
Béla Valek

Modern Physics
Handbook I.

General
Relativity





Béla Valek

Modern Physics Handbook I.

General Relativity

Reproduction of this document in part or as whole for profit is prohibited unless the author 
decides otherwise. The document is however free to use but it must contain this page and its origin 
must be clearly labelled.

© Béla Valek, 2010 – 2011
bvalek2@yahoo.com

The following free software was used to write this book:

• OpenOffice.org 3.2.1
Copyright © 2000, 2010 Oracle és/vagy leányvállalatai.
A terméket az OpenOffice.org alapján készítette: FSF.hu Alapítvány.

• Maxima 5.22.1 using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL)
Distributed under the GNU Public License. Dedicated to the memory of William Schelter.

• Euphoria Interpreter 3.1.1 for 32-bit DOS
Copyright (c) Rapid Deployment Software 2007

mailto:bvalek2@yahoo.com


Introduction

Introduction

This series presents modern physics through examples and derivations. The organization of 
the  topics  does  not  follow  the  traditional  historical  approach,  it  was  determined  by  practical 
considerations  instead.  We build  up the  mathematical  framework  of the  models  first,  and then 
completely  derive  the  most  important  consequences  and  compare  them to recent  experimental 
results. The volumes can be used in the specialized fields as reference materials, and are suitable for 
self-study in each topic. They may also serve the needs of university lectures as well.

The  first  volume  deals  with  the  general  theory  of  relativity.  This description  has  only 
historical relevance by now, since during the last century, much experimental evidence was found 
for the consequences of Einstein's theory.  It is a classical field,  where centuries-old scientific and 
philosophical  ideas  got  mathematical  formulation,  and  the  experimental  confirmation.  It  is 
important to  point out, that the traditional mechanical worldview,  that is often  considered to be 
easier to grasp, is in fact an incomplete intellectual achievement. The basic assumptions of general 
relativity  draw from everyday experiences,  and the recognition of the curved nature of spacetime 
follows naturally. It  is comparable to the understanding of  Earth's spherical shape, and if we are 
familiar with the mathematical foundations, it does not even require too much imagination.

The Reader is assumed to have some basic knowledge in higher mathematics and among the 
more traditional subjects in physics, but there is only as much mathematical depth in this book, as 
absolutely necessary. We use the traditional symbols of differential calculus and index notation. The 
SI system of measurement is used in all physical derivations.

Béla Valek
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Observations

Observations

Maybe our senses mislead us, but we do not notice that while we sit calmly in a room, Earth 
is actually speeding around the Sun at nearly 30 km/s. In fact we cannot even tell if we are standing 
still in the dock or moving on open water, while we are inside an ocean liner. The fact is, that not 
only us, but (in the ideal case) not even our instruments are able to tell the difference. They may be 
inaccurate, but it is also possible that there is a principal reason keeping us from telling our absolute 
velocity. This is the principle of relativity by Galileo Galilei.

Our journey in time in one direction from the past to the future, and the ordering between 
cause and effect, is such a self-evident experience, that it is surprising that we have to explicitly 
state it as a condition. Serious logical flaws and paradoxes would arise, if it were not so. But from a 
practical point of view, we cannot tell anything except that we have not yet observed the contrary. 
This idea gained great importance, when Rudolf Clausius recognized entropy, the change of which 
shows the direction of time. We must keep in mind however, that nothing has been said on how fast 
time passes, or if it passes in a constant manner.

Light is travelling imperceptibly fast to our notions. However already a thousand years ago 
the Arabic scientist Ibn al-Haytham suggested, that since light is a propagating phenomenon, it may 
have a finite propagating velocity. We recognize it only at astronomical distances, or with the help 
of our instruments, having much better reaction time than our naked eyes. It is an important fact that 
its speed in vacuum is always the same and constant, for all observers, regardless of their motion. 
The theoretical foundation  for this  comes from  James Clerk Maxwell's equations. We trust  this 
observation so much, that this forms the basis of the definition of meter in the SI metric system. If it 
were not so, a very fast observer could outrun light, and measure a different value for its velocity, 
thus measure his/her absolute speed, something impossible, as we believe.

Astronaut  candidates in  an  aeroplane  on  a  paraboloidal  path  (the  “vomit  comet”) can 
experience weightlessness for a short period of time. Fun park simulators tilt back the seats of their 
visitors, although they feel only their own weights, but they are led to believe that they accelerate. If 
the simulator would actually move away from its position and not only tilt, the person sitting inside 
would not  be able to  tell the difference. There are two indistinguishable phenomena again, let us 
declare that they are the same, this is Albert Einstein's principle of equivalence.

Bodies accelerating under electromagnetic  influence behave as if  gravitation would  act on 
them, a similar empirical law describes their motion. However this force depends on whether they 
have a net charge, moreover it is not only attracting, but it can also be repelling. Nevertheless, the 
trajectory of a particle moving in a general electromagnetic and gravitational field may be described 
by purely geometric means, as shown by Theodor Kaluza. Our statement will essentially mean, that 
a charged instrument does not measure any difference between acceleration under gravitational or 
electric influence, or the state of weightlessness.

The general theory of relativity is based on these observations, and describes the behavior of 
spacetime, and its interaction with the matter it contains. Thus it creates a framework where all the 
other physical models can be described.
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Notation and constants

Notation and constants

We use index notation in the entire book. Indices are always single letters, and the following 
table summarizes how and where they are used:

spaces free indices summation indices
3D or general space (1…N) i, j, k, l, m, n a, b, c, d, e, f
4D spacetime (0…3) η, κ, μ, ν, ξ, σ α, β, γ, δ, ε, ζ
5D spacetime (0…4) P, Q, R, S, T, U A, B, C, D, E, F

Both sides of the equations must have the same number of  free indices, since in fact we have as 
many equations as the number of dimensions, multiplied with the number of free indices:

v i=a⋅u ib i → v1=a⋅u1b1 , v2=a⋅u2b2 , v3=a⋅u3b3

The terms that contain summation indices are summed, as many times as the number of dimensions:

s=va⋅ua=∑
a=1

N

v a⋅ua=v1⋅u1v 2⋅u2v3⋅u3

The Kronecker delta:  j
i ={1, i= j

0, i≠ j

The coordinate systems where the quantities are written down are indicated with a lower-left index. 
Quantities in different points are always denoted with a different letter, wherever possible.

The determinant of a matrix with two indices can be calculated with the following recursive 
formula:

∣M ij∣=−1a1⋅M 1 a⋅∣M i≠1 j≠a∣

Calculating the components of the twice contravariant metric tensor from the twice covariant metric 
tensor:

g kl=
−1kl⋅∣g i≠k j≠l∣

∣g ij∣

The derivative and integral of the Lambert function:

dW
dx

= 1
eW x⋅W x1

∫W x ⋅dx= x⋅W x 1
W x 

−1C

Natural constants:
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Notation and constants

speed of light: c=2.99792458⋅108 m
s

gravitational constant: =6.67428⋅10−11 m3

kg⋅s2

Units of time and distance:

Julian year: 1 a=365.25 days=3.15576⋅107 s

astronomical unit: 1 AU=1.49597870691⋅1011 m

lightyear: 1 ly=9.4607304725808⋅1015m

parsec:
1 Pc=3.08567758128⋅1016 m
=2.06264806245⋅105 AU

=3.26156377695 ly
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1. Foundations

1. Foundations

In  this  chapter  we  introduce  the  mathematical  language used  by the  general  theory  of 
relativity.  Our goal is to find measurable quantities that we can use to describe multi-dimensional 
surfaces. This problem is dealt with by differential geometry, and the methods used are similar to 
those found in geodesy. The word “geometry” itself means “measuring Earth” by which our topic is 
related to an ancient science that has been cultivated in the  antique world with great expertise. 
While the geodeses survey the Earth's curved surface, we will explore the curved spacetime, but our 
goals are exactly the same: to orientate, to measure distances, or to find the shortest path between 
two points, and so on. 

We are going to see that starting with naïve, down to earth assumptions about space, we can 
build up a geometry with various properties, where we can identify all the necessary geometric 
quantities. From this we can draw the lesson, that when we think about “simple” flat space, we 
apply several unspoken assumptions and limitations,  that do not  follow automatically from our 
starting conditions.

1.1 Coordinate systems

Let us imagine an arbitrary space, where we identify the points with individual sequences of 
numbers called vectors, in other words  we set up  a coordinate system.  By definition, we denote 
each coordinate with an index in the upper-right corner. The i.-th coordinate of point x:

xi (1.1.1)

These sequences of numbers are not exclusive of course,  the points in space can be arbitrarily 
renumbered. If we distribute the numbers according to a different logic, we are setting up another 
coordinate system, denoted by 2 in the lower left corner, where the coordinates are functions of the 
coordinates in the first coordinate system:

2xi = 2xi(1xj) (1.1.2)

Let us now assign a number, or otherwise known as a scalar, to every point in space. A scalar field is 
defined as a function of the points in space, and the value of this so called scalar function is of 
course independent of the choice of coordinates:

x i  x i
2 = xi

1  (1.1.3)

Let us take a look at two different points in a coordinate system:

xi yi (1.1.4)

The difference between the values of the scalar field in those points is independent from our choice 
of the coordinate system:

12



1.1 Coordinate systems

 x i
1 − y i

1 = x i
2 − y i

2  (1.1.5)

This is  also true if we reduce the distance between the points infinitesimally, which is the  total 
derivative:

∂
∂ xa

1

⋅ dxa
1 = ∂

∂ xa
2

⋅ dxa
2 (1.1.6)

However the change in the scalar field along a coordinate depends on the choice of the coordinate 
system. In fact, we are examining how much the change along a coordinate looks along a coordinate 
of a different coordinate system. To make the equations less crowded, we omit the 1-index most of 
the time. Let us postulate two transformation rules:

Transforming the partial derivative of the scalar field:
∂
∂ x i

2

=
∂
∂ xa⋅

∂ x a

∂ x i
2

(1.1.7)

Transforming the coordinate differential: dx i
2 =

∂ x i
2

∂ xa⋅dxa (1.1.8)

Their  scalar  product is  coordinate  system  independent.  This  demonstrates that  our  postulated 
transformation formulas are correct, since they behave as expected:

∂
∂ x a

2

⋅ dxa
2 = ∂

∂ xb⋅
∂ xb

∂ xa
2

⋅
∂ xa

2

∂ xc⋅dxc= ∂
∂ xb⋅dxb (1.1.9)

In the case of infinitesimal displacement, coordinates change in both coordinate systems. The ratios 
of these changes  between the coordinate systems form a square matrix, called the  transformation 
matrix:

 j
i =

∂ x i
2

∂ x j
1

≠  j
i=

∂ xi
1

∂ x j
2

(1.1.10)

The quantities that are transformed like the partial derivatives of the scalar field are called covariant 
vectors, which are also numbering the points in space, just by a different logic. By definition, the 
index is placed into the lower right corner:

∂
∂ x i

2

= ∂
∂ xa⋅i

a v i=
∂
∂ x i

Covariant  vector:  a  v quantity  that  transforms  like the  partial  derivatives of  the  scalar  field 
between coordinate systems:

v i2 =va⋅
∂ xa

∂ x i
2

=va⋅i
a (1.1.11)
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1.1 Coordinate systems

The quantities that are transformed like coordinate differentials are called contravariant vectors. The 
position of the index remains unchanged:

dxi
2 =

∂ x i
2

∂ xa⋅dxa v i=dx i

Contravariant  vector:  a  v quantity  that  transforms  like  the  coordinate  differentials  between 
coordinate systems:

v i
2 =

∂ x i
2

∂ xa⋅va= a
i ⋅va (1.1.12)

If we swap the coordinate systems, the reverse transformation formulas are:

v i= ∂ x i

∂ xa
2

⋅ va
2 =a

i⋅ v a
2 v i= va2 ⋅

∂ x a
2

∂ x i = va2 ⋅ i
a (1.1.13)

The reciprocal of the differential transforms like a covariant vector: 

1
dxi

2

= 1
 a

i ⋅
1

dxa=
∂ xa

∂ x i
2

⋅ 1
dxa=i

a⋅ 1
dx a (1.1.14)

It follows from above, that the scalar product of the covariant and  contravariant vectors is also 
coordinate system independent, and the result is a scalar:

v a2 ⋅ ua
2 =vb⋅a

b⋅ c
a⋅uc=vb⋅u

b (1.1.15)

We perform a double transformation, we write down a vector in a different coordinate system, and 
then we return to the original:

v i= ∂ x i

∂ xa
2

⋅ va
2 =a

i⋅ v a
2 v i

2 =va⋅
∂ x i

2

∂ xa =va⋅ a
i

v i=b
i⋅va⋅ a

b =a
i⋅va

The scalar product of the transformation matrices is the Kronecker delta:

a
i⋅ j

a = j
i= ∂ xi

∂ xa
2

⋅
∂ xa

2

∂ x j (1.1.16)
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1.2 Tensors

1.2 Tensors

The results of vector products belong to the family of tensors. These are special kinds of 
tensors, because they depend only on n∙m numbers, where m is the number of vectors and n is the 
number of coordinates:

v i⋅u j⋅w k⋅⋅pl⋅qm⋅=T lm
ijk (1.2.1)

On the other hand, a matrix representing such a tensor might have nm independent components, and 
this is also true about the general tensor. This suggests the following transformation rule:

Tensor: a T quantity that transforms in the following way between coordinate systems:

T lm
ijk

2 = a
i ⋅ b

j ⋅ c
k⋅⋅T de

abc ⋅l
d⋅m

e⋅ (1.2.2)

This formula clearly shows, that if all components of the tensor are zero, then it stays zero 
under any coordinate transformation. The  rank of a tensor is the number of indices, a scalar is a 
tensor of zero rank, the vector is a first rank tensor, and so on. The product of arbitrary tensors is 
also a tensor, for example:

Aijk⋅Blm=T lm
ijk (1.2.3)

The sum of tensors is interpreted only if they have the same rank, for example:

A k
ij

2  B k
ij

2 = a
i ⋅ b

j ⋅ A c
abB c

ab⋅k
c (1.2.4)

Let us multiply an arbitrary tensor with vectors in such a way, that we perform a summation for  
every index. According to the definition above, the result has to be an invariant scalar:

T de
abc ⋅va⋅ub⋅w c pd⋅qe=s (1.2.5)

If  we  do  not  know  the  nature  of  a quantity  having  multiple  indices,  the  formula  above  can 
determine if it is a tensor. Because if we write it down in a different coordinate system, then the 
transformation matrices will cancel out only, if the quantity with multiple indices deploys the same 
number of transformation matrices, as there are for transforming the vectors.

The value of the Kronecker delta is one in the case of corresponding indices, and zero if the 
indices are different. According to the formula above its a special kind of tensor, whose components 
are separately invariant:

b
a⋅va⋅ub=vb⋅ub=s (1.2.6)

Covariant  vectors  can  also  be  used  to  number  the  points  in  space,  these  sequences  of 
numbers are made of covariant coordinates:

xi (1.2.7)
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1.2 Tensors

In fact, this is just another coordinate system, one of many possibilities, therefore the contravariant 
coordinates of a point certainly can be transformed into covariant ones. Therefore let  the other 
coordinate system  be  the covariant one, thus the mutual ratios of the coordinate changes form a 
symmetric gij quantity:

∂ x i
2

∂ x j
1

→ g ij=
∂ x i

∂ x j =
∂ x j

∂ x i =g ji (1.2.8)

v i
2 =va⋅

∂ x i
2

∂ xa → v i=va⋅
∂ x i

∂ xa=va⋅g ia (1.2.9)

In the reverse direction:

∂ x i
1

∂ x j
2

→ g ij= ∂ x i

∂ x j
= ∂ x j

∂ x i
=g ji (1.2.10)

v i2 =va⋅
∂ xa

∂ x i
2

→ v i=va⋅
∂ xa

∂ x i
=va⋅gai (1.2.11)

The scalar product of the contravariant and covariant representation of the vector is a scalar – the 
length of the vector – therefore our new quantity is a tensor:

va⋅v
a=va⋅vb⋅g ab=vb⋅va⋅g ba (1.2.12)

It is called the metric tensor, and it can raise and lower indices:

va⋅ub⋅w c⋅⋅pd⋅qe⋅⋅g ai⋅gbj⋅gck⋅⋅gdl⋅gem⋅=v i⋅u j⋅wk⋅⋅pl⋅qm⋅

T abc
de⋅g ai⋅gbj⋅g ck⋅⋅gdl⋅gem⋅=T lm

ijk (1.2.13)

We perform a double transformation, we write down a contravariant vector in covariant form, then 
we transform it back into contravariant form:

v i=va⋅gab⋅g bi=va⋅a
i

The scalar product of the metric tensors is the Kronecker delta:

g ia⋅g aj= j
i =

∂ xi

∂ x a⋅
∂ xa

∂ x j
(1.2.14)

If we perform a summation on all indices, the result is the number of dimensions:

gab⋅gab=b
b=N (1.2.15)
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1.2 Tensors

An arbitrary tensor can always be split into the sum of a symmetric and an antisymmetric 
tensor. In the case of two indices, it is possible to create a symmetric tensor with the averaging of 
the opposing tensor components:

T ijs =1
2
⋅T ijT ji=

1
2
⋅T jiT ij= T jis (1.2.16)

Subtracting it from the general tensor, the result is an antisymmetric tensor:

T ija =T ij− T ijs =T ij−
1
2
⋅T ijT ji =

1
2
⋅T ij−T ji =−

1
2
⋅T ji−T ij=− T jia (1.2.17)

with having zeroes for diagonal elements: T iia =1
2
⋅T ii−T ii=0 (1.2.18)

Their sum recreates the original tensor:

T ijs  T ija =1
2
⋅T ijT ji

1
2
⋅T ij−T ji =T ij (1.2.19)

Reversing the indices of a general tensor:

T ij=T ji2⋅ T ijan (1.2.20)

1.3 Straight lines

In an arbitrary space, a curve with a constant tangent vector is the closest thing to a straight 
line. The change of coordinates with respect to an invariant quantity is the following:

u i=∂ xi

∂
(1.3.1)

Let it be the tangent vector of the straight line. We write it down in another coordinate system:

∂ x i
2

∂
=

∂ x i
2

∂ xa⋅
∂ xa

∂
/ ∂
∂

(1.3.2)

The formula which describes that it is not changing, that the derivative is zero, is the equation of the 
straight line:

∂2 xi
2

∂2 =
∂2 x i

2

∂ xa⋅∂ xb⋅
∂ xa

∂
⋅∂ xb

∂


∂ x i
2

∂ xa⋅
∂2 xa

∂2 =0 /⋅∂ x j

∂ x i
2

ic :
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1.3 Straight lines

∂ x j

∂ xc
2

⋅
∂2 xc

2

∂ xa⋅∂ xb⋅
∂ xa

∂
⋅∂ xb

∂
 ∂ x j

∂ xc
2

⋅
∂ xc

2

∂ xa⋅
∂2 xa

∂2 =0

We introduce the connection in the first term:  ab
j = ∂ x j

∂ xc
2

⋅
∂2 xc

2

∂ xa⋅∂ xb (1.3.3)

The index changes in the second term: ∂ x j

∂ xc
2

⋅
∂ xc

2

∂ xa⋅
∂2 x a

∂2 =a
j⋅∂

2 xa

∂2 =
∂2 x j

∂2

The geodesic equation:

∂2 x j

∂2  ab
j ⋅∂ xa

∂
⋅∂ xb

∂
=0 (1.3.4)

We write down the geodesic equation in two different coordinate systems:

∂2 x i

∂2  ab
i ⋅∂ xa

∂
⋅∂ xb

∂
=0 ∂2 x i

2

∂2   ab
i

2 ⋅
∂ xa

2

∂
⋅
∂ xb

2

∂
=0 (1.3.5)

The transformation of the first and second derivative with respect to the invariant:

∂ x i
2

∂
=

∂ xi
2

∂ xa⋅
∂ xa

∂

∂2 xi
2

∂2 =
∂2 x i

2

∂ xa⋅∂ xb⋅
∂ xa

∂
⋅∂ xb

∂


∂ x i
2

∂ xa⋅
∂2 xa

∂2 (1.3.6)

Insert them into the geodesic equation:

ac b d

 ∂2 x i
2

∂ xc⋅∂ xd⋅
∂ xc

∂
⋅∂ xd

∂


∂ x i
2

∂ xc⋅
∂2 xc

∂2   ab
i

2 ⋅ ∂ xa
2

∂ xc⋅
∂ xc

∂ ⋅ ∂ xb
2

∂ x d⋅
∂ xd

∂ =0 (1.3.7)

Rearrange the formula and multiply with a new factor:

∂ x i
2

∂ xc⋅
∂2 xc

∂2  ∂2 x i
2

∂ xc⋅∂ xd   ab
i

2 ⋅
∂ xa

2

∂ xc ⋅
∂ xb

2

∂ xd ⋅∂ xc

∂
⋅∂ xd

∂
=0 /⋅∂ x j

∂ xi
2

ie

Write down the change in the first term in detail:
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1.3 Straight lines

∂ x e
2

∂ xc ⋅
∂ x j

∂ xe
2

⋅∂
2 x c

∂2 =c
j⋅∂

2 xc

∂2 =
∂2 x j

∂2

Let us reinsert it:

∂2 x j

∂2  ∂2 xe
2

∂ xc⋅∂ xd⋅
∂ x j

∂ xe
2

  ab
e

2 ⋅
∂ xa

2

∂ xc ⋅
∂ xb

2

∂ xd⋅
∂ x j

∂ xe
2 ⋅∂ xc

∂
⋅∂ xd

∂
=0 (1.3.8)

Our result is in the form of an equation of a straight line. We can recognize the connection, from 
which we identify the transformation rule:

c i d  k

 ik
j =

∂2 xe
2

∂ x i⋅∂ x k⋅
∂ x j

∂ xe
2

  ab
e

2 ⋅
∂ x a

2

∂ x i ⋅
∂ xb

2

∂ x k ⋅
∂ x j

∂ xe
2

(1.3.9)

The connection is therefore not a tensor-like quantity. The symmetric part of the general connection:

C ij
k =1

2
⋅ ij

k  ji
k  (1.3.10)

The antisymmetric part of the general connection is the torsion:

S ij
k =1

2
⋅ ij

k − ji
k   ij

k = ji
k 2⋅S ij

k (1.3.11)

We insert the transformation law of the connection:

S ij
k =1

2
⋅ ∂2 xe

2

∂ xi⋅∂ x j⋅
∂ xk

∂ xe
2

  ab
e

2 ⋅
∂ x a

2

∂ x i ⋅
∂ xb

2

∂ x j ⋅
∂ x k

∂ xe
2

− ∂2 xe
2

∂ x j⋅∂ x i⋅
∂ xk

∂ xe
2

  ba
e

2 ⋅
∂ xb

2

∂ x j⋅
∂ xa

2

∂ xi ⋅
∂ xk

∂ xe
2


Simplify, the transformation of the torsion:

S ij
k =1

2
⋅  ab

e
2 −  ba

e
2 ⋅

∂ xa
2

∂ x i ⋅
∂ xb

2

∂ x j⋅
∂ xk

∂ xe
2

(1.3.12)

Judging from the transformation law of the torsion, it is a tensor with three indices:

S ij
k = S ij

k
2 ⋅ i

a⋅ j
b ⋅e

k (1.3.13)

The variations of the connection transform like tensors:
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1.3 Straight lines

first coordinate system:  ik
j = ik

j x − ik
j  x x 

second coordinate system:  ik
j

2 =  ik
j

2  x2 −  ik
j

2  x2   x2  (1.3.14)

Insert into the first equation the transformation of the connection:

 ik
j =
∂2 xe

2

∂ xi⋅∂ xk⋅
∂ x j

∂ xe
2

  ab
e

2 x ⋅
∂ xa

2

∂ x i ⋅
∂ xb

2

∂ xk ⋅
∂ x j

∂ xe
2

−
∂2 xe

2

∂ x i⋅∂ xk⋅
∂ x j

∂ xe
2

−  ab
e

2 x x ⋅
∂ xa

2

∂ x i ⋅
∂ xb

2

∂ xk⋅
∂ x j

∂ xe
2

 ik
j =  ab

e
2 x ⋅

∂ xa
2

∂ x i ⋅
∂ xb

2

∂ xk ⋅
∂ x j

∂ xe
2

−  ab
e

2 x x⋅
∂ xa

2

∂ x i ⋅
∂ xb

2

∂ xk⋅
∂ x j

∂ xe
2

(1.3.15)

The variation of the connection is a tensor-like quantity:

 ik
j =  ik

j
2 ⋅

∂ xa
2

∂ x i ⋅
∂ xb

2

∂ xk⋅
∂ x j

∂ xe
2

(1.3.16)

1.4 Parallel displacement

Let us take a look at two infinitesimally close points in space, where we define vectors in 
each of them, and describe it with two different coordinate systems at the same time. In order to 
avoid confusion, we summarize the notation here:

First coordinate system Second coordinate system
First point xi

2xi

Second point yi
2yi

Vectors in the first point vi, wi 2vi

Vectors in the second point ui, qi 2ui

We parallel transfer a vector from the first point to the second, and we define the first coordinate 
system in such a way, that every components of the new vector are identical to the old one:

u i=vi (1.4.1)

The change in the second coordinate system is more general:

u i
2 = v i

2  dv i
2 (1.4.2)

We transform the coordinates of the vectors in the following way:
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1.4 Parallel displacement

v i= ∂ x i

∂ xa
2

⋅ va
2 u i= ∂ y i

∂ ya
2

⋅ ua
2 (1.4.3)

Let us insert it into the formula written down in the first coordinate system:

∂ x i

∂ x a
2

⋅ va
2 = ∂ y i

∂ ya
2

⋅ ua
2 (1.4.4)

The difference of the two points is the total derivative, where we now differentiate with respect to 
the coordinates of the second coordinate system:

y i= xi
∂ x i

∂ xa
2

⋅ dxa
2 /

∂
∂ x j

2

∂ y i

∂ y j
2

=
∂ x i

∂ x j
2


∂2 x i

∂ x j
2 ⋅ ∂ xa

2

⋅ dxa
2 (1.4.5)

Substitute it, and then expand the parentheses:

∂ x i

∂ x a
2

⋅ va
2 = ∂ x i

∂ xb
2

 ∂2 x i

∂ xb
2 ⋅ ∂ xa

2

⋅ dxa
2 ⋅ vb

2  dvb
2  (1.4.6)

∂ xi

∂ x a
2

⋅ va
2 = ∂ x i

∂ xb
2

⋅ vb
2  ∂ x i

∂ xb
2

⋅ dvb
2  ∂2 x i

∂ xb
2 ⋅ ∂ xa

2

⋅ dxa
2 ⋅ vb

2  ∂2 x i

∂ xb
2 ⋅ ∂ xa

2

⋅ dxa
2 ⋅ dvb

2

We simplify and then ignore the last term, where the infinitesimally small quantities are on a higher 
power:

0= ∂ xi

∂ xb
2

⋅ dvb
2  ∂2 x i

∂ xb
2 ⋅ ∂ xa

2

⋅ dxa
2 ⋅ vb

2 /⋅
∂ x j

2

∂ x i

ic

∂ x j
2

∂ xc⋅
∂ xc

∂ xb
2

⋅ dvb
2 =−

∂ x j
2

∂ xc⋅
∂2 xc

∂ xb
2 ⋅ ∂ x a

2

⋅ dxa
2 ⋅ vb

2 (1.4.7)

On the left side of the equation, we substitute and apply the Kronecker delta, on the right side we 
substitute the connection:

 ba
j

2 =
∂ x j

2

∂ xc ⋅
∂2 xc

∂ xb
2 ⋅ ∂ xa

2

(1.4.8)

dv j
2 =−  ba

j
2 ⋅ dxa

2 ⋅ vb
2
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1.4 Parallel displacement

We  reinsert  this  into  the  parallel  transfer  formula  of  the  contravariant  vector,  without  the 
identification numbers of the coordinate systems. It is possible to swap the lower indices, we do so 
to have the same index convention that is used in a later definition of the connection:

u i=v i− ba
i ⋅va⋅dxb (1.4.9)

We take the scalar product of two vectors in  the first point. If we parallel transfer them into the 
second point, the resulting scalar does not change:

va⋅wa=ua⋅qa (1.4.10)

The parallel displacement of the contravariant vector:

u i=v idv i=v i− ba
i ⋅va⋅dxb (1.4.11)

The parallel transfer of the covariant vector:

q i=widwi (1.4.12)

Substitute them into the scalar product:

va⋅wa=va− dc
a ⋅vc⋅dxd ⋅wadwa  (1.4.13)

va⋅wa=va⋅w ava⋅dwa− dc
a ⋅vc⋅dx d⋅wa− dc

a ⋅vc⋅dxd⋅dwa

Simplify and omit the last term, where the infinitesimal quantities are on a higher power:

dw i= bi
a ⋅dxb⋅wa

We reinsert this into the parallel displacement of the covariant vector:

q i=wi bi
a ⋅wa⋅dxb (1.4.14)

Based on these, we can determine the parallel transfer formula of any tensor.  We are already not 
following the notation introduced in the table earlier:

v i⋅u j⋅w k⋅⋅pl⋅qm⋅=T lm
ijk

We substitute the parallel  transfer formulas,  and neglect the terms containing higher powers of 
infinitesimal quantities. Therefore only the products of vectors remain, and those terms, that contain 
the connection only once:

v i− ba
i ⋅v a⋅dxb⋅u j− ba

j ⋅ua⋅dxb⋅w k− ba
k ⋅wa⋅dxb⋅⋅ p l bl

a ⋅pa⋅dxb⋅qm bm
a ⋅qa⋅dxb ⋅=

T lm
ijk − ba

i ⋅T lm
ajk  − ba

j ⋅T lm
iak − ba

k ⋅T lm
ija − bl

a ⋅T am
ijk  bm

a ⋅T la
ijk ⋅dxb

(1.4.15)
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1.4 Parallel displacement

1.5 Connection and metric tensor

Like in the previous chapter, we take the scalar product of two vectors in the first point. If 
we parallel transfer them into the second point, the resulting scalar does not change:

gab x⋅va⋅wb=gab y ⋅ua⋅qb (1.5.1)

We wrote on the left side of the equation the scalar product in the first point, and on the right side  
the scalar product in the second point.  We approach a metric tensor from another with a  Taylor 
series:

g ij  y =g ij x 
∂ g ij x
∂ xa ⋅dxa1

2
⋅
∂2 g ij  x
∂ x a⋅∂ xb⋅dxa⋅dxb (1.5.2)

We substitute  the parallel  displacement formula for vectors and the  Taylor  series of the metric 
tensor, neglecting the terms containing products of infinitesimal quantities:

gab x⋅va⋅wb=g abx 
∂ gabx 
∂ xc ⋅dxc⋅va− dc

a ⋅vc⋅dxd ⋅wb− dc
b ⋅wc⋅dxd  (1.5.3)

Let us simplify and neglect the higher order terms of infinitesimal quantities again, and then step by 
step rewrite the summation indices into free indices. We must take care about what indices belongs 
to what factors:

0=
∂ gab

∂ xc ⋅dxc⋅va⋅wb−gab⋅v
a⋅ dc

b ⋅w c⋅dxd−gab⋅ dc
a ⋅vc⋅dxd⋅wb /⋅ 1

dxk

0=
∂ gab

∂ xk ⋅v
a⋅wb−g ab⋅v

a⋅ kc
b ⋅w c−g ab⋅ kc

a ⋅vc⋅wb /⋅1
v i

0=
∂ g ib

∂ xk⋅wb−g ib⋅ kc
b ⋅wc−gab⋅ ki

a ⋅wb /⋅ 1
w j

g ia⋅ kj
a g aj⋅ ki

a =
∂ g ij

∂ xk (1.5.4)

Using this result it can be shown, that the parallel displacement of the metric tensor transforms it 
into the local metric tensor of the destination, thus we are recovering the Taylor series:

g ij  y =g ij x  bi
a ⋅g aj x  bj

a ⋅g ia x⋅dxb=g ij x 
∂ g ij  x
∂ xb ⋅dxb (1.5.5)
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1.5 Connection and metric tensor

Permute the indices:

(1) g ia⋅ kj
a g aj⋅ ki

a =
∂ g ij

∂ xk

(2) g ja⋅ ik
a gak⋅ ij

a =
∂ g jk

∂ x i

(3) g ka⋅ ji
a gai⋅ jk

a =
∂ g ki

∂ x j (1.5.6)

Summarize the equations in the following way: (1) + (2) – (3):

g ia⋅ kj
a g aj⋅ ki

a g ja⋅ ik
a gak⋅ ij

a −gka⋅ ji
a −gai⋅ jk

a =
∂ g ij

∂ xk 
∂ g jk

∂ x i −
∂ gki

∂ x j (1.5.7)

Reorder the connections according to their lower indices:

g ia⋅ kj
a − jk

a gaj⋅ ki
a  ik

a g ak⋅ ij
a − ji

a =
∂ g ij

∂ xk 
∂ g jk

∂ x i −
∂ gki

∂ x j /⋅1
2

Arrange the antisymmetric terms to the right side:

gaj⋅C ki
a =1

2
⋅∂ g ij

∂ xk 
∂ g jk

∂ x i −
∂ gki

∂ x j −g ia⋅S kj
a −gak⋅S ij

a /⋅g jb (1.5.8)

Apply the Kronecker-delta on the left side:

C ki
j =1

2
⋅g jb⋅∂ g ib

∂ xk 
∂ gbk

∂ x i −
∂ g ki

∂ xb −g jb⋅g ia⋅S kb
a −g jb⋅gak⋅S ib

a /S ki
j (1.5.9)

The general connection is the sum of the symmetric and antisymmetric parts:

 ki
j =1

2
⋅g jb⋅ ∂ g ib

∂ xk 
∂ gbk

∂ x i −
∂ gki

∂ xb −g jb⋅g ia⋅S kb
a −g jb⋅gak⋅S ib

a S ki
j (1.5.10)

If we use a symmetric connection since the beginning, our formula gives the relationship between 
the connection and the metric tensor:

 ki
j =1

2
⋅g ja⋅∂ g ia

∂ xk 
∂ gak

∂ x i −
∂ g ki

∂ xa  (1.5.11)

The infinitesimal surrounding of every point can be approximated with a flat space, where it is 
possible to set up a coordinate system, where the partial derivative of the metric tensor is zero. In 
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1.5 Connection and metric tensor

other words, we approach the point with a Taylor series, where the first derivative is zero, but others 
are not. In this case the symmetric connection is zero, its partial derivative however is not:

∂ g ij

∂ xk =0 ,
∂2 g ij

∂ x l⋅∂ xk≠0 →  jk
i =0 ,

∂ jk
i

∂ x l ≠0 (1.5.12)

1.6 Derivation

First  in  order  to  deduce  the  transformation  rule of  the  second  partial  derivative,  we 
differentiate both sides of the transformation formula of the partial derivative of the scalar function:

∂
∂ x i

2

= ∂
∂ xa⋅

∂ xa

∂ xi
2

/ ∂
∂ x j

2

∂2
∂ x j

2 ⋅ ∂ x i
2

= ∂2
∂ x j

2 ⋅∂ xa⋅
∂ xa

∂ x i
2

 ∂
∂ x a⋅

∂2 xa

∂ x j
2 ⋅ ∂ x i

2
(1.6.1)

In the first term of the right side, we transform one of the denominator differential from the second 
to the first coordinate system:

∂2
∂ x j

2 ⋅ ∂ x i
2

= ∂2
∂ xb⋅∂ xa⋅

∂ xb

∂ x j
2

⋅∂ x a

∂ xi
2

 ∂
∂ xa⋅

∂2 xa

∂ x j
2 ⋅ ∂ xi

2
(1.6.2)

The second partial derivative of the scalar field, that is the partial derivative of the covariant vector, 
does not transform like a tensor. Substitute it to the formula above:

v i=
∂
∂ x i

∂ v i2

∂ x j
2

=
∂v a

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

va⋅
∂2 xa

∂ x j
2 ⋅ ∂ xi

2
(1.6.3)

∂ v i2

∂ x j
2

−va⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

=
∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ xi
2

(1.6.4)

In the left side, we transform the vector in the second term, so it would be written in the same 
coordinate system as the partial derivative in the first term. The transformation rule of the derivative 
of the covariant vector in the general case:

∂ v i2

∂ x j
2

− vb2 ⋅
∂ xb

2

∂ xa⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

=
∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ xi
2

(1.6.5)
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1.6 Derivation

This quantity does not transform like a tensor. But if we switch the indices in it and subtract it from 
the original expression, we get a tensor-like quantity called rotation. The right side of the equation:

∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

−
∂ vb

∂ x a⋅
∂ x a

∂ x i
2

⋅∂ xb

∂ x j
2

=∂ va

∂ xb−
∂ vb

∂ xa ⋅∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

=T ab⋅ j
b⋅i

a

The left side of the equation:

 ∂v i2

∂ x j
2

− v b2 ⋅
∂ xb

2

∂ x a⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2 − ∂ v j2

∂ x i
2

− vb2 ⋅
∂ xb

2

∂ xa ⋅
∂2 xa

∂ x i
2 ⋅ ∂ x j

2 = ∂v i2

∂ x j
2

−
∂v j2

∂ xi
2

= T ij2

The transformation rule of the rotation corresponds to tensors of second rank:

T ab⋅ j
b⋅i

a= T ij2 (1.6.6)

This tensor is antisymmetric:

T ij=−T ji=
∂v i

∂ x j−
∂v j

∂ x i=− ∂v j

∂ x i−
∂ v i

∂ x j  (1.6.7)

Its diagonal elements are always zero: T ii=
∂ v i

∂ x i−
∂ vi

∂ x i=0 (1.6.8)

If we cyclic permute the indices of the partial derivative of the antisymmetric tensor and add them 
together, the result is zero, because the second derivatives of the vectors cancel out:

∂T ij

∂ x k 
∂T jk

∂ x i 
∂T ki

∂ x j =
∂
∂ x k  ∂ v i

∂ x j−
∂ v j

∂ x i  ∂
∂ x i  ∂ v j

∂ xk−
∂v k

∂ x j  ∂
∂ x j ∂ vk

∂ x i −
∂ v i

∂ x k =
∂2 v i

∂ x k⋅∂ x j−
∂2v j

∂ x k⋅∂ x i
∂2 v j

∂ x i⋅∂ xk−
∂2 vk

∂ x i⋅∂ x j
∂2 vk

∂ x j⋅∂ x i−
∂2 v i

∂ x j⋅∂ xk=0
(1.6.9)

1.7 Invariant derivative

Let us assume, that a  covariant vector field is constant in a given coordinate system, its 
partial derivative is zero everywhere:

∂ v i

∂ x j=0 (1.7.1)

Rewrite this formula in another coordinate system, utilizing the results of the previous chapter:
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1.7 Invariant derivative

∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

=
∂ vi2

∂ x j
2

− vb2 ⋅
∂ xb

2

∂ xa ⋅
∂2 xa

∂ x j
2 ⋅ ∂ xi

2

=0 (1.7.2)

Insert the connection in the second term:

 ji
b

2 =
∂ xb

2

∂ xa⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

(1.7.3)

This formula describes in an arbitrary coordinate system, that the partial derivative of the vector 
field vanishes in the original coordinate system:

∂ v i2

∂ x j
2

− vb2 ⋅  ji
b

2 =0 (1.7.4)

Let us define the invariant derivative of the covariant vector:

∇ j v i=
∂ vi

∂ x j−vb⋅ ji
b (1.7.5)

Connection: a  Γ quantity,  that makes sure, that in the case of a coordinate transformation, the 
invariant derivative transforms like a tensor:

∇ j v i=
∂ v i

∂ x j−va⋅ ji
a ∇ j2 v i2 =∇b va⋅ j

b⋅i
a (1.7.6)

Transformation  of  the  invariant  derivative,  substitute  the  transformation  rules  of  the  partial 
derivative of the covariant vector and the connection:

∂ vi2

∂ x j
2

− vd2 ⋅  ji
d

2 =

∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

v a⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

−vc⋅
∂ xc

∂ xd
2

⋅ ∂2 xe

∂ x j
2 ⋅ ∂ x i

2

⋅
∂ x d

2

∂ xe  ba
e ⋅ ∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

⋅
∂ xd

2

∂ xe =
∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

v a⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

−vc⋅
∂ xc

∂ xd
2

⋅ ∂2 xe

∂ x j
2 ⋅ ∂ x i

2

⋅
∂ xd

2

∂ xe −vc⋅
∂ xc

∂ xd
2

⋅ ba
e ⋅∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

⋅
∂ xd

2

∂ xe =

We recognize the Kronecker-delta in the third and fourth terms:

∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

v a⋅
∂2 xa

∂ x j
2 ⋅ ∂ x i

2

−vc⋅e
c⋅ ∂2 xe

∂ x j
2 ⋅ ∂ x i

2

−vc⋅e
c⋅ ba

e ⋅ ∂ xb

∂ x j
2

⋅∂ xa

∂ xi
2

=

The second and the third terms cancel out, we pull out the transformation matrices from the first and 
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1.7 Invariant derivative

fourth terms:

∂ va

∂ xb⋅
∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

−v c⋅ ba
c ⋅ ∂ xb

∂ x j
2

⋅∂ xa

∂ xi
2

=∂ va

∂ xb−vc⋅ ba
c ⋅ ∂ xb

∂ x j
2

⋅∂ xa

∂ xi
2

∂ vi2

∂ x j
2

− vd2 ⋅  ji
d

2 =∂ va

∂ xb−vc⋅ ba
c ⋅∂ xb

∂ x j
2

⋅∂ xa

∂ x i
2

(1.7.7)

The partial derivative of a scalar field is a tensor, therefore it coincides with the invariant derivative:

∇ i=
∂
∂ x i (1.7.9)

The scalar product of the covariant and the contravariant vector is a scalar:

∇ iu
a⋅va=

∂ua⋅va
∂ x i (1.7.10)

∇ i u
a⋅vaua⋅∇ i va=

∂ua

∂ x i⋅vaua⋅
∂v a

∂ x i

∇ i u
a⋅vaua⋅

∂v a

∂ x i −ua⋅vb⋅ ia
b =∂ua

∂ x i⋅vaua⋅
∂v a

∂ x i

∇ i u
a⋅va=

∂ ua

∂ x i⋅vaua⋅vb⋅ ia
b /⋅ 1

va

The invariant derivative of the contravariant vector:

∇ i u
j=∂ u j

∂ xi ua⋅ ia
j (1.7.11)

Now  we  can  determine  the  invariant  derivative  of  arbitrary  tensors,  using  the  products  of 
contravariant and covariant vectors:

∇n T lm
ijk =∇ nv

i⋅u j⋅w k⋅⋅p l⋅qm⋅

∇n T lm
ijk =∇ n v i⋅u j⋅w k⋅⋅pl⋅qm⋅v i⋅∇n u j⋅wk⋅⋅p l⋅qm⋅

∇n T lm
ijk = ∂v i

∂ xn⋅u j⋅w k⋅⋅p l⋅qm⋅va⋅ na
i ⋅u j⋅w k⋅⋅pl⋅qm⋅

Group together the vectors on the right side:
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1.7 Invariant derivative

∇n T lm
ijk =

∂T lm
ijk

∂ xn  na
i ⋅T lm

ajk  na
j ⋅T lm

iak   na
k ⋅T lm

ija − nl
a ⋅T am

ijk  − nm
a ⋅T la

ijk −

(1.7.12)

It is possible for certain quantities to serve as the connection, that cannot be formulated like the 
previously defined version, therefore we have to spend some time with the properties of the general 
case. The rotation, using the invariant derivative:

∇ j v i−∇ i v j=
∂ v i

∂ x j−
∂ v j

∂ x i −vb⋅ ji
b − ij

b =
∂v i

∂ x j−
∂v j

∂ x i (1.7.13)

This equation is satisfied only if the connection is symmetric:

 ij
k = ji

k (1.7.14)

The invariant derivative of the Kronecker-delta:

∇k j
i =

∂ j
i

∂ x kak
i ⋅ j

a− jk
a⋅a

i =0 jk
i − jk

i =0 (1.7.15)

The formula for the invariant derivative of the metric tensor is the same, that we permuted three 
times during the derivation of the formula for the relationship between the connection and the 
metric tensor, and its zero:

∇k g ij=
∂ g ij

∂ xk −g ia⋅kj
a −gaj⋅ki

a =0 (1.7.16)

The invariant derivative of the twice contravariant metric tensor:

∇k g
ia⋅g aj=∇ k  j

i=0

∇k g ia⋅gajg ia⋅∇n gaj=0

∇k g ia⋅gajg ia⋅0=0

Since the twice covariant metric tensor is not zero in the general case, the invariant derivative of the 
twice contravariant metric tensor has to be zero:

∇k g ij=0 (1.7.17)

1.8 Derivative along a curve
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1.8 Derivative along a curve

Let us push a vector of a vector field a bit along a curve. The curve is parametrized by an 
invariant quantity:

The vector field at a certain point of the curve: v i 

The vector field at an infinitesimally nearby point of the curve: v i 

The parallel translated vector along the curve into the second point:

w i=v i − ba
i ⋅va ⋅dxb

The difference between two infinitesimally close points of a vector field is the total differential:

dv i =v i−v i  (1.8.1)

The differential along a curve is the difference between the parallel translated vector and the local 
vector of the vector field in that point:

Dv i=vi −w i (1.8.2)

Dv i=vi −v i− ba
i ⋅va⋅dxb

Dv i=dvi  ba
i ⋅va ⋅dxb /⋅ 1

d 

Substitute the tangent vector: dx i

d 
=ui

When the derivative of a contravariant vector field along a curve is zero, it has the same form as the 
geodesic equation with tangent vectors:

Đvi= dv i

d 
 ba

i ⋅va⋅ub (1.8.3)

We proceed the same way with covariant vector fields:

Dv i=vi −w i (1.8.4)

Dv i=v i −v i bi
a ⋅va⋅dxb

Dv i=dv i − bi
a ⋅va ⋅dxb /⋅ 1

d 

The derivative along a curve of a covariant vector field:

30



1.8 Derivative along a curve

Đvi=
dv i

d 
− bi

a ⋅va⋅ub (1.8.5)

Continue  to  example  the  two  formulas.  Since  they  have  the  same  structure,  we  perform  the 
following changes on both of them simultaneously. Let us expand the first term and reorder it:

Đvi=
dxb

dxb⋅
dv i

d 
− bi

a ⋅va⋅ub=dxb

d 
⋅

dv i

dxb− bi
a ⋅va⋅ub

Đvi=dxb

dxb⋅
dv i

d 
 ba

i ⋅va⋅ub=dxa

d 
⋅dv i

dxa ba
i ⋅va⋅ub (1.8.6)

Substitute the tangent vector:

Đvi=ub⋅
dv i

dxb− bi
a ⋅v a⋅u

b=ub⋅ dv i

dxb− bi
a ⋅v a

Đvi=ub⋅dv i

dxb ba
i ⋅va⋅ub=ub⋅ dv i

dxb ba
i ⋅va (1.8.7)

We identify the invariant derivative inside the parentheses:

∇ j v i=
∂ vi

∂ x j−va⋅ ji
a ∇ i u

j=∂ u j

∂ xi ua⋅ ia
j

the relationship between the derivative along a curve and the invariant derivative in the case of a 
symmetric connection:

Đvi=ub⋅∇b v i Đvi=ub⋅∇b v i (1.8.8)

Now we can write down the derivative along a curve of arbitrary tensors:

ĐT lm
ijk =ua⋅∇ a T lm

ijk =ua⋅∇ a v
i⋅u j⋅w k⋅⋅pl⋅qm⋅ (1.8.9)

The derivative along a curve of the  tangent vector of the curve is  zero,  because if  it  is 
displaced along the curve, it will coincide with the local tangent vector at the destination. Therefore 
the derivative of the tangent vector along a curve is the geodesic equation:

Đui= du i

d 
 ba

i ⋅ua⋅ub=∂2 x i

∂2  ab
i ⋅∂ xa

∂
⋅∂ xb

∂
=0 (1.8.10)

This condition is obviously satisfied only if the connection is symmetric. The derivative along a 
curve of the covariant tangent vector of the curve:
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1.8 Derivative along a curve

Đui=
du i

d 
− bi

a ⋅ua⋅u
b=0

We rewrite the covariant vector to contravariant in the second term, using the metric tensor:

Đui=
du i

d 
−g ac⋅ bi

a ⋅uc⋅ub=0 (1.8.11)

Đui=
du i

d 
−1

2
⋅g ac⋅ bi

a gab⋅ ci
a ⋅uc⋅ub=0

If the connection is symmetric, then in the second term we can identify the invariant derivative of 
the metric tensor inside the parentheses:

∇k g ij=
∂ g ij

∂ xk −g ia⋅ kj
a −gaj⋅ ki

a =0

∂ g ij

∂ xk =g ia⋅ kj
a gaj⋅ ki

a

Substitute it:

Đui=
du i

d 
−1

2
⋅
∂ gbc

∂ xi ⋅u
c⋅ub=0 (1.8.12)

If the partial derivative of the twice covariant metric tensor is zero, the corresponding covariant 
tangent vector of the geodesics does not change:

∂ g ij

∂ xk =0 →
duk

d 
=0 (1.8.13)

1.9 Curvature

We  are  going  to  examine  the  global  properties  of  surfaces,  that  are  by  their  nature 
independent of the coordinate systems. Our requirement is to be able to collect as many information 
about the structure of the surfaces as possible, using internally measurable quantities. The practical 
significance is,  that  we have to  examine the shape of the spacetime using physical  events  and 
processes that happen inside, we do not have the option to observe them from somewhere outside.

