11. Free Electron Lasers

Synchrotron radiation is emitted when electromagnetic fields exert a force
on a charged particle. This opens the possibility to apply external fields with
specific properties for the stimulation of electrons to emit even more radiation.
Of course, not just any external electromagnetic field would be useful. Fields
at some arbitrary frequency would not work because particles interacting
with such fields would in general be periodically accelerated and decelerated
without any net energy transfer. The external field must have a frequency
and phase such that a particle may continuously lose energy into synchrotron
radiation. Generally, it is most convenient to recycle and use spontaneous
radiation emitted previously by the same emission process. In this part, we
will discuss in some detail the process of stimulation as it applies to a free
electron laser.

In a free electron laser (FEL) quasi-monochromatic, spontaneous radia-
tion emitted from an undulator is recycled in an optical cavity to interact
with the electron beam causing accelerations which are periodic with the fre-
quency of the undulator radiation. In order to couple the particle motion to
the strictly transverse electromagnetic radiation field, the path of the elec-
trons is modulated by periodic deflections in a magnetic field to generate
transverse velocity components. In a realistic setup, this magnetic field is
provided in an undulator magnet serving both as the source of radiation and
the means to couple to the electric field. The transverse motion of the particle
results in a gain or loss of energy from/to the electromagnetic field depend-
ing on the location of the particle with respect to the phase of the external
radiation field. The principle components of a FEL are shown in Fig. B.1.

An electron beam is guided by a bending magnet unto the axis of an
undulator. Upon exiting the undulator, the beam is again deflected away from
the axis by a second bending magnet, both deflections to protect the mirrors
of the optical cavity. Radiation that is emitted by the electron beam while
travelling through the undulator is reflected by a mirror, travels to the mirror
on the opposite side of the undulator and is reflected there again. Just as
this radiation pulse enters the undulator again, another electron bunch joins
to establish the emission of stimulated radiation. The electron beam pulse
consists of a long train of many bunches, much longer than the length of the
optical cavity such that many beam-radiation interactions can be established.
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radiation field

Fig. 11.1. Free electron laser setup (schematic)

We may follow this process in great detail observing an electron as it trav-
els through say the positive half period of its oscillatory trajectory. During
this phase, the electron experiences a negative acceleration from the undula-
tor magnet field which is in phase with the oscillation amplitude. Acceleration
causes a perturbation of the electric fields of the electron as was discussed
in detail in Chap. 2. This perturbation travels away from the source at the
speed of light, which is what we call electromagnetic radiation. For an elec-
tron, the electric radiation field points in the direction of the acceleration. As
the electron travels through the positive half wave, it emits a radiation field
made of half a wave. Simultaneously, this radiation field, being faster than
the electron, travels ahead of the electron by precisely half a wavelength. This
process tells us that the radiation wavelength is closely related to the electron
motion and that it is quasi-monochromatic. Of course, for a strong undulator
the sinusoidal motion becomes perturbed and higher harmonics appear, but
the principle arguments made here are still true. Now, the electron starts
performing the negative half of its oscillation and, experiencing a positive
acceleration, emits the second halfwave of the radiation field matching per-
fectly the first halfwave. This happens in every period of the undulator and
when the electron reaches the end of the last period a radiation wave com-
posed of N, oscillations exists ahead of the electron. This process describes
the spontaneous radiation emission from an electron in an undulator magnet.

The radiation pulse just created is recycled in the optical cavity to reenter
the undulator again at a later time. The length of the optical cavity must
be adjusted very precisely to an integer multiple of both the radiation wave-
length and the distance between electron bunches. Under these conditions,
electron bunches and radiation pulses enter the undulator synchronously. A
complication arises from the fact that the electrons are contained in a bunch
which is much longer than the wavelength of the radiation. The electrons are
distributed for all practical purposes uniformly over many wavelengths. For
the moment, we ignore this complication and note that there is an electron
available whenever needed.

We pick now an electron starting to travel through a positive half wave
of its oscillation exactly at the same time and location as the radiation wave
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starts its positive field halfperiod. The electron, experiences then a downward
acceleration from the radiation field. During its motion the electron is contin-
uously accelerated until it has completed its travel through the positive half
oscillation. At the same time, the full positive have wave of the radiation field
has moved over the electron. At this moment the electron and the radiation
field are about to start their negative half periods. Continuing its motion now
through the negative half period, the electron still keeps loosing energy be-
cause it now faces a negative radiation field. The fact that the radiation field
“slides“ over the electron just one wavelength per undulator period ensures a
continuous energy transfer from electron to the radiation field. The electron
emits radiation which is now exactly in synchronism with the existing radia-
tion field and the new radiation intensity is proportional to the acceleration
or the external radiation field. Multiple recycling and interaction of radia-
tion field with electron bunches results therefore in an exponential increase
in radiation intensity.

At this point, we must consider all electrons, not just the one for which the
stimulation works as just described. This process does not work that perfect
for all particles. An electron just half a wavelength behind the one discussed
above would continuously gain energy from the radiation field and any other
electron would loose or gain energy depending on its phase with respect to the
radiation. It is not difficult to convince oneself that on average there may not
be any net energy transfer one way or another and therefore no stimulation
or acceleration. To get actual stimulation, some kind of asymmetry must be
introduced.

To see this, we recollect the electron motion in a storage ring in the pres-
ence of the rf-field in the accelerating cavity. In Sect. 7.1 we discussed the
phase space motion of particles under the influence of a radiation field. The ra-
diation field of a FEL acts exactly the same although at a much shorter wave-
length. The electron beam extends over many buckets as shown in Fig.11.2
and it is obvious that in its interaction with the field half of the electrons
gain and the other half loose energy from/to the radiation field. The effect of
the asymmetry required to make the FEL work is demonstrated in Fig. 11.3.
Choosing an electron beam energy to be off-resonance by a small amount,
the energy gain and losses for all electrons within a bucket becomes unbal-
anced and we can choose a case where all electrons on average loose energy
into (FEL) or gain energy (particle acceleration by a radiation field) from
the radiation field. The arrows in the first bucket of Fig. 11.3 show clearly
the imbalance of energy gain or loss. What it means to choose an electron
beam energy ofl-resonance will be discussed in more detail in the next sec-
tion, where we formulate quantitatively the processes discussed so far only
qualitatively.



220 11. Free Electron Lasers
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Fig. 11.2. Interaction of an electron beam (on-resosnace energy) with the radiation
field of a FEL. The arrows in the first bucket indicate the direction of particle motion
in its interaction with the electromagnetic field
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Fig. 11.3. Interaction of an electron beam (off-resonance energy) with the radiation

field of a FEL

11.1 Small Gain FEL

We concentrate on the case where only a small fraction of the particle energy
is extracted such that we can neglect effects on particle parameters. This
regime is called the “small-gain“ regime. Specifically, we ignore changes in the
particle energy and redistribution in space as a consequence of the periodic
energy modulation.

11.1.1 Energy Transfer

Transfer of energy between a charged particle and an electromagnetic wave
is effected by the electric field term of the Lorentz force equation and the
amount of transferred energy is

AW =e ELds:e/EL'z}dt7 (11.1)
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where Ej, is the external field or the Laser field in the optical cavity and v
the particle velocity. In free space v L E1, and therefore there is no energy
transfer possible, AW = 0. Generating some transverse velocity v, through
periodic deflection in an undulator, we get from (10.17a)

K
vy = +0c— sink,s, (11.2)
Y

where k, = 2m/\,. The external radiation field can be expressed by
Er, = Eop, cos (wLt — ks + @) (11.3)
and the energy transfer is
AW = e/'vELdt = e/szLdt
= eﬁcg Eor, /cos (wirt — ks + pg) sink, s dt (11.4)
= %eﬁc% Eyr, / (sin U —sin !I/*) dt,
where
UE =wpt — (kL + k) s+ ¢ - (11.5)

The energy transfer appears to be oscillatory, but continuous energy transfer
can be obtained if either ¥ ™= const. or ¥ "= const. In this case

dw=
T:wL—(kzLik:p) $=0 (11.6)

and we must derive conditions for this to be true. The velocity $ is from

(10.17b)

_ K?
$= 60—0—604—72 cos (2k,2) , (11.7)

where the average drift velocity B¢ is defined by
ds - K?
d_i — Be=Ge (1__> . (11.8)

We modify slightly the condition (11.6) and require that it be true only on
average

dw= ds
o =L (kL £ &) 5= 0, (11.9)

or
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(ki £k,) 8 (1 - 4K—;> — k, =0. (11.10)

With 8~ 1—1/29% and k, < ki, (11.10) becomes

1 K?
(1= —=)(1-22) 1| 2% ~0 11.11
LK 272>< 472> } b (LL11)

or for v > 1

kr, 172
5z (1+3K%) £k, =0. (11.12)

Equation (11.12) can be met only for the +sign or for

kL 172
=53 (1+3K7), (11.13)
which is identical to the definition of the fundamental undulator radiation
wavelength
A= 2B (14 1K 11.14
L= 2 ( +3 ) : (11.14)
Radiation at the fundamental wavelength of undulator radiation guaran-
tees a continuous energy transfer from the particles to the electromagnetic
wave or stimulation of radiation emission by an external field. For this reason,
it is most convenient to use spontaneous undulator radiation as the external
field to start the build-up of the free electron laser.

11.1.2 Equation of Motion

The energy gain dW of the electromagnetic field is related to the energy
change d«y of the electron by

dry 1 dw
- 11.15
ds mc? Bedt ( )
or with (11.4)
d KE,
o O (Gt —sinw ) (11.16)
ds 2ymc?
With the substitution sinz = — Re (i¢'®)
d KE . Lo
@ erBoL b (ielw —ié? ) . (11.17)
ds  2vymc?

In U+ = wit — (ki £ k) s(t) + g, we replace the location function s(t) by
its expression (10.19b)
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2

82k

sin (2k, Bet) , (11.18)

p

<& Bet

composed of an average position 5 and an oscillatory term. With &, < kL

dy  eBK o,
ds  2ymc?

For K2 - o
Re{iexp [i 8'I;/21<: sin (QkPS)} [elgﬁ _ i ]} (11.19)

P

and the the phase
T =wpt— (k2 k) 54 0 (11.20)

With the definition exp (izsin ¢) = P =% J, ()™ we get finally

n=—0o0

= 2
dy _ eSK Eor Re [i " ioo J., <ﬂ> ¢i2nky 5 (eiw+ _ eiu?)} . (11.21)
ds 2ymc? o 8v2k,

The infinite sum reflects the fact that the condition for continuous energy
transfer can be met not only at one wavenumber but also at all harmonics
of that frequency. Combining the exponential terms and sorting for equal
wavenumbers h &, , where h is an integer, we redefine the summation index
by setting

h—1
2k, Hhy =hbky, — n=— (11.22a)
ht1
Ink, —k, =hk, — n:% (11.22b)

and get

2

d K For, ~— . _
d_z - eg'ymch {Ju (@) — Jep (x)} Re {iel[(kﬁhkp)km tﬂ%}} ’

=—sin[(kr +h kp ) §—wr t+¢@g]
(11.23)

where x = 4+KT§(2' Introducing the abbreviation

K? K?
1= s () = (s 2

the energy transfer is

d K For, <
4y _ _BK For S~ acinw (11.25)
ds 2ymc? P

For maximum continuous energy transfer sin ¥ = const. or
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dv

= = (kp +hky) §—wr (11.26)
K2
:(]CL +hkp) BC<1—4—’Y2>—Q}L
1 K?
:(]CL+h]€p) <1—2—’Y2>C<1—4—’Y2>—C]€L
chy, 1 g2

where we assumed that ki, > hk,, which is true since A, >> A, and the
harmonic number of interest is generally unity or a single digit number. This
condition confirms our earlier finding (11.14) and extends the synchronicity
condition to multiples /& of the fundamental radiation frequency

e (1+3K7) . (11.27)

A =
T 92

The integer h therefore identifies the harmonic of the radiation frequency with
respect to the fundamental radiation.

