, given a tangent vector Xe at e in G,  

the I -parameter subgroup of  G whose tangent a t  e is X e  is the integral curve through 
e of the vector field X on G resulting from left translation of X e over all of G .  

The vector Xe i s  called the infinitesimal generator of the I -parameter subgroup. 

Figure 1 5.2 

For any Lie group G we shall denote the I -parameter subgroup whose generator at 
e is X, by 

g et)  := elx = exp tX 

just as we do in the case of a matrix group. 
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For example, i n  A ( I ) , to find the I -parameter subgroup having tangent vector (a b)T 
at the identity, we left translate this vector over A ( I ) . 

( 1, 0) 

Figure 1 5.3 

The left translate of (a8 I 8x + b8 I 8y) to the point (x , y) is, from ( 1 5 . 1 2) ,  (ax818x + 
bx818y) . Then we need to solve 

dx 
- = ax dt 
dy - = bx dt 

x (O) = I ( 15 .20) 

y (O) = 0 

The solutions are clearly straight lines dy I dx = b I a ,  but to see the parameterization 
we must solve ( 1 5 .20) to get 

x (t) = eat 

(which never reaches the y axis) .  

y 

beal b y (t )  = - - � a a 

----r-----��------------ x 

Figure 1 5.4 

In Problem 1 5 .2(2) you are asked to get this  from the power series . 
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Problems 

1 5.2(1 ) We shal l  see in the next section that 

J =  
[ � �1 ] 

can be considered a tangent vector at the identity of the group G I (2 ,  lR) . Use 
J2 = - I , J3 = - J, J4 

= I , to show 

eO J = (cos e) 1 + (s in e ) J  i. e . ,  

ex [ 0 -e ] = [ cos e - Sin e ]  
p 

e O sin e cos e 

for al l  real e .  This 1 -parameter subgroup of G I (2,  lR) is the entire subgroup of 
rotations of the plane, S O(2) ! 

Warning:  It makes no more sense to say exp S = I + S for S smal l  than it 
does to say eX = 1 + x when x is a small number. For example, 1 +  e J is never 
in SO(2) for any e # o .  

1 5.2(2) Compute 

d i rectly from the power series. 

1 5.2(3) Consider the d iffe rential equation 

x' ( t) = 
d��t) = A( t)x ( t) 

x (O) = Xo 

where A( t) is an n x n matrix function of t and x ( t) is a column matrix. I t  is known 
that if A is actually a constant matrix, then the solution is x ( t) = exp( tA) xo ; 
this easi ly fol lows formal/y ( i .e . , disregarding questions of d ifferentiating infin ite 
series term by term , etc. )  from the power series expansion of exp ( tA) .  In the 
case of a 1 x 1 matrix function A( t) the sol ution is of cou rse 

x( t) = exP(l t 
A(r ) dr )xo 

We claim that this same formula holds in the n x n case provided that the matrix 
A(t) commutes with its indefinite integral 8( t) := J; A(r ) dr for al l  t .  Verify this 
formally by looking at 

x ( t) := exp[ 8( t) ]xo = 
[ I + 8( t) + � ( 8( t) B( t) } + . . .  ] Xo 

and using B' ( t) = A( t) .  
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15.3. The Lie Algebra of a Lie Group 

What is the third Betti number of the eight-dimensional SI(3, JR)? 

15.3a. The Lie Algebra 

Let G be a Lie group. The tangent vector space G e at the identity e plays an important 
role; we shall denote it by the script �/ 

and call it (for reasons soon to be discussed) the Lie algebra of G .  
Let XR , R = 1 ,  . . .  , N,  b e  a basis for � ;  XR will also denote the left translation of 

this field to all of G .  Since any left invariant vector field is determined by its value at 
e, the most general left invariant vector field is then of the form 

where the v R are constants. 
Let a R , R = 1 ,  . . . , N be the dual basis of left invariant I -forms on G;  they are 

determined by their values on vectors from � .  The most general left invariant r-form 
on G is of the form 

It is again determined by its values on r-tuples from �/ . It is constant when evaluated 
on left invariant vector fields and al are constants . 

Recall the notion of Lie derivative or Lie bracket of two vector fields on a manifold 
M;  see Equation (4.4) . 

Theorem (15.21) :  The Lie bracket [X, Yj of two left invariant vector fields is 
again left invariant. 

P R O O F :  A vector field X is left invariant iff 0' (X) is constant on G whenever a 
is a left invariant I -form. If a is a left invariant I -form then 

dO' (X, Y) = -0' ( [X ,  V])  

Since da is left invariant, the left-hand side is  constant. 0 

We may then write 

for some structure constants Cks (dependent on the basis {XR } ) .  
I n  Problem 15 . 3 ( 1 )  you are asked to prove the following. 

( 1 5 .22) 

( 15 .23) 
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Theorem (15.24) :  The Maurer-Cartan equations 
du v = - L C�su R  !\ u S 

R<S 
I 

= - - L C�SU R  !\ U S 
2 R . S  

hold, and d2u v  = 0 yields the Jacobi identity 

C�SCfM + C�MC:L + C�L C:'s = 0 
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This Jacobi identity for left invariant I -forms is also a consequence of a general Jacobi 
identity for vector fields on any manifold Mil . If X, Y, and Z are any three vector fields 
on a manifold, then as differential operators on functions f, [X , Yj (f) = X(Y (f)) -

Y(X(f) ) ,  and so on. Then the fol lowing Jacobi identity is immediate . 

[ [X , Yj ,  Zj + [ [Z , X] , Yj + [ [V ,  Z] ,  Xj = 0 ( 1 5 .25) 

and in the case of a Lie group this gives ( 1 5 .24) via ( 1 5 .22). 
We now make the vector space �/ = G e into a "Lie algebra" by defining a product 

�" x :r -+ �' 
as follows. Let X E �/, Y E � .  Extend them to be left invariant vector fields XI , yl on 
all of G, and then define the product of X and Y to be the Lie bracket 

[X , Yj : =  [XI , y/ ]e 

This product satisfies the relation [X, Y] = - [V, X] and the Jacobi identity ( 1 5 .25) .  
We shall see later on  that there are three vectors X, Y, Z in the Lie algebra of 

SO(3) that satisfy [X , Yj = Z and [X, Z] = -Y. Then [X, [X, V] ] = - Y, while 
[[X, X] , Y] = 0, and thus the Lie algebra product is not associative ! 

We shall consistently identify the Lie algebra :rwith the N(= dim G) dimensional 
vector space of left invariant fields on G . 

Classically the Lie algebra �/ was known as the "infinitesimal group" of G ,  for 
classically a vector was thought of roughly as going from a point to an "infinitesimally 
nearby" point. �/ then consisted of group elements infinitesimally near the identity ! We 
shall not use this picture. 

15.3b. The Exponential Map 

Theorem (15.26) : For any matrix A, det eA = elrA . 

P R O O F :  Consider the matrix A as a linear transformation of complex n-space 
en . If A is an eigenvalue of A, A v = A v, then from the power series for eA 
we see that eA v = eA v . Thus eA has eigenvalues exp(A d ,  . . .  , exp(AIl ) ,  where 
A I ,  . . .  , An are the eigenvalues of A .  Then, since the determinant is the product 
of the eigenvalues 

det exp A = II exp A; = exp L Ai = exp trA D 
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Theorem (15.27): The map exp : W --+ G sending A f---+ eA i s  a diffeomorphism of some neighborhood of 0 E �f0nto a neighborhood of e E G. 

P R O O F : We shall give two proofs . For a matrix group, look at  the differential of 
the exponential map applied to a vector X E 3" 

d d ( 1 ? 2 ) exp. (X) = - (exp tX) I=o = - 1 + tX + - t-X + . . . = X dt dt 2 1=0 
Thus exp. : 3' --+ �/ is the identity and exp is a local diffeomorphism by the 
inverse function theorem. 

If G is not a matrix group we would proceed as follows. Given X at e, elx ::: 
exp(tX) is a curve through e whose tangent vector at t = 0 is the vector X (recall 
that eX is the integral curve through e of the left invariant vector field X) .  Thus 
again exp. (X) = X, and we proceed as previously. D 

Remark: In a general Lie group, the I -parameter subgroup exp(t X) is the integral 
curve of a vector field on G, and thus it would seem that this need only be defined for 
t small .  In this case of a left invariant vector field on a group, it can be shown that the 
curve exists for all t ,  just as it does in the matrix case. 

15.3c. Examples of Lie Algebras 

1. G = 01 (n , JR.) . Let M (n x n) be the vector space of all real n x n matrices ; M (n x n) � n2 
dimensional Euclidean space. For A E M (n x n) 

and therefore 

det eA = etrA > 0 

exp : M(n x 11 ) --+ 01 (n , JR.) 
Since dim M(n x n) = n2 = dim GI (n , JR.) ,  we see that the Lie algebra of OI(n , lR) is 

�(n , JR.) = M(n x 11 ) 
We shall now use the fact that if G is a matrix group, that is ,  a subgroup of Ol(n), 

then its Lie algebra W, being the tangent space to the submanifold G of Ol(n , JR.) , is the 
largest subspace of M (n x n) such that exp : W --+ G .  

2. G = S O  (n ) .  First w e  need two elementary facts about the exponential of a matrix. 
Since eAe-A = (I + A + A2/2 !  + . . .  ) (1 - A + A2/2 !  - . . .  ) = I we conclude 

(eA ) - 1 = e-A 

Next, from the power series it is evident that for transposes , 

It is clear then that if A is skew symmetric, AT = - A,  then 

(exp A) - l  = (exp A) T 
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and so exp A E O (n ) .  Also, since det eA = e ,rA = 1 for a skew A , we see eA E S O (n ) .  

Thus the skew symmetric matrices exponentiate to  S O  (n )  and the Lie algebra of  S O  (n) 

is a vector subspace 6A}�n)  of )li-Cn)  that contains the subspace of skew symmetric 

matrices. 

Conversely, suppose that for some matrix A E �A1-(n) ,  that eA E S O (n ) .  Thus 

exp(A)  = exp(-A T ) 

Since exp is a local diffeomorphism it is 1 I in a neighborhood of 0 E �n ) .  Thus if 

eA is close enough to the identity then 

that is, A is skew symmetric .  Thus �.a(n) ,  

the Lie algebra of S 0 (n) ,  is precisely the vector space of skew symmetric n x n 
matrices. 

One can also see this by looking at the tangent vector to a curve g (t )  in S O  (/1 ) that 

starts at e. Since ggT = e, we have g' (O) + g ' (Ol = 0, showing that g' (O) is skew 

symmetric. 
3. G = U (n) ,  the group of unitary matrices, u - 1 = u t ,  where t is  the hermitian adjoint, that 

is, the transpose complex conjugate . Then note that if A is skew hermitian, At = -A , 
then eA E U (n )  from the same reasoning. We conclude that 

u.(n) is the vector space of skew hermitian matrices. 

4. G = S U (n ) ,  the special unitary group of unitary matrices with det u = 1 .  Since a skew 
hermitian matrix A has purely imaginary diagonal terms we conclude that det eA = etrA 
has absolute value 1 .  However if A also has trace 0 we see that eA will lie in S U (n) . 

�.u(n) is the space of skew hermitian matrices with trace 0 

5. G = Sl (n , JR) , the real matrices g with det g = 1 

a.Ccn ,  JR) is the space of all real matrices with trace 0 

1S.3d. Do the 1 -Parameter Subgroups Cover G? 
Given g E G,  is there always an A E � such that eA = g?  In other words, 

is  the map exp : W � G onto? 

It can be shown that this is indeed the case when G is connected and compact. (It is  
clear that a I -parameter subgroup must lie in the connected piece of G that contains 
the identity. ) SI(2, JR) is not compact. For g E Sl (2, JR) 

g = [ : � ] x w  - yz = 1 

that is , the coordinates x ,  y ,  z, w satisfy the preceding simple quadratic equation. This 
locus is not compact since, for example, x can take on arbitrarily large values . You are 
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asked, in Problem 1 5 .3 (2), to show that any g in  S I(2 , JR) with trace< -2 is nev 
the form eA for any A with trace 0, that is ,  for any A E �£(2, JR) . er of 

This result is somewhat surprising since we shall now show that SI (2, R) is con. 
nected ! 

g = [ � � ]  
in SI(2 , R) can be pictured as a pair of column vectors (x z) T and (y w l in ]R2 sPanning 
a parallelogram of area 1 .  Deform the lengths of both so that the first becomes a unit 
vector, keeping the area 1 .  This deforms S I (2 , JR) into itself. Next, "Gram-Schmidt" the 
second so that the columns are orthonormal . This can be done continuously ;  instead 
of forming v - (v ,  e )e one can form v - t (v , e)e .  The resulting matrix is then in the 
subgroup S 0 (2) of SI(2 , JR); that is ,  it represents a rotation of the plane. We have shown 
that 

we may continuously deform the 3 -dimensional group SI(2, R) into the i -dimensional 
subgroup of rotations of the plane, all the while keeping the submanifold SO (2) 
pointwise fixed! 

This last group, described by an angle e ,  is topologically a circle S ' ,  which is connected. 
This shows that S I (2 , R) is connected. 0 

In fact we have proved much more . Suppose that Vk is a sub manifold of Mn . (In the 

preceding SO(2) = V ' C M3 = Sl (2,  JR) . )  Suppose further that V is a deformation 
retract of M; that is ,  there is a continuous I -parameter family of maps rt : M -7 M 
having the properties that 

1. ro is the identity, 
2. r, maps all of M into V 

and 
3. each rt is the identity on V. 

Then, considering homology with any coefficient group, we have the homomorphism 
1' , * : Hp (M ; G) ----* Hp ( V ; G) ,  since r will send cycles into cycles, and so on; see 
( 1 3 . 1 7) .  If z p is a cycle on M and if r , (z p ) bounds in V ,  then zp bounds in M since 
under the deformation, zp is homologous to rt (zp ) ;  see the deformation lemma ( 1 3 .21). 
Thus 1' , * is 1 : I .  Furthermore, any cycle z� of V is in the image of 1' , * since z� = r, (z�) . 
Thus r , * is also onto, and hence 

Theorem (15.28) : If V C M is a deformation retract, then V and M have 
isomorphic homology groups 

Since S O (2) is topologically a circle S ' ,  we have 

Corollary (15.29) : Ho (SI (2, JR) , :2) � :2 � HI (SI (2,  JR) , :2) and all other ho

mology groups vanish. 
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-- Problems ----------

15.3(1 )  Prove ( 1 5 .24) . 

15 3(2) Let A be real ,  2 x 2 ,  with trace O. The Cayley-Hamilton theorem for a 2 x 2 
• 

matrix says that A satisfies its own characteristic equation 

A2 - (trA) A + (det A) I = 0 

hence 

p : = det A 

(The proof of the Cayley-Hami lton theorem for a 2 x 2 matrix can be done by 
di rect calculat ion .  One can also verify it in the case of a diagonal matrix, which 
is trivial , and then invoke the fact that the matrices that can be diagonal ized 
are "dense" in the set of all matrices, s ince matrices generical ly have d istinct 
eigenvalues. ) Show that 

(cos .fj5) I + (.fj5)-1  (sin .fj5)A if p > 0 

(cosh VIPI) / +  (VIPI)- 1 (sinh VIPI) A if p < 0 

and, of course, e A  = I + A if p = O. Conclude then that 

tre A � -2 
Thus, in particular 

g = [�2 _Od 
is never of the form e A  for A E 6.f(2, JR.) . I n  particu lar, this g does not lie on any 
1 -parameter subgroup of SI(2 ,  R) .  

15.3(3) ( i )  Does SI (n, JR.) have an inte resting deformation retract? Is  SI (n ,  IR) con
nected? 

(ii) What are the i nteger homology groups of the 8-dimensional manifold 
SI (3, JR.)? 

( i i i ) What can we say about G I  (n, JR.)? Is it connected? 

15.4. Subgroups and Subalgebras 

How can one find subgroups of G by looking at �/? 

15.4a. Left Invariant Fields Generate Right Translations 

Let X be a left invariant vector field on the Lie group G .  If Xe is the value of X at e, 
then 

exp (tXe )  
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is the i -parameter subgroup generated by  Xe . We know that this curve is the integral 
curve of the field X that starts at the identity e . Since X is left invariant, the integral 
curve that starts at the generic point g E G must be the curve g et )  : = Lg exp(tXe) :::: 
g exp (tXe ) . 

On the other hand, X, as a vector field on a manifold G ,  generates aflow ¢t : G -+ G 
(at least if t is small enough), whose velocity field is again X. Thus it must be that 
¢t (g) = g exp (tXe ) . Hence 

Theorem (15.30) : The flow generated by the left invariant field X is the 1-
parameter group of right translations 

¢t (g) = g exp (tXe ) 

Figure 1 5.5 

Since a right invariant vector field Y is then automatically invariant under the flow 
generated by a left invariant field X, we conclude that their bracket vanishes 

[X1eft , yright ] = 0 ( 1 5 .3 1 ) 

Of course, by the same reasoning, right invariant fields generate left translations. 

15.4b. Commutators of Matrices 

Recall that the Lie algebra W ' as a vector space, is simply the tangent space to G at e, 
but as an algebra it is identified with the left invariant vector fields on G .  (Of course 
thi s  is merely a convention; we could have used right invariant fields just as well . ) If 
X E �, and Y E �� ,  then their Lie bracket 

[X, Y] = ·�xY E W 
is given by the Lie derivative, or, as first-order differential operators 

[X, Y] (f) = X(Y f) - Y(Xf) 

associated with the left invariant fields X and Y. 
If G is a matrix group, each X E W is itself a matrix (not in G but rather in .the 

tangent space to G at e) . For example, we have seen that if G = S O (n) then X IS a 

skew symmetric matrix .  We claim then that [X, Y] is merely the commutator product 
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of the matrices 
[X, Y] = X Y - Y X 

To see this we use Theorem (4 . 1 2) .  We have, at e = I E Gl (n , JR.) 

[X , Y] = l im {<P�I 0 <P�I 0 <pi 0 <P; ( / )  - (/ ) }  
( -> 0  t 2 

409 

( 1 5 .32) 

where <p� refers to the flow generated by X, and so on. S ince X and Y are left invariant, 
their flows are right translations, 

Thus 

<P� (g) = g exp(tX) 

. {exp(tX) exp(tY) exp(-tX) exp(-tY) - l } 
[X, Y] = hm 

2 1 -> 0  t 
( 1 5 .33) 

In Problem 1 5  A( 1 )  you are asked to show that this indeed does reduce to the commutator 
of the matrices. 

This shows, for example, that if X and Y are skew symmetric matrices then so is 
XY - YX.  

15.4c. Right Invariant Fields 

All that we have said about left invariant fields can be redone for right invariant ones . 
Right invariant fields ("right fields" for short) generate left translations. We have defined 
the Lie algebra � to be essentially the vector space of left fields , and then 

[Xi , Xj ] = xk Ct 
What would this become if we had used right fields instead? 

Let {Xj (e) } be a basis for Ge and extend them to left fields {Xj (g) } on all of G , 

Xi (g) = Lg*Xi (e) 

Let {Vi Ce) } coincide with the X's at e and extend them to right fields on G, 

Yi (g) = R�* Vi Ce) = Rg*Xi (e) 

X(g) Y(g) 

Figure 1 5.6 
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We are interested in the "right" structure constants 

We calculate these for a matrix group, though the result holds in general. 
The flow generated by Yi consists of left translations. Repeating the steps going into 

Problem 1 5 .4( 1 ) ,  but using right fields Y, we see 

as matrices. We conclude (since Y = X at e) 

and the right structure constants are merely the negatives of the left ! 
By "Lie algebra" we shall always mean the algebra of left invariant fields.  

15.4d. Subgroups and Subalgebras 

We are interested in subgroups of a Lie group. (We have already discussed I -parameter 
subgroups . )  For example SO(n) is a subgroup 

SO(n) c Gl (n , JR) 

of the general l inear group and it is an embedded submanifold (we showed this in 
Section l . l d) .  For a subgroup H c G to qualify as a Lie subgroup we shall demand 

that H,  if not embedded, is at least an immersed submanifold. The 2-torus, consisting 
of points 

is a 2-dimensional abelian group 

with a I -parameter subgroup 

where r and s are real numbers . As discussed in Section 6.2a, if s / r is irrational this 
curve winds densely on the torus ;  thus H in this case is an immersed, not embedded 
submanifold. This is not a closed subset of the torus since its closure (obtained by 
adjoining its accumulation points) would be the entire torus, but it still qualifies as a 
Lie subgroup. 

The tangent space �ecn ,  JR) to Gl(n , JR) consists of all n x n matrices, whereas the 
tangent space .)Al(n) consists of skew symmetric n x 11 matrices . 
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Figure 1 5.7 

Let X and Y be skew symmetric matrices. Left translate them over all of GI (n , lP?) . 
Since the resulting vector fields are tangent at g E S O  (n ) to S O  (n) ,  so is their bracket 
[X, V] . In particular [X, Y]e E M�n) .  This says that M�n) is not only a vector subspace 
of 3'f(n ,  lP?) , it is a subalgebra. 

In general, if H is a subgroup of G, then the Lie algebra � of H is a subalgebra of 
w. The converse of this is  also true and of immense importance. 

Theorem (15.34) : Let G be a Lie group with Lie algebra �. Let � C � be a 
vector subspace 0/ �that is also a subalgebra 

Then there is a subgroup H C G whose Lie algebra is the given � C �. 

Example: For any n x n real matrices X and Y their commutator X Y - Y X has trace 
O. Thus the traceless n x n matrices form a subalgebra of �f{n , lP?) and there is a 
corresponding subgroup; it is ,  of course, Sl(n , JR). 
PRO O F : Given the vector subspace � C �, left translate � over all of G, yielding 
a distribution D.. Let Xl , . . .  , Xr be left invariant fields spanning D. everywhere.  
Since � is a subalgebra 

Thus D. is in involution and is then completely integrable by the theorem of 
Frobenius .  From Chevalley 's theorem 6 . 6, we can construct the "maximal leaf" 
of this foliation passing through the identity ; that is, there is a manifold Vr and 
a 1 : 1 immersion F : vr 

---+ G such that H := F(V)  is always tangent to the 
distribution D. and passes through e E G. We claim that H is a subgroup of G ;  
that is, H is closed under the G operations a/multiplication and taking inverse. 
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Let h I  and h2 be  in the leaf H .  By the definition o f  � , left translation of II 
by h I must send the leaf into another (perhaps distinct) leaf h I H of the foliatio n, h I h2 E h I H . 

Figure 1 5.8 

However h I e = h I shows that h I  is in both leaves H and h I  H and since H is 
maximal it must be that H = h I H .  In particular h I h2 E H,  as desired. A similar 
argument (Problem 1 5 .4(2)) shows H is closed under taking inverses. 0 

Problems 

1 5.4(1 ) Use ( 1 5 .33) and ( 1 5 . 1 7) to show [X, Yj = X Y - Y X as matrices. (You needn't 
justify ( legit imate ! )  manipu lations with infin ite series. )  

1 5.4(2) Show that H is  closed under taking inverses. 

1 5.4(3) Show that the skew herm itian n x n matrices ( At = - A) with trace 0 form 
a subalgebra of �n, iC) .  Identify the subgroup. Is there a group whose Lie 
algebra consists exactly of the hermitian matrices? 
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Vector Bundles in Geometry 
and Physics 

On the Earth's surface, the number of peaks minus the number of passes plus the number of 

pits is generically 2. 

16. 1 .  Vector Bundles 

What is a "twisted product"') 

16.1a. Motivation by Two Examples 

I. Vector fields on M. A section of the tangent bundle T Mn to M" i s  simply a vector 
field w on M. Locally, that is, in a coordinate patch (U ;  u l , • • •  , u" ) ,  w is given by 
its component functions wt (u ) , . . .  , w� (u )  with respect to the coordinate basis a/au , 
but of course these functions are defined only on U ,  not all of M. In another patch V ,  
the same field is described by another n-tuple w� (v) , . . .  , w� (v) . At a point p in the 
overlap U n V these two n-tuples are related by 

where Cv u = 3 v j 3 u is the Jacobian matrix .  Thus a section of T M serves as a general
ization of the ordinary notion of an n-tuple of functions F = (f l , . . . , f") : MN � JR." 
defined on an n-manifold, where now we assign a different n -tuple of functions in each 
patch, but we insist on a recipe telling us when two n -tuples are describing the same 
"vector" at a point common to two patches . The bundle TM is ,  in a sense, the home in 
which all the sections live. 

Not all n-tuples are to be considered as tangent vectors , for there are other bundles 
"over" M. The cotangent bundle T* M uses a different recipe; its C v u  is  [3u j3 v ] T .  
2 .  The normal bundle to the midcircle of the Mobius band. 

Consider the Mobius band Mo2 (a 2-manifold whose boundary is a single closed 
curve) and the midcircle submanifold M I = 5 1 . We are interested in the collection of 
all tangent vectors to Mo along 5 1 that are normal to 5 1 . We shall call this collection 
the normal bundle N (5 1 )  to 5 I in Mo. Clear! y we have a map 

that sends each normal vector to the point in 5 1 where it is based. 

413 
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v 

------------+-�------------��--------- M l = SI 
r-- U ---" U ----1 

Figure 1 6. 1  

I t  should be  clear that we cannot find a continuous normal vector field to Sl that is 
everywhere nonzero, since if it points down at the left endpoint it must point up at the 
right endpoint because of our identifications .  We have illustrated this with the nonnal 
field 'I!. If we wished to describe this  field by a "component" I¥ we might proceed as 
fol lows . 

Select (arbitrarily) smooth nonvanishing normal vector fields eu and ev over patches 
U and V of S ' , U and V being chosen so that their union is all of M. Then at any point 
p E U n V we have 

ev (p) = eu (p)cu v (p) 
where Cu v  is a smooth nonvanishing 1 x I matrix defined in u n  V .  Note that this i s  the 
same notation that we used when talking about the tangent bundle ; see equation (9.44). 
Also note that we may describe the nonvanishing of the "matrix" Cu v  as saying that 

cu v  : u n  V ---* GI O , lR) 
Let 'I! be a smooth normal field to S ' . Then in U we have 'I!(p) = eu (p)1/!u (p) 

and in V, 'I! (p) = ev (p) 1/rv (p) , for smooth functions 1/ru and 1/rv . In the overlap 

'I!(p) = eu (p)1/ru (p) = ev (p)1/rv (p) 
and so 

1/rv (p) = cvu (p)1/ru (p) 
where Cvu  = cu� . Thus a normal vector field to S'  C Mti is described not by a 
single "component" function 1/r on S '  , but by a component function 1/ru in U and by a 
component function 1/rv in V,  both related by the transition matrix Cvu . 

, . Note that the local fields eu and ev allow us to say that the normal bundle N(S ) IS 
locally a product, in the following sense. The part of the bundle consisting of normal 
vectors based in the patch U is diffeomorphic to U x lR under the map <t>u : U x IR -+  
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N(S I ) defined by <I>u (p , l{f)  = eu (p)l{f · Similarly <I>v : V x jR -+ N(S I ) makes the 
of N (S I ) based in V into a product. �lthOugh N(S I ) is locally a product, it is globally twisted, for the entire N (S I ) is not .!Self a product S l x lR. There is no continuous way to assign a unique normal vector 

I a pair (p , l{f) for l{f a fixed real number, as p ranges over all of S I . N (S I ) is thus a to I twiSted product of S and lR. If we were to consider the vectors normal to a curve M I  in a Riemannian manifold 

W",  we would have to find (n - 1 )  local normal fields ef , . . . , e�_ l in each patch U of 

MI , and a normal field \]! would then be described by an (n - 1 ) - tuple of components 

fb ' . . . , l{f�- I . We shall consider this in Section 1 6. 1  d. 
To generalize the notion of a K -tuple of functions on Mn we introduce the general 

notion of a vector bundle over M . 

16.1b. Vector Bundles 

A (real or complex) rank K vector bundle E over a base manifold Mn consists of a 
manifold E (the bundle space) and a differentiable map, projection 

such that E is a local product space in the following sense. 

E 

rr- 1 U 

rr 

------ ----- ----- M 
u 

Figure 1 6.2 

There is a covering of Mil by open sets { U, V, . . . } .  There is a K -dimensional vector 
space (the fiber) JRK or CK (and for definiteness we shall assume it to be JRK ) equipped 
with its standard basis 

"1 ,  . . . , QK 

We demand that for each open set U in the covering 

U x jR K is diffeomorphic to the "part of the bundle over U ," 1T - I U 
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that i s ,  there are diffeomorphisms 

<Du : V x ]RK � JT - 1 V 

<Du (p ,  y) E JT- I (p) 
( 1 6. 1 )  

(In the case o f  the tangent bundle E = T Mil ,  i f  e U  is a frame in V then <I> ( '" U i ) A · 1 (V)  h . d . ..... 1 U p. y) ::.:: L- I �i � K ei Y . pomt s E JT - t en IS represente , via 'Vu , by a point i 
V and a K -tuple of real numbers y ,  the latter being the fiber coordinates of p � s . ' "VI" JT (s) E ( V  n V) ,  we demand that the two sets of fiber coordinates be related b 
nonsingular linear transformation y a 

cvu (p) : V n V � GI(K )  

that depends differentiably on  p 

that is , 
Yv = cvu (p) yu 

i i j Yv = cvu (p) j Yu 
( 16.2) 

Note that each fiber over p, JT - I (p) ,  is a K -dimensional vector space but it is not 
identified with ]RK until the patch V holding p is specified ; only then can we use �-I u 
to make the identification . (In the tangent bundle we can not read off the components 
of a vector until we have picked out a specific frame. ) Note also that in the name "rank 
K vector bundle," K refers to the dimension of thejiber, not the bundle space E. 

A (cross) section of E is a differentiable map 

s : M �  E 

such that s (p) lies over p, that is, 
JT 0 S = identity : M � M 

Locally, over V ,  one describes a section s by giving its vector components yu (p). 
subject to the requirement ( 1 6.2) in an overlap . In a triple overlap we have 

yw (p) = cwv (p)Yv (p) = cwv (p)cvu (p)yu (p) 
and so Cwu = CwvCvu . Thus the transition functions { cvu } satisfy 

cvu (p) = cU V (p) - 1 
and 

cwv (p)cvu (p)cu w (p) = I 
( 16.3) 

Conversely, let M be a manifold with a covering { V, . . .  } , and suppose that we are 
given matrix-valued functions Cvu in each overlap 

cvu : V n V � Gl (K ) 
that satisfy ( 1 6 .3 ) .  Then we may construct a vector bundle over M whose transition 
functions are these Cvu as fol lows. Take the disjoint collection of manifolds 

{V x ]RK , V X ]RK , . . .  } 
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for each patch. These are to be considered disjoint even though the patches can :lap. Now we make identifications :  

(p , Yu ) E (U x ]RK ) i s to be identified with 

(p' , Yv )  E ( V  x ]RK) iff p' = p and Yv = cvu (p)Yu 

can be shown that the resulting identification space £ is indeed a K -dimensional �or bundle over M with {cv u } as transition matrices. This is the procedure we used 

for construction of the tangent bundle; from X� (x) = (ax� /axt )xt we see, from 

( 16.2), that 
axv 

cvu (x ) = axu 

Tangent bundle T 

( 1 6.4) 

00 the other hand, for the cotangent bundle, ai' = ay ax{ /ax� = Lj [ (axu /axv ) T ] ijay 
shows that 

( ax ) T  [ ( a ) - I ] T 
cvu (x) = 

ax� = a;: 
Cotangent bundle T *  M 

( 1 6.5) 

Two bundles whose transition matrices are inverse transposes are said to be dual vector 
bundles. 

If E and £' are vector bundles over the same base manifold M, then the tensor 
product bundle £ 181 £' is defined to be the vector bundle with transition matrices 
Cvu ® c�u ' This means the following. A point in n- 1 (U ) has vector components 
Yu = (yb , . . .  , yt ) ,  a point in n'- l (U)  has vector components Zu = (zh , . . .  , z t ) ,  and 
a point in the tensor product bundle has the K L vector components 

and by definition 

(Yu 181 Zu ) iOl := y� Z� 

(cvu 181 c�u ) (Yu 181 zu )  : = (cvuYu )  181 (c�u zu )  

( 1 6.6) 

For exarnple, the mixed tensors, once contravariant and once covariant (i. e. , the linear 
transformations), form the vector bundle T M 181 T* M . 

16.1c. Local Trivializations 

A bundle space £ is locally a product manifold. The diffeomorphisms ¢ u : U x ]R K � 
1r- 1 (U) that exhibit the local product structure allow one immediately to exhibit K 
sections eOl (p) := ¢u (p ,  eu )  over U,  where again C-1 = ( 1 , 0 ,  . . . , Ol , and so on, and 
these sections are linearly independent in the sense that at each p E U the vectors eOi (p ) in the vector space n- 1  (p) (the fiber over p) are independent. The eOi form a frame of 
sections. 

Note that one frequently proceeds in the reverse direction. For example, we made 
the collection of vectors normal to the midcircle of the Mobius band into a rank I vector 
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bundle by  first picking out distinguished "sections" ; this then defined the rna 41 
general, suppose that we have two manifolds E and Mn and a map Jr : E -+ p� of III 
onto M. Suppose that each Jr - I (p) is a vector space � ]R K . Suppose further that � is a covering { U, V, . . . } of M and there are smooth maps e� : U ---+ E , Q" :::: 1 
such that Jr 0 e� is the identity map on U and the eu (p) are independent for each

' 
. . . •  f( 

Define then <Pu : U x ]RK ---+ Jr- I (U) by <Pu (p ,  eayU ) = eu (p)yu . By cons� V. 
each <Pu i s  a diffeomorphism that is l inear on the "fiber" ]RK for p fixed. Then inC:; 
overlap U n V we may define cvu (x ) : ]RK ---+ ]RK by the linear map 

Yv = cvu (p)yu := <Pv l  0 <pu (p , Yu ) 
( 1 6.2) is then automatically satisfied and we have made E into a vector bundle over 
Mn and the e� yield a frame of sections over U . 0 

We shall frequently denote a point of M by x , rather than p ; we are not implyin 
that x is a local coordinate, though that will often be the case. The most general em! 
section over U is then of the fonn 

where the 1/15 (x ) are component functions. We abbreviate this with matrix notation 
lJI (x) = eU (x )1/Iu (x )  
eU (x) = (ef (x) ,  . . . , e� (x )) 

[ 1/I�

(x ) 1 1/Iu (X) = : 
1/ID (x ) 

If lJI is a cross section over U n V ,  then in U n V we have 

lJI (x) = eU (x)1/Iu (x) = eV (x ) 1/1 v (x) 
1/Iv (x ) = cvu (x )1/Iu (x ) 

( 16.7) 

If we can find a frame e of sections over all of M, we say that the bundle is a product 
bundle, or is trivial. In this case 

k 
<P (x ; 1/1 1 , . . •  , 1/I K) = L eu (x )1/Iu 

u=1 
yields a diffeomorphism 

<P : M x ]RK ---+ E 

making E globally a product manifold. In particular, 

a I -dimensional vector bundle (a line bundle) with a single nonvanishing global 
section is a trivial bundle. 
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In a nontrivial bundle, the maps <t>u : U x IRK � rr - I (U) make the portion of the 
dIe over U into a trivial bundle ; each <t>u is thus called a local trivialization. 

bUDWe shall see in Section 1 6.2 that the tangent bundle to the 2-sphere T 52 does not 
n possess a single nonvanishing section and so T 52 is not trivial. On the other hand, =: tangent bundle TG to a Lie group has a frame of global sections given by left 

uanslating a basis of If over all of G ; thus the tangent bundle to a Lie group is trivial !  
(Remark: If the tangent bundle to a manifold M is trivial, we say that M is paral-

Jelizable.) 
Note that every vector bundle E has a global section, the zero section, defined locally 

in each U by 1jr 1 Cx) = 0, . . . , 1jr K (X) = 0. In Problem 1 6. 1 ( 1 )  you are asked to give 
die I -l ine proof. 

16.1d. The Normal Bundle to a Sub manifold 

Consider a Riemannian manifold V"+K and a submanifold Mil C V. We define the 
DOrIDal bundle N(M) to M in V to consist of those tangent vectors to V that are based 
on M and are orthogonal to M. 

Figure 1 6.3 

(In the figure, M is drawn as a curve. )  It should be "clear" that if U c M is small 
enough one can find K smooth fields nY , . . . , n� of normal vectors to M that are 
linearly independent at each point of U .  Then, if 

rr : E = NCM" ) � M 

denotes the normal bundle 

is again defined by 

<t> CX : A 1 ,  . . .  , AK ) = L n� (X)Aa 
<>= I . . . . •  K 
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The A ' s  are the components o f  a normal vector i n  the patch V. In a patch V would have a new frame {n� } and in an overlap V n V the frames would be related We 
a K x K matrix function n v = nU Cu v , and a normal vector would have two by I sets or components Au and Av related by Av = cvuAu , where cvu (x) = cu v (x) E GI(K It 
If we had chosen the frames nU and nV to be orthonormal, then cu v (x) E O(K) ' )

. 
For example, the normal line bundle to the 2-sphere M2 = S2 C R3 ::::: ill . 

trivial, N (S2) = S2 X lR, since we have a global nonvanishing section given b u: 
outward-pointing unit normal . Y 

As we have seen, the normal bundle to the central circle M = S l of the MObi 
band V2 is not trivial . US 

The normal bundle N (S I ) to the indicated circle S I C JR.p2 is clearly itself an infinite 

s '  

Figure 1 6.4 

Mobius band (the lengths of the vectors are not bounded) . For this SI C �p2 , N(S' ) 
is not trivial .  

If we use as model of JR.p2 the disc with antipodal points identified, this S I can be 
deformed into a diameter. N (S I ) is not trivial .  

Figure 1 6.5 

Let C, x = x(t ) ,  0 :s t :s 1 ,  be a closed curve in JR.3 . Its normal bundle is a rank-2 
vector bundle over C .  Pick an orthonormal frame n = nCO) of two normal vectors 

na at p = x(O) .  Transport this frame continuously around all of C, always remaining 
orthonormal and orthogonal to C,  arriving at p = x ( l )  but with perhaps a different 
frame n ( l ) from the original . S ince JR.3 is orientable, and since the tangent T has retumed 

to itself, it must be that nCO) and n( l )  define the same orientation in the normal plane 
at p.  This means that nCO) and n ( l ) are related by an SO (2) matrix g ,  nCO) = 0(1 )8· 
We are now going to redefine the normal framing along the last E seconds of the curve 
so that the framings match up at t = 0 and t = 1 .  Since SO (2) is connected, we 
can find a curve of 2 x 2 matrices g = g (s ) ,  1 - E :s s :s 1 ,  in SO (2), such thai 
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( 1 - €) ::: I and g ( 1 )  = g. Now redefine the normal frame on the last part of C by 
g tting rues) = n(s )g (s ) ,  yielding a framing with agreement at t = 0 and t = 1 .  (By �sing the curve g (s )  to have s -derivative 0 at s = 1 - E and at s = 1 we can even 
�e the framing smooth. )  The normal bundle to a closed curve in 1R3 is trivial ! 

-- Problems 

16.1 (1 )  Show that the zero section is indeed always a section.  

16.1 (2) IR p3 is the sol id bal l  with boundary points identified antipodal ly. I s  the normal 
bundle to the c i rcle S1 c p3 trivial? 

Figure 1 6.6 

1 6.1 (3) Is the normal bundle to IR P2 in  IR p3 trivial? 

Figure 1 6.7 

16.1 (4) Is the normal bundle to a closed curve in an Mn trivial? (Consider the cases M 

orientable and M not orientable. )  

16.2. Poincare 's Theorem and the Euler Characteristic 

Can you comb the hair on a sphere so that the directions vary smoothly and such that no hair 
sticks straight out radially? 

Before discussing further properties of general vector bundles, we shall acquaint our
selves with the most important result on the sections of the tangent bundle to a surface. 



422 V E C T O R  B U N D L E S  I N  G E O M E T R Y  A N D  P H Y S I C S  

For further discussion the reader may consult Arnold's book on  differential equations [A2, chap. 5 ] .  

16.2a. Poincare's Theorem 

Let M2 be a closed (compact without boundary) surface and let v be a tangent vector 
field to M having at most a finite number of points p where the vector field Vanish yep) = O. Generically this is so for the following reasons. The vanishing of a vee:; 
field requires, locally, the simultaneous vanishing of two functions v 1 and v2 of the tw 
coordinate variables x and y ,  and generically these two zero sets intersect in iSOlar.e: 
points. Compactness (as in the proof of Theorem (8 . 1 7)) then demands that there be 
only a finite number of zeros. 

Let p be a zero for v. We may assume that p is the origin of a local coordinate 
system x ,  y .  Let S be a small coordinate circle, x2 + / = E2 , where by "small" we 
mean that p i s the only zero inside S. Introduce a Riemannian metric in the coordinate 
patch. For example you may wish to use ds2 = dx2 + dy2 . We may orient the patch by 
demanding that x ,  y be a positively oriented system. We may then consider the angle 
that v makes with the first coordinate vector ax = a/ax at each point (x , y) on S 

1 { (an v) } e (x ,  y )  = L.(ax , v) : =  cos-
I I ax I I I I v I I 

We then have the following situation . Let So be a unit circle in an (abstract) ffi?; So is 
parameterized by an angle </> .  We then have a map S -+ So defined by </> (x , y) = the 
preceding angle e (x ,  y ) .  This map has a Brouwer degree, called, as in Section 8.3d, 
the (Kronecker) index of v at the zero p, written jv (p) = j (p ) .  Of course it simply 

represents the number of times that v rotates as the base ofv moves around the circle 
S I . As such 

j (p) = _1 r de (x ,  y) 
2n Js ( 16.8) 

In Section 8.3d we have illustrated the indices of four vector fields at the origin of 
M2 = ]R2 . 

We have made several rather arbitrary choices in the previous procedure, a Rieman

nian metric, a coordinate system, and a closed curve S in the patch enclosing the zero. 

But the index varies continuously with the choices, and since it is an integer, it is in 
fact independent of the choices. 

In particular we may replace the circle S by a piecewise smooth triangle enclosing 
the zero. 

Note that we may compute the index even when the field v does not vanish inside 
the curve S, but the index will then be 0; see Problem 8 .3 (9) . 

Finally, note that we may also consider a vector field that is smooth in a region except 

for an isolated "singular" point p; for example, the electric field grad( 1 /r) of a charge 
in ]R3 is smooth everywhere except at the charge. By the same procedure as at a zero, 

we may again define the index jv (p) of the vector field at the singularity. 

By a singularity of a vector field v we shall mean any point at which v is not smooth 
or at which v = O. 
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zero of a smooth vector field is not a singularity in the ordinary sense. In our present �tuatiOn it is called a singularity because the direction field defined by the vector is 
undefined at a zero . 

poincare's Theorem (16.9) : Let v be a vector field with perhaps afinite number 
o/singularities on a closed surface M2. Then the sum of the indices of v at the 
singular points 

is in/act independent 0/ the vector field and is a topological invariant X . 

For reasons discussed in the next section, X will be called the Euler characteristic. 
Before looking at the proof, let us look at some examples on the 2-sphere. The vector 

field a / ae tangent to the lines of longitude on the 2-sphere has a singularity at the north 
and south poles .  At the north pole the field looks like the "source" in Section 8 .3d of 
index 1 while the south pole is a "sink," also of index 1 . Thus X (S2) = 2 in this case. We 
can also consider the vector field a / a¢ tangent to the parallels of latitude, again with 
singularities at the poles. The indices are easily seen again to be both + 1 ,  verifying the 
theorem. Poincare's theorem implies the following, which we have mentioned many 
times in the past: 

Corollary (16.10) :  Every vector field on S2 has a singularity. Thus every smooth 
section of the tangent bundle of the 2-sphere must be zero somewhere, and hence 
this bundle is not a product bundle. 

This has been paraphrased as "You can ' t  comb the hair on a 2-sphere." 
In our two fields a / ae and a/ a¢ on S2 , both fields had two singularities . We shall now exhibit a field on S2 with a single singularity (zero) with, of course, index +2. 

Figure 1 6.8 

This field is obtained from a parallel field a/au in the u, v plane by stereographically projecting (from the north pole) the field onto the tangent sphere . We have drawn the 
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integral curves rather than the vector field itself. A t  the right of the figure W ha 
shown a view from the top, and one easily sees that the index at the north pole is � 
+2. We can investigate this analytically as fol lows. 

Consider the sphere as the Riemann sphere, as in Section 1 .2d. In the com I . p ex w  plane C tangent to the sphere at the south pole, we have the velOCIty field of th ft . e �  dw /dt = 1 ,  that IS , du/dt = 1 and dv /dt = 0.  When we stereographically project tbj 
flow onto the Riemann sphere we get the parallel-like flow near the south pole w == OS Near the north pole z = ° we get . 

�; = (:�) (��) = -
( �

2
) 

= -Z2 

As we go around the path z = eie about z = 0, the vector -Z2 = -eM makes 2 
circuits, yielding the desired index 2 .  

P R O O F  O F  P O I N C A R E ' S  T H E O R E M :  The following proof is due to Heinz Hopf, 
who also proved the higher-dimensional version. We shall discuss this in Section 
1 6 .2c . 

We shall first prove the theorem in the case when M2 is orientable; in the 
fol lowing section we shall then discuss briefly the nonorientable case. 

Choose any Riemannian metric for all of M2 (see Section 3 .2d) . 
Let v and w be two vector fields on M, each having a finite number of singu

larities. Some singularities of v may coincide with those of w. 
We know that M can be triangulated (see Section 1 3 .2c). By choosing the 

triangles to be very small (e .g. , by subdividing them) and by moving them around 
slightly, we may insist that (i) each triangle lies completely in some coordinate 
patch (xex , y", ) ;  (ii) the singularities of v and w lie in the interiors of triangles, not 
on edges or vertices ; and (iii) there is at most one singularity of v and at most one 
singularity of w in the interior of any triangle . Then if I:!. is a triangle lying in a 
patch (xex , y", ) ,  we have the Kronecker index integers 

and 

jw (l:!.) : = _
1 1 dew 

2n !a,., 
where ev (x", , Yex ) = L (a/ax", , v) and ew (xex , Yex ) are computed with the chosen 

Riemannian metric. Note that if I:!. lies in two patches, both coordinate systems 

will yield, as we know, the same indices. Then 

and 
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e the sums of the indices for the two vector fields, since, for example, if v has :0 singularity in � then jv (�)  = O. Thus their difference is 

Xv - Xw = _1 L j {dey - dew }  
2][ 6 h6 

Now f:Jv(x" ,  yO' ) and ew (xO' , yO' ) depend strongly on the coordinate patch used. 

v 

Figure 1 6.9 

For example, if �O' and �fJ are adjacent triangles in patches (x" , yO' ) and 
(xfJ , Yp ) ,  then the angle that v makes with the first coordinate vector a / axO' is 
different from the angle it makes with the first coordinate vector a / aXfJ . However, 

ev (xO' , yO' ) - ew (xO' , yO' ) = L(w, v) 
is the same as the difference constructed in the f3 patch, since the preceding 
difference is merely the angle from w to v, which is determined by the Riemannian 
metric, independent of patch ! Taking the differential of both sides 

dey - dew = dL(w, v) 
is a well-defined I -form on each edge of each a � ,  independent afthe patch used. 
Then 

Xv - Xw = _1 L j dL(w, v) 
2][ 6 ];16 

Since M is assumed orientable, we may assume that the coordinate patches 
have positive overlap Jacobians, and thus adjacent triangles �O' and �fJ will have 
the same orientation. But then 

L j dL(w, v) = 0 6 h6 
because each common edge will be traversed twice in opposite directions. Thus 
Xv = Xw ,  as desired, and their common value will be called X (M) . 

Note that if F : M2 � V2 is a diffeomorphism, then F* will take the vector 
field v on M into a vector field F* v on V, and it is easy to see that the index 
of v at p is the same as the index of F*v at F ( P ) .  Hence X (M) = x CV )  is a 
diffeomorphism invariant. 0 

We shall now see how this integer is related to the topology of M2 . 
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16.2b. The Stiefel Vector Field and Euler's Theorem 

We now know that we may evaluate X (M2 ) on any closed orientable sUrface by I . 

at any vector field with a finite number of singularities and summing the indices ��ng 
constructed the following vector field on any M2 . . tiefel 

Take again a triangulation of M2 . Imagine that M2 is the sea level surface of a pI . 
we shall now construct a mountain range on the planet. anet, 

Figure 1 6. 1 0 

Put a mountain peak of height 2 at each vertex, a pit at the "midpoint" of each 
triangle at sea level 0, and a mountain pass of height 1 at the midpoint of each edge. 
The height of the land above sea level then defines a function on M2, and if we are 
careful there will be a maximum at each vertex, a minimum at each face midpoint, and a 
minimax (saddle) at each edge midpoint. In the right-hand of the figure we have drawn 
the gradient lines for this function. The gradient vector has a zero at each peak, pass, 
and pit, and the indices there are + 1 ,  - 1 ,  and + 1 ,  respectively. Thus for this vector field 

X = no. peaks - no. passes + no. pits 

and we have proved 

Euler's Theorem (16.11) :  For all triangulations of the closed M2 we have that 
the Euler characteristic 

X (M2) : =  no. vertices - no. edges + no. faces 
is independent of the triangulation. 

From the triangulation of the 2-torus in Section 1 3 .3a we see that X (T2) == O. Thus 
it would not contradict Poincare 's theorem if there were a field on the torus with no 
singularities, and of course there is , v = 8/80 . 

We conclude with three brief remarks. 
Consider the projective plane lRp2 . It is nonorientable, but it is "covered" twice by 

the orientable 2-sphere, since lRP2 i s  S2 with antipodal points identified. (We shaIl 
discuss coverings more in Section 2 1 .2 . ) Thus we have a 2 : 1 map Jr : S2 � lRP2 tbal 
locally is a diffeomorphism. 
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Figure 1 6.1 1 

Consider any vector field v on lR: p2 . There i s  a unique vector field w on S2 such that 
1C. W ::: v. In the figure, lR:p2 is the upper hemisphere with antipodal identifications 
on the equator, and v is the vector field on lR:p2 that rotates around the "north pole" 
(there is no south pole on lR:p2) .  The field w rotates around both poles on S2 . The 
singularity on lR:p2 at the pole has index + I and it is covered by two singularities on 
52, each with the same index + 1 .  Thus I: iv = 1 and I: iw = 2. On the other hand, 
it is evident that if we take a triangulation of lR:p2 where each triangle is small, in 
the sense that each triangle will be covered by two disjoint triangles on S2 , then the 
Euler characteristics, computed via vertices, edges, and faces, as in ( 1 6. 1 1 ) , will satisfy 
2 = X (S2) = 2X (lR:p2) . Thus Poincare 's theorem holds on the nonorientable lR:p2 also 
and X (lRP2) = 1 .  This illustrates a general fact (discussed in Section 2 1 .2d): 

Each nonorientable manifold Mil has a "2-sheeted" orientable covering manifold 
whose Euler characteristic is 2 X (Mil ) .  

This allows u s  to prove Poincare's theorem for nonorientable surfaces a s  well. 
Second, Hopf has proved the n-dimensional version of Poincare's theorem. To a 

vector field v on an Mil with an i solated singularity p, we may again assign an index 
j (p) by taking a small (n - I ) -sphere and considering again the Kronecker index of v 
on this sn- I . We may look at a triangulation of Mn and define the Euler characteristic 

X (Mn ) = (no . O-simplexes) - (no. I -simplexes) + (no. 2-simplexes) 

- . . .  + (- I t  (no. n-simplexes) 

and we again have 

Hopf's Theorem (16.12) :  For any closed Mn and any vector field v on Mn with 
isolated singularities, we have I: iv (p) = X (Mn ) .  

The proof i s  considerably more difficult (see [G ,  P] or [M2]) 
Finally, a necessary condition for there to exist a vector field on Mn without any singu

larities is clearly X (Mn ) = O. Hopf has also shown that this is sufficient; if X (Mn ) = 0 
!hen there is some v on Mn with no singularities. One may again consult [M2] . 
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Problems 
--

Let Mg be a surface of genus g. Let it stand on a table and let h be the 

Figure 1 6. 1 2  

function o n  Mg measuring the height above the table . By looking at the vector 
f ie ld grad h on Mg , show that 

X ( M�) = 2 - 2g 

1 6.2(2) Consider a function with on ly nondegenerate critical points ( in the sense of 
Morse, Section 1 4 .3e) on a surface M2 . Its grad ient vector at a critical point 
has Kronecker index 1 ,  - 1 , or 1 if it is ,  respectively, a min imum,  saddle, or max. 
imum (see Figure 8.9) .  Show that the Poincare-Stiefel p its - passes + peaks 
theorem , together with Problem 1 6 .2 ( 1 ) ,  yields Morse's equal ity in Theorem 
1 4.40. 

16.3. Connections in a Vector Bundle 

How can the tangent bundle to an orientable surface be considered a complex line bundle? 

16.3a. Connection in a Vector Bundle 

Let Jr : E --+ Mil be a rank-K vector bundle (real or complex) . We shall introduce the 
concept of a connection for such a bundle by imitating the procedure used in Section 
9.3 for the tangent bundle. 

A section W of E assigns to each trivializing patch U C Mil ( i .e . , patch over which 
E is trivial) components tv such that in an overlap 

tv = Cvv tv 
A vector-valued p-form, in Section 9 .3 ,  associated to each p-tuple of tangent vectors 

to M another element of the same tangent bundle TM over the same point. An E-valued 
p-form will associate to each p-tuple of tangent vectors V I , . . .  , v p to M at x E M an  
element of the bundle E over x .  
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An E·valued p.form \lJ assigns to each trivializing patch U C Mn a K -tuple of 
ordinary exterior p-form 1/!u ,  such that in an overlap we have 

1/!v = Cv u 1/!u ( 1 6 . 1 3) 

For example, if a P is a globally defined p-form on Mn , and if W is a global section 

of E, then \}J : == a P (9 W defines a p-form section of E by 

1/!U (V l , " " vp ) == aP (vl ,  . . .  , vp ) W 

A connection V for E is an operator taking sections \}i of E into E -valued I -forms 
V'l1 such that the Leibniz rule holds; if f is a function, then 

V (\}i f) = (V\}i) f  + \}i 0 df ( 1 6. 1 4) 

Let e == (ej , . . .  , e K ) be a frame of sections of E over the tri vializing patch U .  Then 
Vea is an E-valued I -form, and thus is of the form 

Ve = e @ w  

or ( 1 6. 1 5)  

where 

is some K x K matrix of I -forms on U .  (We shall try to use consistently Greek letters 
a, p, and so on, or Roman capitals for fiber indices 1 ,  . . . , K and Roman lowercase 
i. j . . .  for Mn indices 1 ,  . . .  , n . )  We shall also frequently omit the tensor product sign. 
Note that the connection coefficients w�.8 have a mixture of fiber and manifold indices. 
Here we are assuming that (X i ) are local coordinates for U e M. For a section W = e1/!,  
we have by Leibniz 

V (W ) == V (ea 1/!a ) = V (e1/!) = (Ve)1/! + e(d1/!) 

that is, 
Vw = V (e1/! ) = e (9 V1/! 

where 

( 1 6 . 16) 

In full. 

V 1/!a = d 1/!a + wa.8 1/!.8 

The boldfaced V operates on sections, whereas V == Vu operates on the components of sections over the patch U .  



430 V E C T O R  B U N D L E S  I N  G E O M E T R Y  A N D  P H Y S I C S 

Suppose now that W is a section over U n V .  In order that V be well defin 
require in U n V what physicists call covariance, that is , ed. \\Ie 

1/rv = cvu 1/ru => Vv 1/rv = cvuVu 1/ru ( 16. 17) 
where Cvu is the K x K matrix Cvu  = (ceuu ) in GI(K ) .  As in Section (9.4) this requires 

(16. 18) 
Note that in our conventions 

1/rv = cvu 1/ru ( 16. 19) 
- I  ev = eucvu = eucu v  

As usual, we define the covariant derivative V x w of the section q, of E with 
respect to the tangent vector X on Mn by 

Thus 

where 

Then 

We then write 

where 

Vx eW) : =  eVlJI) (X) = (e 0 V1/r) (X) 

= e[V 1/r (X) ] 

VxlJl = e[d1/r + w1/r] (X) 

= e[X(1/r) + w (X)1/r]  

V xlJl = eVx1/r 

Vx1/r = Xi Vi 1/r 

O ,I,U 
n ,"u _ 'I' + u ,1, fJ  V i 'l' - --. W 'fJ 'I' 

ox ' ' 

( 16.20) 

( 16.21 ) 

( 16.22) 

We have defined the covariant differential on sections of E (in a sense, on o-forms 
whose values are in E) . As in Section 9.3d, we now let V send E-valued p forms into 
E -valued (p + 1 )  -forms by defining the exterior covariant differential (again denoted 
by V) 

( 16.23) 

where, as in 9.3d, we write 1\ rather than 01\.  
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curvature i s  introduced a s  before 

where 
V2 (e) = Vee 0 w) = e 0 e 

e = dw + w !\ w  

ea - d a + '" y 
-

1 R'" d i d j fJ - w fJ w y !\ w fJ - 2" fJij X !\ X 

Note the mixture of indices in the curvature tensor. 
There is no notion of torsion in a connection for a general vector bundle. 
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( 1 6 .24) 

As a simple example, consider the normal 2-plane bundle to a curve M ' , x = x(t) 
in 1R3 .  If v  = vet) is normal to M along M, we wish Vv = (Vv /dt)dt to be a normal 
vector valued I -form on M. Let d be the usual differential operator for ]R3 ; it is the 
covariant differential for the tangent bundle for ]R3 with the usual euclidean flat metric . 
We should then put 

Vv := dv- (dv, T)T ( 1 6.25) 

where T is the unit tangent to M. For a local description, let u, and U2 be two normal 
vector fields along M that are orthonormal. Then the prescription ( 1 6.25) translates to 

Vv = (dv , u , ) u , + (dv, U2 ) U2 
In particular, since du, is orthogonal to u "  Vu, = UaWa , = (du " U2 ) U2 , shows that 
w' , = 0 and w2 , = (du" U2 ) = (du , /dt , u2 )dt . When t = s is arc length along the 
curve M, and when u , is chosen to be the principal normal u to the curve, then, as in 
Problem 7. 1 (2), U2 = T x u, i s  the binormal B, and - (du , /ds , U2 ) is the torsion r of 
the space curve. Thus Vu = -Br (s)ds and VB = ur (s )ds . 

16.3b. Complex Vector Spaces 

Quantum mechanics deals almost exclusively with complex wave functions and K 
component wave functions, in other words, with sections of complex vector bundles. 
(We shall consider quantum mechanics in Section 1 6.4.) 

Consider the complex plane C with coordinate z = X + iy. C is a I -dimensional 
vector space because we allow complex scalars , but C can also be thought of as a real 
2-dimensional vector space ]R2 , 

z = x + iy �  [ ; ] 

and addition of complex numbers corresponds to vector addition in ]R2 . The interesting 
thing about C is that it has a fascinating product 

Z , Z2 = (x , + iyd (X2 + iY2 ) = (X , X2 - y, Y2) + i (X ' Y2 + X2Y ' ) 
Of course, this can be expressed entirely in real terms 

[
X ' ] 0 [X2 ] = [X ' X2 - Y ' Y2 ] y, Y2 x, Y2 + X2Y ' 
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I n  part�cular, multiplication i n  C by  the unit i translates i n  real terms to a linear 
fu��oo � 

whose matrix is 

J =
[� -�l 

with, naturally, J2 = - / . Similarly, complex K space, CK , the vector Space (with 
complex scalars) of complex K -tuples 

Z = (Z l ,  . . .  , ZK l = (X l  + iY l , . . . , XK + iYK )T 

can be considered as ]R2K under the identification 

Z ¢> (X l , Y l , X2 , Y2 , . . .  , XK , YK ) T = x 

and then multiplication by i in CK , Z f--+ i z ,  is translated into a linear transformation 
J : ]R2K ---+ ]R2K with matrix 

0 - 1 
0 0 

0 - 1  

J =  0 

0 

0 - 1 
0 

again with J2 = - / .  
Note that J : ]R2K ---+ ]R2K is an isometry with respect to the usual metric 

(x , x' ) = ( Jx, JX' )  

since it merely rotates each coordinate plane x,, , Yet through 90  degrees. 

( 16.26) 

Now let F2K be any real even-dimensional vector space with an inner product (, ) 
and let 

J : F ---+ F 

be any linear isometry of F (orthogonal transformation) that is also an anti-involution. 
that is, 

J2 = _ /  

Clearly the eigenvalues of J are ±i , and so det J = 1 .  Thus J E SO (2k) and assumes 

the form ( 1 5 .6) in suitable orthonormal coordinates (x "  y "  X2 . Y2 , . . .  , Xk o yd .  But J 
is skew symmetric, 

( lx ,  x' ) = ( J2x ,  JX' )  = (x, - Jx' ) 
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ation 1 5 .6 tells us that in these coordinates J has matrix ( 1 6 .26), since each ek must 
Equ Then one can introduce complex coordinates in F by putting z" = x" + iYa , and �:1fF � F then corresponds to multiplication by i . 

In particular, JR2 with J as earlier can be considered a complex I -dimensional vector 
Ce C' == C, which can be called a complex line. spa 

16.3c. The Structure Group of a Bundle 

In a vector bundle each Cu v (x ) E GI(n) .  We have seen that for a Riemannian manifold 
!tin, we may choose Cu v (x ) E 0 (n) by using orthonormal frames. In a general bundle, 

it may be possible to choose the Cu v (x) such that they all lie in a specific Lie group G 

Cuv : u n  V ---+ G 

We then say that G is the structure group of the bundle. 
Let M2 be an oriented Riemannian surface. We can cover M by patches U, V, . . .  

each of which supports a positively oriented orthonormal frame {eu } ,  {ev } ,  . . . of tan
gent vectors. Suppressing the patch index, 

eu = (e" e2) 

is a positively oriented orthonormal frame in U. It i s then clear that each transition 
matrix for E = T M is a rotation matrix 

[ cos a (x )  cu v (x) = . sm a (x ) 

- Sin a (X ) ] E S O (2) cos a (x)  

We may say that the orthonormal frames have allowed us to reduce the structure group 
from GI(2, JR) to SO (2) . 

16.3d. Complex Line Bundles 

Define J acting on the tangent planes of an oriented surface, J : M; ---+ M;, simply 
to be rotation through a right angle in the positive sense; thus 

( 1 6 .27) 

Je2 = -e, 

and of course J2 = - I .  It is clear that J is globally defined; in an overlap U n V the 
action of J using the frame ev coincides with the action of J using eu . Thus J allows 
us to consider each fiber in T M2 as a complex line! The real vector 

e, E M2 � JR2 P 
can be considered as a complex basis vector 

e :  = e, E M� � C ' 
of the complex line M; . Then 



434 V E C T O R  B U N D L E S  I N  G E O M E T R Y  A N D  P H Y S I C S  

I n  terms o f  these bases eU = ef , eV = ei , . . . , the previous SO (2) transition matri 
cu v (p) , become simply the complex numbers ces, 

CU V (p) = eict (p) 

Figure 1 6. 1 3  

The tangent bundle to a n  oriented Riemannian suiface can b e  considered a s  a complex 
line bundle! The structure group of this bundle is now U ( l ), the unitary group in 1 
variable! 

The Riemannian connection for M2 is a connection for the real 2-dimensional tangent 
bundle. In terms of the orthonormal frames eU , e v , . . .  , we have 

Vei = ej 18) Wj i = ej 18) Wji 

and we also know Wij = -Wji ;  thus 
Ve l = e2 18) W2 1 ( 16.28) 

A connection matrix for a complex line bundle would be a I x 1 matrix, that is, a single 
I -form, which we shall denote by WC (C for complex). We should then have, in our line 
bundle version of T M2 (where e = e d 

and since e2 = i e l we can rewrite ( 1 6 .28) as 

or 

vee = Vel = i e l 18) W2 1 = e l 18) iW2 1 

c · . W : = l W2 1 = - I W I 2 

( 1 6.29) 

Does this mean that WC = - i W 1 2  defines a connection for this complex line bundle 
version of T M2 ? For this to be true we certainly must have that VC commutes with 
multiplication by complex constants 

for any cross section 'Ij; (i .e . ,  any vector field on M2) . For example 

VC (ie) = Ve2 = e l 0 WI 2 = i e l 0 (-iwl 2) 

= i (e 18) we") = i Vce 

as desired. This connection will be discussed further in Problem 1 8 .2(2). 
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What is the curvature for this complex line bundle connection? It is the single 2-form 

ee = dwc + we /\ wC = dwe 

or 
( 1 6.30) 

where again K i s  the Gauss-Riemann curvature R I2 1 2 of M2 . 

- Problem 

16.3(1 ) I f V and V' are connections for bund les E and E' respectively over M then a 
connection for E 0 E' can be given by 

V"x (<t> 0 lJI) = (Vx <t»  0 lJI + <t> 0 (V'x lJl) 

for local sections <t> = ea¢a and lJI = e'Rw R. Show that for A = ea 0 e'R)..a R  

'V" . ()..a R) _ a ()..aR) + wa )..b R + w, R .  ).. as , - ,  jb ' S  

16.4. The Electromagnetic Connection 

What does the electromagnetic field have to do with parallel displacement of a wave function? 

16.4a. Lagrange's Equations without Electromagnetism 

In Section 10.2a we showed that Lagrange 's equations for a massive particle, dp jdt = 
aLjaq,  with p = aLjai] ,  follow from Newton 's equations Vi] jdt = - grad V .  Al
though both sides of Newton 's equations are contravariant vectors along the extremal 
q = q (t) ,  it is not true that both sides of Lagrange's equations are covectors along the ex
tremal, since dp j dt is an ordinary derivative (rather than a covariant derivative) and also 

aL _ l { agij (q ) } . ; . J a v  
aqk - "2 � q q - aqk ( 1 6. 3 1 )  

is not a covector field because of the first term. To remedy this we may consider the 
covariant derivative of the momentum covector 

that is, 

Vp; _ V {gij i] J } _ . .  { Vi]J } _ _  . .  Jk a v  
dt - dt - g'j dt - g'j g aqk 

Vp 
dt 

a v  
aq ( 1 6 .32) 

This is a geometric version of Lagrange's equations ; the left side differs from dpjdt 
in that a covariant derivative is used ; the right side uses the potential function V rather 
than Lagrangian L .  
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Let us verify that ( 1 6.32) really reproduces Lagrange's equations, by co . 
h d Id rJ . 

k - a via i h . d Id - r] · k . mpUtino w at Pi t - P i ki q - - q , t  at IS,  Pi t - Pj kiq - a Vlaq' 0 
. 

, says. 

dPi = . .  r � js { agSk + ag'i _ agki } . k _ a v  
dt g]rq 2 g aq i aqk aqS q aqi 

= � . s . k {  agsk + ag'i _ agki } _ 
a v  

2 
q q aq i aqk aqS aq i 

= �qsqk { ��: } _ �� = :� 
from ( 1 6 .3 1 ) . Combining this with 

_ . j _ a { I . r . s }  _ a T  _ aL Pi - giJq - aqi 2" grsq q - aqi - aqi 
then yields Lagrange 's equations, as promised. It is important that a v laq == O. 

16.4b. The Modified Lagrangian and Hamiltonian 

Consider a charged particle moving in an M3 with no external electromagnetic field 
present. Let L = L (x , i)  = T - V be the Lagrangian . The particle then obeys la
grange's equations dpldt = aLlax , where P : =  aLlai is the kinematical momen
tum, that is, the covariant version of the velocity. 

Suppose now that an electromagnetic field is present also. The particle then suffers 
not only the original force -a v  lax but also an additional Lorentz force whose con
travariant version is e (E + v x B) . This additional force is not the gradient of a potential 
and so we cannot get the complete Lagrangian equations of motion merely by adding 
a new potential term V' (although we could if the magnetic field were not present). It 
turns out, though, that we can write the equations in Lagrangian and Hamiltonian forms 
if we make a more sophisticated change. For this purpose we shal l consider a massive 
charged particle, moving perhaps relativistically in ffi.3 . 

We shall first make some heuristic remarks (inspired by comments of Weyl [Wy. 

pp. 52, 99] ) concerning the notion of the Lagrangian in particle mechanics and the 
changes when an electromagnetic field is present. Unlike the total energy T + V ,  which 
is frequently a constant of the motion, the Lagrangian T - V seemingly was introduced 
merely to make Lagrange 's equations take a simpler mathematical form. Although 
introduced long ago, I feel that its physical significance could not be appreciated before 
the introduction of special relativity. 

Introduce units for which the speed oflight is unity, c = 1 .  Special relativity associates 
to the world line of a massive particle its energy-momentum 4-vector P = (E, pl. E = 
m � 111 0 + ( 1 /2)1110 v2 + . . .  , which, except for a constant mo, reduces to the classical 
kinetic energy T for low speeds. If the classical force is derivable from a classical 
backround potential V, t = -'V V ,  special relativity suggests that we should augment 
the energy E by V ,  yielding a "total energy" H : =  E + V � 1110 + (T + V). as 
in section 7. I c. We may then form, as a first attempt, the "total energy momen� 
4-vector" (H,  p) T .  Put Ho := H - 1110 � T + V .  The I -form associated to (H, p) , 
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. the total energy momentum covector i s  then 
I.e., 

Padxa - H dt = Padxa - Hadt - modt 
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bich is the extended Poincare I -form or action I -form (4.57) augmented by a term 

�lfIodt which does not alter the equations of motion . Along the world line, this I -form 

is [Pa ( d:t
a ) - Ho] dt - modt = Ldt - modt 

tbe Lagrangian action integrand Ldt is, except for a disposable exact differential , 
me total energy-momentum 1-form, in the sense of special relativity, along the world 
\iDe! This, I believe, explains the significance of the Lagrangian in the principle of least 
action! 

There is a disquieting feature of the above argument; we took a 4-covector Padxa -
Edt and added to its time component -E a scalar - V .  This violates "Lorentz covari
ance"; one cannot add a scalar to one component of a covector. (This does not mean that 
the above procedure is invalid; it makes perfectly good sense if we agree to use only 
those Lorentz transformations that do not involve time, for example the usual changes 
of spatial coordinates traditionally used in non-relativistic mechanics . ) 

The situation is much more satisfactory when the backround field is the electromag
netic field, with covector potential A = ¢dt + Aadxa or vector potential (-¢ , A) T . 
In this case -V = e¢ can be added to -E provided we add eA to p, since it makes 
Lorentz sense to add two 4-vectors together !  The resulting covector, the total energy
momentum I -form is simply 

with Lagrangian 

Ldt = [CPa + eAa ) (d:t
a ) - (E - e¢)] dt - modt 

This also suggests that if one has a classical dynamical system, with Hamiltonian H and 
no electromagnetism, then to get the Hamiltonian equations when electromagnetism is 
introduced one simply defines a new Hamiltonian by H* := H - e¢ and new momenta 
by P*a : = Pa + eAct • But then 

Pa*dxa - H*dt = Padxa - Hdt + e(Aadxa + ¢dt) 

and the extended Poincare 2-form should be redefined to be 

Q* := d(Pa*dxa - H*dt) = Q + eF ( 1 6 .33) 

(It  can then be shown that Hamilton 's equations are now ix Q* 0, where X = 

(dx/dt)a/ax + (dp /dt ) a  lap + a/a t  uses the original P rather than the augmented p* . )  
We are now finished with our heuristic discussion and we proceed with our formal 

verification of these hopes. 
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Theorem (16.34) : Let H = H(q , p ,  t )  be the Hamiltonian for a charged 
ticle when no electromagnetic field is present. Let an electromagnetic fie:� 
introduced. Define a new canonical momentum variable p* in T* M x lR by 

p\, := Pa + eAa (t , q )  
and a new Hamiltonian 

H* (q , p* , t) := H (q ,  p, t) - e</> (t ,  q) = H (q ,  p* - eA ,  t ) - e¢ (t , q) 
Then the particle of charge e satisfies new Hamiltonian equations 

dq 
= 

a H* 
and 

dp* aH*  
and 

dH* aH* 
dt ap* dt aq dt = at 

P R O O F : Compare the solutions of the original system 
dq a H  dp a H  

and - - - -

dt ap dt aq 
and the new system 

dq a H* dp* a H* 
and - = dt ap* dt aq 

At a point (q , p ,  t )  = (q , p*  - eA, t )  we have 
aH*  a H (q ,  p* - eA) a H (q ,  p) dq = ap* ap* ap dt 

and so the velocities dq / dt are identical in both systems . 
Denote -a H/aq by f,  the force in the original system. Then 

dpa* + aH*  
= 
(dPa + e dAa ) + a H  + a H  [ a (-eA,B) ] _ e!.t 

dt aqa dt dt aqa apf3 aqa aqa 

Thus 

= 
(dPa + e dAa ) _ fa _ e (dqf3 ) ( aAf3 ) - e!!t 

dt dt dt aqa aqa 

dAa aAa = (v x B)a + - - -dt at 

dpa* aH*  dpa [ aAa a</> ] -- + -- = - - fa - e (v x B)a - - + -dt aqa dt a t  aqa 
dpa 

= dt - fa - e[ (v X B) + EJa 
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lIenee dp* Idt = -a H* laq is equivalent to the original system augmented by 
the Lorentz force, as desired. D 

The Lagrangian L and the Hamiltonian H are related by L (q , q ) = pq - H (q ,  p ) .  
Along a lifted curve q = dq Idt we then have 

L (q , q )dt = pdq - H (q ,  p)dt 
In termS of our new Hamiltonian, we should define 

L * (q , q )dt : = p*dq - H* (q , p* )dt 

= (Pa + eAa )dqa - [H (q ,  p) - e¢]dt 

= [Padqa - H (q , p)dt ] + e [¢dt + Aadqa ] 

( 1 6.35) 

Corollary (16.36) : A particle in an electromagnetic field satisfies Lagrange 's 
equations aL  * l aq - dldt (aL  * laq )  = 0 with new Lagrangian 

L * (q , q) = L (q , q) + e [¢ + Aaqa ] 

that is, 
L*dt = Ldt + e [¢dt + ti] = Ldt + eA I 

16.4c. Schrodinger's Equation in an Electromagnetic Field 

In the present section we shall remove the mass te rm from the metric; that is, the kinetic 
energy of a particle is the familiar 

1 p2 
T = 2m (q , q )  = 2m 

Consider a charged particle, of mass m, moving in a potential field V field in ]R3 , with 
no external electromagnetic field present. If we neglect spin, the electron is commonly 
represented in quantum mechanics by a wave function 

1{r (x)  = 1{r (x, t )  
a complex-valued time-dependent function on  ]R3 . 

Schrodinger's equation states that the wave functions evolve in time according to 

in a 1{r = H1{r ( 1 6.37) a t  
where the Hamiltonian operator H is defined as follows. 

The Hamiltonian of a particle in classical mechanics is given by 
p2 

H (x , p) = 2m + V ex) ( 1 6 .38) 

where p is the canonical momentum. Schr6dinger then postulates that in Cartesian Coordinates the canonical momenta Pa are represented by the differential operators 
a Pa = -in axa ( 1 6.39) 
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The potential V i s  simply the multiplicative operator 1/1 f-+ V (x)1/I , and ( 16.38 
comes, in Cartesian coordinates in Il{3 , ) be. 

