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Introduction

Introduction

This series presents modern physics through examples and derivations. The organization of
the topics does not follow the traditional historical approach, it was determined by practical
considerations instead. We build up the mathematical framework of the models first, and then
completely derive the most important consequences and compare them to recent experimental
results. The volumes can be used in the specialized fields as reference materials, and are suitable for
self-study in each topic. They may also serve the needs of university lectures as well.

The first volume deals with the general theory of relativity. This description has only
historical relevance by now, since during the last century, much experimental evidence was found
for the consequences of Einstein's theory. It is a classical field, where centuries-old scientific and
philosophical ideas got mathematical formulation, and the experimental confirmation. It is
important to point out, that the traditional mechanical worldview, that is often considered to be
easier to grasp, is in fact an incomplete intellectual achievement. The basic assumptions of general
relativity draw from everyday experiences, and the recognition of the curved nature of spacetime
follows naturally. It is comparable to the understanding of Earth's spherical shape, and if we are
familiar with the mathematical foundations, it does not even require too much imagination.

The Reader is assumed to have some basic knowledge in higher mathematics and among the
more traditional subjects in physics, but there is only as much mathematical depth in this book, as
absolutely necessary. We use the traditional symbols of differential calculus and index notation. The
SI system of measurement is used in all physical derivations.

Béla Valek
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Observations

Observations

Maybe our senses mislead us, but we do not notice that while we sit calmly in a room, Earth
is actually speeding around the Sun at nearly 30 km/s. In fact we cannot even tell if we are standing
still in the dock or moving on open water, while we are inside an ocean liner. The fact is, that not
only us, but (in the ideal case) not even our instruments are able to tell the difference. They may be
inaccurate, but it is also possible that there is a principal reason keeping us from telling our absolute
velocity. This is the principle of relativity by Galileo Galilei.

Our journey in time in one direction from the past to the future, and the ordering between
cause and effect, is such a self-evident experience, that it is surprising that we have to explicitly
state it as a condition. Serious logical flaws and paradoxes would arise, if it were not so. But from a
practical point of view, we cannot tell anything except that we have not yet observed the contrary.
This idea gained great importance, when Rudolf Clausius recognized entropy, the change of which
shows the direction of time. We must keep in mind however, that nothing has been said on how fast
time passes, or if it passes in a constant manner.

Light is travelling imperceptibly fast to our notions. However already a thousand years ago
the Arabic scientist Ibn al-Haytham suggested, that since light is a propagating phenomenon, it may
have a finite propagating velocity. We recognize it only at astronomical distances, or with the help
of our instruments, having much better reaction time than our naked eyes. It is an important fact that
its speed in vacuum is always the same and constant, for all observers, regardless of their motion.
The theoretical foundation for this comes from James Clerk Maxwell's equations. We trust this
observation so much, that this forms the basis of the definition of meter in the SI metric system. If it
were not so, a very fast observer could outrun light, and measure a different value for its velocity,
thus measure his/her absolute speed, something impossible, as we believe.

Astronaut candidates in an aeroplane on a paraboloidal path (the “vomit comet”) can
experience weightlessness for a short period of time. Fun park simulators tilt back the seats of their
visitors, although they feel only their own weights, but they are led to believe that they accelerate. If
the simulator would actually move away from its position and not only tilt, the person sitting inside
would not be able to tell the difference. There are two indistinguishable phenomena again, let us
declare that they are the same, this is Albert Einstein's principle of equivalence.

Bodies accelerating under electromagnetic influence behave as if gravitation would act on
them, a similar empirical law describes their motion. However this force depends on whether they
have a net charge, moreover it is not only attracting, but it can also be repelling. Nevertheless, the
trajectory of a particle moving in a general electromagnetic and gravitational field may be described
by purely geometric means, as shown by Theodor Kaluza. Our statement will essentially mean, that
a charged instrument does not measure any difference between acceleration under gravitational or
electric influence, or the state of weightlessness.

The general theory of relativity is based on these observations, and describes the behavior of
spacetime, and its interaction with the matter it contains. Thus it creates a framework where all the
other physical models can be described.



Notation and constants

Notation and constants

We use index notation in the entire book. Indices are always single letters, and the following
table summarizes how and where they are used:

spaces free indices summation indices
3D or general space (1...N) L,j,k, L mn a,b,c,d e, f

4D spacetime (0...3) nKWLv,§Eo a,B,v,0,8

5D spacetime (0...4) P,Q,R, S, T,U A,B,C,D,EF

Both sides of the equations must have the same number of free indices, since in fact we have as
many equations as the number of dimensions, multiplied with the number of free indices:

1 1 1 1 1 1 2 2 2 3 3 3
vi=a-u'+b' — v=au+b , v=au+b , v=au+b
The terms that contain summation indices are summed, as many times as the number of dimensions:

N
__.a _ a _ .1 2 3
s=v -ua—Zv U, =V U TV U,V Uy

a=1

i1, i=j
oei=lh
The Kronecker delta: j O, i ]

The coordinate systems where the quantities are written down are indicated with a lower-left index.
Quantities in different points are always denoted with a different letter, wherever possible.

The determinant of a matrix with two indices can be calculated with the following recursive
formula:

M |=(=1)""" M Moy

)

Calculating the components of the twice contravariant metric tensor from the twice covariant metric
tensor:

K _ (_1)k+l'|gi¢k j#l'

g,

The derivative and integral of the Lambert function:

dw _ I _wis
&I (1) fW(x).dx—x(W( )+

1
W(x)

—-1|+C

Natural constants:

10




Notation and constants

speed of light: ¢=2.99792458-10" %
m3
gravitational constant: y =6.67428-10 ! —
kg-s

Units of time and distance:

Julian year: 1a=365.25days=3.15576-10"s
astronomical unit: 1 AU =1.49597870691-10"" m
lightyear: 11y=9.4607304725808- 10" m
1 Pc=3.08567758128-10"°m
parsec: =2.06264806245-10° AU
=3.26156377695 ly
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1. Foundations

1. Foundations

In this chapter we introduce the mathematical language used by the general theory of
relativity. Our goal is to find measurable quantities that we can use to describe multi-dimensional
surfaces. This problem is dealt with by differential geometry, and the methods used are similar to
those found in geodesy. The word “geometry” itself means “measuring Earth” by which our topic is
related to an ancient science that has been cultivated in the antique world with great expertise.
While the geodeses survey the Earth's curved surface, we will explore the curved spacetime, but our
goals are exactly the same: to orientate, to measure distances, or to find the shortest path between
two points, and so on.

We are going to see that starting with naive, down to earth assumptions about space, we can
build up a geometry with various properties, where we can identify all the necessary geometric
quantities. From this we can draw the lesson, that when we think about “simple” flat space, we
apply several unspoken assumptions and limitations, that do not follow automatically from our
starting conditions.

1.1 Coordinate systems

Let us imagine an arbitrary space, where we identify the points with individual sequences of
numbers called vectors, in other words we set up a coordinate system. By definition, we denote
each coordinate with an index in the upper-right corner. The i.-th coordinate of point x:

x' (1.1.1)
These sequences of numbers are not exclusive of course, the points in space can be arbitrarily
renumbered. If we distribute the numbers according to a different logic, we are setting up another
coordinate system, denoted by 2 in the lower left corner, where the coordinates are functions of the
coordinates in the first coordinate system:

X' = x'(1) (1.1.2)
Let us now assign a number, or otherwise known as a scalar, to every point in space. A scalar field is

defined as a function of the points in space, and the value of this so called scalar function is of
course independent of the choice of coordinates:

¢ (x') ¢ (x)=d(,x) (1.1.3)
Let us take a look at two different points in a coordinate system:
X Y (1.1.4)

The difference between the values of the scalar field in those points is independent from our choice
of the coordinate system:
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1.1 Coordinate systems

d’(lxi)_‘i’(1yi):¢(2xi)_¢<2yi) (1.1.5)

This is also true if we reduce the distance between the points infinitesimally, which is the total
derivative:

0¢ a_ O a
—ndx =——dx (1.1.6)
10X ,0X
However the change in the scalar field along a coordinate depends on the choice of the coordinate
system. In fact, we are examining how much the change along a coordinate looks along a coordinate
of a different coordinate system. To make the equations less crowded, we omit the 1-index most of
the time. Let us postulate two transformation rules:

: : o Op _0¢ 0x°
Transforming the partial derivative of the scalar field: P — (1.1.7)
,0x' 0x" ,0x
. . . . i 2a xi a
Transforming the coordinate differential: ,dx = e “dx (1.1.8)
X

Their scalar product is coordinate system independent. This demonstrates that our postulated
transformation formulas are correct, since they behave as expected:

0 49 0" .28x“.dxc:a_¢.dxb
b

= , 1.1.9
0x" ox” ,ox" ox¢ 0x ( )

In the case of infinitesimal displacement, coordinates change in both coordinate systems. The ratios
of these changes between the coordinate systems form a square matrix, called the transformation
matrix:

-0 - 0x
AN =20y A=
0x’ ,0x’

(1.1.10)

The quantities that are transformed like the partial derivatives of the scalar field are called covariant
vectors, which are also numbering the points in space, just by a different logic. By definition, the
index is placed into the lower right corner:

0 _ 0 4 o0

i a ! Vi=
,0x' Ox

l_ .
ox'

Covariant vector: a v quantity that transforms like the partial derivatives of the scalar field
between coordinate systems:

=y A, (1.1.11)
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1.1 Coordinate systems

The quantities that are transformed like coordinate differentials are called contravariant vectors. The
position of the index remains unchanged:

i 20X

a ‘dxa Vi:dxi
ox

,dx

Contravariant vector: a v quantity that transforms like the coordinate differentials between
coordinate systems:

i 20X

— = A (1.1.12)
ox

LV

If we swap the coordinate systems, the reverse transformation formulas are:

i 0x'
Vi=——
,0x

-2va:Aai-2va V=,V =, AY (1113)

The reciprocal of the differential transforms like a covariant vector:

L_ 1 1 _0x 1 _,.1
dx' AT dx Lox dxt T dxf

(1.1.14)

It follows from above, that the scalar product of the covariant and contravariant vectors is also
coordinate system independent, and the result is a scalar:

Wt =v AN A =y, (1.1.15)

We perform a double transformation, we write down a vector in a different coordinate system, and
then we return to the original:

i 8x'

i
— i aZax

a__ i a a i
P SV =A v 2v:V~a —=v-A,
X X
2

vi=A, VA =8
The scalar product of the transformation matrices is the Kronecker delta:

AN =5 = Ox ‘zax

a i j
Pl oxt ox

(1.1.16)
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1.2 Tensors

1.2 Tensors

The results of vector products belong to the family of tensors. These are special kinds of
tensors, because they depend only on n-m numbers, where m is the number of vectors and # is the
number of coordinates:

viw wh prq . =T (1.2.1)

On the other hand, a matrix representing such a tensor might have »” independent components, and
this is also true about the general tensor. This suggests the following transformation rule:

Tensor: a T quantity that transforms in the following way between coordinate systems:

T = A AN AT A AL (1.2.2)

m

This formula clearly shows, that if all components of the tensor are zero, then it stays zero
under any coordinate transformation. The rank of a tensor is the number of indices, a scalar is a
tensor of zero rank, the vector is a first rank tensor, and so on. The product of arbitrary tensors is
also a tensor, for example:

A"-B,=T",, (1.2.3)
The sum of tensors is interpreted only if they have the same rank, for example:
A +,BY=A A A+ BY)AS (1.2.4)

Let us multiply an arbitrary tensor with vectors in such a way, that we perform a summation for
every index. According to the definition above, the result has to be an invariant scalar:

T e Vo tlyWe..p' g ... =s (1.2.5)

If we do not know the nature of a quantity having multiple indices, the formula above can
determine if it is a tensor. Because if we write it down in a different coordinate system, then the
transformation matrices will cancel out only, if the quantity with multiple indices deploys the same
number of transformation matrices, as there are for transforming the vectors.

The value of the Kronecker delta is one in the case of corresponding indices, and zero if the
indices are different. According to the formula above its a special kind of tensor, whose components
are separately invariant:

stv u'=v,-u'=s (1.2.6)

Covariant vectors can also be used to number the points in space, these sequences of
numbers are made of covariant coordinates:

X; (1.2.7)
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1.2 Tensors

In fact, this is just another coordinate system, one of many possibilities, therefore the contravariant
coordinates of a point certainly can be transformed into covariant ones. Therefore let the other
coordinate system be the covariant one, thus the mutual ratios of the coordinate changes form a
symmetric g; quantity:

,0x' _0x; _ Ox;

0x’ - gij_@x" - Oxi_g‘ﬁ (12.8)
. a ! a axi a

zvl:\/a'za;a — V,=V 'W:V ‘i (129)

In the reverse direction:

ox' : Ox ox’
1 i i
™ - ox T ox ¢ (12.10)
2 J 1
8 “ i ¢ ai
R Vv Sy g (1.2.11)
,0x i

The scalar product of the contravariant and covariant representation of the vector is a scalar — the
length of the vector — therefore our new quantity is a tensor:

v, vi=v, v, g =vvhg, (1.2.12)

It is called the metric tensor, and it can raise and lower indices:

e ai _bj _ck

va-ub-wc-...-pd-q-...-g ‘g g '...'gdl'gem'...:Vi'uj'Wk'...'pl'qm'...
ck

Tabc..g.le”"gai'gbj'g "".gdl.gem.'":Tijkmlm... (1213)

We perform a double transformation, we write down a contravariant vector in covariant form, then
we transform it back into contravariant form:

i___a bi___a 51’
V=V 8w'& =V 0

The scalar product of the metric tensors is the Kronecker delta:

. 0x, ox°
. a]:(sl‘: i 2.
gu8" =0 = aT (1:2.14)
If we perform a summation on all indices, the result is the number of dimensions:
ab b
88 =06,=N (1.2.15)
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1.2 Tensors

An arbitrary tensor can always be split into the sum of a symmetric and an antisymmetric
tensor. In the case of two indices, it is possible to create a symmetric tensor with the averaging of
the opposing tensor components:

1 1
T,=o(Ty+T)=2(T,+T)=T, (1.2.16)

S

Subtracting it from the general tensor, the result is an antisymmetric tensor:

aTy:Ty—sTg:Tg—%'(TﬁT,i)=%-(T[j—Tji)=—%~(Tji—Tij)=—aT,i (1.2.17)
with having zeroes for diagonal elements: T iiZ% (T,—T,)=0 (1.2.18)
Their sum recreates the original tensor:

sTi/+aTii:%'(Ti/‘+Tji)+%'(Ti1’_Tﬁ>:Ti/' (1.2.19)
Reversing the indices of a general tensor:

r,=T;+2-,T, (1.2.20)

1.3 Straight lines

In an arbitrary space, a curve with a constant tangent vector is the closest thing to a straight
line. The change of coordinates with respect to an invariant quantity is the following:

i 0x

"N

(1.3.1)

Let it be the tangent vector of the straight line. We write it down in another coordinate system:

zﬁx[:zﬁxi_ax“ /i
OA ox® OA OA

(1.3.2)

The formula which describes that it is not changing, that the derivative is zero, is the equation of the
straight line:

zazxi_ 20°x ax® axt ,0x' o’ x" ox’

2 a b. ’ a. 2 _0 ’ i
oA ox“0x’ OA OA 9x" 0A ,0x
i—c:
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1.3 Straight lines

axj' 0 x° _6x“_8xb ax-"‘zaxﬂazx“:
,0x° 0x“9x” O OA  Lox° 8x" A’

. 2 c
j _ax/ Zax

We introduce the connection in the first term: I’ ,=——=—— (1.3.3)
,0x O0x -0x

axj'zaxc_ﬁzxa: j‘82x“:62x"
,0x° ax® oA “ oAt oA’

The index changes in the second term:

The geodesic equation:

o°x’ . ox* ox
+ V.= = .

We write down the geodesic equation in two different coordinate systems:

20 a A_b %y Ay ot
8_)62 ab.@_x_@_x: % T b.i.z * o (1.3.5)
OA oA 0A oA “ 0N 0A

The transformation of the first and second derivative with respect to the invariant:

26xi_2axi'8x“
oA 9x" 0A
0°x _ 20x oxt ax” 50x x" (136)
oA’ ox"0x" OA OA  9x" AN o
Insert them into the geodesic equation:

a—c b—d

0 0 0x' 0F Px), p 02 ox7) [0x ax') o 5o
ox-ox’ 0A 0A  ax" oA’ T “loxt 0A)\oax? 0A o

Rearrange the formula and multiply with a new factor:

zﬁxj_azx:Jr 2?2xid+2r,~ab'28xj_zalj .axc.axd:() _Gxi
ox OA 0x -:0x ox° ox" ) OA 0A ,0 X

I—e

Write down the change in the first term in detail:
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1.3 Straight lines

zﬁxe‘ dx’ _asz: _,»‘azx":azx-"
ox° ,0x° aAT  C oAT N

Let us reinsert it:

Ox [ 0 ax . ,0x" 0% axT) axt ax'_

a = 13.8
oA* |ox“ox! ,ox T ax ox' ,0x°| OA 0A (138)

Our result is in the form of an equation of a straight line. We can recognize the connection, from
which we identify the transformation rule:

c—1i d—k

2 _e i a b i
;_ 20X ox’ e 20X _2ax ox’

kTN K 24 ab’ ' k
ox'-ox" ,0x° ox' o0x" ,0x°

(1.3.9)

The connection is therefore not a tensor-like quantity. The symmetric part of the general connection:

ct

N " k
=5 ) (1.3.10)

The antisymmetric part of the general connection is the torsion:

e 1k k
Sy=o = 17) I'y=I+2$, (1.3.11)

We insert the transformation law of the connection:

72 \\ox ax’ ,0x°

Sk 1 282xe .axk . .2axa.zaxb.axk)_( 282)(;6 axk+re .2axb‘28’xa.axk

= 2 b . . . .. 2 b . .
“ox' ox’ ,0x°) \ox'-ox ,0x° “ox’ ox' L,0x°

Simplify, the transformation of the torsion:

1 e o 20x" 20x" 9xF
St ==.(I° —T°) —- —
=5 G o) ox ox o (13.12)
Judging from the transformation law of the torsion, it is a tensor with three indices:
S =8" A A" AL (1.3.13)

The variations of the connection transform like tensors:
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first coordinate system:

second coordinate system:

1.3 Straight lines

5T/, =

jik(x)_rjik<x+5x)

26Fjik:2rjik(2x)_erik(2x+25x)

Insert into the first equation the transformation of the connection:

ST/, =
OO T O OX e ()
Ox-0x ,0x Ox Ox ,0x Ox-:0x ,0x
. ox* ,0x" ox’ ox* ,0x" ax’
6F]ik:2reab(x)'2 x,"z xk 'axe_Zreab<x+6x)'2 xl' '2 xk'axg
ox Ox ,0x Oox Ox ,0x

The variation of the connection is a tensor-like quantity:

or’, =617,

zaxa‘2axb. ax]

L

ik j k
ox' dx  ,0x°

(1.3.14)

2axa'2axb. ox’

ox' ox" ,0x°

(1.3.15)

(1.3.16)

1.4 Parallel displacement

Let us take a look at two infinitesimally close points in space, where we define vectors in
each of them, and describe it with two different coordinate systems at the same time. In order to
avoid confusion, we summarize the notation here:

First coordinate system Second coordinate system
First point x' '
Second point Y 2V
Vectors in the first point v, wi 2V
Vectors in the second point u, g U

We parallel transfer a vector from the first point to the second, and we define the first coordinate
system in such a way, that every components of the new vector are identical to the old one:

u=v

The change in the second coordinate system is more general:

u'= v+ Ldv'

We transform the coordinates of the vectors in the following way:

20
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1.4 Parallel displacement

i 8xi a i 8yi
— a'zv u = a
20x 20y

v u’ (1.4.3)

Let us insert it into the formula written down in the first coordinate system:

SV = (1.4.4)

The difference of the two points is the total derivative, where we now differentiate with respect to
the coordinates of the second coordinate system:

axa-zdx“ / 0
,0x ,0X

y=x+ 7

i i 2 i
6yj: 6x/+ 6jx a'zdxa
0y’ ,0x' ,0x'-,0x

(1.4.5)

Substitute it, and then expand the parentheses:

i i 2 i
0x a_8x+8x

. V p—
a 2 b b
,0x ,0x" ,0x,0x

ol || v (1.4.6)

b o' x'
a'zdxu'zv + b
,0x ,0x ,0X ,0X",0x ,0X +,0x

b
P 'zdxu 'zdv

We simplify and then ignore the last term, where the infinitesimally small quantities are on a higher
power:

i 2 i a J
O:a_xb.zdvlq_%.zdxa.zvb /.2 xi
,0x ,0x +,0x 0x
i—c
P L NI L (1.4.7)
x ,0x ox ,0x -,0x

On the left side of the equation, we substitute and apply the Kronecker delta, on the right side we
substitute the connection:

J 2 ¢
j _2835. 0 x°

2% ba— . b
ox" ,0x-,0x"

(1.4.8)
2dvj:—21—'jba'2dxa‘2vb
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1.4 Parallel displacement
We reinsert this into the parallel transfer formula of the contravariant vector, without the

identification numbers of the coordinate systems. It is possible to swap the lower indices, we do so
to have the same index convention that is used in a later definition of the connection:

u'=v'—T", vdx’ (1.4.9)

We take the scalar product of two vectors in the first point. If we parallel transfer them into the
second point, the resulting scalar does not change:

viw,=u"q, (1.4.10)
The parallel displacement of the contravariant vector:

u'=v+dv'=v'-I",, v -dx" (1.4.11)
The parallel transfer of the covariant vector:

g =w;+dw, (1.4.12)
Substitute them into the scalar product:

viw,= v“—F“dC-v”~dxd)~(wa+dwa) (1.4.13)

VOew, =vhw v dw,— T vodx o w,— T v dx-dw,
Simplify and omit the last term, where the infinitesimal quantities are on a higher power:

dw,=T";-dx"-w,

We reinsert this into the parallel displacement of the covariant vector:

qi=wt T w,dx” (1.4.14)

Based on these, we can determine the parallel transfer formula of any tensor. We are already not
following the notation introduced in the table earlier:

ok o g . =k
vieuw'wteprq, . =T,

We substitute the parallel transfer formulas, and neglect the terms containing higher powers of
infinitesimal quantities. Therefore only the products of vectors remain, and those terms, that contain
the connection only once:

(vi—Fiba-v“-dxb)-(u'j—F'jba-u"-dxb)-(wk—kaa-wa-dxb)-...-(p,-l—1"“,,,-pa-dxb)-(qm+Fa,,m-qa-dxb)-...:
Tykmzm..."'(_Fiba'Tajk”}m..._Fjba'kamzm..._rkba'Tijamzm..._---+Fab1'Tijkm ..."'rabm'TUkmza..."'---)'dxb
(1.4.15)

am
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1.4 Parallel displacement

1.5 Connection and metric tensor

Like in the previous chapter, we take the scalar product of two vectors in the first point. If
we parallel transfer them into the second point, the resulting scalar does not change:

G (X) VW' =gu(y)u'-q’ (1.5.1)

We wrote on the left side of the equation the scalar product in the first point, and on the right side
the scalar product in the second point. We approach a metric tensor from another with a Taylor
series:

0g;(x)
. =g (x)+—=L—"dx"+
gy<y) gz/( ) 0 x° 2 ox“0x

1.0°g(x)

b

dx’dx"+ ... (1.5.2)

We substitute the parallel displacement formula for vectors and the Taylor series of the metric
tensor, neglecting the terms containing products of infinitesimal quantities:

02,(x)

—dx’ ~(va—F”dc-vc~dxd)-(wb—dec-wc-dxd) (1.5.3)
0x

gab<x)'va'wb: gab<x)+

Let us simplify and neglect the higher order terms of infinitesimal quantities again, and then step by
step rewrite the summation indices into free indices. We must take care about what indices belongs
to what factors:

0
Oziib'a’xc-va'wb—gab'v”'dec-wc-dxd—gab-F”dc-vc~dxd-wb /-Lk
ox dx
0
0= g‘;(b'v” wb—gab v Fbkc-wc g T w’ /-il.
ox y
og.
0= gl:'Wb gzbrkc’wc 8T s w’ /'L'
0x w’
a a agl
gia'r kj+gaj'r ki:ax/{ (1.5.4)

Using this result it can be shown, that the parallel displacement of the metric tensor transforms it
into the local metric tensor of the destination, thus we are recovering the Taylor series:

a a agz(x)
ggj(y):gg'<x)+(r bi'gaj(x)+r bj'gia(X))'dxb:gU(X)'i'T'dxb (1.5.5)
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1.5 Connection and metric tensor

Permute the indices:

T4 g, T =28
(D) it KT8y ki_axk

a a agk
(2) gja.rik—i_gak.rij: asz
a a agki
(3) gka'rji+gai'r Jk— ox

Summarize the equations in the following way: (1) + (2) — (3):

a a a a a a agz 6gk agki
8u Tyt 8 Tt 8 Tat 8 Iy 8ua Ty 8 Ty =5 v =

Reorder the connections according to their lower indices:

):agij+agjk_agki

: = /-
ox* ox' ox’

gia'(rakj_rajk)+gaj'(raki+raik)+gak'(raij_Faji

N | —

Arrange the antisymmetric terms to the right side:

1

og. 0g., 0g,
gaj.caki_z gy+ g]k_ gkz

ox"  ox' ox’'

jb

_gia.Sakj_gak.Saij /g

Apply the Kronecker-delta on the left side:

Cjk—l gjb.(ﬁgib agbk_agki
2

=—. N —g’g 8§ oo .S [+S7
axk axl be) g gla kb g gak ib ki

The general connection is the sum of the symmetric and antisymmetric parts:

agib+agbk_agki

; |
rl==g" A
b & ox"  ox' oax

2

)_gjb'gm'Sakb_gjb'gak'Saib"‘Sjki

(1.5.6)

(1.5.7)

(1.5.8)

(1.5.9)

(1.5.10)

If we use a symmetric connection since the beginning, our formula gives the relationship between

the connection and the metric tensor:

Jja

agia agak agki
k + i a
Ox ox Ox

J

1
r ki:E'g

(1.5.11)

The infinitesimal surrounding of every point can be approximated with a flat space, where it is
possible to set up a coordinate system, where the partial derivative of the metric tensor is zero. In
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1.5 Connection and metric tensor

other words, we approach the point with a Taylor series, where the first derivative is zero, but others
are not. In this case the symmetric connection is zero, its partial derivative however is not:

or',

aglj:O 82gij
1
ox

: £0 = r.=o .
o x* ox'-0x" "

#0 (1.5.12)

1.6 Derivation

First in order to deduce the transformation rule of the second partial derivative, we
differentiate both sides of the transformation formula of the partial derivative of the scalar function:

0p _o¢ ox' 8

0x' ox® 0x L,0x

o’ _ ¢ 0x' 0. o x*
O0x',0x Lox-0x" ,0x' 0x* ,0x7,0x'

(1.6.1)

In the first term of the right side, we transform one of the denominator differential from the second
to the first coordinate system:

O¢p _ ¢ ox" ox' 0¢  ox’
Ox7,0x ax"ox" ,0x’ ,0x" 0x" ,0x',0x

(1.6.2)

The second partial derivative of the scalar field, that is the partial derivative of the covariant vector,
does not transform like a tensor. Substitute it to the formula above:

)
0x'
v, _9v, 9x" 9x" o’ x*
T (1.6.3)
,0x’ 0x ,0x" ,0x ,0x7,0X
v, o’x"  _0v, ox" 8x"
=L - =222 (1.6.4)

i Vd J AP Ab J i
,0X ,0x’-,0x° 0x" ,0x’ ,0x

In the left side, we transform the vector in the second term, so it would be written in the same
coordinate system as the partial derivative in the first term. The transformation rule of the derivative
of the covariant vector in the general case:

20V, 20X 9Py _5Va_8xb_6x”

—— v, —= . .
2Yb b
,0x’ ox* ,0x’-,0x" 0x" ,0x' ,0x

(1.6.5)
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1.6 Derivation

This quantity does not transform like a tensor. But if we switch the indices in it and subtract it from
the original expression, we get a tensor-like quantity called rotation. The right side of the equation:

v, ox’ ox" _0v, ax" ox” _ v, 9v,| ox’ 0x° —T AL AC
ox" ,ox’ ,0x ox",0x ,ox \ox" ox‘) ,ox’ ox 7
The left side of the equation:
28"1'_ .2axb_ 0% x* . 28";_ _28xb. 0 x* :26"1'_28"/: T
,0x’ 2P oyt 0x7,0x"| \,0x 2 9y ,0x',0x" | ,0x’ Lox 2
The transformation rule of the rotation corresponds to tensors of second rank:
Tab'Ajb'Aiazszj (1.6.6)
This tensor is antisymmetric:
_ _0v, dv, [dv, Ov, (167
v Toox! ox ox' ox’ o
) ov, Ov,
Its diagonal elements are always zero: T,= o ox =0 (1.6.8)
X X

If we cyclic permute the indices of the partial derivative of the antisymmetric tensor and add them
together, the result is zero, because the second derivatives of the vectors cancel out:

ox* ox' ﬁxj_éxk ox’ ox'| ox' axk_éxj ox’'\ox" ox*
v, azv‘, szj v, v, azvi _

k i Ak Tt kK A i 7 7 i A _J kT
ox"-0x’ O0x-0x O0x-0x Ox-0x’ Ox’0x 0Ox'-0x

oT; 0Ty 0Ty_ 0 (avi_av‘,)_i_ 0 (avj avk)+ 0 (avk_avi):

(1.6.9)

1.7 Invariant derivative

Let us assume, that a covariant vector field is constant in a given coordinate system, its
partial derivative is zero everywhere:

ov, _

ax'

0 (1.7.1)

Rewrite this formula in another coordinate system, utilizing the results of the previous chapter:
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1.7 Invariant derivative

ava axb axa avi axb aZxa
or o o P o ool (1.7.2)
2 2 2 20X

Insert the connection in the second term:

b 2
b _2ax_ o x“

= : ‘ 1.7.3
Poox" Lox',0x ( )

2

This formula describes in an arbitrary coordinate system, that the partial derivative of the vector
field vanishes in the original coordinate system:

20V, b
W_zvb'zr j[—o (174)
Let us define the invariant derivative of the covariant vector:
ov, b
Vjvl:axj— I (1.7.5)

Connection: a /" quantity, that makes sure, that in the case of a coordinate transformation, the
invariant derivative transforms like a tensor:

Vjvi: _i‘_va.raji zv_jzvj:vaa'Ajb'Aia (17.6)

Transformation of the invariant derivative, substitute the transformation rules of the partial
derivative of the covariant vector and the connection:

28"1'_ rd o=
8xj 2Vd 2% jiT
2

5Va'8xb'8xa . o x“ . ox‘ o x° 'zaxd e .6xb.8x”.2axd _
ox" ,ox' ,ox  “Loxox CLox' \LoxT,0x 0x° b ,0x" ,0x" 0x°
ﬁv@ax”'ax“ Ty o> x“ o 0x" o x° .zaxd_ 0x° e ax”'ax“.zﬁxd_

ox" ox ox  Cpxox C ax oxox ox Cax " ox ox ox
x’ ,0x’ ,0x ,0x7,0x ,0x* ,0x7-,0x" Ox ,0X ,0x’ ,0x' Ox

We recognize the Kronecker-delta in the third and fourth terms:

aV b a 2 a ‘ 2 e , b a
Z_@xﬁ@xi_i_v(l‘ a‘x i_Vc'(SZ' a'x i_Vc'5Z'F6ba‘ax-'axi:
0x” ,0x’ ,0x ,0x7,0x ,0x7,0x ,0x’ ,0x

The second and the third terms cancel out, we pull out the transformation matrices from the first and
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1.7 Invariant derivative

fourth terms:

a b a b a a b a
Va.ax _8)6 v 1—-c ax 'ax :( Va_v.l—-cba).ax ax

ox” ,0x’ ,ox' ¢ ba'zﬁx" ,0x \ox’ 0x' ,0x

ov, ov ox’ ox°

2 i d a c X X

—— vl = —v. I, | - 1.7.7
% Va2l (axb h) 0% 0x ( )

The partial derivative of a scalar field is a tensor, therefore it coincides with the invariant derivative:
0
Viqb:ib,. (1.7.9)
ox

The scalar product of the covariant and the contravariant vector is a scalar:

o(u”
V,-(u"'va)=—(u V) (1.7.10)
0x
¢ ov
V,.ua-va+ua-vl.va=aui-va+ua- .
Ox 0x
ov a ov
V,-ua-va-l-ua-—(f—ua-vb-]“bm:aui-va+u”- .
X Ox 0x

a ‘ p 1
Viu -vazgui-va+u v, Il —

X Vq

The invariant derivative of the contravariant vector:

) J )
V[u]=%+ua-l”m (1.7.11)
X

Now we can determine the invariant derivative of arbitrary tensors, using the products of
contravariant and covariant vectors:

Vn T[jkmlm.,,ZVn(vi'uj'Wk'- plqm )

V, T”k'“,m___:ani-uj-wk-...-p,-qm-...—l—vi-Vnuj-Wk-...-p,-q,,,-...—i—...

k... ov' i a pi Pk
V., 1" lm"':@x".u/'w e Py G VT W DGt

Group together the vectors on the right side:
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1.7 Invariant derivative

ik
Vn Tl] lmm:

aTijkmm i aj j ia
—meypi pete gl ik
axn

m

k ija... a ijk ... a ijk...
+r na.T lm+_r nl.T am..._r T I

a...

(1.7.12)

na nm

It is possible for certain quantities to serve as the connection, that cannot be formulated like the
previously defined version, therefore we have to spend some time with the properties of the general
case. The rotation, using the invariant derivative:

ov, O0v, b
Vjvi—vivj:ﬁ— ﬁxj —Vb'(r

It )y=—~_—J 1.7.13
U) ox’ o0x' ( )

Ji
This equation is satisfied only if the connection is symmetric:

=I", (1.7.14)

k
r jy— 5 i
The invariant derivative of the Kronecker-delta:

98 . _ _ _
V. 8,= ax’j‘ +I, 85T 6,=0+I",—I",=0 (1.7.15)

J

The formula for the invariant derivative of the metric tensor is the same, that we permuted three
times during the derivation of the formula for the relationship between the connection and the
metric tensor, and its zero:

agi‘ a a
Vig, =i~ ly= 8y T5=0 (1.7.16)

The invariant derivative of the twice contravariant metric tensor:
Vk (gm'gq;)zvk 53‘: 0
Vig“g+g"V,g,=0
Vig" g, +£"0=0

Since the twice covariant metric tensor is not zero in the general case, the invariant derivative of the
twice contravariant metric tensor has to be zero:

V,g"=0 (1.7.17)

1.8 Derivative along a curve
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1.8 Derivative along a curve

Let us push a vector of a vector field a bit along a curve. The curve is parametrized by an
invariant quantity:

The vector field at a certain point of the curve: vi(A)

The vector field at an infinitesimally nearby point of the curve: VI(A+SA)

The parallel translated vector along the curve into the second point:
w (A+6A)=v' (A) =TI}, v (A)-dx”

The difference between two infinitesimally close points of a vector field is the total differential:
dv'(A)=v'(A+8A)—v' (A) (1.8.1)

The differential along a curve is the difference between the parallel translated vector and the local
vector of the vector field in that point:

Dv'=v (A+8A)—w'(A+62A) (1.8.2)

Dv'=v' (A+8A)~(v'(A)=I",, v (A)-dx")

Dvi=av' (A +TI7, v (A)-dx” |-——

Substitute the tangent vector: —=y

When the derivative of a contravariant vector field along a curve is zero, it has the same form as the
geodesic equation with tangent vectors:

i dvi i a b
byv=—+ BT 1.8.3
V J I, viu ( )

We proceed the same way with covariant vector fields:

Dv,=v. (A+5A)—w,(A+52) (1.8.4)

Dvi=v,(A+80) (v (A) 4T v,(A)dx’|
Dv,=dv,(A)—=T",v, (}\)-dxb /'ﬂ

The derivative along a curve of a covariant vector field:
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1.8 Derivative along a curve

dvi a b
DV[ZH—F o VUl (1.8.5)

Continue to example the two formulas. Since they have the same structure, we perform the
following changes on both of them simultaneously. Let us expand the first term and reorder it:

b :——l—ra.- b———’—l"” u’
i dxb d?\ bi Va d?\ dxb bi va u
od Ay i . s At A i . b
b . +TI = . +TI 1.8.
Vo dn e T g e e (1.8.6)
Substitute the tangent vector:
dv, dv,
Bvi:ub _}l)_rabi.va'ub_ub.(_;_rabt Va
dx
pv'=u" dvb+Fiba-v“-ub:ub- d—‘:}%—]‘iba-va) (1.8.7)
dx dx

We identify the invariant derivative inside the parentheses:

ov, - ou’ .
N & j_OW e
t—v, T, Vou/'=—+u"I"’,

0x ox

V,v,=

the relationship between the derivative along a curve and the invariant derivative in the case of a
symmetric connection:

Bvi:ub-vbvi Bvi:ub'vbvi (1.8.3)

Now we can write down the derivative along a curve of arbitrary tensors:
pr* . ="V, 17, =u"V,Vu'w. prq,...) (1.8.9)

The derivative along a curve of the tangent vector of the curve is zero, because if it is
displaced along the curve, it will coincide with the local tangent vector at the destination. Therefore
the derivative of the tangent vector along a curve is the geodesic equation:

i du' i a
Du Zﬁ—i-l" patU U=

p_0°x' i 0x" 0x"_
S e =0 (1.8.10)

This condition is obviously satisfied only if the connection is symmetric. The derivative along a
curve of the covariant tangent vector of the curve:
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1.8 Derivative along a curve

dui a b
DuiZdA—Tbi-ua-u =0

We rewrite the covariant vector to contravariant in the second term, using the metric tensor:

du

i a c b
Bui:ﬁ_gac.rbi'u u =0 (1811)
Bu:dui—l- T +g., T )-uc-ubZO
i d)\ 2 gac bi gab ci

If the connection is symmetric, then in the second term we can identify the invariant derivative of
the metric tensor inside the parentheses:

agi‘ a a
ngg/: x/i_gia'r /g'_gaj'r ki:O

Substitute it:

_dui 1 agbc
AN 2 oy

Du u“u"=0 (1.8.12)

If the partial derivative of the twice covariant metric tensor is zero, the corresponding covariant
tangent vector of the geodesics does not change:

agij:o — %:
ox* dA

0 (1.8.13)

1.9 Curvature

We are going to examine the global properties of surfaces, that are by their nature
independent of the coordinate systems. Our requirement is to be able to collect as many information
about the structure of the surfaces as possible, using internally measurable quantities. The practical
significance is, that we have to examine the shape of the spacetime using physical events and
processes that happen inside, we do not have the option to observe them from somewhere outside.