The commutator of the invariant derivative of the contravariant vector:

∇k ∇ j v i−∇ j ∇ k v i (1.9.1)

The invariant derivative is a tensor-like quantity by definition:
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1.9 Curvature

∇ j v
i= ∂ vi

∂ x jva⋅ ja
i =T j

i (1.9.2)

Expand the repeated invariant derivation:

∇k ∇ j v i=∇ k T j
i =

∂T j
i

∂ xk  kb
i ⋅T j

b − kj
b ⋅T b

i (1.9.3)

And substitute the vector's invariant derivative:

∇k ∂ v i

∂ x jva⋅ ja
i = ∂

∂ xk  ∂ v i

∂ x jva⋅ ja
i  kb

i ⋅ ∂ vb

∂ x jv a⋅ ja
b − kj

b ⋅ ∂ vi

∂ xbva⋅ ba
i 

Opening the parentheses:

∇k ∇ j v i= ∂2 v i

∂ x k⋅∂ x j
∂ va

∂ x k⋅ ja
i va⋅

∂ ja
i

∂ xk  kb
i ⋅∂vb

∂ x j kb
i ⋅va⋅ ja

b − kj
b ⋅∂ v i

∂ xb− kj
b ⋅va⋅ ba

i

Doing the same with the opposite index order:

∇ j ∇k v i= ∂2 v i

∂ x j⋅∂ xk
∂ va

∂ x j⋅ ka
i va⋅

∂ ka
i

∂ x j  jb
i ⋅∂ vb

∂ x k jb
i ⋅va⋅ ka

b − jk
b ⋅∂ v i

∂ xb− jk
b ⋅v a⋅ ba

i

Subtract one of the other:

∇k ∇ j v i−∇ j ∇ k v i= ∂ ja
i

∂ xk −
∂ ka

i

∂ x j  kb
i ⋅ ja

b − jb
i ⋅ ka

b 2⋅S jk
b ⋅ ba

i ⋅v a2⋅S jk
b ⋅∂ v i

∂ xb

(1.9.4)

Where we have substituted the antisymmetric expression with the torsion tensor:

S jk
b =1

2
⋅ jk

b − kj
b  (1.9.5)

Substitute the curvature tensor: R jak
i =

∂ ja
i

∂ xk −
∂ ka

i

∂ x j  kb
i ⋅ ja

b − jb
i ⋅ ka

b (1.9.6)

∇k ∇ j v i−∇ j ∇ k v i=R jak
i ⋅v a2⋅S jk

b ⋅ ∂v i

∂ xb ba
i ⋅v a=R jak

i ⋅va2⋅S jk
b ⋅∇ b v i

If the connection is symmetric, then the commutator of the invariant derivative of the contravariant 
vector is the curvature tensor, where we can recognize the tensor property from the form of the 
expression:
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1.9 Curvature

∇k ∇ j v i−∇ j ∇ k v i=R jak
i ⋅v a (1.9.7)

We determine the  commutator of the invariant derivative of the  covariant vector using the same 
steps:

∇k ∇ j v i−∇ j ∇ k v i (1.9.8)

The invariant derivative is a tensor-like quantity:

∇ j v i=
∂ vi

∂ x j−va⋅ ji
a =T ij (1.9.9)

The repeated invariant derivation:

∇k T ij=
∂T ij

∂ xk − kj
a ⋅T ia− ki

a ⋅T aj (1.9.10)

Substitute the invariant derivative of the vector:

∇k ∂ v i

∂ x j−va⋅ ji
a = ∂

∂ x k  ∂ v i

∂ x j−va⋅ ji
a −kj

b⋅ ∂ v i

∂ xb−v a⋅ bi
a −ki

b⋅ ∂v b

∂ x j−v a⋅ jb
a 

Open the parentheses:

∇k ∇ j v i=
∂2 v i

∂ x k⋅∂ x j−
∂ va

∂ x k⋅ ji
a −va⋅

∂ ji
a

∂ xk − kj
b ⋅

∂ v i

∂ xb kj
b ⋅va⋅ bi

a − ki
b ⋅

∂v b

∂ x j ki
b ⋅va⋅ jb

a

Doing the same with the opposite index order:

∇ j ∇k v i=
∂2 v i

∂ x j⋅∂ xk−
∂ va

∂ x j⋅ ki
a −va⋅

∂ ki
a

∂ x j − jk
b ⋅

∂ v i

∂ xb jk
b ⋅va⋅ bi

a − ji
b ⋅

∂ vb

∂ xk ji
b ⋅v a⋅ kb

a

Subtract one of the other:

∇k ∇ j v i−∇ j ∇ k v i= ∂ ki
a

∂ x j −
∂ ji

a

∂ xk  ki
b ⋅ jb

a − ji
b ⋅ kb

a −2⋅S jk
b ⋅ bi

a ⋅va2⋅S jk
b ⋅

∂ v i

∂ xb

(1.9.11)

Where we have substituted again the antisymmetric expression with the torsion tensor:

S jk
b = 1

2
⋅ jk

b − kj
b  (1.9.12)
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1.9 Curvature

Substitute the curvature tensor: R kij
a =

∂ ki
a

∂ x j −
∂ ji

a

∂ x k  ki
b ⋅ jb

a − ji
b ⋅ kb

a (1.9.13)

∇k ∇ j v i−∇ j ∇ k v i=R kij
a ⋅va2⋅S jk

b ⋅ ∂ v i

∂ xb− bi
a ⋅va=R kij

a ⋅va2⋅S jk
b ⋅∇b v i

If the connection is symmetric, then the  commutator of the invariant derivative of the  covariant 
vector is also the curvature tensor:

∇k ∇ j v i−∇ j ∇ k v i=Rkij
a ⋅v a (1.9.14)

If  we  set  up  a  coordinate  system in  the  immediate  surrounding  of  a  point,  where  the  partial  
derivatives  of  the  metric  tensor  and  the  connection  are  zeroes,  the  curvature  tensor  will  not 
necessarily vanish, since the partial derivatives of the connection are not necessarily zeroes:

R jkl
i =

∂ jk
i

∂ x l −
∂ lk

i

∂ x j (1.9.15)

The invariant derivative:

∇m R jkl
i =∇m∂ jk

i

∂ x l −
∂ lk

i

∂ x j  (1.9.16)

Permute the first and the third lower indices and the index of the invariant derivation:

(1) ∇m R jkl
i =∇m

∂ jk
i

∂ x l −∇m
∂ lk

i

∂ x j

(2) ∇ j R lkm
i =∇ j

∂ lk
i

∂ x m −∇ j
∂ mk

i

∂ xl

(3) ∇ l R mkj
i =∇ l

∂ mk
i

∂ x j −∇ l
∂ jk

i

∂ xm (1.9.17)

Add the three equations:

∇m R jkl
i ∇ j R lkm

i ∇ l R mkj
i =

∇m
∂ jk

i

∂ x l −∇m
∂ lk

i

∂ x j ∇ j
∂ lk

i

∂ xm −∇ j
∂ mk

i

∂ x l ∇ l
∂ mk

i

∂ x j −∇ l
∂ jk

i

∂ xm

(1.9.18)

Since the connection coefficients are zeroes in this coordinate system, only the partial derivatives 
remain from the invariant derivatives, and they eventually cancel out:
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1.9 Curvature

∇m R jkl
i ∇ j R lkm

i ∇ l R mkj
i =

∂2 jk
i

∂ xl⋅∂ xm−
∂2 lk

i

∂ xm⋅∂ x j
∂2 lk

i

∂ x j⋅∂ xm−
∂2 mk

i

∂ x j⋅∂ x l
∂2 mk

i

∂ x l⋅∂ x j−
∂2 jk

i

∂ x l⋅∂ xm

The following Bianchi identity is valid in every coordinate system:

∇m R jkl
i ∇ j R lkm

i ∇ l R mkj
i =0 (1.9.19)

The curvature tensor is antisymmetric in its first and third lower indices:

R kij
l =

∂ ki
l

∂ x j −
∂ ji

l

∂ x k  ki
b ⋅ jb

l − ji
b ⋅ kb

l R jik
l =

∂ ji
l

∂ xk −
∂ ki

l

∂ x j  ji
b ⋅ kb

l − ki
b ⋅ jb

l

R kij
l =−R jik

l (1.9.20)

If  the connection is  symmetric,  the sum of the cyclic permutations of the lower indices  of the 
curvature tensor is zero:

R ijk
l =

∂ ij
l

∂ xk −
∂ kj

l

∂ x i  ij
b ⋅ kb

l − kj
b ⋅ ib

l R jki
l =

∂ jk
l

∂ xi −
∂ ik

l

∂ x j  jk
b ⋅ ib

l − ik
b ⋅ jb

l

R kij
l R ijk

l R jki
l =0 (1.9.21)

1.10 Parallel transport along a closed curve

Let us set up an infinitesimal parallelogram with edges da and db long. We parallel transport 
a vector along the edges from one corner (x) to the opposing corner (p), first through the  y, later 
through the z intermediate points:

ri(y)    vi(p), wi(p)
      db

ui(x) → ri(y) → vi(p)

       da            da

ui(x) → qi(z) → wi(p)

      db
ui(x)    qi(z)
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1.10 Parallel transport along a closed curve

Parallel transfer from x to y to da distance:

r i=u i− ba
i x⋅ua⋅dab (1.10.1)

Parallel transfer from y to p to db distance:

v i=ri− dc
i  y⋅r c⋅dbd (1.10.2)

We approach the connection in y with a Taylor series from the connection in x, from da distance:

 jk
i  y = jk

i x
∂ jk

i x
∂ ae ⋅dae1

2
⋅
∂2 jk

i  x
∂ ae⋅∂ a f ⋅dae⋅da f (1.10.3)

Substitute the formula of the first parallel transport into the second, and the approximation of the 
connection to the first degree:

v i=ui− ba
i x ⋅ua⋅dab− dc

i  x
∂ dc

i x 
∂ae ⋅dae⋅uc− ba

c x ⋅ua⋅dab⋅dbd

v i=u i− ba
i ⋅ua⋅dab− dc

i ⋅uc⋅dbd dc
i ⋅ ba

c ⋅ua⋅dab⋅dbd

−
∂ dc

i

∂ae ⋅dae⋅uc⋅dbd
∂ dc

i

∂ ae ⋅dae⋅ ba
c ⋅ua⋅dab⋅dbd

Neglect the last term with a differential in a higher order:

v i=u i− ba
i ⋅ua⋅dab− dc

i ⋅uc⋅dbd dc
i ⋅ ba

c ⋅ua⋅dab⋅dbd−
∂ dc

i

∂ ae ⋅dae⋅uc⋅dbd (1.10.4)

We perform these steps across the other corner point as well. Parallel transfer from  x to  z to  db 
distance:

q i=u i− ba
i x ⋅ua⋅dbb (1.10.5)

Parallel transfer from z to p to da distance:

w i=qi− dc
i  z ⋅qc⋅dad (1.10.6)

We approach the connection in z with a Taylor series from the connection in x, from db distance:

 jk
i  z = jk

i x 
∂ jk

i x 
∂be ⋅dbe1

2
⋅
∂2 jk

i x
∂ be⋅∂b f ⋅dbe⋅db f  (1.10.7)

Substitute the formula of the first parallel transport into the second, and the approximation of the 
connection to the first degree:
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1.10 Parallel transport along a closed curve

w i=u i− ba
i  x⋅ua⋅dbb− dc

i x
∂ dc

i  x
∂ be ⋅dbe⋅uc− ba

c x⋅ua⋅dbb⋅dad

w i=ui− ba
i ⋅ua⋅dbb− dc

i ⋅uc⋅dad dc
i ⋅ ba

c ⋅ua⋅dbb⋅dad

−
∂ dc

i

∂ae ⋅dbe⋅uc⋅dad
∂ dc

i

∂ ae ⋅dbe⋅ ba
c ⋅ua⋅dbb⋅dad

Neglect the last term with a differential in a higher order:

w i=ui− ba
i ⋅ua⋅dbb− dc

i ⋅uc⋅dad dc
i ⋅ ba

c ⋅ua⋅dbb⋅dad−
∂ dc

i

∂ae ⋅dbe⋅uc⋅dad (1.10.8)

Subtract the two parallel transfer results from one another:

v i−w i= dc
i ⋅ ba

c ⋅ua⋅dab⋅dbd−
∂ dc

i

∂ ae ⋅dae⋅uc⋅dbd− dc
i ⋅ ba

c ⋅ua⋅dbb⋅dad
∂ dc

i

∂ ae ⋅dbe⋅uc⋅dad

c → a, e → b:

v i−w i=−∂ da
i

∂ ab − dc
i ⋅ ba

c ⋅ua⋅dab⋅dbd−dbb⋅dad  (1.10.9)

The antisymmetric  part  of the tensor in  the parentheses  characterises the difference of the two 
vectors, it is the curvature tensor:

B dab
i =

∂ da
i

∂ ab − dc
i ⋅ ba

c

1
2
⋅B dab

i −B bad
i =−1

2
⋅∂ da

i

∂ ab −
∂ ba

i

∂ ad  dc
i ⋅ ba

c − bc
i ⋅ da

c =1
2
⋅R dab

i

v i−w i=1
2
⋅R dab

i ⋅ua⋅dab⋅dbd−dbb⋅dad  (1.10.10)

1.11 Geodesic deviation

In the immediate surrounding of any y point it is possible to set up a rectangular coordinate 
system, where the connection is zero. Therefore the equation of the geodesics crossing the point 
simplifies:
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1.11 Geodesic deviation

∂2 y i

∂2 =0 (1.11.1)

This  is  however  true for the point  only.  In the immediate surrounding, the general  equation of 
geodesics continues to apply:

∂2 x i

∂2  ab
i ⋅∂ xa

∂
⋅∂ xb

∂
=0 (1.11.2)

We approach the connection in the neighbouring x points with a Taylor series of the connection of 
the original point:

 jk
i x = jk

i  y
∂ jk

i  y
∂ xa ⋅dxa1

2
⋅
∂2 jk

i  y 
∂ xa⋅∂ xb ⋅dx a⋅dxb (1.11.3)

Substitute it into the equation of the neighbouring geodesics. Since the connection is zero in the 
centre, only the first derivative appears in the equation, the higher order derivatives are neglected:

∂2 x i

∂2 
∂ ab

i

∂ xc ⋅dxc⋅∂ xa

∂
⋅∂ xb

∂
=0 (1.11.4)

Keep one of the components of the distance vector from the centre zero, thus we move only in a 
subspace around the original geodesic. Therefore the partial derivative of the connection according 
to this coordinate will also be zero:

dx i=0 dx1  dx N  →
∂ jk

i

∂ x0 =0 (1.11.5)

The tangent vector is perpendicular to this subspace, thus the centre-crossing geodesic pierces this 
subspace perpendicularly:

∂ xi

∂
= ∂ x0

∂
0 0  (1.11.6)

The equation of the surrounding geodesics simplifies further:

∂2 x i

∂2 
∂ 00

i

∂ xc ⋅dxc⋅∂ x0

∂
⋅∂ x0

∂
=0 (1.11.7)

Expand the connection derivative with a term that is known to be zero, and with them we produce 
the curvature tensor:

∂2 x i

∂2 ∂ 00
i

∂ xc −
∂ c0

i

∂ x0 ⋅dxc⋅∂ x0

∂
⋅∂ x0

∂
=0 R 00l

i =
∂ 00

i

∂ x l −
∂ l0

i

∂ x0
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1.11 Geodesic deviation

∂2 x i

∂2 R 00c
i ⋅dxc⋅∂ x0

∂
⋅∂ x0

∂
=0 (1.11.8)

This  formula  is  valid  in  general,  we have  no  reason to  restrict  it  to  the  indices  denoted  with 
numbers. Therefore the deviation of geodesics in the immediate surrounding of a geodesic is:

∂2 x i

∂2 R abc
i ⋅dxc⋅∂ xa

∂
⋅∂ xb

∂
=0 (1.11.9)

1.12 Integration

We integrate  with  respect  to  all  coordinate-variables  in  space,  therefore  we introduce  a 
shorthand notation for the product of the differentials:

dx N=∏
n=1

N

dxn (1.12.1)

The simple multi-variable integral of the scalar function is not invariant in the general case, since 
the product of the differentials depends on the coordinate system:

∫ A⋅dx N≠∫ A⋅ dxN
2 (1.12.2)

When  we  switch  coordinate  systems,  the  product  of  the  differentials  transforms  with  the 
determinant of the transformation matrix:

dx N=∣ ∂ x i

∂ x j
2 ∣⋅ dxN

2 =∣ j
i∣⋅ dx N

2 (1.12.3)

We insert this into the integral:

∫ A⋅dx N=∫ A⋅∣ ∂ x i

∂ x j
2 ∣⋅ dxN

2 =∫ A⋅∣ j
i∣⋅ dxN

2 (1.12.4)

The following expression is invariant, if we build in the determinant of the transformation matrix 
into the expression under the integral:

∫ A⋅dx N=∫ A2 ⋅ dx N
2 (1.12.5)

The quantities that transform the following way are called scalar densities:

A2 = A⋅∣ ∂ xi

∂ x j
2 ∣= A⋅∣ j

i∣ (1.12.6)
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1.12 Integration

Let us examine the transformation rule of the metric tensor:

g ij2 =i
a⋅ j

b⋅g ab (1.12.7)

Since by matrix multiplication the determinants are also multiplied:

g2 =∣i
a∣⋅∣ j

b∣⋅g (1.12.8)

The  determinant of the metric tensor transforms like a scalar quantity, this also shows, that the 
signature of this determinant is independent from the choice of coordinates:

 g2 =∣ j
i∣⋅ g (1.12.9)

Therefore the following integral is invariant:

∫ A⋅ g⋅dx N=∫ A⋅ g2 ⋅ dxN
2 (1.12.10)

1.13 Variation and action principle

Integral of a scalar function that vanishes at the boundaries, and its integral has an extremity, thus 
by slightly changing the input parameters the value of the integral does not change:

S=∫ s x i⋅ g⋅dxN S=0 (1.13.1)

In order to apply the action principle, we need to choose a scalar that represents the space. For this 
we start with the curvature tensor and contract it to create the Ricci-tensor:

Rki=R kia
a =

∂ ki
a

∂ xa −
∂ ai

a

∂ xk  ki
b ⋅ ab

a − ai
b ⋅ kb

a (1.13.2)

The trace of the Ricci-tensor is the curvature scalar, the simplest invariant scalar in the space:

R= gab⋅Rab (1.13.3)

We use this as the scalar function:

S=∫R⋅g⋅dxN (1.13.4)

Its variation:

S= ∫R⋅ g⋅dx N =∫  R⋅ gR⋅ g ⋅dx N=0 (1.13.5)
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1.13 Variation and action principle

∫ gab⋅Rab⋅ gR⋅ g ⋅dx N=∫  gab⋅Rabgab⋅ Rab ⋅ gR⋅g ⋅dx N=0

Examine the second term of the inner parentheses in a coordinate system, where the connection is 
zero:

gab⋅ Rab=gab⋅
∂ ab

c

∂ xc −g ab⋅
∂ cb

c

∂ xa = ∂
∂ xc gab⋅  ab

c −gcb⋅  ab
a = ∂vc

∂ xc (1.13.6)

where: v i=gab⋅ ab
i −g ib⋅  ab

a

Thus the expression inside the parentheses transforms like a vector. We rewrite the partial derivative 
into an invariant one, thus it will become valid in every coordinate system:

∫∇c vc⋅ g⋅dxN=∮v i⋅ g⋅dx N−1=0 (1.13.7)

Rewrite the integral into a surface integral using the  divergence theorem, however our starting 
condition was that our scalar is zero on the  boundaries, thus we succeeded in making this term 
disappear:

∫ gab⋅Rab⋅ gR⋅ g ⋅dx N=0 (1.13.8)

Using differentiation rules we rewrite the variation of the square root of the  determinant of the 
metric tensor (where M is the algebraic minor):

g⋅ j
i=M k≠a , l≠i⋅gaj

dg=M k≠a , l≠i⋅dgai

 g=g⋅gab⋅ g ab

 g=−1
2
⋅ g⋅gab⋅ gab (1.13.9)

Substitute it:

∫ gab⋅Rab⋅ g−R⋅1
2
⋅g⋅gab⋅ g ab⋅dxN=0

∫Rab−
1
2
⋅R⋅gab⋅ gab⋅ g⋅dx N=0 (1.13.10)

This  expression  is  zero only if  the  expression  inside the  parentheses  is  zero,  it  is  the  Einstein 
equation:
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1.13 Variation and action principle

Rij−
1
2
⋅R⋅g ij=0 (1.13.11)

The invariant derivative of the Einstein equation:

∇kRij−
1
2
⋅R⋅g ij=∇ k Rij−

1
2
⋅R⋅∇ k g ij=∇ k Rij (1.13.12)

We already know, that the invariant derivative of the metric tensor is zero. We can determine the 
invariant derivative of the Ricci-tensor using the Bianchi identity:

∇k Rij=
1
3
⋅∇ k R ija

a ∇ i R ajk
a ∇ a R kji

a =0 (1.13.13)

Thus our result is:

∇kRij−
1
2
⋅R⋅g ij=0 (1.13.14)

1.14 Runge-Kutta approximation method

On surfaces with known geometry,  we can examine arbitrary geodesics using  numerical 
methods. The geodesic is uniquely identified by the coordinates of a single point it crosses, and its 
tangent vector in that point. With this information it is possible to recover with small steps the 
coordinates of the other points the geodesic is crossing, the smaller the steps are, the greater the 
accuracy becomes.

Using  the  Runge-Kutta  approximation  method  we  can  determine  trajectories  with  high 
accuracy and by doing significantly less iteration steps, if we know the following variables at the n.-
th step:

coordinates: x i
n

coordinate-velocities: vi
n

connection in a given point:  jk
i x i

change of the invariant parameter: d  (1.14.1)

It is important that the  invariant parameter increases or decreases monotonically, because only in 
this case will it lead along the entire geodesic. The change in the parameter determines the the step 
size, that can be a conveniently chosen number.

We approach the trajectory of the moving body with four straight sections, determine the 
coordinate- and coordinate-velocity-changes along the sections, and then average them:
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1.14 Runge-Kutta approximation method

a i
1 =− ab

i  x i
n ⋅ va

n ⋅ vb
n

v i
1 = ai

1 ⋅d   x i
1 = v i

n ⋅d  (1.14.2)

a i
2 =− ab

i  x i
n 

 x i
1

2 ⋅ v a
n 

va
1

2 ⋅ vb
n 

vb
1

2 
v i

2 = a i
2 ⋅d   x i

2 = v i
n 

v i
1

2 ⋅d  (1.14.3)

a i
3 =− ab

i  x i
n 

 x i
2

2 ⋅ va
n 

va
2

2 ⋅ vb
n 

 vb
2

2 
vi

3 = ai
3 ⋅d   x i

3 = v i
n 

v i
2

2 ⋅d  (1.14.4)

ai
4 =− ab

i  x i
n   x i

3 ⋅ va
n   va

3 ⋅ vb
n  vb

3 

 vi
4 = ai

4 ⋅d   x i
4 = v i

n  v i
3 ⋅d  (1.14.5)

We write down the weighted sum of the resulting coordinate- and coordinate-velocity-changes, thus 
we get the variables that determine the trajectory at the next step. The results calculated with this 
method deviate from the actual value only in the fifth order:

x i
n1 = x i

n 
 x i

1

6


 xi
2

3


 x i
3

3


 x i
4

6


v i
n1 = v i

n 
v i

1

6


v i
2

3


v i
3

3


v i
4

6
 (1.14.6)
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2. Examples

2. Examples

In this chapter we are going to visualize the quantities derived in the previous chapter with 
some easy examples.  We examine  various  two  dimensional  surfaces,  we  determine  the  metric 
tensor,  its  derivatives,  the connection and derivatives,  the Ricci-tensor  and the Ricci-scalar.  By 
doing so we demonstrate their geometric meaning and we prepare ourselves to apply them in the 
real four dimensional spacetime.

2.1 Curvature on a two dimensional surface

The  curvature  of  an  arbitrary  two  dimensional  surface  in  a  given  point  is  uniquely 
characterized by the reciprocal of the product of the radii of two, mutually perpendicular circles 
attached to the surface:

K= 1
r⋅q (2.1.1)

We approach the point with a surface, where the  parametric equation is written with rectangular 
coordinates, utilizing the curvature radii:

z= x2

2⋅r
 y2

2⋅q
dz= x

r
⋅dx y

q
⋅dy (2.1.2)

Substitute this into the three dimensional element of arc length squared:

ds2=dx2dy2dz 2 (2.1.3)

The arc length squared on the surface:

ds2=1 x2

r 2 ⋅dx21 y2

q2 ⋅dy22⋅x⋅y
r⋅q

⋅dx⋅dy (2.1.4)

On this we can identify the metric tensor components:

g ij=1 x2

r 2
x⋅y
r⋅q

x⋅y
r⋅q

1 y2

q2  (2.1.5)

The metric tensor determinant:
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2.1 Curvature on a two dimensional surface

∣g ij∣=g11⋅g22−g 12⋅g21=
r2⋅y2q2⋅x2r2⋅q2

r 2⋅q2 (2.1.6)

The twice contravariant metric tensor:

g ij= 1
r 2⋅y2q2⋅x2r2⋅q2⋅r2⋅y2r 2⋅q2 −r⋅q⋅x⋅y

−r⋅q⋅x⋅y q2⋅x2r 2⋅q2 (2.1.7)

The metric tensor partial derivatives:

∂ g xx

∂ x
=2⋅x

r 2
∂ g xy

∂ x
=
∂ g yx

∂ x
= y

r⋅q

∂ g xy

∂ y
=
∂ g yx

∂ y
= x

r⋅q
∂ g yy

∂ y
=2⋅y

q2 (2.1.8)

Calculating the connection:

 ki
j =1

2
⋅g ja⋅∂ g ia

∂ xk 
∂ gak

∂ x i −
∂ g ki

∂ xa 
 xx

x = q2⋅x
r2⋅y2q2⋅x2r 2⋅q2

 yy
x = r⋅q⋅x

r 2⋅y2q2⋅x2r 2⋅q2

 yy
y = r2⋅y

r 2⋅y2q2⋅x2r 2⋅q2 (2.1.9)

The partial derivatives of the connection, we put the common factor in a separate variable:

1
a
=r 4⋅y4q4⋅x4r4⋅q42⋅r 4⋅q2⋅y22⋅r 2⋅q4⋅x22⋅r2⋅q2⋅x2⋅y2

∂ xx
x

∂ x
=a⋅q2⋅r2⋅y 2−q2⋅x2r2⋅q2

∂ yy
x

∂ x
=a⋅r⋅q⋅r 2⋅y2−q2⋅x2r 2⋅q2

∂ yy
y

∂ x
=
∂ xx

x

∂ y
=−a⋅2⋅r2⋅q2⋅x⋅y

∂ yy
x

∂ y
=−a⋅2⋅r3⋅q⋅x⋅y

∂ yy
y

∂ y
=−a⋅r 2⋅ r2⋅y2−q2⋅x2−r2⋅q2 (2.1.10)

The Ricci-tensor:
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2.1 Curvature on a two dimensional surface

Rij=R ija
a =

∂ ij
a

∂ xa −
∂ aj

a

∂ x i  ij
b ⋅ ab

a − aj
b ⋅ ib

a

Rij=a⋅r⋅q⋅q2⋅x2r2⋅q2 r⋅q⋅x⋅y
r⋅q⋅x⋅y r 2⋅y2r 2⋅q2 (2.1.11)

The Ricci-scalar:

R=gab⋅Rab=a⋅2⋅r3⋅q3

R= 2⋅r3⋅q3

r4⋅y4q4⋅x4r 4⋅q42⋅r 4⋅q2⋅y22⋅r2⋅q4⋅x22⋅r 2⋅q2⋅x2⋅y2 (2.1.12)

The centre of the coordinate system is in the point we are discussing, where the coordinates are 
zeroes:

x = y = 0

R= 2⋅r 3⋅q3

r 4⋅q4 = 2
r⋅q

=2⋅K (2.1.13)

2.2 Plane

The element arc length squared and the 
metric tensor on the plane:

ds2=dx2dy2

g ij=g ij=1 0
0 1 (2.2.1)

There  are  no  variables  in  the  metric  tensor, 
therefore  all  its  derivatives  and  derivable 
quantities are zeroes.

47



2.2 Plane

The  element  arc  length  squared  in  polar 
coordinates and the other quantities:

ds2=dr2r 2⋅d 2

g ij=1 0
0 r 2 g ij=1 0

0 1
r 2

∂ g

∂ r
=r ∂ g

∂ r
=− 2

r3

(2.2.2)

 
r =− r

2
 r
 =  r

 = r
2

∂ 
r

∂r
=−1

2
∂ r



∂ r
=
∂  r



∂ r
=1

2

(2.2.3)

The Ricci-tensor and therefore the Ricci-scalar are zeroes.

2.3 Cylinder

We map the surface with a rectangular 
coordinate system, and the arc length squared 
depends on the constant radius of the cylinder:

ds2=c
2⋅d 2dz 2

g ij=c
2 0

0 1 g ij= 1
c

2 0

0 1
(2.3.1)

The metric contains no variables again, therefore every derivative and derivable quantity is zero.
It is worth mentioning that it is possible to conceive a two dimensional surface with zero  

curvature,  that  cannot  be  embedded  into  three  dimensional  euclidean  space.  Let  us  imagine  a 
cylinder where we are deforming the space it is embedded into. As the coordinate system on the 
cylinder differs from the plain case because one of the coordinates is made cyclic, it is possible to 
do  so  in  three  dimensions  as  well.  While  the  x and  y coordinates  extend  into  infinity,  the  z 
coordinate returns into itself, its length is the circumference of a circle out in the fourth dimension. 
Since the curvature radius along the other coordinates is infinite, its easy to see that our space has 
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2.3 Cylinder

zero curvature. If we define our cylinder on this manifold with the same orientation, and assume 
that the height of the cylinder is the same as the length of the z coordinate, we will notice that the 
top  and  bottom circles  of  the  cylinder  are  touching.  The  newly  formed  surface  is  finite  and 
homogeneous with both coordinates cyclic, cannot be embedded into common three dimensional 
space, still it has zero curvature (although it is not isotropic, circumnavigating the surface in various 
directions, the path taken would differ):

ds2=c
2⋅d2c

2⋅dz2

g ij=c
2 0

0 c
2 g ij= 1

c
2 0

0 1
c

2  (2.3.2)

2.4 Cone

The cone is  also a  surface  of  zero curvature,  because it  can be unfolded to  a  plain.  In 
rectangular and polar coordinates:

Some possible parametric equations:

x=r⋅sin ⋅cos  y=r⋅sin ⋅sin z=r⋅sin 

x2

a2
y2

b2−
z2

c2=0

x=h−u
h

⋅r⋅cos y=h−u
h

⋅r⋅sin  z=u (2.4.1)

Using the last equations, the arc length squared and the other quantities:

49



2.4 Cone

ds2=1 rc
2

hc
2 ⋅du2rc

2⋅
hc−u2

hc
2 ⋅d2

g ij=1 rc
2

hc
2 0

0 r c
2⋅
hc−u2

hc
2  g ij= hc

2

hc
2r c

2 0

0
hc

2

rc
2⋅hc−u2


∂ g

∂ u
=−2⋅rc

2⋅
hc−u

hc
2

∂ g

∂ u
=

2⋅hc
2

r c
2⋅hc−u3

(2.4.2)

 
u =

rc
2

hc
2⋅

hc−u

1
rc

2

hc
2

 u
 = u

 =− 1
hc−u

∂ 
u

∂ u
=−

r c
2

hc
2⋅1 r c

2

hc
2 

∂ u


∂ u
=
∂ u



∂u
=− 1

hc−u2
(2.4.3)

The Ricci-tensor, and so the Ricci-scalar are also zeroes, the cone can be unfolded to a plain.

2.5 Sphere

We  introduce  geographic  latitudinal 
and longitudinal coordinates on a sphere, and 
calculate the geometric quantities from the arc 
length squared to the curvature:

ds2=rc
2⋅d 2r c

2⋅sin2⋅d2

g ij=r c
2 0

0 rc
2⋅sin2

g ij= 1
r c

2 0

0 1
rc

2⋅sin2

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2.5 Sphere

∂ g

∂
=2⋅r c

2⋅cos ⋅sin
∂ g

∂
=−

2⋅cos 
rc

2⋅sin3
(2.5.1)

 
 =−cos⋅sin   

 = 
 =cot

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−

cos2 
sin2

−1 (2.5.2)

Rij=1 0
0 sin2  R=2⋅K= 2

r c
2 (2.5.3)

We calculate the surface of the sphere by integrating the infinitesimal surface element:

dA=rc⋅d ⋅r c⋅sin⋅d

A=∫
0



rc⋅d ⋅∫
0

2⋅

rc⋅sin ⋅d =rc
2⋅4⋅ (2.5.4)

The  sphere  can  be  covered  with 
rectangular  coordinates  also.  Using  this 
method  we  can  map  only  one  half  of  the 
sphere, thus it cannot be used to map the entire 
surface,  just as  polar coordinates cannot map 
the poles. The parametric equation:

z=± rc
2− x2− y2

dz=− x⋅dx y⋅dy
 rc

2− x2− y2 (2.5.5)

The characterizing quantities of the surface, from the arc length squared to the curvature:

ds2= 1
r c

2− x2− y2⋅ rc
2− y2⋅dx2 rc

2− x2⋅dy22⋅x⋅y⋅dx⋅dy 

g ij=
1

r c
2− x2− y2⋅rc

2− y 2 x⋅y
x⋅y r c

2−x2 g ij= 1
r c

2⋅rc
2− x2 −x⋅y
−x⋅y rc

2− y2
∣g ij∣=

rc
2

rc
2− x2− y2

51



2.5 Sphere

∂ g

∂
=

2⋅x⋅ rc
2− y2

r c
2−x2− y22

∂ g

∂
=

2⋅y⋅rc
2−x2

 rc
2− x2− y22

∂ g

∂
= 2⋅x

r c
2−x2− y2⋅ r c

2−x2

r c
2−x2− y 2−1 ∂ g

∂
= 2⋅y

rc
2− x2− y2⋅ r c

2− y2

rc
2− x2− y2−1

∂ g

∂
=
∂ g

∂
= x

r c
2−x2− y 2⋅1 2⋅y2

r c
2−x2− y2  ∂ g

∂
=
∂ g

∂
= y

r c
2−x2− y 2⋅1 2⋅x2

r c
2−x2− y2 

∂ g

∂
=−2⋅x

r c
2

∂ g

∂
=∂ g

∂
=− y

rc
2

∂ g

∂
=∂ g

∂
=− x

rc
2

∂ g

∂
=−2⋅y

r c
2

(2.5.6)

 
 =

x⋅r c
2− y2

rc
2⋅r c

2−x2− y2
 
 =

y⋅r c
2− y2

rc
2⋅r c

2−x2− y2

 
 =

x⋅rc
2−x2

r c
2⋅ rc

2− x2− y2
 
 =

y⋅r c
2−x2

r c
2⋅ rc

2− x2− y2

 
 = 

 = x2⋅y
rc

2⋅r c
2−x2− y2

 
 = 

 = x⋅y2

rc
2⋅r c

2−x2− y2

∂ 


∂
=

y4− x2⋅y22⋅r c
2⋅y2rc

2⋅x2r c
4

r c
2⋅rc

2−x2− y22
∂ 



∂
=

x4−x2⋅y2−2⋅r c
2⋅x2rc

2⋅y2r c
4

r c
2⋅rc

2−x2− y22

∂ 


∂
=
∂ 



∂
=
∂ 



∂
=

2⋅x⋅y⋅r c
2− y2

rc
2⋅r c

2−x2− y22
∂ 



∂
=
∂ 



∂
=
∂ 



∂
=

2⋅x⋅y⋅ rc
2− x2

rc
2⋅r c

2− x2− y22

∂ 


∂
=

x43⋅x2⋅y2−2⋅r c
2⋅x2−rc

2⋅y2r c
4

r c
2⋅ rc

2− x2− y22
∂ 



∂
=

y43⋅x2⋅y2−2⋅rc
2⋅y2−r c

2⋅x2rc
4

r c
2⋅ rc

2− x2− y22

∂ 


∂
=
∂ 



∂
=

y2⋅r c
2x2− y2

r c
2⋅ rc

2− x2− y22
∂ 



∂
=
∂ 



∂
=

x2⋅rc
2−x2 y2

r c
2⋅ rc

2− x2− y22

∂ 


∂
= 2⋅x⋅y3

rc
2⋅r c

2−x2− y22
∂ 



∂
= 2⋅x3⋅y

r c
2⋅rc

2−x2− y22
(2.5.7)

Rij=−g ij=−
1

r c
2−x2− y2⋅r c

2− y2 x⋅y
x⋅y r c

2−x2 R=2⋅K= 2
r c

2 (2.5.8)

Our result is of course the same as the result from calculating with polar coordinates.
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2.5 Sphere

2.6 Paraboloid

In polar and rectangular coordinates:

The equation:

z=b⋅x2 y2

The parametric equations:

x=ac⋅ u
hc
⋅cos  y=ac⋅ u

hc
⋅sin z=u (2.6.1)

The characterizing geometric quantities of the surface, from the arc length squared to the curvature:

ds2=1 ac
2

4⋅hc⋅u ⋅du2
ac

2⋅u
hc

⋅d 2

g ij=1 ac
2

4⋅hc⋅u
0

0
ac

2⋅u
hc
 g ij= 4⋅hc⋅u

4⋅hc⋅uac
2 0

0
hc

ac
2⋅u


∂ guu

∂ u
=−

ac
2

4⋅hc⋅u
2

∂ g uu

∂ u
=

ac
2

4⋅hc⋅u2⋅1 ac
2

4⋅hc⋅u 
2
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2.6 Paraboloid

∂ g

∂ u
=

ac
2

hc

∂ g

∂ u
=−

hc

ac
2⋅u2 (2.6.2)

 uu
u =−

ac
2

4⋅hc⋅u
2⋅1 ac

2

4⋅hc⋅u
 

u =−
ac

2

2⋅hc⋅1 ac
2

4⋅hc⋅u   u
 = u

 = 1
2⋅u

∂ uu
u

∂ u
=

ac
2

4⋅hc⋅u
2⋅1 ac

2

4⋅hc⋅u
⋅ 1

u
−

ac
2

2⋅hc⋅u2⋅1 ac
2

4⋅hc⋅u 
∂ 

u

∂ u
=−2⋅ ac

2

4⋅hc⋅u⋅1 ac
2

4⋅hc⋅u 
2

∂ u


∂ u
=
∂ u



∂u
=− 1

2⋅u2 (2.6.3)

Ruu=
1

4⋅u2−
1
u  ac

4⋅hc⋅u⋅1 ac
2

4⋅hc⋅u 
2

R=
ac

4⋅hc⋅u⋅1 ac
2

4⋅hc⋅u 
⋅1− ac

4⋅hc⋅u⋅1 ac
2

4⋅hc⋅u 
R=2⋅K=

4⋅hc

ac
24⋅hc⋅u

(2.6.4)

Far away from the tip of the paraboloid, the curvature of the surface approaches zero:

lim
u∞

4⋅hc

ac
24⋅hc⋅u

=0 (2.6.5)

2.7 Hyperboloid

The parametric equation of a hyperboloid of one sheet:

x=ac⋅u21⋅cos  y=ac⋅u21⋅sin z=bc⋅u

x2 y2

ac
2 −

z2

bc
2=1 (2.7.1)
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2.7 Hyperboloid

From the arc length squared to the curvature:

ds2= ac
2⋅u2

u21
bc

2⋅du2ac
2⋅u21⋅d 2

g ij= ac
2⋅u2

u21
bc

2 0

0 ac
2⋅u21

g ij= u21
ac

2bc
2⋅u2bc

2 0

0 1
ac

2⋅u21 
∂ guu

∂ u
=

2⋅ac
2⋅u

u21
⋅1− u

u21 ∂ g

∂ u
=2⋅ac

2⋅u

∂ g uu

∂ u
=−

2⋅ac
2⋅u

u2⋅ac
2bc

2bc
22

∂ g

∂ u
=− 2⋅u

ac
2⋅u212

(2.7.2)

 uu
u =

ac
2⋅u

ac
2⋅u2bc

2⋅u21⋅u21
 

u =−
ac

2⋅u⋅u21
ac

2⋅u2bc
2⋅u21

 u
 = u

 = u
u21

∂ uu
u

∂ u
=−

ac
2⋅ac

2⋅u2⋅3⋅u21bc
2⋅3⋅u42⋅u2−1

ac
2⋅u2bc

2⋅u21⋅u212

∂ 
u

∂ u
=−

ac
2⋅ac

2⋅u2⋅u2−1bc
2⋅u212

ac
2⋅u2bc

2⋅u212

∂ u


∂ u
=
∂ u



∂u
=− u2−1

u212
(2.7.3)

Rij=−
bc

2

ac
2⋅u2bc

2⋅u21
⋅ 1

u21
0

0
ac

2⋅u21
ac

2⋅u2bc
2⋅u21
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2.7 Hyperboloid

R=2⋅K=−
2⋅bc

2

ac
2⋅u2bc

2⋅u212
(2.7.4)

2.8 Bolyai surface

The Bolyai  surface  is  an infinite  surface  with  constant  negative  curvature,  it  cannot  be 
embedded into a three dimensional surface with a positive arc length squared. We start with the 
hyperboloid of two sheets. With polar and rectangular coordinates:

The equation of the surface:

z=ac
2x2 y2 (2.8.1)

We set up a coordinate system in the three dimensional space, based on the hyperboloid:

x=r⋅sinh ⋅cos  y=r⋅sinh ⋅sin z=r⋅cosh  (2.8.2)

Substitute this  into the equation of the surface,  this  shows that the hyperboloid is  a  coordinate 
surface in this coordinate system:

r⋅cosh =ac
2r⋅sinh ⋅cos 2 r⋅sinh ⋅sin 2

r=ac (2.8.3)

The arc length squared of the pseudo-euclidean three dimensional space, where we are going to 
embed the hyperboloid:

ds2=dx2dy2−dz 2
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2.8 Bolyai surface

Changes of coordinates on the embedded hyperboloid:

dr=0

dx=r⋅cosh ⋅cos ⋅d −r⋅sinh⋅sin⋅d

dy=r⋅cosh ⋅sin ⋅d −r⋅sinh ⋅cos ⋅d

dz=r⋅sinh⋅d  (2.8.4)

The arc length squared on the embedded hyperboloid and the other geometric quantities:

ds2=rc
2⋅d 2rc

2⋅sinh 2⋅d 2

g ij=r c
2 0

0 rc
2⋅sinh2 g ij= 1

r c
2 0

0 1
rc

2⋅sinh2


∂ g

∂
=2⋅r c

2⋅cosh ⋅sinh 
∂ g

∂
=−

2⋅cosh 
rc

2⋅sinh 3
(2.8.5)

 
 =−cosh ⋅sinh   

 = 
 =coth 

∂ 


∂
=−sinh2−cosh2

∂ 


∂
=
∂ 



∂
=1− cosh 2

sinh2
(2.8.6)

Rij=−1 0
0 −sinh2 R=2⋅K=− 2

rc
2 (2.8.7)

The Bolyai surface has infinite extension.
There  is  a  two  dimensional  surface,  that  although  lacks  the  symmetry  features  of  the 

previous Bolyai surface, but it has the same constant negative curvature, and it can be embedded 
into three dimensional space: the tractroid. This surface is created by revolving a tractrix about its 
asymptote:

z=a⋅arcosh a
−a2−2=a⋅lnaa2−2

 −a2−2 (2.8.8)
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2.8 Bolyai surface

From the arc length to the curvature:

ds2=d 22⋅d 2dz2

ds2=
ac

2

2 d 22⋅d2

g ij=ac
2

2 0

0 2 g ij=
2

ac
2 0

0 1
2 

∂ g 

∂
=−

2⋅ac
2

3

∂ g 

∂
=2⋅

ac
2

∂ g

∂
=2⋅ ∂ g

∂
=− 2

3

(2.8.9)

 
 =−1


 
 =−3

ac
2  

 = 
 = 1



∂  


∂
= 1
2

∂ 


∂
=−3⋅2

ac
2

∂ 


∂
=
∂ 



∂
=− 1

2 (2.8.10)

Rij=− 1
2 0

0 −
2

ac
2  R=2⋅K=− 2

ac
2 (2.8.11)

2.9 Catenoid

Although the curvature of the catenoid is non-zero, but it is a minimal surface, its average 
curvature is zero, just like the plain. The parametric equation:

x=ac⋅cosh v
ac⋅cosu x=ac⋅cosh v

ac⋅sinu z=v (2.9.1)
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2.9 Catenoid

From the arc length squared to the curvature:

ds2=cosh2 v
ac⋅dv2cosh2 v

ac⋅du2

g ij=cosh v
ac 0

0 cosh v
ac 

g ij=
1

cosh v
ac 

0

0 1

cosh v
ac

∂ g vv

∂ v
=
∂ guu

∂ v
=

2⋅cosh v
ac ⋅sinh v

ac
ac

∂ g vv

∂ v
=∂ guu

∂ v
=−

2⋅sinh v
ac 

ac⋅cosh3 v
ac

(2.9.2)

 vv
v = vu

u = uv
u = 1

ac
⋅coth v

ac   uu
v =− 1

ac
⋅coth v

ac
∂ vv

v

∂ v
=
∂ vu

u

∂ v
=
∂ uv

u

∂ v
= 1

ac
2⋅cosh 2 v

ac
∂ uu

v

∂ v
=− 1

ac
2⋅cosh2 v

ac  (2.9.3)

Rij=−
1

ac
2⋅cosh2 v

ac 
0

0 − 1

ac
2⋅cosh2 v

ac  R=2⋅K=− 2

ac
2⋅cosh4 v

ac
(2.9.4)

Far away from the signature funnel of the catenoid, the curvature of the surface approaches zero:
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2.9 Catenoid

lim
v∞ − 2

ac
2⋅cosh4 v

ac=0
(2.9.5)

2.10 Helicoid

The helicoid is also a minimal surface, and it is isometric to the catenoid, thus it is possible 
to  deform it  into a catenoid without  distortion and vice versa,  just  as the cylinder can also be 
flattened into a plain. The parametric equations:

x=v⋅cos  y=v⋅sin z=ac⋅v

y=x⋅tan z
ac  (2.10.1)

From the arc length squared to the curvature:

ds2=dv2ac
2v2⋅du2

g ij=1 0
0 ac

2v2
g ij=1 0

0 1
ac

2v2 
∂ guu

∂v
=2⋅v

∂ g uu

∂v
=− 2⋅v

ac
2v22

(2.10.2)

 uu
v =−v  vu

u = uv
u = v

ac
2v2

∂ uu
v

∂ v
=−1

∂ vu
u

∂ v
=
∂ uv

u

∂ v
=

ac
2−v2

ac
2v22

(2.10.3)

Rij=− ac
2

ac
2v22

0

0 v2

ac
2v2−1 R=2⋅K=−

2⋅ac
2

ac
2v22

(2.10.4)
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2.10 Helicoid

2.11 Hyperbolic paraboloid

The parametric equation of the surface 
with  negative  curvature  in  a  possible 
coordinate system:

x=u y=v

z=x⋅y (2.11.1)

From the arc length squared to the curvature:

ds2=1v2⋅du21u2⋅dv22⋅u⋅v⋅du⋅dv

g ij=1v2 u⋅v
u⋅v 1u2 g ij= 1

1u2v2⋅1u2 −u⋅v
−u⋅v 1v2

∣g ij∣=1u2v2

∂ g uv

∂ u
=
∂ g vu

∂ u
=v

∂ g uv

∂ v
=
∂ g vu

∂v
=u

∂ g vv

∂ u
=2⋅u

∂ g uu

∂v
=2⋅v

∂ g uu

∂ u
= 2⋅u⋅v2

1u2v22
∂ g vv

∂ v
= 2⋅u2⋅v
1u2v22

∂ g uv

∂ u
=∂ g vu

∂ u
=− v⋅1−u2v 2

1u2v22
∂ g uv

∂ v
=∂ g vu

∂v
=−u⋅1−u2v2

1u2v 22

∂ g vv

∂ u
=− 2⋅u⋅1v2

1u2v 22
∂ g uu

∂v
=− 2⋅v⋅1u2

1u2v22
(2.11.2)

 uv
u = vu

u = v
1u2v 2  uv

v = vu
v = u

1u2v 2

∂ uv
u

∂u
=
∂ vu

u

∂u
=
∂ uv

v

∂ v
=
∂ vu

v

∂ v
=− 2⋅u⋅v

1u2v22

∂ uv
v

∂ u
=
∂ vu

v

∂u
= 1−u2v2

1u2v22
∂ uv

u

∂ v
=
∂ vu

u

∂ v
= 1−u2−v2

1u2v22
(2.11.3)
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2.11 Hyperbolic paraboloid

Rij=−
1

1u2v22
⋅1u2 u⋅v

u⋅v 1v2 R=2⋅K=− 2
1u2v22

(2.11.4)

Far  away from the  signature  saddle  of  the  hyperbolic  paraboloid,  the  curvature  of  the  surface 
approaches zero:

lim
u∞ , v∞− 2

1u2v22 =0 (2.11.5)

Parametric equation in another possible coordinate system:

z= y2

bc
2−

x2

ac
2 (2.11.6)

From the arc length squared to the curvature:

ds2=4⋅u2

ac
4 1⋅du2 4⋅v 2

bc
4 1⋅dv2−8⋅u⋅v

ac
2⋅bc

2⋅du⋅dv

g ij=4⋅u2

ac
4 1 −4⋅u⋅v

ac
2⋅bc

2

−4⋅u⋅v
ac

2⋅bc
2

4⋅v2

bc
4 1 ∣g ij∣=4⋅u2

ac
4 1⋅4⋅v2

bc
4 1−16⋅u2⋅v2

ac
4⋅bc

4

g ij=
1

ac
4⋅bc

44⋅v24⋅bc
4⋅u2⋅ac

4⋅bc
44⋅v2 4⋅ac

2⋅bc
2⋅u⋅v

4⋅ac
2⋅bc

2⋅u⋅v bc
4⋅ac

44⋅u2
∂ guu

∂ u
=8⋅u

ac
4

∂ g vv

∂ v
=8⋅v

bc
4

∂ g uv

∂ u
=
∂ g vu

∂ u
=− 4⋅v

ac
2⋅bc

2

∂ g uv

∂ v
=
∂ g vu

∂v
=− 4⋅u

ac
2⋅bc

2

∂ g uu

∂ u
=−

8⋅ac
4⋅bc

4⋅u⋅bc
44⋅v2

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

∂ g vv

∂ v
=−

8⋅ac
4⋅bc

4⋅v⋅ac
44⋅u2

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

∂ g vv

∂ u
=

32⋅ac
4⋅bc

4⋅u⋅v 2

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

∂ g uu

∂v
=

32⋅ac
4⋅bc

4⋅u2⋅v
ac

4⋅bc
44⋅v24⋅bc

4⋅u22
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2.11 Hyperbolic paraboloid

∂ g uv

∂ u
=∂ g vu

∂ u
=

4⋅ac
2⋅bc

2⋅v⋅ac
4⋅bc

44⋅v2−4⋅bc
4⋅u2

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

∂ g uv

∂ v
=∂ g vu

∂v
=

4⋅ac
2⋅bc

2⋅u⋅bc
4⋅ac

44⋅u2−4⋅ac
4⋅v2

ac
4⋅bc

44⋅v 24⋅bc
4⋅u22

(2.11.7)

 uu
u = 4⋅b4⋅u

ac
4⋅bc

44⋅v 24⋅bc
4⋅u2  vv

u =− 4⋅a2⋅b2⋅u
ac

4⋅bc
44⋅v24⋅bc

4⋅u2

 vv
v = 4⋅b4⋅v

ac
4⋅bc

44⋅v24⋅bc
4⋅u2  uu

v =− 4⋅a2⋅b2⋅v
ac

4⋅bc
44⋅v24⋅bc

4⋅u2

∂ uu
u

∂ u
=

4⋅bc
4⋅ac

4⋅bc
44⋅v 2−4⋅bc

4⋅u2
ac

4⋅bc
44⋅v 24⋅bc

4⋅u22
∂ vv

v

∂ v
=

4⋅ac
4⋅bc

4⋅ac
44⋅u2−4⋅ac

4⋅v 2
ac

4⋅bc
44⋅v24⋅bc

4⋅u22

∂ uu
v

∂ u
=

32⋅ac
2⋅bc

6⋅u⋅v
ac

4⋅bc
44⋅v24⋅bc

4⋅u22
∂ vv

u

∂ v
=

32⋅ac
6⋅bc

2⋅u⋅v
ac

4⋅bc
44⋅v24⋅bc

4⋅u22

∂ vv
u

∂u
=

4⋅ac
2⋅bc

2⋅ac
4⋅4⋅v2−bc

44⋅b4⋅u2
ac

4⋅bc
44⋅v24⋅bc

4⋅u22
∂ uu

v

∂ v
=

4⋅ac
2⋅bc

2⋅ac
4⋅4⋅v2−bc

4−4⋅b4⋅u2
ac

4⋅bc
44⋅v24⋅bc

4⋅u22

∂ vv
v

∂u
=
∂ uu

u

∂v
=−

32⋅ac
4⋅bc

4⋅u⋅v
ac

4⋅bc
44⋅v 24⋅bc

4⋅u22
(2.11.8)

Rij=
4⋅ac

2⋅bc
2

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

⋅bc
4⋅4⋅u2ac

4 4⋅ac
2⋅bc

2⋅u⋅v
4⋅ac

2⋅bc
2⋅u⋅v ac

4⋅4⋅v2bc
4

R=2⋅K=−
8⋅ac

6⋅bc
6

ac
4⋅bc

44⋅v24⋅bc
4⋅u22

(2.11.9)

2.12 Torus

It is a variable curvature surface, negative on the inner side, and positive on the outer edge. 
The parametric equation, where a is the main radius, b is the secondary radius:

x=acbc⋅sin⋅cos  y=acbc⋅sin ⋅sin  z=bc⋅cos 
(2.12.1)
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2.12 Torus

From the arc length squared to the curvature:

ds2=bc
2⋅d 2acbc⋅sin 2⋅d 2

g ij=bc
2 0

0 acbc⋅sin 2

g ij= 1
bc

2 0

0 1
acbc⋅sin 2 

∂ g

∂
=2⋅cos ⋅sin⋅2⋅bc
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2

∂ g

∂
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2⋅cos 
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
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acbc⋅sin  (2.12.2)
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bc

sin 2−4⋅cos2⋅sin 
−cos2 ⋅sin2

∂ 


∂
=
∂ 



∂
=

ac
23⋅ac⋅bc⋅sin 2⋅bcac

22⋅ac⋅bc⋅sin⋅cot 2
ac

2bc
2⋅sin22

(2.12.3)

Rij= ac2⋅bc⋅sin ⋅sin −2⋅bc⋅cos2
acbc⋅sin⋅sin

0

0 R


R=
3⋅ac2⋅bc⋅sin⋅bc⋅sin 2ac

2−2⋅bc
2⋅cos2 ⋅sin −2⋅ac⋅bc⋅cos2

bc
2 ⋅sin 

R=2⋅K= 2
bc

2⋅
ac2⋅bc⋅sin⋅sin −2⋅bc⋅cos2

acbc⋅sin ⋅sin  (2.12.4)
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2.12 Torus

The surface of the torus:

dA=bc⋅d ⋅acbc⋅sin ⋅d

A=∫
0

2⋅

bc⋅d ⋅∫
0

2⋅

acbc⋅sin ⋅d =4⋅ac⋅bc⋅
2 (2.12.5)
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3. Flat and general spacetime

3. Flat and general spacetime

The  simplest  four  dimensional  solution  of  the  Einstein equations  is  the  matter-free  flat 
spacetime. In it we can neglect the gravitation of test particles, and the geodesics they are following 
become everyday straight lines that can be described with simple partial derivatives. The theory of 
special relativity deals with this solution, described by Albert Einstein in 1905, not long before the 
birth of general relativity.

In the Kaluza model,  electromagnetism also has a geometric origin,  it  is not part of the 
matter distribution, with this extension the theory describes a five dimensional spacetime. However 
in  our  experience,  the  gravitational  interaction  is  more  general  than  the  electromagnetic.  Thus 
gravitational  interaction  can  act  alone,  while  an  electromagnetic  field is  not  possible  without 
gravitation, since the presence of electromagnetic energy in itself is already causing changes in the 
spacetime  geometry.  Thus  we  can  discuss  pure  gravitational  interaction  without  neglecting 
anything.