In a real particle beam with a finite energy spread we may not assume that
all particles exactly meet the synchronicity condition. It is therefore useful
to evaluate the tolerance for meeting this condition. To do this, we define a
resonance energy

2 kr,
V=
2k,

(1+4K?), (11.28)

which is the energy at which the synchronicity condition is met exactly. For
any other particle energy v =y, + 6 we get from (11.26) and (11.28)

dw by

— =2hk,—. 11.29
ds Py ( )
With the variation of the energy deviation ié'y = %Sz — % = % and
Y Ve

(11.25) we get from (11.29) after differentiating with respect to s

N déy  ehk,K Eg

T 2R =S [JJ]sin®(s), (11.30)

where, for simplicity, we use only one harmonic h. This equation can be
written in the form

54 ,

@jt(zf sin¥ =0 (11.31)
exhibiting the dynamics of a harmonic oscillator. Equation (11.31) is known
as the Pendulum equation [65] with the frequency
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ehk KEOL

2% = W | [JJ]] - (11.32)

While interacting with the external radiation field, the particles perform
harmonic oscillations in a potential generated by this field. This situation
is very similar to the synchrotron oscillation of particles in a storage ring
interacting with the field of the rf-cavities as was discussed in section 7.1. In
phase space, the electron perform synchrotron oscillations at the frequency
{21, while exchanging energy with the radiation field.

11.1.3 FEL-Gain

Having established the possibility of energy transfer from an electron to a
radiation field, we may evaluate the magnitude of this energy transfer or the
gain in field energy per interaction process or per pass. One pass is defined
by the interaction of an electron bunch with the radiation field while passing
through the entire length of the undulator. The gain in the laser field AW}, =
—mc?n, Ay, where Ay is the energy loss per electron and pass to the radiation
field and n. the number of electrons per bunch. The energy in the laser field

W, =—=E%LV, (11.33)

where V' is the volume of the radiation field. With this, we may define the
FEL-gain for the k-th harmonic by

AW, me2ny, Ay _ Armeciy n.

WL sLE2V T hkELV

Gp =

(AW (11.34)

e ?

making use of (11.29). (A¥'), is the average value of AW'=y] — ¥ for all
electrons per bunch, where ¥} is defined at the beginning of the undulator

and ¥/ at the end of the undulator. To further simplify this expression, we
use (11.32), solve for the laser field

me2y2 2

=L (11.35)
ehKk,V[JJ]

Lo,

and define the electron density n;, = n./V. Here we have tacitly assumed that
the volume of the radiation field perfectly overlaps the volume of the electron
beam. This is not automatically the case and must be achieved by carefully
matching the electron beam to the diffraction dominated radiation field. If
this cannot be done, the volume V is the overlap volume, or the smaller of
both. With this the FEL-gain becomes

B 8mwen, hK 2k, [JJ)?

G =
nEyi08

(AW (11.36)

Te
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Numerical evaluation of (A¥') ~can be performed with the pendulum
equation. Multiplying the pendulum equation 2¥' and integrating we get

'? — 2002 cosW = const. (11.37)
Evaluating this at the beginning of the undulator

U2 W =200 (cosW — cos ) (11.38)
which becomes with ¥ = 2V kpl’;r—%- and ¥ =¥ from (11.29)

2
w2 — <2hkpu> 202 (cos W — cos Wo) (11.39)

r

Finally,

_ 92 2
W' (s) = 2k, L \/1+ Ty - %7 E [cosW (s) — cos W], (11.40)
p I

r

or with

w = hly Ly t—2 | (11.41)
v

r

where L, = N}, is the undulator length,

2 L20)?
7' (s) = L_‘:\/l + e [eos W (s) — cos ] (11.42)
We solve this by expansion and iteration. For a low gain FEL, the field

Ejyr, is weak and does not influence the particle motion. Therefore {2, < 1 and
(11.42) becomes

2 11202
{1/ Tw [1 37 2L (cos W — cos W)
w
1 LA
371 4L (cosW —cosW)® +...| . (11.43)
w

In the lowest order of iteration ¥} = QTW and A!I/(’O) = 0 for all particles,

which means there is no energy transfer. For first order approximation, we
integrate ¥} (s) = 2% to get ¥(;)(s) = 2%s + Wy and

AW, = W'(L,) — W] (0) = L [cos (2w + W) — cos Wo] + O(2)  (11.44)

2w

from (11.43). Averaging over all initial phases occupied by electrons 0 < ¥y <
27
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27
LQQ 1

2w 27r
0

(AP]) = [cos (2w + W) — cos W] AWy = 0. (11.45)

No energy transfer to the laser field occurs in this approximation either.
We need a still higher order approximation. The higher order correction to
U] (8) =W (8) + 6% (s) is from (11.43)

L}
8y = 2—wL [cos W — cos W] , (11.46)

and the correction to ¥ (s) is

L? (- 2
oW (1) 2_wL/0 [cos <Tws —0—1170) — cos !I/o} ds

2

2
= 4w15 [sin (2w + ¥y) — sinWy — 2w cos Y] . (11.47)

The second order approximation to the phase is then ¥;(s) = %—ws +9 +
8W1y and using (11.43) in second order as well we get

A!I/(’Q) = %f- [cos (2w + W + 5!!7(1)) — cos !I/O]
— L9 feos (2w + W) — cos T + ..., (11.48)
where in the second order term only the first order phase ¥, (s) = %—ws + %
is used. The first term becomes with 6W;y < ¥o + 2w

cos (2w + Wy + 6W1) — cos Wy
22 cos (2w + W) — ¥ sin (2w + ¥y) — cos Y

and

cos (2w + W) — cos Y]

Ay - L0 { 8uw?

RV
—2sin (2w + %) [sin (2w + ¥) — sin ¥y — 2w cos ¥y

— [cos (2w + W) —coszpo]2+...}. (11.49)

Now, we average over all initial phases assuming a uniform distribution
of particles in s or in phase. The individual terms become then

O

{cos (2w + W) — cos Wp) =

<sm (2w + ¥y > = %
(sin (2w + ¥y ) sin ¥p) = 1 cos (2w) (11.50a)
(sin (2w + %) cos W) = 1 sin (2w)
{cos (2w + W) cos W) = 3 cos (2w)
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With this
/ L3 o .
(AW;) = —=2= [1 — cos (2w) — wsin (2w)] (11.51)
and finally with [1 — cos (2w) — wsin (2w)] /w? = — - (M)Q
Yy - dw w
L2OF d (sinw)®
Ay = 2L — . 11.52
(augy = Lol £ () (1152
The FEL-gain is finally from (11.36)
hK2L3k d (sinw)?
G = -l Sl (72 = (Smw> : (11.53)
vz dw w

where we may express the particle density ny, by beam parameters as obtained
from the electron beam source

e e

’[’Lb = =" ——
vV wZo2l’

(11.54)

where o is the radius of a round beam. With these definitions, and I = cen, /¢
the electron peak current the gain per pass becomes

(11.55)

o 2B R N3 [ K2[JJ)2 d <sinw>2
k= —
w

002)\§/2 ¢ (1_'_%[(2)3/2@

The gain depends very much on the choice of the electron beam energy
through the function (11.41) , which is expressed by the gain curve as shown
in Fig. 11.4.

There is no gain if the beam energy is equal to the resonance energy,
v = «,. As has been discussed in the introduction to this chapter, we must
introduce an asymmetry to gain stimulation of radiation or gain and this
asymmetry is generated by a shift in energy. For a monochromatic electron
beam maximum gain can be reached for w = 1.2. A realistic beam, however,
is not monochromatic and the narrow gain curve indicates that a beam with
too large an energy spread may not produce any gain. There is no precise
upper limit for the allowable energy spread but from Fig. 11.4 we see that
gain is all but gone when |w| 2 5. We use this with (11.41) and (11.28)to
formulate a condition for the maximum allowable energy spread

5 242 )
‘77 < Sha (11.56)

For efficient gain the geometric size of the electron beam and the radia-
tion field must be matched. In (11.54) we have introduced a volume for the
electron bunch. Actually, this volume is the overlap volume of radiation field
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1L

sinw)2

Fig. 11.4. Free electron laser gain curve G oc—% ( o

and electron bunch. Ideally, one would try to get a perfect overlap by form-
ing both beams to be equal. This is in fact possible and we will discuss the
conditions for this to happen. First, we assume that the electron beam size
varies symmetrically about the center of the undulator. From our discussion
in Section 6.6.2 the beam size develops like

2
o2 (s) = o2 + <i> 52 (1L.57)
go
with distance s from the beam waist. To maximize gain we look for the
minimum average beam size within an undulator. This minimum demands a
symmetric solution about the undulator center. Furthermore, we may select
the optimum beam size at the center by looking for the minimum value of the
maximum beam size within the undulator. From do?/ dag = 0, the optimum
solution is obtained for s = £ L, = 0§/e = . For §, = 1L, the beam cross
section grows from a value of ¢3 in the middle of the undulator to a maximum
value of 203 at either end.
The radiation field is governed by diffraction. Starting at a beam waist
the growth of the radiation field cross section due to diffraction is quantified
by the Rayleigh length

w2

0
SR = T— 11.58
p=m, (1.58)
where wy is the beam size at the waist and A the wavelength. This length
is defined as the distance from the radiation source (waist) to the point at
which the cross section of the radiation beam has grown by a factor of two.
For a Gaussian beam we have for the beam size at a distance s from the waist
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w?(s) = wi + 6?52, (11.59)
where © = —2— is the divergence angle of the radiation field. This is exactly
TWwo

the same condition as we have just discussed for the electron beam assuming
the center of the undulator as the source of radiation.

Exercises *

Exercise 11.1 (S). Consider an electron travelling through an undulator
producing radiation. Show, that the radiation front travels faster than the
electron by one fundamental radiation wavelength per undulator period.

Exercise 11.2. Choose an undulator with IV, = 50 and K = 4.0 . Specify
the undulator period length A, and electron beam energy from a linear accel-
erator such that the fundamental wavelength of the radiation is 1pm. What
is the upper limit on the beam energy spread to make an FEL to function?

* The argument (S) indicates an exercise for which a solution is given in

Appendix A.



A. Solutions to Exercises

Solution 1.1. Solve £% = (cp)? + (mc?)? for (ep)? = E? — (mc?)? , extract
E , and replace E/mc? = v, and E = Fij, +mc? to get with 3 = /1 — y~2
finally cp = B(Ey, + mc?). Replacing 3 we get after some manipulation:
cp=mc?\/(EZ, /mc +1)2 — 1, and finally Fi;, = mc?(y — 1).

Solution 1.2. For very large energies v > 1 and ¢p ~ Fin, and Iy, =~
mc?vy . For nonrelativistic particles, set v /2 148, where § = [y, /mc? = %62,
therefore 8 =~ v/26 . With Ey;, = %mUQ and keeping only terms linear in 3, we

get cp = V/28(1 + §)mc? == cmw or the classical definition of the momentum
p=mu.

Solution 1.3. For a kinetic energy of Ei;, = 200 MeV and mp02 =
938.27 MeV; the total energy I/ = 1138.27 MeV. The velocity 8 = /1 — vy 2 =

41— (—3133%_2277)2 = 0.566 and the momentum cp = BFE = 644.44 MeV or

p = 644.44 MeV /c.

