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Preface

This book has been written at a time when thermoelectric energy conversion is
showing great promise. It was in 1953 that I first carried out the experiments on
bismuth telluride that demonstrated the potential of thermoelectric refrigeration.
The present-day thermoelectric modules are based on the work that was carried
out during the late 1950s and the early 1960s on bismuth telluride and its alloys.
Since that time, there have been significant advances in materials for thermoelectric
generation, but at all temperatures the efficiency of energy conversion using thermo-
couples has fallen far short of that expected for an ideal thermodynamic machine.
At last, with the advent of nanostructured thermoelements, there is the promise that
substantial advances will be made.

The basic principles of thermoelectric devices have not changed over the years
and the theory presented in the first few chapters will always be applicable as new
materials are discovered. A review of existing thermoelectric materials is presented
with a chapter devoted to bismuth telluride showing how improvements in its syn-
thesis and composition have led to the present-day performance. It is not always
appreciated that the behaviour of a specific alloy is strongly dependent on the man-
ner in which it is prepared and a chapter is devoted to the production of materials,
the stress being on principles rather than on experimental detail.

The assessment of the transport properties of thermoelectric materials presents
special problems. The chapter on measurement techniques includes a discussion
of the errors that can arise when the so-called figure of merit is determined for
non-uniform specimens. Indeed, I myself was led astray in the interpretation of ex-
perimental observations on polycrystalline samples of anisotropic material before
I realised the extent of the problem.

It is usual to make use of modules rather than simple thermocouples. There is an
outline of the method of selecting commercial modules for any particular applica-
tion and a discussion of the problems that arise from attempts to miniaturise the size
of modules so as to economise on space and material. Throughout the book, I have
tried to emphasise practical considerations.

A full understanding of the behaviour of nanostuctured thermoelectric materi-
als requires the mastery of difficult theoretical concepts but it is hoped that the
elementary treatment in this book will allow the reader to comprehend the basic
principles. It is expected that the so-called bulk nanostructures will find their way
into commercial production in the very near future.
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vi Preface

It is only during the past 2 or 3 years that I have appreciated the potential of the
synthetic transverse thermoelement and I have included a chapter that reviews this
unusual configuration. I have also included discussions of energy conversion using
the transverse thermomagnetic effects and the thermionic effects in solids and in
vacuum. The latter, in particular, will lead to greatly improved efficiencies if they
live up to their theoretical promise.

This book draws on my experience of thermoelectricity and its applications over
the past 55 years. During that time I have been supported by many people and I
acknowledge with gratitude the help that I have received from all of them.

In 1953, as a very junior scientist at the Research Laboratories of the General
Electric Company, I was encouraged by my group leader, R.W. Douglas, to look into
the possibility of using the Peltier effect in semiconductors as a practical means of
refrigeration. He continued to support the project, in spite of scepticism from some
of his senior colleagues, and the success of bismuth telluride as a thermoelectric
material stems from his foresight. I received support from many others in the Solid
Physics Group over the next few years and should mention particularly D.A. Wright,
who supervised my Ph.D. studies, and Ray Drabble, who helped me to understand
transport theory.

In my academic life between 1964 and 1988, first as Reader in Solid State Physics
at the University of Bath and then as Professor of Physics at the University of New
South Wales, I was fortunate to be working in institutions that had been founded
to promote applied science. I was encouraged to continue my research on thermo-
electricity and was joined by some excellent students. I am sure that I learned much
more from them than they did from me.

I acknowledge the support that I have received over much of my career from
Marlow Industries. Raymond Marlow enabled me to work closely with his com-
pany and kept me in touch with practical developments. In recent years, I have been
stimulated by my contact with George Nolas and Ted Volckmann and I appreciate
the fact that I am still able to work with Jeff Sharp and Jim Bierschenk.

Perhaps, my greatest inspiration has been the work of Abram Ioffe and I greatly
valued the opportunity, in 2005, to join in the celebration of the 125th anniversary
of his birth in the town of Romny in Ukraine. This was made possible through an
invitation from Professor L.I. Anatychuk and I am most appreciative of his encour-
agement for me to continue with my research.

Over the whole of my career I have received enthusiastic support from my wife
Joan and it is to her that I dedicate this book.

Kingston Beach Julian Goldsmid
Tasmania, Australia
June 2009
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Chapter 1
The Thermoelectric and Related Effects

1.1 Introduction

The first of the thermoelectric effects was discovered, in 1821, by T. J. Seebeck.
He showed that an electromotive force could be produced by heating the junction
between two different electrical conductors. The Seebeck effect can be demon-
strated by making a connection between wires of different metals (e.g., copper and
iron). The other ends of the wires should be applied to the terminals of a galvanome-
ter or sensitive voltmeter. If the junction between the wires is heated, it is found that
the meter records a small voltage. The arrangement is shown in Fig. 1.1. The two
wires are said to form a thermocouple. It is found that the magnitude of the ther-
moelectric voltage is proportional to the difference between the temperature at the
thermocouple junction and that at the connections to the meter.

Thirteen years after Seebeck made his discovery, J. Peltier, a French watchmaker,
observed the second of the thermoelectric effects. He found that the passage of an
electric current through a thermocouple produces a small heating or cooling effect
depending on its direction. The Peltier effect is quite difficult to demonstrate using
metallic thermocouples since it is always accompanied by the Joule heating effect.
Sometimes, one can do no better than show that there is less heating when the cur-
rent is passed in one direction rather than the other. If one uses the arrangement
shown in Fig. 1.1, the Peltier effect can be demonstrated, in principle, by replacing
the meter with a direct current source and by placing a small thermometer on the
thermocouple junction.

It seems that it was not immediately realised that the Seebeck and Peltier
phenomena are dependent on one another. However, this interdependency was
recognised by W. Thomson (who later became Lord Kelvin), in 1855. By applying
the theory of thermodynamics to the problem, he was able to establish a relation-
ship between the coefficients that describe the Seebeck and Peltier effects. His
theory also showed that there must be a third thermoelectric effect, which exists
in a homogeneous conductor. This effect, now known as the Thomson effect, con-
sists of reversible heating or cooling when there is both a flow of electric current
and a temperature gradient.