The commutator of the invariant derivative of the contravariant vector:

V.V'-V, V' (1.9.1)

The invariant derivative is a tensor-like quantity by definition:
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1.9 Curvature

Vf'vi:%””f =T (1.9.2)
Expand the repeated invariant derivation:
i ;0 Tij i b b i
Vkvjv:vaj: o1 +Fkb'Tj_F/g"Tb (1.9.3)

And substitute the vector's invariant derivative:

OV L api \_ 0 [0V N A b [0V a i
Vk xj+V 'rja)—m ax-/—i_v ~1"/.a +F kb Q‘FV F ja —F kl'. W‘f—v F ba
Opening the parentheses:
i_ 82\/ ava i a a[-l ja i avb i a b b avi b a i
V.V,v _axk-axj-i_@xk.r v ax’i +I kb-a+l" A ,g.-7—1‘ GV T,
Doing the same with the opposite index order:
i azvi ov’ i a arika i 5vb i a b b 5Vi b a i
Vijv_axj.akaraxj-rkﬁv e +rjb-7+r VI =T J.k-?—r PR A
Subtract one of the other:
i i 6F[u al—'ia i i i a ov'
V.V V=V V= —ft——tqr o1’ —T" T 42-8", T, | v'+2-8" =
ox 0x ox
(1.9.4)
Where we have substituted the antisymmetric expression with the torsion tensor:
b 1 b b
§" =5 U= 1) (1.9.5)
or', or : .
Substitute the curvature tensor: R =t +F’kb«Fbja—F’jb-Fbka (1.9.6)

jak — k i
0x ox’

i i i a 6 ! i a i a i
Vkvjv _vjvkv :R jak'v +2'Sbjk‘ 6_::b+r ba.v :R jak.v +2.Sbjk.vbv

If the connection is symmetric, then the commutator of the invariant derivative of the contravariant
vector is the curvature tensor, where we can recognize the tensor property from the form of the
expression:
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1.9 Curvature

ViV V=V, V=R " (1.9.7)

We determine the commutator of the invariant derivative of the covariant vector using the same
steps:

V.V,v=V, Vv, (1.9.8)

The invariant derivative is a tensor-like quantity:

VAvi: i,—va-]ﬂa“:T“ (1.9.9)

Jt g

The repeated invariant derivation:

oT,
ox'

V,T,= (1.9.10)

Substitute the invariant derivative of the vector:

aVi a 8 av[ a b av[ a b aVb a
Vk(axj_va'rji):ﬁ(axj_va'rﬁ)_rkj' axb_va bi)_rkz Vel
Open the parentheses:
o’v,  0Ov, ., ore, _, ov, s OV, .
V V Vi= ax B axk'rﬁ_va' axk] ija"'r K v Iy =TI ki‘ax,+r Vel jb
Doing the same with the opposite index order:
az"i OVy ra or’ s OV b a s OV b a
Vjvkvi:axj‘axk_axj.rki_va. Py -I jk'7+rjk'va'rbi_rji'ﬁ""rji'va'r kb
Subtract one of the other:
or¢, ore 0
V.Vv~V, Vo= i e 1" T, =28, T, |-v,+2-8" - =t
ox’  ox" 0x
(1.9.11)
Where we have substituted again the antisymmetric expression with the torsion tensor:
1
S =5 (I =T") (1.9.12)
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1.9 Curvature

ore, or¢,
Substitute the curvature tensor: R'= p ]'." —a—k”+1"bki-F”].b—Fbﬁ~F“kb (1.9.13)
: . . _ _

_ b
=R";v,+2:8" -V,

ov,
V, V,.vi—V,Vkvl.:R“kU»va+2~Sbjk~(a—x;—r“,,l.-va

If the connection is symmetric, then the commutator of the invariant derivative of the covariant
vector is also the curvature tensor:

ViVvi=V,;V,v=Riyv, (1.9.14)

If we set up a coordinate system in the immediate surrounding of a point, where the partial
derivatives of the metric tensor and the connection are zeroes, the curvature tensor will not
necessarily vanish, since the partial derivatives of the connection are not necessarily zeroes:

2 _or', or'y

W= 5o (1.9.15)
The invariant derivative:
4 or-, or
Vleju:Vm a—lek_a—xllk (1.9.16)
Permute the first and the third lower indices and the index of the invariant derivation:
4 or', or'
1 V Rl- :V Jk _v {k
( ) m Jki m 6)(?1 m ax]
i arizk arimk
(2) VjR lkm_vj ox" _vj ax'
‘ or’ or',
(3) V,R .=V, axj.”‘—v, ax"J’k (1.9.17)
Add the three equations:
VniRijkl+ijilkm+leimIg‘:
or', or' or' or', or',, or', 1.9.18
v,y Sy g Py g Ol (1919
0x O0x O0x 0x 0x 0x

Since the connection coefficients are zeroes in this coordinate system, only the partial derivatives
remain from the invariant derivatives, and they eventually cancel out:
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1.9 Curvature

Vle:jkl-’_ijilklm-’_leimk/": ' ' '

ﬁxl-axm_ﬁxm-ﬁxj ox’ox™ ox’ox ox'-ox’ ox-ox"

The following Bianchi identity is valid in every coordinate system:

VmRijkl+VjRilkm+leimlg':0 (1.9.19)

The curvature tensor is antisymmetric in its first and third lower indices:

or', or', or', or',
I _ ki i b gl b I 1 i ki b 1 bl
kij — ox’ - 5xkj +I /a"r jb_rji'r kb Rjik_ axk] - ox’ +Fji'r kb_rki'r Jjb
le{j:_Rl_/ik (1.9.20)

If the connection is symmetric, the sum of the cyclic permutations of the lower indices of the
curvature tensor is zero:

or'. or', or',. or'
I _ i k bl b ! I Jk ik b / b /
Rijk_ 8xkl_ 6xi/+rij'rkb_r kj'r ib Rjki_ axl‘l - ax’ +I jk'r ib_r ik'r Jjb
Ry+R y+R ;=0 (1.9.21)

1.10 Parallel transport along a closed curve

Let us set up an infinitesimal parallelogram with edges da and db long. We parallel transport
a vector along the edges from one corner (x) to the opposing corner (p), first through the y, later
through the z intermediate points:

F() V(p), W(p)
A db o\
ux) — ry) — V(p)
da da
ux) — 4@ — W)
db
w/(x) >4z)
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1.10 Parallel transport along a closed curve

Parallel transfer from x to y to da distance:

r=u' T, (x)-u"-da" (1.10.1)
Parallel transfer from y to p to db distance:

vi=r =TI 0 (y)rS-db’ (1.10.2)
We approach the connection in y with a Taylor series from the connection in x, from da distance:

+arijk(x) _dae+1_azrijk<x)

-da’-da’ +... 1.10.3
oa’ 2 0a%0ad’ @ ad ( )

Fijk(y):['i_jk(x)

Substitute the formula of the first parallel transport into the second, and the approximation of the
connection to the first degree:

afidc(x)

——da® | (u"—T°,,(x)-u’-da")-db’
Oa

V[Z(u[—Fiba(x)-u“~dab)— Fidc,(x)+

vi=u'-I', u*da" =T, u-db*+T .- T, -u"da"-db’

or' , or', ,
. datut-db? +—=%-da"- T, -u"-da"- db"

oa da

Neglect the last term with a differential in a higher order:

o ‘ ‘ or'
vi=u'-I', u"-da"—T'  u-db’+ T’ dc-Fcba-u“-dab~dbd—a—jc~dae-uc~dbd (1.10.4)
a

We perform these steps across the other corner point as well. Parallel transfer from x to z to db
distance:

g'=u'-T",, (x)u’-db’ (1.10.5)
Parallel transfer from z to p to da distance:

w'=¢'—T',.(z)¢ da’ (1.10.6)
We approach the connection in z with a Taylor series from the connection in x, from db distance:

+arijk(x).dbe_'_l'azrijk(x)
— ——— 7

-db*-db’ +... (1.10.7)
ob* 2 0b°-0b

Fijk(z)zrijk(x)

Substitute the formula of the first parallel transport into the second, and the approximation of the
connection to the first degree:
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1.10 Parallel transport along a closed curve

S 4 or'
w'=(u'=T", (x)u-db")— F’dc(x)+#(x)-dbe (u=T¢,, (x)-u"-db")-da’

w=u' =T, u"-db’—T' . u-da® +T" ;- T, u’-db"-da’
or', , or', .
——*.db"uda’ +—L-db" T, -u’-db"-da’
oa da

Neglect the last term with a differential in a higher order:

o . ‘ or
w’=u’—F’ba-u”dbb—lﬁ’dc‘uc'dad+1"’dC~Fcba~u”~dbb-dad—a—jc-dbe'uc'dad (1.10.8)
a

Subtract the two parallel transfer results from one another:

o or' : or'
v’—w’ZF’dc-l"c,m'u“«dab'dbd—a—jc'dae~uc~dbd—F’dc-Fcba-u”«dbb~dad+a—jc'dbe~uc~dad
a a

c—a,e—b:

or' S
— a1 T | ut(da’- b’ —db"-da”) (1.10.9)

i i
vV —w=—

da

The antisymmetric part of the tensor in the parentheses characterises the difference of the two
vectors, it is the curvature tensor:

i a[‘l a i c
B = Z_F i T ha
a
1 i i 1 arl a 61"1 a i c i c 1 i
5'(3 aar— B bad)__i' 6(1: - aafi) +I =1, I, :E'Rdab
vi—wi:%-Ridab-u“-(dab-dbd—dbb-dad) (1.10.10)

1.11 Geodesic deviation

In the immediate surrounding of any y point it is possible to set up a rectangular coordinate
system, where the connection is zero. Therefore the equation of the geodesics crossing the point
simplifies:
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1.11 Geodesic deviation

—0 (1.11.1)

This is however true for the point only. In the immediate surrounding, the general equation of
geodesics continues to apply:

o’x' i ox" ox’_
5% FTUrT (1.11.2)
We approach the connection in the neighbouring x points with a Taylor series of the connection of
the original point:

or', o°r.
+ ]k(y).dxa+l. jk();)

cdx“dx”+. .. 1.11.3
0 x* 2 o0x“0x ( )

Fijk(x):['ijk(y)

Substitute it into the equation of the neighbouring geodesics. Since the connection is zero in the
centre, only the first derivative appears in the equation, the higher order derivatives are neglected:
2.0 5 I a b

ax2+ C.Jb'dxc‘ax _ﬁx —
oA 0x° OA 0OA

(1.11.4)

Keep one of the components of the distance vector from the centre zero, thus we move only in a
subspace around the original geodesic. Therefore the partial derivative of the connection according
to this coordinate will also be zero:

or',

dx'=(0 dx' ... dx") — S
ox

0 (1.11.5)

The tangent vector is perpendicular to this subspace, thus the centre-crossing geodesic pierces this
subspace perpendicularly:

ox'_[ox°
={—=— 0 0 ... 1.11.6
oA ( oA ) ( )
The equation of the surrounding geodesics simplifies further:

*x' 0Ty , . 0x° 0x°
+ -dx”- . =0 1.11.
on ox " TaA Taa (1117

Expand the connection derivative with a term that is known to be zero, and with them we produce
the curvature tensor:

o' x'
oA’

aﬁw_aﬁw
ox° ox’

PRCE R S R%w:aﬂm_ar%

oA OA ox.  ox°
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1.11 Geodesic deviation

o’ x' ; . ox’ ox’
X Rpperdx- 2 =g 1.
2 00c dx 37 oA (1.11.8)

This formula is valid in general, we have no reason to restrict it to the indices denoted with
numbers. Therefore the deviation of geodesics in the immediate surrounding of a geodesic is:

2 i
6x2+R,
oA

. x(;‘axa‘a—.xb:
abe oA OA

(1.11.9)

1.12 Integration

We integrate with respect to all coordinate-variables in space, therefore we introduce a
shorthand notation for the product of the differentials:

dc" =] dx" (1.12.1)

The simple multi-variable integral of the scalar function is not invariant in the general case, since
the product of the differentials depends on the coordinate system:

[ Adc™#[ 4,dx" (1.12.2)

When we switch coordinate systems, the product of the differentials transforms with the
determinant of the transformation matrix:

ox'

dx" = -
,0x

Sdx" =|A |- dx” (1.12.3)

We insert this into the integral:

ox'

x]

[ aax"=[ 4

Ldx" = [ A A ) dx" (1.12.4)

2

The following expression is invariant, if we build in the determinant of the transformation matrix
into the expression under the integral:

[ A-ax"=[,4-,ax" (1.12.5)
The quantities that transform the following way are called scalar densities:

ox

J

~

LA=4-

=4|A/| (1.12.6)

,0X
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1.12 Integration

Let us examine the transformation rule of the metric tensor:

2 =N A g (1.12.7)
Since by matrix multiplication the determinants are also multiplied:

22 =1 A g (1.12.8)

The determinant of the metric tensor transforms like a scalar quantity, this also shows, that the
signature of this determinant is independent from the choice of coordinates:

Vag =AWV g (1.12.9)

Therefore the following integral is invariant:

[ 4g-dx"=[ 4-\,g-,dx" (1.12.10)

1.13 Variation and action principle

Integral of a scalar function that vanishes at the boundaries, and its integral has an extremity, thus
by slightly changing the input parameters the value of the integral does not change:

S=[s(x")Vg-dx" §S=0 (1.13.1)

In order to apply the action principle, we need to choose a scalar that represents the space. For this
we start with the curvature tensor and contract it to create the Ricci-tensor:

_al—'a[a’ al—'aal‘

+r°.re,-r’.re, (1.13.2)

ai

R,=R,,= Py ok

The trace of the Ricci-tensor is the curvature scalar, the simplest invariant scalar in the space:
R=g"-R, (1.13.3)
We use this as the scalar function:
S=[Rg-ax" (1.13.4)
Its variation:

55=5([ R-\Vg-dx"|=[ (5 RVg+R5Vg)dx"=0 (1.13.5)

41



1.13 Variation and action principle
[(5(g" Ry)Vg+R6Vg)dx"=[((5g" R+ g” 5 Ry) g+ R 5g )-dx"=0

Examine the second term of the inner parentheses in a coordinate system, where the connection is
Zero:

ore ore ¢
gab.é-Rab:gab.é —:b_gab.é-—:b:ic gab.é Fcab—ng-(S raab — avc (1136)
ox" 0x ox" 0x

where: vi=g”-6I",—g"8TI",

Thus the expression inside the parentheses transforms like a vector. We rewrite the partial derivative
into an invariant one, thus it will become valid in every coordinate system:

[V dga=¢v Vgax"'=0 (1.13.7)
Rewrite the integral into a surface integral using the divergence theorem, however our starting

condition was that our scalar is zero on the boundaries, thus we succeeded in making this term
disappear:

5" R, Vg+R-6Vg)dx"=0 (1.13.8)
I

Using differentiation rules we rewrite the variation of the square root of the determinant of the
metric tensor (where M is the algebraic minor):

g'é;:Mk;ba’l#i'g

aj
dg:Mk?&a, lii‘dgm—
5g=g-8"68,
1 — a
6@:_5.\/g.gab.6g b (1.139)

Substitute it:

Jl(5gab.Rab'\/§_R'%'\/§'gab.6gab 'd)CNZO

This expression is zero only if the expression inside the parentheses is zero, it is the Einstein
equation:
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1.13 Variation and action principle

1
Ry=5R-g;=0 (1.13.11)

The invariant derivative of the Einstein equation:

1 1
Vk(Ri/—?ng):VkRi,—E-Rngi,:VkRg/ (1.13.12)

We already know, that the invariant derivative of the metric tensor is zero. We can determine the
invariant derivative of the Ricci-tensor using the Bianchi identity:

1 a a a
VkRijZE'(VkR [ja+V[R ajk+vaR ka):O (1.13.13)

Thus our result is:

1
Vk(Ri/—?R-g”):O (1.13.14)

1.14 Runge-Kutta approximation method

On surfaces with known geometry, we can examine arbitrary geodesics using numerical
methods. The geodesic is uniquely identified by the coordinates of a single point it crosses, and its
tangent vector in that point. With this information it is possible to recover with small steps the
coordinates of the other points the geodesic is crossing, the smaller the steps are, the greater the
accuracy becomes.

Using the Runge-Kutta approximation method we can determine trajectories with high
accuracy and by doing significantly less iteration steps, if we know the following variables at the 7.-
th step:

coordinates: WX

coordinate-velocities: v

connection in a given point: I'(x")

change of the invariant parameter: dA (1.14.1)

It is important that the invariant parameter increases or decreases monotonically, because only in
this case will it lead along the entire geodesic. The change in the parameter determines the the step
size, that can be a conveniently chosen number.

We approach the trajectory of the moving body with four straight sections, determine the
coordinate- and coordinate-velocity-changes along the sections, and then average them:
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1.14 Runge-Kutta approximation method

AV=d"dA Ax'= v dA (1.14.2)
i i i Axi a A ‘ AV

2a:_rab nx+12 ).n 12 nb 12

o _ LAY

AV =5a"-d A zAxl:(nv’ 12v dA (1.14.3)
; ; ; LAX . AV AV’

=L X )'(”Vb = )

AV=d-d A Ax=| Y 2A2V dA (1.14.4)

4a[=—Fiab(nxi+3A xi)-(,,va+3A va)-(nvb+3A vb)

AV=,d-d A Ax=(V 80 ]-d A (1.14.5)

We write down the weighted sum of the resulting coordinate- and coordinate-velocity-changes, thus
we get the variables that determine the trajectory at the next step. The results calculated with this
method deviate from the actual value only in the fifth order:

i i+1Axi+2Axi+3Axi+4Axi
AT T T3 T

n+1

Avi+2Avi+3Avi+4Avi

1.14.6
6 3 3 6 ( )

i i1
nt1V =aV +

44



2. Examples

2. Examples

In this chapter we are going to visualize the quantities derived in the previous chapter with
some easy examples. We examine various two dimensional surfaces, we determine the metric
tensor, its derivatives, the connection and derivatives, the Ricci-tensor and the Ricci-scalar. By
doing so we demonstrate their geometric meaning and we prepare ourselves to apply them in the
real four dimensional spacetime.

2.1 Curvature on a two dimensional surface

The curvature of an arbitrary two dimensional surface in a given point is uniquely
characterized by the reciprocal of the product of the radii of two, mutually perpendicular circles
attached to the surface:

K=—om
rq 2.1.1)

We approach the point with a surface, where the parametric equation is written with rectangular
coordinates, utilizing the curvature radii:

=2 4+ Y dz=£-dx+l-dy (2.1.2)
2 r q

Substitute this into the three dimensional element of arc length squared:
ds’=dx*+dy*+dz’ (2.1.3)
The arc length squared on the surface:

-dy2+%~dx-dy (2.1.4)

2
1+x_2 dx’+

r

ds*=

yZ
1+2
q

On this we can identify the metric tensor components:

2
X Xy
l+r2 -
&= ) 2.1.5)
Xy 42X
rq q

The metric tensor determinant:
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2.1 Curvature on a two dimensional surface

rz'y2+q2~x2+rz-q2

gil=g18n—g 1 &= B (2.1.6)
The twice contravariant metric tensor:
g 1 Py +rtqt —rgxey
=" 2 2 1. 2 2 2 2, 2 2 (2.1.7)
rey +qxT+r-q —r-qxy q-x-+r-q
The metric tensor partial derivatives:
%:Z'_X agxy:agyx:L
ox  j* ox Ox rq
08y _08y_ x 08, _2y (2.1.8)
oy 0y rq oy ¢
Calculating the connection:
: [0g. O 0g,:
F‘lki:l'gja' gl]f_"_ gaik_ g/:
2 ox" o0x'  Ox
2
s = qx e = r-q-x
xx r2'y2+q2'x2+r2‘q2 Yy r2.y2+q2‘x2+r2.q2
Py
r’,= (2.1.9)

- rz-y2+q2~x2+r2-q2
The partial derivatives of the connection, we put the common factor in a separate variable:

l: r4'y4+ q4~x4+ r4-q4+2-r4'q2-y2+ 2-1/2'614-152—|—2-r2-c]2~x2'y2
a

or- or-’

a xx:a.qZ.(FZ.yZ_qZ.XZ_i_r2.q2) yy:a_r.q.(FZ‘yZ_qZ‘xZ_i_rZ.qZ)
X ox

ﬁfyyy 5Fx 2 2 al"x 3

= X427 x W—_ g2 g x-

Fp 3y a2r-q-xy 3y a2r-qxy

6Fyyy 2,2 2 2 .2 2 2

a :—a-r -(r -y —q -x —l/' .q) (2-1-10)
y

The Ricci-tensor:
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2.1 Curvature on a two dimensional surface

a _6[‘“1“ araa‘ b a b a
i ;;a—ﬁ—ﬁJrT,jTarfw-Fm

qz.x2+r2.q2 r.q.x.y
R,=ar-q 2 2, 2 2
r.q.x.y 7 .y +r .q
The Ricci-scalar:
R=g"Ry=a2:r-¢

e 2~r3~q3

- r4'y4+q4'x4+r4'q4+2~r4'q2~y2+2'r2'q4-x2+2'r2~q2-x2'y2

2.1.11)

(2.1.12)

The centre of the coordinate system is in the point we are discussing, where the coordinates are

ZEroces:
x=y=0
3 3
R=2I9 -2 5 (2.1.13)
r-q r-q
2.2 Plane

The element arc length squared and the

metric tensor on the plane:

ds*=dx*+dy’

_ i
£i=& 0 1

! 0) 2.2.1)

There are no variables in the metric tensor,

therefore all its derivatives and derivable
quantities are zeroes.
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2.2 Plane

The element arc length squared in polar
coordinates and the other quantities:

ds’=dr’ +r*-d ¢’

_ 1 0 glj: ! (1)
o 0 2
6g<P<P:r agw(p:—z
or or

(2.2.2)

r _r _ _r

r <p<p__§ F(Pmp F(pwr_a

/
75

5

The Ricci-tensor and therefore the Ricci-scalar are zeroes.

2.3 Cylinder

We map the surface with a rectangular
coordinate system, and the arc length squared
depends on the constant radius of the cylinder:

ds*= pf-d Pp*+dz?

1
2
_[p. O i_|—=2 0
i ¢ g_ ¢
o [(’) |
2.3.1)

r ® ®
or . _l or m,:ar W":l
or 2 or or 2
(2.2.3)
//’J!‘——Hk“\
r
<k_/‘g H/::,
LT 1] ,_/::>
LT LA
_(//:: k::k;)
<11 e
":::/! ,/":>
<<:/# ,_/::’
T L
[ T T
sl [ B e
|
L I

The metric contains no variables again, therefore every derivative and derivable quantity is zero.

It 1s worth mentioning that it is possible to conceive a two dimensional surface with zero
curvature, that cannot be embedded into three dimensional euclidean space. Let us imagine a
cylinder where we are deforming the space it is embedded into. As the coordinate system on the
cylinder differs from the plain case because one of the coordinates is made cyclic, it is possible to
do so in three dimensions as well. While the x and y coordinates extend into infinity, the z
coordinate returns into itself, its length is the circumference of a circle out in the fourth dimension.
Since the curvature radius along the other coordinates is infinite, its easy to see that our space has
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2.3 Cylinder

zero curvature. If we define our cylinder on this manifold with the same orientation, and assume
that the height of the cylinder is the same as the length of the z coordinate, we will notice that the
top and bottom circles of the cylinder are touching. The newly formed surface is finite and
homogeneous with both coordinates cyclic, cannot be embedded into common three dimensional
space, still it has zero curvature (although it is not isotropic, circumnavigating the surface in various
directions, the path taken would differ):

ds’=p>-dp’+1.-dz’°

1
p: |2
‘ g'=|" (2.3.2)

(oI )

2.4 Cone

The cone is also a surface of zero curvature, because it can be unfolded to a plain. In
rectangular and polar coordinates:

Some possible parametric equations:

x=r-sin(9)-cos(¢p) y=r-sin(9)-sin(¢p) z=r-sin(¢)

x2 y2 Z2

R

_h— _h—u .

x= r-cos(¢) y== -rsin (@) z=u (2.4.1)

Using the last equations, the arc length squared and the other quantities:
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2.4 Cone

2 r 2 2 (h _U)2 2
ds'=\1+=5 du+r,.———dop
c hC
2 2
h
1+ 0 e 0
g”: C y h[‘+ c
y 5 (hc_u)z hi
0 r. > 0 5
n ro-(h,—u)
0 h — X 2. K3
g(P‘P_ 2 rZ c zu ag — 5 hc‘ - (2.4.2)
Ou h ou  r.(h,—u)
2
- h,—
Fu(ﬁ(ﬁ % - :; [’ =r® —— 1
c 1+_42 uep pu hc_u
ort,, r
=— @ )
Ou r TR - (2.4.3)
h’ 1+h—; ou ou (h,—u)’

The Ricci-tensor, and so the Ricci-scalar are also zeroes, the cone can be unfolded to a plain.

2.5 Sphere

We introduce geographic latitudinal
and longitudinal coordinates on a sphere, and
calculate the geometric quantities from the arc
length squared to the curvature:

ds’=r2-d " +rlsin’(9)-d @’
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—222=2.r%.cos(9)-sin

I’ =—cos(9)sin(9)

PP

or’

——P® —gin’(9)—cos’(9)

09

(1 o0
R”'—(o sin2(9))

We calculate the surface of the sphere by integrating the infinitesimal surface element:

dA=r_d9%r sin(9)dp

2.5 Sphere

0g”?_ 2-cos(8)
09 r2-sin’(9)

re =re¢,=cot($)

™ 2.
A:f r..d9- f r_sin(9)-d o=r>-4-1
0 0

The sphere can be covered with
this
method we can map only one half of the
sphere, thus it cannot be used to map the entire
surface, just as polar coordinates cannot map
the poles. The parametric equation:

rectangular coordinates also.

_ 2 2 2
Z=ENr,—x —y

_ xdx+y-dy

[2_ 2 2
r.—x—y

dz=

2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

The characterizing quantities of the surface, from the arc length squared to the curvature:

ds2=%-((ri—yz)-dxz+(ri—xz)-dy2+2-x-y-dx-dy)
ro—x -y
__ 1 re=y’ j_ 1 [remx —xy
gi= 2 ’ g = 2
ro—x—y | xy ro\—xy r—y
2
rc
lg)l=7——F—
— Xy
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2.5 Sphere

0gss _ 2:x(ri—y’) 08py_ 2y (re—x)
08 (ri-x"—y 0 (ri—x'—y’)
ag(pq): 2-x . ri_'xz -1 ag99: 2y . ri_yz -1
09 ri—xz—y2 ri—xz—y2 op ri—xz—y2 ri—xz—y2
6g9cp:6g(p9: X 11+ 2y2 ag9(p:6g<p9: A4 11+ 2X2
op 0 ri—xz—y2 ri—xz—y2 09 09 ri—xz—y2 rr—x'—y
0g”"_ 2x 08" _0g” _ y 08" _0g” _ x 0g’’__ 2y
09 ri 09 09 ri 6(p a(P ri a(P ri
(2.5.6)
re o x(r=y) ro vy
99 2 2 2 2 99 2 2 2 2
ro(ri=x"—y") ro(ri=x"—y")
o el o =)
pp 2 2 e~ 2, 2 2 2
re(re=x"=y7) re(re=x=y’)
9 s X’y Xy
r 9(p_F(p9: ) P F(P9(P I_'(p<P9: 2
ro(re=x"=y’) ro(re=x"=y’)
Ol%s  y'=x>y'+2:r2 3"+l x’+r! ore,, x'—x’y’=2rix’+riyt+rl
09 ro(ri=x’=y") op ro(ri=x’=y")
Ol sy_0@ s _0T%s_ 2:x-y-(ri=y’) Ol gy 0Ty _ 0T % _ 2:xy(ri=x’)
09 09 09 ri-(ri—xz—yzf op op op ri-(ri—xz—yz)z
81"9(,,(,, _x4+3-x2~y2—2-r§-x2—ri-y2+rﬁ oI'%, Y3ty =2y X
0% re(ri—x'=y’) op r(ri=x' =y’
ar";(p: ar“’w: y(ri4x'—=y%) 6F99(p:8f9(p9: X (r=x"+ %)
0% 0% ririmx=yY) 0@ 09 ri(ri-x=y
%y 2xy 0%y 24y 2.5.7)
0% rl(ri-x'=y") 0P ri(ri—x"=y) .
2 2
1 remyooxy 0. k=2
Rii:_gii:_ﬁ'( 2 2) R=2-K=5 (2.5.8)
r.—x—y Xy r.—x re

Our result is of course the same as the result from calculating with polar coordinates.
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2.5 Sphere

2.6 Paraboloid

In polar and rectangular coordinates:

The equation:
z=b(x*+y?)

The parametric equations:

xzac«\/hz«cos((p) yzac-\/hz-sin((p) zZ=u (2.6.1)

The characterizing geometric quantities of the surface, from the arc length squared to the curvature:

2 2
ds’=[1+—— |’ + 2 2.q ¢
g anul T 0P
2 4-h u
a c
1+—= 0
_ 4-h,u ji_ 4-h uta’
8 . Pou . B
h, a.u
uu 2
0 a’ og = 2
ag _-— ¢ 5 al/l 5 a2 2
u 4-h,u 4-h u | 14+—
‘ ! 4-h,-u
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2.6 Paraboloid

0 : 0g”? h,
8op_ de E_—_ e (2.6.2)
du h, Ou a.u
a2 a2
F““:_ a2 F(p(p:_ a2 F(P _I"<P — 1
4h | 14+—= 2h | 1+—= T 2
et 4~hc'u) ; 4~hc-u)
ore,, a a
AR YR | PP UL
ot 4-h, u ot 4-hu
ore,, 5 a ’ ” ;
=-— ore., or
u 7 w0 w1 63
4-h, u-| 1+ ou ou u
4-h.-u
11 a ’ a a
Ru="—=—+ - Ryp= - 1= -
4-u u a2 az
4eh -1+ 4-h u|14+—25 4ehu-|1+—=
ot U . 4-h,-u ¥ 4-h u
R=2 K= 2.6.4
T b (2:64)

Far away from the tip of the paraboloid, the curvature of the surface approaches zero:

i 4-h, 0 ‘
m-——————-= 2.6.5
u—e @+ 4h ( )

2.7 Hyperboloid

The parametric equation of a hyperboloid of one sheet:

x=a, Nu'+1-cos(p) y=a,Nu’+1-sin(p) z=b, u
xz—i-y2 _2_2

2 2
a, b

c

=1 2.7.1)
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2.7 Hyperboloid

From the arc length squared to the curvature:

2 2
a.-u

C

u +1

2

ds*=

+02 |- du’+at-(u’+1)d @

“ @b+ 1)) (i 1)

7
ST 77

LTINS

oyamn

0
5;“’22-(13 u
0g”? 2-u
== 2.7.2
al/l aZ‘(u2+l)2 ( )
. a>u-(u’+1)
F(P(P

o au’+b>(u*+1)

Ir® =r° = u
" MTE |
or',,_ arlaiu’(3-w’+1)+b2(3-u'+2:17~1))

ou

((ai-u2+bi-(u2+ 1)-(u*+1))°

(2.7.3)

a’-(u’+1)

aut+b(u’+1)
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2.7 Hyperboloid

2-b
R=2.K=— ¢ 2.74
(@A b+ 1)) 7.4)

2.8 Bolyai surface

The Bolyai surface is an infinite surface with constant negative curvature, it cannot be
embedded into a three dimensional surface with a positive arc length squared. We start with the
hyperboloid of two sheets. With polar and rectangular coordinates:

The equation of the surface:
z=Vd 47+ 2.8.1)
We set up a coordinate system in the three dimensional space, based on the hyperboloid:
x=r-sinh (9)-cos(¢p) y=r-sinh (9)-sin(¢p) z=r-cosh(9) (2.8.2)

Substitute this into the equation of the surface, this shows that the hyperboloid is a coordinate
surface in this coordinate system:

r-cosh(9):\/ai—i-(r-sinh(9)-cos((p))2+(r-sinh (9)-sin(¢))’
r=a, (2.8.3)

The arc length squared of the pseudo-euclidean three dimensional space, where we are going to
embed the hyperboloid:

ds’=dx*+dy*—dz*
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2.8 Bolyai surface

Changes of coordinates on the embedded hyperboloid:

dr=0

dx=r-cosh(9)-cos(p)-d $—r-sinh(9) -sin(p)-dp

dy=r-cosh(9)-sin(p)-d 3 —r-sinh(9)-cos(p)-d @

dz=r-sinh(9)-d 9 (2.8.4)
The arc length squared on the embedded hyperboloid and the other geometric quantities:

ds*=r*-d 9+ r’-sinh*(9)-d p*

1
- 0

|7 0 g'= e
&7l rf-sinhz(\‘})) 0 1

08p¢ 2 . 0g”? 2-cosh (9)
o < : = 2.8.
39 2-r;-cosh(9)-sinh (9) 59 " sinh(9) (2.8.5)
I’,,=—cosh(9)-sinh(9) r’,,=r%, =coth(9)
61"9(,,(,, 2 5 E)F(p(pg 61—'@9(,, cosh2(9)
=- - = =1- 2.8.
T sinh”(9)—cosh*(9) 59 59 sinh’(9) (2.8.6)
—1 0 2
R = R=2-K=—=
Y ( 0 —sinhz(S)) e (28.7)

The Bolyai surface has infinite extension.

There is a two dimensional surface, that although lacks the symmetry features of the
previous Bolyai surface, but it has the same constant negative curvature, and it can be embedded
into three dimensional space: the tractroid. This surface is created by revolving a tractrix about its

asymptote:

2 2 _
M)_\/Cf_pz (2.8.8)
p

z:a-arcosh(%)—\/az—pzza-ln
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2.8 Bolyai surface

From the arc length to the curvature:

ds’=d p*+ p*-d @* +dz*

a’ P9
<0 I
— 2 L7 c
gi—|p 4 1
0 p2 0 ?
agpp__2-a3 agppzz_p agww_z ag(p(p—_l
op P op a op - F op p’
(2.8.9)
_ 1 b P _ e _ ]
Fpﬂﬂ__; Iy ai F(Ppw F(pwp ;
or’ or’ 0 or® . or¢
oo 1 vo 30 0o O oo 1 (2.8.10)
op p op a, op op p
B
= P R=2K=—2
R,= ) =2-K=—= (2.8.11)
0 _,0_ a.
2
aC
2.9 Catenoid

Although the curvature of the catenoid is non-zero, but it is a minimal surface, its average
curvature is zero, just like the plain. The parametric equation:

v
a

c

a

c

xzac«cosh(l)-cos(u) xzac-cosh( )-sin(u) z=v (2.9.1)
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2.9 Catenoid

From the arc length squared to the curvature:

ds*= coshz(l

-dvi+ coshz( l) -du®

a, a,
cosh(l) 0
aC
8=
0 cosh(i)
aC
! 0
cosh(l)
Uy __ ac
& 1
0
cosh(l)
aC‘
2-sinh Y
2-cosh |~ |-sinh | 2 og” _og" (ac)
g, 0g a a, = (2.9.2)
w_ u _ ov ov 3( v )
ov 0v a, a.cosh’[ —
aC
FVW:F”W:ruuV:i'COth(l) v”H:_L.COth(i)
aC aC c aC
6Ilvvv_al_'uvu 6Idluv_ 1 6FVW 1
ov ov ov Zcosh? 2 ov 22-cosh? |2 (2.9.3)
c ac C ac
_ 1 0
2 21V
. a,-cosh (—c) R=2-K=— 2
¥ 0 B 1 af-cosh4(—)
ai-coshz(l)
a()

(2.9.4)

Far away from the signature funnel of the catenoid, the curvature of the surface approaches zero:
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2.9 Catenoid

lim 2 =0

V—00 ai-cosh4(l) (295)

c

2.10 Helicoid

The helicoid is also a minimal surface, and it is isometric to the catenoid, thus it is possible
to deform it into a catenoid without distortion and vice versa, just as the cylinder can also be
flattened into a plain. The parametric equations:

x=v-cos(¢p) y=v-sin(p) z=a,v

y=x'tan(a—) (2.10.1)

c

From the arc length squared to the curvature:

ds’*=dv’+(a’+v?)-du®

1 0
ii_
g=lyg _1
af%—v2
aguu 6 llll_ 2 v
o =2 ov __(a2+v2)2 (2.10.2)
u u v
I’ =— Fvu_r uv
w— Y >+
arvuu aruvu al—'uuv ai_vz 2 10 3
ov =1 ov ov  (a+v') (2.10.3)
a2
— ¢ 0
2, 22 2.4
r=| (@t R=2-K=———2c__ (2.10.4)
g 2 2 2\2
v (a;+v7)
0 Y
a.+tv
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2.10 Helicoid

2.11 Hyperbolic paraboloid

The parametric equation of the surface

with negative curvature in a possible
coordinate system:

X=u y=v

Z=XY (2.11.1)

From the arc length squared to the curvature:

ds’=(1+v")-du’+(1+u’)-dv’+2-u-v-du-dv

_ 1+v  uwv i 1 _1-|-u2 —u-v
T\ v 14 & T+ 4+ \—uv 14+
lgs|=1+u’+V°
08w _ 08 08w _ 08 0g.,, 08
— = "= - = = — =2y — =2y
ou ou ov ov ou ov
0g" _ 2-uy’ og"” _ 2.0’y
ou  (1+u’+v?) ov  (1+u’+v?)
ﬁngﬁng_v-(l—uervz) 8g"V:8gW:_u-(1—u2+v2)
ou ou (1+4*+v°) ov ov (14+u"+v°)
og"__ 2-u-(1+v7) og"__ 2-v-(1+u’) (2.11.2)
ou  (1+u’+v?)’ ov  (1+u’+v) o
u u v v v u
r = =—————— r v:r w5
v "l +ut+y? ! 1+u’+v?
6F”uv_81"”vu_8Fvw_6l"vm__ 2-u-v
du  Odu Ov  dv (1+u’+v°)
aIﬂ)uv_al_'vvu_ 1—u2+v2 81-'u14\/_81ﬂ£1zbt_ 1_u2_v2 (2113)
ou  Ou _(1+u2—|-vz)2 ov ov _(1+u2+v2)2 o
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2.11 Hyperbolic paraboloid

1+u” u-v
uv 1+

1

(1+u’4+v*)

i

_ _ 2
R—2'K——m (2.11.4)

Far away from the signature saddle of the hyperbolic paraboloid, the curvature of the surface
approaches zero:

2
(1 +ut+v7)

lim |-

U— 00, V— 0

—0 (2.11.5)

Parametric equation in another possible coordinate system:

8]

2
_y X
z—?—? (2.11.6)
From the arc length squared to the curvature:
2 2
ds’= 4.1;! +1|-du’+ 4.‘: +1|-dv’— S;M.‘;-du-dv
aC C aC.bC
4-u’ 4-u-v
o T 2 2 2 2
a. a.b. _|4u 4-v 16-u"-v
&= 2 |gij|_ 4 +1) 4 +1)- 4 ;4
_4uv 4y 41 . b, a.b,
a;b; b,
i 1 al(bi+4%)  4abluwy
a (b4 +4-b i’ | 4adbruy b(al+ 4
08w _8u 08, _8v
ou a ov b’
aguv:agvu:_ 4'V aguv:ag-vu:_ 4”
ou ou aibf ov ov aibi
og"_ 8-at-blu(bi4+47) og"_ 8-arblv(al+4-u’)
ou (a*(bi+4v*)+4-b'u’) ov (a*(b+4v")+4-b*u’)
og” _ 32-at-btuv’ og" 32-at-biu’y
ou (a*(b'+4v)+4b'u’) ov  (a' (b +4v)+4-b}u’)
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2.11 Hyperbolic paraboloid

0g" _og" _4-arbiv(ai(b+4v')—4biu)

ou  Ou (a*(b*+4-v7)+4-b*u?)
0g" _og" _4acbiu(bi(ai+4u)—4a:v’) 5117
v v (a(bi+av))rablu’) G117
1—-u — 4b4u l—vu — 4-a2-b2-u
“at (b a4+ 4bt’ T (B A+ 4R’
4 2 12
I’ = 4-b"-v rro=— 4-g°-b"-v

R e at (b +47)+4-b4

or',, 4-b-(a-(bi+4v)—4-biud) or,, _ 4-at (b (al+4-u")—4-av?)

ou (a’- (b} +4v))+4-bFu’) ov (a* (b +4v")+4-b*u*)
O _ 32-a2-bu-v or',, 32-a%b2u-v
ou  (at(b}+4v)+4-bu’) v (a(b'+4v7)+4-b )
oI, _4-ai-bi(ai(4-v'=bi)+4-b"u’) oIy, 4’ b>(a* (4 —bY)—4-b* i)
Ou (at (b} +47)+4:b i) ov (a*(b*+4%)+4-b*u?Y
or', or", 32-arbtu-y
= == (2.11.8)

Ou ov (at(bl+4v?)+4-b )

- 4-a’-b’ bi(4u’+a) 4-a>bu-v
To(at (b AV +4-b ) | 4dl-buy al (407 +bY)

8-a’-b°

R=2-K=—
(at (b} +4v*)+4-b 1)

(2.11.9)

2.12 Torus

It is a variable curvature surface, negative on the inner side, and positive on the outer edge.
The parametric equation, where a is the main radius, b is the secondary radius:

x=(a,+b,sin(9))-cos(p) y=(a,+b sin(9))-sin(¢p) z=b,-cos(9)
2.12.1)
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2.12 Torus

From the arc length squared to the curvature:

ds’=b2-d 9°+(a,+b,sin(9))-d ¢’

T

_[0b: 0 g
& 0 (a,+b sin(9)y

1

? 0
gi=|"

0 1

(a,+b,-sin(9))

080 . 2 .2 . 2
59 =2-cos(9)-sin(9)-(2-b.-sin"(9)+3-a_-b,sin(3)+a.)
og’? 2-cos(9) 1 b,

09 (ac+bc,-sin(9))2.sin2(9). Sin(9)+ac+bc-sin(9) (2.12.2)

F9(p(p:—(ac+ bc'Sin(g))'COS(f;)‘Sin (9) ac+bc-sin (Z)\?)+Sin2(9)
a,+b,sin(9)-(1+sin(9))

re, =re .= 9)
2= ge=cos(9) (a.,+b,sin(9)) -sin(9)

6F9(p(,,_ac+bc‘sin(9) (sin®(9)—cos*(9))-(a+b,-sin(9) ., ) )
Y ;. . p +(sin“(9)—4-cos (9))-sin(9)

—cos’(9)-sin’(9)

c

or®,, or®, a'+3-a,<b,sin($)+2-b,+(a’+2-a,b, sin($))-cot’(9)

Yo P9
= = 2.12.3
09 09 (a>+b>-sin*(9))? ( )

(a,+2-b sin(9))-sin(9)—2-b -cos’(9)

R;= (a,+b,sin(9)) sin(9)
0 R,,
(3-a,+2-b,-sin(9))-b_sin*(9)+(a’—2-b>cos’(9))-sin ($)—2-a,b,cos’($) .
o= > -sin (9)
bC

R:2‘K:£‘(ac+2-bc-sin(9))-sin(9)—2~bc-c0s2(9) (2.12.4)

b’ (a,+b,-sin(9))-sin(9)
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2.12 Torus

The surface of the torus:
dA=b,d 9-(a+b, sin(9))-d
2:1 2T

A= [ b-d 9 [ (a,+b sin(9))d p=4-a b, (2.12.5)

0 0
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3. Flat and general spacetime

3. Flat and general spacetime

The simplest four dimensional solution of the Einstein equations is the matter-free flat
spacetime. In it we can neglect the gravitation of test particles, and the geodesics they are following
become everyday straight lines that can be described with simple partial derivatives. The theory of
special relativity deals with this solution, described by Albert Einstein in 1905, not long before the
birth of general relativity.

In the Kaluza model, electromagnetism also has a geometric origin, it is not part of the
matter distribution, with this extension the theory describes a five dimensional spacetime. However
in our experience, the gravitational interaction is more general than the electromagnetic. Thus
gravitational interaction can act alone, while an electromagnetic field is not possible without
gravitation, since the presence of electromagnetic energy in itself is already causing changes in the
spacetime geometry. Thus we can discuss pure gravitational interaction without neglecting
anything.

In order to understand what is going on, it is important to keep in mind, that motion happens
in the entire four dimensional spacetime. Time is a direction of motion that can be used to measure
distances, just as the other three directions of space.