I n - - - - '" -- + V1/I . a1/l ( rz 2 ) a 21/1 
a t - 2m � (aXa) 2 06.40, 

If the particle has charge e and there is an additional external electromagnetic fie present, then ( 1 6.34) says that ( 1 6 .38) should be replaced by lei 
(p* eA )2 H (x, p*) = 

0' - 0' 
+ V (x) - e

</J 

2m 
and the canonical momenta p* 0' should be replaced, when x are Cartesian coordinares, 
by P*a = - in a/axa . SchrOdinger's equation becomes 

. a1/l I [ .  a ] 2 
I n - = - L - I n- - eAa 1/1 + V1/I - e

</J
1/I a t 2m ax'" 0' 

If we write this in the form 
[ a ( ie ) ] ( n2 ) [ a  ( ie ) ] 2 

in 
a t - h 

</J 
1/1 = - 2m L axa - h Aa 1/1 + V1jJ 

0' 
we may then write 

where 

and 

i h Vo 1/1 = - ( ;�) L Va Va 1/1 + V 1/1 
0' 

a ( ie ) 
Vo :  = 

a t - h 
</J 

Va : = 
a�a -

C:)
Aa 

We may write, instead of the last two definitions, 

Vj := a�j - C:) Aj 

( 16.4 1 )  

( 16.42) 

( 16.43) 

We then have the following situation. We originally thought of 1/1 as being a complex 
function on Il{4 , that is , a section of the trivial complex line bundle over Il{4. SchrOdinger's 
equation involves the vector potential A l = A jdxj = ¢dt + Aadxct . The vector 
potential is not uniquely determined; we may, if we wish, use a different choice Ah 
in each of several patches U in Il{4 . If we do so, then in each patch U we shall have 

a different SchrOdinger equation, satisfied by a local solution 1/Iu . This is precisely 
the situation we met when we considered sections of a complex line bundle over R4! 
Equation ( 1 6.43) then takes on the appearance of a covariant derivative 

where 

a 1/1 
V · 1/I  : = -. + w 1/l  } ax} } 

( 16.44) 
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If is to be a connection, what is the bundle? Consider two choices Au and A v in OJ 4 (lVd'lapping patches of lR . In these patches we have 

wu = -
C:) Au , Wv = -

C:) A v 

. ee the electromagnetic field 2-form, F = dA,  is well defined, it must be that A v -Au !I: closed I -form on U n V , and, if this intersection is simply connected, A v - Au i s 
cUet, 

A v = Au + dfu v in U n V 

"here fuv is a real single-valued function on U n V .  Then 

Wv = Wu -
C:) dfu v  

But a connection i n  a bundle transforms b y  ( 1 6 . 1 8) ,  and when the bundle i s a complex 
Jine bundle, the Cu v  are 1 x 1 complex matrices and the transformation rule becomes 

Wv = Wu + cu �dcu v  ( 1 6.45) 

Thus we may choose log cu v (x) = - (ie/h ) fuv , that i s, 

cu v (x) = exp {-Cr:) fuv  } ( 1 6 .46) 

ifcuvcvwcwu = 1 is satisfied then ( 1 6.46) defines a line bundle whose cross sections 
will be our local wave functions. 

A wave function is then not a single complex-valuedfunction 1/r but rather a collection 
tu , 1/Iv , . . .  of functions such that in an overlap U n V 

1/rv (x) = cvu (x )1/ru (x ) = exp { (�) fu v  } 1/ru (x) ( 1 6.47) 

This brings us back to the starting point of gauge theories in quantum mechanics, 
namely 

Weyl's principle of gauge invariance (16.48) : If1/r satisfies Schrodinger 's equa
tion (16.41), which involves the potential A, then 

satisfies Schrodinger 's equation when A has been replaced by 
A + df 

To see this let U = V but let us choose A v = Au + df . Then Weyl's principle simply 
says that if 
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then ( 1 6. 1 7) , that is ,  cvuVu = VV cvu , shows that this same equation holds . 
VV H- Vu ) when 1frv is replaced by 1fru !  Note that without the notion of a conn (�th 
the verification of this would be messy; Schrodinger's equation, when writt�OQ 
without covariant derivatives, involves 

n 
OUt 

VILV�1fr = ;��2 - (� ) [A�;! + 
o�� CA� 1fr)] - (:: ) A�A�1fr. 

C 1 6 . 1 7) is the crucial simplification. 
It should be clear that Weyl 's principle is not restricted to Schrodinger 's equati . "covariance," that is, C 1 6 . 1 7) , is the essential ingredient. on, 

Note that the transition functions ( 1 6.46) for our bundle are complex numbers f 
absolute value I ;  the structure group of the given line bundle is the group U ( 1 ) . n:;s 
implies that l 1frv l 2 = l 1fru l 2 and consequently the probability interpretation 0/ 11fr 12 in 
quantum mechanics can be maintained. 

The curvature of the connection from C 1 6 .44) is essentially the electromagnetic field 
2-form. 

( i e ) I ( i e ) 2 e = dw = - h dA = - h F ( 16.49) 

= - (�) [c.� /\ dt + �11] 

Finally, we shall make some remarks about Schrodinger's equation in curvilinear 
coordinates. Consider a Riemannian manifold M, the most important case being R3 
with a curvilinear coordinate system. Let E be a complex vector bundle with connection 
w, for example the wave function bundle with w = -ieAjh . We suppress the bundle 
indices on w and on 1fr . For covariant derivative we have 1fr/j = Oj 1fr + Wj1fr .  This 

represents a cross section of the bundle E 0 T* M, that is, the bundle of covariant 
vectors on M whose values are in E .  As we have seen in Problem 1 6 .3 ( 1 ) , the covariant 
derivative 1frm = C1fr/j ) / k of this tensor will involve not only the connection W for E 
but also the Riemannian connection r 

1frm = C1frj ) / k = ok1fr/j + Wk1fr/j - rk rj1fr/r 

= Ok C Oj 1fr + Wj 1fr)  + Wk COj 1fr  + Wj 1fr)  - rk rj COr 1fr + Wr 1fr)  

= [Ok Oj 1fr  - r/j Or 1fr] + { Ok CWj 1fr) + Wk COj 1fr  + Wj 1fr)  - rk rjWr1fr l 
which is now a covariant second rank tensor on M with values in E. Then the 

"Laplacian" 
n2 ,/, ._ jk ,/r v 'P . - g 'P /jk 

is again simply a section of E .  In slightly more detail 

V21fr = gjk1fr/jk = gjk [Ok Oj 1fr - rk j Or 1fr ] + gjk { l 
The term involving the square brackets gjk [ ] is simply the Laplacian of the "function" 

1fr, using the Riemannian connection 
1 0 [ jk ( 01fr ) ] .jg oxj .jgg 

oxk 
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equation ( 1 1 .30)) . A candidate then for Schrodinger's equation for a charged �cle in an electromagnetic field on M would be 

. 
(
a i e</J ) ( h2 ) jk lh a t - T 1/1 = - 2m g 1/I/ik + V1/I  

SOJIlIllary. When no electromagnetic field i s  present, the Hamil tonian i s  o f  the form. 

I -2 Lg':tfJ paPfJ + V m a 
in curvilinear coordinates or on a Riemannian manifold M. We replace Pa by the 
Riemannian covariant derivative - ihV:: . SchrOdinger's equation becomes 

. a 1/1 ( h 2 ) I a [ afJ ( a 1/1 ) J l h- = - - -- -- Jgg - + V1/I at 2m  Jg axa axfJ 
The only effect of introducing an electromagnetic field now is to replace the trivial wave 
function bundle by the bundle E with connection w = - i eA /h , and we must use the 
full covariant deri vati ve (using both r and w) 

ih1/l/o = (- ;�) gafJ 1/I/afJ + V1/I 

In this procedure there is no  need to first introduce the new canonical momenta p* in 
the classical system augmented by the electromagnetic field ! 

16.4d. Global Potentials 

In most problems involving electromagnetics the vector potential I -form A l is glob
ally defined. We can see this as follows. Consider first a smooth electromagnetic 
field F2 in all of Minkowski space, Mri. Since Mri = ffi.4 has second Betti num
ber b2 = 0, de Rham's theorem assures us that there is a potential I -form A 1 for 
the closed 2-form F2 , F2 = dA l . Usual ly, however, there are singularities for F2, 
located, for example, at the moving point charges . We cannot apply de Rham's the
orem to singular forms ; thus in order to use de Rham's theorem we must first re
move the singularities of F2 from Mri, leaving an open subset U of Mri . Now, how
ever, there is no reason to assume that b2 (U ) = 0; for example, a fixed charge 
at the origin of ffi.3 yields an entire t axis of singularities in Mri, and the 2-sphere 
in 13 surrounding the origin is a 2-cycle of U = Mri - (the t axis) that does not 
bound. In spite of the fact that U may have nonbounding 2-cycles, we sti l l have the fOllowing : 

Theorem (16.50) : Consider a region U of a general relativistic space-time M4 
that has a global time coordinate, that is, U is of the form v3 x ffi. with V3 a 
spacelike hypersurface and t a global coordinate for ffi.. Suppose that the mag
netic field �J32 vanishes at time t = O. Then F2 has a globally defined potential 
A l , dA l  = F2, on all of U. 
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P R O O F : F2 i s  closed, dF = O .  By de  Rham's theorem, we  need only show that 
the integral of F2 over each 2-cycle z of U vanishes. But z can be deformed, by 
the deformation cjJcx (x, t )  = (x, ( 1  - a) t ) ,  into a homologous spatial cycle z' that 
lies in the hypersurface where t = O. Since F2 = t:� 1 1\ dt + �R2 restricts to 0 on 
the deformed cycle, Jz F2 = Jz' F2 = O. 0 

For a simpler discussion in ]R3 , see Problem 1 6.4( 1 ) . 
In the standard cosmological models, the Friedmann universes, there is a global 

time coordinate (see [F, chap. 1 2] ) .  Thus the only way F2 can avoid having a global 
potential today in these models is for there to have existed, since the time of the big 
bang, a nonbounding 2-cycle, and a magnetic field with nonzero flux through this 
cycle . (Some of the Friedmann models do have b2 =I=- 0;  for example, there are mOdels 
where the spatial sections V3 are flat 3-dimensional tori T3 , and others with V3 clOSed 
manifolds with negative curvature and b2 =I=- 0.) 

16.4e. The Dirac Monopole 

If there is a global potential A I , there is then no necessity for introducing a bundle whose 
sections will serve as local wave functions, since one global patch U will suffice. It 
may very well be though that when considering other fields, for example the Yang
Mills fields, to be discussed later, we shall not be so fortunate, and in that case we 
shall be forced to introduce bundles and connections, as we have had to do in the case 
of gravitation in general relativity. There is , however, a much simpler situation that 
requires bundles , namely the Dirac magnetic monopole (which, however, has never 
been shown to exist). 

Consider then an electron moving in ]R3 - { O } in the field of a magnetic monopole 
of strength q fixed at the origin. The B field for this monopole is B = (q /r2)8/8r, 
that is (see equation (5 .9)) , 

�1\2 = iB vol3 = d[q ( 1  - cos e)dcjJ] 

Thus 

(:f� = q ( 1  - cos e )dcjJ 

in the region U = ]R3 - {negative z axis } . We shall need also to consider points on the 
negative z axis (except for the origin). In the region V = ]R3 - {positive z axis} we can 

use e '  = 7T - e and cjJ' = -cjJ as coordinates and get 

(:/� = -q ( 1  + cos e)dcjJ 

Maxwell 's equations hold everywhere on ]R3 - {OJ .  
Since a� does not agree with (f� in U n V = ]R3 - {z axis} , we shall be forced 

to introduce the electromagnetic bundle and connection of Section 1 6 .4c. In Problem 
1 6 .4(2) you are asked to show that the transition function for this monopole bundle is ( 2ieqcjJ ) Cvu = exp - -h- ( 16.5 1 )  
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Note that this i s  not single-valued unless Dirac 's quantization condition 
2eq 
h must be an integer 
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( 1 6 .52) 

's satisfied. If this condition is not satisfied we shall have failed in our attempt to 
�onstruct a bundle.  Since there are only two patches U and V ,  Equation ( 1 6 .3)  is 
automatically sati sfied. Thus if ( 1 6 .5 I )  holds , the monopole bundle will exist. 

That Cvu is not in general single-valued is a reflection of the fact that in this case 
u n  V = ]R3 - {entire z axis } is certainly not simply connected (more to the point, its 
first Betti number does not vanish). It is true that by using more sets (whose intersections 
are simply connected) to cover lR3 - {O } ,  we could find transition functions that would 
be single-valued without requiring ( 1 6 .52) , but it would tum out that it would not be 
possible to satisfy the crucial equation Cu v Cv w Cwu = I .  In fact, we shall prove in 
Section 1 7.4, from a general Gauss-Bonnet theorem, that for any complex line bundle 
over ]R3 -origin, the curvature must satisfy 

_i_ J eZ = integer 2;rr S2 
( 1 6.53)  

The unit sphere S Z is a generator for the second homology group HZ (lR3 - {O} , Z) . 
(Note that we have already proved 

_i_ r eZ = integer 2;rr 1M2 
in the geometrical case when the complex line bundle is the tangent bundle to the 
oriented closed surface MZ ;  see (9.66) and ( 1 6.30) ! )  For the monopole bundle, from 
( 1 6.49), 

i e i e . 3 i eq . 3 e = -- �J.l = - - I B  vol = - - l a/ar vol n n rZn 
and thus the integral in ( 1 6 .53))  becomes 

( i ) ( i eq ) 2eq - 2;rr h (4;rr ) = h 
Thus, as noted first, I believe, by Sniatycki [Sy] 

if Dirac 's condition ( 16.52) is not satisfied, there will be no complex line bundle whose 
sections can serve as wave "functions " for the electron in the field of a magnetic 
monopole. 

(For a description of the monopole bundle, see Section 1 7 .4c . )  This yields a quantiza
tion condition, relating the charge on a monopole to that of the electrons. 

More generally, it will be shown in Chapter 1 7 that the flux of e�B/2;rrn through any 
closed oriented surface, for any magnetic field, must be an integer. 
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Figure 1 6.1 4 

z' 

Figure 1 6. 1 5  

I n  Figure 1 6. 1 4  we have indicated a V3 that consists o f  two separated horizontal 
sheets (two "separate" universes) that are joined by a wormhole cylinder S2 x [0, 1] ; 
we have indicated one of the spherical sections Z2 going around the "throat" of the 
wonnhole . A magnetic field goes from the bottom sheet through the lower "mouth," 
threads through the throat, and comes out of the top mouth. In this example Jz �i\2 f:. o. 
Figure 1 6 . 1 5  is similar except that the wormhole joins two distant portions of the "same" 
universe, and again B has a nonzero flux through the throat. In both cases there is no 

global A and the flux of B through the throat must be quantized in terms of e .  
Finally, we wish to emphasize one point. If there is  a monopole, then from ( 1 6.5 1 ) we 

see that o/v = exp( - 2i eq¢ Iii )o/u #- o/u . Thus the electron wave function 0/ cannot be 
defined (and single-valued) everywhere and it must, rather, be considered as a section 
of the monopole bundle with at least two patches . Presumably, then, we should expect 
that other types of fields that interact with elementary particles might demand that 
wave functions be replaced by sections of bundles, just as we do not expect that every 
manifold should be covered by a single coordinate patch. 

16.4f. The Aharonov-Bohm Effect 

At first sight the electromagnetic connection w = - i e A  I Iii seems nonphysical since 

classically the vector potential A I , changing with each choice of gauge, was regarded 
only as a mathematical tool for describing the physical electromagnetic field F2 :: 
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JA I .  We have noted, however, a similar situation in general relativity ; the Levi-Civita 

nnection, a gauge field, can be thought of as merely a preliminary mathematical step 
CO the way to its derivative, the Riemann curvature tensor, describing the strength of :e gravitation�l field. How.ever, �his 

.gravitational connecti�n is a physical field in the 
nse that it, wIth no use of Its denvatlves, governs parallel displacement. We shall now :e that the electromagnetic connection, that is , the vector potential A I , although not 

a classical physical field, is a physical field in quantum mechanics, and this will be 
illustrated with the famous Aharonov-Bohm effect. 

With a solenoid carrying a current j, the circulation of the magnetic field about a 
closed loop C going around the coil is , by Ampere's law, fc * �g = 4][j .  When j is very 
small, if the wire is tightly wound, the magnetic field inside the coil can be substantial 
while *fB outside is very smal l .  In the simplified version of an infinitely long, infinitely 
tightly wound solenoid, it is assumed that the magnetic field inside is constant and 
parallel to the axis of the coil, and the magnetic field outside the coil is vanishingly 
small. 

[3 = 0  

Looking down a long solenoid 

Figure 1 6. 1 6 

Let the magnetic flux inside the coil be J J �g = b .  Then (i l = bd8/2][ is a wel l
defined vector potential in the region exterior to the coi l ,  designed to satisfy both 
Ie (:/ = b and dct = O. See Problem 1 6 .4(4) for the potential inside the coi l . 

I t  is  possible to detect the effect of ( 1  on an electron constrained to the exterior 
region even though B = 0 in this region ; this is the Aharonov-Bohm effect. A brief 
explanation in terms of path integrals is as fol lows . (We assume here a slight familiarity 
with Feynman's method. For more details the reader is referred to Feynman's lectures 
[F, L, S, vols. II and III] , Rabin's article [R ] ,  and the excellent book [Fe] by Felsager. For 
insight into the path integral formalism (without mentioning integrals ! )  see Feynman 's 
remarkable book [F] .) 

An electron is emitted from a source, passes through one of two slits in a screen, 
moves along a curve y ,  and strikes a screen behind the solenoid at a point y. The "probability amplitude" for this process is proportional to the exponential of the classical 
action for the path y 

<l> [y ]  = exp (� i Ldt) ( 1 6 .54) 

The principal contribution to the amplitude for going from x to y is given by this 
expression when the path y is a classical path of "least" action. Since the electromagnetic 
field vanishes in this exterior region, the classical path will be a straight line from the 
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slit i n  the screen. We exhibit the two classical paths C and C' (both must b e  taken into 
account since we don 't  know which slit the electron chooses). 

screen solenoid 

Figure 1 6. 1 7  

The phase of  the complex number <f> i s  its angle or argument. The phase difference, 
due to paths C and C' ,  is responsible for the interference pattern observed at the screen. 
Look at the cases when there is no current in the coil and when the current is flowing. 
In the first case the Lagrangian is Lo . After the current is turned on, there is a vector 
potential (f present outside the solenoid. Corol lary ( 1 6 .36) then tells us to replace 
L = Lo by L = Lo + e (i;"' A", + ¢) ;  that is ,  we replace Ldt by Ldt + eA . dx, since 
the scalar potential vanishes . In this new situation the phase difference becomes 

and this differs from the original phase difference only by 

� J J �H = e; 
Since this is independent ofy for any pair C,  C' of classically extremal paths, Aharonov 
and Bohm concluded that the original interference pattern will simply be shifted by 
a constant amount, in spite of the fact that the electron feels no magnetic force in 
the exterior region ! This shift has actually been observed. The field A ,  and thus the 
connection w, are physical fields in quantum mechanics. 

Problems ----------

1 6.4(1 ) Let Z2 be a closed surface in IR3 that l ies outside the s ingu larities of the electro
magnetic f ield . Show di rect ly from Maxwel l 's equations that Jz �g2 is constant 
in t ime. Th is shows that if �il2 van ished sometime in the past , then B = curl A 
i n  the nonsingu lar set. 

1 6.4(2) Derive ( 1 6 .5 1 ) .  

1 6.4(3) I n  the monopole bundle with 2eq/h a n  integer -=I- 0 ,  the function O/ U  = 1 i s  a 
cross section over U = IR3 

- (negative z axis ) .  Can O/U be extended to be a 
cross section over al l  of IR3 

- {O J?  (Look at the proposed O/ V at points of the 
negative z axis . )  
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1 6.4(4) Assume a constant axial magnetic f ield Bdx /\ dy inside the coil whose axis is 
the z axis. (Thus B = b/n a2 , where a is the rad ius of the coil . )  Of course Bxdy 

is a covector potential ,  but to match up with our  external potential use cyl ind rical 
coordinates r, e, z ,  and show that another choice of a covector potential 1 -form 
is given by A1 = ( B/2) r2 de . What is the length I I  A I I  of th is choice for A? What 
is the length of the exterior version for A used in the text? Why don't they match 
up smoothly? 

1 6.4(5) Show the gauge invariance of Feynman's prescription ( 1 6 .54) as fol lows : Let 
a particle in an electromagnetic f ield have probabi l ity ampl itude 1/fu(X, O) of 
being at x E U at t ime o. Then the probabi l ity ampl itude that the particle wi l l  
traverse a path y from x to y, arriving at y at t ime t ,  is , i n  Feynman 's view 

1/fu(x,  0) exp [� 1 Ldt + eAu • dX] = 1/fu(X,  0) exp [� 1 Ldt] exp l -wu 

There is a s imi lar expression if we use a different gauge 1/f v(x,  0) = c vu (x) 

1/fu (x ,  0) . Show that these two gauges yield compatible results. 
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Fiber Bundles, Gauss-Bonnet, and 
Topological Quantization 

A vector bundle is a family of vector spaces parameterized by points in the base space. How 

do we parameterize a family of manifolds, say Lie groups? 

17.1.  Fiber Bundles and Principal Bundles 

17.1a. Fiber Bundles 

The tangent bundle T Mil to a Riemannian manifold is a vector bundle associated to M ;  
it is locally o f  the form U x ffi." . We have had occasion also to consider the set o f  unit 
vectors tangent to M; that is, we may consider, in each fiber n - 1  (p) � ffi.n of TM (a 
vector space with scalar product), the unit sphere sn- l  (p) C n - 1 (p) . The collection of 
all these unit spheres S"- l (p) , as p ranges over M, forms a new manifold, called the unit 
tangent bundle ToM in Section 2 .2b. We again have a projection n : ToM -+ M. The 
term bundle refers to the fact that the space is again locally a product in the following 
sense: ToM" is  the collection of all (n - 1 ) spheres S" - l (p) in all of the tangent spaces 
to M, but there is no natural way to identify points in S(p) with points in Seq)  for 
distinct points p and q in M. Choose an orthonormal frame eU = (e l , " " en ) in a 
patch U of M and take a fixed unit sphere S in some euclidean space ffi.n • We may then 
identify each tangent sphere S(p) ,  at p E U, with the fixed sphere S, by identifying 
v = (ei vi ) E S,,- I (p )  with s = (V I ,  . . . , v" ) E S" - I  C ffi.1l ;  thus (p ,  v) is identified 
with s. We then have a diffeomorphism 

<l>u : U x S"- I -+ n - I  (U) C To M 

exhibiting the local product structure. Of course if we go into another patch V ,  using 
a new frame eV , then we shall get a different identification. This space To M is  a "fiber 
bundle," but not a vector bundle, because the fiber S"- I  is  a manifold that is not a vector 
space. We may now define this new notion in general . ToM is atypical, since it is a 
subbundle of the vector bundle TM. 

A fiber bundle consists of the following: There are a manifold Fk (called the fiber), a 
manifold E (the bundle space) and a manifold Mil (the base space) together with a map 

n : E -+ Mil 

451 
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of E onto M.  We demand that E is locally a product space in the following sense' 
There is a covering of Mn by open sets U, V, . . .  , such that JT - 1 (U) is diffeomorphi� 
to U x F;  there is a diffeomorphism 

( 17. 1 ) 

with ¢ u (p ,  Yu ) E JT - I (p) for each Yu E F. Then for each p E U the assignment 
Y E F --+ ¢u (p ,  y) E JT - 1 (p) is a diffeomorphism; that is, the fiber JT - 1  (p) Over 
p is a diffeomorphic copy of the fiber F of the bundle . In an overlap U n V a point 
e E JT - I (U n V )  will have two representations 

e = ¢u (p ,  Yu ) = ¢v (p, Yv ) 

and we demand that 

Yv = cvu (p ) [yu ] ( 17 .2) 

where Cv u (p) : F --+ F is a diffeomorphism of the fiber. In the case of a vector bundle, 
F = ]RK or CK , each cvu (p) : ]RK --+ ]RK was a linear transformation, but now, of 
course, F is a manifold and need not have a linear structure. 

The set of all diffeomorphisms of a manifold F clearly form a group in the sense 
of algebra. (It is not a Lie group; e .g . ,  the diffeomorphisms of ]R2 form, in a sense, an 
infinite-dimensional manifold) . If all the maps CU I' (p) lie in a subgroup G of the group 
of all diffeomorphisms of F we say that G is the (structure) group of the fiber bundle. 

In the case of the unit tangent bundle ToM to a Riemannian manifold, by using 
orthonormal frames as we did earlier, each Cv u (p) : sn - I --+ sn - I is the restriction 
of an orthogonal transformation ]Rn --+ ]Rn to the unit sphere sn- I C ]Rn . Thus by 
employing orthonormal frames we reduce the structure group of the fiber from the group 
of all diffeomorphisms of sn- I to the subgroup 0 (n) of orthogonal transformations of 
the sphere. 

In the case of the normal real l ine bundle to the midcircle M 1 of the Mobius band (see 
Figure 1 6 . 1 ) , we may choose unit sections eu and ev in U and V , respectively. On the two 
pieces of the intersection u n  V we have in one case eu = ev and in the other eu = -ev . 
Thus the structure group of this normal bundle is the 2-element multiplicative group 
{± I } , which is easily seen to be another version of the additive group !Z2 . 

Of course we still demand 

and ( 1 7 .3) 

cu w 0 Cwv 0 Cvu = identity on U n V n w 

As in the case of a vector bundle, a fiber bundle over M can be constructed as soon as 
transition functions satisfying ( 1 7 .3 ) are prescribed. 

A (local cross) section is again a map s : U --+ E such that JT 0 s = identity. A 

section s is simply a collection of maps { su : U --+ F} such that in U n V we have 
su (p) = cu v (p ) [sv (p ) ] . 
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:rc 

--------�----�----------�----------- M u 

Figure 1 7. 1  

In Section 1 7 .2  we shall see many examples of fiber bundles . 

17.1h. Principal Bundles and Frame Bundles 

Let Mn be Riemannian and let FM be the collection of all orthonormal frames fl '  . . .  , fll 
of vectors at points of M. rr : F M ---+ M assigns to each frame f = (fl '  . . .  , fll ) the 
point p of M at which the frame is located. What is the fiber rr - I (p) over p? Let e be 
a given frame at p; then the most general frame f at p is of the form 

f =  eg i . e . ,  

where the matrix [gO: I'l l  = g E G = O (n ) .  Thus after a single frame e at  p has 
been chosen, the fiber rr - I (p) of all orthonormal frames at p can be identified with 
the structure group G = 0 (n) of orthogonal n x n matrices . The fiber for the frame 
bundle FM is the Lie group O (n ) .  How do we exhibit the local trivialization (product 
structure)? Let e be an orthonormal frame field on an open set U e M ; for example, we 
can apply the Gram-Schmidt process to a coordinate frame in a patch. Then a general 
orthonormal frame f on U is uniquely of the form 

f(p) = eu (p)gu (p) ( 1 7.4) 

Thus the frame f in U is completely described by giving the point p and the matrix gu . 
The local trivialization 

<f>u : U x G ---+ rr - I (U)  

assigns to each p E U and each g E G the frame 

<f>u (p ,  g) :=  eu (p)g 
In an overlap, the same frame ( 1 7 .4) will have another representation 

f(p) = ev (p)gv (p) 
where 

ev (p) = eu (p)cu v (p) 
(1 7 .5 )  
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cu v (p) E G = O (n)  is the transition matrix for the tangent bundle (recall that in Tid 
for a vector y = euyu = ev yv , then Yv = cvuYu ) . Then ' 

f = eu (p)gu (p) = ev (p)gv (p) = eu (p)cu v (p)gv (p) 
gives 

gu (p) = cu v (p)gv (p) ( 1 7.6) 
Thus the diffeomorphism 

cu v Cp) : [G = O (n ) ] --+ G 
is simply left translation of G by the (transition) orthogonal matrix Cu v  (p) !  

In general we shall say that a fiber bundle 

{ P , M, rr , F, G } 

is a principal bundle if the fiber F is the same as the group G ,  and if the transition 
functions cu v ex) act on F = G by left translations. 

The frame bundle FM is the principal bundle associated with the tangent (vector) 
bundle TM. 

By exactly the same procedure, given any vector bundle E � M with fiber IRk, we 
can, by considering frames of k linearly independent local cross sections, construct 
the associated principal bundle P whose fiber is the structure group of the original 
vector bundle. 

17.1c. Action of the Structure Group on a Principal Bundle 

The frame bundle has a remarkable property that is not shared with the tangent vector 
bundle:  the structure group G acts in a natural way as a group of transformations on 
FM. Let g E G be a given matrix and let f = (fl , . . .  , fll ) be a frame at p, that is; f is a 
point in FM. Then we can let g send this point f into the new point g (f) : =  fg by the usual 

( 1 7 .7) 

Note that this assignment is intrinsic: we have not used the local product structure ! 
There is, however, no natural action of G on the tangent bundle itself. For example, if 
M3 is 3-dimensional and if v is a tangent vector at p and if g is a 3 x 3 matrix, what 
would you like g (v) to be? We cannot assign a column to v without first assigning a 
basis for M\p) , and assigning a particular basis is very unnatural ! It is because FM 
is the space of bases that we succeeded in ( 1 7 .7) .  

This works for any principal bundle, namely: 

Theorem (17.8): The structure group G of a principal bundle P acts "from the 
right " on P 

Cf E P, g E G)  --+ (fg) E P 
without fixed points when g i- e, and preserves fibers (i. e. , rr (fg) = rr Cf) ). 
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PRO O F :  We first define the action locally. Let f E P and let n (f) = p lie in some 
open U over which P is trivial 

<Pu (U x G) = n - 1 U  

Then we can write uniquely 

that is, f has the local "coordinate" fu E G. We define fg to be the point with 
local coordinate f u g , 

(fg) u  = fug 

This is in fact coordinate independent, for in an overlap U n v , f would have 
fv = cvu (p) fu and then 

(fg) v = fvg = cvu (p) fug  = cvu (p) (fg) u  D 

We see in this proof that the essential point is that left translations in G (say by Cv u )  
commute with right translations (say by  g) . 

We can use the same notation in a principal bundle that we used in the frame bundle. 
Over U we may consider the local section eu 

eu (p) : = <Pu (p ,  l ) 

where I is the identity matrix in G.  Then for any point f E n - I  (p) we may write 

f = <Pu (p ,  fu ) = <Pu (p ,  Ifu ) = eu (p)fu 0 7.9) 

for a unique fu E G .  
Each right action f ---+ fg i s  a diffeomorphism : P ---+ P .  Let the I -parameter 

subgroup et A , A E �/ ,  act. The resulting velocity vector field on P is then 

A* (f) := :t [fe
tA ] t=o 

In terms of the local product structure, f = eu fu , and then 

* f) d .. tA A ( = dt [eU J u e ] 1=0 

The action f ---+ fel A on P is completely described by the action in G 

fu ---+ fuetA 

whose velocity vector at gu E G is 

d t A dt [fu e ] t=o = fu A 

the left translate of A to fu . The vector field A * on the principal bundle P generated 
by A E �is said to be the fundamental vector field associated to A .  
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17.2. Coset Spaces 

What do subgroups and easets have to do with fiber bundles? 

17.2a. Cosets 

Let G be a Lie group and H e G a subgroup. The left coset space is the set f 
equivalence classes of elements of G 

0 

g � g' iff g' = gh 
for some h E H. Thus g � g' iff g- l g' E H. (We discussed this in the case of abelian 
groups in Section 1 3 .2c; we called it there the quotient space. In abelian groups one 
may write g' � g iff g' = g + h . ) 

gH = g'H 

H 

g'=gh 
G 

g 

e 
I 1f I 
I I 
I I 
I I C/H 

H gH 

Figure 1 7.2 

Thus we identify all elements of G that lie on the same left translate 

gH : =  {gh l h  E H } 
of the subgroup H.  We denote the equivalence class of the element g E G by [g] or 
else g H .  The map that sends g into its equivalence class will be denoted by rr .  

Many familiar spaces are i n  fact coset spaces ! Let u s  say that a group G acts (as a 
transformation group) on a space M provided there is a map 

G x M � M  

(g , x )  f--+ gx 
such that 

(gg')x = g (g'x )  and ex = x 
If, furthermore, given any pair x ,  y ,  of points of M, there is at least one g E G that 
takes x to y ,  gx = y ,  we say that G acts transitively on M. 

Example: S 0 (3) acts transitively on the 2-sphere 

S O (3 ) x S2 � S2 
as the group of rotations . 
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Fundamental Principle ( 17.10) : Let G act transitively on a set M. Let Xo E M 
and let H C G be the subgroup leaving xofixed, 

H = {g E G lgxo = xo }  
H is called the stability, or  isotropy, or  little subgroup of Xo. Then the points of 
M are in J : 1 correspondence with the left cosets {g H }  of G. 

The space of left co sets is again written G 1 H .  Unl ike the case when G is  abelian, 
Gf H is usually not itself a group. 

gH=g'H 

H 

g 
G 

gH 

e 

I I I :rr I I I I I 
M 

Xo x = gxo 

Figure 1 7.3 

PRO O F :  Let Xo be a point of M. Associate to g E G the point x = gxo where 
g takes the distinguished point Xo . Since ghxo = x also, for all h E H ,  we see 
that under this assignment, the whole coset g H is associated to this same x. We 
then have a correspondence GI H -+ M.  Conversely, to each x E M we may 
associate {g E G : gxo = x } , which is easily seen to be an entire coset of G .  D 

Example: S 0 (3) acts transitively on the 2-sphere M = S2 . Let Xo be the north pole, 
Xo = (0, 0, 1 )  T . The little group of Xo is clearly the I -parameter subgroup of rotations 
about the z axi s .  

H = S O (2) c S O (3) 
[ cos e 

S O (2) = si� e 
- sin e O� l 
cos e 

° 
for all e .  We conclude that 

S O (3 ) /SO (2) � S2 

In our usual picture of S O (3) as the ball with identifications, Figure 1 7 .4, S 0 (2) is 
the curve C. Note that all rotations through :rr about axes in the xy plane send Xo to the 
south pole. Thus the coset of the rotation diag ( I ,  - 1 ,  - 1 )  is the curve C' . 
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SO(3 ) 

_________ S2 

Figure 1 7.4 

The coset C' is not a subgroup; it does not contain the identity. 
Note that in any (left) coset decomposition :rr : G -+ G / H ,  the subgroup H acts on 

G from the right as a group of transformations of G that sends each coset into itself 

h E H sends g E G into gh ; gH  f-+ gHh = g H  
The following i s  a very important fact. We shall not prove this theorem here but we 

will make some comments about it .  

Theorem (17.1 1) :  Let G be a Lie group and let H be a closed subgroup (i. e. , 
H contains its accumulation points). Then G / H can be made into a manifold of 
dimension dim G - dim H. Furthermore, G is a principal bundle with structure 
group H and base space M = G / H and :rr : G -+ G / H is the projection of the 
bundle space onto the base. 

A coset space M = G / H of a Lie group is called a homogeneous space. 
For example, S2 is a homogeneous space, being the coset space SO  (3) / SO (2) of 

dimension 3 - 1 .  
Remarks on the Proof of Theorem (17.1 1 ) :  We indicate briefly why the cosets 

in a neighborhood of the coset e H = H can be considered a manifold of dimension 
dim G - dim H.  

Figure 1 7.5 
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Let V be an embedded submanifold of G, passing through e, transverse to H,  and of 
dimension complementary to H (a "normal disc"). An essential fact that can be proved 
is that if V is sufficiently small, each coset g H of H will either miss V or else strike 
V in exactly one point. For this, it is important that the subgroup H be closed in G ;  
if, e.g. ,  H were a line winding densely on the torus G = T2 of Section 1 5 .4d, then 
surely if H met the transversal V once it would meet it an infinite number of times ! ) .  
If a coset of  H meets V we may say that this coset is near H. A coset near H is  of  the 
form g H for some unique g E V .  This shows that the points of G / H "near e H" are in 
1 : 1 correspondence with the points of the "slice" V . Locally G / H is a manifold of 
the same dimension as V ,  that is ,  of dimension (dim G -dim H).  For details see, for 
example, Warner's book [Wa] . 

17.2b. Grassmann Manifolds 

The real projective plane lRp2 is the set of unoriented lines through the origin of lR3 (S2 
is the set of oriented lines). The orthogonal group 0 (3) acts transitively on the space 
of lines. Let 1'0 be the x axis line. The subgroup that sends this line into itself consists 
of orthogonal matrices that either leave the x axis pointwise fixed or else reverses the x 
axis. These orthogonal matrices automatical ly send the yz plane into itself, that is ,  they 
act as 0 (2) does on the y z plane. Since 0 ( I )  consists of the two numbers {- I ,  I } ,  we 
can write the isotropy subgroup of 1'0 as [ 0(01 ) 0 ] 0(2) = 0( 1 )  x 0(2) c 0(3) 

Thus lRP2 may be identified with the coset space 

lRP2 = __ 

0_(_3) 
__ 0 ( 1 )  x 0 (2) 

The dimension of a cartesian product Mr x V S of manifolds is  (r + s ) .  Thus lRP2 is a 
manifold of dimension 3 - (0 + 1 ) . 

The set of unoriented k-planes through the origin of lRn is called a Grassmann 
manifold and is frequently denoted by Gr(k , n ) .  (Beware: there are different notations .)  
Thus Gr( l , 3) = lRP2 . 

Problems 

17.2(1 ) Exh ibit G r(k, n) as a coset space and compute i ts d imension. 

1 7.2(2) 80(3) acts transitively on � p2 . Let 1'0 be the unoriented z axis.  Show that we 
can write � p2 as the coset space 8 0(3)/ H, where H is the subgroup C U C' 
consist ing of the two curves C and C' considered in F igure 1 7.4. 

17.2(3) We know that the col lection of al l  frames of n orthonormal vectors at the origin 
of �n can be identified with the group O(n) . Show more general ly that the space 
of a/l orthonormal k-frames (f1 ' . . .  , fk) at the or ig in of �n forms a homogeneous 
space that can be written O(n) /O(n- k) . This space is cal led a Stiefel manifold. 
What does this say about 8n- 1 ? 
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17.3. Chern's Proof of the Gauss-Bonnet-Poincare Theorem 

What is an "Index Theorem" ? 

17.3a. A Connection in the Frame Bundle of a Surface 

Let M2 be an oriented surface with a Riemannian metric. Its tangent bundle is an 12 
bundle with structure group S O  (2) . Although we could proceed with this real 2-plan 
bundle, for our purposes it is more convenient to use instead the complex line bundl� 
version of Section 1 6.3c .  We shall ,  however omit the superscript c when discussing the 
connection and the curvature. There should be no confusion since w and e will carry 
no matrix indices, being 1 x 1 matrices of forms .  

Let then E = T M be the complex tangent line bundle to M2 . As in Section 1 6.3c, the 
structure group of this bundle is the unitary group V 0 ) ,  that is, the complex numbers 
eia of absolute value 1 .  A frame at a point p is simply a unit tangent vector e at this 
point. Let FM be the frame bundle, with fiber and group the circle G = V ( 1 ) .  (Note 
that in this simple case, FM is simply the unit tangent bundle to M2 ! )  For g E G 

( 17. 12) 

Let eu be a frame, that is , a unit vector field on V (i .e . ,  eu is a section of FM over 
V) .  As in Section 1 6 .3c (and omitting the tensor product sign and the superscript C), 
the connection form w is a single pure imaginary I -form 

Veu = eu ® wu = euwu 
The fact that w is pure imaginary, that is, skew hermitian, arose because we demanded 
that parallel translation preserves lengths. To see this ,  consider the section eu . Let 
x = x (t )  be a curve in V starting at x (O) . Parallel translate eu (x (O» along x (t) yielding 
a unit vector field (frame) e(t ) .  Then e(t) = eu (x (t) g Ct ) for some g et) E V e l ) ;  that 
is ,  g et )  is in the structure group. But then 

and so 

Ve (ve ) dg 
o = dt = dt g + e dt (dX ) dg = ew - g + e-dt dt 

( 1 7 . 13) 

for this particular g = g et )  defining parallel translation along x = x (t ) .  Thus the value 

of w on the tangent vector is - (dg/dt)g- I . But if g et )  = eia (t ) , then -(dg/dt)g- I = 
-i (da/dt) is pure imaginary, that is, in the Lie algebra to V ( 1 )  

w (�;) E �/ = � 1 )  ( 1 7. 14) 

It should not surprise us that (dg /dt)g- I  is in 3' =  � 1 )  since dg/dt is a tangent v�c�or 
to G at g and g- I right translates it back into the Lie algebra. The Riemannian condition 
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Our ((:1 bundle connection demands that the connection Ijorm W takes its values in 011 he Lie algebra of the structure group. 1 
In Section 1 6.3  we defined the general notion of a connection for a vector bundle E .  The connection allowed u s  to differentiate a section of E with respect to a tangent vector 

10 the base space M, that is ,  W is a matrix of local I -forms on M .  Now we shall define 
a 1 x 1 matrix w* of global I -forms on the 3-dimensional principal bundle space FM ! 

Let eu be a section of FM over U ,  that is ,  a frame on U ,  and let f be another section. Then 
f(x ) = eu (x )gu (X) 

for some gu (x) E U ( 1 ) .  The local "coordinates" for f are then (x , a) ,  where a is the 
angular variable in ( 1 7 . 1 2) for g = gu o The local coordinates for eu are (x , g = e) ,  
i.e. ,  a = O. 

____ ( _u_ ) ____ M 

Figure 1 7.6 

Then Vf = V (eugu ) = eu wu gu + eudgu = eU gug{j l wUgu + eu gu g{j l dgu , or 

Vf = f 0 {gu 1 wu gu + gu 1dgu } ( 1 7 . 1 5) 

But gC; l wu gu = Wu (it is crucial here that U ( 1 )  is commutative) and g- I dg = ida,  
and so 

Vf = f 0  {wu + ida } ( 1 7 . 1 6) 

Note that da can be considered a local I -form on the frame bundle since a is a local 
coordinate in JT - 1 U. JT *W is also, but we usually simply write w for JT *w since X l , x2 , a 
are local coordinates for JT - I U 

w = rj dx i = JT * w 

for some functions r i on U .  Thus we can define the local I x I matrix of I -forms w* 
on rr- 1 U by 

w* u := Wu + ida ( 1 7 . 1 7) 

Since w* is again pure imaginary, this is now a I x I matrix of I -forms on JT - 1 U C F M 
that still takes its values in u{ 1 ) .  

Now notice something remarkable. Since V f  has a geometric meaning independent 
of the frame used (in fact, using the real forms, putting w + ida = - i w l 2 + ida = 
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-i {W1 2 - da } = 0 defines parallel translation see (9,62)), the following should n . .  � �  surpnsmg. 

Theorem (17.18): On an overlap wu* = wv*, and thus the collection {eu * }  
defines a W = Lt( 1 )  valued i -form w* on all of the principal bundle FM. eu� is 
called the connection form on the frame bundle FM. 

P R O O F : Let ev  be a section over V . ev = eucu v  where Cu v  = eifJ , for some 
fJ ·  Then a section f has two representations f = eugu = ev g v ,  where gu == eia 
and gv = ei (OI-fJ ) .  Then at the point f of F M w* v = Wv + id ea - fJ). But 
Wv = cu �wucu v  + cu �dcuv  = Wu + e-ifJdeifJ = Wu + idfJ .  Thus 

w* v = Wu + ida = w*u 

Thus, although {wu } are only locally defined �/ -valued I -forms, and {dau } are 
only locally defined I -forms, the combinations {w� } match up to define a global 
3rvalued I -form w* on FM. D 

But then 

8* := dw* = n*dw = n*8  ( 17. 19) 
is also globally defined on FM; we shall call this the curvature form on the frame 
bundle. It is not new to us that 8 * is globally defined on FM since we already knew 
that 8 = i8 1 2 = i K (Y I ;\ (Y2  is globally defined on M2.  What is new and so important 
is Chern's  observation; 

Theorem (17.20) : The lift n *8 of the curvature 2-form to F M2 is globally exact 
on FM 

8*  = n *8 1 2 = n* i  K (Y I ;\ (Y2 = dw* 

We have seen that IM 8 1 2  usually does not vanish, and thus 8 itself on M is usually not 
exact ! 

17.3b. The Gauss-Bonnet-Poincare Theorem 

Theorem (17.21) :  Let M2 be a closed Riemannian suiface and let v be a vector 
field on M having a finite number of singularities at PI ,  . . . , P N. Then 

I Ji 1 2 2 "" .  - Ka ;\ (Y = x (M ) = L ]v (POl )  2n M 01 

Note that since the left-hand side is independent of v, so is the right-hand side. This 
is Poincare's theorem ( 1 6.9) .  Since the right-hand side is independent of the abstract 
Riemannian metric used on M2 , 

11 K d A must be independent of the metric . 
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This is the Gauss-Bonnet theorem. In Problem (8 .20) we proved this for an em
bedded surface M2 C JR.' . 

The proof we shall give is due to S .  S .  Chern, who proved a far more general result. 

We shall talk about some of these generalizations later on. Chern's proof shows the 
equality of the integral with the index sum; we have already shown that the index sum 

is the Euler characteristic in ( 1 6.9). 

P R O O F :  We shall prove the theorem when M is orient able (and oriented) ; the 
nonorientable case can be handled by the standard trick of passing to the 2-sheeted 
orientable covering, discussed in Section 1 6.2b. 

First remove small discs { Da }  centered at the singularities .  Then f = v I l v l  is 
a unit vector field, that is , a frame on M - UD" .  We then have a section 

f :  M2 
- U Da --+ F M2 

Cl 

Figure 1 7.7 
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(Remark: The frame bundle on this M2 is clearly the same as the unit tan 
b dl fi h · h d '  . 

I I · · . .  . 
gent un e; or 19 er- ImenSlOna genera IzatlOns If IS Important to keep the fi 

w� � �) � 
Let 

be the image of the punctured M under the section f; it is a 2-dimensional sub
manifold of FM diffeomorphic to M - U Da ,  since n o f is the identity map. Then 
since w* (not w) is globally defined • 

i J' r KdA = i J'r KdA = Jrr n * (i KdA) JM-UD" 
= Jr/rr:w* = l !

�
= l n*w - da J� a � a� 

( 17.22) 

Let the disc Da lie in the coordinate patch V and let Sa = a Da .  Let eu be a 
frame in the open U .  We may express the Wu of this frame in terms of the local 
coordinates x I , x2 (which are unrelated to the frame eu ) , 

The part of the boundary of 2: that lies over Do is over Sa ; call this portion of 
a 2: simply aa ' Then in ( 1 7 .22) 

1 n*w = 1 w = 1 Yi (x)dxi 
La ha(l Is" 

and if we let the disc Da shrink down to the point Pa this last integral will vanish 
in the limit. Thus as each Da shrinks to its Pa 

Jr r i KdA = l im Jr r i KdA = - lim 1 ida 
J M J M-UD" fa� ( 1 7.23) 

Consider again the part aa of a 2: that lies over Sa . In terms of the section 
eu given by the frame, the section f is f = eu eia . Note that the part of a 2:: 
that lies over Sa has orientation opposite to a Da (whose normal points out of 
Da ) ,  a 2: = 2:a f(- Da ) .  Furthermore 

1 da = 1 dL (eu , f) !rcaD,, ) faDa 
is simply 2n (index of v at Pa l  = 2nj (Pa ) '  Then from ( 1 7 . 23) 

Jr r KdA = - lim 2: 1 .  de = 2n 2: jv(Pa ) 0 
J a I-fCoDa ) a 

Corollary (17.25) : If M2 is a closed Riemannian manifold then 

_1_ Jr r K dA is an integer 2n JM 

( 1 7.24) 
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17.3c. Gauss-Bonnet as an Index Theorem 

frOm Problem 1 6 .2( 1 )  we know that the Euler characteristic X (M2) = 2 - 2g is 
pressible in terms of the genus g of the surface. In Section 1 3 .4 we showed that 

e
X
closed orientable surface of genus 2 has first Betti number b l = 4, and we have 

�ndicated the generators A , B , C, and D. The same type of picture shows that a closed 

�entable surface of genus g has b l (Mg ) = 2g . If we recall that bo = 1 (since Mg is 

connected), and that b2 = 1 (since Mg is closed and orientable), we see that the Euler 

characteristic (defined in ( 1 6 . 1 1 »  can be written 

( 1 7 .26) 
in terms ofhomology ! This ,  and its n-dimensional version, was proved by Poincare. We 

shaH discuss this further in Problem 22.3(2). Finally we may write the Gauss-Bonnet 
theorem ( 1 7 .2 1 )  in the form 

_1 Jrr KdA = bo - b l + b2 ( 1 7 .27) 27r JM 
On the left -hand side we have a curvature, a local quantity involving derivatives of the 
metric tensor, quantities associated to the tangent bundle of M. Its integral (divided by 
21r) is simply a number. The right-hand side exhibits this number as an integer involving 
dimensions of homology groups of M. Recall from Hodge's theorem that bp (M) is  also 
equal to the dimension of the space of harmonic p-forms, which is nothing other than 
the dimension of the kernel of the Laplace operator 

p p 
bp (M ) = dim ker � : /\ (M) -7- /\ (M) 

In physics, the kernel of an operator i s  called the space of zero modes . Thus, basically, 
an integral of the curvature of the tangent bundle of M is related to the number of 
zero modes of differential operators constructed from this bundle. This is the first and 
most famous example of an index theorem. The Atiyah-Singer index theorem is a 
vast generalization of ( 1 7 .27) replacing the tangent bundle by other bundles (we shall 
consider a few examples in our next section), the Gauss curvature by higher-dimensional 
curvature forms (some of which will be discussed in Chapter 22), and replacing the 
Laplacian by other elliptic differential operators associated with the bundle in question. 
The Atiyah-Singer theorem must be considered a high point of geometrical analysis 
of the twentieth century, but i sfar too complicated to be considered in this book. The 
reader may consult for instance, [Ro] . 

17.4. Line Bundles, Topological Quantization, and Berry Phase 

How does a wave function change under an adiabatic transition? 

17.4a. A Generalization of Gauss-Bonnet 

Let E be any complex line bundle over a manifold M" of any dimension. We suppose 
that the structure group G is U ( l ) ;  1/rv = eict 1/ru . Let w be a U ( l )  connection; that is ,  
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w takes its values in 3/ = LL( I ) ,  Thus w (X) is skew hermitian (pure imaginary) for tangent vectors X to Mil , all 
If w = eu 1/Iu and cp = eu¢u are sections, then, 

allows us to define a hermitian scalar product in each fiber by 

(W , cp) : = 1/Iu¢u 

with associated norm II W 1 1 2 = 1 1/Iu 1 2 , We then say that E is a hermitian line bund! e, 
If we put, as usual, V 1/1 = d 1/1 + w1/l,  then 

(VW,  cp) + ( w ,  Vcp) = d1/l¢ + 1/Id¢ 
+ w1/l¢ + 1/Iw¢ = d(1/I¢) 

since w = -w. This is the analogue of  the basic Riemannian condition that Parallel 
translation preserve scalar products . 

Let eu be a "frame" over U ,  that is ,  a section of E of norm 1 .  Then W = eu1fru == 
eu e l a is the most general frame over U .  Thus over U ,  the fiber coordinate in the frame 
bundle FE, that is ,  the principal bundle associated to E,  is simply the angle a. The 
frame bundle is a circle bundle over Mn , a bundle whose fibers are circles SI . We may 
now proceed as we did in the case of the tangent bundle to the surface. 

Let V2 be a closed oriented suiface embedded in Mn .  The part of the bundle FE 
over points of V2 defines a bundle over V2, which we shall again call FE; it is the same 
circle bundle but "restricted" to V2 • We wish to consider a smooth section W of FE over 
the closed surface V2 , but we know from the tangent bundle case that such a section 
might not exist over all of V2 • We might try to construct such a section by first taking a 
section s : V2 --* E of the complex line bundle, and then putting W = sf II s I I  at those 
p E V 2 where s =f. O. A section s defines a 2-dimensional submanifold S( V2) of the 
4-dimensional manifold E v , the part of the bundle E over V .  The O-section 0 defines 
another 2-dimensional submanifold o( V2 ) of Ev . Generically, a submanifold V' and a 
submanifold WS in an N -manifold, if they intersect, will intersect in a submanifold of 
dimension (r + s - N) ,  just as in the case of affine l inear subspaces of a vector space. 
The section s and the section 0 are generically then going to intersect in a O-dimensional 
set, that is ,  a finite set of points , which may be empty. Thus, just as in the case of the 
tangent bundle, we expect to be able to find a nonvanishing section of E, and a resulting 
section of FE, over all of V2 except perhaps over a finite set of points P I , . . . , PH ' 
(The precise argument for such constructions will be taken up in Chapter 22.) 

Let then W be such a section. As in Section 1 7 .3b we construct the connection fonn 
w* = rr * w + i dct, where ct i s  the local fiber circle coordinate (recall that w is now pure 
imaginary) .  Then, as in ( 1 7 .24), we define the index of W = e1/l = eeia at the zero Pk 
to be 

j\jl (pd := _1 J dct 2rr !aD 
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bicb is simply the degree of the map 1/1 : a Dk ---+ S I . Then, just as in the proof of �eorem ( 1 7 .2 1 ) ,  we conclude that (i /2;r )  ffv e2 = L jq, (p) is an integer! We have 
sketched a proof of the fol lowing theorem of Chern. 

Theorem (17.28) :  Let E be a hermitian line bundle, with (pure imaginary) con
nection Wi and curvature e2, over a manifold Mil . Let V2 be any closed oriented 
sur/ace embedded in Mil . Then 

2� /1 e2 
is an integer and represents the sum of the indices of any section s : V2 ---+ E of 
the part of the line bundle over V2; it is assumed that s has but afinite number of 
zeros on V . i e  /2;r is the Chern form of E. 

This then proves Dirac 's quantization condition ( 1 6 .52) .  
Geometrically this integer represents (algebraically) the number of times that the 

section s intersects the O-section 0, counted with multiplicity. By this we mean the 
following: Let E be a rank-n vector bundle over an Mil . We assume that M is oriented 
and that the vector space fibers of E can be oriented in a continuous fashion. (This 
will be the case if the structure group G of the bundle is a connected group, such as 
SO (n) ,  or a unitary group. On the other hand, as discussed in Section 1 7 . 1  a, the real 
line bundle given by the normal vectors to the midcircle M 1 of the Mobius band has 
structure group given by the 2-element group Z2 , which is not connected, yielding 
fibers that cannot be oriented continuously.) Let X l , . . •  , X " be positively oriented local 
coordinates in M, and u 1 , • • •  , un be positively oriented fiber coordinates, near the 
intersection point x = 0, U = 0, of the sections s and o. s can be described by the n 
functions u = u (x ) .  We say that the section s meets the 0 section transversally (or 
that s has a nondegenerate zero) if the Jacobian determinant a (u ) / a (x) is  nonzero at 
x = O. From duj /dt = ( au j /axk ) (dxk /dt) we see that transversality simply means 
that the sections do not have any nontrivial tangent vector in common at the intersection. 
In this case we define the local intersection number to be + 1 (resp. - 1 ) provided the 
Jacobian is positive (resp .  negative) . The (total) intersection number is the sum of all 
the local intersection numbers at all intersections of the sections. 

Consider, for example, a complex line bundle E over the Riemann sphere. We may 
use z = x + iy for local coordinates on V2 = S2 near z = ° (S2 is a complex 
manifold) and I; = u + i v for fiber coordinates . The section s can be described by 
giving u = u (x ,  y), v = v ex ,  y), or more briefly I; = I; (z ,  z) ,  where we do not assume 
that I; is holomorphic in z. If, however, I; is a holomorphic function of z (we would 
then say that s is a holomorphic section) then by the Cauchy-Riemann equations we 
have a (u , v )/a (x ,  y) = I I;' (z) 1 2 :::: 0. Thus if a holomorphic section is not tangent to 
the O-section, t;' (0) i- 0, we conclude the local intersection number is + 1 .  

Consider as a specific example the tangent bundle E = T S2 of the Riemann sphere 
as a complex line bundle . Use z as coordinate near ° on S2 and w as coordinate near 00. 
Let I; be a fiber coordinate over the z patch. On the Riemann sphere we have the vector 
field coming from dz/ dt = Z2 . It has (Kronecker) index j = 2 at z = ° and ° at z = 00 
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(since dw/dt = - 1 at z = (0) .  How can we think of this in terms of inters . 
The part of T S2 over the z patch is simply ((:2 with coordinates (z , O .  We Wi:tions? 
how the section ( = ( z) = Z2 intersects the section ( = O. Clearly these sectio to � 

tangent ( i .e . ,  nontransversal) .  By  a slight deformation, however, we may repl ns � 
section by one with transverse intersections;  for example consider the section: this 
by ( = Z2 - a ( i .e . ,  dz/dt = Z2 - a ) ,  for some small a # O. Near Z =: oo  the fined 
is dw/dt = - 1  + a/z2 , and again has no zero ; the zero at Z = 0 has been repl eld 
by two zeros at the square roots of a .  In this holomorphic case, as we have seen � zeros have local intersection number + 1 ,  yielding +2 as the total intersection n�m� 
of the perturbed section with the O-section. As we let a -+ 0 the two zeros coale 
and in this sense we say that the original section meets the O-section with intersec:e· 

number 2 . This agrees with the Kronecker index j .  on 

Note that this is very different from the usual real situation. In the real plane R2 
the curve y = x2 is tangent to the x axis, but if we lift the curve slightly to y == 
Xl + a (for a > 0) there is then no intersection at all .  On the other hand, if We drop 
the curve, y = x2 - a ,  we get two intersections but the intersection at x =: ..;a is I 
whereas that at x = -Ja is - I ,  again yielding a total intersection number O. For a 
good discussion of Kronecker indices and intersection numbers I recommend [G, p. 
chap. 3 ] .  

Return now to  the general situation of  Theorem ( 1 7 .28) .  Note that when the second 
Betti number b2 of Mn is zero, for example, when each closed surface V2 bounds, the 
integral condition in ( 1 7 .28) is simply ffv=iJS e2 = fffs de2 = O. The integer in ( 17.28) 
can be nonzero only when Mil has nontrivial homology in dimension 2; ( 1 7 .28) is a 
topological quantization condition. 

We may paraphrase ( 1 7 .28)  as follows. The curvature e of a hermitian complex line 
bundle is a pure imaginary closed 2-form on the base space Mil having the property 
that i B  /2JT has integral periods on any basis of the integral second homology group 
H2 (Mil ; Z) . We say that i e  /2JT defines an integral cohomology class of M. There is a 
remarkable converse to this ,  whose proof is beyond the scope of this book. 

Theorem (17.29): Let f32 be a real, closed 2-fonn defining an integral cohomol
ogy class on some manifold Mn. Then there exists a hermitian line bundle E over 
M, and a U ( 1 )  connection w for this bundle, such that -2JT if3 is the curvature 
form on M for the bundle E. 

Thus each closed 2-form on M with integral periods is essentially the curvature form for 
some hermitian line bundle over M. Furthermore, one can define a notion of "equivaleDl 
bundles" and then if M is simply connected, the constructed line bundle E is unique (up 
to equivalence) ! The proof requires the introduction of more machinery (sheaf theory) 
and will not be given here. 

17.4b. Berry Phase 

We are going to be concerned with complex l ine bundles, but a real example will give 
us a good picture to start out with. 
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E(O) 

Figure 1 7.8 

Consider an infinite Mobius band (i.e., each generating straight line is infinite) 
immersed in IR3 , with central circle V I given by x2 + y2 = 1 ,  z = 0 and parameterized 
by () . The infinite real l ine of the Mobius band passing through (cos e ,  sin e ,  0) can 
be identified with a real I -dimensional subspace of IR3 by translating it to the origin, 
yielding a I -parameter family of real I -dimensional subspaces Eo of IR3 . We can pick 
out smoothly a real unit vector e(e) in Eo in some neighborhood of e = 0 (unique up 
to multiplication by ± I ), but since e(2n ) will be the negative of e (O) , we see that we 
can't find e(e) smoothly for all e .  

Look now at the following more general geometric situation. Consider a complex 
inner product space; in our main example it will be infinite-dimensional but for easy 
visualization we take en with the usual hermitian scalar product (z , w) = I: Zj W j . Sup
pose that for each point p in a K -dimensional parameter manifold V K , we may assign 
acomplex I -dimensional subspace ("line") E p of en . We thus have a K -parameter fam
ily of complex lines . If a = (a I ,  . . .  , aK ) is a local coordinate system for V ,  we may 
describe the family by Ep = Ea . We assume that the l ines El' vary smoothly with p, 
and so locally Ea depends smoothly on a .  Each Ea is simply a copy of the complex 
plane C, and of course we can pick out a uni t basis vector e( a) in each Ea , and e( a) is 
unique up to multiplication by a complex number eir (a) of absolute value 1 .  S ince Ea 
varies smoothly with a ,  in some a-neighborhood of, say a = 0, we may pick the bases 
e(a) to vary smoothly with a .  We may assume that the coordinate patches a are so 
small that ea is smooth in the entire patch. The family E p forms a complex line bundle 
E over the K -dimensional parameter space. 

A local section of this bundle is simply a complex vector field v = e(a) u (a) . 

We define a covariant differentiation by simply taking the projection of the usual 
derivative in <C" along Ea . This  is clearly intrinsic, independent of the basis ea chosen . 
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In terms of the basis 

Thus 

where 

Vv = e (e, dv) = e( e ,  
a
a:k )dC/ 

Ve(a) = e(a) (e(a) , de(a» ) = e(a)w l 

W i  : =  (e(a) , de(a» ) = (e, 
a
a;k )dak 

07.30) 

Note that this would not be useful in the case of a real line bundle since ae(rx)/oaj 
is orthogonal to e(a) in that case. In our complex line bundle, however, 

0 =  d (e, e) = (de, e) + (e ,  de) = 2Re (e, de) 

shows not that (e , de) vanishes, but only that it is  pure imaginary. 
In a coordinate patch overlap we have e(fJ ) = e(a ) cet/! for some function ca/! (p) of 

absolute value 1 ,  and so our bundle E is a hermitian bundle, with structure group U(1) 
and connection w. See Problem 1 7 .4(2) at this time. 

The curvature of this connection is given (see Problem 17 .4(3» by 

meaning 

e2 = dw = d (e(a ) ,  de(a» ) = (de(a) ,  de(a» ) 

e2 = ' 1 / ae(a) ae(a» )d j d k I m 
\ oaj ' oak a 1\ a 

( 17.31)  

Then Theorem (1 7. 28) gives topological quantization conditions in this purely geomet
ric situation ! 

In Section 1 7 .4c we shall apply this machinery to Dirac 's monopole bundle, but for 
the present we shal l consider examples investigated by Berry in [B ] .  First we shall study 
a finite dimensional situation. 

Example: Let H = H (a I , . . . , ad = H (a) be an n x n hermitian matrix that depends 
smoothly on K -parameters aj . (We may think of this as perturbing a given hermitian 
matrix H (0) . )  H (a) operates on <e" and has n real eigenvalues for each a .  We shall assume 
that the lowest eigenvalue A I  (a) lor H (a) is nondegenerate for each a ;  thus there is a 
unique complex I -dimensional eigenspace Eet C <en picked out for each a. We assume 
that the set of lowest eigenvalues {A I  (a) } is separated from the higher eigenvalues. Note 
first that A I depends smoothly on a. To see this, observe that the characteristic polynomial 
I (A ,  a) = det[A ! - H (a) ]  is a smooth function of both A and a. Fix a = aD , and let A] 
be the unique lowest eigenvalue; thus I (A I ,  an) = O. Since A I i s  a simple root, we have 

o 
and A I  differs from Aj for j i= 1 . Hence 1 = 0 and aflaA i= 0 at A = A l and a == a 

. . 
From the implicit function theorem we conclude that A I is a smooth function of a In 
some a neighborhood of aD . 
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It can be shown (see [Kal for more details) that the I -dimensional eigenspace E(){ of 

the lowest eigenvalue A I (a) also depends smoothly on a. A sketch is as follows. S ince 

H(a) is hermitian we may write it in the form H (a) = Lj Aj (a) Pj (a) ,  where Pj (a) is 

the orthogonal projection onto the eigenspace for A j (a) .  Hence for any complex number 
: we have H (a) - zI = Lj [Aj (a) - z l Pj (a ) .  Then for the resolvent [ H (a)  - ZJ ]- I 
we have 

Thus if C is a closed curve enclosing positively the set of lowest eigenvalues {A I (a ) but 

excluding the higher eigenvalues, we have, for each a 

i [H (a)  - zJ ] - l dz = L {i dZ/ [Aj (a) - Z l } Pj (a) 
J 

= -2n i PI (a) 

exhibiting P I (a) as a smooth function of a. Thus the first eigenspace, E(){ , being the 
image of C" under PI (a) ,  is smooth in a .  D 

Again , a unit eigenvector e(a) for A )  (a) is determined only up to multiplication by 
a complex number of absolute value I ,  as in our general situation. 

Berry considered the fol lowing infinite-dimensional quantum situation. Let :'If be a 
complex "Hilbert space" of functions on Mil with hermitian scalar product (<fJ I 1jf )  
(l/r lcfJ) - ,  where -denotes complex conjugation. Typically, i n  M "  = JR" 

(<fJ I 1jf )  = L 1jf (x )<fJ (x)dx 

for a suitable class of functions .  
States 1jf in quantum mechanics are normalized, (1jf 1 1jf )  = 1 .  The wave function for 

a state classically i s  determined up to multiplication by a constant factor ei!.. of absolute 
value 1 . 

Berry considers a quantum analogue of our example in which a Hamiltonian operator 
H = H(a) ,  acting on :-1(, depends smoothly on the points a in a K -dimensional param
eter space VK . Locally the point a is again described by coordinates a = (a i , . . .  , a K ) .  
(For example, i n  the Aharonov-Bohm situation a = a 1 could be the flux b through 
the solenoid, or we might have several solenoids with such varying fluxes . )  The spec
trum of H (a ) is assumed to satisfy the requirements of our example. We again are 
led to a complex line bundle E over space-time M4, whose fibers are the complex 
I-dimensional subspaces E(){ C :'Ie given by the eigenspaces of lowest energy of H (a) .  

Now let C be  a curve i n  parameter space, locally of the form a = a Ct ) ,  starting at 
a = O. Consider a solution 1jf (x, t) of Schrodinger's equation i1id1jf/dt = H [a (t) ] 1jf 
on M that starts out at t = 0 with 1jf (x,  0) a lowest energy eigenfunction of H(O) . The 
adiabatic theorem [Si] assures us that in the limit of a changing "infinitely slowly," 
the solution 1jf (x, t )  will remain an eigenfunction of lowest energy of H (a (t » . If the 
curve a = a Ct ) is a closed curve, the solution 1jf will then return to 1jf (x , 0) except for 
a phase factor, and this phase factor was determined by Berry as follows. 



472 F I B E R  B U N D L E S ,  G A U S S- B O N N E T ,  A N D  T O P O L O G I C A L  Q U A N T I Z A T ION 

Let ¢a C Ea C :Ie be a smooth choice of unit basis of Ea in the a patch; ¢a satisfi 
H (a)¢a = Aa¢a and replaces the e(a) of our previous example. From the adiab c:s theorem, for very slowly changing a Ct ) , o/ (t )  can be approximated by a mU1tiple ot� 
eigenstate ¢a(I ) . Berry writes,for this particular path C in parameter space, 

0/ "-' exp [ ( - �) 11 Aa (r )dr] exp[i y (a (t» ]¢a(l) ( 11.32) 

(For a more careful treatment of the adiabatic limit see [Sil . )  The energy exponential 
is the usual dynamical phase factor (taking into account the fact that A is changin 
in time along the path) and the 

.
second (as y�t un.know�) exponential exp[i y (aCt)}] i� 

to account for the bases ¢a havmg rather arbltranly assigned phases . Inserting ( 11.32) 
into Schrodinger's equation yields Berry's equation 

or 

. dy (�) (daj ) 
= 0 l ¢a 

d + a ·  d t al t 

as :k-valued I -forms along C in parameter space, where d = daj a / aaj . But then 

(¢ Id¢)  = - idy 
Barry Simon [Si] noticed that this can be written down in terms of connections. From 
( 1 7 .30) we have, along C, 

dy = iw ( 17 .33) 

where w is the connection in terms of the frame ¢. We shall call w the Simon connection 
(avoiding the temptation to call it the Berry-Barry connection) . 

Thus if C is a closed curve in a coordinate patch of parameter space, and if C bounds, 
that is ,  C = a S for a compact oriented surface S in this patch, then the Berry phase 
factor for C is given, from Simon's viewpoint, as 

y (C) = 1 dy = i 1 w = i J is e 

= -1m Jr r / �I a¢
k )daj /\ dak 

is \ aaJ aa 

( 1 7.34) 

Note in particular that y (a) need not return to itself after completing a loop in parameter 
space, and likewise, neglecting the dynamical phase factor, for the wave function 1/1. 
This was one of Berry 's principal conclusions, and it should be mentioned that the 
final expression in ( 1 7 .34) appears explicitly in Berry's paper but is not there related to 
curvature . 

In Problem 1 7 .4(4) you are asked to show that e iY¢a is paraUel displaced along 
C .  This gives geometric meaning to Berry 's ansatz ( 1 7 .32) and also to the adiabatic 

theorem. 
For an application of the connection ( 1 7 .30) and the quantization condition ( 17.28) 

to the "quantum Hall effect," see [Si] . 
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17.4c. Monopoles and the Hopf Bundle 

In Section 1 6.4 we discussed the Dirac monopole, which, for each integer n = 2eq /n , 
requires a special hermitian complex line bundle, Hn , defined over JR.3 with the origin 
deleted. The unit sphere S2 surrounds the monopole, and for our purposes it is sufficient 
w consider the part of the bundle that lies over S2 , which we shall again call HI! . The 
case n :::: 0 corresponds to the trivial bundle; the most important case is when n = ± 1 ,  
that is, when q = ± 1 /2en . We shall look at the case n = - 1 .  This complex line 
bUndle H- I over S2 is not the tangent bundle since the integral of i e 2 /2Jr over S2 is - 1 ,  
whereas for the tangent bundle the integral is the Euler characteristic 2 .  It is remarkable 
that Heinz Hopf investigated the appropriate bundles for purely geometric reasons (as 
we shall see in Section 22.4c) at about the same time as Dirac 's work on monopoles ! 

Consider S2 as being the Riemann sphere, that is the complex projective l ine ee p l  
of Section 1 .2d and Problem 1 .2(3) .  To a point (zo , Z I ) #- (0, 0) i n  ee2 we associate 
the line (Azo ,  AZ I )  of all complex multiples of this point. This line is described by the 
point in eep I whose homogeneous coordinates are [zo , Z I ] .  In the patch U of S2 where 
Zo :f. 0 we introduce the complex coordinate Z = Z I / zo, whereas in V ,  where Z I #- 0, 
we use W = ZO/Z I .  

The complex lines through the origin of ee2 are parameterized by the points of ee p i 
and thus these lines form a complex line bundle over S2 , called the Hopf bundle. In a 
sense this bundle is "tautologous"; a point in ee p I represents a complex line in ee2 , and 
we may then associate to this point its complex line ! Let us look at the local product 
structure. 

When Zo #- 0, the line through (zo , Z I )  has homogeneous coordinates [zo ,  Z l ]  = 
[ I ,  zdzo] = [ l , z ] . To the point in U C S2 with coordinate z ,  we may associate the 
vector ( 1 ,  z) T in this line of ee2 . We call the resulting unit vector 

( 1 ,  zl eu (z) = 
( 1  + I z I 2 ) 1 /2 

( 1 7 .35)  

This defines a unit section of the part of the Hopf bundle over U in S2 . Likewise, over 
V we have [zo , z I J = [zo/z I J = [w ,  1 ]  with section 

(W , l ) T  
ev (w )  = 

( 1 + I w I 2 ) 1 /2 
( 1 7 .36) 

Thus the transition functions ev = eu cu v are given through 

Thus 

( w , I ) T  
e ( w )  - ----:-------,-
V - ( 1  + I w I 2 ) 1 /2 

z- I ( 1 , Z ) T  
( 1  + I z l -2 ) 1 /2 

w ( l ,  W - I ) T 
( 1  + I w  1 2 )  1 /2 

eu (z) l z l 
Z 

_ Z _ i¢> cv u (z ) - - - e I z i 
( 1 7 . 37) 

Where z = I z l ei¢> = rei¢> in terms of polar coordinates in U ,  that is , the upper plane 
in Figure 1 . 1 5 .  These transition functions are exactly those of the monopole bundle 
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with 2eqln = - 1 , as we see from Equation ( 1 6 .5 1 ) . The monopole bundle li . -I lV/tit 2eq In = - 1 is the tautologous Hop! bundle over Cp l . 
HI will have transition functions Cv u = e-iq, .  This is the dual bundle to 11 

Consider now the tensor product bundle of H_ I with itself, H - I ® H - I · This te� 
product of two line bundles is again a line bundle ; if s and I] are sections of li_1 t"� 

2 'q, ' '''1:11 (s l]) v = (cvu su ) (cvu l]u)  = e '  (s l] )u  shows that H_ I ® H_ I = H_2 . In this WaY we 
can get all of the monopole bundles from tensor products of HI and H - I ,  that is, frotn 
the Hopf bundle over CP I and its dual . 

We may now consider the Simon connection for the H�pf bundle. C2 carries the stan. 
dard hermitian metric ( a ,  b) T ,  (c , d) T ) = ac + bd. Let us compute Wu :::: 
( eu (z) , deu (z» ) in the patch U .  Note that U is simply a copy of the complex Plane. 
Introduce polar coordinates z = re'q, . In Problem 1 7 .4(5) you are asked to compute. 
from ( 1 7 .35), that 

and 

2i rdr 1\ d</J e = dcv = ----U U ( 1  + r2 ) 2 

jr r i e  
Js 2n = -

1 

( 17.38) 

( 17.39) 

07.40) 

Problems ----------
1 7.4(1 ) Take as l ine bundle the tangent bundle to the Riemann sphere. Let 4>z ( resp. tPw) 

be a f iber coordinate in the z ( resp. w) patch .  Show that the transition function is 
Cwz = _ Z-2 . Since l4>w l 2 # l 4>z l 2 , we do not get a herm itian metric in the fibers 
by defin ing I I 4>z 1 1 2= l4>z l 2 ,  and so on.  It is true that I w l -2 14>w I2 = I z l-2 1¢z I2 but 
these "metrics" blow up at the poles. Show that ( 1  + I z I 2 ) -2 1 4>z I 2  = (1 + I Wl2r2 

l 4>w I2 . This expression then yields an Hermitian metric in the fibers. 

1 7.4(2) Verify that w in ( 1 7.30) does transform as a U(1 ) connection . 

1 7.4(3) Show ( 1 7 .31 ) .  

1 7.4(4) Show that eiy(a) 4>a is paral le l  d isplaced along C. 
1 7.4(5) Show ( 1 7 .38) ,  ( 1 7 .39) , and ( 1 7 .40) . The integral over 82 = C P1 is the same 

as the i ntegral over the entire U plane s ince only the s ingle point at infinity is 
missing .  
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C H A P T E R  18 

Connections and Associated 
Bundles 

IN this chapter we shall recast our previous machinery of connections, making more 
use of the fact that the connection and curvature forms take their values in the Lie 
algebra of the structure group. This will lead not only to a more systematic treatment 
of some topics that were previously handled in a rather ad hoc fashion, but also, in our 
following chapters , to generalizations of the Gauss-Bonnet-Poincare theorem and to 
closer contact with the machinery used in physics .  

18. 1 .  Forms with Values in a Lie Algebra 

What do we mean by g - J dg ?  

18.1a. The Maurer-Cartan Form 

If E is a vector bundle over M, then the connection form ()) = «())R s ) and the curvature 
fonn () = «(} R s ) are locally defined matrices of J - and 2-forms, respectively. If the 
Lie group G is the structure group of the bundle, that is, if each transition matrix 
Cu v = (cuv R s) is a matrix in G, then, as in ( 1 7 . 14), we usually require that ()) and f) 
take their values in the Lie algebra �/ of G ;  thus, e .g . ,  «())R s (X» is a matrix in �, for each 
tangent vector X to M. For example, in a Riemannian M, by restricting the frames of 
the tangent bundle to be orthonormal, the Levi -Civita connection satisfies ())ij = -()) ji ;  that is, ()) has its values in a-(n) ,  the Lie algebra to O (n) . If we think of ()) as being a 
fonn that takes its values in the fixed vector space �/, rather than as a matrix of I -forms, 
we shall have an equivalent picture that i s  in many ways more closely related to the 
tenninology used in physics .  