1
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Heat source or thermometer 

Galvanometer or 
electric current 
source

Conductor A Conductor B 

Fig. 1.1 Experiment to demonstrate the Seebeck and Peltier effects

The fact that the Seebeck and Peltier effects occur only at junctions between
dissimilar conductors might suggest that they are interfacial phenomena but they
are really dependent on the bulk properties of the materials involved. Nowadays, we
understand that electric current is carried through a conductor by means of electrons
that can possess different energies in different materials. When a current passes
from one material to another, the energy transported by the electrons is altered,
the difference appearing as heating or cooling at the junction, that is as the Peltier
effect. Likewise, when the junction is heated, electrons are enabled to pass from the
material in which the electrons have the lower energy into that in which their energy
is higher, giving rise to an electromotive force.

Thomson’s work showed that a thermocouple is a type of heat engine and that it
might, in principle, be used either as a device for generating electricity from heat or,
alternatively, as a heat pump or refrigerator. However, because the reversible ther-
moelectric effects are always accompanied by the irreversible phenomena of Joule
heating and thermal conduction, thermocouples are generally rather inefficient.

The problem of energy conversion using thermocouples was analysed by
Altenkirch [1], in 1911. He showed that the performance of a thermocouple could
be improved by increasing the magnitude of the differential Seebeck coefficient, by
increasing the electrical conductivities of the two branches and by reducing their
thermal conductivities. Unfortunately, at that time, there were no thermocouples
available in which the combination of properties was good enough for reasonably
efficient energy conversion, although the Seebeck effect has long been used for the
measurement of temperature and for the detection of thermal radiation. It was only
in the 1950s that the introduction of semiconductors as thermoelectric materials
allowed practical Peltier refrigerators to be made. Work on semiconductor thermo-
couples also led to the construction of thermoelectric generators with a high enough
efficiency for special applications. Nevertheless, the performance of thermoelectric
energy convertors has always remained inferior to that of the best conventional
machines.
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In fact, there was little improvement in thermoelectric materials from the time
of the introduction of semiconductor thermoelements until the end of the twentieth
century. However, in recent years, several new ideas for the improvement of mate-
rials have been put forward and, at last, it seems that significant advances are being
made, at least on a laboratory scale. It is reasonable to expect that this work will
soon lead to much wider application of the thermoelectric effects.

1.2 Relations Between the Thermoelectric Coefficients

We now define the Seebeck and Peltier coefficients and show how they are related
to one another. For the time being, we assume that the conductors are isotropic. We
refer to the simple thermocouple shown in Fig. 1.2. Conductor A is joined at both
ends to conductor B, the latter being divided into two parts so that, for example, a
voltmeter can be inserted in the gap.

Suppose that a temperature difference �T is established between the two junc-
tions and that the two free ends of conductor B are maintained at the same tem-
perature, it will then generally be found that a potential difference V will appear
between the free ends. The differential Seebeck coefficient, ˛AB, is defined as the
ratio of V to �T . Thus,

˛AB D V

�T
(1.1)

˛AB is deemed to be positive if the electromotive force tends to drive an electric cur-
rent through conductor A from the hot junction to the cold junction. It is noted that,
particularly in older texts, the quantity that is now known as the Seebeck coefficient
has often been called the thermoelectric power or the thermal EMF coefficient.

We define the differential Peltier coefficient, �AB, for the same thermocouple by
supposing that a source of EMF is connected across the gap in conductor B so as
to drive a current around the circuit in a clockwise direction. The Peltier coefficient
is regarded as positive if the junction at which the current enters A is heated and
the junction at which it leaves A is cooled. �AB is equal to the ratio of the rate q of
heating or cooling at each junction to the electric current I ,

�AB D q

I
: (1.2)

A 

 B B

Fig. 1.2 Simple thermocouple
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We note that it is much simpler to measure the Seebeck coefficient than the Peltier
coefficient. Thus, while both quantities enter into the theory of thermoelectric en-
ergy conversion, it would be preferable if only one of them had to be specified. In
fact, one of the Kelvin relations allows us express the Peltier coefficient in terms of
the Seebeck coefficient. The relevant equation is

�AB D ˛ABT: (1.3)

The other Kelvin relation connects the Seebeck coefficient and the Thomson co-
efficient, � , or, rather, the difference between the Thomson coefficients of the two
conductors. The Thomson coefficient is defined as the rate of heating per unit length
that results from the passage of unit current along a conductor in which there is unit
temperature gradient. The appropriate Kelvin relation is

�A � �B D T
d˛AB

dT
: (1.4)

The Seebeck and Peltier coefficients are defined above for a pair of conductors
whereas it would be much more convenient if their values could be given for a
single material. In fact, the absolute Seebeck or Peltier coefficient becomes equal
to the differential coefficient if the second material can be regarded as having zero
absolute coefficients. This concept can be realised, in practice, by using a super-
conductor as the second material. It is reasonable to assign zero Seebeck or Peltier
coefficients to a superconductor since the differential coefficients between all pairs
of superconductors are zero.

Of course, there is no material that remains in the superconducting state at ordi-
nary temperatures, so it might be thought that the absolute Seebeck coefficients of
other materials can be obtained only at low temperatures. However, this is not the
case. It is reasonable to write (1.4) in the form

� D T
d˛

dT
(1.5)

for a single conductor. Thus, if the absolute Seebeck coefficient of a material at low
temperatures is determined by connecting it to superconductor, one can then use
(1.5) to find the value at higher temperatures after measuring the Thomson coeffi-
cient [2, 3]. This procedure has been carried out for the metal lead, which may be
used as a reference material when determining the absolute coefficients for other
substances.