In order to understand what is going on, it is important to keep in mind, that motion happens 
in the entire four dimensional spacetime. Time is a direction of motion that can be used to measure 
distances, just as the other three directions of space.

3.1 Proper time

We use rectangular coordinates in flat space, and we write down the arc length squared in 
the following way:

ds2=c2⋅dt 2−dx2−dy 2−dz 2 t: time coordinate
x, y, z: space coordinates
c: speed of light (3.1.1)

It is customary to use unique notation for the metric tensor:

=
=1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1 (3.1.2)

It is easy to see, that this is a solution of the Einstein equations in four dimensions:

R−
1
2
⋅R⋅=0 (3.1.3)

Two dotted lines denote the paths of light rays on the following graph, that lead away or into 
the  event  in  the  centre.  The  spacetime  domains  separated  by  the  light  cone have  different 
significances. Under the lower cone sheet lay past events, that might have influenced the observer 
in  the  centre,  these  compose  the  time-like  past.  Events  above  the  upper  cone  sheet  might  be 
influenced by the centre,  therefore they compose the  time-like future. Since information cannot 
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3.1 Proper time

propagate faster than the speed of light, the outside domain is not influenced by this, therefore the  
concepts  of  future  and past  cannot  be  interpreted  there.  At  the  graphical  representation  of  the 
coordinate system, we neglected the y and z coordinates:

  c∙t

x

In the spacetime using different coordinate systems the arc length squared is the same, it is 
an invariant quantity. Let us write it on the left side of the equation in a coordinate system, where 
the arc is parallel to the time coordinate, and use a generally oriented coordinate system on the right 
side:

c2⋅d 2=c2⋅dt2−dl2 (3.1.4)

Where we have grouped together the space-like coordinate differentials:

dl 2=dx2dy2dz2 (3.1.5)

The space-like velocity squared:

v2 t =dl 2

dt 2 (3.1.6)

And the proper time:

d =dt⋅1− dl 2

c2⋅dt2=dt⋅1− v t2

c2 (3.1.7)

3.2 Lorentz-transformation

According to the relativity principle, reference frames in state of constant, rectilinear motion 
with respect to one another are equivalent. We determine the transformation matrix that corresponds 
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3.2 Lorentz-transformation

to switching between them:

x i
2 =

∂ x i
2

∂ x a⋅xa= a
i ⋅xa  t2

x2

y2

z2
= a b c d

e f g h
i j k l
m n o p

⋅ t
x
y
z
 (3.2.1)

Linear transformations can always be represented by matrices, and matrices always create  linear 
transformations. The  transformation matrices compose a group, because they obey the following 
rules:

Identity element: 11⋅x=x

Closure: 32⋅21⋅x=31⋅x

Associativity: 4 3⋅32⋅21⋅x=43⋅32⋅2 1⋅x

Inverse element: 2 1⋅x=12
−1 ⋅x (3.2.2)

We examine first the identity element, we approach it with a transformation that changes the vector 
only slightly:

 t
x
y
z=

a b c d
e f g h
i j k l
m n o p⋅

t
x
y
z (3.2.3)

Write out the matrix operation in detail:

t=a⋅tb⋅xc⋅yd⋅z =a−1⋅tb⋅xc⋅yd⋅z

x=e⋅t f⋅xg⋅yh⋅z =e⋅t f −1⋅xg⋅yh⋅z

y=i⋅t j⋅xk⋅yl⋅z =i⋅t j⋅xk−1⋅yl⋅z

z=m⋅tn⋅xo⋅y p⋅z =m⋅tn⋅xo⋅y p−1⋅z (3.2.4)

If the small deviation approaches zero, the transformation matrix approaches the identity matrix:

 0 → a b c d
e f g h
i j k l
m n o p

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 (3.2.5)

Since the transformation is linear, the macroscopic translations will also have the same form. The 
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3.2 Lorentz-transformation

small deviation is a contravariant vector, but we are going to write the macroscopic deviation as a 
covariant tangent vector:

=⋅u u=
v

c
⋅t (3.2.6)

Investigate the transformation of the unit vectors, first in the time-like direction. We drop the speed 
of light in the formulas, to avoid confusion with one of the matrix elements:


tt⋅ut

xx⋅ux

 yy⋅u y

zz⋅uz
=u t

−ux

−u y

−uz
= a b c d

e f g h
i j k l
m n o p⋅


0
0
0

v t⋅t=a⋅
−v x⋅t=e⋅
−v y⋅t=i⋅
−v z⋅t=m⋅

(3.2.7)

from this the matrix elements are:

1v t⋅
t

=a −

v x

v t
⋅a−1=e −

v y

v t
⋅a−1=i −

v z

v t
⋅a−1=m (3.2.8)

The unit vector in the x direction:

 u t

x−u x

−u y

−uz
= a b c d

e f g h
i j k l
m n o p⋅

0
x
0
0

v t⋅t=b⋅x
x−vx⋅t= f⋅x
−v y⋅t= j⋅x
−v z⋅t=n⋅x

(3.2.9)

the matrix elements:

v t⋅
t
x
=b 1−

v x

v t
⋅b= f −

v y

v t
⋅b= j −

v z

v t
⋅b=n (3.2.10)

Spacetime is the same in every direction, therefore we expect the same form in both other space-
like directions:

v t⋅
t
y
=c −

v x

v t
⋅c=g 1−

v y

v t
⋅c=k −

v z

v t
⋅c=o (3.2.11)

v t⋅
t
z
=d −

v x

v t
⋅d=h −

v y

v t
⋅d=l 1−

v z

v t
⋅d=p (3.2.12)

The  diagonally opposite elements look the same, and since the length of the  unit vectors is the 
same, they coincide:
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3.2 Lorentz-transformation

v t⋅
t
x
=b ↔ v t⋅

t

=e → e = b

−
v x

v t
⋅a−1=e=b −

v z

vt
⋅a−1=i=c −

v z

vt
⋅a−1=m=d (3.2.13)

Thus the matrix is symmetric:

a b c d
e f g h
i j k l
m n o p=

a b c d
b f g h
c g k l
d h l p (3.2.14)

The velocity squared in three dimensional space:

⋅v⋅v =v t
2−v x

2−v y
2−v z

2 → v t
2=v x

2v y
2v z

2=v2 (3.2.15)

After all this the form of the matrix elements:

1v t⋅
t

=a v t⋅

t
x
=b v t⋅

t
y
=c v t⋅

t
z
=d

−
v x

v t
⋅a−1=b 1

v x
2

v2⋅a−1= f
v x⋅v y

v2 ⋅a−1=g
v x⋅v z

v 2 ⋅a−1=h

−
v y

v t
⋅a−1=c

v y⋅v x

v2 ⋅a−1=g 1
v y

2

v2⋅a−1=k
v y⋅v z

v2 ⋅a−1=l

−
v z

v t
⋅a−1=d

v z⋅v x

v 2 ⋅a−1=h
v z⋅v y

v2 ⋅a−1=l 1
v z

2

v2⋅a−1=p

(3.2.16)

The coordinates of the centre of the standing coordinate system in the moving coordinate system:

 t
−vx⋅t
−v y⋅t
−vz⋅t

=a b c d
b f g h
c g k l
d h l p

⋅00
0


t

=a

−vx⋅a=b
−v y⋅a=c
−vz⋅a=d

(3.2.17)

The reverse transformation:
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3.2 Lorentz-transformation

000=
a −vx⋅a −v y⋅a −vz⋅a

−v x⋅a f g h
−v y⋅a g k l
−vz⋅a h l p ⋅ t

vx⋅t
v y⋅t
v z⋅t
 (3.2.18)

Determine the „0,0” matrix element:

=a⋅t⋅1−v2
0= f −a⋅v xg⋅v yh⋅v z

0=g⋅vxk−a⋅v yl⋅v z

0=h⋅v xl⋅v y p−a ⋅v z

→ a= 1
1−v2 (3.2.19)

The matrix of the Lorentz-transformation with SI units:

= a −
vx

c
⋅a −

v y

c
⋅a −

v z

c
⋅a

−
v x

c
⋅a 1

v x
2

v 2⋅a−1
vx⋅v y

v 2 ⋅a−1
v x⋅v z

v2 ⋅a−1

−
v y

c
⋅a

v y⋅v x

v2 ⋅a−1 1
v y

2

v2⋅a−1
v y⋅vz

v2 ⋅a−1

−
v z

c
⋅a

v z⋅v x

v2 ⋅a−1
vz⋅v y

v 2 ⋅a−1 1
vz

2

v2⋅a−1
 a= 1

1− v2

c2

(3.2.20)

Investigate the transformation along the x axis:

c⋅ t2

x2

0
0
=a b c d

b f g h
c g k l
d h l p⋅

c⋅t
x
0
0  (3.2.21)

The transformation formulas:

t2 =a⋅tb⋅x
c
= 1

1− v2

c2

⋅t−
v x

c
⋅ 1

1− v 2

c2

⋅x
c
=

t−
v x

c2⋅x

1− v2

c2

(3.2.22)
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3.2 Lorentz-transformation

x2 =b⋅c⋅t f⋅x=−
v x

c
⋅ 1

1− v2

c2

⋅c⋅t1 vx
2

v2⋅ 1

1− v2

c2

−1⋅x=
x−vx⋅t

1− v2

c2

(3.2.23)

For the reverse transformation, all we have to do is change the sign of the velocity. Substitute them 
into the four-distance, that is the finite variant of the arc length squared:

s2=c2⋅t 2− x2− y2− z2 (3.2.24)

c2⋅ t 2
2 − x2

2 =c2⋅ t−
v x

c2⋅x

1− v2

c2 
2

− x−v x⋅t

1− v 2

c2 
2

c2⋅ t 2
2 − x2

2 = 1

1− v2

c2

⋅c2⋅t2−2⋅t⋅v x⋅x
v x

2

c2⋅x2−x22⋅x⋅v x⋅t−v x
2⋅t 2

c2⋅ t 2
2 − x2

2 = 1

1− v2

c2

⋅c2⋅t 2−x2⋅1− v x
2

c2 
c2⋅ t 2

2 − x2
2 =c2⋅t2−x2 (3.2.25)

The coordinate transformation is therefore correct, because it preserves the invariant four-distance. 
By writing  out  the  entire  four-distance,  we  can  conclude  that  the  y and  z coordinates  do  not 
transform:

c2⋅ t 2
2 − x2

2 − y2
2 − z2

2 =c2⋅t 2−x2− y2−z 2

y2
2  z2

2 = y2z2

y2 = y z2 =z (3.2.26)

Length contraction of a moving rod; let the coordinates of the end points of the rod in each 
coordinate systems be x and y, and 2x and 2y:

x2 − y2 =
x−v x⋅t

1− v2

c2

−
y−vx⋅t

1− v 2

c2
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3.2 Lorentz-transformation

x2 − y2 = x− y

1− v2

c2

The length of the rod: l=x− y

l= l2 ⋅1− v2

c2 (3.2.27)

3.3 Addition of velocity and acceleration

How  much  is  the  measured  speed  of  an  object  that  is  moving  with  constant  velocity, 
observed from  a  different  moving  reference  frame?  Let  one  of  the  coordinate  systems move 
relatively to the other in the x direction, let their relative velocity be Vx. The moving test object also 
moves along the x direction, and its speed in each coordinate system is:

v x=
dx
dt v x2 =

dx2

dt2
(3.3.1)

The transformation of the change in the coordinate:

dx2 = x B2 − xA2 =
x B− xA−V x⋅tB−tA

1−V 2

c2

=
dx−V x⋅dt

1−V 2

c2

(3.3.2)

Substitute it:

v x2 =
dx2

dt2
=

dx2

dt
⋅ dt

dt2
=

dx−V x⋅dt

1−V 2

c2

⋅ 1
dt
⋅ dt

dt2
=

v x−V x

1−V 2

c2

⋅dt
dt2 (3.3.3)

The transformation of the change of time:

dt2 = tB2 − t A2 =
tB−tA−

V x

c2⋅x B−x A

1−V 2

c2

=
dt−

V x

c2⋅dx

1−V 2

c2

(3.3.4)

The mutual ratios of the changes of time:
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3.3 Addition of velocity and acceleration

dt2

dt
=

dt−
V x

c2⋅dx

1−V 2

c2

⋅ 1
dt
=

1−
V x⋅v x

c2

1−V 2

c2

(3.3.5)

Reinsert is:

v x2 =
vx−V x

1−V 2

c2

⋅ dt
dt2
=

v x−V x

1−V 2

c2

⋅ 1−V 2

c2

1−
V x⋅v x

c2

The transformation formula of the velocity along the x direction:

v x2 =
v x−V x

1−
V x⋅v x

c2
(3.3.6)

We can always find a coordinate system, where the velocity of the moving object is zero, this is the 
co-moving coordinate system, where:

V x=v x (3.3.7)

The perpendicular velocity components are also transforming:

v y2 =
dy2

dt2
=

dy2

dt
⋅ dt

dt2
=dy

dt
⋅ dt

dt2
=v y⋅

dt
dt2

v y2 =v y⋅
1−V 2

c2

1−
V x⋅v x

c2

(3.3.8)

v z2 =
dz2

dt2
=

dz2

dt
⋅ dt

dt2
=dz

dt
⋅ dt

dt2
=v z⋅

dt
dt2

v z2 =v z⋅
1−V 2

c2

1−
V x⋅v x

c2

(3.3.9)

For the reverse transformation formulas all  we have to  do is  reversing the sign of the relative 
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3.3 Addition of velocity and acceleration

velocity between the two coordinate systems. Write down the transformation law of the change of 
the velocity:

dv x2 =d  v x−V x

1−
V x⋅v x

c2 =
1−V 2

c2

1−V x⋅v x

c2 
2⋅dv x (3.3.10)

Divide it with the change of time:

dt2 =
1−

V x⋅vx

c2

1−V 2

c2

⋅dt

The transformation of the acceleration in the x direction:

a x2 =
dv x2

dt2
=
1−V 2

c2 
3
2

1−V x⋅v x

c2 
3⋅ax (3.3.11)

Let us examine the momentary state of an object with constant acceleration. In this case, its velocity 
in its own reference frame is zero, and the mutual velocities of the two coordinate systems coincides 
with the velocity of the object in the other coordinate system:

a0=
1

1− v2

c2 
3
2

⋅a= d
dt
⋅ v

1− v2

c2
(3.3.12)

Perform the integration:

v=
a0⋅t

1a0

c
⋅t

2 (3.3.13)

With further integration we get the dependence of the objects position from the coordinate-time:

x= c2

a0
⋅1 a0

c
⋅t

2

−1x0
(3.3.14)
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3.3 Addition of velocity and acceleration

We introduce the contravariant  four-velocity, the derivative of the coordinate-change according to 
the proper time. Calculating the time-like component:

V 0=
dx0

d 
=

c⋅dt

dt⋅1− v 2

c2

=
c

1− v2

c2

(3.3.15)

Determine the space-like components of the four-velocity, from the common three-velocity:

V i= dx i

d 
= dxi

dt
⋅ dt

d 
=

v i

1− v2

c2

(3.3.16)

The reverse relationship:

v i=c⋅V i

V 0 (3.3.17)

The four-velocity is a vector, therefore its square is an invariant scalar:

V 2=⋅
dx

d 
⋅

dx

d 
=

ds2

d 2=c2 (3.3.18)

The four-acceleration is the differential of the four-velocity according to the proper time:

A=
dV 

d 
(3.3.19)

Every component of the four-acceleration of a non-moving object is zero:

A=dV 

d 
=d c 0 0 0

d 
=0 0 0 0 (3.3.20)

In this case the scalar product of the two vectors can be easily written down. This is however an 
invariant formula, therefore its true for any moving body:

V ⋅A=0 (3.3.21)

3.4 Aberration of light

The movement of an object in two different coordinate systems can be characterized by the 
following velocity components:
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3.4 Aberration of light

v x=v⋅cos v y=v⋅sin 

v x2 = v2 ⋅cos  2  v y2 = v2 ⋅sin  2  (3.4.1)

One of the coordinate systems moves in the x direction, with  Vx velocity relatively to the other. The 
transformation laws in the x and y directions using the formulas containing angles above:

v x2 =
v x−V x

1−
V x⋅v x

c2

= v2 ⋅cos  2 =
v⋅cos−V x

1−
V x⋅v⋅cos

c2
(3.4.2)

v y2 =v y⋅
1−V 2

c2

1−
V x⋅v x

c2

= v2 ⋅sin 2 =v⋅sin ⋅ 1−V 2

c2

1−
V x⋅v⋅cos 

c2

(3.4.3)

Divide  them with  each  other  and  we  get  the  transformation  law  of  the  azimuth  angle  of  the 
trajectory of the moving body:

cot  2 =
v⋅cos −V x

v⋅sin ⋅1−V 2

c2

(3.4.4)

In the case of light, the speed v is equal to the speed of light c, this is the aberration of light:

cot  2 =
cos −

V x

c

sin⋅1−V 2

c2

(3.4.5)

3.5 Doppler-effect

Since the length and the elapsed time are also coordinate dependent quantities, therefore, 
while the speed of light is constant, the wavelength of light is measured to be different by different 
observers. Wave-fronts leaving the light source with λ wavelength distance from each other, reach 
the observer moving away with v velocity under the following time intervals:

t= 
c−v (3.5.1)

This can be expressed also using the frequency:
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3.5 Doppler-effect

t= 1

1− v
c ⋅ = c



The elapsed time calculated in the proper time of the distancing observer:

t2 =t⋅1− v2

c2=
1− v2

c2

1− v
c ⋅

= 1 v
c

1− v
c

⋅1


(3.5.2)

From this the measured frequency:

2 = 1
t2
= 1− v

c

1 v
c

⋅ (3.5.3)

If the light source and the observer pass by each other, for a short period of time their distance does 
not change, their relative velocity along the line connecting them is zero. From the point of view of 
the light source, wave-fronts leaving the light source with λ wavelength distance from each other, 
reach the observer with the following time intervals:

t=
c
= 1
 (3.5.4)

However the  proper time of the observe differs from the light source, therefore it measures the 
arrival of the wave-fronts with different time intervals:

t2 =t⋅1− v2

c2=
1− v2

c2


(3.5.5)

The frequency Doppler shift in the perpendicular direction:

2 =1− v2

c2⋅ (3.5.6)

3.6 Sequence of events

The  ordering between cause and effect can be secured only,  if  by observing from every 
possible  reference frames, the moment the effect happens is later in time than the cause. We are 
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going to investigate, under what circumstances this condition is fulfilled. The difference between 
moments in time transforms between coordinate systems the following way:

t B2 − t A2 =
t B−t A−

V x

c2⋅ xB− x A

1−V 2

c2

=tB−t A⋅
1−

V x

c2⋅
x B− xA
t B−t A

1−V 2

c2

(3.6.1)

The velocity vx is the speed the information travels with, from event A (the cause) to event B (the 
effect):

v x=
 xB−x A
tB−tA

(3.6.2)

Substitute it to the transformation formula:

tB2 − t A2 =tB−tA⋅
1−

V x⋅vx

c2

1−V 2

c2

(3.6.3)

It follows from our condition, that the time difference has to be positive:

tB2 − t A2 0 tB−tA0 (3.6.4)

This leads to the following inequality:

1−
V x⋅v x

c2 0

c2V x⋅v x (3.6.5)

If  vx =  c, that is, the information causing the second event comes from the first event with the 
greatest possible velocity, the speed of light, the mutual velocity of the  reference frames cannot 
exceed the speed of light:

cV x (3.6.6)

Returning to our original transformation formula, let us examine what effects it has, if we demand 
that the time differences are positive:
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3.6 Sequence of events

tB2 − t A2 =
t B−t A−

V x

c2⋅ xB− x A

1−V 2

c2

tB2 − t A2 0

tB−tA−
V x

c2⋅x B−x A0 ∣V∣
c
0

c⋅tB−t A− xB−x A0 (3.6.7)

Squaring the terms does not change the direction of the inequality:

c2⋅tB−tA
2−xB−x A

20 (3.6.8)

Thus the four-distance between the two events is always bigger than zero, it is time-like.

3.7 Energy and momentum

Picture a weightless floating empty box. One of the internal walls emits a  photon, that is 
absorbed by the opposite wall later. Because of the  conservation of momentum, the box slightly 
moves in the opposite direction and then stops, as the photon is absorbed. The photon has no rest 
mass, but it has momentum:

p f=
E0

c
(3.7.1)

We can write the momentum of the box using its mass and velocity:

pd=M⋅v (3.7.2)

It takes Δt time for the photon to reach the other side of the box, while the box gets displaced for Δx 
distance, this is the velocity of the box:

v= x
 t (3.7.3)

Because of the  conservation of momentum, in the  centre of mass system the magnitude of the 
momentum of the photon and the box are equal:

M⋅ x
 t

=
E0

c
(3.7.4)
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3.7 Energy and momentum

If we know the  l width of the box, and the speed of the  photon, we can determine the time that 
passed while it crossed the box:

 t= l
c (3.7.5)

Substitute it into the formula for the conservation of momentum:

M⋅ x=
E0⋅l
c2 (3.7.6)

In order to determine the movement of the box relative to the  centre of mass,  let  us write the 
position  of  the  centre  of  mass,  as  if  a  particle  with  mass  moving  inside  it  has  caused  its 
displacement, it will be called the effective mass of the photon:

x=
M⋅xdm⋅x f

Mm
(3.7.7)

The position of the centre of mass is the same both at the emission and absorption of the photon:

M⋅xdm⋅x f

M m
=

M⋅xd− x m⋅l d

M m
(3.7.8)

If we consider the starting position of the photon (xf = 0), and the box (xd = 0) both zero, we can 
significantly simplify the relationship above:

m⋅ld=M⋅ x (3.7.9)

Substitute the conservation of momentum formula:

m⋅ld=
E 0⋅l d

c2

From this we can express the equivalence of the rest mass and energy:

E0=m⋅c2 (3.7.10)

The equation of motion of an object accelerating because of a constant force:

F=m⋅a=dp
dt (3.7.11)

Let us examine the situation is a given moment, when the velocity of the moving body is zero in  
one of the coordinate systems, in this case its velocity looks the same as the relative velocity of the 
two reference frames in the other coordinate system:
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3.7 Energy and momentum

v=V (3.7.12)

Express its acceleration:

a x2 =
1−V 2

c2 
3
2

1−V⋅v
c2 

3⋅a x=
1

1− v2

c2 
3
2

⋅ax=
1

1− v2

c2 
3
2

⋅dv
dt
= d

dt
⋅ v

1− v 2

c2

(3.7.13)

Substitute it into the equation of motion:

F=m⋅a= d
dt
⋅ m⋅v

1− v2

c2

= d
dt
⋅p

(3.7.14)

We can read from this the relativistic momentum:

p= m⋅v

1− v2

c2

(3.7.15)

Force is the negative gradient of the potential energy, we rewrite this:

F=−dE
dx

F⋅v=−dE
dx
⋅dx

dt
=−dE

dt (3.7.16)

Substitute the momentum, and one version of the expression of the acceleration:

v⋅F=v⋅dp
dt
=v⋅d

dt
⋅ m⋅v

1− v2

c2

= m⋅v

1− v 2

c2 
3
2

⋅dv
dt
= d

dt
⋅ m⋅c2

1− v2

c2
(3.7.17)

From this the relativistic energy:

E= m⋅c2

1− v2

c2

(3.7.18)

Relationship between energy and momentum:
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3.7 Energy and momentum

E= p⋅c2

v
(3.7.19)

In  order  to  investigate  the  relationship  between  energy  and  momentum,  we  examine  the 
contravariant velocity. Divide the change in coordinate with the proper time:

dx=c⋅dt dx dy dz  d =dt⋅1− v2

c2

dx

d =v= c

1− v2

c2

v x

1− v2

c2

v y

1− v2

c2

vz

1− v2

c2  (3.7.20)

If we multiply this with the mass, we get the contravariant energy-momentum four-vector:

m⋅v= m⋅c

1− v2

c2

m⋅v x

1− v 2

c2

m⋅v y

1− v2

c2

m⋅vz

1− v 2

c2 = E
c p x p y pz (3.7.21)

During changes between coordinate system, the four-vectors Lorentz-transform:

x i
2 =

∂ x i
2

∂ x a⋅xa= a
i ⋅xa

The equation of transformation while moving along a line:

 E2

c
px2

0
0
=a b c d

b f g h
c g k l
d h l p

⋅ E
c
px

0
0


E2 =a⋅Eb⋅px⋅c= 1

1− v2

c2

⋅E−
v x

c
⋅ 1

1− v2

c2

⋅p x⋅c=
E−v x⋅p x

1− v2

c2

(3.7.22)

px2 =b⋅E
c
 f⋅px=−

vx

c
⋅ 1

1− v2

c2

⋅E
c
1 v x

2

v2⋅ 1

1− v2

c2

−1⋅px=
p x−

v x

c2⋅E

1− v2

c2

(3.7.23)

83



3.7 Energy and momentum

Using the arc length squared, we can once again conclude, that the  y and  z components remain 
unchanged:

s2= E2

c2 −px
2− p y

2−pz
2

E2
2

c2 − p x
2

2 =E 2

c2 − px
2

py2 = py pz2 = pz (3.7.24)

Insert the transformation of the rest mass and the momentum into each other:

E2 =
E−v x⋅px

1− v2

c2

px2 =
px−

v x

c2⋅E

1− v2

c2

p x= p x2 ⋅1− v2

c2
vx

c2⋅E

E2 =E⋅1− v2

c2−v x⋅ px2 (3.7.25)

If the particle moves at the speed of light (the sign shows the direction of the movement):

E02 =−c⋅ px2 (3.7.26)

Divide the arc length squared with the infinitesimal change in time:

ds2=c2⋅dt 2−dx2−dy 2−dz 2 /⋅1
dt

ds2

dt 2 =c2−vx
2−v y

2−v z
2 (3.7.27)

In order to keep it simple, we calculate in one dimension. First we write an obvious identity, that we 
reorder:

c2−v2=c2−v2
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3.7 Energy and momentum

c2−v 2

1− v2

c2

=c2

 c

1− v2

c2 
2

= v

1− v2

c2 
2

c2

c

1− v2

c2

= v

1− v2

c2 
2

c2 /⋅m⋅c

m⋅c2

1− v2

c2

= m⋅v

1− v2

c2 
2

⋅c2m2⋅c4

By substituting the energy and the momentum, we have the total energy of a moving body:

E= p2⋅c2m2⋅c4 (3.7.28)

If its mass is zero:

E0= p⋅c (3.7.29)

m⋅c2

1− v2

c2

= m⋅v

1− v2

c2

⋅c

Objects with zero mass move at the speed of light in every reference frame:

  v = c (3.7.30)

3.8 Relativistic rocket

The rocket is a complex system that loses mass while constantly accelerating. The two main 
components are the payload and the fuel, that is exhausted with a constant velocity in the rocket's  
reference frame. The relativistic  rocket equation establishes a relationship between the following 
quantities:

M: initial mass of the rocket
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3.8 Relativistic rocket

dm: mass of the fuel that is ejected in an infinitesimally small period of time
w: the constant exhaust velocity of the fuel relatively to the rocket
U: velocity of the rocket in the centre of mass system
u: velocity of the exhaust in the centre of mass system

During the movement of the rocket, the  conservation of momentum is valid, the left side is the 
change of momentum of the rocket, the right side is of the exhausted fuel:

d  M

1−U 2

c2

⋅U =u⋅ dm

1−u2

c2

(3.8.1)

As well as the conservation of energy:

d  M

1−U 2

c2

⋅c2=− dm

1−u2

c2

⋅c2

(3.8.2)

Observing from the  centre of mass system, the velocity of the exhausted fuel is the sum of the 
exhaust velocity relative to the rocket and the rocket velocity:

u= w−U

1−U⋅w
c2

Substitute it to the conservation of momentum formula:

d  M

1−U 2

c2

⋅U = U−w

1−U⋅w
c2

⋅d  M

1−U 2

c2  (3.8.3)

Reorder the differential of the denominator with the square root:

d  1

1−U 2

c2 = U⋅dU

c2−U 2⋅1−U 2

c2

Substitute:

M⋅dU U⋅dM M⋅U 2⋅dU
c2−U 2 = U−w

1−U⋅w
c2

⋅dM M⋅U⋅dU
c2−U 2 
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3.8 Relativistic rocket

U− U−w

1−U⋅w
c2 ⋅dM =−M  M⋅U

c2−U 2⋅U− U−w

1−U⋅w
c2 ⋅dU

Simplify:

dM
M

=− dU

w⋅1−U 2

c2  (3.8.4)

Substitute the differential of the logarithm:

d log x = dx
x

log M
M start =− c

2⋅w
⋅log1U

c

1−U
c 

The traditional form of the relativistic rocket equation:

M=M start⋅1U
c

1−U
c 

− c
2⋅w

(3.8.5)

The maximal exhaust velocity of the fuel:

w=e⋅2−e⋅c (3.8.6)

3.9 Faster than light particles

Theoretical particles that can move faster than light are called tachyons. If we calculate their 
relativistic energy, we get an imaginary result:

E= m⋅c2

1− v2

c2

=−i⋅ m⋅c2

 v2

c2−1
vc (3.9.1)

Therefore we should define their mass imaginary, thus their energy and momentum will be real 
numbers. From an experimental point of view, we can do this, because there are no inertial frames 
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3.9 Faster than light particles

faster than the speed of light where the tachyon could be at rest, thus its mass is not measurable.

m=i⋅m ' m '=−i⋅m

E= m'⋅c2

 v2

c2−1

p= m'⋅v

 v2

c2−1 (3.9.2)

From this we can see, that in the case of tachyons, an increase in energy is followed by a decrease in 
velocity, and vice versa. The sign of the momentum four-vector changes:

E2

c2 −p2=−m' 2⋅c2 (3.9.3)

The energy and momentum of an object slower than the speed of light, the energy can vary between 
the energy at rest and infinity, the momentum can take on any value:

0≤vc m⋅c2≤E∞ 0≤p∞ (3.9.4)

The energy and momentum of an object faster than the speed of light, the energy can take on any 
value, however the momentum cannot decrease beyond a certain value, tachyons cannot slow down:

cv≤∞ 0≤E∞ m '⋅c≤ p∞ (3.9.5)

Let us examine the velocity addition in the case of tachyons:

v x2 =
v x−V x

1−
V x⋅v x

c2
(3.9.6)

We can always find a reference frame, where the velocity of the faster-than-light object is infinite:

V x⋅v x

c2 =1

V x=
c2

v x
(since v xc , it is always true that V xc 

Reinserting this we can determine the limit of the velocity addition formula, where the velocity in it  
goes to infinity:

lim
v x∞

v x−V x

1−
V x⋅v x

c2

= c2

V x (3.9.7)
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3.9 Faster than light particles

3.10 Circular motion and Thomas precession

We determine the proper acceleration of an object in constant circular motion, this is what it 
measures in  its  proper  time,  and also its  coordinate  acceleration,  that  is  measured by the non-
moving observer in coordinate time. Let us write down the arc length squared, metric tensor and its 
derivatives and the connection of the cylindrical coordinate system in flat spacetime.

ds2=c2⋅dt 2−dr2−r2⋅d 2−dz2 (3.10.1)

g =1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −1 g =1 0 0 0

0 −1 0 0

0 0 − 1
r2 0

0 0 0 −1
 (3.10.2)

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r 3 (3.10.3)

 
r =−r  r

 =  r
 =1

r (3.10.4)

∂ 
r

∂r
=−1

∂ r


∂ r
=
∂  r



∂ r
=− 1

r2 (3.10.5)

Insert these values into the  geodesic equation, where we partially differentiate, once according to 
proper time, and then according to coordinate time (we are allowed to do this, because both values 
increase monotonically).

∂2 x j

∂2  ab
j ⋅∂ xa

∂
⋅∂ xb

∂
=0 ∂2 x j

∂ t2  ab
j ⋅∂ xa

∂ t
⋅∂ xb

∂ t
=0 (3.10.6)

The equations have the same form in both cases, therefore we use the general dot notation for 
partial differentiation:

c⋅ẗ=0

r̈ 
r ⋅̇2=r̈−r⋅̇2=0

̈ r
 ⋅ṙ⋅̇  r

 ⋅̇⋅ṙ=̈2
r
⋅ṙ⋅̇=0

z̈=0 (3.10.7)
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3.10 Circular motion and Thomas precession

The following coordinate conditions apply to objects in constant circular motion:

ṫ=0 ṙ=0 ̇=const. ż=0 (3.10.8)

From this the centripetal acceleration:

r̈=r⋅̇2 (3.10.9)

Determine the relationship between the angular velocities according to the  proper time and the 
coordinate time:

∂2 r
∂2=r⋅ ∂∂ 

2
∂2 r
∂ t 2 =r⋅∂∂ t 

2

(3.10.10)

Substitute the proper time into the second derivative of the radial coordinate:

d =dt⋅1− v2

c2

∂2 r
∂ t 2⋅

1

1− v2

c2

=r⋅∂∂ 
2

(3.10.11)

Reorder it, and make it equal to the formula written with the coordinate time:

∂2 r
∂ t 2 =r⋅∂∂ 

2

⋅1− v2

c2 
r⋅∂∂ t 

2

=r⋅∂∂ 
2

⋅1− v2

c2  (3.10.12)

The relationship between the angular velocities using the proper time and the coordinate time:

∂
∂

=∂
∂ t

⋅ 1

1− v2

c2

(3.10.13)

The difference between the two quantities shows, that a non-rotating object moving on a  circular 
orbit,  after  having  completed  a  circle  it  will  not  face  in  the  same  direction  as  before,  this 
phenomenon is called the Thomas precession:
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=∂
∂

−∂
∂ t

= 1

1− v2

c2

−1⋅∂∂ t (3.10.14)

3.11 Gravitational redshift

On the world line of an object at rest relatively to the coordinate system only the coordinate 
time changes. The relationship with the proper time can be determined with the four-distance:

c2⋅2=c2⋅g tt⋅t
2 (3.11.1)

The proper times of two different test objects:

1 = g tt1 ⋅t 2 = g tt2 ⋅t (3.11.2)

The tt component of the metric tensor has to be positive, so that the direction of the proper time and 
the coordinate time coincides, and that the second assumption, the principle of the ordering between 
cause  and  effect is  not  violated.  By  substituting  the  coordinate  time we  can  determine  the 
relationship between the proper times:

1 = g tt1

g tt2
⋅ 2 (3.11.3)

The frequency of light or any periodic phenomenon:

=1
 (3.11.4)

The gravitational redshift:

1 = g tt2

g tt1
⋅ 2 (3.11.5)
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4. Spherically symmetric spacetime

4. Spherically symmetric spacetime

The most general spherically symmetric solution of the  Einstein equations was derived by 
Karl Schwarzschild in  1916, not long after the initial discovery of those equations. This chapter 
deals with the matter free version of it. We map the spacetime of the Schwarzschild solution with 
various coordinate systems, and investigate the trajectories of moving bodies in it. We verify our 
results with observations from the Solar System.

Several well known phenomena get a new interpretation, once we use geometric methods to 
understand them, and unexpected new effects also occur. Since every phenomenon is a result of 
interplay  between  distances  and  angles,  tampering  with  them  has  many,  previously  unknown 
impacts on the orbits of celestial bodies.

4.1 Spherically symmetric coordinate system

Let us set up a spherically symmetric coordinate system in flat spacetime, that we are going 
to  use  as  a  basis  for  the  subsequent  general  derivation.  The  arc  length  squared  is  created  by 
extending the arc length squared of the sphere with radial and time coordinates:

ds2=c2⋅dt 2−dr2−r2⋅d 2sin 2⋅d 2 (4.1.1)

Determine the metric tensor, the connection, and their derivatives:

g =1 0 0 0
0 −1 0 0
0 0 −r 2 0
0 0 0 −r2⋅sin 2

 g=
1 0 0 0
0 −1 0 0

0 0 − 1
r 2 0

0 0 0 −
1

r 2⋅sin2

(4.1.2)

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r3

∂ g

∂ r
=−2⋅r⋅sin2

∂g

∂ r
= 2

r 3⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin

∂ g

∂
=

2⋅cos 
r 2⋅sin3

(4.1.3)

 
r =−r  

r =−r⋅sin2
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4.1 Spherically symmetric coordinate system

 r
 = r

 = r 
 =  r

 =1
r  

 =−cos ⋅sin

 
 = 

 =cot  (4.1.4)

∂ 
r

∂ r
=−1

∂ 
r

∂r
=−sin2

∂ 
r

∂
=−2⋅r⋅cos ⋅sin 

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=− 1

r 2
∂ 



∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot 2−1 (4.1.5)

Every component of the curvature tensor is zero, since the spacetime is flat. We write down the 
geodesic equations:

c⋅ẗ=0

r̈ 
r ⋅̇2 

r ⋅̇2= r̈−r⋅̇2−r⋅sin2⋅̇2=0

̈ r
 ⋅ṙ⋅̇  r

 ⋅̇⋅ṙ 
 ⋅̇2=̈2

r
⋅ṙ⋅̇−cos ⋅sin ⋅̇2=0

̈2⋅ r
 ⋅ṙ⋅̇2⋅ 

 ⋅̇⋅̇=̈ 2
r
⋅ṙ⋅̇2⋅cot ⋅̇⋅̇=0 (4.1.6)

4.2 Schwarzschild coordinates

We start by simplifying the Einstein equations further:

R−
1
2
⋅R⋅g=0 /⋅g

R−1
2
⋅R⋅4=0

R=0 (4.2.1)

By reinserting this we get, that the Ricci-tensor is zero in vacuum:

R=0 (4.2.2)

We assume about the shape of the resulting spacetime, that at great distances from the source of 
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4.2 Schwarzschild coordinates

gravitation, it approaches the flat spacetime. Since none of the coordinates change as a function of 
another,  there  are  no  mixed  coordinate  products.  Therefore  we  use  spherically  symmetric 
coordinates to  calculate  the arc length squared,  and we extend it  with unknown functions,  that 
depend only on the distance from the centre, and the elapsed time:

ds2=Ar , t ⋅c2⋅dt2−B r ,t ⋅dr 2−C  r , t ⋅r2⋅d 2−Dr , t ⋅r2⋅sin2⋅d2 (4.2.3)

The position of the axis of the coordinate system can be arbitrary, by adjusting it to our liking, we 
have one less unknown functions:

C  r , t =Dr , t (4.2.4)

Let us write an even more general form, where we allow the radial and time coordinates to mix:

ds2= f 2⋅c2⋅ dt 2
# 2⋅ f⋅g⋅c⋅dt⋅dr−h2⋅dr 2−C⋅r2⋅d 2sin2 ⋅d 2 (4.2.5)

This however can be led back to the diagonal form, using substitutions where we rescale the time 
coordinate:

A⋅c2⋅dt 2= f⋅c⋅ dt# g⋅dr 2 B=g2h2

ds2=Ar , t ⋅c2⋅dt2−B r ,t ⋅dr 2−C  r , t ⋅r2⋅d 2sin 2⋅d 2 (4.2.6)

Since the radial coordinate can also be arbitrarily rescaled, arbitrary relationships can be established 
between the remaining functions:

Schwarzschild coordinates: C  r , t =1
displays distances perpendicular to the radial direction undistorted

Isotropic coordinates: B r ,t =C r , t 
displays directions undistorted

Gaussian polar coordinates: B r ,t =1
displays distances parallel to the radial direction undistorted

Co-moving coordinates: A r ,t =1
coordinates of radially falling bodies are constant (4.2.7)

The arc length squared in Schwarzschild coordinates, we determine the geometric quantities that 
characterize the surface, from the metric tensor to the Ricci-tensor:

ds2=Ar , t ⋅c2⋅dt2−B r ,t ⋅dr 2−r 2⋅d 2−r 2⋅sin2⋅d 2 (4.2.8)

g=Ar , t  0 0 0
0 −B r , t  0 0
0 0 −r 2 0
0 0 0 −r2⋅sin2


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4.2 Schwarzschild coordinates

g=
1

Ar ,t 
0 0 0

0 − 1
B r ,t 

0 0

0 0 −
1
r 2 0

0 0 0 − 1
r 2⋅sin2 

 (4.2.9)

We symbolize partial differentiation with respect to time with an upper point, and with respect to 
space with an upper apostrophe:

∂ g tt

∂ t
= Ȧ ∂ g tt

∂ t
=− Ȧ

A2

∂ g rr

∂ t
=−Ḃ ∂ g rr

∂ t
= Ḃ

B2

∂ g tt

∂ r
=A' ∂ g tt

∂ r
=− A '

A2

∂ g rr

∂ r
=−B ' ∂ g rr

∂ r
=B '

B2

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r3

∂ g

∂ r
=−2⋅r⋅sin2

∂ g

∂ r
= 2

r 3⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin ∂g

∂
=

2⋅cos 
r 2⋅sin3

(4.2.10)

 tt
t = Ȧ

2⋅A
 tr

t = rt
t = A'

2⋅A  rr
t = Ḃ

2⋅A

 tt
r = A'

2⋅B  tr
r = rt

r = Ḃ
2⋅B

 rr
r = B '

2⋅B

 
r =− r

B  
r =− r⋅sin2

B
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4.2 Schwarzschild coordinates

 r
 = r

 = r 
 =  r

 =1
r  

 =−cos ⋅sin

 
 = 

 =cot  (4.2.11)

∂ tt
t

∂ t
= A⋅Ä−Ȧ2

2⋅A2

∂ tr
t

∂ t
=
∂ rt

t

∂ t
=
∂ tt

t

∂ r
= A⋅Ȧ '−Ȧ⋅A'

2⋅A2

∂ rr
t

∂ t
= A⋅B̈− Ȧ⋅Ḃ

2⋅A2

∂ tt
r

∂ t
= B⋅Ȧ '−A'⋅Ḃ

2⋅B2

∂ tr
r

∂ t
=
∂ rt

r

∂ t
= B⋅B̈−Ḃ2

2⋅B2

∂ rr
r

∂ t
=
∂ tr

r

∂r
=
∂ rt

r

∂ r
=B⋅Ḃ '−Ḃ⋅B '

2⋅B2

∂ 
r

∂ t
= r⋅Ḃ

B2

∂ 
r

∂ t
=

r⋅Ḃ⋅sin2 
B2

∂ tr
t

∂ r
=
∂ rt

t

∂ r
= A⋅A' '−A' 2

2⋅A2

∂ rr
t

∂ r
= A⋅Ḃ '−A '⋅Ḃ

2⋅A2

∂ tt
r

∂ r
= B⋅A' '−A'⋅B '

2⋅B2

∂ rr
r

∂ r
= B⋅B' '−B ' 2

2⋅B2

∂ 
r

∂ r
= r⋅B '−B

B2

∂ 
r

∂r
=
r⋅B '−B⋅sin2

B2

∂ 
r

∂
=−2⋅r

B
⋅cos ⋅sin 

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=− 1

r 2

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot2−1 (4.2.12)

R rtr
t =−R rrt

t = B̈−A' '
2⋅A

− Ḃ2−A'⋅B '
4⋅A⋅B

 A' 2− Ȧ⋅Ḃ
4⋅A2

R  t
t =−R  t

t =− r⋅A'
2⋅A⋅B R  r

t =−R r
t =− r⋅Ḃ

2⋅A⋅B

R t 
t =−R  t

t =− r⋅A'
2⋅A⋅B

⋅sin2 R r 
t =−R r

t =− r⋅Ḃ
2⋅A⋅B

⋅sin2

R ttr
r =−R trt

r = B̈−A' '
2⋅B

− Ḃ2−A'⋅B '
4⋅B2  A ' 2− Ȧ⋅Ḃ

4⋅A⋅B
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4.2 Schwarzschild coordinates

R  t
r =−R  t

r = r⋅Ḃ
2⋅B2 R  r

r =−R r
r = r⋅B '

2⋅B2

R t 
r =−R  t

r = r⋅Ḃ
2⋅B2⋅sin2 R r 

r =−R r
r = r⋅B'

2⋅B2⋅sin2

R t t 
 =−R t t

 =R t t 
 =−R t t

 =− A'
2⋅r⋅B

R r r
 =−R r r

 =R r r
 =−R r r

 =− B '
2⋅r⋅B

R t r 
 =−R t r

 =R r t
 =−R r t

 =R t r
 =−R t r

 =R r t
 =−R rt

 =− Ḃ
2⋅r⋅B

R 
 =−R 

 =1− 1
B ⋅sin2 R 

 =−R 
 =1− 1

B  (4.2.13)

Rtt=
Ḃ

4⋅B
⋅ Ḃ

B
 Ȧ

A − A '
4⋅B

⋅ B'
B
 A'

A  A' '−B̈
2⋅B

 A'
r⋅B

Rrr=−
Ḃ

4⋅A
⋅ Ḃ

B
 Ȧ

A  A '
4⋅A

⋅ B '
B
 A '

A − A ' '−B̈
2⋅A

 B '
r⋅B

R=
r⋅B '
2⋅B2−

r⋅A'
2⋅A⋅B

− 1
B
−1

R= r⋅B'
2⋅B2−

r⋅A'
2⋅A⋅B

− 1
B
−1⋅sin2

Rtr=Rrt=
Ḃ

r⋅B (4.2.14)

We derived from the Einstein equations, that in vacuum the Ricci-tensor is zero. The non-diagonal 
term shows, that the derivative of the B function with respect to time is zero:

Rtr=Rrt=
Ḃ

r⋅B
=0

Ḃ=0 (4.2.15)

Reinsert this into the tt and rr components of the Ricci-tensor. Simplify the  tt component:

Rtt=−
A '

4⋅B
⋅ B '

B
 A '

A  A' '
2⋅B

 A '
r⋅B

=0 /⋅B

− A'
4
⋅ B '

B
 A'

A  A' '
2
 A '

r
=0 (4.2.16)
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Simplify the rr component also:

Rrr=
A'

4⋅A
⋅ B '

B
 A'

A − A ' '
2⋅A

 B '
r⋅B

=0 /⋅A

A'
4
⋅ B'

B
 A'

A − A' '
2
 B '⋅A

r⋅B
=0 (4.2.17)

Add the two equations together:

B'⋅A
r⋅B

 A'
r
=0

B'
B
 A'

A
=0 (4.2.18)

Reinsert the result into the equation coming from the  tt component, where now we have just the 
derivatives of the A function. With substitution we reduce the degree of derivatives:

A' '
2
 A'

r
=0 f r =A' (4.2.19)

df
dr
2⋅ f

r
=0

∫ df
f
=−2⋅∫ dr

r

log  f =−2⋅log r ⋅c1=logc1

r 2 
We raise to natural power both sides of the equation, and reinsert the original function:

f =
c1

r 2=A'=dA
dr (4.2.20)

∫ c1

r 2⋅dr=∫ dA

Thus the A function is also time independent:

−
c1

r
c2=A (4.2.21)

Let us examine the formula, that we got when we added the two equations we made from the Ricci-
tensor components:
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B'
B
 A'

A
=0

With a little reordering we can show, that the product of the two functions is a constant:

F '=A⋅B 'A'⋅B=0 → F=A⋅B=c3 (4.2.22)

From this the other function:

B=c3⋅ 1

c2−
c1

r 
We can reinterpret the unknown variables in a way, that the third is understood as part of the first  
two, in this case the two unknown functions are mutually reciprocals of each other:

A=c2−
c1

r
B= 1

c2−
c1

r
c3=1 (4.2.23)

The first  constant  is  a  quantity characteristic  for the spherically symmetric  spacetime,  it  is  the 
Schwarzschild radius.  In  this  distance from the centre  there is  a  coordinate  singularity,  and its 
physical meaning can be found with Newtonian approximation:

r g=c1 (4.2.24)

The value for the second constant can be recovered from the condition,  that the Schwarzschild 
solution at great distances shall approach the flat spacetime, in other words A and B in the arc length 
squared shall approach 1:

lim
r ∞

A=c2−lim
r∞

c1

r
=c2−0=1 (4.2.25)

Because of the time independence of the metric, if a celestial body suffers radial changes, but does 
not receive or lose mass, the geometry of the surrounding spacetime will not change. For example a 
spherically symmetric pulsating star does not create  gravitational radiation, neither a symmetric 
supernova explosion nor a celestial body collapsing to a black hole. Because of the slow rotation of 
the  Sun and  the  minimal  contribution  of  the  planets,  the  spacetime  of  the  Solar  System is 
Schwarzschild to a great accuracy. The arc length squared and the other geometric quantities in the 
Schwarzschild metric:

ds2=1− r g

r ⋅c2⋅dt2− dr 2

1−
r g

r

−r2⋅d 2sin2⋅d 2  (4.2.26)
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4.2 Schwarzschild coordinates

g=1−
r g

r 0 0 0

0 − 1

1−
r g

r

0 0

0 0 −r 2 0
0 0 0 −r 2⋅sin2


g=

1

1−
r g

r

0 0 0

0 −1− r g

r  0 0

0 0 −
1
r2 0

0 0 0 − 1
r 2⋅sin2

 (4.2.27)

∂ g tt

∂ r
=−∂ g rr

∂ r
=

r g

r 2

∂ g rr

∂ r
=−∂ g tt

∂ r
=

r g

r2⋅1− r g

r 
2

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r3

∂ g

∂ r
=−2⋅r⋅sin2

∂g

∂ r
= 2

r 3⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin ∂ g

∂
=

2⋅cos 
r 2⋅sin3

(4.2.28)

 tr
t = rt

t =− rr
r =

r g

2⋅r⋅r−r g
 tt

r =
r g⋅r−r g

2⋅r 3

 
r =−r−r g   

r =− r−r g⋅sin2 

 r
 = r

 = r 
 =  r

 =1
r  

 =−cos ⋅sin

 
 = 

 =cot  (4.2.29)
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4.2 Schwarzschild coordinates

∂ tr
t

∂ r
=
∂ rt

t

∂ r
=−

∂ rr
r

∂ r
=−

r g⋅2⋅r−r g
2⋅r2⋅r−r g 

2

∂ tt
r

∂ r
=−

r g⋅2⋅r−3⋅r g 
2⋅r 4

∂ 
r

∂ r
=−1

∂ 
r

∂r
=−sin2

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=− 1

r 2

∂ 
r

∂
=−2⋅r−r g⋅cos ⋅sin 

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot 2−1 (4.2.30)

R rtr
t =−R rrt

t =
r g

r 2⋅ r−r g

R  t
t =−R  t

t =R  r
r =−R  r

r =−
r g

2⋅r

R t 
t =−R  t

t =R r
r =−R  r

r =−
r g

2⋅r
⋅sin2

R trt
r =−R ttr

r =
r g⋅r−r g

r4

R t t
 =−R t t

 =R t t
 =−R t t

 =
r g⋅r−r g 

2⋅r4

R r r
 =−R r r 

 =R r r
 =−R r r

 =−
r g

2⋅r2⋅r−r g 

R 
 =−R 

 =
r g

r
⋅sin2

R 
 =−R 

 =
r g

r
(4.2.31)

This spacetime is a hypersurface of a six dimensional, flat, pseudo-euclidean space with a signature 
of (+ + – – – –). The parametric form:

x1=1−
r g

r
⋅cosc⋅t  x2=1−

r g

r
⋅sin c⋅t 
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4.2 Schwarzschild coordinates

x3=∫ r g

r−r g
⋅ r g

4⋅r31⋅dr x4=r⋅sin ⋅cos 

x5=r⋅sin ⋅sin x6=r⋅cos  (4.2.32)

4.3 Geodesic equations

Substitute  the  connection  coefficients  of  the  Schwarzschild  solution  into  the  geodesic 
equations:

c⋅ẗ2⋅ tr
t ⋅c⋅ṫ⋅ṙ=0

ẗ
r g

r⋅r−r g
⋅ṫ⋅ṙ=0 (4.3.1)

r̈ tt
r ⋅c2⋅ṫ2 rr

r ⋅ṙ2 
r ⋅̇2 

r ⋅̇2=0

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t 2−
r g

2⋅r⋅r−r g 
⋅ṙ 2−r−r g ⋅̇

2−r−r g⋅sin2⋅̇2=0 (4.3.2)

̈2⋅ r
 ⋅ṙ ̇ 

 ⋅̇2=0

̈2
r
⋅ṙ ̇−cos ⋅sin ⋅̇2=0 (4.3.3)

̈2⋅ r
 ⋅ṙ ̇2⋅ 

 ⋅̇⋅̇=0

̈2
r
⋅ṙ ̇2⋅cot⋅̇⋅̇=0 (4.3.4)

Let us investigate the third equation. If we orientate the coordinate system in such a way, that the 
test body is in the equatorial plane of the coordinate system, and the direction of the motion falls 
into  this  plane,  then  it  will  also  stay  in  this  plane.  Substitute  the  longitudinal  angle  and  the 
momentarily zero angular velocity along this coordinate into the third geodesic equation:

=
2 ̇=0

̈2
r
⋅ṙ ̇−cos ⋅sin ⋅̇2=̈2

r
⋅ṙ 0−0⋅1⋅̇2=0

The longitudinal angular acceleration is zero, the test body stays in the equatorial plane:
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4.3 Geodesic equations

̈=0 (4.3.5)

Substitute into the other geodesic equations as well:

ẗ
r g

r⋅r−r g
⋅ṫ⋅ṙ=0 (4.3.6)

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t2−
r g

2⋅r⋅r−r g 
⋅ṙ 2−r−r g ⋅̇

2=0 (4.3.7)

̈=0 (4.3.8)

̈2
r
⋅ṙ ̇=0 (4.3.9)

4.4 Gravitational redshift

This phenomenon is one of the classical evidences for general relativity. Einstein described 
it  already in  1907,  based on the  principle  of  equivalence,  but  initially he did not  think it  was 
possible to measure it experimentally. The experiment was eventually performed by R. V. Pound 
and  G.  A.  Rebka,  in  1959 in  the  laboratory of  Harward  University,  in  the  United  States.  The 
measured red shift of the gamma rays emitted by radioactive iron atoms, and directed 22.5 meters 
upwards to the detectors confirmed  Einstein's prediction within the 10% error margin. Later the 
error margin has been reduced to less than 1% using hydrogen masers.