Let Mn be a manifold and let G be a Lie group with Lie algebra � .  We shall consider 
loca�ly defined exterior forms <p on M taking values in the fixed vector space �. 

First we define a � valued I -form on G itself. Let {ER } be a basis for � and let {XR } 
be the left invariant fields on G obtained by left translating the E's .  Let {o- R }  be left 

475 



476 C O N N E C T I O N S  A N D  A S S O C I A  T E D  B U N D L E S  

invariant I -forms on  G forming, a t  each g E G, a basis dual t o  {XR } .  Then 

Q : = ER 0 a R 

defined by 

Q (Yg ) = ERa R (Yg) = ER y R 

( 1 8. 1 )  

takes a vector Y = XR Y R at  g E G and left translates it back to the identity. This is the 
Maurer-Cartan I -form on G .  

Classically this would be written differently. On  any manifold, Cartan wrote d 
for the vector-valued I -form at p E M that takes each vector Y at p into itself. � 
coordinates it is the mixed tensor {oj } 

Then Cartan would write 

8 . 8 . .  
dp = - 0 dx ' = - 0 0 '.dx 1 

8xi 8xi 1 

( 1 8.2) 

Thus dg takes Y at g into Y, and g- 1 left translates Y back to e. We should write 

For a matrix group, each Er is simply a matrix of a certain type (e.g . ,  skew symmetric 
for G = O (n ) ) .  By construction we have the fol lowing: 

Theorem (18.3) : In any matrix group G, Q = g- l dg is a matrix with left invari
ant I -form entries. 

For example, in SO (2) , for 

we have 

or 

[ COS () g- l dg = - sin () 

- 1 [ ° 
g dg = d() 

- sin () ]  
cos () 

sin () ] [ - sin ()d() 
cos () cos () d () 

- cos ()d() ] 
- sin ()d() 

-d()
O
] -_ [ 0

1 
1 ]  -
° 0 d() 

and d() is a rotation invariant I -form on the circle S O (2) . 
The usual "proof" that g- 1 dg is a matrix of left invariant I -forms is as follows: Let 

h be a given (fixed) group element. Then for variable g , L7, Qhg = (hg)- l d(hg) == 
g- l h - 1 hdg = g- l dg = Qg,  as claimed. 

Similarly dgg- 1 i s  a matrix of right invariant I -forms . See Problem 1 8 . 1 ( 1) at 
this time. 
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IS.lb. �rValued p-Forms on a Manifold 

The most general p-form on U C M with values in the Lie algebra of a Lie group G 
is of the form 

where each ¢R is an ordinary exterior p-form on U .  Thus if X is a p tuple of tangent 
vectors to M at a point of U, then ¢ (X) = ER¢R (X) is  in �/. (Note that R refers to 
the ER involved, not to the degree of ¢ .) Since the E's do not vary (lying in the fixed 
vector space �),  it is natural to define 

( 1 8 .4) 

a � -valued p + 1 form on M.  
( Multiplication of such forms i s  not s o  clear a process because, for example, in the 

case of �= o (n ) ,  the product of two skew symmetric matrices is  not necessarily skew 
symmetric .  Instead we shall define the (Lie) bracket of forms,  and we shall see that 
this includes a desirable product. We define 

( 1 8 .5)  

As an example, consider the Maurer-Cartan I -form on M = G.  From the Maurer
Cartan equations ( 1 5 .23)  

while 

and so 

[Q , Q] = [Es 0 (J s , ET 0 (J T ] = [Es , ET ]  0 (J s /\ (J T  
= ER 0 CfT(J S /\ (J T 

1 
dQ + 2: [Q ,  Q ] = 0 

which will again be called the Maurer-Cartan equation. 

( 1 8 .6) 

Remark: ( 1 8 .5 )  defines the bracket by means of a basis but it is  not difficult to give 
an intrinsic definition . If X, = XI , . . .  , Xp+q are tangent vectors to Mn , we could have 
defined 

= 8f K [ER 0 ¢R (Xj ) ,  Es 0 1/1s (XIS ) ] 

= 8fK [ER , ES ]¢R (X1 ) 1/I S (XIS: ) = [ER , ES ]¢R /\ 1/Is (X, )  

We have some immediate consequences of our definitions .  

[1/1, ¢] = [Es , ER ] 0 1/1s /\ ¢R 

= -[ER , Es ] 0 1/Is /\ ¢R 

( 1 8 .5 ' )  
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and so 

( 1 8.7) 
Also 

that is, 
d[¢ ,  1/1]  = [d¢ , 1/1] + (- I ) P [¢ , d1/l] ( 1 8 .8) 

Finally, we need to interpret the bracket in the case of a matrix group. For example, 
the Maurer-Cartan I -form Q for the affine group of the line, G = A ( l ) ,  is 

[ r � 1 = [ � � ] ® d: + [ � � ] ® d: 
dx dy = E1 ® - + E2 ® -

In general, when {ER } are matrices, 
x x 

[¢ , 1/1]  = [ER ' Es ] ¢R !\ 1/Is 

= (ERES - EsER ) ® ¢R !\ 1/Is 

= (ER ® ¢R) !\ (Es ® 1/Is) - EsER ® ¢R !\ 1/Is 

where in the first term of the last line we are simply mUltiplying the matrices but using 
the exterior product of the entries. (This is always what we did in the method of moving 
frames, e .g . ,  when considering e = dw + w !\  w. )  For example, in A ( l )  

[ dx x 
o 

Continuing with our computation 

that is, 

as matrices. 
For example, if p is odd 

<!..:!.
] 

[ dX 
x !\ x 
o 0 <!.I. ] 

x 

o 

[¢ , ¢] = ¢ !\ ¢ + ¢ !\ ¢ = 2¢ !\ ¢ 
as matrices . 

( 1 8 .9) 

Note that if either ¢ or 1/1 is of even degree, then [¢ ,  1/1] , as a matrix ,  is the usual 
commutator, but using the wedge !\ as product. If both are odd, then [¢ ,  1/1] is the 
anticommutator 

[¢ , 1/1] = {¢ , 1/1 } := ¢ !\ 1/1 + 1/1 !\  ¢ 
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Consider, for example, a Riemannian manifold with locally defined connection forms 
(j). We may restrict ourselves to the use of orthonormal frames, in which case w takes 
values in <L(n)  = M(n ) .  Thus when employing orthonormal frames, w is a skew 
symmetric matrix of forms and of course dw is also. But why should w 1\ w be a skew 
symmetric matrix? It is because w 1\ w is in fact the same as 1 /2[w , w] ! This shows 
that curvature e can be written 

1 e = dw + 2: [w , w] 

and of course is M (n) -valued. Likewise, the second Bianchi identity 

de + w 1\ e - e 1\ w = 0 

again makes sense in the Lie algebra setting since it says 

de + [w ,  e] = de + w 1\ e - (_ I ) l o2e 1\ w = 0 

18.lc. Connections in a Principal Bundle 

( 1 8 . 1 0) 

( 1 8 . 1 1 )  

In Section 1 7 .3 ,  a crucial role was played b y  the notion of a connection i n  the principal 
bundle of frames to a Riemannian surface. Now we develop this machinery for the case 
of the principal bundle of frames of sections of an arbitrary vector bundle. 

Let E be a real or complex rank-K vector bundle over a manifold Mn , the structure 
group being a Lie group G .  Thus the transition functions cu v (x ) are linear transfor
mations of ]R.K or CK into itself. 

To say that G is the structure group means, effectively, that there is in each trivializing 
patch U of M a distinguished collection of frames of sections (e.g . ,  orthonormal), which 
we may call G frames , and such that any two such frames eu and ev in an overlap u n  V 
are related by ev = eu g for g E G .  What do we mean then by a G connection? 

Let {wu } be a connection for this vector bundle. If eu is a G frame of K sections 

Veu = eu 0 wu = euwu 
where w�fJ = wffJ (x)dx i is a matrix of i -forms on U .  Let C be any curve in U and let 
f be a G frame at the single point C (0) . Parallel displace f along C.  

To say that w is a G connection is to  demand that the parallel displaced f is a G frame 
along all of C 

and this must be true for all curves C .  Let f be such a parallel displaced G frame. 
If we now write, along C,  

we have, as  in ( 1 7 . 1 5) ,  

f(t ) = eug (t )  

Y'f [ - I ( dX ) _ I dg ] - = f 0 g w - g + g -dt dt dt ( 1 8 . 1 2) 

Since the entire frame is parallel translated along a curve x = x (t ) in U ,  we must have 

_ I ( dX ) _ I dg g w dt g = -g dt ( 1 8 . 1 3 ) 
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where the term on  the right i s  an  element of �. Then the first term 

g- l W (��) g ( 1 8. 14) 

is also in �, and since Lg- 1 * 0 Rg* certainly sends � into itself we have 

w (��) E � 

Thus to demand that w is a G connection is to require that Wu is a �/ -valued 1 101"1rl 
on U .  

O f  course the curvature i s  then also � -valued. 

1 

Under a change of frame 

eu = dwu + 2: [wu , wu ] 

ev  = eucu v 

- I  + - I d Wv = cu vwucu v cu v Cu v 

( 1 8 . 1 5) 

( 1 8. 1 6) 

The transformation rule for e was exhibited in (9.4 1 )  for the tangent bundle; the proof 
here is the same. 

Consider now the principal bundle P of frames of sections of the vector bundle E.  
This fiber bundle has for fiber F the structure group G and the transition functions Cuv 
are the same as for E; now, however, they operate on G by left translation, 

g E G is sent to cu v (x)g 

We now define the connection forms w* in P ;  these are �-valued I -forms on P rather 
than M .  The local frame eu of sections of E can be thought of as a section of the bundle 
P over U .  For a point f E P over the point x E U we can write 

f = eu (x)gu (x ) 

for a unique gu E G .  From ( 1 8 . 1 2) we are encouraged to define 

w� (x , gu ) := gi / n*wu (x)gu + gi / dgu 

( 1 8 . 1 7) 

( 1 8 . 1 8) 

which is the nonabelian version of ( 1 7 . 1 7 ) .  We usually omit the n *  coming from 
n : P ---+ M.  

The local section eu  of P over U gives u s  a local product structure U x G for n- 1 U ; 
in fact ( 1 8 . 1 7) assigns to the point f in P the local "coordinates" x in U and gu in G. 
A tangent vector at (x , g u )  in P is a velocity vector (dx j d t ,  dgu j d t) to some curve in 
P .  gr j' n *wugu applied to this velocity vector yields gr /wu (dxjdt)gu , an element of 

�. grj' dgu applied to this same velocity vector yields gij' dgu (dgu jdt) = gu l dgU jdt , 
which is again an element of 3/ . Thus wi; is a local 3rvalued I -form on P .  Both termS 
in wi; depend on the choice of section eu . 
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Theorem (18.19): In n - I  (U n V) we have wlj = w� and thus {wlj } defines a 
global lJ' -valued I -form w* on the principal bundle P.  

(In P we may then consider the distribution of  n -planes transversal to  the fibers, defined 
by w* = O. This distribution is called the horizontal distribution, reminiscent of 
that appearing in the tangent bundle discussed in Section 9.7 .  Many books take this 
distribution as the starting point for their discussion of connections .)  

P R O O F : See Problem 1 8 . 1 (2) . 
We then define the global lJ' -valued curvature 2-form e * on P by 

1 e* : = dw* + - [w* , w* ] 2 
= dw* + w* /\ w* 

( 1 8 .20) 

Note that unlike in the case of a tangent bundle of a surface (where the group G 
was abelian) we cannot expect e * to be globally exact or even closed! 

Of course we also have local curvature forms eu = dwu + Wu /\ Wu = 
dw + ( 1  /2) [w , w] on M from the vector bundle connection. As in (9.39) one can 
show 

( 1 8 .2 1 )  

Problems 

18.1 (1 ) Exh ib it the left i nvariant and the r ight invariant 1 -forms on the aff ine group of 
the l ine (Example ( i ) ,  Section 1 5 . 1 )  by means of g-1 dg and dgg-1 . 

18.1 (2) Prove ( 1 8 . 1 9) .  (At a g iven f E ][- 1  (U n V) , f = eugu = e vgv ,  e v  = eucu v . and 
so on.  Use the transformation rule ( 1 8 . 1 6) for the vector bundle. )  

18.2. Associated Bundles and Connections 

What does i t  mean to take the covariant derivative of ,Jg? 

18.2a. Associated Bundles 

Let P be a principal bundle over Mil with fiber = group = G, and with local transition 
matrices Cu v : u n  V � G.  Let p : G --+ Gl (N)  be some representation of the 
structural group G ;  thus each p (g) is an N x N matrix operating on iff and p is a 
homomorphism 

p (gg') = p (g)p (g') and p (g- I ) = [p (g)r l 
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(For example, w e  may represent G = U ( 1 ) a s  a subgroup o f  GI(2) b y  putting P (ei9) :::: 
diag(e1e , eM) . ) 

We then define a new vector bundle :rr : Pp � Mil associated to P through the 
representation p, with fiber eN , by making identifications in U x eN and V x eN 

(x , 1/rv ) � (x , 1/ru ) iff 1/rv = p (cvu (x» 1/ru 
Thus we construct a new vector bundle by simply using the new transition matrices 
p (cu v ) rather than cu v . 

We frequently have the following situation. Let E be a vector bundle :rr : E � AI
with transition functions 

cu v  : u n  V � G c GI (K )  

each C u v  (x) being a K x K matrix .  Thus in :rr - I (U  n V )  we  are identifying (for Yu 
and yv K-tuples of real or complex numbers) 

(x , yv ) � (x , yu ) iff yv = cvu (x) yu 
We may then form the principal frame bundle P over M by considering the K-tuples 
of local independent sections e� (p) : =  <Du (p ,  e.a ) ,  as in Section 1 6 . 1 c, and the general 
frame over U i s  of the form f = eu gu . Recall then that in an overlap we have ev = 
eucu v and so f = eugu = evgv = eucuvgv , showing that gu = cuvgv . Thus the 
principal frame bundle of K-tuples of sections of E again has transition functions Cuv . 
which now act on G by left translations .  If now p : G � GI(N)  is a representation 
of G we may form the vector bundle Ep :=  Pp associated to P through p , which has 

transition functions p (cuv ) ,  and we may say that E and Ep are also associated through 
the representation p .  

Example 1 :  E is  the tangent bundle t o  M "  and r *  : Gl(n ) � Gl(n) i s  the representation 
r * (g) = g* := (g- I ) T .  The old transition matrices are Cvu  = Bxv /Bxu and the 
associated functions are r * (cvu )  = ct u = [Bxu /BxvV .  Thus we are making the 
identification 

T . 

ar = [ Bxu ] 
ay = ay [ BXy ] 

Bxv ij Bxv 
and Er i s  thus the cotangent bundle! In general, if E is a vector bundle and r* is the 
representation r * (g) = (g - I ) T , then the associated vector bundle is called the dual 
bundle to E.  

Example 2: Let E again be the tangent bundle to  Mil . Let G = Gl(n) act on mixed 
second order tensors JR." ®JR./' as follows. Let r : JR./l � JR./l be the standard representation 
r (g) (v) i = gi j Vj and let r *  : JR./l. � JR.'" be the dual representation r * (g) (a )i == 
a j (g - I ) j i given in Example 1 .  Then G acts on mixed tensors, say v ® a in ]R" ® JRn" 
by the tensor product representation r ® r *  

(r  ® r * ) (g) (v ® a) : = r (g) (v) ® r * (g) (a) 
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where v = Br vr and Ci = asdxs .  The resulting bundle Er0r• is then the familiar bundle 
of mixed second-rank tensors on Mil . 

In a similar manner, essentially 

all the tensor fields considered previously were sections of vector bundles that were 

associated to the tangent bundle through some tensor product representation of the 
structure group of the tangent bundle or its dual! 

IS.2b. Connections in Associated Bundles 

A connection in a vector bundle E assigns to the patch U of Mil a � , -valued I -form 
{J)u , that is ,  a matrix of I -forms.  This matrix acts on a section, given by the K-tuple y, 
yielding a K-tuple of i -forms 

(wy) R  = wR syS = wJsysdxj 

We then have the covariant differential 

'\JuYu = dyu + WuYu 
and in each overlap 

'\Jvyv = cvu '\JuYu 

( 1 8 .22) 

Suppose now that we have a representation p : G � GI (N) of the structure group of 
E.  Since W is the tangent space to the manifold G at e and �,£ (N) is the tangent space to 
Gl(N) at p ee) = I , the differential p* yields a linear transformation p* : �' �  �,£ (N) . If 
S E W' the I -parameter subgroup generated by S is exp(tS) . Since p is a homomorphism, 
the image curve p [exp(tS) ] is a I -parameter subgroup of GI (N) ,  and so is again of the 
form exp(tY) for some Y E W£ (N) .  But the tangent to p [exp(tS) ]  at I is ,  by the 
definition of the differential , simply p* (S) , and so Y = p* (S) and 

p [exp(tS)]  = exp[tp* (S) ] ( 1 8 .23) 
For example, in the homomorphism p : U ( 1 )  � GI(2, q given by p (ei8 ) = 

diag(eie ,  e3i8 ) ,  i E lL( 1 )  gets sent into the 2 x 2 matrix p* (i )  = diag(i ,  3 i ) .  
In the homomorphism g � p eg) = r * (g) = (g- I ) T of  G into itself, exp (tS) gets 

sent into exp( -tST) ,  and so p* (S) = _ST . 
Let now Ep be the bundle associated to E through a representation p : G � GI(N) . 

We define an associated connection for E p by using as connection form in U 

( 1 8 .24) 
which is defined as follows .  Let X be a tangent vector to Mil . Then Wu (X) E �' and so 
P. [wu (X) ] E p* (W) = �l (N) . Then we define 

In particular 

[p*wu ] (X) : =  p* [wu (X) ] ( 1 8 .25) 

( 1 8 .26) 
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Theorem (18.27): {Qu } defines a connection/or the bundle Ep associated to E 
via the representation p .  

Before looking at  the proof we consider two examples . Let w be the connection form 
for the tangent bundle E = T Mil . 

Example 1' :  We have seen in Example 1 that the cotangent bundle is associated with 
the representation r * (g) = (g- I ) T .  We have also seen that p* (S) = _ST for all S E �. 
Hence Q = _wT is the connection form for the cotangent bundle, that is ,  Q j = - (r j l.  
Thus for covariant derivative w e  get 

which agrees with Equation ( 1 1 . 1 2) .  

Example 2' : As in Example 2, consider the vector bundle of mixed second-order tensors 
associated to the tangent bundle through the representation p = r 0 r * . For any 1 -
parameter subgroup g = e1s o f  G w e  have 

p (exp (S) (v 0 a) = (exp tSv) 0 (exp -tST a) 

and thus 
d 

p* (S) (v 0 a ) = dt 
[p (exp (S) (v 0 0') ] 1=0 = (Sv) 0 a - v 0 (ST a) 

We may write 

and then 

Thus 

Afjj = Bj Af + rfK Ar  - rfsA� 

which is the familiar rule ( 1 1 . 1 3 ) for the covariant derivative of a mixed tensor. 

P R O O F  O F  T H E O R E M  ( 1 8 . 2 7 ) : Let us put 

Pu v  := p (cu v ) 

for the transition matrices of the new bundle. We must show 

Now 

Qv (X) = pAwv (X) ] = p* [cu �wu (X)cuv + cu �dcu v (X)] 

Consider the two terms on the right-hand side. For brevity, let us write 

Wu instead of Wu (X) 

( 1 8 .28) 
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Now Wu E W is the tangent vector at e E G to a I -parameter subgroup g et )  : =  
exp (twu) . From the geometric meaning of  the differential (and using the fact that 
we are at a fixed point x E U) 

d p* (cu �wucu v ) = dt [p (cu �g (t )cu v  ) ] t=o 
which, since p is a homomorphism, 

d _ I = dt [P (cu v )p {g (t ) } p (cu v ) ] t=o 

_ I d 
= p (cuv ) dt [P {g (t ) } ] t=oP (cuv ) 

= p- I (cu v )p* (wu ) p (cu v ) = Pu� QuPu v  
Consider now the second term p* (cu�dcu v ) .  Let x = x (t )  be a curve o n  M 

having X as tangent vector at t = O. We then have a curve in the Lie group G 

cu �  (x (O) )cu v (x (t ) )  
that starts at  the identity with tangent cu �dcu v CX) 

d p. [cu �dcuv (X) ] = dt P [cu � (O)cuv (x (t ) ) ] t=o 

and we are finished. 0 

d 
= Pu� (O) dt [Pu v (x (t ) ) ] t=o = Pu�dpu v (X) 

From Theorem ( 1 8 .27) we have that the covariant differential for the associated 
bundle is then 

( 1 8 .29) 
and automatically 

'1V o/v = p (cvu )'1u o/u 
For covariant derivative 

( 1 8 .30) 
If we do not suppress the fiber indices 

'1j o/R 
= 8j o/R + (p*wjl so/s 

IS.2e. The Associated Ad Bundle 

We may let G act as a group of linear transformations on its own Lie algebra by 

( 1 8 .3 1 )  
for all Y E �/ . Thus 



486 C O N N E C T I O N S  A N D  A S S O C I A  T E D  B U N D L E S  

and one checks immediately that this is a representation of G ,  called the adjoint 
representation. The subgroup Ad(G) c GI(�) is called the adjoint group of G. 

For example, when G is abelian (e.g . ,  the n-torus), Ad(G) reduces to the single 
identity transformation; this follows immediately upon differentiating with respect to t 
the relation gelY g- l = elY .  In Chapter 1 9  we shall see that Ad(SU (2)) is isomorphic 
to the group SO (3) . 

Since Ad : G ---* GI(�1 '  its differential a t  the identity takes � into the tangent space 
at 0 to the vector space �" , �l (�1 '  that is, all l inear transformations of � 

Ad. : � ---* l inear transformations of �' into itself 

and we can compute this  as follows. 
Take the curve ( I -parameter subgroup of G)  g (t ) = elx starting at the identity of G.  

This yields the I -parameter group of  l inear transformations of  � given by 

Adelx (y) = elxYe-lx 

The tangent vector to this curve in � ,  at t = 0, i s ,  when translated to 0, 

ad X(Y): = [X.Y] 
is the translate of ;)\-etxYe- tX l t=o  
to  the origin 0 of 3 

Figure 1 8. 1  

Let us write ad(X) for the linear transformation �/ ---* �/ given by  Y ---* [X, YJ . 
Thus Ad. (X) = ad (X) = [X, J 

Recall that a I -parameter group h (t) has an infinitesimal generator S such that 
h (t ) = elS ,  and that S = h' (O) . Thus we have shown that for fixed X, the I -parameter 
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group Ade1X has infinitesimal generator S = ad(X) . I n  summary 

We can then write 

ad (X) : = Ad* (X) 
ad (X)Y : = [X, Y] 

Ad(e1x )y = [I + tad (X) + �>d(X)ad(X) + . . . ] y  
t2 

= Y + t [X, Y] + 2 ! [X, [X,  V] ]  + . . . 
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( 1 8 .3 2) 

( 1 8 .33)  

Returning to  a vector bundle E with structure group G and connection w, we can 
now consider the bundle associated to E through the adjoint representation Ad : G ---+ 
Gl(�) ; Ad(G) acts on the new fiber �/ . Then if E had transition functions Cu v , the 
Ad(G) bundle has transition matrices Adcu v  : �' ---+ � 

Adcu v (x )Y = cu v (x)Ycvu (x ) 
and connection 

Then the covariant differential and derivatives are 

V'y = dy + [w, y] 
V'jy = aj y + [Wj ' y] 

( 1 8 .34) 

( 1 8 .35) 

where y = {yu } is a section of the Ad bundle E Ad ; that is ,  each Yu (x ) E �/ and 
Yv (x) = cvu (x)Yu (x)cu v (x) 

Problems 

1 8.2(1 ) The cotangent bundle T* Mn has transition functions G vu = ( 8XU/8XV) T i n  
G = GI (n; lR) . G acts on the 1 -d imensional vector space lR v ia the determinant 

representation det; g E G sends r E lR to det(g) r .  One may then consider the 
rea/ l ine bundle, the determinant l ine bundle, associated to T* M via det. 

( i) Show that any global ly defined exterior n-form on Mn can be used to define 
a cross section of th is new bundle .  

( i i )  I f  w i s  a connection form for the tangent bundle TMn (for example, the Levi
Civita connection for a Riemmanian M) show that -trw is the associated 
connection for the determinant bundle and thus the covariant derivative of 
a section r/> is g iven by 
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( i i i) I f  Mn i s  Riemannian , the volume n-form voln = ,J9dx i s  a pseudoform. Th 
volume bundle is the l ine bundle with transition functions c'

vu == I e I � 
I det(axu / a xv) l ·  { ,J9u l defines a global section of this bundle. Sho;�h � -trw is again a connection for this bundle and show that the section (v'§ a 
defined by the volume form is covariant constant! This is the interpretati�1 

of Equation ( 1 1 .28) ! 
n 

1 8.2(2) The tangent bundle to an orientable su rface has transit ion functions [ CaS e - sin e ] 
Cu v = sin e cos e 

when orthonormal frames are employed. Consider the representation 

p : S O(2) -+ U(1 ) 

defined by p (cu v) = eifl .  This defines an associated bundle; it is simply the 
tangent bundle considered as a complex line bundle. If (w jk) is the <'> 0(2) matrix 
of connection forms, show that iW21 is the connection for the associated line 
bundle. This agrees with ( 1 6 .29) .  

18.3. r-Form Sections of a Vector Bundle : Curvature 

Where do the curvature forms l ive? 

18.3a. r-Form Sections of E 
In this section we general ize the notion of a (tangent) vector-valued r-form that played 
such an important role in Cartan 's method in Section 9 .3  and following. 

An r-form section of a vector bundle E over Mn is by definition a collection of 
r-forms {</Ju } ,  </Ju defined on the patch U C M and having values in the fixed fiber CK 
or IR. K of E, such that in an overlap 

</Jv = cvu</Ju 
that is, ( 1 8 .36) 

</Jv (v " . . . , vr ) = cvu (X )</JU (V l , " "  vr ) 

for all tangent vectors v ,  , . . .  , V r to Mil at x E U n V . (Thus, if V I , . . .  , V r are sections 
of the tangent bundle T M, then {</Jv (v ,  , . . .  , V r ) }  defines a section of the bundle E !) 
Each </Ju is simply a column of local r-forms 

</Ju (x) = [</J� (x ) ]  = [</Jb (x) ,  . . .  , </Jt (x)f 
A, R  A, R  d I A, R  ( )d ; , d i, 'l'U = 'l'Ul x = 'l'Ui , < · · · < i, X x /\ . . .  /\ x 

We define the exterior covariant differential of </J (generalizing (9.29» , V</J, to be the 
collection of r + I forms 

that is ,  ( 1 8.37) 
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(Recall that W j = W (8 j ) E �/ i s  a matrix)_ Note that this merely says 
('17 </» R = d</> R + wR S /\ </>s 

It follows, as  usual , that V</> is an (r + I )-form section of E ,  that i s ,  

'I7</>v = cvu 'l7</>u 

that is, we have covariance. Note that W is the connection for E, not TM ! 

18.3b. Curvature and the Ad Bundle 
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( 1 8 .38) 

We know that the local curvature forms eu = dwu + � [wu , wu ] of the vector bundle E 
are �rvalued 2-forms, that is , matrices of forms .  These local �rvalued forms, however, 
do not fit together to yield a global form; rather, they transform as ev = cv u eu cv� 

ev = Ad (cvu )tlu ( 1 8 .39) 
Thus 

Theorem (18.40) : The collection of local curvature forms {eu } fit together to 
give a global 2-farm section afthe Ad(G) bundle! 

(To exhibit curvature as an N -tuple rather than a matrix, one introduces a basis {ER } 
of the Lie algebra and writes e = 2:: ERe R _ )  

Consider the exterior covariant differential of  e in the Ad bundle associated to E .  
LeU = (i l < i2 ) ,  K = (k l k2k3 ) ' Then el E �/and we  have 

I . I ('I7e ) K = 8� { aj el + Ad*wj (el ) } = 8� { aj el + [Wj , el ] }  = deK + [w , e l K  

from ( 1 8 . 5') .  Thus 

'I7e = de + [w , e] = de + W /\ e - (- 1 ) 2e /\ W 

and since e = d W + H w, w] = d W + W /\ W , we have again 

'I7e = 0 (Bianchi identity) 

In general, for any p-form section of the Ad (G) bundle 

'17 FP = dF l' + [w , FP ] = dFP + W /\ FP - ( - I ) P FP /\ W 

( 1 8 .4 1 ) 

( 1 8 .42) 
A p-form section of the Ad bundle will be said to be a p-form of type Ad(G) .  

Physicists traditionally do  not deal with exterior forms and thus they are forced to 
exhibit the space-time tensor indices . On the other hand, they usually suppress the Lie 
algebra index. For a I -form F l they would write 

('17 F l ) jk = aj Fk - ak Fj + [Wj , Fd - [Wb Fd 

and for a 2-form ('17 F2)ijk = 8Utl (ar F'1 + [W,. , Fs1 D , that is , 

('17 F2) ijk = a; Fjk + ak Fij + aj Fki 

+ [Wi , Fjd + [Wb Fij ] + [Wj , Fki ] 

( 1 8 .43) 

( 1 8 .44) 
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Problems ------___ ---
1 8.3(1 ) Show that for any p-form of type Ad( G) 

V2 1/1 = vV1/I = [e , 1/11 ( 1 8.45) 
1 8.3(2) Let ¢ P  and 1/I q  be form sections of an Ad(G) bundle, associated to a vect 

bundle with transit ion 
.
matrice

.
s cu v .  Assume that G is a matrix group (i.e, ,� 

subgroup of G I ( N» . S ince G IS a subgroup of G I (N) ,  each Cu v(x) is a matri 
in G I ( N) and we may th i nk  of ¢ and 1/1 as form sections of the AdGI ( N) bundl x 
Th ink  of them , as usual , as col lections of local ly defined matrices {¢u} ,  {1/1 } � 
forms. Then ¢u /\ 1/Iu is a local matrix of ( p + q) -forms, and though its vaYues 
need not be in �" they wi l l  be in W(N) ,  which is s imply the space of al l  N x N 
matrices. Show that ¢ /\ 1/1 is a ( p + q) -form section of the associated AdGI(N) 
bundle and show then that ( 1 8 A2) yields the Leibn iz ru le 

V (¢ /\ 1/1) = (V¢) /\ 1/1 + (- 1 ) p¢ /\ (V1/I) 

I n  particu lar, for any exterior power of the curvature form 

v (e /\ e /\ . . .  /\ e) = 0 

( 1 8.46) 

1 8.3(3) Show that if ¢ is a p-form section of an Ad G bundle then tr¢ is an ordinary 
exterior p-form on M. 

1 8.3(4) We have seen in  Section 1 7 . 1  c that g iven a constant 9 E G there is a right 
action of 9 on the principal bundle ;  local ly it was defined in  "coordinates" by 
gu ---+ gu g, and then it was shown that this was compatible with the bundle 
structu re. One cannot get a left action by this process; however, we can do the 
fol lowing.  Consider G-valued functions hu : U ---+ G on each trivial ization patch 
U c M. Let hu act on n - 1  ( U) of the principal bundle P by 

( 1 8 .47) 
Show that these local actions fit together to g ive a global transformation of P 
i nto itself provided 

( 1 8.48) 

Thus we have the fol lowing .  Consider the fiber bundle associated to the prin
cipal bundle P, whose f iber is again G but where G acts on itself not by left 
translation ,  but by the adjoint action, adjointg : G ---+ G, of G on G (not on � 

adjointg (g') := gg'g- 1  ( 1 8.49) 

This bundle is cal led the gauge bund le .  Thus the left action (18.48) is globally 
defined provided { hu }  defines a cross section of the gauge bundle. The left 
action is again cal led a gauge transformation ,  but we shal l  not discuss here 
the re lation with the gauge transformations of Section gAb. We do not claim 
that any such section other than h = e exists for a g iven bundle P. 
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The Dirac Equation 
-

Spin is what makes the world go 'round. 

19.1 .  The Groups SO(3) and SU(2) 

How does SU(2) act on its Lie algebra? 

FOR physical and mathematical motivation for thi s  section (which involves nonrel
ativistic quantum mechanics) we refer the reader to some remarks of Feynman and 
of Weyl . Specifically, Feynman [FF, pp. 8, 9 ] ,  in his section entitled "Degeneracy," 
shows that a process involving a specific choice of direction in space requires that the 
process be described not by a single wave function 0/ but rather by a multicomponent 
column vector of wave functions \II = (0/" . . . , o/N ) T . He then indicates [pp .  9-1 2] ,  
roughly speaking, that since the physics cannot depend on  the choice o f  cartesian 
coordinates (x ' ,  x 2 ,  x 3 ) of space, the N -tuples must transform under some represen
tation p : S O (3) --* U (N)  of the rotation group S O (3) of space. This i s  not quite 
accurate; since eiy \II represents the same wave function (when y is a constant) , p is 
only a "ray" representation, p (g)p (h)  = eiy (g , h )  p (gh) for a function y (g , h) .  Weyl 
[Wy, p. 1 83] shows that this can be made into a genuine representation, except that 
it is (perhaps) double-valued. We shall show in this section that there is a natural 
2 :  1 homomorphism Jr of the special unitary group SU (2) onto S O (3) , thus yield
ing a (perhaps double valued) representation of S U (2) into U (N) . An argument of 
Weyl [pp. 1 83-4] indicates that a multiple-valued representation of a simply-connected 
group is actually single-valued. We have seen in Section 1 2 .2  that S O (3)  is not sim
ply connected, but we shall show in Section 19 . 1 c  that SU (2) is simply connected, 
and thus the wave vectors \II transform via a true representation of the "covering 
group" SU (2) of S O (3 ) .  The relationship with "spinors" will be discussed in  Sec
tion 19 .2. 

A concrete physical example (the Stern-Gerlach experiment) is discussed by 
Feynman in [F, L, S ,  vol . III, chap.  6] . 
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19.1a. The Rotation Group SO(3) of IR3 
Rotations of IR3 about the z axis form a I -parameter subgroup 

for some E3 E �A}-<3) . Then 

- sin e 0 ] 
cos e 0 = exp e E3 

o 1 

E3 = � eXP e E3 ] = � R (e )] de e =o de e =o 

[
0 - 1  0 ] 

= 1 0 0 
0 0 0 

and likewise for E I and E2 • We use as a basis for ��3) 

[ 0 0 0
] EI  = 0 0 - 1  , 

o 1 0 
E2 = [ � � � ] , 

- 1  0 0 
E3 = [ ! -� �l ( 1 9. 1 ) 

For Lie algebra, we compute 

that is ,  

[Ei , Ej ] = L Eijk Ek 
k 

and then these are the structure constants of S O (3)  

( 1 9.2) 

Consider now a I -parameter group of rotations with angular velocity w, w = dB / dt .  

x 

Then 

Figure 1 9. 1  

dr ] - = w x r(O) dt 1=0 

r 
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On the other hand, this I -parameter subgroup i s  of the form 

R (t) = etS 

for some skew symmetric matrix S, and so ret )  = R(t )r(O) = et Sr(O) 

and we conclude that 

dr ] 
= Sr(O) 

dt t =O 

S(r) = w x r 
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Note in particular that the skew symmetric matrices E" E2 , and E3 are simply the 
matrices of the linear transformations 

Ej (r) = ej x (r) 

where {ej } is the standard basis of lR? Then we can write symbolically 

R (t)  = exp(Ej u) t )  = : exp(E . wt )  

in this case of  constant angular velocity. 

( 1 9 .3) 

In terms of an angle of rotation, e = tde /dt , and the unit  vector n along the axis w, 

R (e)  = exp(eE . n) ( 1 9.4) 

represents a rotation through an angle e about an axis with unit normal n. 

19.1b. SU(2) : The Lie Algebra ,:HL(2) 

.uL(2) = � consists of skew hermitian matrices with trace O. Then i� is the vector space 
of hermitian matrices with trace 0, to be considered as a real 3-dimensional vector 
space ( i .e . ,  it is closed under multiplication by real numbers). A basis for i�is given by 
the Pauli matrices [ 0  -i ] 

U2 = 
i 0 ' ( 1 9 .5) 

For example, exp(eu3 / i )  = exp diag (-ie ,  i e ) = diag(e-ili ,  eili)  describes a complete 
I-parameter subgroup of S U (2) for 0 :s e :s 2rr . Note that the commutation relations 
are given by 

( 1 9.6) 

which is the same as for SO (3) if one uses Uj /2i as new basis for � = �u(2) .  We shall 
Soon see that SU (2) i s  simply connected. Lie group theory states that there is  then a 
homomorphism from S U (2) onto S O (3 ) .  (These groups are then locally "the same": 
The proof is an application of the Frobenius theorem.) We shall exhibit the classical 
homomorphism 

Ad : SU (2) -+ S O (3) 

Thus we claim that 

the adjoint representation Ad (g)Y =gY g - l  of S U (2) on its 3-dimensional Lie alge
bra .llL(2) yields (see Theorem (19. 12)) the standard representation of S 0 (3)  on lR? 
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We start out by  looking more carefully at the Lie algebra �.tI.(2) = �. � and i are 
to be considered as 3-dimensional vector spaces over real coefficients ; i� has a gasi 
given by the a 's and {aa / i }  give a basis for �/. Define a map 

s 

* : ffi.3 ---+ i� X 1-+ x* 

R [ z x* = X ·  a = x aR = x + iy 
x - iY ] 

-z 

( 19 .7) 

This linear transformation maps ffi.3 onto the space of traceless hermitian matrices and 
has inverse given by 

( 1 9.8) 
Under the map* 

el = ( 1 , 0, O) T  1-+ al 

We shall use * to identify points x* in i�, (i. e. , hermitian traceless matrices) with 
points x offfi.3 . 

From 

and 

tr(aj ad = 0 if j =f:. k 
we see that if we define a real scalar product in i�, by 

( h ,  h ' ) : =  tr(hh') 
then the Pauli matrices form an orthogonal basis (of lengths .J2) . 

( 1 9.9) 

Recall that every Lie group G acts on its Lie algebra �/ by the adjoint action 

Ad(g) (X) = gXg- 1 
for all X E �. Each Ad (g) is a linear transformation. 

In our case we consider instead the action of S U (2) on the hermitian traceless 
matrices i�/ and we shall still call this Ad. Ad(u) is the linear transformation Ad(u) : 
i�, ---+ i� 

u E SU (2) sends x* E i�J' into ux*u - 1  
For each 2 x 2 u E S U (2) w e  are associating a 3 x 3 matrix 

Ad(u) : ffi.3 ---+ ffi.3 

( 19. 10) 

using the identification * of ( 1 9 .7 ) .  Note that Ad is a representation of SU (2) by 3 x 3 
matrices , 

Ad(uu') (x* ) = uu'x* (UU,) - 1 = Ad(u) 0 Ad(u') (x* )  
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Note further that 

(Ad(u)x" Ad(u)x, ) = tr(ux,u- I ux,u - I ) = tr (x,x, ) 
= (x" x, ) 

495 

and so Ad is a representation of SU (2) by orthogonal 3 x 3 matrices. We claim that 
these matrices also have determinant + 1 .  To see this (and more) we shall discuss the 
topology of S U (2) .  

19.1c. SU(2) I s  Topologically the 3-Sphere 

The usual ("fundamental") representation of S U (2) is by 2 x 2 complex unitary matrices 
with unit determinant 

We shall show that S U (2) is topologically the 3-sphere S3 . S3 can be pictured as the 
set of unit vectors in C2 � �4 

Note that S U (2) : S3 ---+ S3 ; this is the meaning of being unitary. Note further that S U (2) 
acts transitively on S3 , for ( I , 0) T E S3 can be sent into a generic point (z I ,  Z2) T E S3 
by 

u = [ Z I  Z2 -�2 ]  E SU (2) Z 1  ( 1 9 . 1 1 )  

(In fact, the second column is the unique vector in C2 that is hermitian-orthogonal to 
(z 1 , Z2 ) T and is such that det u = 1 . ) 

From ( 1 7 . 1 0) we know that topologically 

3 SU (2) 
S � --H 

where H is the stability subgroup of the point ( 1 , 0) T .  But, as we see in ( 1 9 . 1 1 ) , H is 
simply the 2 x 2 identity matrix I. Thus 

SU (2) � S3 

topologically. In fact we have seen that the correspondence S U (2) ---+ S3 is given 
simply by sending the matrix u into its first column 

u 1-+ (U I 1 '  U 2 1 ) T 

In particular S U (2) = S3 is connected. Since Ad (u ) is an orthogonal matrix, 
det Ad (u) is ± 1 .  Since it is continuous in u and always ± 1 on the connected S3 we see 
that the determinant is + 1 .  Thus Ad (u ) E S O  (3) 

Ad : SU (2) ---+ S O (3) 
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19.1d. A d  : SU(2) � SO(3) in  More Detail 

Theorem (19.12): The representation Ad : 5U (2) ---+ 5 0 (3)  given in (19. 10) 
is onto; that is, every rotation in JR.3 is of the form (19. 10). Furthermore th O , IS representation is 2: 1 ;  that is, for each rotation R there are exactly two matrices 
±u E 5U (2) such that Ad(±u) = R. 

P R O O F :  Let u (t )  be a I -parameter subgroup of 5U (2) ; it is of the form u (t) ::: 
eth/ i , where h is a hermitian 2 x 2 matrix. This produces a I -parameter subgroup 
of 50 (3) under our identification of i�"with JR.3 ( i .e . ,  x. � x) 

Adu (t )x '" Adu (t)x. = e-i thx.ei th 

The velocity vector at x E JR.3 is given by 
d d -i th i th . 

dt Adu (t)x. l t=o = d/ x.e I t =O = -I [h , x.] 
= - i [h jaj , x

k
ad = -ihj xk [aj , ad 

. k I = 2hJx tjklal � 2(h x x) af 

The angular velocity vector of the I -parameter group Adu(t )x in JR.3 is then 
w = 2h , and from ( 1 9 .3 ) 

Ad exp ( T . ht) x. '" R (t )  = exp(E . 2ht)x 

We have just verified that 

and this is not very surprising considering the remarks after ( 1 9 .6) .  

( 19. 13) 

( 19 . 14) 

For example, as we have seen, the vector h = (0, 0 ,  l ) T , that is ,  h = a3 , 
generates the I -parameter subgroup of 5 U (2) 

and this corresponds, under Ad, to the I -parameter subgroup of rotations of JR.3 
(see Problem ( 1 5 .2( 1 ))) 

cxp 28 E, � cxp [ 2� 
-2() 0 ] [ COS 2() 

° 0 = sin 2() 
o 0 ° 

- sin 2() 0 ] 
cos 2() ° 

o 1 

Note that exp«()a3 / i )  describes a simple closed curve in 5U (2) for ° ::: () ::: 2rr , 
and exp(2() E3 ) yields two full rotations in this same () range ! 

Since every rotation of JR.3 is a rotation about some axis, that is ,  is of the form 
R = exp(E . w() , we see from ( 1 9 . 1 3) that Ad exp(a/2i o w() = R,  and Ad i s 
indeed onto . 

It is immediate that if Ad(u) = R then Ad(-u)  = R also, so that the Ad 
representation is at least 2 : 1 ;  that is ,  i t  i s  not faithful. It i s  an elementary result 
of group theory that 
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If t/J : G � G' is a homomorphism of G onto G' ,  then G' is isomorphic to the coset 
space G / H , where H = (p- I (e') i s  the kernel . 

This is basically our "fundamental principle" ( 1 7 . 1 0) ,  for G acts on G' by 
(g, g') J--+ ¢ (g )g' and the stability subgroup of e' E G' is the kernel H = ¢- I (e') . 
In our case we need to know that the kernel of the Ad homomorphism consists 
precisely of the two 2 x 2 matrices ±! ;  we will then know, from ( 1 7 . 1 1 ), that 
sU (2) i s  a fiber bundle over S O (3) with fiber always consisting of exactly two 
points ±u .  This should not surprise us since topologically SU (2) is S3 , S O (3)  
is the projective space lRp3 , and lRp3 results from S3 by identifying pairs of 
antipodal points ! 

Look then for those special unitary u such that Ad(u) is the identity rotation 
in Il�? We thus need ux.u - I 

= x. , for all hermitian x. with trace O. In particular 
a - I U(Ja = u ,  for each Pauli matrix.  Writing u in the form ( 1 9 . 1 1 ) and putting a 
a == 1 will show that Z I must be real . Putting ex = 3 will yield that Z2 = O. Thus 
u must be of the form ±! ,  as desired. D 

19.2. Hamilton, Clifford, and Dirac 

Why is it that a full rotation is something whereas two full rotations is nothing? 

19.2a. Spinors and Rotations of lR3 
We saw in the last section that there is  a representation of S U (2) as a group of rotations 
of �3 

Ad : SU (2) � 5 0 (3) 

exp (� . Ae) J--+ exp(E . Ae)  
( 1 9 . 1 5) 

for any A = (A I , A2 , A3 ) ,  and that the mapping Ad is exactly 2 :  1 .  Thus to a rotation 
Of �3 about an axis  given by a unit vector A through an angle e radians one associates 
two 2 x 2 unitary matrices with determinant 1 ,  

exp [� . Ae ] and exp [� . A(e + 27T )] 
In other words, S O  (3) not only has the usual representation by 3 x 3 matrices, it also 
has a double-valued representation by 2 x 2 matrices acting on ((:2 . 

The complex vectors (0/ 1 , 0/2)
T E ((:2 on which 5 0 (3 )  acts in this  double-valued way 

are called (2-component) spinors. Mathematicians do not like double-valued any things; 
they prefer to say that S U (2) furnishes naturally a spinor representation of the 2-fold 
COver of 5 0 (3 ) .  When SU (2) is thought of as the 2-fold cover of S O (3) ,  it is called 
the spinor group Spin (3) .  

The topological reason that 5 0 (3)  can admit a nontrivial double-valued representa
tion is that S O  (3) is not simply connected. The reasoning is very much like that used 
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i n  complex function theory when showing that a region in  the complex plane sup 
ing a multiple-valued analytic function cannot be simply connected. The I _param

P<>neter subgroup of S O (3) 
- sin e O� l 
cos e 

o 

for 0 � e � 277: is a closed curve C in SO  (3) = JR p3 . 

Figure 1 9.2 

This curve can be deformed into the curve A of Section 1 3 .3b, Example (5), and this 
curve cannot be shrunk to a point. This subgroup is generated by E ·  A = E3 . It is 
covered in the group S U (2) by the portion of the I -parameter subgroup generated by 
(j /2i • A = a3/2i 

( 1 9. 16) 

for 0 � e � 277: . This is not a closed curve in S U (2) since it starts at 1 and ends at 
- I .  Of course, if we make 2 complete rotations in JR3 , this I -parameter subgroup in 
SU (2) that covers it will be a closed curve on SU (2) = S3 . This curve on S3 can be 
shrunk to a point (why?), and by "projecting down" we can use this to shrink the curve 
representing 2 ful l  rotations of JR3 to a point. 

In this way one can distinguish between afull rotation (which of course brings every 
point ofJR3 back to its original position) and two full rotations ofJR3 about an axis! 

This truly mysterious fact can be experienced on at least three different levels. We shall 
mention two manifestations here; after discussing the Dirac equation we shall discuss 
the significance for particle physics. 

The two remarks to follow are related to the topological fact that the closed curve A 
in  SO  (3) has the property that it cannot be shrunk to a point, whereas any even multiple 
of it can be. 
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1. Physiologically. This  is the old "waiter with a platter" trick ; see Feynman 's  treatment in 
[F, W, p. 29] . 

2. Mechanically. (This interpretation was given by Weyl . )  We are going to show that the 

closed curve in 5 0 (3) described by rotating a rigid body twice about an axis through a 
given point 0 of the body can be deformed into the point curve representing no rotation 

at all .  Consider a mathematical cone in space, vertex at 0, with axis always the z-axis, 
and with (half) opening angle a. Consider another mathematical cone, congruent to the 
first, but this time fixed in the body with vertex at O .  Move the body so that the body 
cone rolls around the space cone. 

Figure 1 9.3 

If the opening angle a is very small, then on looking down on the space cone one 
can see that when the body cone has come around to its original position, the body has 
made approximately two full revolutions about the z axis,  and as a tends to 0 the body 
rotation tends exactly to two revolutions. On the other hand, if we use an opening angle 
ex that is almost n /2, then the cones are very flat and the body cone will be seen to 
wobble, with hardly any rotation at all, and in the limit as a ---+ n /2 the body remains 
motionless ! Thus, when using a as a deformation parameter, the curve representing a 
rotation through 4n radians about the z axis (a = 0) can be deformed into the point 
curve representing no rotation (a = n/2) . 

See also the picture in Wald's book [Wd, p. 346] . 
For an application to rotating electrical machinery you may read about an invention 

of D. Adams in the article [Sto] . 

19.2b. Hamilton on Composing Two Rotations 

The relation ( 1 9 . 1 5) is a powerful tool for investigating the product of two rotations . 
This is a consequence of the fact that that the Pauli matrices satisfy very simple product 
relations 

( 1 9 . 17 )  

(0', ) 2 = (0'2 ) 2 = (O'3? = I 
The infinitesimal generators Ej of S O (3)  satisfy nothing like this ;  for example, (E , ) 2 = 
diag(O,  - 1 , - 1 ) .  From ( 1 9 . 1 7) one gets not only the commutation relations ( 1 9.6) but 
also the anticommutator 2 x 2 matrices 

( 1 9. 1 8) 
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In Problem 1 9 .2( 1 )  you are asked to use the commutation and anti-commutation for
mulas to show the following. For any pair of vectors A,  B in  JR.3 

(CT . A) (CT . B) = (A . B) l  + i CT . (A x B) ( 1 9. 1 9) 
and if A is a unit vector 

For unit A 

( 19.20) 

corresponds, as we know from ( 1 9 . 1 5) ,  to a rotation R 1 of JR.3 about the axis  L ej Aj 
through an angle of e radians .  Let B be another unit vector with corresponding rotation 
R2 • Show 

RI R2 = exp (� . Ae) exp (� . B4» 

[ e ¢ ( . e . ¢ ) ] 
cos "2 cos "2 - sm "2 sm "2 A ·  B 1 

- I CT ' sm -cos - + cos - sm - + sm - sm - x . [ . e ¢ A  e . ¢ B . e . ¢ (A B)] 2 2 2 2 2 2 

( 1 9.2 1 ) 

This expression (via ( 1 9 .20» exhibits explicitly the (cosine of) the rotational angle and 
then the axis for the rotation R 1 R2 . 

The expression ( 1 9 .2 1 ) was known to Hamilton in terms of his quaternions rather 

than Paul i  matrices . We shall discuss the relation between these "algebras" next. For 
more information and nice pictures see the chapter on spinors in [M, T, W] . 

Finally note that we have mentioned before that the exponential map exp : W -+ G 
is onto in the case of a connected compact group such as S U (2) . Thus 09.20) shows 
that every u E SU (2) can be written in the form 

u = a l + iCT ' C  
where a2+ II C 1 1 2 = 1 . This expression is unique since a l  is real and iCT ' C is skew 
hermitian. 

19.2c. Clifford Algebras 

Let us abstract some of the properties of the Pauli matrices that will be important for 

generalizations .  We shall be very informal . 
First note that 0"1 , 0"2 , and 0"3 span a 3-dimensional vector space V3 under addition and 

under multiplication by real scalars ; V3 is the space of trace-free hermitian matrices. 
In this vector space there is a quadratic form ( , ) given by half that in ( 1 9 .9) , that is, 
(h , h ' , ) = 0 /2) tr hh' ,  and then 

(O"j , O"d = gjk = Ojk 
Furthermore, there is a multiplication (in this case matrix multiplication) in V3 but 
V3 is not closed under this  multiplication. For examples, 0"1 0"1 = 1 is not in V3 and 
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0'1 0'2 = i0'3 is  not in V3 (i is  not real) .  Suppose that we now try to "close" this  system. 
We adjoin the new matrix e4 = 0') 0'2 and all its real multiples . Continuing, we define 
(in no particular order) 

From the anticommutation relations ( 1 9 . 1 8) ,  we see, for example, that e) e2 = -e2e J ,  
and so we needn't adjoin e2e ) . Note also that eg : =  e )  e )  = I also follows directly from 
(19. 1 8) .  We may now form the real 8-dimensional vector space with basis given by 
el • . . .  , eg . From ( 1 9 . 1 8) alone we see that this new real vector space is closed under 
products (e.g. ,  e7e )  = e) e2e3 e )  = -e l e2e l e3 = e] e) e2e3 = e2e3 = es) .  Note further 
that in a monomial expression (such as e7e ] )  any repeated basis element of V3 (such as 
el ) can be eliminated by using ( 1 9 . 1 8) ,  yielding an expression having two fewer basis 
elements . 

The vector space (of 2 x 2 matrices) of real l inear combinations of these e ' s  is 
8-dimensional and forms,  as can be verified, an associative algebra, that is ,  a vector 
space with a composition (called product) that is associative and is distributive with 
respect to addition. In fact, in this  case, this  8-dimensional vector space is s imply the 
algebra of all complex 2 x 2 matrices ! This algebra is generated by the Pauli matrices, 
and will be called the Pauli algebra. 

Definition (19.22) : If Cn is an associative algebra (over JR) with "unit" I ,  gen
erated by an n -dimensional vector subspace V" ,  if ( , ) is any real quadratic form 
on Vn , and if V" has a basis e ] , . . .  , ell sati sfying 

( 1 9 .23) 

where gjk : =  (ej , ek ) ,  then CIl = c ( vn ) is called the Clifford algebra generated 
by vn with the quadratic form (, ) . 

Note that we put no requirements on the quadratic form ( , ) ,  but of course the 
resulting Clifford algebra will depend on the choice of ( ,  ) .  For example, consider a 
Clifford algebra generated by an n-dimensional vector space V" with quadratic form 
( , ) identically O. Then we have ej ek = -eke) , for all j , k, and of course (e) ) 2 = O. The 
resulting Clifford algebra is simply the exterior algebra based on the vector space V" ! 

In general, as a vector space, Cn is generated by expressions of the form ei ej . . .  ek . 
Each (e) ) 2 is a mUltiple gjj of the identity, and thus commutes with everything. Also, 
as we have seen, we needn't  consider expressions containing a repeated basis vector e j .  
From ( 1 9 . 1 8) we need only consider expressions ei ej . . .  ek that are ordered, i < j < 
' "  < k .  It is then obvious that as a vector space ( i .e . ,  neglecting the product structure), 
the Clifford algebra c ( Vn ) i s  i somorphic to the exterior algebra A(Vn ) and thus has 
dimension 2" . 

For example, the Pauli  algebra, as a vector space, is isomorphic to the exterior algebra 
on JR3 with abstract basis given by 0'1 , 0'2 , and 0'3 , but of course the exterior product is  
far different from the product of Pauli matrices, that is ,  the "Clifford" product. 
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I n  an exterior algebra, the real coefficients, that is , the scalars o r  O-fonns, sp 
I -dimensional subspace. In a Clifford algebra, the scalar mUltiples of the "unit" I f� a 
a I -dimensional subspace that can be identified with the coefficient field R nn 

To form a Clifford algebra with generators e j , . . . , ell and quadratic fonn ( , ) ,  Vi 
simply consider all "formal expressions," ei ej . . . ek with i < j < . . . < k, and impo e 
the "relations" ( 1 9 . 1 8) .  It can be shown that the result is indeed a Clifford algebra. r.: 
us look at some examples . 

Co is the algebra over 1Ft with no other generators ; thus there are no e j ' s o Co ::: lR is 
simply the algebra of real numbers. 

Let V j be a I -dimensional vector space with basis e I ,  and quadratic form (e j , e j )  :::: 
- 1 . Form the 2-dimensional vector space with formal basis consisting of ej and a 
new vector "e j e j "  satisfying ( 1 9 .23) ,  (e I )

2 = (- 1 ) / . Thus we are adjoining to V j  a 
I -dimensional vector space to accomodate the scalars (i .e . ,  all real multiples of -1 ). 
The basis element e I will be called i ,  the element (ed2 will be identified with the 
real number - 1 ,  and the 2-dimensional vector space over lFt is simply the algebra of 
complex numbers a + bi ,  C j = 1::. 

Let V2 be a real 2-dimensional vector space with basis e j , e2 , and quadratic form 
(ej . ed = -Ojk . We write ej = j ,  e2 = k. We adjoin a I -dimensional vector space to 
accommodate the scalars j2 = k2 = (- 1 )  l .  We adjoin another I -dimensional vector 
space to house the new element i : =  jk = -kj (from ( 1 9 . 1 8)) .  Then ijk = i2 = jkjk ::: 
-jjkk = - / ,  which is not a new element. Thus we needn' t  adjoin anything else. C2 is 
Hamilton 's  4-dimensional algebra of quaternions a + bi + cj + dk. 

Let V3 be a 3-dimensional vector space with basis (}I . (}2 , (}3 and this time with scala. 
product ((}j ' (}k ) = +Ojk . We have discussed this case previously. Adjoining products of 
pairs (}j(}k satisfying ( 1 9 . 1 8) yields a I -dimensional space of scalars (e.g . ,  ()? = /) and 

a 3-dimensional space spanned by (}j (}2 = -(}2(} j ,  and so forth. Another I -dimensional 
vector space is adjoined to house i : =  (} I (}2(}3 . C3 is the Pauli algebra (but note our 
choice of scalar product) . 

19.2d. The Dirac Program: The Square Root of the d '  Alembertian 

We wish to emphasize that we are continuing to use our choice of metric in Minkowski 
space, 

that is, 

(gjk ) = (1]jk ) : =  diag(- l ,  + 1 ,  + 1  + 1 )  

although most treatments of quantum mechanics use the negative of this form. 
Schrodinger's equation ( 1 6 .40) treats time and space differently and is thus not 

relativistic . The first relativistic wave equation was proposed by Schrodinger, but was 
abandoned by him. It was then reintroduced by Klein and Gordon and is now called 
the Klein-Gordon equation. For a particle of mass m it is 

, /, . - jk a a , I, - 2 D'f' . - g j k 'f'  - m 1/1 ( 1 9.24) 
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!bat is, 
rj21/r a21/r a21/r a21/r 2 

- at2 
+ 

aX2 + ay2 + 
aZ2 = m 1/r 

Dirac wanted to have an equation that was first order in t , as in the nonrelativistic 
Schrodinger equation . Special relativity would then demand that it be first order in the 

spatial variables x, y, and z. Thus, Dirac was led to construct a first-order differential 
operator 

? = yj aj 

with some constant coefficients yj such that 

!bat is, to construct a "square root" of the d' AIembertian . Then we could solve the Klein
Gordon equation by first solving Dirac's equation (using the physicist's convention of 
putting n = 1 )  

( 1 9 .25) 
Then 

as desired. 
We then need 

requiring that we put 

yj yk + yk y j = 2gjk = 21Jjk 

that is, the y ' s cannot be scalars (y l y 2 = _y2y l ) .  The y 's appear to generate a 
Clifford algebra !  It is then clear from Dirac 's equation ( 1 9 .25) that the wave function 
1/1 cannot be a single-component complex function since the Clifford numbers yj 
would then take the complex numbers aj 1/r into a Clifford number yj (aj 1/r )  that could 
not be equated with the complex number m 1/r .  Somehow the Clifford numbers must act 
on the wave functions in a less trivial fashion. 

For relativistic purposes, Dirac also wanted "covariance" under Lorentz transforma
tions. We now turn to these matters . 

Problem 

1 9.2(1 ) Derive ( 1 9 . 1 9 , 20, and 2 1 ) .  Let R1  be a rotation of :rr /2 about the z axis ,  and 
let R2 be a rotation of :rr/2 about the y axis. Describe R1  R2 . 
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19.3. The Dirac Algebra 

What is the topology of the Lorentz group? 

19.3a. The Lorentz Group 

Our treatment of Dirac 4-component spinors to fol low owes much to Bleecker's book, 
Gauge Theory and Variational Principles [Bl] . Our metric is ,  however, of opposite 
sign. 

The Lorentz group is by definition the group of l inear isometries of Minkowski 
space Mri 

L = {real 4 x 4 matrices B I (Bx , By ) = (x , y ) }  
with metric (TJjd = diag(- I ,  + 1 , + 1 , + 1 ) .  In matrix notation, 

(x , y ) = xT TJY 
and then 

requires 

( 1 9.26) 
We see that det B = ± 1 .  Let eo , e l , e2 , e3 be an orthonormal basis .  Since (Beo , Beo) = 
- 1 and Beo = [Baa , B l o , B2o , B3of ,  we see that (Boo) 2 � 1 .  Bleecker shows that L 
breaks up into 4 connected components (pieces) 

La = L+ t :  det B > 0 and Baa � 1 
L- t :  det B < 0 and Baa � 1 
L+ + :  det B > 0 and BOo :S - 1 

L- + :  det B < 0 and BOo :S - 1  
where La is the component holding the identity. This is  clearly the component consisting 
of Lorentz transformations that preserve not only the orientation of Minkowski space 
(det B > 0) but also the direction of time (Baa >  0) . Thus the orientation of 3-space 
is also preserved. 

Consider the Lie algebra e of L .  Write B = elS . Then (elsf TJel S = TJ , and 
differentiating with respect to t and putting t = 0 yield ST TJ + TJS = O. Since TJ T = ry,  
this says (TJS) T = -TJS .  This merely says that when we lower the upper index of S 
by means of the Lorentz metric, the resulting covariant second-rank tensor is skew 
symmetric ! 

Thus dim L = dim S O (4) = 6 .  
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50 (3) is covered twice by 5 U (2) . We shall now indicate why Lo is covered twice 
by 51(2, C), the complex 2 x 2 matrices with determinant + 1 (which, of course, is again 
6 dimensional) .  Let 

H(2,  C) : =  {2 x 2 matrices A I At : =  (AY = A }  

b e  the 4-dimensional vector space (over JR. )  of 2 x 2 hermitian matrices with no 
requirement on the trace. For a basis for H (2, C) we augment the Pauli matrices by the 
unit matrix 

TO = (To : = I a = 1 , 2, 3  ( 1 9.27) 
Define now a new map . : Mg ---+ H (2, C) by 

x E M 1--+ x. : =  xT T = xj Tj = XOTO + x ·  a ( 1 9 .28) 

We can solve for x 

( 1 9 .29) 
Easily 

det x. = - (x ,  x )  ( 1 9.30) 
We shall also have need for another identification of Mg with H (2, C), namely 

Then 

and one computes 

x' = 
[ -XO + z 

x + iy 
x � iy 1 

-x - z  

det x'  = - (x ,  x )  

x.x' = x'x. = (x , x ) I 

( 1 9 .3 1 )  

( 1 9 .32) 

The two maps . and * allow us to think of Minkowski space as being simply H (2, C) 
in two ways. By using . we have the following. 

Theorem (19.33) : The assignment to A E 51 (2, C) of the linear map A of 
Minkowski space 

A (A) : Mri = H(2,  C) ---+ H (2,  C) 

A (A ) (x ) .  : = Ax.A t = Ax.AT 

yields a 2 :  1 homomorphism of 5/(2, C) onto Lo 
A : 51 (2, C) ---+ Lo 

( 1 9 .34) 
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Note that A i s  similar to Ad ___ � U (2) ---+ S O  (3) ; i n  fact w?en A i s  i n  the subgroup SU (2) 
of SI (2, C) we have AT  = A = A- I . Before proceedmg to the proof of ( 1 9 .33) We 
shall investigate this similarity in more detail .  For the notion of "deformation retract " 
see Section 1 5 .3d .  

' 

Theorem (19.35) : SU (2) is a deformation retract of SI(2, C) and S O (3)  is a 
deformation retract of La.  

Proof sketch : A E Sl (2, C) can be thought of as a pair of complex vectors 
[a l l , a2 1 V  and [a 1 2 , a22V spanning an "area" det A = 1 .  By the usual Gram
Schmidt-like process used in Section 1 5 .3d in the case of SI (2, lR) (but using 
a hermitian scalar product instead) we may deform Sl (2, C) into its subgroup 
S U (2) , all the while keeping S U (2) pointwise fixed. S U (2) is thus a deformation 
retract of SI (2, C) . 

For the Lorentz group we proceed as fol lows, using familiar facts about Lorentz trans
formations. Consider the upper sheet H3 of the "unit" hyperboloid in Minkowski space, 

- x5 + x - x  = - 1  

----------��--------- x 

Figure 1 9.4 

Each Lorentz transformation in Lo takes H into itself since Lorentz transformations 
preserve the Minkowski metric .  By a suitable Lorentz transformation A E La, we may 
take the unit vector ( 1  O) T E H along the t axis into any other given vector (t xl of 
H ,  since any timelike vector can be along the t axis for some inertial observer. Thus Lo 
acts transitively on H .  The stability subgroup of ( I  O) T is immediately determined to be 

[ 01 0 ]  
S O (3)  

which we call I x S O (3) ,  or, more simply, S O (3 ) ;  this is simply the subgroup of all 
spatial rotations of lR3 in Minkowski space. Thus H is diffeomorphic to the coset space 
Lo/ S 0 (3 ) .  In other words (see Theorem ( 1 7 . 1 1 »  Lo is a principal fiber bundle over 
the base space H, with fiber S O (3 ) .  

Note that the upper hyperboloidal sheet H is  diffeomorphic to lR3 (under the projec

tion (t , x) ---+ (0, x» and so is contractible to a point. We now invoke the following 
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Theorem ( 19.36): If En+k is a bundle over a base space Mil ,  if M is contractible 
to a point p E M, then E has the fiber over p as a deformation retract. 

In particular, S O  (3) is a deformation retract of La . We shall not prove ( 1 9.36) here; a 
detailed proof can be found in Steenrod's book [St] . The following picture, in the case 
at hand, makes it seem plausible. 

Lo 

c' 

SO( 3) 

Figure 1 9.5 

Take a Riemannian metric for E. Each fiber is a submanifold of E .  Consider the 
"horizontal" distribution b. of (n - k)-planes in E that are orthogonal to the fibers . M 
can be contracted to a point p .  Let q ' be a point in E and let C be the curve swept out in 
M as q = Jr (q ') is  deformed to p.  There is apparently then a unique curve C' covering 
C, starting at q ' , tangent to b., and ending at some point in the fiber over p. (This is  
similar to the picture of parallel displacement described in  Section 9 .7b.) In this way, 
we deform E into Jr - 1 (p) . 

What is wrong with this sketch? We simply note that in the general case, if the 
distribution b. is not chosen with some care, that is ,  if the metric in E misbehaves, then 
the curve C' covering C may never reach the fiber Jr - 1 (p) . 

----------+--------- M = lE. 
p = o 

Figure 1 9.6 
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For example, in the usual projection n : ]R2 ---+ ]R given by  (x , y) ---+ x ,  E :::: ]R2 
is  a bundle over M = R We have chosen a strange metric in ]R2 and have indicated 
the integral curves of the "horizontal" distribution, that is ,  the orthogonal trajectories 
to the vertical fibers . The integral curve labled L is asymptotic to the y axis, and all the 
integral curves above L are also . The integral curves below L are bell-shaped, with the 
highest point of the bells tending to infinity as the integral curve is chosen closer and 
closer to L . For C we may take the interval [- 1 ,  0] , ending at p = O. This clearly can 
be covered by arcs of the bell-shaped curves, but on the leaf L and above one will neVer 
reach the y axis ! Rather than use the subspaces orthogonal to the fibers, one should 
introduce a connection in the fiber bundle and then use parallel translation to Cover 
curves in the base space . The reader may consult [No, chap. 2] for details .  

This concludes our sketch of ( 1 9 .35) .  

Corollary (19.37) : Sl (2, q is both connected and simply connected, since SU(2) 
is. Lo is connected and each closed curve in Lo is homotopic to a curve in SO (3) 
representing a multiple of a full rotation in ]R3 about some axis, say the z axis. 
The even multiples are homotopic to a constant; the odd multiples are homotopic 
to a full rotation. 

P R O O F  O F  ( 1 9 . 33 ) : First note that since det A = 1 ,  

(A (A)x , A (A)x )  = -det {A (A)x} * = -det Ax* At 

= -det A det x* det At = -det x* = (x , x )  

and so A (A) is a Lorentz transformation. det A (A) = ± 1 (since every Lorentz 
transformation preserves ± the volume form dxo /\ dx 1 /\ dx2 /\ dx3) .  To show 
that the determinant is + 1 we need only know that Sl (2, q is connected, and 
this was proved in ( 1 9 .37) .  Since A = I yields a Lorentz transformation I with 
BOo = 1 ,  connectedness of SI (2, q shows us that BOo ::: 1 for all A E SL (2, C) ; 
that is ,  A maps SI (2,  q into Lo . 

It is immediate that A is a homomorphism, as you are asked to show in Problem 
1 9 .3( 1 ) .  

We must show that A maps SI (2,  q onto Lo .  First look a t  the differential 
of A at the identity of SI (2, q .  S E �2, q means that S is a complex 2 x 2 
matrix with trace O. Then A* S is the linear transformation of Minkowski space 
corresponding to 

d x ---+ - [eISx (e ls ) t ] _ * dt * 1-0 

But this is simply Sx* + x* st = Sx* + (Sx* ) t , that is , twice the hermitian part 
of Sx* . We claim that A * is 1 : 1 at I .  Otherwise, for some S i- 0, Sx* is skew 
hermitian for all hermitian 2 x 2 matrices x* . Putting x* = I shows then that S 
would be skew hermitian,  (i .e . ,  that S E Ml(2) ) .  Thus if A * S = 0 then S E 6-u,(2) . 
But A restricted to the subgroup S U (2) is a local diffeomorphism into S O  (3) , as 
we have seen in Theorem ( 1 9 . 1 2) .  Thus A* is 1 : 1 at I .  It is not difficult to see 
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that the group property, that is, the fact that A is a homomorphism, would show 
that A* is 1 :  1 at all points of SI (2, q .  Thus A is a local diffeomorphism near 
each point of S/ (2, q .  We conclude that the image U : =  A [S/ (2, q] is an open 
subgroup of La of the same dimension 6, since the image of an open set under 
a homeomophism is again open. But La is then the disjoint union of the open 
cosets of U .  It is plausible, and can be proved (see [S]) ,  that a space in which any 
two points can be connected by an are , say La, cannot be written as a disjoint 
union of two or more open subsets. It must be that there is only one coset, that is, 
A [SI (2, q] = La, and thus A is  onto. 

We need only show then that A is 2 : 1 .  Ker A consists of those A E SI (2, q 
such that Ax* A t = x. for all hermitian x* . Putting x. = I shows At  = A - I , that 
is, A E SU (2) . But we have already seen in Theorem ( 1 9 . 1 2) that A = ± I .  Thus 

and we are finished. 0 

L 
_ SI (2, q 

0 - {±I }  

A s  SU (2) ---+ SO  ( 3 )  yielded a double-valued spinor representation of the rotation 
group, so A yields a double-valued spinor representation of the Lorentz group Lo .  It is 
simply the usual representation of SI(2, C) as 2 x 2 matrices. This spinor representation 
of the Lorentz group La will be denoted by 

19.3b. The Dirac Algebra 

We have seen in Section 1 9 .2 that the Pauli matrices (without ao) generate a Clifford 
algebra C3 

and that Dirac 's program requires a C4 • There is a rather standard procedure leading 
from a Cn to a Cn+ 1 • We shall only be concerned with going from the Pauli algebra to 
C4• There is a complication due to the Pauli  algebra using the metric 8af3 in ]R3 while 
relativity requires that we use the Lorentz metric TJ jk in Mri. We proceed, with Bleecker, 
as follows .  

In  the case of the Pauli algebra, the map * : ]R3 ---+ 2 x 2 matrices can be thought of 
as a map a : ]R3 ---+ 3'1'(2, q 

a (x) = x* = (7' .  x 

For example, a ( 1 , 0, O) T = aJ , and so on . 
We now define a map y : ]R4 ---+ �4, q ( i .e . ,  all 4 x 4 complex matrices), by 

[ 0 x* ] 
y (x) = x* 0 ( 1 9 .38) 

(The meaning of this wi l l  be discussed in the next section. )  
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In particular 
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YI := y (ed = [ 0 
al 

Y2 := y (e2) = [�2 � ] 
Y3 : =  y (e3 ) = [ �3 � ] 
Yo := y (eo) = [ �/ � ] 

( 1 9.39) 

the famous Dirac matrices. (This is one particular representation of the Dirac matrices. 
There are others in use.) 

The matrices y generate a Clifford algebra. In fact we have 

Theorem (19.40) : For all x E Mg , Y E Mg, we have 

y (x )y (y) + y (y) y (x ) = 2 (x ,  y ) / 

where ( , ) is the Lorentz metric. 

P R O O F : Both sides of ( 1 9.40) are bilinear symmetric functions of x and y. For 
any such function I we have 

4/ (x ,  y) = I (x + y ,  x + y) - I (x - y , x - y) 

and it is thus sufficient to  verify ( 1 9.40) when the arguments x and y are the same. 
But 

[ 0 x* ] [ 0 x* ] [ x*x
* 0 ] y (x ) y (x ) = x* 0 x* 0 

= 0 x*x* 

as desired. 0 

= 
[ (X '
O
X ) / 0 ] [ / 0 ] 

(x , x ) / = (x ,  x ) 0 / 

Problem 

1 9.3(1 ) Show that A : 8/(2,  C) ---+ Lo is a homomorphism . 
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19.4. The Dirac Operator {iJ in Minkowski Space 

What is a Dirac spinor? 

Warning: Our choice of metric signature has always been (- + ++) as this  is most 
convenient for discussing the geometry of general relativity. Approximately half of 
the physics books use this convention also in general relativity. Most physics books, 
however, when discussing (special) relativistic quantum mechanics, use the metric with 
signature (+ - - - ) .  In particular, their d' Alembertian is the negative of ours . This 
introduces the imaginary unit i into many equations . For example they would write 
the Dirac equation ( 1 9.48) below as i y j a{t/l = ml/! .  There are so many different 
conventions in use for the Dirac matrices that we feel that this will not cause much 
more confusion than is already present in the literature . We are mainly concerned with 
the concepts involved in this subtle subject and feel that a change of signature at this 
time would only put an added burden on the reader. 

19.4a. Dirac Spinors 

In the last section we exhibited the Dirac matrices y generating a Clifford algebra C4 , the 
Dirac algebra. The space «:4 on which these y 's operate will be the space of values of our 
wave functions, that is, a wave function l/! will be a column of4 complexfunctions. The 
Dirac algebra will allow us to construct a square root of the d' Alembertian, ?! = L yj aj . 
There is a serious problem remaining; we have constructed Yj by using a specific frame 
in Minkowski space. We shall choose Yj to be the same matrix in each frame a because 
there is no preferred frame in Mri . Since Yj is the same matrix in each frame a and 
since aj is frame-dependent, it is clear that fj = L yj aj would represent a different 
operator in each frame !  In order to avoid this the "functions " l/! on which � operate must 
themselves be made to be frame-dependent ! Let us see how the l/! 's are to transform. 