In actual fact, most metals, like lead, have very small absolute values of the
Seebeck coefficient compared with practical thermoelectric materials that are almost
invariably semiconductors.
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1.3 Effects in a Magnetic Field

Electric charges are subject to transverse forces when they travel in a magnetic field.
Thus, the thermoelectric effects, like the other transport properties, become changed
when a magnetic field is applied, and there also appear some new phenomena. We
need to discuss these so-called thermogalvanomagnetic effects since they can affect
the performance of thermoelectric devices and can even lead to new methods of
energy conversion.

As we shall demonstrate in the next chapter, the electric and thermal conductiv-
ities are properties that are of importance when we are calculating the performance
of devices based on the Seebeck and Peltier effects. Both quantities become less on
the application of a magnetic field, though the changes are very small unless the
field is very strong and the mobility of the charge carriers is high. The Seebeck and
Peltier coefficients, too, will change under the influence of a magnetic field, B .

Usually, the value of the Seebeck coefficient will be the same when the direction
of the magnetic field is reversed but this is not always the case. Any difference
between the values of the Seebeck coefficient upon reversal of the field is called the
Umkehr effect. The Umkehr effect has been shown [4] to be very large for certain
orientations of the semimetal bismuth.

Another consequence of the action of a magnetic field [5] is the need to modify
the Kelvin relation (1.3). The modified equation is

�.B/ D T ˛.�B/: (1.6)

When a transverse magnetic field is applied to a current carrying conductor, an
electric field appears in a direction perpendicular to both the current and B . This
is the well-known Hall effect. The Hall effect is not immediately relevant to energy
conversion but is a useful tool in explaining the behaviour of the charge carriers. Of
more direct significance for energy conversion are the transverse Nernst and Etting-
shausen effects.

The Nernst effect, like the Hall effect, manifests itself as a transverse voltage in
a magnetic field but it depends on the longitudinal temperature gradient or heat flow
rather than on a longitudinal electric current. The Nernst coefficient, N , is defined
by the relation

jN j D dV=dy

Bz dT=dx
: (1.7)

Here dV=dy is the transverse electric field. The sign of the Nernst effect is given
in Fig. 1.3, which illustrates all the transverse thermogalvanomagnetic phenomena.
The sign of the Nernst effect does not depend on whether the charge carriers are
positive or negative and, in this respect, it differs from the Hall effect.

The Ettingshausen and Nernst effects are related to one another in the same way
as the Peltier and Seebeck effects. The Ettingshausen effect is a transverse tempera-
ture gradient that is the result of a transverse magnetic field and a longitudinal flow
of electric current. The Ettingshausen coefficient, P , is defined by
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Fig. 1.3 The transverse thermogalvanomagnetic effects. When the effects are in the direction
shown in the diagram, the coefficients are positive

jP j D dT=dy

ixBz
; (1.8)

where ix is the longitudinal current density. As one might have expected, there is a
thermodynamic relationship between the Nernst and Ettingshausen coefficients,

P � D NT; (1.9)

where � is the thermal conductivity, which is included since the Ettingshausen
coefficient is defined in terms of a temperature gradient rather than a heat flow.

To complete the transverse phenomena, there exists the Righi–Leduc effect,
which is a transverse temperature gradient arising from a longitudinal heat flow.
The Righi–Leduc coefficient, S , is given by

jS j D dT=dy

BzdT=dx
: (1.10)
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Chapter 2
Theory of Thermoelectric Refrigeration
and Generation

2.1 The Transport Effects

The thermoelectric phenomena are reversible in the sense that they do not of
themselves give rise to thermodynamic losses. However, they are always, in
practice, accompanied by the irreversible effects of electrical resistance and thermal
conduction. It turns out that the performance of any thermocouple as an energy
convertor can be expressed in terms of the differential Seebeck coefficient and the
thermal and electrical resistances of the two branches. These resistances depend on
the thermal and electrical resistivities and the ratios of length to cross-sectional area.
Again we shall, in the first instance, assume that all the properties are independent
of orientation.

The electrical resistivity, �, is the reciprocal of the electrical conductivity, � ,
which is defined by the relation

I D �VA

L
(2.1)

where I is the electric current through a specimen of constant cross-sectional area
A and length L when a voltage V is applied. Likewise, the thermal conductivity, �,
is defined by the equation

q D ��A �T

L
(2.2)

where q is the rate of heat flow through a similar specimen that has a temperature
difference �T between its two ends.

We shall refer to the thermoelectric coefficients and the electrical and thermal
conductivities of a given material as its transport properties. All these properties
will generally be temperature-dependent and this should be taken into account in
any rigorous theory. The variation with temperature of the transport properties may
not be too serious a matter in some applications of the Peltier effect when the tem-
perature differences across the thermocouples are small but it can be very important
in thermoelectric generation. However, in order to determine the relative importance
of the different parameters we shall, for the time being, suppose that the conductiv-
ities and the Seebeck coefficient are all independent of temperature. The Kelvin
relation (1.3) implies that, even when ˛ is constant, � will be proportional to T .

7
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In fact, we shall invariably express the Peltier coefficient, � , in terms of the more
easily measured Seebeck coefficient, ˛.

2.2 Thermoelectric Refrigerators and Heat Pumps

We shall determine the performance of thermoelectric refrigerators and heat pumps
using as our model the single thermocouple shown in Fig. 2.1. Practical devices
usually make use of modules that contain a number of thermocouples connected
electrically in series and thermally in parallel. This enables the cooler or heat pump
to be operated from a power source that delivers a manageable current with a rea-
sonable voltage drop. It is a simple matter to extend the equations for a single couple
to a multi-couple arrangement.

In the elementary theory that is outlined in this chapter, it will be supposed that
there is no thermal resistance between the thermocouple and the heat source or sink.
It will also be assumed that all the heat flow between the source and sink takes
place within the thermocouple. Thus, it will be supposed that thermal radiation and
losses by conduction and convection through the surrounding medium are negli-
gible. The two thermocouple branches in our model have constant cross-sectional
areas. There have been suggestions [1] that tapered thermoelements might improve
the performance but it is not difficult to show that they give no theoretical advan-
tage. The thermoelements need not be of the same length but the ratio of length to
cross-sectional area (the form factor) is of importance and, as we shall see, there is
a preferred relationship between the form factors of the two branches.

