TABLE OF INFORMATION FOR 2000

CONSTANTS AND CONVERSION FACTORS		UNITS		PREFIXES			
1 unified atomic mass unit,	$1u = 1.66 \times 10^{-27} \text{ kg}$	<u>Name</u>	Symbol	<u>Factor</u>	<u>Prefix</u>	Symbol	
	$= 931 \text{ MeV/}c^2$	meter	m	10 ⁹	giga	G	
Proton mass,	$m_p = 1.67 \times 10^{-27} \text{ kg}$	kilogram	kg	10^{6}	mega	M	
Neutron mass,	$m_n = 1.67 \times 10^{-27} \text{ kg}$	second	s	10^{3}	kilo	k	
Electron mass,	$m_e = 9.11 \times 10^{-31} \text{ kg}$	ampere	Α	10^{-2}	centi	c	
Magnitude of the electron charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$	1	K	10^{-3}	milli	m	
Avogadro's number,	$N_0 = 6.02 \times 10^{23} \mathrm{mol}^{-1}$	kelvin	K				
Universal gas constant,	$R = 8.31 \text{J/} (\text{mol} \cdot \text{K})$	mole	mol	10^{-6}	micro	μ	
Boltzmann's constant,	$k_B = 1.38 \times 10^{-23} \text{J/K}$	hertz	Hz	10^{-9}	nano	n	
Speed of light,	$c = 3.00 \times 10^8 \text{ m/s}$	newton	N	10^{-12}	pico	p	
Planck's constant,	$h = 6.63 \times 10^{-15} \text{s}$ = $4.14 \times 10^{-15} \text{eV} \cdot \text{s}$	$h = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$ pascal Pa		VALUES OF TRIGONOMETRIC FUNCTIONS			
		joule	J		FOR COMMON ANGLES		
	$hc = 1.99 \times 10^{-25} \mathrm{J} \cdot \mathrm{m}$	watt	W	θ	sin θ	$\cos \theta$	tan θ
	$= 1.24 \times 10^3 \mathrm{eV} \cdot \mathrm{nm}$	coulomb	C	0°	0	1	0
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 /\mathrm{N} \cdot \mathrm{m}^2$		v		0	1	0
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$	volt ohm	ν Ω	30°	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} (\mathrm{T \cdot m}) / \mathrm{A}$		<u>ь</u> 2			•	<u> </u>
Magnetic constant,	$k' = \mu_0 / 4\pi = 10^{-7} (\text{T} \cdot \text{m}) / \text{A}$	henry farad	н F	37°	3/5	4/5	3/4
Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$	tesla	T	45°	$\sqrt{2}/2$	$\sqrt{2}/2$	1
Acceleration due to gravity at the Earth's surface,	$g = 9.8 \text{ m/s}^2$	degree	1		V 212	V 212	1
	g = 9.8 m/s $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2$	Celsius	$^{\circ}C$	53°	4/5	3/5	4/3
1 atmosphere pressure,	$1 \text{ atm} = 1.0 \times 10^{-1} \text{ N/m}$ = $1.0 \times 10^{5} \text{ Pa}$	electron-					
1 electron volt,	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	volt	eV	60°	$\sqrt{3}/2$	1/2	$\sqrt{3}$
,				90°	1	0	∞

The following conventions are used in this examination.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- IV. The work done by a thermodynamic system is defined as a positive quantity.

NEWTONIAN MECHANICS

 $v = v_0 + at$

a = acceleration

F =force

 $x = x_0 + v_0 t + \frac{1}{2} a t^2$

f = frequency

J = impulse

h = height

 $v^2 = v_0^2 + 2a(x - x_0)$

K = kinetic energy

 $\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$

k =spring constant $\ell = length$

 $F_{fric} \leq \mu N$

m = mass

 $a_c = \frac{v^2}{r}$

N = normal force

P = power

p = momentum

r = radius or distance

 $\tau = rF \sin \theta$

s = displacement

T = period

 $\mathbf{p} = m\mathbf{v}$

t = time

 $\mathbf{J} = \mathbf{F}\Delta t = \Delta \mathbf{p}$

U = potential energy

v = velocity or speed

W = work

 $K = \frac{1}{2} m v^2$

x = position μ = coefficient of friction

 θ = angle

 $\Delta U_g = mgh$

 τ = torque

 $W = \mathbf{F} \cdot \mathbf{s} = Fs \cos \theta$

$$P_{avg} = \frac{W}{\Delta t}$$

$$P = Fv$$

$$\mathbf{F}_{s} = -k\mathbf{x}$$

$$U_s = \frac{1}{2} kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$\mathbf{E} = \frac{\mathbf{F}}{a}$$