Solution 1.4. A length ds of the linac in the laboratory system appears to
the electron Lorentz contracted by the relativistic factor . Since the electron
energy varies along the linac we must integrate the contraction along the full
length of the linac. The linac length as seen by the electron is therefore f %,

where v(s) = 7, + @s, and the acceleration o = 20/mc? = 39.14 1/m. From
By = 3 we get 7o = 5 and with v = $ +39.14-3000 = 1.17 x 10° the integral

» » 5
is f ;}2) = é In % or numerically ﬁ In % = 0.291 m. For an electron

coasting with energy v along a 3000 m long tube, this tube appears to be
3000/ = 0.0256 m or 2.56 cm long.

Solution 1.5. The revolution frequency is fie, = ¢/C = 1.0 x 10° 1/s and
the total number of particles orbiting n, = I/¢/ fiey = 1.5604 x 10'2 electrons
or 3.1208 x 10%lectron /bunch. The photon pulses image exactly those of the
electron bunches. Therefore, there is a 1 ¢m long photon pules every 0.6 m,
or in time one 30 ps photon pulses every 2 ns.

Solution 1.6. The mass of the pion is m,c?> = 139.6 MeV and v = 1.716.
From this the velocity is 8 = 0.813 or v = 2.44 x 10® m/s. The travel time
along a 15 m long beam line is £ = 6.15 x 108 and the survival probability
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without time dilatation! is 2 = exp (—6d45726) = 0494c0 Ch h
ear C hC h hh

C hhChh h

2=0 — Me M8&8M M and the available pion flux is greater
by a factor of 2.7.

Solution 1.7. Occ ¢ / c @

¢ tco = s>nfmagi =... nr 1 =0yl o )0<1 =6,7 a—p3" -
M= £22% = 23cg. Solut o G. . 4. e

tto to Fhec=797.6 ./

Solution 1.8. 0 he geometry of the field lines in the particle system of refer-
ence can be expressed by £ = 2 2 «, 23 «

3323 3 z 3
3 =z . bavya vy
ary £ = tmTO‘ 2e09 ution of radial field lines is compressed in the

z-direction by a factor In

Solution 1.9. 0he circulating beam current is defined by i = 234,.,, =
ab , b b  irp oducpt s tip tdio T34 irp tpsdiso
tpdpo = r the particle velocity and C' the accelerator circumference.
The number of particles representing a current of 1A are: n = iC/ev =
I.ns 1 yn®2nf
f

6=0/c=T 18. 0 he synchrotron produces
100 pulses of 1zz  duration and at a pulse current of 1A. The average beam
current is therefore 4,y = 100-6 -1 = 33.3 pA.

Solution 2.1. 0he Cherenkov condition is 3. 4, cosf® = 1. For electroQ
£(10 ) = 0199869 0 (50 ) = 019999478r 00
0 (/7.0 ¢t Qut 3 tybWithmi,an dm ,, ,, m
Jg4aim WWmW m m,ita W ii WhmhWW m,ta
i 573 10, t/ 7 ~

0 .
Solvi ion 2.2. Oki nkiii Opa =4% s =53.94d9
9999 99 9
9 99999 9 9 9
s = ~v. d. . tan ntatn tta at t
anttaa taat an 37.
tt
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Byaq) (s — Bybs) — (—257603 + 7@4%(—67193 + Yby) = a1y + agbs + y2azbs —
By2asby — By asbs + By asby — B°y2asbs + B2 asby + By asbs — yPaghy =
a1b1 + a2bg + azbs — aqby g.e.d.

Solution 2.4. The 4-momentum is (cfik, ifiw) = (clikn,iliw) , the 4-spacetime
vector (7,ict) and with ck = w their product is chkng,x + chknyy + chkn,z —
chwt = hw (nyx + nyy +n,2 — ct) which is fic-times the phase (2.18) of a
plane wave.

Solution 2.5. The relativistic Doppler effect is w*y (1 + 8, n%) = w and for
the classical case we set v =1, n = cos® and § = v/vy , where vg is the
velocity of the wave (light or acoustic). The relative Doppler shift is then

éfi = L cos .
s vo
Solution 2.6. We use the uncertainty relation Ax Ap = Ax ik > hor Az >

1/k and the ”characteristic volume” of a photon is Vj,,, = %33 . The average

electric field within this volume is from ¢ = 2—20E2Vph = Iwor E = k%\/2¢y hic.
For a 0.1238 eV photon (COs-laser) the wavelength is A = 10 pgm and the
average electric field is £/ = 2.96 x 1077 V/m. In case of a 10 keV x-ray

photon the field is £ =1.93 kV/m

Solution 2.7. We describe EM-waves by E = Egexp[i(wf — kr)] and B =

Boexp[i(wt — kr)] where kr=nrk and n is a unit vector parallel to k.
Inserted into Maxwell’s equation V x E= —L?B we get with & = w/c for the
Lhs.: V x (inrk)E = V(inrk) x E and for the r.h.s. B:iT“[c]B:i[c]kB.
With V(nr) = V(nyz 4+ nyy + n,2) = n we get finally [¢]B= nxE . This
equation tells us that the electric and magnetic wavefields are orthogonal.

Solution 2.8. With [¢|]B= nXxE from Exercise 2.7 and (B.10) we get
Ex (n x E) = E?n, what was to be demonstrated.

Solution 3.1. The energy loss per turn is from (3.18) Uy = 20.32 keV and
the total radiation power P = 20.32 kW. In case of muons, we have the mass
ratio m,/m. = 206.8 and the energy loss is reduced by the 4 power of
this ratio to become Up,, = 11.1 peV, which is completely negligible.

Solution 3.2. The maximum photon flux occurs at a photon energy of about
g = 0.286¢, and 5(0.286) =2 0.569. To find the 1% photon energy we use
(3.38) to scale the photon flux and have 0.777/z/ expx = 0.00569, which is
solved by x = 5.795 . Appreciable radiation exists up to almost six times the
critical photon energy.

Solution 3.3. From (3.28) we have F = [0.4508 ¢, (keV) p (m)]1/3 =8.0423'/3 =
2.0035 GeV. The magnetic field necessary for a bending radius of p = 1.784

m would be B = 3.75 T, which is way beyond conventional magnet tech-
nology. Either superconducting magnets must be used to preserve the ring
geometry or a new ring must be constructed with bending magnets which
must be longer by at least a factor of 2.5.
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Solution 3.4. The bending radius is p = 2887 m, the energy loss is
4
Ug = 88.5]%4 (%i) = 399.4 keV and the critical photon energy . =

3
2.2]573 (%ﬁ) = 929.3 eV. The synchrotron radiation power is P = 65.5
kW.

Solution 3.5. The critical photon energy is e, = 38.04 keV and ¢/¢, = 0.21
. The universal function is S(0.21) = 0.5625 and the photon flux %ﬁ =
CyET % 5 (0.21) = 3.118 5x10'? photons/mrad. The vertical opening angle
V27109 = 0.251 mr resulting in an effective beam height at the experiment
of Y = 3.77 mm. A beam size of 10 um at 15 m corresponds to an angle of
0.667 prad at the source. The total photon flux into the required sample cross
section is then Ny, = 5.53 X 10° photons/s, which is more than required. For

a still higher photon flux one might apply some photon focusing.

Solution 3.6. In the horizontal plane the radiation distribution is uniform
and an angle of A = 0.2 mr will produce a photon beam width of 1
mm at a distance of 5 m. The critical photon energy is ¢, = 563 eV and
g/e. = 0.124/563 = 0.00022. For the IR radiation the vertical opening angle
:oa = 11.3 mr (>> 1/+!) and the source length I = 0.045 m. The total source
height is 0o, = V0.112 +0.1072 = 0.153 mm and the vertical divergence
Otot,yr = 14.9 mr. The photon flux for A =10 pm and 5(0.00022) = 0.0805
is deh/dw = 1.275 10'5 photons/s/mr/100%BW. The photon brightness is

_ (AN /d9)AY 975401502 13 hotons
then B = 27Ta'fotyya'totyy/ = SroTss1a0 = 1780 x 107 B aw -
Solution 3.7. From Exercise 3.6 L = 0.045 m and the diffraction limited
source size and divergence are o, = %\/ AL = 0.107 mm and o, = % =

14.9 mr, respectively. This is to be compared with the electron beam para-
meters (0}, 5, 0y, 4) = (1.1, 0.11) mm and o (5, 7, op ) = (0.11, 0.011) mr.
There is a considerable mismatch in the z-plane with UT/\/i = 0.076 mm
<& Op,z and ar//\/i = 10.5 mr > 0y, /. In the vertical plane the mismatch is
small. In both planes the diffraction limited photon emittance is €ph v = 797
nm, which is much larger than the electron beam emittances in both planes.
The 10 pm IR radiation is therefore spatially coherent.

Solution 4.1. The magnetic field of 2 T would limit the proton energy to
FE < 0.3Bp = 90000 GeV or 90 TeV. The energy loss at 90 TeV would be
from (3.18) with (D.1) and (3.15) AFE = 3.41 keV and the total radiation
power is 34.1 W. The total radiation power is less than the available rf-power
and therefore the energy is limited by the magnetic field. The critical photon
energy is from (3.26) and (3.27) corrected for protons ¢, :‘hC'CET3 = 1.74 x

105 GeV = 1.74 keV and the radiation is therefore mainly concentrated in
the soft x-ray regime.
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Solution 4.2. To keep the 66/99 keV contamination below 1% we expect to
work on the high energy end of the synchrotron radiation spectrum. In this
regime the spectral intensity scales like I(z) oc 0.777\/z/e®, where v = €ph /€.
The task requires that Igg/l33 < 0.01 or Vet —wes — /e~ %3 < 0.01.
Solving, we get x33 = In (100/\/5) = 4.2586 or €, < 33/4.2586 = 7.749 keV.
The spectral photon flux at 33 keV is then from (3.38) with = = 4.2586
given by Nph ~2 2.25 x 10'3n,ET photons/s/0.1%BW, where we added a
factor n, to account for the number of wiggler poles. The magnetic field and
beam energy are related by the critical photon energy and we get from (3.26)
E? (GeVQ) B(T) < 19.256. A reasonable field level for a superconducting
wiggler magnet is B =4 —6 'T'; we take B = 6 'T. For economy, we would like
to keep the beam energy low and the ring size small. Here we try ¥ = 1.5
GeV. In this case ¢, = 8.9775 keV and x33 = 3.676 . For this decreased
value of z33 the flux is increased and we have now Nph ~ 5.61 x 1013npl
photons/s/0.1%BW. With a beam current of say 0.5 A and a wiggler magnet
with 1, = 6 poles we have finally a flux of N,,(33 keV) = 1.68 x 10'*
photons/s/0.1%BW, which is not quite what we want. To get more flux, one
would have to increase either the beam energy, the current or the number of
wiggler poles. The final choice of parameters is now determined by technical
limitations or economic considerations.

Solution 4.3. In first approximation, we assume that all the fields are con-
tained within the two rows of poles and no field leaks out. Separating the
poles by dg requires to generate the additional field energy ds = Fdg,
where F' is the force between poles. Since de > 0 for dg > 0, the force
is attractive, meaning that the poles are attracted. The force is then F' =

& w 15AP
%;u— =5=l B?(z)dz = 20889 N=2.13 tons.

Solution 4.4. The instantaneous radiation power is given by (3.9)

P, (GeV/s) = 379.35 B2 E2. The total energy loss of an electron due to wig-
gler radiation power can be obtained by integrating through the wiggler field
for AFE (GeV) = 189.67 B2 EQ%; and the total radiation power for a beam

current [ is P, (W) = 632.67BZE?L, 1.