The quantity of greatest importance for a refrigerator is the coefficient of perfor-
mance (COP), which is defined as the ratio of the heat extracted from the source to
the expenditure of electrical energy. If the thermocouple were free of losses associ-
ated with heat conduction and electrical resistance, the COP would reach the ideal
value; that is, the value for a Carnot cycle. The ideal COP can be much greater than

Fig. 2.1 Simple refrigerator
or heat pump

Heat source  T1 

Heat sink T2 

p n 
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unity as it is given by T1=.T2 � T1/, where T1 and T2 are the absolute temperatures
of the source and sink, respectively. We shall also be interested in the cooling power;
i.e., the rate at which heat is extracted from the source.

A detailed derivation of the COP and cooling power may be found elsewhere [2].
Here, we shall outline the theory.

When a current, I , is passed through the couple, there is Peltier cooling at the
source equal to .˛p � ˛n/IT1, where we have used the Kelvin relation (1.3) to elim-
inate the Peltier coefficient. ˛p and ˛n are the Seebeck coefficients of the two
branches which, of course, should have opposite signs. This cooling effect is
opposed by heat conduction at the rate .T2 � T1/.Kp C Kn/, where Kp and Kn

are the thermal conductances of the branches. The cooling is also opposed by Joule
heating within the thermoelements. It is easily shown that half of the Joule heating
passes to the sink and half to the source, each half being equal to I 2.Rp C Rn/=2,
where Rp and Rn are the thermal resistances of the branches.

The expression for the cooling power is

q1 D .˛p � ˛n/IT1 � .T2 � T1/.Kp C Kn/ � I 2.Rp C Rn/=2: (2.3)

Also, the rate of expenditure of electrical energy is

w D .˛p � ˛n/I.T2 � T1/ C I 2.Rp C Rn/ (2.4)

where the first term is the rate of working to overcome the thermoelectric voltage
whereas the second term is the resistive loss. The COP, �, is then given by

� D .˛p � ˛n/IT1 � .T2 � T1/.Kp C Kn/ � I 2.Rp C Rn/=2

.˛p � ˛n/I.T2 � T1/ C I 2.Rp C Rn/
: (2.5)

Equation (2.5) shows us that the COP depends on the current, as does the cooling
power. As the current is increased, the Peltier cooling rises linearly but the Joule
heating depends on I 2. Thus, a plot of cooling power against current has the
parabolic form shown in Fig. 2.2. This plot represents, schematically, the situation in
which T1 is significantly smaller than T2. Provided that the temperature difference
is not too great, the cooling power will become positive at a certain value of the cur-
rent. However, as the current is increased further, there will come a point at which
the difference between the Peltier cooling and the Joule heating begins to dimin-
ish. In other words, there is a particular current at which the cooling power reaches
its maximum value. Equation (2.3) shows that the maximum is reached when the
Peltier cooling is twice that part of the Joule heating that reaches the cold junction.

There are two values of the current that are of special interest. The current, Iq,
that yields the maximum cooling power is given by

Iq D .˛p � ˛n/T1=.Rp C Rn/: (2.6)

At this current, the COP is given by
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Fig. 2.2 Schematic plot of cooling power against current for a thermoelectric cooler. The cooling
power is negative until the Peltier effect is great enough to counteract both heat conduction and
Joule heating

�q D ZT 2
1 =2 � .T2 � T1/

ZT2T1

(2.7)

where Z is equal to .˛p � ˛n/2=f.Kp C Kn/.Rp C Rn/g. Equation (2.7) shows that
the COP under the condition of maximum cooling power depends solely on Z and
the temperatures of the source and sink. As we shall see, the optimum COP also
depends only on these quantities and Z is therefore known as the figure of merit of
the thermocouple. Z has the dimensions of inverse temperature and it is more usual
nowadays to specify the dimensionless figure of merit, which is equal to ZT at a
given temperature.

The other condition of particular interest is that of maximum COP. The current
I� that satisfies this condition is specified by

I� D .˛p � ˛n/.T2 � T1/

.Rp C Rn/f.1 C ZTm/1=2 � 1g (2.8)

where Tm is the mean temperature. The optimum COP is

�max D T1f.1 C ZTm/1=2 � .T2=T1/g
.T2 � T1/f.1 C ZTm/1=2 C 1g : (2.9)

It might be thought that one would wish to operate a thermoelectric refrigerator as
close to the condition of optimum COP as possible. However, this is sometimes
not practical. The cooling power under this condition can be much less than the
maximum value, particularly, when the temperature difference between the source
and sink is small. Thus, while the optimum COP condition may be economical
in use of electrical energy, it may be uneconomical in the use of thermoelectric
material. Generally speaking, the preferred current will lie somewhere between that
for maximum cooling power and optimum COP.
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The figure of merit Z itself may be optimised for a given pair of thermoelectric
materials. The aim should be to make the product .Kp C Kn/.Rp C Rn/ as small as
possible. This result is obtained when the form factors for the two branches satisfy
the relation

LnAp

LpAn
D
�

�p�n

�n�p

�1=2

: (2.10)

When (2.10) is satisfied the figure of merit is given by

Z D .˛p � ˛n/2

f.�p�p/1=2 C .�n�n/1=2g2
: (2.11)

It is usually the figure of merit defined by (2.11) that is meant when one discusses
Z for a pair of materials.

In the search for improved thermocouples, it is uncommon to investigate a pair of
substances at the same time. It would, therefore, be convenient if one could define
a figure of merit for a single material. In practice, one makes use of the figure of
merit z, which is given by ˛2�=� or ˛2=��. The parameters used in defining z refer
to the positive and negative thermoelements separately. It is important to realise that
z cannot be used to calculate the performance of a thermocouple even if its value
is known for both branches. For this purpose, the figure of merit Z must be used.
However, it often turns out that Z lies close to the average of zp and zn so that it is
meaningful to select materials on the basis of the single-material figure of merit.