3.1 Proper time

We use rectangular coordinates in flat space, and we write down the arc length squared in
the following way:

ds’=c*-dt’ —dx’—dy*—dz’ t: time coordinate
X, ¥, z: space coordinates

c: speed of light (3.1.1)

It is customary to use unique notation for the metric tensor:

1 0 0 O
_w_[0 =1 0 O
r’r)K_r’ - 0 O _1 0 (3.1.2)
0 0 0 -1
It is easy to see, that this is a solution of the Einstein equations in four dimensions:
1 _
RnK—E-R-nnK—O (3.1.3)

Two dotted lines denote the paths of light rays on the following graph, that lead away or into
the event in the centre. The spacetime domains separated by the light cone have different
significances. Under the lower cone sheet lay past events, that might have influenced the observer
in the centre, these compose the time-like past. Events above the upper cone sheet might be
influenced by the centre, therefore they compose the time-like future. Since information cannot
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3.1 Proper time
propagate faster than the speed of light, the outside domain is not influenced by this, therefore the
concepts of future and past cannot be interpreted there. At the graphical representation of the

coordinate system, we neglected the y and z coordinates:

ct

In the spacetime using different coordinate systems the arc length squared is the same, it is
an invariant quantity. Let us write it on the left side of the equation in a coordinate system, where
the arc is parallel to the time coordinate, and use a generally oriented coordinate system on the right
side:

cdti=c-df —dI’ (3.1.4)
Where we have grouped together the space-like coordinate differentials:

d’=dx’+dy’+dz’ (3.1.5)

The space-like velocity squared:

2
vz(t)Z% (3.1.6)
And the proper time:
dr’ t)?
dT:dt-\/l— =iy 1= V(cz) (3.1.7)

3.2 Lorentz-transformation

According to the relativity principle, reference frames in state of constant, rectilinear motion
with respect to one another are equivalent. We determine the transformation matrix that corresponds
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3.2 Lorentz-transformation

to switching between them:

' of a b ¢ d\|t
. ,0x' - x|_e f g hi|x
i__ 2 = Al L, 2 — .
X = ox X'=A,x oy i ok 1]y (3.2.1)
z| \m n o p|\z

Linear transformations can always be represented by matrices, and matrices always create linear
transformations. The transformation matrices compose a group, because they obey the following
rules:

Identity element: Ay X=X

Closure: Ay Ay X=A, 0%

Associativity: Ay (A AL ) X=(A, Ay L) Ay %

Inverse element: A, x=ATL (3.2.2)

We examine first the identity element, we approach it with a transformation that changes the vector
only slightly:

t+e a b ¢ d\|t
;j: _ f 5 i ?ch (3.2.3)
z+e€ m n o pl|\z

Write out the matrix operation in detail:
t+e=a-t+b-x+cy+d-z e=(a—1)t+bx+c-y+d-z
x+te=et+ f-x+g-y+hz e=et+(f—1)x+gy+hz
yt+e=it+jx+ky+lz e=it+jx+(k=1)y+Iz
z+e=m-t+n-x+to y+pz se=m-t+nx+oy+(p—1)z (3.2.4)

If the small deviation approaches zero, the transformation matrix approaches the identity matrix:

a b ¢ d 1 0 0 O
0 e f g h 01 0O 5
e - i ok 1|7loo 10 (3.2.5)
m n o p 0 0 0 1

Since the transformation is linear, the macroscopic translations will also have the same form. The
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3.2 Lorentz-transformation

small deviation is a contravariant vector, but we are going to write the macroscopic deviation as a
covariant tangent vector:

n_ n« v

&'=n""u, unz?”-t (3.2.6)

Investigate the transformation of the unit vectors, first in the time-like direction. We drop the speed
of light in the formulas, to avoid confusion with one of the matrix elements:

1
T+N -y, T+u,

a b ¢ d\lt Tt+v, t=aT
nxx.ux — _ux — e f g h . O _vxt:e—r (3 2 7)
n”u, —u, i j k 1]]0 —V, =0T o
=, —u, m n o p|\0 —v, t=mT
from this the matrix elements are:
\% \% %
1+v,L=q —Z(a—1)=e X (a—1)=i ——.(a—-1)=m  (3.2.8)
T v, v, v,
The unit vector in the x direction:
u, a b ¢ d\[0 v t=bx
Xx—u. | _le f g hi|x x—vor=fx (3.2.9)
—u, i j k 1]]0 —Vv, t=j-x o
—u, m n o p|\0 -V, t=n-x
the matrix elements:
t YV, v . v,
v, —=b l——b=f ——-b=] ——b=n (3.2.10)
X v, v, v,

Spacetime is the same in every direction, therefore we expect the same form in both other space-
like directions:

t Vx 1= 2re=k £ 32.11
V.-—=¢C —_——. = —_——. = — .=
ty Vtcg Vtc VtCO (3.2.11)
\% \% %
vL=qd —.d=h ——2.d=] 1——=-d=p (3.2.12)
VA vV, v,

t

The diagonally opposite elements look the same, and since the length of the unit vectors is the
same, they coincide:
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3.2 Lorentz-transformation

vt-L:b > vt-L:e —
X T
v
__X( _l)ze:b ——z'(a—l):i:C
vV, Vi
Thus the matrix is symmetric:
a b ¢ d a b ¢ d
e [ g h _ b f g h
i j kI c g k 1
m n o pl \d h [ p

The velocity squared in three dimensional space:

aB. . — 22 2 2
N e el Ul U —

After all this the form of the matrix elements:

1+vt-L:a vt-é:b
T
V. v2
——(a—1)=b 1+=5-(a—1)=f
Vi v
v,V
—ﬁ~(a—1)=c —=(a—1)=g
Vv, v
Y
L a=1)=d 2 (a—1)=h
v, %

——(a—1)=m=d (3.2.13)
Vl
(3.2.14)
vf:vi+vi+vi:v2 (3.2.15)
vt~L=c v,i:d
% z
Vv Vv,
—(a—1)=g —(a—1)=h
% v
v v
1+—=-(a—1)=k —=-(a—1)=I
v v
Vv, v
—(a—1)=1 I+—=-(a—1)=p
v v

(3.2.16)

The coordinates of the centre of the standing coordinate system in the moving coordinate system:

t a b ¢ d\|T %
“veli_(b f g k([0 _y
—v,t| e g k []|0 —vx
—Vz‘t d h / P 0 —Vy'

The reverse transformation:
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3.2 Lorentz-transformation

T a —vea —vgea —vca t
—y - h Vv -t
O|_[-vea f g x (3.2.18)
0f |-v,a g k [ vt
0/ \—v.a h [ V% vt
Determine the ,,0,0” matrix element:
T=a-t(1-v?
0=(f—a)v,+gv,thv. __ 1
a=
0=gv +(k—a)v +1v, - V142 (3.2.19)
0=hv +lv +(p—a)v,
The matrix of the Lorentz-transformation with SI units:
v, v, V.
a ——-a ——qa ——a
c c c
2
“Yg 15— 21 2 ea-) 1
c v v v a= >
A= ) Y (3.2.20)
v, v,V v vV, v, —
——*a —“5>(a—1) 1+—5-(a—1) —5"(a—1) o2
c v v 1%
2
g YEa-n) E(a-1) 145(a-1)
C \% \% v
Investigate the transformation along the x axis:
C ot a b ¢ d||ct
S AR SN 3221
0 c g k I|]|O (3.221)
0 d h [ p/\0
The transformation formulas:
V’C
b 1 v, 1 e
x X C
t=a-t+2X = == == (3.2.22)
c 2 c 2 ¢ 2
1-X \/l_v_ 1-X
2 2 2
c c c
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3.2 Lorentz-transformation

2
v X—v_ -t

)
Zx:b.c.t_f_f.x:__x.#.c.t_i_ 1+_;. ;_1 B e
¢ v v Jl e v (3.2.23)
T2 T2 )
C C C

For the reverse transformation, all we have to do is change the sign of the velocity. Substitute them
into the four-distance, that is the finite variant of the arc length squared:

s’=c -y -y =2 (3.2.24)
v 2
t——x 2
A =t c | xXTvat
ol ToX = \/ 2 \/ vz
1—— 1——
c c
I v,
o= x'= > cz-t2—2-t~vx~x+—’2‘~x2—x2+2-x~vx-t—vi-t2
v c
==
c
1 v
o= x'= > (02 r'—x ) 1——
% c
==
c
ot = ==X (3.2.25)

The coordinate transformation is therefore correct, because it preserves the invariant four-distance.
By writing out the entire four-distance, we can conclude that the y and z coordinates do not

transform:
2 2 2 2 22 2 2 2 2
C ol =X =)y —pyz =Cc 't —Xx —y —z

2 2 2 2

WV oz =y 4z

V=Y 2Z=2 (3.2.26)

Length contraction of a moving rod; let the coordinates of the end points of the rod in each
coordinate systems be x and y, and »x and ,y:

WX T V= e i
1-— 1——
c c
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3.2 Lorentz-transformation

X T V=T
v The length of the rod: /=x—y
s
V2
[=,l4/1-= (3.2.27)
c

3.3 Addition of velocity and acceleration

How much is the measured speed of an object that is moving with constant velocity,
observed from a different moving reference frame? Let one of the coordinate systems move
relatively to the other in the x direction, let their relative velocity be V.. The moving test object also
moves along the x direction, and its speed in each coordinate system is:

_dx ,dx

V,.— dt ZVXZZE (331)

The transformation of the change in the coordinate:

X

JI_K; Jl_zg (3.3.2)

C C

(xp=x,)=V (ty,—t,) dx—V -dt

2AX =X p—,x =

Substitute it:

p o2 o dr T Vedt 1 de_ viTVy dt
Y dt dt Ldt p2 o d Lt 2 ot (3.3.3)
—

T2
c c

The transformation of the change of time:

VX VX
(ty—t,)——(xz—x,) dt——F-dx
c c

KAt =5l p— ot = J = J (3.3.4)

V2 VZ
1—- 1-—
C C

The mutual ratios of the changes of time:
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3.3 Addition of velocity and acceleration

dr—Yrq (Lt
P U
i pr di e (3.3.95)
l—— 1——
c c
Reinsert is:
2
L
vx_Vx dt vvc_Vx Cz
2Vx_ =
V2 2dt V2 l_Vx'Vx
—F R
The transformation formula of the velocity along the x direction:
VX_ V)C
2Vx:—
Vv, (3.3.6)
1—?

We can always find a coordinate system, where the velocity of the moving object is zero, this is the
co-moving coordinate system, where:

V.=v, (3.3.7)
The perpendicular velocity components are also transforming:

, =2 o dr _dy dr _ o dr
FYodt dt Ndt dt Ldt Y Ldt

M= (3.3.8)
1- —
C
Vv :ﬁ:ﬁ.ﬂ:d_z.ﬂzv .ﬂ
Eodt dt Nt dt Ldt 7 Ldt
2
-
p =yt € (3.3.9)
2Vz z Vx'Vx e
1- 2
C

For the reverse transformation formulas all we have to do is reversing the sign of the relative
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3.3 Addition of velocity and acceleration

velocity between the two coordinate systems. Write down the transformation law of the change of
the velocity:

s
ay =a| Vs <4
v, = IR (3.3.10)
1— 2 _ X2x
c c

Divide it with the change of time:

V.v,
1— 2
it =———dt
V
==
C

The transformation of the acceleration in the x direction:

,a,= = d, (3.3.11)

Let us examine the momentary state of an object with constant acceleration. In this case, its velocity
in its own reference frame is zero, and the mutual velocities of the two coordinate systems coincides
with the velocity of the object in the other coordinate system:

S DY
= =
2\ dt | V2 (3.3.12)
== )
¢ c
Perform the integration:
_ a,t
V= 2
a, ) (3.3.13)
1+|—¢
c

With further integration we get the dependence of the objects position from the coordinate-time:

1+

2
&’t) 14, (3.3.14)
C
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3.3 Addition of velocity and acceleration

We introduce the contravariant four-velocity, the derivative of the coordinate-change according to
the proper time. Calculating the time-like component:

Vo_d_xo_ cdt ¢

dTt 2 2 (3.3.15)

C C

Determine the space-like components of the four-velocity, from the common three-velocity:

dv_dr dt 2 (3.3.16)

The reverse relationship:
Vi=C—35 (3.3.17)

The four-velocity is a vector, therefore its square is an invariant scalar:

™ At ds?
& 2 (3.3.18)

V2: —_— = =
Mecs dtv dtv 4t

The four-acceleration is the differential of the four-velocity according to the proper time:

v

dt ( )
Every component of the four-acceleration of a non-moving object is zero:
n
=2 _yle 0.0 0 4 4 o o (3.3.20)
dt dTt

In this case the scalar product of the two vectors can be easily written down. This is however an
invariant formula, therefore its true for any moving body:

Ve q. =0 (3.3.21)

3.4 Aberration of light

The movement of an object in two different coordinate systems can be characterized by the
following velocity components:

76



3.4 Aberration of light
v.=v-cos(p) v, =v-sin(¢p)
W, =,v-cos(,¢) 2Vy:2V'Sin(z(P) 3.4.1)

One of the coordinate systems moves in the x direction, with V. velocity relatively to the other. The
transformation laws in the x and y directions using the formulas containing angles above:

vV (o) v-cos(p)—V
S T e ) (3.4.2)
|- AL
c c
2 2
l—V—2 I_Lz
c : . c
V=V =,v-sin(, )=v-sin () 7 5o0s (@) (3.4.3)
1_ x2 X 1_ X 2
c c

Divide them with each other and we get the transformation law of the azimuth angle of the
trajectory of the moving body:
v-cos(p)—V .
. v’ (3.4.4)
vesin (@) 1——

c

cot ()=

In the case of light, the speed v is equal to the speed of light ¢, this is the aberration of light:

7

X

cos(p)——

2
sin((p)-\/l—L2
C

cot ()= (3.4.5)

3.5 Doppler-effect

Since the length and the elapsed time are also coordinate dependent quantities, therefore,
while the speed of light is constant, the wavelength of light is measured to be different by different
observers. Wave-fronts leaving the light source with 1 wavelength distance from each other, reach
the observer moving away with v velocity under the following time intervals:

t= (3.5.1)

cC—V

This can be expressed also using the frequency:
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3.5 Doppler-effect

1

v V_£
(1——)-v A
c

=

The elapsed time calculated in the proper time of the distancing observer:

(3.5.2)

(3.5.3)

If the light source and the observer pass by each other, for a short period of time their distance does
not change, their relative velocity along the line connecting them is zero. From the point of view of
the light source, wave-fronts leaving the light source with 4 wavelength distance from each other,
reach the observer with the following time intervals:

1
™ (3.5.4)

=2
c

However the proper time of the observe differs from the light source, therefore it measures the
arrival of the wave-fronts with different time intervals:

Y
N (3.5.5)

The frequency Doppler shift in the perpendicular direction:

2
"
2\/:\/1—?-\/ (3.5.6)

3.6 Sequence of events

The ordering between cause and effect can be secured only, if by observing from every
possible reference frames, the moment the effect happens is later in time than the cause. We are
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3.6 Sequence of events

going to investigate, under what circumstances this condition is fulfilled. The difference between
moments in time transforms between coordinate systems the following way:

N V. (x,—x,)
(tB_tA)__z'('xB_xA) I_TM
c & (tz—t,)
Aot 4= - =(ty—t,) - (3.6.1)
4 4
C C

The velocity v, is the speed the information travels with, from event A (the cause) to event B (the
effect):

. (()Z:ZA)) (3.6.2)

Substitute it to the transformation formula:

Vv,
l——5
c
stg—ot = (ty—1t,) B (3.6.3)
J v
==
c
It follows from our condition, that the time difference has to be positive:
2t p—ot >0 tp—t,>0 (3.6.4)
This leads to the following inequality:
V.v,
l————>0
c
>V v, (3.6.5)

If v, = ¢, that is, the information causing the second event comes from the first event with the
greatest possible velocity, the speed of light, the mutual velocity of the reference frames cannot
exceed the speed of light:

>V, (3.6.6)

Returning to our original transformation formula, let us examine what effects it has, if we demand
that the time differences are positive:
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3.6 Sequence of events

(tB_tA)_ c;'(xB_xA)

2ol 4= =
==
C

ZtB_ZtA>0

V. V
(tB_tA)__z'(xB_xA)>O u<0

C C
c-(t,—t,)—(x3—x,)>0 (3.6.7)

Squaring the terms does not change the direction of the inequality:

2

e (tg—t,) = (x3—x,)">0 (3.6.8)

Thus the four-distance between the two events is always bigger than zero, it is time-like.

3.7 Energy and momentum

Picture a weightless floating empty box. One of the internal walls emits a photon, that is
absorbed by the opposite wall later. Because of the conservation of momentum, the box slightly
moves in the opposite direction and then stops, as the photon is absorbed. The photon has no rest
mass, but it has momentum:

E,

p==" (3.7.1)

We can write the momentum of the box using its mass and velocity:
p,=M-v (3.7.2)

It takes At time for the photon to reach the other side of the box, while the box gets displaced for Ax
distance, this is the velocity of the box:

_4x
v="r (3.7.3)

Because of the conservation of momentum, in the centre of mass system the magnitude of the
momentum of the photon and the box are equal:

Ax E,
—_—= 374
At ¢ ( )
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3.7 Energy and momentum

If we know the / width of the box, and the speed of the photon, we can determine the time that
passed while it crossed the box:

I
At==
; (3.7.5)

Substitute it into the formula for the conservation of momentum:

Eyl
M-Ax= 6_2 (376)

In order to determine the movement of the box relative to the centre of mass, let us write the
position of the centre of mass, as if a particle with mass moving inside it has caused its
displacement, it will be called the effective mass of the photon:

_M-x,+mx,
x=———1 (3.7.7)
M+m

The position of the centre of mass is the same both at the emission and absorption of the photon:

M -x,+mx, M-(x,—Ax)tml,

(3.7.8)
M+m M+m

If we consider the starting position of the photon (x; = 0), and the box (x; = 0) both zero, we can
significantly simplify the relationship above:

m-l, =M -Ax (3.7.9)
Substitute the conservation of momentum formula;:

Eo'ld

ml,=—

c

From this we can express the equivalence of the rest mass and energy:

E,=m-c’ (3.7.10)

The equation of motion of an object accelerating because of a constant force:

dp
F=m-a=2£ 37
ma=- (3.7.11)

Let us examine the situation is a given moment, when the velocity of the moving body is zero in
one of the coordinate systems, in this case its velocity looks the same as the relative velocity of the
two reference frames in the other coordinate system:
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3.7 Energy and momentum

v=V (3.7.12)
Express its acceleration:
e
2
U)o v d v
2= Vv 3 a.= vz % a,= vz 35 dt _dt vz (3713)
== == 1-= 1-=
c c c c
Substitute it into the equation of motion:
d mv d
F=m-a=— =—-p
dt \/1 2ot (3.7.14)
)
c
We can read from this the relativistic momentum:
__mv
J v (3.7.15)
==
c
Force is the negative gradient of the potential energy, we rewrite this:
dE
F=——
dx
dE dx _ dE
Fy=_102= & ___4=
v I dr 7 (3.7.16)
Substitute the momentum, and one version of the expression of the acceleration:
_ _d mv mv dv_d mc
v-F=y-—=y.—. ——
e dt V2 V2 dt dt v (3.7.17)
c c c
From this the relativistic energy:
m-c’
E=
(3.7.18)

==
C

Relationship between energy and momentum:
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3.7 Energy and momentum

g=£< (3.7.19)

In order to investigate the relationship between energy and momentum, we examine the
contravariant velocity. Divide the change in coordinate with the proper time:

2
dx"=(c-dt dx dy dz) dTZdt-\/l—%
o A R s
dt Vv v Vv Vv (3.7.20)
C C C C

If we multiply this with the mass, we get the contravariant energy-momentum four-vector:

m-v”: ) > : '2 > e ? (3721)
Vv Vv \% v e
¢‘? %—; w‘? ¢‘?

During changes between coordinate system, the four-vectors Lorentz-transform:

i 20X

ox"“

xX=A X

a

X

The equation of transformation while moving along a line:

E E
— a b ¢ d ?
“A_{p £ g k|
ng c g k l %x
d h |
0 Pl
v E—v_ -
2E:a.E+b.px.c: 1 .E__x.;.px.c:—xlyx
V2 c V2 V2 (3.7.22)
1—— 1-— 1—-—
2 2 2
c c c
2 px__;.E
pE v 1 E Yol 1\, o
2P.=b C+fpx— ’ - c+1+vz =—1||'p.= > (3.7.23)
% \ %
1—— 1—— 1——
c c c
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3.7 Energy and momentum

Using the arc length squared, we can once again conclude, that the y and z components remain
unchanged:

2py:py 2pz:pz (37.24)

_E-v.p, P~k
L — _ C
1 v2 2Px— 2
T \%
¢’ l-=
c
V2
Pi=Py 1__2+_)2(E
C C
V2
,E=E- l—z—vx-sz (3.7.25)

If the particle moves at the speed of light (the sign shows the direction of the movement):
2Ey=—cyp, (3.7.26)

Divide the arc length squared with the infinitesimal change in time:
ds*= c2-di’— dx*—dy*— d2* /-%

2
ds 2 2

% =c —vx—vi—vi (3.7.27)

In order to keep it simple, we calculate in one dimension. First we write an obvious identity, that we
reorder:

2 22 2
c—v=c —v
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3.7 Energy and momentum

2 2
c —v 2
v2
1__2
c
2 2
c % 2
= +c
V2 vz
c C
2
c %
= +c° ['m-c
v2 v2
1——2 1——2
c c
2 2
m-c m-v 2 2 4
= ‘c’tmc

V2 - V2
1= ==

By substituting the energy and the momentum, we have the total energy of a moving body:

E=Vp*c4m’ ¢ (3.7.28)

If its mass is zero:

E;=p-c (3.7.29)

2
m-c m-v

= -C
1 V2 1 V2
T2 )
C C

Objects with zero mass move at the speed of light in every reference frame:

v=c (3.7.30)

3.8 Relativistic rocket

The rocket is a complex system that loses mass while constantly accelerating. The two main
components are the payload and the fuel, that is exhausted with a constant velocity in the rocket's
reference frame. The relativistic rocket equation establishes a relationship between the following
quantities:

M: initial mass of the rocket
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3.8 Relativistic rocket

dm:  mass of the fuel that is ejected in an infinitesimally small period of time
w the constant exhaust velocity of the fuel relatively to the rocket

U: velocity of the rocket in the centre of mass system

u velocity of the exhaust in the centre of mass system

During the movement of the rocket, the conservation of momentum is valid, the left side is the
change of momentum of the rocket, the right side is of the exhausted fuel:

v _u (3.8.1)
CZ C2

s v (3.8.2)
C2 C

ol

Observing from the centre of mass system, the velocity of the exhausted fuel is the sum of the
exhaust velocity relative to the rocket and the rocket velocity:

w—U
-2
C

Substitute it to the conservation of momentum formula:

M\ U-w M
Jl_iz - Yw \/ U’ (3.8.3)
2

==
C

d

C

Reorder the differential of the denominator with the square root:

g1 |- U-dU :
\/1—% (cz—Uz)-\/l—i2
C C
Substitute:
2
M-dU +U-ay + MUY - U—w [y M-U-dU
C _U I_U'W C _U

2
C
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3.8 Relativistic rocket

v = m + Yy YW W au
U-w c—-U U-w
== ==
C C
Simplify:
dM __ dU
M 2
w-(1—%) (3.8.4)
C

Substitute the differential of the logarithm:

d (log(x)) =4

C

1%

lo M\ ‘lo ¢
s Mstart 2w s E
C

The traditional form of the relativistic rocket equation:

1+ 2|
M=M_ | —= (3.8.5)
U
1—=
c
The maximal exhaust velocity of the fuel:
w=ve-(2—e)-c (3.8.6)

3.9 Faster than light particles

Theoretical particles that can move faster than light are called tachyons. If we calculate their
relativistic energy, we get an imaginary result:

2 2

E= m-c - m-c
V2 vz v>c (391)
c c

Therefore we should define their mass imaginary, thus their energy and momentum will be real
numbers. From an experimental point of view, we can do this, because there are no inertial frames
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3.9 Faster than light particles

faster than the speed of light where the tachyon could be at rest, thus its mass is not measurable.

m:i'm’ m _—l'.m
r. 2 N [
E= m'-c = m v
W V2 (3.9.2)
—~1 =1
C C

From this we can see, that in the case of tachyons, an increase in energy is followed by a decrease in
velocity, and vice versa. The sign of the momentum four-vector changes:

2
E_z 2 2

>—p =—m'"-c (3.9.3)
c

The energy and momentum of an object slower than the speed of light, the energy can vary between
the energy at rest and infinity, the momentum can take on any value:

O<v<c m-¢* <E <o 0<p<w (3.9.4)

The energy and momentum of an object faster than the speed of light, the energy can take on any
value, however the momentum cannot decrease beyond a certain value, tachyons cannot slow down:

c<v<oo 0<E<ow m'-c< p<oo (3.9.5)

Let us examine the velocity addition in the case of tachyons:

V- V
V= Vx'vx (396)
-
C

X

We can always find a reference frame, where the velocity of the faster-than-light object is infinite:

2 = 1
c
CZ
szv— (since V,>c, itisalways true that V <c

Reinserting this we can determine the limit of the velocity addition formula, where the velocity in it
goes to infinity:

. vx_Vx C2
llm —_— =
Ve ®© Vx'vx Vx (397)
|-
C
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3.9 Faster than light particles

3.10 Circular motion and Thomas precession

We determine the proper acceleration of an object in constant circular motion, this is what it
measures in its proper time, and also its coordinate acceleration, that is measured by the non-
moving observer in coordinate time. Let us write down the arc length squared, metric tensor and its
derivatives and the connection of the cylindrical coordinate system in flat spacetime.

ds’=c’dt’—dr’—r*-d " —dz’ (3.10.1)
Lo o0 o 1 0 0 0
=0 - 00 = o 01 ’ 3.10.2
7 P &£=lo 0o -+ o (3.10.2)
r
0 0 0 -1 0 0 o -1
000 0g®? 2
5= PP (3.10.3)
I,,=—r r‘i(p:r“’w,:% (3.10.4)
oI ,, ore., ore, 1
=— = == 3.10.5
or ! or or P ( )

Insert these values into the geodesic equation, where we partially differentiate, once according to

proper time, and then according to coordinate time (we are allowed to do this, because both values
increase monotonically).

O'x i 0x* ox'_ o’x’ . 9x" ox’

+ . = =+ . =
ot Yot ot o “ ot ot

(3.10.6)

The equations have the same form in both cases, therefore we use the general dot notation for
partial differentiation:

ci=0

FAT Ly @ =i —r-@ =0

. P . . P P . 2 . .

o+I7, P+, pi=Q+—7-p=0
r

2=0 (3.10.7)
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3.10 Circular motion and Thomas precession
The following coordinate conditions apply to objects in constant circular motion:
=0 7=0 @ =const. z=0 (3.10.8)

From this the centripetal acceleration:

e’ (3.10.9)

Determine the relationship between the angular velocities according to the proper time and the
coordinate time:

i oo\ i op\
a_:zzr'(ﬁ) a_;:r.(_‘P) (3.10.10)

Substitute the proper time into the second derivative of the radial coordinate:

2

dtr=dt1-2

2 2
or 1 2:;“(8@)
\%

PYE (3.10.11)

(22 -, (2]
”(ar)‘r(m)

The relationship between the angular velocities using the proper time and the coordinate time:

c

2
1—V—2) (3.10.12)

awzaw. 1
ot ot \/1_V2 (3.10.13)

2
c

The difference between the two quantities shows, that a non-rotating object moving on a circular
orbit, after having completed a circle it will not face in the same direction as before, this
phenomenon is called the Thomas precession:
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3.10 Circular motion and Thomas precession

_0p O0¢p _ 1 op
w=—"——"= —1}|
ot ot \/ e ot (3.10.14)

3.11 Gravitational redshift

On the world line of an object at rest relatively to the coordinate system only the coordinate
time changes. The relationship with the proper time can be determined with the four-distance:

cri=ct gt (3.11.1)
The proper times of two different test objects:
1IT=V18 't 2T=V28ut (3.11.2)

The # component of the metric tensor has to be positive, so that the direction of the proper time and
the coordinate time coincides, and that the second assumption, the principle of the ordering between
cause and effect is not violated. By substituting the coordinate time we can determine the
relationship between the proper times:

1T:\ﬁ'27 (3.11.3)
284

The frequency of light or any periodic phenomenon:
y=— (3.11.4)

The gravitational redshift:

=25y (3.11.5)
18 4
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4. Spherically symmetric spacetime

4. Spherically symmetric spacetime

The most general spherically symmetric solution of the Einstein equations was derived by
Karl Schwarzschild in 1916, not long after the initial discovery of those equations. This chapter
deals with the matter free version of it. We map the spacetime of the Schwarzschild solution with
various coordinate systems, and investigate the trajectories of moving bodies in it. We verify our
results with observations from the Solar System.

Several well known phenomena get a new interpretation, once we use geometric methods to
understand them, and unexpected new effects also occur. Since every phenomenon is a result of
interplay between distances and angles, tampering with them has many, previously unknown
impacts on the orbits of celestial bodies.

4.1 Spherically symmetric coordinate system

Let us set up a spherically symmetric coordinate system in flat spacetime, that we are going
to use as a basis for the subsequent general derivation. The arc length squared is created by
extending the arc length squared of the sphere with radial and time coordinates:

ds*=c*dt*—dr*—r*-(d 9*+sin’(9)-d ¢ 4.1.1)

Determine the metric tensor, the connection, and their derivatives:

1 0 0 0
1 0 0 0 0 -1 0 0
0O -1 0 0 1
En=lo o0 - 0 g =0 0 75 0
2 .2
0 0 0 —r-sin(9) 00 0 —— '12
r--sin”(9)
(4.1.2)
agss_ b 6g99:£
or or 5
ag.(p(p ag(p(p 2
=2 9 =
or resin(9) or  rlsin’(9)
08pep 2 : 0g”? _ 2-cos(9)
39 =—2-r"-cos(9)-sin(9) 59 _r2~sin3(9) (4.1.3)
I'yy=—r I’,,=—r-sin’(9)
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4.1 Spherically symmetric coordinate system

r9,9:r99,,:r‘”w:r‘€pr:% I’,,=—cos(9)-sin(9)
[%,=I%,=cot(9) (4.1.4)
618"_;99:_1 ag;q’q’:—sinz(f}) agi‘;’(”:—2-r-cos(\‘})-sin(f})
6(1;:,.9: agjsr: agi”p = af;(pr :_% ag—;"w:sinz(\‘?)—cosz(f})

oo 0w cor(9)-1 (4.15)

Every component of the curvature tensor is zero, since the spacetime is flat. We write down the
geodesic equations:

c-i=0

FAT gq O+ o @ =F—r-F—r-sin’(9)-p°=0

$4T° i 9+T°, -3 i+ F9@¢~<'p2:9+%-i’-f}—cos(f})-sin(9)~('p220
r

(b+2-T(p”p-if-('p+2-F(p9(p-9-('p:(b+%-i’-('p+2-c0t(9)-9-('pZO (4.1.6)

4.2 Schwarzschild coordinates

We start by simplifying the Einstein equations further:

1

Rnu_E.R'gnu:O [-g™
R-L.R4=0
2
R=0 42.1)

By reinserting this we get, that the Ricci-tensor is zero in vacuum:

R,,=0 (4.2.2)

We assume about the shape of the resulting spacetime, that at great distances from the source of
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4.2 Schwarzschild coordinates
gravitation, it approaches the flat spacetime. Since none of the coordinates change as a function of
another, there are no mixed coordinate products. Therefore we use spherically symmetric

coordinates to calculate the arc length squared, and we extend it with unknown functions, that
depend only on the distance from the centre, and the elapsed time:

ds’=A(r,t)-c*-dt’=B(r,t)-dr’=C(r,t)r’-d ¥—=D(r,t)-r*sin’(9)-d > (4.2.3)

The position of the axis of the coordinate system can be arbitrary, by adjusting it to our liking, we
have one less unknown functions:

C(r,t)=D(r,1) (4.2.4)
Let us write an even more general form, where we allow the radial and time coordinates to mix:
ds’= 2 dt’ +2- f-g-c-dt-dr—h>-dr’=C-r*-(d $°+sin’(9)-d ¢°) (4.2.5)

This however can be led back to the diagonal form, using substitutions where we rescale the time
coordinate:

A-cdi’=(f -cudt+g-dr) B=g’+ I’
ds’=A(r,t)-c*-dt’=B(r,t)-dr’=C(r,t)r*(d $ " +sin’(9)-d ¢°) (4.2.6)

Since the radial coordinate can also be arbitrarily rescaled, arbitrary relationships can be established
between the remaining functions:

Schwarzschild coordinates: C(r,t)=1
displays distances perpendicular to the radial direction undistorted

Isotropic coordinates: B(r,t)=C(r,t)
displays directions undistorted

Gaussian polar coordinates: B(r,t)=1
displays distances parallel to the radial direction undistorted

Co-moving coordinates: A(r,t)=1
coordinates of radially falling bodies are constant (4.2.7)

The arc length squared in Schwarzschild coordinates, we determine the geometric quantities that
characterize the surface, from the metric tensor to the Ricci-tensor:

ds’=A(r t)-c>-dt’=B(r,t)-dr’—=r>-d 9" —r*sin’(9)-d @° (4.2.8)
A(r, 1) 0 0 0
|1 0 —B(r,t) 0 0
En=l g 0 - 0
0 0 0 —rsin’(9)



4.2 Schwarzschild coordinates

0 0 0
A(r,t)
1
0 — 0 0
nu_ B(V,t)
0 0 -= 0
r

1

0 0 0o -

r’-sin’(9)

We symbolize partial differentiation with respect to time with an upper point, and with respect to
space with an upper apostrophe:

agtt:A agtt:—i
ot ot A
agrr__B angﬁ
ot ot B’
agn:A’ agtz:_i
or or A
agW__B, agl~r:B!
or or B’
089s _ 5 0g"_2
or or 5
ag(p(p ) ag(p(p 2
=—2.r 9 =
or rsin’(9) or  r’sin’(9)
08pp : 0g”? _ 2-cos(9)
59 =—2-r"-cos(9)-sin(9) 0% rsin(9) (4.2.10)
t A t t A' t B
= I =I" = L=
1—' t 2‘A tr rt 2'A F r 2'A
r_ A’ B - _ B’
I = =T =— I =
it 2'B F tr Frt 2‘B r 2B
2
ro_ T r r-sin”(9)
Iys= B I po=— B
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$ _ -9 _ _ _1
FrS_r\‘}r_r(pr(p_r(p(pr_;

I%,=I% 4=cot(9)

or', A-4-A°

ot 2.4

aft,.,,:A-B—A-B
ot 2-4°

al—'rlr_(’al_'yrt_B'B_B2
ot o0t  2.B

4.2 Schwarzschild coordinates

1—-9

QP

=—cos(9)-sin(9)

4.2.11)

aI_'ttr_81—'t}’t_al—'ttt_ AA,_AA,

ot ot  or

arrn:B'A,_A".B

ot

2-B°

2.4

or’, or., or', B-B'—B-B'

ot or

or

oI'ss_r-B or',, r-B-sin*(9)
ot B ot B
artlr_artrt_A‘A',_Arz artrr_A'B’_A"B
or  or 2. 4% or 2-4°

ar",t: B-A'""—A'-B'
or 2-B?

arrse_r-B '-B

2-B?

or., ar“;r: 0r%,_0I%, _

or B or
or',, 2
79 ——?’cos(!})sm({}) 5 - o,
or’ ore,, ore
7a;w:sin2(9)—cosz(9) 899(02 75
R —_p _B-A" B-4"B' A"-4B
rtr rrt 2-A 4.A.B 4.A2
t r-A'
Ry o=—R'gs,= 2 4B R'4,6=—R'gs,=—
r-A'
R’W(p——Rtwt 5 4.8 sin’(9) R, o=—R',o,

BoA" B-A"B' AP 4B

thtr: _er— 7.-B

+
4-B*? 4-4-B
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r-B
2:-A4-B

or

2% — _cot’(9)—1

r

(4.2.12)



4.2 Schwarzschild coordinates

r — r _ r B r _ 7 _I"B'
R33=—R 991—2 32 R 9r9__R 99r— 2_32
r r l"'B .2 r _ Iz _7" B' 2
R 1 o=—R o= 2.Bz.sm (9) R, =R, s sin”(9)
A’ 9 9 B’
R9t19__R919t:R(ptt(p: _R(Pt(pt: 2 7 B R rr9:_R r9r:R(prr(p:_R(pr(pr:_ 2I’B
R o= By = R y=— R,y = R, =~ R, = R", = R", =~
trg tSr rt9d r9t tro tor rtep rot 2}"B
RS =—p* =[1-L -sin’(9) R =—r". =[1-1 4213
XX Py B $p9 99— B ( ] )
B (B, A\ 4" (B A"\ A"-B A
R=———=+——"—"— + + +
“ 4.B\B A| 4B A 2-B r-B
R :_i. £+4 + . B_+A _A _B B
" 4-4\B A) 44\ B 2-A rB
R rrB' rd" 1
% 5.g* 2-4'B B
rB'" r-A' 1 2
v (2.Bz‘m‘§‘1)sm (%)
,i (4.2.14)

We derived from the Einstein equations, that in vacuum the Ricci-tensor is zero. The non-diagonal
term shows, that the derivative of the B function with respect to time is zero:

B
Rtr:th:ﬁ: 0
(4.2.15)

B=0
Reinsert this into the # and r» components of the Ricci-tensor. Simplify the # component:

A! B! A! A!! AI
R,=—F—|—+—|+ +—=0 /B
“ 4B\B A) 2-B r-B
A! B! A! AV! A!
——| =+ |+ —=+—=0
23 T (4.2.16)
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4.2 Schwarzschild coordinates

Simplify the »» component also:

A (B A A7 B /-4

" 44\B A 24 r-B

A" [B' A'"\ A" B'-A

2 024 — + =

A R Y (4.2.17)
Add the two equations together:

B -A+A —0

r-B r

B' A’

—+—=0

34 (4.2.18)

Reinsert the result into the equation coming from the ## component, where now we have just the
derivatives of the 4 function. With substitution we reduce the degree of derivatives:

Al! AI
5 + ; =0 f(r)=4' (4.2.19)
a 2 f _
dr+ r =0
a _ 5 qar
ff_ 2f r

log( f)=—2-log (r)-cl=10g(c‘ )

2
r
We raise to natural power both sides of the equation, and reinsert the original function:

_dd

Cy

=—=A4'= 2.

f > 0 (4.2.20)
¢

[ 2dr=[ a4
r

Thus the A function is also time independent:

€

—ye,=4 (4.2.21)
r

Let us examine the formula, that we got when we added the two equations we made from the Ricci-
tensor components:
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4.2 Schwarzschild coordinates

B' A’
2 142
B A

With a little reordering we can show, that the product of the two functions is a constant:
F'=A-B'+A4'"-B=0 — F=A4-B=c, (4.2.22)

From this the other function:

We can reinterpret the unknown variables in a way, that the third is understood as part of the first
two, in this case the two unknown functions are mutually reciprocals of each other:

.G b= =1
A—02—7 c _ﬁ C3= (4223)
2

The first constant is a quantity characteristic for the spherically symmetric spacetime, it is the
Schwarzschild radius. In this distance from the centre there is a coordinate singularity, and its
physical meaning can be found with Newtonian approximation:

re=c, (4.2.24)

The value for the second constant can be recovered from the condition, that the Schwarzschild
solution at great distances shall approach the flat spacetime, in other words 4 and B in the arc length
squared shall approach 1:

C
lim A=c,—lim —=¢,—0=1 (4.2.25)

r—ow roow IV

Because of the time independence of the metric, if a celestial body suffers radial changes, but does
not receive or lose mass, the geometry of the surrounding spacetime will not change. For example a
spherically symmetric pulsating star does not create gravitational radiation, neither a symmetric
supernova explosion nor a celestial body collapsing to a black hole. Because of the slow rotation of
the Sun and the minimal contribution of the planets, the spacetime of the Solar System is
Schwarzschild to a great accuracy. The arc length squared and the other geometric quantities in the
Schwarzschild metric:

r dr’ 2 2 .2 2
ds’=|1—=2|-c*dt’ — —r\d 97+ 9)-d
’ ( r)c |_le g sin’(9)-d | (4.2.26)
r

99



4.2 Schwarzschild coordinates

-l 0
r
Lo —— o
Enu— 1_r_g
r
0 0 —r’
0 0 0
! 0 0
T
r
r
gnu: 0 _(1_;&) 0
0 I
r
0 0 0
agn:_ﬁngg
87” 87" r2
8899:
or
0
g‘p(p——2-r-s1n2(9)
or
0
ag;“’:—z r~-cos(9)-sin(9)
r
r',=r,=-r,=—:
r rt rr 2 r'(l’—l”g)

100

0
0
0
—r*sin’(9)
0
0 4.2.27)
0
1
r*sin’(9)
agrr_ agﬂ_ I"g
- - 2
or or 2 1_&
r
08" _2
6r r3
agW): 2
or  r’sin’(9)
0g”? _ 2-cos(9)
= 4.2.28
0%  r’sin’(9) ( )
! 2.7
I ,,=—(r—r,)-sin*(9)
r’,,=—cos(9)-sin(9)
(4.2.29)



4.2 Schwarzschild coordinates

or B or or _2-r2 (r—rg)z
arfn rg-(2-r—3-rg) a["’99 61"” 2
=— —=—1 2P = sin“ (9
7 2 . 2 = —in’(9)
ar9,9:ar99,:ar"’w:ar‘fp,:_i
or or or or 72
or’ or’
W‘W:—Z(r—rg)-cos(f})-sin(9) a—ngsinz(f})—cosz(f})
wagw ar“;,g 5
= =—cot (9)—1 4.2.30
55~ os ot (®) (42.30)
p
Rtrtr__Rtrrt_ 2 £
r(r=r,)
t _ t — pr _ r — I’g
Ry s=—R 4y, =Ry,s=—R 99r__2_r
R =R =R =R = '&.n*9
et Moo= N pro— wwr__ﬁ'sm( )
. .orr=r))
Rtrt__thr_ £ 4 £
r
8 __p% _pp ___po _rg'(r—rg)
Rth__RttS‘_Rt(pt_ Rtt(p_ 2'1"4
R9 __R9 _R(P __R<P —_ l"g
r9r— rr9 ror- rrgp 2
2.7 (r—r,)
r .
Rs(pg(p——Rs(pw:Tg'smz(Q)
4
Ry o= Rlygo =" (4.2.31)

This spacetime is a hypersurface of a six dimensional, flat, pseudo-euclidean space with a signature
of (+ + ————). The parametric form:

xl:\/l—k-cos(c-t) x’=y l—r—g-sin(c-t)
r r
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4.2 Schwarzschild coordinates

x3:f\/ Te -+ 1)-dr x*=r-sin(9)-cos(p)
r— g v
x’=r-sin(9)-sin(¢p) x°=r-cos(9) (4.2.32)

4.3 Geodesic equations

Substitute the connection coefficients of the Schwarzschild solution into the geodesic
equations:

ct+2-T", cti=0

fr— & j=0 4.3.1)
FAT o AT i+ T g8+ T’ =0

re(r=ry) 5., r

St —Wg_r)-ﬁ—(r—rg)-.92—(r—rg)'sin2(9)-(j)2=0 (4.3.2)
g

i+

9+42-1° 7 9+T°, , @’=0

w2 . L2

3+=-7#9—cos(9)sin(9)-p"=0 (4.3.3)
r

P+2:I% i p+2-T%, 3 Pp=0

¢+2~r<p+2~cot(9)~9~<p:0 (4.3.4)
r

Let us investigate the third equation. If we orientate the coordinate system in such a way, that the
test body is in the equatorial plane of the coordinate system, and the direction of the motion falls
into this plane, then it will also stay in this plane. Substitute the longitudinal angle and the
momentarily zero angular velocity along this coordinate into the third geodesic equation:

T .
9=— =
5 =0
w2 . L2 a2 L2
9+=79—cos(9)sin(9)- @ =9+=70-0-1-¢p"=0
r r

The longitudinal angular acceleration is zero, the test body stays in the equatorial plane:
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4.3 Geodesic equations

$=0 (4.3.5)

Substitute into the other geodesic equations as well:

fr—lejp=0
Y r (4.3.6)
i/:+l’g~(}"_rg).cz.i2_ rg '7;'2—(7"_7" )(p2:0 (437)
2.3 2-r(r—ry) & o
9=0 (4.3.8)
L2
(p+7-rcp:O (4.3.9)

4.4 Gravitational redshift

This phenomenon is one of the classical evidences for general relativity. Einstein described
it already in 1907, based on the principle of equivalence, but initially he did not think it was
possible to measure it experimentally. The experiment was eventually performed by R. V. Pound
and G. A. Rebka, in 1959 in the laboratory of Harward University, in the United States. The
measured red shift of the gamma rays emitted by radioactive iron atoms, and directed 22.5 meters
upwards to the detectors confirmed Einstein's prediction within the 10% error margin. Later the
error margin has been reduced to less than 1% using hydrogen masers.