Solution 4.5. In the electron rest frame energy conservation requires fiw +

me2 = hw' + 4/2p? + (mc2)? , where hw and hw' are the incoming and out-

going photon energies, respectively and cp the electron momentum after the
scattering process. Solving for cp we get ¢?p? = h? (w — w’)2 +2mmc? (w — w')
. For momentum conservation, we require that 1k = ik’ + p with the angle
¥ between k and p. From this we get ¢2p? = (hw')® + (hw)? — 22w w’ cos ¥ .
Comparing booth expressions for c¢p we get —2fiww'+ 2hme? (w —w') =
—2R%ww' cos? or L5 (1—cosd) = L — 1 = % We look for radiation
emitted in the forward direction or for # = 180° and get for the scattered
wavelength X' = \, because g?zc ~ 4.810712 < X\ . Note, that all quantities
are still defined in the electron rest frame. The wavelength of the undulator
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field in the electron system is A = 2o , where now L* is the laboratory sys-
tem of reference and the scattered radiation in the laboratory system due to

the Doppler effect is \* = 2—/\% (1 + %KQ) , which is the expression for the
fundamental wavelength of undulator radiation.

Solution 4.6. The fundamental wave length for a very weak undulator
(K < 1, eg. wide open gap) is A (800 MeV) = 102 A and \ (7 GeV) =
1.33 A which are the shortest achievable wavelength. For a 10 mm gap the
field is from (4.5) B = 1.198 T and the maximum value of the strength pa-
rameter is K = 5.595. With this the longest wavelength in the fundamental
is A =1698.5 A for the 800 MeV ring and A = 22.147 A for the 7 GeV ring.

Solution 4.7. The short wavelength limits are given for a wide open un-
dulator, K < 1, and are A = 3.13A for Ap = 15 mm and A = 15.7A
for A, = 75 mm. The long wavelength limits are determined by the mag-
netic fields when the undulator gaps are closed to 10 mm. The fields are
from (4.5) Bo(Ap, =15 mm) = 0.19 T and Bp(\, =75 mm) = 1.66 T,
respectively. The undulator strengths are K (\, =15 mm) = 0.270 and
K (), = 75 mm) = 1.35 and the wavelengths A (\, = 15 mm) = 3.24 A and
A (A, =75 mm) = 30.0 A. The tuning range is very small for the 15 mm un-
dulator and about a factor of two for the long period undulator. The ranges
are so different because the K-value can be varied much more for longer
period undulators.

Solution 5.1. In each bunch there are n, = 71, /e = 1.87x 107 electrons and
the circulating beam current per bunch is 7}, = en, f;ev = 3.0 pA. To reach a
circulating beam current of 200 mA 66667 injection pulses are required. To
deliver that many pulses an injector operating at 10 Hz would require 1.85
hours. To reduce the injection time to less than 5 min each injection pulse
must deliver at least 23 bunches. Additional time and bunches are required
if the injection process is less than 100% effective.

Solution 6.1. A uniform field By in the laboratory system transforms into
afield (Ej, Ey, Er) = ([d] 7By, 0, 0) and (B, By, B:) = (0, yBy, 0). The

z
particle velocity is zero in it’s own system and therefore the magnetic field By

is ineffective. There is a nonzero electric field E} = [c] BvB, which deflects
an electron in the negative z-direction just like the magnetic field in the
laboratory system does. The gain in transverse momentum is Ap} = f e

rqit = [SEagg = B +o— dt _ ds -
Erdtr = f e ds = e ¢, where we set dt* = = @; ,and ébAls*the
2Pz —

length of the bending magnet. The deflection angle is then 9 =
(] 5361, , which is the same as (6.11) with (6.7).

g

Solution 6.2. From the Lorentz force equation we get E = [c| 3B . Solving

for 3, we get for our case 8 = [c}EB =3.336 x 1073 or with v ~ 1 + %52 the
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kinetic energy for force equivalence is Fi;, = 852.35 eV. Magnetic fields are
more effective for electrons with a kinetic energy of more than 852 eV. That
equivalence point is much higher for protons and ions.

Solution 6.3. For the total ring we have O.B%nbé =21 or N = 02_;:5( =

26.18. The number of magnets must be an integer and we set n, = 28 (it is
customary to use an even number of magnets, although not necessary), the
field B = 1.122 T, the bending radius p = 8.913 m, and the deflection angle
is ¢ = 360/28 = 12.86 degrees per magnet.

Solution 6.4. To generate a focusing magnet, we require a magnetic field
By (y =0) = gz, where ¢ is a constant. This field can be derived from a
potential V' = —gzy . The surface of ferromagnetic pole is an equipotential
surface and its cross section in the zy-plane is given by xy = const. The
shape of a pole is that of a hyperbola. The pole tip at the intersection of
the 45°-line from the magnet axis and the pole profile is at the coordinates
(R/\/§7 R/\/i) With this the equation for the pole shape becomes xy = %RQ
which is (6.16).

Solution 6.5. The transformation matrix for quadrupole and 5 m drift space

is M = < 1) < f 1 1) = < 1 1) . To focus a parall 1 ray to a focal

point at 5 m, we require rp = (1— ?) z9g = 0or f = % = 5 m. From

this k= 1.0 m 2 and ¢g = 10—531 = 5.0 T/m. The relation between excitation
current and field gradient in a quadrupole can be derived in a similar way as
done for a bending magnet and is given by pgleon = %gRQ. For the case on
hand, the excitation current is I..;; = 4973.6 A-turns.

Solution 6.6. Starting from the waist in the center of the drift space the
2
betatron function is 3 (s) = 8, + 5 - If we choose a very small value for

B, 1: £ (0) we get a very large value at s = %L . Similarly, if 8, is very large

ﬁ(gL) is large too. There must be a minimum for 8 (%L) We calculate
dB/08,, = 0, solve for 5, and get for the optimum value 3, = %L. For this
value at the waist we have the minimum variation of the betatron function
or of the beam size along the drift space L. If 0, = /€8, is the beam size
at the waist then the beam size at the ends of the drift space is 0 = \/iow .
This is the same result as is known for a photon beam defining the Rayleigh

length.

Solution 6.7. We form FODO cells which are each 2L = 8 m long. That
leaves between bending magnets 2 m of space for quadrupoles and drift
spaces. For & = v/2 we get the minimum beam sizes along the FODO-cell,

which is define as the minimum beam radius, or Ry, = /02 + 0%‘ . The

horizontal and vertical betatron functions in the center of the QD—qurg(lflnrupole
are 8, = 2.343 m and 3, = 13.657 m. The focal length of the half-quadrupole
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is fuq = KL = 5.657 m. Note, in FODO theory we use half quadrupoles. That
means the focal length of the full quadrupole is f;, = %th = 2.8285 m.
Each half FODO-cell now has the following structure: $QF(0.5 m)-Drift(0.5
m)-Bend(2 m)-Drift (0.5 m)-1QD(0.5 m).

Solution 6.8. In the center of say a QF the optimum betatron function is

given by B, = LT}:TL};, and ag = 0. The transformation matrix from the

0
functions at the quadrupole exit are therefore: 8 = 3, , o = —%60 and

center to the exit of the thin quadrupole is <_; ) and the betatron

v = L@g‘ﬁ These are the starting values for the drift space which spans the

space between quadrupoles since the bending magnets are not included in

the focusing scheme in this approximation. The expression for the betatron

function between a QF and QD quadrupole is therefore 5 (s) = 5, — 2as +
L 1

52 and the phase advance ¥ = fo 6%2) =VvkZ-1 fo K(K+1)72C(1:+1)S+252 =

— arctan \/% + arctan \/—’%—1 For the optimum FODO-cell with & = /2,

the phase advance per half cell is !I/% = 45°, and because of symmetry for the
full cell !Z/FODO = 90°.

Solution 7.1. In this case we do not expand the rf-voltage and keep V;¢(t) =
Viesinw,sf . We also ignore damping, because it is a very small effect. Equa-

tion (7.2) becomes then with (7.3)

T+ ET:TV? (sin 4 cos w T + cos Y, sinw, T — sin ) = 0, where 7, = 712 — Q.
We multiply this equation with 7 and integrate to get

%7"2 + wﬁf;ﬁ;o (sin ¥, sin w7 — cosw,¢T cos Y, — Tsin Y, ) =const. For simplic-
ity, we assume that 9, — 0, which is not true for storage rings but describes
very well the situation in FELs, and get 72— %;O—‘éfo cos w, T =const. Plotting
7 as a function of 7 results in the phase space diagram as shown in Fig. 11.2.

Solution 7.2. We use the storage ring of Exercise 6.3 with an energy of 3
GeV and a bending radius of p = 8.913 m. This ring has 14 FODO cells, each 8
m long. To make it more realistic we assume that all insertion straight sections
will occupy the same length such that the ring circumference is C = 224.0
m. The synchrotron radiation power is from (3.14) (P,) = 1075.9 GeV/s and
the horizontal and vertical damping times are then 7., = 2.788 ms. The
synchrotron damping time is half that or 7, = 1.394 ms. The beam energy
spread is from (7.32) (%) = 0.0609 %.

Solution 7.3. The probability to emit a photon of energy ¢ in a unit time is

. P, S(x) . E? 55hc
— O =2\ = _ RS L5 {2 CE—
n(eph) == We are looking for the case ¢ = 0. = mc2 \/ 64+/Bmc2J.p

10.9 MeV. For =, = 3ficl = 19166 eV, the ratio 7 = 2, /252 = 227 54

> 1 and %‘ = 23826 1/eVs. The probability becomes with this n(eyn) =~
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1.86 x 108! We may, without calculation conclude that no second photon
of this energy will be emitted within a damping time. Energy is emitted in
very small fractions of the electron energy.

Solution 7.4. From (9.167) we get the number of photons emitted per unit
time Nph = %5% = 3.158 x 106% and per radian 7 = 0.01063y ~ 5

Solution 9.1. Integration of (9.76) over ¢ results in factors 27 and 7 for

the two terms in the nominator, respectively and we have the integrals
4

™ sin O sin” 0 _ 47 37
21 J (17@@59)3‘19 —7 (1~ ) Jo (- @cose)5d9 =TT Wy
4 4
= 47r'y4 (1 — %) = 47T’)/4% . With this, the radiation power is P,y = grcmc%%g—
, which is (9.59).

Solution 9.2. The vertical opening angle is 1/ = 0.085 mr and therefore all
radiation will be accepted. The spectral photon ﬁux into an opening angle of

At =10 mr is therefore given from (9.156) by N, = C¢EIA“S ( ) A,
With the critical photon energy is ¢, = 23.94 keV the spectral photon flux

from an ESRF bending magnet is Nph =4.75 x 104 S (%) .

Solution 9.3. We use (9.106) and get with & = 3 (1 + 726%)%/2 for the

. dPW(10%) _ 202y 2 | K3/5(8) 292 K7,5(8) |
p% point —raas /dew (1 +~76%) [K;z(o) + 117292 Ké//:(o) =0.1.

Solving for # gives the angle at which the intensity has dropped to 10%.

4/3
- PW(0%) ~202 *(1/3) w o
For low frequencies —7577 /dew 60 + e Eerieye) (W, =b
d2W(10%) exp( ) 1124202
and for large arguments =— 575 /dew e P[] e p.

All expressions have to be evaluated numerlcally. The angle at which the

total radiation intensity has dropped to 10% is from (9.115) given by

dW (10% 2g° .
% % = m (1—0—%1—1W) = p, which can be solved by

v = 1.390 for p = 10%.

Solution 10.1. From (10.20) the amplitude of the oscillatory motion in an

undulator is a; = %% = % = 0.581 um. The longitudinal oscil-

lation amplitude is from (10.190) o) = % = 0.053 A. Both amplitudes are
very small, yet are responsible for the high intensities of radiation.