One of the most important characteristics of a thermocouple is the maximum
depression of temperature that can be reached through the Peltier effect using a
single stage. This quantity, �Tmax, can be calculated from (2.7). The maximum
temperature depression is reached when the cooling power and, thus, the COP fall
to zero. We see that this occurs when .T2 � T1/ becomes equal to ZT 2

1 =2 so that

�Tmax D 1

2
ZT 2

1 : (2.12)

Figure 2.3 shows how �Tmax varies with ZTm when the heat sink is kept at 300 K.
Practical thermoelectric refrigeration has stemmed from the development since the
1950s of thermocouples with ZTm of the order of unity. Temperature depressions
of 100ı or more require values of ZTm significantly greater than unity.

In Fig. 2.4, we show the optimum COP plotted against the dimensionless figure
of merit for various heat source temperatures when the heat sink is at 300 K. It is
noted that COPs that are considerably greater than unity can be achieved when ZTm

is equal to about 1 provided that the heat source is not at a too low temperature. For
example, a COP value of 2 is reached when ZTm is equal to 1, if the temperature
difference between the source and sink is 20ı. This is, of course, much smaller than
the COP of an ideal refrigerator, which would be no less than 14 under the same
conditions. A high COP is desirable, not only because it reduces the expenditure
of electrical energy, but also because it allows a heat sink of smaller capacity to be
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Fig. 2.3 Plot of maximum temperature depression against ZTm for the heat sink at 300 K
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used. Thus, although many applications are possible with ZTm equal to about unity,
it is important that we should aim at much higher values.

We now turn briefly to thermoelectric heat pumps. Here, we are more interested
in the rate that heat is delivered to the sink rather than the cooling power at the
source. The difference between the two quantities will be equal to the electrical
power consumed by the thermocouple. The rate at which the sink is heated is, thus,
the sum of q1 and w from (2.3) and (2.4), and is given by

q2 D q1 C w D w.� C 1/: (2.13)

The rate of heat delivery is normally greater than the electrical power w since � is
usually positive.

2.3 Thermoelectric Generators

We, now, consider the application of the Seebeck effect in the generation of electri-
cal power. Again, we obtain the performance using the model of a single thermo-
couple and we assume that no heat arrives at the sink other than through the two
branches. The arrangement is shown in Fig. 2.5 in which the thermocouple is con-
nected to a load RL that can be varied. The efficiency of the generator will depend on
the value of RL as well as on the properties of the thermocouple. We shall outline the
theory of thermoelectric generation, a full treatment having been given elsewhere
[3].

Heat source T1

Heat sink T2  

Load RL  

p n 

Fig. 2.5 Simple thermocouple used as a generator
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We are interested in the electrical power that is delivered to the load and in the
efficiency, �, that is the ratio of the output power to the rate at which heat is drawn
from the source.

The thermal EMF is equal to .˛p � ˛n/.T1 � T2/ and this gives rise to a current
I that may be expressed as

I D .˛p � ˛n/.T1 � T2/

Rp C Rn C RL
: (2.14)

Thence, the power delivered to the load is

w D I 2RL D
�

.˛p � ˛n/.T1 � T2/

Rp C Rn C RL

�2

RL: (2.15)

Part of the heat drawn from the source is used to balance the Peltier cooling asso-
ciated with the flow of current. In addition, there is the flow of heat due to thermal
conduction along the branches. Thus, the total rate of heat flow from the source is

q1 D .˛p � ˛n/IT1 C .Kp C Kn/.T1 � T2/: (2.16)

The efficiency is equal to the ratio w=q1.
The useful power reaches its maximum value when the load resistance is equal to

the generator resistance. However, even if there were no loss of heat through thermal
conduction, the efficiency could then never exceed 50%. An increase in the load
resistance reduces the power output but increases the efficiency. It may be shown
that the efficiency becomes a maximum when the ratio, M , of the resistance of the
load to that of the generator is given by

M D RL

Rp C Rn
D .1 C ZTm/1=2: (2.17)

As one might have expected, the same figure of merit, Z, applies for refrigeration
and generation as is apparent from the expression for the efficiency

� D .T1 � T2/.M � 1/

T1.M C T2=T1/
: (2.18)

If ZTm were much greater than unity, M would also be very large and the efficiency
would approach .T1 � T2/=T1, which is the value for the Carnot cycle.

In Fig. 2.6, we show the variation of the efficiency with the dimensionless figure
of merit for a thermoelectric generator in which the source and sink are at 400
and 360 K, respectively. The Carnot cycle efficiency for these temperatures would
be 10%.
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Fig. 2.6 Plot of efficiency against dimensionless figure of merit for the heat source at 400 K and
the heat sink at 360 K

2.4 Multi-Stage Devices

If a thermoelectric unit has to operate between a source and sink that are at widely
different temperatures, it is unlikely that a single pair of thermocouple materials
will suffice. Thus, the two legs are often made up of segmented thermoelements
[4]. Here, however, we concern ourselves with multi-stage devices, which provide
a means for extending the maximum temperature difference for a thermoelectric
refrigerator beyond the limit set by (2.12).

We shall suppose that heat can be transferred from one stage to another without
losses associated with thermal resistance. In a cascade, as a multi-stage cooler is
often called, each stage, as one proceeds from the heat source to the sink, has to
have a greater cooling capacity than the one before. This is because every stage
rejects not only the heat that it extracts from the previous stage, but also the Joule
heat that is generated within it.

Suppose that there are N stages in the cascade and that the COP of the nth stage
is equal to �n, then, if qN is the rate of cooling of the N th stage, in contact with the
heat source, the rate of cooling for the nth stage is given by

qn D qN

�
1 C 1

�N

��
1 C 1

�N �1

�
� � �
�

1 C 1

�N �n

�
: (2.19)

The rate at which heat is delivered to the sink by the first stage is

qn D qN

�
1 C 1

�N

��
1 C 1

�N �1

�
� � �
�

1 C 1

�1

�
; (2.20)
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and the overall COP is given by

� D
��

1 C 1

�N

��
1 C 1

�N �1

�
� � �
�

1 C 1

�1

�
� 1

	�1

: (2.21)

In order to simplify the calculations, we shall assume that each stage has the same
COP, �s. Then, the overall COP is

� D
"�

1 C 1

�s

�N

� 1

#�1

: (2.22)

It is also reasonable to assume that each stage operates with the maximum COP
given by (2.9). We can then use (2.22) to determine the COP of the cascade. It will
necessarily be an approximation if the temperature difference between the source
and sink is large, since it is then most unlikely that we could arrange for the COPs
for all the stages to be equal.