We substitute the Schwarzschild metric tensor components into the earlier formula:

1 = g tt2

g tt1
⋅ 2 = 1−

r g

r2

1−
r g

r1

⋅2 (4.4.1)

If the light source is closer to the source of the gravitational field than the observer, then:

r1 ≥ r2 → 1 ≤ 2 (4.4.2)

Thus the observed  frequency is higher than the emitted, the radiation in the visible spectrum is 
shifted towards the red, this is where the name of the phenomenon comes from. Redshift observed 
by an  observer  at  a  great  distance,  where  the  light  source  is  at  r distance  from the  centre  of 
gravitation (like the surface of a star):
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4.4 Gravitational redshift

z= 1

1−
r g

r

−1
(4.4.3)

4.5 Wormhole

In  order  to  demonstrate  the  shape  of  the  spacetime,  we  investigate  the  properties  of  a 
coordinate surface. The parameters of the surface:

t=const. =
2

dt=0 d =0 (4.5.1)

Substitute them into the Schwarzschild arc length squared:

ds2=1− r g

r ⋅c2⋅02− dr 2

1−
r g

r

−r 2⋅02sin22 ⋅d2

−ds2=dl 2= dr 2

1−
r g

r

r 2⋅d 2

(4.5.2)

The characteristic geometric quantities on the surface:

g ij= 1

1−
r g

r

0

0 r2 g ij=1− r g

r
0

0 1
r 2 (4.5.3)

∂ g rr

∂ r
=−

r g

r 2⋅1− r g

r 
2 ∂ g rr

∂ r
=

r g

r 2

∂ g

∂ r
=2⋅r ∂ g

∂ r
=− 2

r3 (4.5.4)

 rr
r =−

r g

2⋅r⋅r−r g
 

r =− r−r g  r
 =  r

 =1
r (4.5.5)
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4.5 Wormhole

∂ rr
r

∂ r
=

r g⋅2⋅r−r g
2⋅r⋅r−r g

2
∂ 

r

∂r
=−1

∂ r


∂ r
=
∂  r



∂ r
=− 1

r2 (4.5.6)

Rij=− r g

2⋅r 2⋅ r−r g
0

0 −
r g

2⋅r
 (4.5.7)

R=2⋅K=−
r g

r 3 (4.5.8)

This  coordinate surface can be embedded into the flat three dimensional space, thus its easy to 
visualize. We set up a spherical coordinate system, and spread the surface in it.  The arc length  
squared:

dl 2=dr2r 2⋅d 2dz2

Make it equal with the arc length squared measured on the surface:

dr 2r2⋅d2dz2= dr2

1−
r g

r

r2⋅d2

dr 2dz2= dr 2

1−
r g

r
(4.5.9)

We do not  know the  relationship  that  describes  the  z coordinates  of  the  surface,  therefore  we 
substitute it as an unknown function, and since the surface inherited circular symmetry from the 
Schwarzschild metric, we assume that it depends on the radius only:

z= f r 

dz= f ' r ⋅dr

1 f ' 2r ⋅dr 2= dr2

1−
r g

r

f ' r = r g

r−r g
(4.5.10)

Perform the integration. The shape of the entry of the wormhole:
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4.5 Wormhole

f r =2⋅r g⋅r−r gc (4.5.11)

The surface with angular and rectangular coordinates:

4.6 Newtonian approximation

According to the  correspondence principle, the new physical laws in limiting cases must 
approximate  the  old ones,  this  is  no  different  in  the  case  of  relativity theory.  In  this  case  the  
previous model is the Newtonian absolute space and time, and the forces and emerging potentials 
acting in  it.  In  order  to  establish the  correspondence,  we must  formulate  the  two  gravitational 
theories in the same language. Classical mechanics does not work with geometric methods, but with 
diverse terms instead, like the force, and other quantities derived from it. Using this set of tools, it is 
possible to describe only a limited set of gravitational phenomena, but within its limit, it provides 
correct results. Since this can be experimentally verified, the broadly valid geometry based theory 
has to approach the Newtonian model within the mentioned limits. The validity of the former is 
limited to those situations, where movements are much slower than the speed of light,  and the 
proper time coincides with the coordinate time:

v≪c d ≈dt (4.6.1)

The Lagrange function summarizes the properties of a dynamical system. From it the equations of 
movement can  be  derived  using  the  action  principle.  With  the  action  functional in  the  non-
relativistic case, the following relationship is satisfied:

S [ x t ]=∫
t1

t2

L x , ẋ , t ⋅dt (4.6.2)

According to the  action principle, the evolution of a mechanical system is characterized by the 
solution of the following functional equation:
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4.6 Newtonian approximation

 S
 x t 

=0 (4.6.3)

Let  x(t) be the function describing the possible evolution of the system. In this  case  ε(t) is  an 
infinitesimally  small  variation  on  it,  that  is  zero  in  the  starting  and  ending  points,  this  is  our 
boundary condition:

t1=t 2=0 (4.6.4)

Use it to vary the action functional, we assume that the Lagrange function does not depend on time:

S=∫
t 1

t 2

L x , ẋ̇−Lx , ẋ⋅dt (4.6.5)

Write down the  Taylor series of the  Lagrange function, and we write down the variation of the 
action functional again, using the first order terms:

L x , ẋ̇=L x , ẋ i⋅
∂ L
∂ x i̇i⋅

∂ L
∂ ẋ i

S i=∫
t1

t 2

i⋅
∂ L
∂ xi̇i⋅

∂ L
∂ ẋ i ⋅dt (4.6.6)

Partially integrate the second term:

S i=∫
t1

t 2

̇i⋅
∂L
∂ ẋ i⋅dt=[i t ⋅

∂L
∂ ẋ i ]

t 1

t 2

−∫
t 1

t 2

i⋅
d
dt

∂ L
∂ ẋ i⋅dt

Reinsert it into the variation equation:

S i=[it ⋅
∂ L
∂ ẋ i ]

t1

t 2

∫
t1

t2

i⋅
∂L
∂ xi−i⋅

d
dt

∂ L
∂ ẋ i ⋅dt (4.6.7)

Because of the boundary condition, the first term is zero:

S i=∫
t1

t 2

i⋅ ∂ L
∂ xi−

d
dt

∂L
∂ ẋ i ⋅dt=0

According to the action principle, the variation of the action functional is zero. This is satisfied, if 
the expression in the parentheses is zero, that is the general equation of movement:

d
dt

∂ L
∂ ẋ i−

∂L
∂ xi=0 (4.6.8)
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4.6 Newtonian approximation

In a non-relativistic  conservative force field the Lagrange function is the difference of the kinetic 
and the potential energy:

L=Ek−E p (4.6.9)

The total energy of the moving body:

E= m⋅c2

1− v2

c2

The kinetic energy is the part above the rest energy:

Ek=m⋅c2⋅ 1

1− v2

c2

−1 (4.6.10)

Write down the expression in the parentheses with a binomial series:

abn=∑
i=0

n n!
n−i !⋅i!

⋅an−i⋅bi=ann⋅an−1⋅bn⋅n−1
2!

⋅an−2⋅b2

1− v2

c2 −
1
2
=11

2
⋅v2

c2
3
8
⋅v4

c4 (4.6.11)

Reinsert it into the formula for kinetic energy:

Ek=m⋅c2⋅1
2
⋅v2

c2
3
8
⋅v4

c4
At velocities slow compared to the speed of light, the kinetic energy is approximately the following:

E k≈
1
2
⋅m⋅v2 (4.6.12)

In a  central force field the  potential energy depends only on the mass of the  test body and the 
distance from the centre:

E p=m⋅r  (4.6.13)

In Newtonian mechanics space is flat. Write down the  Lagrange function is a three dimensional 
spherical coordinate system. The velocity squared is calculated from the arc length squared:
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4.6 Newtonian approximation

ds2=dr2r 2⋅d 2sin2⋅d 2 /⋅ 1
∂ t2

v2=ṙ 2r 2⋅̇2sin2 ⋅̇2  (4.6.14)

The Lagrange function:

L=Ek−E p=m⋅ 1
2
⋅ ṙ2r2⋅̇2sin2⋅̇2− r  (4.6.15)

Substitute it into the equation of movement and divide with the mass:

d
dt

∂ L
∂ ẋ i−

∂L
∂ xi=0 /⋅1

m

The first term according to the radial coordinate:

d
dt

∂
∂ ṙ 1

2
⋅ṙ 2r2⋅̇2sin2 ⋅̇2−r =1

2
⋅d

dt
∂ ṙ2

∂ ṙ
=r̈

The second term according to the radial coordinate:

− ∂
∂ r 1

2
⋅ ṙ 2r 2⋅ ̇2sin2⋅̇2−r =−r⋅̇2−r⋅sin2⋅̇2

d r 
dr

The equation of motion in the radial direction is their sum:

r̈−r⋅̇2−r⋅sin2 ⋅̇2
dr 

dr
=0 (4.6.16)

The first term of the equation of movement according to the latitude:

d
dt

∂
∂̇ 1

2
⋅ṙ 2r 2⋅̇2sin2⋅̇2−r =1

2
⋅d

dt
∂
∂̇

 r2⋅̇2= d
dt

r 2⋅̇r 2⋅̈=2⋅r⋅ṙ⋅̇r2⋅̈

The second term according to the latitude:

− ∂
∂ 1

2
⋅ ṙ2r 2⋅̇2sin2⋅̇2−r =− ∂

∂
r 2⋅sin2 ⋅̇2=−r 2⋅cos ⋅sin⋅̇2

The equation of motion in the latitude direction is their sum:

̈2
r
⋅ṙ⋅̇−cos ⋅sin⋅̇2=0 (4.6.17)
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4.6 Newtonian approximation

The first term of the equation of motion according to the longitude:

d
dt

∂
∂̇ 1

2
⋅ ṙ 2r 2⋅ ̇2sin2⋅̇2−r =1

2
⋅d

dt
∂
∂ ̇

r 2⋅sin2⋅̇2=

d
dt
 r2⋅sin2⋅̇= d

dt
r2⋅sin2⋅̇r 2⋅d

dt
sin2 ⋅̇r2⋅sin2⋅̈=

2⋅r⋅ṙ⋅sin2⋅̇r 2⋅2⋅cos ⋅sin ⋅̇r2⋅sin2⋅̈

The  second  term is  zero,  therefore  by rewriting  the  first  term we get  the  equation  of  motion 
according to the longitude:

̈2
r
⋅ṙ⋅̇2⋅cot ⋅̇⋅̇=0 (4.6.18)

In flat space using a spherical coordinate system the radial geodesic equation:

r̈ 
r ⋅̇2 

r ⋅̇2= r̈−r⋅̇2−r⋅sin2⋅̇2=0

In the presence of a central gravitational field we see a difference in the radial equation of motion:

r̈−r⋅̇2−r⋅sin2 ⋅̇2
dr 

dr
=0

Only the time-like coordinate velocity is constant, therefore the new term is an exactly identifiable 
connection coefficient:

d 
dr

= tt
r ⋅c⋅dt

dt
⋅c⋅dt

dt
=c2⋅ tt

r (4.6.19)

We seek the  metric  that  produces  geodesics,  like  the  Newtonian  equations  of  movement.  The 
calculation of the connection from the metric:

 
 =1

2
⋅g ⋅ ∂ g

∂ x

∂ g

∂ x
−
∂ g

∂ x 
 tt

r =1
2
⋅g r⋅∂ g t

∂ t

∂ g t

∂ t
−
∂ g tt

∂ x  (4.6.20)

Assume that the metric does not depend on time:

 tt
r =−1

2
⋅g r⋅

∂ g tt

∂ x
=−1

2
⋅grt⋅

∂ g tt

∂ t
g rr⋅

∂ g tt

∂ r
gr ⋅

∂ g tt

∂
g r⋅

∂ g tt

∂ 
In the spherically symmetric spacetime it also does not depend on the angular coordinates, thus the 
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4.6 Newtonian approximation

equation simplifies:

 tt
r =−1

2
⋅g rr⋅

∂ g tt

∂ r
(4.6.21)

1
c2⋅

d r 
dr

=−1
2
⋅−1⋅

∂ g tt

∂ r

2
c2⋅

d r 
dr

=
∂ g tt

∂ r

2
c2⋅r c1=g tt (4.6.22)

At great distances from the source of gravity the shape of space approaches the plain, with this we 
can determine the integration constant:

lim
r ∞

r =0

lim
r 0

g tt= lim
r 0

2
c2⋅ r c1=0c1=1 (4.6.23)

The form of the gravitational potential in the Newtonian theory of gravity:

r =−⋅M
r (4.6.24)

Where γ is the gravitational constant, M is the central mass causing gravity, r is the distance of the 
test body from it. Substitute it into the metric tensor component, and write down the arc length 
squared of the spacetime, that causes the exact same geodesics, like the Newtonian  equations of 
movement:

g tt=1−2⋅⋅M
r⋅c2 (4.6.25)

ds2=1−2⋅⋅M
r⋅c2 ⋅c2⋅dt 2−dr2−r 2⋅d 2sin2⋅d2  (4.6.26)

Compare the corresponding metric tensor components of the Schwarzschild metric and the just 
derived Newtonian limiting case, and with this we can determine the second integration constant of 
the Schwarzschild derivation, the Schwarzschild radius:

g tt=1−2⋅⋅M
r⋅c2 =1−

r g

r
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4.6 Newtonian approximation

r g=
2⋅⋅M

c2 (4.6.27)

The presently accepted value of the gravitational constant:

=6.67428⋅10−11 m3

s2⋅kg

This  constant  of  nature is  one  of  the  hardest  to  measure,  therefore  using  methods  of  celestial 
mechanics, the masses of celestial bodies can be measured only with the same error margin. Thus 
for  precise  orbit  calculations  the  product  of  the  two  quantities  is  used,  this  is  the  standard 
gravitational parameter. With this it is possible to calculate the  Schwarzschild radius of celestial 
bodies as well, with great accuracy. The Schwarzschild arc length squared, using pure SI units:

ds2=1−2⋅⋅M
r⋅c2 ⋅c2⋅dt 2− dr 2

1−2⋅⋅M
r⋅c2

−r 2⋅d 2sin2⋅d 2 
(4.6.28)

4.7 Circular orbit

All energy present in the system causes spacetime curvature, therefore we let go a test body 
in it with such a small mass, that has negligible influence on events. For the sake of simplicity, it 
will  move on a  circular  orbit around the  gravitational  centre,  at  a distance far greater than the 
Schwarzschild radius,  along a force-free local  line,  a  geodesic.  In  order  to  determine  the orbit 
parameters, we write down the  coordinate conditions first,  that come from the properties of the 
circular orbit:

t=t  ∂ t
∂

=const.

r=const. dr=0 ∂ r
∂

= ∂2 r
∂2=0

=
2 d =0

= ∂
∂

=const. (4.7.1)

These simplify the general geodesic equations:

ẗ
r g

r⋅r−r g
⋅ṫ⋅ṙ=0
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4.7 Circular orbit

ẗ=0 (4.7.2)

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t2−
r g

2⋅r⋅r−r g 
⋅ṙ 2−r−r g ⋅̇

2=0

r g⋅ r−r g

2⋅r3 ⋅c2⋅ṫ 2− r−r g⋅̇
2=0 (4.7.3)

̈=0 (4.7.4)

̈2
r
⋅ṙ ̇=0

̈=0 (4.7.5)

Utilize the coordinate conditions on the arc length squared as well:

ds2=1− r g

r ⋅c2⋅dt 2− 02

1−
r g

r

−r2⋅02sin22 ⋅d 2

ds2=1− r g

r ⋅c2⋅dt 2−r2⋅d2 (4.7.6)

This  is  the point  of  view of  the  infinitely distant  observer.  The astronaut  moving on the orbit 
however does not  see this.  He “feels” to be weightless,  and by him the Minkowski arc length 
squared can be written down locally. We set it equal to the arc length squared seen by the distant  
observer:

c2⋅d 2=1− r g

r ⋅c2⋅dt2−r 2⋅d 2

d 2=1− r g

r − r2

c2⋅
d 2

dt 2 ⋅dt 2 d 
d t

=

Substitute the angular velocity along the orbit, and we get the relationship between the proper time 
and the coordinate time:

d =1− r g

r − r2⋅2

c2 ⋅dt (4.7.7)

Since the ratio of the two quantities is constant, the  coordinate time is also guaranteed to grow 
monotonically  during  the  movement,  therefore  it  can  be  used  as  parameter when  solving  the 
geodesic equation. The geodesic equation in the radial direction:
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4.7 Circular orbit

r g⋅ r−r g

2⋅r3 ⋅c2⋅∂ t
∂ t 

2

− r−r g⋅∂∂ t 
2

=0

r g⋅ r−r g

2⋅r3 ⋅c2− r−r g⋅
2=0

r g

2⋅r3⋅c2−2=0

The angular frequency of a test object with negligible mass on a circular orbit:

=c⋅ r g

2⋅r3 (4.7.8)

The orbital period calculated from it equals to the Newtonian limiting case at arbitrary orbital radii:

t k=
2⋅
c
⋅ 2⋅r3

r g
(4.7.9)

The Earth orbits on an approximately circular orbit, therefore it is a good example to demonstrate 
the relationship. The standard gravitational parameter of the Sun and its gravitational radius:

⋅M =1.32712440018⋅1020 m3

s2 → r g=
2⋅⋅M

c2 =2.9532500765⋅103 m

The semi-major axis of the Earth's orbit:

r=1.49598261⋅1011 m

From these we can calculate the orbital period:

t k=3.15583195⋅107 s=365.258328 days (4.7.10)

The difference between the actual and the calculated orbital period:

t k2=365.256363004 days

t k

t k2
−1=5.37919714⋅10−6 (4.7.11)

The difference from the measured value is caused by ignoring that the Earth's orbit deviates from 
the ideal circle, the other planets also influence the Earth's movement, and the Sun's  rotation also 
has an influence on spacetime. The ratio of the  orbital periods and the radii of the  circular orbits 
gives Kepler's third law:
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4.7 Circular orbit

t k
2

1

t k
2

2

=
r3

2

r3
1

(4.7.12)

Substitute  the  angular  frequency of  the  orbit  into  the  relationship  of  the  proper  time and  the 
coordinate time:

d =1− r g

r −
r2⋅c⋅ r g

2⋅r3 
2

c2 ⋅dt

d =1−
3⋅r g

2⋅r
⋅dt (4.7.13)

If the change of the proper time is zero, it means a light-like geodesic, thus we are speaking about 
light on a circular orbit:

0=1−
3⋅r g

2⋅r
⋅dt

The radius of the orbit:

r=
3⋅r g

2
(4.7.14)

Objects slower than the speed of light can orbit around the centre only at greater distances than this. 
The circular geodesics inside this radius are all space-like, that is shown in the fact that the number 
under the square root is negative, thus the proper time becomes an imaginary quantity.

4.8 Surface acceleration and hovering

If an object does not move in a Schwarzschild coordinate system, for example it is at rest on 
the surface of a spherical planet, how much is its acceleration? We perform the calculations with 
respect to the coordinate time. In the case of an every-day size planet with a solid surface it is not a 
significant discrepancy. The coordinate conditions in this case:

t=t  ∂ t
∂

=const.

r=const. dr=0

=const.=
2 d =0
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4.8 Surface acceleration and hovering

=const. d =0 (4.8.1)

We  are  looking  for  the  radial  acceleration,  we  substitute  into  the  corresponding  equation  of 
movement:

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t2−
r g

2⋅r⋅r−r g 
⋅ṙ 2−r−r g ⋅̇

2=0

Surface acceleration in the Schwarzschild solution, when the rotation of the planet is negligible:

r̈=−
r g⋅r−r g 

2⋅r3 ⋅c2⋅ṫ2 (4.8.2)

If we want to take the rotation of the planet into account, the coordinate conditions will expand, the 
observer will perform circular motion along a latitude. We continue to work with the same equation 
of movement (because of using the Schwarzschild metric, we neglect the effects of the rotation on 
the spacetime, but in the case of a small angular momentum, this is an adequate approximation):

t=t  ∂ t
∂

=const.

r=const. dr=0

=const. d =0

=const. d 
d 

=const. (4.8.3)

We start with the most general radial equation of movement:

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t 2−
r g

2⋅r⋅r−r g 
⋅ṙ 2−r−r g ⋅̇

2−r−r g⋅sin2⋅̇2=0

Surface acceleration in the Schwarzschild solution, when the planet rotates:

r̈=−
r g⋅r−r g 

2⋅r3 ⋅c2 r−r g⋅sin2 ⋅2 (4.8.4)

The standard gravitational parameter of Earth, and the gravitational radius:

⋅M =3.986004418⋅1014 m3

s2 → r g=
2⋅⋅M

c2 =8.870056078⋅10−3 m

The equatorial radius of Earth and the angular frequency of the rotation:
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4.8 Surface acceleration and hovering

r=6.3781366⋅106 m =2⋅
t k

=7.292115⋅10−5 1
s

Surface acceleration on the Earth's equator =
2 :

r̈=−9.7982867 m
s20.0339157 m

s2=−9.764371 m
s2 (4.8.5)

The actual acceleration measured on the  Earth's equator, and the difference from the calculated 
value:

r̈ 2=−9.780327 m
s2

r̈2

r̈
−1=1.634105⋅10−3 (4.8.6)

The discrepancy from the geographic value is caused by the Earth's not exactly spherical shape, this 
has mainly an impact on the term that takes the rotation into account.

Acceleration of a hovering object with respect to distance, from the point of view of the 
infinitely distant observer:

a=−
r g⋅ r−r g

2⋅r 3 ⋅c2 (4.8.7)

On the graphic the distance from the gravitational centre increases from left to right, the coordinate 
acceleration of  the  hovering  body is  displayed  on  the  vertical  axis,  the  dotted  line  shows the 
position of the event horizon:

  a

r

Approaching the gravitational radius, the coordinate acceleration goes to zero:
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4.8 Surface acceleration and hovering

a=lim
rr g

−
r g⋅r−r g

2⋅r 3 ⋅c2=0 (4.8.8)

The derivative according to the radial coordinate is zero at the point of maximal acceleration:

∂a
∂ r

=r g⋅
2⋅r−3⋅r g

2⋅r3 ⋅c2=0

r=3
2
⋅r g (4.8.9)

4.9 Geodesic precession

In 1916, while working on the relativistic correction of the Moon's orbit,  Willem de Sitter 
Dutch astronomer pointed out this  phenomenon. By analysing  laser light  reflected from prisms 
placed on the surface of the Moon during the Apollo program the phenomenon was confirmed to 
0.7% accuracy. NASA launched Gravity Probe B in 2004 with the best mechanical gyroscopes on 
board ever created by mankind. The result of the experiment, that confirmed the accuracy of the 
theory  of  relativity  within  1% was  published  in  April  of  2007 at  the  annual  congress  of  the 
American Physical Society.

Maybe one of the best evidences for the curvature of spacetime is the parallel displacement 
along a geodesic, for example a  circular orbit. The direction of the vector arriving at the starting 
point will differ from the original. Parallel displacement along a geodesic, where v is the vector in 
the original point, u is already displaced:

u=v− 
 ⋅v⋅dx (4.9.1)

Our geodesic of choice is the circular orbit. The infinitesimal displacement vector along the orbit:

dx=c⋅dt 0 0 d  (4.9.2)

The vector lays in the orbital plane, therefore its zeroth and second components remain zeroes after 
the displacement:

u=0 ur 0 u v=0 vr 0 v (4.9.3)

The orbiting happens in the equatorial plane:

=
2 (4.9.4)

Substitute the connection of the Schwarzschild solution into the formula of parallel displacement:
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4.9 Geodesic precession

u t=v t− tr
t ⋅v r⋅dt− rt

t ⋅v t⋅dr=v t−
r g

2⋅r⋅r−r g 
⋅vr⋅dt (4.9.5)

ur=vr− tt
r ⋅v t⋅dt− rr

r ⋅vr⋅dr− 
r ⋅v⋅d − 

r ⋅v⋅d=v rr−r g ⋅v⋅d (4.9.6)

u=v− r
 ⋅v⋅dr−  r

 ⋅vr⋅d − 
 ⋅v⋅d =0 (4.9.7)

u=v− r
 ⋅v⋅dr−  r

 ⋅v r⋅d− 
 ⋅v⋅d − 

 ⋅v⋅d =v−1
r
⋅vr⋅d (4.9.8)

Rearrange the  second and fourth  displacement  equations,  substitute  the  difference  between  the 
original and the displaced vector, as well as the angular velocity:

dv rr−r g ⋅v⋅d=0 /⋅ 1
dt 2 ← v−u=dv

v̈ rr−r g ⋅v̇⋅=0 ←
d 
dt

= (4.9.9)

dv−1
r
⋅vr⋅d =0 /⋅ 1

dt

v̇=1
r
⋅vr⋅ (4.9.10)

Express the change of the displaced vector, and substitute it into the radial displacement equation:

v̈ r
r−r g

r
⋅2⋅vr=0 (4.9.11)

v̈ r=−
r−r g

r
⋅2⋅vr

This is the differential equation of the harmonic oscillator, that looks like this in the general case:

vr=sin ⋅t 
d 2

dt 2 sin⋅t =−2⋅sin ⋅t 

We can see its angular frequency:

= r−r g

r
⋅ (4.9.12)

The geodesic precession is the difference between this and the angular frequency:
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4.9 Geodesic precession

=−=1− r−r g

r ⋅ (4.9.13)

In the case of weak gravitational field this effect is small, but accumulates over several revolutions. 
The orbital period and frequency of Gravity Probe B, that was in Earth orbit for 50 weeks between 
2004 and 2005 at an altitude of 642 km:

r=7013000 m t k=5850 s=1 h37min 30 s

=2⋅
t k

=1.074⋅10−3 1
s

The standard gravitational parameter of Earth, and the gravitational radius:

⋅M =3.986004418⋅1014 m3

s2 → r g=
2⋅⋅M

c2 =8.870056078⋅10−3 m

From these the angular velocity of the geodesic precession:

=6.792⋅10−13 1
s (4.9.14)

Rotation in a year:

=⋅t year=2.143⋅10−5rad =4.421 ' ' (4.9.15)

The de Sitter effect is the precession of the  lunar orbit in the  gravitational field of the  Sun. The 
orbital frequency of the Earth from the orbital period:

t k=365.256363004 days → =2⋅
t k

=1.99098659277⋅10−7 1
s

We substitute the gravitational radius of the Sun (from the standard gravitational parameter) and the 
radius of the Earth orbit into our derived equation:

⋅M =1.32712440018⋅1020 m3

s2 → r g=
2⋅⋅M

c2 =2.9532500765⋅103 m

The semi-major axis of the Earth orbit:

r=1.49598261⋅1011 m

The angular velocity of the lunar orbit's precession:

=1.96522383⋅10−15 1
s (4.9.16)
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4.9 Geodesic precession

Rotation in a year:

=⋅t year=6.20188278⋅10−8 rad =0.0127923015 ' ' (4.9.17)

4.10 Stability of circular orbits

In the spacetime of the Schwarzschild solution, circular orbits are obviously geodesics, but 
this is just a theoretical situation, the trajectories of real objects always deviate from this, if only a 
little bit. The question is, will the spacetime geometry generated by the central gravitating celestial  
body correct their movement if they stray from the ideal path? Will they move on stable orbits, or  
will the geometry increase the perturbation and make them leave the system forever, or turn in the 
wrong direction and increase the mass of the central celestial object?

Therefore we want to find out, what orbital radius belongs to what angular frequency, and in 
the vicinity of the orbit,  in what direction will the  geometric potential herd the orbiting bodies. 
Calculating  the  elapsed  proper  time on  time-like  geodesics  in  a  single  plane,  around  the 
gravitational centre (we use the metric functions as a shorthand):

=
2 d =0

c2⋅d 2=A⋅c2⋅dt 2−B⋅dr 2−r 2⋅d 2 /⋅ 1
c2⋅d 2 (4.10.1)

1=A⋅ dt 2

d 2−
B
c2⋅

dr 2

d 2−
r 2

c2⋅
d2

d 2

We determine the components of the covariant  tangent vector from the arc length squared, in the 
time-like and horizontal direction they are the following:

dst
2=A⋅c2⋅dt2 ds

2 =r 2⋅d 2 /⋅ 1
d 

u t=A⋅c2⋅ dt
d 

u=r 2⋅d
d 

=r 2⋅ (4.10.2)

These quantities are  constants of movement,  because the metric tensor does not depend on the 
coordinates they are directed to (see chapter 1).  Substitute the relationship between the  tangent 
vectors and the two metric functions, and we determine the dependence of the radial velocity from 
the selected velocity vectors depending on the distance:

B= 1
A
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4.10 Stability of circular orbits

1=
u t

2

A⋅c2−
1

A⋅c2⋅
dr 2

d 2−
u

2

r 2⋅c2 /⋅A⋅c2

dr2

d 2=u t
2−A⋅u

2

r 2 c2 (4.10.3)

Substitute the function from the Schwarzschild solution:

dr2

d 2=u t
2−1− r g

r ⋅ u
2

r2 c2 (4.10.4)

The second term on the right is the geometric potential:

U eff=1− r g

r ⋅ u
2

r 2 c2 (4.10.5)

We are  discussing  the behaviour  of  this  function.  Where  the derivative according to  the radial 
coordinate is zero, the  geometric potential is horizontal,  this means a potential orbit around the 
gravitational centre:

dU eff

dr
=

r g

r 2⋅ u
2

r2 c2−1− r g

r ⋅2⋅u
2

r 3 =0

r g⋅c
2⋅r 2−2⋅u

2⋅r3⋅u
2⋅r g=0 (4.10.6)

Solve the quadratic equation, the canonical form and the quadratic formula:

a⋅x2b⋅xc=0

x1,2=
−b±b2−4⋅a⋅c

2⋅a

Substitute into the quadratic formula:

r 1,2=
2⋅u

2 ±2⋅u
2 2−4⋅r g⋅c2⋅3⋅u

2⋅r g

2⋅r g⋅c
2

The  geometric potential is horizontal at the following distances, the radii of possible orbits at a 
given horizontal velocity:

r 1,2=
u

2±u⋅u
2−3⋅r g

2⋅c2

r g⋅c
2 (4.10.7)
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4.10 Stability of circular orbits

The piece of the  geometric potential that is interesting to us, on a logarithmic diagram, with the 
maxima and minima noted:

log(Ueff)

    r2

r1

        log(r)

We get circular orbits only if the quantity under the square root, the discriminant is not negative. In 
the other case, there can be no circular orbit, the test object falls on a spiral path, or leaves forever 
in the opposite direction. If the discriminant is zero:

u
2=3⋅r g

2⋅c2 (4.10.8)

Reinsert into the quadratic formula:

r 1,2=
3⋅r g

2⋅c2±3⋅r g
2⋅c2⋅0

r g⋅c2

r 1=r 2=3⋅r g (4.10.9)

In the general case, r1 is always greater and r2 is always less than this limit separating the two kinds 
of  circular orbits. Since the geometric radius of the  Sun vastly exceeds this limiting case, only r1 

orbits occur in the Solar System. By substituting these two values into the second derivative of the 
geometric potential, it turns out that the r1 orbits are stable, r2 orbits are unstable geodesics, as we 
can see it on the graph.

4.11 Perihelion precession

After Urbain le Verrier – by examining the orbit of Uranus – discovered Neptune on paper, 
he did similar calculations in  1859 regarding the movement of  Mercury. After he determined the 
contributions by every other planet, a discrepancy remained, greater than the error margin between 
the measured and calculated values of the perihelion precession. Contemporary explanations failed, 
until Einstein in 1915 was able to explain this anomaly easily using general relativity, this problem 
became one of the classical tests of his theory.  At this  time, none of the exact solutions  of his 
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4.11 Perihelion precession

equation were known (except for the flat spacetime), therefore Einstein used a different version than 
the one presented here.

We examine the movement of a body on an orbit that is slightly different from a circle. It 
turned out when we investigated the stability of the orbit, that the orbiting distance oscillates around 
a medium value with a definite period:  Tr, and because of the revolution the angle of the position 
around the centre changes also of course, with the following period: Tφ. The shape of the resulting 
orbit approximates a rotating ellipse in the simplest case, where a angular turn with respect to the 
coordinate time is:

=et⋅T r−T=et⋅2⋅
e

−2⋅
 =2⋅⋅1−et

  (4.11.1)

Arbitrary orbits around the Sun are characterized by the following relationship, we met previously:

dr2

d 2=u t
2−U eff (4.11.2)

If we approximate the geometric potential with its second derivative around the equilibrium point, 
then we can ultimately replace it with the differential equation of the harmonic oscillator, where we 
can identify the angular frequency of the periodic movement:

U eff r ≈
1
2
⋅

d 2

dr2⋅U r⋅ r−r
2

dr2

d 2=u t
2−1

2
⋅ d 2

dr 2⋅U r⋅ r−r
2 (4.11.3)

We identify the angular frequency of the angular turn, this time with respect to the proper time:

e
2=

U ' ' eff

2
(4.11.4)

Calculate the second derivative of the geometric potential:

d 2 U eff

dr 2 =−
2⋅r g

r3 ⋅ u
2

r2 c2− r g

r 2⋅
2⋅u

2

r3 −
r g

r 2⋅
2⋅u

2

r3 1− r g

r ⋅6⋅u
2

r 4

d 2 U eff

dr 2 =−
2⋅r g

r3 ⋅c2 6
r 4−

12⋅r g

r 5 ⋅u
2 (4.11.5)

u=r 2⋅d
d 

≈r 2⋅

Determine the  angular  frequency of the  rotation of the ellipse, we recognize in the first term the 
orbital  frequency according  to  the  coordinate  time of  the  orbiting  body,  and we substitute  the 
horizontal velocity in a form that is valid for circular movement:
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4.11 Perihelion precession

e
2=−

r g

r 3⋅c
2 3

r 4−
6⋅r g

r5 ⋅u
2

e
2=−2⋅23−6⋅r g

r ⋅2=1−6⋅r g

r ⋅2 (4.11.6)

The relationship between the angular frequencies according to the coordinate time and the proper 
time can be derived from the relationship between the coordinate time and the proper time:

d =1−
3⋅r g

2⋅r
⋅dt

d 
d 

= d 

1−
3⋅r g

2⋅r
⋅dt

e=
et

1−
3⋅r g

2⋅r
→ et

2=1− 3⋅r g

2⋅r ⋅e
2 (4.11.7)

We discuss distant orbits, where the ratio of the Schwarzschild radius and the distance is very small, 
therefore we can allow ourselves a small inaccuracy, that keeps us within the error margin, but we 
can arrange to a more comfortable form the relationship we are looking for:

e
2=1−6⋅r g

r ⋅2≈1−3⋅r g

2⋅r ⋅2

et=1−3⋅r g

2⋅r ⋅ (4.11.8)

By reinserting we get the perihelion precession of orbits:

=2⋅⋅1−et

 =3⋅⋅
r g

r
(4.11.9)

The explanation  for  the  perihelion precession  of  Mercury is  a  famous  confirmation  of  general 
relativity. The standard gravitational parameter of the Sun, and the gravitational radius:

⋅M =1.32712440018⋅1020 m3

s2 → r g=
2⋅⋅M

c2 =2.9532500765⋅103 m

From the semi-major axis and the orbital period of Mercury the angular turn in a single revolution 
and in a century:
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4.11 Perihelion precession

r=5.79091⋅1010 m t k=7.60053024⋅106 s

=4.80645⋅107=0.0991402 ' '

century=1.99565⋅10−4=41.1633 ' ' (4.11.10)

The total measured perihelion precession of Mercury in a century is 5599,7”, where 5028,83” is a 
coordinate effect due to the precession of the equinoxes, 530” is caused by the gravitational tug of 
the other planets, and 0,0254” is also caused by the oblateness of the Sun. The difference is:

measured=40.8446 ' '

Based on this the difference is most likely caused by the curvature of spacetime.

4.12 Bending of light

Based  on  the  Newtonian  particle  model  of  light,  Johann  Georg  von  Soldner suggested 
already in 1801, that light rays are deflected if influenced by gravitation, and simply considering the 
light particles as bodies moving on orbits, he determined their deflection near the  Sun. His result 
was half of the actual value.  Einstein used relativity theory, and after an unsuccessful attempt, he 
correctly predicted the angle of light deflection, as it was confirmed by the British expedition led by 
Arthur Eddington in  1919. They travelled to  Brazil and  Equatorial  Guinea,  and determined the 
coordinates of stars with known positions near the dark disk of the eclipsed Sun. Later during the 
1960s,  radio astronomical measurements confirmed the calculations with a few times of 0.01% 
error margin.

The method presented here differs from the traditional approach, we essentially search the 
shape  of  a  geodesic  from four  dimensional  spacetime in  a  subspace.  In  our  case,  in  the  three 

dimensional speacetime determined by the coordinate condition =
2

,  the path of the light rays 

are also geodesics, as we have already seen when we wrote down the general geodesics. This is the 
reason for the success of the following procedure.

We examine the paths of light rays for a general case in the gravitational field. Except in the 
case of the photon sphere, these will not be closed curves, they will either avoid the celestial body 
on an arched trajectory, or cross the  event horizon while falling. Since the metric is spherically 
symmetric,  we  are  not  losing  anything  if  we  restrict  ourselves  to  a  coordinate  surface.  The 
Schwarzschild arc length squared:

ds2=1− r g

r ⋅c2⋅dt 2− dr 2

1−
r g

r

−r2⋅d 2sin2⋅d 2  (4.12.1)

The  arc  length  squared  is  zero  along  light-like  geodesics.  The  coordinate  conditions in  the 
equatorial plane of the coordinate system:
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4.12 Bending of light

ds2=0 =
2 d =0 (4.12.2)

Substitute  into the arc  length squared.  By rearranging it,  the radial  coordinate  and the original 
vertical  angular  coordinate  describes  a  two  dimensional  surface,  where  the  coordinate  time 
measures the distance:

0=1− r g

r ⋅c2⋅dt 2− dr 2

1−
r g

r

−r2⋅d2

c2⋅dt2= dr2

1− r g

r 
2

r 2⋅d 2

1−
r g

r

= r
r−r g 

2

⋅dr 2 r 3

r−r g
⋅d 2

(4.12.3)

This  surface  is  a  projection  of  the  original  spacetime,  that  however  preserved  the  mutual 
dependence of the coordinates. If we consider the previous relationship an arc length squared, we 
can calculate the usual geometric quantities from the metric tensor to the connection:

g ij= r
r−r g 

2

0

0 r 3

r−r g
 g ij= r−r g

r 
2

0

0
r−r g

r 3  (4.12.4)

∂ g rr

∂ r
= 2⋅r
r−r g 

2⋅1− r
r−r g  ∂ g rr

∂ r
=

2⋅r−r g

r 2 ⋅1− r−r g

r 
∂ g

∂ r
= r 2

r−r g
⋅3− r

r−r g  ∂ g

∂ r
= 1

r 3⋅1−3⋅r−r g
r  (4.12.5)

 rr
r =−

r g

r⋅ r−r g
 

r =−
2⋅r−3⋅r g

2

 r
 =  r

 =
2⋅r−3⋅r g

2⋅r⋅ r−r g
(4.12.6)

The pictures of the light rays on this projection are geodesics, that can be parametrized by the 
distance that is valid on the surface:

(1) ∂2 r
∂ t 2  rr

r ⋅∂ r
∂ t
⋅∂r
∂ t

 
r ⋅∂

∂ t
⋅∂
∂ t

=0
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∂2 r
∂ t 2 =

r g

r⋅r−r g 
⋅∂ r
∂ t 

2


2⋅r−3⋅r g

2
⋅∂∂ t 

2

(4.12.7)

(2) ∂2
∂ t2 2⋅ r 

 ⋅∂ r
∂ t
⋅∂
∂ t

=0

∂2
∂ t2 =−2⋅

2⋅r−3⋅r g

2⋅r⋅r−r g 
⋅∂ r
∂ t
⋅∂
∂ t (4.12.8)

Determine the coordinate changes, or in other words, the velocities:

v=
∂
∂ t

∂v
∂ t

=−
2⋅r−3⋅r g

r⋅ r−r g
⋅∂r
∂ t
⋅v

1
v
⋅dv=−

2⋅r−3⋅r g

r⋅r−r g
⋅dr

log v=log r−r g −3⋅log  r C

v=C⋅
r−r g

r 3 (4.12.9)

The integration constant can be determined, if we rearrange the arc length squared of the surface, 
and determine the angular velocity at an extremal case:

c2⋅dt2= r
r−r g 

2

⋅dr2 r3

r−r g
⋅d2 /⋅ 1

dt 2

c2= r
r−r g 

2

⋅dr 2

dt 2
r3

r−r g
⋅d 2

dt 2 (4.12.10)

The change of the radial coordinate is zero at the closest proximity of orbits that avoid the celestial 
body on an arched trajectory:

dr0
2

dt 2=0

d 
dt

=v=c⋅ r0−r g

r 0
3 (4.12.11)

Substitute  it  into  the  angular  velocity  measured  in  this  extremal  position,  and  determine  the 
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integration constant:

v=C⋅
r 0−r g

r0
3 =c⋅ r 0−r g

r0
3

C=c⋅ r 0
3

r 0−r g

(4.12.12)

The angular velocity:

d 
dt

=v=c⋅ r0
3

r 0−r g
⋅

r−r g

r3
(4.12.13)

The radial velocity can also be determined, if we substitute the above formula into the arc length 
squared:

c2= r
r−r g 

2

⋅dr 2

dt 2
r3

r−r g
⋅d 2

dt 2

dr
dt
=

r−r g

r
⋅c2− r 3

r−r g
⋅d2

dt 2

dr
dt
=vr=c⋅

r−r g

r
⋅1−

r0
3

r 0−r g
⋅

r−r g

r3
(4.12.14)

The ratio of the two velocities determines the change of the angular coordinate with respect to the 
distance. By integrating the relationship we can determine the total angular turn performed by the 
light ray in the proximity of the celestial body, between the closest approach and infinity:

v

vr
=d 

dr
= 1

r 2⋅ r0
3

r 0−r g

1−
r0

3

r 0−r g
⋅

r−r g

r3

=∫
r 0

∞ 1
r2⋅ r 0

3

r0−r g

1−
r 0

3

r0−r g
⋅

r−r g

r 3

⋅dr (4.12.15)

We get a formula that is easier to handle, if we introduce a new parameter, that changes between 
zero and one:
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=
r0

r

=∫
0

1 1
1−2

⋅ 1

1−
r g

r 0
⋅1−3

1−2

⋅d 
(4.12.16)

This integral cannot be written in a closed form, but the integrand can be broken up to a sum of 
terms, that can be individually integrated:

=∫
0

1 1
1−2⋅11

2⋅
r g

r 0
⋅

1−3

1−2
3
8⋅ r g

r 0
⋅
1−3

1−2 
2


5

16⋅ r g

r0
⋅

1−3

1−2 
3

⋅d  (4.12.17)

The first term characterizes the light ray that moves in flat spacetime:

1=∫
0

1 1
1−2

⋅d =arcsin 1−arcsin 0=
2 (4.12.18)

The  deviation  from  this  is  called  the  bending  of  light  in  the  presence  of  gravitation.  This 
phenomenon could be observed during solar eclipses for the first time, when the coordinates of stars 
with known positions was determined near the dark disk of the Sun. These measurements have an 
error margin, that is greater than that of the second term in the formula:

2=∫
0

1 1
1−2

⋅1
2
⋅

r g

r 0
⋅1−3

1−2⋅d 

2=
1
2
⋅

r g

r 0
⋅− 1−

1
−1−⋅1∣0

1
=

r g

r0
(4.12.19)

Since this angle is valid only from the perihelion to infinity, the total turn is two times this value:

=2⋅
r g

r0
(4.12.20)

By evaluating the other terms, we get a more precise relationship for light bending in a gravitational 
field, verified by radio astronomical measurements:

=2⋅
r g

r0
15

16
⋅−1⋅ r g

r0 
2

−15
16
⋅61

12⋅ r g

r0 
3

 (4.12.21)

We calculate the deflection of the light rays that graze the surface of the Sun. Since the error margin 
of  the  observation  does  not  exceed that  of  the  first  term,  we consider  only this.  The  standard 
gravitational parameter of the Sun, and the gravitational radius:
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⋅M =1.32712440018⋅1020 m3

s2 → r g=
2⋅⋅M

c2 =2.9532500765⋅103 m

The radius of the Sun:

r 0=6.955⋅108 m

The deflection of light rays near the Sun:

=2⋅
r g

r0
=8.492⋅10−6=1.752 ' ' (4.12.22)

Light rays coming from the same direction are  focused by the  Sun into an opposite area, thus it 
behaves like a gravitational lens:

The paths of the parallel light rays approaching the Sun (that is represented with a vertical line) hold 
together on the other side, however unlike in the case of optical lenses, they slightly diverge, not all 
of them are focused into the same point. Despite this, the pictures of objects on the other side are 
enlarged and brightened. This phenomenon can be utilized in practice by astronomers. The graph is 
strongly distorted by the way, the parallel Sun-grazing light rays incoming from infinity meet again 
at a great distance from the Sun, this is called the gravitational focal distance of the Sun:

f =r0⋅cot =8.19⋅1013m (4.12.23)

4.13 Tides

Back in the year of  1616, Galilei considered it a superstition, that according to  Johannes 
Kepler, the tides on Earth are caused by the Moon's gravitational pull, however history verified the 
latter  scientist.  Already  in  the  Newtonian  theory  of  gravitation,  the  Moon and  the  Sun are 
responsible for the appearance of the  tidal bulges, according to Kepler's suspicion. The theory of 

131



4.13 Tides

relativity  can  describe  this  phenomenon  to  an  even  greater  accuracy,  that  is  the  deviation  of 
geodesics:

∂2 x

∂2 R 
 ⋅dx⋅∂ x

∂
⋅∂ x

∂
=0 (4.13.1)

Apply this in the Schwarzschild coordinate system. The question is, what kind of tides are caused 
by the central mass in the surrounding extended objects that orbit it? At a given point on the circular 
orbit, where according to our choice:

x=0 x r x 0

∂ x

∂
=c⋅ dt

d 
0 0 d 

dt =c⋅ dt
d 

0 0  (4.13.2)

Substitute into the general formula,  and use the  coordinate time as the parameter.  Under  these 
conditions only four components of the curvature tensor play a role:

(1) ∂2 r
∂ t 2 R ttr

r ⋅dr⋅c⋅∂ t
∂ t
⋅c⋅∂ t

∂ t
R r

r ⋅dr⋅∂
∂ t

⋅∂
∂ t

=0

∂2 r
∂ t 2 −

r g⋅r−r g

r 4 ⋅c2⋅dr
r g

2⋅r
⋅sin2⋅dr⋅2=0 (4.13.3)

We are in the equatorial plane, and we substitute the angular frequency also:

=
2 =c⋅ r g

2⋅r3

∂2 r
∂ t 2 −

r g⋅r−r g

r 4 ⋅c2⋅dr
r g

2⋅r
⋅dr⋅c2⋅

r g

2⋅r3=0

The coordinate acceleration along the orbital radius:

∂2 r
∂ t 2 =

r g⋅4⋅r−5⋅r g

4⋅r4 ⋅c2⋅dr (4.13.4)

(2) ∂2
∂ t 2 R tt 

 ⋅d ⋅c⋅∂ t
∂ t
⋅c⋅∂ t

∂ t
R 

 ⋅d ⋅∂
∂ t

⋅∂
∂ t

=0

∂2
∂ t 2 −

r g⋅r−r g

2⋅r4 ⋅c2⋅d −
r g

r
⋅sin2 ⋅d ⋅2=0 (4.13.5)

We perform the same substitutions:
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∂2
∂ t 2 −

r g⋅r−r g

2⋅r4 ⋅c2⋅d −
r g

r
⋅d ⋅c2⋅

r g

2⋅r3=0

The coordinate acceleration perpendicular to the orbital radius:

∂2
∂ t 2 =

r g

2⋅r3⋅c2⋅d  (4.13.6)

The two acceleration components above distort a spherical planet – like  Earth – as seen on the 
graph on the left side, and it shows in what direction the points of the surface are accelerated. At 
distances with the same magnitude like the Schwarzschild radius, the normally weaker component 
becomes significant, the shape of the ellipse changes. The elongation of the falling body is called 
spaghettification. At the right side the graph displays the acceleration vectors distorting a sphere 
with a diameter of 5  meters, positioned 5000  meters away from a solar mass  black hole, where 
time-like circular orbits are still possible:

When  will  the  tides  become destructive  to  the  celestial  body?  Pieces  start  to  detach  from the 
surface, when the tidal acceleration exceeds the surface acceleration. When doing the comparison 
we must keep in mind, that the two formulas do not apply to the same spacetime curvature; the tidal 
acceleration is calculated in the spacetime of the central star, the surface acceleration is calculated 
in the spacetime of the orbiting planet. The approximation method has two limitations:  first,  the 
Einstein equation is non-linear, therefore gravitational acceleration of the two bodies is added with a 
certain error. Second, we did not take into account, that the celestial bodies under investigation have 
distorted each other, neither their shape, nor their gravitational field is spherically symmetric. Since 
the tidal acceleration on the surface grows linearly with the size of the object (if the mass does not 
change),  this  phenomenon  creates  an  upper  limit  to  the  sizes  of  the  celestial  objects  orbiting 
gravitational sources:

r g⋅4⋅r−5⋅r g
4⋅r4 ⋅c2⋅ rb =∂2 r

∂ t 2 =
∂2 rb

∂ t2 =−
r gb ⋅ rb − r gb 

2⋅ r3
b

⋅c2
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r g⋅4⋅r−5⋅r g

2⋅r 4 =−
r gb ⋅ rb − r gb 

r4
b

r g⋅4⋅r−5⋅r g

2⋅r 4 ⋅ r 4
b − r gb ⋅ rb  r g

2
b =0 (4.13.7)

The solution of this equation of the fourth degree gives the upper limit for the size of the celestial 
body, that not yet gets peeled by the tides. We rewrite it first:

r 4
b −

r gb

Dr
⋅ rb 

r g
2

b

D r
=0 Dr=

r g⋅4⋅r−5⋅r g

2⋅r4 (4.13.8)

The first step towards the solution of the equation of the fourth degree is to write down the resulting 
equation of the third degree:

x4b⋅x3c⋅x2d⋅xe=0

y3c⋅y2b⋅d−4⋅e ⋅y4⋅c⋅e−d 2−b2⋅e⋅d=0 (4.13.9)

Substituting:

y3−4⋅e⋅y−d 3=0

y3−
4⋅ r g

2
b

D r
⋅y r gb

Dr 
3

=0 (4.13.10)

We have to solve this equation in the second step. The special form of the  equation of the third 
degree, and the solution formula (during substitution, let us be careful about the signatures):

y3− p⋅y−q=0

y1,2,3=
3−q

2
 q2

4
 p3

27


3−q
2
− q2

4
 p3

27
(4.13.11)

Finally, we substitute the result into the following expressions, and get the solutions of the equation 
of the fourth degree:

R= b2

4
−c y

R=0 → D= 3⋅b2

4
−2⋅c±2⋅ y2−4⋅e
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4.13 Tides

R≠0 → D= 3⋅b2

4
−R2−2⋅c±b⋅c−8⋅d−b3

4⋅R

x1,2 ,3,4=−
b
4
± R

2
±D

2 (4.13.12)

Substitute from the Earth's standard gravitational parameter the gravitational radius:

⋅M =3.986004418⋅1014 m3

s2 → r g=
2⋅⋅M

c2 =8.870056078⋅10−3 m

The semi-major axis of the Moon's orbit:

r=3.84399⋅108 m

From the Moon's standard gravitational parameter its gravitational radius:

r gb =1.091020268509284⋅10−4 m

Among the solutions of the equation of the fourth degree, the first result can be physical, this is the 
greatest possible size the Moon can have. With a greater radius than this, the Earth attracts the rocks 
on the surface more than the Moon itself:

r 1b =7.04273⋅107m r 2b =1.09248⋅10−4 m

r 3b =−3.52137⋅107 m−i⋅6.09918⋅107 m r 4b =−3.52137⋅107 mi⋅6.09918⋅107 m
(4.13.13)

The distance within which a celestial body will disintegrate due to the tides caused by the central 
celestial body is called the  Roche radius, and it is the solution of the following equation of the 
fourth order:

r g⋅4⋅r−5⋅r g

2⋅r 4 =−
r gb ⋅ rb − r gb 

r4
b

r gb ⋅ rb − r gb 
r 4

b

⋅r 4−2⋅r g⋅r
5⋅r g

2

2
=0 (4.13.13)

Rewrite and write down the resulting equation of the third degree:

r 4−
2⋅r g

Dr
⋅r

5⋅r g
2

2⋅Dr
=0 Dr=

r gb ⋅ rb − r gb 

r 4
b

(4.13.14)

y3−
10⋅r g

2

Dr
⋅y 2⋅r g

D r 
3

=0 (4.13.15)
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4.13 Tides

Just like in the previous case, we write down the solution formulas, substitute the variable, among 
them the radius of the Moon:

1.73814⋅107 m

Among the solutions of the equation of the fourth degree, the first result again can be physical, this 
is the smallest possible distance the Moon can approach the Earth. With a smaller distance than this, 
the Earth attracts the rocks on the surface more than the Moon itself:

r 1=9.48694⋅107 m r 2=0.0110876 m

r 3=−4.74347⋅107 m−i⋅8.21593⋅107 m r 4=−4.74347⋅107 mi⋅8.21593⋅107 m
(4.13.16)

4.14 Falling orbit

A test body moves along a geodesic also when it falls into the  black hole directly, this is 
characterized by the following coordinate conditions:

t=t  =t

r=r  r=r t 

=const.=
2 d =0

=const. d =0 (4.14.1)

The equations of movement of the trajectory:

c⋅ẗ2⋅ tr
t ⋅c⋅ṫ⋅ṙ=0

ẗ
r g

r⋅r−r g
⋅ṫ⋅ṙ=0 (4.14.2)

r̈ tt
r ⋅c2⋅ṫ2 rr

r ⋅ṙ2 
r ⋅̇2 

r ⋅̇2=0

r̈
r g⋅ r−r g

2⋅r 3 ⋅c2⋅̇t2−
r g

2⋅r⋅r−r g 
⋅ṙ 2=0 (4.14.3)

̈2⋅ r
 ⋅ṙ ̇ 

 ⋅̇2=0

̈=0 (4.14.4)
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4.14 Falling orbit

̈2⋅ r
 ⋅ṙ ̇2⋅ 

 ⋅̇⋅̇=0

̈=0 (4.14.5)

Substitute the coordinate conditions into the arc length squared:

ds2=1− r g

r ⋅c2⋅dt 2− dr 2

1−
r g

r

−r2⋅d 2sin2⋅d 2 

c2⋅d 2=1− r g

r ⋅c2⋅dt2− dr 2

1−
r g

r

The relationship between the proper time and the coordinate time is velocity dependent:

d =1−
r g

r
−

vr
2

c2⋅1− r g

r 
⋅dt vr=

dr
dt (4.14.6)

We make the arc length squared along a time-like infalling geodesic equal to the arc length squared 
of the co-moving coordinate system, then divide with the change in proper time, and write down the 
equation with the tangent vectors:

A⋅c2⋅ dt 2

d 2−B⋅ dr 2

d 2=
c2⋅d 2

d 2 =c2

u t= dt
d 

ur= dr
d 

A⋅c2⋅u t2−B⋅ur 2=c2 (4.14.7)

We have derived in the mathematical introduction, that if the partial derivative of the metric tensor 
along  a  coordinate  is  zero,  then  the  corresponding  covariant  tangent  vector is  a  constant  of 
movement:

∂ g

∂ t
=0 →

∂u t

∂ t
=0 (4.14.8)

We calculate the time-like covariant tangent vector from the contravariant one with index lowering:

u t=g t⋅u=g tt⋅u
t=A⋅u t (4.14.9)

Rearrange the arc length squared and express the square of the time-like covariant tangent vector:
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4.14 Falling orbit

c2⋅u t
2=A2⋅c2⋅u t2=A⋅c2B⋅ur2

c2⋅u t
2=A⋅c2ur 2 because: B= 1

A (4.14.10)

At the beginning of the fall, the radial velocity is zero:

c2⋅u t
2=A r0⋅c2 (4.14.11)

We make the two results equal, and express the radial velocity. We pick the negative root, because 
the numeric value of the radial coordinate has to decrease, we are looking for the infalling solution.  
r0 is the radial coordinate of the starting point:

ur=−c⋅Ar 0−Ar 

dr
d 

=−c⋅ r g

r 0
⋅

r0−r
r

∫
0



d =−1
c
⋅ r 0

r g
⋅∫

r0

r

 r '
r0−r '

⋅dr '

The time dependence of the fall:

=1
c
⋅ r 0

r g
⋅r⋅ r0−r 

r0

2
⋅2 arcsin1−2⋅r

r0  (4.14.12)

The proper time passes from the left to the right on the graph, the vertical axis is the radius. The 
horizontal dotted line is the event horizon. The trajectory of the infalling body apparently crosses it 
as if it were not there:

 r

τ
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4.14 Falling orbit

The test body falling into the black hole reaches the centre in a finite proper time:

max=

2
⋅ r0

r g
⋅

r 0

c
(4.14.13)

In order to form an idea of the magnitudes, let us replace the  Sun with a  black hole of the same 
mass, and we jump into the depth from a distance that corresponds to the surface of the Sun. The 
radius of the Sun:

r 0=6.955⋅108 m

The time that passes until the impact, from the point of view of the falling astronauts:

max=29min 28.5 s (4.14.14)

Calculate the movement with respect to the coordinate time:

dr
dt
= dr

d 
⋅d 

dt
= dr

d 
⋅1

u t (4.14.15)

The  contravariant  time-oriented  tangent  vector changes  during  the  movement,  its  covariant 
counterpart however does not, therefore we substitute the latter:

dr
dt
= dr

d 
⋅A

ut
u t=

u t

A
(4.14.16)

Substitute the time-oriented covariant tangent vector:

dr
dt
= dr

d 
⋅ A
Ar 0

u t=Ar 0 (4.14.17)

The complete expression cannot be integrated in a closed form:

dt=1
c
⋅ r0⋅r g

r 0
⋅ r 0

r g
⋅ r

r−r g
⋅ r

r 0−r
⋅dr

t=1
c
⋅ r 0⋅r g

r g
⋅∫

r 0

r r '
r '−r g

⋅ r '
r 0−r '

⋅dr ' (4.14.18)

This integral asymptotically approaches the  event horizon, but it reaches it after an infinite time. 
The situation inside the event horizon is similar, if we track backwards the geodesics with respect to 
the  coordinate  time,  we experience  the  same when approaching the  Schwarzschild  radius.  The 
distant observer cheering the afore mentioned brave astronauts will see, that his peers get slower as 
they approach the black hole, and never reach it, or rather they do but in an infinite time.
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4.14 Falling orbit

The  coordinate time passes from the left to the right on the graph, the vertical axis is the 
radius. The horizontal dotted line is the event horizon. The trajectory of the infalling body breaks on 
this graph:

 r

t

The function describing the movement of the body asymptotically approaches the  event horizon 
from both sides, but reaches it only at infinity.