Solution 10.2. The focal length for a single pole end is given by (10.23)

L = ”—QQK—Z = 258 x 1075 m™! and for the whole undulator -+ =
f1y 292 A fy

;Tiff—jmv = 0.00258 m~* or f, = 387.60 m. This focal length is very long
compared to the focal lengths of the ring quadrupole, which are of the order
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of the distance between quadrupoles. Typically, the focal length of any inser-
tion should be more than about 50 m to be negligible. The wiggler magnet
with K =5, on the other hand, produces a focal length of f,, = 15.50 m which
is too strong to be ignored and must be compensated. The difference comes
from the fact that its the deflection angle which is responsible for focusing
and f—ly o 62 Focusing occurs only in the nondeflecting plane and f% =0.

Solution 10.3. This result appears nonphysical, yet it is correct, but re-
quires some interpretation. The number of photons emitted into the forward
cone is constant. Note, that the forward cone angle decreases with increasing
number of periods. The constant number of photons is emitted into a smaller
and smaller cone. Outside this forward cone there is still much radiation and
integration of all radiation would give the more intuitive result that the total
radiation power increases with number of undulator periods.

Solution 10.4. To solve this problem , we do not rely on exact calculations,
but are satisfied with the precision of reading graphs in Chapter D. We also
use iterations to get the solution we want. The fundamental flux drops below
10% for K < 0.25, and we use this value to get 15 keV radiation. From the
definition of the fundamental photon energy we get the periodlength A, = 3.0
cm. To generate 4 keV radiation we need to change K enough to raise the
factor (1 + %KQ) from a low value of 1.031 by a factor of 15/4 to a value
of 3.87 or to a high of K = 2.4, which corresponds to a field of B = 0.857
T. Unfortunately, that field requires a gap of ¢ = 8.1 mm which is less than
allowed. We have to increase the periodlength to say A, = 3.5 cm, which
gives a maximum photon energy for K = 0.25 of g, = 12.9 keV. We plan
to use the 3'¢ harmonic to reach 15 keV. To reach eph = 4 keV, we need
K = 2.16, a field of B = 0.661 T, which requires an allowable gap of ¢ = 11.7
mm. We use the 3'¢ harmonic to reach gph = 15 keV at K = 1.82. With this
result we may even extend the spectral range on both ends.

Solution 10.5. In the electron system the wavelength of the laser beam is
Lorentz contracted by a factor of 2_1*7’ where the factor of two is due to the
fact that the relative velocity between both beams is 2¢. The wavelength in

the laboratory system is therefore A = 4—/\#, since K < 1 for the laser field.

Solution 10.6. The maximum transverse oscillation amplitude is 4.57 pm
and the transverse velocity in units of ¢ is just equal to the maximum de-
flection angle 3, = 8 = K/ = 0.38 mr. The transverse relativistic factor
v, a2 1+ 7.22 x 107% | indeed very small, yet enough to start generating
relativistic perturbations in the transverse particle motion.

Solution 10.7. The fundamental wavelength is given by the expression A =
2—/}% (1 + %KQ —l—’)/2192) and for ¥ = 0, we have the fundamental wavelength

A\ = 10.88 A. The natural bandwidth is 1/N, = 1% and we look therefore for
an angle 1 such that the wavelength has increased by no more than 9%, or

1—;7_% = 0.09 and solving for 1A9, we get 9 =+62.6 prad.
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Solution 11.1. We may solve this problem two ways. First, we use the aver-
age drift velocity 8 = 8 (1 - ) and calculate the time it takes the electron

to travel along one period, {. =

?lawlvy

~ —% (1 +1 2) . During that same time

the photon travels a distance s, = ct, = —E 1+ % and the difference is

A K2
58:87—)\p:—§<1—|—4—ryz)—)\p:)\p< 1)+@4’72N2’Y (1—|— K2>
which is just equal to the fundamental radiation wave length. We may also

integrate the path length along the sinusoidal trajectory and get for one
quarter period s, = %7% 077/2 14 02 cos? xdx = %7% EllipticE (\/ —92) an
elliptical function. Since the argument will always be very small we may ex-

pand EllipticE (\/ —92) ~ 2 +0.393 0. The electron travel time for one
period is then t. =42 L (% +0.393 92) and the path length difference is

27 o
0.303 0% A 8-0.393 L
5s:cte—)\p:)\p%<1+ s )_)\ngy% l—l—T%KQ which is
N——
~~1

again the wavelength of the fundamental radiation.



B. Mathematical Constants and Formulas

B.1 Constants

T = 3.141592653589793238
e = 2.718281828459045235

I'(1/3) = 2.6789385
I'(2/3) =1.351179

B.2 Series Expansions

For r <« 1

1
14z
Vidzwal4do— g2 4 113,38 4 L1358

~ml—z+a? -+t — .

35,4
gl +.-
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B.3 Multiple Vector Products

In a vector product ax b=¢, vectors {a,b, ¢} form a right handed orthogonal

system.
a=(ag,0y,0,);

ax b= (ayb, —aby, a,by —azb,, azb, — a,b,)

ax(bx ¢)=b(ac) — c(ab)
(axb) xe= b(ac) — a(be)
(axb) x (exd) = ¢[(axb) d —d[(axb) d
a(bx e)=blex a) = claxb)
(ax b)(ex d)= (ac)(bd) — (bc)(ad)

B.4 Differential Vector Expressions

a, b vectors; ¥ scalar;

V() = Va+ avVy
V x(ap) =4y (Vxa) - (axVy)
V(ax b)=b(V x a)—a(V x b)
V x (axb)= (bV)a— (aV)b+ a(Vb)— b(Va)

V (ab)= (bV) a+ (aV) b+ax (Vxb) +bx (Vxa)

V (V) = Vi = Ay
V x (Vy)=0
V x(V$)=0
V(V xa)=0
Vx(Vxa) =V (Va)— Aa

if Vxa=0 ascalar function ¥ exists with a= V¢

if WVa=0 a vector function b exists with a=V x b
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B.5 Theorems

/ vy dv = 7( (wn) da. (B.27)
Gaus‘;’s theorem

/VVadvzjf(an) da. (B.28)
Stokes’ theorem

/S(v < a), da:jf ads. (B.20)
Fourier transform

flw) = /OO feyetat, (B.30)

ft) = 2—17T /O:o flw)e “dw. (B.31)

Parseval’s theorem

/Z A= %/Z Fw)do. (B.32)

B.6 Coordinate Systems

Cartesian coordinates (z,y, 2)

_ |20 9% 9¢
Vo= [ax’ 2y Qz} (B.33)

_ Oay % oa,

Va= B.34
@ ox oy 0z ( )
V X a—= % % 9a, 9a, % 9a, (B 35)
@= Ay 9z’ Oz oxr ' Ox Ay ’
02 o2 02
Np=20 00 070 (B.36)

Cox2 0 Oy 022
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Cylindrical coordinates (p, ¢, ()
d¢p 10¢ 0O
vo=[22,122 2

9p’ p Oy’ ¢
10 1 0a da,
Va=-—(pa,) +-——2 ==
pap(p 0) pop 9
VXG:[&%_%7%_%7EE(%)_1%
pop OC OC  Op pdp p Op

02 10 1 o2 o2
so=L8 10, 100 O
9p*  pop  pPOp*
Transformation to cylindrical coordinates (p, ¢, ()
(z,y,2) = (p cos g, p sing, ()

ds? = dp? 4 p?de? +d¢?
dV = pdpdp d(

Polar coordinates (7, p,6)

voo |22 100 1 90
or’ r dp ' rsinf 90
19 1 9 1 Oag
Va=——(ra, — (si _—
2= 2oy (o) rsin 0 w(SIH(pCL‘p)_'_rsinH a0
1 (M_a_%)
rsin 6 ) o8 |
2

T r2or or

2
Ad = 19 <7a2%> + 1 9% + L 0 (sin9—¢

r2sin20 092 | r2sinf 00
Transformation to polar coordinates (r, ¢, 6)
(z,y,2) = (r cosp sin,r sin sin b, 7 cos )
ds? = dr? + r?sin 0dy? + 2 d6?
dV = r?sin 0 dr dp dd

(B.37)
(B.38)
(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)



B.7 Gaussian Distribution

1-dim Gaussian distribution (o: standard deviation) (Fig. 13.1)

B.7 Gaussian Distribution

(1) = e ¥7

x) = e a

4 2o

057 @(x)

0.4

0.3

0.2 -

0.1
. X
0 T T [ L L B L L |
S5 4 3 2 -1 0 1 2 3 4 5

Fig. B.1. Gaussian error function

Table B.1. Gaussian error functions ¢(z) and ¢(z)

g e@)| r e@ e@)]| @ e
0.0 0.3989 0.0000 | 1.0 0.2420 0.6827 2.0 0.0540 0.9545
0.1 0.3970 0.0797 | 1.1 0.2179 0.7287 | 2.25 0.0317 0.9756
0.2 0.3910 0.1585 | 1.2 0.1942 0.7699 2.5 0.0175 0.9876
0.3 0.3814 0.2358 | 1.3 0.1714 0.8064 | 2.75 0.0091 0.9940
04 0.3683 0.3108 | 1.4 0.1497 0.8385 3.0 0.0044 0.9973
0.5 0.3521 0.3830 | 1.5 0.1295 0.8664 3.5 8.73e-4 0.9995
06 0.3332 04514 | 1.6 0.1109 0.8904 4.0 1.34e-4 0.9999
0.7 0.3123 0.5161 | 1.7 0.0941 0.9109 5.0 1.49e-6 1-6e-7
0.8 0.2897 0.5762 | 1.8 0.0790 0.9281 7.5 2.4e-13 ~
09 02661 06319 1.9 0.0656 0.9426 | 10.0 7.7e-23 ~

Integral of Gaussian error function (Fig. 13.2)

z/o 7
b(x/o) = 2/0 w(Z/0o) d;

247

(B.47)

(B.48)
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TE CD(X/G)

(1 x/c

Fig. B.2. Integral of Gaussian error function

2-dim Gaussian distribution

1 1 /2% o2
o= gy 3 (52 + 5

2-dim Gaussian distribution (round) (0, =0, =0,)

(1) = 5ope *
)=
v 27r0$e

Qli
v iV

B.8 Miscelaneous Mathematical Formulas

Element of solid angle (€ polar angle, ¢ azimuthal angle)
df2=sinfdydb

Integrated solid angle within polar angle ¢
A =27 (1 — cos b)

Modified Bessel’s functions (Fig. 13.3)

Ky/3(6) = \/5/000 cos B 5(390—0—3:3)} dz,
Ka3(8) = \/5/000 sin B 5(390—0—3:3)} dz .

for small arguments £ — 0

rras) o\ ¥ 1
Kij3(€ = 0) » —g5— o T2
W

—4/3 1
Ko/3(€ — 0) = 22312 (2/3) <w—> m ;
¢ v

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)
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|
|

0.001 \ \HHHi \ \HHHi BREERRi— \\H\Hi \ \HHHi
0.0001 0.001 0.01 0.1 1 E_, 10

Fig. B.3. Modified Bessel’s functions K;/5(£) and Ky ,3(€)

and for large arguments £ — oo

9 .
Kl/?)(g - OO) -~ 25625 P

9 .
K2/3(£ - OO) -~ 25625 .
For v = ﬁ >> 1, where the Larmor frequency wr, = ¢/p,

NEYS
Kyys(6) = =L, (vB cos)
/1 —[%cos? 0
NEYS

Ky5(8) = J ! (vBcosb).