We have defined the matrix y (X ) for each 4-tuple X by 

[ 0 X* ] y (X ) = X* 0 
and by definition of Yj 

Consider a Lorentz transformation A of Mri 
( ax ' ) x' = [h x = AX 

The Lorentz transformation A will correspond, under 

A :  SI (2, C) � La 

to two matrices ±A E Sf (2, C) ; pick one of them. By ( 1 9 .34) 
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Lemma (19.41) :  The 2 x 2 matrix associated to A (A ) (X)  under * is 
A (A ) (X) * = A t - I X* A- I 

P R O O F :  Recall from ( 1 9 .32) that X*X* = X*X* 
- (X,  X ) .  Thus if X is not lightlike 

(X,  X ) / ,  and det X. :::: 

X* = (X ,  X ) X,:- I 
But if we prove ( 1 9 .4 1 )  when X is not lightl ike, it will fol low for all X by 
continuity and the fact that any vector in the light cone is the limit of spacelike 
vectors . Assume then that (X , X)  # O. Then 

A (A) (X) * = (A (A )X , A (A )X ) [A (A ) (X )*r l 

= (X ,  X) [AX*Atr l  = (X , X) At- I X,:- I A - I  
= A t- IX *A- I 0 

Theorem (19.42) : Let p : 51 (2 , q � GI (4, Q be the representation of51 (2, rq 
by 4 x 4 complex matrices defined by 

P (A ) = [ � A?- I ] 
Then the Dirac matrices satisfy 

y (A (A)X)  = p (A )y (X)p (A) - 1 ( 1 9.43) 

(Note: X and A (A )X  are the components of the same vector X in the two Lorentz 
coordinate systems e and e' = eA - I . ) 

P R O O F : [ 0 A (A
O
)X* ] y (A (A )X)  = A (A)X*  

= [ A t- I �*A- I 
A
Xo
At

] = [ � A?- I ] [ ;* �* ] [
A
;
I 

1t ] 

= p (A)y (X)p (A - I ) = p (A )y (X)p (A ) - 1 0 

How do we interpret this result? If X is a tangent vector to Mg we may define the 
matrix y (X) = y (X) by expressing X as a 4-tuple. This depends on the Lorentzian 
frame e in which X = eX is expressed. If, however, for each Lorentz transformation 
A of M(j we also make a change of frame in V = C4 given by the change of basis 
matrix p eA ) ,  then we see from ( 1 9 .43) that y (X ) = y (X) is then a well-defined 
linear transformation y (X) : V � V that is independent of the Lorentzframe. This 
follows since the matrix B of a linear transformation changes under a change of frame 
p precisely by B 1-+ pBp- l . 
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Equation ( 1 9.43) is written in physics books as follows. Let Ai j be the entries of the 
matrix A (A) . Then by our definitions 

y (A (A)X) = A' j Xj Yi 

and 

yield, from ( 1 9.43) 

( 1 9.44) 

As mentioned before, the usual representation of S/ (2, C) by 2 x 2 matrices A is 
called the spinor representation when thought of as a two-valued representation of Lo 
and it is denoted then by ';Il( 1 /2 ,  0) . The representation using A t- I instead of A is called 
the cospinor representation and is denoted by ';11(0, 1 /2) . Two component spinors 1/IL ,  
transforming under A ,  are also called left-handed, whereas two component cospinors 
1/IR transforming under A t- I , are called right-handed. 

In order for Y (X) to be a well-defined l inear transformation 

1/1 E V f--+ Y (X) 1/1 E V 

1/1 = (1/IL , 1/IR )T must be a 4-component spinor or Dirac spinor; that is , it must 
transform via the representation p in ( 1 9.42) 

1/1 f--+ P ( A ) 1/1 

for each Lorentz transformation A of M�. In summary 

Corollary (19.45): A Lorentz transformation A : M� -+ M� must always be 
accompanied by a change of basis p eA) : c4 -+ C4 (as given in (19.42)) in 
spinor space. Only then will y (X) act on Dirac spinors. 

The representation p of S/ (2, q is written ';11( 1 /2 ,  1 /2) and is the direct sum of�N l /2, 0) 
and �}(O, 1 /2) . 

19.4b. The Dirac Operator 

Consider M� with a given Lorentzian coordinate system x . A "wave function" 1/1 will 
be a Dirac spinor, that is ,  a function on M� taking its values in C4 and transforming 
as in ( 1 9 .45) .  In terms of a (two-component) left-handed spinor 1/IL and a right-handed 
spinor 1/IR 

1/1 = (1/1 1 , 1/12 , 1/1 3 , 1/I4l = (1/Ii , 1/Ii , 1/Ik , 1/I� )T 

= (1/IL , 1/IR )T 

As usual we shall write 
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One verifies easily that these new y 's also satisfy the Clifford relations 

yj yk + yk yj = 2gjk I = 2ryjk I 

We define the Dirac operator � sending wave functions into wave functions by 

where, as in ( 1 9 .38) ,  

a 1jJ �1jJ : = yl _. axl 

Yk : = y (ek ) = [±�k 
� ] 

( 19.46) 

This defines � in terms of the Lorentzian coordinates x .  What happens if we consider 
the same definition using a system x' = Ax = (ax' /ax)x ?  Then 

1jJ' = p (A) 1jJ 
where A is a constant matrix. We then have 

:1' ,1, ' _ . 'jk a 1jJ' 
_ . 'jk (A) 

a 1jJ 
Y' 'I' - YJ g ax'k - YJ g P ax'k 

'jk ( axi ) a 1jJ = Yj g p (A) ax'k axi 
ax'j . a 1jJ = Yj axr p (A)g" 

axi 
which, from ( 1 9 .44), yields 

Then 

shows that 

1jJ' = p (A) 1jJ => �'1jJ' = p (A) �1jJ ( 19.47) 

the Dirac operator � is a well-definedfirst-order differential operator on 4-component 
spinors of type ':)'( 1 /2, 1 /2) in Minkowski space ! 

From ( 1 9 .39) and (gjk ) = (ryjk ) = diag [ - 1 ,  + 1 , + 1 , + 1 ]  

Finally 

o [ 0 Y = + 1 �/ ] ya = [� � ] 

= [ 
0 - l ao + (1" 0 8 ] 

l ao + (1" · 8  0 
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Thus the Dirac equations ( 1 9 .25) become the coupled system 

(- at + (1' . 8)VtR = m VtL 

(at + (1' . 8)1ftL = mVtR 

515 

( 1 9.48) 

Note that for a massless particle these equations decouple and we can get by with 
a single equation for a 2-component spinor VtL of type '1'( 1 /2 ,  0) , (at + (1' . 8)VtL = o. 
This is Weyl's equation, which was found later to be an equation applicable to the 
neutrino. 

19.5. The Dirac Operator in Curved Space-Time 

Does it make sense to say that a body, on returning from a long trip through the wormholes of 
space, has made an "odd number of ful l  rotations"? 

19.5a. The Spinor Bundle 

Consider now a pseudo-Riemannian 4-manifold M4 rather than Minkowski space. We 
suppose that there are patches { U, V, . . .  } on M4 and orthonormal frame ("vierbein") 
fields eu , ev , . . .  on each. Thus 

and in an overlap we shall assume 

ev (x )  = eu (x )cu v (x) 
where Cuv  : U n V --* La . (Recall that this i s  only one of the four components of 
the full Lorentz group; we are assuming that M4 is both space- and time-"orientable"). 
We shall need to construct some analogue of the space of 4 component spinors . In our 
discussion in Mri of the Dirac spinors, we associated with a Lorentz transformation 
A the matrix A ,  one of the two 2 x 2 matrices of 51 (2, q covering 1\ .  There was no 
problem in doing this since we were dealing with a single constant matrix 1\. Now, 
however, we shall have to choose for each I\ (x )  = cuv (x )  a matrix A (x)  = c� v (x )  
in SI (2, q from among the two ±A(x) covering it, and w e  shall have to d o  this i n  a 
continuous fashion. The transition functions Cu v (x ) for the tangent bundle certainly 
satisfy the requirement ( 1 6 .3) ,  but it is not at all clear that the c� v (x )  can be chosen 
consistently to satisfy it because of the ambiguity ±A .  

If this can be  done, then we  say that we  have "lifted" the structure group of  the 
tangent bundle of M4 from the Lorentz group to the group 51 (2, q and that M4 has a 
spin structure. 

This would have the following consequence. 
Let M4 be a pseudo-Riemannian manifold that is both space- and time-orientable; 

We may then assume that the tangent bundle has structure group La .  Let e and f be 
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frames a t  a given point p .  Then there i s  a unique A E La such that f == eA . If f(t) . 
a I -parameter family of frames at p such that f(O) = f( 1 )  = e, then f(t) == f(O)1\ IS 
yields a closed curve t f-+ A (t) in La starting and ending at I . S 1 (2 ,  q is a 2-fold co (t) 
of La, and thus this  curve is  covered by a unique curve t -+ A (t ) in S/ (2, q startin 

Ver 

I .  (Visualize this by analogy to SU (2) = S3 , the 2-fold cover of S O  (3) == IRp3 � � 
section 1 9 .2a.) We know, from Corollary ( 1 9 .37) ,  that SL (2 ,  q,  like SU (2) , is simp

� 
connected, whereas La, l ike S O  (3) , has the property that the closed curve t � 1\ (t) .Y 
homotopic either to a ful l  rotation about some axis, say the z axis ,  or to a constant ma 

IS 

The covering curve t -+ A (t ) detects the difference; A ( 1 )  = I if t -+ A (t) descri� 
an even number of full rotations, whereas A ( 1 )  = - I if t -+ A (t) describes an odd 
number of ful1 rotations .  All this is for a I -parameter family of frames e(t) at a given 
point x .  No spin structure is required. 

Suppose now that p is in a patch U covered by a Lorentzian frame field eu . (This 
patch need not be a coordinate frame.) Take the frame f(p)  = eu (p) at p and transpon 
it arbitrarily but continuously around some closed curve C = C (t) , 0 :s t :s 1 , lying in 
U,  again returning to the same frame f(p ) .  We can compare f(C (t »  with f(p) == f(C(O» 
as fol1ows . Identify all frames eu at points of U with the single frame eu at p. Then 
by comparing f(C (t ) )  with eu at C (t ) ,  f(C (t ) )  = eu (C (t) ) A (t ) ,  we again trace out 
a closed curve t f-+ A (t)  in La .  The resulting curve in La can again be uniquely 
covered by a curve in Sl (2, q starting at I .  In this way we may be tempted to say 
that if A ( 1 )  = - I then the frame has made an odd number of rotations, whereas if 
A ( l )  = I it has made an even number of rotations. Unfortunately this result might 
depend on the choice of frames eu in U !  To see this ,  consider a spatial example, rather 
than space-time, replacing La by S O (3) and SI(2, q by S U (2) . Let M3 be the 3-torus 
T3 , with angular coordinates x ,  y ,  z .  Let U = T3 and let eu be the frame a/ax , a/ay, 
and a/ az . Then with the preceding identification, the frame f = eu along the closed 
z-curve (0, 0 ,  z )  would make no rotation at all . We may consider a new frame field ev 
on V = T3 defined by ev = eucu v , where 

[ COS Z 
Cuv  (z) = Si� z 

- sin z 0 ] 
cos z 0 

o I 

This frame coincides with eu on z = 0 but rotates once about it as one moves along 
the z circuit. Clearly the frame f = eu along the z circuit now makes one complete 

rotation with respect to the ev frame, that is ,  by identifying frames in T by means of 

the ev frames. We see that the contradiction arises because the eu and ev frames are 
related by S O (3)  transformations Cu v ; they are not related by SU (2) transformations. 
We cannot decide whether eu and ev at (0, 0, 0) = (0, 0, 2rr )  are related by the identity 
I in S U (2) or by - I in S U (2) ! The same problem would arise in space-time. We also 

see that this problem in the patch would not arise if we restricted ourselves to frames in 
T that can be related by SL(2,q transformations, that is , by frames that "do not make 

full rotations about each other." 
If M4 has a spin structure, that is , if Sl (2, q is the structure group, and if we 

transport a frame f around any closed path C in M4, returning to the same Lorentzian 

frame, then we can decide whether the frame has made an even or an odd number of 

complete rotations ! For we may consider the Sl (2, C) frame bundle to M, that is, the 
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frame bundle but using the structure group SI (2, ((:) . The curve C in M is then covered 
by a unique curve in this frame bundle, defined by f. Upon returning to the starting 
point of C, the l ifted curve will return either to its starting point, corresponding to an 

even number of rotations, or to a point in the frame bundle related to the initial point 
by -I E SI (2, C), corresponding to an odd number of rotations . 

In our spatial toral illustration T3 just considered, T3 is covered by a single frame 

field eu ,  and this frame field does define a spin structure. T3 can also be covered by the 
single frame field ev and so this  also defines a spin structure on T3 , but it is a different 
spin structure ! On the other hand, T3 does not admit any spin structure that includes 
both frame fields eu and ev , as we have seen; we cannot lift Cu v (z) uniquely to S U (2) 
for all 0 ::: z ::: 2n . 

This has the fol lowing remarkable physical manifestation : We assume that our space
time M4 carries a spin structure (for if M does not admit a spin structure we will not 
be able to consider the Dirac equation) .  For example, we may assume that space-time 
is simply Minkowski space Mo . As we have seen in Corollary ( 1 9.45), the electron 
wave "functions," 4-component Dirac spinors 1/1 defined over Mg, will be, in fact, cross 
sections of a bundle over M associated to the tangent bundle through the representation 
p ofTheorem ( 1 9 .42) . Thus the structure group of the wave function bundle is SI (2, C) , 
rather than Lo.  These spinors will then have the property that a complete rotation of 
1R3 will send a spinor 1/1 not into itself but rather to its negative - 1/1 .  Aharonov and 
Susskind [A, S] have devised a hypothetical experiment illustrating this . Two cubical 
devices can theoretically be constructed so that when they are brought together and 
aligned at a common face, a current will flow from one to the other, and if the cubes are 
then separated slightly and one of the cubes is rotated through 2n about their common 
axis and then brought back in contact as before, current will again flow but in the 
reverse direction ! Even in the case of a general space-time M4 with spin structure, the 
cubes can be separated, one of the cubes can be transported along any closed curve, 
and upon return the direction of the current flow will tell us of the number (modulo 2) 
of "rotations" made by the traveling cube ! 

The "obstruction" to having a spin structure can be measured by the cohomology 
groups of M, but we shall only remark that a spin structure exists if for example, 
H2 (M; 22) ,  the second homology group with 22 coefficients (see Section 1 3 .2), van
ishes . Obstruction theory will be discussed more in Chapter 22. 

If M does have a spin structure, then we may replace the Lorentz structure group by 
SI(2, C) ; the fiber for the tangent bundle of M4 is still ffi.4 . (Recall that SI (2, C) acts on 
JR4 as follows.  To a 4-tuple x one associates a 2 x 2 hermitian matrix x* = x°a-o + x .  (T. 
Then A E SI (2, C) acts on x by sending x* to Ax*A - I and then reading off the 4-tuple 
that corresponds to this hermitian matrix . )  If Cu v  are the Lorentzian transition functions 
for the tangent bundle, we shall let c�v be the SI (2, C) transition functions .  We then 
construct the new 4-component 

Dirac spinor bundle :f, = �M 

Whose fiber is ((:4 and whose transition functions 

Pu v : u n  V --+ GI (4, C) 
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are given by 
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I [ c� v (x ) 
PU V (x ) = p (CU V (X »  = 

0 ( 19.49) 
(See the discussion following ( 1 6 .3)  for the construction of this bundle.) This Dirac 
spinor bundle � is simply the vector bundle associated to the SI (2, C) tangent bUndle via the representation p of Theorem ( 1 9 .42) ! 

This spinor bundle is the bundle whose sections 1/1 will serve as wave "functions" 
on M4 . 

From this point on we shall assume that M does admit a spin structure and that one 
has been chosen. 

The Dirac operator construction iI = y j ai in M6 will not work in our curved M4; in 
our proof that iI11/I' = p eA)  il1/I for Mo we used the fact that the matrices A E S/ (2, C) 
were constant (global Lorentz transformations were used since Mo is covered by global 
coordinate systems). We shall now have to replace aJ 1/I = a1/l/axj by some sort of 
covariant derivative. The Riemannian connection on M4 won' t  work because T M and 
'iOM are different bundles .  What we need is a connection in this bundle 'iOM that is 
associated to T M through the double-valued representation p of Lo .  

19.5b. The Spin Connection in  �M 

Let M4 be a pseudo-Riemannian manifold with a Lorentzian connection. Thus for any 
tangent vector X to M4 , Wu (X) E �, the Lie algebra of the Lorentz group. We are 

assuming that M4 has a spin structure (we may then consider S/ (2 , C) as the structure 

group of the tangent bundle) and we want a connection for the associated spin bundle 
�M of wave functions given by the Dirac spinor representation 

p : S/ (2, C) --+ G/ (4 ,  C) 

First we need to construct a connection for the tangent bundle whose structure group 
is S/ (2, C) rather than Lo .  Let w be the connection form for the Lorentzian tangent 
bundle; this is simply the Levi-Civita or Christoffel connection. Since A : S/(2, C) -+ 
Lo is a 2 : I cover, to Wu (X) E � there is a unique Wi (X) E 6�£(2,  C) such that 
A*w� (X) = Wu (X) (there are two "vectors" "above" Wu (X) but only one of them 
starts at I E S/ (2, C) . It is not difficult to see that the �Ji(2, C) -valued local I -forms 
w� so defined form the connection forms for the tangent bundle to M4 whose structure 

group is SI (2, C ) .  One only needs to show that 

A Aw'V (X) ] = A * [A - l w� (X) A + A - l d A (X) ] 

since A *  is I : 1 .  The proof is very similar to that in Theorem ( 1 8 .27) .  Wi will be 
exhibited explicitly in ( 1 9 .53) .  

We now have a connection for the tangent bundle T M4 with structure group SI (2. C) 
and we have a representation p of SI (2 , C) given by 4 x 4 matrices. The Dirac 4-
component spinor bundle is associated to the tangent bundle through the representa
tion p .  The prescription for constructing the associated connection in �M is given by 
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( 1 8 .24). We need to find an Q such that 

( 1 9.50) 

which is short for p*w' (X) = Q (X) , where X is tangent to M4 at x. We shall exhibit Q 
by an explicit calculation . 

First we need to calculate A* : a£(2, q --+ � , identifying the Lie algebra of SI (2, q 
with that of the Lorentz group . .)/£(2, q consists of all 2 x 2 complex matrices z with 
trace O. By writing 

as a sum of a hermitian plus an antihermitian matrix, both with trace 0, we see that a 
basis for �£(2,  q can be taken to be the aex 's  divided by i and the aex 's ,  a = 1 , 2 , 3 .  
Since ial = a2a3 , and so on,  and aex = aoaex. where ao = TO = I ,  we prefer to write 
this basis as 

( 1 9 .5 1 )  

Note that the first three give the standard basis for the SU (2) subgroup of S/ (2q . 
The identity component of the Lorentz group is generated by rotations and "boosts ." 

The infinitesimal rotations have a basis given by the matrices Eex of ( 1 9 . 1 ), where a runs 
from 1 to 3, but augmented by zeros in the Oth row and Oth column. For our purposes it 
is preferable to introduce a minus sign in the Eex 's .  The resulting 4 x 4 matrix obtained 
from -EI will be called E23 ,  - E2 will yield E3 1 , and - E3 will yield E 1 2 . 

A boost in the 0 1  plane is given by the 2 x 2 matrix 

augmented by 0 elsewhere. We then have as basis for � the matrices E23 ,  E3 1 , E 1 2 ,  EO I , 
E02, E03 ,  where [ 0 0 

o 0 
E23 = 0 0 

o 0 

o 
o 
o 

- 1  
Each Eexp is a skew symmetric matrix and we shall define Epex : = -Eexp . The Eop are 
symmetric matrices and we define Epo :=  Eop .  

The homomorphism A : S I (2q --+ Lo i s  given by [ A  (A)x]  * = Ax* A t , and so if 
h E �2, q , 

d 
[A * (h )x] * = dt [exp(th)x* exp(tht ) ] t=o 

We have essentially done this calculation for h = aex/ i in ( 1 9 . 1 3) .  We have, under A* , 

( 1 9.52) 
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Let u s  now calculate where A.  sends aoa" = a" . Since a1 
anticommutator 

d 
dt [exp (ta,, )x. exp (ta,, ) ] t=o = {a" , x. } 

a" we get now an 

= {a" , aoxo 
+ af!xf! } = 2a"xo 

+ {a" , af! }xtJ 

= 2a"xo 
+ 2o"f!aoxf! = 2a"xo + 2aox" 

For example, if a = 1 ,  A.a, is the infinitesimal Lorentz transformation that sends 
(xo , x ' ,  x2 , X3 , ) 1 to (2x ' ,  2xo , 0, O)T , and so A.aoal = 2Eo , . 

( 19.53) 

( 1 9 .52) and ( 1 9 .53) describe A .  completely. 
Let W = (Wi j ) be the Levi-Civita connection for the pseudo-Riemannian M4, using 

an orthonormal frame e. Using W l o  = WIO = -WOI = Wa h and so on, we have 

0 WO , W02 W03 
WO I 0 W' 2 W ' 3 W = 
W02 -W 1 2 0 W23 
W03 -wI J -w2J 0 

In terms of the matrices E we have 

W = L Eij wi j 
i <j 

Now use wO {J = waf! , ( 1 9 .52) and ( 1 9 .53) to get 

I 1 � ij W = - L... ai aj W 
2 . . 

I <J 
( 1 9.54) 

and this exhibits the 51 (2, C) connection form w', whose values are trace-free 2 x 2 
hermitian matrices. 

Now we must compute Q = P.w' .  
From 

we see 

for all h E �£(2, q .  Then 

1 � . . [ai aj 
Q = - L... W

'J 
2 . . 0 I < J 
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But 
YOYfJ = [6 -�fJ ] and Ya YfJ = [aa;fJ 

aa�J 
then shows that Q = ( 1 /2) LfJ YOYfJWOfJ + 0 /2) La<fJ Ya YfJwafJ . 

Thus the spin connection in the spinor bundle is given by 

_ I jk . _ I j k Q - -w Y1 Yk - -Wjk Y Y 4 4 
I 

. k = gWjk [y 1 , Y ] 
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( 1 9 .55) 

recalling that wij = -Wji . The covariant derivative in the spinor bundle is then 

V* d* 1 (dX ) . k 
dt = dt + 4 Wjk dt y 1  Y * ( 1 9 .56) 

and the curved Dirac operator applied to * is 

i [ ( ,1, ) 1 j k ,,, ] �,I, 1 j i k , l, Y ei 'I' + 4Wik Yj Y 'I' = '1' '1'  + 4Wik Y Yj Y 'I' ( 1 9.57) 

In the presence of an electromagnetic field with covariant 4-vector potential A and 
Aj = A(ej ) ,  then as in ( 1 6.43) the flat Dirac operator � would be replaced by 

( ie ) . � - h y1  Aj 
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Yang-Mills Fields 

20.1 .  Noether's Theorem for Internal Symmetries 

How do symmetries yield conservation laws'? 

In Section 1 0.2  we discussed Hamilton's variational principle for a dynamical system 
consisting of a finite number of particles. We shall now consider variational problems 
associated with a continuum or "field." We are frequently concerned with a mUltiple 
integral variational problem roughly of the form 

o i Lo (x , ¢ ,  ¢x )dxo ;\ dx 1 ;\ • • •  ;\ dx" = 0 

where both the field ¢ and the domain of integration M might be varied; that is, we 
consider variations o¢ and ox . In physics ,  one calls a variation ox of the domain an 
external variation, whereas field variations are called internal. We have considered 
external variations when dealing with arc length (geodesics) and with area (minimal 
surfaces) ; in both cases we dealt with the variations directly, rather than writing down 
the Euler-Lagrange equations. In this section we shall investigate the tensor nature of 
internal variations in more detail and also the effect of such variations that leave the 
Lagrangian invariant. 

¢ will usually be an N-tuple ¢a (t , x) = ¢" (x) of functions, that is, the local repre
sentation of a section of some vector bundle E. In the case of a Dirac electron, we have 
seen that E is the bundle of complex 4-component Dirac spinors over a perhaps curved 
space-time. If E is not a trivial bundle (or if we insist on using curvilinear coordinates) 
we shall have to deal with the fact that the derivatives a¢a / ax) do not form a tensor. 

20.1a. The Tensorial Nature of Lagrange's Equations 

Let M"+ 1 be a (pseudo-) Riemannian manifold and let E be a vector bundle over M ;  
for definiteness we shall let the fiber be ]RN . A section o f  this bundle over U C M i s  
described b y  N real-valued functions (¢� ) ,  where ¢v = cvu¢u and cvu ex)  is an  N x N 
transition matrix function, c� u h '  A "Lagrangian" is a single "function" Lo (x , ¢ ,  CPx ) of 

523 
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x ,  and section ¢,  and (for our present purposes) its first derivative matrix ¢x : :::: d¢a f a  j 
(We have given the local description of the section and its first derivatives in a p x . 
U .  Higher derivatives may occur, as they did in Hilbert 's  approach to relativi;�h 

Section 1 1 .3 .  In that case the bundle was the vector bundle of covariant symmetrj Itl 
second-rank Lorentzian tensors ; that is ,  the sections ¢ were pseudo-Riemannian metriC 
tensors gij on M4, and the Lagrangian Lo was R lg I 1 /2 ,  involving second derivatives ; 
the metrics .) 

We are concerned with the action integral 

S = i Lo(x ,  ¢ ,  ¢Jdx 

where dx = dxo /\ dx l /\ dx2 /\ • • • /\ dX" . For this to be independent of coordinates 
we shall assume that for each given ¢, Lodx is a pseudo- (n + I ) -form on M. In term� 
of the volume form y'gdx (for simplicity we omit the absolute value sign on g) we 
write Lodx = ,'{!oy'gdx, and so 

S = i ·'{!o (x ,  ¢ ,  ¢J y'gdx 

5i.'o is a true function or scalar, classically called the Lagrangian density . For the gravi
tational field, Hilbert 's  ,'{!o is the scalar curvature R .  

We shall vary the section ¢.  We shall assume that the metric of M and any connections 
used in E are not varied. We are interested in the first variation of the action, and we 
shall use the same classical notation as we used in Section 1 0 .2, but we shall emphasize 
here the tensorial nature of this process. 

First note that 52 is to be a scalar constructed out of first partial derivatives dA>a = 
a¢" / axj of the section ¢ .  The collections of partial derivatives aj¢a do not form a 
tensorial object (for example, in the case when E = T M) and consequently it is not 

clear how one is to construct a scalar X'o ! Frequently, however, there will be a connection 
in the bundle E and then we can construct instead the covariant derivatives 

V¢" 
Vj ¢a = ¢/" ,  = __ . } ax} 

These do fit together to form a I -form section of E (as described in Section 1 8 .3), that 
is ,  a section of the bundle E ® T* M, a generalized tensor. (Note that a is an E index, 

not a T M index ; thus it makes no sense to ask whether a is a "contravariant" index 

since contravariant in our sense refers to the tangent bundle only ! )  There is then hope 
for constructing a scalar out of ¢afj . For example, suppose that the structure group of 

the bundle E is S O (N) and that the connection cv has its values in a�N) ;  that is, w is 
skew symmetric. Then if gij is the metric tensor for M we may form La ¢'jj ¢'jkgJk , and 
it is not difficult to see that this is indeed a scalar. This scalar could be written II V¢ 1 1 2  
and might be called the square of the "gradient" of the section ¢ .  

Thus we  shall assume that E has a connection for the given structure group G, and 
that from ,'{!o we may form a new Lagrangian ,'t' constructed using covariant derivatives, 

,,{! = X'(x , ¢ ,  V¢) = ,'{!(x , ¢ ,  ¢/x ) = ,'{!o (x , ¢ ,  ¢.J 

rather than partial derivatives .  (This will not always be the case. In Hilbert 's variational 
approach to relativity, the fields ¢ are the components of the metric tensor. 2 = R, the 
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scalar curvature, is expressible in tenns of partial derivatives of the metric tensor but 
not the covariant derivatives of the metric tensor, which are all identically O ! )  

From ¢/j = OJ¢Q + WJb¢h and 80j = oj 8 (as in Equation ( 1 0 . 1 2)) and from the fact 
that the connection W is assumed unaffected by a variation 8¢ of ¢, we see immediately 
that 

Then 

8 i ,f(x , ¢ , ¢/j )Jgdx = i [ ( 00;: ) 8¢(l + (O:�j ) 8 (¢j)] Jgdx 

Now in an overlap U n V we have 
oS.' 

= 
(�) ( O¢t

) 
o¢<y o¢t o¢<y 

But ¢t = ct v c¢� shows that o¢t / o¢� = ct v c ' and so 
oS: ( O 'f ) b 
o¢<y 

= 
o¢t 

CU Va 

(20. 1 )  

(20.2) 

Hence if ¢ is  a section of the bundle E,  then {O.�/ o¢a } defines a section of the dual 
bundle E* .  But 8¢ is a section of E (being basically a difference of sections) and so 
the contraction 

(�) 8 
a 

o¢a 
¢ 

occurring in the first integrand of (20. 1 ) is a scalar. Since 8 1M ,�(x , ¢ , ¢jj ) .,(gdx is a 
scalar by hypothesis, it must be that the contraction 

( 0 ,';.' ) a 
O¢/j 

8 (¢/j
) 

must also be a scalar. Since 8 (¢/) is a section of E @ T* M, it must be that 

-- defines a section of E* @ T M ( o ,f 
) 

o¢/j 
(20.3) 

Our usual rules of tensor analysis apply in  this situation. For example, we have the 
connection W for E . Then _wT defines the connection for E* (see Example I ' following 
Theorem ( 1 8 .27)) . We have the standard Riemannian connections r and - rT for T M 
and T* M. Thus, as discussed in Problem I 6.3 (  1 ) , we have a connection in any tensor 
product of the bundles T M, T* M, E, E * ,  . . . . For example, (o,�)/o¢/j )8¢b defines a 
section of E* @ T M @ E ;  for simplicity let us call it A�j . 1t is of the form A�j = B� Cb • 
Thus a is an E* index, b in an E index, and j is a T M index. Its covariant derivative, 
again written A�jk '  is a section of (E* @ T M @ E) @ T* M and would be given by 

Abj - " Abj Abj c + b A cj + r j Abi a/k - Uk a - c wka Wkc a ki a 

We may invoke the Leibniz rule (B� Cb)/k = Bl/kch + B� C7k ' where the covariant 
derivative of B involves both w and r, whereas that of C involves only w. Covariant 
differentiation commutes with contractions,  and so on. 
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We now proceed with our calculation o f  the first variation.  From (20. 1 ) and 8 (q,a (8</Ja )jj we have IJ) :::: 

Now (85tj8qlj)cJ(ti is a section of E*®T M®E,  and contraction yields that (8.�jaq,a.)8q,e 
is a section of T M,  that is, is an ordinary contravariant vector field X j on M �d we 
may then write 

[ (�) 8¢a] = div [ (�) 8¢a ] 8¢(h jj o¢/j 
If M is compact with boundary, we have 

(20.S) 

8 r 2(x , ¢ , ¢jj )Jgdx = r [ (  O� ) _ ( O� ) ] (8¢a )JgdX (20.6) JM JM o¢ O¢jj jj 

+ r [ (  8: ) 8¢a] NjdS 
JaM 8¢jj 

where N is the unit normal to the boundary and d S = iN Jgdx is the n-dimensional 
area form. Thus if the first variation vanishes for all variations vanishing on oM, we 

have the (Euler-) Lagrange equations 

88;� := ( o8;� ) 
- (o:�J jj = 0 (20.7) 

where the left-hand side, called the functional or variational derivative, defines a 
section of E * .  It is convenient to define 

div ( o�¢ ) : = (o:�j ) 
jj 

which is not a scalar but rather a section of E * .  Without components, we may write 
(20.7) in the form 

20.1h. Boundary Conditions 

Suppose that ¢ satisfies Lagrange's equations. Then we see immediately from (20.6) 
that if we demand that 8¢ = 0 on oM, then 8S = O. The condition 

8¢ = 0 on oM  
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is called an essential or imposed boundary condition ; we simply prescribe the value 
ofrP on the boundary. We see, however, that the boundary conditions 

- N - 0 a - I N ( aX ) 
acp'lJ 

} - , - , . . . , 

will also yield oS  = 0 when cp sati sfies Lagrange's equations. These are called the 
natural boundary conditions .  See Problem 20. 1 ( 1 )  at this time. 

20.1c. Noether's Theorem for Internal Symmetries 

Suppose now that we have a I -parameter group of symmetries of the Lagrangian, that is ,  
we suppose that c({' is invariant under a I -parameter group of fibe r motions cp � cp (a) . We 
shall mainly be interested in the case when there is a I -parameter subgroup g (a) = eaE 

of the structure group, E E 3" and .�' is invariant under cp � g (a)cp .  (In the case of 
the Dirac electron, we shall see that the Lagrangian is invariant under the U ( 1 )  action 
Vr t-+ eia 1/f on spinors 1/f . ) In this case g is a matrix function ga h (a) of a. In a given local 
patch U of M, the section cp is represented by a column cpa and then the symmetry would 
be of the form cpa (a) = gUb (a)cph = (eaE )a bCPh . Then ocpa = (acpajaa)a=O = Eahcpa . 
The symmetry assumption yields oS  = O. Thus if cp is a critical section, that is, if 
¢ satisfies Lagrange 's equations, then for any compact submanifold M' of M with 
boundary aM' we have, from (20.3) and (20.4) , 

r [ ( a c� ) ocpu ] Jgdx = r div [ ( ax� ) ocpa ] Jgdx = 0 ) M' acp/j /j } M' acp/j 

Since M' is arbitrary, we conclude 

Noether's Theorem for Internal Symmetries (20.8) : If cp satisfies Lagrange 's 
equations and if 8cp is a variation by symmetries of the Lagrangian, then 

Corollary (20.9) : For the i -parameter group eaE of symmetries we have 

and thus the vector field J 

has divergence O. 

We shall mention an appl ication of this to the Dirac equation in Section 20.2 . 
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20.1d. Noether's Principle 

The principle behind Noether's theorem is of more applicability and importance than 
the specific formula given in (20.8) .  All internal first-variation problems lead to an 
expression of the form 

8 J Ldx = J [ 8L
] 8CPdX + f G (x ,  cP ,  8cp)dx 

u u 8cp . U  

(for all compact regions U C M) where the form of the functional derivative 8L/8rfJ 
depends on the number of derivatives cp/j , CP/jb . . . , appearing in L. A solution to the 
variational problem satisfies the Euler-Lagrange equations 8L/8cp = O. If then we have 
a variation that leaves Iu Ldx invariant, that is ,  is a group of internal symmetries, then 
we must have G (x ,  cP , 8cp) = 0 for the solution cpo This identity can be called Noether's 
theorem, and is frequently of the form div J = 0 for some vector field J .  

We shall illustrate this with the famil iar cases of geodesics and minimal surfaces. 
A geodesic M I in W" is  a solution to the variational problem 

1 ( dX dX ) I /2 
8 � , � dt = 0 

M dt dt 
for variations 8x vanishing at any pair of prescribed endpoints p and q of M. (This 
does not fit into the scheme of (20.8) ;  e .g . ,  M is the image in the n-dimensional W" 
of the unit t -interval ; furthermore, x takes the place of the field cP, but the x 's are local 
coordinates in the manifold W, which is not a vector bundle.) x satisfies the Euler 
equations VT/ds = O. Consider a vector field J on W that generates a I -parameter 
group of isometries (e.g . ,  the rotations of the round 2-sphere W2) .  Such a field is called a 
Killing field, after the mathematician Kil l ing, and its flow clearly leaves the Lagrangian 
[gjk (dxj /dt) (dxk /dt) ] I /2 invariant. However, this "variation" 8x = J does not vanish 
at the endpoints . The first variation formula ( 1 0.4) has "boundary" terms, and yields, 
since VT/ds = 0, the result (8x, T) (p) = (8x, T) (q ) .  S ince this holds for all p, q on 

M, we have 

(8x, T) is constant along the solution M I (20. 1 0) 

and we can make this look more l ike (20.9) by saying 

d (8x, T) = 0 

where d is the differential for the I -manifold M. Thus a Killing field 8x has constant 
scalar product with the unit tangent to any geodesic. See Problems 20. 1 (2 and 3) for 
some applications of thi s result. 

Consider now the generalization of a minimal surface in ]R3 . Mr is a minimal 
sub manifold of the Riemannian wn provided 

8 fu vol' = 0 

for each compact region U of M and each variation 8x that vanishes on a u .  We 
considered the case when M2 is a surface in ]R3 in Section 8.4, where we derived the 
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first variation formula of Gauss .  We accept the higher-dimensional version of this  in 
the form 

o j voIr = - j (H,  OXN ) voir + r oXTvol�U l 
V V lav 

(20. 1 1 ) 

where H is a type of meaD curvature vector that is normal to M, OXT is the component 
of the variation vector ox along the unit outward-pointing normal D to a U that is  tangent 
to U, that is, OXT = (ox, D) . (For a derivation of (20. 1 1 ) see, e .g . ,  [L] . )  The mean 
curvature H is more complicated than in the case of a surface in ]R3 since the normal 
space to M is of dimension n - r rather than 1 ,  but we shall not be concerned with it at 
this time. The boundary term, however, should be completely evident. The formula then 
says that a minimal submanifold M must have mean curvature H = O. For a minimal 
M and a general variation we have 0 Iv voIr = Iau oXTvol�Ul . S ince VOI�U l = in voIr 
we can write this as 

o j vol' = r (ox, D ) invol' = r (OXT ' D ) invol' 
V lav lav 

= r i (OXT ) vol' 
lav 

where OXT is projection of ox tangent to M.  We now apply Noether' s  principle ; if ox 
i s  a Killing vector field on Wn , that is ,  the generator of isometries, then the tangential 
part of ox is a vector field on M whose M-divergence is 0 

(20. 1 2) 
In the next sections we shall give some physical applications. 

Problems 

20.1 (1 ) Let p be a g iven function on a compact Riemannian man ifold with boundary. 
Consider the variational problem for a scalar function rjJ 

i5 i[gikrjJjjrjJ/ k + 2prjJ],J9dx = 0 

Find the Euler-Lagrange equations and the essential and natu ral boundary 
condit ions. These should al l  be expressed in  fami l iar, classical language. 

20. 1 (2) The flow generated by a Killing field X is a 1 -parameter group rjJt of isometries. 
Thus if Y and Z are fields that are invariant under the flow, ( Y, Z) = gii yi Z i is 
independent of t along an orbit of X. 

(i) Show that in the Riemann ian connection , Jacobi's equation of variation 
(4. 1 0) can be written 

V Y  dt = V y X 

( i i)  Show then that d( Y, Z) /dt  = 0 translates into ( Xiii + Xjf i ) yi Zi = 0, and, 
s ince Y and Z can be chosen arbitrari ly at a g iven point, 

Xijj + Xjl i = 0 

These are Kil l ing's equations, satisfied by every Ki l l ing vector f ield. 
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( i i i )  Use these equations to show di rectly that (20. 1 0) holds. 

( iv) Let p be a point at which I I  X 1 1 2= ( X, X) ach ieves its max i mum :f. O. 
Thus T ( X, X) = 2 ( V' T X, X) = 0 for every vector T at p. Let T be the unit 
tangent to a geodesic through p with arc length parameter s. Show that 
d2 ( X, x) /ds2 = 2 ( - R( X, T) T, X) + 2 (V' TX, V' TX) , By considering (n - 1 )  
such un it tangents Tex ,  which, together with X ,  are orthonormal at p, show 
that 

We conclude Nomizu's theorem:  

I f  Mn has negative defin ite Ricci cu rvatu re then no Ki l l ing field X =1= 0 
can ach ieve its maxi mum le ngth at any point of M. I n  particular, we 
have another theorem of Bochner: A compact M with negative Ricci 
curvature has no nontrivial Killing vector field. 

For example, the Ki l l ing field a/ax on the Poincare upper half plane (see Prob
lem 1 0 . 1  (2» has a length that tends to inf in ity as we approach the x axis .  

20.1 (3) Let the cu rve Y = y(x) in the xy plane of ]R3 be revolved about the x axis, 
yielding a surface of revolution M 2 . We may use x and the cyl indrical angle 9 
(the polar angle in the yz plane) as coordinates for M. 

(i) Write down (using the picture) ds2 for this surface. Clearly J = alae is a 
Ki l l ing vector f ield on M 2 , since it generates the rotations about the x axis. 
Consider a geodesic C, e = e (x) on M2 and let O' (x) be the angle that this 
geodesic makes with the l ines of latitude, that is, the e cu rves. 

( i i) Derive Clairaut's relation 

y cos 0' = constant along C 

Consider an inf in ite horn-shaped surface of revolution given by y = 

f(x) , -00 < x < +00, where f is increasing,  f' (x) > 0 for -00 < x < +00, 
and f(x) -7 0 as x -7 - 00 .  

( i i i )  Show that a geodesic that crosses the latitude circle a t  x = 0 and i s  not 
orthogonal to this circ le wi l l  l ie  in the region x � _ a2 ,  for some a. What is 
the best value for a2 ? What happens in the region x > O? 

20.1 (4) Geodesics in the Poincare upper half plane. The Poincare metric in M2 = 
{ (x , Y) I Y  > OJ is ds'2 = y-2 { dx2 + dy2 J .  Since the metric coefficients g�� 
are independent of x, a/ax is a Ki l l ing vector f ield. Since dy2/y2 ::: (dx2 + 
dy2 )/y2 , the vertical l ines x = constant are clearly min imizing geodesics. We 
are interested i n  the other geodesics. 

Let T be the un it tangent to a geodesic and let 0' be the angle that T makes 
with a/ax, al l  in the Poincare metric. 

( i) Show that y- 1 cos 0' = constant k along the geodesic. 

(i i) Show d i rectly from the metric that a horizontal l ine cannot be locally mini

miz ing , and hence is not a geodesic. 
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( i i i )  Show that if two Riemann ian metrics ds and ds' on a space are confor

mal ly related,  meaning ds'2 = )..2 ds2 for some smooth function ).. , then 
angles measured with ds coincide with angles measu red with ds' . 

Since the Poincare metric is conformally related to the euclidean metric 
ds2 = dx2 + dy2 , we see that the angle a in part ( i) is the same as the 
eucl idean angle. Use now the euclidean metric dSQ . But i n  the euclidean 
metric dy / dSQ = sin a along a cu rve . 

(iv) Concl ude that da/dSQ = -k ,  and thus the geodesic has constant eucl idean 
curvature, and is thus an arc of a circle (of perhaps inf in ite radius) .  Show 
that if the geodesic is not a vertical l ine ,  then k =I 0 ,  and so it is not straight. 
Then at the h ighest point Yo , k = 1 /  Yo . Show that the eucl idean circle 
strikes the x axis orthogonal ly. Thus the geodesics of the Poincare metric 
are euclidean circles (or vertical lines) that meet the x axis orthogonally. 

20.2. Weyl 's Gauge Invariance Revisited 

What can global symmetries tell us about background fields? 

We remind the reader that our formulas will differ sometimes by factors of i from 
those of most books since we are using the metric signature (- + ++) .  

We shall also use  the physicist 's convention of  frequently putting 

1i = 1 

Our remarks about quantization, especially "second quantization," will be extremely 
brief and sketchy. 

20.2a. The Dirac Lagrangian 

We shall exhibit a Lagrangian whose Euler equations are the Dirac equations for a free 
electron ( i .e . ,  an electron not interacting with any other field) in Minkowski space Mri. 

First we shall need to construct scalars out of 4-component spinors 0/ = (0/ "  0/2 , 0/3 , 
Vr4) T .  Recall that 0/ t = 0/ T is the hermitian conjugate row matrix .  Then 0/ t ¢ is a 
hermitian bilinear form that is invariant under unitary transformations of ((:4 , but, as we 
shall see, it is not invariant under the Dirac representation p (A)  : C4 -+ ((:4 of ( 1 9 .42) 

that accompanies each Lorentz transformation A of Mri. We remedy this as follows . 
Recall the Dirac matrices (with our choice of signature) 
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I t  is clear that ya i s  hermitian whereas yO is  skew hermitian, and thus i yo is hermitian. 
We now define the Dirac conjugate spinor (or adjoint spinor) to 1/1 by 

(20. 1 3) 

(The factor i appears because of our choice of signature.) Since i yo is a hermitian 
matrix, the bilinear form 

(20. 14) 

is again hermitian. This form, however, is not definite because of the switching of 
components resulting from yO .  We claim that 

Theorem (20.15) :  The form 1/1¢ is invariant under the Dirac representation p. 
Thus it is a scalar under Lorentz transformations. 

P R O O F : One sees immediately that 

and so, abbreviating p eA) to p, we have (p 1/l) t i yo (p¢) 
1/1 t i yO¢,  as desired. 0 

Since p t P =1= I ,  it is clear that 1/1 t ¢ is not Lorentz invariant. 

(20. 16) 

Since fl1/I is a Dirac spinor if 1/1 is (this is the content of ( 1 9 .47)), we conclude 

� � 
Corollary (20.17): 1/Ifl1/I and 1/1 1/1  are Lorentzian scalars. 

For an electron of mass m we may try to form a Lagrangian by Vrfl1/l - mVr1/l. As 
we shall see, the first term needs to be made more symmetrical in 1/1 and Vr . The Dirac 
Lagrangian is defined by 

(20. 1 8) 

where aj 1/l is really (aj 1/l )� = ( aj 1/l ) t i yo . We claim that the Euler equations for the 
Dirac action 

1 !!.'edx 

yield the Dirac equations ( 1 9.48) . First note that 1/1 consists of four complex fields 1/1) 
in Me: . Since these are complex, we may write them in terms of their real and imaginary 
parts , yielding eight real fields to be varied independently. It is simpler (and equivalent) 
to allow the eight complex fields 1/1 and 1/1 to be varied independently. These eight fields 
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comprise the section cp = (cpa ) appearing in (2004) . In Problem 20.2( 1 )  you are asked 
to show that the Euler equations for the Dirac action yield the Dirac equations for 1/1 

and the conjugate (20. 1 9) 

It is clear from (20. 1 7) that the Dirac Lagrangian is invariant under the I -parameter 
group of "gauge transformations" 

� � 

(20.20) 

where a is  any real constant. Under this variation 81/1 = i 1/1 and 81/1 = -i 1/1 .  Noether's 
theorem (20.8) then shows that the 4-vector J defined by 

Jk : =  -ie�yk 1/l  (20.2 1 )  

bas vanishing divergence i n  Minkowski space (the electron charge -e  i s  put i n  for 
future needs) provided that 1/1 is a solution to the Dirac equation. Thus for the spatial 
slice V3 (t )  we have 

� r JOdx /\ dy /\ dz = r a Jo 
dx /\ dy /\ dz dt } v et) } v (t) a t  

= - r a, JOldx /\ dy /\ dz 
JV (t ) 

If we assume that the wave function 1/1 vanishes sufficiently rapidly at spatial infinity, 
the last integral vanishes by the divergence theorem and we have that 

r e1/l t (i yO)2 1/1vo13 = r e1/l t 1/Ivol3 
JV(t) JV (t ) 

is constant in time. As we shall see in Section 20.2c, if we think of 1/1 as a classical 
(unquantized) field, this integral is interpreted as the electric charge, e1/l t 1/1 is the charge 
density, and then Jk is interpreted as the electric current vector. 

20.2h. Weyl 's Gauge Invariance Revisited 

A guiding principle of Einstein's theories of relativity is that the laws of physics should 
be expressed in a form that is  independent of any particular coordinate system used. 
Let us first look at a simple example in Newtonian gravitation to see how coordinate 
changes can be used to infer information about interactions .  

Consider a "small" laboratory in free fall in our space, distant from any sizable 
bodies . With respect to a small cartesian coordinate system attached to the laboratory, 
a small test particle in free fall satisfies Newton's equations d2x/dt2 = O. With respect 
to a second cartesian system that is moving uniformly with respect to the first, that is, 
x' = x - kt , where k is  a constant, we again have the same Newtonian law d2x' / dt2 = o. 
We may say that uniform translation is a symmetry of our system. Newton of course 
realized this .  He maintained that there are distinguished coordinate systems in our 
universe, those that are at rest with respect to "absolute space" and those that are moving 
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uniformly with respect to  it, and his laws hold in any such system. I f  however we  allow 
k to vary in time, for example k = O j2)got ,  then x' = x - O j2)got2 , and Newton's 
equations become, in the new coordinate system, d2x' j dt2 = -go. This additional 
term is simply tel ling us that our new coordinate system is accelerating with respect to 
Newton's absolute space . Bishop Berkeley and, later, Ernst Mach rejected the notion of 
absolute space; they would say that the new coordinate system was accelerating with 
respect to the bulk of matter in the universe, the distant matter in the universe, or as they 
would say, the "fixed stars," and this is the interpretation preferred today. The additional 
term, -go in this case, is informing us of the existence of the gravitational influence of 
the distant matter, even if we had been unaware of the notion of gravitation !  Even when 
the gravitational force vanishes, as it does for all intents and purposes in our free-fali 
laboratory located at a great distance from matter, the distant matter still informs the 
laboratory, through gravitation, of which coordinate systems are to be considered as 
(approximately) inertial . I believe that if space were devoid of even this distant matter, 
Newton 's laws would make no sense, since there would then be no intrinsic notion of an 
accelerating frame or that of an inertial frame. There would be no notion of the "mass" 
of a test particle, since mass is measured via accelerations. Newton 's laws of motion 
are an indication of some "background field, " gravitation, that is interacting with the 
test particle, and presumably these laws need amending when this background field is 
taken into account, particularly when the "strength" of the field does not vanish. We 
have learned of thi s background field through the fact that Newton's laws do not remain 
invariant under non-uniform changes of coordinates. 

Newtonian mechanics takes place not in matter-free space but rather space with a 
"uniform" distribution of distant matter. 

Similarly, the Minkowski space of special relativity is not general relativity with no 
matter present, but rather an approximation in general relativity of a region in curved 
space far from a un(fonn distribution of distant matta 

Consider the Dirac electron in Minkowski space Mg. A free electron is postulated 
to satisfy the Dirac equation (20. 1 9) ,  derivable from the Lagrangian (20. 1 8) .  The Dirac 
equation may be thought of as a replacement for Newton 's law. Both (20. 1 9) and (20. 1 8) 
are invariant under (global) Lorentz transformations of Mg, but not under more general 
space-time coordinate changes. To allow for the general coordinate changes we proceed 
as we did in Section 1 9 . 5 ;  we change the Dirac equation by replacing the Dirac operator 
by introducing the Riemannian connection for true space-time and replacing partial 
derivatives by covariant derivatives, yielding the new Dirac operator ( 1 9 .57) 

1 . . k �l/f + 4 r/ k Y ' Yj y l/f 
The second term, involving r and l/f ,  is an interaction term, telling us how the gravi
tational field interacts with the electron field. 

20.2c. The Electromagnetic Lagrangian 

Physicists, following Weyl in 1 929, have carried this principle a step further. For sim
plicity we shall neglect the very small gravitational interaction, that is, we shall put 
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r == 0, thus returning to the original Dirac equation (20. 1 9) .  Instead of considering 
a change of (space-time) coordinates x, we shall look at a change of the field (fiber) 
coordinate 1jJ, that is ,  a gauge transformation. Although quantum mechanics assigns a 

physical, measurable meaning to each absolute value 1 1jJ" I ,  the argument or phase of 
1/rQ == l 1jJa l exp (ie,, ) , that is ,  ea , has no such meaning; one cannot measure the phase 
of a wave function or spinor. Both Dirac 's equation and his Lagrangian are invariant 
under the global gauge transformation 

1jJ f-+ e iu 1jJ = (eiu 1jJ I , eiu 1jJ2
, e iu 1jJ 3 , eiu 1jJ4) T 

the term global meaning (in physics terminology) that a is a constant. This invariance is 
crucial since a global change of phase of all of the wave functions in quantum mechanics 
must leave the physics unchanged. A global gauge transformation is a symmetry of the 
Dirac equation.  

Since the phase of 1jJ is not measurable, we should be able to have invariance under a 
local gauge transformation, where a = a (x) varies with the space-time point x !  Clearly 
the Dirac equation and Lagrangian are not invariant under such a substitution because 
of the appearance of terms involving da . It must be that there is some background field 
that is interacting with the electron. This background field will manifest itself through 
the appearance of a connection . Since each component 1jJa of 1jJ is undergoing the same 
phase transformation, we shall forget the 4-component nature of 1jJ and simply write 
1/1 � eiu (x) 1jJ. If we think of this as a change of frame in a complex line bundle with 
transition functions g� 1 = cv u (x)  = eiu (x) , then we need a connection in this line 
bundle that transforms as W f-+ g- I wg + g- I dg = w + g- I dg = w - ida. If we 
define the real field, that is, I -form, A, by w = -iA ,  then A' = A + da (x ) .  Thus 
our unknown background field A transforms in the same way as the vector potential 
in electromagnetism, suggesting (with hindsight) that we identify the background field 
with electromagnetism ! (Of course we could have written w = -ikA for any real 
constant k. Comparison with classical mechanics, as in Section 1 6 .4, leads to the choice 
k = e/h = e . )  The new Dirac operator is then 

(20.22) 

If we now replace jJ by h in the Lagrangian (20. 1 8) we get a new Lagrangian, 
which now contains terms involving the field A. 

I - - . -
-"..)e = - [1jJy l (aj - ieAj )1jJ - (aj + ieAj )1jJyl 1jJ] - m1jJ1jJ 

2 
1 - . - .  - - . = - [1jJy 1 aj 1jJ - (aj 1jJ )yl 1jJ] - m1jJ1jJ - (ie )Aj 1jJyl 1jJ 
2 

since (aj - ieAj ) t = a) + i eAj ' Note that the last term is , from (20 .2 1 ) ,  

Wj :;fy) 1jJ = -ieA) :;fyj 1jJ = Aj ]) 

(20.23) 

Quantum mechanics then dictates that the A field is also to be considered as an 
independent field in its own right; that is ,  we are also to allow variations of the new 
Lagrangian involving variations of A .  To get nontrivial field equations for A we need to 
have "kinetic" terms, terms involving first derivatives of A with respect to t .  To maintain 
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Lorentz invariance w e  shall need all first derivatives a j Ak in the Lagrangian. These 
partial derivatives do not yield a gauge covariant quantity; one cannot form a gauge 
invariant scalar for the Lagrangian simply by taking L;(aj Ad2 . Geometry tells Us that 
the curvature e2 = dw + w A w = dw, with components -ie (aj Ak - akAj ) =:  -ieF .  Jk , 
is the correct tensor to use, rather than a j Ak • We then add some multiple of the square 
of this electromagnetic jield strength F2 to the Lagrangian.  Our choice of - ( 1 / 1 6Jr)  
for this multiple wi l l  be vindicated shortly. This is our jinal Lagrangian . 

- . l k - m '/"/' + A · ]1  - - F k P · 

'i' 'i' } 1 6:rr } 

(20.24) 

Look now at the variational equations involving 8A .  Note first that for variations 8A 
vanishing outside a small region 

Also 

8 J _1
- Fjk Fjk voI4 = 8 J _l

_ F  A * F  
1 6:rr 8:rr 

= 8 _1 
( F, F) = 8 _1 (dA , dA) = 

(8dA , dA) 
� 8:rr 4:rr 

(d8A ,  F) (8A , d* F) 
4:rr 4:rr 

8 J A j ]1 vol4 = J 8AJ i vo14 = (8 A ,  *",3 ) 

where ;;;3 : =  i J vol4 . We conclude then that d* F = 4:rr *;;;3 . But d* F = *d*F, from 

( 14 . 1 2), and so we have d*F = 4:rr ;;; . Since dF = 0, we conclude that variation of 
the A jield yields Maxwell 's equations provided that we identify J 0/ (20. 20) with the 
electric current density. Charge conservation d;;; = 0 follows. In summary, 

the Dirac Lagrangian (20. 18) admits the global symmetry group (20.20). lfwe insist 
that the Lagrangian should admit local symmetries, when a is not constant, then 
Weyl 's procedure leads to the introduction of the "electromagneticjield " A; Maxwell 's 
equations (and charge conservation) then follow! 

20.2d. Quantization of the A Field: Photons 

We have now a Lagrangian involving the two fields 1/f and A .  Quantum mechanics 
then requires that these fields be quantized; that is, these fields in some sense are to 
be represented by operators and one performs "second quantization" (see, e.g. ,  [Su, 
chap .  7 ] ) .  The quanta of these fields , which automatically appear, are interpreted as 
particles associated with the fields . Very roughly we have the following. The 1/f field 
yields again the electron.  The 1/f t field also yields a particle, the positron, which had 
been predicted earlier by Dirac just on the basis of his new equation. The "gauge field" A 
yields another "new" particle, the photon. Physicists then say that the electromagnetic 
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force between electrons is "explained" by the exchange of these new "gauge particles, " 
the photons, between electrons. 

We should also remark that in the process of quantization the current (20.2 1 )  gets 
replaced by a new operator; in particular, the density becomes the electron-positron 
charge density, rather than simply the electron charge density. 

In a few sentences, the guiding principle, the gauge principle, for studying the 
force between particles can be stated as follows.  If a proposed Lagrangian of some 
matter field 1/1 is invariant under global (but not local) gauge transformations, alter the 
Lagrangian by replacing partial derivatives by covariant derivatives (introducing a new 
gauge field, a connection w, or potential A, whose transformation rule is compatible 
with the gauge transformations) ; the Lagrangian then has local gauge invariance. Then 
add to the resulting Lagrangian a new term proportional to the square of the "length" of 
the curvature dw + 1 /2[w, w] of the gauge field (to be more fully explained in the next 
section) so that gauge invariance is not destroyed. Variations with respect to 1/1 yield 
the field equations for 1/1 and variations with respect to w yield the field equations for 
the gauge field. Then when one quantizes the gauge field, the quanta of this field are 
identified as particles , and the force between the particles of the original matter field 1/1 
is explained by the exchange of these gauge particles. 

This principle was first applied by Yang and Mills, and we turn to this now. 

Problems 

20.2(1 ) Derive (20 . 1 9) as Eu ler equations for the D i rac action . 

20.2(2) Show from (20.3) that Jk = Vriykljr is a contravariant 4-vector f ield . Prove this 
also by looking at the transformation properties of Jk = VriYkljr ,  using (20. 1 6) 
and ( 1 9 .44) . 

20.2(3) Show that the term I Ai Jivol4 is gauge- invariant if J has compact support. 

20.3. The Yang-Mills Nucleon 

How did the groups S U (2) and S U (3) appear in particle physics? 

20.3a. The Heisenberg Nucleon 

Heisenberg postulated that the proton p and the neutron n behave identically with 
respect to the "strong" interactions between nuclei . These forces are much stronger 
than electromagnetic effects on the charged proton . Suppose then, with Heisenberg, we 
neglect completely all electromagnetic properties. He then considered p and n as being 
two states of the same particle, the "nucleon," represented by two 4-component spinor 
functions,  again denoted by p and n. We shall not here be concerned with the spinor 
components, but shall write schematically 

1/1 = (p ,  n ) T 
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where p and n are now complex-valued functions o f  space-time. Thus a nucleon that 
is , in the estimation of some observer, definitely a proton at a given point would have 
n = 0 there; a neutron would have p = O. Heisenberg felt that an observer is free to 
make a global l inear change in the components (p , nl ,  keeping I p l 2 + I n l 2 invariant" 
for example, the nucleon could be called a proton at any given space-time point. fu 
essence, then, Heisenberg demanded that the (unknown) strong force Lagrangian for 
the nucleon must be invariant under the generalized gauge transformation 

0/ f--7 u o/  = [ U l l  U 1 2 ] [ p ] 
U2 1 U22 n 

where, since I p l 2  + I n l 2  is to be unchanged, U E V (2) is a (constant) unitary matrix. 
Since 

(p ,  nl and (eia p, eia nl 
represent the same nucleonic mixture we may eliminate this special phase transforma
tion by restricting U to have determinant I ;  the symmetry group of the strong Lagrangian 
then consists of constant matrices U E 5 V (2) and the nucleon admits 5 V (2) as a global 
gauge group .  (As I learned from Meinhard Mayer, Heisenberg actually thought not in 
terms of 5V (2) but rather the spin "representation" of 5 0 (3) ! )  

20.3b. The Yang-Mills Nucleon 

Yukawa, in 1 935 ,  introduced the idea that one should explain the strong nuclear force 
between nucleons by assuming that the force arises from the exchange of certain parti
cles, mesons, unobserved at that time, j ust as the force between electrons results from 
the exchange of photons. Yang and Mills in 1 954 suggested that we can arrive at ex
change mesons by assuming that the correct Lagrangian for the nucleon will admit 
5 V (2) as a local symmetry group, rather than the global one of Heisenberg. Weyl's 
principle will then require a gauge field, that is, a connection. 

Recall that when we studied (in Section 1 6 .4e) an electron moving in the background 
field of a magnetic monopole, the vector potential was not globally defined and had 
to be defined in patches of Mri. The nuclear field, analogous to the electromagnetic 
field, is completely unknown. There is a good chance that any "potential" for this field 
will again only be defined in patches, and l ikewise for the 0/ field. Thus the nucleon 
field should be considered not as a ((:2 function on space-time but rather as a section 
of a ((:2 vector bundle, whose structure group is 5V (2) . Of course the bundle might be 
trivial, but it is no more work to consider the general case. Gauge transformations are 
simply changes of frames in the fibers of the bundle. In this new unknown bundle the 
Yang-Mills covariant derivative will be locally of the form 

B 
\j · = - + w J Bxj J 

where Wj = w (8/8xj )  and w = (Wab) = dxjw/b is an ML(2)-valued connection 
I -form . .  uL(2) consists of skew hermitian matrices with trace 0 and so has a basis 
consi sting of imaginary multiples of the Pauli matrices { i  aa } ,  a = I , 2, 3 [ 0 -i ] 

i 0 ' 
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Thus each W j i s  o f  the form 
. AU . A Wj = - lqUa j = - lqU · j 

= -i q {uI A ; + u2A� + u3A� } 
where we have completely suppressed the matrix indices. 
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(20.25) 

We have thus been forced to introduce three new covariant vector fields AI , A 2 , A 3 , 
the Yang-Mills fields, to mediate the force between nucleons .  The strength of the force 
is reflected in the coupling constant q ,  replacing the charge in the case of electromag
netism. Our covariant derivative is 

(J1fr . V · 1fr  = -. - l qU · A · 1fr (20.26) 1 (hl  1 

where again 1fr = (p ,  n ) T 
One then must introduce "kinetic terms" in the Lagrangian involving derivatives of 

the A fields , that is, of the connection w. The natural candidate for "derivative" of W is 
of course the curvature 

Then 

1 e = dw + 2: [w , w] = dw + w !\  W 

= (JjWk - (JkWj + WjWk - WkWj 
ejk = ajWk - akWj + [Wj , wd (20 .27) 

(Caution: Each Wj is an ordinary matrix ,  not a matrix of I -forms ! )  Introducing the 
matrices 

we get 

where (20.28) 

Fjk : = ajAk - akAj - iq [Aj , Ad 
is again a trace-free hermitian 2 x 2 matrix, the field strength of the Yang-Mills field. 

We must remark that Yang and Mill s were unaware, at the time, of the notion of 
curvature of a vector bundle; the bracket term in (20.28) was added because they knew 
that some term was needed to give a nonabelian version of electromagnetism ! For an 
interview with Yang on the history, see [Z] . 

In our former notation 

ea - I RU d j d k b - 2: bjk X !\ X 

and so ejk is the skew hermitian matrix with a fl entry Ra fljk . We wish to construct a 
scalar from e .  The analogue of the Ricci tensor Ra flak makes no sense (why?), and 
so the scalar curvature analogue doesn ' t  exist. An obvious scalar can be constructed 
quadratically from the Riemann tensor, namely Ra fljk Rfl /k (the indices jk here have 
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been raised by the Minkowski metric tensor) , which i s  essentially the trace of the matrix 
Ljk 8jk8jk . One then adds to the Lagrangian a kinetic term proportional to this trace 

k tr (Fjk Fl ) 

We shall discuss this more thoroughly in the next section . 
After second quantization the fields A I , A 2 , A 3 yield three particles, the exchange 

particles that mediate the nuclear force. 
This model of nuclear forces is now obsolete. The currently accepted version holds 

that the nucleons are not fundamental ; each is made up of quarks. Each "flavored" 
quark 1/1 appears in three different color states 1/1 = (R , B ,  G)  T , analogous to the 
two nucleon states (p ,  nl . The gauge group is then the 8-dimensional SU(3 ) .  Its Lie 
algebra of traceless skew-hermitian 3 x 3 matrices has a basis given by { iAb } , where 
Ab are the hermitian Gell-Mann matrices ; see p. 652. The connection is of the fonn 
WI· = -igsA"AQ , where there are now 8 covariant vector fields A I , . . .  , A8, and the . J 
"charge" g, is called the strong coupling constant. There are then 8 gauge fields, the 
gluons, that yield the forces between quarks. 

20.3c. A Remark on Terminology 

We have related the connection matrices w to the gauge potentials A by 

w = -iqA 

q is  called a generalized charge. Now i t  follows from the transformation rule for a 
connection that if w is a connection for a bundle E then a multiple aw of w is again a 

connection for E only if a = 1 

awl = g- I awg + ag- I dg 

Thus if w is a connection, A = (i / q )w is not a connection, and it transforms in a slightly 
different way 

AI = g- I Ag + (�) g- I dg 

In spite of thi s, physicists almost always refer to A as the connection, and F = (i / q)8 
as the curvature. 

Problem 

20.3(1 ) Show that if w and WI are connections for E then their convex combination 

(1 - a)w + awl 

is also a connection for E for each real a. 
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20.4. Compact Groups and Yang-Mills Action 

What if the group is a compact group other than SU (N)?  

20.4a. The Unitary Group Is Compact 

Theorem (20.29) : The group U (n )  is compact 

P R O O F : Consider U (n)  as the subset of complex n2 space satisfying uu t  
uuT = I ,  that is, 

In particular 

L UijUkj = °ik 
J 

L I UkJ I 2  = L UkjUkJ = L Okk = n 
k , J k , j  k 
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Thus U (n) consists of points that lie on the sphere I I  u I I = .J1i and is therefore 
a bounded subset of complex n2 space, It is al so clear that the limit of a sequence of 
unitary matrices is again unitary, and so U (n) is a closed, bounded (i ,e "  compact) 
set (see Section 1 ,2a), 0 

20.4h. Averaging over a Compact Group 

We have seen that the left and right invariant I -forms on the affine group of the line, 
A ( 1 ) ,  do not always coincide, This i s  to be expected in general . Let {a j } and { T J } be 
bases for the left invariant and right invariant I -forms on G that coincide at e, The 
corresponding Haar measures 

a 1 !\ . . .  !\ a N and T 1 !\ , , , !\ T N 

will in general be different, as they are in A ( I ) ,  This cannot happen in a compact group .  

Theorem (20.30) : In a compact Lie group, the left and right Haar measures 
coincide (the Haar measure is hi-invariant), 

P R O O F :  Let w = a l !\ . , . !\ aN be the left invariant volume form and let e be 
an orthonormal basis of left invariant vector fields ; in particular w (e) = I .  To 
say that w is  not right invariant is  to say that for some right translate, w (eg- I ) : =  
w (Rg- , *e) = c -=I- 1 .  But  then w (geg- 1 ) = c ,  By replacing g by  g- I i f  necessary 
we may assume c > 1 .  Thus under this adjoint action Ad(g) ,  the orthonormal 
e at the identity is sent into a frame at the identity with volume c > 1 .  Under 
Ad(g" ) ,  the frame e is  sent into a frame with volume c" -+ 00, as n -+ 00. This 
means that the continuous function F : G -+ lR defined by F(g) = w (geg - I ) is 
not bounded on G, But a continuous real-valued function on a compact space is 
bounded, a contradiction. 0 
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Given a compact group G with bi-invariant volume form w,  the integral of a conti • 

uous function f : G � e is usually written n 

l fw = l f(g)wg 
where Wg is the volume form at g .  (This is similar to the notation I f (x )dx .) When co 
has been normalized so that the total volume of G is 1 ,  Ie W = 1 , then Ie fw is simply 
the average of f on G and plays a central role in many aspects of Lie theory. 

Theorem (20.31) :  For any continuous function f and for all g in the compact 
group G we have 

l f(hg)Wh = l f(gh)Wh = l f(h)Wh 

P R O O F :  Consider first Ie f(hg)Wh . Right translation Rg : G � G sends h M 
hg .  Since W is right invariant 

that is ,  

Wh = R;Whg = (R;wh 

R* W = W Ii 

Also f (hg) = f 0 R� (h) = (RZf) (h ) ,  and so the function F defined by F(h) = 
f(hg) is simply F = R,;f .  Hence 

l f (hg)wlz = l Fw = l (R;f) 1\ R;w 

= 1 R; U  1\ w) = r fw = 1 f(h)Wh e JR,e e 
since Rg G = G.  The proof for Ie f (gh)Wh is similar since W is left invariant as 
well. 0 

In many books this proof is written as fol lows :  The statement that W is right invariant 
is written 

Then r f(hg)wlz = 1 f(hg)Whg = 1 f(h )Wh 
Je e e 

replacing the dummy variable hg by the dummy h .  

(20.32) 

20.4c. Compact Matrix Groups Are Subgroups of Unitary Groups 

Let G be a compact group of n x n matrices . We can consider the matrices as l inear 
transformations of en (think of them as being complex matrices). Let ( , ) be any 

hermitian scalar product in en (e.g . ,  (z, w) = (2:: Zj Wj ) ) .  The matrices will not, in 
general, preserve this scalar product ( i .e . ,  the matrices will not be unitary with respect 
to this metric) .  We claim, however, that the averaged scalar product will be invariant. 
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For given X, Y i n  <C/ , w e  define the new scalar product 

(X, Y ) := 1 (hX, h Y)w" 

This is of the form (X ,  Y ) = Je f(h)w" .  Then, from (20.3 1 ) , for g E G 

(gX, g Y ) = 1 (hgX, hgY)Wh = 1 f(hg)wh = (X , y )  
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(20.33) 

as desired. Thus the compact matrix group acts by unitary transformations with respect 
to this new scalar product. After choosing a new basis for <C" that is  orthonormal in this 
metric, the matrices will be unitary in the usual sense. In this sense we may consider 
any given compact matrix group as a subgroup of the unitary group, (More accurately, 
it is similar to such a subgroup.) 

20.4d. Ad Invariant Scalar Products in the Lie Algebra 
of a Compact Group 

Let G = U (n) ,  the group of unitary matrices, g t : = gT = g - I . Then � = tt(n) is the 
space of skew hermitian matrices, X t = X T = - X . 

We shall always consider Lie algebras as real vector spaces. 
Define a real scalar product ( ,  ) in the vector space IL(n) by 

(X , Y ) : =  - trX Y  = -Xij Yji (20.34) 

(This agrees with that used for SU(2) in ( 1 9 .9) . )  In Problem 20.4( 1 )  you are asked to 
show that this form on �/ = II(n ) is real, symmetric, and positive definite. 

Note that this scalar product in u�n) is invariant under the adjoint action of G = U (n) 
on �; for u E U (n) 

(uXu- l , u Yu - l ) = - tr uX Yu - 1  = - trX Y  = (X, Y ) 

Now let G be any compact n x n matrix group. As we have seen, G may be considered 
a subgroup of U (n) ,  and then, as we have seen in Section 1 5 .4d , �' is a subalgebra of 
tt(n) .  Then for X, Y in �/ we wil l  have that (X ,  Y) = -tr X Y  is a real scalar product 
in � that is invariant under the adjoint action ofG on 2" ! For X, Y, Z in � 

(etx Ye-tX , et X Ze-tx ) = ( Y, Z) 

Differentiating and putting t = 0 gives, from ( 1 8 .32), 

( [X, y ) ,  Z) + ( Y, [X , ZJ ) = 0 
that is , (20.35)  

ad(X) : 2' � � ' is  skew adjoint 

and note that this holds for any group whose Lie algebra is endowed with a scalar 
product invariant under the adjoint action! 
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20.4e. The Yang-Mills Action 

Let Jr : E ---+ Mil be a vector bundle with compact structure group G C U (N) . We are 

mainly concerned with the case Mil = M4 = space-time. In the original Yang-Mills 
model, G = SU(2) . 

If w is a connection in E then 

w = -iqA (20.36) 
expresses w in terms of the "gauge field" or "potential" A and a "coupling constant" 
or general ized "charge" q .  Since G C U(N) , Wj = w (8j ) is skew hermitian and Aj is 
hermitian . For curvature 

I e = dw + 2 [w , w] = -iq F (20.37) 
Fjk = aj Ak - ak Aj - iq [Aj , Ad 

and F is the field strength. It also is hermitian . 
In our computations we shall use w and e ;  when we are done we may convert to A 

and F !  Our constants might differ from those used in physics. 
We define the Yang-Mills (briefly, Y-M) action functional by 

S [w] := � r -tr (ejkejk ) voln (20.38) 4 JM 
Note that for each j , k ,  ejk = (R'" fJjk ) is a skew-hermitian matrix, that is ,  ejk E :y ,  and 
-tr (ejke ;k ) is the scalar product in :y of these matrices . The indices in ejk have been 
raised by gjk , the pseudo-Riemannian metric in Mil . We wish to write this action using 
the curvature forms, rather than matrices . The curvature forms are 

eu = (e'" fJ ) = 1 R'" fJjkdx& /\ dxt 

Each matrix eu is a matrix of locally defined 2-forms e'" fJ .  Each of these 2-forms ea fJ 
has a Hodge dual (n - 2) -form *e'" fJ from the pseudo-Riemannian metric on Mn , and 
we know from ( 1 4.6) that 

R'" R" jk In - 2 'e'" e "  fJjk 'I VO - . fJ /\* � 

We can then write the action as 

S[w] = - �  r e"'fJ /\ *efJ", = - � r tr e /\ *e 
2 JM 2 JM 

1 
= 2 (e , e ) 

(20.39) 

where we have defined a Hilbert space scalar product ( ,) on W C LL(N)-valued pjorms 
by 

(ep , ¢P ) :=  - L tr e /\ *¢ (20.40) 

This makes sense whenever e and ¢ are p-form sections of an Ad (U (N) )  bundle since 
tr [cec- 1 /\ c*¢c- 1 ]  = tr [e /\ *¢] . 
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How does S depend on the connection w? Take a I -parameter family of connections 
(J) == W eE ) with "velocity" ow := w' (O) . For first variation (keeping the metric on M 
fixed) d 1 oS[w] : = dE 

{S [W (E ) ] } E=O = 2 0 (8 , 8 ) = (08 , 8 ) 

= (0 {dW + � [w , w] } , 8) 

= (doW + � [OW , w] + � [w , ow] , 8 ) 

S' [w] = (dow + [w , ow] , 8) (20.41 ) 

since w and ow are I -forms ;  see ( 1 8 .7) .  Now if WI and W2 are connections their difference 
A{J) is a 9'-valued I -form that transforms as 

Awv = cvuAWUCv& 
and is thus a I -form section of the Ad bundle associated to the G bundle E. Likewise, 
D{J) is a I -form section and of course the curvature 8 is a 2-form section of this same 
bundle. But then 

dow + [w , ow] = Vow 
is the covariant differential of ow, see ( 1 8 .42). We then have, from (20.4 1 ) , 

08 = V (ow) (20.42) 

S' [w] = (Vow, 8) = (ow , V*8) 
where V* is the Hilbert space adjoint to V. 

As usual we  demand that S' [w] = 0 for all variations ow of w. This gives 

V*8 = 0 (Yang-Mills) 
with, of course (20.43) 

V8 = 0 (Bianchi) 

the latter holding for any connection. 
These equations clearly generalize Maxwell ' s  equations in the case when the current 

J vanishes.The coordinate expressions for these appear in Section 20.5 .  

Problem 

20.4(1 ) Show that (20 .34) is rea l ,  symmetric, and positive definite. 

20.5. The Yang-Mills Equation 

How do the Yang-Mills equations compare with Maxwell ' s?  