We substitute the Schwarzschild metric tensor components into the earlier formula:

(4.4.1)

F=,r — V=,V (4.4.2)

Thus the observed frequency is higher than the emitted, the radiation in the visible spectrum is
shifted towards the red, this is where the name of the phenomenon comes from. Redshift observed
by an observer at a great distance, where the light source is at r distance from the centre of
gravitation (like the surface of a star):

103



4.4 Gravitational redshift

1
z= —1
Fo (4.4.3)
1__
r
4.5 Wormhole

In order to demonstrate the shape of the spacetime, we investigate the properties of a
coordinate surface. The parameters of the surface:

t=const. ==
2

dt=0 d9=0 4.5.1)

Substitute them into the Schwarzschild arc length squared:

dszz(l_&).cz.oz_d_’”z_,ﬂ.
r

02+sin2(%)~d(p2)

[T
r
1 o dr’ 2 2
—ds"=dl" =————+r"-d
) Y (4.5.2)
,
The characteristic geometric quantities on the surface:
Lo 1-Z= 9
r ii
g;=|1--% g= " (4.5.3)
0 i
0 ” r
agrr rg r
or s\ 0g _Tg
r’ (l ——g) or
r
ag a PP 2
S2e=2r agr =5 (4.5.4)
R S Io=—(r—r)  I%,=I" =1 (4.5.5)
"r 2’1"'(1’—7"é) (10 g re er .
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4.5 Wormhole

or’,, (2-r— : re re..
_rg(2rory) M oo__, Mo 0w 1 (456
or  2.r(r—r,) or or or r

2rr=r,) (4.5.7)

-
g (4.5.8)

This coordinate surface can be embedded into the flat three dimensional space, thus its easy to
visualize. We set up a spherical coordinate system, and spread the surface in it. The arc length

squared:
di’=dr’+r*d ¢’ +dz’
Make it equal with the arc length squared measured on the surface:

2
2 2

dr’+ rz-d(pz—l—de:L—Fr d

(4.5.9)

We do not know the relationship that describes the z coordinates of the surface, therefore we
substitute it as an unknown function, and since the surface inherited circular symmetry from the

Schwarzschild metric, we assume that it depends on the radius only:

z=f(r)
dz=f"(r)-dr
(1+f;2( ))-drzz dl"r

=

Perform the integration. The shape of the entry of the wormhole:
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4.5 Wormhole

f(r)=24r(r=r,)+c (4.5.11)

The surface with angular and rectangular coordinates:

4.6 Newtonian approximation

According to the correspondence principle, the new physical laws in limiting cases must
approximate the old ones, this is no different in the case of relativity theory. In this case the
previous model is the Newtonian absolute space and time, and the forces and emerging potentials
acting in it. In order to establish the correspondence, we must formulate the two gravitational
theories in the same language. Classical mechanics does not work with geometric methods, but with
diverse terms instead, like the force, and other quantities derived from it. Using this set of tools, it is
possible to describe only a limited set of gravitational phenomena, but within its limit, it provides
correct results. Since this can be experimentally verified, the broadly valid geometry based theory
has to approach the Newtonian model within the mentioned limits. The validity of the former is
limited to those situations, where movements are much slower than the speed of light, and the
proper time coincides with the coordinate time:

v dT~dt (4.6.1)

The Lagrange function summarizes the properties of a dynamical system. From it the equations of
movement can be derived using the action principle. With the action functional in the non-
relativistic case, the following relationship is satisfied:

S[x(t)]ZTL(x,x,t)dt (4.6.2)

4

According to the action principle, the evolution of a mechanical system is characterized by the
solution of the following functional equation:
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4.6 Newtonian approximation

—0 (4.6.3)

Let x(#) be the function describing the possible evolution of the system. In this case &(f) is an
infinitesimally small variation on it, that is zero in the starting and ending points, this is our
boundary condition:

e(t,)=¢(t,)=0 (4.6.4)

Use it to vary the action functional, we assume that the Lagrange function does not depend on time:
[5)
5S=[(L(x+e, x+&)—L(x,x))dt (4.6.5)

Write down the Taylor series of the Lagrange function, and we write down the variation of the
action functional again, using the first order terms:

Lixte, x+&)=L(x, x)re 2L 1. 0L
"ox' ' ox
ty
55=[|e-2Lte 0L (4.6.6)
" "ox ox'
Partially integrate the second term:
oLl ¢ doL
§S,=|¢— dt g(t)—| -] e - dt
f [ ox' L ! dt 55

Reinsert it into the variation equation:

(4.6.7)

Because of the boundary condition, the first term is zero:

ty
55,.:]5,(“4—1 6L,)~dt:O

ox dt o'

t

According to the action principle, the variation of the action functional is zero. This is satisfied, if
the expression in the parentheses is zero, that is the general equation of movement:

(4.6.8)

daoL_dL_
dt o5’ ox
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4.6 Newtonian approximation

In a non-relativistic conservative force field the Lagrange function is the difference of the kinetic
and the potential energy:

L=E,~E, (4.6.9)

The total energy of the moving body:

e (4.6.10)

Write down the expression in the parentheses with a binomial series:

n__ n! o n—iogi_on L on—l n(l’l_l) n—=2 72
(a+b) —; EEn a"b'=a"+na b+—2! a” b +...

v2 2 1 V2 3 V4
1-5 | =l+=S+>—5+... (4.6.11)
2 ¢ 8¢

At velocities slow compared to the speed of light, the kinetic energy is approximately the following:

1
EkNE~m~v2+... (4.6.12)

In a central force field the potential energy depends only on the mass of the test body and the
distance from the centre:

E,=m-p(r) (4.6.13)

In Newtonian mechanics space is flat. Write down the Lagrange function is a three dimensional
spherical coordinate system. The velocity squared is calculated from the arc length squared:
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4.6 Newtonian approximation

ds’=dr’ +r*(d 9 +sin’(9)-d ¢7) |-

ot
V2 =i 412 92 4sin’(9)-¢7) (4.6.14)
The Lagrange function:
L=E,—E,=m: %-(ﬁ%r2-(92+sm2(9)-<p2))—¢(r) (4.6.15)

Substitute it into the equation of movement and divide with the mass:

The first term according to the radial coordinate:

d ol .2, 2,52, .2 ) -
42 [ Lt rsint (91|

The second term according to the radial coordinate:

_ 0 (L2 2 (8 4in2(9)-07) = (1) | == 8= rosin?(9)- 2+ L2
or\2 dr
The equation of motion in the radial direction is their sum:
if'—r-éz—r-sinz(9)-(p2+d(z(r)=0 (4.6.16)
r
The first term of the equation of movement according to the latitude:
d o1l .2 2,20 .2 .2 1 d o0 ,25mo0_d 245, 23 a2
— == (F+r (9 + 9) - = (r¥)==r"9+r-9=2-r-i-9+r"-9
5 89(2 (F +r" (9 +sin"(9)-¢°)) d)(r)) > 69(r ) s r rei9+r
The second term according to the latitude:
—CE l-(i’z+r2-(92+sin2(9)-('p2))—¢(r) z—i(rz-sinz(9)-('p2)=—r2-cos(9)-sin(9)-('p2
09\2 09
The equation of motion in the latitude direction is their sum:
s 2 . .2
3+=7-9—cos(9)-sin(9)p =0 (4.6.17)
r
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4.6 Newtonian approximation
The first term of the equation of motion according to the longitude:

d 0 (1, gy aiar ool
R 2(r +r° (9 +sin"(9)-@7))—p(r) 2

|

0 (,2.02(0).c2) =
[og s (9)¢)

Y

%(;ﬁz-sinz(\‘})-('p)Z%rz-sinz(\‘})-('p+r2-%sin2 (9)-@+r-sin’(9)-p=

2-r-i-sin’(9)-p+r>-2-cos(9)-sin(9)-@+r>sin’(9)-p

The second term is zero, therefore by rewriting the first term we get the equation of motion
according to the longitude:

.2 . .
(p+7if~(p+2«cot(9)«9~(p20 (4.6.18)

In flat space using a spherical coordinate system the radial geodesic equation:
FAT gq 8+ o @ =F—r-F—rsin’(9)- @ =0
In the presence of a central gravitational field we see a difference in the radial equation of motion:

F—r-9*—r-sin’ (9)'(P2+—d(2(r) =0
r

Only the time-like coordinate velocity is constant, therefore the new term is an exactly identifiable
connection coefficient:

d_pr cdt cdt _ o pr

g # (4.6.19)

We seek the metric that produces geodesics, like the Newtonian equations of movement. The
calculation of the connection from the metric:

O08a, O8un_ O 8un

K 1 K&
l _—'g: .
ox" ox" ox"

L)

T TR (4.6.20)

ol m_(agm 08 ﬁgn)
Assume that the metric does not depend on time:

0g 0g
+ r9. tt+ re, 1t
ot % Tar '8 89 "8 ho

rr :_l,gm.agn:_l, 08, » 084
T2 ox* 2

In the spherically symmetric spacetime it also does not depend on the angular coordinates, thus the

110



4.6 Newtonian approximation

equation simplifies:

r 1 rr agtt
—_ 1., 4.6.21

I 28 or ( )
¢t dr 2 or
2 dol(r) _ 08y
¢t dr or
2 _
?-¢(r)+cl—gt, (4.6.22)

At great distances from the source of gravity the shape of space approaches the plain, with this we
can determine the integration constant:

lim ¢ (r)=0

. .2

lim g,= lim =-¢p(r)+c,=0+c =1 (4.6.23)
¢(r)—0 $(r)=0 ¢

The form of the gravitational potential in the Newtonian theory of gravity:

(r)=—XM (4.6.24)

r

Where y is the gravitational constant, M is the central mass causing gravity, r is the distance of the
test body from it. Substitute it into the metric tensor component, and write down the arc length
squared of the spacetime, that causes the exact same geodesics, like the Newtonian equations of
movement:

_2yM

g =1 ! (4.6.25)
r-c
dszz(l—z'y—'y)cz-dﬁ—dﬁ—r? d 9 +sin(9)-d ¢?) (4.6.26)
r-c

Compare the corresponding metric tensor components of the Schwarzschild metric and the just
derived Newtonian limiting case, and with this we can determine the second integration constant of
the Schwarzschild derivation, the Schwarzschild radius:

Y r
g =1-2 =L
r-c r
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4.6 Newtonian approximation

=L (4.6.27)

The presently accepted value of the gravitational constant:

3
y=6.67428-10" 2
s kg

This constant of nature is one of the hardest to measure, therefore using methods of celestial
mechanics, the masses of celestial bodies can be measured only with the same error margin. Thus
for precise orbit calculations the product of the two quantities is used, this is the standard
gravitational parameter. With this it is possible to calculate the Schwarzschild radius of celestial
bodies as well, with great accuracy. The Schwarzschild arc length squared, using pure SI units:

2-y-M dr’ .
dSZZ(l—yiz)-cz-dtz—i—rz-(d 9’ +sin’(9)-d (pz) (4.6.28)

rc I—M
rc’

4.7 Circular orbit

All energy present in the system causes spacetime curvature, therefore we let go a test body
in it with such a small mass, that has negligible influence on events. For the sake of simplicity, it
will move on a circular orbit around the gravitational centre, at a distance far greater than the
Schwarzschild radius, along a force-free local line, a geodesic. In order to determine the orbit
parameters, we write down the coordinate conditions first, that come from the properties of the
circular orbit:

_ ot _
t=t(1) 6T—const.
2
r=const. dr=0 or_or ’;:0
ot ot
T
9=1 _
5 d3=0
_ op _
p=¢(T) e = const. (4.7.1)

These simplify the general geodesic equations:
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4.7 Circular orbit

=0 4.7.2)
jole r_rg)-cz-tz— Te i—=(r—r,)@ =0
> 2-r(r—r,) ¢

rg-(r—rg)' 2P —(r—r.)@*=0 4.7.3

" c r=r,) Q= (4.7.3)
$=0 (4.7.4)
p+2F =0

r
p=0 (4.7.5)

Utilize the coordinate conditions on the arc length squared as well:

r r

2
dszz(l—ﬁ)-cz-dﬁ—o——ﬁ-

02+sin2(%)~d @2)

1-1z
r
ds2:(1—3)-c2-dt2—r2-d<p2 (4.7.6)
r

This is the point of view of the infinitely distant observer. The astronaut moving on the orbit
however does not see this. He “feels” to be weightless, and by him the Minkowski arc length
squared can be written down locally. We set it equal to the arc length squared seen by the distant
observer:

cz-dTZZ( 1 —E)-cz-dtz—rz-d (p2

r

2 2

r rd
dT2=((1——g)__z' <p2
r ¢ dt

‘dl2 d_(tP:(U

Substitute the angular velocity along the orbit, and we get the relationship between the proper time
and the coordinate time:

r C

r P’
dr=¢[1--=2]- ——-dt 4.7.7)

Since the ratio of the two quantities is constant, the coordinate time is also guaranteed to grow
monotonically during the movement, therefore it can be used as parameter when solving the
geodesic equation. The geodesic equation in the radial direction:
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4.7 Circular orbit

’”g'(r_rg).cz.(ﬂ)z_(r_,,g)‘(a_‘/?)zzo

2.7 ot ot
r '(I’—I”) 2 2_
#-c —(r=r,)w'=0
-

The angular frequency of a test object with negligible mass on a circular orbit:

Ww=cy|—= (4.7.8)

The orbital period calculated from it equals to the Newtonian limiting case at arbitrary orbital radii:

3
tkzz—n-\/ 2 (4.7.9)

C I"g

The Earth orbits on an approximately circular orbit, therefore it is a good example to demonstrate
the relationship. The standard gravitational parameter of the Sun and its gravitational radius:

’ 2y M
y-M=132712440018-10° "% r,==¥2=29532500765-10°m
S C

The semi-major axis of the Earth's orbit:

r=1.49598261-10"" m

From these we can calculate the orbital period:
1,=3.15583195-10" s=365.258328 days (4.7.10)

The difference between the actual and the calculated orbital period:

t,,=365.256363004 days

t
£ _1=5.37919714-10"° 4.7.11)

iz

The difference from the measured value is caused by ignoring that the Earth's orbit deviates from
the ideal circle, the other planets also influence the Earth's movement, and the Sun's rotation also
has an influence on spacetime. The ratio of the orbital periods and the radii of the circular orbits
gives Kepler's third law:
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4.7 Circular orbit

23
)

_tz =— (4.7.12)
o T

Substitute the angular frequency of the orbit into the relationship of the proper time and the
coordinate time:

2
rz-(c- %)
dr= (1—r )——'r dt

_&
r

dr=y1->T2. 4 (4.7.13)
2-r

If the change of the proper time is zero, it means a light-like geodesic, thus we are speaking about
light on a circular orbit:

3-r
0=y 1——=-dt
2:r

The radius of the orbit:

r= '2g (4.7.14)

Objects slower than the speed of light can orbit around the centre only at greater distances than this.
The circular geodesics inside this radius are all space-like, that is shown in the fact that the number
under the square root is negative, thus the proper time becomes an imaginary quantity.

4.8 Surface acceleration and hovering

If an object does not move in a Schwarzschild coordinate system, for example it is at rest on
the surface of a spherical planet, how much is its acceleration? We perform the calculations with
respect to the coordinate time. In the case of an every-day size planet with a solid surface it is not a
significant discrepancy. The coordinate conditions in this case:

t=t(T) S—_f_zconst.
r =const. dr=0
9:const.=% d9=0
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4.8 Surface acceleration and hovering

@ =const. dp=0 (4.8.1)

We are looking for the radial acceleration, we substitute into the corresponding equation of
movement:

r(r=r,) ,. r . ,
%.62.12_4.,,2_(,,_%).@2:0

P+
9. 2-r(r—r,)

Surface acceleration in the Schwarzschild solution, when the rotation of the planet is negligible:

jo—t gl (4.8.2)

If we want to take the rotation of the planet into account, the coordinate conditions will expand, the
observer will perform circular motion along a latitude. We continue to work with the same equation
of movement (because of using the Schwarzschild metric, we neglect the effects of the rotation on
the spacetime, but in the case of a small angular momentum, this is an adequate approximation):

t=t(1) ﬂ=c0nst.
T
¥ =const. dr=0
9 =const. d9=0
P =const. d_(Tp =const. (4.8.3)

We start with the most general radial equation of movement:

palelTr) g 1

.2 2 ) .2
2y m}" —(l"—l”g)‘g' —(I"—I”g)'SIH (9)(P =0

Surface acceleration in the Schwarzschild solution, when the planet rotates:

fe=—t P (r—r,)sin’ (9) @ (4.8.4)

The standard gravitational parameter of Earth, and the gravitational radius:

3 . .
y-M =3.986004418-10" "% — rgzi%M:S.870056078-10*3m
N c

The equatorial radius of Earth and the angular frequency of the rotation:
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4.8 Surface acceleration and hovering

r=6.3781366:10°m w0=2T=729211510"
k
Surface acceleration on the Earth's equator (9 Zg) :
7=—9.7982867 " +0.0339157 5 =—9.764371 (4.8.5)
s s s

The actual acceleration measured on the Earth's equator, and the difference from the calculated
value:

F,=—9.780327 %
N

"2 1=1634105-10" (4.8.6)
r

The discrepancy from the geographic value is caused by the Earth's not exactly spherical shape, this
has mainly an impact on the term that takes the rotation into account.

Acceleration of a hovering object with respect to distance, from the point of view of the
infinitely distant observer:

”g'(”_rg) 2

e (4.8.7)

a——

On the graphic the distance from the gravitational centre increases from left to right, the coordinate
acceleration of the hovering body is displayed on the vertical axis, the dotted line shows the
position of the event horizon:

a

Approaching the gravitational radius, the coordinate acceleration goes to zero:
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4.8 Surface acceleration and hovering

a=lim —————%.c’=( (4.8.8)

ror, 2-r
The derivative according to the radial coordinate is zero at the point of maximal acceleration:

da_, Zrm3v, oy
or ¢ 2.7 B

3
r=5T, (4.8.9)

4.9 Geodesic precession

In 1916, while working on the relativistic correction of the Moon's orbit, Willem de Sitter
Dutch astronomer pointed out this phenomenon. By analysing laser light reflected from prisms
placed on the surface of the Moon during the Apollo program the phenomenon was confirmed to
0.7% accuracy. NASA launched Gravity Probe B in 2004 with the best mechanical gyroscopes on
board ever created by mankind. The result of the experiment, that confirmed the accuracy of the
theory of relativity within 1% was published in April of 2007 at the annual congress of the
American Physical Society.

Maybe one of the best evidences for the curvature of spacetime is the parallel displacement
along a geodesic, for example a circular orbit. The direction of the vector arriving at the starting
point will differ from the original. Parallel displacement along a geodesic, where v is the vector in
the original point, u is already displaced:

u'=v"—T" vdx’ (4.9.1)
Our geodesic of choice is the circular orbit. The infinitesimal displacement vector along the orbit:
dx"=(cdt 0 0 do) (4.9.2)

The vector lays in the orbital plane, therefore its zeroth and second components remain zeroes after
the displacement:

u'=(0 u” 0 u”) vi=(0 v" 0 V) (4.9.3)

The orbiting happens in the equatorial plane:
$=—
5 (4.9.4)

Substitute the connection of the Schwarzschild solution into the formula of parallel displacement:
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4.9 Geodesic precession

r

u’:v’—]"ttr-v"-dz—]"rt-v’-dr:vt—ﬁ-v"-dt (495)
u'=v' =T Vdt—T", vV -dr—I"gev"-d =T, V' -dp=v"+(r—r,)v’dp (4.9.6)
u'=v'—T° v dr—I, v -d9-T°,,v"d p=0 (4.9.7)
u’=v"=r" +"dr-1° ~v'-do-r%, v"d9—T" ,v"-d (p:v(p—%-vr-d(p (4.9.8)

Rearrange the second and fourth displacement equations, substitute the difference between the
original and the displaced vector, as well as the angular velocity:

dVV+(V—I’g)‘V(p'd(P:O /; — V1—yT=dy"
d
B () ¥ =0 - d—‘l”:w (4.9.9)

pr=Ly (4.9.10)

r
"}r_}_ g.wz.vr:() (4.9.11)

This is the differential equation of the harmonic oscillator, that looks like this in the general case:
2

Vv'=sin(0Q-1) %sin(ﬁ-t)2—92~sin(_(2-t)

We can see its angular frequency:

.Q:\/V_rg-w (4.9.12)

The geodesic precession is the difference between this and the angular frequency:
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4.9 Geodesic precession

w:w—Q:(l— ﬂ)w (4.9.13)
r

In the case of weak gravitational field this effect is small, but accumulates over several revolutions.
The orbital period and frequency of Gravity Probe B, that was in Earth orbit for 50 weeks between
2004 and 2005 at an altitude of 642 km:

r=7013000m t,=58505=1h37min30s
w=2T=1074-10"L
t, N

The standard gravitational parameter of Earth, and the gravitational radius:

3 V-
wm =2 M g 470056078107 m
N c

y-M =3.986004418-10

From these the angular velocity of the geodesic precession:

©=6.792-10"" 1 (4.9.14)
s
Rotation in a year:
A(p:w-tyea,:2.143-1075(rad):4.421 " (4.9.15)

The de Sitter effect is the precession of the lunar orbit in the gravitational field of the Sun. The
orbital frequency of the Earth from the orbital period:

t,=365.256363004 days — wzt—=1.99098659277-1077;

2.1 1

k
We substitute the gravitational radius of the Sun (from the standard gravitational parameter) and the
radius of the Earth orbit into our derived equation:

0m _2y-M _ 3
y M =132712440018-10"— — r,=—5—=2.9532500765-10"m
s

o

The semi-major axis of the Earth orbit:

r=1.49598261-10" m

The angular velocity of the lunar orbit's precession:

w=196522383-10"° L (4.9.16)

S
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4.9 Geodesic precession

Rotation in a year:

Ap=w-t,,=6.20188278-10"(rad)=0.0127923015"’ (4.9.17)

4.10 Stability of circular orbits

In the spacetime of the Schwarzschild solution, circular orbits are obviously geodesics, but
this is just a theoretical situation, the trajectories of real objects always deviate from this, if only a
little bit. The question is, will the spacetime geometry generated by the central gravitating celestial
body correct their movement if they stray from the ideal path? Will they move on stable orbits, or
will the geometry increase the perturbation and make them leave the system forever, or turn in the
wrong direction and increase the mass of the central celestial object?

Therefore we want to find out, what orbital radius belongs to what angular frequency, and in
the vicinity of the orbit, in what direction will the geometric potential herd the orbiting bodies.
Calculating the elapsed proper time on time-like geodesics in a single plane, around the
gravitational centre (we use the metric functions as a shorthand):

T
$=— =
5 d9=0
1

2 2
cdT

cdt’=A-c*-dt’-B-dr*—-r*d ¢* |- (4.10.1)

dr’ B dr’ i’ do’

1=4 o
dt> cdt & dt

We determine the components of the covariant tangent vector from the arc length squared, in the
time-like and horizontal direction they are the following:

1
ds’=A-c*-dt’ dsfp:rz-d ¢’ /'E
dt d
Lt,ZA-cz-d—_r u(pzrz-d—(fzrz-w (4.10.2)

These quantities are constants of movement, because the metric tensor does not depend on the
coordinates they are directed to (see chapter 1). Substitute the relationship between the tangent
vectors and the two metric functions, and we determine the dependence of the radial velocity from
the selected velocity vectors depending on the distance:

B=—
A
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4.10 Stability of circular orbits

ot 1 dr oy
A-¢c At dtt et

(4.10.3)

Substitute the function from the Schwarzschild solution:

u2

@ 2
- +c
v

2
dr —uf—(l—ﬁ& (4.10.4)

—=
dT r

The second term on the right is the geometric potential:

MZ

2
—2+c
r

(4.10.5)

r

r

We are discussing the behaviour of this function. Where the derivative according to the radial
coordinate is zero, the geometric potential is horizontal, this means a potential orbit around the
gravitational centre:

2 2
Wy 1y [ty 2 _(l_zg)?g(pzo
dr ro\r r r
rg-cz-r2—2-ufp-r+3-ui-rgZO (4.10.6)

Solve the quadratic equation, the canonical form and the quadratic formula:
a-x>+b-x+c=0

_ —b+Vb'—4-ac

12 2-a

Substitute into the quadratic formula:

2 212 2 2
2-uq)i\/(2-u(p) —4-r e 3uyr,

2
2-rg-c

Fip=

The geometric potential is horizontal at the following distances, the radii of possible orbits at a
given horizontal velocity:

2 2 2 2
+ . — .7,
u,tu, Nu,=3r,c

c

2

Fi,—=

(4.10.7)

I"g'
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4.10 Stability of circular orbits

The piece of the geometric potential that is interesting to us, on a logarithmic diagram, with the
maxima and minima noted:

log(Uey)

Vs

r

log(r)

We get circular orbits only if the quantity under the square root, the discriminant is not negative. In
the other case, there can be no circular orbit, the test object falls on a spiral path, or leaves forever
in the opposite direction. If the discriminant is zero:

u,=3r,c? (4.10.8)

Reinsert into the quadratic formula:

_ 3-r§~czi \V3 'rz-cz'\/a
- 2
]/' .

P

Fis

r=r,=3r, (4.10.9)

In the general case, 7, is always greater and 7 is always less than this limit separating the two kinds
of circular orbits. Since the geometric radius of the Sun vastly exceeds this limiting case, only 7
orbits occur in the Solar System. By substituting these two values into the second derivative of the
geometric potential, it turns out that the r, orbits are stable, », orbits are unstable geodesics, as we
can see it on the graph.

4.11 Perihelion precession

After Urbain le Verrier — by examining the orbit of Uranus — discovered Neptune on paper,
he did similar calculations in 1859 regarding the movement of Mercury. After he determined the
contributions by every other planet, a discrepancy remained, greater than the error margin between
the measured and calculated values of the perihelion precession. Contemporary explanations failed,
until Einstein in 1915 was able to explain this anomaly easily using general relativity, this problem
became one of the classical tests of his theory. At this time, none of the exact solutions of his
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4.11 Perihelion precession

equation were known (except for the flat spacetime), therefore Einstein used a different version than
the one presented here.

We examine the movement of a body on an orbit that is slightly different from a circle. It
turned out when we investigated the stability of the orbit, that the orbiting distance oscillates around
a medium value with a definite period: 7,, and because of the revolution the angle of the position
around the centre changes also of course, with the following period: 7,. The shape of the resulting
orbit approximates a rotating ellipse in the simplest case, where a angular turn with respect to the
coordinate time is:

. . we
A(p:wet-(Tr—T(p):wm-(szr—%):2%-(1— wf) @.11.1)

Arbitrary orbits around the Sun are characterized by the following relationship, we met previously:

dr’
ﬁ:uf_Ueﬂ (4.11.2)

If we approximate the geometric potential with its second derivative around the equilibrium point,
then we can ultimately replace it with the differential equation of the harmonic oscillator, where we
can identify the angular frequency of the periodic movement:

1 d’
Uy () 5';4](&)(7 ry)
dr’ 1 d’
ype f—g';'U(m)'(l’—mf (4.11.3)

We identify the angular frequency of the angular turn, this time with respect to the proper time:

U!!
wizt ot (4.11.4)

Calculate the second derivative of the geometric potential:

2 2 2 2 2
Uy 21, (U, 2| 1y 2y 1, 2y 1_&).6_%
2 3 2 2 3 2 3 4

dr 7 7 roor ror r 7

(4.11.5)

2 d 2
u,=r AP

dTt
Determine the angular frequency of the rotation of the ellipse, we recognize in the first term the

orbital frequency according to the coordinate time of the orbiting body, and we substitute the
horizontal velocity in a form that is valid for circular movement:
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4.11 Perihelion precession

r 3 6r
we:__§'02+ 4 sg)'ufp
r r r
6- 6-
= 2wt rg)-wzz( rg)-wz (4.11.6)
r r

The relationship between the angular frequencies according to the coordinate time and the proper
time can be derived from the relationship between the coordinate time and the proper time:

e

w,= 3.
\/ " — wzz(l— 2Vg)-w2 4.11.7)

We discuss distant orbits, where the ratio of the Schwarzschild radius and the distance is very small,
therefore we can allow ourselves a small inaccuracy, that keeps us within the error margin, but we
can arrange to a more comfortable form the relationship we are looking for:

:( 6-r'g).wZN 3-rg)'w2
r

2-r
3-rg
w,=|1- 7, @ (4.11.8)

By reinserting we get the perihelion precession of orbits:

W, 7g
.  —_— 4.11.
)—3 Tt ( 9)

A¢:2n(

The explanation for the perihelion precession of Mercury is a famous confirmation of general
relativity. The standard gravitational parameter of the Sun, and the gravitational radius:

2y M
y-M =1.32712440018- 1020’" ~ =2 =29532500765-10° m

4
S C

From the semi-major axis and the orbital period of Mercury the angular turn in a single revolution
and in a century:
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4.11 Perihelion precession

#=5.79091-10"" m 1,=7.60053024-10°% s

A p=4.80645-10"=0.0991402 '’
A @iy =1.99565-10*=41.1633 " (4.11.10)

The total measured perihelion precession of Mercury in a century is 5599,7”, where 5028,83” is a
coordinate effect due to the precession of the equinoxes, 530” is caused by the gravitational tug of
the other planets, and 0,0254” is also caused by the oblateness of the Sun. The difference is:

A (pmeasured: 40.8446 "

Based on this the difference is most likely caused by the curvature of spacetime.

4.12 Bending of light

Based on the Newtonian particle model of light, Johann Georg von Soldner suggested
already in 1801, that light rays are deflected if influenced by gravitation, and simply considering the
light particles as bodies moving on orbits, he determined their deflection near the Sun. His result
was half of the actual value. Einstein used relativity theory, and after an unsuccessful attempt, he
correctly predicted the angle of light deflection, as it was confirmed by the British expedition led by
Arthur Eddington in 1919. They travelled to Brazil and Equatorial Guinea, and determined the
coordinates of stars with known positions near the dark disk of the eclipsed Sun. Later during the
1960s, radio astronomical measurements confirmed the calculations with a few times of 0.01%
error margin.

The method presented here differs from the traditional approach, we essentially search the
shape of a geodesic from four dimensional spacetime in a subspace. In our case, in the three

dimensional speacetime determined by the coordinate condition 9:%, the path of the light rays

are also geodesics, as we have already seen when we wrote down the general geodesics. This is the
reason for the success of the following procedure.

We examine the paths of light rays for a general case in the gravitational field. Except in the
case of the photon sphere, these will not be closed curves, they will either avoid the celestial body
on an arched trajectory, or cross the event horizon while falling. Since the metric is spherically
symmetric, we are not losing anything if we restrict ourselves to a coordinate surface. The
Schwarzschild arc length squared:

r dr’ .
ds’=|1—-=L|-c*dt’ —————r"-|d $*+sin’(9)-d
’ ( r)c e (4 9*+sin*(9)-d 7) 4.12.1)
r

The arc length squared is zero along light-like geodesics. The coordinate conditions in the
equatorial plane of the coordinate system:
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4.12 Bending of light
2 _ _
ds*=0 9—3 d3=0 (4.12.2)

Substitute into the arc length squared. By rearranging it, the radial coordinate and the original
vertical angular coordinate describes a two dimensional surface, where the coordinate time
measures the distance:

2
02(1 —&)'cz-a’tz—dé—rz«d(p2

r—r, (4.12.3)

This surface is a projection of the original spacetime, that however preserved the mutual
dependence of the coordinates. If we consider the previous relationship an arc length squared, we
can calculate the usual geometric quantities from the metric tensor to the connection:

= ; g’ (4.12.4)
r r—r
0 0 T
r—r, r
agr,: 2-r T ag”:2-(r—rg) s
or (r=r,) r=rg or e r
08pp 1’ r 0o%% 1 3(r—r,)
= 3— g _114_ g
P iy = (4.12.5)
e e r :_Z.r—3-rg
r r-(r—rg) P 2
2-r=3-r
1"<P :1"(13 — g
T r p (4.12.6)

The pictures of the light rays on this projection are geodesics, that can be parametrized by the
distance that is valid on the surface:

o’r . Or or .. 0@ 0@
(M ot " 0t Ot *? 0t Ot
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4.12 Bending of light

o*r ry or\V 2.r=3r, [0 2
- (27 + : 4127
o’ r(r—r,) (61‘) 2 ot ( )

(% o Or 0@ _
T 419. R o
2) 2 P ot Ot
o’ . 2:-r=3r, Or o
or 2-r-(r—r,) 0t Ot

(4.12.8)

Determine the coordinate changes, or in other words, the velocities:

ov 2:r=3r, or
ot r(r—r,) ot Vo

2-r—3-r
L.dv :_7g.

” 0 dar
%)

r(r—r,)
log(v,)=log(r—r,)—3-log(r)+C

r—r
v,=C—% (4.12.9)
r

The integration constant can be determined, if we rearrange the arc length squared of the surface,
and determine the angular velocity at an extremal case:

2 3 1
cz-dﬁ:( r )-dr2+ " _dp® |—

r—r, r—ry dr’
2 o\ dr? Poode
c=l— | —mt— 5 (4.12.10)
r—rq| dt r—re dt

The change of the radial coordinate is zero at the closest proximity of orbits that avoid the celestial
body on an arched trajectory:

d2

o

dt

dp ry—r

Ve rgg (4.12.11)

Substitute it into the angular velocity measured in this extremal position, and determine the
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4.12 Bending of light

integration constant:

(4.12.12)
Fo—T,
The angular velocity:

3
d(p_ _ 7y I"—I"g
—==y =c

: L (4.12.13)
0 g r

The radial velocity can also be determined, if we substitute the above formula into the arc length
squared:

2 .2 3 2
Cz(r).dLJrr do

2 T2
r—r.| dt r—re, dt

, (4.12.14)

0_rg r

The ratio of the two velocities determines the change of the angular coordinate with respect to the
distance. By integrating the relationship we can determine the total angular turn performed by the
light ray in the proximity of the celestial body, between the closest approach and infinity:

3
Iy
Vo_do_1 | ror,
- - 3
v, r 7 1— ry V—Vg
3
I’O—l”g 4
3
)
o0
1 o= 7, 4.12.15
(P—J.—z' 3 _ -dr ( . )
n - ro Tr—r,
I’O—I”g 14

We get a formula that is easier to handle, if we introduce a new parameter, that changes between
zero and one:
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4.12 Bending of light

p=10
r
(p:j‘ 1 . 1 .dp
0\/1—p2\/ ry 1—p° (4.12.16)
R
ro 1—p

This integral cannot be written in a closed form, but the integrand can be broken up to a sum of
terms, that can be individually integrated:

3

1 3 3\? 3
1 17, 1—p° 3 (7, 1—p 5 (ry, 1—p
o=| —|1+=—=- |2+ — | +...|d 4.12.17
{\/1_p2( 27, 1—p2 8(r0 1_p2) 16 (”o 1—p2 P )
The first term characterizes the light ray that moves in flat spacetime:
(1
(p1:f —z‘d,o:arcsin(1)—arcsin(0)=E (4.12.18)
0 \/l—p 2

The deviation from this is called the bending of light in the presence of gravitation. This
phenomenon could be observed during solar eclipses for the first time, when the coordinates of stars
with known positions was determined near the dark disk of the Sun. These measurements have an
error margin, that is greater than that of the second term in the formula:

1
1 17, 1-p
(P_ -—-—.—-dp
? {\/l—p 21y 1-p°
0
1 7 l-p g
= - — 1— (14 —-_&
P, 2r0( 7o V(1=p)-(1+p) s (4.12.19)

Since this angle is valid only from the perihelion to infinity, the total turn is two times this value:

r
Ap=2-—£ (4.12.20)

)

By evaluating the other terms, we get a more precise relationship for light bending in a gravitational
field, verified by radio astronomical measurements:

2
1—5'7T—1 . Q — 1—5Tl'+ﬂ
16 ro 16 12

We calculate the deflection of the light rays that graze the surface of the Sun. Since the error margin
of the observation does not exceed that of the first term, we consider only this. The standard
gravitational parameter of the Sun, and the gravitational radius:

3
Tg

Ty

A(p:2-k+
Ty

+... (4.12.21)
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4.12 Bending of light

wm’ _2yM _ ;
y-M =132712440018-10" =  — r,="—45—=2.9532500765-10"m
S C

The radius of the Sun:
70=6.955-10° m

The deflection of light rays near the Sun:

r
A(pZZ'—g:8.492'1076=1.752" (4.12.22)
Iy

Light rays coming from the same direction are focused by the Sun into an opposite area, thus it
behaves like a gravitational lens:

The paths of the parallel light rays approaching the Sun (that is represented with a vertical line) hold
together on the other side, however unlike in the case of optical lenses, they slightly diverge, not all
of them are focused into the same point. Despite this, the pictures of objects on the other side are
enlarged and brightened. This phenomenon can be utilized in practice by astronomers. The graph is
strongly distorted by the way, the parallel Sun-grazing light rays incoming from infinity meet again
at a great distance from the Sun, this is called the gravitational focal distance of the Sun:

f=rycot(p)=8.19-10"m (4.12.23)

4.13 Tides

Back in the year of 1616, Galilei considered it a superstition, that according to Johannes
Kepler, the tides on Earth are caused by the Moon's gravitational pull, however history verified the
latter scientist. Already in the Newtonian theory of gravitation, the Moon and the Sun are
responsible for the appearance of the tidal bulges, according to Kepler's suspicion. The theory of
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4.13 Tides

relativity can describe this phenomenon to an even greater accuracy, that is the deviation of
geodesics:

ox" ox'_

o°x"
+R’ =
oA 0OA

oA aBy'dxy'

(4.13.1)

Apply this in the Schwarzschild coordinate system. The question is, what kind of tides are caused
by the central mass in the surrounding extended objects that orbit it? At a given point on the circular
orbit, where according to our choice:

x"=(0 x, x5 0)

I

n
Ox _[o.4L o o d—(”):(c-ﬁ 0 0 w) 4.132)

oxn \“dar ¢ dT

Substitute into the general formula, and use the coordinate time as the parameter. Under these
conditions only four components of the curvature tensor play a role:

o'r o, ot ot ., op 0 _

(1) W-FR m'dl"'C'a'C'a‘i‘R (p(p,'dl’"—t'—t—o
Or _relr=ry) gy Te G0 dr =0 (4.13.3)
ot r 2-r o

We are in the equatorial plane, and we substitute the angular frequency also:

T r
$=— w=c:- £

2 2.7
azl" rg.(r_rg) 2 r 2 r

_ dr+—dr ot —4-=0
or’ rt R i 2.7

The coordinate acceleration along the orbital radius:

azr:rg~(4-r—5-rg)'

2
¢ -dr 4.13.4
ot 47" ( )
0’9 9 ot Ot 9 op O
OV R d9 Ll n DLy R 9. 8PP _
@ Py PR PR ot ot
2 . —
0'9 _1UrTr) 2y Te g (9)d 9 aim0 (4.13.5)

ot 2. r

We perform the same substitutions:
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4.13 Tides

r r
‘Cz'dg‘——g'd9'-cz- g3:
r 2-r

io rplr=r)
ot 2.7

The coordinate acceleration perpendicular to the orbital radius:

2 r
aatfzz.;-cz-ds (4.13.6)

The two acceleration components above distort a spherical planet — like Earth — as seen on the
graph on the left side, and it shows in what direction the points of the surface are accelerated. At
distances with the same magnitude like the Schwarzschild radius, the normally weaker component
becomes significant, the shape of the ellipse changes. The elongation of the falling body is called
spaghettification. At the right side the graph displays the acceleration vectors distorting a sphere
with a diameter of 5 meters, positioned 5000 meters away from a solar mass black hole, where
time-like circular orbits are still possible:

When will the tides become destructive to the celestial body? Pieces start to detach from the
surface, when the tidal acceleration exceeds the surface acceleration. When doing the comparison
we must keep in mind, that the two formulas do not apply to the same spacetime curvature; the tidal
acceleration is calculated in the spacetime of the central star, the surface acceleration is calculated
in the spacetime of the orbiting planet. The approximation method has two limitations: first, the
Einstein equation is non-linear, therefore gravitational acceleration of the two bodies is added with a
certain error. Second, we did not take into account, that the celestial bodies under investigation have
distorted each other, neither their shape, nor their gravitational field is spherically symmetric. Since
the tidal acceleration on the surface grows linearly with the size of the object (if the mass does not
change), this phenomenon creates an upper limit to the sizes of the celestial objects orbiting
gravitational sources:

’”g'(4"’_5"’g) 2 _821”_82177’_ b”g'(b’”_brg) 2

cCr= _ e -C
4. Y oar or 2,7
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re(4r=5r,) :_brg-(br—brg)
2.rt br4
r,(4r=5-r
e g)-,,r“—brg-err,,rz:o (4.13.7)

The solution of this equation of the fourth degree gives the upper limit for the size of the celestial
body, that not yet gets peeled by the tides. We rewrite it first:

2
P by _rg(4r=5r,)
Lt p =l T 4.13.8
br D br D 7 2.”4 ( )

The first step towards the solution of the equation of the fourth degree is to write down the resulting

equation of the third degree:

x+b- X+ xP+d-x+e=0

y’+c-y*+(b-d—4-e)y+(4ce—d*—b*e)d=0 (4.13.9)
Substituting:
y'—4-ey—d’=0
3 4~br§ g 3_
y= gy | =0 (4.13.10)

We have to solve this equation in the second step. The special form of the equation of the third
degree, and the solution formula (during substitution, let us be careful about the signatures):

V= py—qg=0

2 3 2 3
ym=3J—1+ /‘I_+L+i/_1_ q.p (4.13.11)
I I R TR B Y

Finally, we substitute the result into the following expressions, and get the solutions of the equation

of the fourth degree:

b2
R=y2 —cq
5 7Y

2
R=0 - D:\/}b —2-cx2:Vy’—4-e

4
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2 3

R0 o D:J&_Rz_z.ciw
4 4-R
b R _D
x1,2,3,4:_zizi? (4.13.12)
Substitute from the Earth's standard gravitational parameter the gravitational radius:
am 2-y-M 3
y M =3.986004418-10" — — r,=——=—=28.870056078-10 "m
S C

The semi-major axis of the Moon's orbit:
r=3.84399-10°m
From the Moon's standard gravitational parameter its gravitational radius:

o ¢=1.091020268509284 - 10*m

Among the solutions of the equation of the fourth degree, the first result can be physical, this is the
greatest possible size the Moon can have. With a greater radius than this, the Earth attracts the rocks
on the surface more than the Moon itself:

71 =7.04273-10"m J72=1.09248-10"* m

J3=—3.52137-100m—i-6.09918-10'm  ,r,=—3.52137-10" m+i-6.09918-10" m
(4.13.13)

The distance within which a celestial body will disintegrate due to the tides caused by the central

celestial body is called the Roche radius, and it is the solution of the following equation of the

fourth order:
rg(4r=5r,)

brg'(br_brg)

27"4 hr4

v (,r—,r 57,

g <br4 b g) r _2,},.g,r+ 2g:0 (41313)
b

Rewrite and write down the resulting equation of the third degree:

s 21, 5-r2g _brg'(br_brg)
_ T, - p=tet bt
r D, r+2‘D, 0 - b’”4 (4.13.14)
10-72 2.\
y— Drg~y+( D”g) =0 (4.13.15)
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Just like in the previous case, we write down the solution formulas, substitute the variable, among
them the radius of the Moon:

1.73814-10" m
Among the solutions of the equation of the fourth degree, the first result again can be physical, this
is the smallest possible distance the Moon can approach the Earth. With a smaller distance than this,

the Earth attracts the rocks on the surface more than the Moon itself:

71=9.48694-10" m r,=0.0110876 m

ry=—4.74347-10"m—i-8.21593-10" m ra=—4.74347-10" m+i-8.21593-10" m
(4.13.16)

4.14 Falling orbit

A test body moves along a geodesic also when it falls into the black hole directly, this is
characterized by the following coordinate conditions:

t=t(T) T="1(¢)
r=r(t) r=r(t)
3=const.=— d3=0
P =const. dp=0 (4.14.1)

The equations of movement of the trajectory:

ci+2-T", cti=0

(+—5—1i=0 (4.14.2)

=0 (4.14.3)
9+42-T° 47 9+T°, , p°=0
$=0 (4.14.4)
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4.14 Falling orbit

P+2-T° i p+2-T%, 3 P=0
»=0 (4.14.5)

Substitute the coordinate conditions into the arc length squared:

2
dszz(l—&)-cz-dtz— dr —r2-d92+sin2<9)-d(p2)
r r
1—-2
r

2
cz-dTZZ(l—&)cz-dtz—L
r

The relationship between the proper time and the coordinate time is velocity dependent:

2
v,

r
dv=1-=,———" .4 _dr
P cz-(l—r—g) V= (4.14.6)

r

We make the arc length squared along a time-like infalling geodesic equal to the arc length squared
of the co-moving coordinate system, then divide with the change in proper time, and write down the
equation with the tangent vectors:

2 2 2 2
e dtz—B' drzzc -d;’ _ 2
dTt dT adTt
L dr odr
dTt aTt
A'CZ.(ut)2_B.(ur)2:CZ (4147)

We have derived in the mathematical introduction, that if the partial derivative of the metric tensor
along a coordinate is zero, then the corresponding covariant tangent vector is a constant of
movement:

ag”“:o . 8u,:
ot ot

(4.14.8)

We calculate the time-like covariant tangent vector from the contravariant one with index lowering:
u=g u'=g,u=Au (4.14.9)

Rearrange the arc length squared and express the square of the time-like covariant tangent vector:
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4.14 Falling orbit
(u)V =4 (u' V=4 +B-(u'))
u)=A4-+(u") because: B=— (4.14.10)
At the beginning of the fall, the radial velocity is zero:

(u,)=A(ry)-c’ (4.14.11)

We make the two results equal, and express the radial velocity. We pick the negative root, because

the numeric value of the radial coordinate has to decrease, we are looking for the infalling solution.
ro 1s the radial coordinate of the starting point:

u'=—c\A(r,)—A(r)

dr | Te N7
dt ro F
T r

| r'
Jdr=—=q=2f —dr’
) c Vry o Vrg=r

The time dependence of the fall:

T:l.\/z.(w/r.(rorHﬁ.
c\r, 2

%+arcsin(12r—:))) (4.14.12)

The proper time passes from the left to the right on the graph, the vertical axis is the radius. The

horizontal dotted line is the event horizon. The trajectory of the infalling body apparently crosses it
as if it were not there:
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4.14 Falling orbit

The test body falling into the black hole reaches the centre in a finite proper time:
T ZE.\/E.E (4.14.13)

In order to form an idea of the magnitudes, let us replace the Sun with a black hole of the same
mass, and we jump into the depth from a distance that corresponds to the surface of the Sun. The
radius of the Sun:

r0=6.955-10"m
The time that passes until the impact, from the point of view of the falling astronauts:

Ty = 29mMin28.5 s (4.14.14)

Calculate the movement with respect to the coordinate time:

dr_dr dt_dr 1
d dt di dt g (4.14.15)

The contravariant time-oriented tangent vector changes during the movement, its covariant
counterpart however does not, therefore we substitute the latter:

dr_dr A _t it
dt dt u, = (4.14.16)
Substitute the time-oriented covariant tangent vector:
dr_dr 4 _
dt dT VA(ry) u=\A(r) (4.14.17)

The complete expression cannot be integrated in a closed form:

el /M.JZ.L./ T
c o re r=r, \ry—r
FoF, [ ' '
=Ly fole f [T g (4.14.18)
¢V ry sor'—ry \ry-r

This integral asymptotically approaches the event horizon, but it reaches it after an infinite time.
The situation inside the event horizon is similar, if we track backwards the geodesics with respect to
the coordinate time, we experience the same when approaching the Schwarzschild radius. The
distant observer cheering the afore mentioned brave astronauts will see, that his peers get slower as
they approach the black hole, and never reach it, or rather they do but in an infinite time.
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4.14 Falling orbit
The coordinate time passes from the left to the right on the graph, the vertical axis is the
radius. The horizontal dotted line is the event horizon. The trajectory of the infalling body breaks on

this graph:

7

t

The function describing the movement of the body asymptotically approaches the event horizon
from both sides, but reaches it only at infinity.