(1 — (32 cos? 9)

Airy’s functions

3
i (2) = ——— Ky 5(6)

249

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)



C. Physical Formulas and Parameters

C.1 Constants

velocity of light in vacuum
electric charge unit

electron rest energy
fine structure constant

Avogadro’s number

molar volume at STP
atomic mass unit

classical electron radius
proton/electron mass ratio
Planck’s constant:

Planck’s constant

electron Compton wavelength A

wavelength for 1leV
el.cyclotron frequency/field

Thomson cross section
Boltzmann constant
Stephan-Boltzmann constant
Permittivity of vacuum
Permeability of vacuum

c = 299792458 x 105  m/s

= 1.60217733 x 10~
e? = 14.399652 eV A
mec® = 0.5110034 MeV
a = 7.29735308 x 103

=1/137.04
A = 6.0221367 x 1023 1/ mol

22.41410 x 1073 m?/mol

amu = 031.49432 MeV
7. = 2.81794092 x 10715 m
my, /M, = 1836.2
h = 6.6260755 x 1073%  Js

= 4.1356692 x 10715 eVs
h = 1.05457266 x 1073* Js

= 6.5821220 x 10716 eVs
e = 197.327053 MeV s

= 2.42631058 x 10712 m
hefe = 12398.424 A
wey/B =e/me

= 1.75881962 x 10'*  rad/(s T)
o = 0.66524616 x 10~ m?
k = 1.3806568 x 1072 J/K
o = 5.67051 x 1078 W /(m2 K*)
€ = 8.854187817 x 1072 C/(V m)
Lo = 1.2566370614 x 10¢ Vs/(A m)
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C.2 Unit Conversion

Numerical conversion factors:

Table C.1. Numerical conversion factors

quantity label replace cgs units by SI units

voltage U 1 esu 300 V

electric field B 1 esu 3 10* V/em

current I 1 esu 10 ¢ = 2.9979 10° A
charge q 1 esu (10c)™* = 3.3356 1071° C
resistance R 1s/ecm 8.9876 10! 2
capacitance C 1cm (1/8.9876) 1071* F
inductance L 1 cm 1 10° Hy

magnetic induction B 1 Gauss 3 10~ * Tesla

magnetic field H 1 Oersted 1000/4m = 79.577 A/m
force f 1 dyn 107° N

energy E 1 erg 1077 J

Equation conversion factors:

Table C.2. Equation conversion factors

variable replace cgs variable by SI variable
potential,voltage Vegs \/ZFEO VMks

electric field Fegs \/ZFEO Favks
current, current density Icgs, fegs 1/\/4F60 Ivxks, JMKs
charge, charge density qQ, p 1/\/4F60 AMKS; PMKS
resistance Regs \/ZFEO Ruks
capacitance Clgs 1/\/4F60 Cwviks
inductance Legs \/ZFEOLMKS
magnetic induction Begs \/WBMKS

Formulas are written for use of either unit. Include factors in square brack-
ets [...] for MKS-units and omit those factors using cgs-units:
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C.3 Relations of Fundamental Parameters
fine structure constant a = ME—Q
71'60}2710
classical electron radius r. = ME—Q
TEQ| M C
electron Compton wavelength A¢ = %
C.4 Energy Conversion
Table C.3. Energy conversion table
calories Joule eVolt wavenumber  degKelvin
[cal] [J] [eV] [1/cm] °K]
1 cal 1 4.186 2.6127 10°  2.1073 10  3.0319 10%®
17 0.23889 1 6.2415 10*®  5.0342 10%2  7.2429 10%**
1eV 3.82741072° 1.6022 10~ 1° 1 8065.8 11604
1/em  4.7453 107%* 1.9864 1072 1.2398 107* 1 1.4387
1°K 3.2984 1072* 1.3807 10°2* 8.6176 10 ° 0.69507 1
C.5 Maxwell’s Equations
47
VE = ——, (C.1)
[4meo] €,
VB =0, (C.2)
[c] 9B
VXE=——— C.3
a2, (€3)
Aw [ ¢ [c] dE
VXB:—[—} v+ —l¢ € H,— . C4
~ | 1) ol pv + = leopoler 5, (C.4)
C.5.1 Lorentz Force
F =qE+[d v x B (C.5)
C
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C.6 Wave and Field Equations

Definition of potentials

vector potential A: B =V x A (C.6)
0A
scalar potential ¢ : E = _doa Vo, (C.n)
c Ot
Wave equations in vacuum
1 9%A a7
NAA - ——— = — C.8
c? ot? [47r60]p'8 (C8)
1 &% a7
T __ C.9
YT 2o [4meo] P (C.9)
Vector and scalar potential in vacuum
11 [ wp(,y,2)
At) = - drdyd C.10
0= e | 2 g (C.10)
1 1 [ py-2)
t) = - drdyd C.11
o(t) [dree] C/ R . rdydz ( )
Vector and scalar potential for a point charge ¢ in vacuum
1 ¢ B
A(Pt) = — C.12
(P,1) [47ceg) R1+ nB - ( )
1 q 1
Pil)=——= C.13
e(P,1) [47eg] R1+ nB oo ( )
Radiation field in vacuum
1 q ,
E(t) = —{Rx[R R) x H C.14
® [4meo] ord (R+5R) <3 tret ( )
1
B(t)=-[E x n], (C.15)
C Tet

C.7 Relativistic Relations

QQuantities z* etc. are taken in the particle system L£* ,while quantities x etc.
refer to the laboratory system L. The particle system £* is assumed to move
at the velocity § along the z-axis with respect to the laboratory system L.
Lorentz transformation of coordinates

x* 10 0 0 T
vyl _[01 O 0 Y
> 1= oo v 8y . (C.16)
ct* 0008y «v ct
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Lorentz transformation of frequencies (relativistic Doppler effect)

w=w'y (14 8n}) (C.17)
Lorentz transformation of angles (collimation)

0~ sin *

N T BT (C.18)

C.8 Four-Vectors

Properties of 4-vectors are used in this text to transform physical phenomena
from one inertial system to another.
Space-time 4-vector

3= (z,y,2,ict), (C.19)
World time
T =/ —32 (C.20)

length of a 4-vector is Lorentz invariant
any product of two 4-vectors is Lorentz invariant
Lorentz transformation of time. From (C.20)

cdr =/ (a@1)? — (av)? — (ay)? — (d2)°

= 02—(03—0—@5—0—@2)&5
= /2 —v2dt = /1 — BPedt

1
dr==di. (C.21)
v

or

Velocity 4-vector

i ds
2 =2 = (4, 4 10) - (C.22)

v =
dr de¢

4-acceleration

v d ( ds
(L (P .23
T Tw <7dt> (C.23)

and with (C.21,C.22)
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i d (B
“Ta\"a )

4-acceleration & = (@, &y, a,,10:) in component form
~ 2 4
Gy =7V 0y + 7Y 6;1:(/80') ’

where a is the ordinary acceleration.
Square of the 4-acceleration

a? =8 {a2 —[B x a]2} =a?.
in particle system 3 = 0,y = 1 and therefore

d*Q — a*2.

(C.24)

(C.25)

(C.26)

(C.27)



D. Electromagnetic Radiation

Notation (All variables are in SI units unless otherwise noted)

E(GeV) particle energy B magnetic field
Uop energy loss/turn o fine structure constant
e unit of el. charge p bending radius
P, synchrotron rad. power frev  revolution frequency
1 beam current np number of bunches
N number of circ. electrons |[ N},  electrons/bunch
Noph photon flux
w photon frequency € photon energy
We crit. photon frequency €c crit.photon energy
Aw/w band width
D.1 Radiation Constants
o, =AT_Te _gsu60 1077 (D.1)
T3 (me)3 eV’ .
2 r.cd
Cp ==— =379.35 ———, D.2
7T B (me)? S T2 Gov (D-2)
2 h GeV
Cp==—_ —22182 0 ° (D.3)
3 (mc?)3 s
Oy = 30 o7 w1070 2 (D.4)
Y 3me2 eV '
3o photons
Cop=—— = 13273 10% ————— D.5
7 ArZe(me?)? s rad®GeVZA’ (D)
4o photons
Cyp = — = 3.967 10" ————— D.6
Y 9eme? srad A GeV’ (D-6)
[c]e
Ck = =0.93373 D.7
K= orme Tem’ (D7)
55 R
C, = < — 3841071 m, (D.8)

32+/3 mc?
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55 r.hc

Cop=———="_=20610"11
Q 24/3 (m02)6
2
Oy = 2 — - = 2110 ——,
3 (mc?) GeV°s

GeV

mn .

C, = [ e = 0.299792

D.2 Bending Magnet Radiation

Notation for synchrotron radiation formulas
f angle of observation orthogonal to deflecting plane
9 angle of observation in the plane of deflection

For isomagnetic ring: all bending fields are equal, p =const.

Total radiation power

GeV

Py (kW)=14.0788 E*1§ 4 — 88.460 — I
—

isomagnetic ring

Energy loss per turn to synchrotron radiation

ds

Uo(keV) = 14.0788 E* 7( >
P

Fundamental photon energy of synchrotron radiation

isomagnetic ring

. (keV)=2.2181 &= = 0.665 122 B

Radiation power into a beam line with acceptance angle Ay

AP, (kW)=14.079 L F4 T

Spatial and spectral photon flux

s mrad?

d6d

dzNzh |:Ehotons:|:1.3273 1016 EQI% <_

with

&= %wi (1+7202)3/2

(D.9)
(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)
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—

1x10"
1x10"
1x10"
1x10"
1x10"
1x10"
1x10"
1x10™
1x10™"
1x10™"
1x10™*
1x10™"
1x10™* 7 \mmi I \HHHi T TTT i 0.001

|
|
|
|
|
|
\
0.0001 0.001 0.01 0.1 1 g 10

e
=

= 0.01

Fig. D.1. Functions K2,5(€) and (K1/3/Ks/3)°

and

F(£,0) = (1+~%0%)2 (D.18)

1+ 7*0? K?/a(f)l

14+ ’7292 K%/g(g)

Spatial and spectral photon flux on axis (6 =0)

dzNEh |:Ehotonsj|

2
e ||| —13273 101 p2r A2 (2) K2, (32)]| (D19)

We 2w,

Photon flux per unit deflection angle

e o oo7 10 1225 (2) D20

Long and short wavelength approximations are

S <i> _0Bw [ Ks/3(z)dx

We 8T We Jo s,

1/3
1333 () for w < w,

. (D.21)
0.777 w%e’“/wc for w > w,
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R R
014
0.01 =
T s S
i ‘ ‘ ‘ x=o$/oac
0.0001 \ \HHH‘ \ \HHH‘ \ \HHH‘ \ \HHH‘ I \HHH‘
0.0001 0.001 0.01 0.1 1 10

1.000

w2
~
e
=~
e

o

=

=

S
|

0.010 =

0.001

0.0001  0.001 0.01 0.1

N’
| HH‘

—

X=0/0¢

Fig. D.3. Universal Function S (w—“’c>

Vertical radiation cone angle defined by /270y = (ML}‘) / (ﬂﬂ)

dep

09 (mrad)=—t—

wCo B 22K2,(3z)  B(GeV) | (D.22)

9
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—
o

©
N’
|

—

e
—_

‘x=oa/oac\
0.01 I \\H\Hi I \HHHi I \HHHi I \HHHi I \H\\Hi 1

1x10*  1x10" 1x10® 1x10"  1x10"  1x10'

Fig. D.4. Scaling function f(z) = gs(mrad) F(GeV) for the photon beam diver-
gence

For long wavelengths (z < 1)

0.5463 /3
d) 8 ——. D.23
o0 (mrad) ~ —2rm S (D-23)
D.3 Periodic Insertion Devices
Notation for insertion devices
U angle between observation and undulator axis
P azimuthal angle of observation about undulator axis
By maximum undulator field
0 maximum deflection angle
Ap  period length (m)
Np  number of periods
L, undulator length (m) , L, = N A\,
”horizontal” reflects the deflecting plane of the undulator
D.3.1 Insertion Device Parameter
Undulator field, on-axis
B(2) = By sin 2= (D.24)