20.Sa. The Exterior Covariant Divergence V* 
W� have seen in (20.42) that the Y-M curvature 8 = -iq F, a �f-valued 2-form, must 
satIsfy V*8 = 0, where V* is  the Hilbert space adjoint of the covariant exterior 
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differential V for the Ad bundle. We shall compute a coordinate expression for this 
analogous to the formula ( 1 4. 1 5 )  for scalar-valued forms.  V* satisfies 

J tr (dow + [w , ow] , e ) vol = J tr (ow,  V*e )vol (20.44) 

for all I -form sections ow and all 2-form sections e of the Ad bundle. Here ( ,  ) is the 
pseudo-Riemannian (pointwi se) scalar product. We can also write this as 

J tr {dow + [w,  ow] } 1\ *e = J tr ow 1\ *v*e (20.45) 

All the forms involved take their values in the fixed vector space � and both d and * 
commute with taking traces (* only affects the manifold indices i , j ,  . . . , not the fiber 
indices (Y, (3,  . . . ) .  Consider the left-hand side of (20.45) .  The first term is 

J tr {dow 1\ *e } = J dowa f3 1\ *ef3 
a = (do wI> fl '  ef3 1» (20.46) 

= (owl> f3 , d*ef3 o J  = J tr owdd*e } kvol 

assuming as usual that the boundary integral involving ow vani shes. The second term 
on the left-hand side of (20.45) can be computed using 

[W , OWLk = {w 1\ ow + ow 1\ w} (aj , ad 

= Wj OWk - WkOWj + OWj Wk - OWkWj 

for then [w , OWLkeJk = 2[wj , owde jk (since j and k are form indices, ejk = -ekj) .  
Then J tr [w , ow] 1\ *e = 1 J tr [w , OW]jke Jkvol 

= J tr [Wj , OWk ]ejkvol = - J ( [Wj , owd , ejk ) vol 

where (, ) is the scalar product in �/ . From (20 .35) we can write this as 

= J (OWk o [Wj , ejk ] ) vol = J -tr OwdWj ' e
jk ]vol 

Combining thi s  with (20.46) gives 

J tr owd (d*e /  - [Wj , ejk ] } vol = J tr ow 1\ *v*e 

But from ( 14. 1 5 )  (d*e /  = _e jk Ij ' where this covariant derivative is with respect to the 
pseudo-Riemannian connection on M, not the bundle connection. e is to be considered 
as a second rank tensor on M with extra indices from Q that are not considered in this (} . covariant derivative! Finally we have the coordinate expression of the Y-M equatIOn 
v*e = 0 

(20.47) 

where, we emphasize, al l indices are manifold indices ; Wj and e jk are matrices whose 
indices have been suppressed 
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We remark, though we shall have no use for it, that the expression (20.47) can be 
written as the negative of a tensorial type of divergence. The �k component of (20.47) 
can be obtained from (e'x jJ ) jk = Ra {3 jk . Thus e jk 1j + [Wj , e jk ] becomes 

e jk . + w ejk  _ ejkw · = ejk . + wa RY jk _ R" jkwY I ; ;  ; I ; ; Y fJ Y ;fJ 
= (a . Ra jk + rj R'" rk + rk R" jr ) ; {3 ; r fJ ;r {3 

+ Wa . RY  jk _ Ra jkwY ; Y {3 Y jfJ 

Note that we could then write (20.47) as 

('<7*e )a k _ - R" jk 
. - 0 v fJ - {3 11; - (20.48) 

where we are considering R�jk as the components of a tensor of type E ® E* ® T M ® 
T M, and I I denotes the covariant derivative of such a tensor, using w for the bundle 
part and r for the tangent bundle part. 

20.Sb. The Yang-Mills Analogy with Electromagnetism 

If we now put w = -iq A  and e = -iqF ,  then we have seen in (20.37) 

generalizes the situation in electromagnetism, where the action is (when no sources are 
present) essentially J Fjk Fjkvol4 . The Y-M action is, except for a constant, 

S[A]  ....., J tr Fjk F jk vol" (20.49) 

= J tr (aj Ak - ak Aj - i q [Aj , Ad) (aj Ak - ak Aj - i q [A< Ak ] )vol" 

Whereas the electromagnetic action is quadratic in the fields A, the Y-M action also 
contains cubic and quartic terms. The Y-M equation v*e = 0 and the Bianchi equation 
ve = 0 are, from ( 1 8 .44) and (20.47) ,  

and (20.50) 

It is instructive to compare these with Maxwell 's  equations in Mg with metric 
{- I ,  1 ,  1 ,  I } . We shall write the Y-M fields for G = SU(n)  as follows.  We give 
the usual electromagnetic names to the components of F 

i = 1 ,  2, 3 

even though E and B are now 3-vectors with hermitian n x n matrix components. Look, 
for example, at Y-M for k = O. We have 
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that is , 

div E = iq (A o E - E o A) (20.5 1) 

This is the analogue of Gauss's equation .  We see that even though we started out without 
external sources, 

i q (A o E - E o A) 

plays the role of a "charge density." Thus the Y-M field E and the potential A combine 
to act as a source for the Y-M field ! The nonabelian nature of the structure group 
SU(n ) ,  that is ,  [A , E] i- 0, allows this to happen ! 

Look again at Y-M, this time considering only a spatial index k = f3 = 1 , 2 or 3: 

that is ,  

FOfJ 1o + F'xf3 la - iq [Ao , FOf3 ] - iq [Aa , Faf3 ] = 0 

aE 
curl B = - - iq (AoE - EAo) + i q (A x B + B x A) 

a t  (20.52) 

replacing Ampere-Maxwell .  Note that there are two extra contributions to a "current" 
other than the displacement current. 

The Y-M equations thus yield generalizations of the laws of Gauss and of Ampere

Maxwell ,  without external sources . 
Similarly, in Problem 20.5( 1 )  you are asked to derive the analogues of the laws of 

Faraday and of the absence of magnetic monopoles from the Bianchi identity 

and 

aB 
curl E + at = iq { (A x E + E x A) + (AoB - BAo) } (20.53) 

div B =i q (A 0 B - B o A) (20.54) 
Note that "magnetic charge density" can exist in a nonabelian Y-M field ! 

20.Se. Further Remarks on the Yang-Mills Equations 

It is clear that if ¢> is a p-form section of any Ad (G)  bundle, then tr ¢> is an ordinary 
p-form on M since tr (cvu¢>cv� ) = tr ¢> .  

Note that i f  G = S U (N)  then for any p-form section ¢> of  the Ad (G) bundle (for 
example the curvature 2-form) we must have tr ¢> = O. However, if 1/1 is another form 
section, then ¢> /\ 1/1 does not take its values in �' . Although tr (¢> /\ 1/1)  is again a form 
on M it need not be O. Furthermore, there are times when one uses groups other than 
SU(N) .  

Theorem (20.55) : Let ¢> b e  a p-form section of an  Ad  (G) bundle. Then 
dtr ¢> = tr V¢> 

P R O O F :  

V¢> = d¢>  + [w , ¢>]  = d¢>  + w /\ ¢> - (- I ) "¢> /\ w 
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T H E  Y A N G - M I L L S  E Q U A T I O N  

tr V¢ = tr d¢ + ui' fJ 1\ ¢f! 01 - (- l ) P¢fJ 01 1\ wOlfJ 
= tr d¢ D 
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The following is clearly the analogue of ( 1 4. 1 2) . Recall that we are using the Hilbert 
space scalar product (20.40) . 

Theorem (20.56) : For any form section of an Ad(G) bundle 

P R O O F : Let y be a (p - I )-form section of the Ad bundle with small support. 
Then, from ( 1 8 .46) 

(V y , ¢) = - J tr (V y 1\ *¢) = - J tr V (y 1\ *¢) ± J tr (y 1\ V*¢) 

= - J dtr (y 1\ *¢) ± J tr (y 1\ V *¢) 

Since y has small support, the first integral vanishes by Stokes's theorem. We 
conclude 

The actual sign is given as in ( 1 4. 1 2) .  

Definition (20.57) : A Yang-Mills field A is one that satisfies 

V* F = 0 

Definition (20.58) : Any field strength Fjk = oj Ak - Ok Aj - iq [Aj , Ad that 
satisfies 

*F is called self-dual 

F =  
- * Fis called anti-self-dual 

Since any field strength satisfies the Bianchi equation V F = 0, we see that V * F = 0 
if F is self- or anti-self-dual . A self- or anti-self-dualfield strength is automatically the 
field strength of a Yang-Mills field! 

Problems ----------

20.5(1 ) Supply the detai ls of the electromagnetic analogues (20.53) and (20.54) for 
the Bianchi equations. 
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20.5(2) The electromagnetic analogues can also b e  derived using exterior forms. F'II 
in the detai ls in the fol lowing .  

I 

Decompose A i nto temporal and spatial parts A = <p dt + A 1 . Here <I> ::::: 
Ao is a �-valued function and A 1 is a �-valued 1 -form. As usual we write 
d = d + dt /\ aja t. Then P = (ijq)(j 2 = dA - iqA /\ A yields, after writin 
F2 = E1 /\ dt + 82 with rvalued forms E1 and 82 , the "electric" and "magnetic� 
parts of the field strength . 

1 aA1 . 1 
E = d¢ - at - / q[A , ¢] 

82 = dA 1 + A 1 /\ A 1 = dA 1 + � [A 1 . A 1 ] 

Then the Bianchi equations V F2 = d F2 + [w 1 , F2 ]  = 0 wi l l  yield 

dE1 + a:
t
2 

= iq( [A 1 , E 1 ] + [<p , 82] )  

d82 = iq[A 1 , 82] 

For the Yang-Mi l ls equation V* F = ±*V* F = 0 , we put * F2 = -*82 /\ dt +  
*E1 for �,-valued forms *82 and *E1 ; the bold * i s  the spatial Hodge operator. 
Then 

yields 

and 

a*E1 
d*82 = -- + iq( [A 1 , *82 ] - [<p ,  *E1 l l  

a t  

20.5(3) Let M4 be compact and suppose that the support of 8 w  does not meet the 
boundary (if any) of M. Use 8e = V(8w) and Theorem (20 .56) to show that 

8 1M tr (e /\ e) = ±8 (e,  *e) = 0 

Thus if J M tr (e /\ e )  is added to a g iven action integral , the action wi l l  be altered 
but the variational equations will be unchanged! We shal l  study the Horm 
tr (e /\ e) extensively in our remain ing chapters. 

20.6. Yang-Mills Instantons 

How can the Brouwer degree distinguish between two Yang-Mills vacua? 

20.6a. Instantons 

Consider a quantum particle interacting with a Yang-Mills field in Minkowski space. 
This particle is described by a "wave funtion" 1jr,  a cross section of a complex rf 
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vector bundle £ over Minkowski space M = Mri. We assume that the structural group 
is SU (n) ; thus G = SU(n )  acts on CN via some representation. For our purposes 
it is sufficient to consider the standard representation on C/ . The bundle has a Y-M 
connection w = -i  q A and a curvature B = -i q F, where A and F are hermitian matrix 
valued local forms on Mri. In U C M we have a frame of sections 

\lIu = eu = (ef ,  . . .  , e� )  

and Wu and Bu . I n  an overlap ev = eucu v , cu v (x ) E SU (n ) .  
In this section w e  shall be concerned with the background Y-M field, rather than 

with the particle. The action for this Y-M field alone is essentially 

i -tr Fjk Fjk * 1 '"'-' i ( I I E 1 1 2 - I I B 1 1 2 ) * I 

where we have given the electromagnetic analogue on the right (Problem 7 .2(3)) . 
For certain purposes it is useful in physics to replace the Minkowski metric of space

time by the 4-dimensional euclidean metric +dt2 + dx · dx. This will not be discussed 
here. (See e .g . ,  [C, chap. 7] . This chapter of Coleman's book will also overlap with 
some of the topological material that we shall discuss later. ) The action is then called 
the euclidean action. We shall be concerned with Y-M fields having finite euclidean 
action 

(Note that the euclidean version of the electromagnetic Lagrangian is the energy density 
of the electromagnetic field . )  Such fields are called instantons since they "vanish" as 
I t I -+ 00. An example of an instanton is given in [I, Z, sec . 1 2- 1 -3 ] .  

For simplicity, to  avoid the limiting values of boundary integrals ,  we assume that 
the field strength £2 + B2 not only dies off at infinity but has support lying inside some 
3- sphere S3 centered at the origin of ]R4 . 

Figure 20.1 

(This does not make sense in electromagnetism in Mri since an electromagnetic field 
in free space would radiate out to infinity and would be present for all t . )  



552 Y A N G - M I L L S  F I E L D S  

Let U be  a coordinate patch holding this S3 and its interior and let V be  a Coordinate 
patch holding S3 , extending to 00, and such that F = 0 in V .  We assume that V is the 
exterior to some sphere inside S3 . 

In the "exterior region" V we have e = O. We claim that we can make a change of 
frame over all of V (in the wave "function" vector bundle E, not in Minkowski space) 
so that in the new frame Wv = O !  

This should not b e  a complete surprise; i t  i s  a global version of Riemann's theorem 
(9 .70) on curvature 0, but for an arbitrary vector bundle. To see it, let Wi be the original 
connection form for V .  We wish to find a g : V --+ S U (n) so that 

that is, 

dg + w'g = 0 (20.59) 

Can we solve this I -form system for g = g; (x ) ? Using the symbol � to signify mod 
(dg + wig) as arises in the Frobenius theorem 

d(dg + wig) = dw'g - Wi A dg 
� dw'g - Wi A (-wig) � (dw' + Wi A w')g 
� e 'g = 0, in V 

By Frobenius we may locally solve (20.59) uniquely for g ,  subject to any initial go = 
g (p) at p E V .  

Suppose that w e  have two solutions, g and h , i n  two overlapping patches. Then 

dg = -wig and dh = -w'h , and so 

d (g- l h ) = _g- l dgg- 1 h + g- l dh 
= g- l w'gg - 1 h - g- ]w'h = 0 

Thus two overlapping solutions are always related by a constant matrix k E SU (n) , h = 
gk , at least if the overlap is connected ! Consider then a path C : [0, I ]  --+ V that starts 
at p .  Cover this path by a finite number of 4-bal ls  BO! (lying in V )  each small enough 
to support a solution gO! to (20.59) and such that the intersections of consecutive balls 
are connected. Let go be the solution in the first ball Bo at p. Let g ] be a solution in 

the next ball B] . B ] intersects Bo in a connected set. Then there is a constant matrix 
k] E SU (n )  such that g ] (x) = go (x)k ] in their overlap and it is clear that g; : =  g ] k1 ] is 
a new solution of (20.59) in B I that agrees with go in their overlap. We have continued 
the solution into the second ball .  Proceed to the third ball and so forth. In this way we 
continue the given solution in the initial ball to all points of V .  Is this well defined? If 
C is a closed curve that returns to p, the final solution could be a gb that differs from 
go ; this is the same situation as in analytic continuation of an analytic function in the 
complex plane ! However, the region in �4 that is exterior to a ball is simply connected, 
and just as analytic continuation i s  unique in such a region (seen by shrinking the closed 
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curve to a point), so it is in our situation. Thus a global solution g : V � SU (n) to 
(20.60) exists in all of the exterior region V and 

Wv = 0  

when we use the new frame of sections ev = e/vg .  0 
Note that the original connection WI is of the form 

WI = _dgg- 1 

and is said to be pure gauge. 
Since Wv = 0 on U n V, and in particular on S3 , 

We again write this in a simplified form, Cvu = g, 

where g : S3 � S U (n) are new matrices, not those of (20.60) . 

(20.60) 

(20.6 1 )  

We then have the following situation: Look at the part of the wave function bundle 
that lies over the sphere S3 . Over S3 we have two frame fields given, the "flat" frame 
ev and the frame eu over U .  The flat frame consists of sections e v I ,  . . .  , e,; each of 
which is covariant constant 

that is, these sections are parallel displaced along S3 . We are comparing the U -frames 
eu with these covariant constant frames along S3 , 

eu (x) = ev (x )cvu (x ) = ev (x ) g (x )  (20.62) 

and, consequently the matrices g(x) define a mapping 

g :  S3 � SU (n ) (20.63) 

This situation is similar to that encountered in Chern's proof of Poincare 's index theorem 
( 17 .2 1 ) .  Let us go back and reconsider Chern's proof in the light of our Y-M field with 
finite action. 

20.6b. Chern's Proof Revisited 

Consider, instead of a closed M2 as in Section 1 7 .3 ,  a curved "wormhole" version M2 
of the plane, but such that the curvature vanishes in the region V exterior to some circle 
S I .  The bundle we are considering is the tangent bundle T M2 to the orientable surface 
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Figure 20.2 

M2, but considered as a complex C line bundle. By using "orthonormal" frames eu , ey ,  
we may consider the structural group of this bundle to be U ( 1 ) .  We have indicated the 
"flat" covariant constant frame ey in the exterior region. 

Warning: Unlike the case when Mil has dimension n :::: 3 ,  the region V is not simply 
connected. One cannot always find a global flat frame in this region V .  For example, 
M2 is flat in the conical region in the following figure, but a parallel displaced vector 
will not return to itself after traversing S l 

Figure 20.3 

as we saw in Section 8 .7 .  In fact this picture is the geometric analogue of the Aharonov
Bohm effect, discussed in Section 1 6 .4f. Using the electromagnetic connection, the 
curvature inside the coil is  constant, since the magnetic field B is  constant there; this 
corresponds to the constantly curved spherical cap. Furthermore, the exterior to the 
coil corresponds to the flat conical region. S ince w = -i  ebde /2nn in the exterior 
region, the equation of parallel translation in the electron wave function bundle is 
d1/f - i eb1/fde /2nn = O. Hence 1/f = exp(iebe /2nn) is covariant constant but is not 
single-valued unless the flux b takes on very special values ! 
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(Notational comment: In the case of a section of a vector bundle with structure 
group G ,  parallel translation along a parameterized curve x = x (t )  is still defined by 
d1f; + w1/! = 0, that is ,  

d1/! = _w (dX ) 1/! dt dt (20.64) 

for the matrix-valued connection I -form w. Since J w (dx/dt)dt also lies in g, we see 
from Problem 1 5 .2(3) that if the structure group G is commutative then the solution to 
(20.64) is 1/! (t )  = exp[- J� w (dx/dr)dr ]1/! (O) . If G is not commutative, there is no 
such formula, but physicists write the solution in the form 

The symbol P indicates an operation called path ordering. It is important to realize 
that this can simply be considered a notation for the operation that sends an initial 
1f; (0) into the unique solution 1f; (t )  of (20.64) . (We shall not use this notation.) 

In our wormhole, Figure 20.2, we have chosen V so that a global covariant constant 
frame ev does exist, as it does in the Y-M example. 

In the curved region U we have indicated a cross section eu that has singularities at 
the critical points of the height function; the top p is one of them. (The field looks like 
the normalized velocity field for molasses oozing down from the top.) 

For our complex l ine bundle version of the tangent bundle we have, as in 1 7 .3a, the 
connection w and curvature 

B = dw = -i KdA (20.65) 
On the circle S I we have eu = ev eia and so 

g (x )  = eia (20.66) 
and 

In the situation of Poincare's theorem, Chern considered a closed surface. In our case 

1 KdA = fu KdA 

since K vanishes outside U .  In Chern 's  proof 

1 KdA = 2JT L ip (eu ) 
M p 

whereas in our nonclosed M2, using KdA = dW12 , Chern's  proof would give 

1 1  """ . I i u - KdA = 0 ip (eu ) + - Wl2 2JT U 2JT s '  p 

= L ip (eu ) - _1 1 da 2JT ls, p 
(20.67) 
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We may then write (for future reference) 

or 
2� fL e = L jp (eu ) + 2� is, w p 

_i Jr{ e = L ip (eu ) _
_ 
I 1 da 2]'( } M 2]'( 's' p 

(20.68) 

(20.68) tells us that we get the same result as in the closed M2 case except for a boundary 
term describing how many times the given cross section rotates around the flat section 

ev !  

_ _  1 1 dL(ev , eu ) 2]'( ls, 
Note that this last "rotation number" is exactly the degree of the map 

g : S l � S l defined by x � g (x ) = eia 

(20.69) 

Now in our Y-M situation we have a similar map, at least in the case when G = 
S U (2) , for then (20.63) involves a map 

g : S3 � SU (2) = S3 (20.70) 
and this map indeed does have a degree, called the winding number of the instanton. 

In our Y-M case we shall assume that the frame eu in the wave function bundle has 
no singularities inside S3 . 

We draw a surface analogue consisting of a flat cylinder V with a hemispherical cap 
(a diffeomorphic copy of �2) U .  In V we put the flat vertically oriented "frame" ev, 
whereas in the cap U we may put a singularity-free field eu, for example, as follows. 
In Section 1 6 .2a we introduced a vector field on S2 having a single singularity of index 
2 at the north pole. The field eu is simply the part of this field that lives on the southern 
hemisphere . 

Figure 20.4 
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In Problem 20.6( 1 )  you are asked to verify (20.69) in this case. 
In the Chern situation, in (20.69), if there are no eu singularities, we see that the 

degree of the boundary map is completely described by the integral of the curvature ! 
Can the corresponding Y-M degree in (20. 70) be evaluated by looking at the curvature, 
that is, the field strength, of the Yang-Mills field? The answer yes will be proven in 
Section 2 1 .2 ;  it was first given by Chern a decade before the paper of Yang and Mills. 

20.6c. Instantons and the Vacuum 

In Yang-Mills we may consider the vacuum state in which the field strength F or e 
vanishes. One must not conclude that nothing of interest can be associated to such a 
vacuum. In the geometric analogue we may consider a flat surface ;  the connection (i) 
replaces the gauge field A and the curvature e = 0 replaces field strength F = O. In 
the example considered previously of the frustrum of a flat cone, tangent to a 2-sphere 
along a small circle SI , we may delete the spherical cap completely. This corresponds to 
the exterior region in the Aharonov-Bohm effect. We have seen that parallel translation 
about SI does not return a vector to itself, in spite of the fact that the connection is flat. 
There is more information in the flat connection than is read off from the 0 curvature 
alone ! Likewise there is more information in a gauge field A for a vacuum than can be 
read from the vanishing field strength. 

Before considering the Yang-Mills vacuum we shall look at another geometric 
analogue. In the fol lowing figure we have again drawn the 2-dimensional analogue, 
a flat surface, but instead of using the "flat" (covariant constant) frame (pointing, for 
example, constantly in the t direction) we use a frame that is time-independent, is flat at 
spatial infinity, and rotates (in this case) once about the flat frame along each spatial slice . 

/-_. 

./\ 
· V· 

I-.. .:............. ----.. 
... .L... ----.. 

flat frame e = � 

- . � - .1\ 
· V 
.f-

./� 
.. ,� 

Figure 20.5 

space 

L "me 

We have gauge transformed the flat frame e to a new one, eg , where g : JR -+ 
U ( 1 )  = S I maps each spatial slice so that g (  -00) = g (00) = 1 .  (The field, i .e . ,  
connection, is again "pure gauge," (i) = g- l dg.) We assume, again for simplicity, that 
for each spatial section t = constant we have g (x )  = 1 for Ix l 2: a for some a .  This 
vacuum solution in JR2 is not deformable, while remaining flat at spatial infinity, into 
the identically flat frame vacuum for the following reason. 
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The function g maps the spatial slice lR into S l . We may stereographically project 
lR onto a circle S l -(north pole) by projecting from the north pole. In this way We 
may consider g as being defined on S I -(north pole) . Since g is identically 1 in some 
neighborhood of the pole we can extend g to the entire circle S I . (This can be thought of 
in the following way. By identifying all x for I x  I 2: a with the point x = a on the section t = constant, this section becomes topologically a circle S I . We have "compactified" 
lR to a circle and since g = 1 for I x  I 2: a, g extends to this compactification.) This 
gives, for each t ,  a map g : S I -+ U ( 1 )  = S I , which in this case has degree 1 by 
construction. If our vacuum solution were to be deformable to the flat vacuum solution 
while keeping I x  I 2: a flat, then 1 = deg g : S I -+ U ( 1 )  = S I would have to equai 
that of the flat vacuum case, which clearly has degree O. This i s  a contradiction. We 
thus have two inequivalent vacua. Similarly, we could get a vacuum frame that winds 
k times around the flat frame. 

In the 4-dimensional Yang-Mills case (with G = SU (2» there will likewise be an 
infinity of inequivalent vacua, each one characterized by the degree or "winding num
ber" of the map g : S3 -+ S U (2) = S3 arising from the spatial slice ]R3 "compactified" 
to S3 ; this is discussed more in Problem 20.6(2) .  Physicists then interpret an instanton 
with winding number k, that is, degree k given in (20.70), as representing a nonvacuum 
field tunneling between a vacuum at t = - 00  with winding number n ,  and a vacuum 
at t = +00 with winding number n + k (see [C, L, sect. 1 6 .2] or [I, Z sect. 12- 1 -3]). 
We discuss the geometry of this situation in Problem 20.6(2) .  

Further significance of the winding number of the instanton wi l l  be sketched in 
Chapter 2 1 . 

We have seen why g : S3 -+ S U (2) has a degree. To understand why g : S3 � 
S U (n ) ,  n 2: 2, has an associated "degree," and to understand Chern' s  results when 

there are singularities, we need to delve more into topology, in particular the topology 
of Lie groups, "homotopy groups," and "characteristic classes ." Homotopy groups arise 

also in other aspects of physics (see, e .g . ,  [MiD. We shall proceed with this program in 
the next chapter. 

Problems 

20.6(1 ) Verify (20.69) in  the case of our specific example of the cyl inder with a cap. 
20.6(2) Consider an instanton .  Let eu be the frame in the i nterior U; we shall assume 

that eu can be extended to be a nonsingular frame in all of ]R.4 . Let ev be a 
flat vacuum frame in the exterior V of the instanton ,  and let, as in (20.70), 
9 : 53 ---+ 5U(2) , mapping the surface of the instanton i nto the group, have 
degree k. Recal l  that k is cal led in physics the winding number of the instanton. 

( i) Show that if e v  can be extended to a frame on al l  of ]R.4 then k == 0 (Hint: 
General ize Problem 8 .3(9) . ) .  Thus i n  general e v  cannot be extended. 

Consider a 3-d imensional "can" W3 su rrounding the instanton, lying en

t i rely in the vacuum region V, and with ends D and D* at two spatial sl ices 

t = ±" 00" . Let the side of the can be g iven by II x 1 1 = a. 
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instanton with boundary 53 

Figure 20.6 

9 is defined on the can W3 and, in fact, on the enti re 4-dimensional region 
that is ins ide the can and outside S3 . Assume that g takes a constant value, 
say 9 = e, on an entire region II x I I ::: (a - E )  containing the sides of the 
can. The can then can be smoothed off near the ends D and [)* ,  yielding a 
smooth 3-dimensional manifold diffeomorphic to a 3-sphere and such that 
g = e everywhere on this new can except on the portions of D and [)* where 

I I x l l < a - E .  
We shal l  now apply the theory of the Brouwer degree. 9 maps the 3-disc 

D i nto SU(2) = S3 and maps a D i nto a s ingle point 9 = e .  This means 
that if, i n  D, we identify al l  of a D to a single point (the "point at 00") then we 
can consider this new space as a 3-sphere, and we have a map 9 of this 
3-sphere into SU(2) . This map has a Brouwer degree that can be evaluated 
by looking at i nverse images of some regular value u E SU(2 ) ,  u =P e .  Call 
th is degree deg ( -00) = n. Simi larly we can look at the disc [)* and assign 
a degree deg (+oo) = n + k, for some integer k. I n  physics books these 
integers are called the winding numbers of the vacua at t = - 00  and at 
t = +00, respectively. On the other hand , the entire can W3 is a smooth 
version of a 3-sphere, and we have the degree of 9 mapping this can into 
SU(2) . The 2-dimensional analogue is 

Figure 20.7 
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( i i) Show why 

deg(g : W3 � SU(2» = deg (+oo) - deg (-oo) 

( i i i) Show why th is degree k is a lso the winding number of the instanton. 

20.6(3) The Winding Number of a Vacuum. Let A i- 0 be any constant and 9 : 1R3 � 
SU(2) map a spatial section IR3 of IR4 , by 

g(x) = exp [ ( I I x i:2X;�) 1 /2 ] 
We can th ink of this 9 as defin ing a gauge transformation of the c lassical 
vacuum (where w = 0) to a new one with w = g- 1 (x)dg(x) , in the spatial 
section IR3 defined by f = +00 . We claim that this vacuum has winding number 
= ± 1 . To show this we fi rst show that g(X) tends to a constant SU(2) group 
element l im it ( i ndependent of x) as I I x I I� 00 .  

( i) What is th is l im it? (H int: Use ( 1 9.20) , which holds for unit A.) Now we are 
al lowed to compute the winding number using (8. 1 8) .  

( i i) Show that only the origin x = 0 i s  mapped by 9 onto I E  SU(2) and show that 
o is a regu lar point by using ( 1 9 .20) appl ied to the l ine x = fA, where A is a 
un it vector. We have then shown that this vacuum has winding number ±1 . 
In [ I ,Z] ,  sect. 1 2- 1 -3 ,  an instanton solution that tunnels between a vacuum 

with winding number 0 and the vacuum of this problem is g iven .  
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Betti Numbers and Covering Spaces 

21.1 .  Bi-invariant Forms on Compact Groups 

Why is it that the I -parameter subgroups of a compact Lie group are geodesics? 

Samelson's article [Sam] i s  a beautiful exposition on the topology of Lie groups as it 
was known up to 1 95 1 .  

21.1a. Bi-invariant p-Forms 

Recall that a form or vector field on G is said to be bi-invariant if it is both left and right 
invariant. For example, on the affine group G = A ( 1 )  of the line, dx / x is bi -invariant. 

Theorem (21 .1) :  If a,P is a hi- invariant pjorm, then a is closed, 

da = 0 

PRO O F :  Let () ' , . . .  , (}n  and r ' , . . .  , rn be bases of the left and the right in
variant I -forms, respectively, and let (} j 

= rj at the identity. Since the left 
and right structure constants are negatives of each other (see Section 1 5 .4c) , 
d(} i = - 1 /2Cjk(}j 1\ (}k and dr i = 1 /2Cjk rj 1\ rk . Let aP be bi-invariant 

where al are constants. Since a is also right invariant, 

Now compute da at e from both expressions. D 

561 
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21.1b. The Cartan p-Forms 

In Section I S . 1 a we have defined the Maurer-Cartan matrix of 1 - forms 

Q := g- l dg 
When G is the affine group of the line, G = A ( 1 ) ,  

Q = [ ; � ]  
We can also consider exterior powers Q2 = Q /\ Q , Q3 = . . . . For example, 

[ dX dY ]  [ dol !!.l. ]  [0 dX�dY ]  x x /\ x x �  x 
o 0 0 0 0 0 

which has the left invariant volume form for its only nontrivial entry. 
We define the Cartan p-forms Ql , Q2 , " "  QIl=dim G by 

Qp := trQP = tr{g- l dg /\ g- l dg /\ . . . /\ g- l dg } (2 1 .2) 
These are, of course, (scalar) left invariant p-forms on G . For G = A ( 1 ) , Q1 = dx/x 
and Q2 = O. 

Theorem (21.3) : The Cartan p-forms are hi- invariant, and hence closed, dQp = 
O. Furthermore, Q2p = O. 

P R O O F :  For constant k E G, 
tr{ (gk) -

l d (gk) /\ (gk)- l d (gk) /\ . . . } 
= tr{k- 1 (g- l dg /\ g- l dg /\ . . . g- l dg)k } 

= Qp 

and so they are also right invariant. Next note Q2 = tr(Q /\ Q) = Qij /\ Qji = 
-Qji /\ Qij = -Q2 ,  and so Q2 = O. Similarly, Q2p = 0, all p .  D 

The Cartan 3-form plays an especially important role. S ince Q (X) = X, all X E 9" 
(Q /\ Q) (X, Y) = Q (X) Q (Y) - Q (Y) Q (X) = [X ,  Y] 

and thus 

(Q /\ Q) /\ Q (X, Y , Z) = [X ,  Y]Z + [Z, X]Y + [Y ,  Z]X (2 1 .4) 
Taking the trace of this and using [X , Y]Z = XYZ - YXZ, and so on, give 

Q3 (X, Y, Z) = 3tr( [X,  Y]Z) (2 1 .5) 

When G is compact we can express this in terms of the Ad invariant scalar product 
(20.34) in �/ C Ll(N)  

Q3 (X, Y, Z) = -3 ( [X, V] , Z)  (2 1 .6) 
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(21 .4) brings up a point. Consider G = SO (3) ,  and let {Ed be the basis ( 1 9 . 1 ) . Then 

(2 1 .7) 

and this matrix is not in the Lie algebra ��(3) ! (Recall that in Section 1 8 . 1  b we defined 
the bracket of 3'-valued forms to remedy this situation .)  The matrix (2 1 .7)  is called a 
Casimir element. 

21.1c. Bi-invariant Riemannian Metrics 

Let ( , ) e be a scalar product in 3' that is Ad invariant; for example, when G = U (n ) ,  
(X, Y) e = -trX Y .  Thus the Lie algebra of  every compact group has such an  invariant 
scalar product. Define then a Riemannian metric on the group G by "left translation," 
that is, 

By construction, this metric is left invariant. We claim that it is also right invariant. For 

by Ad invariance ! We have shown 

Theorem (21.8) : There is a bi- invariant Riemannian metric on every compact 
Lie group. 

The group A ( l )  is not compact. a I = dx / x and a2 = dy / x are left invariant. Hence 

dx2 + dy2 
a l 0 a l + a2 0 a2 = ----

x2 
is a left invariant Riemannian metric on A ( l ) .  (Note that this is the Poincare metric on 
the "right half plane" ; see Problem 8.7( 1 ) . )  This metric is not right invariant, and in 
fact there are no bi-invariant metrics on this group. 

Theorem (21.9) : In any bi- invariant metric on a group, the geodesics are the 
l -parameter subgroups and their translates. 

P R O O F : Let X be a left invariant field on G.  We shall show that each integral 
curve of X is a geodesic in a bi-invariant metric. 

Since X generates right translations, X i s  a Killing field (see Section 20. 1 c) .  
Let C be  a geodesic that is tangent to  X at a point g .  We need only show that X 
is everywhere tangent to C .  By Noether's theorem, X and the unit tangent T to 
C have a constant scalar product (X, T) along C .  T has unit length and X, being 
left invariant, also has constant length. Since X and T are tangent at g, it must be 
that X and T are tangent everywhere along C. 0 
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Thus i n  a group with a bi-invariant Riemannian metric,  a geodesic through e i s  of 
the form exp(tX) , where X is the tangent at e .  This was the (very meager) motivatio for denoting geodesics in a Riemannian manifold by exp(tX) ! 11 

One says that a Riemannian manifold Mil is geodesically complete if every geodesic 
segment e(t) = exPC(O) (tX) can be extended for all parameter values t .  The euclidean 
plane ]R2 is complete but the euclidean plane ]R2 

- 0 with the origin deleted is not; the 
geodesic exp( - 1 . 0) (t a/ ax ) does not exist for t = 1 because of the hole at the origin. The Poincare upper half plane is complete ; even though there is an edge at y == 0, this 
edge is "at an infinite distance" from any point of the manifold. 

It is a fact that if M is  compact then it is automatically geodesically complete. 
Furthermore 

Theorem of Hopf-Rinow (21.10): If Mil is geodesically complete, then any 
pair of points can be joined by a geodesic of minimal length. 

For a proof of these two facts see Milnor's book [M] . 
In a compact group G we may introduce a bi-invariant metric, and then the 1-

parameter subgroups are geodesics. Thus 

Theorem (21 .11 ) :  Every point in a compact connected Lie group G lies on at 
least one I -parameter subgroup. 

As we have seen in the case G = 51 (2, ]R) in Problem 1 5 . 3 (2) , compactness is essential. 

21.1d. Harmonic Forms in the Bi-invariant Metric 

Theorem (21.12) : In a bi- invariant metric on a compact connected Lie group G, 
the bi- invariant forms coincide with the harmonic forms. 

The proof will be broken into several parts . 

Lemma: In a bi-invariant metric, the Hodge * operator commutes with left and 
right translations 

* 0 R* = R* 0 * g g 

P R O O F : We wish to show that L; *{3gh = *L;{3gh for every form {3 at every point 
gh .  Thus it suffices to show that for any form a at h we have alz /\ L;*{3gh = 
alz /\ *L;{3glz . Define aglz by ah = L;agh ' Since the metric is bi-invariant, so is 
the volume form w. Recall that (a /\ *{3 )glz = (agh , {3glz )Wgh .  Then 

alz /\ L; *{3gh = L;agh /\ L;*{3glz = L; �agh /\ *{3gh ) 

= L; ( (agh , {3glz ) Wglz ) 
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= ( L;(Xgh , L;{3gh )Wh = ((Xh , L;{3gh )Wh = (Xh /\ *L;{3gh 
as desired. Similarly for right translations .  0 

Lemma: Bi-invariant forms are harmonic in the bi-invariant metric. 
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P R O O F :  If {3 is bi-invariant then {3 is closed, d{3 = 0. From our previous lemma, 
*{3 is also bi-invariant ;  for example, L; *{3gh = *{3g shows that *{3 is left invariant. 
Then d*{3 = 0, showing that {3 is  harmonic. 0 

(2 1 . 1 2) will then be proved when we show 

Lemma: Harmonic forms in the bi-invariant metric are bi-invariant if G is con
nected. 

P RO O F : First note that a left (right) translate of a harmonic form is harmonic ,  
since d (L;h )  = L;dh = ° and d(*L;h )  = dL; *h = L;d*h = 0, because *h is 
also harmonic. We claim that if G is  connected then in fact L;hgk = hk . and so 
on. To see this, we need only show that both h and L;h have the same periods; 
see Corollary ( 1 4.27) .  Let z be a cycle on G and let g et )  be a curve in G joining 
e = g (O) with g = g ( l ) .  Then 

But (g ( t )z } , for 0 :::: t :::: I defines a deformation of z = g (O)z into gz = g ( 1 ) z ;  
thus these cycles are homologous, gz - z = a c ,  b y  the deformation theorem 
( 1 3 . 2 1 ) ,  and since h is closed 

as desired. 0 

21.1e. Weyl and Cartan on the Betti Numbers of G 

The center of a group G is the subgroup of elements that commute with all elements of 
the group. For example, the center of U (n ) is the I -parameter subgroup eiIJ I ,  whereas 
the center of SU (n )  consists of the n scalar matrices AI ,  where A is an n th root of unity. 

Weyl's Theorem (21 .13) : Let G be a compact connected group. Then the first 
Betti number vanishes, b l (G) = 0, iff the center of G does not contain any 
I -parameter subgroup. 

(In particular, b l = 0 for SU (n) but not for U (n ) . )  
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P R O O F : Suppose first that the center of G contains a I -parameter group e'X 
where XE � .  Then e'x g = getX for all g in G .  Differentiate with respect to t and pu; t = 0, 

.
yielding .Xg � g� . Then the left i�v�rian� vector field Xg = Lg.X == gX 

on G IS also nght Invanant, and thus bl-Invanant. In terms of a bi-invariant 
Riemannian metric on G,  the covariant version of X, that is ,  the I -form (l defined 
by (l (y) = (X, V ) ,  is bi-invariant and hence harmonic. By Hodge's theorem 
b l 2: 1 .  

Suppose b l #- O. In a bi-invariant metric, there i s  then a harmonic, hence bi
invariant I -form (l #- o. Its contravariant version is then a bi-invariant vector field 
X, that is, gXe = Xeg .  Thus for all real t ,  gtXeg- 1 = tXe . Then exp(tXe) == 
exp(gtXeg- l ) = g exp (tXe)g - l . Thus exp(tXe )  is in the center of G . 0 

Since the center of 50 (3) consists only of the identity, Weyl ' s  theorem yields b l == 0 
for G = 50 (3) . Of course we knew this from ( 1 3 .25) and the fact that S O (3) is 
topologically �p3 . Although the first Betti number vanishes, 50 (3) is not simply 
connected. We shall see in Section 2 1 .4 that a strengthening of this version of Weyl's 
theorem will yield information about the contractibility of closed curves in groups. 

The following plays an important role in gauge theories, as we shall see in Sec
tion 22. 1 .  

Cartan's Theorem (21.14): If G is a compact nonabelian Lie group, then the 
Cartan 3-form 

is a nontrivial harmonic form. In particular b3 (G) #- O. 

P R O O F :  Q3 is  bi-invariant, hence harmonic, and Q3 (X, Y, Z) = -3 ( [X, V] , Z) . 
We need only show that it is not identically O. But the only way ( [X, V] , Z) can 
be 0 for all Z is if XY - YX = [X, Y] = 0 for all X and Y in �f . But then, since 

X and Y commute, the power series shows 

eXeY = ex+y = eYeX 

In a compact connected group each g E G is an exponential, and so G is 
abelian. 0 

Finally note the component form of Q3 .  Let e be any left invariant basis and let a 
be the dual basis .  In Problem 2 1 . 1  ( 1 )  you are asked to show that 

and thus 

(Q3) ijk = -3Ck ij � -3Cijk 

I C i J" k Qo = - - " "kO' /\ 0' /\ 0' "' 2 IJ 

where Clj are the structure constants and where Ckij :=  gkIC;j . When we use the bi
invariant metric tensor to lower the top index of the structure constant symbol, the 
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resulting coefficients Ckij are skew symmetric in all indices, not just i and j !  This need 
not hold when G is not compact. 

- Problem 

21 .1 (1 )  Compute the preceding component form of [23 . 

21.2. The Fundamental Group and Covering Spaces 

In what sense does the torus cover the Klein bottle? 

21.2a. Poincare's Fundamental Group Jr} (M) 
Let Y be a closed curve on a connected space M that begins and ends at a given base 
point Po . Such a curve can either be considered as a map of a circle into M (that passes 
through Po) or as a map Y : [0, 1 ]  ---+ M with Y (0) = Po = Y ( 1 ) .  The latter seems more 
convenient. Consider now all such maps with the same base point. We shall identify 
two such "loops" YI = YI (e )  and Y2 = Y2 (e ) ,  saying they are homotopic, 

provided they are homotopic via a homotopy that preserves the base point; thus there 
is an F : [0, 1 ]  x [0, 1 ]  ---+ M, F = F(e ,  t ) ,  with F(O, t) = Po = F( 1 ,  t) for all 
o � t ::: 1 , and F(e ,  0) = YI (e ) ,  F (e ,  1 )  = Y2 (e ) . t is the deformation parameter. We 
talked about this notion in Section 1 0.2d. If Y is homotopic to a constant, we say Y is 
trivial and write g '" 1 .  

y 

o Po 

Po 

Figure 21 .1  

Note that in the left-hand figure, the loop Y is not trivial as far as homotopy is 
concerned (try to contract it to the point Po ! )  even though it is trivial in homology (it is 
the boundary of an orientable surface) . 
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Given two loops YI and Y2 on  M, by  reparameterization (so that each loop is tray 
with double speed) we may compose them to give a new loop, which is traditio� written from left to right na ly 

1 
for 0 < fJ < -- - 2 

:= Y2 (2fJ - 1 )  
1 

for - < fJ < 1 
2 - -

One can show that if y{ � YI and if Y; � Y2 , then y{y; � YI Y2 . The homotopy classes of loops on M form a group under "multiplication" 

(Y" Y2) ---'? Y' Y2 

This is the fundamental group of M, written Jl'1 (M; Po ) .  It turns out that in a certain 
sense the resulting group is in fact independent of the base point, and one simply writes 

Jl'1 (M) 

The identity 1 in this group is the homotopy class of the trivial loop (contractible 
to Po ) .  The inverse to a loop Y is the same loop traversed in the opposite direction, 
y - l (fJ )  :=  y ( 1 - fJ ) .  

A space i s  simply connected i f  all loops are contractible t o  a point, that is, if the 
group Jl' ,  (M) consists only of the identity. 

Consider loops on the circle M'  = S ' , and the resulting Jl'1 (S ' ) .  These are homotopy 

classes of maps Y : S '  ---'? S ' . We know that homotopic maps of the circle into itself 

have the same (Brouwer) degree ; see Corollary (8 . 1 9) .  It can also be shown, though 

it is more difficult, that maps of S l  into itself having the same degree are homotopic. 
Thus a loop Y is characterized, as far as homotopy is concerned, by its degree (i .e . , an 
integer) . Since the map fJ ---'? nfJ has degree n ,  we have 

Jl', (S ' ) = Z 

It can be shown that the fundamental group of the 2-torus is generated by the familiar 
A and B of Figure 2 1 .2 .  Briefly, any loop in the rectangle can be deformed (pushed) 
out to the edge. Jl'1 (T2 ) is abelian because it is clear that the loop A followed by B 

A 

B B B K B 

Figure 21 .2 

followed by A - , followed by B- ' , being a loop going around the edge of the rectangle, 
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is contractible to Po , that is, homotopic to the constant map; A B A  - I B - 1  = 1 or 
/lB == BA .  Thus Jrl (T2 ) is the abelian group with generators A and B .  

For the Klein bottle K,  o n  the other hand, we have, from Figure 2 1 .2, A B  = B - 1 A .  

We say that Jr l (K)  i s  the (nonabelian) group with 2 generators and the single relation 
/lBA- I B = 1 .  

The rotation group in the plane, S O (2) , is topologically S I . Jr l ( S O (2) } = Z. The 
rotation group in space, S O  (3) ,  is topologically lRp3 

Figure 21 .3 

The I -parameter subgroup A of rotations about the z-axis is not contractible, A -=I- 1 ,  
but A2 = A A  = 1 ;  see Section I 9.2a. Thus 

(2 1 . 1 5) 

As we also have seen in Section 19 .2a, that is why spinors can exist ! 

21.2b. The Concept of a Covering Space 

We have discussed the notion of covering space informally several times in thi s  book; 
now we shall need to be a bit more systematic . 

We shall say that a connected space M is a covering of the connected M, with covering 
or projection map Jr : M ---f M, if each x E M has a neighborhood V such that the 
preimage Jr - I (V)  consists of disjoint open subsets ( Va l  of M, each diffeomorphic, 
under Jr : Va ---f V, with V .  
We illustrate this i n  the case M = lR ;  M = S I i s  the unit circle i n  the complex plane, 

and Jr is the map Jr (x)  = exp(2Jr ix)  

- 2  - 1  0 , ( V_ 2 ) • ( V_ I+l -... ·--+( Vo -tl---+( VI l 

Figure 21 .4 

2 3 • ( V2 ) • 



570 B E T T I  N U M B E R S  A N D  C O V E R I N G  S P A C E S  

We have indicated a neighborhood U o f  - 1 E S I and the preimages o f  U in R 
The notion of covering space can also be described in terms of fiber bundles as 

follows: 

A covering space of a manifold M is a connected space M that is  a fiber bundle over 
M with fiber F a discrete set of points . 

If F has k points we say that M is a k-fold or k-sheeted cover of M. Thus � is an 
infinite fold cover of S I . The "fiber over I E S I " is the infinite set of integers in R 

The edge of a (finite) Mobius band is a circle M = S that is a 2-fold cover of the 
central circle M of the band 

- I/ � : "F M = S . 

"" ��------.;� / 
M = S I _________ _ 

Figure 21 .5 

The n-sphere S" is  a 2-fold cover of the projective pll (JR.) . SU (2) is a 2-fold covering 
space of S O  (3 ) .  JR." is an oo-fold cover of the IHorus 

Til = S I X . . .  X S I c e" 

JT (X I , • . •  , xll ) = (exp[2JT ix I ] , . . .  , exp[2JT ixn D 

We shall now indicate how one can construct, in several ways, interesting covering 
spaces M for any manifold M that is not simply connected. (It will tum out that a 
simply connected M will have M i tself as its only covering.) 

21.2c. The Universal Covering 

Let Mil be a connected manifold. The universal covering manifold Mn of Mn is 
constructed as follows : Pick a base point Po in M. A point of this new space M is 
then defined to be an equivalence class of pairs (p ,  y ) ,  where p is a point in M and 
y : [0, 1 ] -+ M is a path in M starting at" Po and ending at p, and where (p, y)  
is equivalent to (P I , YI ) iff P = P I and the paths Y and YI are homotopic. This last 
requirement means simply that the closed path Y YI- I consisting of Y followed by the 
reversal of YI is deformable to the point Po . We then automatically have a covering map 
JT : M -+ M defined by assigning to the pair P ,  Y the endpoint P = y ( l ) .  To give a 
manifold structure to M we need to describe the local coordinate systems; we shall do 

this after the following simple example. 
We illustrate all this with M a 2-torus. 
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Figure 21 .6 

The curves e and e' are homotopic, but neither is  homotopic to e". Thus in our 
new space M, the universal cover of T2 , the pair p, e and p, C' will define the same 
point p (to be described shortly) but p, e" will be represented by a different point p' . 

In the general case, we need to describe the manifold structure of M.  We define 
a coordinate neighborhood of the pair p, Y on M by first taking a simply connected 
coordinate neighborhood U of p on M. Then to a point q in U we assign a curve 
consisting of the given Y fol lowed by an arc Ypq in U from p to q .  The homotopy 
class of Y Ypq is independent of the arc Ypq chosen since all arcs from p to q in U are 
homotopic as a result of the simple connectivity of U .  Then a "lifted" neighborhood U 
of p,  Y in M, by definition, consists of the classes of all such curves Y Y,'q for all q in 
U.  This is illustrated in the toral case that follows. 

Figure 21 .7 

Since a pair q, Y Ypq is  completely determined, up to homotopy, by the endpoint q ,  
the points o f  U described are i n  I : I correspondence with the points q in U .  Since U 
is a coordinate patch on M, we have succeeded in introducing local coordinates in the 
set U ;  the local coordinates of q ,  Y Ypq in M are simply the local coordinates in U of 
q !  We do this for all p in M. By this construction, the map n: : M -+ M is  such that 
each n: : U -+ U is a diffeomorphism. 

Because n: : M -+ M is locally a diffeomorphism, any Riemannian metric in M can 
be lifted by n: to yield a Riemannian metric in M, since the local coordinates in M yield 
the "same" local coordinates in M. By this construction, n: is also a local isometry, and 
of course the curvatures coincide at p and n: (P) . 

Let us verify that the universal cover of the torus T2 is the plane ]R2 . To simplify 
our pictures, we shall consider new curves on the torus and illustrate with these. 
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2B 

Plane R? 

B 

PO� PI O P20 

Figure 21 .8 

In the upper diagram we have drawn the torus in the usual way as a unit rectangle 
with opposite sides A identified and opposite sides B identified. We have drawn the 
closed curves A and B starting at the base point Po . 

In the lower ]R.2 diagram the point Poo corresponds to the pair PaY where y is the 
constant path whose locus is simply the point Po .  We know that a simply connected 
patch around Po in T will be in 1 : 1 correspondence with a patch around Poo . 

As we move along the curve A from Po we also trace out a curve A starting out at 
Poo . On the completion of A in T we return to the point Po again. Since, however, the 
curve A in T is not homotopic to the constant curve Po , the pair (Po , y = Po) is not 
equivalent to the pair PoA .  "ihis means that the endpoint PIO of A is not to be identified 
with its beginning point Poo ! For the same reason, the vertical l ine through PIa is not to 
be identified with that through Poo . Likewise, if·one goes around A twice on T, in T we 
end not at Poo nor at PIO but rather at a new point P20 . The same procedure shows that 
on going around B we trace out a curve B that ends at a new point PO I '  and so forth. 
We have also illustrated the case of a closed curve C in T that wraps twice around in 
the A sense and once in the B sense; its lift C in T ends at the point P2 1 . We also know, 
by definition, that any curve in T that starts at Poo and ends at P2 1 represents (i.e., 
projects down via n: to) a closed curve in T that is homotopic to C !  

Thus although T can be considered the plane with identifications (x , y )  � (x + n, 
y + m) ,  the universal cover T is the plane without identifications, that is ,  T = ]R.2 . 
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Note that when M is simply connected, then by construction its universal cover M 
coincides with M itself, since any pair of curves from Po to a point p are homotopic. 

21.2d. The Orientable Covering 

This is the covering one obtains by using the same method as in the universal cover 
except that we now say that a pair p, Y is equivalent to a pair p, Yl iff when we transport 
an orientation from Po to P along Yl we obtain the same orientation as along y ,  that 
is, if when we translate an orientation along the closed curve Y YI

- 1 we return with the 
original orientation. As in the construction of the universal cover, it is important that 
we are dealing with homotopy classes ; if a closed curve C preserves orientation, and 
if C' is homotopic to C, then C' will also preserve orientation. If M is orientable, then 
the covering obtained reduces to M itself, but if M is not orientable we obtain a new 
space M.  I n  any case M i s  called the orientable cover of  M, for, a s  we  shall see, this 
M is always orientable. 

Consider, for instance, the Klein bottle, considered as a rectangle with the twisted 
identifications on the vertical sides 

Po ....-_..:..A:......---t ... Po *q 
B K B 

Po L..-_-A---t..JPo 

*(j''' 

IR 
POI *7]"# 

"q *Zj" 

*q' 
Poo PIO ho 

ibo c Poo *q 
B T B 

'q' Poo c 
Poo 

Figure 21 .9 
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I n  the second diagram we  have indicated how one can view the Klein bottle a s  the 
plane with twisted identifications ; the point q in K corresponds to all of the points 
q, qt , q" , . . .  , in the plane. 

As we move along the curve A in K starting at Po, it is equivalent to moving along 
the segment POOPIO in ll�? When we reach the point Po again in K we note that We 
have traversed a closed path A in K along which the orientation has been reverSed. 
This means that in our �2 picture of K ,  the point PIO is not to be identified with p 
in our model for this new covering space. If, however, we traverse the curve A tWic� 
the orientation is preserved; thus in the �2 picture the point P20 is to be identified with 
Poo , but not to PI O . On the other hand, P30' corresponding to traversing A three times 
is to be identified with PIO ' and so on. 

' 

On traversing B the orientation is preserved; hence POI is still to be identified with Poo. 
It will then follow that in this  new covering K ,  horizontal lines are to be identified if they 
are separated by multiples of 1 unit, whereas vertical lines are to be identified (without 
twisting) if they are separated by multiples of 2 units . If we make such identifications 
in �2 we see that the resulting space is simply a torus T of twice the area of K. The 
two-sheeted-orientable cover of the Klein bottle is the torus ! We have drawn the torus 
in the last figure as a rectangle with the usual identifications on the boundary, and no 
other identifications, q =f. qt .  C is the closed curve that covers A twice. 

By the same arguments, it can be shown in general that the orientable cover of M is 
either M itself, if M is orientable, or a 2-sheeted cover of M.  

21.2e. Lifting Paths 

Let Tr : M --+ M be any covering of the manifold M. M and M are locally diffeomorphic 
under the map Tr .  The fiber over p ,  Tr- 1 (p) , is a disconnected set of points . (It is useful 
to keep in mind the examples of the universal covering �2 over T2 , with fiber an infinite 
set of points, and the orientable cover T2 over the Klein bottle K2 with fiber a pair of 
points .)  Let P be any point in this fiber. Let C be a curve in M starting at some p and 
ending at some q .  Since M and M are locally diffeomorphic, there i s  a unique curve 
C that starts at P and covers C ,  Tr (C) = C .  Its endpoint q by construction is at some 
point in the fiber Tr- I (q ) .  This defines the lift of. C to M that starts at p. 

If C is closed, q = p, it may be that C is not closed; that is ,  it may be that q =f. p. This 
occurs in the universal covering iff the closed curve C is not homotopic to the constant 
curve p;  in the orientable cover it occurs when C is a curve that reverses orientation. 
These follow essentially from the definitions of these covers . (In our definitions we 
based everything at a base point Po,  but it is not hard to see that we get similar behavior 
if we choose a new base point p. )  

Consider now the case of  the universal cover. Let y be any closed curve in M that 
starts and ends at p. It projects down to a closed curve y = Tr CY) starting and ending 
at p = Tr (p) . Since the closed curve y i s  a lift of y ,  it must be that the curve y is 
homotopic to the constant map p in M.  As we deform y to the point p we may cover 
this deformation, using the local diffeomorphism Tr , by a deformation of y to the point 
p. We have thus shown that M is simply connected. 
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Furthermore, by definition of the universal cover, the points of the fiber Jr - 1  (Po) 
are in 1 : 1 correspondence with the distinct homotopy classes of closed curves in M 
starting at Po ·  Summarizing, we have shown 

Theorem (21.16):  The universal cover M of M is simply connected and the 
number of sheets in the covering is equal to the number of elements (the order) 

OjJrl (M). 

If a manifold is not orientable, there is some closed curve that reverses orientation. 
By the same type of reasoning as in (2 1 . 1 6) we have the fol lowing explanation of the 
terminology that we have been using : 

Theorem (21.17): The orientable cover of M is always orientable. The number 
of sheets is 1 if M is orientable and 2 if M is not orientable. 

21.2f. Subgroups of 1rl (M) 
The orientable cover of M resulted from identifying two curves Y and Yl from Po to p iff 
the closed curve Y Yl- 1 preserves orientation, that is, if the homotopy class of Y Yl- 1  l ies 
in the subgroup of Jr l  (M) consisting of orientation preserving loops .  Similarly, given 
any subgroup G of JrJ (M) , we may associate a covering space MG of M as follows :  We 
again consider pairs p ,  Y ,  and we identify p ,  Y with p ,  YJ iff the homotopy class of the 
loop Y YI- J lies in the subgroup G .  For example, when G is the identity 1 of Jrl (M) ,  the 
covering is the universal cover, whereas if G is the subgroup of orientation-preserving 
loops the cover is the orientable cover. 

21 .2g. The Universal Covering Group 

Let Jr : G ---+ G be the universal covering space of a Lie group G .  We shall indicate why 
it is that G itselfis then a Lie group !  For example, 5U (2) , being a simply connected cover 
of 50 (3) , is the universal covering group of 50 (3 ) .  A simpler example is furnished by 
exp : ffi. ---+ 5 1 sending e E lR to eie . This is a homomorphism of the additive group of 
real numbers onto the multiplicative group of unit complex numbers . We have already 
seen in Section 2 1 .2b that this makes ffi. a covering manifold for 5 1 . Since lR is simply 
connected, it is  the universal covering group of 5 J • 

For identity in G we pick any point e E Jr - I (e) in the fiber over the identity e of G.  
If g is any point i n  G we define g- l as follows: g can be represented by a path g et )  in 
G joining the base point e to the point g ( l )  = g := Jr (g) .  Then the inverse path g- l (t )  
joins e to  g- J .  This path can be covered by a unique path in G that starts a t  e .  It ends 
at some point in Jr - J (g - I ) and we define this point to be g- I . 

Let g and h be points in G ;  they can be represented by paths (� and Ch joining e 
to g E Jr (g) and to h E Jr (h) . Consider the path Cg followed by the left translate gCh ; 
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since gC" starts a t  g and ends a t  gh ,  the composite path starts at e and ends at gh. 
Its unique lift that starts at e ends in ;r - l (gh) .  This endpoint i s  defined to 
be gh. 

These basic constructions can be shown to yield the required universal covering 
group (see, e .g . ,  [P, chapter viii] ) .  

Note that since we may lift the Lie algebra 3' = G (e) uniquely to  e ,  the universal 
cover ofG has the same Lie algebra as G. 

21.3. The Theorem of S. B. Myers : A Problem Set 

A spiral curve in the plane can have curvature � I and infinite length. Can a surface in space 
have Gauss curvature � 1 and infinite area? 

Let Mil be a Riemannian manifold and consider a geodesic C joining p to q. Then 

the first variation of arc length vanishes, L' (0) = 0, for all variations whose variation 
vector J = 8xj8a is orthogonal to T. Consider the second variation in this case, as 
given by Synge's formula ( 1 2 .6) 

We shall construct (n - 1 ) such variations as follows :  Let e2 , e3 , . . .  , ell be orthononnal 
vector fields that are parallel displaced along C and orthogonal to C;  this is possible 

since T is parallel displaced also. Define the (n - 1 ) variation vectors 

where f is a smooth function that vanishes at the endpoints p and q .  We may put 
e l := T and use the e 's  as a basis along C.  

21.3(1) Show that for i = 2, . . .  , n we have for the i th variation vector 

and 

Suppose now that the Ricci curvature is positive 

Ric (T, T) ::: c > ° 
and choose for variation function f(s) = sin(;r s j L ) .  



T H E  T H E O R E M  O F  S .  B .  M Y E R S :  A P R O B L E M  S E T  

21.3(2) Show that 

L" 1/ 
L [7T2 (n - 1 )  ] L .  (0) < - - C 1 

- 2 L2 i=2 
and conclude then that if the geodesic C has length L such that 

[ en - 1 ) ] 1 /2 L > 7T  C 
then C can not be a length-minimizing geodesic from p to q .  
21.3(3) What does this say for the round n-sphere of radius a i n  ]Rn+ l ? 
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Now suppose that M is geodesically complete; the theorem of Hopf-Rinow (2 1 . 1 0) 
states that between any pair of points there is a minimizing geodesic. Let us say that a 
geodesic ally complete manifold has diameter f.. if any pair of points can be joined by 
a geodesic of length :::: f.. and for some pair p ,  q the minimizing geodesic has length 
exactly f.. . We have proved 

Theorem of S. B. Myers (21 . 18): A geodesically complete manifold Mn whose 
Ricci curvature satisfies 

Ric(T ,  T) :::: c > 0 

for all unit T has diameter :::: 7T [ (n - I ) jC] I /2 . 

Corollary (21 .19) : A geodesically complete Mil with Ric(T , T) :::: c > 0 is a 
closed (compact) manifold. In particular its volume is finite. 

(In the case of 2 dimensions , Ric(T, T) = K is simply the Gauss curvature. The 
2-dimensional version was proved by Bonnet in 1 855 . )  

P R O O F :  For a given p in  M the exponential map expp : Mp -+ M is a smooth 
map of all of ]R" into M, since M is  complete. By Myers 's theorem the closed 
ball of radius r > 7T [ (n - I )  j c] I /2 in M (p) is mapped onto all of M. This closed 
ball is a compact subset of ]Rn and its image is  again compact. D 

21.3(4) The paraboloid of revolution z = x2 + y2 clearly has positive curvature (and 
can be computed from Problem 8 .2(4» and yet is  not a closed surface. Reconcile this 
with (2 1 . 1 9) .  

Now let Mil be geodesically complete with Ric (T , T) :::: c > O. It is thus compact. 
Let M be its universal cover. We use the local diffeomorphism 7T : M -+ M to lift the 
metric to M, and then, since 7T is a local isometry, M has the same Ricci curvature. Every 
geodesic of M is clearly the lift of a geodesic from M, and so M is also geodesically 
complete. We conclude that M is  also compact. We claim that this means that M i s  a 
finite-sheeted cover of M !  Take a cover { U, V, . . . } of M such that U is the only set 
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holding P o  and U is  s o  small that i t  is  diffeomorphic to each connected compon I . . - ent of Jr - (U ) .  The Inverse images of U, V, . . .  form a cover of M, where each connee 
component of Jr - I (U)  is considered as a separate open set. It is clear that if M w ted 
infinite-sheeted then any subcovering of M would have to include the infinite COllecti

ere 

in Jr - I (U) . This contradicts the fact that M is compact. From (2 1 . 1 6) we have 
on 

Myers's Corollary (21.20) : If Mil is complete with positive Ricci curvature 
bounded away from O. then the universal cover of M is compact and Jrl (M) 
is a group of finite orda 

Thus given a closed curve C in M, it may be that C cannot be contracted to a point, 
but some finite multiple kC of it can be so contracted. We have observed this before in 
the case M = lRp3 . 

This should first be compared with Synge's theorem ( 1 2. 1 2) .  It is stronger than 

Synge's theorem in that (i) M needn' t  be compact, nor even-dimensional, nor orientable. 

and (ii) positive Ricci curvature Ric (e l ' e l ) ,  being a condition on a sum of section� 
curvatures Lj> 1  K (e l 1\ ej ) ,  is a weaker condition than positive sectional curvature. 
On the other hand, Synge's  conclusion is stronger, in that Jr l , being finite, is a weaker 
conclusion than Jr l  consisting of one element. Synge 's theorem does not apply to lRp3 
whereas Myers 's theorem does (and in fact the fundamental group here is the group 
with 2 elements Z2) ,  but Myers 's theorem tells us that even-dimensional spheres have 

a finite fundamental group whereas Synge tells us they are in fact simply connected. 
There is a more interesting comparison with Bochner's theorem ( 1 4.33) .  Myers 's the

orem is in every way stronger. First, it doesn't  require compactness ;  it derives it. Second, 
it concludes that some multiple kC of a closed curve is contractible. Now in the process 
of contracting kC,  kC will sweep out a 2-dimensional deformation chain C2 for which 

BC2 = kC see 1 3 .3a(III), and so C = B (k- I C2) .  This says that C bounds as a real I -cycle, 

and thus b l (M) = O. Thus Myers 's theorem implies Bochner's .  We have also seen in 
Section 2 1 .2a that contractibility is a stronger condition than bounding, for a loop. 

Although it is true that Myers' s  theorem is stronger than Bochner's, it has turned 
out that Bochner's method, using harmonic forms, has been generalized by Kodaira, 
yielding his so-called vanishing theorems, which play a very important role in complex 

manifold theory. 
Finally, it should be mentioned that there are generalizations of Myers 's theorem. 

Galloway [Ga] has relaxed the condition Ric (T, T) :::: c > 0 to the requirement that 

Ric (T, T) :::: c + df/ds along the geodesic, where f is a bounded function of arc 

length. Ric (T, T) need not be positive in this case in order to demonstrate compactness. 
Galloway uses this version of Myers ' s  theorem to give conditions on a space-time that 

will ensure that the spatial section of a space-time is a closed manifold! 

21 .3(5) Distance from a point to a closed hypersuiface. Let V"- I be hypersurface of 

the geodesically complete Riemannian Mil and let p be a point that does not lie on V. 
We may look at all the minimizing geodesics from p to q, as q ranges over V . The 
distance L from p to V is defined to be the greatest lower bound of the lengths of these 
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geodesics . Let V be a compact hypersurface without boundary. Then it can be shown 
that this infimum is attained, that is, there is a point q E V such that the minimizing 
geodesic C from p to q has length L. Parameterize C by arc length s with p = C(O) . 

Figure 21 .1 0 

(i) Show from the first variation formula that C strikes V orthogonally. (This gener
alizes the result of Problem 1 .3(3) . ) 

(ii) Consider a variation vector field of the form J (s ) = g (s )e2 (s) where e2 is  
parallel displaced along C and g is a smooth function with g (O) = 0 and g eL) = I .  
Then LI/ (O) is of form B(J, J) + J;� { [ g' (S ) [ 2 - [ g (s ) [ 2 R2 1 2 1 Ids , where B(J , J) is the 
normal curvature of V at the point q for direction J (L) and hypersurface normal T (L) ; 
see 0 1 .50) . By taking such variations based on (n - 1 )  parallel displaced orthonormal 
e2 , . . .  , en , all with the same g, and putting g (s )  = s/ L, show that 

t L ;' (O) = H (q)  + (n - 1 )  
_ (�) rL s2Ric (T , T)ds 

;=2 L L Jo 
where H (q)  is the mean curvature of V at q for normal direction T. 

(iii) Assume that M has positive Ricci curvature, Ric (T , T) ::: 0 (but we do not 
assume that it is bounded away from 0) and assume that V is on the average curving 
towards p at the point q ;  that is ,  h : =  H (q)  < O. Show then that our minimizing 
geodesic C must have length L at most (n - 1 ) /  h .  

In general relativity one deals with timelike geodesics that locally maximize proper 
time (because of the metric signature - , + ,  + , +) .  Our preceding argument is similar 
to analysis used there to prove the Hawking singularity theorems, but the pseudo
Riemannian geometry involved is really quite different from the Riemannian and forms 
a subject in its own right. For further discussion you may see, for example, [W d, chaps. 8 
and 9] . 
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21 .4. The Geometry of a Lie Group 

What are the curvatures of a compact group with a bi-invariant metric? 

21 .4a. The Connection of a Bi-invariant Metric 

Let G be a Lie group endowed with a bi-invariant metric .  (As we know from Theore 
(2 1 .8) ,  such metrics exist on every compact group, and of course on any commutati: 
group. The plane G = ]R.2 can be considered the Lie group of translations of the plane 
itself; (a , b) E ]R.2 sends (x , y) to (x + a ,  y + b) .  This is an example of a noncompact 
Lie group with bi-invariant metric dx2 + dy2 . )  

To describe the Levi-Civita connection V x Y we may expand the vector fields in 
terms of a left invariant basis. Thus we only need V x Y in the case when X and Y are 
left invariant. From now on, all vector fields X, Y ,  Z,  . . .  will be assumed left invariant. 

We know from Theorem (2 1 .9) that the integral curves of a left invariant field are 
geodesics in the bi-invariant metric,  hence VxX = O. Likewise 

(2 1 .21 )  
that is ,  

2VxY = [X, Y] 

exhibits the covariant derivative as a bracket (but of course only for left invariant fields). 
Look now at the curvature tensor 

R (X, Y)Z = VxVyZ-VyVxZ-V[X,YjZ 

In Problem 2 l .4( 1 )  you are asked to show that this reduces to 

R (X, Y)Z = - l  [ [X , V] ,  Z] 

For sectional curvature, using (20.35) ,  

or 

-4 (R (X , Y)Y, X) = ( [ [X , V] , Y] , �) = - (V, [ [X,  V] , X] ) 

= (Y , [X, [X, Y] ] ) = - ( [X, V] , [X, V] ) 

K (X 1\ Y) = I I I [X, Y] 1 1 2 

(2 1 .22) 

(2 1 .23) 

Thus the sectional curvature is always ::: 0, and vanishes iff the bracket of X and Y 
vanishes! 

For Ricci curvature, in terms of a basis of left invariant fields e j ,  . . .  , en 
. � l �  2 Rlc (e j , e j ) = � K (e l l\ej ) = - � I I  [e j , ej ]  I I 

j > l 4 j 

Thus Ric(X, X) ::: 0 and = 0 iff [X , Y] = 0 for all Y E � . 
The center of the Lie algebra is by definition the set of all X E � such that 

[X , Y] = 0 for all Y E � .  Thus if the center of W is trivial we have that the continuous 
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function X t--+ Ric(X, X) is bounded away from 0 on the compact unit sphere in W 
at the identity. But since the metric on G is invariant under left translations, we then 
conclude that the Ricci curvature is positive and bounded away from 0 on all of G . 
From Myers 's theorem we conclude 

Weyl's Theorem (21.24): Let G he a Lie group with hi- invariant metric. Sup
pose that the center of W is trivial. Then G is compact and has afinitefundamental 
group Jr l (G) .  

This improves (2 1 . 1 3) since it can be shown that if  there is no I -parameter subgroup 
in the center of G then the center of �/ is trivial ; see Problem 2 1 .4(2) . Note also that 
the condition "the center of �' is trivial" is a purely algebraic one, unlike the condition 
for the center of the group appearing in Theorem (2 1 . 1 3) .  

21.4h. The Flat Connections 

We have used the Levi-Civita connection for a bi-invariant Riemannian metric. When 
such metrics exist, this is by far the most important connection on the group. On any 
group we can consider the flat left invariant connection, defined as follows : Choose a 
basis e for the left invariant vector fields and define the connection forms w to be 0, 
Ve = O. (There is no problem in doing this since G is  covered by this single frame field. )  
Thus we are forcing the left invariant fields to be covariant constant, and by construction 
the curvature vanishes, dw + w 1\ W = O. This connection will have torsion; see Problem 
21 .4(3) .  Similarly we can construct the flat right invariant connection. 

Problems 

21 .4(1 ) Use the Jacobi identity to show (21 .22) . 

21 .4(2) Suppose that X is a nontrivial vector in the center of �/ ; thus ad X(Y) = 0 for 

al i  Y in w .  Fi l l  in the fol lowing steps, using ( 1 8 .32) ,  showing that etX is i n  the 

center of G. Fi rst etadXy = Y. Then etxYe-tX = Y. Thus exp(etxYe-tx) = eY .  
Then etX i s  i n  the center of G. 

21 .4(3) Show that the torsion tensor of the flat left i nvariant connection is g iven by the 
structu re constants TJk = -Cjk ·  
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Chern Forms and Homotopy 
Groups 

How can we construct closed p-forms from the matrix 82 of curvature forms? 

22.1 .  Chern Forms and Winding Numbers 

22.1a. The Yang-Mills "Winding Number" 

Recall that in (20.62) and (20.63), we were comparing, on a distant 3-sphere S3 C ]R4 ,  
the interior frame eu with the covariant constant frame ev , 

eu (x ) = ev (x )gv u (x)  

gvu : S3 -+ SU(n)  
the gauge group being assumed S U (n) .  

We saw i n  (2 1 . 1 4) that the Cartan 3-form on SU(n )  
Q3 = tr g- l dg 1\ g- l dg 1\ g- l dg 

is a nontrivial harmonic form, and we now consider the real number obtained by pulling 
this form back via gvu and integrating over S3 

(22. 1 )  

We shall normalize the form Q3 ; this will allow u s  to consider (22. 1 )  as defining the 
degree of a map derived from gvu . 

Consider, for this purpose, the SU (2) subgroup of SU(n )  
[ SU (2) SU (2) = SU (2) x In-2 := 0 In�J C SU(n )  

The Cartan 3-form Q3 of  SU (n )  restricts to Q3 for SU (2) , and we  shall use as normal
ization constant 

which we proceed to compute. 

583 
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Q3 and the volume form vol3 on S U (2) , in the bi-invariant metric, are both bi
invariant 3-forms on the 3-dimensional manifold S U (2) ; it is then clear that r. . ·'3  1S some constant multiple of vol3 • From ( 1 9 .9) we know that ia , I,Ji, ia21../'5., and 
ia3 /,Ji form an orthonormal basis for �LL(2) with the scalar product (X ,  Y )  = - tr XY 
(recall that ( 1 9.9) defines the scalar product in i � , not 3') ' Then, from (2 1 .5) and 
( 1 9 .6) 

S ince the ia 's/,Ji are orthonormal , we have voI3 (i a l , ia2 , i(3 ) = 23/2 . Thus we have 
shown 

(22.2) 

What, now, is the volume of S U (2) in its hi-invariant metric? 
SU (2) is the unit sphere S3 in ([2 = �4 where we assign to the 2 x 2 matrix u 

its first column. The identity element e of S U (2) is the complex 2-vector ( 1 , 0),  or 
the real 4-tuple N = ( I , 0, 0, 0) T . The standard metric on S3 C �4 is invariant under 
the 6-dimensional rotation group S O (4) , and the stability group of the identity is the 
subgroup 1 x S O (3) . Thus S3 = S O (4) / S O (3 ) .  The standard metric is constructed 
first from a metric in the tangent space S� to S3 at N that is invariant under the stability 
group S O  (3) and then this metric is transported to all of S3 by the action of SO (4) on 
S O  (4) ISO (3) . Since the stability group S O  (3) is transitive on the directions in S� at 
N, it should be clear that this metric is completely determined once we know the length 
of a single nonzero vector X in S� . 

Of course SU (2) acts transitively on itself SU (2) = S3 by left translation. It also 
acts on its Lie algebra S; by the adjoint action ( 1 8 . 3 1 ), and we know that the bi
invariant metric on SU (2) arises from taking the m�tric (X ,  Y ) = - tr X Y  at e and 
left translating to the whole group. Now the adjoint action of S U (2) on S; is a dou
ble cover of the rotation group S O (3) (see Section 19 . 1 d) and thus is transitive again 
on directions at e. We conclude then that the bi-invariant metric on SU (2) = S3 is 
again determined by the length assigned to a single nonzero vector in S; = S� . The 
hi-invariant metric on S U (2) is simply a constant multiple of the standard metric 
on S3 . 

Consider the curve on SU (2) given by diag(eili ,  e-ill ) ;  its tangent vector at e is simply 
i a3 whose length in the bi-invariant metric is ,Ji. The corresponding curve in ([2 is 
(eill ,  0) T , which in �4 is (cos e, sin e, 0,  0) T , whose tangent vector at N is (0 1 0 0) T 
with length 1 . Thus the bi-invariant metric is ,Ji times the standard metric on the unit 
sphere S3 . Since a great circle will then have bi-invariant length 2:rr ,Ji, we see that 
the bi-invariant metric is the same as the standard metric on the sphere of radius "fi. 
(Note that this agrees with the sectional curvature result (2 1 .23) ,  K Cial 1\ i(2) = ( /4) 

I I [ial , i a2] 1 1 2 I I I ial 1\ ia2 1 1 2= ( /4) I I  - 2ia3 1 1 2 I II ial 1\ ia2 1 1 2= 1 /2 . )  
The volume of the unit 3-sphere is easily determined. 
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Figure 22. 1  

Thus our sphere of  radius .fi has volume (23/2 )2n2 , and so j Q3 = 24n2 
SU (2) 

Finally we define the winding number at infinity of the instanton by 1 j * 1 1 
--2 gvu Q3 = --2 Q3 24n S3 24n g" u (S') 

= � 1 tr g- I dg 1\ g- l dg 1\ g- I dg 
24n g" u (S3 ) 
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(22 .3)  

This is the degree of the map gvu in the case when G = S U (2) . What it means in the 
case S U (n) will be discussed later on in this chapter. 