4.15 Isotropic coordinates

The spherically symmetric spacetime can be mapped with other kind of coordinate systems
as well. We look at the general form of the arc length squared again, and modify the arbitrary
functions:

ds’=A,(r)-c>dt’=B,(r)-(dri+r;-(d ¥ +sin’(9)-d ¢°)) (4.15.1)
Compare it with the arc length squared in the Schwarzschild coordinate system:
ds’=Ag(r)-&-dt*—Bg(r)-dri—re-(d 9 +sin’(9)-d @) (4.15.2)

The arc length squared is an invariant quantity, therefore the two are equal. This is also true, if we
just measure it along one of the coordinates, that has always the same direction in each cases.
Therefore the following equations can be written down with the arc length squares along the time-
like, radial, and horizontal coordinates:

B,-dr;=Bg dry

B ri=rj (4.15.3)
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Divide the two equations with each other, and square root:

dr dr

_1:\/B_S._S
vy rs
i 1

—dr
ry ry
rs 1=

S

Integrate and resolve the logarithm:

1Og(l"1):10g(1/ —:—g+1 —log(\/l—%—l
S N

+C
\/1—1%“
s
r,=C-
Jl_r_g_
s
rg
r,=C- r5—7+ re(rg—r,) (4.15.4)

The unknown multiplier can be determined from a geometric condition: infinitely distant from the
gravitational centre, or by turning off the gravity completely, the two coordinate systems should
coincide, in this case the extent of the event horizon is zero:

r1=C-(rS—%+ rS-(rS—O))

1

C=
. (4.15.5)

Express the radial coordinate of the Schwarzschild coordinate system, and determine with it the first
unknown function of the isotropic coordinate system's arc length squared:

2

r
re=r,; 1+4_—i[ (4.15.6)
2
4r—r,
AIZAS: _l’_g: — Vs == ‘l”] ff:
rs 4ritr, (4.15.7)
r,; 1+4‘i
1
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The other unknown function:

2
-
rl1+—=%
sl \ &) (4 (4.15.8)
[_ri_ r? a 4-r;

The gravitational radius appearing in the equations continues to be measured in the Schwarzschild
coordinate system, here it is a constant independently from the coordinate system, a quantity that
characterizes the mass. The arc length squared in the isotropic coordinate system:

e 4-r—r,
4-r+r,

2

.Cz.dtz_

4

47+
"7 e ) (dr 4+ 12 (d P +sin(9)-d @) (4.15.9)

4-r

The geometric quantities from the metric tensor to the curvature tensor:

2

4r—r,
0 0 0
4-r+r,
4r+r, |
0 o £ 0 0
r
8i=
! 4r+r,\ 5
0 0 o l-r 0
r
447\ I
0 0 0 |2 £] .r7sin”(9)
r
4-r+r, ’
0 0 0
4r—r,
4
0 B s 0 0
i 4-r+r,
g = A ' (4.15.10)
r
0 0 - — 0
4r+r,| »*
4-r 1
0 0 0 — .
4rtr,] rsin’(9)
agtt: 16"”g'(4"”_’”g) 8g,A,_rg-(4-r+rg)3
or (4-7+7,) or 644"
3
08ss r
or ( : 4-r rg) r
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4.15 Isotropic coordinates

3
0800 r r .2
L= 27| =+ | || - 9
or ’ 4-r Te 4.-r sin”(9)
0L0o (4-r+rg)4 )
=— -cos(3)-sin (&
Sao= T cos(9)sin(9)
og"'_ 167, (4r+r,) og” _ 1024-rr,
or ~ (arr,) I —
ag99_512‘r-(4~r—rg) 0g%% 512""(4'7’—7”g)
or (4'7’+Vg)5 or _(4-r+rg)5-sin2(9)
0g”?  512-r°-cos(9)
= 4.15.11
0% (4-r+r, ) sin’(9) ( )
8-r
Fttr:[‘trt:il6.r2ir2g
4
1_,”:2048-1” -rg-(4~:—rg) o= 2:r,
(4r+r,) re(4rtr,)
r(4r—r,) r(4r—r,) _,
I_'r :——g l—'r :_—g. 1 9.
99 4r+r, P 4r+r, sin” (9)
I’ =r%=I° _=I" :ﬂ I’ ,=—cos(9)-sin(9)
rg Sr rQ Qr V'(4’7"+I”g) op
r%,=I" =cot(9) (4.15.12)
or',_or',_  256rr,
or  or (16-r2—r§)2
oI, 8192:7 7 (81" —8r-r +r2) oI, 2-7r,(87+r,)
or (4-r+rg)8 or rz-(4-r+rg)2
r 2 2 r 2 2
ar 99:_ 16}" +8'r‘rg2_rg ar 99:_ 16V +8'V'rg2—rg.sin2(9)
or (4-r+rg) or (4"”+”g)

oI',s_oI%, _oI%, oI%,  16r'=8rr,—r;

or  or  or or r2-(4-r+rg)2
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4.15 Isotropic coordinates

or’ 2. (4r—r,)

6\‘;@ =— Gy -cos(9)-sin(9)
Rtm——Rtm:m—'rgz
r(4r+r,)
Rt”:_Rt“”:RrM:_Rre“”:_(4?;2,)2
Rtwtw__Rtwwt_ R’ch——Rerr:—Mi:;i)z sm2(9)

3 2
o :4096-r o (4r—r,)
ttr trt (4']"+}"g)8

3 2
_ 204811 (4r—r,)

9 9
R'\y=—R'4=R%,=—R"

191t o tpt— (4'}’+I" )8
g
8r
R’ ,=—R’,=R" =—R® —— % —
9 r9r e ror I"'<4'I"+7"g)2
16-r-r 16-r-r
R, =—R’ =———£ .5in’(9 R, =—R%, ,=—— 5= 4.15.14
P QP9I (4-r+rg)2 ( ) 99 Sp 9 (4‘r+rg)2 ( )

Substitute the connection coefficients of the isotropic coordinate system into the geodesic
equations:

ct+2 T, -cti=0

16-rg

g =0
T i (4.15.15)

+
FAT o AT i+ T g 8+ T o =0

;‘;+2048.”4.%'(4.”_”‘5’)-cz-i‘z— 2:r, ‘;}2_1”-(4'1’—7’&,).92_ 7"(4'7’_’”g)_sin2<9).(p2:0
arery )" e, e

g

(4.15.16)

42-T° 7 9+T°, , p°=0
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4.15 Isotropic coordinates

8-r—rg

& ;9 9)-si 9-'2:() 1.
e i9—cos(9)-sin(9)-@ (4.15.17)

G+
P+2-T% i p+2-T%, Fp=0

o T e o ot (9)-8-p=0 4.15.18
Pt gy, PrEcot9)Fe= (4.15.18)

Gravitational redshift in isotropic coordinates:

4r—r, ’
4- r+r 4. p—
- 2800_2v: 2 g _v= or rg,zv (4.15.19)
1800 4-r—r, dr-r,
4-r+r,

If the light source is closer to the source of the gravitational field than the observer, then the mutual
ratios of the radii and the frequencies are the same as in the Schwarzschild case:

= — V=,V (4.15.20)

To get the orbital frequency of the test body on a circular orbit, insert the exchange formula between
the coordinate systems into the result from the Schwarzschild coordinates:

3
w,zc-\/ P o,/ 20887 (4.15.21)
2-rg Ty

4.16 Gaussian polar coordinates

We try out further unknown functions in the general formula for the arc length squared:
ds’=Ag(r)-c*-dt’ —dry—Co(r)re(d 9 +sin’ (9)-d @) (4.16.1)
Compare it with the arc length squared from the Schwarzschild coordinate system:
ds’=As(r)-¢-dt’—Bg(r)-dre—re-(d  +sin’(9)-d ¢°) (4.16.2)
Arc length squared along the time-like, radial, and horizontal coordinates:

Ag=A;
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4.16 Gaussian polar coordinates
dr=Bg-drs
CorG=rs (4.16.3)
The second and third equations are related, we perform the integration:
r
r 2_[ VB -dr=——
G N S \/FG
= =T
\/ 1 re
I's

Exchange between the radial coordinates of the Gaussian polar and the Schwarzschild coordinate

systems:
r r / r
—Le | ——£4+1 -1 1—=2—1]||+ry1—-"2+K
rg > (og(y Py og( e T p
r =0 — r.=0+r -\/1—£+K — K=0
g G S 1”5

rcz%-(log(\/ —%-i—l —10g(1 1—%—1 T 7y 1_% (4.16.4)
N N N

Compare the Gaussian polar coordinates with the isotropic coordinates as well:
ds’=A,(r)c*-dt’—dri—C o (r)re(d 9°+sin* (9)-d ¢°)
ds’=A,(r)-c*dt’=B,(r)-(dri+r;-(d 9 +sin’(9)-d ¢°)) (4.16.6)

Arc length squared along the time-like, radial, and horizontal coordinates:

AG = AI

dre=B,-dr

Core=B,r (4.16.7)
Integrate the second relationship:

dré: B,-drz,
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4.16 Gaussian polar coordinates

4
(4, +
dr =V B,dr,= % -dr,
1

2

4-r;+r
”G:f 41,,,] £\ -dr,
r r
rG:7g~(log(r,)—8.i +r,+C
I
r,=0 —  re=0+r4C S C=0

Exchange between the radial coordinates of the Gaussian polar and the isotropic coordinate
systems:

r r
rG=—g-(log(r,)— =|+r, (4.16.8)

2 8'1"1

We get transcendent equations in both cases that lack an analytic solution, therefore we are satisfied
with the relationships we have found.

4.17 Rotating Schwarzschild coordinates

It is useful to discuss several problems in rotating coordinate systems. We transform from
the usual Schwarzschild coordinate system the following way:

p—op+w:-t (4.17.1)

This is how the arch length squared changes:

ds*=

2
A(r)—(ﬂ) -sin2(9))-c2'dt2—2-w'rz-sin2(9)-dt'd(p
C

(4.17.2)
—B(r)-dr*—r’(d ¢’ +sin’*(9)-d ¢*)

The domain of validity extends until it preserves the signature of the original metric. For example
the sign of one of the metric tensor component changes, when its value is zero:
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4.17 Rotating Schwarzschild coordinates

& roc?
N S (4.17.3)
w™sin“($)  w’-sin"(9)

The special form of the equation of the third degree and the solution formula:

x3—p-x—q=O

j s j q9_ |4, P (4.17.4)
=L L L4y -1\ 4 1 P 17.
S B R T R R

Since there is a negative number under the square root, the arithmetic rules of the complex numbers
apply when using the solution formula. The equation of the third degree always has a real number
solution. We set up a rotating coordinate system in the Solar System, with the same angular
frequency like the orbit of the Earth:

t,,=365.256363004 days S5 w =2t'—”: 1.99098659277- 10‘7%
k

The standard gravitational parameter of the Sun and the gravitational radius:

: 2y-M
y-M =1.32712440018-10° % — r, ==Y =2.9532500765-10° m
S C

The result:

r=1.5057509-10" m (4.17.5)

This is a circle with a radius of one lightyear. At greater distances than this the constant coordinate
points of the coordinate system move with a speed greater than the speed of light, therefore they are
not suitable to describe the time-like paths of moving bodies.

The condition for the validity of the solution is, that the value under the square root is
negative. This stops to be the case, when the angular frequency becomes so big, that the mentioned
expression become zero or positive:

w

2

q9 P

Ly E >0

4 27

B rg~c2 ’ B ¢’ ’

w’-sin’(9) w’-sin’(9)
+ >0
4 27
’i’ c2

4 27-w"sin“(9)
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4.17 Rotating Schwarzschild coordinates

2-c

wz2——
m~sin(9)‘rg (4.17.6)
The twice covariant metric tensor of the rotating Schwarzschild coordinate system:
r V4 2
——g—(—) sin’(9) 0 0 —w-r’sin’(9)
r c
0 _ 0 0
= l—k (4.17.7)
r
0 o - 0
—w-r-sin’(9) 0 0 —r-sin’(9)

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the
rows and columns where these components appear:

2
7 .
_ l—i—(ﬂ) sin’(9) —w-r-sin’(9)
g;= r c

—w-r’-sin’(9) —r’sin’(9)

The determinant of the partial matrix:

8=818pp 8o 80

1—&_(%) ’Sin2<9>)"’2'sz<9>—w2'r“-sin“<9> (4.17.8)

After this the components of the twice contravariant metric tensor:

tt:g(p(p: 1
g r g .2 2 2 .2
|——=2—(—] -sin"(9)|—w -7 -sin"(9)
r c
gt(p: wt:gwt:ggt(p:_ - w
(1—1&—(—) ~sin2(9))—w2'r2-sin2(9)
r c

l—k—(w)z-sinz(f})

r C

4 g 2
_( _ﬁ_(ﬂ) .Sin2(9))-r2-sin2(9)—w2-r4-sin4(9)
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4.17 Rotating Schwarzschild coordinates

& = —— =77 (4.17.9)

The derivatives of the metric tensor and the connection:

0gy _ 2:w’rsin’(9) r, 08y __ 2-w’-r*-cos(9)sin(9)
or B cz rz 09 cz
agtcp ag(pt s 2 agt(p ag(pt 2 :
_ = T =) P :—:_2. . . 9- . 9-
5, 5, 2-w-r-sin” (9) 58 — 39 w-r"-cos(9)-sin(9)
agrr: rg ag99:_2‘r
6}" (r—rg)z 61"
0 0
P800 9. sin(9) 9800 __5.,2cos(9)sin(9)  (4.17.10)
or 09
o= = 2-(c2—1)~w2-r3«sin2(9)+cz-rg
mo 2~(02—1)~w2~r4-sin2(9)+2-cz~r-(r—rg)
2 2 3 .
c—1)w-r-cos(3)sin(9
P =) (9)sin(9)

(c*—1 )-wz-r3-sin2(9)+cz-(r—rg)

(ctr,—2-w’r’sin®(9))(r—r,)

r,= P Iﬂrt(pZT"(p,:—w-(r—rg)-sin2(9)
LA— I’g r r -2
r r},——m r 99:—(I’—I”g) r (p(p:—(r—rg)sm (9)
9 (U2
I",=—=cos(9)-sin(9) r’,=r’,=—w-cos(9)sin(9)
C
1 .
F91~9:F99r:1—'(pr(p:r(p(pr:; st(p:_COS(Q)'Sln(g)
o —re = cz-w-(2-r—3-rg)

T 2-(02—1)-wz-r4-sin2(9)+2-cz-r-(r—rg)
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4.17 Rotating Schwarzschild coordinates

2
cw-(r—r,)
re.=r° = £ -cot(9
[9 o (cz—1)-wz-r3-sin2(9)+cz-(r—rg) (%)

r%,=I®=cot(9) (4.17.11)

4.18 Kruskal-Szekeres coordinates

When we investigated the infalling path, it turned out that from the test body's point of view,
the event horizon poses no obstacle. Our goal is to map the spacetime of the Schwarzschild black
hole with such a coordinate system, that can be interpreted on the event horizon, and certainly
covers the entire spacetime. For this we determine the trajectories of the infalling and outward
heading light rays. We multiply the general spherically symmetric arc length squared on the falling
light-like geodesics with a monotonic changing parameter:

A(r)-c>dt’=B(r)-dr’=0 |- 12
d A
ar’ dr’
A(r)-cz-ﬁ—B(r)- dgzzo (4.18.1)

Substitute the time-oriented tangent vector, and that the second function is the reciprocal of the first:

u :A‘Cz.ﬂ B:i
A

! dA

ut
u_ dr (4.18.2)
C

The left side of the equation is constant, therefore the change of the velocity relates linearly to the
monotonic changing parameter, therefore it is also a monotonic changing parameter. Thus we can
use the radius as a parameter as well:

u

dA+—L=dr dA==xdr
c
ut dl’
| 4.18.3
c dA ( )

Substitute into the tangent vector and integrate:
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4.18 Kruskal-Szekeres coordinates

—=A-c——==+1

c ¢ dr

c-dt :il:i 1
dr 1_&

Because of the logarithm we have to differentiate between two cases, outside and inside the
gravitational radius. The positive and negative sign makes a distinction between the outward and

inward going light rays:
-1

c-t:irirg-log( +C r>r,

r
I"g
ct=xrxr log(r,—r)+K r<r, (4.18.4)

Write down the two light paths separately outside the gravitational radius, and choose
dimensionless integration constants:

+ru (4.18.5)

r

_ r
c-t—r+rg-log(——1
4

c-t:—r—rg-log(L—l +r,v (4.18.6)

e

The u and v parameters, together with the angular coordinates describing the spherical coordinate
surface, are suitable to represent the Schwarzschild solution, and eliminate the coordinate
singularity. These are the Eddington-Finkelstein coordinates (1 v 9 ):

u—i- ct—r—r,lo L—l 4.18.7

_},g g g Ty ( -10. )
1 r

y=—"- c-t+r+rg-log(——1) (4.18.8)
Vg l"g

These coordinates are not mutually affine parameters, this also means for example, that if we move
along the values of u from -00 and +oo, we would not be able to explore the entire extent of the v

geodesic:
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4.18 Kruskal-Szekeres coordinates

u=v—2- = +log L—l)) (4.18.9)
Vg I"g
v=—u+2:{ L +log L—l)) (4.18.10)
rg }"g

Therefore these geodesics are not complete, they leave the u and v coordinate plane. The
Eddington-Finkelstein coordinates cover the same manifold as the Schwarzschild coordinates.
However this is apparently not the entire spacetime, since we have found geodesics that leave the
area we have mapped so far. In order to obtain the entire map, we need coordinates describing light-
like geodesics, that are mutually affine parameters. Perform the following modification:

Te e

U=e *=e 2-(L—1)-eZ V:e2:e2-(i—1)-eZ (4.18.11)

By substitution we obtain the dependence from the Schwarzschild coordinates, these are the
Kruskal-Szekeres coordinates (U V 9§ @):

r—c-t

U:\/L—l-ez'r” (4.18.12)
l"g

r+c-t
V=g =1’ (4.18.13)
rg

Since they are monotonic increasing functions of the radial coordinate, that turned out to be an
affine parameter earlier, these coordinates are mutually affine parameters from the point of view of
the light-like geodesics they represent. Combinations of the two coordinates:

I et
Uv=|L=1)e" Vo_on (4.18.14)
r, U

We express from the product the Schwarzschild radial coordinate. Rearrange the exponential

equation to a general form:

r

T I r 1
= 4.18.15
© TUvy, U ( )

The general form and the solution formula, where W(x) is the Lambert function:

. p-ad
W(_a log (p) "
C

pt=c-x+d

x=—

|
o |

a-log(p)
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4.18 Kruskal-Szekeres coordinates

Substitute into the solution formula:

L:W(U-V
e

urv
e

+1 rzrg-W(

+r (4.18.16)

r, g
If =0, then U-V=—1, here is the true singularity of the surface, that is independent of the
choice of coordinate system. The U-V'>—1 however is not only satisfied when both of them are
sufficiently large positive numbers, but also when they are both negative numbers of the same
magnitude. We have discovered a whole new portion of the spacetime of the Schwarzschild
singularity, that was hidden from us because of the unfortunate choice of coordinate system:

The hyperbolic surfaces connect points with the same distance from the centre, the linear surfaces
connect points with the same time coordinate. The coordinate axes themselves satisfy these
conditions, they connect points with -co and Schwarzschild radius distances, and with +co and -oo
time coordinates. According to this, the black hole has two “entrances”, in the lower left and the
upper right quarters, separated from them by event horizons. The interior domains are represented
in the upper left and lower right quarters. Negative » coordinates also can be defined (let us not
forget that the meaning of r is not distance but coordinate), and its hyperboles fill the interior
domain.

The coordinates that spanned the wormhole surface are also present here, the time
coordinate is defined both in the first and third coordinate quarters, and the roles of the angular
coordinates did not change. The curvature of the surface, thus its shape is a coordinate independent
quantity, now we can depict the whole geometric shape. The parameters of the coordinate surface:

T
t=const. 9=—
2

dt=0 d $=0 (4.18.17)
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4.18 Kruskal-Szekeres coordinates

The full wormhole surface in polar and rectangular coordinates:

O e S

LT 77 77
A Y B S
[ 7 77
E.."-fi"

The real significance of the wormhole is even more apparent on these graphs, that is seemingly
connecting two asymptotically flat universes. However every world line that starts on one side and
continues on the other, always has a space-like section at the neck of the funnel, therefore this
wormbhole is not traversable for massive objects slower than the speed of light.

We determine the arc length squared inthe U-V>—1 domain. Since U and V are light-like
geodesics, therefore gy = 0 and gy = 0. Their product is however not zero, therefore we can expect
that gy would not be either:

ds’=2-g,-dU-dV—r*-(d $*+sin*(9)-d ¢°) (4.18.18)

The unknown component of the metric tensor can be calculated with the help of the Schwarzschild
metric tensor, we apply the transformation formula:

_ouU oV oU oV
g,.t

gUV‘E'ﬁ'S 1t E.G—F'Sgrr (4.18.19)

Substitute:
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4.18 Kruskal-Szekeres coordinates

r—ct —  r+ct
r 27, r 2-r,
C __l.e g C: __1 e g

S 7 f1=le
Eur= 2 2-r r
g g
r—c-t r+c-t
2-r, 2-
re-' re 1

-
(P r (=4 r it 672y ,— 4+ (P —rl))e”

4-1/;-(1”—rg)2

="

2-rz, -
goy=——rtwe " (4.18.20)

The arc length squared of the Kruskal-Szekeres coordinate system:

47, -+
ds’=—""2.¢ ".qU-aV —*(d 9 +sin’(9)-d @) (4.18.21)
r

Substitute the transformation formula between the  Schwarzschild and  Kruskal-Szekeres
coordinates into the arc length squared, that can be used already to calculate the usual geometric
quantities:

4.7 —w(YY) . :
ds?=— e ( ) -dU~dV—(rg~W(U v +r,|(d 9 +sin’*(9)d ¢’
e
W( +1
e
(4.18.23)
L2 w u-r 1 U-V
Cr=8&mw= ﬁg_ (e) ( +1 U-v .
u-v uv_ v _ e W( e )T
w +1 g =8 = €
e 2-r
) i 1
uv h 2
gse—_(rg W( o Trg (rg-W(U v +r,
e
1
2 P p__
B Uuv iy g = 2
oo (rg W( . +7,| -sin”(9) (rg-W(UV tr sin?(9)
e
(4.18.24)
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4.18 Kruskal-Szekeres coordinates

2-r?o,-V-(W(U'V +2
6gUV:agVU: €
6U aU 2.WU'V+1 .
e( (6) )-(W(UV +1
e
6g99:_ 2F2gV ag(p(p_ 27"§V -s1n2(9)
ouU W(ﬂ)+2 oU W(U'V +2
e e e e
2-r§-U~(W(U'V +2
agUV:agVU: €
oV oV Hw(Ur) 2
e( = )-(W(UV 1
e
0gss__ 21U 080 273U o)
oV W(ﬂ)+2 oV W( U'V)+2
e ' ° e ' °
) U-v ’
ég;‘pz—(rg W( . +7,| -cos(9)-sin(9)
y W(U'V +2
U _ e
I yy=— W(U‘V)H. U 2
e ' ¢ (W( +1
e
v __ U u-v v __ V. u-v
rY,= 2(W( )+ r',,= 2(W( e
U U uv .2 v _ v U .2
re,, ?(W( . +1 |-sin“(9) r,,= 2-(W( . +1|-sin”(9)
W(U'V 42
Voo e
W ury
w 1 )
T (e
e
V
I¥ye=I%,=I"% =I" = (U_V -
e
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4.18 Kruskal-Szekeres coordinates

9 _rY _ _ _ U
F VS_F 9V_[‘(pV<p_F(p(pV_ W(U'V 1 2
e\ -(W(U’V +1
e
r’,,=—cos(9)-sin(9) I'%,=T% 4=cot(9) (4.18.26)

4.19 Kruskal-Szekeres spacetime

We can introduce coordinates, where one of them is time-like and the other three are space-
like, similar to the Schwarzschild coordinates, however they cover the entire spacetime of the
singularity. This is the Kruskal-Szekeres spacetime (c-7 R 9 ). The transformation
formulas:

cT=r, (V-U) R=r (V+U)
U=—L(R—cT) V=—l_(R+cT) (4.19.1)
2-r, 2-r, T

Some useful combinations of the coordinates:

r U_R—cT

R=cT*=4r U V=4r,(r-r,)e" V R+cT

(4.19.2)

We express the Schwarzschild radial coordinate from the first. Bring the exponential equation to the
general form:

_r 4_7,.2 7 4.;/'2
, g T _ g 4.19.3
RZ—CZ'TZ rg RZ—CZ‘Tz ( )

The general form and the solution formula, where W(x) is the Lambert function:

W(_a’log(p).pb_tlf)

ptr=c-x+d c d
XxX=— —
a-log(p) c
Substitute it into the solution formula:
2 2 2 2 2 2
LAV S iy r=r | B (4.19.4)
Ty 4-er, 4-er,
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4.19 Kruskal-Szekeres spacetime

It is the same graph, but according to the coordinates of the Kruskal-Szekeres spacetime:

ds’="% ¢ " (2dT —dRY) 1 (d $*+sin’(9)-d ¢?) (4.19.5)

Substitute the transformation formula between the Schwarzschild and Kruskal-Szekeres spacetime
into the arc length squared:

BT
_W( dery )_1 RI_AT? :
ds*=—% (P dT?—dR) | r W | =S\ +r | (d 9*+sin’(9)-d @)
2 2. g 4oor’ g
w R4—C '2T +1 g
.e-r
g
(4.19.6)
R-T 2 2.m2
_W( 4~e~r§, )_1 w R —c-T +1
Err=—8grr R2 > T2 gTT:_gRR_ 4.e-r
w —< .z +1 _W(R:CLZITTZ)_I
4-er, e Ty
1
R*—c*-T? ’ g”_— 2 2. 2
gos=—(7 W 4.0’ T ro W R —c '2T +r,
g 4-e;’/’g
1
) PP__
_ R~ T? .2 &= 2 22 2
Eoo (rg d 4-¢-1° 7| sin(9) rgoWw R—c 2T +r, -sin’ (9)
g 4-e'rg
(4.19.7)
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5. Spacetime of the rotating black hole

5. Spacetime of the rotating black hole

Celestial bodies influence spacetime not only with their mass, but also with their rotation.
The structure of the surrounding spacetime around a rotating black hole and a rotating massive body
does not coincide like in the spherically symmetric case. However those simpler phenomena that
appear in the spacetime of a black hole also appear around a rotating body, although their effect
depends slightly differently on the mass and rotation of the gravitational source.

We are going to encounter new phenomena, that are alien to the Newtonian theory of
gravitation. The spacetime marks an axis in space, that breaks the symmetry between the two
orbiting directions around the axis, and it also influences rotations pointing in the direction of the
axis.

5.1 Axially symmetric spacetime

The spacetime around uniformly rotating bodies is called stationary. The metric does not
change, therefore it does not depend on time, and when rotating it returns into itself, therefore
neither on the longitudinal angular coordinates. The arc length squared of the axially symmetric
metric in the general case, where the unknown functions depend only on x and y, that are arbitrary
coordinates (¢t x y ):

ds’=e”"-c*dt’ =" (dp—w-c-dt)—e " -dx’—e""-dy’ (5.1.1)

We multiplied the coordinates with four unknown functions and used the angular frequency. The
metric tensor:

e’V —we?? 0 0 w-e?
0 -’ 0 0
= 5.1.2
Ene 0 0 - 0 (>1.2)
w-e* 0 0 -

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the
rows and columns where these components appear:

2ev 2 2wy 2y
g = e —we w-e (5.1.3)
= . 5. .
ij w-e>" e

The determinant of the partial matrix:
8=800 Zoro— gt(p.g(pt:(ez‘v_wz‘ez.w)_(_ez-zp)_(w.eztu)‘(w‘ez.u/):_ez.(v—w) (5.1.4)

Invert the partial matrix and extend with it the twice contravariant metric tensor:
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5.1 Axially symmetric spacetime

e 0 0 w-e "
. 0 —e "0 0
= 5.1.5
g 0 0 _6—2-r] 0 ( )
w-e > 0 0 —e Ve ™

Keep the angular frequency on a constant value for now, in this case for example we restrict
ourselves to a single direction of revolution on an equatorial circular orbit. After we calculated the
geometric quantities, we obtain the components of the simplified Ricci tensor:

P_an ou oy Ov ou oOn Oy Ov

"0y oy o0y oy O=%x ax ox ox
2 2
R=wov 0¥ p 0w\ 2 2w 0W 5 O W
t w-e 6_)/’ ayz w e ax Q 6 2
2 2
2-(v—p) ov 0Ov 2:(v—n) ov Ov
) (62 0x Q) ( "oy

R (a_Pa)(a jau 2 (on} Sy (suf 7y (ov]

w 0y oy’ 0x ox ox> \o0x ox> \ox ox> \ox
( on\on_&n_(onY
— 4 2w
fomte “'((Qm)a‘ﬁ‘(a))
T Qﬂ_ip)éﬂl_éiﬂ_(élﬂz_fy#ﬁ_(aw){_52V_(Q1)2
oy oy oy \oy] oy \oy) oy* \oy
2 2
p g (2w, ov)on (ou ov\on_ow ow_ Fw _ovov_ o
Yo" \oy oy)ox \ox 0Ox) oy Ox 0y 0x0y 0Ox 0y Ox0y

QP

R _62'(111—71).(6_(1}.P_ az(lj

(w—p) [OW o’y
— + 2(w-u) | OWY ~H O Y
oy oy’ ¢ (5)6 Q 8x2) (5.1.6)

We set the general Ricci tensor and the Einstein tensor to zero, and we obtain the system of
equations for the rotationally symmetric stationary vacuum solutions:

2 2
w0V 0V B OV 0OV §
| ==+ = (p+v—p+n)|+e " | =+

¢ (8x2 0x ax("’ Vo) [t (8)}2 0y Oy

2 2
L v [ 2w 0w) om0
e e e R |
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Oy oy 0o Oy Oy 0
+ +v—p+ + +v+
(ax 5y aa WtV HEn)|te (ay aya(tl/vun))
Fre =0 1 dw)’ ow
2:(p=v) | -2 -2
—_ . . o —— + of ——
‘ (e @X) ‘ (ay))
a 3-y—v—u+n aw a 3. —v—pu+n aw _
— L = — =0
Ry=0 8x( ox| Oy ¢ 6y)
ol 0 ou_ o on, 0w 0w _ 9v Ov_
R.=0 8x-8y(w V) ax("” V)ay ay("” v)fix Ox 0y 6x 8y
Y lez y—v) 0w dw
2 ox ay
| L)t L (L v+ 22|
oy’ oy 0 Oy
ov ¢ oYy on
— . + - . + i S B
G = 0: ox ax("’ ) Ox Gx)
le (p=v) | -2 aw aa)
4 ox ay
| L (v )+ (L () 22
ax 0x Ox X
om0V 9 oY ou\_
—0- e 2 [EX. O (4 )+ L EHE ) =
G, = 0: S Py ay("’ ) 3y ay) (5.1.7)

Introduce a new notation, that can be used to rewrite the equations into a symmetric form, and we
rewrite the equations originating from the # and pp components of the Ricci tensor:

B=v+y

0 eB—u+n.6v +i poun OV |_1 eV e H 0w 2+ won [ QW 2
ox ox)] Oy oyl 2 0x oy

6 ﬁ ptn 6‘!’ +- 9 0 B u+n, 6(11 l 3-p—v —u+n, ow ’ u—n ow :
ox ox| Oy oy | 2 0x oy

The sums and differences of these and the Einstein tensor components:
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5.1 Axially symmetric spacetime

B B
Rtt+ R _Gxx+G y_i(e_w—n'a—e)‘l-i(eu_n'a—e):o

ox ox| Oy oy
2 2
th_R(p(p:_e3wv‘(eu+n‘(g—(;) _*_eun.(g_(;)) )
dw) dw)’
Gx_ny:_ez(w—v),(e—u+n,(a_(;’) _eu—n.(ﬁ) ) (5.1.9)

We can make a coordinate condition because of the gauge freedom:
= A(x, y) (5.1.10)
Rewrite the arc length squared by substituting new functions:

A:eZ-(fl*IU B:v+qj X:evflp

ds’=e (X - df — (d(p—w-c-dt) ) (dx +A-dy’) (5.1.11)

Insert them into the equations originating from the Ricci tensor:

0

+
oy

ox 0x

0 ( 3p—vpin O(X —w?)
9 |, O\X —w )
oy

2 2
63-wvu+n_M):0 (5.1.12)

Thus @ and X’—w’ satisfy the same equation. With this new solutions can be created from the
axially-symmetric stationary solutions. For example the conjugate metric — that will become
important later for the derivation of the Kerr solution — with the following transformation:

t—i-@ Pp——i-t

The arc length squared changes with the substitution:

22 1 a2 1 > 2-w X’ —w’ 2
X-c™-dt X(d(p w-c-dt) — Y'C'dt_i_x cdtd(p— X d
(5.1.13)
That can also be interpreted as the result of the following transformation:
X cz-dtz—%(d o—@-c-di)?
~ w 5 X
w Xz_wz X_Xz_wz (5114)

With the choice of a proper gauge, we can rewrite the arc length squared:
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5.1 Axially symmetric spacetime

p=n A=1
ds*=c"- X—cz-dtz—%-(d(p—w-c-dt)z _ M (d ) (5.1.15)
0% ef

Because of this: (5.1.16)

8x-8y:

We perform a coordinate transformation, where we use the exponential expression as a coordinate:

e’=p (x,y)=(p,z2)
Op_0z dp_ 0z
=5 b2t (5.1.17)

Substitute it into the arc length squared, where now the unknown functions depend on p and z, this
is the Papapetrou metric (¢t p z @):

ds*=p- X-cz-dtz—%-(dcp—w-c-dt)z — M (d pPrdd?) (5.1.18)

5.2 Ernst equation

It is possible to make the metric more clear without losing generality, and the equations can
be reduced to standard form. We assume that there exist a light-like surface in the metric, this is the
first crucial distinction between the flat spacetime and the rotating black hole. We introduce
spherical polar coordinates (¢ » 9 ). The equation of the event horizon:

N(x,y)=N(r,9)=0

The condition for being light-like is that the four-distance is zero on it:

gt IOV (5.2.1)
xo( xB . .

In our choice of metric:

2 2
2-(n—u) ON ON
[NV [ON) _y 522
¢ (6r) (as) (5.2.2)

A choice of gauge, and then using it for the equation of the surface:

M= A(r)=0 (5.2.3)
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5.2 Ernst equation

On the surface, we can assume the general form of our exponential expression to be the following:
e =VA-f(r,9)=VA - £(9)=0 (5.2.4)

Insert all this into the sum of the # and p¢ components of the Ricci tensor:

2 2
1 s | —2u (0w 2 [OW
2. N Ay YT =0
2 (e (ax (ay) )
0 @.NZ LLaf 525
6r( or |71 o¢? (52:5)
: . A .
The solutions of the equation: 5,7 =2 f=sin(9)
r
Solution for 4: A:rz—rg-r+a2 (5.2.6)

Where a and r, are constants of integration, and our choice of symbols is not accidental of course.
The following expressions are transformation invariant, here p and ¢ are real constants, we will use
these relationships later:

r
——za:?g—a P g =1 (5.2.7)

Return to the Papapetrou metric, write down the solutions of the metric functions, and from them
the transformations between the coordinates:

" =VA p=e’=+Asin(9)
— rg
z=\r— -cos(9) (5.2.8)

Introduce new coordinates, substitute them into the components of the Ricci tensor, and their
combinations (¢t » o @):

o=cos(9) s=1-0’=sin’(9)
_r =0 (a0, o (s olw=v))_ [, (o), 5 0w)
Ry R‘p‘p_ar(A or | o0 ° oo ) ¢ 4 or o oo
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5.2 Ernst equation

(p—v) OW
5 2(p—v), =0
e 60) (5.2.9)

-y,

dw\ . [ow)
A.(_w +5 _w)
R_p —0[AOX| o (s 0X)__\0r 6o
©OUReTor\X 0r) d0\X 00 X’
., _0[A dw 0 [6 dwl_
R =R =Y (= "—"|+Y%|=—|=
o= Ry ar(xz ) P 0 (5.2.10)
Rearrange the equations:
2 2 2
0 0X 0 0X 0X ow 0X ow
X{=AZ= |+ 0 == =A== | +|==] |[+o{(==]| +|=—
(8r( or] oo 60)) (ar or 80) (80))
0 ow 0 0w 0X Oow 0X 0w
XA — |+ —|=2A———4+5§ ——
(8r( or| oo 80)) ( or oOr oo 80) (5.2.11)

If we perform these substitutions, we obtain two symmetric equations:

X=X+w Y=X-w

1 (o[ 00X\, o [<0x\|_.[ox) .  [ox)

y XY ar(A or | o0 80))_A(8r o 80)

1 (o (r0Y), o (s or\|_,[or\, (o)

5 (X+Y) ar(A 5 )+aa(5 ag))_A(ar) +6(60) (5.2.12)

The following equations will help to determine x and # at the (5.3.13) relationship:

e

o o(utn) "2 alu+n) 2

R =R =———. + .
Xy »x o) ar A ao_ (X+Y)2

0X 0Y 02X 0Y
or 0o 0o Or

o e\ olptn) L d(ptn)
G, G),y—2(r 2)781" +20'780 =
2.1
(V—Q +A 5 (5:2.13)
4 (yoxar_coxor| \"2)"7 oivs
(X+Y) or oOr oo 00 A 0

We introduce new coordinates again, and use the transformation rules we have introduced earlier
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5.2 Ernst equation

~

(Tg) _aZ).(Kz_l) (5.2.14)

Write down all four previous equations with them:

1 (o (i 0X )\, o (i o @ X e f2X) o (20X )
2(X+Y) 6‘K((K D oK +80 (1 0)80))_(K 1)(6K Hl )(80)
1 R PPESRCD & VI PR N:D 4 | NPRERIPEN 1oD 4 WP fob
2(X+Y) 8K((K 1)8K +80 (1 0)80))_( 1)( K +1 U)(ao)
(5.2.15)
o olwtnl, x dlwtn)__ 2 [(3X oY X oY
1—g® Ok K —1 Oo (X+Y) \0k 00 0o Ok
2'K'M+2'U'M:
oK oo
(5.2.16)

4 2 0X oY 2, 0X 0Y 3 1
. —1)==—(1—- —_ |- +
(X+Y) (k"=1) or Oor (1-0") oo 80)

K'—=1 1-0’

The following transformations are also solutions of the equations describing X and ¥, where c is an
arbitrary constant, this will also become useful later:

X Y
X =11 % = (5.2.17)

We express new functions from the old ones and substitute them into the symmetric equations:

_1+F _1+G
Y=1"F =16
_ 1-F-G . F—G
o R-6) CTU=F)1(1-G) (52.18)
(1-F-G) (%((Kz—l)'aa—i +6% (1—02)8—5))2—26- (Kz—l)-(a—j;7 +(1—02)‘(2—§)
o, > . 0G\ & 5 0G\|_ > oG\ N ey
(1-F G)'(ﬂ((" —)o oo (=) —0))_—2% (x _1)'(7 +(1-0 ).(%)
(5.2.19)
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5.2 Ernst equation

The solutions of the equations, where p and ¢ are real constants:
F=—p«k—q-o G=—pk+qo p—q=1 (5.2.20)

The angular frequency can be derived from a coordinate potential in the following way:

. _0lA dw o6 dwl_
R =R =4Y|=——|+%|—==—|=0
o et 6r(x2 6}") 80’(){2 oo

00_ 5 ow 00_4 dw

ok ¥ 00 o0 x* Or (52.21)
The potential is determined by the following equation:

alx>od| o (X 00|

| ==+ |=0 2.