Undulator strength parameter

| K =934 B0, = Bo, (cm)| (D.25)
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D.3.2 Field Scaling for Hybrid Wiggler Magnets

The maximum on-axis field in a hybrid wiggler magnet depends on the gap
aperture g and period length A\, and is for 0.1\, 5 g 5 10\, given by [34]

B,(T) ~ 3.33exp [—Ai (5.47 - 1.8%)} (D.26)

P P

D.3.3 Particle Beam Parameter

Beam width

om\2
Ob e =\ €03, + (nz—]f) (D.27)
Horizontal beam divergence

2

Obar = ) 5 + (1L%F) (D.28)

@

Beam height

o 2
Ty =\ 6By + (1, %8) — /&by (D.29)

N——
flat ring
Vertical beam divergence
€ 2 €
oy =7+ (FE) — JF (D.30)
N——
flat ring

Average drift velocity
B=2p (1— %ﬁ) (D.31)

Transverse particle coordinate

K _
x(t) = — cos (k, B ct) (D.32)
Vkp
Maximum oscillation amplitude
K A K
a=—="2 (D.33)
vkp 27y
Maximum deflection angle
K
0 = +— (D.34)
v
Longitudinal coordinate
_ : _
2(t) = Bet + szkp sin® (2, 6 ct) (D.35)
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D.4 Undulator Radiation

Total radiation powerfrom an undulator magnet
P(kW) =0.6336 2 B2 I L, (D.36)

Energy loss in an undulator

E? K?
ABE(keV) = 0.725 ——— Ly, (D.37)
A5 (em)

Wavelength, frequency and photon energy for k-th harmonic

Ao(A)=13.056 22820 (1 4 LK2 4 429?) (D.38)
—1.4427 x 10'8 k B D.39
WE 7 X /\p(cm)(1+%K2+72792> ( )
keV)=0.9496 k B D.40
8]{:( € ) Ap(cm)(1+%K2+’72’192> ( )

Undulator on-axis differential photon flux for k-th harmonic

AN,y (kwy)

dgn

L7443 10% B2N, 282 A(K), (D.41)

Harmonic amplitude functions
k? K2 e e E? \12
Ar(K) = m {Jg(kq) (W) +J1(rt1) (4-}-2—1(2)} (D.42)

Opening angle (diffraction limit) for on-axis photon flux

1 [1+3K?
Oy 83—y | —2— (D.43)
v 2k N,
Pinhole solid angle

d2 =2n0% (D.44)

Pinhole photon flux

Non (kw1)|9=o = 1.4309 10'7 N, 42 (G (K) (D.45)
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<

T T ma " " s

Fig. D.5. Functions A (K)

®
=
=

Fig. D.6. Function Gr(K)

Gu(a) = 4 ) (D.46)

kK2 RE? . K
- (1 + lKQ) {J%(kfl) <4+2K2) + J%(k—&-l) <—4+2K2)}
2

Band width of radiation

Av_ 1 (D.A7)
Wr ]CNP
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D.5 Photon Beam Brightness

Spectral brightness= 6—dim photon phase space density

Blw)= N () (D.48)

T AT 0p0 040, (dw/w)

Diffraction limited source size

radial source size: Oy = %\/)\LS
i i T (D.49)
radial source divergence: 0, = ,/+
Source length 7
Ly=1L, for undulator, (D.50)
Ly =2p/v for wiggler and bending magnets (D.51)
Diffraction limited brightness
. 4 AQ
Bmax: ph (dL{J/w) (D52)

D.5.1 Effective Source Parameter

The beam parameters oy,g are to be taken at the beginning of the source,
e.g. at the entrance of the undulator and beam is assumed to be symmetric
within undulator.

Horizontal source size

2
Ap K 2
2 =0l o+ (35 ) ol L2+ 550°LE (D.53)

o 27y

with increased source width due to electron path oscillations 4\2%, due to

finite beam divergence 1—120%0 I,Lg, and due to oblique horizontal observation
angle %HQLE.
Horizontal divergence

2 __ 1.2 2
O-t7.1‘/ — 50-7“/ +0‘b071‘/ 3 (D.54)

Vertical source size

2 _ 1.2, .2 1.2 2, 1,272
Oiy = 50 + 0oy + 13000,y L5 + 35607 L5, (D.55)

with increased source height due to finite beam divergence %0%0 y,Lg, and

due to oblique vertical observation angle 3—16sz§.
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Vertical divergence
2 1.2 2
Ut,y’ - 50-7,,/ +0b0,y’ . (D.56)

Effective spectral brightness

B(w) N () . (D.57)

—1nz Ttz Oy o1 Oty Oy o (dw/w)




References

Ol W~

o

14.

15.
16.

17.

18.

A. Liénard, I’Eclairage Electrique 16, 5 (1898).

E. Wiechert, Archives Neerlandaises 546 (1900).

G. Schott, Annalen der Physik 24, 635 (1907).

G. Schott, Phil. Mag.[6] 13, 194 (1907).

G. Schott, Electromagnetic Radiation (Cambridge Univ. Press, New York,
1912).

A.S. N.A. Vinokurov, Preprint INP 77-59, Institute of Nuclear Physics, Novosi-
birsk (unpublished).

The author would like to thank Prof. M. Eriksson, Lund, Sweden, for introduc-
ing him to this approach into the theory of synchrotron radiation.

. D.W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).

. D. Ivanenko and I.Ya. Pomeranchouk, Phys. Rev. 65, 343 (1944).
10.
11.
12.
13.

J. Blewett, Phys. Rev. 69, 87 (1946).

describing work of C. Sutis, Sci. News Lett. 51, 339 (1947).

describing work of F. Haber, Electronics 20, 136 (1947).

F. Elder, A. Gurewitsch, R. Langmuir, and H. Pollock, Phys. Rev. 71, 829

(1947).

M. Sands, in Physics with Intersecting Storage Rings, edited by B. Touschek

(Academic, New York, 1971), p. 257.

R. Coisson, Opt.Com. 22, 135 (1977).

R. Bossart, J. Bosser, L. Burnod, R. Coisson, E. D’Amico, A. Hofmann, and

J. Mann, Nucl. Instrum. Methods 164, 275 (1979).

R. Bossart, J. Boser, L. Burnod, E. D’Amico, G. Ferioli, J. Mann, and F. Meot,

Nucl. Instrum. Methods 184, 349 (1981).

The Large Hadron Collider in the LEP Tunnel, edited by G. Brianti and K.

Hiibner (CERN, Geneva, 1985).

. J. Jackson, Classical Flectrodynamics, 2nd. ed. (Wiley, New York, 1975).

. D. Ivanenko and A.A. Sokolov, DAN (USSR) 59, 1551 (1972).

. J. Schwinger, Phys. Rev. 75, 1912 (1949).

. D.H. Tomboulian and P.L. Hartman, Phys. Rev. 102, 102 (1956).

. G. Bathow, E. Freytag, and R. Haensel, J. Appl. Phys. 37, 3449 (1966).

. M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (Dover,
New York, 1972).

. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

. G. Airy, Trans. Cambr. Phil. Soc. 5, 283 (1835).

. L. Schiff, Rev. Sci. Instrum. 17, 6 (1946).

. T. Nakazato, M. Oyamada, N. Niimura, S. Urasawa, O. Konno, A. Kagaya, R.
Kato, T. Kamiyama, Y. Torizuka, T. Nanba, Y. Kondo, Y. Shibata, K. Ishi, T.
Oshaka, and M. lTkezawa, Phys. Rev. Lett. 63, 1245 (1989).

. E.B.Blum, U.Happek, and A.J. Sievers, Nucl. Instrum. Methods 568 (1992).

. H. Wiedemann, P. Kung, and H.C. Lihn, Nucl. Instrum. Methods A, 1 (1992).



26

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

56.
57.

58.
59.

60.
61.

62.
63.

64.

65

8 References

. F. Michel, Phys. Rev. Lett. 48, 580 (1982).

. M. Berndt, W. Brunk, R. Cronin, D. Jensen, R. Johnson, A. King, J. Spencer,
T. Taylor, and H. Winick, IEEE Trans. Nucl. Sci. 3812 (1979).

. The author thanks T. Rabedau, SSRL, for providing this picture.

. K. Halbach, J. Physique (1983).

. W. Heitler, The Quantum Theory of Radiation (Clarendon, Oxford, 1954).

. B. Kincaid, J. Appl. Phys. 48, 2684 (1977).

. W. Lavender, Ph.D. thesis, Stanford University, 1988.

. R. Milburn, Phys. Rev. Lett. 4, 75 (1963).

. F.A. Arutyunian and V.A. Tumanian, Phys. Rev. Lett. 4, 176 (1963).

. F.A. Arutyunian, I.I. Goldman, and V.A Tumanian, ZHETF(USSR) 45, 312
(1963).

. LF. Ginzburg, G.L. Kotin, V.G. Serbo, and V.I. Telnov, Preprint 81-102, Inst.
of Nucl.Physics, Novosibirsk, USSR, (unpublished).

. E.D. Cournat and H.S. Snyder, ap 3, 1 (1958).

. E. McMillan, Phys. Rev. 68, 143 (1945).

. V. Veksler, DAN(USSR) 44, 393 (1944).

. H. Wiedemann, Particle Accelerator Physics I, 2nd ed. (Springer, Heidelberg,

1999).

H. Wiedemann, Particle Accelerator Physics II, 2nd ed. (Springer, Heidelberg,

1999).

J.M. Paterson, J.R. Rees, and H. Wiedemann, Technical report, Stanford Linear

Accelerator Center (unpublished).

W.K.H. Panofsky and W.A. Wenzel, Rev. Sci. Instrum. 27, 967 (1956).

J. Larmor, Philos. Mag. 44, 503 (1897).

J. Schwinger, Proc. Nat. Acad. of Sci. USA 40, 132 (1954).

A.A. Sokolov and LM. Ternov, Synchrotron Radiation (Pergamon, Oxford,

1968).

G. Watson, Bessel Functions (The Macmillan Company, New York, 1945).

V. Kostroun, Nucl. Instrum. Methods 172, 371 (1980).

1.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th

ed. (Academic, New York, 1965), prepared by Yu.V. Geronimus and M.Yu.

Tseytlin, translation edited by A. Jefirey.

V. Baier, in Physics with Intersecting Storage Rings, edited by B. Touschek

(Academic, New York, 1971), p. 1.

H. Motz, J. Appl. Phys. 22, 527 (1951).

L.R. Elias, W.M. Fairbanks, J.M.J. Madey, H.A. Schwettmann, and T.J. Smith,

Phys. Rev. Lett. 36, 717 (1976).

W. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1950).

D.F. Alferov, Y.A. Bashmakov, and E.G. Bessonov, Sov. Phys.-Tech. Phys. 18,

1336 (1974).

S. Krinsky, IEEE Trans. Nucl. Sci. 307 (1983).

A. Bienenstock, G. Brown, H. Wiedemann, and H. Winick, Rev. Sci. Instrum.

60, 7 (1989).

R. Carr, NIM 306, 391 (1991).

S. Sasaki, K. Kakuno, T. Takada, T. Shimada, K. Yanagida, and Y. Miyahara,

Nucl. Instrum. Methods 331, 763 (1993).

R. Carr and S. Lidia, in Proc. of the SPIF (SPIE, Bellingham, WA (USA),

1993), Vol. 2013.

. W. Colson, pla 64, (1977).