4.15 Isotropic coordinates

The spherically symmetric spacetime can be mapped with other kind of coordinate systems 
as well.  We look at the general form of the arc length squared again,  and modify the arbitrary 
functions:

ds2=A I r ⋅c2⋅dt 2−B I r ⋅dr I
2r I

2⋅d 2sin2⋅d 2 (4.15.1)

Compare it with the arc length squared in the Schwarzschild coordinate system:

ds2=AS r ⋅c2⋅dt 2−BS r ⋅dr S
2−rS

2⋅d 2sin2⋅d 2 (4.15.2)

The arc length squared is an invariant quantity, therefore the two are equal. This is also true, if we 
just  measure it  along one of the coordinates,  that has always the same direction in each cases. 
Therefore the following equations can be written down with the arc length squares along the time-
like, radial, and horizontal coordinates:

A I=AS

B I⋅dr I
2=BS⋅dr S

2

B I⋅r I
2=r S

2 (4.15.3)
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4.15 Isotropic coordinates

Divide the two equations with each other, and square root:

dr I

r I
=BS⋅

dr S

r S

dr I

r I
= 1

r S⋅1−
r g

r S

⋅drS

Integrate and resolve the logarithm:

log  r I =log1−
r g

rS
1−log1−

r g

r S
−1C

r I=C⋅1−
r g

r S
1

1−
r g

r S
−1

r I=C⋅r S−
r g

2
r S⋅r S−r g (4.15.4)

The unknown multiplier can be determined from a geometric condition: infinitely distant from the 
gravitational centre, or by turning off the gravity completely, the two coordinate systems should 
coincide, in this case the extent of the event horizon is zero:

r I=C⋅r S−
0
2
rS⋅r S−0

C=1
2 (4.15.5)

Express the radial coordinate of the Schwarzschild coordinate system, and determine with it the first 
unknown function of the isotropic coordinate system's arc length squared:

r S=r I⋅1 r g

4⋅r I 
2

(4.15.6)

A I=AS=1−
r g

r S
=1−

r g

r I⋅1 r g

4⋅r I 
2= 4⋅r I−r g

4⋅r Ir g 
2

(4.15.7)
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4.15 Isotropic coordinates

The other unknown function:

B I=
rS

2

r I
2=

r I⋅1 r g

4⋅r I 
2

r I
2 =4⋅r Ir g

4⋅r I 
4 (4.15.8)

The gravitational radius appearing in the equations continues to be measured in the Schwarzschild 
coordinate system, here it is a constant independently from the coordinate system, a quantity that 
characterizes the mass. The arc length squared in the isotropic coordinate system:

ds2=4⋅r−r g

4⋅rr g 
2

⋅c2⋅dt 2− 4⋅rr g

4⋅r 
4

⋅dr2r 2⋅d 2sin2⋅d2 (4.15.9)

The geometric quantities from the metric tensor to the curvature tensor:

g ij=
4⋅r−r g

4⋅rr g 
2

0 0 0

0 −4⋅rr g

4⋅r 
4

0 0

0 0 −4⋅rr g

4⋅r 
4

⋅r2 0

0 0 0 − 4⋅rr g

4⋅r 
4

⋅r 2⋅sin2


g ij=
4⋅rr g

4⋅r−r g 
2

0 0 0

0 − 4⋅r
4⋅rr g 

4

0 0

0 0 − 4⋅r
4⋅rr g 

4

⋅1
r 2 0

0 0 0 − 4⋅r
4⋅rr g 

4

⋅ 1
r 2⋅sin2 

 (4.15.10)

∂ g tt

∂ r
=

16⋅r g⋅4⋅r−rg 
4⋅rr g

3
∂ g rr

∂ r
=

r g⋅4⋅rr g 
3

64⋅r5

∂ g

∂ r
=−2⋅r⋅ r g

4⋅r
1−r g⋅ r g

4⋅r
1

3
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4.15 Isotropic coordinates

∂ g

∂ r
=−2⋅r⋅ r g

4⋅r
1−r g⋅ r g

4⋅r
1

3

⋅sin2

∂ g

∂
=−

4⋅rr g 
4

128⋅r2 ⋅cos⋅sin 

∂ g tt

∂ r
=−

16⋅r g⋅4⋅rr g

4⋅r−r g 
3

∂ g rr

∂ r
=−

1024⋅r3⋅r g

4⋅rr g
5

∂ g

∂ r
=

512⋅r⋅4⋅r−r g

4⋅rr g
5

∂ g

∂ r
=

512⋅r⋅4⋅r−r g 

4⋅rr g
5⋅sin2

∂ g

∂
= 512⋅r 2⋅cos 
4⋅rr g

4⋅sin3
(4.15.11)

 tr
t = rt

t =
8⋅r g

16⋅r 2−r g
2

 tt
r =

2048⋅r 4⋅r g⋅4⋅r−r g
4⋅rr g

7  rr
r =−

2⋅r g

r⋅4⋅rr g

 
r =−

r⋅4⋅r−r g
4⋅rr g

 
r =−

r⋅4⋅r−r g
4⋅rr g

⋅sin2 

 r
 = r

 = r 
 =  r

 =
4⋅r−r g

r⋅4⋅rr g
 
 =−cos ⋅sin

 
 = 

 =cot  (4.15.12)

∂ tr
t

∂ r
=
∂ rt

t

∂ r
=−

256⋅r⋅r g

16⋅r2−r g
22

∂ tt
r

∂ r
=

8192⋅r 3⋅r g⋅8⋅r2−8⋅r⋅r gr g
2 

4⋅rr g
8

∂ rr
r

∂ r
=

2⋅r g⋅8⋅rr g
r2⋅4⋅rr g 

2

∂ 
r

∂ r
=−

16 r28⋅r⋅r g−r g
2

4⋅rr g
2

∂ 
r

∂ r
=−

16 r28⋅r⋅r g−r g
2

4⋅rr g
2 ⋅sin2

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=−

16⋅r 2−8⋅r⋅r g−r g
2

r 2⋅4⋅rr g
2
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∂ 
r

∂
=−

2⋅r⋅4⋅r−r g
4⋅rr g

⋅cos⋅sin 

∂ 


∂
=−cos2⋅

∂ 


∂
=
∂ 



∂
=− 1

sin2
(4.15.13)

R rtr
t =−R rrt

t =
16⋅r g

r⋅4⋅rr g
2

R  t
t =−R  t

t =R  r
r =−R  r

r =−
8⋅r⋅r g

4⋅rr g 
2

R t 
t =−R  t

t =R r
r =−R  r

r =−
8⋅r⋅r g

4⋅rr g
2⋅sin2

R ttr
r =−R trt

r =
4096⋅r3⋅r g⋅4⋅r−r g

2

4⋅rr g
8

R tt
 =−R t t

 =R tt
 =−R t t

 =−
2048⋅r3⋅r g⋅4⋅r−r g

2

4⋅rr g
8

R rr
 =−R r r

 =R rr
 =−R r r

 =
8⋅r g

r⋅4⋅rr g
2

R 
 =−R 

 =
16⋅r⋅r g

4⋅rr g
2⋅sin2 R 

 =−R 
 =−

16⋅r⋅r g

4⋅rr g
2 (4.15.14)

Substitute the connection coefficients of the  isotropic coordinate system into the  geodesic 
equations:

c⋅ẗ2⋅ tr
t ⋅c⋅ṫ⋅ṙ=0

ẗ
16⋅r g

16⋅r 2−r g
2⋅ṫ⋅ṙ=0 (4.15.15)

r̈ tt
r ⋅c2⋅ṫ2 rr

r ⋅ṙ2 
r ⋅̇2 

r ⋅̇2=0

r̈
2048⋅r4⋅r g⋅4⋅r−r g 

4⋅rr g
7 ⋅c2⋅ṫ2−

2⋅r g

r⋅4⋅rr g
⋅ṙ 2−

r⋅4⋅r−r g
4⋅rr g

⋅̇2−
r⋅4⋅r−r g

4⋅rr g
⋅sin2⋅̇2=0

(4.15.16)

̈2⋅ r
 ⋅ṙ ̇ 

 ⋅̇2=0
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4.15 Isotropic coordinates

̈
8⋅r−r g

r⋅4⋅rr g 
⋅ṙ ̇−cos⋅sin⋅̇2=0 (4.15.17)

̈2⋅ r
 ⋅ṙ ̇2⋅ 

 ⋅̇⋅̇=0

̈
8⋅r−r g

r⋅4⋅rr g
⋅ṙ ̇2⋅cot ⋅̇⋅̇=0 (4.15.18)

Gravitational redshift in isotropic coordinates:

1 = g 002

g 001
⋅2 = 4⋅ r2 −r g

4⋅ r2 r g 
2

 4⋅ r1 −r g

4⋅ r1 r g 
2⋅2 =

4⋅ r2 −r g

4⋅ r1 −r g
⋅2 (4.15.19)

If the light source is closer to the source of the gravitational field than the observer, then the mutual 
ratios of the radii and the frequencies are the same as in the Schwarzschild case:

r1 ≥ r2 → 1 ≤ 2 (4.15.20)

To get the orbital frequency of the test body on a circular orbit, insert the exchange formula between 
the coordinate systems  into the result from the Schwarzschild coordinates:

I=c⋅ r g

2⋅r S
3 =c⋅ 2048⋅r I

3

r g
5 (4.15.21)

4.16 Gaussian polar coordinates

We try out further unknown functions in the general formula for the arc length squared:

ds2=AG r ⋅c2⋅dt 2−drG
2 −CG r ⋅r G

2⋅d 2sin2 ⋅d 2 (4.16.1)

Compare it with the arc length squared from the Schwarzschild coordinate system:

ds2=AS r ⋅c2⋅dt 2−BS r ⋅dr S
2−rS

2⋅d 2sin2⋅d 2 (4.16.2)

Arc length squared along the time-like, radial, and horizontal coordinates:

AG=AS
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4.16 Gaussian polar coordinates

dr G
2=BS⋅dr S

2

CG⋅rG
2 =r S

2 (4.16.3)

The second and third equations are related, we perform the integration:

r G=∫BS⋅dr S=
r S

CG

r G=∫ 1

1−
r g

r S

⋅drS=
r S

CG

Exchange between the radial coordinates of the Gaussian polar and the Schwarzschild coordinate 
systems:

r G=
r g

2
⋅log1−

r g

r S
1−log1−

r g

rS
−1r S⋅1−

r g

rS
K

r g=0 → r G=0rS⋅1− 0
r S
K → K=0

r G=
r g

2
⋅log1−

r g

r S
1−log1−

r g

r S
−1rS⋅1−

r g

rS
(4.16.4)

Compare the Gaussian polar coordinates with the isotropic coordinates as well:

ds2=AG r ⋅c2⋅dt 2−drG
2 −CG r ⋅r G

2⋅d 2sin2 ⋅d 2

ds2=A I r ⋅c2⋅dt 2−B I r ⋅dr I
2r I

2⋅d 2sin2⋅d 2 (4.16.6)

Arc length squared along the time-like, radial, and horizontal coordinates:

AG=AI

dr G
2=B I⋅dr I

2

CG⋅rG
2 =B I⋅r I

2 (4.16.7)

Integrate the second relationship:

dr G
2=B I⋅dr I

2
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4.16 Gaussian polar coordinates

dr G=B I⋅dr I= 4⋅r Ir g

4⋅r I 
4

⋅dr I

r G=∫ 4⋅r Ir g

4⋅r I 
2

⋅dr I

r G=
r g

2
⋅log r I −

r g

8⋅r I r IC

r g=0 → r G=0r IC → C=0

Exchange  between  the  radial  coordinates  of  the  Gaussian  polar  and  the  isotropic coordinate 
systems:

r G=
r g

2
⋅log r I −

r g

8⋅r I r I (4.16.8)

We get transcendent equations in both cases that lack an analytic solution, therefore we are satisfied 
with the relationships we have found.

4.17 Rotating Schwarzschild coordinates

It is useful to discuss several problems in rotating coordinate systems. We transform from 
the usual Schwarzschild coordinate system the following way:

⋅t (4.17.1)

This is how the arch length squared changes:

ds2=Ar − r⋅
c 

2

⋅sin2 ⋅c2⋅dt 2−2⋅⋅r 2⋅sin 2⋅dt⋅d 

−B r ⋅dr 2−r 2⋅d2sin 2⋅d 2

(4.17.2)

The domain of validity extends until it preserves the signature of the original metric. For example 
the sign of one of the metric tensor component changes, when its value is zero:

A r − r⋅
c 

2

⋅sin2=0

1−
r g

r
− r⋅

c 
2

⋅sin2 =0
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4.17 Rotating Schwarzschild coordinates

r 3− c2

2⋅sin 2
⋅r−

r g⋅c
2

2⋅sin2
=0 (4.17.3)

The special form of the equation of the third degree and the solution formula:

x3− p⋅x−q=0

x1,2,3=
3−q

2
 q2

4
 p3

27


3−q
2
− q2

4
 p3

27
(4.17.4)

Since there is a negative number under the square root, the arithmetic rules of the complex numbers  
apply when using the solution formula. The equation of the third degree always has a real number 
solution.  We  set  up  a  rotating  coordinate  system in  the  Solar  System,  with  the  same  angular 
frequency like the orbit of the Earth:

t k2=365.256363004days  → =2⋅
t k

=1.99098659277⋅10−7 1
s

The standard gravitational parameter of the Sun and the gravitational radius:

⋅M =1.32712440018⋅1020 m3

s2 → r g=
2⋅⋅M

c2 =2.9532500765⋅103 m

The result:

r=1.5057509⋅1015 m (4.17.5)

This is a circle with a radius of one lightyear. At greater distances than this the constant coordinate 
points of the coordinate system move with a speed greater than the speed of light, therefore they are 
not suitable to describe the time-like paths of moving bodies.

The condition for the validity of the solution is,  that  the value under  the square root  is 
negative. This stops to be the case, when the angular frequency becomes so big, that the mentioned 
expression become zero or positive:

q2

4
 p3

27
≥0

− r g⋅c2

2⋅sin2
2

4

− c2

2⋅sin2
3

27
≥0

r g
2

4
− c2

27⋅2⋅sin2
≥0
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4.17 Rotating Schwarzschild coordinates

≥ 2⋅c
27⋅sin ⋅r g

(4.17.6)

The twice covariant metric tensor of the rotating Schwarzschild coordinate system:

g =1−
r g

r − r⋅
c 

2

⋅sin2 0 0 −⋅r 2⋅sin 2

0 −
1

1−
r g

r

0 0

0 0 −r 2 0
−⋅r2⋅sin 2 0 0 −r2⋅sin 2

 (4.17.7)

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the 
rows and columns where these components appear:

g ij=1− r g

r − r⋅
c 

2

⋅sin2 −⋅r2⋅sin2

−⋅r 2⋅sin2 −r 2⋅sin2 
The determinant of the partial matrix:

g=g tt⋅g−g t⋅g t

g=−1− r g

r
− r⋅

c 
2

⋅sin2 ⋅r2⋅sin2−2⋅r4⋅sin4 (4.17.8)

After this the components of the twice contravariant metric tensor:

g tt=
g

g
= 1

1− r g

r
− r⋅

c 
2

⋅sin 2−2⋅r2⋅sin2

g t =
g t

g
=g t=

g t

g
=− 

1− r g

r
− r⋅

c 
2

⋅sin2−2⋅r 2⋅sin2

g=
g tt

g
=

1−
r g

r
− r⋅

c 
2

⋅sin2

−1− r g

r
− r⋅

c 
2

⋅sin2⋅r 2⋅sin2−2⋅r 4⋅sin4 
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4.17 Rotating Schwarzschild coordinates

grr= 1
grr

=−1− r g

r 
g= 1

g

=− 1
r2 (4.17.9)

The derivatives of the metric tensor and the connection:

∂ g tt

∂ r
=−

2⋅2⋅r⋅sin2
c2 −

r g

r2

∂g tt

∂
=−2⋅2⋅r2⋅cos ⋅sin 

c2

∂ g t 

∂ r
=
∂ g t

∂ r
=−2⋅⋅r⋅sin2 

∂ g t 

∂
=
∂ gt

∂
=−2⋅⋅r2⋅cos⋅sin

∂ g rr

∂ r
=

r g

r−r g 
2

∂ g

∂ r
=−2⋅r

∂ g

∂ r
=−2⋅r⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin (4.17.10)

 tr
t = rt

t =
2⋅c2−1⋅2⋅r3⋅sin2c2⋅r g

2⋅c2−1⋅2⋅r 4⋅sin2 2⋅c2⋅r⋅ r−r g

 t
t =  t

t = c2−1⋅2⋅r3⋅cos ⋅sin 
c2−1⋅2⋅r3⋅sin2c2⋅ r−r g

 tt
r =

c2⋅r g−2⋅2⋅r3⋅sin2⋅r−r g
2⋅c2⋅r 3  t

r = t
r =−⋅r−r g ⋅sin2

 rr
r =−

r g

2⋅r⋅r−r g
 

r =−r−r g   
r =− r−r g⋅sin2 

 tt
 =−2

c2⋅cos ⋅sin   t
 = t

 =−⋅cos⋅sin

 r
 = r

 = r 
 =  r

 =1
r  

 =−cos ⋅sin

 tr
 = rt

 =
c2⋅⋅2⋅r−3⋅r g

2⋅c2−1⋅2⋅r 4⋅sin2 2⋅c2⋅r⋅ r−r g
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4.17 Rotating Schwarzschild coordinates

 t
 =  t

 =
c2⋅⋅r−r g

c2−1⋅2⋅r3⋅sin2c2⋅ r−r g
⋅cot

 
 = 

 =cot  (4.17.11)

4.18 Kruskal-Szekeres coordinates

When we investigated the infalling path, it turned out that from the test body's point of view, 
the event horizon poses no obstacle. Our goal is to map the spacetime of the Schwarzschild black 
hole with such a coordinate system, that can be interpreted on the  event horizon, and certainly 
covers the entire spacetime. For this we determine the trajectories of the infalling and outward 
heading light rays. We multiply the general spherically symmetric arc length squared on the falling 
light-like geodesics with a monotonic changing parameter:

A r ⋅c2⋅dt2−Br ⋅dr2=0 /⋅ 1
d 2

A r ⋅c2⋅ dt2

d 2−B r ⋅ dr 2

d 2=0 (4.18.1)

Substitute the time-oriented tangent vector, and that the second function is the reciprocal of the first:

u t=A⋅c2⋅ dt
d 

B= 1
A

ut
2

A⋅c2−
dr 2

A⋅d 2=0 /⋅A

ut

c
=± dr

d 
(4.18.2)

The left side of the equation is constant, therefore the change of the velocity relates linearly to the 
monotonic changing parameter, therefore it is also a monotonic changing parameter. Thus we can 
use the radius as a parameter as well:

d ⋅±
ut

c
=dr d =±dr

ut

c
=± dr

d 
=±1 (4.18.3)

Substitute into the tangent vector and integrate:

151



4.18 Kruskal-Szekeres coordinates

ut

c
=A⋅c⋅dt

dr
=±1

c⋅dt
dr

=± 1
A
=± 1

1−
r g

r

c⋅t=±∫ 1

1−
r g

r

⋅dr

Because  of  the  logarithm we  have  to  differentiate  between  two  cases,  outside  and  inside  the 
gravitational radius. The positive and negative sign makes a distinction between the outward and 
inward going light rays:

c⋅t=±r±r g⋅log r
r g
−1C rr g

c⋅t=±r±r g⋅log  r g−r K rr g (4.18.4)

Write  down  the  two  light  paths  separately  outside  the  gravitational  radius,  and  choose 
dimensionless integration constants:

c⋅t=rr g⋅log r
r g
−1r g⋅u (4.18.5)

c⋅t=−r−r g⋅log r
r g
−1r g⋅v (4.18.6)

The u and v parameters, together with the angular coordinates describing the spherical  coordinate 
surface,  are  suitable  to  represent  the  Schwarzschild  solution,  and  eliminate  the  coordinate 
singularity. These are the Eddington-Finkelstein coordinates u v  :

u= 1
r g
⋅c⋅t−r−r g⋅log r

r g
−1 (4.18.7)

v= 1
r g
⋅c⋅trr g⋅log r

r g
−1 (4.18.8)

These coordinates are not mutually affine parameters, this also means for example, that if we move 
along the values of u from -∞ and +∞, we would not be able to explore the entire extent of the v 
geodesic:
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4.18 Kruskal-Szekeres coordinates

u=v−2⋅ r
r g
log r

r g
−1 (4.18.9)

v=−u2⋅ r
r g
 log r

r g
−1 (4.18.10)

Therefore  these  geodesics  are  not  complete,  they  leave  the  u and  v coordinate  plane.  The 
Eddington-Finkelstein  coordinates cover  the  same  manifold  as  the  Schwarzschild  coordinates. 
However this is apparently not the entire spacetime, since we have found geodesics that leave the 
area we have mapped so far. In order to obtain the entire map, we need coordinates describing light-
like geodesics, that are mutually affine parameters. Perform the following modification:

U=e
− u

2=e
− v

2⋅ r
r g
−1⋅e

r
r g V=e

v
2=e

u
2⋅ r

r g
−1⋅e

r
r g (4.18.11)

By  substitution  we  obtain  the  dependence  from  the  Schwarzschild  coordinates,  these  are  the 
Kruskal-Szekeres coordinates U V  :

U= r
r g
−1⋅e

r−c⋅t
2⋅r g (4.18.12)

V = r
r g
−1⋅e

rc⋅t
2⋅r g (4.18.13)

Since they are monotonic increasing functions of the radial coordinate, that turned out to be an 
affine parameter earlier, these coordinates are mutually affine parameters from the point of view of 
the light-like geodesics they represent. Combinations of the two coordinates:

U⋅V= r
r g
−1⋅e

r
r g V

U
=e

c⋅t
r g (4.18.14)

We  express  from  the  product  the  Schwarzschild  radial  coordinate.  Rearrange  the  exponential 
equation to a general form:

e
− r

r g= 1
U⋅V

⋅ r
r g
− 1

U⋅V
(4.18.15)

The general form and the solution formula, where W(x) is the Lambert function:

pa⋅xb=c⋅xd
x=−

W −a⋅log  p
c

⋅p
b−a⋅d

c 
a⋅log  p

− d
c
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4.18 Kruskal-Szekeres coordinates

Substitute into the solution formula:

r
r g
=W U⋅V

e 1 r=r g⋅W U⋅V
e r g (4.18.16)

If r = 0,  then U⋅V=−1, here is the true  singularity of the surface, that is independent of the 
choice of coordinate system. The U⋅V−1 however is not only satisfied when both of them are 
sufficiently large positive numbers,  but  also when they are both negative numbers of the same 
magnitude.  We  have  discovered  a  whole  new  portion  of  the  spacetime  of  the  Schwarzschild 
singularity, that was hidden from us because of the unfortunate choice of coordinate system:

   V

U

The hyperbolic surfaces connect points with the same distance from the centre, the linear surfaces 
connect  points  with  the  same  time  coordinate.  The  coordinate  axes  themselves  satisfy  these 
conditions, they connect points with -∞ and Schwarzschild radius distances, and with +∞ and -∞ 
time coordinates. According to this, the  black hole has two “entrances”, in the lower left and the 
upper right quarters, separated from them by event horizons. The interior domains are represented 
in the upper left and lower right quarters. Negative  r coordinates also can be defined (let us not 
forget  that the meaning of  r is  not  distance but coordinate),  and its  hyperboles  fill  the interior 
domain.

The  coordinates  that  spanned  the  wormhole surface  are  also  present  here,  the  time 
coordinate is defined both in the first and third coordinate quarters, and the roles of the angular 
coordinates did not change. The curvature of the surface, thus its shape is a coordinate independent 
quantity, now we can depict the whole geometric shape. The parameters of the coordinate surface:

t=const. =
2

dt=0 d =0 (4.18.17)
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4.18 Kruskal-Szekeres coordinates

The full wormhole surface in polar and rectangular coordinates:

The real significance of the  wormhole is even more apparent on these graphs, that is seemingly 
connecting two asymptotically flat universes. However every world line that starts on one side and 
continues on the other, always has a space-like section at the neck of the funnel, therefore this  
wormhole is not traversable for massive objects slower than the speed of light.

We determine the arc length squared in the U⋅V−1 domain. Since U and V are light-like 
geodesics, therefore gUU = 0 and gVV = 0. Their product is however not zero, therefore we can expect 
that gUV would not be either:

ds2=2⋅gUV⋅dU⋅dV−r2⋅d 2sin2 ⋅d 2 (4.18.18)

The unknown component of the metric tensor can be calculated with the help of the Schwarzschild 
metric tensor, we apply the transformation formula:

gUV=
∂U
∂ t

⋅∂V
∂ t

⋅ g ttS ∂U
∂ r

⋅∂V
∂ r

⋅ grrS (4.18.19)

Substitute:

gUV=
∂
∂ t  r

r g
−1⋅e

r−c⋅t
2⋅r g ⋅ ∂∂ t  r

r g
−1⋅e

rc⋅t
2⋅r g ⋅1− r g

r 
−

∂
∂ r  r

r g
−1⋅e

r−c⋅t
2⋅r g ⋅ ∂

∂ r  r
r g
−1⋅e

rc⋅t
2⋅rg ⋅ 1

1−
r g

r
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gUV=−
c⋅ r

r g
−1⋅e

r−c⋅t
2⋅r g

2⋅r g
⋅

c⋅ r
r g
−1⋅e

rc⋅t
2⋅rg

2⋅r g
⋅1− r g

r 
−

r⋅e
r−c⋅t
2⋅rg

2⋅r g
2⋅ r

r g
−1

⋅
r⋅e

rc⋅t
2⋅r g

2⋅r g
2⋅ r

r g
−1

⋅
1

1−
r g

r

gUV=−
c2⋅r g⋅ r g

3−4⋅r⋅r g
26⋅r 2⋅r g−4⋅r 3r2⋅c2⋅r 2−r g

2 ⋅e
r
r g

4⋅r g
4⋅r−r g 

2

gUV=−
2⋅r g

3

r
⋅e

− r
r g (4.18.20)

The arc length squared of the  Kruskal-Szekeres coordinate system:

ds2=−
4⋅r g

3

r
⋅e

− r
rg⋅dU⋅dV−r2⋅d 2sin 2⋅d 2 (4.18.21)

Substitute  the  transformation  formula  between  the   Schwarzschild  and   Kruskal-Szekeres 
coordinates into the arc length squared, that can be used already to calculate the usual geometric 
quantities:

ds2=−
4⋅r g

2

W U⋅V
e 1

⋅e
−W U⋅V

e −1
⋅dU⋅dV−r g⋅W U⋅V

e r g
2

⋅d 2sin2⋅d 2

(4.18.23)

gUV=gVU=−
2⋅r g

2

W U⋅V
e 1

⋅e
−W U⋅V

e −1

gUV=gVU=−
W U⋅V

e 1

2⋅r g
2 ⋅e

W U⋅V
e 1

g=−r g⋅W U⋅V
e r g

2 g=− 1

r g⋅W U⋅V
e r g

2

g=−r g⋅W U⋅V
e r g

2

⋅sin2
g=− 1

r g⋅W U⋅V
e r g

2

⋅sin2

(4.18.24)
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∂ gUV

∂U
=
∂ gVU

∂U
=

2⋅r g
2⋅V⋅W U⋅V

e 2
e

2⋅W U⋅V
e 1

⋅W U⋅V
e 1

2

∂ g

∂U
=−

2⋅r g
2⋅V

e
W U⋅V

e 2

∂ g

∂U
=−

2⋅r g
2⋅V

e
W U⋅V

e 2
⋅sin2

∂ gUV

∂V
=
∂ gVU

∂V
=

2⋅r g
2⋅U⋅W U⋅V

e 2
e

2⋅W U⋅V
e 1

⋅W U⋅V
e 1

2

∂ g

∂V
=−

2⋅r g
2⋅U

e
W U⋅V

e 2

∂ g

∂V
=−

2⋅r g
2⋅U

e
W U⋅V

e 2
⋅sin2

∂ g

∂
=−r g⋅W U⋅V

e r g
2

⋅cos ⋅sin  (4.18.25)

 UU
U =− V

e
W U⋅V

e 1
⋅

W U⋅V
e 2

W U⋅V
e 1

2

 
U =−U

2
⋅W U⋅V

e 1  
V =−V

2
⋅W U⋅V

e 1
 

U =−U
2
⋅W U⋅V

e 1⋅sin2  
V =−V

2
⋅W U⋅V

e 1⋅sin2

 VV
V =− U

e
W U⋅V

e 1
⋅

W U⋅V
e 2

W U⋅V
e 1

2

 U 
 = U

 = U 
 = U

 = V

e
W U⋅V

e 1
⋅W U⋅V

e 1
2
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 V 
 = V

 = V 
 = V

 = U

e
W U⋅V

e 1
⋅W U⋅V

e 1
2

 
 =−cos ⋅sin  

 = 
 =cot  (4.18.26)

4.19 Kruskal-Szekeres spacetime

We can introduce coordinates, where one of them is time-like and the other three are space-
like,  similar  to  the  Schwarzschild  coordinates,  however  they cover  the  entire  spacetime of  the 
singularity.  This  is  the  Kruskal-Szekeres  spacetime c⋅T R   . The  transformation 
formulas:

c⋅T=r g⋅V−U  R=r g⋅VU 

U= 1
2⋅r g

⋅R−c⋅T  V= 1
2⋅r g

⋅Rc⋅T  (4.19.1)

Some useful combinations of the coordinates:

R2−c2⋅T 2=4⋅r g⋅U⋅V=4⋅r g⋅r−r g ⋅e
r
rg

U
V
= R−c⋅T

Rc⋅T (4.19.2)

We express the Schwarzschild radial coordinate from the first. Bring the exponential equation to the 
general form:

e
− r

r g=
4⋅r g

2

R2−c2⋅T 2⋅
r
r g
−

4⋅r g
2

R2−c2⋅T 2 (4.19.3)

The general form and the solution formula, where W(x) is the Lambert function:

pa⋅xb=c⋅xd
x=−

W −a⋅log  p
c

⋅p
b−a⋅d

c 
a⋅log  p

− d
c

Substitute it into the solution formula:

r
r g
=W  R2−c2⋅T 2

4⋅e⋅r g
2 1 r=r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g (4.19.4)
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It is the same graph, but according to the coordinates of the Kruskal-Szekeres spacetime:

   R

T

The arc length square of the Kruskal-Szekeres spacetime:

ds2=
r g

r
⋅e

− r
r g⋅c2⋅dT 2−dR2−r2⋅d 2sin2⋅d 2 (4.19.5)

Substitute the transformation formula between the  Schwarzschild and  Kruskal-Szekeres spacetime 
into the arc length squared:

ds2= e
−W  R2−c2⋅T2

4⋅e⋅r g
2 −1

W  R2−c2⋅T 2

4⋅e⋅r g
2 1

⋅c2⋅dT 2−dR2−r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g

2

⋅d 2sin 2⋅d2

(4.19.6)

gTT=−g RR=
e
−W  R2−c2⋅T2

4⋅e⋅r g
2 −1

W  R2−c2⋅T 2

4⋅e⋅r g
2 1

gTT=−g RR=

W  R2−c2⋅T 2

4⋅e⋅r g
2 1

e
−W  R2−c2⋅T2

4⋅e⋅r g
2 −1

g=−r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g

2 g=− 1

r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g

2

g=−r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g

2

⋅sin2
g=− 1

r g⋅W  R2−c2⋅T 2

4⋅e⋅r g
2 r g

2

⋅sin2 

(4.19.7)
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5. Spacetime of the rotating black hole

5. Spacetime of the rotating black hole

Celestial bodies influence spacetime not only with their mass, but also with their  rotation. 
The structure of the surrounding spacetime around a rotating black hole and a rotating massive body 
does not coincide like in the spherically symmetric case. However those simpler phenomena that 
appear in the spacetime of a  black hole also appear around a rotating body, although their effect 
depends slightly differently on the mass and rotation of the gravitational source.

We are  going  to  encounter  new phenomena,  that  are  alien  to  the  Newtonian  theory  of 
gravitation.  The spacetime marks  an axis  in  space,  that  breaks  the  symmetry between the  two 
orbiting directions around the axis, and it also influences rotations pointing in the direction of the 
axis.

5.1 Axially symmetric spacetime

The spacetime around uniformly rotating bodies is called stationary. The metric does not 
change, therefore it  does not depend on time, and when rotating it  returns into itself,  therefore 
neither on the longitudinal angular coordinates. The arc length squared of the axially symmetric 
metric in the general case, where the unknown functions depend only on x and y, that are arbitrary 
coordinates t x y :

ds2=e2⋅⋅c2⋅dt 2−e2⋅⋅d−⋅c⋅dt 2−e2⋅⋅dx2−e2⋅⋅dy2 (5.1.1)

We multiplied the coordinates with four unknown functions and used the  angular  frequency. The 
metric tensor:

g=e
2⋅−2⋅e2⋅ 0 0 ⋅e2⋅

0 −e2⋅ 0 0
0 0 −e2⋅ 0

⋅e2⋅ 0 0 −e2⋅  (5.1.2)

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the 
rows and columns where these components appear:

g ij=e2⋅−2⋅e2⋅ ⋅e2⋅

⋅e2⋅ −e2⋅  (5.1.3)

The determinant of the partial matrix:

g=g00⋅g−g t⋅g t=e
2⋅−2⋅e2⋅⋅−e2⋅−⋅e2⋅⋅⋅e2⋅=−e2⋅− (5.1.4)

Invert the partial matrix and extend with it the twice contravariant metric tensor:
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5.1 Axially symmetric spacetime

g = e−2⋅ 0 0 ⋅e−2⋅

0 −e−2⋅ 0 0
0 0 −e−2⋅ 0

⋅e−2⋅ 0 0 −e−2⋅2⋅e−2⋅ (5.1.5)

Keep the  angular  frequency on a  constant  value  for  now, in  this  case  for  example  we restrict 
ourselves to a single direction of revolution on an equatorial circular orbit. After we calculated the 
geometric quantities, we obtain the components of the simplified Ricci tensor:

P=∂
∂ y

−∂
∂ y

−∂
∂ y

−∂
∂ y

Q=∂
∂ x

−∂
∂ x

−∂
∂ x

−∂
∂ x

Rtt=
2⋅e2⋅−⋅∂∂ y

⋅P−∂2
∂ y2 2⋅e2⋅−⋅∂∂ x

⋅Q−∂2
∂ x2 

e2⋅−⋅∂2
∂ x2−

∂
∂ x

⋅Qe2⋅−⋅∂2
∂ y2−

∂
∂ y

⋅P 
Rt=Rt=⋅e2⋅−⋅∂∂ y

⋅P−∂2
∂ y2 ⋅e2⋅−⋅∂∂ x

⋅Q−∂2
∂ x2 

R xx=e2⋅−⋅ ∂∂ y
⋅P−∂2

∂ y2 ∂∂ x
−Q⋅∂∂ x

−∂2
∂ x2−∂∂ x 

2

−∂2
∂ x2 −∂∂ x 

2

−∂2
∂ x2−∂∂ x 

2

R yy=e2⋅−⋅Q∂
∂ x ⋅∂∂ x

−∂2
∂ x2−∂∂ x 

2
∂∂ y

−P⋅∂∂ y
−∂2
∂ y2−∂∂ y 

2

−∂2
∂ y2 −∂∂ y 

2

−∂2
∂ y2− ∂∂ y 

2

R xy=R yx=∂∂ y

∂
∂ y ⋅∂∂ x

 ∂∂ x

∂
∂ x ⋅∂∂ y

−
∂
∂ x

⋅
∂
∂ y

−
∂2
∂ x⋅∂ y

−
∂
∂ x

⋅
∂
∂ y

−
∂2

∂ x⋅∂ y

R=e2⋅−⋅∂∂ y
⋅P−∂2

∂ y2 e2⋅−⋅∂∂ x
⋅Q−∂2

∂ x 2  (5.1.6)

We set  the  general  Ricci  tensor  and the  Einstein tensor  to  zero,  and  we obtain  the  system of 
equations for the rotationally symmetric stationary vacuum solutions:

Rtt = 0:
e−2⋅⋅∂2

∂ x2
∂
∂ x

⋅ ∂
∂ x

−e−2⋅⋅∂2
∂ y2

∂
∂ y

⋅ ∂
∂ y

−=
1
2
⋅e2⋅−⋅e−2⋅⋅ ∂∂ x 

2

e−2⋅⋅∂∂ y 
2
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Rφφ = 0:
e−2⋅⋅∂2

∂ x2 
∂
∂ x

⋅ ∂
∂ x

−e−2⋅⋅∂2
∂ y2 

∂
∂ y

⋅ ∂
∂ y

−=
−1

2
⋅e2⋅−⋅e−2⋅⋅∂∂ x 

2

e−2⋅⋅∂∂ y 
2

Rtφ = 0: ∂
∂ x e3⋅−−⋅∂

∂ x  ∂
∂ y e3⋅−−⋅∂

∂ y =0

Rxy = 0:

∂2

∂ x⋅∂ y
− ∂

∂ x
⋅∂

∂ y
− ∂
∂ y

⋅∂
∂ x

∂
∂ x

⋅∂
∂ y

∂
∂ x

⋅∂
∂ y

=

1
2
⋅e2⋅−⋅∂

∂ x
⋅∂
∂ y

Gxx = 0:

e−2⋅⋅ ∂2

∂ y2 
∂
∂ y

⋅ ∂
∂ y

−∂∂ y 
2

e−2⋅⋅∂∂ x
⋅ ∂
∂ x

∂
∂ x

⋅∂
∂ x =

1
4
⋅e2⋅−⋅e−2⋅⋅ ∂∂ x 

2

−e−2⋅⋅∂∂ y 
2

Gyy = 0:

e−2⋅⋅ ∂2

∂ x2 
∂
∂ x

⋅ ∂
∂ x

−∂∂ x 
2

e−2⋅⋅∂∂ y
⋅ ∂
∂ y

∂
∂ y

⋅∂
∂ y=

1
4
⋅e2⋅−⋅e−2⋅⋅∂∂ x 

2

−e−2⋅⋅ ∂∂ y 
2

(5.1.7)

Introduce a new notation, that can be used to rewrite the equations into a symmetric form, and we 
rewrite the equations originating from the tt and φφ components of the Ricci tensor:

=

∂
∂ x e−⋅∂

∂ x  ∂
∂ y e−⋅∂

∂ y = 1
2
⋅e3⋅−⋅e−⋅ ∂∂ x 

2

e−⋅∂∂ y 
2

∂
∂ x e−⋅∂∂ x  ∂

∂ y e−⋅∂∂ y =−1
2
⋅e3⋅−⋅e−⋅ ∂∂ x 

2

e−⋅∂∂ y 
2

(5.1.8)

The sums and differences of these and the Einstein tensor components:
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5.1 Axially symmetric spacetime

RttR=G xxG yy=
∂
∂ x e−⋅∂ e

∂ x  ∂
∂ y e−⋅∂ e

∂ y =0

Rtt−R=−e3⋅−⋅e−⋅∂∂ x 
2

e−⋅∂∂ y 
2

G x−G yy=−e2⋅−⋅e−⋅ ∂∂ x 
2

−e−⋅∂∂ y 
2 (5.1.9)

We can make a coordinate condition because of the gauge freedom:

e2⋅−= x , y (5.1.10)

Rewrite the arc length squared by substituting new functions:

=e2⋅− = =e−

ds2=e⋅⋅c2⋅dt2−1
 d −⋅c⋅dt 2− e


⋅dx2⋅dy2 (5.1.11)

Insert them into the equations originating from the Ricci tensor:

∂
∂ x e3⋅−−⋅∂

2−2
∂ x  ∂

∂ y e3⋅−−⋅∂
2−2
∂ y =0 (5.1.12)

Thus  ω and 2−2 satisfy the same equation. With this new solutions can be created from the 
axially-symmetric  stationary  solutions.  For  example  the  conjugate  metric –  that  will  become 
important later for the derivation of the Kerr solution – with the following transformation:

t i⋅ −i⋅t

The arc length squared changes with the substitution:

⋅c2⋅dt 2−1

⋅d −⋅c⋅dt 2 → 1

⋅c
2⋅dt 22⋅

 ⋅c⋅dt⋅d −
2−2

 ⋅d2

(5.1.13)

That can also be interpreted as the result of the following transformation:

⋅c2⋅dt 2−1

⋅d − ⋅c⋅dt 2

= 
2−2

= 
2−2 (5.1.14)

With the choice of a proper gauge, we can rewrite the arc length squared:
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5.1 Axially symmetric spacetime

= =1

ds2=e⋅⋅c2⋅dt2−1

⋅d−⋅c⋅dt 2−e2⋅⋅dx2dy 2 (5.1.15)

Because of this: ∂2e

∂ x⋅∂ y
=0 (5.1.16)

We perform a coordinate transformation, where we use the exponential expression as a coordinate:

e= x , y  , z 

∂
∂ x

= ∂ z
∂ y

∂
∂ y

=−∂ z
∂ x (5.1.17)

Substitute it into the arc length squared, where now the unknown functions depend on ρ and z, this 
is the Papapetrou metric t  z :

ds2=⋅⋅c2⋅dt 2− 1

⋅d−⋅c⋅dt 2−e2⋅⋅d 2dz 2 (5.1.18)

5.2 Ernst equation

It is possible to make the metric more clear without losing generality, and the equations can 
be reduced to standard form. We assume that there exist a light-like surface in the metric, this is the 
first  crucial  distinction  between  the  flat  spacetime  and  the  rotating  black  hole.  We  introduce 
spherical polar coordinates t r   . The equation of the event horizon:

N x , y=N r ,=0

The condition for being light-like is that the four-distance is zero on it:

g⋅∂N
x
⋅∂N

x =0 (5.2.1)

In our choice of metric:

e2⋅−⋅∂ N
∂ r 

2

 ∂N
∂ 

2

=0 (5.2.2)

A choice of gauge, and then using it for the equation of the surface:

e2⋅−= r =0 (5.2.3)
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5.2 Ernst equation

On the surface, we can assume the general form of our exponential expression to be the following:

e=⋅ f  r ,=⋅ f =0 (5.2.4)

Insert all this into the sum of the tt and φφ components of the Ricci tensor:

1
2
⋅e2⋅−⋅e−2⋅⋅ ∂∂ x 

2

e−2⋅⋅∂∂ y 
2=0

∂
∂r ⋅∂∂ r  1

f
⋅∂

2 f
∂2=0 (5.2.5)

The solutions of the equation: ∂2
∂ r2 =2 f =sin 

Solution for Δ: =r2−r g⋅ra2 (5.2.6)

Where a and rg are constants of integration, and our choice of symbols is not accidental of course. 
The following expressions are transformation invariant, here p and q are real constants, we will use 
these relationships later:

r g2 = 2
p
⋅ r g

2 
2

−a2 a2 = q
p
⋅ r g

2 
2

−a2

r g2

2
− a2 =

r g

2
−a p2q2=1 (5.2.7)

Return to the Papapetrou metric, write down the solutions of the metric functions, and from them 
the transformations between the coordinates:

e−= =e=⋅sin 

z=r− r g

2 ⋅cos  (5.2.8)

Introduce  new coordinates,  substitute  them into  the  components  of  the  Ricci  tensor,  and  their 
combinations t r  :

=cos  =1−2=sin2

Rtt−R=
∂
∂r ⋅∂−

∂ r  ∂
∂ ⋅∂−∂ =−e2⋅−⋅⋅∂∂r 

2

⋅ ∂∂ 
2
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5.2 Ernst equation

Rt=Rt=
∂
∂ r ⋅e2⋅−⋅∂

∂ r  ∂
∂ ⋅e2⋅−⋅∂

∂ =0 (5.2.9)

The same equations with the substitution of =e− :

Rtt−R=
∂
∂r ⋅∂∂ r  ∂

∂ ⋅∂∂ =
⋅∂∂ r 

2

⋅∂∂ 
2

2

Rt=Rt=
∂
∂ r 2⋅

∂
∂ r  ∂

∂  2⋅
∂
∂ =0 (5.2.10)

Rearrange the equations:

⋅ ∂∂ r ⋅∂∂r  ∂
∂ ⋅∂∂ =⋅∂∂ r 

2

∂∂r 
2⋅∂∂ 

2

∂∂ 
2

⋅ ∂∂ r ⋅∂∂ r  ∂
∂ ⋅∂∂ =2⋅⋅∂∂ r

⋅∂
∂ r

⋅∂
∂

⋅∂
∂  (5.2.11)

If we perform these substitutions, we obtain two symmetric equations:

X= Y=−

1
2
⋅ X Y ⋅ ∂∂r ⋅∂ X

∂ r  ∂
∂ ⋅∂ X

∂ =⋅∂ X
∂ r 

2

⋅ ∂ X
∂ 

2

1
2
⋅ XY ⋅ ∂∂r ⋅∂Y

∂r  ∂
∂ ⋅∂Y

∂ =⋅∂Y
∂ r 

2

⋅∂Y
∂ 

2

(5.2.12)

The following equations will help to determine μ and η at the (5.3.13) relationship:

Rxy=R yx=−

⋅

∂
∂ r


r−

r g

2
 ⋅

∂
∂

= 2
 XY 2

⋅∂ X
∂r

⋅∂Y
∂

∂ X
∂

⋅∂Y
∂ r 

G xx−G yy=2⋅r− r g

2 ⋅∂∂ r
2⋅⋅∂

∂
=

4
 XY 2

⋅⋅∂ X
∂ r

⋅∂Y
∂ r

−⋅∂ X
∂

⋅∂Y
∂ −3⋅

r− r g

2 
  2



(5.2.13)

We introduce new coordinates again, and use the  transformation rules we have introduced earlier
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5.2 Ernst equation

t   :