22.1b. Winding Number in Terms of Field Strength 

Chern's expression (20.68) in the U ( 1 )  case suggests the possibility of an expression 
for this winding number in terms of an integral of a 4-form involving curvature. 

We shall assume that the Y-M potential Wu is globally defined in U ;  that is ,  Wu has 
no singularities in U, j (eu ) = O. 

Consider the following observation, holding for the curvature 2-form matrix for any 
vector bundle over any manifold: 

Use now 

e 1\ e = (dw + w 1\ w) 1\ (dw + w 1\ w) 

= dw l\ dw + dw l\ w l\ w + w l\ w l\ dw + w l\ w l\ w l\ w 

tr(w 1\ w 1\ dw) = tr(dw 1\ w 1\ w) 

and, as in Theorem (2 1 .3)  

tr(W I\ W l\ w l\ w) = 0  
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Then 

tr e /\ e = d tr(w /\ dw) + 2 tr(dw /\ w /\ w) 
Also 

dew /\ W /\ w) = dw /\ w /\ w - W /\ dw /\ w + w /\ w /\ dw 
and so 

d tr(w /\ w /\ w) = 3 tr(dw /\ w /\ w) 
Thus we have shown 

Theorem (22.4) : For any vector bundle over any Mil we have 

tree /\ e) = d tr { w /\ dw + �w /\ w /\ w} 

Thus tr e /\ e is always locally the differential o f  a 3-form, the Chern-Simons 3-form. 
Of course w is usually not globally defined. 

Now back to our Y-M case considered in Section 20.6a. In that case e vanishes on 
and outside the 3-sphere S3 , and so 

w /\ dw = W /\ (e - w /\ w) = -w /\ W /\ W 
on and outside S3 . Then from (22.4) 

! tr e /\ e = l - � tr w /\ w /\ w 
U au=s3 3 

But wu = g- l dg on S3 ; see (20.6 1 ) .  (22.3) then gives 

Theorem (22.5) : The winding number of the instanton is given by 

� r tr wu /\ wu /\ wu = -� r tr e /\ e 
24n } S3 8n J�4 

Note that tr e /\ e is  not the Lagrangian, which is basically tr e /\ *e 

F /\ F = (F /\ F)0 1 23dt /\ dx /\ dy /\ dz 

whereas 

= L L E ijkl Fij Fk1dt /\ dx /\ dy /\ dz 
i <j k<l 

F /\ *F = L Fjk Fjkdt /\ dx /\ dy /\ dz 
j <k 

where the Fjk are matrices. tr e /\ e was introduced in Problem 20.5(3) .  

(22.6) 

We have just shown that the winding number of an instanton is given, in tenns 
of the Hilbert space scalar product (20.40), by (8n2) - 1 (e ,  *e) ; this scalar product is 
defined since e is  assumed to have compact support. This i s  the degree of the map 
g : S3 -+ SU (2) defined by the instanton. This degree is interesting for the following 
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reason: The Y-M fields are critical points for the Y-M action functional . In particular, a 
connection w yielding a (relative) minimum for S will be a Y-M field. But by Schwarz's 
inequality (in the euclidean metric), the euclidean action S on M4 will satisfy 

8n2 I deg(g) 1 = 1 (e , *e ) 1 ::::: 1 1  e 1 1 1 1  *e 1 1 = 1 1  e 1 1 2= 2S 

since * is  an isometry on forms .  Thus the degree yields a lower boundfor the euclidean 
action! Furthermore, we have equality iff *e is proportional to e . Now * * ex = ex,  
when ex is  a 2-form. It is  easily seen that * acting on our 2-forms in M4 is self-adjoint 
in the scalar product (20.40) . Thus * has eigenvalues ± I on the 2-forms and so *e is 
proportional to e only when *e = ±e , that is ,  iff the connection is self-dual or anti-self
dual ; see (20.58) .  In particular, the self-dual fields with degree n and the anti-self-dual 
fields with degree -n will both yield Y-M fields having minimum action among all 
fields of degree ±n. 

22.1c. The Chern Forms for a U(n) Bundle 

The topological significance of tr e /\ e, general izing Poincare 's theorem for closed 
surfaces ,  II KdA = 2nx (M2) , was discovered by Chern and wil l  be discussed later 
in this chapter. tr e /\ e is but one of a whole family of significant integrands, the Chern 
forms. We shall define these forms now and then proceed to the topological questions 
in our remaining sections. 

Let A be any N x N matrix of complex numbers operating on complex N -space 
V = (f . Consider the characteristic (eigenvalue) polynomial for A 

det(AI - A) = (A - A d (A - A2) ' "  (A - AN ) 

= A
N 

- (A I + . . . + AN )A
N

- l + . . .  ± (A l A2 . . . AN ) 

Putting A = - I yields 

where 

N P 
det(/ + A)  = L [ tr 1\ A] 

1'=0 
2 N 

= I + (tr A )  + ( tr 1\ A) + . . . + ( tr 1\ A) 

2 
tr 1\ A :=  L A; Aj 

i <j  
3 

tr 1\ A := L Ai Aj A, 
i < j <k 

N 
tr 1\ A := A l A2 . . .  AN = det A 

(22 .7) 

(22 .8) 

are the elementary symmetric functions of the eigenvalues of A.  The reason for this 
notation is as follows :  if A : V ---+ V then we may let A act on each of the exterior 
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power spaces I\P V by  the (linear) exterior power operation I\P A 
P ( 1\ A ) (v 1 /\ V2 /\ • • • /\ V p) : = A v 1 /\ A V2 /\ • • •  /\ A v P 

We then take the usual trace of I\P A on the space I\P V .  For example, 1\ N V is a 
I -dimensional vector space and from (2.50) 

N ( 1\ A ) (v 1 /\ V2 /\ . . . /\ v N) = det A ( v 1 /\ V2 /\ • • • /\ V N ) 

and so tr 1\ N A = det A = A ,  . . . AN . 
Note that (A� + . . .  + At) = tr Ak is simply the trace of the kth (ordinary matrix) 

power of the matrix.  Thus, for example, 

(22.9) 

1 
= 2 [ (tr A)2 - tr A2] 

In a similar manner it can be shown, using "Newton's identities," that each tr 1\ k A can 
be expressed as a polynomial in tr A ,  tr(A2 ) ,  • • •  , tr(Ak ) .  We shall return to this point 
in a moment. 

Now let E be a complex eN bundle with structure group U (N) , base manifold Mn, 
and connection w .  

Consider the result of formally substituting for A in (22.7), the matrix of curvature 
2-forms e = eu multiplied by i /277: 

det (I + �: ) 
Thus we are looking at a matrix whose " " entry is 1 + (i /277:)(3" " and whose nondiagonal 
" fJ entry is (i /277: )(3" fJ and where we expand out the determinant in the usual way with 
products being replaced by /\ products ;  since ej 

k is a 2-form there is no problem with 
ordering. The result i s  a sum of forms of different degrees 

det 1 + - = 1 + - tr e + . . .  ( 
i e ) i 
277: 277: 

:= 1 + C l (E) + c2 (E) + . . . + cN (E) 

where Cr (E) is a 2r-form on U C Mil , the rth Chern form. 
The form c ,  is familiar 

(22. 1 0) 

c ,  = _i_ tr e = _i_ e"" (22. 1 1 ) 
277: 277: 

and in the case of a complex l ine bundle, ee<" is simply the 2-form e appearing 
in Theorem ( 1 7 .28) .  For the tangent complex line bundle to an oriented surface, 
c , (TM2) = ( l /277: ) KdA .  

For C2 , from (22.9) we have 

(22. 1 2) 



C H E R N  F O R M S  A N D  W I N D I N G  N U M B E R S 589 

Suppose that the bundle actually has the special unitary group SU (N) for structure 
group, rather than U (N) .  Since the Lie algebra then consists of traceless skew-hermitian 
matrices, tr e = 0, and thus in this case 

c l (E) = 0 
and furthermore 

I Cz (E) = SJTz tree /\ e )  

This is precisely the 4-form appearing in  the winding number of an SU(2) instanton, 
given in (22 .5) ! 

In the general case, note that the matrices e are only locally defined, and in an overlap 
(}v = cvu eu cv� ' However 

( 
iev ) { i _ I  } 

det I + 
2JT 

= det I + 
2JT c

v ueu cvu 

= det cvu (I + �: ) Cv� = det (I + �:) 
shows that each Chern form cr (E) is in fact a globally defined 2r-form on all of Mn ! 

In Problem 22. 1 ( 1 )  you are asked to show that each Cr is a real form. 
We can see that C I is a closed 2-form as follows:  From -2JT idc l = d tr e = tr de , 

and from Bianchi this is tree /\ w - w /\ e ) .  But tr w /\ e = tr e /\ w since e is a 
2-form. We conclude that dCI = 0, as claimed. It is even simpler to remark that locally 
() = d w + w /\ w and then 

tr e = d tr w  

since tr w /\ w = - tr w /\ w = O. Thus tr e i s  locally exact, hence closed. 
For an SU (N) bundle, Cz is  locally the differential of the Chern-Simons 3-form 

given in Theorem (22.4), and so Cz is a closed 4-form in this case. We can also see this 
directly for any U (N) bundle, from the Bianchi identity. From (22 . 1 2) 

- (SJT2)dcz = d [tr e /\ tr e - tree /\ e ) ]  = -d tree /\ e )  

But, from ( I S .46) and (20.55) ,  d tree /\ e )  = tr V ( e  /\ e)  = 0, since ve = O .  
As we  have mentioned (but not proved), Newton 's identities show that each Cr is a 

polynomial in forms of the type tree /\ e /\ . . .  /\ e ) ;  we have shown this for C I and Cz 

and you are asked in Problem 22. 1 (2) to verify it for C3 . (For a derivation of the Newton 
identities, see [Ro, ex. 1 ,  p. 1 32] , but not before reading the remainder of this section .)  
Since V of such a polynomial vanishes by Bianchi, we conclude that each Chern form 
is closed. We present a different proof of this  important fact now. 

Theorem of Chern and Weil (22.13) : Each Cr is a closed 2r-form and thus de
fines a real de Rham class. Furthermore, different connections for the U (N) 
bundle will yield Chern forms that differ by an exact form and hence define the 
same de Rham cohomology class. 

P R O O F : We sketch briefly a proof from Roe's book [Ro, p. 1 1 3 ] .  
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We shall look a t  formal power series expansions .  For example, the matrj 
a = a ce ) = I + q e  considered previously, where q = i /2rc , has a form� 
inverse. If we write e r : = e 1\ e 1\ . • .  1\ e ,  r factors 

(22. 1 4) 

This makes sense since it is only a finite series, e 1\ e 1\ . . .  1\ e vanishing When the 
number of factors exceeds half the dimension of the manifold M. Suppose now 
that we let the connection w vary smoothly with a real parameter t , w = wet) . 
Then both the curvature e and the matrix a vary with t . But for any nonsingular 
matrix a (t )  we have for the derivative of its determinant 1 a (t ) 1 

d 1 a Ct )  1 = L 
[�] dajk 

dt aa jk dt 
= Ajkajk = 1 a 1 (a - I )kjajk = 1 a 1 tr[a- 1 a ]  

where Ajk i s  the signed cofactor o f  ajk . Hence 
d log 1 a Ct )  1 - I , 
---- = tr[a a] dt 

Thus, putting e = dw + w 1\ w, e = dill + w 1\ ill + ill 1\ w , a = qe 
d log 1 a Ct) 1 

= L ( - I )'"q r+ 1  tr[e' 1\ (dill + w l\ ill + ill l\ w)] dt r 
One sees immediately by induction from Bianchi that 

de ' = er 1\ w - W 1\ e r 

for r 2: 0, with eO = l .  

(22. 1 5) 

Furthermore, tr[e r 1\ ill 1\ w] = - tr[w 1\ e r 1\ ill] , since er 1\ ill is a form of odd 
degree. Hence 

or 

d log 1 a Ct )  1 = " (- I )' qr+ 1 trW 1\ dill + de r 1\ ill] dt � 
r 

d l og 1 a Ct )  1 = d L( - 1 )'" qr+ 1 tr[e' 1\ ill] dt r 
(22. 16) 

exhibits d log 1 a Ct )  1 /dt as the differential of a sum offorms (of various degrees). 
Note also that the forms on the right are i ndeed globally definedforms on the base 
space M, since both e r and ill are forms of type Ad G ;  this  was Problem 1 8 .3(4). 

As a first consequence of (22. 1 6) note the following: If w and w' are two 
connections on M, then Problem 20.3( 1 )  shows that their convex combination 
w et ) = tw + ( l  - t ) w' is again a connection. This gives a line in the affine space 
of all connections on M that starts at w' and ends at w. Now the flat connection 
w = 0, e = 0, is not necessarily a connection on M for the given bundle (why?), 
but it is a connection on a single coordinate patch U of M. Then w et )  = tw i s  
a line o f  connections o n  U joining any given connection w = w ( l )  t o  the flat 
connection w (o) = 0. Since a (O) = I , we have, from (22. 1 6) ,  

l o g  1 1 +  q e  1 =  d 1 1 { � ( - l r q r+ 1 tr[e r (t ) 1\ w] }dt 
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and so log 1 I + qa 1 is  locally exact (being exact on U) hence closed; in fact it 
is of the form log 1 I + q8 1= df3 where 

f3 : = l' { [q tr w - q2 tr a Ct ) /\ w + . . · ] }dt 

But then 
1 1 I + qa 1 = exp log 1 I + q8 1 =  exp df3 = 1 + df3 + -df3 /\ df3 + . . .  2 !  

is again locally exact, except for the constant term, hence closed. We are finished 
with the first part of Theorem (22. 1 3) .  

Consider now a pair of  global connections w and Wi on M and the line tw' + 
( 1 - t )w in the space of connections. From (22. 1 6) we have log 1 aw, 1 - log 1 aw 1 
= dy for a globally defined form y on M 

Then 

y = r ' 2:)- l yqr+ ,  tr[ar (t ) /\ (Wi - w) ]dt 
Jo r 

1 aw, 1 -- = exp{log 1 aw, 1 - log 1 aw I } = exp dy 1 aw 1 
1 = 1 + dy + -dy /\ dy + . . .  = :  1 + dv 

2 !  
and so 1 aw, 1 - 1 aw 1 = 1 aw 1 /\dv .  But we have just seen that 1 aw 1= det(I  + qa)  
i s  closed. Hence 1 aw, 1 - 1 aw 1 is  globally exact, proving the second part of  the 
theorem. 0 

Problems -----------
22.1 (1 ) Show d i rectly from det( I + ie /2:rr ) that each Cr is a real form when the structure 

group is a subgroup of U( N) .  

22.1 (2) Express C3 as a polynomial i n  tr e ,  tree /\ e ) ,  and tree /\ e /\ e ) .  

22.2. Homotopies and Extensions 

Is SU (n) simply connected? 

22.2a. Homotopy 

In Section 1 0.2d we discussed when two closed curves in M are homotopic. We now 
introduce the general concept of homotopic maps. 

Let fo and f, be two maps of a space W into Mn . We say that they are homotopic 
if there is a map F : W x I --* M of the "cylinder" W x [0, 1 ] into M such that 

F(w , O) = fo(w) and F(w ,  1 ) = f, (w)  
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F 

o 

c ___ =:> w  
Figure 22.2 

Each of the maps ft , defined by f, (w)  : =  F ( w ,  t ) ,  is  homotopic to the "original" 
map fo . If fl maps all of W into a single point Po we say that fo is homotopic to the 
constant map Po . 

We shal l be especially concerned with the case when W = Sk is the unit k-sphere, 

k = 0, 1 , 2 , . . . , in ]Rk+ I , even when k > n = dim M !  Sk is of course the boundary of 
the closed (k + I ) -ball Dk+ 1 and the following simple observation will play a crucial 
role in our final section. 

Extension Theorem (22.17) : f : S" ---+ Mn is homotopic to a constant map iff 
f can be extended to a map of the ball 

P R O O F : Suppose that I' : Dk+ 1  ---+ M extends f : Sk ---+ M; thus I' (x) = f (x) 
for I I  x I I  = 1 . Define F : Sk x I -+ M by 

F(x, r )  = f' { ( 1  - r)x} ,  

Then F (x ,  0)  = I' (x) = f (x) and F (x ,  1 ) = I' (0) shows that f i s  homotopic 
to the constant map 1' (0) . 

Suppose, on the other hand, that f (= fo ) is homotopic to the constant map 
fl (x) = Po E M . Then we have a map F : Sk ---+ M with F (x , 0) = f(x) 
and F (x , 1 ) = fl (x) = Po . Define an extension I' : Dk+ 1 ---+ M by I' (rx) = 

F (x, 1 - r )  for 0 :::: r :::: 1 .  
The extension theorem i s  important when discussing defects, see [Mi] . 0 

22.2h. Covering Homotopy 

Let JT : E ---+ Mil be a vector bundle and let f : W ---+ E be a map of a space W into the 
bundle space E .  Then we get a map [ : W ---+ Mn into the base space by [ : = JT 0 f· 
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M Po 

Figure 22.3 

Suppose now that we have a homotopy F of [ to a new map L : W � M. We 
claim that we can "cover" this homotopy by a homotopy of the original map f ;  that is ,  
there is a map F : W x I � E such that F ( w ,  0) = few) and T{ F(w ,  t )  = F ( w ,  t) .  A 
sketch goes as follows: Let the vector bundle T{ : E � M have a connection. Consider 
a fixed point w E W and look at the curve C : t � F(w ,  t) in M. There is a unique 
lift of this curve to a curve C in E starting at f (w) that represents parallel translation 
along C. In other words, we look at the unique curve in E that starts at f ew) ,  lies over 
{2, and is tangent to the n -plane distribution defined locally by 

d1jra + wa fi 1jrfi = 0 
Note that if [ is homotopic to the constant map Po (as in the second part of our figure) 
it need not be that f will be homotopic to a constant map; the points F(w ,  1 )  of the 
lifted homotopy will lie on the fiber T{ - I (Po) but will not necessarily reduce to a single 
point in the fiber. 

What we have said for a vector bundle can also be shown to hold for a principal fiber 
bundle. The lifted curves are then tangent to the n-plane distribution 

w* = g- I wg + g- I dg = 0 
It turns out that one can cover homotopies in any fiber bundle, without any use of a 
connection. In fact, one generalizes the notion of a fiber bundle to that of a fiber space; 
this is  a space P and a map T{ : P � M such that homotopies can always be covered, 
as defined earlier. Such spaces need not be local products . 
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22.2c. Some Topology of SU(n) 

5 U (n)  is represente� by n x n matrices acting on (C" . Since each g E 5 U (n) is unitary, 5U (n )  sends the umt sphere 52n- 1  C (C" 
52n- 1 = {z E en I 1 Z I 1 2 + . . . + 1 Zn 1 2= I } 

into itself. It is clear that 5 U (n)  acts transitively on 52n - 1 , for the point ( 1 , 0, . . . , 0) 
can be sent into the point Z = (Z I • . . . , Zn ) simply by writing down some g E SU(n) 
having ZT as its first column. The isotropy subgroup for the point ( 1 ,  0, . . .  , 0) is clearly 
the subgroup 

[ � 5U(�- 1 ) ] 
which we shall briefly denote simply by 5U(n - 1 ) .  

52n - 1 = 5U(n )  
5U (n - 1 )  (22. 1 8) 

and in fact 5U (n )  is a principal 5U (n - 1 ) bundle over 52n- 1 (see Theorem ( 17. 1 1 » . 
If P is a fiber bundle over M with fiber F we shall write symbolically 

and we shall frequently omit the projection map JT .  Thus we write 

5U (n - 1 )  -+ 5U(n)  -+ 52n- 1 

(22. 19) 

(22.20) 

Theorem (22.21) :  If F -+ P -+ M is a fiber bundle with connected M and 
connected F, then P is connected. 

P R O O F : Let P and Po be points in P .  Project them down to points JT (p) and 
JT (Po) in M. Since M is connected there is a curve in M joining these two points . 

p 
F 

Po 

n(p) 
----�.�---..�----4·------ M 

Figure 22.4 

This curve can be considered a homotopy from the constant map of a point w 
into JT (p) , to the constant map of the point w to JT (Po) .  Cover this homotopy by a 
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path from P to the fiber through Po , that is, from P to some point P I in this fiber. 
Since this fiber is assumed connected we can find a curve in this fiber from P I to 
po . We have joined P to Po by a succession of two paths in P .  D 

Corollary (22.22) : SU(n )  is connected. 

P R O O F :  SU ( 1 )  is a single point. SU (2) is a 3-sphere and is connected, as are 
all k-spheres for k > O. From SU (2) � SU(3) � S5 we see that SU(3)  is  
connected. Induction gives the corollary. D 

See Problem 22.2( 1 )  at this time. 
Recall that we say that M is simply connected provided every map of a circle into M is 

homotopic to a constant map. During the homotopy, the closed curve gets "contracted" 
or "deformed" to the point. 

Theorem (22.23) : Let F � P � M be a fiber bundle whose fiber F and base 
M are simply connected. Then P is simply connected. 

P R O O F :  Let C be a closed curve in P .  Project it down to a closed curve n (C) in 
M. Since M is simply connected, n (C) can be contracted to a point Po in M. We 
may cover this homotopy by a deformation of C into the fiber over Po ; that is ,  C 
is deformed into a new closed curve lying in the fiber n - I  (Po) . Since the fiber is 
simply connected, this new closed curve can be shrunk to a point in the fiber. Thus 
the composition of the two deformations deforms C to a point, as desired. D 

Problems 

22.2(1 ) Show that S O(n) is connected. 

22.2(2) We know that the cartesian product of connected man ifolds is connected ; th is 
is the special case of (22 .2 1 )  when F ---+ M x F ---+ M is simply a product 
bundle. I n  a product bundle we also have the converse (which is evident from 
a picture) ;  if M and M x F are connected, then F is connected . That this need 
not be true when M x F is replaced by a twisted product, that is, a bundle P, 
may be seen as fol lows: Denote the principal frame bundle to a Riemannian 
3-man ifold M3 by 0(3) ---+ F M ---+ M. 0(3) is  defin itely not connected , being 
the disjoint union of S O(3) and those 9 E 0(3) with det 9 = - 1 . I n  spite of 
this , show that if M is connected and not orientable, then F M is connected! I n  
part icular FM i n  this case i s  not a product. 

A simpler example Z2 ---+ S1 ---+ S1 is the 2-fold covering of a c i rcle by itself. 
Show that this is  real ized in the case of the un it normal bundle P to the central 
c i rc le S1 of the ( inf in ite) Mobius band Mo. 

22.2(3) Show that SU(n) is simply connected. 
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22.3. The Higher Homotopy Groups 7rk(M) 
Why is the alternating sum of Betti numbers equal to the Euler characteristic? 

22.3a. 7rk(M) 
We shall consider continuous maps f : Sk ---+ M of a k-sphere into Mil . We shall always 
ask that some distinguished point on Sk , the "north pole," be sent into a distinguished 
base point, written * in Mil . We shall only consider k ::: 1 .  

For technical reasons w.e consider Sk to be the unit k-cube, Jk = [0 ,  1 ]  x . . . x [0, 1 ] ,  
with the entire boundary Jk identified with a s ingle point, the north pole . 

• 1 ---:------111--- ' I  [ I  

..... _____ ...1-- 'I 

Figure 22.5 

Then f : Sk ---+ M is  a map f : Jk 
---+ M such that f(i ) = * . In our diagrams the 

heavy portions are always mapped to * . To say that fo and fl are homotopic, fo '" f" is 
to say that there is a map F : Jk x J ---+ M such that F (y ,  0) = fo (y ) ,  F (y ,  1 )  = II (y), 
and F (north pole, t )  = * , 0  :s 1 :s I 

Figure 22.6 

(Again the heavy portions are sent into the base point .) 
We compose two maps f : Sk 

---+ M and g : Sk ---+ M using the first coordinate, as 
we did for loops, but this time the result is written f + g :  

1 0 < 1, < -- - 2 
1 - < I, < 1 
2 - -
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briefly f g 

Figure 22.7 

Again, two maps are to be identified if they are homotopic .  The homotopy classes 
of such maps define the kth homotopy group 

(It can be shown that if f' � J and g' � g then f' + g' � J + g . )  The identity is 
represented by maps homotopic to the constant map J = * ,  and the inverse of the 
map J (tl , " " fn ) is represented by J ( 1  - f l , f2 , " " fn ) '  The composition is written 
additively since these classes of maps form a commutative group (if k ::: 2) . The 
commutativity can be "seen" from the following sequence of homotopies where a 

f g 
squash 

* 
f f * 

g 
* * g 

* f f 
g f 

g * g 

Figure 22.8 

whole box labeled * is to be sent into the base point. See [H,Y] for details .  Note that 
this procedure will not work in the case n = 1 ;  there is no room to maneuver. This is 
why the fundamental group lr 1 can be nonabelian. 

22.3b. Homotopy Groups of Spheres 

lrk (sn ) consists of homotopy classes of maps of a k-sphere into an n-sphere. We have al
ready discussed lrl (S l ) = Z where the homotopy class is  characterized by the Brouwer 
degree of the map. (We have shown that maps of different degrees are not homotopic, 
but we have not proved the converse.) 
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Consider the case k < n .  I t  seems evident that f (Sk ) cannot cover all of sn 'f 
k < n but this is  actually false since we do not require our maps to be smooth ! Pean

1 

constructed a curve, a continuous map of the interval [0, 1 ] ,  whose image filled up � 
entire square [0, 1 ]  x [0, 1 ] ; see [H,Y, p. 1 23 ] .  This map cannot be smooth, as you will 
show in Problem 22.3 ( 1 ) .  

It is a fact that a continuous map of a sphere into an Mn is homotopic (via approx_ 
imation) to a smooth one. Hence we may assume that f(Sk ) does not cover all of sn 
when k < n .  Suppose then that the south pole of sn i s  not covered. By pushing away 
from the south pole we may push the entire image to the north pole; we have deformed 
the map into a constant map . Thus 7rk (sn ) = 0 if k < n . 

Consider the case k = n .  We know that homotopic maps of an n-sphere into itself 
have the same degree. A theorem of Heinz Hopf says in fact that maps of any connected. 
closed, orientable n-manifold Mn into an n-sphere sn are homotopic if and only if they 
have the same degree (the nontrivial proof can be found in [G, PD. Thus the homotopy 
classes of maps sn -+ S" are again characterized by an integer, the degree. Again, as 
for circles , one can construct a map of any integral degree. Thus we have, so far 

7rk (sn ) = 0 if 0 < k < n 
= Z if k = n 

(22.24) 

Hopf made the surprising discovery that there can be nontrivial maps of Sk onto sn 
when k > n > I !  We shall discuss one in Section 22.4. 

22.3c. Exact Sequences of Groups 

A sequence of groups and homomorphisms 

. .  · -+ F � G � H -+ . . .  

is said to be exact at G provided that the kernel of g (the subgroup of G sent into the 
identity of H)  coincides with the image off, f (F) C G .  In particular, we must have 
that the composition g 0 f : F -+ H is the trivial homomorphism sending all of F into 
the identity element of H. The (entire) sequence is exact if it is exact at each group. 0 
will denote the group consisting of just the identity (if the groups are not abelian we 
usually use 1 instead of 0). 

Some examples. If 

O � H � G 

is exact at H then ker h = im  f = O. Thus h i s  1 : 1 .  Since h is 1 : 1 ,  we may 
identify H with its image h ( H ) ;  in other words we may consider H to be a subgroup 
of G. Ordinarily we do not label the homomorphism 0 � H ;  we would write simply 
0 -+  H � G .  

If 
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is exact at G then im h = ker g = G, and so h is onto. Again we would write 
Iz H � G --+ o. 

If 

is exact, meaning exact at all the interior groups H, G ,  then h is I : I and onto; that is ,  
h is an isomorphism. 

Consider an exact sequence of three nontrivial abeLian groups (a so-called short 
exact sequence) 

Then ker g is im f, which is considered the subgroup F = f(F)  of G, and g maps G 
onto all of H .  Note that if h = g (g l )  and h = g (g2 ) , then (g l - g2) E f(F) � F .  Thus 
H may be considered as equivalence classes of elements of G, g2 "" g l iff g2 - g l is 
in the subgroup F. In other words, H is the coset space G / F !  (See Sections l 3 .2c and 
17.2a, but note that we are using additive notation for these abelian groups.) 

f f(F) = F  
, , 

� '  

F G 

I? 

H = G/F 

Figure 22.9 

If the homomorphisms involved are understood, we frequently will omit them. For 
example, the exact sequence (2;[, is the group of even integers) 

says that the even integers form a subgroup of the integers and ;[.2 � ;[,/2;[,. The exact 
sequence 

where the group of integers ;[. is considered as a subgroup of the additive reals, and 
where lR --+ S I is the exponential homomorphism 

r E lR � exp (2n i r ) 

onto the unit circle in the complex plane (a group under multiplication of complex 
numbers) exhibits the circle as a coset space 
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In  brief, a short exact sequence of  abelian groups is always of  the form 

G 
o ---+ H ---+ G ---+ - ---+ 0 

H (22.25) 
where the first homomorphism is inclusion and the second is projection. (As We saw in 
Section 1 3 .2c, G / H is always a group when G is abelian.)  

We have two examples from homology theory, as in Section 1 3 .2c 
a 0 ---+ Zk ---+ Ck ---+ Bk- 1 ---+ 0 (22.26) 

o ---+ Bk ---+ Zk ---+ Hk ---+ 0 

See Problem 22.3(2). 

22.3d. The Homotopy Sequence of a Bundle 

For simplicity only, we shall consider a fiber bundle F ---+ P ---+ M with connected 
fiber and base . If F is not connected there is a change in only the last term of the 
following. 

Theorem (22.27): If the fiber F is connected, we have the exact sequence of 
homotopy groups 

The homomorphisms are defined as follows. Here we assume that the base point 
xo = * M of M is the projection Jr (* p ) of that of P ,  F is realized via an inclusion 
i : F ---+ P as the particular fiber that passes through * p ,  and *F = *p . 

i 
F P 

F 

1r 

M 

Figure 22.1 0 

It should be clear that a continuous map f : V ---+ M that sends base points into 
base points will induce a homomorphism f* : Jrk (V )  ---+ Jrk (M),  since a sphere that 
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gets mapped into V can then be sent into M by f. This "explains" the homomor
phisms 

and 

induced by the inclusion i : F � P and the projection TC : P � M.  We must explain 
the remaining boundary homomorphism a : TCk (M) � TCk- 1 (F) . We illustrate the 
case k = 2. 

Consider f : 52 � M, defining an element of TC2 (M) . This is a map of a square [2 

into M such that the entire boundary j 2 is mapped to a base point Xo E M. 

all 4 faces are 
mapped by f to Xo 

f 

Figure 22. 1 1 

This map can be considered as a homotopy of the map given by restricting f to the 
initial face [ defined by t2 = o. 

f 12 --t-�-_ 

Figure 22.1 2 

f restricted to this face is of course the constant map Xo . The base point * of P lies 
over Xo . By the covering homotopy theorem, f can be covered by a homotopy in P of 
the constant map [ I � * . 
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covering o f  f(l2) 

[IIJ 
Xo 

Figure 22.1 3 

Under f,  the two sides and the bottom of the square are mapped constantly to Xo 
and the light vertical deformation curves are sent into closed curves on f (/2) since the 
top face is also sent to Xo .  When these deformation curv�s are lifted into P from * they 
will become curves that start at * and end at points of the fiber Jr - 1  (xo) = F holding 
*, but they needn' t  be closed curves . Since the l ines t l = 0 and t2 = 0 are mapped to 

x() , we see that these endpoints of the lifts of the deformation curves will form a closed 
curve in F, the image of some circle S l being mapped into F, that is ,  an element of 
Jr l  (F) .  This then is our assignment 

Briefly speaking, the lift of a k-sphere in M yields a k-disc in P whose boundary is 
a (k - I ) -sphere in F. 

We shall not prove exactness ,  though some parts are easy. For example, consider 
the portion Jrk (F)  � Jrk (P )  � Jrk (M) .  A k-sphere mapped into F is of course also 
mapped into P .  When this same sphere is projected down into M, the entire sphere is 
sent into a single point, and so is trivial . This shows that a sphere of P in the image 
of Jrk (F) � Jrk (P)  must always be in the kernel of Jrk (P)  � Jrk (M) . Conversely, 
if a sphere in P is in the kernel of Jrk ( P )  ---+ Jrk (M) ,  then its image sphere in M 
is contractible to the point Xo.  By covering homotopy, the original sphere in P can 
be deformed so as to lie entirely in the fiber F over Xo ; that is ,  it is in the image of 
Jrk (F) � Jrk (P ) .  This shows that the homotopy sequence is indeed exact at the group 
Jrk (P) .  For proofs of exactness at the other groups (a few of which are easy) see [St] . 
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Note that at the last stage, 77: 1 (P )  -+ 77: 1 (M) is onto because F has been assumed 
connected. A circle on M can be lifted to a curve in P whose endpoints lie in F and 
since F is connected, these endpoints can be joined in F to yield a closed curve in P 
that projects down to the original circle. 

22.3e. The Relation between Homotopy and Homology Groups 

The homology groups Hk (Mil ; Z) deal with cycles (think of closed oriented k-dimen
sional submanifolds of Mil ) ;  a cycle is homologous to 0 if it bounds a (k + i ) -chain. 
The homotopy groups 77:k ( M" )  deal with special cycles, namely k-spheres mapped into 
Mil . A k-sphere is homotopic to 0 if it can be shrunk to a point, that is, if the sphere 
bounds the image of a (k + I ) -disk. This  is the extension theorem (22. 1 7) .  There are 
relations between these two groups .  The following can be shown (but will not be used 
here). 

Let 77:1 be the fundamental group of a connected M. We know that 77:1 is  not always 
abelian. Let [77:1 , 77:l l be the subgroup of 77:1 generated by the commutators (elements of 
the form aba- 1 b- I ) .  Then the quotient group 77: 1 / [77:1 , 77:d turns out to be abelian and 
is isomorphic to the first homology group with integer coefficients 

77: 1 
-- ;::::; HI (Mil ;  Z) 
[77:I , 77:d 

For the proof, see [G, H] .  
For the higher homotopy groups we have the Hurewicz theorem (Hurewicz was the 

inventor of these groups): 

Let M be simply connected, 77: 1  = 0, and let 77:j (M) , j > 1 ,  be the first nonvanishing 
homotopy group. Then Hj (M, Z) is  the first nonvanishing homology group (for 
j > 0) and these two groups are isomorphic 

The proof is difficult (see, e .g . ,  [B,  TD. As an example, we know that sn is simply 
connected for n > 1 .  Also, we know that Hj (S" ; Z) is 0 for I :::: j < n, and Hn (S" ;  Z) = 
Z (see ( 1 3 .23». Thus 77:j (sn )  = 0, for j < n and 77:,, (sn )  = Z. 

Problems 

22.3(1 ) Use Sard's theorem to show that if f : V
k � Mn is smooth and k < n, then 

f( V)  does not cover al l  of M. 

22.3(2) Show that both sequences in  (22 .26) are exact. (Note that the fi rst sequence 
is defined only for k > 0, but if we define B_ 1 : =  0 the sequences make sense 
for al l  k ::: 0 . )  

Suppose we have a compact manifold and we consider the result ing f in ite 
simplicial complex, as in  1 3.2c. Suppose further that a field is  used for coeffi
c ients. Then al l  the groups Ck , Zk , Bk , Hk are f in ite-dimensional vector spaces. 
Let Ck ,  Zk , th , and bk be their respective d imensions ( recall that bk is the kth 
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Betti number) . For example C k  i s  s imply the number o f  k-s implexes in the corn. 
p lex. (Ck is i ndependent of the f ield used, but we know that bk depends on the 
f ield . )  Note then that, for example, bk = d im Hk = d im(Zkl Bk )  = zk - fJk . 

(i) Show that 

Ck - bk = f3k + f3k- l 

for al l  k ::': o. This is a Morse-type re lation , as in Theorem ( 1 4.40) , where 
now the Morse type number mk is replaced by Ck and qk is replaced by 
fJk . We immediately have 

Ck ::': bk 

that is, there are more k-simplexes than thekth Betti number. Fu rthermore 
as in the Morse inequal it ies, we have for an n-d imensional closed manifold 

n n 
L ( - 1 )

k
Ck = L (- 1 )

k
bk 

k=O k=O 

This is Poi ncare's theorem, expressing the Euler characteristic 

n 
x ( M) = L (- 1 )

k
Ck = (no. vertices) - (no. edges) + . . .  

k=O 

as the alternating sum of the Betti numbers. A special case of this was 
noted i n  Problem 1 6 .2(1 ) .  

(i i) What is t he  Eu le r  characteristic o f  Sn , of  lR P'l, of  t he  Klein bottle? 

( i i i) Show that the Euler characteristic of a closed odd-dimensional orientable 
man ifold van ishes (H int :  Problem 1 4 .2(3» . Show that orientabil ity is not 
real ly requ i red by looking at the 2-sheeted orientable cover. 

22.3(3) Let A c M be a subspace of M. Recall (from Section 1 4.3) the relative homol
ogy groups Hp( M; A) constructed from relative cycles cp. A relative p-cycle cp 
is a chain on M whose boundary, if any, l ies on A. Two relative cycles c and c' 
are homologous if c - c' 

= a mp+l  + ap , where m is a chain on M and a is a 
chain on A. The relative homology sequence for M mod A is 

a a 
. . .  -> Hp+l ( M; A) -> Hp( A) -> Hp( M) -> Hp( M; A) -> Hp-1 ( A) -> . . .  

Here we are using the homomorphism induced by inclusion A -> M, the fact 
that any absolute cycle z on M is automatically a relative cycle,  and the fact 
that the boundary of any relative cycle is a cycle of A (which bounds on M but 
not necessari ly on A) . We claim that the relative homology sequence is exact. 

(i) Show that the composition of any two successive homomorphisms in the 
sequence is tr ivia l .  

( i i )  Conclude the proof of exactness. (As an example, we show exactness at 
Hp( M) . From ( i )  we need only show that anyth ing in the kernel of Hp( M) -+ 
H p( M; A) must come from H p( A) . But if the absolute cycle z p of M is trivial 
as a relative cycle, we must have z = a mp+l + ap or z - a = a m, which says 
that a is an absolute cycle on A and the abolute cycle z is homologous 
to it .  Thus, as homology classes a -> Z and so z is i n  the image of the 

homomorphism Hp( A) -> Hp( M) . ) Simple pictures should be helpfu l .  
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( i i i )  By considering the sphere Sn- 1  C Bn i n  the n-ba l l ,  and knowing the ho
mology of S and of B, show that 

H ( Bn Sn- 1 ) = 0 for p < n 
p ,  Z for p = n 

What is the generator of Hn( B, S)? 

22.4. Some Computations of Homotopy Groups 

How can one map a 3-sphere onto a 2-sphere in an essential way, that is, so that the map is not 
homotopic to a constant? 

22.4a. Lifting Spheres from M into the Bundle P 
In the definition of a : Jrk (M) --+ Jrk- I (F) in Theorem (22 .27), we have explicitly 
shown the following (the sketch for k = 2 works for all k ::: 1 ;  one now lifts the image 
of the tk lines instead of the t2 lines) . 

Sphere Lifting Theorem (22.28) : Any map of a k-sphere into Mil (with base 
point xo) can be covered by a map of a k-disc into the bundlespace P, in which 
the boundary (k - i ) -sphere is mapped into the fiber F = Jr - I (xo) .  

This has an important consequence for covering spaces . Recall that a covering space is 
simply a bundle over M with a discrete fiber. 

Theorem (22.29) : If Jr : M --+ M is a covering space, then the homomorphism 
induced by projection 

is an isomorphism for k ::: 2. Furthermore, for k = 1 

is 1 : 1 .  

P R O O F : We first show that Jr* i s  1 : 1 .  Let f(Ik ) be a map of a sphere into M that 
when projected down is homotopic to the constant map to *. This homotopy can 
be covered by a homotopy of f into the fiber Jr - I (*) . But if k ::: 1 ,  the resulting 
map of a k-sphere into this fiber must be connected, and yet the fiber is discrete. 
It must be that the entire sphere is mapped to the single point *. Thus if Jr*f is 
trivial, then f itself is  trivial, and Jr * is 1 : 1 for all k ::: 1 . 

We now show that Jr* is onto for k ::: 2. Let f(lk ) be a map of a k-sphere 
into M. This can be covered by a map ](lk ) of a k-disc into M whose boundary 
(k - I ) -sphere lies in the discrete fiber Jr - I (*) . If k ::: 2, this whole boundary must 
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collapse t o  the point * .  Thus J( Ik ) i s  a map of  a k-sphere into M that projects 
via n to f ( Ik ) ,  and n* is onto. 0 

As simple corollaries we have 

nk (JRpn ) = nk (S" ) 

nk (T")  = nk (JR/! ) = 0 
nk (Klein bottle) = nk (T2 ) = 0 

(22.30) 

for all k ::: 2. In particular, every map of a k > 1 sphere into a circle T I is contractible 
to a point! 

22.4b. SV(n) Again 

In Corollary (22.22) and in Problem 22.2(3) we saw that S U (n) is both connected and 

simply connected, nI SU(n)  = O. We now show that 

n2S U (n)  = 0 

P R O O F :  From the fibering SU(n - 1 )  -J> S U (n)  -J> S2/!- 1 we have the exact 
homotopy sequence 

For n ::: 3 this gives 

o -J> n2 SU (n - 1 )  -J> n2SU (n ) -J> 0 

and so n2SU(n )  = n2SU (n - 1 )  = . . .  = n2 SU (2) = n2S3 = 0 0 

In fact, E. Cartan has shown that every map of a 2-sphere into any Lie group is 
contractible to a point 

n2G = 0 for every Lie group 

In Problem 22.4( 1 )  you are asked to show that 

(22.3 1 )  

(22 .32) 

and thus every map of a 3-sphere into SU(n), for n ::: 3, can be deformed to lie in an 

SU(2) subgroup ! 

22.4c. The Hopf Map and Fibering 

The starting point for Hurewicz's invention of the homotopy groups must have been 
related to Heinz Hopf's discovery of an essential map of S3 onto S2 , that is, a map 
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rr : S3 � S2 that was not homotopic to a constant map. (We have seen in (22 .30) 
that this  cannot happen in the case of a 2-sphere mapped into a I -sphere.) With our 
machinery we can easily exhibit this map. We know that when the group SU (2) acts 
on its Lie algebra (or on the trace-free hermitian matrices) by the adjoint action, the 
resulting action covers the rotation group S O  (3) acting on JR3 . In particular, S U  (2) acts 
transitively on the spheres S2 centered at the origin of its Lie algebra JR3 . The stability 
subgroup of the hermitian matrix (j3 is immediately seen to be the subgroup 

which is simply a circle group S ' . Thus we have the fibration 

S ' 
� SU (2) � S2 

From the homotopy sequence 

0 = Jr3 S ' 
� Jr3 SU (2) � Jr3 S2 

� Jr2 S ' 
= 0 

we see that Jr3 S2 = Jr3 SU (2) = Jr3 S3 = Z, that is ,  

Jr3 S2 = Z 

and that the projection map 

Jr : SU (2) � S2 

the Hopf map, is essential . 
We have shown that S3 = S U (2) is a fiber bundle over S2 with (nonintersecting) 

circles as fibers . This is the Hopf fibration 

------- 5 2  

Figure 22. 1 4  

Here is another view of  the Hopf map. Consider the unit 3-sphere S3 

in ((:2 . We then have a map Jr : S3 � S2 defined by (zo , z , ) � [zo , z t J , where the 
latter pair denote the homogeneous coordinates of a point in ((: p '  , that is, the Riemann 
sphere (see Section l 7 Ac). The inverse image of the point [zo , z t l  consists of those 
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multiples (AZo , AZ , ) in S3 , where A E (C - 0) . Since 1 Zo 1 2 + 1 Z ,  1 2= 1 ,  we see that 
1 A 1 2 = 1 ,  and so Jr - ,  [zo , z , ] consists of all multiples eie of (zo , z , ) .  This is a circle on 
S3 passing through (z() , z , ) .  Thus S3 can be considered as the subbundle of the Hopf 
complex line bundle (of Section 1 7 .4c) consisting of unit vectors through the origin of 
C2 , and then the Hopf map Jr : S3 --+ S2 is simply the restriction of the projection map 
to this subbundle. 

Problems 

22.4(1 ) Derive (22.32) . 

22.4(2) We know 7r1 S O(3) = Z2 . Use S O(n) / S O(n - 1 )  = sn-1 and induction to show 
that 7r1 S O(n) = Z2 for n � 3. 

22.4(3) We have stated the exact homotopy sequence for a f iber bundle in  the case 
that the f iber is connected. When the fiber is not connected (as i n  the case of a 
covering) the only difference is that in the very last term ,  7r* : 7r1 P -+ 7r1 M need 
not be onto, so that we do not necessari ly have that the sequence is exact at 
th is last group 7r1 M. Accept th is fact and go on to show that Theorem (22.29) 
is an immediate consequence of this exact sequence. 

22.5. Chern Forms as Obstructions 

Given a closed orientable submanifold V4 of Mn , why is ( \ /87r2 ) Iv tree /\ e)  always an integer? 

22.5a. The Chern Forms Cr for an SU(n) Bundle Revisited 

Let us rephrase some results that we have proved concerning Chern forms.  First consider 
a U ( 1 ) bundle. 

Theorem (22.33) : Let E be a hermitian line bundle, with (pure imaginary) con
nection w '  and curvature e2, over a manifold Mil . Let V2 be any closed oriented 
sUlface embedded in Mil . Then 

� r e2 = r c , 2Jr Jv Jv 

is an integer and represents the sum of the indices of any section s : V 2 --+ E of 
the part of the line bundle over V2; it is assumed that s has but afinite number of 
zeros on V .  

I t  is  only when this integer vanishes that one can possibly find a nonvanishing section 
(that is ,  a frame over all of V) .  

Next, instantons are associated with S U (2) bundles. 
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Theorem (22.34) : The winding number of the instanton is given by 

_
1
_2 j tr Wu 1\ Wu 1\ Wu = - r C2 �rr � k. 

This represents the "number of times the frame eu on the boundary S3 wraps around 
the frame ev that is fiat at infinity." It is  only when this integer vanishes that the fiat 
frame outside S3 can be extended to the entire interior of S3 . 

We have defined the Chern forms for a complex U (n) bundle E in Section 22. 1 c 

( ie ) 
det 1 +  

2rr 
= 1 + C I (E) + c2 (E ) + . . .  

i 1 
= 1 + � tr e - - [(tr e)  1\ (tr e )  - tree 1\ e) ]  + . . .  

2rr 8rr2 

(22 .35) 

We have shown that each Cr is closed, dCr = 0, and thus defines a de Rham cohomology 
class, and that this cohomology class, with real coefficients, is  independent of the 
connection used. The factor i is  introduced to make each of the forms real (ie is 
hermitian). The factor I j2rr ensures that the "periods" of the Chern forms will be 
integers when evaluated on integral homology classes. We have already seen this in 
Theorem ( 1 7 .24) for the case of C I for a complex line bundle over a surface and have 
verified a very special case of this for C2 in Theorem (22 .5) .  In this lecture we shall 
concentrate on the second Chern class C2 but for a general S U (k) bundle over a manifold. 

22.Sb. C2 as an "Obstruction Cocycle" 

Let Ck -+ E -+ Mn be complex vector bundle with connection. We shall be concerned 
with the case of most interest in physics, in which the structure group is the special 
unitary group G = SU Ck) .  We are going to evaluate 

where Z4 is a 4-cycle on Mn with integer coefficients. For s implicity we shall in fact 
assume that z is represented by a closed oriented 4-dimensional submanifold of Mn . 

Let us consider the problem of constructing aframe of k l inearly independent sections 
of the bundle Ejust over the cycle z. Since SU (k) is the structure group, this is equivalent 
to constructing a section of the principal SUCk) bundle P associated to the part of E 
over z. Each fiber is then a copy of G = SU (k) . 

We shall attempt to find a continuous section, since it can be approximated then by 
a differentiable one. 

Triangulate Z4 into simplexes L).4, each of which is so small that the part of the bundle 
over it is trivial, rr - I L). � L). x G. We picture sections as frames of vectors . 
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SU(k) 

---+( ,",4+)---

Figure 22.1 5 

Now begin to construct a cross section . Over each O-simplex (vertex) �o we pick 
arbitrarily a point in Jr - I (�o) .  Thus we have constructed a section of the bundle P over 
the "O-skeleton," that is ,  the union of all O-simplexes . 

Given �o, look at a 4-simplex �4 holding this vertex . The part of the bundle over 
�4 is trivial, Jr- I (�4) � �4 X G .  To construct a section over �4 is simply to give a 
continuous map f : �4 --* �4 X G of the form x � (x , g (x ) )  that extends the given 
f over the O-skeleton . 

Let � 1 be a I -simplex of the triangulation . This is a map a of I into Z4 . Pick a �4 
holding � I .  g is defined on the two vertices P and Q of � 1 = I ;  that is, g(P)  and 
g (Q) are two points in G .  

g(Q) 

SU(k ) 

f g (p) 
g 

P ------'--""-- Q 

Figure 22. 1 6  

Since G = S U (k) i s  connected, these two points can be  joined by  a curve g : I --* G. 
Then define f : � I --* � I X G by f (t )  = (a (t) , g et ) ) .  In this way we have extended 
the cross section to each � 1 and thus over the entire I -skeleton. 

We now have the section f defined on the boundary of each 2-simplex �2; can we 
extend to the entire �2? 

Letting Jr G be the local projection of Jr - I �4 = �4 X G onto G, we see that JrG 0 f is a 
map of a �2 ' topologically a circle, into the group SU (k) . We know from the "extension 
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theorem" (22. 1 7) that this map can be  extended t o  a map of  the "disc" �2 i f  and only i f  
it is homotopic to a constant map.  Bu t  S U (k) is  simply connected (Problem 22.2(3», 
and so any map of a circle into G is homotopic to a constant map, and Jie 0 / can be 
extended to a map F : �2 -+ G. Define then a section over �2 by l ex )  = (x , F (x» , an 
extension of / over a �2 . We have extended/to the entire 2-skeleton a/the 4-manifald z. 

SU(k) 

f 

Figure 22.1 7 

We have defined / on the boundary of each 3-simplex . S ince each �3 is topologically 
a 3-disc with boundary a topological 2-sphere �2 , and fc = Jie 0 / is a map of a �3 
into G ,  we know that this map can be extended to all of �3 if and only if / e : a �3 -+ G 
is homotopic to a constant. But Ji2 (SU (k» = 0, (22.3 1 ) , and thus fc is homotopic to 
a constant. As before, this allows us to extend the section / to the entire 3-skeleton. 

/ is now defined on the 3-sphere boundary a �4 of each 4-simplex �4 .  But now 
Ji3 (SU (k) ) )  = Z, (22 .32), and fc : a �4 -+ S U (k) need not be homotopic to a constant. 
We have met with a possible obstruction to extending / to the entire �4 in question ! 
We "measure" this obstruction as follows: The homotopy class of / e : a �4 -+ S U (k) 
is characterized, from (22.32) ,  by an integer (call it j (�4) '  and we assign this integer 
ta the 4-simplex �4.  

There i s  now a slight complication. Different �4 'S  in the 4-manifold Z4 wil l  yield 
different trivializations of the bundle; that is, the S U (k) coordinate in the frame bundle 
over �4 changes with the simplex �4 .  Consider for example, the case of S U (2) , which 
is topologically S3 . When we map a �4 into S U (2) we shall be using different copies of 
S U (2) , that is, different 3-spheres over different simplexes . If we change the orientation 
of the 3-sphere, our integer j will change sign. We shall assume that the fibers SU (2) 
can be coherently "oriented." Similarly, we shall assume that the fibers S U (k) can be 
coherently "oriented" so that the sign ambiguity in Ji3 S U (k) is not present. Steenrod 
called such a bundle orientable. 

In this manner we assign to each 4-simplex in the triangulation of the 4-manifold z 
a definite integer; thus we have a singular 4-chain on z with integer coefficients, called 
the obstruction cocycle. The reader should note that we did not really use the fact 
that the fiber F was S U (k) ; the only in/ormation that was used was that the fiber was 
connected and that Jij (F)  = O/or j = 1 , 2, and that Ji3 (F)  = Z. 
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If each coefficient is ° it is clear that one can extend the section to the interior of 
each �4, and in this case we have succeeded in finding a section on all of z !  If, On the 
other hand, some of the integers are not 0, it still may be possible to start anew and 
succeed. This will be the case if the sum 2: j (�)  = 0, where the � are oriented so that 
Z4 = 2: �.  This can be shown using the cohomology theory of obstructions. We wish 
rather, to show how this sum can be expressed as an integral involving curvature. 

' 

22.5c. The Meaning of the Integer j(�4) 

The fact that rr3 (SU (k» = Z, proved in (22.32), is a result of two things. First, each 
SU Ck) ,  k ::::: 3 ,  has the 3-sphere SU (2) as a subgroup and then the homotopy sequence 
shows that this 3-sphere is a generator for the third homotopy group of S U (k) . In other 
words, every map of a 3-sphere into S U (k) can be deformed so that its image lies on 
the SU (2) subgroup ! But then a map fc : ( a�4 = S3 ) --* S3 has a degree, and this 
integer is j (�4) ' 

22.5d. Chern's Integral 

The partial cross section I : a �4 --* P on the simplex �4 is defined only on its 
boundary, but we can immediately extend it to all of �4 with a small 4-ball B€ about 
its barycenter Xo removed; we merely make the SU(k) coordinates Ie constant along 
radial lines leading out to a �4. 

Figure 22. 1 8  

We shall now compute the integral of  the second Chern form over �4 ; since C2 i s  a 
smooth form and is independent of the section 

r C2 = lim r C2 
l':;4 E�O 1 ':;4-8, 

We will be brief since the procedure is similar to that in Section 1 7 .3b. 
Let 2:4 = I (�4 - BE ) be the "graph" of the local section. Then 

Now 

r C2 = r C2 = r rr * C2 1 ':;. - 8, l" 2:4 l2:4 

1 
C2 = - - [tr e !\ tr e - tree !\ e ) ]  

8rr2 

1 
= -2 tree !\ e )  

8rr  
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Let eu be a frame on the open U C Mn holding �4 for which n - 1 (U)  is a product 
U x SU Ck) . (J = (Ju is the local curvature 2-form for the vector bundle E. C2 = 
( l j8n2) tr (Ju 1\ (Ju . Then at a frame f =  eu g we have 

and from ( 1 8 .2 1 )  
1 n *c = - tr (J* 1\ (J* 2 8n2 

where (J* is the globally defined curvature form on theframe bundle, (J * = dw* +w* I\w* , 
where again w* is globally defined. The same calculation that gave (22.4) shows 

n *c = d _1_ tr [w* 1\ dw* + �w* 1\ w* 1\ w*] (22 .36) 2 8n2 3 
Thus the pull-back of C2 to the frame bundle is the differential of a globally defined 
3-form, the Chern-Simonsform . Thus, for the graph 2::4 of our section f over Z4 - UB" 

r n*c2 = -1- 1 tr [w* 1\ dw* + �w* 1\ w* 1\ w*] (22.37) J2:: �2 a 2:: 3 

Figure 22. 1 9  

Recall that we  have removed 4-balls from the 4-cycle Z 4 .  The boundary of  2:: over 
the 4-cyc\e Z4 consists of the part of the section f over the union of the boundary of 
the E -balls, but with orientation opposite to that of the balls (since f is 1 : 1 , 2:: carries 
an orientation induced from that of z) .  

r n *c2 = _ _  
1_ L r tr [w* 1\ dw* + �w* 1\ w* 1\ w*] (22 .38) J2:: 8n2 Jf(aB, )  3 

Now over U ,  for points of 2:: 

(22.39) 



614 C H E R N  F O R M S  A N D  H O M O T O P Y  G R O U P S  

where the section f i s  given by  f (x )  = eu (x )g (x ) .  The triple integral for that BE in U 
will involve terms containing g- l dg and 

Wu = (w}p (x )dxj ) 
In the integral (22 .38) ,  gather together all those terms that do not involve any dx ; one 
finds easily that the contribution of these terms is 

_1 _2 2: j tr g- l dg l\ g- l dg l\ g- l dg (22.40) 24n f (a B, )  
As in (22 .3) ,  we see that the integral in (22.38) over f (BBE ) represents the number 

of times that the image f (B BE ) of the E -sphere wraps around the SU (2) subgroup of 

SU (k) ! Furthermore, since the integrand, the Cartan 3-form [23 , is closed, Stokes's 
theorem tells us that this also represents the number of times that the image of B �4 
wraps around SU (2) where �4 is the simplex holding the given singularity. But this is 
precisely the index j (�4) that occurred in the obstruction cocycle in 22.5c. We have 
shown that i-UB, C2 = 2: j (�4) + integrals involving dx (22.41 )  

Now we can let E ---+ O. The left side tends to  the integral of  C2 over the entire 4-cycle z . 
We claim that the integrals involving dx all tend to O. Introduce coordinates X l , x2 , 

x3 , X4 with origin at the singularity in question. 

Figure 22.20 

For B BE we choose the 3-sphere given by L X] = E 2 . This can be parameter
ized by angles a , e ,  and ¢> ;  X l = E sin a sin e cos ¢> , x2 = E sin a sin e sin ¢>, x3 = 
E sin a cos ¢> ,  X4 = E cos a .  Each integral in (22.38) ,  .1> (o B ) A ,  can be evaluated as the 
integral of a pull-back Ja B  j* A .  Let ¢> l = a, ¢>2 = e ,  ¢>3 = ¢>.  The pull-back of a 

term like g- l dg will be of the form Gj (¢)d¢>j where the Gj are differentiable and 

independent of E > 0 since we have extended the section to the interior of �4 keeping 
g constant along radial lines ¢ = constant. Furthermore, since we have already taken 
care of the term involving [23 , each integral will also involve dx through w = j*w*, 
and dXi is of the form (Bxi /B¢>i )d¢>j , which will have a factor of E .  Since the functions 
wi p (x) are differentiable, we conclude that all the remaining integrals on the right-hand 
side of (22.39) vanish in the limit as E ---+ O. We have proved the following special case 
of a theorem of Chern. 
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Theorem (22.42) : Let P be a principal S U (k) bundle over Mn . Then the integral 

represents the following. There always exists a section f : (Z4 - U Pa ) -+ P over 
z except, perhaps, for afinite number of points {Pa } .  About each Pa we construct 
a sma1l 3-sphere S; and map it into S U Ck) by means of the section f followed by 
the local projection Tee of the bundle into S U Ck) .  The image of Sa in S U Ck) can 
be deformed so as to lie on an SU (2) subgroup. Let ja (f) denote the number of 
times that the image covers SU (2), that is, 

j" (f) := Brouwer degree of f 0 Tee : S; -+ S U (2) 

Then 

Thus L ja (f) is independent of the section f! In particular, a section on all of z 
exists only if Jz C2 = O. It is also immediate that 

1 C2 
'-4 

is an integer for each integer cycle z! Furthermore, this integral 

� l tr e l\ e  8Te z. 

is independent of the S U (k) connection used in the bundle! 

22.Se. Concluding Remarks 

If our group G = S U (k) had not been simply connected, for example, if it had been 
U (k) ,  then, in our construction, we would have met an obstruction to a section of the 
k-frame bundle already at the 2-skeleton. The problem then would have been to try to 
construct a section over a 2-cycle, rather than a 4-cycle. The measure of the obstruction 
then would be the integral of the first Chern form c) over the 2-cycle. It turns out 
that for a U (k) bundle, the integral of C2 over a 4-cycle measures the obstruction to 
constructing not a k-frame, but rather a (k - I ) -frame section, that is, finding (k - I )  
linearly independent sections of the original bundle. It i s  easy to see, however, that i f  the 
group is S U Ck) ,  then a (k - I ) -frame can then lead to a unique k-frame. For example, 
in ([2, the most general unit vector orthogonal to ( 1  O) T is  of the form (0 eief and is 
thus not unique, but if we demand that the pair ( 1  O) T and (0 eie ) T have determinant 
+ I then (0 eie f must reduce to the unique (0 1 ) T . That is why we considered directly 
the search for a k-frame. The general situation is as follows. 

Chern's Theorem (22.43) : Let E be a complex vector bundle with structure 
group U (k) and connection w over Mn. Then each Chern form Cr defines via de 
Rham an integral cohomology class, that is, the 2r-form Cr has integral periods 
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on a basis of H2r (M ;  Z) . This class i s  called a characteristic cohomology class 
and represents an obstruction to the construction of a cross section to a bundle 
associated to E, namely the bundle of (k - r + 1 )  frames! Although theforms c r 
depend on the connection used in the bundle E, their periods do not. 

Note that we had considered orthonormal frames of p vectors in ]Rn in Problem 
1 7 .2(3 ) ;  the space of all such frames forms the (real) Stiefel manifold O (n)/  O (n _ p) .  
Similarly, the space of all orthonormal frames of p complex vectors in en forms the 
complex Stiefel manifold U (n) / U (n - p) . For example, the I -frames in en form the 
unit sphere S211 - 1 , and it is easily seen that s2n- 1 is U(n) / U (11 - 1 ) ,  since U (n) acts 
transitively on this sphere . 

Besides Chern classes, there are other characteristic classes, the Stiefel-Whitney 
classes and Pontrjagin classes, which were defined before the Chern classes. We have 
dealt with the first and second Chern characteristic classes in terms of obstructions to 
constructing cross sections to U (n) bundles . For many purposes modern treatments con
sider characteristic classes from a different, more axiomatic viewpoint. The interested 
reader might refer to [M, S] for such questions .  

Problems 

22.5(1 ) Consider the real unit tangent bundle To Mn to a compact orientable R ieman
n ian n-man ifold (see Section 2 .2b) .  This f iber bundle has fiber Sn- l . Mimic 
our obstruction procedure to show that one can find a section on the (n - 1 )
skeleton of a triangulation , and then one can f ind a section on a l l  of Mn - except 
perhaps for a fin ite collection of points. Hopf's theorem ( 1 6 . 1 2) states that the 
index sum is the Euler characteristic. 

22.5(2) The unit normal bundle to a closed su rface v2 embedded in  a Riemann ian M5 
is a 2-sphere bundle over v2 .  Show that one can always f ind a section ; that is, 
there is always a un it normal vector f ield to a v2 in MS . What about for a v2 in 
an M4? 
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Forms in Continuum Mechanics 

The above treatment of the problem of rotation may, in contradistinction to the usual method, 
be transposed, word for word, from three dimensional space to multi dimensional spaces . This 
is indeed irrelevant in practice. On the other hand, the fact that we have freed ourselves from 
the limitation to a definite dimensional number and that we have formulated physical laws in 
such a way that the dimensional number appears accidental in them, gives an assurance that 
we have succeeded ful ly in grasping them mathematically. 

Hermann Weyl ,  in Space-Time-Matter 

A.a. The Classical Cauchy Stress Tensor and Equations of Motion 

At a point p of a material body in �3 we consider a small element of area da with unit 
normal n. The part of the body on the side of da to which n points exerts a force C, a 
"traction," on the part of the body on the other side of da . Under various assumptions, 
Cauchy shows ("Cauchy's  first theorem") that this force is of the form 

(A. I )  

or simply C = t (n da) .  (The fact that t(n da) = -t( -n da) follows from looking at the 
equilibrium of a small thin disc . )  The linear transformation (t i j ) is the Cauchy stress 
tensor. 

In the case of a perfect or nonviscous fluid, the force across the element da is normal 
to da , points in the direction -n, and has magnitude pda , where p is the pressure. In 
this case 

i 8 i t j = - p  j (A.2) 

A viscous fluid would also exert tangential stresses dependent on the velocity distribu
tion. 

Consider a compact body B(t ) ,  which might be only a portion of a larger body in 
motion. In cartesian coordinates the equations of motion of B(t)  are obtained from 
equating the time rate of change of momentum of B(t)  with the total "body" force (for 
example, gravity) acting on B (t) and the traction force acting on the boundary aB (t) 
arising from the stress exerted on B(t )  by the remainder of the body. Let 

m3 
: =  p vol 

be the mass 3-form. We assume conservation of mass 

dldt r m3 = r c'f.v+3/atm3 = 0 
J B(t) JB(t ) 

617 
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Let b be the external force density (per unit mass) ; w e  have 

djdt r vim3 = r h im 3 + r t ij njda 
1 B(t) 1 B(t) laB(t) 

Thus, using 

we have 

= r him 3 + r atij jaxjvol3 
1 BCt ) lE(t ) 

[ a Vi + vj ( a vi. ) ] m3 = him3 + 
( a t i} ) vol3 a t ax} ax } 

(A.3) 

As mentioned in the derivation of (4.46), this derivation makes no sense in a general 
Riemannian manifold nor in ]R3 with curvilinear coordinates, but the final formula, 
Cauchy's equations of motion, can be rewritten so that they make sense in these situa
tions 

(A4) 

A "derivation" will be given in Section Af. We prefer to rewrite these equations using 
Cartan 's machinery of exterior covariant differentials. 

A.h. Stresses in Terms of Exterior Forms 

Equation (A.4) can be immediately extended to the case of an n-dimensional body in 
a Riemannian Mn , and this is the situation we shall eventually consider. All that we 
say, of course, will hold in the most important case, namely in ]R3 with curvilinear 
coordinates. 

We shall use Cartan's  calculus rather than vector or tensor calculus .  One immediate 
reason for doing so is suggested by the boundary integral in (A3) ;  we could write it as 

r t ijnjda = r (tCi ) , n) da 
laB (r ) laB Cr ) 

where tcn is, for each i ,  a vector with components t ij . We know that surface integrals 
should be written in terms of 2-forms ,  and when this is done, we know that the com
ponents of the normal n and also the element of area da will play no role. Stokes's 
theorem is not only independent of these metric concepts; it also has the same form in 
any curvilinear coordinates. 

This suggests that we redefine the stress tensor directly in terms of (n - 1 )  forms. 
This is perfectly natural ; the stress exerted on a hypersurface should be obtained by 
integrating an (n - 1 ) -form over the hypersurface. Since the result will be a vector rather 
than a scalar, the form should be vector-valued. The orientation of the hypersurface 
should play no role, but the stress vector for a tiny hypersurface element i s  reversed if 
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we change "sides" of the hypersurface, that is ,  if the transverse orientation is reversed, 
and so we expect the stress form to be a pseudo-form . 

The Cauchy stress should be a vector-valued pseudo- en - I )-form t. 

When no confusion can arise, we shall omit the fact that t is a pseudo-form, rather than 
a true form. 

In the language of vector bundles that we have developed in the third part of this 
book, t is a pseudo (n - I ) -form on Mil with values in the tangent bundle TM" . Locally 
we may write 

(A.S) 

Unless otherwise stated, e and cr will be dual frames for vectors and I -forms .  Usually 
the frames will be orthonormal . For example, we may let the e basis be a global cartesian 
frame or perhaps the normalized version of the spherical coordinate frame a / ar, a / ae , 
and a/arP. 

In JR.n let e be cartesian. Then if B is a compact portion of a larger body we transver
sally orient a B by the outward pointing normal and we interpret 

{ t = { er 0 r = er { r = er { r ldx ' 
JaB JaB Ja B Ja B 

as the total traction that the part of the body outside a B exerts on B .  
We know that i n  any Riemannian Mil , w e  may write the (n - I ) -form r , for fixed r ,  

in terms of a vector t(r) .  Using (2.73) 

f = i (t(r ) ) vol = i (t(r ) ) Jg t1dx l = Jgt<r)i til dx' 

Thus 

(A.6) 

and 
. ( ) ' 1 . ,  ( rt : = t r l = _ t� , t ' 

Jg � 

exhibit the relation between the stress form f and Cauchy 'S stress tensor tri .  Note that 
there is only one term in the expression for t ri , for r and i fixed. 

Look again at Eq. (A.4) with any dual frames e and cr for a Riemannian Mn . We are 
assuming that t = er 0 r is an (n - 1 )-form section of the tangent bundle; thus from 
Eq. (9 .3 1 )  we have 

Vt = V eer 0 r) = Ver 0" r + er 0 dr = er 0 (df + oIs A t7)  (A.7) 

= er 0 V'f 

where w is the connection form matrix for the frame e on Mn . If, temporarily, we use 
r, s, . . . for bundle indices and i, j ,  . . . for M indices (both sets run in this case from 1 
to n) ,  we would write, as usual, 

wrs = wr crj 
J S (A.8) 



620 F O R M S  I N  C O N T I N U U M  M E C H A N I C S  

I f  w e  recall that d of a n  ( n  - I )-form is an n-form related to the divergence of the 
associated vector field - see Eq. (4.3 1 )  - we may rewrite (A.4) to read 

(A.9) 
which is our final form of Cauchy 's equations . The reader might wish to see, at this time 
a specific computation involving Eq. (A.9) in spherical coordinates, given in Sectio� 
A.g. ,  part ( 1 ) . 

A.c. Symmetry of Cauchy's Stress Tensor in ]Rn 

Consider again a compact body B (t )  moving in ]R1l , but use Cartesian coordinates x 
and take for er the orthonormal a / axr . Then w = O. We write equation (A.9) as 

dv - Q9 mn = b Q9 mil + dt dt (A. lO) 
where d / dt is the total or convective derivative operator. We wish to discuss the angular 
momentum of the body. Except in ]R3 , angular momentum, like angular velocity, is not 
a vector but rather a skew symmetric second-rank tensor. A I -parameter group of 
rotations in ]R" need not have a I -dimensional axi s  of rotation; look at the rotations in 
]R2 ! In fact there is no I -dimensional axis of rotation in any ]Rn when n i s  even .  We 
know that generators of rotations in any ]R" are given by skew symmetric matrices ;  see 
Section 1 5 .3c .  

We have used extensively the exterior product of two covectors, but now we shall 
deal with the exterior product of vectors, thinking of a vector v as a l inear functional 
on covectors ; v (a )  : = a (v) . Of course there is no essential difference here since we 
are dealing with orthonormal bases . As usual, er 1\ e., = er Q9 es - es Q9 er and then, for 
any vectors v and w 

1 
v 1\ W = -er 1\ es (vrws - vS wr ) 

2 
with components forming a skew symmetric matrix, that is ,  a generator of rotations. 
In this case the plane spanned by v and w is rotated in the sense from w to v, the 
orthogonal complement is left-fixed, and the angular speed of rotation i s  the area of the 
parallelogram spanned by v and w. This replaces the notion of vector product v x w, 
which makes sense only in three dimensions .  Of course the most general generator is 
not of the form v 1\ w but it is a l inear combination of such generators . 

From the origin of ]R" one may form the position vector r = erxr . The angular 
momentum of the body B(t) , in Cartesian coordinates, is the generator obtained by 
integrating -r 1\ v Q9 mil 

- H = � r er 1\ es (xr vs - xS vr ) Q9 mil 
2 JB(I ) 
1 j' = -er 1\ es (x r VS - xS vr ) Q9 mn 
2 8(1) 
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In the language of Section 1 8 .3 , 1 /2 er /\ es (xr vs - xS vr ) 0 mil is an �� (n)-valued 
n-form.  

Then, from Cauchy's equations (A. l O) 
_ dH = r [ (dr ) /\ v + r /\  (dV) ] o mil = r r /\  (dV ) o mil 

dt 1 B(t) dt dt 1 B(t )  dt 
= r r /\ [b 0 mil + dt] 

lB (r )  
Warning. d/dt represents the usual derivative, not an exterior derivative. Although 

we are dealing with exterior products, such as r /\ v, these are not forms, but rather 
"bivectors ." In particular, we use the usual Leibniz rule for differentiating a product, 
not rule (3) of Theorem (2.53) .  

We shall assume that for the material in question d H / dt must equal the impressed 
torques on B(t )  

and so 

Thus 

_
dH 

= 
r r /\ b 0 m" + 1 r /\ t  dt 1 BU)  JB( t )  

r r /\ dt = 1 r /\ t = 
r d(r /\ t) = 

r dr /\ t + r /\ dt 
1 B(t )  JB( r )  1 BCt)  1 B(t )  

r dr /\ t = 0 
lBU )  

and since this is  true for each portion of B 

dr /\ t = 0 
In components, omitting the tensor product signs as is usual 

I . r 0 =  dr /\ t = erdxr /\ es t; = "2 er /\ es [dxr /\ l' - dx' /\ t ]  

since er /\ es is skew in r, s .  We conclude that (A. I I )  becomes 

dxr /\ l' = dx' /\ t: is symmetric in r and s 

What does this  say about Cauchy's stress tensor t ij ? First note that 

t1dxr /\ dxJ = dxr /\ e = dxs /\ t: = tldxs /\ dxJ 
and so 

t!tE,J dx ' /\ . . . /\ dx" = !1E·, J dx ' /\ . . . /\ dx" 

From (A.6) we conclude 

which is Cauchy 's symmetry of the stress tensor in ]R" . 

(A. I 1 ) 

(A. 1 2) 

(A. 1 3) 

Since the Cauchy stress tensor is a tensor, we conclude that the symmetry in (A. 1 3) 
holds in any coordinates, and likewise for (A. 1 2) .  We postulate then that (A. I 2) and 
(A. 1 3 ) hold in any coordinates on any Riemannian Mil . 
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A.d. The Piola-Kirchhoff Stress Tensors 

Consider a reference body in Mn and a deformation (diffeomorphism) <I> of this bod 
Let B be a compact portion of the original body with image <I> (B) .  We Use loc� 
coordinates XR for B and local coordinates xr for <I> (B) ,  and write <I> in the form 
xr = xr (X) , using the notation of Section 2.7b. (Now, however, the coordinate systems 
X and x need not be related. ) 

The Cauchy stress form t is a vector valued (n - I )-form on <I>(B) . We define the 
first Piola-Kirchhoff stress form on B,  an (n - I )-form at X on B whose values are 
tangent vectors to <I> (B)  a t  x = <I> (X) ,  by 

a a a T = - ® T' = - ® T�dxA 
: =  - ® <I>*V 

ax s ax' � axs (A. 14) 

that is 

Thus we pull back the forms t' = tJ, < . . . <j,, _ , dxj, !\ . . .  !\ dxj,, - ,  but we do nothing to 
the vector values. We illustrate this in three dimensions in Figure A. I .  T is called a 

S(v, w) : =  q):; iT(v, w) 
T(v, w) : = t ( <t>.v, <t>.w) 

v 

Figure A.1 

two-point tensor because the A indices in (A. 1 4) are tensor indices for B, the s index 
is a tensor index for <I> (B ) .  We say that T is an (n - I )-form section of the vector 
bundle obtained from pulling back the tangent bundle T <I> (B)  to B . This procedure 
makes sense even when B and <I> (B) lie in different manifolds. We shall have more to 
say about this soon, but we refer the reader to chapter I of [M, H] . 

Of course ys is of the form interior product of VOL = .JGdX 1 !\ . . .  !\ dXn with 
some vector T' = a/ax R ® T'R , leading to the two-point second-order tensor ysR . 
Although the form T' is simply the pull-back of t' ,  the tensor ysR has a rather strange 
expression, called the Piola transform of t,r 

T sR 
= det (�) .Jg ( aXR ) tsr 

ax .JG axr 
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Finally we introduce another measure of stress, the second Piola-Kirchhoff stress 
form S = a/a XC ® s� d X A . It will be an (n - I )-form at X of B whose values will 
be tangent vectors to B at X. If v is an (n - I )-tuple of vectors at X, then the vector 
S(v) will have the property that S (v) = <1>;:- l T(v) ; see Figure A. I .  

where 

If we write S8 

(A. 1 2) 

sC := -- T' = -- <1>*t;' ( aXC ) ( aXC ) 
axS ax" 

dXA A S8 = <1>* [ (��:) dXQ ] A <1>* [ ( aa�: ) if] 
= (��:) (��: )  <1>* (dxQ A if) 

= (��:) ( aa�:) 
<1>* (dxh A � )  

(A. I 5 )  

shows that S has the same symmetry as t ;  that i s ,  the second Piola-Kirchhoff stress 
tensor is symmetric 

(A. 1 6) 

It makes no sense to talk of the symmetry of rS since r is a tensor index on <1> (B )  
whereas S is a tensor index on  B .  