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

$$E_{avg} = -\frac{V}{d}$$

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

$$C = \frac{Q}{V}$$

$$C = \frac{\epsilon_0 A}{d}$$

$$U_c = \frac{1}{2} \, QV = \frac{1}{2} \, CV^2$$

$$I_{avg} = \frac{\Delta Q}{\Delta t}$$

$$R = \frac{\rho\ell}{A}$$

$$V = IR$$

$$P = IV$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

$$R_s = \sum_i R_i$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$F_B = q v B \sin \theta$$

$$F_B = BI\ell \sin \theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = \mathbf{B} \cdot \mathbf{A} = BA \cos \theta$$

$$\mathcal{E}_{avg} = -\frac{\Delta \phi_m}{\Delta t}$$

$$\varepsilon = B\ell v$$

A = area

B = magnetic field

C =capacitance

d = distance

E = electric field

 ε = emf

F = force

I = current

 $\ell = length$

P = power

Q = charge

q = point charge

R = resistance

r = distance

t = time

U =potential (stored) energy

V = electric potential or

potential difference v = velocity or speed

 ρ = resistivity

 ϕ_m = magnetic flux

THERMAL PHYSICS

$$\Delta \ell = \alpha \ell_0 \Delta T$$
 $A = \text{area}$

$$Q = mL$$
 $c = \text{specific heat or molar}$
 $c = \text{specific heat}$

$$Q = mc\Delta T$$
 $e = efficiency$

$$K_{avg}$$
 = average molecular kinetic energy

$$L = \text{heat of transformation}$$

$$pV = nRT$$
 $\ell = \text{length}$

$$K_{avg} = \frac{3}{2} k_B T$$
 $m = \text{mass of sample}$

$$n = \text{number of moles}$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$$
 $p = \text{pressure}$
 $Q = \text{heat tran}$

$$Q = \text{heat transferred}$$

$$T =$$
temperature

$$U$$
 = internal energy

$$Q = nc\Delta T$$
 $V = \text{volume}$

$$v_{rms}$$
 = root-mean-square

$$\Delta U = Q - W$$
 velocity

$$W =$$
work done by system

$$\alpha$$
 = coefficient of linear expansion

$$e = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H}$$
 expansion $\mu = \text{mass of molecule}$

$$e_c = \frac{T_H - T_C}{T_H}$$

 $\Delta U = nc_V \Delta T$

 $W = p\Delta V$

WAVES AND OPTICS

$$v = f\lambda$$
 $d = separation$

$$n = \frac{c}{n}$$
 $f = \text{frequency or focal}$ length

$$v$$
 $h = \text{height}$
 $n_1 \sin \theta_1 = n_2 \sin \theta_2$
 $L = \text{distanc}$

$$L = distance$$

$$M$$
= magnification

$$m =$$
an integer

$$n = index of refraction$$

$$R = \text{radius of curvature}$$

$$s = distance$$

$$v = \text{speed}$$

$$x = position$$

$$\lambda$$
 = wavelength

$$\theta$$
 = angle

$$f = \frac{R}{2}$$

$$d \sin \theta = m\lambda$$

 $\sin \theta_C = \frac{n_2}{n_1}$

 $\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$

 $M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$

$$x_m \approx \frac{m\lambda L}{d}$$

ATOMIC AND NUCLEAR PHYSICS

$$E = hf = pc$$

$$E = energy$$

$$K_{\text{max}} = hf - \phi$$

$$f = frequency$$

$$K_{\text{max}} = ny - c$$

$$K = \text{kinetic energy}$$

 $m = \text{mass}$

$$\lambda = \frac{h}{n}$$

$$p = momentum$$

$$\lambda = \text{wavelength}$$

$$\Delta E = (\Delta m)c^2$$

$$\phi$$
 = work function

GEOMETRY AND TRIGONOMETRY

Rectangle

$$A = bh$$

$$C = \text{circumference}$$

$$V = \text{volume}$$

A = area

$$A = \frac{1}{2}bh$$

$$S =$$
surface area $b =$ base

$$A = \pi r^2$$

$$h = \text{height}$$

$$\ell = length$$

$$C = 2\pi r$$

$$e = \text{lengu}$$

$$w =$$
width $r =$ radius

$$V = \ell wh$$

$$V = \ell w n$$

Cylinder

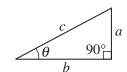
$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3} \pi r^3$$