=
r−

r g

2

 r g

2 
2

−a2

= r g

2 
2

−a2⋅2−1 (5.2.14)

Write down all four previous equations with them:

1
2
⋅ X Y ⋅ ∂

∂ 2−1⋅∂ X
∂  ∂

∂ 1−2⋅∂ X
∂ =2−1⋅∂ X

∂ 
2

1−2⋅∂ X
∂ 

2

1
2
⋅ XY ⋅ ∂

∂ 2−1⋅∂Y
∂  ∂

∂ 1−2⋅∂Y
∂ =2−1⋅∂Y

∂ 
2

1−2⋅∂Y
∂ 

2

(5.2.15)

− 
1−2⋅

∂
∂

 
2−1

⋅
∂
∂

= 2
 XY 2

⋅∂ X
∂

⋅∂Y
∂

∂ X
∂

⋅∂Y
∂ 

2⋅⋅∂
∂

2⋅⋅∂
∂

=

4
 XY 2

⋅2−1⋅∂ X
∂ r

⋅∂Y
∂ r

−1−2⋅∂ X
∂

⋅∂Y
∂ − 3

2−1
 1

1− 2

(5.2.16)

The following transformations are also solutions of the equations describing X and Y, where c is an 
arbitrary constant, this will also become useful later:

X2 = X
1c⋅X

Y2 = Y
1−c⋅Y (5.2.17)

We express new functions from the old ones and substitute them into the symmetric equations:

X=1F
1−F

Y=1G
1−G

= 1−F⋅G
1−F ⋅1−G 

= F−G
1−F ⋅1−G (5.2.18)

1−F⋅G ⋅ ∂∂ 2−1⋅∂F
∂  ∂

∂ 1− 2⋅∂ F
∂ =−2⋅G⋅2−1⋅∂F

∂ 
2

1− 2⋅∂F
∂ 

2
1−F⋅G ⋅ ∂∂ 2−1⋅∂G

∂  ∂
∂ 1− 2⋅∂G

∂ =−2⋅F⋅2−1⋅ ∂G
∂ 

2

1−2⋅∂G
∂ 

2
(5.2.19)
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5.2 Ernst equation

The solutions of the equations, where p and q are real constants:

F=−p⋅−q⋅ G=−p⋅q⋅ p2−q2=1 (5.2.20)

The angular frequency can be derived from a coordinate potential in the following way:

Rt=Rt=
∂
∂ r 2⋅

∂
∂ r  ∂

∂  2⋅
∂
∂ =0

∂
∂

= 
2⋅

∂
∂

∂
∂

=
2⋅

∂
∂ r (5.2.21)

The potential is determined by the following equation:

∂
∂ 

2


⋅∂
∂  ∂

∂ 
2


⋅∂
∂ =0 (5.2.22)

The other equation can also be written down with a potential:

Rtt−R=
∂
∂ ⋅∂log 

∂  ∂
∂ ⋅∂ log 

∂ =2

⋅∂∂ 
2

2

 ⋅∂∂ 
2

(5.2.23)

We introduce yet another potential, with it we can write down equations with the same form like 
(5.2.11), here Ψ corresponds to χ, Φ to ω, and κ to r:

=⋅


⋅ ∂
∂ ⋅∂∂  ∂

∂ ⋅∂∂ =⋅∂∂ 
2

 ∂∂ 
2⋅∂∂ 

2

∂∂ 
2

⋅ ∂∂⋅∂∂  ∂
∂ ⋅∂∂ =2⋅⋅∂∂⋅∂∂⋅∂∂⋅∂∂  (5.2.24)

If we consider the potentials to be the components of a single complex quantity, we can write down 
an equation like (5.2.15):

Z=i⋅

ℜZ ⋅ ∂∂ ⋅∂Z
∂  ∂

∂ ⋅∂Z
∂ =⋅ ∂Z

∂ 
2

⋅∂Z
∂ 

2

(5.2.25)

We can write down a transformation relationship with the same form like previous one here too:
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5.2 Ernst equation

Z2 = Z
1i⋅c⋅Z (5.2.26)

Since the equation has the same form, we can use a function substitution of the same form, thus we 
obtain the Ernst equation:

Z=−1E
1−E

1−E⋅E∗⋅ ∂
∂ ⋅∂E

∂  ∂
∂ ⋅∂E

∂ =−2⋅E∗⋅⋅ ∂E
∂ 

2

⋅∂ E
∂ 

2 (5.2.27)

Conjugate potentials, using the conjugate metric functions:

= 
2−2

= 
2−2

=⋅


=e⋅
2−2


=e2⋅−2⋅e2⋅

∂ 
∂

= 
2⋅

∂ 
∂

=
2

⋅∂ 
∂

∂ 
∂

=−
2⋅

∂ 
∂

=−
 2

 ⋅
∂ 
∂

Z= i⋅=−1 E
1− E

(5.2.28)

Write down the conjugate Ernst equation, and notice two more relationships between the conjugate 
potentials:

1− E⋅E∗⋅ ∂
∂ ⋅∂ E∂  ∂

∂ ⋅∂ E∂ =−2⋅ E∗⋅⋅ ∂ E∂ 
2

⋅∂ E∂ 
2

=ℜ Z =−1− E⋅E∗

∣1− E∣2
=ℑ Z =−i⋅

E− E∗

∣1− E∣2
(5.2.29)

5.3 The derivation of the Kerr solution

If we investigate every possible symmetry in the axially-symmetric vacuum spacetime, we 
will arrive at a single analytic expression about the metric, the first time found by Roy Kerr in 1963. 
The  conjugate  Ernst  equation has  a  similar  form to  (5.2.19),  therefore  the  following  match  is 
possible, and we directly obtain the solution:

F= E G= E∗
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5.3 The derivation of the Kerr solution

E=−p⋅−i⋅q⋅ p2q2=1 (5.3.1)

Express the complex potential:

Z= i⋅=−1−p⋅−i⋅q⋅
1p⋅i⋅q⋅

=
p2⋅2−1−q2⋅1− 2
 p⋅12q2⋅ 2

= 2⋅q⋅
 p⋅12q2⋅ 2 (5.3.2)

Return to the r coordinate, substitute p and q, and also introduce ρ t r  :

p= 2
r g
⋅ r g

2 
2

−a2 q=2⋅a
rg

2=r 2a2⋅ 2=r 2a2⋅cos2 (5.3.3)

Write down the two potentials with them:

=
−a2⋅

2
=

a⋅r g⋅

2 (5.3.4)

Determining unknown conjugate metric functions from the potentials:

∂ 
∂ r

=−
2⋅a⋅r⋅r g⋅

4 =
 2


⋅∂ 
∂

=−a2⋅2

4⋅
⋅∂ 
∂

∂ 
∂

=
a⋅r g

4 ⋅r
2−a2⋅2=−

2


⋅∂ 
∂r

=−−a2⋅2

4⋅
⋅∂ 
∂ r

∂ 
∂ r

=−
a⋅r g⋅ r

2−a2⋅2⋅

−a2⋅2
∂ 
∂

=−
2⋅a⋅r⋅r g⋅⋅

−a2⋅2
(5.3.5)

Conjugate angular frequency, and from it the angular frequency:

= 
2−2=

a⋅r⋅r g⋅

−a2⋅
(5.3.6)

=e2⋅⋅2−2=e2⋅−2⋅e2⋅=
−a2⋅

2

=
a⋅r⋅r g⋅

−a2⋅
⋅2−2=

a⋅r⋅r g⋅

2 ⋅e−2⋅ (5.3.7)
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5.3 The derivation of the Kerr solution

Combine the two upper equations and substitute the product of the two deltas:

e2⋅=⋅

−a2⋅
2 ⋅e2⋅=e2⋅−2⋅e4⋅= 

4⋅⋅
4−a2⋅r 2⋅r g

2⋅ (5.3.8)

Write down a few algebraic identities, and introduce yet another metric function:

 r2a2∓a⋅⋅⋅±a⋅=2⋅±a⋅r⋅r g⋅

2⋅−a2⋅=4⋅−a2⋅r2⋅r g
2⋅

2= r2a22−a2⋅⋅ (5.3.9)

Using this the metric functions:

e2⋅=⋅2

2 =
a⋅r⋅r g

2

e2⋅=e2⋅−e2⋅=2⋅
2 =e−= 2

2⋅ (5.3.10)

Using the identity we can express X and Y, and their derivatives:

X== a⋅
r2a2a⋅⋅⋅

X=−= −a⋅
r 2a2−a⋅⋅⋅

(5.3.11)

∂ X
∂ r

=∂Y
∂ r

=
2⋅r− r g

2 −2⋅r⋅a⋅⋅

 r2a2a⋅⋅2⋅⋅

∂ X
∂

=∂Y
∂

=⋅⋅r2a2a2⋅2⋅a⋅⋅
 r2a2a⋅⋅2⋅3 (5.3.12)

Substitute the results above into (5.2.13):

−⋅
∂
∂ r


r−

r g

2
 ⋅

∂
∂

= 
2⋅⋅

⋅r− r g

2 ⋅22⋅a2⋅−2⋅r⋅
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5.3 The derivation of the Kerr solution

r− r g

2 ⋅∂∂r
⋅

∂
∂

=2−
r− r g

2 
2




r⋅r g

2

(5.3.13)

The solution of the system of equation:

e= 2


(5.3.14)

In our choice of notation the metric functions are the followings:

e−= e2⋅=2


e2⋅=2 (5.3.15)

We have expressed every metric function, therefore the only thing left to do is to substitute them 
into the original arc length squared:

ds2=2⋅
2⋅c

2⋅dt2−2

2⋅d−a⋅r⋅r g

2 ⋅c⋅dt
2

⋅sin2−2


⋅dr2−2⋅d 2 (5.3.16)

Where: 2= r2a22−a2⋅⋅=r2a22−a2⋅r2−r g⋅ra2⋅sin2

Write down the spacetime of the black hole in rotational ellipsoid coordinates:

x=r2a2⋅sin⋅cos

y=r 2a2⋅sin⋅sin 

z=r⋅cos (5.3.17)

The arc length squared of the Kerr solution in Boyer-Lindquist coordinates:

ds2=1− r⋅r g

2 ⋅c2⋅dt 2
2⋅r⋅r g⋅a

2 ⋅sin2⋅d ⋅c⋅dt−2

⋅dr 2−2⋅d 2

−r 2a2
r⋅r g⋅a
2 ⋅sin2⋅sin2⋅d2

(5.3.18)

Where: =r2−r g⋅ra2 2=r 2a2⋅cos2

If  a approaches zero, we get back the spherically symmetric Schwarzschild solution, with this we 
managed to identify this quantity, the geometric angular momentum:
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5.3 The derivation of the Kerr solution

a = 0 → ds2=1− r g

r ⋅c2⋅dt2− dr 2

1−
r g

r

−r2⋅d 2sin2⋅d 2 

Schwarzschild radius: r g=
2⋅⋅M

c2

Kerr angular momentum: a= J
m⋅c

=2⋅⋅J
c3⋅r g

(5.3.19)

If the mass of the black hole approaches zero, we get back the rotational ellipsoid coordinate system 
in flat spacetime:

ds2=c2⋅dt 2− 2

r 2a2⋅dr 2−2⋅d 2−r2a2⋅sin2⋅d2 (5.3.18)

The geometric quantities from the metric tensor to the connection:

g = 1−
r⋅r g

2 0 0
a⋅r⋅r g⋅sin2

2

0 −
2

 0 0

0 0 −2 0
a⋅r⋅r g⋅sin2

2 0 0 −r2a2
r⋅r g⋅a
2 ⋅sin2⋅sin2  (5.3.19)

The metric tensor has non-zero non-diagonal components. We write down a partial matrix using the 
rows and columns where these components appear:

g ij= 1−
r⋅r g

2

a⋅r⋅r g⋅sin2
2

a⋅r⋅r g⋅sin2
2 −r 2a2

r⋅r g⋅a
2 ⋅sin2⋅sin2 (5.3.20)

The determinant of the partial matrix:

g=g tt⋅g−g t⋅g t=−
a⋅r⋅r g⋅

2a−1⋅r⋅r g ⋅sin2r 2a2⋅2⋅2−r 2⋅r g 
4 ⋅sin2

(5.3.21)

Invert the partial matrix and extend with it the twice contravariant metric tensor:
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5.3 The derivation of the Kerr solution

g =
r 2a22−a2⋅⋅sin2

⋅2 0 0
a⋅r⋅r g

⋅2

0 −
2 0 0

0 0 − 1
2 0

a⋅r⋅r g

⋅2 0 0 −
−a2⋅sin2

⋅2

 (5.3.22)

∂ g tt

∂ r
=−

r g⋅2⋅r
2−2

2

∂ g t 

∂ r
=
∂ gt

∂ r
=−

a⋅r g⋅2⋅r2−2
2 ⋅sin2

∂ g rr

∂ r
=
2⋅r−r g⋅

2−2⋅⋅r
2

∂ g

∂ r
=−2⋅r

∂ g

∂ r
=

a⋅r g⋅2⋅r
2−2⋅sin 2−2⋅r 2⋅4

2 ⋅sin2 

∂ g tt

∂
=−

2⋅a2⋅r⋅r g

4 ⋅cos ⋅sin

∂ g t 

∂
=
∂ g t

∂
=

2⋅a⋅r⋅r g⋅a
2⋅sin 22

4 ⋅cos ⋅sin

∂ g rr

∂
= 2⋅a2

 ⋅cos ⋅sin 
∂ g

∂
=2⋅a2⋅cos ⋅sin 

∂ g

∂
=

2⋅a⋅r⋅r g⋅a
2⋅sin 2−2⋅2⋅sin2−2⋅a2r2⋅4

4 ⋅cos ⋅sin (5.3.23)

 tr
t = rt

t =r g⋅2⋅r2−2⋅
r 2a22−a2⋅r⋅r g⋅sin2

2⋅⋅6

 t
t =  t

t =a2⋅r⋅r g⋅
a2⋅ r⋅r g⋅sin r⋅r g⋅

2−r 2a22

⋅6 ⋅cos⋅sin 

 r
t =  r

t =−a⋅r g⋅
2⋅r 2−2⋅r 2a22−a⋅r⋅r ga⋅⋅sin2 2⋅r 2⋅4

2⋅⋅6 ⋅sin2

 
t = 

t =−a⋅r⋅r g⋅cos ⋅sin ⋅
a3⋅ r⋅r ga⋅⋅sin 4a⋅2⋅r⋅r ga⋅⋅2−a⋅r2a22⋅sin2 2⋅r 2a2⋅2−r 2−a2

⋅6
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 tt
r =

⋅r g⋅2⋅r2−2

2⋅6  t
r = t

r =
a⋅⋅rg⋅

2−2⋅r 2

2⋅6 ⋅sin2 

 rr
r = r

2−
2⋅r−r g

2⋅
 r

r =  r
r = 

r =−
a2

2⋅cos ⋅sin

 
r =−r⋅

2  
r =⋅

a⋅r g⋅2⋅r2−2⋅sin 2−2⋅r⋅4

2⋅6 ⋅sin 2

 tt
 =−

a2⋅r⋅r g

6 ⋅cos ⋅sin   t
 = t

 =
a⋅r⋅r g⋅a

2⋅sin 22

6 ⋅cos ⋅sin

 rr
 =

a2

⋅2⋅cos ⋅sin  r
 =  r

 = r
2

 tr
 = rt

 =a⋅r g⋅2⋅r2−2⋅
−a2⋅sin 2⋅sin2r⋅r g

2⋅⋅6

 t
 =  t

 =a⋅r⋅r g⋅
a2⋅a2⋅sin22−⋅sin 2−r⋅r g −⋅

2

⋅6 ⋅cos ⋅sin 

 r
 =  r

 =
a⋅r g⋅a

2⋅sin 2−⋅sin 2−a⋅r⋅r g ⋅2⋅r−22⋅r⋅4⋅−a2⋅sin 2

2⋅⋅6 ⋅sin 2

 
 = 

 =
cos ⋅sin 

⋅6 ⋅a2⋅r⋅r g⋅−a3⋅sin6a⋅−2⋅2⋅sin 4r⋅r g⋅
2

a⋅−a⋅4⋅ r2a2r⋅r g⋅2⋅
2⋅a3⋅r⋅r g⋅sin 24⋅⋅r 2a2

(5.3.24)

The partial derivatives of the connection get very complicated, just like the other quantities that 
follow from them, therefore we do not write down all of them. The geodesics of the Kerr solution:

c⋅ẗ2⋅ tr
t ⋅c⋅̇t⋅ṙ t

t ⋅c⋅ṫ⋅̇ r
t ⋅ṙ⋅̇ 

t ⋅̇⋅̇=0

r̈ tt
r ⋅c2⋅ṫ 2 rr

r ⋅ṙ 2 
r ⋅̇2 

r ⋅̇22⋅ t 
r ⋅c⋅ṫ⋅̇ r

r ⋅ṙ⋅̇=0

̈ tt
 ⋅c2⋅ṫ 2 rr

 ⋅ṙ 22⋅ t 
 ⋅c⋅ṫ⋅̇ r 

 ⋅ṙ⋅̇=0

c⋅ẗ2⋅ tr
t ⋅c⋅̇t⋅ṙ t

t ⋅c⋅ṫ⋅̇ r
t ⋅ṙ⋅̇ 

t ⋅̇⋅̇=0 (5.3.25)
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5.4 Coordinate singularities

5.4 Coordinate singularities

The singularities in the Kerr metric are much more diverse than in the spherically symmetric 
case. We examine the tt component of the metric tensor:

g tt=1−
r⋅r g

2 (5.4.1)

It becomes meaningless in the following case:

r⋅r g=
2=r 2a2⋅cos2 

r 2−r⋅r ga2⋅cos2=0

The solution of the quadratic equation gives the place of the infinite redshift:

r 1,2=r g±
r g

2−4⋅a2⋅cos2
2

(5.4.2)

The rr component of the metric tensor:

grr=−
2


(5.4.3)

=r2−r g⋅ra2=0

The solutions give the places of the event horizons, where the metric changes signature:

r 1,2=r g±
r g

2−4⋅a2

2
(5.4.4)

For real results, the discriminant of the quadratic formula has to be greater than zero, that creates a 
condition for the angular momentum:

r g
2−4⋅a2≥0

r g≥2⋅∣a∣

⋅M 2

c
≥J (5.4.5)

For the sake of example, we examine these surfaces on the longitudinal section of a black hole with 
an extreme angular momentum – mass ratio:
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a
r g
=84

41

Infinite redshift occurs on the black surfaces with variable shapes. The grey, spherically symmetric 
surfaces are the exterior and interior event horizons. The most outward, grey, unfinished spherical 
surface would be the Schwarzschild radius, if the black hole would not rotate. The domain between 
the external redshift limit and the exterior event horizon is the ergosphere.

5.5 Redshift

This time we substitute the components of the Kerr metric tensor into the previous equation:

1 = g tt2

g tt1
⋅ 2 = 1−

r2 ⋅r g

2
2

1−
r1 ⋅r g

2
1

⋅2 = 1−
r2 ⋅r g

r 2
2 a2⋅cos2  2 

1−
r1 ⋅r g

r 2
1 a2⋅cos2  1 

⋅ 2 (5.5.1)

If the light source is closer to the source of the gravitational field than the observer, then:

r1 ≥ r2 → 1 ≤ 2 (5.5.2)

There is a discrepancy also, when the source and the observer have the same distance from the 
gravitating centre, but they are on different latitudes:

1 ≤ 2 → 1 ≤ 2 
2 (5.5.3)

5.6 Frame dragging

NASA launched in 1976 and in 1992 a LAGEOS (Laser Geodynamics Satellite) each, that 
are  passive metal  spheres  with diameters of 60 cm and masses of 411 kg,  therefore the upper 
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5.6 Frame dragging

atmosphere of the  Earth has practically no effect on them. By examining the  laser light reflected 
from mirrors  on  their  surface,  it  is  possible  to  measure  their  highly  regular  orbits  with  great 
accuracy. The are used to accurately determine the shape of the  Earth and the velocities of the 
tectonic  plates,  while  relativistic  effects  cumulate  in  their  orbital  parameters.  By  analysing 
observations lasting for decades, it was possible to show the effects of spacetime dragged by the 
rotating Earth, with 20% accuracy.

The  existence  of  non-diagonal tensor  components  has  interesting  consequences  on  the 
relationship between the contravariant and the covariant velocities:

v t=g t ⋅v=g tt⋅c⋅v tg t⋅v (5.6.1)

v=g⋅v=gt⋅v tg⋅v (5.6.2)

For example in the second case, if the horizontal momentum of the test body is zero, it can still have 
non-zero velocity and vice versa, and in the first case, it can have momentum without rest energy.  
Furthermore  a  test  body at  infinite  distance  with  zero  orbital  velocity  falling  radially  into  the 
gravitational  field of the rotating  black hole is  forced to orbit,  it  obtains the following  angular 
frequency:

 f=
v

vt =
g t⋅v tg⋅v
g tt⋅v tg t⋅v

v=0 (5.6.3)

Angular frequency caused by the frame dragging of the rotating black hole:

 f=
gt

g tt =
c⋅a⋅r⋅r g

r 2a22−a2⋅⋅sin2 
(5.6.4)

We approach the Earth's spacetime with the Kerr metric, our instruments are not yet precise enough 
to  distinguish  between  the  effects  of  a  rotating  body  and  a  rotating  black  hole.  The  angular 
momentum is a product of the angular frequency and the moment of inertia:

J=⋅ (5.6.5)

We approximate the Earth with a rigid rotating sphere:

=2
5
⋅M⋅R2 → a=2

5
⋅
⋅R2

c
(5.6.6)

From the Earth's radius and rotational angular frequency, the geometric angular momentum:

R=6.371⋅106 m t f=86164.1 s → =7.292115⋅10−5 1
s

a=3.949 m (5.6.7)

Earth's standard gravitational parameter and the gravitational radius:
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5.6 Frame dragging

⋅M =3.986004418⋅1014 m3

s2 → r g=
2⋅⋅M

c2 =8.870056078⋅10−3 m

We assume for simplicity, that the  LAGEOS-1 satellite is on an equatorial orbit. The  semi-major 
axis and orbital period of the orbit, and the frame dragging:

r=1.227⋅107m t k=3.758 h=13528.8 s

 f=5.685⋅10−15 1
s (5.6.8)

The accumulated displacement along the orbit in a year:

year=0.037' ' →  s=2.201m (5.6.9)

We assume the same about the LAGEOS-2 satellite as well. The semi-major axis and orbital period 
of the orbit, and the frame dragging:

r=1.2163⋅107 m t k=223 min=13380 s

 f=5.836⋅10−15 1
s (5.6.10)

The accumulated displacement along the orbit in a year:

year=0.038' ' →  s=2.24 m (5.6.9)

5.7 Equatorial circular orbit

The coordinate conditions coincide with the spherically symmetric case:

t=t  ∂ t
∂

=const.

r=const. dr=0 ∂ r
∂

= ∂2 r
∂2=0

=
2 d =0

= ∂
∂

=const. (5.7.1)

Because of the coordinate conditions, the geodesics simplify:
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 tt
r ⋅c2⋅ṫ 2 

r ⋅̇22⋅ t
r ⋅c⋅ṫ⋅̇=0

 tt
 ⋅c2⋅ṫ 22⋅ t 

 ⋅c⋅ṫ⋅̇=0 (5.7.2)

The arc length squared also simplifies:

ds2=1− r g

r ⋅c2⋅dt 2
2⋅r g⋅a

r
⋅d⋅c⋅dt−r2a2

r g⋅a
r ⋅d2 (5.7.3)

This of course is equal to the arc length measured in the coordinate system of the moving observer:

=d
dt

c2⋅d 2=1− r g

r ⋅c2
2⋅r g⋅a

r
⋅c⋅−r 2a2

r g⋅a
r ⋅2⋅dt2

The relationship between the proper time and the coordinate time:

d =dt⋅1− r g

r 2⋅r g⋅a
c⋅r

⋅− 1
c2⋅r 2a2

r g⋅a
r ⋅2 (5.7.4)

This equation is satisfied by two different angular momenta, therefore it is valid on two different 
circular orbits.

Since the ratio of the two quantities is constant, the coordinate time also can be used as a 
parameter for the geodesic equations. In this case the tangent vectors can be identified, the equation 
can be solved, and the possible angular frequencies can be determined:

c⋅ṫ=c ̇=

 
r ⋅22⋅ t

r ⋅c⋅ tt
r ⋅c2=0 (5.7.5)

Apply the quadratic formula:

x1,2=
−b±b2−4⋅a⋅c

2⋅a

1,2=
−2⋅ t

r ⋅c± 2⋅ t 
r ⋅c2−4⋅ 

r ⋅ tt
r ⋅c2

2⋅ 
r

1,2=c⋅
− t 

r ± t
r 2− 

r ⋅ tt
r

 
r (5.7.6)
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We obtain two possible orbital frequencies, each corresponding to an orbital direction  The affected 
connection coefficients are simplified by the coordinate conditions:

 tt
r =

⋅r g⋅2⋅r2−2

2⋅6

 tt
r =

⋅r g

2⋅r 4 (5.7.7)

 t
r = t

r =
a⋅⋅rg⋅

2−2⋅r 2

2⋅6 ⋅sin2 

 t
r = t

r =−
a⋅⋅r g

2⋅r 4 (5.7.8)

 
r =⋅

a⋅r g⋅2⋅r2−2⋅sin 2−2⋅r⋅4

2⋅6 ⋅sin 2

 
r =⋅

a⋅r g−2⋅r3

2⋅r4 (5.7.9)

Substituting:

1,2=c⋅

a⋅⋅r g

2⋅r4 ±−a⋅⋅r g

2⋅r 4 
2

−⋅
a⋅r g−2⋅r3

2⋅r4 ⋅
⋅r g

2⋅r 4

⋅
a⋅r g−2⋅r3

2⋅r4

Two orbital frequencies are possible on equatorial circular orbits, depending on the orbital direction:

1,2=c⋅
a⋅r g±a⋅r g 

2−a⋅r g−2⋅r3⋅r g

a⋅r g−2⋅r3 (5.7.10)

5.8 Kerr-Schild metrics

We write down their general form. The Kerr spacetime also belongs to this group, actually 
Roy Kerr was also looking for the solution in this form, ηηκ is the metric tensor of flat spacetime 
here, and lη is a light-like vector:

g = l⋅l g =−l⋅l
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5.8 Kerr-Schild metrics

⋅l=l l⋅l
=0 (5.8.1)

Since the Schwarzschild spacetime is a special case of the Kerr spacetime, it is also of this form. 
Reorder the Kerr arc length squared:

ds2=
2⋅dt−a⋅sin 2⋅d 2− sin2

2 ⋅r 2a2⋅d −a⋅dt 2−
2⋅dr2−2⋅d 2 (5.8.2)

Introduce new coordinates and substitute them:

du=dt− r2a2

 ⋅dr d =d − a

⋅dr (5.8.3)

ds2=

2⋅du−a⋅sin2⋅d2−sin 2

2 ⋅r2a2⋅d−a⋅du22⋅du−a⋅sin2 ⋅d ⋅dr−2⋅d 2

(5.8.4)

Rearrange metric tensor and arc length squared:

g = 1−
r⋅r g

2 1 0
a⋅r⋅r g

2 ⋅sin 2

1 0 0 −a⋅sin2
0 0 −2 0

a⋅r⋅r g

2 ⋅sin 2 −a⋅sin2  0 −2

2⋅sin 2 
ds2=dudr 2−dr 2−2⋅d 2−r 2a2⋅sin2⋅d2−2⋅a⋅sin 2⋅d ⋅dr
−r⋅r g

2 ⋅du−a⋅sin2⋅d 2 (5.8.5)

Write down the light-like vector and substitute it:

l=0 1 0 0 l=1 0 0 −a⋅sin 2 (5.8.6)

ds2=dudr 2−dr 2−2⋅d 2− r2a2⋅sin2⋅d2−2⋅a⋅sin2⋅d⋅dr
−r⋅r g

2 ⋅l⋅l⋅dx⋅dx (5.8.7)

Substitute rectangular coordinates into it:

t=ur x=r⋅cos a⋅sin⋅sin

y=r⋅sin −a⋅cos ⋅sin  z=r⋅cos
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5.8 Kerr-Schild metrics

x2 y2= r2a2⋅sin 2 (5.8.8)

The original metric written down by Kerr:

ds
2=c2⋅dt 2−dx2−dy 2−dz2

ds2=ds
2−

r3⋅r g

r 4a2⋅z2⋅c⋅dt− r⋅x⋅dx y⋅dya⋅x⋅dx− y⋅dy
r 2a2 − z⋅dz

r 
2

(5.8.9)

The equation expressing the radial coordinate:

r 4−x2 y2z2−a2⋅r 2−a2⋅z2=0 (5.8.10)

The circular singularity is the true singularity of the Kerr spacetime:

x2 y2z2=a2 z=0 (5.8.11)

The new coordinates can be introduced with another sign as well:

du=dt r2a2

 ⋅dr d =d  a

⋅dr (5.8.12)

5.9 Tomimatsu-Sato spacetimes

They are the models of the axially symmetric spacetimes of rotating bodies, however they 
do not cover every possible solution. Write down the complex Ernst potential in the following form:

=
 (5.9.1)

Where α and β are polynomials in the x and y coordinates, and posses the following properties:

(a) always real: ⋅∂
∂ x

−⋅∂
∂ x

always imaginary: ⋅∂
∂ y

−⋅∂
∂ y (5.9.2)

(b) the coefficients of the even powers of y are real, of the odd powers are imaginary.

(c) the degree of the α polynomial is δ2, of the β is δ2 – 1, where δ is a natural number called the
deformation parameter.

(d) α and β are δ-degree polynomials in the  p and q real parameters, where:
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5.9 Tomimatsu-Sato spacetimes

p2q2=1 (5.9.3)

(e) in the q = 1 case, let ξ be the potential of the static Zipoy-Voorhees spacetimes. Therefore in
the case of q << 1, meaning slow rotation, the form of the potential:

=x1x−1

x1−x−1
i⋅q⋅1x , y  (5.9.4)

We obtain from the Ernst equation the term that is small in the first order, where the P functions are 
Legendre polynomials with a degree noted on the lower right corner:

1x , y= 1
x1−x−1

⋅∑
l=1



a2⋅l−1x ⋅P2⋅l−1x  (5.9.5)

The δ = 1 value determines the Kerr spacetime, the polynomials of the δ = 2 case:

= p2⋅x4q2⋅y4−1−2⋅i⋅p⋅q⋅x⋅y⋅x2− y2

=2⋅p⋅x⋅x2−1−2⋅i⋅q⋅y⋅1− y2 (5.9.6)

For an arbitrary δ value, the potential gives the spacetime of a body with

m= a
q mass,

J=a⋅m angular momentum,

Q=m3⋅2−1
3⋅2 ⋅p2q2 quadrupole moment. (5.9.7)

The  curvature  of  these  empty  spacetimes  decreases  far  away  from the  source.  The  curvature 
singularities are positioned along concentric rings.

We introduce the real G, H and I functions in the following way:

=

=⋅
⋅

= Hi⋅I
G G=⋅

E=−1
1

=−


=
−⋅−⋅

⋅
=
⋅−⋅−⋅−⋅

B
= A2⋅i⋅I

B

H 2 I 2=A⋅GG2 (5.9.8)

the left side: H 2 I 2=∣∣2⋅∣∣2

the right side: AG=⋅−⋅⋅
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5.9 Tomimatsu-Sato spacetimes

Introduce new notation:

a= x2−1 b= y2−1 f r = p2⋅arq2⋅br (5.9.9)

The  δ-th Tomimatsu-Sato arc length squared is a function of the  δ-th Hankel matrix, that has the 
determinant:

M  a ,b=∣
f 1 f 2

2
f 3

3
 f 


f 2

2
f 3

3
f 4

4


f 1
1

f 3
3

f 4
4

f 5
5


f 2
2

    
f 


f 1
1

f 2
2


f 2⋅−1

2⋅−1

∣ (5.9.10)

Using this the metric functions:

A=
M  a ,b
M  1,1

=F 

B=AGH

C= p
2⋅q⋅b⋅⋅QR− 

p⋅q⋅A (5.9.11)

The coefficients of the metric functions:

c  , r =⋅ r−1!
−r !⋅2⋅r !

⋅22⋅r−1

d r =−1r−1⋅
2⋅r−2!

2r−1⋅r−1!2

e r =−2⋅d⋅r1

g  , r , r ' =ℜr ⋅c , r 
2 ⋅∑

t=r '

 t⋅d⋅t−r '−1⋅c  , r 
rt−1

h  , r , r ' = r⋅r '⋅e  r ⋅c  , r ⋅c  , r ' 
2⋅rr '−1

(5.9.12)

From these the metric functions:
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G=2⋅∑
r=1



c  , r ⋅F 2−r 

H=2⋅p⋅x⋅∑
r=1



d r ⋅ar−1⋅∑
r '=r



c  , r ' ⋅F 2−r ' 

Q=−2⋅x
q
⋅⋅∑

r=1



∑
r '=1



q2⋅ar⋅b1− r '⋅g  , r , r ' ⋅F 2−1

R= 
p⋅q

⋅∑
r=1



∑
r '=1



 p2⋅ar⋅b1−r '−q2⋅br⋅a1−r ' ⋅h  , r , r ' ⋅F 2−1 (5.9.13)

The arc length squared of the δ-th Tomimatsu-Sato spacetime:

ds2=
B

2⋅p
2−2⋅a−b

2−1⋅ dy2

b −
dx2

a  A
B⋅dt24⋅q⋅b⋅C

B ⋅dt⋅d b⋅D
2⋅B

⋅d 2 (5.9.14)

The equation determining the D polynomial:

A⋅D−p2⋅a⋅B2−4⋅2⋅q2⋅b⋅C2=0 (5.9.15)

These solutions describe only the spacetime outside rotating bodies. At distances from the centre 
where they loose validity, we find ring singularities not covered by event horizons.
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6. Spacetime with matter

In  the  presence  of  matter,  Einstein's equations show,  how the  given  matter  distribution 
curves spacetime, and the trajectories of moving bodies are determined by the geodesic equations. 
Thus spacetime and matter dynamically interact  with each other.  We have to point out, that the 
Einstein equation is a very simple tool, it does nothing else than to give the spacetime geometry 
caused by matter with arbitrary properties and distribution. It has nothing to say about the physical 
reality of that matter distribution.

We will see, that an arbitrarily high amount of matter cannot stay stable in a given volume of 
space, infinite internal pressure will build up even in the case of a finite quantity, and the celestial 
body will collapse into a black hole.

6.1 Energy-momentum tensor

We investigate  gravitation in matter-filled space. The form of the Einstein equation in this 
case:

R−
1
2
⋅R⋅g=−k⋅T   (6.1.1)

On the right side of the equation is the energy-momentum tensor, multiplied with a constant that is 
unknown  for  the  moment.  This  tensor  contains  all  information  necessary  to  describe  the 
gravitational effect of matter. In general relativity, we talk about the presence of matter, when at a 
given point,  the value of this  tensor  is  different  from zero,  this  is  fulfilled also in  the case of 
radiations and interaction force fields.

The connection is symmetric in general relativity, therefore the Ricci tensor and the energy-
momentum  tensor will  also  be  symmetric,  thus  the  system  of  equations  above  contains  ten 
unknowns. In the general case, Tηκ means the flow of the η-th component of the energy-momentum 
vector across  the  κ-th  coordinate  surface.  The  meaning  of  the  energy-momentum  vector 
components:

E= E
c

p p p (6.1.2)

Where E is energy, and the p-s are the three spatial components of momentum. Thus for example in 
the case of one time-like and three space-like coordinates, T00 means the flow of energy across the 
constant time coordinate surface, it means we are talking about the energy density:

T 00=⋅c
2 (6.1.3)

If one of the indices is non-zero, then – according to our reasoning above – it is either momentum 
density, or the flow of energy across surfaces determined by spatial coordinates, which means the 
same because of the symmetry of the tensor:
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6.1 Energy-momentum tensor

T 0i=T i 0=i⋅c (6.1.4)

If the indices are spatial and are the same, it means the crossing of momentum across perpendicular 
coordinate surfaces. They are in fact the three components of the pressure:

T ii= pi (6.1.5)

If the indices above are different, then one of the momentum components changes direction, this 
means for  example distortions  in  solid  matter,  that  we call  stress.  The symmetry of  the tensor 
applies:

T ij=T ji=sij=s ji (6.1.6)

The general energy-momentum tensor:

T =⋅c2 1⋅c 2⋅c 3⋅c
1⋅c p1 s12 s13

2⋅c s21 p2 s23

3⋅c s31 s32 p3
 (6.1.7)

The  great  practical  benefit  of  general  relativity  is,  that  by  knowing  the  tensor  above,  the 
gravitational field can be determined, but no other theories about the origin of matter are necessary.

6.2 Einstein equation with matter

Generalize the Newtonian gravitational potential to arbitrary mass distributions. This is how 
our formula looked like in the vicinity of a spherically symmetric mass distribution:

r =−⋅m
r (6.2.1)

The mass and gravitational potential of an arbitrary mass distribution:

m=∫r ⋅dr3 r =−⋅∫ r 
r
⋅dr3 (6.2.2)

Write down the equation of movement and the field equation with the divergence theorem:

ẍ i=
∂
∂ x i

∂2
∂x i2

=4⋅⋅⋅ (6.2.3)

Equation of movement and field equation in general relativity, rearrange the Einstein equation:
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6.2 Einstein equation with matter

ẍ=− 
 ⋅ẋ⋅ẋ  R=k⋅T 

1
2
⋅T⋅g (6.2.4)

We  determine  the  important  geometric  quantities  of  the  Einsteinian  model  in  the  Newtonian 
approximation. This means small velocities, where the decisive origin of the gravitation of bodies is 
the rest mass. Coordinate time approaches proper time, the velocities and non-linear effects can be 
neglected:

ẋ=c 0 0 0  d ≈dt

ẍ i=− 00
i ⋅c2≈−∂

∂ xi (6.2.5)

The non-zero components of the connection:

 00
i =1

2
⋅g ia⋅∂ g 0a

∂ x0 
∂ g a0

∂ x0 −
∂ g00

∂ xa 
2
c2⋅

∂
∂ x i≈g ia⋅−∂ g00

∂ xa ≈−∂ g00

∂ x i (6.2.6)

We determine the metric tensor component with integration:

g00≈1−2⋅
c2 ≈1 (6.2.7)

Substitute it into the rearranged Einstein equation:

R00=k⋅T 00
1
2
⋅T⋅g00 (6.2.8)

We continue to identify the quantities in the equation. Because of the applied approximations, the 
energy-momentum tensor simplifies significantly, the origin of  gravitation is the  rest  mass of the 
matter distribution:

T =⋅c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 (6.2.9)

The contraction of the energy-momentum tensor:

T=g⋅T ≈g00⋅T 00≈⋅c
2 (6.2.10)

Write down the right side of the equation:
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6.2 Einstein equation with matter

k⋅T 00
1
2
⋅T⋅g00=1

2
⋅k⋅⋅c2 (6.2.11)

And the left side:

R00≈
∂ 00

a

∂ xa −
∂ a0

a

∂ x0 =
∂ 00

a

∂ xa ≈
1
c2⋅

∂2
∂x i2

= 4⋅⋅⋅
c2 (6.2.12)

By making them equal, we express the physical constant:

1
2
⋅k⋅⋅c2=4⋅⋅⋅

c2

k=8⋅⋅
c4 (6.2.13)

Reinsert it into the Einstein equation:

R−
1
2
⋅R⋅g=−

8⋅⋅
c4 ⋅T   (6.2.14)

We will  use two assumptions about the structure of matter in the following sections.  It can be 
continuous like the electromagnetic field, or composed of particles, like the atomic matter. Galaxies 
fall into the latter category, that are composed of stars, or the Universe itself, that is composed by 
galaxies, discrete islands of matter.

6.3 Perfect fluid

The behaviour of matter composing particles follows quantum mechanical rules, however in 
relativity theory, the paths can be exactly determined. Therefore we investigate such a small volume 
in the fluid, that is on one hand negligibly small compared to the entire matter quantity, on the other 
hand it is big enough to make quantum effects in it negligible, thus it is composed of sufficiently 
many particles. These restrains demonstrate the limitations of the continuous fluid model, and are in 
the same time the limitations of the general theory of relativity as well.

We neglect internal friction and viscosity in our modelled medium. With this approach we 
can significantly simplify the form of the energy-momentum tensor, because only the density and 
pressure will determine it. On small volumes our medium is homogeneous and isotropic, therefore 
the magnitude of the three pressure components will be equal. In a local coordinate system, that is 
co-moving with the fluid particles, the form of the energy-momentum tensor and the four-velocity, 
because of our conditions for the perfect fluids:
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6.3 Perfect fluid

T =⋅c2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p u=c 0 0 0 (6.3.1)

In the most general case, the energy-momentum tensor is the linear combination of the four-velocity 
and the metric tensor, multiplied with unknown functions:

T =A⋅u⋅uB⋅g  (6.3.2)

Write down the spatial components of the local variant with index notation, with the symbols of the 
general formula, in this case the spatial components of the four-velocity are zeroes, and we use the 
metric tensor of the flat spacetime:

T ii=B⋅ii=−B (6.3.3)

By comparing with the general formula, we recognize the multiplier function:

B=−p (6.3.4)

The purely time-like component of the energy-momentum tensor:

T 00=A⋅u0⋅u0B⋅00=AB=A⋅c2− p=⋅c2

A= p
c2 (6.3.5)

The energy-momentum tensor of the relativistic perfect fluid in the general case:

T = p
c2 ⋅u⋅u p⋅g (6.3.6)

6.4 Spherically symmetric celestial body

If  the diameter of  a  celestial  body is  higher  than approximately 500 km,  the molecular 
binding forces do not dominate its shape any more. It is determined by its own gravitation and of 
neighbouring bodies, and its rotation instead. In a safe distance from its neighbours, the shape and 
internal distribution of slowly rotating celestial bodies is approximately spherically symmetric. The 
Schwarzschild metric describes the external spacetime of these objects with great accuracy. In order 
to determine the shape of the spacetime that is valid inside them, we have to take the derivation in 
empty spacetime a step further. As we shall see soon enough, the Ricci tensor will not be zero here, 
but the entire Einstein equation has to be solved instead. The general form of the arc length squared 
of the spherically symmetric spacetime in Schwarzschild coordinates:
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6.4 Spherically symmetric celestial body

ds2=Ar ⋅c2⋅dt 2−B r ⋅dr 2−r2⋅d 2−r2⋅sin2⋅d2 (6.4.1)

This time it is useful to write them down in a form, where the unknown functions are exponentials:

ds2=e2⋅r ⋅c2⋅dt 2−e2⋅r ⋅dr2−r 2⋅d 2−r 2⋅sin2 ⋅d 2 (6.4.2)

Determine the geometric quantities characterizing the surface, from the metric tensor to the Ricci 
scalar, in order to write down the Einstein equations. We note the derivative according to the radial 
coordinate with an upper comma:

g =e
2⋅ 0 0 0
0 −e2⋅ 0 0
0 0 −r 2 0
0 0 0 −r 2⋅sin2

 g =
1

e2⋅ 0 0 0

0 −
1

e2⋅ 0 0

0 0 − 1
r 2 0

0 0 0 −
1

r 2⋅sin2

 (6.4.3)

∂ g tt

∂ r
=2⋅e2⋅⋅ ' ∂ g tt

∂ r
=−2⋅e−2⋅⋅ '

∂ g rr

∂ r
=−2⋅e2⋅⋅ ' ∂ g rr

∂ r
=2⋅e−2⋅⋅ '

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r3

∂ g

∂ r
=−2⋅r⋅sin2

∂ g

∂ r
= 2

r 3⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin ∂g

∂
=

2⋅cos 
r 2⋅sin3

(6.4.4)

 tr
t = rt

t = '  tt
r=e2⋅−⋅ '

 rr
r = '  

r =−r⋅e−2⋅

 
r =−r⋅e−2⋅⋅sin 2  r

 = r
 = r 

 =  r
 =1

r

 
 =−cos ⋅sin  

 = 
 =cot  (6.4.5)
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6.4 Spherically symmetric celestial body

∂ tr
t

∂ r
=
∂ rt

t

∂ r
= ' '

∂ tt
r

∂ r
=e2⋅−⋅ '⋅2⋅− ' ' 

∂ rr
r

∂ r
= ' '

∂ 
r

∂ r
=e−2⋅⋅2⋅r⋅ '−1

∂ 
r

∂r
=e−2⋅⋅2⋅r⋅ '−1⋅sin2

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=− 1

r 2

∂ 
r

∂
=−2⋅r⋅e−2⋅⋅cos ⋅sin 

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot 2−1 (6.4.6)

R rtr
t =−R rrt

t = '⋅ '− ' '− ' 2 R  t
t =−R  t

t =−r⋅e−2⋅⋅ '

R t 
t =−R  t

t =−r⋅e−2⋅⋅ '⋅sin2 R ttr
r =−R trt

r =e2⋅−⋅ '⋅ '− ' '− ' 2

R  r
r =−R r

r =r⋅e−2⋅⋅ ' R r 
r =−R r

r =r⋅e−2⋅⋅ '⋅sin2 

R tt
 =−R t t

 =R tt
 =−R tt

 =−
e2⋅−⋅ '

r

R rr
 =−R r r

 =R rr
 =−R r r

 =− '
r

R 
 =R 

 =1−e−2⋅⋅sin 2 R 
 =R 

 =1−e−2⋅ (6.4.7)

Rtt=−e2⋅−⋅ '⋅ '− ' '− ' 2−2⋅ '
r 

Rrr= '⋅ '− ' '− ' 2 2⋅ '
r

R=e−2⋅⋅ r⋅ '− ' −11

R=e
−2⋅⋅r⋅ '− ' −11⋅sin2 (6.4.8)

R=2⋅e−2⋅⋅ '⋅ '− ' '− ' 2
2⋅ '− ' 

r
 e2⋅−1

r2  (6.4.9)

The Einstein equations:
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6.4 Spherically symmetric celestial body

G =R−
1
2
⋅R⋅g =−

8⋅⋅
c4 ⋅T  (6.4.10)

The Einstein tensor is diagonal:

Gtt=e2⋅−⋅2⋅r⋅ 'e2⋅−1
r 2

G rr=
2⋅r⋅ '−e2⋅1

r 2

G=−r⋅e−2⋅⋅r⋅ '1⋅ '−r⋅ ' '−r⋅ ' 2− ' 

G=−r⋅e−2⋅⋅ r⋅ '1⋅ '−r⋅ ' '−r⋅ ' 2− ' ⋅sin2 (6.4.11)

We make it  equal to the  diagonal variant of the  energy-momentum tensor of the  perfect fluids, 
where the four-velocity is zero, thus we assume that the internal currents of the celestial body are 
negligible. The fluid rests in the Schwarzschild coordinate system, therefore the form of the energy-
momentum tensor:

T η κ=(
ρ⋅c2⋅e−2⋅Φ(r) 0 0 0

0 −p⋅e−2⋅Λ(r ) 0 0

0 0 −
p
r2 0

0 0 0 − p
r2⋅sin2(ϑ)

) (6.4.12)

Write down the equations to be solved:

(1) e−2⋅⋅2⋅r⋅ 'e2⋅−1
r 2 =−8⋅⋅

c2 ⋅ r 

(2) e−2⋅⋅2⋅r⋅ '−e2⋅1
r 2 =8⋅⋅

c4 ⋅p r 

−e−2⋅⋅ '1
r ⋅ '− ' '− ' 2− '

r =8⋅⋅
c4 ⋅p r  (6.4.13)

This time the mass of the celestial body is not interpreted in a single point, but it is spread out from 
the centre  to the surface.  With taking the metric into account,  we have to  integrate the  energy 
density function in the entire spherical volume, thus the mass of the body is given by the sum of the 
constituting mass and the gravitational potential energy:
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6.4 Spherically symmetric celestial body

M=4⋅⋅∫
0

R

A r ⋅ r ⋅r2⋅dr (6.4.14)

We can rewrite the first (1) equation to the following form:

∂
∂r  r

e2⋅=1−8⋅⋅
c2 ⋅r 2⋅r 

1
e2⋅=1− 2⋅

c2⋅r
⋅4⋅⋅∫

0

r

r 2⋅ r ⋅dr

e2⋅= 1

1−2⋅⋅m r 
c2⋅r

(6.4.15)

Subtract the first (1) equation from the second (2):

1
e2⋅⋅ 2⋅ '

r
2⋅ '

r =8⋅⋅
c2 ⋅r − p r 

c2 
1−2⋅⋅m r 

c2⋅r ⋅ ' ' =4⋅⋅
c2 ⋅r⋅ r − p r 

c2 
 '= 1

1−2⋅⋅m r 
c2⋅r

⋅ ⋅m  r 
c2⋅r 2 4⋅⋅

c4 ⋅r⋅p r  (6.4.16)

Rearrange:

 '=⋅mr 
c2⋅r 2 ⋅

14⋅⋅r 3⋅p r 
c4⋅m r 

1−2⋅⋅mr 
c2⋅r

 '=− 1
p r  r ⋅c2⋅

dp r 
dr (6.4.17)

Express the metric functions from the Einstein equations:

−2⋅r⋅ '=1−8⋅⋅
c2 ⋅r2⋅r ⋅e2⋅−1

2⋅r⋅ '=18⋅⋅
c4 ⋅r2⋅p r ⋅e2⋅−1 (6.4.18)
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We differentiate the second again according to r, and then multiply it with  r:

2⋅r⋅ '2⋅r 2⋅ ' '=2⋅r⋅ '⋅18⋅⋅⋅r 2

c4 ⋅p r 16⋅⋅⋅r2

c4 ⋅ p r r⋅p ' r ⋅e2⋅

Express the second derivative, and substitute both metric functions:

2⋅r 2⋅ ' '=116⋅⋅⋅r 2

c4 ⋅ p r r⋅p ' r ⋅e2⋅

−18⋅⋅⋅r2

c4 ⋅p r ⋅1−8⋅⋅⋅r 2

c4 ⋅p r ⋅e4⋅

Square the second metric function:

4⋅r 2⋅ ' 2=18⋅⋅
c4 ⋅r 2⋅pr 

2

⋅e4⋅−2⋅18⋅⋅
c4 ⋅r 2⋅p r ⋅e2⋅1

With the substitution of the above results we obtain the  hydrostatic equilibrium in a symmetric, 
isotropic, spherical celestial body:

dp r 
dr

=−
⋅ r  p r 

c2 ⋅mr 4⋅⋅r3⋅
p r 
c2 

r2⋅1−2⋅⋅m r 
r⋅c2 

(6.4.19)

This equation satisfies the following conditions:

m 0=0

dm r 
dr

=4⋅⋅r ⋅r 2 (6.4.20)

The  pressure on the surface of the celestial  body is zero  (we neglect any atmosphere), and the 
metric continuously goes over to the vacuum Schwarzschild solution:

p R=0

e2⋅R=1− 2⋅⋅M
r⋅c2 (6.4.21)

Inside the celestial body, in material medium the hydrostatic equation corresponds to the following 
general metric:
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6.4 Spherically symmetric celestial body

ds2=e2⋅r ⋅c2⋅dt 2−
dr2

1−2⋅⋅mr 
r⋅c2

−r 2⋅d 2sin 2⋅d 2
(6.4.22)

6.5 Sphere with constant density

The equations  for  spherically symmetric  celestial  bodies  are  solvable  analytically,  if  we 
assume, that the density is the same at every point in the entire volume, this characterizes perfect 
homogeneous fluids. This is a heavily idealized model, however it is not far from reality, since in 
the case of many naturally occurring objects (like the Earth), the density varies from the surface to 
the centre much less, than the pressure.

=const. (6.5.1)

We can already write down the mass distribution function inside the body easily, and the total mass:

m  r =4⋅
3
⋅⋅r3 rR

M=4⋅
3
⋅⋅R3 r≤R (6.5.2)

Their ratio:

m
M
=

r3

R3 (6.5.3)

This can be used when determining the valid arc length squared inside the celestial body, where in 
the spirit of changing to units of length, we substitute the gravitational radius:

e2⋅= 1

1−2⋅⋅m r 
c2⋅r

= 1

1−
r g

r
⋅

mr 
M R

= 1

1−
rg⋅r2

R3
(6.5.4)

We insert the constant  density and the  mass distribution function into the equation of  hydrostatic 
equilibrium:

dp r 
dr

=−
⋅ p r 

c2 ⋅ 4⋅
3
⋅⋅r 34⋅⋅r 3⋅

p r 
c2 

r 2⋅1− 2⋅
r⋅c2⋅

4⋅
3
⋅⋅r3
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6.5 Sphere with constant density

dp r 
dr

=−
4⋅⋅⋅ p r 

c2 ⋅3 p r 
c2 ⋅r

1−8⋅⋅
3⋅c2 ⋅⋅r

2
(6.5.5)

The solution of the differential equation, by taking the boundary conditions into account:

p=⋅ 1−
r g⋅r2

R3 −1−
r g

R

3⋅1−
r g

R
−1−

r g⋅r
2

R3

rR (6.5.6)

Pressure in the centre of the spherical celestial body:

pc=⋅
1−1−

r g

R

3⋅1−
r g

R
−1

r=0 (6.5.7)

If the denominator is zero, the central pressure becomes infinite:

3⋅1−
r g

R
=1 →

r g

R
=8

9
(6.5.8)

As we can see, there is an upper limit to mass in a given volume, that is independent of the chemical 
composition of the celestial body. Therefore it cannot come up at the creation of black holes, that 
although the matter composition of  white dwarfs and  neutron stars cannot stop the collapse, but 
maybe there is some unknown matter with better endurance, that could stop the star from collapsing 
in  time.  With  our  result  above  we  know  with  certainty,  that  such  matter  does  not  exist,  by 
approaching the limit above, nothing can save the celestial body becoming a black hole.