6K(5 ok | o0oc\A oo (5.2.22)

The other equation can also be written down with a potential:

_ 0 [, 000g(x)), o (5 0llog(x)\_x*(ae) x*[oo)
R”—RW—aK(A = )+60(5 Py )_A (80) +5 (ax) (5.2.23)

We introduce yet another potential, with it we can write down equations with the same form like
(5.2.11), here ¥ corresponds to y, @ to w, and « to r:

_JAS
¥= X

(o (0¥, o [0¥\\_.[(o¥Y.(02\)| <[(o¥) . (o2)
II/(GK(A 8K)+60'(6 60’))_A (6K - oK o oo - oo

[0 (109, o[, 00\\_,[,0% 00 0¥ 0

III(@K(A 0K +80 80)) 2(A 0K 6K+6 oo 60) (5.2.24)

If we consider the potentials to be the components of a single complex quantity, we can write down
an equation like (5.2.15):

Z=¥Y+i-d
o (,0z\, o [0z oz\' . [oz)
RZ)|— A= |+5=|0=—]||=A| | +to:| == 2.
Z) 6K( ok) o0 60) (6‘K 60) (5.2.25)

We can write down a transformation relationship with the same form like previous one here too:
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5.2 Ernst equation

VA
=
Z=— (5.2.26)

Since the equation has the same form, we can use a function substitution of the same form, thus we
obtain the Ernst equation:

1+E
Z=——
1-E
o 0E\| [ (< 0E oE\ , - [0EY
1-E-E°)| A =—]||+|==6-—]||=—2-E"|A| =] +6- 5.2.27
( ) 6K( oK 80( 80) (aK 60) ( )
Conjugate potentials, using the conjugate metric functions:
~ w s X
w:><2—u)2 X:)<2—a)2
ITI:\/7:QV+W X _w2: 2V—w2.62"p
X X
00 _o5 ow_¥* od 09__Adb_ ¥ ow
Kk X*0oc A do oo x> Ok 0 Ok
~ & .x_ 1+E
=¥Y+id=——= 5.2.28
i —F ( )
Write down the conjugate Ernst equation, and notice two more relationships between the conjugate
potentials:
o (1 0E\\ [ o[ 0F [ (OEY , . [2EY
1-E-E* A——=||+ 5 =—2-E"|A| =] +5: (==
( ) 6K( oK 60( 60) ( K 60)
. . 1-E-E = ~ E-E"
=R(Z)=——— S=3(Z)=—i——= 5.2.29

5.3 The derivation of the Kerr solution

If we investigate every possible symmetry in the axially-symmetric vacuum spacetime, we
will arrive at a single analytic expression about the metric, the first time found by Roy Kerr in 1963.

The conjugate Ernst equation has a similar form to (5.2.19), therefore the following match is
possible, and we directly obtain the solution:

F=E G=L*
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5.3 The derivation of the Kerr solution

E=—p«k—iqo pr+qgi=1

Express the complex potential:

Z=¥+ib=— 1P KO
l+p-k+i-qg-o
g P =1)-g*(1-0") do_ 2q0
(pk+1)+q"0° (p-k+1)+q" 0’

Return to the » coordinate, substitute p and ¢, and also introduce p (¢ » o @):

2
2-a
r =7
PZA (_g) —a’ 1= r
r, 2 g
p’=r*+a*o’=r*+a*cos*(9)
Write down the two potentials with them:
-~ A—a* . ar. o
=220 ="
p 1%

Determining unknown conjugate metric functions from the potentials:

00 _ 2-arryo_ ¥’ on_(A-a>5) 0

or ot A doc  pha do
ob_ar, , o 5 5 ¥V od_ (A—a>8) 0
9P _ 0% (2 ghg?)=— 2. L0187 :

oo p 6 Or phs or
o ar,(r’—a*c’)s o _ 2arr,oA
or (A—a*-5) o0 (A-d"5)

Conjugate angular frequency, and from it the angular frequency:

- w _arrgo
w= 2 27 2
X'—w” A—-a™o
. , A—a*s
V=" (X —w' )=’ —w" e’ "= i
p
arvr, o arvr, o ,
Pt S LI
A—a™-6 p
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5.3 The derivation of the Kerr solution

Combine the two upper equations and substitute the product of the two deltas:
e?P=A-¢

A—a’§ 54 o .
7612'62 V=" —we’ w:%-(A-p4—a2-rz-r§-6) (5.3.8)
p p

Write down a few algebraic identities, and introduce yet another metric function:
((r2—|-az)—n_-a~\/r-(5)~(\/2ia-\/E)sz-\/Zia-r-rg-\/g
22-(A—a2-6):p4-A—az-rz-rz-é
3 =(r'+a’)—a*A-s (5.3.9)

Using this the metric functions:

52 -
ez'wzé f w:a r2rg
p )
ez'v—ew—ew—pzﬂ X—ev_w_p_z'\/z 5.3.10
- % 32 Ve (:3.10)

Using the identity we can express X and Y, and their derivatives:

_ _ \/Z—i-a-\/g
X_X+w_((r2+a2)+a- A-8)\S

e VA-as
X=X o= (5.3.11)
6_X:8_Y:p : r—?g)—lr-(\/Z-i-a-\/g)-\/&

or 0r  ((P+a)+aVAs) VA
G_XZG_Y:U-\/Z'((r2+a2)+a2-5+2-a-m) (53.12
do do (FP+a*)+a- A-5)2‘\/? =-12)

Substitute the results above into (5.2.13):

"y

o dptn), 2 dutn)_ o
o) or A oo p2'A'6

(p*+2-a*8)=2r-A

r
p_—&
=
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5.3 The derivation of the Kerr solution

2

Vg

PR
( 2 : 5.3.13
__re|olutn)  Blutn) L ( )

2 or oo A p
The solution of the system of equation:
pz

e == (5.3.14)

VA
In our choice of notation the metric functions are the followings:
2
e "=A ez'“:% e’"=p° (5.3.15)

We have expressed every metric function, therefore the only thing left to do is to substitute them
into the original arc length squared:

2 o 2 2
ds'=p" A dp -2 d p— L s o gr | sin®(9)— B di?— p*d 9 (5.3.16)
p z A
Where: ZZ=(r2+a2)2—az-A-(S:(r2+a2)2—a2-(r2—rg-r+a2)-sin2(9)

Write down the spacetime of the black hole in rotational ellipsoid coordinates:

x=Vr'+a’sin(9) cos(9)

y=\/r2+a2-sin(9)-sin(9)
z=r-cos(9) (5.3.17)

The arc length squared of the Kerr solution in Boyer-Lindquist coordinates:

rer 2-rr. -a 2
dsZ:(1——2g)-czdt2+—g-sin2(9)-d @-c-dt—L-dr’— p*d 9*

p 2 . (5.3.18)
rrpa . ,
—r+d+ ‘;a-smz(9) sin*(9)-d ¢°
p
Where: A=r'—r,r+a’ p =r’+a’-cos’(9)

If a approaches zero, we get back the spherically symmetric Schwarzschild solution, with this we
managed to identify this quantity, the geometric angular momentum:
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5.3 The derivation of the Kerr solution

2
ds2=(1_&)'02-dt2— dr —r*(d 9 +sin’(9)d @)

a=0 — r 1 re
r
2-y-M
Schwarzschild radius: re= azL
c
Q:L:Z'y"]
Kerr angular momentum: mec oy (5.3.19)

If the mass of the black hole approaches zero, we get back the rotational ellipsoid coordinate system
in flat spacetime:

2
dS2:cz.dt2_%'dr2_p2.d 92—(V2+a2)-sin2(9)~d(p2 (5318)
r ra

The geometric quantities from the metric tensor to the connection:

1_r~;;g 0 0 a'r-rg'szinz(S)
p p
pz
0 - 0 0
8ni= A i (5.3.19)
0 0 -p 0
a-rer,-sin’(9) , o, rrra |, 5

£ 0 0 —|r+a+——=%—sin"(9)|sin”(9)
p p

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the
rows and columns where these components appear:

Ferg a-rrgsin’(9)
- p’ p’
Ei=\ gpr -sin*(9) rer,a (5.3.20)
= —|r*+a®+—=—sin’(9) |sin*(9)
p p

The determinant of the partial matrix:

arrg(p’+(a—1)rr,)sin’(9)+(r’+a’)p*(p’—r’r,) .,
878w 8o 8o 8pi=" 3 ‘sin”(9)

p
(5.3.21)

Invert the partial matrix and extend with it the twice contravariant metric tensor:
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5.3 The derivation of the Kerr solution

(r’+a’)’—a’ A-sin’(9) 0 0 arr,
A-p? A-p
0 ~2 9 0
g""= p | (5.3.22)
0 (J— 0
p
arr, 0 _A—az-sin2(9)
A p2 A-p2
og, rg~(2-r2—p2) 08y 08y a-rg~(2-r2—p2) )
=— 5 = =— > -sin”(9)
al" p ar 81’ p
0g, (2:r—r)p’=2-Ar 08ys 5
or A? or "
0 ar,(2:r*—p?)-sin*(9)—2-r*p*
g(p(p: g ( p ) ( ) p .Sin2(9)

al" p2

08y _ 2-a2-r'rg
09 ot

-c0s(9)-sin( 9)

0 0 2-a-rr,(a*sin®(9)+p’
Eip_Y98¢: _214TT, (a (9) p)-cos(9)-sin(9)

0% 09 o
agrr_z'az . ag99_ 2 .
79 = A -cos(9)-sin(9) 59 =2-a"-cos(9)-sin(9)

8g(p(p: 2-a-rr (a*sin®(8)—2-p?)-sin’*($)—2-(a’+7°) p*

09 o -cos(9)-sin(9)  (5.3.23)

(r’+a’)—a’(r-r,+A)-sin’(9)
2-A-p°

Fltr:Ftrt:rg'(Z.rz_pz)‘

a*(rr +A)sin(8)+rr p’—(r’+a’)

A -cos(9)-sin (9)

t ot 2
I' ;=I'"4,=a Ty

27— ((r*+a®—a-(r-r_+a-A)-sin*($))+2-r*p*
I s L s e A L U T
. .p

I',,=I',;=—arr,cos(9)sin(9)
a3~(r-rg—|— a-A)-sin4(9)+a~((2~r-rg+ a-A)-p’—a-(rFF+a*))sin* (9)+p* (rP+a’)(p’—r’—a’)
A-p6
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5.3 The derivation of the Kerr solution

:a-A-rg~(p2—2-r2)

. Arg(2:17=p%) A ,
" £ ? 6 r t(p:F ot 2 6 'Sln2<9)
-p -p
2:r—r 2
Frrr:LZ_ 2.A . ]"’VS:1"’9r:1"’99:_a_2.cos(9).Sin(9)
p ) p
p -A ar (2:r*—p?)sin?(9)=2-r-p*
1—. 99:_7' : FF(P(P:A' g( p) - ( ) p s1n2(9)
p 2:p
2 2 .2 2
arr arr (a-sm(9)+
I’ =———7"*-cos(9)-sin(9) ré’,=r’,= e c (9)*p >-cos(9)-sin(9)
p p
r=—< 9)-sin(9 I=r',=%5
rr— 2'005( )'Sll’l( ) rg Sr 2
p p

(A—a*sin®(9))-sin’*(9)+rr,

P _ 7P 2 2
r tr_rrt_a.rg'(z.r -p ) 2Ap6

az-((az-sinz(9)+p2—A)-sin2(9)—r-rg)— A-p?

F(ptszr(psz:a""’rg' -cos (9)-sin (9)

A-p6
ar ((a*sin®(9)—A)-sin*>($)—a-rr. ) (2-r—p*)+2-r-p* (A—a*sin*(9
re—re - & (8)—A)-sin*(9) g)i o) p*( ( ))~sin2(9)
2-A-p
8)sin(9) [ , 3 .6 2\ . 4 2
re, =re? :L~ arr (—a-sin’($)+a(A=2-p")sin" ($)+rr -
W LR #rrala=2p)sin' (O rrree’) -

+a-(—a-p4-(r2+a2)+r-rg-(2-p2-A +a3-r-rg))-sin2(9)+p4-A-(r2+a2))

The partial derivatives of the connection get very complicated, just like the other quantities that
follow from them, therefore we do not write down all of them. The geodesics of the Kerr solution:

ci+2:(I" et ir+T et 9+, 7@+ 5,9P)=0
FAI7 P+ P4 T g P+ @421, et p+T7 4 i-9)=0
+1° - E+T°, 7+ 2 e t-p+T° 47 8)=0

ci+2:(I" et ir+T" et 9+, 7@+ 5, 9P)=0 (5.3.25)
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5.4 Coordinate singularities

5.4 Coordinate singularities

The singularities in the Kerr metric are much more diverse than in the spherically symmetric
case. We examine the ## component of the metric tensor:

g :l_l"'rg (541)
1t p2

It becomes meaningless in the following case:
r-rg=p2:r2+a2-cosz(9)
r’—rr,+a*cos’(9)=0

The solution of the quadratic equation gives the place of the infinite redshift:

\/r§—4-a2-cosz(9)

Fip=re=* (5.4.2)
’ 2
The rr component of the metric tensor:
p2
8n="} (5.4.3)
A= —rgr +a’=0
The solutions give the places of the event horizons, where the metric changes signature:
2 2
\Vr,—4-a
VI’ZZI’gig— (5.4.4)

2

For real results, the discriminant of the quadratic formula has to be greater than zero, that creates a
condition for the angular momentum:

r§—4~a220
r,=2al

2
M-, (5.4.5)

c

For the sake of example, we examine these surfaces on the longitudinal section of a black hole with
an extreme angular momentum — mass ratio:
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5.4 Coordinate singularities

Infinite redshift occurs on the black surfaces with variable shapes. The grey, spherically symmetric
surfaces are the exterior and interior event horizons. The most outward, grey, unfinished spherical
surface would be the Schwarzschild radius, if the black hole would not rotate. The domain between
the external redshift limit and the exterior event horizon is the ergosphere.

5.5 Redshift

This time we substitute the components of the Kerr metric tensor into the previous equation:

27"I’g 2}"'7"

1- - s
- 2p2 3 2r2+aZ~cosz(29)
po 28 P - (5.5.1)
1 2 2 ] 2
184 1_1V Iy 1— 1Ty
P’ oHat-cos’(19)

If the light source is closer to the source of the gravitational field than the observer, then:
F=Lr — VS,V (5.5.2)

There is a discrepancy also, when the source and the observer have the same distance from the
gravitating centre, but they are on different latitudes:

9<,9 — VY < (5.5.3)

5.6 Frame dragging

NASA launched in 1976 and in 1992 a LAGEOS (Laser Geodynamics Satellite) each, that
are passive metal spheres with diameters of 60 cm and masses of 411 kg, therefore the upper
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5.6 Frame dragging

atmosphere of the Earth has practically no effect on them. By examining the laser light reflected
from mirrors on their surface, it is possible to measure their highly regular orbits with great
accuracy. The are used to accurately determine the shape of the Earth and the velocities of the
tectonic plates, while relativistic effects cumulate in their orbital parameters. By analysing
observations lasting for decades, it was possible to show the effects of spacetime dragged by the
rotating Earth, with 20% accuracy.

The existence of non-diagonal tensor components has interesting consequences on the
relationship between the contravariant and the covariant velocities:

V=g v =g ev gy, (5.6.1)
v=g" v, =g"v,+g""v, (5.6.2)

For example in the second case, if the horizontal momentum of the test body is zero, it can still have
non-zero velocity and vice versa, and in the first case, it can have momentum without rest energy.
Furthermore a test body at infinite distance with zero orbital velocity falling radially into the
gravitational field of the rotating black hole is forced to orbit, it obtains the following angular
frequency:

Pt QP
Vg vtg T,
wf__t_ it + tp
v g viTtg Vo

v,=0 (5.6.3)

Angular frequency caused by the frame dragging of the rotating black hole:

w .= = .0.
g (P +d’ ) —a - Asin’ (9)

We approach the Earth's spacetime with the Kerr metric, our instruments are not yet precise enough
to distinguish between the effects of a rotating body and a rotating black hole. The angular
momentum is a product of the angular frequency and the moment of inertia:

J=w-0 (5.6.5)
We approximate the Earth with a rigid rotating sphere:

. p2
(*9:2']‘4'R2 — a:z-wR
5 5 ¢

(5.6.6)
From the Earth's radius and rotational angular frequency, the geometric angular momentum:
R=6371-10°m (,=861641s  —  w=729211510"1
' s

a=3.949m (5.6.7)

Earth's standard gravitational parameter and the gravitational radius:
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5.6 Frame dragging

3 . .
y-M =3.986004418-10" = - r=2Y M _g 87005607810 m
S C

We assume for simplicity, that the LAGEOS-1 satellite is on an equatorial orbit. The semi-major
axis and orbital period of the orbit, and the frame dragging:

F=1.227-10"m t,=3.758 h=13528.8 5
0,=5.685-10"1 (5.6.8)
: s
The accumulated displacement along the orbit in a year:
Ae,,=0037" — As=2201m (5.6.9)

We assume the same about the LAGEOS-2 satellite as well. The semi-major axis and orbital period
of the orbit, and the frame dragging:

r=12163-10"m t,=223min=13380s
_ “i51
w =5.836-10 . (5.6.10)
The accumulated displacement along the orbit in a year:
Ae,,=0038"  — As=224m (5.6.9)
5.7 Equatorial circular orbit
The coordinate conditions coincide with the spherically symmetric case:
t=t(T) S—_f_:const.
2
¥ =const. dr=0 a—rza—l;zo
oT o7
™
== =
) d9=0
p=p(T) g—(f:const. (5.7.1)

Because of the coordinate conditions, the geodesics simplify:
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5.7 Equatorial circular orbit

Iy P+T @ +2- Tt p=0
r’ycti?+2:1° ci-p=0 (5.7.2)
The arc length squared also simplifies:

rg-a

r2+a2+

2oy
dSzZ(1—&)'02'0724-&'0’@'0'6#—
r r

)-a’(p2 (5.7.3)

This of course is equal to the arc length measured in the coordinate system of the moving observer:

2'r,a
2
T —E—cw—
r

r

cz~d‘r2:((1 L
r

The relationship between the proper time and the coordinate time:

Dop .
PR A FEPT R

r cr c

ro-a
P ta’+-= )~w2)-dt2

rr4+a’+ rg~a).w2 (5.7.4)
r

This equation is satisfied by two different angular momenta, therefore it is valid on two different
circular orbits.

Since the ratio of the two quantities is constant, the coordinate time also can be used as a
parameter for the geodesic equations. In this case the tangent vectors can be identified, the equation
can be solved, and the possible angular frequencies can be determined:

ct=c P=w
I +2-T, e+ ¢*=0 (5.7.5)
Apply the quadratic formula:

_—bxVb—4a-c

Xio= 24

w, =
" 2.Fr(P(P
r r 2 r r
w,,= mat=ill] ’,f") —Loe (5.7.6)
F<p<p
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5.7 Equatorial circular orbit

We obtain two possible orbital frequencies, each corresponding to an orbital direction The affected
connection coefficients are simplified by the coordinate conditions:

2 2
:A'rg~(2-r —p?)
73 2'p6

I

r,=—-2= (5.7.7)

(5.7.8)

-sin*(9)

(5.7.9)

Two orbital frequencies are possible on equatorial circular orbits, depending on the orbital direction:

a-rgi\/(a-rg)z—(a-rg—2-r3)-r

g (5.7.10)

w,,=c-
1,2 3
a-rg—2-r

5.8 Kerr-Schild metrics

We write down their general form. The Kerr spacetime also belongs to this group, actually
Roy Kerr was also looking for the solution in this form, #,. is the metric tensor of flat spacetime
here, and /, is a light-like vector:

gnK:anK-i_lr[‘lK gnK:ran_ln'lK
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5.8 Kerr-Schild metrics
Moo 1" =1, [,1°=0 (5.8.1)

Since the Schwarzschild spacetime is a special case of the Kerr spacetime, it is also of this form.
Reorder the Kerr arc length squared:

)
ds*=2 (dt—a-sin’(9)-d @)2—w-((r2+a2)-d o—a-dif—Edr—pd 9 (5.8.2)
p p p

Introduce new coordinates and substitute them:

r’+a’ a
du=dt— A -dr d¢—d(P—Z'dl’ (5.8.3)
ds*=
A . 2 2 Sinz(g) 2, 2 2 22 2 2
- (du—a-sin”(8)d¢p) ———=((r"+a")dp—a-du) +2-(du—a-sin" (8)-d ¢)-dr—p~-d 9
p p
(5.8.4)
Rearrange metric tensor and arc length squared:
rer arrwr, .
1——5 1 0 —£.5in*(9)
1% 1%
g = 1 0 0 —a-sin’(9)
" 0 0 —p’ 0
e 2
%-sinz(\‘}) —a-sin’(9) 0 —%-sinz(é})
p p
ds’=(du~+drY—dr’*—p*-d ¥—(r’*+a*)-sin*(9)-d ¢*—2-a-sin*(9)-d p-dr
—rr ) 5.8.5
"Ts (du—asin(9)-d )’ (5.8.5)
p
Write down the light-like vector and substitute it:
I"'=(0 1 0 0) [,=(1 0 0 —a-sin’(9)) (5.8.6)
ds’=(du+drY —dr’—p*d °—(r’+a°)-sin’*(9)-d " —2-a-sin’(9)-d p-dr
;2r.rg-la~lﬁ«dx“-dxﬁ (5.8.7)

Substitute rectangular coordinates into it:

t=u+r x=(r-cos(¢p)+a-sin(¢))-sin(9)

y=(r-sin(¢p)—a-cos(¢p))-sin(9) z=r-cos(9)
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5.8 Kerr-Schild metrics

x*+ y*=(r*+a?)-sin*(9)
The original metric written down by Kerr:
dsi:cz-dtz— dx*—dy*—dz*

3

2
dSZZdSi—Lg—' codi— r-(x-dx+y-dy)ta(x-dx—y-dy) zdz

4 2 2 2 2
r +a-z r+a

The equation expressing the radial coordinate:
= (x*+y*+2—a’)r*—a*-2*=0

The circular singularity is the true singularity of the Kerr spacetime:
xz—i-yz—i-zzza2 z=0

The new coordinates can be introduced with another sign as well:

2 2
VJAF“ -dr dp=d p+<-dr

du=dt+ A

5.9 Tomimatsu-Sato spacetimes

r

(5.8.8)

(5.8.9)

(5.8.10)

(5.8.11)

(5.8.12)

They are the models of the axially symmetric spacetimes of rotating bodies, however they
do not cover every possible solution. Write down the complex Ernst potential in the following form:

X

EZE

(5.9.1)

Where a and f are polynomials in the x and y coordinates, and posses the following properties:

: Ox_ .08

(a)  always real: B o %oy
i Ox_ OB

always imaginary: B 3y o 3y

(5.9.2)

(b)  the coefficients of the even powers of y are real, of the odd powers are imaginary.

(c) the degree of the o polynomial is &%, of the 8 is 6* — 1, where ¢ is a natural number called the

deformation parameter.

(d) a and f are o0-degree polynomials in the p and g real parameters, where:
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5.9 Tomimatsu-Sato spacetimes

p+qgi=1 (5.9.3)

(e) in the ¢ = 1 case, let £ be the potential of the static Zipoy-Voorhees spacetimes. Therefore in
the case of ¢ << 1, meaning slow rotation, the form of the potential:

:(x+1)5+(x—1)6 aE (x
(1P a-&(x,y) (5.9.4)

We obtain from the Ernst equation the term that is small in the first order, where the P functions are
Legendre polynomials with a degree noted on the lower right corner:

= 1 . 5 a X ) X
El(x,y)—(xﬂ)g_(x_l)a ,Z; pit (%) Py (x) (5.9.5)

The 6 = 1 value determines the Kerr spacetime, the polynomials of the 6 = 2 case:
a=phxttqtyt=1=-2-ip-gx-y(x'=y?)
B=2-p-x-(x*~1)=2-i-q-y-(1—3?) (5.9.6)

For an arbitrary J value, the potential gives the spacetime of a body with

a
m= E mass,
J=a-m angular momentum,
2_
0= m- ~p2+ q2 quadrupole moment. 5.9.7
3.8

The curvature of these empty spacetimes decreases far away from the source. The curvature
singularities are positioned along concentric rings.
We introduce the real G, H and [ functions in the following way:

'E

I

CH+il _

_x_xB .
SSBTBB G G=BB
_E-1_oa—B_(«x=B)at+(x—=B)B_(x&—BB)—(xB—B-&)_ A+2-i-I
g+l o+p (OH‘ﬁ)‘(&-}-B) B B
H*+I'=4-G+G° (5.9.8)

the left side:  H’+ I*=|of| B

the right side: A4+ G=x-&—p-B+B-B
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5.9 Tomimatsu-Sato spacetimes

Introduce new notation:
a=x"—1 b=y"—1 f(r)=p>a+qg*b (5.9.9)

The 6-th Tomimatsu-Sato arc length squared is a function of the J-th Hankel matrix, that has the
determinant:

poy L2 8 S0
f(2) 1) f(4) f(6+1)
2 3 4 o+1
Ms(a,b)=|f(3)  f(4) f(5) f(6+2) (5.9.10)
3 4 5 812

F6) fs+1) f(642)  f(2:6-1)
o 5+1 s+2 7 2:6-1

Using this the metric functions:

Mgs(a,b)

A=
Mé(lal)

=F(6)

B=A+G+H

__p __o
C=3gbs (Q+R g A) (5.9.11)

The coefficients of the metric functions:

(5+V_1)' .22.,,,1

(0= )

(2-r=2)

d(r)=(-1)" -

e(r)j==2-d-(r+1)

W R(r)e(s,r) & td(t—r'—1)c(5,r)
g(6.r.r')= 52 ,:Zr: r+te—1
h((s’r,r,):r-r’~e(r)-c(6,r)-c(6,r’) (5.9.12)

8 (r+r'—1)

From these the metric functions:
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5.9 Tomimatsu-Sato spacetimes

o o
H=2px Z:a’(r)-aFl Z c(6,r')F(6—r")
r=1 r'=r
2.x o o ,
Oo=—=—=3§ Z Z ga b g8, r,r)F(8—1)
q r=1r'=1
6 ) S ) ,
R=—=73 % (p*a"b""'=g*b"a"")h(5,r.r")F(5°~1) (5.9.13)
pq r=1r'=1

The arc length squared of the J-th Tomimatsu-Sato spacetime:

B &' ) A bC bD oo
ds _62-p52_2-(a—b)52_1 ( b +3 dt™+4-q 3 dt d(p+62-B dop” (5.9.14)
The equation determining the D polynomial:
A-D—p*a-B*—4-5¢*-b-C*=0 (5.9.15)

These solutions describe only the spacetime outside rotating bodies. At distances from the centre
where they loose validity, we find ring singularities not covered by event horizons.

186



6. Spacetime with matter

6. Spacetime with matter

In the presence of matter, Einstein's equations show, how the given matter distribution
curves spacetime, and the trajectories of moving bodies are determined by the geodesic equations.
Thus spacetime and matter dynamically interact with each other. We have to point out, that the
Einstein equation is a very simple tool, it does nothing else than to give the spacetime geometry
caused by matter with arbitrary properties and distribution. It has nothing to say about the physical
reality of that matter distribution.

We will see, that an arbitrarily high amount of matter cannot stay stable in a given volume of
space, infinite internal pressure will build up even in the case of a finite quantity, and the celestial
body will collapse into a black hole.

6.1 Energy-momentum tensor

We investigate gravitation in matter-filled space. The form of the Einstein equation in this
case:

Rnx—%'R'gnF—k'TnK (6.1.1)

On the right side of the equation is the energy-momentum tensor, multiplied with a constant that is
unknown for the moment. This tensor contains all information necessary to describe the
gravitational effect of matter. In general relativity, we talk about the presence of matter, when at a
given point, the value of this tensor is different from zero, this is fulfilled also in the case of
radiations and interaction force fields.

The connection is symmetric in general relativity, therefore the Ricci tensor and the energy-
momentum tensor will also be symmetric, thus the system of equations above contains ten
unknowns. In the general case, T, means the flow of the #-th component of the energy-momentum
vector across the x-th coordinate surface. The meaning of the energy-momentum vector
components:

E K v
E=|— p° p' p (6.1.2)
c

Where E is energy, and the p-s are the three spatial components of momentum. Thus for example in
the case of one time-like and three space-like coordinates, 7y means the flow of energy across the
constant time coordinate surface, it means we are talking about the energy density:

TOO:p-c2 (613)

If one of the indices is non-zero, then — according to our reasoning above — it is either momentum
density, or the flow of energy across surfaces determined by spatial coordinates, which means the
same because of the symmetry of the tensor:
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6.1 Energy-momentum tensor
Ty=T;=mc (6.1.4)

If the indices are spatial and are the same, it means the crossing of momentum across perpendicular
coordinate surfaces. They are in fact the three components of the pressure:

T.=p, (6.1.5)
If the indices above are different, then one of the momentum components changes direction, this
means for example distortions in solid matter, that we call stress. The symmetry of the tensor
applies:

T,=T,;=s5,=5, (6.1.6)

The general energy-momentum tensor:

2
p-c TCc TyC TyC

_|{ ¢ Py Sz Si3
T,,K— . (6.1.7)

Ty C Sy )2 S

T3 C Sy §32 D3

The great practical benefit of general relativity is, that by knowing the tensor above, the
gravitational field can be determined, but no other theories about the origin of matter are necessary.

6.2 Einstein equation with matter

Generalize the Newtonian gravitational potential to arbitrary mass distributions. This is how
our formula looked like in the vicinity of a spherically symmetric mass distribution:

p(r)=—y-— (6.2.1)

r

The mass and gravitational potential of an arbitrary mass distribution:
m:fp(?)-dr3 (l)(r)Z—y'I@-a’r3 (6.2.2)

Write down the equation of movement and the field equation with the divergence theorem:

x‘.—a‘l’ 0

1

=— — =417y 6.2.3
axz 8(xz)2 yp ( )

Equation of movement and field equation in general relativity, rearrange the Einstein equation:
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6.2 Einstein equation with matter

N—_ TN 5% B = I
x'=—I" ;XX R, =k

1
Tyt T gnK) (6.2.4)

We determine the important geometric quantities of the Einsteinian model in the Newtonian
approximation. This means small velocities, where the decisive origin of the gravitation of bodies is
the rest mass. Coordinate time approaches proper time, the velocities and non-linear effects can be
neglected:

x"=(c 0 0 0) dT~dt

Wi i 0

f=—I e (6.2.5)
0Xx

The non-zero components of the connection:

& _1 ia_(ag0a+aga0_agoo)

w=3'8 ox’  ax" oax*
2 0P i 0 &y 0 &
5 ~g - ~—— 6.2.6
¢t ox' £ ox’ ox' ( )
We determine the metric tensor component with integration:
9.
8o~ 1- ;’5 ~1 (6.2.7)
c
Substitute it into the rearranged Einstein equation:
_ 1
Ry=k- T00+5-T-g00) (6.2.8)

We continue to identify the quantities in the equation. Because of the applied approximations, the
energy-momentum tensor simplifies significantly, the origin of gravitation is the rest mass of the
matter distribution:

pc 0 0 0
T, = 8 8 8 8 (6.2.9)
0 0 0 O
The contraction of the energy-momentum tensor:
T=g‘XB-TaBNgOO'TOONP‘02 (6.2.10)

Write down the right side of the equation:
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6.2 Einstein equation with matter

k-

I I
TOOJFE.T.gOO):E‘k.p.CZ (6.2.11)

And the left side:

ore, or¢, ore 2 Ty
~Olw 0w _0lw 1 0 ¢ _dmyp (6.2.12)
ox"  ox’  ox* & a(x') ¢

00

By making them equal, we express the physical constant:

2
C

%.k.p.cz:w-_f)

8-7r-
k:% (6.2.13)

Reinsert it into the Einstein equation:

1 8-
RnK_E'R'gnK:_—X4 T, (6.2.14)
c

We will use two assumptions about the structure of matter in the following sections. It can be
continuous like the electromagnetic field, or composed of particles, like the atomic matter. Galaxies
fall into the latter category, that are composed of stars, or the Universe itself, that is composed by
galaxies, discrete islands of matter.

6.3 Perfect fluid

The behaviour of matter composing particles follows quantum mechanical rules, however in
relativity theory, the paths can be exactly determined. Therefore we investigate such a small volume
in the fluid, that is on one hand negligibly small compared to the entire matter quantity, on the other
hand it is big enough to make quantum effects in it negligible, thus it is composed of sufficiently
many particles. These restrains demonstrate the limitations of the continuous fluid model, and are in
the same time the limitations of the general theory of relativity as well.

We neglect internal friction and viscosity in our modelled medium. With this approach we
can significantly simplify the form of the energy-momentum tensor, because only the density and
pressure will determine it. On small volumes our medium is homogeneous and isotropic, therefore
the magnitude of the three pressure components will be equal. In a local coordinate system, that is
co-moving with the fluid particles, the form of the energy-momentum tensor and the four-velocity,
because of our conditions for the perfect fluids:
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6.3 Perfect fluid

u,=(c 0 0 0) (6.3.1)

oo ©
o © o
N oo o

In the most general case, the energy-momentum tensor is the linear combination of the four-velocity
and the metric tensor, multiplied with unknown functions:

T, =Au,u+Bg, (6.3.2)
Write down the spatial components of the local variant with index notation, with the symbols of the
general formula, in this case the spatial components of the four-velocity are zeroes, and we use the
metric tensor of the flat spacetime:

Ty=Bn,=—B (6.3.3)
By comparing with the general formula, we recognize the multiplier function:

B=—p (6.3.4)

The purely time-like component of the energy-momentum tensor:

T00:A'u0'u0+B'r’00:A+B:A'Cz_p:p'02

A:p+—2 (635)
C

The energy-momentum tensor of the relativistic perfect fluid in the general case:

T =p+£2
c

nKk

.un.uk_i_p-gnk (636)

6.4 Spherically symmetric celestial body

If the diameter of a celestial body is higher than approximately 500 km, the molecular
binding forces do not dominate its shape any more. It is determined by its own gravitation and of
neighbouring bodies, and its rotation instead. In a safe distance from its neighbours, the shape and
internal distribution of slowly rotating celestial bodies is approximately spherically symmetric. The
Schwarzschild metric describes the external spacetime of these objects with great accuracy. In order
to determine the shape of the spacetime that is valid inside them, we have to take the derivation in
empty spacetime a step further. As we shall see soon enough, the Ricci tensor will not be zero here,
but the entire Einstein equation has to be solved instead. The general form of the arc length squared
of the spherically symmetric spacetime in Schwarzschild coordinates:
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6.4 Spherically symmetric celestial body
ds’=A(r)--dt’=B(r)-dr’—r’-d 9" —r*sin’(9)-d ¢’ (6.4.1)
This time it is useful to write them down in a form, where the unknown functions are exponentials:
ds’=e”"").c*-di’ = &M dr? —*d 97— -sin’(9)-d @ (6.4.2)
Determine the geometric quantities characterizing the surface, from the metric tensor to the Ricci

scalar, in order to write down the Einstein equations. We note the derivative according to the radial
coordinate with an upper comma:

L0 o 0
e
2-¢
1
e OM 0 0 0 —— 0 0
0 -—e 0 0 nKk__ e (6.4.3)
Ene= 2 g = o
2 . 2 2
0 0 0 —r-sin’(9) r
0 0 0 —-= _12
r--sin”(9)
08, 2.4 8g” 2.
—=2 P’ =—2 P’
or or ¢
agrr: R og —=2.0 PN A
or or
6g99_ b ag”:&
or or 5
agcpq) .2 ﬁg(p(p 2
——2.p 9 =
or rsin’(9) or  r’sin’(9)
08pe : 0g’? _ 2-cos(9)
59 =—2-r"cos(9)-sin(9) 0%~ risin(9) (6.4.4)
1—'t” I-'trt:¢( 1—';_62(457A) o'
FV,A,:A' 1—-r99__r 672-/\
r,,=—re "sin’*(9) I?,=r%=r" =r" =
I’,,=—cos(9)sin(9) I'%,=T%4=cot(9) (6.4.5)
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6.4 Spherically symmetric celestial body

or', oI oIy 5o
o = =2 ST (@2 (0= A+ )
or’ or’ B
arrr r T99_ 2/\(2 ]"A'—l)
oIy _ .2 ar9r9_ar99r_ar<pmp_ar<pw__L
or ¢ {2r-A'=1)sin'(9) or  or  or  or  ?
oI’ 2 or’
6—9W:_2"”‘e *.cos(9)-sin (9) —89""”:51112(9)_(;052(9)
6F(p9(p af(p(pg

= t(9)—1 6.4.6
5o = gs - oor(®)- (6.4.6)
Rtrtr:—R’m:@’-A’—d)"—(p’z Rtstsz—Rtsst:_l"eiz'A'¢'
Rt(ptq):_R[q)q)t:_l"‘eiz'A'@"Sin2(9) er:—R’ =% (@ Al—P— ¢12)
Rr9;~9:_R’499r:”'e_2-A'A ' Rr(pr(p:_Rrwpr:r'e_z.A'A ’-Sin2(9)

oA
L e
s _ s _ _ !
R rr9__R r9r_R e _qu(pr 7
ngsw_R PP (1_ )-sin2(9) R(pswszR(pssw_l_eiz'A (6.4.7)
R”:_e}((ﬁ—/\)‘ d'A 1_¢y,_(p,2_2'¢
r
R,=®"A'—¢''— oy 2N
r
Ryo=e " (r(@'=A")—1)+1
Ryp=(e " -(r(®'=A")=1)+1)-sin°(9) (6.4.8)
. [ Y 2A
R=2-c M @rnr—pr— g ZATR) e 5 1 (6.4.9)
r r

The Einstein equations:

193



6.4 Spherically symmetric celestial body

1 817"
GnK:RnK_E.R.gnK:_Tx.TnK (6410)

The Einstein tensor is diagonal:

2(0-n) 2.7 A"+ s —1

G,=e

Goo=—r-¢ " (r-d'+1) A" —r-@"'—r-d"—p")

Goo=—1¢ " ((r-®'+1)A'—r-@®"'—r-&"”—d"')sin’(9) (6.4.11)

QP

We make it equal to the diagonal variant of the energy-momentum tensor of the perfect fluids,
where the four-velocity is zero, thus we assume that the internal currents of the celestial body are
negligible. The fluid rests in the Schwarzschild coordinate system, therefore the form of the energy-
momentum tensor:

p-cte o 0 0 0
0 —p-e?™ 0 0
T\= 0 0 - 0 (6.4.12)
r
0 0 0o ——2
r*-sin’(9)
Write down the equations to be solved:
oa 22 A+~ 8em
(1) eI )
a2 =" +1 8T
@ ==l
_e—2~A‘ d),'i‘l .Al_qsn_(prz_g :8_7T4Xp(r) (6413)
r r c

This time the mass of the celestial body is not interpreted in a single point, but it is spread out from
the centre to the surface. With taking the metric into account, we have to integrate the energy
density function in the entire spherical volume, thus the mass of the body is given by the sum of the
constituting mass and the gravitational potential energy:
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6.4 Spherically symmetric celestial body

M:4-7T‘_[A(r)-p(r)-r2'dr (6.4.14)

0

We can rewrite the first (1) equation to the following form:

6ar( ) 1— TZI’ p(r)

L—1——x41'rfr p(r)-dr

e C 'r
2A_ 1
-2y mir) (6.4.15)
Cz‘l"

Subtract the first (1) equation from the second (2):

2-A

1 .(2"p'+2'/"):8'Tf2'y.(p<r)_p(r)

e r r c

2-y-m(r 4-1r- r
(l_yz—() .((p +A ):_2X.,,(p(r)_17(2))

cr c c
1 y-m(r) 4.y

d'= . + .

| Zymlr) ( Zar e TP (64.16)

cor
Rearrange:
L+ 4Trr p(r)

g =ymr) m(r)

Cr 1_2 3/ m( )

2
cr
1 dp(r)

b= . 6.4.17

pr)tolrye dr (417

Express the metric functions from the Einstein equations:
e ':(1 Ay, <r>)-e2~A_1
c

’ 8.17- ,

27 P'= 1+%X-r2-p<r>)-e“—1 (6.4.18)
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6.4 Spherically symmetric celestial body

We differentiate the second again according to 7, and then multiply it with 7:

2
21~¢'+2¢?¢'e:24~A'-1+§11%1L¢wr)+

c C

16.Tr'4 .rz"(l?(r)+r'p '(l’))))-ez'A

Express the second derivative, and substitute both metric functions:

2

2P =1+ L?&.(p(r”r.pf(r))).gﬂ

4.A

4

8~Tr~y~r2 8~Tr'y'r2
N EER L CaO) P )
c

Square the second metric function:

1+ 3TY 2 ()
C

4= e+

4
C

817 :
1+ y-rz-p(r)) et =2

With the substitution of the above results we obtain the hydrostatic equilibrium in a symmetric,
isotropic, spherical celestial body:

r
y(p(r)+p(2))~(m(r)+4 3p(2))
dp(r) _ ¢ ¢
P > ym(r) (6.4.19)
{1222l
r-c
This equation satisfies the following conditions:
m(0)=0
%2”:4nphyﬁ (6.4.20)

The pressure on the surface of the celestial body is zero (we neglect any atmosphere), and the
metric continuously goes over to the vacuum Schwarzschild solution:

= : (6.4.21)

Inside the celestial body, in material medium the hydrostatic equation corresponds to the following
general metric:
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6.4 Spherically symmetric celestial body

6.5 Sphere with constant density

The equations for spherically symmetric celestial bodies are solvable analytically, if we
assume, that the density is the same at every point in the entire volume, this characterizes perfect
homogeneous fluids. This is a heavily idealized model, however it is not far from reality, since in
the case of many naturally occurring objects (like the Earth), the density varies from the surface to
the centre much less, than the pressure.

p =const. (6.5.1)

We can already write down the mass distribution function inside the body easily, and the total mass:

m(r):4‘—Tr-p-r3 r<R
_4'1T 3
M—Tp-R r<R (6.5.2)
Their ratio:
3
m _r
ﬁ_ﬁ (6.5.3)

This can be used when determining the valid arc length squared inside the celestial body, where in
the spirit of changing to units of length, we substitute the gravitational radius:

A 1 _ 1 o
€ = - - 2
j_2ymlr) vy m(r) e (6.5.4)
cr r M(R) R

We insert the constant density and the mass distribution function into the equation of hydrostatic
equilibrium:

y: p_i_P(:))(“'_W'p PRI P(zr))
dp(r)__ c 3 c
dr e PR AL
3
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6.5 Sphere with constant density

sy [ o+ 20)). 24 (2)),r
dp(r) __ ¢ ¢ (6.5.5)
dr 1_8-1T-2X'p'rz
3¢

The solution of the differential equation, by taking the boundary conditions into account:

I"gl"
R3

r<R (6.5.6)
34 1——=2—4/1- T
R J R’
Pressure in the centre of the spherical celestial body:
1—\/ 1—%
p.=p———— r=0 (6.5.7)
31221
R

If the denominator is zero, the central pressure becomes infinite:

~

7
g:l — g —

al1—2£ £ 6.5.8
341 2 2 ( )

O |0

As we can see, there is an upper limit to mass in a given volume, that is independent of the chemical
composition of the celestial body. Therefore it cannot come up at the creation of black holes, that
although the matter composition of white dwarfs and neutron stars cannot stop the collapse, but
maybe there is some unknown matter with better endurance, that could stop the star from collapsing
in time. With our result above we know with certainty, that such matter does not exist, by
approaching the limit above, nothing can save the celestial body becoming a black hole.