$$S = 4\pi r^2$$


Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

CHANICS

F =force f = frequency

h = height

J = impulse

 $\ell = length$

m = mass

P = power

T = period

t = time

W = work

 θ = angle

 τ = torque

x = position

ME
$v = v_0 + at$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$
$v^2 = {v_0}^2 + 2a(x - x_0)$
$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$
$\mathbf{F} = \frac{d\mathbf{p}}{dt}$
$\mathbf{J} = \int \mathbf{F} dt = \Delta \mathbf{p}$
$\mathbf{p} = m\mathbf{v}$
$F_{fric} \leq \mu N$
$W = \int \mathbf{F} \cdot d\mathbf{s}$
$K = \frac{1}{2} m v^2$
$P = \frac{dW}{dt}$
$\Delta U_g = mgh$
$a_c = \frac{v^2}{r} = \omega^2 r$
$\tau = \mathbf{r} \times \mathbf{F}$
$\sum \tau = \tau_{net} = I\alpha$
$I = \int r^2 dm = \sum mr^2$
$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$
$v = r\omega$
$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\mathbf{\omega}$
$K = \frac{1}{2} I \omega^2$
$\omega = \omega_0 + \alpha t$
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
$\mathbf{F}_{s} = -k\mathbf{x}$
$U_s = \frac{1}{2} kx^2$
$T = \frac{2\pi}{\omega} = \frac{1}{f}$
$T_{s} = 2\pi \sqrt{\frac{m}{k}}$
$T_p = 2\pi \sqrt{\frac{\ell}{g}}$

 $\mathbf{F}_G = -\frac{Gm_1m_2}{r^2} \; \hat{\mathbf{r}}$

 $U_G = -\frac{Gm_1m_2}{r}$

a = accelerationI =rotational inertia K = kinetic energyk = spring constantL = angular momentumN = normal forcep = momentumr = radius or distances = displacementU = potential energy v = velocity or speed μ = coefficient of friction ω = angular speed α = angular acceleration

$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$

$$\mathbf{E} = \frac{\mathbf{F}}{q}$$

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0}$$

$$E = -\frac{dV}{dr}$$

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

$$C = \frac{Q}{V}$$

$$C = \frac{\kappa \epsilon_0 A}{d}$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

$$I = \frac{dQ}{dt}$$

$$U_c = \frac{1}{2} QV = \frac{1}{2} CV^2$$

$$R = \frac{\rho\ell}{A}$$

$$V = IR$$

$$R_{s} = \sum_{i} R_{i}$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$P = IV$$

$$\mathbf{F}_M = q\mathbf{v} \times \mathbf{B}$$

$$\oint \mathbf{B} \cdot d\mathbf{\hat{Q}} = \mu_0 I$$

$$\mathbf{F} = \int Id\mathfrak{Q} \times \mathbf{B}$$

$$B_s = \mu_0 nI$$

$$\phi_m = \int \mathbf{B} \cdot d\mathbf{A}$$

$$\boldsymbol{\varepsilon} = -\frac{d\phi_m}{dt}$$

$$\mathcal{E} = -L \frac{dI}{dt}$$

$$U_L = \frac{1}{2} L I^2$$

A = area

ELECTRICITY AND MAGNETISM

B = magnetic field

C =capacitance

d = distanceE = electric field

 ε = emf

F =force

I = current

L = inductance

 $\ell = length$

n =number of loops of wire per unit length

P = power

Q = charge

q = point charge

R = resistance

r = distance

t = time

U = potential or stored energy

V = electric potential

v = velocity or speed

 ρ = resistivity

 ϕ_m = magnetic flux

 κ = dielectric constant

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2000

GEOMETRY AND TRIGONOMETRY

Rectangle A = area

A = bh C = circumference

Triangle V = volume

 $A = \frac{1}{2}bh$ S = surface area

b = baseCircle

 $A = \pi r^2$ h = height

 $A = \pi r^2$ $\ell = \text{length}$ $C = 2\pi r$ $\ell = \text{we width}$

Parallelepiped r = radius

 $V = \ell w h$

Cylinder

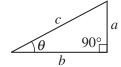
$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3} \pi r^3$$

$$S = 4\pi r^2$$


Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1$$

$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$