We investigate  the  speed of  sound in  spherically symmetric  celestial  bodies  of  constant 
density. The speed of sound in perfect fluid, where α is the adiabatic index:

v=⋅p


(6.5.9)

If we substitute the relationship on pressure, we get the dependency of the speed of sound on the 
depth:

v=⋅ 1−
r g⋅r

2

R3 −1−
r g

R

3⋅1−
r g

R
−1−

r g⋅r2

R3

(6.5.10)
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6.5 Sphere with constant density

The dependence of the depth on the speed of sound:

3⋅v 2⋅1−
r g

R
=v2⋅1−

r g⋅r2

R3

r= R3

r g
⋅1− 3⋅v2

v2 
2

⋅1− r g

R  (6.5.11)

The condition of the result being a real number:

R3

r g
⋅1− 3⋅v2

v2 
2

⋅1− r g

R ≥0

r g

R
≥8

9
≥1− v2

3⋅v2 
2

(6.5.12)

Independently from the value of the  adiabatic index, the ratio of the  gravitational radius and the 
geometric radius is always greater, than the previously determined limiting value for the infinite 
central pressure.

We insert the previous result also into the second metric function:

 '= 1

1−2⋅⋅m r 
r⋅c2

⋅ 
r2⋅c2⋅mr 4⋅⋅

c4 ⋅r⋅p r  (6.5.13)

We need the relationship between density and Schwarzschild radius, that we use to determine the 
dependence of mass and pressure from the geometric quantities:

=
3⋅c2⋅r g

8⋅⋅⋅R3 (6.5.14)

m  r =
c2⋅r g

2⋅⋅R3⋅r3 rR (6.5.15)

p=
3⋅c2⋅r g

8⋅⋅⋅R3⋅
1−

r g⋅r2

R3 −1−
r g

R

3⋅1−
r g

R
−1−

r g⋅r
2

R3

rR (6.5.16)

Substitute them into the derivative of the metric function according to r, and integrate:
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6.5 Sphere with constant density

 '=
r g⋅r

3⋅1−
r g

R
−1−

r g⋅r2

R3 ⋅1−
r g⋅r 2

R3 ⋅R3

=log1
2
⋅1−

r g⋅r
2

R3 −3⋅1−
r g

R  (6.5.17)

e2⋅=1
4
⋅3⋅1−

r g

R
−1−

r g⋅r
2

R3 
2

(6.5.18)

The arc length squared in the interior of a spherically symmetric homogeneous celestial body:

ds2=1
4
⋅3⋅1−

r g

R
−1−

r g⋅r2

R3 
2

⋅c2⋅dt 2− dr 2

1−
r g⋅r

2

R3

−r2⋅d 2sin2⋅2 (6.5.19)

The entire spacetime is free of  singularities. Neither do they occur in the centre of the celestial 
body, because in this case the denominator of the second metric function does not become zero. The 
values of the square roots in the second  metric function are always real numbers, because of our 
previous condition on the infinite  pressure. Write down the usual geometric quantities from the 
metric tensor to the Einstein tensor:

P=1−
r g

R Q=1−
r g⋅r2

R3

g =
1
4
⋅3⋅P−Q2 0 0 0

0 − 1
Q2 0 0

0 0 −r 2 0
0 0 0 −r 2⋅sin2


g =

4
3⋅P−Q 2

0 0 0

0 −Q 2 0 0

0 0 −
1
r2 0

0 0 0 − 1
r2⋅sin2

 (6.5.20)
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6.5 Sphere with constant density

∂ g tt

∂ r
=

r⋅r g⋅3⋅P−Q

2⋅Q⋅R3
∂g tt

∂ r
=−

8⋅r⋅r g

3⋅P−Q3⋅Q⋅R3

∂ g rr

∂ r
=−

2⋅r⋅r g

Q4⋅R3
∂ g rr

∂ r
=

2⋅r⋅r g

R3

∂ g

∂ r
=−2⋅r ∂ g

∂ r
= 2

r3

∂ g

∂ r
=−2⋅r⋅sin2

∂ g

∂ r
= 2

r 3⋅sin2

∂ g

∂
=−2⋅r2⋅cos ⋅sin ∂g

∂
=

2⋅cos 
r 2⋅sin3

(6.5.21)

 tr
t = rt

t =
r⋅r g

3⋅P−Q⋅Q⋅R3

 tt
r =

r⋅r g⋅3⋅P−Q⋅Q
4⋅R3  rr

r =
r⋅r g

R3−r 2⋅r g

 
r =−r⋅1− r 2⋅r g

R3   
r =−r⋅1− r2⋅r g

R3 ⋅sin2

 r
 = r

 = r 
 =  r

 =1
r  

 =−cos ⋅sin

 
 = 

 =cot  (6.5.22)

∂ tr
t

∂ r
=
∂ rt

t

∂ r
=

r g

3⋅P−Q⋅Q⋅R3⋅1− r 2⋅r g

3⋅P−Q⋅Q⋅R3
r2⋅r g

Q2⋅R3
∂ tt

r

∂ r
=

r g

2⋅R3⋅3⋅P−Q ⋅Q
2


r2⋅r g

2⋅Q⋅R3−
r2⋅r g

Q⋅R3  r2⋅r g

2⋅R3 
∂ rr

r

∂ r
=r g⋅

R3r2⋅r g

R3−r 2⋅r g 
2

∂ 
r

∂ r
=−1−3⋅r 2⋅r g

R3 
∂ 

r

∂r
=−1−3⋅r2⋅r g

R3 ⋅sin2
∂ r 



∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=− 1

r 2
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6.5 Sphere with constant density

∂ 
r

∂
=−2⋅r⋅1− r 2⋅r g

R3 ⋅cos ⋅sin 

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot2−1 (6.5.23)

R rtr
t =−R rrt

t =−
r g

3⋅P−Q ⋅Q⋅R3 R  t
t =−R  t

t =−
r 2⋅r g⋅Q

3⋅P−Q⋅R3

R t 
t =−R  t

t =−
r 2⋅r g⋅Q

3⋅P−Q ⋅R3⋅sin2

R ttr
r =−R trt

r =R tt 
 =−R t t

 =R tt
 =−R tt

 =−
r g⋅3⋅P−Q⋅Q

4⋅R3

R  r
r =−R r

r =−R 
 =R 

 =
r 2⋅r g

R3

R r 
r =−R r

r =R 
 =−R 

 =
r 2⋅r g

R3 ⋅sin2

R rr
 =−R r r

 =R rr
 =−R r r

 =−
r g

R3−r2⋅r g
(6.5.24)

Rtt=
3⋅r g⋅3⋅P−Q⋅Q

4⋅R3 Rrr=
r g

Q⋅R3⋅ 2
Q
− 1

3⋅P−Q 
R=

r2⋅r g

R3 ⋅2− Q
3⋅P−Q  R= r 2⋅r g

R3 ⋅1− Q
3⋅P−Q −Q 21⋅sin2

(6.5.25)

Rricci=
r2⋅r g⋅11⋅Q−15⋅P−3⋅P−Q⋅1−Q2⋅R3

r2⋅3⋅P−Q⋅R3 (6.5.26)

Gtt=3⋅P−Q 2⋅
1−Q 2⋅R35⋅r 2⋅r g

8⋅r 2⋅R3

G rr=−
3⋅P−Q⋅1−Q 2⋅R3r2⋅r g⋅3⋅P−5⋅Q

2⋅r 2⋅3⋅P−Q ⋅Q2⋅R3

G=−
3⋅P−Q ⋅1−Q2⋅R3r 2⋅r g⋅3⋅P−5⋅Q

2⋅3⋅P−Q ⋅R3
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6.5 Sphere with constant density

G=
3⋅P−Q⋅1−Q2⋅R3−r2⋅r g⋅9⋅P−7⋅Q

2⋅3⋅P−Q⋅R3 (6.5.27)

6.6 Fall into the centre

Particle trajectories moving on shorter paths than the  average mean path, and of objects 
falling in conveniently shaped tunnels are described by the following geodesic equations:

c⋅ẗ2⋅ tr
t ⋅c⋅ṫ⋅ṙ=0

ẗ
r⋅r g

3⋅P−Q⋅Q⋅R3⋅ṫ⋅ṙ=0 (6.6.1)

r̈ tt
r ⋅c2⋅ṫ2 rr

r ⋅ṙ2 
r ⋅̇2 

r ⋅̇2=0

r̈
r⋅r g⋅3⋅P−Q ⋅Q

4⋅R3 ⋅c2⋅ṫ 2
r⋅r g

R3−r2⋅r g

⋅ṙ 2−r⋅1− r2⋅r g

R3 ⋅̇2−r⋅1− r2⋅r g

R3 ⋅sin2⋅̇2=0

(6.6.2)

̈2⋅ r
 ⋅ṙ ̇ 

 ⋅̇2=0

̈2
r
⋅ṙ ̇−cos ⋅sin ⋅̇2=0 (6.6.3)

̈2⋅ r
 ⋅ṙ ̇2⋅ 

 ⋅̇⋅̇=0

̈2
r
⋅ṙ ̇2⋅cot⋅̇⋅̇=0 (6.6.4)

In the case of vertical fall, the coordinate conditions coincide with the case of the vacuum solution:

t=t  =t

r=r  r=r t 

=const.=
2 d =0

=const. d =0 (6.6.5)

By substituting them, the equations of movement of the trajectory:
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6.6 Fall into the centre

ẗ
r⋅r g

3⋅P−Q⋅Q⋅R3⋅ṫ⋅ṙ=0 (6.6.6)

r̈
r⋅r g⋅3⋅P−Q⋅Q

4⋅R3 ⋅c2⋅ṫ2
r⋅r g

R3−r2⋅r g

⋅ṙ 2=0 (6.6.7)

̈=0 (6.6.8)

̈=0 (6.6.9)

Substitute the coordinate conditions into the arc length squared:

ds2=1
4
⋅3⋅1−

r g

R
−1−

r g⋅r2

R3 
2

⋅c2⋅dt 2− dr 2

1−
r g⋅r

2

R3

−r2⋅d 2sin2⋅2

c2⋅d 2=1
4
⋅3⋅1−

r g

R
−1−

r g⋅r
2

R3 
2

⋅c2⋅dt 2− dr2

1−
r g⋅r2

R3

The relationship between proper time and coordinate time is velocity dependent:

d = 1
4
⋅3⋅1−

r g

R
−1−

r g⋅r2

R3 
2

−
vr

2

c2⋅1− r g⋅r2

R3 
⋅dt vr=

dr
dt (6.6.10)

We make the arc length squared along a time-like infalling geodesic equal to the arc length squared 
of the co-moving coordinate system, then divide with the change in proper time, and write down the 
equation with the tangent vectors:

A⋅c2⋅ dt 2

d 2−B⋅ dr 2

d 2=
c2⋅d 2

d 2 =c2

u t= dt
d 

ur= dr
d 

A⋅c2⋅u t2−B⋅ur 2=c2 (6.6.11)

We have derived in the mathematical introduction, that if the partial derivative of the metric tensor 
along  a  coordinate  is  zero,  then  the  corresponding  covariant  tangent  vector is  a  constant  of 
movement:
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6.6 Fall into the centre

∂ g

∂ t
=0 →

∂u t

∂ t
=0 (6.6.12)

We calculate the time-like covariant tangent vector from the contravariant one with index lowering:

u t=g t⋅u=g tt⋅u
t=A⋅u t (6.6.13)

Rearrange the arc length squared and express the square of the time-like covariant tangent vector:

c2⋅u t
2=A2⋅c2⋅u t2=A⋅c2B⋅ur2

At the beginning of the fall, the radial velocity is zero:

c2⋅u t
2=A r0⋅c2 (6.6.14)

We make the two results equal, and express the radial velocity. We pick the negative root, because 
the numeric value of the radial coordinate has to decrease, we are looking for the infalling solution.  
r0 is the radial coordinate of the starting point:

A⋅c2B⋅ur2=Ar 0⋅c
2

ur= 1
B
⋅ A r0⋅c2

A
−c2

dr
d 

=1− r g⋅r2

R3 ⋅ 1
4
⋅3⋅1−

r g

R
−1−

r g⋅r0
2

R3 
2

⋅c2

1
4
⋅3⋅1−

r g

R
−1−

r g⋅r 2

R3 
2 −c2

H=3⋅1−
r g

R
−1−

r g⋅r 0
2

R3 
2

K=3⋅1−
r g

R

The time dependence of the fall cannot be integrated in a closed form:

=1
c
⋅∫

r0

r 1

1− r g⋅r ' 2

R3 ⋅ H

K−1−
r g⋅r ' 2

R3 
2−1

⋅dr '

(6.6.15)
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Calculate the movement as a function of the coordinate time:

dr
dt
= dr

d 
⋅d 

dt
= dr

d 
⋅1

u t (6.6.16)

The contravariant time-like tangent vector changes during the movement, its covariant companion 
however does not, therefore we substitute the latter:

dr
dt
= dr

d 
⋅A

ut
u t=

u t

A
(6.6.17)

Substitute the time-oriented covariant tangent vector:

dr
dt
= dr

d 
⋅ A
Ar 0

u t=Ar 0 (6.6.18)

dr
dt
=c⋅1− r g⋅r

2

R3 ⋅3⋅1−
r g

R
−1−

r g⋅r 0
2

R3 
2

3⋅1−
r g

R
−1−

r g⋅r
2

R3 
2−1⋅1

2
⋅
3⋅1−

r g

R
−1−

r g⋅r
2

R3 
2

3⋅1−
r g

R
−1−

r g⋅r0
2

R3

The complete expression cannot be integrated in a closed form:

= 2
c⋅H

⋅∫
r0

r K−1−
r g⋅r ' 2

R3 
2

1− r g⋅r ' 2

R3 ⋅ H

K−1−
r g⋅r ' 2

R3 
2−1

⋅dr '
(6.6.19)
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6.6 Fall into the centre

We display the two functions together on this graph. Time passes from left to right, that means 
proper time for the left curve, and coordinate time for the right curve, the vertical axis is the radius. 
The upper dotted line is the surface of the celestial object, the middle is the gravitational radius:

 r

τ/t

We can see on this graph, that the falling observer reaches the bottom of the pit faster according to 
his own watch, than according to the watch of the infinitely distant observer.

The acceleration of an observer at rest inside the celestial body can be calculated with the 
geodesic equation:

r̈
r⋅r g⋅3⋅P−Q ⋅Q

4⋅R3 ⋅c2⋅ṫ 2
r⋅r g

R3−r2⋅r g

⋅ṙ 2−r⋅1− r2⋅r g

R3 ⋅̇2−r⋅1− r2⋅r g

R3 ⋅sin2⋅̇2=0

(6.6.20)

r̈=−
r⋅r g⋅3⋅P−Q ⋅Q

4⋅R3 ⋅c2⋅ṫ2

P=1−
r g

R Q=1−
r g⋅r2

R3

r̈=−
r⋅r g

4⋅R3⋅3⋅1−
r g

R
−1−

r g⋅r
2

R3 ⋅1−
r g⋅r

2

R3 ⋅c2⋅ṫ 2 (6.6.21)
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6.6 Fall into the centre

Distance from the gravitational centre increases from left to right, the coordinate acceleration of the 
observer inside the celestial body is on the vertical axis, the dotted line shows the place of the 
gravitational radius:

 a

r

We can see on this graph, that as we approach the centre, the acceleration of observers sitting in 
caves is going to zero.

6.7 Relativistic dust

Dust is matter that is characterized only by  density, with zero internal  pressure, it  is the 
limiting case of the perfect fluid. In this case the energy-momentum tensor is determined only by 
the density and the four-velocity:

T =⋅u⋅u (6.7.1)

In the special case, when the observer co-moves with the dust particles, the four-velocity simplifies, 
and only one non-zero component of the energy-momentum tensor remains:

u=c 0 0 0

T =⋅c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 (6.7.2)

In the general case, the  four-velocity transforms the following way from the point of view of a 
stationary observer:
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6.7 Relativistic dust

u=
1

1− v2

c2

⋅c v x v y v z
(6.7.3)

In this case the general energy-momentum tensor:

T =⋅
1

1− v2

c2  c2 vx⋅c v x⋅c v z⋅c
vx⋅c vx⋅vx v x⋅v y v x⋅v z

v y⋅c v y⋅v x v y⋅v y v y⋅v z

v z⋅c vz⋅v x v z⋅v y vz⋅v z
 (6.7.4)

6.8 Collapsing spherical dust cloud

Set  up a  co-moving coordinate  system, write  down the general  arc  length squared,  and 
calculated the geometric quantities:

ds2=c2⋅dt 2−B r , t ⋅dr 2−C r ,t ⋅r 2⋅d 2sin2⋅d2 (6.8.1)

g=1 0 0 0
0 −B 0 0
0 0 −C⋅r2 0
0 0 0 −C⋅r2⋅sin2


g =

1 0 0 0

0 − 1
B

0 0

0 0 − 1
C⋅r 2 0

0 0 0 − 1
C⋅r2⋅sin 2

 (6.8.2)

∂ g rr

∂ t
=−Ḃ ∂ g rr

∂ t
= Ḃ

B2

∂ g

∂ t
=−Ċ⋅r 2 ∂ g

∂ t
= Ċ

C 2⋅r 2

∂ g

∂ t
=−Ċ⋅r 2⋅sin2

∂g

∂ t
= Ċ

C2⋅r2⋅sin2
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6.8 Collapsing spherical dust cloud

∂ g rr

∂ r
=−B ' ∂ g rr

∂ r
=B '

B2

∂ g

∂ r
=−C '⋅r2⋅C⋅r

∂ g

∂ r
=C '⋅r2⋅C

C 2⋅r3

∂ g

∂ r
=−C '⋅r2⋅C ⋅r⋅sin2

∂g

∂ r
= C '⋅r2⋅C

C 2⋅r3⋅sin2 

∂ g

∂
=−2⋅C⋅r 2⋅cos ⋅sin  ∂ g

∂
=

2⋅cos 
C⋅r 2⋅sin3 

(6.8.3)

 rr
t = Ḃ

2  
t =Ċ⋅r2

2
 

t = Ċ⋅r 2

2
⋅sin2

 tr
r = rt

r = Ḃ
2⋅B

 rr
r = B '

2⋅B
 

r =−C '⋅r2⋅C
2⋅B

⋅r

 
r =−C '⋅r2⋅C

2⋅B
⋅r⋅sin2

 t
 =  t

 = t
 = t

 = Ċ
2⋅C

 r
 = r

 = r 
 =  r

 =C '⋅r2⋅C
2⋅C⋅r

 
 =−cos ⋅sin  

 = 
 =cot  (6.8.4)

∂ rr
t

∂ t
= B̈

2
∂ 

t

∂ t
= C̈⋅r2

2
∂ 

t

∂ t
=C̈⋅r2

2
⋅sin2

∂ tr
r

∂ t
=
∂ rt

r

∂ t
= B⋅B̈−Ḃ2

2⋅B2

∂ rr
r

∂ t
=
∂ tr

r

∂r
=
∂ rt

r

∂ r
=B⋅Ḃ '−B '⋅Ḃ

2⋅B2

∂ 
r

∂ t
=−

2⋅B⋅Ċ−Ḃ⋅C B⋅Ċ '− Ḃ⋅C ' ⋅r
2⋅B2 ⋅r

∂ 
r

∂ t
=−

2⋅B⋅Ċ−Ḃ⋅C B⋅Ċ '−Ḃ⋅C ' ⋅r
2⋅B2 ⋅r⋅sin2

∂ t


∂ t
=
∂  t



∂ t
=
∂ t



∂ t
=
∂ t



∂ t
=C⋅C̈−Ċ2

2⋅C 2

∂ r 


∂ t
=
∂  r



∂ t
=
∂ r



∂ t
=
∂  r



∂ t
=
∂ t 



∂ r
=
∂ t



∂ r
=
∂ t



∂ r
=
∂  t



∂ r
=C⋅Ċ '−C '⋅Ċ

2⋅C 2
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6.8 Collapsing spherical dust cloud

∂ rr
t

∂ r
= Ḃ '

2
∂ 

t

∂ r
=2⋅ĊĊ '⋅r

2
⋅r

∂ 
t

∂r
=2⋅ĊĊ '⋅r

2
⋅r⋅sin2

∂ rr
r

∂ r
= B⋅B' '−B ' 2

2⋅B2

∂ 
r

∂ r
=−

B⋅C ' '⋅r2C '⋅r⋅4⋅B−B '⋅r 2⋅C⋅B−B '⋅r 
2⋅B2

∂ 
r

∂r
=−

B⋅C ' '⋅r 2C '⋅r⋅4⋅B−B '⋅r 2⋅C⋅B−B '⋅r 
2⋅B2 ⋅sin2

∂ r 


∂ r
=
∂  r



∂r
=
∂ r



∂ r
=
∂  r



∂ r
=
C⋅C ' '−C ' 2⋅r 22⋅C2

2⋅C2⋅r 2

∂ 
t

∂
=Ċ⋅r 2⋅cos ⋅sin 

∂ 
r

∂
=−C '⋅r2⋅C

B
⋅r⋅cos⋅sin 

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=−cot2−1 (6.8.5)

Rtt=−
C̈
C
 Ċ 2

2⋅C 2−
B̈

2⋅B
 Ḃ2

4⋅B2

Rtr=Rrt=
C '

2⋅C2
Ċ

C⋅r
− Ċ '

C
 Ḃ⋅C '

2⋅B⋅C
 Ḃ

B⋅r

Rrr=
Ḃ⋅Ċ
2⋅C

−C ' '
C

 C ' 2

2⋅C2
B '⋅C '
2⋅B⋅C

−2⋅C '
C⋅r

 B̈
2
− Ḃ2

4⋅B
 B '

B⋅r

R=
C̈⋅r 2

2
 Ḃ⋅Ċ⋅r 2

4⋅B
−C ' '⋅r 2

2⋅B
 B '⋅C '⋅r 2

4⋅B2 −2⋅C '⋅r
B

B '⋅C⋅r
2⋅B2 −C

B
1

R= C̈⋅r 2

2
 Ḃ⋅Ċ⋅r 2

4⋅B
−C ' '⋅r 2

2⋅B
 B '⋅C '⋅r2

4⋅B2 − 2⋅C '⋅r
B

 B'⋅C⋅r
2⋅B2 −C

B
1⋅sin2

(6.8.6)

Rearrange the Einstein equation:

R=−
8⋅⋅

c4 ⋅T  −
1
2
⋅T⋅g (6.8.7)

The quantity between the parentheses in a medium with zero pressure:
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6.8 Collapsing spherical dust cloud

T −
1
2
⋅T⋅g=

1
2
⋅⋅c2⋅1 0 0 0

0 B 0 0
0 0 C 0
0 0 0 C⋅sin2

 (6.8.8)

Substitute into the reorganized Einstein equations, and write down the system of equations we have 
to solve:

(1) −C̈
C
 Ċ2

2⋅C 2−
B̈

2⋅B
 Ḃ2

4⋅B2=−
4⋅⋅

c2 ⋅

(2)
C '

2⋅C 2
Ċ

C⋅r
− Ċ '

C
 Ḃ⋅C '

2⋅B⋅C
 Ḃ

B⋅r
=0

(3) Ḃ⋅Ċ
2⋅C

−C ' '
C

 C ' 2

2⋅C 2
B '⋅C '
2⋅B⋅C

−2⋅C '
C⋅r

 B̈
2
− Ḃ2

4⋅B
 B '

B⋅r
=−4⋅⋅

c2 ⋅⋅B

(4) C̈⋅r 2

2
 Ḃ⋅Ċ⋅r 2

4⋅B
−C ' '⋅r 2

2⋅B
 B '⋅C '⋅r 2

4⋅B2 −2⋅C '⋅r
B

B '⋅C⋅r
2⋅B2 −C

B
1=−4⋅⋅

c2 ⋅⋅C

(6.8.9)

We  assume,  that  the  unknown functions  can  be  separated  according  to  their  variables,  in  the 
following form:

B r ,t =R2t ⋅ f r  C  r , t =S 2t ⋅g r  (6.8.10)

Substitute them into the second (2) equation to solve:

Ṡ
S
= Ṙ

R → S=k⋅R (6.8.11)

We rescale the r coordinate, so the k constant becomes unit sized. We can freely choose one of the 
remaining functions, thus we bring our two unknown functions into the following forms:

B r ,t =R2t ⋅ f r  C  r , t =R2t ⋅r2 (6.8.12)

Substitute into (3) and (4) and separate the variables. Since the two sides of the equations depend on 
different variables, their value is a separation constant:

− f '
f 2⋅r

=R̈⋅R2⋅Ṙ2−4⋅⋅
c2 ⋅t ⋅R2

− 1
r 2

1
f⋅r2−

f '
2⋅f 2⋅r

= R̈⋅R2⋅Ṙ2−4⋅⋅
c2 ⋅t ⋅R2

(6.8.13)

The two left sides are equal with each other, and the separation constant in the form of our choice:
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6.8 Collapsing spherical dust cloud

− f '
f 2⋅r

=R̈⋅R2⋅Ṙ2−4⋅⋅
c2 ⋅t ⋅R2=−2⋅k

f r = 1
1−k⋅r 2 (6.8.14)

The arc length squared of the spherically symmetric dust cloud:

ds2=c2⋅dt 2−R2t ⋅ dr2

1−k⋅r 2r 2⋅d 2sin2⋅d2 (6.8.15)

Substitute the functions and the separation constant into the first (1) equation we have to solve:

R̈⋅R=−4⋅⋅
3⋅c2 ⋅t ⋅R2

−2⋅k=−4⋅⋅
3⋅c2 ⋅t ⋅R22⋅Ṙ2−4⋅⋅

c2 ⋅t ⋅R2
(6.8.16)

Determine the total mass of the cloud and substitute it:

M=4⋅
3
⋅t ⋅R3t  (6.8.17)

The separation constant:

Ṙ2− 2⋅⋅M
c2 ⋅1

R
=Ṙ2−

r g

R
=−k (6.8.18)

By agreement, R(t) is the time dependent radius of the spherical dust cloud, its unit is length, r and 
k have no dimension. Examine a collapsing dust cloud, or a collapsing star with negligible internal 
pressure. The particles composing the celestial body are at rest at the beginning moment:

Ṙ=0

In this case the separation constant and the change in R:

k=
r g

R
Ṙ2=k⋅R0−Rt 

R t  (6.8.19)

The solution of this differential equation is a cycloid curve, with parametric equations:

c⋅t= R 0
2⋅k

⋅sin R= R 0
2

⋅sin  (6.8.20)
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6.8 Collapsing spherical dust cloud

 R

c∙t

In the case of any radial change of the spherically symmetric mass distribution, the spacetime of the 
external vacuum is the Schwarzschild solution. Therefore the collapse time of the star is the same as 
the time of the observer falling at the height of the star surface.

6.9 Electromagnetic interaction

On the curved four dimensional spacetime of general relativity,  gravitation is an  inertial 
force,  because it  occurs  only when the  reference frame does  not  move on a  straight  line.  The 
electromagnetic field however exerts a  real force, that diverts charged bodies from the geodesics, 
and is detectable in every reference frame (it is coordinate system independent). The properties of 
the electromagnetic field are determined by a four-vector potential:

A= Ax A y Az (6.9.1)

In flat spacetime the classical form of the action functional:

S [ x t ]=∫
t1

t2

Lx , ẋ , t ⋅dt (6.9.2)

In the presence of a general  conservative force law, the function can be determined easily,  the 
contribution coming from the interactions between the particles has to be subtracted from the term 
depending on the movement:

L=E kinetic−E potential (6.9.3)

In the case of the action describing the movement of the charged particle, the first term is the free 
movement, the second is the contribution of the electromagnetic field, where Q is the charge of the 
particle:
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6.9 Electromagnetic interaction

S=−∫m⋅c⋅dsQ
c
⋅A⋅dx (6.9.4)

The principle of least action:

S=−∫m⋅c⋅dx⋅dxQ
c
⋅A⋅dx=0

S=−∫m⋅c⋅dx⋅ dx

ds
Q

c
⋅A⋅ dxQ

c
⋅ A⋅dx=0 (6.9.5)

The last term is zero, where u is the coordinate velocity:

∫m⋅c⋅du⋅ xQ
c
⋅dA⋅ x−Q

c
⋅ A⋅dx−m⋅c⋅u

Q
c
⋅A⋅dx=0

 A=
∂ A

∂ x⋅ x dA=
∂ A

∂ x⋅dx

∫m⋅c⋅du⋅ xQ
c
⋅
∂ A

∂ x
⋅dx⋅ x−Q

c
⋅
∂ A

∂ x
⋅ x⋅dx=0 (6.9.6)

Substitution:

du=
du
ds
⋅ds dx=u⋅ds

∫m⋅c⋅du

ds
−Q

c
⋅∂ A

∂ x
−
∂ A

∂ x ⋅u⋅ x⋅ds=0 (6.9.7)

Equation of motion of a charged particle moving in electromagnetic field:

m⋅c⋅
du
ds

=Q
c
⋅∂ A

∂ x
−
∂ A

∂ x ⋅u=Q
c
⋅F ⋅u

 (6.9.8)

Where the form of the electromagnetic tensor is the same in arbitrarily curved spacetime as well, 
because the connections of the invariant derivatives cancel mutually:

F =∇  A−∇ A=
∂ A

∂ x
−
∂ A

∂ x
(6.9.9)

Thus the Fη electromagnetic four-force depends on the Q charge, the Fηκ electromagnetic tensor and 
the u four-velocity, or in other words the electromagnetic tensor and the j current density:
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6.9 Electromagnetic interaction

F =
Q
c
⋅F ⋅v=1

c
⋅F ⋅ j (6.9.10)

j=c⋅ j x j y j z

If we add to the  vector potential the partial derivative of an arbitrary scalar function, it does not 
influence the result, this is the gauge invariance:

A2 =A
∂
∂ x

→ ∇ A=0 (6.9.11)

The components of the electromagnetic tensor are the E electric field strength and the B magnetic 
induction:

F = 0 1
c
⋅E x

1
c
⋅E y

1
c
⋅E z

−1
c
⋅Ex 0 −B z By

−1
c
⋅E y Bz 0 −Bx

−1
c
⋅E z −By Bx 0

 (6.9.12)

The  Maxwell  equations describe the  electromagnetic interaction. According to one of them, the 
source of the electromagnetic tensor is the current density, the other is a simple identity:

∂F 

∂ x =0⋅j
∂F 

∂ x 
∂ F

∂ x 
∂F 

∂ x
=0 (6.9.13)

In curved spacetime, the partial derivative changes to invariant derivative in the Maxwell equations:

∇ F=0⋅j ∇ F∇ F ∇  F=0 (6.9.14)

The vacuum  Einstein equations were derived for spacetimes, where bodies move on trajectories 
described by  geodesic equations. Thus in every case where the moving bodies deviate from the 
geodesics, we can be sure, that an energy-momentum tensor is present, that describes the properties 
of the matter, that diverted the test bodies. The electromagnetic field also has energy, thus it exerts 
gravitational influence. Based on the definition of the energy-momentum tensor, it can be expressed 
from the equation of movement of the charged particle.

First we write down the  electromagnetic force purely with the  electromagnetic tensor. For 
this we substitute the first Maxwell equations into the formula for the electromagnetic force:

F =
1
c
⋅F⋅j= 1

c⋅0
⋅F ⋅∇  F 
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c⋅0⋅F =F⋅∇  F  (6.9.15)

We expand the invariant derivative on the right side using the product differentiation rule:

c⋅0⋅F =∇ F ⋅F−F⋅∇  F  (6.9.16)

Substitute the second Maxwell equation into the right-side term:

F ⋅∇  F=
1
2
⋅F ⋅∇  F

1
2
⋅F ⋅∇ F =

1
2
⋅F ⋅∇  F ∇ F  −

1
2
⋅F⋅∇ F =−

1
4
⋅∇ F

⋅F=−
1
4
⋅g ⋅∇ F

⋅F 

(6.9.17)

Reinsert it into the electromagnetic force:

c⋅0⋅F =∇ F ⋅F1
4
⋅g⋅∇ F 

⋅F 

F =−
1

c⋅0
∇ F⋅F 

1
4
⋅g⋅F 

⋅F =∇ T 
 (6.9.18)

The electromagnetic energy-momentum tensor:

T =− 1
c⋅0

⋅F⋅F 
1

4
⋅g ⋅F⋅F  (6.9.19)

In matrix form:

T =
1
2
⋅0⋅E2 1

0
⋅B2 S x

c
S y

c
S z

c
S x

c
− xx − xy − xz

S y

c
− yx − yy − yz

S z

c
− zx − zy − zz

 (6.9.20)

The direction of movement of the electromagnetic wave is shown by the Poynting vector:

S= 1
0
⋅E×B (6.9.21)

The form of the Maxwell stress tensor composing the spatial terms in flat spacetime:
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6.9 Electromagnetic interaction

ij=0⋅E i⋅E j
1
0
⋅Bi⋅B j−

1
2
⋅0⋅E2 1

0
⋅B2⋅ij (6.9.22)

The divergence of the electromagnetic energy-momentum tensor:

∇T 
=F =

1
c
⋅F ⋅ j (6.9.23)

6.10 Electromagnetic waves

In order to determine the phase equation describing the electromagnetic wave, we start with 
the Maxwell equations:

∇ F=0⋅j

∇g
⋅∇  A−g ⋅∇  A=0⋅j

−g∇⋅∇  Ag∇ ⋅∇  A=0⋅ j /g∇ ⋅∇ A−g∇ ⋅∇  A

−g∇⋅∇  Ag ∇⋅∇ −∇ ⋅∇ Ag ∇⋅∇  A=0⋅j (6.10.1)

The  electromagnetic waves propagate in space detached from their source, therefore the  current 
density is zero, and we also write down the gauge invariance:

j=0 ∇ A=0 (6.10.2)

Substitute the Ricci tensor as well, it is derived with index contraction from the commutator of the 
invariant derivative, the curvature tensor:

R
=g⋅∇ ∇ −∇ ∇ (6.10.3)

The result is the wave equation of the electromagnetic waves:

−g⋅∇∇ AR
⋅A=0 (6.10.4)

We are investigating the wave function in the following form:

A=a⋅e i⋅ (6.10.5)

Where the wave function is proportional to the scalar product of the wave number vector and the 
position vector:
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6.10 Electromagnetic waves

∝k ⋅x

Where the formulas for the wave number vector and the light ray are:

k =−
∂
∂ x k  x=dx

d 
(6.10.6)

And the  wave function changes faster than the  wave number vector, the  amplitude, or the metric 
tensor. By using these the original equation is simplified, this is the eikonal or phase equation:

g⋅∂
∂ x⋅

∂
∂ x=0 (6.10.7)

We can see that the wave number vector is light-like, thus we have shown, that the electromagnetic 
waves move in light-like directions:

g⋅k ⋅k =0 (6.10.8)

Examine the invariant derivative of the scalar product:

∇ k
⋅k=0

k ⋅∇ k k⋅∇ k =0 (6.10.9)

We can rearrange the first term, until it looks like the second term:

k ⋅∇ k =k⋅∇ g
⋅k =k ⋅k ⋅∇ g k ⋅g⋅∇ k

The invariant derivative of the metric tensor is zero, and we use up the second metric tensor to raise 
the index:

k ⋅g ⋅∇ k =k ⋅∇ k 

Reinsert the result into the original equation:

2⋅k ⋅∇ k =0 (6.10.10)

If the connection is symmetric, we can replace the indices of the invariant derivative and the wave 
number vector:

∇ k=
∂2

∂ x⋅∂ x
−k ⋅ 

 = ∂2
∂ x⋅∂ x

−k ⋅ 
 =∇  k  (α: free index)

Reinsert it and then substitute the equation of light rays replacing the contravariant  wave number 
vector:

2⋅k ⋅∇ k =0 (6.10.11)
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2⋅dx

d 
⋅∇  k=0 /⋅d 

2

We recognize the relationship between the invariant derivative and the derivative along a curve. 
When the derivative along a curve is zero, we recover the geodesic equation, thus we have shown, 
that light rays propagate along geodesics:

dx⋅∇  k=Đk=0 (6.10.12)

6.11 Unification of interactions

Three  elementary  interactions  govern  the  macroscopic  world  in  our  experience: 
gravitational,  electrical  and  magnetic.  Scientific  development  gradually recognized  them in  the 
cavalcade of phenomena, and that there are common organizing principles behind them. The Kaluza 
theory builds on general relativity, and by using the generalized Maxwell equations in Riemannian 
geometry  (that  unify  electricity and  magnetism),  it  unifies  and  geometrizes  all  macroscopic 
interactions. The five dimensional Einstein equation in vacuum:

RPQ−
1
2
⋅R⋅g PQ=0 (6.11.1)

If  electromagnetic fields are not present, in this limiting case the metric of the four dimensional 
spacetime is independent of the fifth coordinate. This assumption is the basis of the choice for the 
general metric. The original choice of Theodor Kaluza for the five dimensional metric tensor:

g PQ= g
4 C⋅A

C⋅A 2⋅  (6.11.2)

Here Aη is the electromagnetic four-potential,  is an unknown constant. We differentiate between 
the  four  dimensional  quantities,  and  the  components  of  five  dimensional  quantities  in  four 
coordinates with a dimension number in the upper left index. Another possible choice is by Oscar 
Klein, we will use this to calculate the geometric quantities. His arc length squared and the twice 
covariant metric tensor:

ds2=g⋅dx⋅dx2⋅C⋅A⋅dxdx42

g PQ= g
4 C2⋅2⋅A⋅A C⋅2⋅A

C⋅2⋅A 2  (6.11.3)

We can see, that the four dimensional metric tensor and the four dimensional components of the five 
dimensional metric tensor are already not equal:
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g 
4 ≠ g

5 (6.11.4)

We declare that the derivative of the metric tensor according to the fifth direction shall be zero, 
therefore  the  corresponding derivative  of  the  connection  will  also  be zero,  this  is  the  cylinder 
condition:

∂ g PQ

∂ x4 =0 →
∂ PR

Q

∂ x4 =0 (6.11.5)

The twice contravariant metric tensor:

g PQ= g4 −C⋅A

−C⋅A 1
2C 2⋅A2 (6.11.6)

The partial derivative of the metric tensor:

∂ g PQ

∂ xR = ∂ g 
4

∂ x R C 2⋅2⋅∂ A

∂ xR⋅AA⋅
∂ A

∂ x R  C⋅2⋅
∂ A

∂ xR

C⋅2⋅
∂ A

∂ xR 0  (6.11.7)

During  the  derivation  we  utilize,  that  the  electromagnetic  tensor and  the  vector  potential are 
quantities also defined in four dimensions,  therefore we can perform index operations on them 
using the the four dimensional metric tensor as well. The connection in five dimensions:

 PR
Q =1

2
⋅gQA⋅∂ g RA

∂ x P 
∂ g AP

∂ xR −
∂ g PR

∂ x A  (6.11.8)

We  determine  the  various  index  combinations  separately.  First  the  components  of  the  five 
dimensional connection with 0 – 3 coordinate indices:

 
5 =1

2
⋅g A⋅∂ gA

∂ x

∂ g A

∂ x −
∂ g

5

∂ x A 
 
5 =1

2
⋅ g 5 ⋅∂ g

5

∂ x

∂ g

5

∂ x
−
∂ g

5

∂ x 1
2
⋅g 4⋅∂ g4

∂ x

∂ g 4

∂ x
−
∂ g

5

∂ x4  (6.11.9)

Substitute the metric tensor components. The last term in the second parentheses is zero because of 
the cylinder condition:

 
5 =1

2
⋅ g4 ⋅ ∂ g

5

∂ x

∂ g

5

∂ x
−
∂ g

5

∂ x −1
2
⋅C 2⋅2⋅A⋅∂ A

∂ x

∂ A

∂ x  (6.11.10)
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We calculate the quantity in the first parentheses separately, because we will need this result later:

∂ g
5

∂ x

∂ g 

5

∂ x
−
∂ g

5

∂ x
=
∂ g

4

∂ x
C2⋅2⋅∂ A

∂ x
⋅AA⋅

∂ A

∂ x 

∂ g

4

∂ x
C 2⋅2⋅∂ A

∂ x
⋅AA⋅

∂ A

∂ x −∂ g
4

∂ x
−C 2⋅2⋅∂ A

∂ x
⋅AA⋅

∂ A

∂ x 
In this partial result  α is a  free index. Rearrange the formula and substitute the  electromagnetic 
tensor:

∂ g
5

∂ x

∂ g

5

∂ x
−
∂ g

5

∂ x
=
∂ g

4

∂ x

∂ g

4

∂ x
−
∂ g

4

∂ x

C 2⋅2⋅A⋅∂ A

∂ x

∂ A

∂ x A⋅ ∂A

∂ x
−
∂ A

∂ x A⋅∂ A

∂ x
−
∂ A

∂ x 
∂ g

5

∂ x

∂ g

5

∂ x
−
∂ g

5

∂ x =
∂ g 

4

∂ x

∂ g

4

∂ x
−
∂ g

4

∂ x
C 2⋅2⋅A⋅∂ A

∂ x

∂ A

∂ x A⋅F A⋅F 
(6.11.11)

Continue the derivation, substitute the partial result:

 
5 =1

2
⋅ g 4 ⋅∂ g

4

∂ x

∂ g 

4

∂ x
−
∂ g 

4

∂ x 
1

2
⋅C 2⋅2⋅ g4 ⋅A⋅∂ A

∂ x

∂ A

∂ x A⋅F A⋅F
−1

2
⋅C2⋅2⋅A⋅∂ A

∂ x

∂ A

∂ x 
We recognize the four dimensional connection in the first term, raise the index in the second term, 
this gives us a term that cancels out the third term, thus the result is:

(1)  
5 =  

4 1
2
⋅C2⋅2⋅A⋅F

A⋅F 
 (6.11.12)

Secondly we determine connection components with coordinate indices, where one of the lower 
index has  4th coordinate.  In  the  absence of  torsion the connection  is  symmetric,  therefore it  is 
enough to do it for just one case:

 4
 =1

2
⋅g A⋅∂ gA

∂ x4 
∂ g A 4

∂ x
−
∂ g4

∂ x A  (6.11.13)

We see immediately that the first term in the parentheses is zero because of the cylinder condition:
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 4
 =1

2
⋅ g5 ⋅∂ g4

∂ x
−
∂ g 4

∂ x 1
2
⋅g 4⋅ ∂ g 44

∂ x
−
∂ g4

∂ x4 
Applying the cylinder condition again, substituting:

 4
 =1

2
⋅ g4 ⋅C⋅2⋅

∂ A

∂ x
−C⋅2⋅

∂ A

∂ x 
Substitute the  electromagnetic tensor and  raise the index. We obtained, that the  electromagnetic 
tensor is the same as one of the five dimensional connection components up to constant multipliers, 
this justifies Oscar Klein's choice for the metric tensor:

(2)  4
 = 4

 =1
2
⋅C⋅2⋅F

 (6.11.14)

Thirdly it is the turn of the connection components with 4th upper index:

 
4 =1

2
⋅g 4 A⋅∂ g A

∂ x

∂ g A

∂ x
−
∂ g

5

∂ x A 
 

4 =1
2
⋅g 4⋅∂ g

5

∂ x

∂ g

5

∂ x −
∂ g 

5

∂ x 1
2
⋅g 44⋅∂ g4

∂ x

∂ g 4

∂ x
−
∂ g

5

∂ x4  (6.11.15)

Substitute the previous partial result into the first parentheses, apply the  cylinder condition in the 
second, and also substitute:

 
4 =1

2
⋅−C⋅A ⋅∂ g

4

∂ x

∂ g

4

∂ x
−
∂ g

4

∂ x C2⋅2⋅A⋅ ∂A

∂ x

∂ A

∂ x A⋅FA⋅F 
1

2
⋅ 1
2C 2⋅A2⋅C⋅2⋅

∂ A

∂ x
C⋅2⋅

∂ A

∂ x 
 

4 =−1
2
⋅C⋅A⋅∂ g

4

∂ x

∂ g

4

∂ x
−
∂ g

4

∂ x 
−1

2
⋅C 3⋅2⋅A⋅A⋅ ∂ A

∂ x

∂ A

∂ x −1
2
⋅C 3⋅2⋅A⋅ A⋅FA⋅F 

1
2
⋅C⋅∂ A

∂ x

∂ A

∂ x 1
2
⋅C3⋅2⋅A2⋅ ∂A

∂ x

∂ A

∂ x 
The second and the last terms cancel:

(3)
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 
4 =−1

2
⋅C⋅A⋅ ∂ g

4

∂ x

∂ g

4

∂ x
−
∂ g

4

∂ x C 2⋅2⋅A⋅ A⋅F A⋅F−∂ A

∂ x
∂ A

∂ x 
(6.11.16)

Fourthly both lower indices of the connection are 4, because of the cylinder condition several terms 
fall out immediately, finally it turns out about the last term too, that it is zero:

 44
 =1

2
⋅g  A⋅∂ g4 A

∂ x4 
∂ g A 4

∂ x4 −
∂ g 44

∂ x A =−1
2
⋅gA⋅

∂ g44

∂ x A

(4)  44
 =−1

2
⋅g ⋅

∂ g44

∂ x
−1

2
⋅g 4⋅

∂ g44

∂ x4 =−
1
2
⋅g ⋅

∂ g 44

∂ x
=0 (6.11.17)

Fifthly we examine connection components, where one of the lower and the upper indices are 4. We 
start with the cylinder condition again:

 4
4 =1

2
⋅g 4 A⋅∂ gA

∂ x 4 
∂ g A 4

∂ x
−
∂ g4

∂ x A =1
2
⋅g4 A⋅∂ g A4

∂ x
−
∂ g 4

∂ xA 
 4

4 =1
2
⋅g 4⋅∂ g4

∂ x
−
∂ g 4

∂ x 1
2
⋅g 44⋅∂ g44

∂ x
−
∂ g4

∂ x4  (6.11.18)

Only the first term is non-zero, substitute:

 4
4 =−1

2
⋅C⋅A⋅C⋅2⋅

∂ A

∂ x
−C⋅2⋅

∂ A

∂ x 
Express the electromagnetic tensor:

(5)  4
4 = 4

4 =−1
2
⋅C2⋅2⋅A⋅F (6.11.19)

Sixthly the connection component with all indices 4th is zero because of the cylinder condition:

 44
4 =1

2
⋅g 4 A⋅∂ g4 A

∂ x4 
∂ g A 4

∂ x4 −
∂ g 44

∂ xA =−1
2
⋅g4 A⋅

∂ g44

∂ x A

(6)  44
4 =−1

2
⋅g4⋅

∂ g44

∂ x
−1

2
⋅g 44⋅

∂ g44

∂ x4 =0 (6.11.20)

Now we can write down the five dimensional geodesic equation. When we write out the terms in 
detail, the last one of them is zero:
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6.11 Unification of interactions

∂2 x P

∂2  AB
P ⋅∂ x A

∂
⋅∂ xB

∂
=0

∂2 x P

∂2   
P ⋅∂ x

∂
⋅∂ x

∂
2⋅ 4

P ⋅∂ x 4

∂
⋅∂ x

∂
 44

P ⋅∂ x4

∂
⋅∂ x 4

∂
=0 (6.11.21)

Its projection in the four dimensional spacetime:

∂2 x

∂2   
5 ⋅∂ x

∂
⋅∂ x

∂
2⋅ 4

 ⋅∂ x4

∂
⋅∂ x

∂
=0 (6.11.22)

Substitute and rearrange the formula:

∂2 x

∂2   
4 1

2
⋅C 2⋅2⋅ A⋅F 

A⋅F
 ⋅∂ x

∂
⋅∂ x 

∂
2⋅1

2
⋅C⋅2⋅F 

⋅∂ x4

∂
⋅∂ x

∂
=0

∂2 x

∂2   
4 ⋅∂ x

∂
⋅∂ x

∂
C 2⋅2⋅A⋅F

⋅∂ x

∂
⋅∂ x

∂
C⋅2⋅F 

⋅∂ x4

∂
⋅∂ x

∂
=0

The equation of motion of a charged particle influenced by the gravitational and the electromagnetic 
interactions:

∂2 x

∂2   
4 ⋅

∂ x

∂
⋅
∂ x

∂
=−C⋅2⋅C⋅A⋅

∂ x 

∂

∂ x4

∂ ⋅F
⋅
∂ x

∂
(6.11.23)

The previously derived  equation of movement of the  charged particle under the influence of an 
electromagnetic field:

∂2 x

∂2   
4 ⋅∂ x

∂
⋅∂ x

∂
= Q

c⋅m
⋅F 

⋅∂ x

∂
(6.11.24)

Compare it to our derived equation:

Q
c⋅m

⋅F
⋅
∂ x

∂
=−C⋅2⋅C⋅A⋅

∂ x

∂

∂ x4

∂ ⋅F 
⋅
∂ x

∂

Q
c⋅m

=−C⋅2⋅C⋅A⋅
∂ x

∂

∂ x4

∂  (6.11.25)

If the charge of the particle is zero, only the gravitation of the electromagnetic field will affect it:

−C⋅2⋅C⋅A⋅
∂ x

∂

∂ x4

∂ =0
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6.11 Unification of interactions

∂ x 4

∂
=−C⋅A⋅

∂ x

∂
(6.11.26)

The  entire  electromagnetic  field is  the  sum of  the  external  field,  and  the  field  of  the  charged 
particle:

−C⋅A⋅
∂ x

∂
=∂ x4

∂
− Q

c⋅C⋅2⋅m
(6.11.27)

6.12 Klein-Gordon equation

The spacetime of general relativity provides a stage for theories describing all  the other 
interactions.  Therefore  it  is  worth  to  summarize  the  equations,  that  describe  the  behaviour  of 
particles of matter on this background.

In  1925,  this  is  how  Erwin  Schrödinger originally  wrote  down his  famous  equation  of 
quantum mechanics, taking special relativity into account, that was already 20 years old at the time. 
However  he  did  not  manage  to  interpret  the  fine  structure of  the  hydrogen  spectrum with  it, 
therefore he chose the non-relativistic, well known form. Later in  1927 Oscar Klein and  Walter 
Gordon recommended the same formula for the relativistic equation of the  electron, however it 
failed here too, because of the electron spin. It can however accurately describe spin-free particles, 
like the π-meson.