Index

4-vector, 255

— acceleration, 32, 255
— energy-momentum, 26
— space-time, 26, 255

— velocity, 255

aberrations

— chromatic, 135

— geometric, 135
accelerating cavity, 75
acceleration

— longitudinal, 33

— transverse, 33
achromat, 131

Airy’s functions, 169, 249
Ampere’s law, 6
Ampere-turns, 78
approximations made

- ¢ty = xp/v, 160

— sin(thr) %thr, 161
AS(x.y.z), see footnote, 165
asymmetric wiggler, 212

backscattered photons, 68
beam current

— circulating, 74

beam deflection, 79

beam divergence, 96

beam emittance

— equilibrium, horizontal, 109, 114
— equilibrium, vertical, 109

— minimum, 128

— scaling, 127

— vertical, 109

beam optics

— linear, 83

beam rigidity, 79

beam size, 95, 111

— height, 262

— width, 262

bend radiation

— differential photon flux, 258

— differential photon flux, on-axis, 259

— photon flux per mr, 259

— total power, 258

bending magnet, 74, 77

— radiation, 4

bending radius, 79

Bessel’s functions

— modified, 161, 248
betatron

— oscillation, 83, 87, 88

— phase, 87

— tune, 87

betatron function, 52, 86, 88
— optimum in drift space, 237
— periodic, 94

— transformation, 91
Biot—Savart fields, 143
booster synchrotron, 76
brightness, 42, 207, 265

— diffraction limited, 50, 265
— effective spectral, 266

— spectral, 50, 265

bunch, 5

— length, 5

— pattern, 5

bunch length

— equilibrium, 107

bunches, 75

Cp, 34

Ce, 37

Cq, 114

cell, 93

C,, 34, 149
cgs-system, 6
Cherenkov

— angle, 19

— condition, 19

— radiation, 18, 19
chromaticity, 83, 135
Ck, 181

coherence



270 Index

— spatial, 46

— temporal, 47
coherent

— radiation power, 48
coherent radiation, 45
collimation, 3, 27

— angle, 153
collimation angle, 255
Cp, 38, 163

Compton

— effect, 20

Compton scattering, 68
contraction

— Lorentz, 11
conversion

— energy, 253

— units, 252
coordinate system

— cartesian, 245

— cylindrical, 246

— polar, 246
Coulomb field, 142
Coulomb regime, 22, 23, 142
Cy, 39, 174

Cq, 113

Cy, 107

C,, 79

critical

— photon energy, 4
critical photon

— energy, 37

— frequency, 37
critical photon energy, 155, 258
Cy, 190

damping, 104

damping decrement, 101, 105
damping wigglers, 112, 115
dba-lattice, 131

— optimum beam emittace, 131
deflection angle, 79
diffraction, 42, 229

— Fraunhofer, 42

— intergral, Fraunhofer, 43
diffraction limit, 121

— emittance, 46

— source divergence, 47

— source size, 47

dilatation, 11

dispersion function, 92, 95
divergence

— photon beam, 41

Doppler effect, 3, 255

— relativistic, 27
dynamic aperture, 119, 132, 136

edge focusing

— wiggler magnet, 183
electromagnetic radiation, 1, 2
electron beam, 5
electron source, 75
emittance

— diffraction limited, 46, 121
energy, 13

— conservation, 17, 21

— kinetic, 9, 13

— particle, 73

— total, 13

energy conversion, 253
energy loss, 150

— per turn, 35, 149, 258
energy spread

— equilibrium, 106, 107
equation of motion, 9, 82
— analytical solution, 86
— inhomogeneous, 92

— solution, 84, 88
equilibrium

— beam emittance, horizontal, 109

— beam emittance, vertical, 109
— emittance, 108
n-function, 95

Faraday’s law, 6
FEL, 5, 217

— small gain, 220
field gradient, 80
figure of eight trajectory, 183
first generation, 109
flat undulator, 65
focal length, 80

— quadrupole, 80
focal point, 80
focusing, 77

— principle of, 80
FODO cell, 86
FODO lattice, 126
FODO parameter, 94
form factor, 49
formation length, 23
forward cone, 206
forward radiation, 206
four vector

— acceleration, 255

— velocity, 255

four vectors

— space-time, 255



Fourier transform, 245
Fraunhofer

— diffraction, 42

— diffraction integral, 43

free electron laser, 5, 103, 179, 217

fringe field focusing

— wiggler magnet, 183
fundamental frequency, 178, 192
fundamental undulator radiation
— frequency, 263

— photon energy, 263

— wavelength, 263

fundamental wavelength, 62, 65, 189

gain curve, 228

Gauss’s theorem, 245
Gaussian distribution, 247
GR(x.y.z), see footnote, 165

harmonic number, 5
harmonics, 63
helical undulator, 65
helicity, 211

hybrid magnet, 59

— field scaling, 262

insertion device, 55, 76, 179
integral theorems, 245
isomagnetic

— lattice, 35

JJ-function, 204, 223
Js, 101
Jz, 105
Jy, 105

Lamor frequency, 157

Large Hadron Collider, 53
Larmor frequency, 249

lattice, 85

— cell, 93

- FODO, 85

lattice functions, 88

— optimum, 130

— periodic, 93

LHC, 35, 53
Liénard—Wiechert potentials, 139
Liénard-Wiechert potentials, 1
line spectrum, 198

— undulator, 204

linear accelerator, 2, 76
Liouville’s theorem, 89, 91
LNLS, 132

Lorentz

Index

— contraction, 3, 11

— force, 8, 77, 253

— gauge, 137

— transformation, 11, 27, 254
—— of fields, 12, 13

luminosity, 69

magnet,

— dipole, 77

— excitation current, 78
matching

— photon beam, 51
matrix

— formulation, 84

— transformation, 84

Maxwell’s equations, 1, 6, 137, 253

MKS-system, 6
momentum, 13

— conservation, 17
— particle, 8

momentum compaction factor, 101

opening angle

— vertical, 261
optical klystron, 4
orbit, 74

— equilibrium, 83
— ideal, 83
oscillation

— phase, 100

— synchrotron, 100

Panofsky—Wenzel Theorem, 120
parallel acceleration, 148
Parseval’s theorem, 145, 156, 245
particle

— energy, 73

particle beam

— emittance, 89

— envelope, 88

— focusing, 77

particle distribution

— Gaussian, 48, 89
partition number

— horizontal, 105

— synchrotron, 101

— vertical, 105
pendulum equation, 224
permanent magnet

— wiggler, 59
permeability, 7
permittivity, 7

phase

271



272 Index

— focusing, 99

— oscillation, 100

phase ellipse, 88-90

— upright, 90

phase focusing, 100
phase space, 89

phase space ellipse, 103
phase space motion

— longitudinal, 103
photon beam

— divergence, 41

— matching, 51

— temporal structure, 55
photon beam brightness, 265
photon beam lines, 74
photon energy

— critical, 4, 37, 155

— undulator, 66

photon flux

— angular, 39, 40

— differential, 163

— per unit solid angle, 38
— spectral, 173

photon source

— parameter, 121
photon source parameters, 50
photons

— backscattered, 68
physical constants, 251
pin hole, 201
polarization, 162, 208

— elliptical, 4, 208

— m—mode, 38

— m-mode, 208

— o—mode, 38

— o-mode, 208
polarization states, 160
potential

— scalar, 9, 137

— vector, 9, 137
potentials

— retarded, 139, 254
Poynting vector, 17, 21-23, 143
proton

— radiation power, 34

quadrupole

— focal length, 80

— poleshape, 81

— strength, 80

quadrupole magnet, 75, 80
quantum effect, 105

radiance, 207

radiation

— bending magnet, 55, 258

— coherent, 45

— electromagnetic, 73

— forward, 206

— longitudinal acceleration, 25
— regime, 23

— shielding, 45

— spectrum, 36, 162

— spontaneous, 218

— stimulated, 217

— synchrotron, 21

— transverse acceleration, 33
radiation cone, 153

radiation constants, 257
radiation field, 141, 142, 254
— longitudinal acceleration, 25
— spectral, 161

radiation lobes, 150

radiation power, 32, 33

— instantaneous, 34, 148

— orthogonal acceleration, 148
— parallel acceleration, 148

— spatial distribution, 153, 166
— total, 35, 144

— undulator, 190

— wiggler, 60

radiation regime, 23, 142
radiation sources

— first generation, 125

— fourth generation, 125

— second generation, 125

— third generation, 125

radio antenna, 3

Rayleigh length, 229, 237
relativistic relations, 254
resonance

— integer, 88

retarded

— potentials, 1

— time, 1

retarded potentials, 139
retarded time, 138

revolution frequency, 6, 36, 74
revolution time, 74

rf-bucket, 5

ri-field, 99

rf-system, 75

Robinson criterion, 105

scalar potential, 9, 137
second generation, 109
separatrix, 104



series expansion, 243
sextupole magnet, 75

small gain FEL, 220

source length, 265

source size

— diffraction limited, 265
source sizes, 265

spatial coherence, 46

spatial distribution

— synchrotron radiation, 152
spectral brightness, 50, 207
spectral line width, 198
spectral photon flux, 173
spectral purity, 198
spectrum, 36

spontaneous radiation, 218
SPS, 35

steering magnet, 75
stimulated radiation, 217
Stokes’ theorem, 245

storage ring, 5, 73, 74

— lattice, 126

strength parameter, 59
superbend, 4, 56
synchronous

— particle, 100

— phase, 99

— time, 99

synchrotron, 2

— oscillation, 99-101, 103

— radiation, 21, 179
synchrotron radiation, 26, 31, 73, 149
— angular distibution, 165
coherent, 45

— energy loss per turn, 35, 149
— harmonics, 165

— polarization, 160

—— m—mode, 160

—— o—mode, 160

— power per unit solid angle, 144
spatial distribution, 152, 157, 162
— spectral distribution, 157, 162
— spectrum, 172

— total power, 144, 150
synchrotron radiation source
— first generation, 109

— second generation, 109

— third generation, 109
synshrotron radiation

— spatial distribution, 153
system of units, 6

TBA-lattice, 134

Index

temporal coherence, 46
thin lens approximation, 85
third generation, 109
Thomson scattering, 68

cross section, 68

time dilatation, 11, 12
transformation matrix, 84

defocusing quadrupole, 84
drift space, 84

focusing quadrupole, 84
wiggler pole, 185

transition radiation, 144

spatial distribution, 146
spectral distribution, 146
total energy, 146

transverse acceleration, 148
triple bend achromat, 134
tune, 87

twin paradox, 12

undulator, 3, 177

deflection angle, 262

drift velocity, 262

flat, 65

helical, 65

line spectrum, 3

oscillation amplitude, 262
period, 3

strength parameter, 59, 261

undulator magnet, 59, 62, 76

line spectrum, 204

undulator photon flux

on-axis, 263

undulator radiation

u

band width, 264

energy loss, 263

fundamental, 62, 65

harmonic amplitudes A, (K), 263
opening angle, 263

period length, 3

pin hole angle, 263

pin hole flux, 263

total power, 263

nits, 6, 252

conversion, 252

universal function, 39, 172, 259

vacuum system, 75
Vanadium Permendur, 59
vector

differentials, 244
multiple product, 244

vector potential, 9, 137
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wave equations, 138, 254
wavelength

— fundamental, 62

— shifter, 4, 57, 76

— undulator, 66

wiggler magnet, 4, 58, 76, 177
— asymmetric, 212

— critical photon energy, 61

— electromagnetic, 59

~ flat, 178

— fringe field focusing, 183

— hard edge, 186

— hard edge model, 186

— helical, 178

— period length, 179

— permanent magnet, 59

— strength parameter, 59, 181
wiggler pole

— transformation matrix, 185
world time, 255



	slac-r-637-ch11.pdf
	slac-r-637-zAppendix.pdf
	slac-r-637-zBackmatter.pdf.pdf