A.e. Stored Energy of Deformation 

Consider again, as in the previous section, a body B in Mn and a deformation Bo = 
<1> (B) .  We suppose that the body Bo is in equilibrium with respect to external forces 
and the tractions on a Bo given by the Cauchy stresses . (Recall that Bo may be only a 
portion of a larger body.) From (A.9 . ) ,  with v = 0, we have the equilibrium equations 

b ® mn + Vt = O  (A. I7 )  

Consider now a variation of  <1>, that is , we  have a I -parameter family of  diffeomor
phisms x = ¢e (X) , written x = x (X, 8) with ¢o = <1>. Let B (8)  be the resulting bodies; 
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o f  course S(O) = <I> (S) .  Such a variation i s  called "virtual" ;  i t  need not arise from an 
actual motion of the body S(O) . The variation vector has components 

oxr . _ [ axr ] 
.- at: £=0 

If, during the deformation, no energy is dissipated by heat flux, then the rate at which 
energy is stored in the body during this specific virtual deformation by the body force 
and the stress traction on the boundary is given by 

(A. l 8) 
(Unlike Eq. (A.3) ,  this makes intrinsic sense since the integrands are not vector-valued.) 
Put 

and look at the first integral and apply (A. I 7) 

r oxsb' ® m = - r oxs ve 
lB(o) lB(o) 

Now note the following; oXs V i s  a scalar-valued form and we claim that d of this form 
can be computed using exterior covariant differentials instead 

d(ox" e) = V(oxs ) 1\ t' + ox" VV' 

This follows since Vt' = de + wS r 1\ {; and, since oXs is covariant, 

Vox" = d (oxs ) - oxrwr" 0 

Looking again at the first integral 

- r ox.\ Vt'  = r V (oxJ 1\ t' - r d (oxs V )  
1 B(O) 1 B(O) 1 B(O) 

= r V(OXs ) I\ V - l oxs t' 
1 B(O) aB (O) 

Putting this in (A. I S) then yields 

OU = r V(ox, ) 1\ t' 
lB(D) 

We shall now rewrite this fundamental equation. First note, putting 

oXsjr : = (ox., ) I r 

V (ox\. )  1\ t' = oXslrdxr 1\ t' = l (OXslr + oXrls )dxr 1\ t' 
from the symmetry (A. 1 2) .  

1 1 r �s o U  = - (oxsjr + oXrls )dx 1\ v 
B(O) 2 

(A. 19) 

(A.20) 

(A.2 1 )  
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We have encountered the symmetric tensor (8xs!r +8xr!s ) before. In Problem 20. 1 (2) 
we have shown, in essence, that if ¢, is the flow generated by the vector field 8x, then 
the Lie derivative of the metric tensor is 

Thus 

But 

= - _(A.*g) -- dXR /\ <1>*t;' 
1 1  a ( ax

r 
) 2 B as '1', rs aXR 

[<1>* :s (¢;g)Lc = [:s <1>* (¢;g)Lc = [:s (¢, O <1» *gLc 
a * a = -( [(¢, 0 <1» g] RC - GRe }  = 2-ERC = 28ERC as as 

(A.22) 

(A .23) 

where ERC is the Lagrange deformation tensor 1 /2 { (¢, 0 <1» *ds2 - dS2 } RC for the map 
¢, 0 <1>, introduced in (2.69). Thus 

8U = h 8ERCdXR /\ SC 

Let us write this out in terms of the symmetric tensor SAB 

8U = r 8ERCdXR /\ S;'dXA = r 8ERCS;'dXR /\ dXA iB � iB � 

Thus, as in (A.6) 

= r 8ERCS;'E RAdX l /\ . . .  /\ dXn iB � 

= r 8E SCE RA (_1_) VOL" iB RC d -JG 

(A.24) 

(A.25) 
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i s  the rate a t  which energy is stored in the body during this specific virtual deforma_ 
tion. 

The equations (A.24) and (A.25) are precise, using no approximations . We do not 
claim that the same amount of energy is stored during two deformations starting at the 
same initial state and ending at the same final state ; we expect the result to depend on 
the specific family of deformations from the initial to the final state. When the result is 
independent of the path in the space of deformations, the material is called hyperelastic . 

A.f. Hamilton's Principle in Elasticity 

Equations (A.4) and (A.9) are the basic equations of motion. They make sense in a 
Riemannian manifold, but our derivation of them was Euclidean and could not be 
carried out in a curved M. Frequently it is argued that these laws are local, and a "tiny" 
portion of a curved Riemannian M almost looks like Euclidean space, but it is not 
possible to convert such statements into a derivation. We have simply accepted them 
as postulates. The same is true of the symmetries of the Cauchy and second Piola
Kirchhoff stress tensors . Our equations of rate of stored energy of deformation suffer 
the same fate. 

In this section we shal l  start anew with what I believe is a more fundamental view
point, namely Hamilton 's  principle. This will replace the Newton-Euler principle, 
equating the total force on an extended body with the time rate of change of total 
momentum, since neither the total force nor the total momentum can be defined in 
curvilinear coordinates. We shall take as a basic property of an elastic body the fact 
that it takes work to deform the body, and we shall ,  assume that during a deformation 
the rate at which energy is stored in the body is proportional to the rate of change of 
strain. In other words, we shall use Eq. (A.24) or (A.25) to define the stress tensor. We 
proceed with this plan, which in its main thrust goes back to George Green in a paper of 
1 837 .  We shall be very brief since we have carried out most of the calculations needed 
already. 

We consider again a body B ,  the "reference body," sitting in a Riemannian Mn , as we 
did in Section A.d. Let B (O) = <I> (B)  be a deformation of the body. Let B (t )  = <l>r (B) 
be a family of diffeomorphisms of B (O) , 0 :::: t :::: t j , with final state B(t l ) .  The motion 
of the body is described by x = x (X,  t ) . We consider a variation of this motion, 
x = x (X,  t , e ) ,  with variation vector ox = ax (X,  t ,  e)/ae  at e = O. During the 
variation work is done at a rate 0 W by the external body forces b on B and external 
tractions T on a B o  Then the actual motion of the body, x = x (X,  t ) ,  will be assumed 
to satisfy Hamilton's principle in the form 

o J Tdt - J o Udt + J oWdt = 0 (A.26) 

We do not write 0 J U dt because we do not assume that there is a stored energy 
function U: there is only the differential 0 U .  All time integrals run from 0 to tl ' 
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Using conservation o f  mass, cI>*m = M, 

T = 
� r / ax , ax ) m = � r < v, v > M 
2 lB(I ) \ a t  a t  2 1B 
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is the kinetic energy of the body. Here V (X, t ,  8) : =  ax (X , t ,  8) / a t is the velocity field 
in the reference body, a vector field whose value at (X, t, 8)  in B is a vector based at 
the point x (X, t, 8) in B (t ) . 

8W = r 8x,b'm + r 8x, r;dxa lB(I) laB(I) -
= r 8x,B 'M + r 8x/i' lB laB 

where �f ' is the pull-back of the traction form r' to the reference boundary a B .  
We assume that the rate at which energy i s  stored i n  the body during the variation is 

of the form 

8U = 1 8EAB SABVOL (A.27) 

where E is the Lagrange deformation tensor and S is some symmetric tensor. From S 
we may construct the associated (n - I ) -form (as in (A.6» 

and, as in (A. I S) and (A. 1 4) ,  the associated vector-valued forms T and t. Later an we 
shall see that t should be interpreted as the Cauchy stress form. 

We now look at the three integrals involved in (A.26) . The second version of the 
integral for T involves the reference body B ,  which is not changing in time. We have 
varied ( V, V )  many times in our discussions of geodesics and mechanics. Since the 
variation vector 8x vanishes at t = 0 and t = t, we easily get 

8 J Tdt = - J dt 1 8x, [ V
a�

' ] M (A.2S) 

Here the covariant derivative of V along the parameterized curve x = (X, t), whose 
tangent is V, is, from (S .42), 

V Vi a vi . axj a v' . .  k 
-- = - + Vkw'. - = -- + VJw' V a t  a t  Jk a t  a t  jk 

where w represents the Christoffel connection at x (X, t ) .  
Our derivation of  (A.2S) from (A.20) can be  reversed to give, instead of  (A.27), 

8U = r V(8xs ) /\ e = r 8xs/,dx' /\ t' = r cI>� [8xs/,dx' /\ t'] lB(I) lB(I) lB 
r ( 8x' ) d R s = lB 8xs/, 8XR X /\ T 

Now in this integral over the reference body B ,  (8xs ) is a field whose value at X is a 
covariant vector at x . (This is similar to having a vector field defined along the map 
cI>, a generalization of the situation in Section 1 0. 1 . ) We define the covariant derivative 
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(OXs ) /R at X as follows: As  we  move along the XR coordinate curve with tangent 
8/8XR the image curve in B (t )  has tangent (axr / aXR )8/8xr and we define 

( 
axr 

) (OXs ) /R := (ox, ) /r a XR 
(A29) 

Thus 0 U becomes 

(A30) 

where V (ox, ) = oXs/ Rd X R is the covariant differential in the so-called pull-back bundle 
to B . 

We can also think of the covariant differential for a two-point differential form, such 
as YS , in terms of Cartan 's calculus. The exterior covariant differential of ys should be 
of the form 

where QSr = Q�rdXA is a suitable connection form matrix. For the pull-back bundle 
the connection is given in terms of the connection w on Mn by 

QS := cP* (WS ) = cP* (WS dxQ ) = WS __ dXA ( axQ 
) r r ar Qr a XA 

Then, using (A 1 9), (A .30) becomes 

Thus 

OU = 1 oXs T"' - r oXs VTS aB iB 

- J o Udt = J dt i oXsVT"' - J dt 1B oXsT' 

Hamilton 's principle (A.26) then becomes 

or 

Thus, 

- J dt i oXr ( Va�r ) M + J dt i oxsVTs - J dt 1
B 
oXs Ts 

+ J dt {i oxr Br M + 1
B 
OXr:f r } = 0 

J dt is oXr [ { - Va�r + Br } M + VTr] + J dt 1
B 

oxr [:f r - T' ] = 0 

J dt is oXr [ { - V
a
�
r + Br } PB VOL + VTr] 

+ J dt 1
B 
oxr [:r r - T' ] = 0 

(A.3 1 )  

(A32) 

(A.33) 

By taking variations ox that vanish on and near aB we get Cauchy's equation in 
the reference system 

{ vvr } at PB VOL = VTr + Br PB VOL (A. 34) 
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I n  terms of  the second-rank Piola tensor, we  may write this as { a vr j r k } _ rA r PB at + V wjk V - T/A + PB B 
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(A.35) 

where Tft = 1 /.jC [a/aXA (.jC FA) ]  + Q�s T'A and, from (A.3 l ), Q�s = 

wr 
as (oxa / oXA ) .  
We now have J dt  JaB oxr [:f r - F] = O .  Considering variations on  oB then shows 

:f r = Tr on a B  (A.36) 

which are boundary conditions that must be satisfied. This last equation can also be 
written 

rr = t' on aB (t )  

which, finally, allows us to identify t with the Cauchy stress form. 
Equations (A.32) and (A.33) ,  with given W = W (X) ,  are useful for discussing the 

motion of the body. Consider a body in 1R3 with Cartesian coordinates X in the reference 
body B and x in B(t ) .  The goal is to find xr = xr (x, t ) .  One relates the second Piola 
stress tensor S to the Lagrange deformation tensor E by means of a generalized Hooke's 
law, SA = a function of ERS . For example, in a l inearized theory one might write 

SA CARSE u v = u v RS 

for some constant coefficients CC�s . 
Now in Cartesian coordinates 

EAB = � [ (:;:) (:;: ) - OAB ] 
and so SCv and then Ttv = (oxa /oXA )SC v  become complicated functions of ox/oX .  
Finally, (A.34) becomes 

[ o2xr (x t ) ] 
PB (X) o t2

' dX ' /\ dX2 /\ dX3 

= d[T;<BdXA /\ dXB ] + PB (X) Br dX ' /\ dX2 /\ dX3 

a complicated partial differential equation for x = x (X, t ) .  

A.g. Some Typical Computations Using Forms 

The supreme misfortune is when theory outstrips performance. 

Leonardo da Vinci 

The use of differential forms can reduce the complexity of the computations of 
continuum mechanics somewhat, especially when curvilinear coordinates are involved. 
Consider, for example, spherical coordinates in 1R3 . There are 1 8  Christoffel symbols 
to compute in the tensor formulation based on the usual coordinate bases, whereas if 
we use Cartan's method and orthonormal frames there are only 3 connection forms to 
determine ! This is the same philosophy as used in Section 9.5c .  
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This section has been contributed by m y  engineering colleague Hidenori Murakami .  
The first two parts deal with the equilibrium equations and the rate of strain tensor 
respectively, when dealing with spherical coordinates, while the last part discusse� 
stress rates in any coordinates .  

( 1 )  The equilibrium equations in sphericaL coordinates. The metric is 

with respect to the coordinate basis [a / ar, a / ae , a / a¢] . To get an orthonormal basis 
it is  immediately suggested that we define a new basis of I -forms by 

with dual-vector basis 

a = [ :: 1 [ r�e 1 
a'" r sin ed¢ 

e = [er ell e", ] = [� �� _
I
_ � ] ar ' r ae ' r sin e a¢ 

A vector v has two sets of components 

a a a 
v = vr 

ar + VII 
ae + v'" 

a¢ 
= vrer + vliell + v¢e¢ 

where a boldfaced index denotes that the vector component is with respect to an 
orthonormal frame, that is ,  a physical component. Thus 

v¢ = r sin e v'" 

Likewise, forms will have both coordinate and physical components . For example, one 
part of the Cauchy stress form is  

d fli - l fli an so L rli = r l-re . 

t = eli ® tredr /\ de = eli ® ttlidr /\ (rde) 

We would like to stress one point. Most engineering texts deal with the components 
of tensors , and components are almost always the physical ones. We prefer to carry 
out computations with the forms themselves rather than the components, for example, 
tredr /\ de rather than just trll For an electrical example (Problem 5(3)) ,  the magnetic 
field due to a current j in an infinite straight wire is the I -form * �g = 2jd¢ in cylindrical 
coordinates .  The derivation of this, using forms, was a triviality. Furthermore, an ex
pression such as this is immediately available for yielding numbers by integration. The 
I -form has physical significance even if the coordinate component B", = 2j does not. 
The physical component B¢ = 2j / r is much better for indicating the 1 /  r dependence 
of the field. Our philosophy then is initially to deal with the forms for derivations and 
computations, and then translate into physical components if necessary or to compare 
with the textbooks . 

We shall need the matrix of connection I -forms w for our orthonormal basis .  Letting 
a / ax be the Cartesian basis, using x = r sin e cos ¢, y = r sin e sin ¢, and z = r cos e ,  
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a ( ax ) a ( ay ) a ( a z ) a er = ar = ar ax + ar  ay + ar  az 
. a . a a = sm e cos ¢ -a + sm e sin ¢ -a + cos e -x y az 
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ee and e¢ may be expressed in the same manner in terms of the Cartesian frame. We 
then have 

a e = - P ax 
or [er e(l e¢ l  = [ajax ajay ajazl P ,  where P is the orthogonal matrix 

[ sin e cos ¢ 
P = sin e sin ¢ 

cos e 

cos e cos ¢ 
cos e sin ¢ 

- sin e 

-sin ¢ ] 
cos ¢ 

o 

The flat connection r for the Cartesian frame ajax is r = O. Under the change of 
frame e = ajaxp we have the new connection matrix, as in (9.4 1 ) ,  

yielding the skew symmetric matrix 

[ 0 
W =  de 

sin ed¢ 

-de 
o 

cos ed¢ 

- Sin ed¢ ] 
- cos ed¢ 

o 
(A.37) 

We may now write down the equilibrium equations (A. 1 7) .  The Cauchy stress form 
is 

t = er 18) r + ee 18) tt + e¢ 18) t1' 
Each t ,  for i = r, e ,  or ¢ ,  is a 2-form, which can be expressed either in terms of 
physical components 

or, as we prefer, in terms of coordinate components 

Of course 

In any case we have 

4e = rt�e 
4¢ = r sin e4¢ 
fi 2 

. e ti '11¢ = r sm O¢ 

(A.38) 
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[ Vf ]  [df ] [ 0 
Vt& = dt& + de 
vt4> diJ' s in  ed¢ 

-de 
o 

cos ed¢ 

Look, for example, at the equation for V e' . 
v e  = df - de /\ to - sin ed¢ /\ t4> 

= df - de /\ t!!.4>dr /\ d¢ - sin ed¢ /\ ttedr /\ de 

= � - � + � + to - sin e t'" dr /\ de /\ dA. 
[ ( a r  a f  a f ) 1 
ar ae a¢ rt/J rli 'f' 

Since pbr vo13 = pbrr2 sin edr /\ de /\ d¢, we get the first equilibrium equation 

� - � + � + tf - sin e t'" + pbr r2 sin e = 0 [ ( a r  a t:  a f ) 1 
ar  ae a¢ r4> rli 

Putting in (A.38) and dividing by r2 sin e yield the equilibrium equation in physical 
components 

a a a �  r-2- (r2t�",) - ( r sin e) - I - (sin e t�",) + (r sin e)- I � 
ar ae a¢ 

+ r- I (&,,,, - tfo) + pbr = 0 

The equations for vt� and vt1' are handled in the same way. 
Note that these computations are straightforward and can be carried out without 

committing complicated formulas or expressions or methods to memory. 
(2) The rate of deformation tensor in spherical coordinates. Consider the metric 

tensor 

ds2 = gijdxi ® dxj 

in any Riemannian manifold. If v = (8/ 8xi ) Vi is a vector field, then, as mentioned 
in Eq. (A.22), the Lie derivative of the metric, measuring how the flow generated by v 
deforms figures, is given by 

c�v (gijdXi ® dxj ) = 2dij dxi ® dxj 

where 

defines the rate of deformation tensor, which plays an important role when discussing 
the linearized equations of elasticity involving small displacements . We shall now 
compute this tensor in spherical coordinates, not by using covariant derivatives but 
rather by looking directly at the Lie derivative of the metric tensor 

. . a . .  
cS:v (gijdx ' ® dx1 ) = Oe ¢; (gijdx ' ® dx1 ) 
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where ¢e is the flow generated by v. We shall do this by using only the simplest properties 
of the Lie derivative. We have mainly discussed the Lie derivative of vector fields and 
exterior forms, where Cartan 's formula (4.23) played an important role. S ince we are 
dealing now with quadratic (symmetric) forms, (4.23) cannot be used here. However, 
we still have a product rule 

and the basic 

!l:v (f) = v(f) = df (v) 

for any function f . Also 

Thus 

We are now ready to compute .f.v (gijdxi 0 dxj ) in spherical coordinates. Put 

ar = dr al.l = rde and a¢ = r sin ed¢ 

S'v (dr 0 dr + rde 0 rde + r sin ed¢ 0 r sin ed¢) 

(A.39) 

= [ (S'vdr) 0 dr + dr 0 (.\:'vdr) ] + W''vrde) 0 rde + rde 0 (S'vrde) ] (A .40) 

+ [ (5:'vr sin ed¢) 0 r sin e d¢ + r sin ed¢ 0 (S'vr sin ed¢)] 

Look for example at  the term Cf.vrde ) 0 rde in the second bracket. Since 

we have 

+ r2 [ (
a
a� ) dr + (

a
a�

) de +  (��)d¢] 0 de 

[rvr + r2 ( a
a�

) ] de 0 de + r2 [ ( aaV; )  dr 0 de + (��) d¢ 0 de] 
= [� + ( a

a
� ) ] al.l 0 ae + r [ ( a

a
V; ) ar 0 ae ] 

+ (sin e ) - I (��) a¢ 0 al.l 
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Introducing the physical components of v this last expression becomes 

[ vr 1 ( a vO ) l e e a ( vO ) r e - + - - (J 0 (J + r- - (J 0 (J r r ae ar r 

+ _
1 _ ( a vO ) (J¢> 

0 (Je r sin e a¢ 

The term rde 0 C'fvrde ) in the same bracket will yield the same result but with (Ji 0 (Jj 
replaced by (J j 0 (J i .  We see that the total contribution of the second bracket term in 
(A.40) is 

+ -!- ( a vO ) {(J¢> 0 (JII + (Je 0 (J¢> } 
r sm e a¢ 

and the remaining brackets are done similarly. I f  we put 

.'fv (gudxi 0 dxj ) = 2dudxi 0 dxj = 2djjO" i 0 (J j 

one can then read off the physical components dro and so on. 
(3) The Lie derivative of the Cauchy stress form. The Lie derivative of the Cauchy 

stress tensor arises in continuum mechanics in various forms.  In [M, H, p. 1 00] the 
Cauchy stress is considered in its various two-index versions tU , t; , tu , or with the 
volume form attached. In the spirit of this Appendix the natural candidate is the Lie 
derivative of the vector-valued 2-form ei 0 e ldx1 . 

To make comparisons with [M , H] we shall use a general coordinate basis ei = 
a/axi  in JR3 . 

We define the Lie derivative of the vector-valued form ei 0 e with respect to the 
time-dependent vector field v by 

.�vH/at (ej 0 e ) := .�vH/at (ei )  0 e + ei 0 £v+% t (e )  
. [ a e  . 1 

= [v , e; ] 0 t + ei 0 at + £v (t ) 

For the bracket term [v, ei ] 0 ti we have, from Eg . (4 .6), 

Also, 

. . [ a ] . ( a vj ) . 
[v, ei ] 0 t = - [ei ' v] 0 t = - axi ' v 0 t = - ax i ej 0 t 

a t!  . 1 { ( a e k ) . k . .  k } at + ..I:\ (t' )  = 2: -tr- dxJ /\ dx + £v [tjkdxJ /\ dx ] 

Using (A.39) again we get for this expression 

- _J_ dxJ /\ dx + vet )dxJ /\ dx 
1 { ( a t! k ) . k . . k 
2 a t Jk 

+ t - dxr /\ dxk + t - dxJ /\ dxr 
. ( a vj ) . ( a vk ) . } 
J k axr Jk axr 
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The first two terms here yield the convective derivative 

- --....l!... + vr --....l!... dxi /\ dxk 1 [ at!. ( a t! ) ]  
2 a t axr 

which we may write as a t! / a t + vr (a t! / axr ) , and our final result is 

. [ at! ( a t! ) ]  $.'v+a/at (ei 0 n = ei 0 - + vr -at axr 
" [Ii ( avr ) i ( avr ) ( avi ) Ir ] i k + ei 0 L.- 'tk axi + Vir axk - axr I./ik dx /\ dx J <k 

A.h. Concluding Remarks 
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(A41 )  

Since the first printing of this book I have learned that Elie Cartan, in his generalization 
of Einstein 's theory of gravitation, introduced in 1 923 a vector valued 3-form version 
of the stress tensor in space-time M4 and combined this with a vector valued 3-form 
version of the energy momentum tensor pui uk . Cartan 's version of the symmetry of 
these tensors is exactly as in our equation (A. 1 2) .  For these matters and more see the 
translation of Cart an 's papers in the book [Cal , and especially A Trautman's Foreword 
to that book. 

Finally I should remark that L. Brillouin introduces the three index version of the 
stress tensor in ]R3 in his book [Br, p .  28 l f  f ] . In particular, Bril louin writes down the 
symmetry t il = tii in the form I:i t i i K = 0 ;  this follows easily from our version (A I 2) 
since both sides of this equation are n-forms. He abandons the three index version since 
the two index version seems simpler. He made this judgment, I believe, because he, 
like most scientists other than Cartan, dealt with the components t! J of forms, rather 
than with the forms t! J dxJ themselves , and made no use of Cart an's methods . I believe 
that it is a distinct advantage to remove the apparent dependence on unit normals and 
area elements, especially since deformations hardly ever preserve normals or areas of 
surface elements. 

The readers of this book are now invited to make their own judgments. 
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Harmonic Chains and Kirchhoff's 
Circuit Laws 

Chapter 14 deals with harmonic forms on a manifold. This involves analysis in infinite 
dimensional function spaces . In particular, the proof of Hodge's theorem ( 14.28) is far 
too difficult to be presented there, and only brief statements are given. By considering 
finite chain complexes, as was done in section 1 3 .2b, one can prove afinite dimensional 
analogue of Hodge 's theorem using only elementary linear algebra. In the process, we 
shaH consider cohomology, which was only briefly mentioned in section 1 3 .4a. In the 
finite dimensional version, the differential operator d acting on differential forms is 
replaced by a "coboundary" operator 8 acting on "cochains," and the geometry of 8 is 
as appealing as that of the boundary operator a acting on chains ! 

As an application we shall consider the Kirchhoff laws in direct current electric 
circuits, first considered from this viewpoint by Weyl in the 1 920s . This geometric 
approach yields a unifying overview of some of the classical methods of Maxwell and 
Kirchhoff for dealing with circuits. Our present approach owes much to a paper of 
Eckmann [E] , to Bott ' s  remarks in the first part of his expository paper [Bo 2] ,  and 
to the book of Bamberg and Sternberg [B, S ] ,  where many applications to circuits are 
considered. 

We shaH avoid generality, going simply and directly to the ideas of Hodge and 
Kirchhoff. 

B.a. Chain Complexes 

A (real , finite) chain complex C is a collection of real finite dimensional vector spaces 
{ C p } ,  C - I = 0, and boundary linear transformations 

a = ap : Cp ---+ Cp_ 1  

such that a2 = ap_ 1  0 ap = o .  Chapter 1 3  i s  largely devoted to the (infinite dimensional) 
singular chain complex C (M;  R) on a manifold and the associated finite simplicial 
complex on a compact triangulated manifold. We shall illustrate most of the concepts 
with a chain complex on the 2-torus based not on simplexes (as in Fig. 1 3 . 1 6) but rather 

636 
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on another set of basic chains illustrated in Figure B. l .  This chain complex is chosen 
not for its intrinsic value but rather to better illustrate the concepts . 

V i i EI 

-rl 
G 

E3 E3 

1'2 E4 1'2 

J 
G 

1 E I 

Figure 8.1 

The vector space Co is 2-dimensional with basis the vertices v ,  and V2 . C, is 4-
dimensional with basis consisting of the two circles E,  and E4 and the two I -simplexes 
E2 and E3 , each carrying the indicated orientation . C2 has as basis the two oriented 
cylinders F, and F2 . We call these eight basis elements basic chains. 

A general I -chain is a formal sum of the form c = L: a i  Ei , where the ai are real 
numbers . This means that c is a real valued function on the basis { Ei } with values 
C(Ei )  = ai . Similarly for Co and C2 . 

For boundary operators we are led to define 

a = ao (Vi ) = 0 i = 1 ,  2 

a = a , E , = V ,  - V I = 0 , a 1 E2 = V2 - V I , a I E3 = v ,  - V2 , a , E4 = V2 - V2 = 0  

a = a2 FI = E I + E2 - E4 - E2 = EI - E4 , a2 F2 = E4 - EI 

and extend a to the chain groups by linearity, a L: ai Ei = L: ai a Ei • Using the usual 
column representations for the bases, E3 = [0, 0, 1 ,  O]T ,  etc . ,  we then have the matrices 

[0 - 1  ao = 0 a l  = 
0 1 - 1  �] (B . I )  

We may form the homology groups (vector spaces) of the chain complex . Hp (C) := 
ker(ap)/Im(ap+ ' ) ,  which are again cycles modulo boundaries. One sees easily that the 
bases of the homology vector spaces can be written 

yielding the same bases as ( 1 3 .24) for the finite simplicial chains on the torus. 
There is no reason to expect, however, that other decompositions of the torus will 

yield the same homology as the simplicial chains. For example, we could consider a 
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new chain complex on  the torus where C2 has a single basic chain T ,  the torus itself 
while C I = 0 and Co is the I -dimensional space with basic O-chain a single verte� 
v ,  and with all ap = O. The homology groups of this complex would be Ho = { v } ,  
HI = 0, and H2 = { T } ,  which misses all the I -dimensional homology of the torus. We 
have chosen our particular complex to better illustrate our next concept, the cochains. 

B.b. Cochains and Cohomology 

A p-cochain a is a linear functional a : C I' -+ lR on the p-chains. (In the case when C p 
is infinite-dimensional one does not require that f vanish except on a finite number of 
basic chains ! ) .  The p-cochains form a vector space C P : = C I' * ,  the dual space to C p '  of 
the same dimension. Thus chains correspond to vectors while cochains correspond to 
covectors or I -forms.  Cochains are not chains. However, after one has chosen a basis for 
p-chains (the basic chains), each chain is represented by a column c = [c l , . . .  cNV and 
a cochain, with respect to the dual basis, may be represented by a row a = [a I , . . . . aN ] . 
However, for our present purposes, some confusion will be avoided by representing 
cochains also by columns. Then the value of the cochain a on the chain c is the matrix 
product a (c) = aT c. We may also think, in our finite dimensional case, of a chain as a 
function on cochains, using the same formula 

c(a) := a (c) = aT c (B.2) 

In our simple situation there will always be basic chains chosen so there is basically 
no difference between chains and cochains: both are linear functions of the basic chains, 
but just as we frequently want to distinguish between vectors and I -forms, so we shall 
sometimes wish to distinguish between chains and cochairls, especially in the case of 
Kirchhoff 's  laws. 

We define a coboundary operator 81' : C I' * -+ C 1'+ I * to be the usual pull back of 
I -forms under the boundary map ap+ 1 : Cp+ 1 -+ Cp o Ordinarily we would call this 
ap+ 1 *, but as we shall soon see, * is traditionally used for the closely related "adjoint" 
operator. 

is defined by 

(B .3) 

or, briefly 

for each (p + 1) chain C. As usual the matrix for 81' is  the transpose of the matrix for 
a 1'+ I ,  again operating on columns . 

It is immediately apparent that 

82 = 8 0 8 = 0 (B .4) 
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If 0 a P = 0 we say that a is a p-cocycle, and if a = 0{3 1'- ' then a is a coboundary. It 
is clear that every coboundary is a cocycle. 

In the case when C p is the infinite dimensional space of real singular chains on 
a manifold Mn , then an exterior p-form a defines a linear functional by integration 
(called I a in our discussion of de Rham's theorem) 

a (c) = 1 a 
and so defines a cochain. Then Stokes 's theorem da (c) = a (ac) shows that d behaves 
as a coboundary operator. A closed form defines a cocycle and an exact form a 
coboundary. 

The analogue of the de Rham group, �RP = closed p-forms modulo exact p-forms, 
is called the pth (real) cohomology group for the chain complex 

(B.5)  

Consider the chain complex on T2 pictured in Figure B . l .  Consider the basic chains 
also as cochains; for example, I:� , is the l -cochain whose value on the chain E, is 1 and 
which vanishes on E2 , E3 and E4 . Then o�� , (F, )  = (;� , (a F, )  = i:� , (E , + E2 - E4 - E2) = 
1 ,  while similarly M" (F2) = - 1 .  Thus we can visualize oi:� , as the 2-chain F, - F2 . 

M� ,  = F, - F2 
In words, to compute M� ,  as a chain, we take the formal combination �r ar Fr of 
exactly those basic 2-chains { Fr } whose boundaries meet E, , a r chosen so that a (ar Fr ) 
contains E, with coefficient 1 .  Note that 

since F, is the only basic 2-chain adjacent to E2 , but a F, = E, - E4 does not contain 
E2 . 

These remarks about o&. ,  and 0&.2 also follow immediately from the matrices in (B . 1 ) ,  
putting 0 ,  = aT . 

Observe that 0&.4 = F2 - F" and so 

(B .6) 

The I -chain E, + E4 is not only a cycle, it is a cocycle. We shall see in the next section 
that this implies that E, + E4 cannot bound. 

B.c. Transpose and Adjoint 

We shall continue to consider only finite dimensional chain complexes . We have identi
fied chains and cochains by the choice of a basis (the "basic" chains). Another method 
we have used to identify vectors and covectors is to introduce a metric (scalar product). 
We continue to represent cochains by column matrices . 

We may introduce an arbitrary (positive definite) scalar product ( , )  in each of 
the chain spaces C p '  Given ( , )  and given a choice of basic chains in Cp we may 
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then introduce, as usual, the "metric tensor" g (p) ij = ( Ei ' Ej ) ,  yielding (c, c') == 
ci gij c'j = cTgc' ,  and its inverse g (p) - I  with entries g (p) ij . This inverse yields a 
metric in the dual space of cochains, (ex , fJ ) = ai g ij b j = aT g - I  b . (The simplest case 
to keep in mind is when we choose basic chains and demand that they be declared 
orthonormal, i .e . ,  when each matrix g is the identity. Thi s  is what we effectively did in 
our previous section when considering the chain complex on the torus ;  ( Ej , Ed was 
the identity matrix.) 

To the p-cochain with entries (ai ) we may associate the p chain with entries (aj ) , 
aj :=  g (p)jkak ' Thus g (p) - I  : CP -+ Cp "raises the index on a cochain" making it a 
chain, while g (p) : C p -+ C p "lowers the index on a chain" making it a cochain. We 
shall now deal mainly with cochains .  If a chain c appears in a scalar product we shall 
assume that we have converted c to a cochain. 

Let A : V -+ W be a linear map between vector spaces . The transpose A T is  simply 
the pullback operator that operates on covectors in W* . 

A T : W* -+ V * 

If we were writing covectors as row matrices, AT would be the same matrix as as A 
but operating to the left on the rows, but since our covectors are columns we must now 
interchange the rows and columns of A ,  i .e . ,  we write w R AR

i = A R i WR = (AT ) / WR, 
and so 

(Recall that in a matrix, the left-most index always designates the row.) 
Suppose now that V and W are inner product vector spaces, with metrics gv = 

{ g ( V ) ij } and gw = { g ( W ) Rs l respectively. Then the adjoint 

A* : W -+ V 

of A is classically defined by (A (v ) , w )  w = ( v ,  A* (w» )  v .  A *  is constructed as fol
lows. To compute A* (w) we take the covector gw (w) corresponding to w ,  pull this 
back to V* via the transpose AT gw (w) ,  and then take the vector in V corresponding 
to this covector, gv - I A T gw (w) .  Thus A* = gv - I A T gw . In components (A*) j R = 
g ( V)jk (A T h Sg ( WhR = g ( V)jk ASkg ( Wh R '  In summary 

A* = gv - I ATgw 

A*  j R = A Rj : = g ( W ) Rs As
k g ( V )kj (B.7) 

Note that in this formulation A * would reduce simply to the transpose of A if bases in 
V and W were chosen to be orthonormal . 

The coboundary operator and matrix have been defined in (B.3) ,  8 P = ap+ 1 T .  The 
adjoint 8* satisfies (8 (ex ) , fJ ) = (ex ,  8 * (fJ » )  . Then 

8* 0 8* = 0 

Consider 8 p : C p -+ C p+ I .  The metric in C p = C P * is the inverse g (p) - I of the metric 
g (p) in Cp o Hence, from (B.7) ,  8*  = g (p) 8 T g (p + 1 ) - 1 = g (p) ap+1  g (p + 1 ) .  Since 
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(8p ) *  : Cp+ 1  -+ CP , we prefer to call this operator 8* p+ l .  

(B .8)  

Thus in any bases 8 is a T , and in orthonormal bases 8 * = a .  

B.d. Laplacians and Harmonic Cochains 

We now have two operators on cochains 

and 

If a cochain a satisfies 8*a = 0 we shall , with abuse of language, call a a cycle. 
Similarly, if a = 8* {3, we say a is a boundary. We define the laplacian .6. : CP -+ CP 
by 

(B .9) 

or briefly 

.6. = 8*8 + 8 8 * 

Note that 

.6. = (8 + 8*) 2 and .6. is self adjoint, .6.* = .6. .  

A cochain a i s  called harmonic iff .6. a  = O .  Certainly a i s  harmonic i f  8*a= 0 = 8a . 
Also, .6.a = 0 implies 0 = ( (8*8  + 8 8 * )a ,  a )  = (8a,  8a)  + (8 *a ,  8 *a ) ,  and since a metric 
is positive definite we conclude that 8*a = 0 = 8a .  

A cochain is harmonic if and only if it is a cycle and a cocycle . (B . l O) 

Let :1C be the harmonic cochains. If y is orthogonal to all boundaries, 0 = 
( y ,  8*a)  = ( 8 y ,  a ) ,  then y i s  a cocycle. Likewise, if y is orthogonal to all coboundaries, 
then y i s  a cycle. Thus if y is orthogonal to the subspace spanned by the sum of the 
boundaries and the coboundaries, then y is harmonic. Also, any harmonic cochain is 
clearly orthogonal to the boundaries and coboundaries. Thus the orthogonal comple
ment of the subspace 8Cp- l EB 8 *C  p+ l is :1(P . A non-zero harmonic cochain is never a 
boundary nor a coboundary ! For example, the cycle El  + E4 of section B .b cannot be a 
boundary. 

In our finite dimensional CP , we then have the orthogonal ("Hodge") decomposition 
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cocycles 

cycles 

r--------� 1)CfJ- l 

Figure B.2 

Thus any cochain fJ is of the form 

(B . l l ) 

The three cochains on the right are unique (though a and y need not be) . 
We can actually say more. The self-adjoint operator £:,. = 8*8  + 8 8* has :J{' as kernel 

and clearly sends al l of CP into the subspace :1(p1- = 8Cp- l EB 8* Cp+ l . Thus £:,. : :1Cp1- � 
:l(p1- is I : I ,  and, since :J{p1- is finite dimensional, onto, and so £:,. : C P -+ :1Cp1- is onto. 
Hence any element of :}Cp1- is of the form £:"a for some a .  

Given any fJ E :1(1- there is an a E C such that £:"a = fJ 
and a is unique up to the addition of a harmonic cochain. (B . 1 2) 

"Poisson's equation" £:"a = fJ has a solution iff fJ E ;](1- . Now let fJ E CP be any 
p-cochain and let H (fJ) be the orthogonal projection of fJ into :1L Then fJ -H (fJ) is in 
:J{P.L and 

fJ - H (fJ) = £:"a = 88*a + 8*8a (B . 1 3) 

refines (B . I I ) .  
In  particular, if fJ is a cocycle, then, since the cycles are orthogonal to the co bound

aries, we have the unique decomposition 

Thus, 

8fJ = 0 ::::} fJ = 88*a + H (fJ) 

In the cohomology class of a co cycle fJ there 
is a unique harmonic representative. The 
dimension of:XP is dim . H p . 

(B. 1 4) 

(B . I S) 
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There is a similar remark for cochains with 8* z = O. Since we may always introduce a 
euclidean metric in the space of chains C P ' we can say 

where ah = 0 = 8h . 

In the homology class of a cycle z there 
is a unique harmonic representative h, i. e. , 
a chain that is both a cycle and a cocycle, 
and dim. H p = dim. :KP = dim. H P • 

(B . 16) 

(B . I 7) 

Three concluding remarks for this section. First, once we write down the matrices 
for a and 8 = a T , the harmonic chains ,  the nullspace of �, can be exhibited simply by 
linear algebra, e .g . ,  Gaussian elimination. 

Second, it is clear from the orthogonal decomposition (B . 1 6), that in the homology 
class of a cycle z, the harmonic representative has the smallest norm, I l h l l S I l z l l .  For 
our toral example, E1 and (E 1 + E4)/2 are in the same homology class, since E4 � E1 
and (E 1 + E4)/2 is harmonic from (B .6). While it seems perhaps unlikely that E1 + E4 
is "smaller" than 2E 1 ,  recall that our basic chains are there declared orthonormal, and 
so 1 1 2E 1 I 1 = 2, while I I E 1 + E4 1 1 1 = ../2. 

Finally, we write down the explicit expression for the laplacian of a O-cochain <IF 
This i s  especially simple since 8 *¢o = O. From (B.9) and (B .3 )  �¢ = 8 *8¢ = 8 1 *8o¢, 
i . e . ,  

(B . I S) 

B.e. Kirchhoff's Circuit Laws 

Consider a very simple electric circuit problem. We have wire I -simplexes forming 
a connected I -dimensional chain complex with nodes (vertices) { Vj }  and branches 
(edges) {eA } , each edge endowed with an orientation. The vertices and edges are the 
basic 0- and I -chains. The circuit, at first, will be assumed purely resistive, i .e . ,  each 
edge eA carries a resistance RA > 0, but there are no coils or batteries or capacitors . 
We assume that there is an 

external source of current i (v j ) = i j at each vertex v j 

which may be positive (coming in), negative (leaving), or zero. In Figure B . 3  we have 
indicated the three non-zero external currents i2 , i4, and i7 • The problem is to determine 
the current IA := I (eA ) in each edge after a steady state is achieved. Current is thus a 
real valued function of the oriented edges; it defines either a I -chain or cochain, denoted 
by I .  
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Figure B.3 

In Figure B .3 ,  Co has basis {v " . . .  , V7 } ,  C ,  has basis { e " . . .  e9 } ' 

", " \ \ \ \ \ 
i( l') 

Figure B.4 
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/ .... / 
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Kirchhoff's current law KCL states that at any node v ,  the sum of all the currents 
flowing into v from the wire edges and the external source must equal that leaving. But 
(see Figure B .4) the edges coming into v form the coboundary of the vertex, and so 
0 =  I(8 v) + i (v) = aI(v)  + i (v ) . This suggests that the wire currents form a I -chain 
(since we are taking a boundary) and 

aI = -i 

The external currents i form a O-chain .  We write I (e A )  = I A and i (v j ) = i J • 

Kirchhoff's voltage law involves the electric field in each wire. Let 

�' (e) = 1 �, ' = 1 E · dx 

(KCL) 

be the integral of the electric field over the basic I -chain e. This is the voltage drop 
along branch e. Since we are dealing with steady state, i .e . ,  static fields , we know that 
the electric field I -form t.� ' is the differential of the electrostatic potential ¢ ;  see (7 .26). 
Hence &(e) = ¢ (ae) = 8¢ (e) . This suggests that we should consider voltage as a 
I -cochain. We have then Kirchhoff's voltage law 

(KVL) 

and the electrostatic potential at a vertex defines a O-cochain ¢ .  Write �'(eA ) = &A and 
¢ ( v  j )  = ¢ j .  ¢ is defined only up to an additive constant. 

Finally, Ohm's law says that the voltage drop across the resistor R is always RI. 
Since we are assuming at first that only resistances are present in each branch, we may 
say l;�A = RA I A . (When batteries are present this will be amended; see (B .22) .  Since &. 
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is covariant and I is contravariant, we interpret the resistances as determining a metric 
in C] , f, A = g ( 1 )  AB I B . Thus the metric tensor in the I -chains is diagonal 

g ( 1 ) AB = RAoAB 
t� = g ( 1 ) I 

(B . 1 9) 

We put the identity metric tensor in Co ; thus the vertices { v j } are declared orthonormal 
and may be considered either as chains or as cochains. 

Kirchhoff's  laws then yield, for the electric potential O-cochain ¢ 

From (B .9) we have 

(B .20) 

and from (B. 1 9) 

/1¢ = iH = -i 

(In circuit theory, 0 is called the incidence matrix and /1 the admittance. )  If we can 
solve this Poisson equation for ¢, then we will know �� in each eA . Knowing this and 
the resistances, we get the current in each branch. 

Is there always a solution? From (B . 1 2) we know that a necessary and sufficient 
condition is that the O-cochain i of external currents be a boundary, i = 0* I (a 1 -
cochain f3 )  = oc, where c is the I -chain version of f3 .  Let c = L cAeA . Then o c = 
L cA aeA = L cA (VA + - VA - ) ,  where VA ± are the vertices of eA ' Thus the sum of the 
coefficients of all the vertices in the boundary of a I -chain vanishes . Conversely, in a 
chain complex that is connected (such as our circuit) , meaning that any two vertices 
can be connected by a curve made up of edges, it is not hard to see that any col lection 
of vertices with coefficients whose sum vanishes is indeed a boundary. We conclude 

There exists a solution to (B. 20) iff the total 
external current entering the circuit equals 
the total external current leaving, Lk i (vd = 0 (B .2 I )  

which i s  of course what i s  expected. The solution ¢ i s  unique up to an additive harmonic 
O-cochain. We claim that a harmonic O-cochain f has the same value on each vertex in 
our connected circuit. For if P and Q are any vertices, let c be a I -chain with boundary 
Q-P . Then f( Q)-f(P )  = f(oc) = of (c) = 0, since f is  a cocycle. Hence, as to be 
expected, the potential ¢ is  unique up to an additive constant. 

Just to illustrate the computations, consider a pair of resistances in parallel, Figure 
B .S .  We know that we need to have i2 = -i l :=  - io . Put V I = [ 1 O] T , V2 = [O I ] T ,  
e l = [ 1  Of , e2 = [0 I f ,  ¢ = [¢ I ¢2f and i = [io - iO ] T . The matrix g ( 1 )  i s  the 2 x 2 
diagonal matrix with entries R I and R2 . We have ae l = V2 - V I  = ae2 = [- l l f .  
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Figure 8.5 

Then D.</> = -i becomes, from (B . I S) , 

D.</> = al g ( 1 ) - l a/ </> = -i 

The laplacian matrix is 

[- 11 -
11] [ I /

o
R I 0 ] [- 1 1] 

[ 
I - 1 ] 

I IR2 - 1 1 = ( l IRI + I IR2) - I 1 
Then D. [</> [ </>2] T = [- io ioV gives immediately 

Since </>2 - </>1 is  the voltage in both branches ,  this gives the familiar result that the 
equivalent resistance for the two resistances in parallel is ( 1 1 R I + I I R2) - I . 

Some words about circuits with batteries but no external currents. First a simpli
fication of notation . Since only the I -chains involve a non-standard metric (based on 
the resi stances), we shall write g rather than g ( 1 ) .  Let B be the I -cochain, with BA the 
voltage of the battery in edge eA , BA being positive if the direction from the negative to 
the positive terminal yields the given orientation of eA ' Consider a closed loop formed 
by a battery of voltage B and a resistor R across the poles of the battery. By Ohm's 
law the integral of .;� I over the resistor is RI = B . But the integral of � I = d</> over the 
entire loop must vanish, and so the integral of .;; 1 over the battery part of the loop must 
be - B. Thus when a battery is present in a branch e A we have, as expected, the voltage 
drop ��A = RA [A - BA . Kirchhoff's laws are then 

aI = O  and & = gI - B = 8</> 

and then D.</> = a l g - I t� = aI - ag- IB = -a [g- I B] 

D.</> = -a [g- IB] 

which always has a solution, since the boundaries are in J(1- . 
Note also that 

(B .22) 

(B .23) 

which is Tellegen's theorem, saying that the total power loss [2 R in the resistors is 
equal to the power B [ supplied by the batteries. 

Further, we note the following. Look at (B .22) , written as B = gI -8</>. Since I is a 
I -cycle, aI = 0, its cochain version gI satisfies 8* [gI] = O. B is thus the sum of a cycle 
and a coboundary and the two summands gl and 8</> are orthogonal. Thus, in Figure B .2, 
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the cochain version of I is the orthogonal projection n B of B into the subspace of 
cycles, IA = nA 

c Bc . Thus if we choose an orthonormal basis for the cycles, the 
"meshes," then given any battery cochain B we can easily project it orthogonally into 
the cycle space, and the resulting cochain is the current. (For the chain 1 we may write 
IA = nAC Bc .) This is a special case of Weyl 's method of orthogonal projection. 

The orthogonal projection operator n is self-adjoint and depends only on the metric, 
i .e. ,  the resi stances in the given branches. In terms of the basic l -chains {eA } we 
have I A = nAC Be , where 'nAC = nCA . Consider a circuit where there is only 
one battery present, of voltage V, in branch e l . Then the current present in branch e2 
is 12 = n2 1 Bl = n2 1 V . Remove this battery, put it in branch e2 , and look at the 
new current in branch e l ; I' l = n l 2 V = 12 ! This surprising result is a special case of 
Green's Reciprocity . 

Finally, we consider the modifications necessary when there are constant current 
sources KA present in parallel with the resistors in each branch eA ' 

Figure B.6 

We do not consider the current source K A as forming a new branch; {K A } forms rather 
a new I -chain :1\. 

:lC(eA ) = :'j(A := KA 
If f A is the current in branch eA , i .e . ,  f A is the current entering eA at one node of aeA 
and leaving at the other node, then the current through the resistor R A is  now 1 A - K A . 
The voltage drop along the resistor is then, by Ohm's law, RAUA - KA ) , and thus 
(.�A = RA U A - KA ) - BA . Kirchhoff's laws become, since the total current entering a 
node is still 0, 

and (� = 8¢ = g (1 - :1l) - B (B.24) 

Poisson's  equation becomes 

(B .25) 

Orthogonal projection onto cycles now says 

IA = II AC (Bc + :1(c ) (B .26) 



A P P E N D I X  C 

Symmetries, Quarks, and Meson 
Masses 

At the end of Section 20.3b we spoke very briefly about "colored" quarks and the 
resulting Yang-Mills field with gauge group SU(3) .  This was not, however, the first 
appearance of quarks. They appeared in the early 1 960s in the form of "flavored" quarks, 
independently in the work of Gell-Mann and Zweig. Their introduction changed the 
whole course of particle physics, and we could not pass up the opportunity to present 
one of the most striking applications to meson physics, the relations among pion, 
kaon, and eta masses. This application involves only global symmetries, rather than the 
Yang-Mills feature of the colored quarks . 

For expositions of particle physics for "the educated general reader" see, e .g . ,  the 
little books [ ' t  Hooft] and [Nam] .  

C.a. Flavored Quarks 

The description to follow will be brief and very sketchy ; the main goal is to describe the 
almost magical physical interpretations physicists gave to the matrices that appear. My 
guide for much of this material is the book [L-S ,K] , with minor changes being made 
to harmonize more with the mathematical machinery developed earlier in the present 
book. As to mass formulas, while there are more refined, technical treatments (see, 
e .g . ,  [We, Chap. 1 9] )  applying (sometimes with adjustments required) to more mesons 
and to "baryons," the presentation given in Section C.f for the "0- meson octet" seems 
quite direct. 

Flavored quarks generalize the notion of the Heisenberg nucleon of Section 20.3a 
The symmetry group there, SU(2), is called isotopic spin, or briefly isospin. Isospin 
refers to the "internal" symmetry group SU(2) and is not to be confused with the usual 
quantum mechanical spin [Su, Section 4. 1 ] ,  which refers to the space symmetry group 
SO(3) ,  but the terminology mimics that of ordinary spin. (Recall that SU(2) is the 
twofold cover of SO(3) . )  Thus since isospin for the nucleon has two states p and n, we 
say that these nucleons have isotopic spin I = 1 /2. In general (number of states) = 

21 + 1 .  The diagonal normalized third Pauli matrix h = 0 /2)0"3 is ,  except for a factor 

648 



F L A  V O R E D  Q U A R K S  649 

of R, an infinitesimal generator of SU(2) and is called the isotopic spin operator 
h p, being an eigenvector of h with eigenvalue 1 /2, is said to be the nucleon state of 
isotopic spin 1 /2, while the neutron is the state of isotopic spin - 1 /2. 

In the quark model the nucleon is no longer considered basic ; it was proposed that 
nucleons and many other particles are composed of quarks. For our purposes, we need 
only consider particles at a given space-time point. (We shall not be considering kine
matics nor quantum dynamics.) Associate with thi s  point a complex three dimensional 
vector space Q, a copy of ((:3 , with a given orthonormal basis and the usual hermitian 
metric ( z ,  w) = ZT w. A quark is represented by a unit vector 

in Q. 
Ifm = (m 1 ,  m2, m3 ) T is  any vector in Q, then it defines a (complex) linear functional 

/L on Q by /L (w) = (m, w) = 'L mj wj . (We may use subscripts throughout since our 
bases are orthonormal . )  Thus the covariant version of the vector m = (m 1 ,  m2 , m3l is 
the covector given by the row matrix /L = (m 1 ,  m2 , m3 ) .  

I f  q = ( u  d S ) T  i s  a quark, then its covector q *  = ( Ii  d :5) i s  assumed to  describe the 
anti quark of q ,  written here as q * since its matrix is the hermitian adjoint of q .  For 
formal "bookkeeping" purposes we will concentrate not on the individual quarks but 
on bases or frames of three quarks or antiquarks . 

Let u, d, and s be the basis vectors of the given Q. These three quarks are called 
the up, down, and strange flavored quarks associated with this basis .  A second basis 
related to this one by an SU(3) change of basis will result in a new set of u, d, and s 
flavored quarks. These flavors are not to be confused with the colored quarks of Section 
20.3b. 

A quark frame q of orthonormal vectors in Q, 

q = [u, d ,  s1 

is written as in geometry (p. 250) as a formal row matrix (formal because the entries 
are quarks rather than numbers . )  

Since the quarks u, d, and s are orthonormal, their three antiquarks u* , d* , and s* 
form an orthonormal basis for the dual space Q* and we can consider the formal dual 
frame of antiquarks, 

It was assumed that the part of the Lagrangian dealing with the strong force is 
invariant under an SU(3) change of frame in Q. If, e.g. ,  one observer believes the quark 
in question to be a down quark d, another could see it as an s. Thus, just as with the 
Heisenberg nucleon, u, d, and s are to be considered as three states of the same particle, 
the flavored quark. Invariance of the Lagrangian under the eight-dimensional group 
SU(3) led to Gell-Mann's denomination of this theory as the "eight-fold way," using a 
phrase from Buddhist thought. 
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To view a nucleon a s  composed o f  quarks, quarks are assumed to have fractional 
electric charges 

Q(u) = 2/3 , Q(d) = Q(s) = - 1 /3 (C. I ) 

(Charge thus violates SU(3) symmetry, but recall that SU(3) symmetry is assumed only 
for the strong force, not the electromagnetic . )  It turns out, e .g . ,  that the proton p is made 
up of three quarks, written p = duu, whose total charge is - 1 /3 + 2/3 + 2/3 = 1 . 
The neutron n = ddu has charge O. The electric charge of an antiquark is always the 
negative of that of the quark . The antiproton p* = d*u*u* has charge - I .  

C.h. Interactions of Quarks and Antiquarks 

A composite particle formed from a quark q and it its antiquark q* is described by 
physicists by considering the tensor product q* @ q in Q* 0 Q. 

Recall that if e is a basis for a vector space Q and if () is the dual basis for Q*, 
then for a vector v = ej vj and covector a = akcrk we have a @ v = akcrk @ ej vj = 
ak (crk @ e j ) vj and Q* @ Q thus has basis elements cr' @ e j . Each basis element crk @ e j 
defines a linear transformation sending Q into itself, (crk 0 ej ) (v) = cr' (v)e j = vkej ,  
but we shall largely ignore this aspect. The formal matrix cr @ e with entries (cr 0 e)k j = 
crk 0 ej forms a frame for Q* @ Q. 
We shall he dealing entirely with the formal aspects of all these matrices. q* is merely 

a formal column matrix, q is a row matrix, q* @ q is a 3 x 3 matrix, and SU(3) acts 
by g(q* ) = gq* , and g(q) = qg- I . We are interested in antiquark-quark interactions 
forming composite particles . The appropriate frame is 

[u* ] [ u*u u*d 
q* @ q = d* @ [u d s 1 = d*u d*d 

s* s*u s*d 

u*S ] 
d*s 
s*s 

In the 3 x 3 matrix on the right we have omitted the tensor product sign in each entry; 
e .g . ,  u*u is really u* @ u: We are not interested in the fact that, e .g . ,  the entries in the 
frame are themselves matrices Note also that in the present case, the tensor product 
matrix is the same as the usual matrix product of the column matrix q* and the row 
matrix q. This would not be the case for the product in the reverse order in which case 
the tensor product frame matrix would again be 3 x 3 while the matrix product would 
be a 1 x 1 matrix .  

The three entries u, d, and s of the row matrix q are identified as the three states 
of the quark, while the entries in q* are the states of the antiquark. What particle or 
particles do the nine entries of the frame q* @ q represent? 

Any quark q can be sent into any other quark q' by some g E S U (3) . This is  why 
we consider the different flavors up, down, and strange as being different states of the 
same particle. The group G = SU (3) acts on the tensor product frame by q*' @ q' = 
(gq* ) @ (qg - I ) = g (q* 0 q) g - I , i .e . ,  by the adjoint action Ad( G) as it does on a linear 
transformation. 
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If any two antiquark-quark frame matrices A and B were necessarily related by a 
g E SU (3) ,  B = g Ag- l ,  then we could conclude that the nine entries in q* ® q are 
simply the nine states of a single particle. But this is not the case !  Clearly the scalar 
matrices C = AI ,  Cij = A 8ij , form a one-dimensional complex vector subspace of the 
nine-dimensional ([:9 (= space of complex 3 x 3 matrices) that is left fixed under the 
G action, gCg- 1 = C.  We conclude that the states of at least two particles appear in 
the frame q* ® q.  Since Ad (G) acts by isometries on ([:9, the orthogonal complement 
of the scalar matrices must also be invariant, i .e . ,  sent into itself by Ad(G) .  If D is 
orthogonal to I ,  then 0 = Lij oij Dij = tr I D, and so the orthogonal complement of 
the scalar matrices is the complex eight-dimensional subspace consisting of trace-free 
3 x 3 matrices . (Clearly tr A = 0 iff tr gAg- 1 = 0.) We say that the adjoint action or 
representation of S U (3) on the space of 3 x 3 complex matrices is reducible, breaking 
up into its action on trace-free matrices and its trivial (i .e . ,  identity) action on scalar 
matrices. 

We should remark that if we had been looking, e.g., at antiquark-antiquark in
teractions ,  the frame 0" ® 0" would again be a 3 x 3 matrix with ij entry O"i ® 0") 
and would transform under G E �-S (3) to GriO"i ® G.,jO") = GriO"i ® O") GJ,, ; i . e . ,  
0" ® 0" --+ GO" ® O"GT = GO" ® O"G , which does not preserve traces (because of the 
complex conjugation) . S ince A --+ G AGT preserves symmetry and antisymmetry, this 
is the natural decomposition to use in this case. 

We now decompose every 3 x 3 matrix A into its trace-free and scalar parts , 

A = [A - ( 1 /3) trA I ] + ( 1 /3) trA I .  

I n  particular, for the matrix q* ® q we  have the scalar part 

( 1 /3)  tr q* ® q I = ( 1 /3) (u*u + d*d + s*s) I 

and then the trace-free part becomes 

X : =  q* ® q - ( 1 /3)  tr (q* ® q) / 

1 
- (2u*u - d*d - s*s) 
3 

d*u 

u*d 
1 
- (-u*u + 2d*d - s*s) 
3 

u*S 

d*s 

s*u s*d 
I 
- (-u*u - d*d + 2s*s) 
3 

(C.2) 

(C.3) 

S ince the scalar matrix (C.2) never mixes with the matrix X under SU(3) we can use it 
to define a new particle, the eta prime, 

'11' := ( l /J3) (u*u + d*d + s*s) (C.4) 

Why does the factor 1 /.)3 appear? The quark flavors u, d, and S are unit vectors in 
Q, and likewise for the antiquarks in Q* . Thus u*u, etc . are unit vectors in Q* ® Q, and 
the three vectors in (C .4) are orthonormal. The factor 1 /.)3 makes the r/ a unit vector. 
S ince quarks and antiquarks have opposite charges,  the 1]' is a neutral particle. [ ' tHooft, 



652 S Y M M E T R I E S ,  Q U A R K S ,  A N D  M E S O N  M A S S E S  

p. 46] interprets the sum in (CA) a s  implying that the r /  is "continuously changing/rom 
u*u to d*d to s*s". 

The nine entries of the matrix X of (C.3) can represent at most eight particles since 
the trace is O. To understand the action of G = SU (3) on X we notice the following. G 
is acting by the adjoint action on the space of traceless matrices . Now SU (3) acts by the 
adjoint action on its Lie algebra <I,u(3) ,  which is the space of skew hermitian matrices 
of trace O. This is a real eight-dimensional vector space ( i .e . ,  the scalars must be real 
numbers) ;  if B is skew hermitian then (a + ib)B is the sum of a hermitian matrix ibB 
and a skew hermitian matrix a B. Since every matrix C is the sum of a hermitian plus a 
skew hermitian , C = ( l /2) (C + C*) + ( l /2) (C - C* ) ,  we see that if we allow complex 
scalars in the real Lie algebra vector space 6-u(3) , then this complexified vector space 
is just the space of all traceless 3 x 3 matrices, and the action of S U (3) on this space is 
again the adjoint action. Thus we may consider our particle matrix X as being in this 
complexification 0/ �u(3) .  We shall now look at this in more detai l .  

C.c. The Lie Algebra of SU(3) 

Physicists prefer hermitian to skew hermitian matrices, since observables in quantum 
mechanics are represented by hermitian operators . Note also that our matrix X is for
mally hermitian. Gell-Mann chose for a basis of � := .J=T �u(3) ,  i .e . ,  the traceless 
hermitian matrices 

[! 

1 

�l 
A2 � [! 

-i 

�l [� 

0 

�l 
A J = 0 0 A4 = 0 

0 0 0 

[� 

0 

�;l 
A6 � [

� 

0 

!l [� 

0 

�;l 
A5 = 0 0 A7 = 0 

0 

A, � [� 
0 

�l 
1 
[� 

0 

�2l 
- 1  A8 = -
0 v'3 0 

These matrices are orthonormal with the scalar product (A , B )  : =  ( 1 /2)tr AB* = 

( 1 /2) tr A B in 3" Note that Ak , k = 1 ,  2, 3 ,  are just the Pauli matrices with zeros added in 
the third rows and columns, and when exponentiated these { i Ak } generate the subgroup 
S U (2) C S U (3) that leaves the third axis of ((:3 fixed. 

Let us expand X = L J :'Oj :'08 X j A j ,  with all X j real . The only A with entry in the 
(3,3) spot is A8 , and thus - ( 1 /3 ) (u*u + d*d - 2s*s) = (X8A8hJ = X8 (-2/v'3) and 
so X8 = ( 1 /2v'3) (u*u + d*d - 2s*s) = 1]/�, where the particle 1] is defined by the 
unit vector 

1] := ( 1 /J6) (u*u + d*d - 2s*s) (C.S) 
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Then 
TJ 0 0 

v'6 
X8 A8 = 0 TJ 0 

v'6 
0 0 

-2TJ 
v'6 

Then from (C .3) we get for X 
1 * * TJ - (u u - d  d) + -
2 v'6 

d*u 
S*u 

u*d 
- � (u*u - d*d) + -.!L 

2 v'6 
s*d 

u*S 
d*s 

2TJ 
v'6 

Finally, we define three sets of particles (with explanation to follow) : 

and then 

{1r0 = ( l /.J2) (u*u - d*d) 1r- = u*d 1r+ = d*u} 
{K- = u*s KO = d*s} (C.6) 

{K+ = s*u KO = s*d} 

(C.7) 

C.d. Pions, Kaons, and Etas 

The seven particles listed in (C.6) and the eta in (C.5) have physical attributes that led 
to their identification in the particle world .  First there is electric charge. For example 
1r- = u*d has, from the quark charges (C. l )  the charge -2/3 - 1 /3 = - 1 . This is  
the reason for the minus sign attached to the 1r symbol. Neutral charge is denoted by 
the exponent 0, as for example in 1r0 . This explains the exponents in (C .6). Note that, 
e .g . ,  1r- is the antiparticle of 1r+ while 1r0 is its own antiparticle. Physicists usually 
denote antiparticles by a complex conjugation overbar. KO is the antiparticle of KO and 
is distinct from KO, as we shall soon see. These eight particles are among those called 
mesons, because of their masses being intermediate between those of electrons and 
protons. 

The diagonal matrices diag{ eie ,  ei ¢ ,  e-i (tI+r/l) ) form a two-dimensional, maximal 
commutative, connected subgroup of the eight-dimensional SU(3) ,  i .e . ,  a maximal 
torus T2 .  (The maximal torus of U (n) was discussed in Theorem ( 1 5 .4) . )  Note that the 
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two generators A3 and A8 generate, by  exponentiation, two I -parameter subgroups of 
this torus .  Thus A3 and A8 form an orthonormal, basis for the Lie algebra of T2,  the tan
gent space �of T2 at the identity. (The Lie algebra of the maximal torus of any Lie group 
G is called the Cartan subaJgebra Pvof 3") 

We now change slightly the normalization of four of the Gell-Mann matrices 

h := ( l /2)Ab k = 1 , 2 , 3 

and (C.8) 
Y := ( l /J3)A8 = diag { I /3 , 1 /3 , - 2/3 } 

The I s  generate the SU(2) subgroup of SU(3) , call it SU (2) x 1 ,  

[S�(2) �] 
called the isospin subgroup, and Y is the generator of the I -parameter subgroup of 
SU(3) called hypercharge. 

Since the I s  and Y are hermitian they represent "observables" ; since further h and Y 
commute they are "compatible" [Su, p. 57] ,  and so in a sense they can both be measured 
simultaneously. 

The flavored quarks are eigenvectors of these operators : 

h (u) = h ( l  0 O) T = ( I /2)u 13 (d) = (- I /2)d 

Likewise 

Y (u) = 0 /3)u Y (d) = 0 /3)d Y es) = (- 2/3)s 

Furthermore, if q = (u d S ) T is a quark, then an infinitesimal generator A of SU(3), 
say A = 13 or A = Y ,  is basically a differentiation operator, i .e . ,  

or briefly 

i A (q ) := �eiAI (q) I = 
�eiAlq I = i Aq dt 1=0 dt 1=0 

A (q )  = � (eIAq )  I = Aq dt 1=0 

while if q* = (Li d s) is  an antiquark 

A (q * ) = � (q*e-IA ) I = -q* A dt 1=0 

Thus h (u* ) = - (1 0 0) h = ( - 1 /2)u* . In general, if the quark q is  an eigenvector of 
a Gell-Mann generator A then its antiquark q * is an eigenvector with oppositely signed 
eigenvalue. 

Finally, since each generator is a differentiation 

A (q Q9 q') = A (q )  Q9 q' + q Q9 A (q') 
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Since u, d, s, u* , d* , and s* are eigenvectors of 1 3 and Y, any composite particle 
built up from them will also be an eigenvector whose eigenvalues are the sums of the 
constituents. For example, Y (KO) = Y (s*d) = (2/3 + l /3 )KO = KO while Y (K o) = 
-Ko . This shows indeed that KO and KO are distinct particles. 

Isospin and hypercharge play a very important role in describing particles . The 
eigenvalues of h and Y (briefly h and Y) are two numbers that one assigns to strongly 
interacting particles with the experimentally observed property that if several particles 
collide and become other particles, then the sum of the isotopic spins before collision 
is the same as after, and likewise for the hypercharge. These "conservation laws," 
together with Noether' s  conservation principle (20.9), suggest that both the isospin and 
the hypercharge groups might be symmetry groups of the strong force Lagrangian. This 
is the origin of the hope that SU (3) , which contains both as subgroups, might even be 
a large symmetry group, or at least an approximate one. 

In Figure C. l ,  we exhibit graphically h and Y for each of the representations of 
SU (3) that we have considered. The result will be called the weight diagram of the 

y y -
2/3 S 

d u 

y 

S 

1T+ 

K 
Figure C.l  
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representation. S ince h and Y are a maximal set o f  (two) commuting operators, we shaH 
have a two-dimensional graph for each representation. In Figure e. l ,  the representation 
3 is  the standard representation of SU (3) on ([:3 , i .e . ,  on vectors q = (u d S)T .  (Physicists 
label the representations by their dimension, with or without an overbar. ) We have 
drawn Cartesian axes labeled 13 and Y and have placed the particle u at the point with 
coordinates given by its eigenvalues h (u) = 1 /2 and Y (u) = 1 /3 ,  etc. 

The next representation is the representation labeled by physicists 3; it is the repre
sentation on the dual space ([:3* ,  i .e . ,  on anti quarks q * = (Ii d s) . The eigenvalues here 
are the negatives of those in 3 and so the weight diagram is the reflection of that for 3 
through the origin .  We have also used the physicists ' labels IT instead of u* , etc. 

The final diagram is that for 3 ® 3. There are three particles 7r0 , "I, and "I' at the origin, 
requiring a point surrounded by two circles. Note that this diagram is easily constructed 
graphically from the two previous ones because of the additivity of the eigenvalues. To 
construct it we take the whole diagram of 3, translate i t  so that its origin is at a particle 
of 3 (say IT), erase that particle, and mark in the positions of the three particles of the 
translated 3; then we repeat this operation at the two remaining particles of 3. We have 
seen before that this representation is reducible, the particle "I' being fixed under all of 
SU (3) .  If we remove this particle (the one-dimensional space 1 of scalar matrices) we 
get the weight diagram of the adjoint representation, denoted by 8. It differs from that 
of 3 ® 3 only by having a point and one circle at the origin. Physicists say 

(e.9) 

There is (at least) one serious problem remaining. Our eight particles - the three 
pions, the four kaons, and the single eta - had been matched up by the physicists 
with the eight observed mesons with those names. While the observed particles in each 
category (e.g . ,  the three pions ) have roughly the same mass, the masses of pions, kaons, 
and the eta differ widely. Since masses are coefficients that appear in the Lagrangian and 
the Lagrangian is assumed invariant under SU (3) , the assumption of S U (3) invariance 
will have to be modified. 

C.e. A Reduced Symmetry Group 

The mass of a pion is observed to be 1 40 MeV, the four kaons are at 49S MeV, and the 
eta has a mass of SSO MeV. (In comparison, the electron mass is about 1 12 MeV.) 
This suggests that the strange quark S might be considerably heavier than the up 
and the down quarks. On the other hand the equality of the three pion masses sug
gests that u and d have about the same mass .  Individual quarks have never been seen ; 
in fact there are reasons to believe that they will never be seen (quark "confinement"). 
It was then suggested that SU (3) is  too large to be the symmetry group for the strong 
interactions. Experimental ly, however, isospin and hypercharge are conserved in strong 
interactions .  This suggests that the isospin subgroup S U (2) x 1 and the I -parameter 
hypercharge subgroup U ( 1 )  = diag(e

i l1 , e
ili

, e
-2ill ) of SU (3) generate a more realistic 

symmetry group. Since As commutes with Ab for k = I , 2 , 3 ,  it is clear that the three 



A R E D U C E D  S Y M M E T R Y  G R O U P  657 

Ak s together with A8 form a Lie subalgebra of �.u{3) and so,  from ( 1 5 .34), generate 
a four-dimensional subgroup, call it SU (2) * U ( 1 ) , of S U (3 ) .  We shall identify this 
group, but the identification will play no further role in our discussion since only the 
generators will be needed. S U (2) * U ( l )  consists of all products from the two sub
groups, but since S U (2) x 1 and U ( 1 )  commute we need only consider the product of 
pairs g E SU (2) x 1 and h = diag(e ill , e ill , e-2ie ) E U ( 1 ) . Let a be a 2  x 2 matrix in 
SU (2) . It is clear that to each of the products (eilla) x e-2ie we may associate the U (2) 
matrix ei8 a, and in fact this correspondence S U (2) * U ( 1 )  -+ U (2) is a homomophism 
onto all of U (2) . The kernel consists of those a and e such that eill a = the 2 x 2 identity 
/z ;  i .e . ,  a = e-ill h Since det a = 1 we have the two-element kernel with a = ±h 
and so  the group S U (2 )  * U ( 1 )  can be  considered as  a two-sheeted covering group of 
U (2) . 

Let now G :=  S U (2) * U ( 1 )  be assumed to be the symmetry group for the strong 
interactions .  It has generators Ab k = 1 , 2 , 3 (isospin), and A8 (hypercharge) and all 
operate again on the quarks ([:3 , antiquarks ([:3* , and mesons ([:3* ® ([:3 . Our basic meson 
frame is again X of (C.7) .  

G can mix u and d but neither of these mixes with s. Thus we may consider u and 
d as two states of the same particle, but s is assumed to be a different quark, with only 
one state . 

A typical element g of S U (2) * U ( 1 )  is of the form 

(C. l O) 

with Id + I w l 2 = 1 and the 2 x 2 submatrix in SU (2) . Consider the adjoint action 
of this matrix on X. Since this operation is linear in X we may single out the particles 
in which we are interested. For the antikaons K - and K ° we may take for X the 
matrix 

[0 0 K-] 
o 0 KO 
o 0 0 

and we see easily that the adjoint action by (C . l O) will produce mixtures of the K- and 
the K o . Similar results can be obtained for the K+ and the KO . Since the (K- , K 0) do 
not mix with the (K+ , KO) ,  we see that (K+ , KO) are to be considered as two states of 
a single particle and (K- , KO) are the two states of the antiparticle. (They are distinct 
particles, as we see from the weight diagram (Figure C . l )  that their hypercharges are 
opposites .) Similarly, all three pions get mixed; they are three states of a single particle. 
Finally, the eta is completely unaffected by the adjoint action. We say that (K+ , KO) is 
a doublet, its antiparticle (K- , KO) is a doublet, the pion (7r- , 7r0 , 7r+ ) is a triplet, and 
11 is a singlet. 
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C.f. Meson Masses 

A fermion is a particle (e.g . ,  an electron, proton, . . .  ) whose wave function changes 
sign when an observer' s  coordinate system is rotated through a complete rotation (see 
p. 5 1 7) , whereas a boson (e.g . ,  a meson) has a wave function that returns to its original 

value under such a rotation. Particles composed of an odd number of fermions are again 

fermions but an even number will yield a boson. A neutron, made of three quarks, is a 
fermion. This  leads us to think of quarks as fermions. A kaon, made of two quarks, is 
a boson. 

Electrons and protons satisfy the Dirac equation, which can be "derived" from a 
Lagrangian (20. 1 8) .  The coefficient of the squared wave function 1 \11 1 2 is m, the mass 
of the fermion in question. Bosons are believed to satisfy something similar to the 
Klein-Gordon equation ( 1 9 .24) . To get this from a Lagrangian the coefficient of 1 \11 1 2  
must be  the square of  the mass, m2 . (Actually there is also a factor of  1 /2, but this  will 
play no role in our discussion and so will be omitted.) We shall just accept the "rule" 
that the coefficient of the squared term 1\11 1 2 in the Lagrangian involves mfor afermion 
and m2 for a boson . 

The classification of the particles that we have given followed from looking atframes 
of quarks, antiquarks, and mesons, i .e . ,  q, q* , and X. A Lagrangian involves components 
(wave functions) rather than the basis elements (frames) .  For this reason we shall revert 
now to the component description of the meson matrix X, which formally is simply the 
transpose, 

nO 17 n+ K+ - + -Ji .j6 
X =  _no 17 KO (C. I I ) n - + -Ji .j6 

K- KO -2T} 
.j6 

where the entries now are components, rather than basis elements . For example, K+ = 
u d. 