We investigate the speed of sound in spherically symmetric celestial bodies of constant
density. The speed of sound in perfect fluid, where « is the adiabatic index:

v:,/a% (6.5.9)

If we substitute the relationship on pressure, we get the dependency of the speed of sound on the
depth:

(6.5.10)
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6.5 Sphere with constant density

The dependence of the depth on the speed of sound:

2
r ror
(3v’+a)- 1—f=(v2+o<)~\/l— ;3

3 2
r:Ji 1—| 3Vt [ r_g) (6.5.11)
r, Vit R
The condition of the result being a real number
3 2 2
R %;J : 1_&) >0
re v+ R
r,_8 b |
O N L 6.5.12
R 9 3 4« ( )

Independently from the value of the adiabatic index, the ratio of the gravitational radius and the
geometric radius is always greater, than the previously determined limiting value for the infinite

central pressure.
We insert the previous result also into the second metric function:

1 y 4-1r-y
¢’: . . + 2
| Zym(r) (c ke (65.13)
2
r-c

We need the relationship between density and Schwarzschild radius, that we use to determine the
dependence of mass and pressure from the geometric quantities:

3-c2~rg
=20 T (6.5.14)

81 y-R

ctr
m(r)z g3-r3 r<R (6.5.15)

rgr
R3
87'ryR 2t |

Substitute them into the derivative of the metric function according to r, and integrate:

r<R (6.5.16)
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6.5 Sphere with constant density

(6.5.17)

2
1 r,r 7
d=log|—[1/1—-=2 —3-\/1——g
P (\/ R R

2
2
62@:%.(3.1/1_%_‘/112: (6.5.18)

The arc length squared in the interior of a spherically symmetric homogeneous celestial body:

2
2 2
T O O PO Y R L B I R ) 2, 20a). 2
ds =1 (3 A1 2 \/1 e ) c™-dt — = r(d 9 +sin"(9)-¢) (6.5.19)
1—leg”

R3

The entire spacetime is free of singularities. Neither do they occur in the centre of the celestial
body, because in this case the denominator of the second metric function does not become zero. The
values of the square roots in the second metric function are always real numbers, because of our
previous condition on the infinite pressure. Write down the usual geometric quantities from the
metric tensor to the Einstein tensor:

r v _r
P=y1--% =41—-%
R 0 R’
1 2
Z~(3-P—Q) 0 0 0
1
9= 0 7 0 0
0 0 —r 0
0 0 0 —r’sin’(9)
4 - 0 0
(3-P-0Q)
0 -0° 0 0
nK__
g = 0 0 _iz 0 (6.5.20)
r
1
0 0 0 -
#-sin’(9)
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6.5 Sphere with constant density

agtt_r'rg'<3'P_Q)

or 2-Q-R3
0g,  2rr,

or - Q4'R3
08y

=2

or g

0

g:‘p——Z r-sin’(9)
0
§;w=—2-r2-cos(9)-sin(9)
oo = rer,

tr rt (3'P—Q)'Q'R3

1
S _ -9 _ _ —
r rS_F 9r_r(pr<p_r(p(pr_;
I'%,=I% =cot(9)

ﬁl"t,r_ﬁft,l,_ r

g

2- 2.
rer, rrg

ag":_ 8r-r,

or  (3P=Q)Q-R

dg” _ 2-rer,
or R’
ag99:£

or r3
0g®? _ 2

or  rsin’(9)

0g”? _ 2-cos(9)
0%  r’sin’(9)

r’,,=—cos(9)-sin(9)

or ~or (3P-Q)}QR

or, r, 0 rz-rg rz-rg rz-rg
— = (3 P=0) | 5+ 3 S RS
or 2-R 2 2.0-R OR 2-R
Gfr,,:r . R3+r2-rg 8Fr99:_ 1_3-r2-r
or g (R3—r2.rg)2 or R

or’ _( 37

1- 3T 3
(3-P-0)0'R Q"R

sin’(9)

OIs_0@%, _0I%, oI, __

or  or  or  Or

(6.5.21)

(6.5.22)

1
2
r



6.5 Sphere with constant density

09 3
or’ or®,, ore
5o =sin’(8)—cos’(9) To = g9 — ot (9)-1  (6523)
R =R =_ I'q R =R = rz'rg'
rtr rrt (3P_Q)QR3 9t9 99t (3P_Q)R3
ror
t _ t .2
mep N et _(3-P—gQ)-R3 mn (9)
, ] re(3-P—0)Q
Rttr__Rtrt: 9tt9:_R9t9t_R(ptt(p:_R(pt(pt__ £ 4_R3
P roo_ ®  _p® _rz'rg
Ry, 4=—R45,=—R 99(p_R 999~ 3
R
1”2'7"
Rr(ﬁrw__Rywwr:stS‘(p:_ 9<p<p9_ R3g sz(‘q)
r
Rsrr9:_Rsré)}‘:Rq)rr(p:_R(i(pr:_% (6524)
R—r r,
3r,(3:P—0)0 R e (2 1
1 4 R3 " QR3 Q 3P_Q
R,="Tefy 0 PO Lty PO, —0%+1|-sin’(9)
99 R3 3P_Q PP R3 3P—Q
(6.5.25)
2 2\ 13
r -(3~P—Q)~R
(1-0°)-R*+5-rr
Gzt:(?’.P_Q)z. 8RR £
G __(3:P=0)-(1-0)R'+r"ry(3:P=50)
rr 2}’2(3P_Q)Q2R3
G _ (3:P=0)(1-Q°)-R +r’r,(3-P-5-0)
99—

2:(3-P-Q)-R’
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6.5 Sphere with constant density

. (PO (1-Q) Rt r (9-P70)

- T GPOIR (6.5.27)

6.6 Fall into the centre

Particle trajectories moving on shorter paths than the average mean path, and of objects
falling in conveniently shaped tunnels are described by the following geodesic equations:

ci+2T" e ir=0

I"I’g

i+ =
(3:P=0)-0O-R

tir=0 (6.6.1)

FAT AT i+ T e 8+ T @ =0

7 (3-P=0) _ . 2. _ 2 '
I BPOVO o rry L g [P e eteo
4-R R—=r-r, R R
(6.6.2)

9+42-T° 47 9+T°, , °=0

2 . .2

9+=79—cos(9)-sin(9)-p"=0 (6.6.3)
r

P+2-T° i p+2-T%, % P=0

.2 -

P+=-iF@+2-cot(3)3@=0 (6.6.4)
r

In the case of vertical fall, the coordinate conditions coincide with the case of the vacuum solution:

t=t(1) T=1(1)
r=r(T) r=r(t)
9=const.=~ d9=0
2
P =const. dp=0 (6.6.5)

By substituting them, the equations of movement of the trajectory:
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6.6 Fall into the centre

i+ £ ‘17=0 6.6.6
(3-P—Q)-O-F’ (6.6.6)
r-r '(3’P_Q)’Q 2.2 r-r 2

F+—= T+ E—7"=0

4-R’ R-r'r, (66.7)

=0 (6.6.8)

H=0 (6.6.9)

Substitute the coordinate conditions into the arc length squared:

2
2_1 r v r
ds —Z-(3-\/1—Eg—1/1—%

2
2
Lt —— Y24 92 sin?(9)-¢)

2

r.r
1— ‘;3
72 2
. 2
cz«dT2=l~ 3- l—r——\/l—rg: tdit— dr 2
4 R R Fol
1— 'S

The relationship between proper time and coordinate time is velocity dependent:

2
1 r rr
dt=|=[341-=2—/1-==£
T 4( R R’

We make the arc length squared along a time-like infalling geodesic equal to the arc length squared
of the co-moving coordinate system, then divide with the change in proper time, and write down the
equation with the tangent vectors:

2
7

-dt b= (66.10)

2
v -r

g.
R3

v
1—

2
2
C .

2 2 2 2
Ao dt2—B- dl’zzc -d;’ —2
dTt dT dTt
i _dr
dTt adTt
AV =B(u')=c" (6.6.11)

We have derived in the mathematical introduction, that if the partial derivative of the metric tensor
along a coordinate is zero, then the corresponding covariant tangent vector is a constant of
movement:
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6.6 Fall into the centre

ag“:O . ou
ot ot

-=0 (6.6.12)

We calculate the time-like covariant tangent vector from the contravariant one with index lowering:
u=g u'=g, u'=A4u' (6.6.13)

Rearrange the arc length squared and express the square of the time-like covariant tangent vector:
u)=A(u'V=4(+B-(u"))

At the beginning of the fall, the radial velocity is zero:
(u,)=A(ry)-c (6.6.14)

We make the two results equal, and express the radial velocity. We pick the negative root, because
the numeric value of the radial coordinate has to decrease, we are looking for the infalling solution.
1o 1s the radial coordinate of the starting point:

A(CH+B-(W))=A(ry) ¢’

R

2
H4}w—&—l—%%
R R

The time dependence of the fall cannot be integrated in a closed form:

T:%.j; 1 dr'

-1 (6.6.15)
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6.6 Fall into the centre

Calculate the movement as a function of the coordinate time:

ﬂ dr dv _dr 1 i
A dt di dT o (6.6.16)

The contravariant time-like tangent vector changes during the movement, its covariant companion
however does not, therefore we substitute the latter:

dr_dr A _t o
dt dt u, =" (6.6.17)

Substitute the time-oriented covariant tangent vector:

dr_dr 4 _
dt—dt JA(r,) u=\A(r) (6.6.18)
3 b J )2
1—— g3 3q1——5—4/1—
dr _ _ ( R L R
dt - \/ - 2 P .
34/1- 1— /1 —4/1
R R3

The complete expression cannot be integrated in a closed form:

2
rg-r'2
r K_ 1_ R3
. dr'
¢ H;[ 2 '
o rer H (6.6.19)
R 2_1

206




6.6 Fall into the centre

We display the two functions together on this graph. Time passes from left to right, that means
proper time for the left curve, and coordinate time for the right curve, the vertical axis is the radius.
The upper dotted line is the surface of the celestial object, the middle is the gravitational radius:

T/t

We can see on this graph, that the falling observer reaches the bottom of the pit faster according to
his own watch, than according to the watch of the infinitely distant observer.

The acceleration of an observer at rest inside the celestial body can be calculated with the
geodesic equation:

7 (3-P=0) ' . 2. , 2.
gy 77 (3P=0) Q.cz.tu#;_.r-z_r.(l_u&).sz_r.(lJ_@).szm(pz:o

4-R’ R—rr, ’ ’
(6.6.20)
__ rrg(3P-0)0 , .,
r=— 3 :
4-R
v r '1’2
P=y1--=% =1
R Q R’
r-r r r '1”2 r '7’2
= g}, 3\/1__g_ 1— g3 1= 83 _c2.'t2 (6621)
4-R R R R
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6.6 Fall into the centre
Distance from the gravitational centre increases from left to right, the coordinate acceleration of the
observer inside the celestial body is on the vertical axis, the dotted line shows the place of the

gravitational radius:

a

r

We can see on this graph, that as we approach the centre, the acceleration of observers sitting in
caves is going to zero.

6.7 Relativistic dust

Dust is matter that is characterized only by density, with zero internal pressure, it is the
limiting case of the perfect fluid. In this case the energy-momentum tensor is determined only by
the density and the four-velocity:

T, =p-u,u, (6.7.1)

In the special case, when the observer co-moves with the dust particles, the four-velocity simplifies,
and only one non-zero component of the energy-momentum tensor remains:

u,=(c 0 0 0)

p
(6.7.2)

SO OO
SO OO
SO O O

-02

0
nKk 0

0

In the general case, the four-velocity transforms the following way from the point of view of a
stationary observer:
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6.7 Relativistic dust

u = ! (c v, v, v.)
n ) x y z
i (6.7.3)
2
c
In this case the general energy-momentum tensor:
2 .
c ; c C
Il (v,c vov, vy, v_v
T, =p- A #x Saly T (6.7.4)
LYo ve vy vy, vy,
2 .
C z VZ X ¥4 y ¥4 V4

6.8 Collapsing spherical dust cloud

Set up a co-moving coordinate system, write down the general arc length squared, and
calculated the geometric quantities:

ds’=c*dt’—B(r,t)-dr’—=C(r,t)r’(d 9 +sin’(9)-d ) (6.8.1)
1 0 0 0
o =B 0 0
EnTlo 0 —c 0

1 0 0 0
0 —% 0 0
o 1 0 (6.8.2)
_C~r2
1
0 O -
C-r’sin’(9)
agrr__B agrr:ﬁ
= ot B’
a . 99
g99:_C.FZ ag - ZCj 2
w7 ot C’r
5g(p(p_ L, 08" C
7_—0;’ sin"(9) ot C*r*sin’(9)
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6.8 Collapsing spherical dust cloud

agrr__B( agrr:B_'

or or B?

ag99_ , ag99_C'-r+2-C
a—l’__(c 'I"+2'C)'V 81" - Cz-r3

0g®? _ C'"r+2-C

0
9800 _(Crpt2-C)resin(9)

or or — C%r’-sin*(9)
%:—2-c~r2~cos(9)~sm(9) aag;“’: C'Zr'f_:islif()g) (6.8.3)
Ft,,:—g Iﬂt”:C’;2 I',,= CZZ sin’(9)
r’,,:r’,,:% I = 231'9 r,,=—S¢ ";'Zz'c‘r
I, _C’-;—;ZC -sin’( 9)
rf’w:r“’gt:r";w:r";t:% I =T, =T =", =220
I’,,=—cos(9)-sin(9) I,=I% 4=cot(9) (6.8.4)
= =
or', or', B-B—B’ or., or, or, B-B'—-B'-B

ot ot 2B ot or or  2.B?

sy 2HBC—BCI(BC—BC)r
at N 2'B2

or’ (B-C—h- C'—B-C")
oo 2{(B-C BC)+(1§C B-C )r.r‘sinz(g)
ot 2B

or‘, _or',, or%, or’, c.C-c?
ot ot ot ot  2.C*

or',e_0I%,_0I%, _0I%, 0@ _0I% _0I',_oI%,_c-C'-C"C

ot ot ot ot or or or or  2.C*

210



6.8 Collapsing spherical dust cloud

or', _B OI'ss_2-C+Clr Mgy _2:C+C'r

-2
_ g 9
or 2 or 2 or 2 resin’(9)
or', B-B''—B" ol'ss_ B-C'"r’+C'r(4B—B'r)+2-:C:(B—B"r)
or  2-B? or 2-B

or’ O O (A-B—B C(B—B"
oo __BC""r4+C"r (4-B B2 r)+2-C-(B—B r)~sin2(9)
or 2-B

or’., ors, or®, ore, (c-c''—C")r’+2-C

or  or  or  or 2-C*r?

ag—;‘W:C.ﬂ.cos(St).sm(s) af;;f)‘”:—c"7;2'C-r-cos(f})-sin(s})
O oo —sin(9)cos'(9) Moo 0l om cor(9)-1 (689)
’f:_%+2-cc22_2$3+4é;2

I N L

n.r r 12 Wal Wl R2 '
_BC ¢ oc” BCt 2C B BB
2-C C 2.c* 2:BC Cwr 2 4B B-r

R

2 D 2 rr, .2 el . "C.
C-r+B-C-r_C r+BCr 2-C r+B C-r C+

R,,= — |
) 4-B 2B 4-B B 2-B> B
cr’ B-Cy* C'"y* B"C'r’ 2C'r B"Cr C .
R, = + — - — - —=+1]-sin’(9
o=\ 2" 4B 2B 4.8 B 5.3’ B sin”(9)
(6.8.6)
Rearrange the Einstein equation:
_ &my 1
RUK__ c4 '(T,]K_E'T'g,,,() (687)

The quantity between the parentheses in a medium with zero pressure:
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6.8 Collapsing spherical dust cloud

1 0 0 0
1 _1 510 B 0 0
T, 2TgnK—z,oc 00 C 0 (6.8.8)
0 0 0 C-sin’(9)

Substitute into the reorganized Einstein equations, and write down the system of equations we have
to solve:

&8 BB 4wy

M ¢’ 2B s &
I T e Talb T
O G G e

(6.8.9)

We assume, that the unknown functions can be separated according to their variables, in the
following form:

B(r,t)=R*(t) £ (r) C(r,t)=8(t)-g(r) (6.8.10)

Substitute them into the second (2) equation to solve:

S=k-R (6.8.11)

nln
|

= | =
l

We rescale the  coordinate, so the k& constant becomes unit sized. We can freely choose one of the
remaining functions, thus we bring our two unknown functions into the following forms:

B(r,t)=R*(¢t)-f(r) C(r,t)=R(¢)r (6.8.12)

Substitute into (3) and (4) and separate the variables. Since the two sides of the equations depend on
different variables, their value is a separation constant:

_ f —R.R+2.R2_m.p(t).R2

fr ¢’
1 1 ' s 2 4y 2
_F+f‘r2_m_R.R+2-R —?-p(z‘)ﬂ (6.8.13)

The two left sides are equal with each other, and the separation constant in the form of our choice:
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6.8 Collapsing spherical dust cloud

_f —R~R+2~R2—4.#~p(t)~R2=—2~k

> =

for c
fr)=—— (6.8.14)
1—k-r
The arc length squared of the spherically symmetric dust cloud:
2
ds'=c"d R (1) | - d}: r(d Ptsin’(9)-d @) (6.8.15)
— 0}/‘

Substitute the functions and the separation constant into the first (1) equation we have to solve:

R.R:_m.p(t)‘lf

3.¢?
_ 4my 2 h2 4Ty 2
~2k== 2L (1) R4 2R == p (1) R (6.8.16)
c c

Determine the total mass of the cloud and substitute it:

4.t

M=== p(¢)-R(t) (6.8.17)

The separation constant:

R 2:y-M ~L—R2

__&
¢ R R

—k (6.8.18)

By agreement, R(¢) is the time dependent radius of the spherical dust cloud, its unit is length, » and
k have no dimension. Examine a collapsing dust cloud, or a collapsing star with negligible internal
pressure. The particles composing the celestial body are at rest at the beginning moment:

R=0

In this case the separation constant and the change in R:

r 2, R(0)—R(z)
k=2 R =k- 6.8.19
R R(t) ( )
The solution of this differential equation is a cycloid curve, with parametric equations:
R .
c-t:2'(—\/0%)~(q/+sm((p)) RZ@-(WJrsin(w)) (6.8.20)
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6.8 Collapsing spherical dust cloud

ct

In the case of any radial change of the spherically symmetric mass distribution, the spacetime of the
external vacuum is the Schwarzschild solution. Therefore the collapse time of the star is the same as
the time of the observer falling at the height of the star surface.

6.9 Electromagnetic interaction

On the curved four dimensional spacetime of general relativity, gravitation is an inertial
force, because it occurs only when the reference frame does not move on a straight line. The
electromagnetic field however exerts a real force, that diverts charged bodies from the geodesics,
and is detectable in every reference frame (it is coordinate system independent). The properties of
the electromagnetic field are determined by a four-vector potential:

4,=(¢p 4, 4, 4. (6.9.1)

In flat spacetime the classical form of the action functional:

S[x(t)]ZT L(x,x,t)dt (6.9.2)

14

In the presence of a general conservative force law, the function can be determined easily, the
contribution coming from the interactions between the particles has to be subtracted from the term
depending on the movement:

L=E

Eputential (693)

kinetic

In the case of the action describing the movement of the charged particle, the first term is the free
movement, the second is the contribution of the electromagnetic field, where Q is the charge of the
particle:
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6.9 Electromagnetic interaction
—_r m-c-ds%—Q-Ao(-a’x‘X (6.9.4)
c
The principle of least action:
6S=—5f m-c-\/dxa-dxa-l-Q-Aa-dx“:O
c
Q A5 dx” +Q 5 A -dx"=0 (6.9.5)

The last term is zero, where u is the coordinate velocity:

f m-c-duaﬁx“+g-dA(x-6x°‘—Q-5Aa-dx“)—(m~c'ua+Q-Aa)-dx“ZO
c c c

A 04
(SA”:a 1.5 x" dA,=—72dx"
0Xx 0x

04 O 04

cedu S “+Q._ﬁ.d “5xP — F=0 9.

_fmc Uy O X ¢ ox" "0 x e o5 (6.9.6)
Substitution:

du
dunzd—sn‘ds dx"=u"-ds
f m-c-du“—Q~ 6A,3_6Au w6 x%ds=0 (6.9.7)

ds ¢ \ox® ox*

Equation of motion of a charged particle moving in electromagnetic field:

m~c-%:Q-(8A aA) =L.F (6.9.8)

ox" ox" c

Where the form of the electromagnetic tensor is the same in arbitrarily curved spacetime as well,
because the connections of the invariant derivatives cancel mutually:

04, 04,
ox" ox"

F,.=V,A4,-V A4,= (6.9.9)

Thus the F, electromagnetic four-force depends on the Q charge, the F), electromagnetic tensor and
the u four-velocity, or in other words the electromagnetic tensor and the j current density:
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6.9 Electromagnetic interaction

F=Lr
C

n

(84 1 X
V= (6.9.10)

no

jZ(C'p jx jy .]z)

If we add to the vector potential the partial derivative of an arbitrary scalar function, it does not
influence the result, this is the gauge invariance:

0 «
zA,,=A,7+a—j, — V,.4"=0 (6.9.11)

The components of the electromagnetic tensor are the E electric field strength and the B magnetic
induction:

0 —E, l-Ey ~E.
C C C
-—E. 0 -B. B,
F, .= f (6.9.12)

-~E, B. 0 -B,

C
) -B, B, 0

C

The Maxwell equations describe the electromagnetic interaction. According to one of them, the
source of the electromagnetic tensor is the current density, the other is a simple identity:

OF"™ . oF,, OF, OF,
o =ty " axZ + axﬁ;u axn“:() (6.9.13)

In curved spacetime, the partial derivative changes to invariant derivative in the Maxwell equations:
V(meX:UO'jn VNFnK+VKFun+V'7FKu:0 (6.9.14)

The vacuum Einstein equations were derived for spacetimes, where bodies move on trajectories
described by geodesic equations. Thus in every case where the moving bodies deviate from the
geodesics, we can be sure, that an energy-momentum tensor is present, that describes the properties
of the matter, that diverted the test bodies. The electromagnetic field also has energy, thus it exerts
gravitational influence. Based on the definition of the energy-momentum tensor, it can be expressed
from the equation of movement of the charged particle.

First we write down the electromagnetic force purely with the electromagnetic tensor. For
this we substitute the first Maxwell equations into the formula for the electromagnetic force:

1 . 1 B
F=—F .j%=—F .V.F
c ntxJ c 1, na B
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6.9 Electromagnetic interaction
ety F o =Fo Vi F* (6.9.15)
We expand the invariant derivative on the right side using the product differentiation rule:
ety F,=V4(F o F~F*V,F,, (6.9.16)
Substitute the second Maxwell equation into the right-side term:

1

«p _ 1 B B —
F ~VBFW—E~F -VBFM+5-F ~Vanﬁ—
1 o 1 o 1 24 1 (24
L F e Vg =5 PV, F ==V (FF )= 1oV, (FEFy)
(6.9.17)
Reinsert it into the electromagnetic force:
64 1 24
C'HO.Fr]:VB(Fr](x.F B>+Zgn .Vn<Ff('Fo(ﬁ)
_ 1 o 1 « B _ «
F”__c-uov"(F .Fuﬁ-i-z.g Y.Fa.Fyﬁ)—VaTn (6.9.18)
The electromagnetic energy-momentum tensor:
T =— 1 . F”"‘.FK_{_l.g”K.F .F‘"'S (69 19)
¢l | op .
In matrix form:
S S S
l~(eO-E2+i~Bz) = Z=
2 Hy c c c
S,
_ _O-xx _O-xy _O—xz
T = 5 (6.9.20)
b} _ _ _
c O—)’x U)’)’ O—J’Z
S.
? _O-zx _O-zy _Uzz

The direction of movement of the electromagnetic wave is shown by the Poynting vector:

-

=Ll pvB (6.9.21)

1
Ho

The form of the Maxwell stress tensor composing the spatial terms in flat spacetime:
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6.9 Electromagnetic interaction

_ 1 1 2
O'ij—EO‘Ei'Ej—Fu—'Bi'Bj—E'(EO'E +
0

1

Ho

Bz)'éij (6.9.22)
The divergence of the electromagnetic energy-momentum tensor:

24 1 X
VT, =F,=—F ) (6.9.23)

6.10 Electromagnetic waves

In order to determine the phase equation describing the electromagnetic wave, we start with
the Maxwell equations:

V. F"=uy j"

V(" Va4~ g*V A" =py j"

—gaﬁva'vﬂA”-l-g"ﬁva-vﬁAazuo-]’” /+g"BVB-Va A“—g”BVB-VaA‘X

—g""V 'V d"+ " (Vo V=V V) A4+ gV V A=y j" (6.10.1)

The electromagnetic waves propagate in space detached from their source, therefore the current
density is zero, and we also write down the gauge invariance:

=0 V, A4°=0 (6.10.2)

Substitute the Ricci tensor as well, it is derived with index contraction from the commutator of the
invariant derivative, the curvature tensor:

RI=¢g"(V.V,=V,V,) (6.10.3)

The result is the wave equation of the electromagnetic waves:

—g""V V,A"+R!-4°=0 (6.10.4)

We are investigating the wave function in the following form:
A"=a"e"" (6.10.5)

Where the wave function is proportional to the scalar product of the wave number vector and the
position vector:
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6.10 Electromagnetic waves
Yok x*

Where the formulas for the wave number vector and the light ray are:

&

K=

(6.10.6)

And the wave function changes faster than the wave number vector, the amplitude, or the metric
tensor. By using these the original equation is simplified, this is the eikonal or phase equation:

go#. O 0w _ (6.10.7)

We can see that the wave number vector is light-like, thus we have shown, that the electromagnetic
waves move in light-like directions:

gk k=0 (6.10.8)
Examine the invariant derivative of the scalar product:

V, (k" k,)=0

ko' V, k*+k*V k=0 (6.10.9)
We can rearrange the first term, until it looks like the second term:

ko Vok =k V(g kg)=ko kg V, g + ko gV kg

The invariant derivative of the metric tensor is zero, and we use up the second metric tensor to raise
the index:

k:x'gmg'vn kﬁzkﬁ'vnkﬁ
Reinsert the result into the original equation:
2:k%V, k=0 (6.10.10)

If the connection is symmetric, we can replace the indices of the invariant derivative and the wave
number vector:

2 2
Voot kT s kel =Yk (s freeinden)

Reinsert it and then substitute the equation of light rays replacing the contravariant wave number
vector:

2-k%V k,=0 (6.10.11)
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6.10 Electromagnetic waves

dx” dA
dA Va 1 2

We recognize the relationship between the invariant derivative and the derivative along a curve.
When the derivative along a curve is zero, we recover the geodesic equation, thus we have shown,
that light rays propagate along geodesics:

dx*-V  k, =Dk, =0 (6.10.12)

6.11 Unification of interactions

Three elementary interactions govern the macroscopic world in our experience:
gravitational, electrical and magnetic. Scientific development gradually recognized them in the
cavalcade of phenomena, and that there are common organizing principles behind them. The Kaluza
theory builds on general relativity, and by using the generalized Maxwell equations in Riemannian
geometry (that unify electricity and magnetism), it unifies and geometrizes all macroscopic
interactions. The five dimensional Einstein equation in vacuum:

1
Rpg=5 R-gpp=0 (6.11.1)

If electromagnetic fields are not present, in this limiting case the metric of the four dimensional
spacetime is independent of the fifth coordinate. This assumption is the basis of the choice for the
general metric. The original choice of Theodor Kaluza for the five dimensional metric tensor:

4
C-A
gPQ_ gnK n

ot ag (6.11.2)

Here A4, is the electromagnetic four-potential, ¢ is an unknown constant. We differentiate between
the four dimensional quantities, and the components of five dimensional quantities in four
coordinates with a dimension number in the upper left index. Another possible choice is by Oscar
Klein, we will use this to calculate the geometric quantities. His arc length squared and the twice
covariant metric tensor:

ds’=g g dx“-dx’ + > (C- A4 -dx"+ dx')?

4gnK+C2'¢Z’An'AK C'(l)z'An

6.11.3
C-¢p>A, ¢’ ( )

gro—

We can see, that the four dimensional metric tensor and the four dimensional components of the five
dimensional metric tensor are already not equal:
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6.11 Unification of interactions

F (6.11.4)

We declare that the derivative of the metric tensor according to the fifth direction shall be zero,
therefore the corresponding derivative of the connection will also be zero, this is the cylinder
condition:

agPQ aFQPR
=0 — =0 6.11.5
ox* ox' ( )
The twice contravariant metric tensor:
4g’7K —C- A']
PO 1 (6.11.6)
g _CAK _+C2'A2 . .
¢2
The partial derivative of the metric tensor:
o oA oA oA
LZK+C2.¢2.(_Z.AK+AU. ;) C'Cbz'—,z
6gPQ: 0x 0x ox 0x 6.11.7)
P’ 1.
ox , 0A,
Cop—F 0
ox

During the derivation we utilize, that the electromagnetic tensor and the vector potential are
quantities also defined in four dimensions, therefore we can perform index operations on them
using the the four dimensional metric tensor as well. The connection in five dimensions:

04

agRA+agAP_agPR

ro=
PR ox"  ax* ox?

(6.11.8)

1
2g

We determine the various index combinations separately. First the components of the five
dimensional connection with 0 — 3 coordinate indices:

’r* :l.g‘“‘. aguA+agAn_asgnu
o2 ox" ox" ox”
5 1s 55g asg asg 1 408, 08, asg
o=y e ot o s |\ ot e (619
2 0x 0x ox 2 o0x 0x 0x

Substitute the metric tensor components. The last term in the second parentheses is zero because of
the cylinder condition:

o’ o’ o’
SFKnu:l‘4 Ko guo(+ go(n_ gzu _l'Cz‘(l)z‘AK' aAu+6A (6_11_10)
2 ox" ox" 0x 2 ox" ox"
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6.11 Unification of interactions

We calculate the quantity in the first parentheses separately, because we will need this result later:

aSngrang,_aSgw 5 Bus 2.0 04, oA,
ox" ox" ox™ ox" ox" P
d'g oA o4\ o'g o4, aA
+—=0 4 O ph | S At Ay |- C P’
ox" ¢ (6x“ ! 6x“) ox” ¢ ox" " Hx

In this partial result o is a free index. Rearrange the formula and substitute the electromagnetic
tensor:

0°8ua , 0°8un 0’8 0"8un, 0'8un_0°g1,
ox" ox" ox" ox" ox" ox™

6A 04, 0A, OA 0A, OA
+C* ™| 4 Byt g, | —2——2 |+ 4, | ———E
¢ 8 Tox" “(8x" 0x°‘) "(8}6” Gx“)
o’ o’ 0’ o’ o o
Sua ) O Ean_ gg“: ua ) O Ban_ gg“+C2-qf>2- R 04, 04, L+ A F +A:F,,
ox" ox" 0x ox" ox" 0x 8x” ﬁx”
(6.11.11)

Continue the derivation, substitute the partial result:

51—-K 21'4 Ko, a4gua+a4gan_a4gnu
w2 ox" ox" 0 x"
T A, aA“+% +A,F  +A4,F,,
2 ox" ox"
04, 04
C A | —E 12
2 @ 0x" 6x“)

We recognize the four dimensional connection in the first term, raise the index in the second term,
this gives us a term that cancels out the third term, thus the result is:

K K 1 K K
(1) T =T W+E-C2-¢2-(AH-F,,+A,,-F“) (6.11.12)

Secondly we determine connection components with coordinate indices, where one of the lower
index has 4™ coordinate. In the absence of torsion the connection is symmetric, therefore it is
enough to do it for just one case:

1—-K :l'gKA' aguA_i_agA4_ag4,u
) ox'  ax" ox*

(6.11.13)

We see immediately that the first term in the parentheses is zero because of the cylinder condition:
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6.11 Unification of interactions

aga4_ag4u
ox"  ox"

Ny

ca |08 ag4u
2 g . — — ———

K _15K0(
Pa=y7e ox"  oxt

)

Applying the cylinder condition again, substituting:

8A A
1—-K4u ;4 KX (C ¢2 C'¢2'2x§)

Substitute the electromagnetic tensor and raise the index. We obtained, that the electromagnetic
tensor is the same as one of the five dimensional connection components up to constant multipliers,
this justifies Oscar Klein's choice for the metric tensor:

K K 1 K
) re<,=r u4:5~C-¢>2-FH (6.11.14)

Thirdly it is the turn of the connection components with 4™ upper index:

rt :l.g‘“‘.

aguA+agAn_aSgnu
ox" ox" ox”

1—-4 2. 40(_

1
nu Eg

(6.11.15)

5 5 5
a gua+a g(xn_a gnp)+l.g44

N 6gu4+ag4r[ _asgnp
ox" ox" 0 x" 2

ox"  ox" ox'

Substitute the previous partial result into the first parentheses, apply the cylinder condition in the
second, and also substitute:

1 02,  0'84, 0'g (24, 04,
1—-4 - _C,AIX . /,ux+ xn ny+C u+ +A F _|_A F
nu 2( ) axn axu 6)6 ¢ ox f7 ax
1 1 2 2 aA
+—|—=+C-A4"||C- “+C
2\ ¢’ )( »" A ox" )
4 4 4
r4nu:—l.C.A"‘. 0 gﬁ“’(_i_a gtxn_a gZu
2 Ox axu ax
1 «[0A4, O 1 .
_E.Cs.¢2.A(X.A ( 6x'7+ xg)_E.CS,d)z,A '(Au'Fna“LAn'FW)
1 0A, 04, 1 04, 04
+—-C- Ly ——1 C AP 4+ 2%
2 (8x" ox" ) 2 » (8x "

The second and the last terms cancel:

3)
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6.11 Unification of interactions

1 d'g d'g d'g 5 04, 0A

', =——C|4"% =22 =00 — 2 O p? A (A F o+ A, F o) —| —L + =2

L) ox" ox" ox" ¢ (A F ot Ay Fie) ox" o0x"
(6.11.16)

Fourthly both lower indices of the connection are 4, because of the cylinder condition several terms
fall out immediately, finally it turns out about the last term too, that it is zero:

e :l_gKA_ 0844 6gA4_ag44 _ l'gKA.ag44
“2 oxt  ox' ox” 2 ox”
K 1 vaO8u 1 408y 1 o 08
4 y=—5¢ —%—%58 —Za+-58 —=-0 6.11.17
4) 44 5 g PYCIND g Py > g 52" ( )

Fifthly we examine connection components, where one of the lower and the upper indices are 4. We
start with the cylinder condition again:

1—v44“:l.g4/4' agu4A+agA4_ag4Au :l.gm‘ ag“—agi’l
2 ox"  o0x" 0Ox 2 ox" 0Ox
1 40[08sa 084 1 (084 0g
r', =—g"—o-——t+=.g" —— 6.11.18
w8 oy e | 28 o o ( )
Only the first term is non-zero, substitute:
1 , 04 , 04
'Y =——.C-A%|C-p>- =5 C.p* =~
w2 ( ¢ 0 x" ¢ 0x”
Express the electromagnetic tensor:
1 «
(5) r44u:r“u4:—§-cz-¢2-/1 F o (6.11.19)

Sixthly the connection component with all indices 4™ is zero because of the cylinder condition:

r :lgm. ag4A+agA4_ag44 :_l.g4A.6g44
) ox'  ox' ox 2 ox”

6 1—'4 —-——— —_— .
(6) 44 5 g PYCIND g Py

(6.11.20)

Now we can write down the five dimensional geodesic equation. When we write out the terms in
detail, the last one of them is zero:
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6.11 Unification of interactions

2 P A B
0 x2 FPAB'ﬁx Ox 0
oA OA OA
o’x" . p 0x" 0x P 8x4 ox® p ox' ox*
— 42T +I . =0 1.
oA “F oA OA oA A oA oA (6.11.21)
Its projection in the four dimensional spacetime:
o’x" s, 0x* 0x" . 0x 0x"
— 2.7, = =
oA oA oA AN 0A (6.11.22)
Substitute and rearrange the formula:
ﬁ+ 4arn +l-C2-¢2-(A F'+ 4 -F”) 6_)6‘)(_8_96'3+2_ l-C-qbz-F" ‘6_)64‘6)60(
o A2 M) N AT RE) 2 “ oA 0A
o’ x" 4 ox" 6x P, ox" ax . 6x4 0x
— 2 4 Chpt Ay —+C .
oA “bHN OA b Ay F “ A A P “ A 0A

The equation of motion of a charged particle influenced by the gravitational and the electromagnetic
interactions:

ox® ox*

0x"
:_C'(bz'(C'AB' oA oA

F 6.11.23
V2 (6.11.23)

o’x" ., ox* 0x"
- 4+ I"” . T
oA’ “FHA DA

The previously derived equation of movement of the charged particle under the influence of an
electromagnetic field:

O'x" apn 0x" 0x'_ QO pn 02"

oAl FON 0N cm © OA (6.11.24)
Compare it to our derived equation:

QO _,0x"_ dx" 8x4 , 0x"

= .2t . C-A. E.

cm oA > d 87\ oA oA

Q 2 axﬁ 8X4

——=—C-¢p"-|C- Ay ——+—— 6.11.25

cm ¢ P oa oA ( )

If the charge of the particle is zero, only the gravitation of the electromagnetic field will affect it:

ax 6x4
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6.11 Unification of interactions

ox’ ox"
—=—C-Ay—— 1.2
oA C- 4, A (6.11.26)

The entire electromagnetic field is the sum of the external field, and the field of the charged
particle:

@xﬁzax“_ 0
d OA oA c-C-qbz-m

—C-4 (6.11.27)

6.12 Klein-Gordon equation

The spacetime of general relativity provides a stage for theories describing all the other
interactions. Therefore it is worth to summarize the equations, that describe the behaviour of
particles of matter on this background.

In 1925, this is how Erwin Schrddinger originally wrote down his famous equation of
quantum mechanics, taking special relativity into account, that was already 20 years old at the time.
However he did not manage to interpret the fine structure of the hydrogen spectrum with it,
therefore he chose the non-relativistic, well known form. Later in 1927 Oscar Klein and Walter
Gordon recommended the same formula for the relativistic equation of the electron, however it
failed here too, because of the electron spin. It can however accurately describe spin-free particles,
like the 7-meson.