As we move from the N th stage towards the first stage, the cooling power has to
increase. Thus, a thermoelectric cascade has a pyramidal form, as shown schemati-
cally in Fig. 2.7. It is supposed that all the thermocouples are similar to one another
and that extra cooling is attained by increasing the number of couples.

We have calculated the overall COP for up to four stages assuming that ZT has
the same value of 0.7 throughout the device. The results are shown in Fig. 2.8, in
which the COP is plotted against the heat source temperature with the heat sink
at 300 K. The value of ZT is probably underestimated for commercially available
thermoelectric modules at the upper end of the temperature range but overestimated
at the lower end. When the coefficient becomes very small, it may be assumed
that the cooling limit has been reached. Thus, the single-stage cooler has a min-
imum cold junction temperature of about 230 K. The minimum temperatures for
the two-, three-, and four-stage cascades are of the order of 180, 160, and 140 K,
respectively. Commercial multi-stage coolers do not behave quite as well as indi-
cated by these theoretical curves. Thus, although a single-stage module supplied by

Fig. 2.7 Schematic arrangement of a two-stage thermoelectric cascade. The stages are electrically
insulated from one another but in good thermal contact
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Fig. 2.8 Overall coefficient of performance plotted against heat source temperature for 1-, 2-, 3-,
and 4-stage coolers. The heat sink is at 300 K and ZT D 0:7

Marlow Industries Inc. was found to give a minimum temperature of about 230 K,
in agreement with theory, a two-stage cascade yielded only about 200 K. Even a six-
stage cascade could not reach a temperature below about 170 K. This is, primarily,
due to the fact that too high a value for ZT has been assumed for the calculations
at the lower temperatures. Nevertheless, it is remarkable that temperatures substan-
tially below 200 K can be achieved in practice using multi-stage coolers with a heat
sink at 300 K.

2.5 Application of the Thermomagnetic Effects

Although the transverse thermomagnetic effects have not yet found many practical
applications, the Ettingshausen effect is potentially superior to the Peltier effect for
refrigeration at low temperatures. The Nernst effect also offers some advantages
over the Seebeck effect in the detection of thermal radiation.

There is a close correspondence between the equations that describe the cooling
power and COP for Ettingshausen and Peltier coolers [5]. As we shall see, there is
a figure of merit that can be used for transverse thermomagnetic energy conversion
that is similar to the figure of merit Z that is used for thermocouples.

An Ettingshausen cooler might take the form of a rectangular bar, as shown in
Fig. 2.9. A current is passed along the bar and a magnetic field is applied in a perpen-
dicular direction. There is then a transverse flow of heat normal to both the current
and the magnetic field. The heat source and sink are thermally, but not electrically,
attached to the thermomagnetic material.

The equipotential surfaces near the centre of the bar will be inclined to the yz
plane because of the Hall effect, but near the ends of the specimen these surfaces
will normally lie in such a plane. We shall suppose that the specimen is much longer
in the x direction than in the y direction and shall neglect the end effects. We realise,
however, that the presence of end effects will always be a disadvantage of any
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Fig. 2.9 Element of an Ettingshausen refrigerator. The heat source is at y D 0 and the heat sink
at y D Ly

transverse cooling device. We shall assume the Nernst coefficient and the electri-
cal and thermal conductivity to be independent of temperature. This is likely to be
a reasonable assumption since the temperature differences in most thermomagnetic
devices will probably be rather small.

We use the thermodynamic relation (1.9) to eliminate the Ettingshausen coeffi-
cient, P , in favour of the Nernst coefficient, N . Then, the current Ix in the magnetic
field Bz gives rise to an Ettingshausen heat flow NBzIxTLx=Ly . This heat flow
will be opposed by thermal conduction at the rate �LxLz dT=dy. Thus, for any
particular value of y

q D NBzIxTLx

Ly

� �LxLz
dT

dy
: (2.23)

At the same time, there will be Joule heating in the bar that will disturb the linearity
of the temperature gradient according to the relation

I 2
x �Lx

LzL2
y

D ��LxLz
d2T

dy2
; (2.24)

since the heat generation per unit length is equal to I 2
x �Lx = .LzL

2
y/.

We now apply the boundary conditions that the temperature is equal to T1 when
y D 0 and T2 when y D Lx . From (2.23) and (2.24) we find that

�
dT

dy
D �I 2

x �
�
y � 1

2
Ly

�

L2
z L2

y

C .T2 � T1/�

Ly

; (2.25)

and the cooling power at the source is

q1 D NBzIxT1Lx

Ly

� �LxLz.T2 � T1/

Ly

� I 2
x �Lx

2LzLy

: (2.26)

which is of the same form as (2.3) for a thermoelectric refrigerator.
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Comparing (2.3) and (2.26), we find that the latter has NBzLx=Ly in place of
(˛p�˛n), �LxLz=Ly in place of K , and �Lx=.LzLy/ in place of R. This means that
we can make use of the equations for the COP that we derived for a thermoelectric
refrigerator, if we make the appropriate substitutions, for an Ettingshausen cooler.
The thermoelectric figure of merit, Z, is replaced by a thermomagnetic, or Nernst–
Ettingshausen, figure of merit given by

ZNE D .NBz/
2

��
: (2.27)

The differential Seebeck coefficient, (˛p � ˛n), is replaced by NBz, which has been
called the thermomagnetic power [6], just as the Seebeck coefficient is sometimes
known as the thermoelectric power.