The equation of the conservation of energy:

−E 2p2⋅c2m2⋅c4=0 (6.12.1)

The method of first quantization is the following: substitute the quantum mechanical operators, and 
we consider every term as an operator on a complex function. The quantum mechanical operators of 
the energy and momentum:

E=i⋅ℏ⋅ ∂
∂ t

p i=−i⋅ℏ⋅ ∂
∂ xi

− E2c2⋅p2m2⋅c4⋅=0 (6.12.2)

−i⋅ℏ⋅ ∂∂ t 
2
c2⋅−i⋅ℏ⋅ ∂

∂ x i 
2
m2⋅c4⋅=0

We amass the operators:

ℏ2⋅ 1
c2⋅

∂2

∂ t 2−
∂2

∂x i2 m2⋅c2⋅=0 (6.12.3)

ℏ2⋅⋅ ∂2
∂ x⋅∂ x

m2⋅c2⋅=0

226



6.12 Klein-Gordon equation

We obtain the general relationship by substituting the geometric quantities of the general spacetime:

g⋅∇
2 m2⋅c2

ℏ2 ⋅=0 (6.12.4)

The solution of the equation for a free particle:

 x=e i⋅k⋅x=ei⋅ka⋅xa−⋅t (6.12.5)

The eigenvalue equation of the energy operator:

E=E⋅

i⋅ℏ⋅∂
∂ t

=i⋅ℏ⋅ ∂
∂ t

ei⋅ka⋅xa−⋅t=i⋅ℏ⋅−i⋅⋅ei⋅k a⋅xa−⋅t=ℏ⋅⋅e i⋅ka⋅xa−⋅t

E=ℏ⋅ (6.12.6)

The eigenvalue equation of the momentum operator:

p i= pi⋅

i⋅ℏ⋅∂
∂ xi=i⋅ℏ⋅ ∂

∂ x i ei⋅ka⋅xa−⋅t=i⋅ℏ⋅−i⋅k i⋅e
i⋅k a⋅xa−⋅t=ℏ⋅k i⋅e

i⋅ka⋅xa−⋅t

p i=ℏ⋅k i (6.12.7)

Reinsert the eigenvalues in the Klein-Gordon equation into the place of the operators:

− E2c2⋅p2m2⋅c4⋅=0

−ℏ⋅2c2⋅ℏ⋅k i
2m2⋅c4⋅=0 (6.12.8)

The energy eigenvalues can be negative as well,  we interpret them as antiparticles with positive 
energy:

ℏ⋅=±c⋅ℏ⋅k i
2m2⋅c2 (6.12.9)

6.13 Proca equation

It  is  similar  to  the  Klein-Gordon equation,  but  instead  of  a  scalar,  it  applies  to  a  four-
component wave function, it describes particles with spin 1, like the photon and the mediators of the 
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6.13 Proca equation

weak interaction, the W+, W– and Z bosons:

g⋅∇
2 m2⋅c2

ℏ2 ⋅=0 (6.13.1)

This is usually supplemented with a continuity condition:

∂

∂ x
=0 (6.13.2)

The  Maxwell  equations represent the  limiting case of zero mass,  this  is  the previously derived 
eikonal, or phase equation:

g⋅∇
2 =0 (6.13.3)

6.14 Dirac equation

Paul Adrien Maurice Dirac derived the equation named after him in  1928, that correctly 
describes the relativistic particles with half spin, like the electron and the quarks. Unlike the Klein-
Gordon equation, it is a first order differential equation. We start with the Klein-Gordon equation:

ℏ2⋅⋅ ∂2
∂ x⋅∂ x

m2⋅c2⋅=0 (6.14.1)

It is actually a second order eigenvalue equation:

−ℏ2⋅⋅ ∂2
∂ x⋅∂ x

=m2⋅c2⋅ (6.14.2)

This equation can be made first order, if we introduce factors with convenient algebraic properties. 
Take the square root of both sides:

i⋅ℏ⋅⋅∂
∂ x

=±m⋅c⋅ (6.14.3)

This equation is valid only if the following condition is satisfied by γ, unknown for the moment:

⋅⋅=2⋅  (6.14.4)

The condition is fulfilled, if the γ are at least four times four, specially chosen matrices:
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6.14 Dirac equation

==00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33
 1=e =1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⋅⋅=2⋅⋅1 (6.14.5)

This wave function will also have four components. Substitute into the eigenvalue equation:

i⋅ℏ⋅
⋅∂



∂ x=±m⋅c⋅e⋅
 (6.14.6)

Rearrange it and write down the Dirac equation:

i⋅ℏ⋅
⋅∂



∂ x
±m⋅c⋅e ⋅

=0 (6.14.7)

Since there are no criteria on the components of the  γ-matrices, they can be written in several 
possible forms. To simplify the notation, we introduce the Pauli matrices:

0=1 0
0 1 1=0 1

1 0
2=0 −i

i 0  3=1 0
0 −1 (6.14.8)

The Dirac representation of the γ-matrices:

0= 1 0
0 −1 i= 0 i

− i 0  (6.14.9)

The Weyl representation of the γ-matrices:

0= 0 1
1 0 i= 0 i

− i 0  (6.14.10)

The Majorana representation of the γ-matrices:

0= 0  2

2 0  1=i⋅  3 0
0 3

2= 0 − 2

2 0  3=−i⋅ 1 0
0 1 (6.14.11)
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6.14 Dirac equation

Total momentum of a  charged particle in an  electromagnetic field, where  q is the  charge of the 
particle, Aη is the four-potential of the external field:

p
q
c
⋅A

Dirac equation of a charged particle:

i⋅ℏ⋅
⋅∂



∂ x


⋅q
c
⋅A⋅

±m⋅c⋅e⋅
=0 (6.14.7)

6.15 Weyl equation

The Weyl equation describes massless particles with half spin, like the neutrinos:

ib
⋅
∂b

∂ x
=0 (6.15.1)

The wave function has two components because of the Pauli matrix.
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7. Gravitational waves

7. Gravitational waves

Changes  in  matter  that  are  not  spherically  symmetric  expansions  or  contractions  cause 
propagating disturbances in spacetime. These waves become independent from their  source and 
propagate at the speed of light. Far away from the originating celestial body they are probably very 
weak, therefore they can be approximated with small linear deviations from the flat background 
metric.

Albert Einstein derived the wave solution of the equations named after him for the first time 
in 1918. Several questions arose regarding the results. It was unclear for a long time, if those waves 
were coordinate effects, or real physical phenomena. The British astronomer Eddington had a major 
role in dispelling doubts. He confirmed light bending with observations during the famous  solar 
eclipse of 1919. Later he concluded, that the transversal wave is a real phenomenon propagating at 
the speed of light, while – in his words – the “longitudinal  gravitational waves propagate at the 
speed of thought”. In 1938 Einstein and Rosen sent an article attempting to disprove the existence 
of gravitational waves to the Physical Review, but publication was not allowed by the anonymous 
peer review.  Einstein took such a big offence, that he never published in the journal ever again, 
despite that it turned out later, that the proofreader was right.

Although  waves  in  spacetime  have  not  been  directly  detected  by  gravitational  wave 
detectors, there is indirect evidence for the correctness of the equations. The 1993 Nobel Prize in 
Physics was awarded to Russel Alan Hulse and Joseph Hooton Taylor Jr. for measurements of the 
binary system containing the PSR B1913+16 pulsar in the constellation Aquila. Their observations 
confirmed several consequences of the theory of relativity, including the amount of energy carried 
away by gravitational waves, by measuring the decrease of the orbital period of the binary system.

7.1 Splitting the metric tensor

The first approach is to split the metric tensor to the background metric and the metric of the 
gravitational waves:

g = h ∣h∣≪1

g = −h  (7.1.1)

Where the metric tensor of flat spacetime is:

=1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (7.1.2)

Let us give them a try:

g⋅g=h⋅
−h 
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7.1 Splitting the metric tensor

g ⋅g=⋅
−⋅h

h⋅
−h⋅h


=

−h
h

−h⋅h
 (7.1.3)

Because  we  chose  h to  be  very  small,  its  square  is  even  smaller  and  negligible.  The  partial 
derivatives of the metric tensor:

∂ g

∂ x
=
∂
∂ x


h
∂ x

=
h

∂ x

∂ g

∂ x
=∂

∂ x
− h

∂ x
=− h

∂ x
(7.1.4)

Therefore the connection:

 
 =1

2
⋅g ⋅ ∂h

∂ x

∂ h
∂ x

−
∂ h
∂ x  (7.1.5)

The derivatives of the connection:

∂ 


∂ x
=1

2
⋅ ∂
∂ x g ⋅∂h

∂ x

∂h

∂ x
−
∂h

∂ x 
∂ 



∂ x
=1

2
⋅∂ h

∂ x
⋅∂ h

∂ x

∂ h
∂ x

−
∂ h
∂ x 1

2
⋅g⋅ ∂2 h

∂ x∂ x


∂2 h
∂ x∂ x

−
∂2 h

∂ x∂ x 
(7.1.6)

We assume in our approximation, that we can easily separate the changes in spacetime to fast and 
slowly changing terms. Calculate the curvature tensor, neglect the slowly changing terms, keep only 
the second derivatives:

R 
 =

∂ 


∂ x
−
∂ 



∂ x

R 
 =1

2
⋅g⋅ ∂2 h

∂ x∂ x
−

∂2 h
∂ x∂ x

−
∂2 h

∂ x∂ x


∂2 h
∂ x∂ x  (7.1.7)

Select a case and calculate the completely covariant curvature tensor:

R tt
 =

∂ tt


∂ x
−
∂  t



∂ xt
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R tt
 =1

2
⋅g ⋅ ∂2 h t

∂ x∂ x t−
∂2 htt

∂ x∂ x
−

∂2 h
∂ xt ∂ x t

∂2 h t

∂ x t∂ x  (7.1.8)

g ⋅R tt
 =1

2
⋅g ⋅g ⋅ ∂2 h t

∂ x∂ x t−
∂2 htt

∂ x∂ x
−

∂2 h
∂ x t∂ x t

∂2 h t

∂ x t∂ x 
R tt=

1
2
⋅ ∂2 ht

∂ x∂ x t −
∂2 htt

∂ x∂ x
−

∂2 h
∂ x t∂ x t

∂2 h t

∂ x t∂ x  (7.1.9)

Choose a part of the metric tensor of the gravitational radiation, that's change does not depend on 
any spatial coordinates, this is the transversal term:

R tt=−
1
2
⋅
∂2 h
∂ t 2 (7.1.10)

Substitute it into the formula for geodesic deviation:

∂2 x

∂ t2 R 
 ⋅dx⋅∂ x

∂ t
⋅∂ x

∂ t
=0

g ⋅
∂2 x

∂ t 2 =−g⋅R tt 
 ⋅dt⋅∂ t

∂ t
⋅∂ x

∂ t

∂2 x
∂ t2 =−Rtt⋅dx

∂2 x
∂ t2 =

1
2
⋅
∂2 h

∂ t2 ⋅dx (7.1.11)

The δxκ oscillations caused by weak waves will be small, therefore we can consider the dxγ distance 
from the centre constant. After integration the discrepancies caused by the gravitational waves:

 x=
1
2
⋅h⋅dx  (7.1.12)

7.2 Examining the metric

Determine the spacetime of the gravitational waves. The linear connection:

 
 =1

2
⋅g ⋅ ∂h

∂ x

∂ h
∂ x

−
∂ h
∂ x 
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7.2 Examining the metric

 
 =

1
2
⋅ ∂ h



∂ x

∂ h



∂ x
−
∂ h
∂ x

 (7.2.1)

Write down the Ricci tensor in a linear approximation, substitute the connection:

R=R 
 =

∂ 


∂ x
−
∂ 



∂ x

R=
1
2
⋅ ∂
∂ x ∂ h



∂ x
∂ h



∂ x−
∂ h

∂ x
− 1

2
⋅ ∂
∂ x ∂ h



∂ x
∂h



∂ x−
∂h

∂ x


R=
1
2
⋅ ∂2 h



∂ x⋅∂ x
−

∂2 h
∂ x⋅∂ x

−
∂2 h



∂ x⋅∂ x


∂2 h

∂ x⋅∂ x  (7.2.2)

Introduce a new notation, the definition of the overline in the case of tensors with two indices:

M =M −
1
2
⋅M 

⋅  (7.2.3)

Double overline recovers the original tensor:

M =M −
1
2
⋅M 

⋅ =M −
1
2
⋅M 

⋅ −1
2
⋅M 

−1
2
⋅M 

⋅
⋅ 

M −
1
2
⋅M 

⋅−
1
2
⋅M 

⋅ 
1
4
⋅M 

⋅
⋅ =M −M 

⋅M 
⋅

M =M  (7.2.4)

We used that 
=4, therefore this relationship is valid only in four dimensions. Substitute the 

Ricci tensor into the Einstein equation, and obtain its linearised variant:

R−
1
2
⋅R⋅=−

8⋅⋅
c4 ⋅T 

R =−
8⋅⋅

c4 ⋅T 

1
2
⋅ ∂2 h



∂ x⋅∂ x
−

∂2 h
∂ x⋅∂ x

−
∂2 h



∂ x⋅∂ x
∂2 h

∂ x⋅∂ x
=−8⋅⋅

c4 ⋅T  (7.2.5)

With a suitable choice of coordinate system, this equation can be simplified further. Examine a 
function describing an arbitrary coordinate transformation, similar to h in magnitude:
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7.2 Examining the metric

x2 =x x

x= x2 − x2  (7.2.6)

The transformation of the metric tensor:

g2  x2 =g x
⋅

⋅
=g x

⋅∂ x

∂ x2

⋅ ∂ x

∂ x2
(7.2.7)

The metric tensor of the first coordinate system:

g x
=g  x2 −=g   x2 −⋅

∂ g  x2 
∂ x2

(7.2.8)

The second metric tensor can be written down with the transformation law and the first metric 
tensor:

g2  x2 =− ∂

∂ x
2 ⋅

− ∂

∂ x
2 ⋅g  x2 −⋅

∂ g  x
2 

∂ x
2  (7.2.9)

The same with linear accuracy:

g2  x2 =g  x2 − ∂

∂ x2

⋅g  x
2 − ∂

∂ x2

⋅g   x2 −⋅
∂ g x2 

∂ x2

Omit the coordinate system indices, and note with double crosses the transformed quantities we 
seek:

g # x=g x
−∂

∂ x⋅g x
−∂

∂ x
⋅g x

−⋅
∂ g x


∂ x (7.2.10)

g # = h#

With linear precision h can be determined in the following way:

h# =h−
∂
∂ x

−
∂
∂ x

h


# =h
−2⋅∂



∂ x
(7.2.11)

Apply the rule of overline:

235



7.2 Examining the metric

h# = h# −1
2
⋅ h


# ⋅

h# =h−
∂
∂ x

−
∂
∂ x

−1
2
⋅h−2⋅∂



∂ x ⋅
h# =h−

∂
∂ x

−
∂
∂ x

∂

∂ x
⋅ (7.2.12)

Partial derivatives with respect to covariant coordinates:

∂h

∂ x
−

∂2
∂ x⋅∂ x

−
∂

∂ x⋅∂ x
 ∂2

∂ x⋅∂ x
=0

∂h

∂ x
−

∂2
∂ x⋅∂ x=0 (7.2.13)

This  equation is  satisfied for  sure,  if  we assume that  the first  term is  always  zero,  this  is  the 
harmonic condition of the coordinates:

∂h

∂ x
=0 (7.2.14)

In this case the linearised Einstein equation:

∂2 h
∂ x⋅∂ x

=−16⋅⋅
c4 ⋅T  (7.2.15)

7.3 Plane wave solutions

The linearised Einstein equation in empty space:

∂2 h
∂ x⋅∂ x=0 (7.3.1)

That contains the coordinates always in the following combination, we can use it to simplify:

u=t− z
c (7.3.2)

We investigate the solutions of this. The equations of the harmonic condition are satisfied:
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7.3 Plane wave solutions

d
du

hthz =0

h t=h t=hz=h z=0 (7.3.3)

Thus only transversal waves exist. The following general arc length squared satisfies this condition:

ds2=c2⋅dt 2−1−a ⋅dx2−1a ⋅dy22⋅b⋅dx⋅dy−dz2 (7.3.4)

Where a and b are arbitrary functions, very small in magnitude, and are the components of h:

a≪1 b≪1

Metric tensor and traceless transverse h:

g =1 0 0 0
0 −1a b 0
0 b −1−a 0
0 0 0 −1 h=0 0 0 0

0 a b 0
0 b −a 0
0 0 0 0 (7.3.5)

The two components of the gravitational wave moving in the z direction:

h=hxx=−hyy h×=hxy=h yx (7.3.6)

Connection with linear precision:

− xx
t = yy

t =− xx
z = yy

z =− tx
x = ty

y =− xz
x = yz

y = 1
2⋅c

⋅∂ a
∂ u

− xy
t =− xy

z =− ty
x =− tx

y =− tx
x = yz

x = xz
y = 1

2⋅c
⋅∂b
∂u (7.3.7)

The completely covariant curvature tensor:

−R txtx=R tyty=−R zxzx=R zyzy=Rtxzx=−Rtyzy=
1

2⋅c2⋅
∂2 a
∂ u2

−R txty=−R zxzy=−R zxzx=Rtxzy=Rtyzx=
1

2⋅c2⋅
∂b

∂ u2 (7.3.8)

We can  see  already on this,  that  the  gravitational  waves  propagate  at  the  speed  of  light.  The 
monochromatic planar wave special solutions:

a u =A⋅cos k⋅z−⋅t 

b u=B⋅cos k⋅z−⋅t− (7.3.9)
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7.3 Plane wave solutions

Where A, B, φ are constants and the wave number vector is:

k=
c (7.3.10)

7.4 Second order approximation

Calculate  the  energy  carried  away  by  the  gravitational  radiation.  We  write  down  the 
gravitational equations in second order approximation. The Ricci tensor in second order:

R
2 =1

2
⋅h⋅ ∂2 h

∂ x⋅∂ x
−

∂2 h

∂ x⋅∂ x−
∂2 h

∂ x⋅∂ x


∂2 h
∂ x⋅∂ x1

4
⋅∂h

∂ x
⋅
∂h

∂ x

1
2
⋅
∂ h



∂ x
⋅ ∂h

∂ x
⋅
∂ h
∂ x 1

2
⋅∂h

∂ x
⋅∂ h
∂ x

−
∂ h
∂ x


∂ h
∂ x −1

4
⋅
∂h



∂ x
⋅∂h

∂ x

∂h

∂ x
−
∂ h
∂ x 

(7.4.1)

The metric tensor of the radiation is the sum of the first order and second order term:

h=h
1h

2  (7.4.2)

The Einstein equation is constrained in vacuum by the following condition:

G 
1 h

2 G
2h=0

t=G
1 h

2 =−G
2 h (7.4.3)

Local energy-momentum tensor of gravitational waves:

t=
c4

32⋅⋅
⋅∂ h

∂ x
⋅
∂ h
∂ x

(7.4.4)

This approach to the energy is not valid in every coordinate systems, but this time it will do:

E=∫ t00⋅d
3 x (7.4.5)

Next we calculate the quadrupole formula. Solve the Einstein equation, the S hypersurface here is 
the past lightcone of the x point:

h x=


2⋅
⋅∫

S

T  x ' 
∣x− x '∣

⋅dS  x '  R=∣x−x '∣ (7.4.6)

Volume element on the lightcone:
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7.4 Second order approximation

dS=r2⋅dr⋅d  (7.4.7)

We assume, that the velocity of the source is much less than the speed of light,  and its  size is 
smaller than the wavelength of the emitted gravitational radiation, this is the dipole approximation. 
At great distance from the source the denominator  R barely changes, therefore it can be brought 
before the integral:

h x=
4

2⋅
⋅

R
⋅∫

S

T ⋅dV (7.4.8)

We modify the remaining integral with the linearised conservation law:

∂T 


∂ x
=0

(1)
∂T 

∂ x −
∂T 0

∂ x0 =0

(2)
∂T 0

∂ x −
∂T 00

∂ x0 =0 (7.4.9)

The middle equation (1):

∂T  

∂ x
−
∂T  0

∂ x0 =0 /⋅x

Integrate it to the hypersurface crossing the source and the future light-line infinity:

∂
∂ x0∫T  0⋅x⋅dV=∫ ∂T  

∂ x
⋅x⋅dV=∫ ∂

∂ x
T ⋅x⋅dV−∫T 

⋅dV

∫T ⋅dV=−1
2
⋅ ∂
∂ x0∫ T 0⋅xT 0⋅x⋅dV (7.4.10)

The lower equation (2):

∂T 0

∂ x
−
∂T 00

∂ x0 =0 /⋅x⋅x

∂
∂ x0∫T 00⋅x⋅x⋅dV=−∫T 0⋅xT 0⋅x⋅dV (7.4.11)

Equating the two equations:

∫T  ⋅dV=−1
2
⋅ ∂
∂ x0∫T 00⋅x⋅x⋅dV (7.4.12)

239



7.4 Second order approximation

Introduce  the  symbols  for  energy and  time,  and  substitute  it  into  the  solution  of  the  Einstein 
equation (7.4.6):

T 00=m⋅c2 t= x0

c

h x , t = 4⋅
c4⋅R

⋅ ∂
2

∂ t2∫ x⋅x⋅dV (7.4.13)

Introduce the three dimensional quadrupole moment tensor:

Qij=∫⋅x i⋅x j⋅d 3 x (7.4.14)

At great distance from the source it is a planar wave, with the following non-zero components:

cross polarized: h23=
2⋅

3⋅c4⋅R
⋅Q̈23

plus polarized: h22−h33=−
2⋅

3⋅c4⋅R
⋅Q̈22−Q̈ 33 (7.4.15)

Substitute it into  t (the local  energy-momentum tensor), and write down the  energy current along 
the x axis:

c⋅t 10= 
36⋅⋅c5⋅R2⋅1

4
⋅ Q22−Q33

2 Q23
2 (7.4.16)

Energy current radiated into the dΩ solid angle: R2⋅c⋅t10⋅d 

Introduce the e polarisation unit vector, and define its properties. Here n is the three-vector of the 
plane wave:

eij

eaa = 0 eia ∙ na = 0 eab ∙ eab = 1 (7.4.17)

With it the intensity of radiation with a given polarisation:

dl= 
75⋅⋅c3⋅ Q ab⋅eab

2⋅d (7.4.18)

Average over every polarisation direction. Express the polarisation unit tensor:

e ij⋅ekl=
1
4
⋅n i⋅n j⋅nk⋅nln i⋅n j⋅klnk⋅nl⋅ij−ni⋅nk⋅ jl−n j⋅nk⋅il

−ni⋅nl⋅ jk−n j⋅nl⋅ik−ij⋅kl ik⋅ jl jk⋅ il 
(7.4.19)
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7.4 Second order approximation

Use the three-vector of the plane wave to express the intensity:

dl= 
36⋅⋅c5⋅ Qab⋅na⋅nb

2 Qab
2− Q ab⋅Q ac⋅nb⋅nc ⋅d (7.4.20)

The average of the energy current along the
dl

d 
⋅4⋅ direction, the quadrupole formula:

−dE
dt
= 

45⋅c3⋅ Qab
2

(7.4.21)

The second time derivative of the  quadrupole moment is approximately the  kinetic energy of the 
non-spherically symmetric movements of the source. The amplitude of the generated waves:

h=
c4⋅

E k

r (7.4.22)

Calculate from the quadrupole formula the radiated performance into a unit solid angle:

Lg=
1
5
⋅

c5⋅ Q ab⋅Qab−
1
3
⋅ Q2 (7.4.23)

7.5 Examples

Quadrupole moment of mass points connected with springs:

Q=m⋅l 2 (7.5.1)

The length of the spring changes periodically:

l=l 0a⋅sin ⋅t  (7.5.2)

Substitute into the equation of the quadrupole moment:

Q=m⋅l 0
22⋅m⋅l 0⋅a⋅sin ⋅t m⋅a2⋅sin2⋅t  (7.5.3)

In the case of small difference the last term can be neglected:

Q=−2⋅m⋅l 0⋅a⋅
3⋅cos ⋅t  (7.5.4)

Substitute into the equation for luminosity:
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7.5 Examples

Lg=
4
5
⋅

c5⋅m⋅l 0⋅a⋅
3⋅cos ⋅t 2 (7.5.5)

Calculate how much gravitational energy is emitted by a vibrating rod in every second. For the sake 
of simplicity, we use unit but realistic sizes:

m=1 kg l 0=1m

a=10−3 m =102 1
s

Lg=6.6488⋅10−49 J
s (7.5.6)

Gravitational luminosity of a rotating rod from its quadrupole moment:

Q=2
18
⋅m⋅l 2⋅3⋅t 3

Q=2
3
⋅m⋅l 2⋅3

Lg=
2
45
⋅

c5⋅m⋅l
2⋅32 (7.5.7)

Let the size of the rotating rod become comparable to its Schwarzschild radius:

r=2⋅⋅m
c2 v=⋅r

r= l
2

= v
c
⋅c

r (7.5.8)

Substitute these values into the luminosity and evaluate the greatest possible luminosity (or at least 
its magnitude):

Lg=
8
45
⋅c5

⋅r
4⋅ r g

r 
2

⋅ v
c 

6

Lg=3,63⋅1052 J
s (7.5.9)

This  value more or less corresponds to  the combined radiation performance of  all  stars  of the 
Universe.

The two-body problem:
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7.5 Examples

reduced mass: =
m1⋅m2

m1m2

relative coordinates: zi=x1
i−x2

i

absolute coordinates: x1
i= 

m1
⋅z i x2

i= 
m2
⋅z i

(7.5.10)

The reduced quadrupole moment:

Qij=⋅3⋅z i⋅z j−ij⋅∣z∣2 (7.5.11)

The parameters of the circular orbit:

z1=R⋅sin⋅t z2=R⋅cos ⋅t  z3 = 0 (7.5.12)

Quadrupole moment:

Qij⋅Qij=18⋅2⋅ z 2⋅z26⋅z⋅ż⋅ż 29⋅z2⋅ż 2 (7.5.13)

Radiation performance:

−dE
dt
=32⋅

5⋅c5⋅
2⋅6⋅R4

(7.5.14)

Substitution:

2⋅R3=m1m2 t k=2⋅⋅ R3

⋅m1m2
(Kepler's law) (7.5.15)

The radiation output in case of a circular orbit:

−dE
dt
=32⋅4

5⋅c5 ⋅
m1

2⋅m2
2⋅m1m2

R5 (7.5.16)

The E energy and the L angular momentum on an elliptic orbit:

semi-major axis: a=−⋅
m1⋅m2

2⋅E

eccentricity: e2=1
2⋅E⋅L2⋅m1m2
2⋅m1⋅m2

3 (7.5.17)

The radiation output in case of an elliptic orbit:
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7.5 Examples

−dE
dt
=32⋅4

5⋅c5 ⋅
m1

2⋅m2
2⋅m1m2

a5⋅1−e2
7
2

⋅173
24
⋅e237

96
⋅e4 (7.5.18)

The change in the orbital period:

ṫ k

t k
=3⋅ȧ

2⋅a
= 3⋅Ė

2⋅∣E∣

ṫ k

t k
=−96⋅2

5⋅c5 ⋅
m1⋅m2

3⋅m1m2
⋅ t k

2⋅ 
− 8

3
⋅ 1

1−e2
7
2

⋅173
24
⋅e237

96
⋅e4 (7.5.19)
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8. Spacetime of the Universe

8. Spacetime of the Universe

Gravitation as a macroscopic interaction influences the structure and future of the entire 
Universe.  Although the  arrangement  of  stars  and galaxies  in  it  highly varies,  we can do some 
simplifications nevertheless.  According to the  cosmological  principle,  the Universe on the ~108 

lightyears scale is already  homogeneous and  isotropic, and already in much smaller volumes the 
electromagnetic effect of the particles mutually cancels out, therefore in the investigated size range 
they do not influence the structure of spacetime.

8.1 Assumptions

According to our current knowledge the most general Einstein equation is:

R−
1
2
⋅R⋅g−⋅g =−

8⋅⋅
c4 ⋅T  (8.1.1)

Where  Λ denotes  the  cosmological  constant we  assume  to  be  responsible  for  the  accelerated 
expansion of the Universe, that was observed for the first time in 1998. This equation is the most 
general relationship that contains the metric tensor and its first and second derivatives, therefore the 
cosmological  constant is  also  part  of  the  spacetime  geometry,  it  does  not  describe  matter 
distribution.

We secure homogeneity by averaging, but this should be accepted with reservations, since 
for example in the case of the occurring quantities the product of averages is  not equal  to the 
average of products. The averaging of the Ricci tensor:

Rij=
∂ ij

a

∂ xa −
∂ aj

a

∂ xi  ij
b ⋅ ab

a − aj
b ⋅ ib

a ≠
∂ ij

a

∂ xa −
∂ aj

a

∂ x i  ij
b ⋅ ab

a − aj
b ⋅ ib

a (8.1.2)

Furthermore, we split up the space to cells for the averaging, but for this we would have to know 
the exact metric. This method works, if there are no larger scale structures in the Universe than ~108 

lightyears.  The consequence of  isotropy is  constant curvature,  in  this  case calculating the three 
dimensional Riemann tensor is easy because of the Schur theorem:

Rijkl=
1
2
⋅R⋅g ik⋅g jl−g il⋅g jk  (8.1.3)

These  conditions  reduce  the  number  of  possible  spacetime  configurations  considerably. 
Consequently  the  three  dimensional  space  is  a  maximally  symmetric  manifold,  with  positive, 
negative or zero possible scalar curvature, and we embed it into a four dimensional flat manifold. 
These three cases determine the shape of the space around us, the density of matter, and the future 
of the Universe.
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8.2 Positive curvature

8.2 Positive curvature

The  first  possibility  is  a  sphere  with  three  dimensional  surface,  embedded  into  four 
dimensional flat spacetime. The equation of the surface with rectangular coordinates:

x1
2 x2

2x3
2x4

2=a2

x4
2=a2− x1

2−x2
2− x3

2 (8.2.1)

The arc length squared on this surface:

dl=dx1
2dx2

2dx3
2dx4

2

dx4=−
x1⋅dx1x2⋅dx2x3⋅dx3

x4
(8.2.2)

Let us introduce polar coordinates:

x1=r⋅sin ⋅cos
r 2=x1

2x2
2 x3

2

x2=r⋅sin ⋅sin  ↔
r⋅dr=x1⋅dx1 x2⋅dx2x3⋅dx3

x3=r⋅cos  (8.2.3)

The arc length squared with polar coordinates:

dl 2= dr 2

1− r 2

a2

r 2⋅d 2sin2⋅d2
(8.2.4)

Rescale the r coordinate depending on the a radius of the sphere:

r= r
a (8.2.5)

Substitute into the arc length squared:

dl 2=a2⋅ dr 2

1−r2r2⋅d 2sin2⋅d 2 (8.2.6)

Introduce a new coordinate, thus in three dimensions every one of them will be angular coordinates:

r=a⋅sin 

dr=a⋅cos ⋅d  (8.2.7)
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8.2 Positive curvature

Substitute into the arc length squared:

dl 2=a2⋅d2sin2 ⋅d 2sin2⋅d 2 (8.2.8)

By adding  the  time  coordinate,  we  write  down the  four  dimensional  arc  length  squared.  The 
Robertson-Walker  metric in  the  case  of  positive  curvature,  we  allow  the  radius  to  be  time 
dependent:

ds2=c2⋅dt 2−a2t ⋅d 2sin2 ⋅d 2sin2⋅d 2 (8.2.9)

The positive curvature, closed Universe has finite volume:

V=a3⋅∫
=0



∫
=0



∫
=0

2⋅

sin2⋅sin⋅d ⋅d ⋅d=2⋅2⋅a3 (8.2.10)

The calculation of the surface of a two dimensional sphere of radius r in this universe:

A=4⋅⋅r2⋅sin2=4⋅⋅r2⋅sin2a
r  (8.2.11)

8.3 Negative curvature

In this case the radius is negative:

a2 → – a2 (8.3.1)

This has the following consequences for the metric:

a → i ∙ a

χ → i ∙ χ

sin i⋅=sinh  (8.3.2)

The Robertson-Walker metric for the negative curvature can be determined from the positive case 
by substituting the former, the radius can be time dependent here too:

ds2=c2⋅dt 2−a2t ⋅d 2sinh2 ⋅d 2sin2⋅d2 (8.3.3)

The negative curvature, open Universe has infinite volume:
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8.3 Negative curvature

V=a3⋅∫
=0

∞

∫
=0



∫
=0

2⋅

sinh2⋅sin⋅d ⋅d ⋅d=∞ (8.3.4)

The calculation of the surface of a two dimensional sphere of radius r in this universe:

A=4⋅⋅r2⋅sinh2=4⋅⋅r2⋅sinh2a
r  (8.3.5)

8.4 Zero curvature

In this  case  a merely scales distances in the Universe and  χ changes back to a distance 
coordinate:

= r
a (8.4.1)

Robertson-Walker metric in the case of zero curvature, the time dependence remains of course:

ds2=c2⋅dt 2−a2t ⋅d 22⋅d 2sin2⋅d 2 (8.4.2)

The negative curvature, open Universe also has infinite volume:

V=a3⋅∫
=0

∞

∫
=0



∫
=0

2⋅

2⋅sin⋅d ⋅d ⋅d=∞ (8.4.3)

The surface of the two dimensional sphere can be calculated with the usual formula:

A=4⋅⋅r2 (8.4.4)

8.5 Cosmological redshift

In every possible Universe the parameter a is allowed to change with time. Our observations 
show, that the dimmer the galaxies around us are, the greater redshift they have. We can interpret 
this phenomenon as the expansion of the Universe.

The observer is in the centre of our coordinate system. The constant coordinates of the light 
source:

1,1,1 (8.5.1)

In the  t1 moment a lightwave maximum starts from the source, it arrives at the  t0 moment to the 
observer in the centre:
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8.5 Cosmological redshift

t0 > t1 (8.5.2)

It propagates along one of the coordinates, therefore the coordinate conditions:

=const. =const. (8.5.3)

Write down the arc length squared along the light-like geodesic:

c2⋅dt2−a2t ⋅d2=0 (8.5.4)

The elapsed time:

dt=±a t ⋅d 
c

dt
a t 

=±d 
c

∫
t 1

t 0 dt
a t 

=±1
c
⋅∫
1

0

d =±
1

c (8.5.5)

The next light maximum:

departs: t 1 t1

arrives: t 0 t 0 (8.5.6)

∫
t1 t1

t0 t0 dt
a t 

=
1

c
=∫

t1

t0 dt
a t 

∫
t1 t1

t0 t0 dt
a t 

= ∫
t 1t1

t1 dt
a t 

∫
t1

t0 dt
a t 

 ∫
t0

t 0t 0 dt
a t 

=∫
t1

t0 dt
a t 

∫
t1 t1

t 1 dt
a t 

 ∫
t0

t0 t0 dt
a t 

=0 (8.5.7)

Since the δt change in time is small, therefore during this time the time dependent a(t) function does 
not change significantly:

−
 t 1

a t 1


 t 0

a t 0
=0

0

1
=
1

0
=
 t 0

 t 1
=

a t1
a t 0

(8.5.8)
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8.5 Cosmological redshift

The  z parameter characterizes the ratios of the distances of distancing objects from us, without 
knowing their absolute distance:

z=
0

1
−1=

a t 0
a t 1

−1 (8.5.9)

We observe this value to be positive, and we interpret this as the expansion of the Universe.

8.6 Hubble law

Distance along one of the coordinates:

l t =a t ⋅ (8.6.1)

Two celestial bodies with constant coordinates:

l t 1
a t1

=
l t
at 

l t = l
a
⋅a t  (8.6.2)

We examine with derivatives  according to  time,  how fast  the  distance  changes  because  of  the 
expansion:

l̇= ȧ
a
⋅l=H⋅l H= ȧ

a
⋅c (8.6.3)

Where H is the current value of the Hubble constant:

H 0=73,8±2,4 km
s
⋅ 1

MPc
=2.39⋅10−18 1

s (8.6.4)

The Hubble time is approximately in the same magnitude with the age of the Universe:

tH=
1

H 0
=4.18⋅1017 s=1.32⋅1010 year (8.6.5)

It is possible to determine by approximation from the cosmic redshift and the Hubble constant, how 
long time it took, until the light has reached us. Series expansion around the state of the observer:

1
a t 

=∑
0

∞ 1
n!
⋅d n

dt n
1

a t 
⋅− t n

1
a t 

≈1
a
 ȧ

a2⋅ t1
2
⋅ 2⋅ȧ2

a3 − ä
a2 ⋅ t 2−1

6
⋅− a

a2
6⋅ȧ⋅ä

a3 −6⋅ȧ3

a4 ⋅ t 3
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8.6 Hubble law

a
a t 

≈1 ȧ
a
⋅ t ȧ2

a2−
ä

2⋅a ⋅ t 2 ȧ3

a3−
ȧ⋅ä
a2 

a
6⋅a ⋅ t 3 (8.6.6)

Substitute the H Hubble constant and the Q deceleration parameter, and write down with them the 
Taylor series of the cosmological redshift:

H
c
= ȧ

a
Q= ä

a

z= a
a t 

−1≈H⋅ t H 2

c2 −
Q
2 ⋅ t 2−H 3

c3 −
H
c
⋅Q a

6⋅a ⋅ t 3 (8.6.7)

The distance of the light source in the case of a small z:

 l≈ H
z
⋅c (8.6.8)

8.7 Flat geometry

According to our observations, the space in the Universe is not curved on the large scale. We 
determine the  critical  density, that characterizes this universe-model. To write down the flat arc 
length squared, we start with Minkowskian coordinates and extend them with the time dependent 
scale factor:

ds2=c2⋅dt 2−a2t ⋅dx2dy2dz2 (8.7.1)

The geometric quantities from the metric tensor to the Ricci scalar:

g =1 0 0 0
0 −a2 0 0
0 0 −a2 0
0 0 0 −a2 g =

1 0 0 0

0 − 1
a2 0 0

0 0 −
1
a2 0

0 0 0 − 1
a2
 (8.7.2)

∂ g xx

∂ t
=
∂ g yy

∂ t
=
∂ gzz

∂ t
=−2⋅a⋅ȧ ∂ g xx

∂ t
=∂ g yy

∂ t
=∂ g zz

∂ t
= 2⋅ȧ

a3 (8.7.3)

 xx
t = yy

t = zz
t =a⋅ȧ  tx

x = xt
x = ty

y = yt
y = tz

z = zt
z = ȧ

a (8.7.4)
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8.7 Flat geometry

∂ xx
t

∂ t
=
∂ yy

t

∂ t
=
∂ zz

t

∂ t
=a⋅äȧ2

 tx
x

∂ t
=
 xt

x

∂ t
=
 ty

y

∂ t
=
 yt

y

∂ t
=
 tz

z

∂ t
=
 zt

z

∂ t
= ä

a
− ȧ2

a2 (8.7.5)

R xtx
t =−R xxt

t =R yty
t =−R yyt

t =R ztz
t =−R zzt

t =a⋅ä

R ttx
x =−R txt

x =R tty
y =−R tyt

y =R ttz
z =−R tzt

z = ä
a

R yxy
x =−R yyx

x =R zxz
x =−R zzx

x =R xyx
y =−R xxy

y =R zyz
y =−R zzy

y =R xzx
z =−R xxz

z =R yzy
z =−R yyz

z =ȧ2

(8.7.6)

R=−3⋅ä
a

0 0 0

0 a⋅ä ȧ2 0 0
0 0 a⋅äȧ2 0
0 0 0 a⋅äȧ2

 (8.7.7)

R=−6⋅a⋅äȧ2

a2 (8.7.8)

The normalized form of the energy-momentum tensor:

T =
⋅c2 0 0 0

0 − p
a2 0 0

0 0 − p
a2 0

0 0 0 − p
a2
 (8.7.9)

Substitute them into the Einstein equations:

R−
1
2
⋅R⋅g=−

8⋅⋅
c4 ⋅T   (8.7.10)

The time-like component:

Rtt−
1
2
⋅R⋅g tt=−

8⋅⋅
c4 ⋅T tt (8.7.11)
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8.7 Flat geometry

−3⋅ä
a
−1

2
⋅−6⋅a⋅ä ȧ2

a2 ⋅1=−8⋅⋅
c4 ⋅⋅c2

3⋅ȧ2

a2=
8⋅⋅

c2 ⋅

The first Friedmann equation gives the density of the Universe:

3⋅H 2

8⋅⋅
= (8.7.12)

Substitute and determine the numerical value:

=1.02⋅10−26 kg
m3 (8.7.13)

This means an average 6.11 hydrogen atoms in every cubic meters.

8.8 General Friedmann equations

We express the three possible cases with a single equation:

k⋅x1
2 x2

2x3
2x4

2=a2 k {0
0
=0

(8.8.1)

Where we differentiate with k between the solutions that are either flat, or have positive or negative 
curvature. The spatial arc length squared:

dl 2=dx1
2dx1

2dx1
2k⋅dx4

2 (8.8.2)

Switch to the usual coordinate system and write down the arc length squared:

d = d
1−k⋅ 2

ds2=c2⋅dt 2−a2t ⋅ d  2

1−k⋅2
2⋅d 2sin2⋅d2 (8.8.3)

The geometric quantities from the metric tensor to the Ricci scalar:
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8.8 General Friedmann equations

g =
1 0 0 0

0 −
a2t 

1−k⋅2 0 0

0 0 −a2t ⋅ 2 0
0 0 0 −a2t ⋅2⋅sin2


g =

1 0 0 0

0 −
1−k⋅2

a2t 
0 0

0 0 − 1
a2t ⋅ 2 0

0 0 0 − 1
a2t ⋅ 2⋅sin2

 (8.8.4)

∂ g

∂ t
=− 2⋅a⋅ȧ

1−k⋅2
∂g

∂ t
=−2⋅1−k⋅ 2⋅ȧ

a3

∂ g

∂ t
=−2⋅ 2⋅a⋅ȧ ∂ g

∂ t
= 2⋅ȧ
 2⋅a3

∂ g

∂ t
=−2⋅2⋅a⋅ȧ⋅sin2

∂ g

∂ t
= 2⋅ȧ
2⋅a3⋅sin 

∂ g

∂
=− 2⋅k⋅⋅a2

1−k⋅ 22
∂ g

∂
=2⋅k⋅

a2

∂ g

∂
=−2⋅⋅a2 ∂ g

∂
= 2
 3⋅a2

∂ g

∂
=−2⋅⋅a2⋅sin2

∂g

∂
= 2
3⋅a2⋅sin 2

∂ g

∂
=−2⋅2⋅a2⋅cos⋅sin

∂ g

∂
=

2⋅cos
2⋅a2⋅sin3

(8.8.5)

 
t = a⋅ȧ

1−k⋅2  
t =2⋅a⋅ȧ  

t = 2⋅a⋅ȧ⋅sin2

 t
 =  t

 = t 
 = t

 = t
 =  t

 = ȧ
a
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 
 = k⋅

1−k⋅2  
 =−⋅1−k⋅2  

 =−⋅1−k⋅ 2⋅sin2

 
 = 

 = 
 = 

 = 1
  

 =−cos ⋅sin

 
 = 

 =cot  (8.8.6)

 
t

∂ t
=a⋅äȧ2

1−k⋅ 2
∂ 

t

∂ t
= 2⋅a⋅äȧ2

∂ 
t

∂ t
=2⋅a⋅äȧ2⋅sin2

∂ t


∂ t
=
∂  t



∂ t
=
∂ t 



∂ t
=
∂  t



∂ t
=
∂ t 



∂ t
=
∂ t



∂ t
=a⋅ä−ȧ2

a2

∂ 
t

∂
=2⋅k⋅⋅a⋅ȧ
1−k⋅ 22

∂ 
t

∂
=2⋅⋅a⋅ȧ

∂ 
t

∂
=2⋅⋅a⋅ȧ⋅sin2

∂ 


∂
=

k⋅1k⋅2
1−k⋅22

∂ 


∂
=−1−3⋅k⋅ 2

∂ 


∂
=−1−3⋅k⋅2⋅sin2

∂ 


∂
=
∂ 



∂
=
∂ 



∂
=
∂ 



∂
=− 1

 2

∂ 
t

∂
=2⋅ 2⋅a⋅ȧ⋅cos ⋅sin

∂ 


∂
=−2⋅⋅1−k⋅2⋅cos ⋅sin 

∂ 


∂
=sin2−cos2

∂ 


∂
=
∂ 



∂
=− 1

sin2
(8.8.7)

R  t
t =−R  t

t = a⋅ä
1−k⋅ 2

R  t
t =−R  t

t =2⋅a⋅ä

R t 
t =−R  t

t =2⋅a⋅ä⋅sin2

R tt
 =−R t t

 =R tt 
 =−R t t

 =R tt
 =−R t t

 = ä
a

R 
 =−R 

 =R 
 =−R 

 = 2⋅ȧ2k 

R 
 =−R 

 =R 
 =−R 

 =2⋅ȧ2k ⋅sin2

255



8.8 General Friedmann equations

R 
 =−R 

 =R 
 =−R 

 = ȧ2k
1−k⋅2 (8.8.8)

R=−
3⋅ä
a

0 0 0

0 a⋅ä2⋅ ȧ2k 
1−k⋅2 0 0

0 0  2⋅a⋅ä2⋅ȧ2k  0
0 0 0 2⋅a⋅ä2⋅ȧ2k ⋅sin2


(8.8.9)

R=− 6
a2⋅a⋅äȧ2k  (8.8.10)

The normalized form of the energy-momentum tensor:

T =⋅c2 0 0 0

0 −
a2t 

1−k⋅2⋅p 0 0

0 0 −a2t ⋅2⋅p 0
0 0 0 −a2t ⋅2⋅sin2⋅p

 (8.8.11)

Substitute them into the Einstein equation:

R−
1
2
⋅R⋅g−⋅g =−

8⋅⋅
c4 ⋅T  (8.8.12)

The time-like component:

Rtt−
1
2
⋅R⋅g tt−⋅g tt=−

8⋅⋅
c4 ⋅T tt (8.8.13)

−3⋅ä
a
−1

2
⋅− 6

a2⋅a⋅ä ȧ2k ⋅1−⋅1=−8⋅⋅
c4 ⋅⋅c2

ȧ2⋅c2

a2  k⋅c2

a2 −⋅c2

3
=−8⋅⋅

3
⋅

The first general Friedmann equation:

H 2 k⋅c2

a2 −⋅c2

3
=−8⋅⋅

3
⋅ (8.8.14)
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The spatial components:

Rii−
1
2
⋅R⋅g ii−⋅g ii=−

8⋅⋅
c4 ⋅T ii (8.8.15)

R−
1
2
⋅R⋅g −⋅g=−

8⋅⋅
c4 ⋅T 

a⋅ä2⋅ȧ2k 
1−k⋅ 2 −1

2
⋅− 6

a2⋅a⋅äȧ2k ⋅− a2

1−k⋅ 2 −⋅− a2

1−k⋅ 2 =−8⋅⋅
c4 ⋅− a2

1−k⋅ 2⋅p
−2⋅ä⋅c2

a
− ȧ2⋅c2

a2 − k⋅c2

a2 ⋅c2=8⋅⋅
c2 ⋅p

We get the second general Friedmann equation in the two other cases as well:

−2⋅ä⋅c2

a
−H 2− k⋅c2

a2 ⋅c2=8⋅⋅
c2 ⋅p (8.8.16)

8.9 World models

Write down the relationship  between the  density and the  scale  factor in  two theoretical 
scenarios, one of them corresponds to the matter dominated universe, and in the second case the 
energy is present mostly in the form of radiation. We introduce dimensionless quantities:

mt ⋅a
3t =const. p=0 K m=

8⋅⋅
3⋅c2 ⋅m⋅a3=const.

r t ⋅a4t =const. p=⋅c2

3
K r=

8⋅⋅
3⋅c2 ⋅s⋅a

4=const. (8.9.1)

Write down the Friedmann equations of movement with them:

ȧ2−
K m

a
−

K r

a2 −
⋅a2

3
=ȧ2V a =−k (8.9.2)

In it the Friedmann potential:

V a=−
K m

a
−

K r

a2 −
⋅a2

3 (8.9.3)

The time dependence of the scale factor while neglecting the cosmological constant:
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ȧ2≈
Km

a
 a t ∝ 3 t 2 ȧ2≈

K r

a2  at ∝ t (8.9.4)

In a static Universe the scale factor does not change, its derivatives according to time are zeroes. In 
the present state the energy of radiative origin can be neglected, therefore the cosmological constant 
necessary for a static situation can be determined from the equation of movement:

−K m

a
−
k⋅a2

3
=−1

k=
3
a2−

3⋅Km

a3 (8.9.5)

Friedmannian world models:

k = – 1 k = 0 k = 1
0 closed, periodic closed, periodic closed, periodic
=0 open, expanding open, asymptotic closed, periodic
0k open, expanding open, expanding periodic / open

=k open, expanding open, expanding open, static, unstable

k open, expanding open, expanding open, expanding

Introduce the following dimensionless variables:

x =a t 
a0

=H 0⋅t

x 0=0 (8.9.6)

Characterizing the present state:

ȧ2−
K m

a
−⋅a2

3
=−k /⋅ c2

H 0
2⋅a0

2

ẋ2−
m

a
−⋅ẋ2=k (8.9.7)

Where dimensionless constants characterize the state of the Universe:

m=
8⋅⋅
3⋅H 0

2 ⋅m=
m

k
=

⋅c2

3⋅H 0
2 k=−

k⋅c2

H 0
2⋅a0

2
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mk=1 (8.9.8)

Their values according to our present knowledge:

m=0.273 =0.727 k≈−0.023 (8.9.9)

Distance of a point from the centre of the coordinate system:

D=∫
0



 g⋅d=R t ⋅ (8.9.10)

Distance of the particle horizon:

D0=R0⋅∫
0

t 0

d =R0⋅∫
0

t 0 c⋅dt
Rt

(8.9.11)

Cosmic escape velocity:

v k=
d
dt
R⋅=dR

dt
⋅=H0⋅R0⋅

lim
∞

vk=∞ (8.9.12)

Calculating the dimensionless time:

=H 0⋅t=∫
0

x dx

m

x
⋅x2K

(8.9.13)

The age of the Universe:

t 0=∫
0

x=1 dx
ẋ
= 1

H 0
⋅∫

0

x=1 dx

m

x
⋅x2K

=0.9897
H 0

=4.14⋅1017 s=1.31⋅1010 years

(8.9.14)

The radius of the observable part of the Universe:

D0=a0⋅∫
0

t 0 c⋅dt
a t 

= c
H 0
⋅∫

0

x=1 dx
m⋅x⋅x4K⋅x2

= c
H 0
⋅3.433

D0=4.475⋅1026 m=4.73⋅1010 lightyears (8.9.15)

The distancing velocity of the border of the visible region:
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v D0=c⋅ȧ0⋅∫
0

t 0 c⋅dt
a t 

=H 0⋅D0=c⋅∫
0

x=1 dx
m⋅x⋅x4K⋅x2

=3.433⋅[c ] m
s (8.9.16)

This value exceeds the speed of light significantly. However this has no consequences from the 
point of view of the bodies moving in the spacetime.
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Summary

Summary

We have  peaked  into  the  world  of  deterministic  physics.  It  was  apparently  possible  to 
geometrize this part of science, however we always have to keep in mind that like every model, this  
also  has  limits.  Some  of  them follow  from our  conditions  earlier,  when  we  determined  what 
phenomena interest us, and what do not; others occurred on the way, and it happens that we cannot 
satisfy certain expectations; in the worst case our conclusions can be rebutted by experimental data.

First  and foremost  in the beginning of the  20th century an old philosophical debate was 
concluded: the world is essentially  indeterministic. It does not mean that its is unpredictable, it 
means only that we cannot predict events with arbitrary accuracy. The problem is not that we do not 
have enough information about the states, like many have thought initially. They assumed hidden 
variables, that we cannot measure, but they unambiguously determine the flow of events. It turned 
out  that  such  variables  do  not  exist,  nature  has  been  determined  to  be  probabilistic.  These 
phenomena under a certain size limit and above a certain energy density make the results described 
in this book useless.

Several philosophical expectations are not satisfied by the results in the book. One of the 
most famous of them is the vaguely defined  Mach principle, that would mean that the  Einstein 
equations cannot have a solution in empty space. Further complications arise because particles with 
spin cannot be properly discussed within the framework of general relativity, it has to be extended 
with torsion besides curvature to geometrize the effects of spin on spacetime (although this claim is 
disputed by some). In the resulting model additional effects manifest that were not yet confirmed 
experimentally. A more serious problem than these is the appearance of naked  singularities, that 
have to be dealt with because of the insufficient definition of the appearing complex quantities in 
the model.

The validity of the model is questioned time to time, alternative theories predict different 
outcomes  for  various  phenomena.  We  can  however  point  out  two  things:  within  the  current 
boundaries of measurement, considering the shortcomings of our astronomical knowledge (and if 
we stay within the postulated limits of validity), there is no result that would contradict the general 
theory of relativity. On the other hand, the competing models that predict with high accuracy in 
some problematic phenomena (like the problem of dark matter), gravely err in completely everyday 
situations.

The Kaluza theory is a generalization of general relativity as much as general relativity is an 
extension of special relativity. It addresses several gaps in Einstein's original theory, it finally gets 
rid of the idea of force, thus erases such shortcomings like the possibility of a force that could 
accelerate objects to become faster than the speed of light, and several solutions of the  Einstein 
equations,  that  are  although  completely  valid,  are  also  completely  unphysical.  Their  combined 
model can handle the most complete deterministic limiting case with solely mathematical tools.
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This series presents modern physics through examples and derivations. The organization of 
topics  does  not  follow  the  traditional  historical  approach,  it  was  determined  by  practical 
considerations  instead.  We build  up the  mathematical  framework of  the  models  first,  and then 
completely  derive  the  most  important  consequences  and  compare  them to  recent  experimental 
results. The volumes can be used in the specialized fields as reference materials, and are suitable for 
self-study in each topic. They may also serve the needs of university lectures as well.

The  first  volume  deals  with  the  general  theory  of  relativity.  This  description  has  only 
historical relevance by now, since during the last century, much experimental evidence was found 
for the consequences of Einstein's theory. It is a classical field, where centuries-old scientific and 
philosophical  ideas  got  mathematical  formulation,  and  the  experimental  confirmation.  It  is 
important to point out, that the traditional mechanical worldview, that is often considered to be 
easier to grasp, is in fact an incomplete intellectual achievement. The basic assumptions of general 
relativity draw from everyday experiences, and the recognition of the curved nature of spacetime 
follows naturally. It is comparable to the understanding of  Earth's spherical shape, and if we are 
familiar with the mathematical foundations, it does not even require too much imagination.

The Reader is assumed to have some basic knowledge in higher mathematics and among the 
more traditional subjects in physics, but there is only as much mathematical depth in this book, as  
absolutely necessary. We use the traditional symbols of differential calculus and index notation. The 
SI system of measurement is used in all physical derivations.
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