The equation of the conservation of energy:

—E*+p*ct+m*ct=0 (6.12.1)
The method of first quantization is the following: substitute the quantum mechanical operators, and

we consider every term as an operator on a complex function. The quantum mechanical operators of
the energy and momentum:

Y D
E=i-n<L =—ih—

Sy P : ox'
— Byt pry+mietw=0 (6.12.2)

2 2

ot P

We amass the operators:

1 3 0> 2 2
hz' — Yy+m-c (,UZO
(CZ atZ a(xl)Z (6123)
w0
W g T W =0
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6.12 Klein-Gordon equation

We obtain the general relationship by substituting the geometric quantities of the general spacetime:

2 2
g”B-Viﬁw+mhf =0 (6.12.4)

The solution of the equation for a free particle:

W(x")=e T = ke e (6.12.5)
The eigenvalue equation of the energy operator:

E Yy=E-yp

., 0 . kXm0t . kX - oy x =
l'h‘ w:l.h.iezk‘,x wt:l'h'(_l'w)'elk“x wt:h.w.ezk“x w-t
ot ot

E=%w (6.12.6)
The eigenvalue equation of the momentum operator:

pWw=p;y

lha_(lf: l..h_Lei~ku~x"—w~t:l..h.(_i‘ki)_eﬁk‘;x”—wi:h.ki_ei~ka~x"—w.t
ox ox'

p;=hk, (6.12.7)
Reinsert the eigenvalues in the Klein-Gordon equation into the place of the operators:

— Byt pry+mictw=0

—(h-w) y+(hk) y+m - p=0 (6.12.8)

The energy eigenvalues can be negative as well, we interpret them as antiparticles with positive
energy:

hrw=+c\(hk)+m’c (6.12.9)

6.13 Proca equation

It is similar to the Klein-Gordon equation, but instead of a scalar, it applies to a four-
component wave function, it describes particles with spin 1, like the photon and the mediators of the
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6.13 Proca equation

weak interaction, the W*, W~ and Z bosons:

2 2
m -c n

g Viw'+ Pl =0 (6.13.1)

This is usually supplemented with a continuity condition:

a(pazo
0Xx

(6.13.2)

The Maxwell equations represent the limiting case of zero mass, this is the previously derived
eikonal, or phase equation:

g Vip"=0 (6.13.3)

6.14 Dirac equation

Paul Adrien Maurice Dirac derived the equation named after him in 1928, that correctly
describes the relativistic particles with half spin, like the electron and the quarks. Unlike the Klein-
Gordon equation, it is a first order differential equation. We start with the Klein-Gordon equation:

2

N A e e 6.14.1
0xox"

X ‘OX

It is actually a second order eigenvalue equation:
Ll /A (6.14.2)

This equation can be made first order, if we introduce factors with convenient algebraic properties.
Take the square root of both sides:

Y
ihy L =iy (6.14.3)
ox

This equation is valid only if the following condition is satisfied by y, unknown for the moment:
y'y +yty"'=2-n"" (6.14.4)

The condition is fulfilled, if the y are at least four times four, specially chosen matrices:
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6.14 Dirac equation

Yoo Yor Yoz Yo3 1 0 0 O
N | Yo Yu Yo Yn3 2 01 0 O
Y=¥Yn= l=e =
! Yo Y2 Y2 Yo 1 0 010
Yo Y31 Y ¥ 0 0 0 1
VY Yy =2" 1 (6.14.5)

This wave function will also have four components. Substitute into the eigenvalue equation:

B

. (04 a
iny,f Sh=Emee, 0 (6.14.6)

Rearrange it and write down the Dirac equation:

. o< awﬂ_'_ B_
ih(y, )" Py tm-ce P =0 (6.14.7)

Since there are no criteria on the components of the y-matrices, they can be written in several
possible forms. To simplify the notation, we introduce the Pauli matrices:

4
0 1
A2 [0 —1i ~3_ (1 O

o _(i 0 ) o —( ) (6.14.8)

The Dirac representation of the y-matrices:

A0 i 6 Al 6 6—1
={. " = o 6.14.9
Y (0 _1) y (_6, 0) ( )
The Weyl representation of the y-matrices:
o [0 1 i [0 &
={. = = A 6.14.10
Y (1 0) y (_61 0) ( )

The Majorana representation of the y-matrices:

o_[0 67 i [0 0
Y 52 0 Y 0 &
o [0 =6 s . [6" 0
y2=(&2 6) y3:—z-(0 (}1) (6.14.11)
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6.14 Dirac equation

Total momentum of a charged particle in an electromagnetic field, where ¢ is the charge of the
particle, 4, is the four-potential of the external field:

pn+i-A
c

n

Dirac equation of a charged particle:

B

. o a
ihe(y, i

aq B
+ L.oq. +m-c-
ety LA e e

g w'=0 (6.14.7)

6.15 Weyl equation

The Weyl equation describes massless particles with half spin, like the neutrinos:

=0 (6.15.1)

The wave function has two components because of the Pauli matrix.
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7. Gravitational waves

7. Gravitational waves

Changes in matter that are not spherically symmetric expansions or contractions cause
propagating disturbances in spacetime. These waves become independent from their source and
propagate at the speed of light. Far away from the originating celestial body they are probably very
weak, therefore they can be approximated with small linear deviations from the flat background
metric.

Albert Einstein derived the wave solution of the equations named after him for the first time
in 1918. Several questions arose regarding the results. It was unclear for a long time, if those waves
were coordinate effects, or real physical phenomena. The British astronomer Eddington had a major
role in dispelling doubts. He confirmed light bending with observations during the famous solar
eclipse of 1919. Later he concluded, that the transversal wave is a real phenomenon propagating at
the speed of light, while — in his words — the “longitudinal gravitational waves propagate at the
speed of thought”. In 1938 Einstein and Rosen sent an article attempting to disprove the existence
of gravitational waves to the Physical Review, but publication was not allowed by the anonymous
peer review. Einstein took such a big offence, that he never published in the journal ever again,
despite that it turned out later, that the proofreader was right.

Although waves in spacetime have not been directly detected by gravitational wave
detectors, there is indirect evidence for the correctness of the equations. The 1993 Nobel Prize in
Physics was awarded to Russel Alan Hulse and Joseph Hooton Taylor Jr. for measurements of the
binary system containing the PSR B1913+16 pulsar in the constellation Aquila. Their observations
confirmed several consequences of the theory of relativity, including the amount of energy carried
away by gravitational waves, by measuring the decrease of the orbital period of the binary system.

7.1 Splitting the metric tensor

The first approach is to split the metric tensor to the background metric and the metric of the
gravitational waves:

&= Myt e |h,. /<1
gnK:nnK_hl’lK (711)

Where the metric tensor of flat spacetime is:

1 0 0 O
o -1 0 o
0 0 0 -1

Let us give them a try:

oo & =Nyt h, ) (N —h")
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7.1 Splitting the metric tensor

Cna & =N Ny h Ay n™ —hy o B

R Gy (7.1.3)

Because we chose 4 to be very small, its square is even smaller and negligible. The partial
derivatives of the metric tensor:

agnx_annx+ hnK _ hnK
ox" ox" ox" ox"

ag"K_ﬁn"K hﬂK _ hUK
ax*  ox* ox"  ox" (7.1.4)

Therefore the connection:

K _1 Kot
Fnu_a'g )

athrahM_ahw)

7.1.5
ox" ox" ox" ( )

The derivatives of the connection:

g Vs, Doy O,
ox" ox" ox"

N Y

1
ox" 2 ox’

ox" ox" axvax“_ ox 0x"
(7.1.6)

arK’”‘:l.ﬁhm. 8h”°‘+ahun_ahnu +l.g’“". azhua 82han ﬁzhnu
ox" 2 ox" \ax" ox" ox™) 2

We assume in our approximation, that we can easily separate the changes in spacetime to fast and

slowly changing terms. Calculate the curvature tensor, neglect the slowly changing terms, keep only
the second derivatives:

_or, ors,

R =
" axY ox"
2 2 2 2
R :l-g”- o h,, 3 o°h,, B o°h,, N o°h,, (7.17)
Y2 ox'ox" ox"ox" ox"ox" ox"ox"

Select a case and calculate the completely covariant curvature tensor:

RK aFKtt_arKvt

ttV: t
ox" Ox
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7.1 Splitting the metric tensor

o L ( Ohy,  h, h,, . Oh, )

L= — - - + — 7.1.8
w2 g ox'0x" ox'ox* o0xox’ ox'ox ( )
1 «| Oh, *h o*h,, ~ O°h,
gKB.RBltV:_'gKﬂ.gﬂ ’ v zt_ v - x t t+ t to(
2 Ox O0x Ox 0x OxO0Ox OxOx
_l azhkt _ azhtt _ athv + azhvt (7 1 9)
2 \lox"ox’ ox'ox" ox'ox ox'ox o

Choose a part of the metric tensor of the gravitational radiation, that's change does not depend on
any spatial coordinates, this is the transversal term:

1 &°h,,
Kttv:_z' o1 (7.1.10)

R

Substitute it into the formula for geodesic deviation:

oix" . « 0x" 0x”
—+R .d —_——
or By S o4

2«

0°x 5 ot 0x”
L = ‘R dt—
8k 6t2 8«s tty at al
d°x,
57 ——Rkw-dxy
O*x. 1 0°h,
Pt azzy'dxy (7.1.11)

The Jx, oscillations caused by weak waves will be small, therefore we can consider the dx’ distance
from the centre constant. After integration the discrepancies caused by the gravitational waves:

6xK:%-hKy-dxy

(7.1.12)

7.2 Examining the metric

Determine the spacetime of the gravitational waves. The linear connection:

et 8hm+8han_8hw
ox" ox" ox"

I—vK

1
nu_z'g

233



7.2 Examining the metric

- _l_(ahf,+ah:_8hnu)

= 2.1

nu 2 axrl axp axK (7 )
Write down the Ricci tensor in a linear approximation, substitute the connection:

_ pX _aranu aro{txu
nu_R nufx_ﬁ_ﬁ

:l_ P 8hz+8hg_6hnu 1 5 ahz+6h§_8hw
o2 0x"\ax" ox' Ox. | 2 0x"\ox® ox' Ox,

o’y 0% h o' hy, 0% h
N (B L L (7.2.2)
2 \ox"ox" 0x%ox, ox"ox" 0x"ox,

Introduce a new notation, the definition of the overline in the case of tensors with two indices:

_ 1 «
M, =M, =M, (7.2.3)

Double overline recovers the original tensor:

7 — 1 o _ 1 o 1 o 1 B«
MI]K_MT]K_E.MO('”I‘]K_(MT]K_E.MO('”)‘]K)_5.(M0(_5'Mﬁ.r’0().nrlk
MLy Lo Lvbnn =M _—Mm" M
I’)K_E. zx'nr)K_E. a.nnx+z. B.no('nnk_ )’]K_ D(.nl’)K+ ﬁ'nnx
M, =M,, (7.2.4)

We used that ny=4, therefore this relationship is valid only in four dimensions. Substitute the
Ricci tensor into the Einstein equation, and obtain its linearised variant:

R —l-R-n :_8'”74'3’.]"%
c

oy nK

__8my T
nk— 3 Lok
c
27w P 27w P .
l. ao(hn - « Lh—— 0 ha + =K :_8 Tr4y'TnK (725)
2\ox"0x" 0x"0x, ox"ox" 0x"0x, c

With a suitable choice of coordinate system, this equation can be simplified further. Examine a
function describing an arbitrary coordinate transformation, similar to /# in magnitude:
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7.2 Examining the metric
=4 ()

XM= )

(7.2.6)
The transformation of the metric tensor:
« ox* ox’
Zgnx(2xn):g¢xﬂ(xn)'/\n 'AKB:gtxﬁ(xn)' 'y P (727)
,0x' ,0x
The metric tensor of the first coordinate system:
o 0 Zni(2x")
g, (x")=g, (x"-€")=g, (x")-§ -"a—xza (7.2.8)
2

The second metric tensor can be written down with the transformation law and the first metric
tensor:

(oo OE"\[os OE
=85 — Lo | 55—
28,2 ) ( " zax")( “L0x"

a n
-(guﬁ(zx”)—ay-—g“ﬁ(jx ) (7.2.9)
,0X

The same with linear accuracy:

ot ot
Zgnx(zxn):gnx(2xn)_ agn.gaK(Z‘xn) E
00X

08,.(2x")
— . M_xy, _onkist 7
X" gmg(zx )—¢ ox

Omit the coordinate system indices, and note with double crosses the transformed quantities we
seek:

m _ n_ 0& n 555 n % agnK(xn)
#gr]K(x )_gnx(x )_ﬁ.gax(x )_a_xK.gy]B(x )_E 'T (7.210)
#gnK:nnK+#hnK
With linear precision 4 can be determined in the following way:

08, 0%

R T

#hg:hi—laga (7.2.11)
o0x

Apply the rule of overline:
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7.2 Examining the metric

e ox" oxt 2 9"
08, 0&, 0%"
#'"nk hnk axn axz a o nk (7212)
Partial derivatives with respect to covariant coordinates:

Ohy '8 0% " _

Oxg Oxp0x" Oxpox Ox“0x"
Ohyg, 2

e O (7.2.13)

Oxg axﬁ-axﬁ_

This equation is satisfied for sure, if we assume that the first term is always zero, this is the
harmonic condition of the coordinates:

ahﬁ“—o 7.2.14
T (7.2.14)

In this case the linearised Einstein equation:

o*h, __lemy
0x,0x" ¢

T, (7.2.15)

7.3 Plane wave solutions

The linearised Einstein equation in empty space:

O h,,

— =0 7.3.1
0x,0x" (7.3.1)

That contains the coordinates always in the following combination, we can use it to simplify:

u=t—= (7.3.2)

C

We investigate the solutions of this. The equations of the harmonic condition are satisfied:
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7.3 Plane wave solutions

w=he=h.=h,.=0 (7.3.3)
Thus only transversal waves exist. The following general arc length squared satisfies this condition:
ds’=c*dt*—(1—a)-dx*—(1+a)-dy*+2-b-dx-dy—dz* (7.3.4)
Where a and b are arbitrary functions, very small in magnitude, and are the components of /4:
akl b«

Metric tensor and traceless transverse /:

1 0 0 0 00 0 O
0 —1+4a b 0 0 a b O
= h = .
EnTlo b —1-a 0 "0 b —a 0 (7.3.5)
0 0 0 -1 0 0 0 O
The two components of the gravitational wave moving in the z direction:
h+:hxx:_hyy hX:hxy:hyx (736)
Connection with linear precision:
t _ ot z _ 1z __ X _ X _ l aa
—I )oc_l—'yy__r xx_Fyy__rtx_Fyty__F xz_ryyz_ﬁa
_t__z__X__}’__X_x_y—L.@
ny_ ny_ rty_ rtx_ th_[' yz_r xz_2_c au (737)
The completely covariant curvature tensor:
1 &%*a
_Rtxtx:Rtyzy:_szzx:Rzyzy:Rtxzx:_Rtyzy:—2'—2
2:¢” Ou
1 &
_Rtxty:_szzy:_szzx:Rtxzy:R ~ 2 (738)

tyzx — 24 2
2-¢” Ou

We can see already on this, that the gravitational waves propagate at the speed of light. The
monochromatic planar wave special solutions:

a(u)=A-cos(k-z—w-t)

b(u)=B-cos(k-z—w-t—) (7.3.9)
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7.3 Plane wave solutions
Where 4, B, ¢ are constants and the wave number vector is:

k=

w
- (7.3.10)
7.4 Second order approximation

Calculate the energy carried away by the gravitational radiation. We write down the
gravitational equations in second order approximation. The Ricci tensor in second order:

R(z):l-h"‘ﬂ~ 82}10(5 _ 82]’[“[; . azhnﬂ n azhn” l'ah[xﬁ'ahtxﬁ
o2 ox"-0x" 0x%ox" ox%-ox* o0x*oxf| 4 ox" ox*
1 0k [Ohy, Ohy, L1 on” (Ohy, Ohyy  Ohy, 1 0hy (Oh,, Oh, Oh,
2 0x,\0x* x| 2 ox* \ox® ox" ox*) 4 ox,\ox* ox" ox"
(7.4.1)
The metric tensor of the radiation is the sum of the first order and second order term:
h,,=h+h’) (7.4.2)
The Einstein equation is constrained in vacuum by the following condition:
G /() +G)(h, )=0
=G (h2)==G(h,,) 7.4.3
tr]K nk uv nk uv ( o T )
Local energy-momentum tensor of gravitational waves:
4 “ Oh
(=t 0N Clu (7.4.4)
32-mty o0x" Ox

This approach to the energy is not valid in every coordinate systems, but this time it will do:
E=tyd x (7.4.5)

Next we calculate the quadrupole formula. Solve the Einstein equation, the S hypersurface here is
the past lightcone of the x point:

h(x)==X=] T (x") ds(x’) R=|x—x'| (7.4.6)

T2 Jx—x'|

Volume element on the lightcone:
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7.4 Second order approximation
dS=r*dr-d Q (7.4.7)

We assume, that the velocity of the source is much less than the speed of light, and its size is
smaller than the wavelength of the emitted gravitational radiation, this is the dipole approximation.
At great distance from the source the denominator R barely changes, therefore it can be brought
before the integral:

4
hyl)=5—L. 7, av (7.4.8)
S

We modify the remaining integral with the linearised conservation law:

6T‘:,:O
ox”

T, T, _

1 =0
(1) ox“  ox°

oT,, aToo_
ox"  ox®

) (7.4.9)

The middle equation (1):

6T,LK_ 6T,(])0:O [
oXx ox
Integrate it to the hypersurface crossing the source and the future light-line infinity:

%f T, x"-dv=| %-x“-dV:f
X

d
axK(TnK-x“)-dV—f T4V

1
fT,,K~dV=—5‘—aaof(Ton'xu+Tou'x,,)'dV (7.4.10)
X

The lower equation (2):
0T,, 0Ty
e a0 0 [xgx
ox ox

%f Too Xy X dV =— [ (Toy x4+ Toex,)-dV (7.4.11)

Equating the two equations:

1

JTyeav==3

O Tyyx, x-dV (7.4.12)
ox
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7.4 Second order approximation

Introduce the symbols for energy and time, and substitute it into the solution of the Einstein
equation (7.4.6):

T00=m~c2 =

. 4y
h, (%,t)=— -—azfxn-xx-dV (7.4.13)
cR O

nk ¢
Introduce the three dimensional quadrupole moment tensor:

QUZIp-xi-xj-d3x (7.4.14)

At great distance from the source it is a planar wave, with the following non-zero components:

cross polarized: hyy= 3.4 R O
2. . .

plus polarized: hzz_h33:_FLR'(Q22_Q33) (7.4.15)
-C .

Substitute it into ¢ (the local energy-momentum tensor), and write down the energy current along
the x axis:

y 1w
C't10:36.n.cs.Rz' 70503 +(05) (7.4.16)

Energy current radiated into the dQ2 solid angle: R*ct"d Q

Introduce the e polarisation unit vector, and define its properties. Here n is the three-vector of the
plane wave:

€ij
€w=0 €q n,=0 ew ew=1 (7.4.17)

With it the intensity of radiation with a given polarisation:

di=—Y (0, e,)dQ
P——{ ) (7.4.18)

Average over every polarisation direction. Express the polarisation unit tensor:

1
ei/.-e,d—Z-(ni-nj-nk-nl+ni-n_/-6,d+ nen8,—n;ng6 ,—n;ng 6, (7.4.19)

RO =Ny 0= 0y 0T 0400 0 00y

J
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7.4 Second order approximation

Use the three-vector of the plane wave to express the intensity:

dl: y 5.((Qab'na.nb)2+(Qab)z_éab'éac.nb'nc)'d'() (7420)
36-1-c
dl o
The average of the energy current along the 70 4.1t direction, the quadrupole formula:
_AE__y oy
TR (Qu) (7.4.21)

The second time derivative of the quadrupole moment is approximately the kinetic energy of the
non-spherically symmetric movements of the source. The amplitude of the generated waves:

5 :%_ﬂ (7.4.22)
ctor
Calculate from the quadrupole formula the radiated performance into a unit solid angle:
L=32(0,0,- 3407 (7423
c
7.5 Examples
Quadrupole moment of mass points connected with springs:
O=m-I* (7.5.1)
The length of the spring changes periodically:
[=I,+a-sin(w-?) (7.5.2)
Substitute into the equation of the quadrupole moment:
QO=m-l;+2-m-l, a-sin(w-t)+m-a*sin*(w-t) (7.5.3)
In the case of small difference the last term can be neglected:
O=—2-ml;a-w-cos(w-t) (7.5.4)

Substitute into the equation for luminosity:
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7.5 Examples

4
Lg:?%-(mlo-a-af-cos(w-t))2 (7.5.5)
c

Calculate how much gravitational energy is emitted by a vibrating rod in every second. For the sake
of simplicity, we use unit but realistic sizes:

m:]kg 10=1m
a=10"m wzl()zl
K
_ —40J
Lg—6.6488- 10 " (7.5.6)

Gravitational luminosity of a rotating rod from its quadrupole moment:

Q:%.m.l2.w3.t3
Qzﬁ-m-l2 w’
3
_ 2 Y 2 3\2
L=< (ml"w) (7.5.7)
45 ¢

2.y-
p==Y% v=w-r

(7.5.8)

%
w=—
c

~ o

Substitute these values into the luminosity and evaluate the greatest possible luminosity (or at least
its magnitude):

_ s2J
Lg—3,63-10 — (7.5.9)

S

This value more or less corresponds to the combined radiation performance of all stars of the
Universe.

The two-body problem:
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7.5 Examples

my-m,
reduced mass: u=
my+m,
relative coordinates: Z'=x|—Xx,
. i_ H i i U i
absolute coordinates: X\ =——zZ X=———Z
m, m,

The reduced quadrupole moment:

O'=-(322/~ 8" zP)
The parameters of the circular orbit:

z'=R-sin(w-t) z>=R-cos(w-?) Z=0
Quadrupole moment:

0"-0,;=18p* (322 +6:5- 2.2 +9-3%.57)

Radiation performance:

dE _32-y 5 6 4
dt  5.0°
Substitution:
2 3 _ R’ .
wR'=m;+m, t,=2-1 | ————— (Kepler's law)
y-(m+m,)

The radiation output in case of a circular orbit:

_dE _ 32.y4'mf-m§-(m1+m2)
dt  5.¢° R’

The E energy and the L angular momentum on an elliptic orbit:

m,-m,
2-E

semi-major axis: a=-y

2-E-L*(m,+m
eccentricity: =1+ a Ly E d
y -\ nt,

The radiation output in case of an elliptic orbit:
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(7.5.12)

(7.5.13)

(7.5.14)

(7.5.15)

(7.5.16)

(7.5.17)



7.5 Examples

4 2 2
: - (my+
_dE _32:y" myim (m, mz)'(1+73. 2 37'64)

= R +_
dt 50 ] 24 " 96 (7.5.18)
a-(l1—e)
The change in the orbital period:

W_3a_3E
tk 2'(1 2'|E|

. 8
b 96y mym, t )‘3 1 73 5 37 4)
_—— . . . 1+_.e +_.e

t, 5. Jy-(m+m,) \2'm 0 2)% 24 96 (7.5.19)

—e
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8. Spacetime of the Universe

8. Spacetime of the Universe

Gravitation as a macroscopic interaction influences the structure and future of the entire
Universe. Although the arrangement of stars and galaxies in it highly varies, we can do some
simplifications nevertheless. According to the cosmological principle, the Universe on the ~10®
lightyears scale is already homogeneous and isotropic, and already in much smaller volumes the
electromagnetic effect of the particles mutually cancels out, therefore in the investigated size range
they do not influence the structure of spacetime.

8.1 Assumptions

According to our current knowledge the most general Einstein equation is:

1 81"
RUK_E.R.gnK_A'gnK:_—th'TnK (811)

Where A denotes the cosmological constant we assume to be responsible for the accelerated
expansion of the Universe, that was observed for the first time in 1998. This equation is the most
general relationship that contains the metric tensor and its first and second derivatives, therefore the
cosmological constant is also part of the spacetime geometry, it does not describe matter
distribution.

We secure homogeneity by averaging, but this should be accepted with reservations, since
for example in the case of the occurring quantities the product of averages is not equal to the
average of products. The averaging of the Ricci tensor:

—_0orI% or‘, ore, or’', —r —— —5 —o
Ri,:gj—ﬁ—x;urb,.j-r”a,,—rbq,r”,.,,;éa—xa’f—a—x;’f+rby.-r”a,,—r”q,~r“,.,, (8.1.2)

Furthermore, we split up the space to cells for the averaging, but for this we would have to know
the exact metric. This method works, if there are no larger scale structures in the Universe than ~108
lightyears. The consequence of isotropy is constant curvature, in this case calculating the three
dimensional Riemann tensor is easy because of the Schur theorem:

1
jok/ZE'R'(gik'gﬂ_gil'gjk) (8.1.3)

These conditions reduce the number of possible spacetime configurations considerably.
Consequently the three dimensional space is a maximally symmetric manifold, with positive,
negative or zero possible scalar curvature, and we embed it into a four dimensional flat manifold.

These three cases determine the shape of the space around us, the density of matter, and the future
of the Universe.
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8.2 Positive curvature

8.2 Positive curvature

The first possibility is a sphere with three dimensional surface, embedded into four
dimensional flat spacetime. The equation of the surface with rectangular coordinates:

2 2 2 2 2
X{tx;+x;+x,=a

2_ 2 2 2 2
x4—a _xl _xZ_X3

The arc length squared on this surface:
dl=dx}+dxs+dx;+dx;

dx4:_x1~dxler2-dx2+x3-a’x3

X4
Let us introduce polar coordinates:

x,=r-sin(9) cos(p)

rzzxf—i-xg-l-xi
x,=r-sin(9)-sin(¢p) PN

redr=xdx,+ x,dx,+x;dx,
x,=r-cos(9)

The arc length squared with polar coordinates:

dr’ 2 9 sin®(9)-d oY)
7"2
1——

2
a

dl*=

Rescale the » coordinate depending on the a radius of the sphere:

F=—
a

Substitute into the arc length squared:

di’=a’- +7-(d 9°+sin’(9)-d @°)

1—7

Introduce a new coordinate, thus in three dimensions every one of them will be angular coordinates:

r=a-sin(X)

dr=a-cos(X)-d X
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(8.2.3)

(8.2.4)

(8.2.5)

(8.2.6)
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8.2 Positive curvature

Substitute into the arc length squared:
di’=a*(d X’ +sin’ (X)-(d 9" +sin’(9)-d @*)) (8.2.8)
By adding the time coordinate, we write down the four dimensional arc length squared. The

Robertson-Walker metric in the case of positive curvature, we allow the radius to be time
dependent:

ds’=c*dt’—a’(t)-(d X*+sin’ (X)-(d 9 +sin’(9)-d ¢°)) (8.2.9)

The positive curvature, closed Universe has finite volume:
moom 2T
v=a’[ [ [ sin’(x)sin(9)dx-d%-dp=2-1"d" (8.2.10)

X=09=0 p=0

The calculation of the surface of a two dimensional sphere of radius 7 in this universe:

A:4-Tr-rz-sinz(X):4-1T-r2-sin2(%) (8.2.11)
8.3 Negative curvature
In this case the radius is negative:
a’ — —a’ (8.3.1)

This has the following consequences for the metric:
a — ia
X - iy
sin(i-X)=sinh (X) (8.3.2)

The Robertson-Walker metric for the negative curvature can be determined from the positive case
by substituting the former, the radius can be time dependent here too:

ds’=c*dt’—a’(t)-(d X*+sinh® (X)-(d 9" +sin’(9)-d @°)) (8.3.3)

The negative curvature, open Universe has infinite volume:
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8.3 Negative curvature

) w27
v=a’[ [ [ sinh®(X)sin(9)dX-d9dp=co (8.3.4)

X=09=0¢=0

The calculation of the surface of a two dimensional sphere of radius 7 in this universe:

A:4-n-r2~sinh2(x):4~n~r2-sinh2(ﬁ) (8.3.5)

r

8.4 Zero curvature

In this case a merely scales distances in the Universe and y changes back to a distance
coordinate:

r

x=2 (8.4.1)

Robertson-Walker metric in the case of zero curvature, the time dependence remains of course:
ds’=c’-dt’—a’ (1) (d X*+X*-(d & +sin’(9)-d ¢°)) (8.4.2)

The negative curvature, open Universe also has infinite volume:

o w2
v=a[ [ [ X*sin($)dx-d9%dp=c (8.4.3)
X=09=0 =0

The surface of the two dimensional sphere can be calculated with the usual formula:

A= dorr? (8.4.4)

8.5 Cosmological redshift

In every possible Universe the parameter a is allowed to change with time. Our observations
show, that the dimmer the galaxies around us are, the greater redshift they have. We can interpret
this phenomenon as the expansion of the Universe.

The observer is in the centre of our coordinate system. The constant coordinates of the light
source:

(X1,91,(P1) (8.5.1)
In the #, moment a lightwave maximum starts from the source, it arrives at the #, moment to the

observer in the centre:
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8.5 Cosmological redshift
h>t (8.5.2)
It propagates along one of the coordinates, therefore the coordinate conditions:
3 =const. P =const. (8.5.3)
Write down the arc length squared along the light-like geodesic:
cdff —a*(t)-dX*=0 (8.5.4)

The elapsed time:

0
X
[t =il fgx=2Dt (8.5.5)
! €x ¢

The next light maximum:

departs: t,+ot,
arrives: t,+ot, (8.5.6)
+f dt :X_ f dt
t+ot, c t (
tytoty Lo
f dt J" dt J' dt J‘ dt f dt
t+6t, t,+ot,
dt Wft" dt
f = (8.5.7)
t+5l

Since the J¢f change in time is small, therefore during this time the time dependent a(¢) function does
not change significantly:

o1 oy,

L=_1= (8.5.8)
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8.5 Cosmological redshift

The z parameter characterizes the ratios of the distances of distancing objects from us, without
knowing their absolute distance:

A
z==—1=

A a(t))

~1 (8.5.9)

We observe this value to be positive, and we interpret this as the expansion of the Universe.

8.6 Hubble law

Distance along one of the coordinates:

1(t)=al(t)-X (8.6.1)

alt,) alt) He)=alt) (8.6.2)

We examine with derivatives according to time, how fast the distance changes because of the
expansion:

Z:z—-zzHJ H=%.¢ (8.6.3)

a

Where H is the current value of the Hubble constant:

H,=738+24%m 1 _539.q97%1 (8.6.4)
s c s
The Hubble time is approximately in the same magnitude with the age of the Universe:
fy=—=4.18-107 s=1.32:10" year (8.6.5)
H, .6.

It is possible to determine by approximation from the cosmic redshift and the Hubble constant, how
long time it took, until the light has reached us. Series expansion around the state of the observer:
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8.6 Hubble law

LN]+£~A$+ AP+ AL (8.6.6)
a(t) a

) .
a a
2 .

a aa a
372
a 2-a :

a a 6-a

Substitute the H Hubble constant and the O deceleration parameter, and write down with them the
Taylor series of the cosmological redshift:

H_a
_— Q:_
c a a
a H> 0\ ,. H H i 3
= —I~H At+| 5—= | At | —=5——0+— | At +... 6.
2= 2 2) (c3 i (8.6.7)
The distance of the light source in the case of a small z:
H
Al~—-c (8.6.8)

V4

8.7 Flat geometry

According to our observations, the space in the Universe is not curved on the large scale. We
determine the critical density, that characterizes this universe-model. To write down the flat arc
length squared, we start with Minkowskian coordinates and extend them with the time dependent
scale factor:

ds’=c*dt*—a*(t)(dx’*+dy*+dz*) (8.7.1)

The geometric quantities from the metric tensor to the Ricci scalar:

1
1 0 0 0 0 — 0 0
0 —a*> 0 0 - ¢
gnK_ 0 0 _az 0 g - 0 0 _iz 0 (872)
0 0 0 -4 4 |
0 0 0 ——=
a

ﬁgm_ﬁgyy_ﬁgzzz_la'a agxx:agyy:agzzzz.a

ot ot ot ot ot ot 4 (8.7.3)

. X X __ — — z __ ¥4 _a
thx:[‘tyy:[‘tzz:a'a r zx_r xt_ryty_ryyt_r tz_[' zt_g (874)
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8.7 Flat geometry

- v - a_a (8.7.5)

R, =-R, =R, =—R"_ =R’ =-R' =R =R =R _=-K =R _=-F =d

yxy yyx Xz zzx xyx xxy zyz zzy Xzx xxz yzy yyz
(8.7.6)
_3a 0 0 0
a
R,=| 0 aa+d 0 0 (8.7.7)
0 0 aatd® 0
0 0 0 aa+d’
a-a+a’
R=-6- 5 (8.7.8)
a
The normalized form of the energy-momentum tensor:
2
p-c 0 0 0
o -£ o o
a
L=l o 0o -2 o (8.7.9)
a
o o o -Z
a
Substitute them into the Einstein equations:
1 _ &my
RnK_E.R.gr]K__ C4 .Tr]K (8.7.10)
The time-like component:
1 _ 8my
Rtt_E’R'gtt__ K T, (8.7.11)
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8.7 Flat geometry

The first Friedmann equation gives the density of the Universe:

3-H*
8-y

—) (8.7.12)

Substitute and determine the numerical value:

ok
p=1.02:107"& (8.7.13)

m

This means an average 6.11 hydrogen atoms in every cubic meters.

8.8 General Friedmann equations

We express the three possible cases with a single equation:

>0
k-(x1+x3+x3)+x,=a’ ki<0 (8.8.1)
=0

Where we differentiate with & between the solutions that are either flat, or have positive or negative
curvature. The spatial arc length squared:

dl*=dx+dx; +dx +k-dx; (8.8.2)
Switch to the usual coordinate system and write down the arc length squared:

do

V1—k-o?

dX=

do?’
1—k-o°

ds’=c*-di’—a’ (1) +0°(d 9 +sin’(9)-d @) (8.8.3)

The geometric quantities from the metric tensor to the Ricci scalar:
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8.8 General Friedmann equations

1 0 0 0
2

o 4 0
8= 1—k-o

0 0 —a’(t)o’ 0

0 0 0 —a’(t)-0”sin’(9)

1 0 0 0

2
0 1 2k o 0 0
a*(t)
"=, 0 1 0 (8.8.4)
a’(t)-o’
1
0 0 0 —
a’(t)-o*sin’(9)
08,o _  2-aa 0g”" __2(1-k-0")a
ot 1—k-o° ot a’

6g99_ 2 ag”_ 2-a
Py 2-07-a-a 0 o
080 0g’? 2-4

ot
ag(r(r:_ 2'k’0_’a2 Gg(m:Z-k-O'
oo (1—k-0?) oo a’
8899: 200 ag99: 2
oo oo o’d’
08y ) 0g”? 2
—_9 . 9 =
oo o-asin"(9) 0o  o-a’-sin’(9)
ag(p(p_ ag(p(p_ 2'COS(9’)
53 —2-0"-a"-cos(9)-sin(9) 0% oratsim(9) (8.8.5)
a-a
Fthl g I'ys=0"aa I',,=c*a-a-sin’(9)
J— -O-
o o él
r m_r (rz_ngS:rgSt_F(pz(p:F@(pt_;
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8.8 General Friedmann equations

o _ k'O' o p .
FW—I_k'UZ I%e=—0-(1—k-0") I’,,=—o-(1—k-c?)sin’*(9)
1—'909:1—'99021—'(%(/3:['({;0':% Fg(p(p:_COS(g')‘Sin<9')
I'%,=T% =cot(9) (8.8.6)
tha_:a,&_i_a2 art99zo_2_(a.d+a2) art(P(P:UZ-(a-d+d2)'Sin2<9)

ot 1—k-o’ ot ot
Oy 0L, _0I"s_0I%, _0I'%, oIy _aa—i’

ot ot ot ot ot ot a’
or',, _2ko-aa or , or .

o0 (1—k-o?) G, —road S =2 0aasin’(9)
oI, k(l+ko’ ore,

— ( 20'2) 99:—(1—3-1(-0'2)

oo (1—k-07) oo
or,, s o oI’y _0I'%, 0I%, 0T, _ 1

80_(1 3-k-07)sin’(9) b0 o0 0o oo ot
or' ore,

WWZZ'O'Z'a'iI'COS(Q)'SiH(g) 8—9W=—2-0-(l—k-02)~cos(9)-sin(9)
Ol o . 5 ) or%, or®,, 1
—_— = 1 — = =— 8.8.7
59 —sin (9)—cos*(9) 59 59 sin’(9) ( )
_ a-a
Rtam _Rt(mt 1—k‘0'2

I a
=—R :Ren9:_R9z9z:Rw =—R%,==

/2 z(pz_a
o — o — pP _ [ 2.2
Rg5=—R43,=R 9(p9__R 99p— 0 -(a +k)

o _ (o _ p9
R pop R (pqw_R P

=—R’,,e=0"(a’+k)-sin’(9)
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8.8 General Friedmann equations

2

1 +k
R9(r9U:_R9UU'9:Rq:r(p(r:_Rq:r(r(p: a 2 (888)
l1—k-o
_3a 0 0 0
a
o .2
R = 0 aa+2(a2+k) 0 0
! l—k-o
0 0 o’ (a-a+2-(a’+k)) 0
0 0 0 o’ (a-a+2-(a*+k))sin’(9)
(8.8.9)
6 . L2
R=——(a-a+a"+k) (8.8.10)
a
The normalized form of the energy-momentum tensor:
2
p-c 0 0 0
2
o -4, 0 0
T, = l1—k-o (8.8.11)
0 0 —a’(t)-o”p 0
0 0 0 —a’(t)-0”sin’(9)- p
Substitute them into the Einstein equation:
1 _ 8&my
Ry Rogn=Agyu === T, (8.8.12)
The time-like component:
1 _ 8my
Rtt_E‘R.gtt_A.gtt__ c* T, (8.8.13)
_ﬁ_l. _£.<a.a+a2+k) .1_/\.1:_8'”')/.[).02
a 2 4> o
.22 2 2
a 2(: +k(2: _A-c :_8Try'p
a a 3 3
The first general Friedmann equation:
2 2
prake Ac_ $my (8.8.14)

a 3 3
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8.8 General Friedmann equations

The spatial components:

1 i
Rii_E'R'gii_A'gii:_ T, (8.8.15)

R ~LRrg —Ag =8T¥rp

go 4 oo
2 c

a-a+2-(a’+k) 1 6 2 a’ a’ 8-y a
—————— a-a+a +k)|— —A|- = -
1-k-o’ 2 ( a’ ( ) 1-k-o’ 1-k-o’ ¢t 1—k-o’ P
5.4 ¢ atdt ket A=Y
- a —— T tAce= > P
a a c

We get the second general Friedmann equation in the two other cases as well:

w2 2
e g kC L p 28Ty, (8.8.16)
a a c

8.9 World models

Write down the relationship between the density and the scale factor in two theoretical
scenarios, one of them corresponds to the matter dominated universe, and in the second case the
energy is present mostly in the form of radiation. We introduce dimensionless quantities:

817~
p.(t)-a’(t)=const. p=0 Km:sz'pm'aEconst.
°C
. 87T
p,(t)-a*(t)=const. p=p3c K,:3—2X'ps'a4=const. (8.9.1)
C

Write down the Friedmann equations of movement with them:

-t 3 =&’ +V (a)=—k (8.9.2)

Via)=—————— (8.9.3)
The time dependence of the scale factor while neglecting the cosmological constant:
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8.9 World models

~

~

K . .
P~ ()l E P~ =L o a(t)oct (8.9.4)
a a

In a static Universe the scale factor does not change, its derivatives according to time are zeroes. In
the present state the energy of radiative origin can be neglected, therefore the cosmological constant
necessary for a static situation can be determined from the equation of movement:

__K’"_ Ak'az—_l
a 3
3 3K,
A== (8.9.5)
a a

Friedmannian world models:

k=-1 k=0 k=1
A<0 closed, periodic closed, periodic closed, periodic
A=0 open, expanding open, asymptotic closed, periodic
0<A<A, open, expanding open, expanding periodic / open
A=A, open, expanding open, expanding open, static, unstable
A>A, open, expanding open, expanding open, expanding

Introduce the following dimensionless variables:

x(7)= T=H ,t

x(7,)=0 (8.9.6)

Characterizing the present state:

K e 2
Pt Ad -
a 3 Ha;
Q
xz—f—QA-xzsz (8.9.7)

Where dimensionless constants characterize the state of the Universe:

0 _8my Py 0 A _ k-&

3-H: O MY
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8.9 World models
Q+0Q2,+0,=1
Their values according to our present knowledge:

Q,=0273 Q,=0.727 Q,~—0.023

Distance of a point from the centre of the coordinate system:
D:f Vg,,,do=R(t)-0
0

Distance of the particle horizon:

to to

-dt
Dy=R, [ do=R, [ <

0 00 OOR(l‘)

Cosmic escape velocity:

d
vV, =—

dt

(R-U)Zfi—fa H,Ryo

lim v, =

g —®

Calculating the dimensionless time:

(8.9.8)

(8.9.9)

(8.9.10)

(8.9.11)

(8.9.12)

(8.9.13)

x=1 x=1
= &=L.7 dx = 09897 _ 414-10"75=1.31-10" years
o X Hy 5 0
—+0Q,x"+Q
(8.9.14)
The radius of the observable part of the Universe:
t x=1
fcdt ¢ dx c
D,=a — =—-3.433
’ 0}[ H {\/Q x+QAx+Qx H,
Dy=4.475-10*m=4.73-10"" lightyears (8.9.15)

The distancing velocity of the border of the visible region:
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8.9 World models

dx =3433[c]™  (89.16)

c-dt
——H .D.=c-
'{ (2) P '[ \/Qm~x+.QA-x4+QK~x2 s

This value exceeds the speed of light significantly. However this has no consequences from the
point of view of the bodies moving in the spacetime.
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Summary

Summary

We have peaked into the world of deterministic physics. It was apparently possible to
geometrize this part of science, however we always have to keep in mind that like every model, this
also has limits. Some of them follow from our conditions earlier, when we determined what
phenomena interest us, and what do not; others occurred on the way, and it happens that we cannot
satisfy certain expectations; in the worst case our conclusions can be rebutted by experimental data.

First and foremost in the beginning of the 20™ century an old philosophical debate was
concluded: the world is essentially indeterministic. It does not mean that its is unpredictable, it
means only that we cannot predict events with arbitrary accuracy. The problem is not that we do not
have enough information about the states, like many have thought initially. They assumed hidden
variables, that we cannot measure, but they unambiguously determine the flow of events. It turned
out that such variables do not exist, nature has been determined to be probabilistic. These
phenomena under a certain size limit and above a certain energy density make the results described
in this book useless.

Several philosophical expectations are not satisfied by the results in the book. One of the
most famous of them is the vaguely defined Mach principle, that would mean that the Einstein
equations cannot have a solution in empty space. Further complications arise because particles with
spin cannot be properly discussed within the framework of general relativity, it has to be extended
with torsion besides curvature to geometrize the effects of spin on spacetime (although this claim is
disputed by some). In the resulting model additional effects manifest that were not yet confirmed
experimentally. A more serious problem than these is the appearance of naked singularities, that
have to be dealt with because of the insufficient definition of the appearing complex quantities in
the model.

The validity of the model is questioned time to time, alternative theories predict different
outcomes for various phenomena. We can however point out two things: within the current
boundaries of measurement, considering the shortcomings of our astronomical knowledge (and if
we stay within the postulated limits of validity), there is no result that would contradict the general
theory of relativity. On the other hand, the competing models that predict with high accuracy in
some problematic phenomena (like the problem of dark matter), gravely err in completely everyday
situations.

The Kaluza theory is a generalization of general relativity as much as general relativity is an
extension of special relativity. It addresses several gaps in Einstein's original theory, it finally gets
rid of the idea of force, thus erases such shortcomings like the possibility of a force that could
accelerate objects to become faster than the speed of light, and several solutions of the Einstein
equations, that are although completely valid, are also completely unphysical. Their combined
model can handle the most complete deterministic limiting case with solely mathematical tools.
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This series presents modern physics through examples and derivations. The organization of
topics does not follow the traditional historical approach, it was determined by practical
considerations instead. We build up the 'mathematical framework of the 'models first, and then
completely derive the most important consequences and compare them to recent experimental
results. The volumes can be used in the specialized fields as reference materials, and are suitable for
self-study in each topic. They may also serve the needs of university lectures as well.

The first volume deals with the general theory of relativity. This description has only
historical relevance by now, since during the last century, much experimental evidence was found
for the consequences of Einstein's theory. It is a classical field, where centuries-old scientific and
philosophical ideas got mathematical formulation, and the experimental confirmation. It is
important to point out, that the traditional mechanical worldview, that is often considered to be
easier to grasp, is in fact:an incomplete intellectual achievement. The basic assumptions of general
relativity draw from everyday experiences, and the recognition of the curved nature of spacetime
follows naturally. It is comparable to the understanding of Earth's spherical shape, and if we are
familiar with the mathematical foundations, it'does not even require too, much imagination.

The Reader is assumed to have some basic knowledge in higher mathematics and among the
more traditional subjects in physics, but there is only as much mathematical depth in this book, as
absolutely necessary. We use the traditional symbols of differential calculus and index notation. The
SI system of measurement is used in all physical derivations.
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