At this point, we should draw attention to the importance of defining more pre-
cisely the thermomagnetic figure of merit and the quantities on which it depends.
The question of definition has been discussed by Delves [7] and Horst [8]. Briefly,
the quantity ZNE, which is so closely related to the thermoelectric figure of merit, Z,
should more properly be defined as the adiabatic thermomagnetic figure of merit as
distinct from the isothermal thermomagnetic figure of merit Zi

NE. Zi
NE lies between

the theoretical limits 0 and 1 whereas ZNE has the limits 0 and 1.
The isothermal Nernst coefficient is defined for zero electric current and zero

transverse temperature gradient. The isothermal electrical resistivity requires there
to be no transverse electric current and no temperature gradients. It is this resistivity
that is used in the definition of the isothermal Nernst–Ettingshausen figure of merit.
The adiabatic figure of merit ZNE, on the other hand, is defined in terms of the
adiabatic resistivity, which requires zero transverse temperature gradient and current
and zero longitudinal heat flow.

The similarities between the formal equations for refrigeration using the ther-
moelectric and thermomagnetic effects do not mean that there are no significant
differences between the two techniques. When one uses the thermomagnetic effects,
there is only one material so the optimisation of the relative dimensions of two ele-
ments is no longer a requirement. However, a major difference lies in the separation
of the directions of the electric current and the flow of heat. There are usually a
large number of couples in a thermoelectric cooling module, if its cooling power is
to be substantial, since it would be impractical to use a single couple with a large
cross-sectional area. Such a couple would have to draw a very large current at a very
small voltage. However, in a thermomagnetic cooler, a single bar of material might
suffice. It would be possible to have a small cross-sectional area in the direction of
the electric current flow and a large cross-sectional area in the direction of heat flow.

The advantage of the separation of the electric and thermal flows would certainly
be apparent, if the Nernst effect were used in a broadband thermal detector. Ther-
mocouples are often used as thermal detectors but it is difficult to achieve a rapid
response time for such devices. The response time is proportional to the square
of the thickness in the direction of the heat flow. However, if one is to decrease
the length of the legs of a thermocouple, the output voltage for a given heat flow
becomes smaller. In a thermomagnetic detector, the output voltage depends on the
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temperature gradient rather than the temperature difference. It is, therefore, possible
to use a thin film of thermomagnetic material that combines both a rapid response
and a high sensitivity [9, 10].

It is, particularly, simple to make a cascade based on the transverse thermomag-
netic effects. For a given current, I , the cooling power is inversely proportional to
the thickness in the y direction. Thus, instead of changing the number of elements
from one stage to another, as in a thermoelectric cascade, one can use a number of
bars of different thickness, as shown in Fig. 2.10. All the bars have the same length
in the x direction and the same width in the direction of the magnetic field.

However, there is a method of obtaining an infinite-staged cascade using a single
piece of thermomagnetic material. The sample is shaped so that it is much wider
at the heat sink than it is at the source, as shown in Fig. 2.11. The potential differ-
ence, V; between the ends remains the same for all values of y.

Consider the section of thickness �y that is bounded by the broken lines in
Fig. 2.11. If we regard this section as one of the stages in the cascade its optimum
COP is

�y D T

�T

.1 C ZNET /1=2 � 1

.1 C ZNET /1=2 C 1
: (2.28)

Then, the ratio of the heat leaving the stage at y C �y to that entering at y is

qy C �y

qy

D 1 C �T

T

.1 C ZNET /1=2 C 1

.1 C ZNET /1=2 � 1
: (2.29)

Fig. 2.10 Three-stage
Ettinghausen cooler. The
same current, I , passes
through each stage but
the stages are of different
thickness
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Fig. 2.11 Exponentially
shaped Ettingshausen
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from the source at the upper
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This is the ratio of the width in the z direction at y C �y to that at y, that is
.Lz C �Lz/=Lz.

If we denote .1 C ZNET /1=2 by MNE, we may write

�Lz

Lz
D MNE C 1

MNE � 1

�T

T
: (2.30)

This leads to an integral equation which we solve after making the assumption that
Œ.MNE C 1/=fT .MNE � 1/g.dT=dy/� is approximately constant. The solution is

Lz D .Lz/1 exp

�
MNE C 1

T .MNE � 1/
y

dT

dy

�
: (2.31)

Equation (2.31) shows us that we can make an infinite-staged cascade by using a
thermomagnetic element of exponential shape.

It may not be easy to cut a sample of material to the optimum shape but it has been
shown [11] that even a simple trapezoidal section yields a substantial improvement
in performance over that of a rectangular bar.
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Chapter 3
Thermoelectric Properties of Metals
and Semiconductors

3.1 Transport by Electrons

Thermoelements are usually made from crystalline solids. They are not commonly
single crystals, but their crystalline nature can be observed under a microscope.
Sometimes, the transport properties vary with crystalline orientation but, until we
deal with specific examples, we shall suppose that the properties are uniform in all
directions.

The transport of electric charge is due to quasi-free electrons in the solid. The
solids of interest to us are metals and semiconductors. In such materials, the elec-
trons carry not only the charge but also the thermal energy. In other words, there
is an electronic component of the thermal conductivity. As we shall see later, heat
can also be carried by the thermal vibrations of the atoms in a crystal but, for the
moment, we confine ourselves to the electronic effects.

The idea of conduction by electrons was proposed by Drude and Lorentz using
the principles of classical physics. The classical free electron theory predicted that
the specific heat should be much larger for a metal than for an electrical insulator
but, in reality, there is very little difference. This discrepancy disappeared when
Sommerfeld [1] took account of the newly developed quantum theory but neither
the classical nor the quantum mechanical-free electron theories were able to explain
why some solids are metallic conductors and others are insulators. It was only when
notice was taken of the interaction of the electrons with the periodic potential that
exists in a crystal lattice that further progress could be made. It was shown that,
through this interaction, the energy of the electrons must lie in discrete bands that are
separated by forbidden regions or energy gaps. Interestingly, Sommerfeld’s theory
can still be applied to the current-carrying electrons, if they are assigned an effective
mass rather than the mass of a free electron.