We are interested in the masses of the mesons. We shall postulate a mass part Lm of 
the total Lagrangian. In the original version, when SU (3) was assumed, we could use a 
quadratic Yukawa-Kemmer type Lagrangian involving our meson matrix X, namely 
L = tr X X* , but as we shall soon see, this would result in all the mesons having the 
same mass. For the symmetry group G = SU (2) * U ( 1 )  generated by isospin and 
hypercharge, we shall alter this by inserting an as yet to be determined 3 x 3 matrix W, 

Lm = tr X GJll X* (C. 1 2) 

To ensure that the mass coefficients are real we shall assume that ��ll is hermitian, for 
then X GJll X* will be hermitian and will have a real trace. Under a change of quark frame 
q used in Q = C3 = ([:2 EB C 1 , GJll is sent to g��llg- l , where g E G = SU (2) * U ( l ) . 
Since there is no preferred frame, we insist that 911 be unchanged under such a frame 
change, and so ��11 : ([:3 -+ ([:3 must commute with the G action on ([:3 . It is then not 
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hard to see that ��ll must be of the form 

S'lll = diag (a ,  a , b) (C. 13 )  

where a and b are real numbers . In  fact, we  can apply elementary representation theory, 
in particular Schur's Corollary, as will be developed in Section D.c of Appendix D. 
An argument that is similar (but simpler) than that given there for the matrix C in that 
section, applied to C3 = ([:2 EEl C I rather than V = 5 EEl 1, will show that ��ll must be 
of the form (C. 1 3) .  The key point is that the action of G on ([:3 leaves both ([:2 and 
C I invariant and this action is not further reducible. ( I am indebted to Jeff Rabin for 
pointing out the uniqueness of this ��n. )  

We then compute, using the fact that formally X = X*, 

Lm = tr X �Jll X = a ( IJr° 1 2 + Jr-Jr+ + Jr+Jr- ) + ( l /3) (a + 2b) 1 77 1 2 

+ (K- K+)b + (K o KO)b + (K+ K- )a + (Ko K O)a 

Now the pion terms can be written 

and the kaon terms as 

(a + b) [ (K-K+)  + (K o KO)] 
= O /2) (a + b) [ I K+ 1 2 + I K- 1 2 + I Ko l 2  + I K o I 2 ]  

We have chosen this arrangement since a l l  the kaons must have the same mass since 
K± are antiparticles , and so have the same mass, and since (K+ , KO) are the two states 
of a single particle (see the last paragraph of Section c.e .) ,  and so have the same mass. 
Similar arguments follow for the pions .  Then, since we are deal ing with bosons ,  

mrr : = mass of any pion = .J(i 
m'l :=  mass of eta = v[ (a + 2b)/3] 
mK : =  mass of any kaon = v[ (a + b)/2] 

From these we see that 

(C. 14) 

one of the famous Gell-MannlOkubo mass formulas. 
The observed masses of the pions and eta are mrr � 1 40 MeV and mry � 550 MeV. 

Use these in (C. 1 4) .  Then (C. 1 4) , i .e . ,  the assumption of symmetry group G = SU (2) * 

U 0 )  together with the simple choice of G-invariant Lagrangian (C. 1 2) ,  yields the 
prediction mK � 48 1 MeV, which is less than 3% off from the observed 495 MeV. 
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Representations and Hyperelastic 
Bodies 

D.a. Hyperelastic Bodies 

In (A.2S) we have shown that the rate at which energy is stored in a body during a given 
deformation from reference body B (O) , assuming no heat loss, is given by 

r SAB (dEAB /dt) VOL (D. I ) 
JB(O) 

where S is the second Piola-Kirchhoff stress tensor, E is the Lagrange defonnation 
tensor (2.69), and the integral is over the fixed reference body B (0) . The entire integrand 
is not necessarily the time derivative of a function . The stress tensor S is generally a 
complicated function of the deformation tensor E. In the linearized theory we assume 
generalized Hooke's coefficients C and a relation of the fonn 

(D.2) 

where, since both S and E are symmetric tensors , C is  symmetric in A and B and also 
in J and K. At each point there are thus 36 constants CAB lK involved. Let us now 
assume the hypereiastic condition 

CAB lK = ClK AB 

Then at each point of B (O) 

SAB (dEAB/dt) = CAB lK ElK (dEA B/dt) = d/dt ( I /2 CAB lK ElKEAB ) 
and then (D. 1 )  becomes 

r SABdEAB /dt VOL = d/dt r PB(O) W VOL 
JB� JB� 

where 

W :=  ( l /2PB(O) )CAB lK ElKEAB = ( l /2PB(O) ) SAB EAB 

(D.3) 

(D.4) 

is the mass density of strain energy. As mentioned at the end of Section A.e, a body 
with such an energy function is called hyperelastic . 

660 
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Note that in this linearized case we have 

(D.S) 

where the partial derivative is taken while keeping the coordinates X of the reference 
body fixed. 

We remark that in the general (nonlinear) case of a hyperelastic body we may in 
fact use (D.S) to define the stress tensor. That is, we can assume that there is  some 
strain energy function W(X,  E) of the position X and of the the Lagrange deformation 
tensor E and then use (D.S) to define the second Piola-Kirchhoff stress tensor S. This 
is compatible with the definition (A.27) that was used in Hamilton 's principle, in this 
case of hyperelasticity. 
From now on we shall restrict ourselves to hyperelastic bodies in the linearized 

approximation with coefficients C satisfying (D.3) at each point. Note that the number 
of independent CAB JK is now reduced from 36 to 2 1  components at each point of the 
body. 

D.h. Isotropic Bodies 

In the following we shall be concerned only with ]R3 with an orthonormal basis . This 
allows us to forget distinctions of covariance and contravariance, though we shall 
frequently put indices in their "correct" place. 

In the linear approximation, S and E are related as in (D.2). At each point we consider 
the real vector space ]R6 of symmetric 3 x 3 matrices . (D.2) says that S E ]R6 is related 
to E E ]R6 by a linear transformation C : ]R6 ---+ ]R6, 

S = C(E) (D.6) 

Consider a given deformation tensor E at a point. (For example, E could result from a 
stretching along the x axis and compressions along the y and z axes at the origin. )  The 
result is a stress S = C(E) at the point. Now consider the same physical deformation 
but oriented along different axes; call it E' . (In our example E' could be stretching along 
the y axi s and compressions along the x and z axes, all with the same magnitudes as 
before . )  The new stress is S' = C (E') . If we call the change of axes matrix g E S O (3) ,  
then the matrices E and E' are related by E' = g Eg- l ,  but we must not expect S' to 
be g S g - I ; the material of the body might react, say, to compressions along the x and 
y axes in entirely different ways. If we do have S' = gSg- l ,  in other words, if the 
(adjoint) action of SO (3) on 3 x 3 symmetric matrices commutes with C : ]R6 ---+ ]R6 , 

(D.7) 

and if this holds at each point of the body, we say that the body is elastically isotropic. 
We now have the fol lowing situation for an isotropic hyperelastic body. The real 6 x 6 

matrix C : ]R6 ---+ ]R6 has at most 2 1 independent entries and the matrix C commutes 
with the adjoint action of S O (3 )  on ]R6 (thought of as the space of symmetric 3 x 3 
matrices) . We shal l sketch, in the remaining sections, how elementary representation 
theory shows that there are only two "Lame" constants required to express C !  
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D.c. Application of Schur's Lemma 

Consider a representation fJ., of a compact group G as a group of linear transformations 
of a finite dimensional vector space V into itself; see Section I S .2a. Thus, for g E 
G,  fJ., (g) : V --+ V and fJ., (gh) = fJ., (g)fJ.,(h ) . When we are considering only one re
presentation fJ., of G on a vector space V ,  we shall frequently call the representation V 
rather than fJ., .  

We have in mind for our application, the following: 

Example: G = S O (3 ) ,  V = ]R6 is the real vector space of symmetric 3 x 3 matrices, 
and /L (g)  acts on a matrix E by the adjoint action , /L (g ) (E)  = g Eg- l .  

Since G is compact, by averaging over the group (as in Section 20Ac), we may choose a 
scalar product in V so that fJ.,(g) acts on V by unitary or orthogonal matrices, depending 
on whether V is a complex or a real vector space . 

The representation fJ., is irreducible if there is no nontrivial vector subspace W that 
is invariant under all fJ., (g) , i . e . ,  fJ.,(g) : W --+ W for all g E G .  

I f  fJ., i s  reducible, then there i s  a nontrivial subspace W c V that i s  invariant under G .  
I n  this case the orthogonal complement of W i s  also invariant since g acts by isometries. 
Then by choosing an orthonormal basis for V such that the first dim( W) basis elements 
are in W and the remaining are in the orthogonal complement of W, we see that each 
fJ., (g) is in block diagonal form. If fJ." when restricted to W, is reducible, we may break 
this reducible block into two smaller blocks . By continuing in this fashion we can 
reduce V to a sum of mutually orthogonal invariant subspaces, each of which forms an 
irreducible representation of G .  

I n  our example V i s  the space of symmetric 3 x 3 matrices E. The deformation tensor 
ElK represents a covariant bilinear form and should transform as fJ.,(g) (E) = gEgT , 
but since gT = g- l for g in S O (3) ,  we may think of E as a linear transformation 
:ffi.3 --+ ffi.3 . (This is nothing more than saying ElK = El K in an orthonormal basis) .  As 
a linear transformation, its trace tr E will be invariant, and, just as we did for the meson 
matrix (C.3) ,  we shall reduce the six-dimensional space of all symmetric 3 x 3 matrices 
into the sum of the trace-free symmetric matrices and its orthogonal complement of 
scalar matrices, which we could write in the same spirit as CC.9) as 

(D.S) 
E = [E - ( \ /3) (tr E)/ ] + ( l /3) (tr E) / 

where we are now indicating the real dimensions . 1 is clearly irreducible, and we shall 
give a rather lengthy sketch showing that 5 is also. 

Schur's Lemma: Let ( V ,  fJ.,) and C W, w) be two irreducible representations of 
G and let A : V --+ W be a linear transformation that commutes with the G 
actions on V and W in the sense that 

A [fJ., (g )v ] = w (g)A [v ] 
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Then either A maps all of V to 0 E W or A is 1-1 and onto. In this latter case 
we say that the representations JL and w are equivalent. 

P R O O F : The commutativity of A and the G actions shows immediately that the 
subspaces ker(A) c V and Im(A) c W are invariant under the G actions. Since V 
is irreducible, ker (A)  is either V ,  in which case A ( V )  = 0, or ker A = 0, showing 
that A is 1 - 1 .  In this last case, by irreducibility of W, we have Im(A) = W. 0 

Schur's Corollary: If JL is irreducible and if a linear transformation C : V --7 V 
commutes with each JL(g) , and if C has an eigenvector in V, then C is a scalar 
matrix, C = AI . 

Note that i f  V is complex, C will automatically have an  eigenvector. 

P R O O F :  Let v be an eigenvector of C with eigenvalue A. Then C - AI : V --7 V 
will also commute with the G action on V .  But (C - AI ) v = O. By Schur's 
Lemma, C - AI = O. 0 

Return now to our elastic isotropic example. V is the space of real symmetric 3 x 3 
matrices. C : V --7 V is the l inear map S = C (E) in (C.6) relating stress to strain in 
the l inear approximation. In terms of matrices, SAB = CAB lK ElK. (0.7) says that C 

commutes with the adjoint action of G = SO (3) on V .  Since V is a real vector space, 
we must determine if C has an eigenvector. But in the hyperelastic case, (D.3) ,  i .e . ,  
CAB lK = CJK AB , says that C is a self-adjoint (symmetric) matrix operating on �6 , 

and so C does have a real eigenvector. Assume for the present that V = 5 EB I of 
(0.8)  is a decomposition of V into irreducible subspaces, i .e . ,  that the real , trace-free, 
symmetric 3 x 3 matrices form an irreducible representation of the adjoint action of 
SO (3) . We shall prove this in our fol lowing sections .  Note that isotropy (0 .7) shows 
that the subspace C(l ) must be invariant under the G action. Since I is  G invariant, 
the orthogonal projection TI C(l) of C (l ) into 5 must also be G invariant. Since 5 
is assumed irreducible, it must be that TI C (l) = 0 c 5, and so C (l) c 1 . Thus C 
sends I into itself and, since C is self-adjoint, C : 5 --7 5. Then we may apply Schur's 
Corollary to the two cases, C restricted to 5 and C restricted to 1. In both cases C 

is a scalar operator. C restricted to 5 is multipl ication by a real number a and when 
restricted to I is multiplication by a real b. From (D.8) we may write 

S = C(E) = a [E - ( l /3 ) (tr E)I] + ( l /3)b (tr E)I 

but this is  classically written i n  terms of the two Lame moduli JL and A as 

SAB = 2JLEAB + A (EJ )8A B 
which was essentially known already to Cauchy (see Truesdell [T, p. 306] ) .  

(0.9) 
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D.d. Frobenius-Schur Relations 

Our only remaining task is to show that the trace-free, real, symmetric matrices 5 form an 
irreducible representation under the adjoint action of SO  (3) . If our proof seems overly 
long it is  because we are taking this opportunity to present very basic results about 
group representations. While our elasticity problem involves real representations, and 
real representations pose special problems (as in Schur's Corollary), we shall frequently 
use the notation of complex unitary representations (e.g . ,  hermitian adjoint rather than 
transpose) but develop mainly those results that hold for real representations also, so 
that they can be applied to our problem. 

For more about the Frobenius-Schur relations, see, e .g . ,  the small book of Wu-Yi 
Hsiang [Hs] (but beware that his Theorem 2 on p. 6 has been labeled Theorem 1 ) .  

The principal tool i s  averaging over a compact group, as i n  Section 20.4c. I f  (V ,  fJ.,) 
is  a representation, then for each g E G ,  fJ., (g) is  a matrix and its average, with respect 
to a bi-invariant volume form W normalized so that the volume of G is 1 , is again a 
matrix P : V ---+ V ,  

meaning 

P (v) = fc fJ., (g) (v )wg 

for each vector v E V .  Clearly if fJ.,(g)v  = v for all g then P (v) = v. Also 

fJ.,(h ) P (v) = fc fJ.,(hg) (v )wg = fc fJ.,(g) (v )wg = P (v) 

(D . lO) 

(D. I I ) 

shows that P (v) i s  fixed under all g ,  and so P : V ---+ VG , where VG i s  the subspace 
of all vectors fixed under all fJ.,(g) , the fixed set of the G action. Finally, from (D. I l ) 
we see that 

p2 (V) = P (P (v» = fc fJ.,(h ) P (v)wh = fc P (v)w" = P (v) 

and so p2 = P; i .e . ,  P is  a projection of V onto the fixed subspace VG . Since this is a 
projection operator one sees immediately (by choosing a basis whose initial elements 
span VG) that 

dim VG = tr P = fc tr fJ.,(g)Wg (D. 1 2) 

Let us look at some consequences of this formula. Let U and W be two vector spaces . 
Then U ® W * is the vector space of l inear transformations of W into U ;  (u ® w*) (z) = 
w* (z)u ,  for all z E W .  Suppose that (U ,  a)  and ( W, fJ) are representations of G on 
U and W respectively. Then the hermitian adjoint matrices fJ* (g) = fJ (g*) = fJ (g- l ) 
operate on W* by fJ* (g) (w* ) = W*fJ (g- I ) .  Thus a ® fJ* is the representation sending 
the l inear transformation A = u ® w* to the l inear transformation a (g)u ® w* fJ (g- l ) = 
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a (g)A,B (g- I ) .  A linear transformation A is fixed under this G action iff A commutes 
with the G action, 

(U ® W*)G = those A : W --* U such that a (g) A  = A,B (g) (D. l 3) 

For any representation /L the function X/J. : G --* <C defined by X/J. (a )  :=  tr /L (a )  is 
traditional ly called the character of the representation /L. 

We need one more simple fact. Given any two linear transformations a : U --* U 
and ,B : W --* W, then 

tr (a ® ,B) = tr (a) tr (,B) 

since if {ej } and {fa }  are bases for U and W, then {ej ® fa } is a basis for V ® W and 
the coefficient of ej ® fa in a ® ,B (ej ® fa) is aj j ,B0 a (no sum). 

Apply (D. 1 2) in the case V = U ® W* , and use the fact that ,B (g- I ) is the conjugate 
transpose of ,B (g) .  We get 

Theorem (D.14) :  The dimension of the space of A : W --* U that commute with 
the actions of G is 

l Xa (g)Xp (g)wg 

In particular, if C W, ,B )  and CU ,  a )  are irreducible and inequivalent, by Schur 's 
Lemma this integral is O. 
On the other hand, if U and W are equivalent, there is at least one such map 

A and so, in particular, for any representation C V, /L "I- 0), we have 

l X/J. (g)X/J. (g)wg � I 

Theorem (D.1S): If ( V, /L) is a representation and 

l X/J. (g)X/J. (g)wg = I 

then the representation is irreducible. 

P R O O F : Suppose that ( V , /L) is reducible. In Section D.c we showed that V can 
be Written as a direct sum of orthogonal, invariant, irreducible subspaces V = $ Va , 
and we can let /La be the restriction of /L to Va . A simple example to keep in mind 
is a representation /L of SO (2) (which as a manifold is the circle SI with angular 
coordinate e )  acting on V = ]R4 by two 2 x 2 diagonal blocks, where m and n 
are nonnegative integers : [cosme 

/L (e)  _ sin me 
- 0 

0 

- sinme 
cos me 

0 
0 

0 

- sL] 0 
cos ne 
sin ne cos ne 
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Call the 2 x 2 blocks ( VI ,  f.J.. I )  and ( V2 , f.J..2 ) '  The two representations f.J.. I and f.J..2 
are equivalent if and only if m = n . If m = n we would write V = 2 VI while if m =f. n we would write V = VI $ V2 . 

In the general case we can similarly write V =$ m j Vj , where Vj and Vk are 
inequivalent if j =f. k .  Then, from tr f.J.. = "L j m j tr f.J.. j and (0. 1 4) we have 

[ Xj.L (g)Xj.L (g)Wg = Lmjmk [ Xj (g)Xk (g)Wg = L m� [ Xj (g)Xj (g)Wg 
Thus if f.J.. is reducible, i .e . ,  "L m ] ::: 2, we would have that the integral is ::: 2. 0 

We remark that a complex irreducible representation will have 

[ X (g)X(g)Wg = 1 

since by Schur's Corollary the matrices commuting with the G action will be scalar 
and so have complex dimension 1 .  On the other hand, the usual action of S O (2) on 1R2 
as in ( 1 5 .0) is clearly a real irreducible representation that has for integral of tr2 

1
2]( 

4 cos2 8d8/2Jr = 2 

corresponding to the fact that the two-dimensional subspace of real 2 x 2 matrices 
satisfying X22 = XI I and X2 1 = - X 1 2  all commute with S 0 (2) . 

D.e. The Symmetric Traceless 3 x 3 Matrices Are Irreducible 

(0. 1 5) implies that we need only show 

r I tr Ad g l 2wg = 1 
JSO (3) 

(0. 1 6) 

where S O (3) acts on V = 5, the space of traceless real symmetric matrices, by the 
adjoint action, Ad(g) A = gAg- I . 

We have used before that S O  (3) can be realized as the real projective space IRp3 , 
pictured, e .g . ,  as the solid ball of radius Jr centered at the origin of 1R3 with antipodal 
points on the boundary sphere identified; see Example (vii) of Section 1 .2b. The 1 -
parameter subgroups are the rays through the origin. This model i s  unsuitable for the 
integral (0. 1 6) because in (0. 1 6) the metric is the same as the metric on IRp3 , not 1R3 . 
Since the unit sphere S3 C ((:

2 is the proper model for S U (2) (see Chapter 1 9  and 
also p .  5 84), and since SU (2) is the twofold cover of S O (3) , we shall use the "upper 
hemisphere" of S3 as the model for IRp3 .  

For example, the point (e-i,8 , 0 )  E S3 C ((:2 represents both the matrix u (,8) E S U (2) 
and the matrix g (,8) E S O (3 ) ,  where 

u (,8) = [e-oif3 0 ] 
ei,8 and 

[COS 2,8 
g (,8) = sin

0
2,8 

- sin 2,8 O�l 
cos 2,8 o 
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This was shown in the example following the proof of Theorem ( 1 9 . 1 2) .  We then have 
the following picture (see Figure 0. 1 )  on the unit sphere S3 E ([:2 with Riemannian 
metric ds2 = det2 + sin2 et (de2 + sin2 e d4J2) ,  where et is the colatitude, and the "north 
pole" is the identity matrix for both SU (2) and S O (3 ) ,  and the "small sphere" S2 (et) 
at colatitude et has metric sin2 a (de2 + sin2 e dq/) and area 47r sin2 a .  We will explain 
this diagram more in the following. 

S2(a) 
(conjugates of g(�)) I I I I I I 

[COS 2� -sin 2� 0] g(�) = sin 2� cos 2� 0 
_ _  _ 0 0 1 

r-:;L--- - -/ - ; = � =-:.� - - - -
2 - - -

SO(3) C a =  � = � 2 
Figure 0.1 

The I -parameter subgroup u (f3)  = diag(e-ifi ,  eifi )  C SU(2) ,  - 7r :::: f3 :::: 7r ,  is a 
maximal torus of S U (2) (see Theorem 1 5 .4), and the image of this circle under 

Ad : SU (2) � S O (3)  

(see Section 1 9 . 1  b)  covers twice the maximal torus of  S 0 (3) given by g (f3 ) ,  for - 7r  /2 :::: 
f3 :::: 7r /2. The parameter f3 on this subgroup coincides with a for f3 :::: 0 and with - a 

for f3 :::: O. (a is not a good coordinate at the identity. ) 
For any point a of a Lie group G we can look at the conjugates of a ,  i .e . ,  the set of 

all group elements of the form ga g- I as g ranges over the group.  This set Ma is thus 
the orbit of the point a under the adjoint action of G on itself. The group elements that 
leave the point a fixed form the centralizer subgroup Co, of a ,  those g that commute 
with a .  Thus, from ( 1 7 . 1 0) ,  the orbit points of Ma are in 1- 1  correspondence with 
points of the quotient manifold M a = G / Ca . 

Consider Figure D. l and the point a = g (f3 )  on the maximal torus. S ince Adg : G � G 
sending any h to ghg- I is an isometry of the bi-invariant metric on G ,  and since Adg 
leaves the identity I fixed, Mg(fi) must lie on the sphere S2 (a) at constant distance from 
I .  It is not difficult to see (see Section E.a of Appendix E) that M g(fi) in fact coincides 
with this  2-sphere. This is not surprising; the centralizer of g (f3 ) ,  f3 i- 0 or ± 7r /2, is 
exactly the maximal torus T I , and S O (3) / T 1 = S O (3 )/SO (2) = S2 . 

If f3 = 0, we have the identity I whose centralizer is all of S 0 (3) , and SO  (3) / SO  (3) 
is the single point I .  

If f3 = 7r/2, then the centralizer of diag(- I ,  - 1 ,  1 )  contains not only the max
imal torus T I (on which it lies) but clearly also the elements diag ( 1 ,  - 1 ,  - 1 )  and 
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diag( - I ,  I ,  - 1 ) ,  which are rotations through 1 800 about the x and the y axes respec
tively. It is not hard to see, in fact, that all rotations through 1 800 about all axes in 
the xy plane are in this central izer. This curve of rotations is the curve C' in Figure 
1 7 .4.  The conjugate set of diag( - 1 ,  - 1 ,  1 )  is [S 0 (3) / T U C'] . This is topologically 
lRP2 , because SO (3) acts transitively on the space of lines through the origin of lR3 , 
and the subgroup leaving the z axis invariant consists of al l rotations about the z axis ,  
i .e . ,  T , together with al l  rotations through 1 800 around al l axes in the xy plane (i .e . ,  
C') . In our Figure D. l the conjugate set for g (Jr /2) = diag( - 1 ,  - 1 ,  1 )  is the equa
torial 2-sphere with antipodal identifications, i .e . ,  a projective plane ! (The conjugacy 
orbits M(J = G / Cr have very interesting topological properties in a general compact 
connected Lie group. For example, the Euler-Poincare characteristic of M(J is equal to 
the number of times M(J intersects the maximal torus, as we easily noticed with S2 and 
lRP2 . See Theorem E.2 in Appendix E) . 

We return now to our integral (D. 1 6) .  Recall that each Ad(O" ) is a 5 x 5 matrix. Look 
at a general point 0" in G = S O (3 ) .  The character X has the property 

That is ,  X is constant on conjugacy orbits . Thus our function XAd (O" ) ,  the trace of the 
5 x 5 matrix Ad(O" ) ,  is constant on each of the 2-spheres S2 (a) of constant colatitude a 
In our volume integral, the two conjugacy sets at a = 0 and a = Jr /2 can be omitted. 
Note that these conjugacy sets to be omitted are precisely those passing through the only 
two points g (O) and g (Jr /2) of T whose centralizers are larger than T itse(f We can 
then evaluate our integral as follows, thanks to the fact that each remaining conjugacy 
sphere Mg(fi) meets T orthogonally : 

(D. I 7) 

We integrate only from 0 to Jr /2 ( i .e . ,  only half of the maximal torus) to avoid counting 
the spheres S2(f3) twice. The factor Jr -2 is required since the Frobenius-Schur relations 
require that the volume of G must be normalized to unity, and the total volume of our 
SO (3) is 

('/2 
io 

4Jr sin2 (f3)df3 = Jr2 

We now need to know the character function X of Ad g (f3)  along the maximal torus. 
A straightforward way is as follows.  Write down a basis E j ,  1 .:s j .:s 5 ,  of the real 
trace-free symmetric 3 x 3 matrices, starting say with E J = diag ( I , - 1 , 0) .  For g (f3) 
on the maximal torus, compute g (f3)Ejg ( -fJ) = L Ejaij (f3) , and take L ajj . This 
calculation yields the result 

XAd g (f3) = 4 cos2 2f3 + 2 cos 2f3 - 1 

Finally our integral (D. 1 7) becomes (with help, e .g . ,  from Mathematica) 

1 lJC/2 2 2 1 4  cos2 2f3 + 2 cos 2f3 - 1 1 4Jr sin2 (f3)df3 = 1 
Jr 0 



T H E  S Y M M E T R I C  T R A C E L E S S  3 x 3 M A T R I C E S  A R E  I R R E D U C I B L E  669 

showing indeed that the representation 5 of 3 x 3 real symmetric trace-free matrices is 
irreducible. 0 

One final remark should be noted. The character can be more easily computed by 
"general nonsense." Consider the following vector spaces of 3 x 3 real matrices : 

3 ® 3 = all 3 x 3 matrices 
3 0 3 = symmetric matrices 
3 /\ 3 = skew-symmetric matrices 
5 = trace-free symmetric matrices 
1 = scalar matrices 

Then 3 181 3  = 3 0 3  $ 3  /\ 3 = (5 $ 1) $ (3 /\ 3) . But the Hodge star operator sends 
2-forms to I -forms, * : 3 /\ 3 -+ 3. In an orthonormal basis of ffi? ,  the star op
erator clearly commutes with the actions of S O (3) ,  which shows that 3 /\ 3  and 3 
are equivalent representations, 3 /\ 3 = 3. Taking traces of the representations, we get 
(tr 3)2 = tr 3 181  3 = tr 5 + tr 1 + tr 3. Thus 

XS = (X3) 2 _ X3 - X1 = [2 cos 2,B + l f - [2 cos 2,B + I ] - 1  = 4 cos2 2,B + 2 cos 2,B - 1 

which agrees with our previous calculation of XAd g(,B) .  
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Orbits and Morse-Bott Theory 
in Compact Lie Groups 

E.a. The Topology of Conjugacy Orbits 

We now wish to study in more detail the topology of conjugacy orbits in a compact 
Lie group G with given maximal torus T .  But first we present an example (more 
complicated than the SO  (3) case of Figure D. 1 )  to keep in mind. 

Let G be the nine-dimensional unitary group U (3) . The subgroup of diagonal ma
trices T = {diag[exp(i8d , exp(i82 ) ,  exp(i83 ) ] }  is a three-dimensional maximal torus. 
Consider the diagonal matrix a = diag( - 1 , - 1 ,  I ) .  The subgroup Ca that commutes 
with a, the centralizer of a, is U (2) x U ( 1 ) ,  which has dimension 4 + 1 = 5 .  The 
conjugacy set of a, M a = {u a  u - I } is, from ( 1 7 . 1 0) ,  in 1 : 1  correspondence with the 
complex projective plane C p2 = U (3)I U (2) x U ( l ) ,  the analogue of the real pro
jective plane discussed in Section 1 7 .2b. It has dimension 9 - 5 = 4. This orbit Ma 
consists of unitary matrices with eigenvalues - 1 ,  - 1 ,  and + 1 .  Thus Ma meets T in 
the three points a, diag ( - 1 ,  I ,  - 1 )  and diag( l ,  - 1 ,  - 1 ) ,  the distinct permutations of 
the diagonal entries of a, and, as we shall see in Theorem E.2, the Euler characteristic 
X (C p2) is 3. The same argument would hold for any diagonal r = diag(ei8 ,  ei8 ,  ei</» 
with exactly two distinct eigenvalues. Me would again be a complex projective plane. 
However, our example a is special in that a = a - I , and so all of Ma is a component 
of the fixed set of the inversion isometry i : G -+ G, i (g) = g- I , and is thus a totally 
geodesic submanifold of G (see Section 1 1 .4d) . On the other hand, if J.L is a diagonal 
unitary with three distinct eigenvalues (such J.L are dense on T), then the only u com
muting with J.L will be diagonal, and so CM = T ,  and MM = GI T  = U(3)I T ,  which 
has dimension 9 - 3 = 6.  The only matrices on T that are conjugate to J.L are the six 
distinct permutations of the diagonal elements of J.L, and we shall see that it must be 
that x [U (3) I T]  = 6 .  

We now return to the general case of a compact l ie  group G with maximal torus T 
and some a E T .  We know that Ma = {gag- I } and we know that this set is in 1 :  1 
correspondence with the coset space G I Ca , which is a manifold in its own right. Define 
a smooth map F : GI Ca -+ G by F(gC) := gag- I E Ma C G. First note that F is 

670 
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1 :  1 ,  for if gag- l = F (gC) = F (hC) = hah- l then (h- l g )a = a (h- l g) says that 
h- l g E C, g E hC , and so the coset gC is the same coset as hC . 

We now wish to show that this image Mrr i s  an embedded submanifold. We show 
first that the differential F. maps no nonzero tangent vector to G / Ca at the single point 
aC into a zero tangent vector at the image point a ;  i .e . ,  that F is an immersion at aC .  
An example to keep in mind about failure of  immersions is the map f : ]R -+ ]R2 given 
by x (t) = t 2 , Y (t) = t3 , which yields a curve with a CUSp at the origin. This smooth 
map is not an immersion because f. (� )  = (�� )  %x + (¥r ) � vanishes at t = O. This is  
the reason that a cusp can appear. 

S ince GjC is made up of curves t -+ g (t ) C , a general tangent vector at a C  
i s  the velocity vector of a curve of the form elY C, where Y i s  i n  the Lie algebra 
;r of G.  The image of this curve under F is F (eI Y ) = e I Ya e-I Y , whose velocity 
vector at t = 0 is Ya - a Y, and this ,  by the definition of the differential, is F. 
(velocity of elY C) . Suppose then that this Ya - a Y = o. Then Y = a Ya - l and so 
exp(t Y) = exp (a tYa - l ) = a exp(ty)a - 1 (from the power series). Thus the curve 
exp(t Y) in G lies in Ca and so the curve el Y C is a single point curve aC and has zero 
velocity at t = O. Thus F is an immersion at a C .  This implies that F is an embedding 
of some G / C neighborhood of a C. But since each map Adg mapping G -+ G defined 
by h -+ ghg- l is a diffeomorphism sending Ma onto itself, it is not hard to see that 
F is locally an embedding near every point of G / C. Since G is compact, the situation 
pictured in the second curve in Figure 6.7 cannot arise. It can be shown that Ma is a 
global embedded submanifold of G.  

We now know, for a E T , that Ma is a submanifold of G of dimension dim G / Ca = 

dim G - dim Ca � dim G - dim T,  since T C Ca . Thus dim T + dim Mrr � dim G.  
We shall accept the fact that every conjugacy orbit Mh must meet the maximal torus 

T . In the case of U (n ) , with maximal torus 

T = {diag (exp(i 81 ) ,  . . •  , exp (i 8n ) }  

this i s  just the statement that every unitary matrix can be diagonalized, i .e . ,  for every 
u E U (n) there is a g E U (n) such that gug- 1 is diagonal, i . e . ,  in T .  Thus each 
conjugacy orbit is of the form Ma , where a E T . 

Note also that our computation here has shown the following lemma. 

Lemma (E.1) :  The orthogonal complement to the tangent space to Crr at e is 
mapped 1: 1 and onto the tangent space to Ma at a under Y -+ fret Y ae-tY 10 = 

Ya - a Y. 

Theorem (E.2) : Each Ma meets T orthogonally, and is even dimensional, and 
the Euler characteristic X (Ma )  is the number of intersection points of Ma and T. 

P R O O F : Let a E T c Ca . Let Y be orthogonal to Ca at e. Then, in the bi
invariant metric in G, Ya and a Y are orthogonal to Ca at a. We conclude from 
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Lemma E. I that Mer is orthogonal t o  Cer a t  (j .  A schematic picture is given in 
Figure E. I .  

e 

y 

Figure E.1 

We now compute the Euler characteristic of Ma by means of the Poincare
Hopf theorem ( 1 6. 1 2), using an argument that is a variation on ideas used by Weil 
and by Hopf and Samelson in the I 930s and I 940s . Let W be a tangent vector 
to T at the identity and consider the resulting I -parameter group of isometries 
on G, g -+ g (t ) = et W ge-tw • The velocity Killing field at any g E G is w : =  

W g - g W.  Of course this field is tangent to  each of  the conjugacy orbits, in 
particular M a ' Where are the zeros of this field w on G?  As computed previously, 
w = 0 at g implies e tW g = getW , and so g is in the centralizer of etW for all t . 
Now we may choose the tangent vector W to T s o  that the I -parameter group etW 
lies dense on T (see Section 6.2a) . For this W, g E G is a zero if and only if g is in 
the centralizer of the entire maximal torus T. It can be proved that the centralizer 
of a maximal torus T is exactly T itself, C (T)  = T, see, e.g. , [Hs, p. 45] .  For this 
W the zeros of the associated velocity field w make up the entire maximal torus 
T .  In particular, the zeros of the Killing field w on Ma are the points where Ma 
meets T ,  these points being isolated since M a meets T orthogonally. What then 
is the Kronecker index of the field w on M a at such a meeting, say (j ?  Since the 
I -parameter group g (t) is a group of isometries leaving (j fixed, the flow lines on 
Ma near (j must be tangent to a small geodesic codimension I -sphere S on Ma 
centered at (j .  Since w is a nonvanishing tangent vector field to this sphere S ,  S 
must have Euler characteristic 0, and so S must be odd dimensional and Ma is 
even dimensional . By 8.3( 1 1 ) the index of w at (j is  + 1 and the sum of the indices 
at the zeros of w on Ma is  exactly the number of intersection points of M" and 
T . D 
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E.h. Application of Bott's Extension of Morse Theory 

We conclude with some remarks concerning how the topology of the orbits Mer is related 
to that of the entire group G. For this we shall use Bott's refinement of the presentation 
of Morse theory that was given in Section 1 4.3c.  

For simplicity we restrict ourselves to the example U (3) with which we started our 
discussion, but similar remarks hold for all the "classical groups," U (n) ,  S O (n ) ,  Sp (n) ,  
(but not SU (n) ) ,  with some modifications ;  see [Fr2] . The elements g of order 2 ,  g2 

= I ,  
are exactly four orbits, MI = I ,  M _ I  = -I ,  and the two complex projective planes Ma 
and M fI ,  where a = diag( 1 ,  1 ,  - 1 )  and f3 = diag( 1 ,  - 1 ,  - 1 ) .  It is shown in [Fr2] that 
these points are also exactly the critical points of the function f (g) = Re tr(g ) ,  the real 
part of the trace of the unitary matrix g, and we can call these the "critical orbits." For 
Ma and M(3 , these are not isolated critical points but rather connected "nondegenerate 
critical manifolds" and one can apply Bott 's extension of Morse theory (see, e.g, [Bo, 
Lecture 3]) to this situation. 

Briefly, we require that the hessian matrix for f be nondegenerate for directions 
orthogonal to the critical manifold. At a point m of Mer we can look at the part of the 
tangent space to G that is normal to M" and note the number of independent normal 
directions from m for which f is decreasing, i .e . ,  the dimension of the subspace on 
which the hessian form is negative definite. These directions span a subspace of the 
normal space to Mer at m to be called the negative normal space. From nondegeneracy 
the dimension of these negative normal spaces will be constant along Mer and will be 
called the (Morse-Bott) index A( (T) of the critical manifold M" . The collection of all 
of these subspaces at all m E M" form the negative normal bundle to Mer . We ask 
that this bundle be orientable, meaning that the fibers can be oriented coherently as 
we range over the base space Mer . (If they are not orientable, we may proceed but we 
may only use £:2 coefficients when talking about homology groups . )  Look at the point 
ex = diag( 1 ,  1 ,  - 1 )  at which f = 1 .  Then the entire portion of the centralizer Ca given 
by U (2) x (- 1 )  c U (2) x U ( 1 ) ,  except for ex itself, lies in the region of U (3) where 
f < 1 = f (ex) ;  U (2) x (- 1 )  is "hanging down" from the critical point ex. Thus there 
are dim U (2) = 4 independent directions at ex along which f decreases. Since f is 
invariant under a -+ gag- I , we see that this is true along al l  of Ma , and so A (a)  = 4. 
Similarly, the central izer of f3 is U ( 1 )  x U (2) , the portion U ( 1 )  x diag( - 1 ,  - 1 ) hangs 
down from f3, and so the index in this case is A (f3) = dim U ( 1 )  = 1 .  Of course 
I is the isolated maximum point and - l is the isolated minimum, and so AU)  = 
dim U (3) = 9 and A (  - I )  = O. Nondegeneracy can be proven for each of these critical 
manifolds. 

We shall need some classical results about the topology of the complex projec
tive plane Cp2 , but we shall be very brief. Since Cp2 = U (3)/  U (2) x U ( 1 ) ,  it is  a 
compact 4-manifold. Recall from Problem 1 .2(3) that it is a complex manifold of com
plex dimension 2 .  To all points in Cp2 with local homogeneous complex coordinates 
[zo , Z I , Z2 ] ,  where Z2 i- 0, we may assign the pair of genuine complex coordinates 
(W I  = ZO/Z2 , W2 = Z I /Z2) '  For example, these will be local coordinates near the point 
[0, 0, I ] that represent the complex line along the Z2 "axis" (a copy of the ordinary 
Z2 plane) . (Recall that [zo , z "  Z2 ] i- [0, 0 , 0] represents the complex l ine through the 
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origin of C3 that passes through the point (Za , Z I , Z2 ) ' )  We use the schematic picture in 
Figure E.2 . 

Figure E.2 

The locus Z2 = 0 consists of all points [Za , Z! , 0] with Za , Z !  not both 0, and thus is a 
complex projective line C p l  (i .e . ,  a 2-sphere ; see Problem 1 .2(3)) with homogeneous 
coordinates [Za , z I J .  We have a projection map h : Cp2 _ [0,  0, 1 ]  --* C p l = S2 defined 
by [Za , Z I ,  Z2 ] --* [Za , Z ! , 0] . The locus I W I 1 2 + I W2 1 2 = 1 represents a 3 -sphere S3 in 
Cp2 centered at [0, 0, 1 ]  and h , sending S3 --* C p l  = S2 by (w I , W2) = [W I , W2 , 1 ] --* 
[W I , W2 ] ,  is simply the Hopf map of Section 22.4c. Note also that h : Cp2 - [0, 0 ,  1 ]  --* 
C p l  = S2 i s  the endpoint of a deformation h t ( [za , Z I , Z2 ] )  = [Za , Z I , ( 1  - t )Z2 ] that 
deforms Cp2 - [0, 0, 1 ]  onto Cp l . Thus any cycle on Cp2 - [0, 0, 1 ]  is homotopic 
to one on the subset Cp l . In particular, any singular j -cycle on Cp2 , for j < 4, can 
clearly be pushed slightly to miss [0, 0, 1 ]  and can then be deformed into Cp ! = S2 . 
But S2 is simply connected. Thus, since S2 has nontrivial homology only in dimensions 
o and 2, we have the following: 

Lemma (E.3) : Any loop on Cp2 is homotopic to a loop on S2 and is thus de
formable to a point; hence C p2 is simply connected and therefore orientable. 
Hj (Cp2 , Z) = O f  or j = 1 and 3, and H2 (C P2 ; Z) = H2 (S2 , Z) = Z. Since 
Cp2 is a compact, orientable 4-manifold, H4 (CP2) = Z. Since Cp2 is simply 
connected, the negative normal bundles to MOl and MfJ are orientable. 

Note also that by pushing S3 by means of the deformations hI we may move S3 to 
S; that lies at a small distance E: (in some Riemannian metric) from S2 (see Figure E.3) .  
But the points of Cp2 that are of distance S E: from CP I , for E: sufficiently small ,  form 
a normal 2-disc bundle N4 over C p l  in Cp2 , and the boundary a N  forms a normal 
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2-disc 

, 

circle, radius £ 

Figure E.3 

, , , , , " Cp 2 , , , , , , , '\I [0, 0, I ]  

circle bundle (circles of  radius 8 ) .  Thus S; = a N is this normal circle bundle to C p '  
and the deformation h : a N  -+ CP ' is a realization of the Hopfmap S; -+ S2 . 

Recall (see Section 1 4.3c) that the Poincare polynomial of U (3) is the polynomial 
in t with coefficients the Betti numbers bj of U (3) ,  and so PU (3) (t )  = "L, bi t i . Bott's  
generalization of the Morse polynomial is constructed using the Poincare polynomials 
and indices of the critical manifolds (where we write Pa for the Poincare polynomial 
of Ma ) 

01IB (t) = 1 + tA(fJ} PfJ (t) + tA(a} Pa Ct) + t9 

(Note that if each critical manifold reduces to an isolated critical point as in the original 
Morse case, then because bj (point) = 0 for j > 0, the coefficient of tA is again simply 
the number of critical points of index A . )  

We have seen in Lemma E.3 that the Poincare polynomial of  Cp2 is 1 + t2 + t4 , and 
so 

Bott 's  generalization of the Morse inequalities are then 911B (t) ::::: PU (3) (t ) ,  but in [Fr2] 
it is shown that in U (n) ,  the "symplectic" groups Sp (n) ,  and S O (n ) ,  these are in 
fact equalities (except that one must use Z2 Betti numbers in the case of S O (n) ,  for 
n > 3 ,  since, e .g . ,  the negative normal bundles to real projective spaces are not always 
orientable) . Thus the critical orbits Ma yield exactly the Betti numbers of the group, 
but with each k cycle on Ma yielding a [k + A (a ) ]  cycle on G .  



"Final Exam" 



If students find things that are worthwhile in this book, it is  
largely due to what I have learned from my own "teachers ," 

among them Aldo Andreotti , Raoul Bott, S . S .  Chern, Jim Eells ,  
G.c. Evans, Harley Flanders, Heinz Hopf, Charles Loewner, Hans Samelson, 

Norman Steenrod and John Archibald Wheeler. 
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Index 

absolute temperature, 1 87 
acceleration, 4-vector, 1 94 
accessibility, 1 8 1 ,  1 82 
accumulation point, 1 06 
action, 1 52, 274, 524 

euclidean, 55 1 
first variation of, 1 54 
group, 454 
Hamilton 's principle of stationary action, 

1 54 
Jacobi 's principle of least action, 28 1 
relativistic, 1 96 

Ad, 486 
bundle, 487, 489 
connection, 487 

adiabatic 
distribution and \eaf, 1 83 
process, 1 80 

adjoint, 392, 640 
group, 486 
representation, 486 

admissible boundary form, 378 
admittance matrix ,  645 
affine 

connection, 242 
group of the line A( I ) , 394 
parameter, 272 

Aharonov-Bohm effect, 447-8, 554 
Aharonov-Susskind and spinors, 5 1 7  
algebra homomorphism, 78 
Ampere-Maxwell law, 1 2 1 ,  1 63 
angular momentum, 620 
annihilator subspace, 1 67 

anticommutator, 478 
anti derivation, 89, 1 35 
antisymmetric, 66 
antiquark, 649 
associated bundle, 482 

connection, 483-7 
Atiyah-Singer index theorem, 465 
atlas, I S  

Bernoull i ' s  theorem, 234 
Berry phase, 468-72 

equation, 472 
Bertrand-Puiseux and Diguet, 288 
Betti numbers, 1 57, 346 
Bianchi identities, 300, 489 
bi-invariant 

connection on a Lie group, 580 
forms on a Lie group, 56 1  
Riemannian metric and their geodesics, 

563 
binormal, 1 96 
Bochner's theorems, 374, 530 
Bonnet's theorem, 229 
boson, 658 
Bott's version of Morse theory, 673, 675 
boundary (of a manifold) = edge, 1 06 
boundary 

group, 344 
homomorphism, 338,  60 1 
operator, 335 

boundary conditions 
essential or imposed, 527 
natural, 527 
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bracket 
anticommutator, 478 
commutator, 408 
Lagrange, 80, 1 00 
Lie, 1 26, 402; of �rvalued forms, 477 
Poisson, 1 54 

Brillouin and the stress form, 635 
Brouwer degree, 2 \ 0- 1 3 , 360 

fixed point theorem, 2 1 7  
bump form, 1 07 
bundle 

associated, 482 
complex line, 433 
cotangent, 52 
determinant, 487 
dual, 482 
electromagnetic, 44 1 
fiber, 4 1 5  
frame, 453 
gauge, 490 
l ine, 433 
local trivialization, 4 1 7  
monopole, 444, 473 
normal, 4 1 9  
orientable, 6 1 1 
principal, 454, 48 1 
product, 4 1 8  
projection, 4 1 5  
pull back, 622 
section, 50, 4 1 6, 466 
space, 4 1 5  
structure group, 433,  452 
tangent, 48 
transition functions, 24, 254, 4 1 4  
trivial, 4 1 8  
uni t tangent, 5 1  
vector, 4 1 3- 1 7  
volume, 488 

canonical form, 394 
canonical map, 1 49 
Caratheodory 's 

formulation of the second law of 
thermodynamics, 1 8 1 

theorem, I 82 
Cartan's 

bi-invariant forms, 562 
exterior covariant differential, 250, 430 
method for computing curvature, 257 
structural equations, 249 
theorem Jrz (G) = 0, 606 
3-form on a Lie group, 566 

H. Cartan 's formula, 1 35 

I N D E X  

Cauchy 
equations of motion, 6 1 8 , 620, 628 
-Green tensor, 82 
-Riemann equations, 1 58 ,  1 59 
stress form, 6 1 9 ; Lie derivative of, 634, 635 ; 

symmetry of, 62 1 
center 

of a Lie algebra, 580 
of a Lie group, 565 

centralizer, 667 
chain complex, 636 
chain group, 337 

integer, 336 
simplicial, 343 
singular, 333 

character, 665 
characteristic cohomology class, 6 1 6  
charge form, 1 1 8 
Chern's 

forms and classes, 587-9 1 ;  as obstructions, 
608- 1 6  

integral , 6 1 2  
proof of Gauss-Bonnet-Poincare, 462-5 , 

553-7 
theorem, 6 1 5  

Chern-Simons form, 586 
Chern-Wei! theorem, 589 
Chow's theorem, 1 78, 1 87 
Christoffel symbols, 229 
circulation, 1 44, 377 
Clairaut's relation, 530 
classical 

force, 1 95 
momentum, 1 94 
velocity, 1 93 

Clifford 
algebra, 500 
embedding, 262 
numbers, 503 

closed 
form, 1 56, 1 5 8  
manifold, 1 20 
set, I I  

closure, \ 06 
coboundary, 638 
cochain, 638 
coclosed, 370 
cocycle, 639 
Codazzi equation, 229, 302, 3 1 1 - 1 3 ,  320 
codifferential d* , 364 
codimension, 6 
coefficient group, 337 

field, 343 



cohomology H P , 356 
integral class, 6 1 5  

commutative diagram, 338 
commutator bracket of matrices, 408 
compact, 1 3  
completable relative cycle, 387 
complex 

analytic map, 1 58 , 2 1 4  
line bundle, 433;  connections, 434 
manifold, 2 1  

composing rotations, 499 
configuration space, 9, 50 
conformally related metrics, 53 1 
conjugate point, 327 
conjugates, 667 
connected space, 347 
connection, 242 

coefficients of, 243 , 429 
curvature of, 244 
electromagnetic, 440 
fiat, 260 
forms w, 249, 256 
forms w* in the frame bOndle, 462, 480 
induced, 309 
Levi-Civita or Riemannian, 242, 245 
on a Lie group, 580; fiat, 5 8 1  
o n  a vector bundle, 428-3 1 
on the associated Ad bundle, 486 
Simon, 472 
spinor, 5 1 8-2 1 
symmetric, 245 
torsion of, 245 
torsion-free, 245 

constraint 
holonomic, 1 75 
nonholonomic, 1 75 

continuous, 1 2  
continuum mechanics, 6 1 7-35 ;  equil ibrium 

equations, 630 
contractible to a point, 1 6 1  
contraction, 89 
contravariant 

tensor, 59 
vector, 23 

coordinate 
change of, 29 
compatible, 1 5  
frame, 243 
homogeneous, 1 7  
inertial, 1 92 
local, 3, 4, 1 3  
map, 20 
patch, 20 

I N D E X  

coset space G / H ,  456 
fundamental principle, 457 

cotangent space, 40 
coupling constant or charge, 539 
covariance, 430 
covariant 

components of a tangent vector, 43 
constant, 267 
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derivative '\lx , 235, 24 1 ---4, 430; second, 30 1 ;  
of a tensor, 298-9 

differential '\l, exterior, 248 
tensor, 58 
vector = covector, 4 1  

covector, 4 1  
transformation law, 42 

covering space, 569-76 
associated to a subgroup of IT ] , 575 
orientable, 573 
universal, 570; covering group, 575 

critical manifolds, 673 
critical points and values, 28, 382-7 

homotopically, 382, 387 
index, 384 
inessential, 383 
nondegenerate, 383 

(cross) section, 50 ,  4 1 6, 466 
curl, 93 
current 

2-form J, 1 1 8 
3-form .?i, 1 99 
3-vector J, 1 1 9 
4-vector J, 1 99 
convective, 1 1 9 
electric, as a chain, 644 

curvature 
of a connection, 243 
extrinsic, 3 1 8  
forms () ,  25 1 , 256, 43 1 ;  and the Ad bundle, 489; 

of a surface, 257; ()* on a frame bundle, 462; 
()* on a principal bundle, 48 1 

Gauss, 207 
geodesic, 235 
intrinsic, 3 1 8  
mean, 207 
and paral lel displacement, 259-6 1 
of the Poincare metric, 258 
principal, 207 
Riemann sectional K (X /\ y) ,  3 1 3  
Riemann tensor, 244 
of a space curve, 1 9 1  
of a surface, 207 
of a surface of revolution, 258 
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curvature (continued) 
total, 2 1 5  
transformation R (X, Y) ,  244 
vector, 1 92, 1 94 

cycle 
absolute, 344 
completeable, 387 
group, 344 
relative, 379 

�\ 200 
d 'Alembertian D, 293, 37 1 
deformation 

retract, 406, 506 
tensor, 82 
theorem, 350 

degree of a map, see Brouwer degree 
de Rham's 

theorem, 355-60 
vector space �RP , 356 

derivation, 1 34 
derivative 

covariant, 235 
exterior, 73 
intrinsic, 235 
normal , 364 

determinant line bundle, 487 
dictionary relating forms and vectors, 

94 
diffeomorphism, 27 
differentiable, 20 
differential 

exterior d, 73; covariant, 250 
of a function, 40, 
of a map F* , 7, 27 

differential form, see form 
differentiation of integrals, 1 38-43 
Dirac 

adjoint or conjugate spinor, 532 
algebra, 509 
equation, 503 
Lagrangian, 53 1 
matrices, 5 1 0 
monopole, 444; quantization, 445 
operator, 5 1 1 ,  5 1 4, 52 1 ;  in curved space, 

5 1 5-2 1 
program, 502 
representation p, 5 1 2 
(4-component) spin or, 5 1 3  
string, 1 62 

Dirichlet's principle, 373 
distance from a point to a hypersurface, 

579 

I N D E X  

distribution (of subspaces), 1 66 
adiabatic, 1 83 
horizontal , 263 
integrable, 1 67 

divergence, 93,  1 36, 304 
exterior covariant, 545 
of a form, 365 
of a symmetric tensor, 300 
theorem, 1 39 

dual 
basis, 39 
bundle, 4 1 7 , 482 
Hodge * , 362 
space, 39 

fj , 67 
eigenvalue of a quadratic form, 63, 209 
eight-fold way, 649 
Einstein 

equations, 296, 3 1 6, 3 1 7 ;  Wheeler's version, 
3 1 8  

geodesic assumption, 292, 297 
tensor G, 3 1 5  

electric field E, 1 1 9 
I -form c.\, 1 20 
2-form *{C" 1 2 1  
and topology, 1 23 ,  378, 38 1  

electromagnetic 
bundle, 44 1 
connection, 440 
field strength F 2 , 1 97 
Lagrangian, 308 
stress-energy-momentum tensor, 308 
vector potential I -form A I , 1 99 

electromagnetism and Maxwell ' s  equations 
in curved spacetime, 366-7 
existence and uniqueness, 378, 387 
on projective space, 1 64 
on the 3-sphere, 1 63 
on the 3-torus, 1 22 

embedded submanifold, 27 
energy 

of deformation, 623-6 
density, 3 1 6 
hypersurface, 1 48; invariant form, I SO 
internal, 1 79 
momentum vector, 1 95 
momentum tensor, 295 
of a path, 274 
rest, 1 95 
total , 1 48,  1 96 

entropy, 1 83 
empirical, 1 85 
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equations of motion, 1 44 
relativistic, 303 

equilibrium equations, 630-2 
euclidean metric in quantum fields, 55 1 
Euler 

characteristic, 423, 426 
equations of fluid flow, 1 44 
integrability condition, 1 66 
principle of least action, 28 1 

exact 
form, 1 56 
sequence, 598-600; homology, 604; homotopy, 

600; short, 599 
exp, 284 
exponential map for a Lie group, 399, 403 
extension theorem, 592 
exterior 

algebra, 68 
covariant differential V, 250, 430; 

of a form section of a vector bundle, 488 
covariant divergence V*, 545 
differential d,  73; coordinate expression, 76; 

spatial d, 1 4 1  
form, 66; and vector analysis, 7 1  
power operation, 588 
product, 67; and determinants, 7 1 ;  geometric 

meaning, 70 

face, 335 
Faraday 's law, 1 2 1  
Fermat's principle, 297 
fermion, 658 
fiber, 49, 4 1 5  

bundle, 45 1 ,  594 
coordinate, 4 1 6  
over p ,  4 1 6  
space, 593 

field strength, 64 
Flamm paraboloid, 32 1 
flow generated by a vector field, 32, 33 

by invariant fields, 408 
by Lie bracket, 1 29 
straightened, 35 

fluid flow, 30,  1 43-5 
magnetohydrodynamic, 1 45 

foliation, 1 73 
force 

classical , 1 95 
Lorentz, 1 1 9 
Minkowski, 1 95 

form 
bi-invariant, 56 1 -3 
Cartan, 562 

Cauchy stress form, 6 1 8  
closed, 1 56 
exact, 1 56 
exterior, 66 
first fundamental, 202 
harmonic, 370 
heat I -form, 1 79 
integration of, 95- 1 02; and pull-backs, 

1 02 
invariant, 395 
Maurer-Cartan, 476 
normal , 376 
and pseudo-form, 1 22 
p-form, 4 1  
pseudo-, 86 
pull-back, 77-82 
second fundamental, 204, 309; and 

expansion of the universe, 3 1 8 , 3 1 9  
stress: Cauchy, 6 1 8 ;  Piola-Kirchhoff, 622, 

623 
tangential, 376 
of type Ad, 489, 490 
vector bundle-valued, 429 
vector-valued, dr and dS, 203 , 248 
volume, 86, 88 
with values in a Lie algebra, 475 ,  477 
work I -form, 1 79 

frame e, 243 
change of, 253 
coordinate, 243 
orthonormal, 255 
of sections, 4 1 7  

frame bundle, 453 
Frobenius 

chart, 1 67 
theorem, 1 70 

Frobenius-Schur relations, 664 
functional derivative, 307 
fundamental 

group JT I , 567-9, 578 
theorem of algebra, 2 1 5  
vector field, 455 

v'g, 88 
Galloway's  theorem, 578 
gauge 

bundle, 490 
field, 255 ,  536 
invariance, 44 1 ,  449, 533-6 
particles: gluons, 540; mesons, 538 ;  photons, 

536 
principle, 537 
transformation, 255, 490; global, 535 
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Gauss 

-Bonnet theorem, 2 1 5 , 323, 462 ; as an index 

theorem, 465 ; generalized, 465-8 

curvature, 207 

equations, 229, 3 1 0, 3 1  1 - 1 4; relativi stic 

meaning, 3 1 6- 1 8  

formula for variation o f  area, 225 

law, 1 2 1  

lemma, 286 

l inking or looping integral , 2 1 8  

normal map, 208, 2 1 5 ,  260 

theorem(l egregillm, 23 1 ,  3 1 7- 1 8  

Gaussian coordinates, 284 

Gel l-Mann 

Gell-Mann matrices, 540, 652 

Gel l-Mann/Okuba mass formula, 

659 

generalized 

momentum, 55 

velocity, 50 

general l inear group GI (n ) ,  254, 39 1 

general relativ i ty, 29 1 -322 

geodesic, 233, 27 1 -4  

1 .  Bernoulli 's theorem, 234 

in a bi-i nvariant metric ,  563 

circle, 287 

closed, 28 1 , 284 

completeness, 564 

curvature Kg , 235, 239 

equation, 235 

nul l , 303 

polar coordinates, 287 

stabi l i ty, 324, 326 

submanifold, 3 1 0 ; total , 3 1 1 

geodesy, 252 

gluons, 540 

gradient vector, 45 

Grassmann algebra (see also exterior 
algebra) 

manifold, 459 

Green's reciproci ty, 647 

Green's theorem, 368 

group 

JR, 2:, 2:2 , 336 

boundary, 344 

chain, 337 

cycle, 344 

de Rham, 356 

exact sequence, 598 

homology, 345 

homomorphism, 337,  398 

homotopy, 596 

quotient, 345 

:'ll, 200 

Haar measure, 397, 54 1  

Hadamard's lemma, 1 26 

hairy sphere, 423 

Hamilton, on composing rotations, 499 

Hamilton's 

equations, 1 47 

principle, 1 54, 275 ; in elastic ity, 626-9 

Hamil tonian, 1 47 

flow, 1 48 

operator, 439 

relativistic, 1 96 

vector field, 148 

harmonic cochain,  64 1 

harmonic field, 376 

harmonic form, 370 

in  a bi-invariant metric, 564 

Hawking s i ngularity theorem, 579 

heat I -form, 1 79 

helicity, 1 45 

Helmholtz decomposition, 372 

Hermitian 

adjoint t ,  392 

line bundle, 466 

Hessian matrix ,  383 

Hi lbert 

action principle, 308 

space inner product, 36 1 

variational approach,  305-8 , 368 

Hodge 

* operator, 362 

codifferential d*, 364 

decomposition, 372, 388 

theorem, 37 1 

theorem for normal forms, 3 8 1  

theorem for tangential forms, 377 

holomorphic, 1 58 

holonomic constraint, 1 75 

holonomy, 259 

homeomorphism, 1 3  

homogeneous space, 458 

homologous, 345 

homology group, 345-55 

relative, 379; sequence, 604 

homomorphism, 337,  398 

algebra, 78 

boundary, 338,  60 I 
induced, 337 
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homotopic ally critical point, 382 
homotopy, 59 1 

and homology, 603 
covering homotopy, 592 
free homotopy class, 282, 283 
sequence for a bundle, 600-3 

homotopy groups J[k , 596-8 
computation of, 605-8 
and covering spaces, 605 
of spheres, 597, 598 

Hopf 
bundle, 473, 474 
map and fibering, 606, 675 
theorem, 427 

Hopf-Rinow theorem, 564 
horizontal distribution, 263-6, 48 1 
Hurewicz theorem, 603 
hypercharge, 654 
hyperelastic, 626 
hypersurface, 6 

parallel, 286 
1- and 2-sided, 84 

immersion, 1 69, 1 73  
implicit function theorem, 5 
incidence matrix, 645 
inclusion map, 79 
index of a vector field (see also Kronecker index) 

of a section, 466 
index theorem, 465 
indicator, 3 1 5  
infinitesimal generator, 399 
instanton, 550 

winding number, 556, 560 
integrability condition, 1 66, 1 70, 1 74 
integrable 

constraint, 1 75 
distribution, 1 67 

integral 
curve, 3 1  
manifold, 1 66 

integrating factor, 1 83 
integration 

of forms, 96- 109 
over manifolds, 1 04-9 
of pseudoforms, 1 14- 17  

interaction, 534 
interior product, 89 
intersection number, 2 1 9  
intrinsic, 234 

derivative, 235 

invariant 
form, 395 
vector field, 395 
volume form, 397 

inverse 
function theorem, 29 
image, 1 2  

involution, 1 67 
isometry, 230, 3 1 4 

fixed set, 3 1 4  
invariant, 23 1 

isotopic spin, 648, 654 
isotropic body, 66 1 
isotropy subgroup, 457 

1 , 432 
Jacobi 

determinant, 5 
equation of geodesic variation, 273 
field, 1 29, 273 , 326-9 
identity, 403 
metric, 28 1 
principle of least action, 28 1 
rule for change of variables in an integral, 

1 0 1  
variational equation, 1 28 

Killing field, 528 
equation, 529 

kinetic term, 535 
Kirchhoff's current law (KCL), 644 
Kirchhoff's voltage law (KVL), 644 
Klein bottle, 348 
Klein-Gordon equation, 502 
Kronecker 

delta, generalized oj , 67 
index of a vector field, 2 1 6  

Lagrange 
bracket { , }, 80, 1 00 
deformation tensor, 82, 625 

Lagrange's equations, 147 
in a curved M3 , 276 
tensorial nature, 526 
with electromagnetism, 439 

Lagrangian, 54 
Dirac, 53 1 
electromagnetic, 308 
for particle in an electromagnetic field, 

436-9 
significance in special relativity, 437 
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Lambert's formula, 290 
Lame moduli ,  663 
Laplace's formula for pressure in a bubble, 

227 
Laplacian V'2 , 93, 305 

and mean curvature, 305 
Laplace operator on a cochain, 64 1 
Laplace operator ,6. = dd* + d*d on forms, 

368-72 
on a I -form, 370 

leaf of a foliation, 1 73 
maximal , 1 73 

Levi-Civita 
connection, 242 
equation, 297 
parallel displacement, 237 

Lie algebra 3" 402 
Ad invariant scalar product, 543 

Lie bracket [ , ], 1 26, 402 
Lie derivative S!x 

of a form, 1 32-8 
of the metric tensor, 625 
of the stress form, 634, 635 
of a vector field, 1 25 

Lie group, 39 1 -4 1 2  
I -parameter subgroup, 398, 405-7, 564; on 

SI(2, JR) , 407 
compact, 54 1  ; averaging over, 54 1 ;  

bi-invariant forms, 56 1 -7 
connection and curvature of, 580 

Lie subgroup and subalgebra, 
4 1 0- 1 2  

l ifting paths, 277 
in a bundle, 593 
in a covering space, 574 

lifting spheres, 605 
light cone, 1 93 
lightl ike, 1 93 
l inear functional, 38 
linking number, 2 1 9  
Liouville's theorem, 148 
local 

product, 49 
trivialization, 4 1 7  

Lorentz 
factor, 1 93 
force, 1 1 9 ;  covector, 1 20, 1 97 
group, 504; and spinor representation of 

S I (2 ,  C),  509 
metric, 1 92 
transformation, 46, 1 98 

magnetic field 8, 1 1 9 
I -form *fli, 1 2 1  
2-form �I\, 1 20 
and topology, 1 23 ,  387 

magnetohydrodynamics, 1 45 
manifold, 1 3 , 1 9  

closed, 1 20 
complex, 2 1  
integral , 1 66 
mechanical, 1 80 
orientable, 83 
product, 1 5  
pseudo-Riemannian, 45 
Riemannian, 45 
symplectic, 1 46 
with boundary, 1 06 

map 
canonical ,  1 49 
coordinate, 20 
differentiable, 20 
exponential , 284, 399 
geographical, 230 
inclusion, 79 
of manifolds: critical points and values, 28; 

regular points and values, 28 
projection, 4 1 5  

matrix group, 394 
Maurer -Cartan 

equations, 403 , 477 
form Q, 476 

maximal 
atlas, 1 5  
torus, 393 

Maxwell 's equations, 1 20-3 , 1 98 , 200, 
536 

on a curved space, 366--7 
independence of, 200 
on projective space, 1 64 
on a 3-sphere, 1 63 
on a torus, 1 22 

Mayer-Lie system, 1 74 
mean curvature, 207, 3 1 1 ,  529 

and divergence, 224 
mesons, 538 

Yukawa, 540 
metric 

conformally related, 53 1 
flat or locally euclidean, 263 
Lorentz or Minkowski, 1 92 
potentials, 293 
pseudo-Riemannian, 45 



Riemannian, 45 

spatial ,  297 

static, 292, 296 

stationary, 29 1 

tensor, 43 

minimal submanifold, 3 1 1 ,  528 

surface, 227,  305 

minimization of arc length, 286 

Minkowski 

electromagnetic field tensor, 1 97 

force, 1 95 

metric and space, 46, 1 92 

Mobius band, 1 8  

mode 

normal , 65 

zero, 465 

momentum 

canonical, 439 

classical, 1 94 

density, 320, 322 

4-vector, 1 94 

generalized, 55 

kinematical , 436 

operator, 439 

monopole bundle, 444, 473 

Morse 

deformation, 47 

equalities, 387, 428 

index, 328,  384 

inequal ities, 385,  386 

lacunary principle, 388 

lemma, 384 

polynomial, 385 

theory, 382-8 

type number, 385, 604 

multilinear, 58  

Myers's theorem, 576-8 

negative normal bundle, 673 

neighborhood, 1 2  

Noether's theorem, 527-9 

Nomizu's  theorem, 530 

normal 

bundle, 4 1 9, 6 1 6  

coordinates, 287, 303 

derivative, 364 

map, 208 

mode, 65 

nucleon 

Heisenberg, 537 

Yang-Mills ,  538 
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obstruction cocycle, 609- 1 2  

one parameter group, 3 1  

open set, 1 1 , 1 2  

orientabil ity, 83 

and curvature, 33 1 

and homology, 349 

and two-sidedness, 84 

orientable 

bundle, 6 1 1 ,  673 

manifold, 83 

transverse, 1 1 5 

orientation, 82 

of the boundary, 1 1 0 

coherent, 34 1 

transverse, 1 1 5 

orthogonal group, O (n ) ,  9, 392 

5 0 (n) ,  9, 392 

osculating plane, 1 9 1  

paper folding, 3 1 5  

parallel displacement, 237 

independence of path, 260 

parallelizable, 252 

parameter, distinguished or affine, 

272 

parameterized subset, 97 

partition of unity, 1 07 

and Riemannian metrics, 1 09 

passes peaks and pits, 427 

path ordering, 555 

Pauli 

algebra, 50 1 

matrices, 493 

period of a form, 357 

periodic motion, 282 

for double pendulum, 284 

for rigid body, 33 1 

Pfaffian, 1 67 

phase, 448, 535 

space, 55 ;  extended, 1 5 1  

physical components, 48, 630 

Piola-Kirchhoff stress forms 

first, 622 

second, 623 

Poincare 

characteristic, 604 

duality, 375 

index theorem, 42 1-8 

lemma and converse, 1 60 

metric, 239, 258 ;  geodesics, 274, 530 

I -form, 56; extended, 1 5 1  

691 
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Poincare (continued) 
polynomial, 385 

2-form, 80; extended, 1 5 1 , 437 

Poisson 

bracket ( , ) ,  1 54 

equation, 293, 37 1 

potential 

of a closed form, 1 58 ,  1 60--4 

global vector, 443, 448 

monopole, 444 

singularities, see Dirac string 

Poynting vector, 322 

principal 

bundle, 454, 458, 48 1 

directions, 207 , 3 1 0  

normal, 1 9 1  

normal curvatures, 207, 3 1 0  

principle of least action, 28 1 

probability amplitude, 447 

projection, 49, 4 1 5  

homomorphism, 605 

projective space, 1 6, 85 

homogeneous coordinates, 1 7  

lRpn , 1 6  

c p n , 22 

proper time, 1 93 ,  292 

pseudoform, 86 

integration of, 1 1 4 - 1 7  

pseudo-Riemannian, 45 

pull-back 

bundle, 622 

of covariant tensors, 53, 77, 79 

in elasticity, 8 1 ,  622 

and integration, 1 02 

pure gauge, 553 

quantization of a gauge field, 536 

topological , 26 1 

quark, 540 

up, down, and strange flavored, 649 

quasi-static, 1 79 

quatemion, 502 

quotient group, 345 

radius of curvature, 1 92, 22 1 

rate of deformation tensor, 

632--4 

regular points and values, 28 

relative 

boundaries, cycles, and homology groups, 

379-8 1 

homology sequence, 604 
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relativistic equations o f  motion, 303 

mass, 1 94 

reparameterization ,  1 0 1  

representation, 48 1 

adjoint, Ad, 486 

dual, 482 

irreducible, 662 

of a group, 48 1 ,  482 

reducible, 65 1 

tensor product, 482 

residue of a form, 1 59 

rest mass, 1 94 

retraction, 2 1 7  

Ricci 

curvature, 3 1 5 ,  374, 577 

identities 302 

tensor Rij ,  295 

Riemann 

-Christoffel curvature tensor, 229 

sectional curvature K (X /\ Y) ,  3 1 3- 1 4  

sphere, 2 1  

theorem, 266 

Riemannian 

manifold and metric, 45; bi-invariant, 563 ; on 

a surface of revolution, 258 

connection, 242 

rigid body, 9, 33 1 

rotation group S O (II ) ,  392, 492 

Sard's theorem, 29 

scalar curvature R, 296 

scalar product, 42 

global, 36 1 

of Hermitian matrices, 494 

nondegenerate, 42 

Schrodinger's equation, 439 

in curved space, 442 

with an electromagnetic field, 440, 

443 

Schur's lemma and corollary, 662, 663 

Schwarz's formula, 228 

Schwarzschild solution, 320-2 

spatial metric, 298 

section, 50, 4 1 6, 466 

holomorphic, 467 

p-form section of a vector bundle, 

488 

sectional curvature, 3 1 3  

self adjoint, 205 , 3 1 7 

self (anti) dual field, 549 

Serret-Frenet formulas, 1 96, 43 1 

Simon connection, 472 
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simplex, 333 

boundary, 335 

face, 335 

ordered, 335 

orientation, 336 

singular, 334 

standard, 333 

simplicial complex, 343 

simply connected, 283, 329, 595 
singularity of a vector field, 422 

skeleton, 6 1 0  
smooth, 7 

soap bubbles and films, 226-8 

space like, 1 93 

space-time notation, 1 4 1  

spatial slice, 3 1 6  
special, 392 

l inear group, SI(n), 1 1 , 392 

orthogonal group S O (n ) ,  392 

unitary group SU (n) ,  392 
sphere lifting theorem, 605 
spin structure, 5 1 5-1 8 

spinor 

adjoint, 532 

bundle SM, 5 1 7  

connection, 5 1 8-2 1 

cospinor, 5 1 3  

Dirac or 4-component, 5 1 3  

group Spin(3), 497 

"representation" of S O (3) ,  497 

"representation" of the Lorentz group, 509 

2-component, 497 ; left- and right-handed, 5 1 3  

stability, 324; subgroup, 457 

Stiefel 

manifold, 459, 6 1 6  

vector field, 426 

Stokes's theorem, 1 1 1 - 1 4  

generalized, 1 55 

for pseudoforms, 1 1 7 

stored energy of deformation, 623-6 

strain energy, 660 

stress-energy-momentum tensor Tij '  295 

stress forms 

Cauchy, 6 1 8 ; symmetry, 620 

first Piola-Kirchhoff, 622 

second Piola-Kirchhoff, 623 

stress tensor, 295, 6 1 7  

structure constants, 402 

in a bi-invariant metric ,  566 

structure group of a bundle, 433, 452 

reduction, 433 

SU (2) * U ( I ) ,  657 

S U (n ) ,  392, 493-7 

subalgebra, 4 1 1 
subgroup, 4 1 1 

i sotropy = l i ttle = stability, 457 

submanifold, 26 

embedded, 27 

framed, 1 1 5 

immersed, 1 69 
of Mn , 29 

of lRn , 4, 8 

1 - and 2-sided, 84 

with transverse orientation, 1 1 5 

submersion, 1 8 1  

summation convention, 59 

support, 1 07 

symmetries, 527-3 1 

symplectic 

form, 1 46 

manifold, 1 46 

Synge's 

formula, 325 

theorem, 329 

tangent 

bundle, 48 ; unit, 5 1  

space, 7 ,  25 

vector, 23 

Tel legen 's theorem, 646 

tensor 

analysis, 298-303 

Cauchy-Green, 82 

contravariant, 59 

covariant, 58  

deformation, 82 ,  625 

metric, 58  

mixed, 60; l inear transformation, 6 1  

product, 59, 66; representation, 482 

rate of deformation, 632 

transformation law, 62 

two-point, 622 

theorema egregium, 23 1 

thermodynamics 

first law, 1 80 

second law according to Lord Kelvin, 1 8 1 ;  

according to Caratheodory, 1 8 1  

Thorn's theorem, 349 

timelike, 1 93 

topological 

invariants, 346 

quantization, 468 

topological space, 1 2  

compact, 1 3  

topology, 1 2  

induced or subspace, 1 2  
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torsion 
of a connection. 245 ; 2-form, 249 
of a space curve, 1 96 

torus. 1 6  
maximal , 393 

transformation group, 456 
transition matrix cu v , 24, 254, 4 1 4  

for the cotangent bundle, 4 1 7  
for dual bundles, 4 1 7  
for tangent bundle. 4 1 7  
for tensor product bundle, 4 1 7  

transitive, 456 
translation (left and right), 393 
transversal to a submanifold, 34 
transverse orientation, l i S 
triangulation, 346 
tunnel i ng, 558 
twisted product, 4 1 5  

uni tary group U (n ) ,  392 
universe 

static, 292 
stationary, 29 1 

vacuum state, 557, 558 
tunneling, 558 

vari ation 
of action, 1 54 
external , 523 
first, of arc length, 232; of area, 22 1 ,  322 
in ternal , 523 
of a map, 1 53 
of Ricci tensor, 306 
second, of arc length, 324-32 

variational 
derivative 0 , 307, 526 
equation, 1 28 
pri nciples of mechanics, 275-8 1 
vector, 1 28, 1 53 ,  272 

vector 
analysis, 92, 1 36-8 
bundle, 4 1 3- 1 9; -valued form. 488 
contravari ant or tangent, 23 
coordinate, 25 
covariant = covector = I -form, 4 1  
as differential operator, 25 
field, 25;  flow ( I -parameter group) generated 

by, 32, 33 ;  integral curve of, 3 1 ;  along a 
submanifold, 269 

gradient, 45 

integral, 1 44, 308 
invariant, 395 
Kill ing. 528 
product, 92, 94, 1 03 
transformation law, 34 
-valued form, 248 
variational, 1 28 ,  1 53 ,  272 
velocity 4-vector, 1 93 

velocity field, 3 1  
virtual displacement, 276 
voltage as a cochain, 644 
volume 

bundle, 488 
form, 86, 88 
invariant: i n  mechanics, 1 48 ;  on the energy 

hypersurface, I SO;  on (he unit hyperboloid, 
200; on a Lie group, 397, 54 1 ;  on SI(2, lR) , 
398 

vorticity, 1 45 

wedge product, see exterior product 
weight diagram, 655 
Weingarten equations, 204 
Weizenbock formulas, 370 
Weyl ' s  

equation for neutrinos, 5 1 5  
method of orthogonal projection, 647 
principle of gauge invariance, 44 1 
theorem on the fundamental group of a Lie 

group, 565, 5 8 1  
Whitney embedding theorem, 23 
winding number 

of a curve, 2 1 2  
of a Yang-Mil l s  instanton, 560; in terms of 

field strength, 585-7 
of a Yang-Mills vacuum, 560 

work I -form in thermodynamics, 1 79 
world l ine, 1 93 
wormhole, 446 

Yang-Mills 
action, 544 
analogy with electromagneti sm, 547, 548, 550 
equations, 545 
field strength, 539 
i nstanton, 550; winding number, 560, 585 

Yukawa-Kemmer, 658 

2:2 , 336 
zero modes, 465 
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