According to quantum theory, the probability that an electron state of energy, E ,
will be occupied is given by the Fermi distribution function

f0 .E/ D
�

exp

�
E � EF

kT

�
C 1

	�1

: (3.1)
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Fig. 3.1 Plot of Fermi distribution function against (E � EF/=kT

The quantity EF has a value that depends on the total number of electrons that
have to be accommodated, and k is Boltzmann’s constant. The Fermi distribution
function has the property that it is equal to zero when .E � EF / � kT and equal
to unity when .E � EF / � kT . The transition from zero to unity takes place
over a very narrow range of energy as shown in Fig. 3.1. The energy, EF , at which
the Fermi distribution function is equal to 1=2 is known as the Fermi level. If the
number of permitted electron states in the energy range between E and E C dE is
represented by g.E/dE , the total number of electrons is

n D
Z 1

0

f0.E/g.E/dE: (3.2)

Each electron state is defined not only by its energy but also by its momentum or,
more strictly, by its wave vector. Thus, although there may be gaps between the
allowed bands of energy at a given position in wave-vector space, the bands might
still overlap in a simple energy band diagram. Such a diagram is shown schemati-
cally in Fig. 3.2 for the situation where this complication does not arise. It must be
understood that the energy bands shown in this diagram are only those in the neigh-
bourhood of the Fermi level. There are also completely filled lower bands that do
not contribute to the transport processes.

It must be appreciated that electrical conduction can take place only when the
electrons in a band can move from one energy state to another. This, of course,
cannot happen in an empty band for there are then no electrons at all. It also cannot
happen when a band is completely full, since there are then no free states into which
an electron can move. Conduction is, in fact, due entirely to those electrons whose
energy is such that the states are partially filled.
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Fig. 3.2 Simple energy band diagram

The density of electron states, g.E/, is small near the conduction band edge but
rises rapidly within the band. Thus, if the Fermi level lies well within the conduction
band, there will be a large number of electrons located near vacant states and the
solid will be highly conducting; that is, it will be a metal. On the other hand, if
the Fermi level lies well within the energy gap, there will be virtually no electrons
in the conduction band and the material will be an electrical insulator. When the
Fermi level is close to the conduction band edge, there will be only a few electrons
but they will all be able to contribute to the conduction process. Because of their
relatively small number, the conductivity will not be large and the material is called
a semiconductor. The density of electron states near the band edge is given by the
expression

g .E/ dE D 4� .2m�/3=2 dE

h3
: (3.3)

This is the same density of states that is to be found in Sommerfeld’s theory with
the exception that the free electron mass m is replaced by an effective mass m�.

Interesting effects occur when the Fermi level is close to the edge of the valence
band. Then there will be some empty states in this band allowing conduction to
take place. It turns out that, although the process is still due to negatively charged
electrons, the effective mass is, now, negative. The behaviour can best be described
in terms of what are called positive holes, which have a positive effective mass.
Equation (3.3) can still be used for the positive holes.

A glance at Fig. 3.1 reveals that it is possible for the Fermi function to be signif-
icantly greater than zero at the edge of the conduction band and, at the same time,
be significantly less than unity at the edge of the valence band. The Fermi level
itself would be somewhere near the middle of the forbidden gap. In this case, there
would be simultaneous conduction by electrons and holes. If the energy gap is small
enough for this to occur, the material is what is known as an intrinsic semiconduc-
tor. Conduction by either electrons in the conduction band or holes in the valence
band can be induced by adding donor or acceptor impurities to a semiconductor. In
such extrinsic conduction, the Fermi level is close to the edge of either the conduc-
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Fig. 3.3 Energy band
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tion band or valence band. Figure 3.3 shows energy diagrams for an insulator, an
intrinsic semiconductor, and for n-type and p-type extrinsic semiconductors.

We shall discuss the transport effects in a semiconductor with specific reference
to electrons. The same equations will apply for hole conduction but, when deal-
ing with holes, we must measure the energy downwards from the Fermi level. The
subscripts “n” and “p” will be used for the electrons and holes respectively.

We shall make use of the concept of a relaxation time, �e, for the charge carriers.
Then, if the distribution function, f , is disturbed from its equilibrium value, f0, it
will relax towards f0 according to

df .E/

dt
D �f .E/ � f0 .E/

�e
: (3.4)

As an approximation, we shall assume that the relaxation time can be expressed in
the form �0Er where �0 and r are constants for a given scattering process.

In many potential thermoelectric materials, it seems that the predominant scat-
tering of the charge carriers is due to the acoustic-mode lattice vibrations, in which
case the parameter r is equal to �1=2. Also, for scattering by ionised impurities,
r is equal to 3/2. When more than one scattering process is operative, the proper-
ties can sometimes be determined by interpolation. Generally speaking, reciprocal
relaxation times are additive but, hopefully, one process may outweigh the others
for any particular electron energy.

Our theory is based on the Boltzmann equation that relates the effects of the
applied fields and the scattering of the carriers. If we suppose that the disturbance
to the distribution is relatively small we find that

f .E/ � f0 .E/

�e

D u
df0 .E/

dE

�
dEF

dx
C .E � EF /

T

dT

dx

�
: (3.5)
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Here, u is the velocity of the carriers in the x direction and EF is the Fermi energy.
The two terms in the brackets are associated with the electric field and the tempera-
ture gradient, respectively.

We may use (3.5) to obtain the electric current density, i , and the heat flux
density, j: The equation for the electric current density is

i D �
1
s
0

euf .E/ g .E/ dE; (3.6)

where e is the magnitude of the electronic charge. The upper and lower signs apply
for electrons and holes respectively. The heat flux density is

j D
1
s
0

u .E � EF / f .E/ g .E/ dE; (3.7)

where .E � EF / is the energy transported by each carrier. The upper limit of the
integrals in (3.4) and (3.5) has been arbitrarily set at infinity but, in fact, this is
unimportant since f .E/ becomes zero before E becomes at all large.

In using these equations to determine the transport coefficients, we can replace
f by .f � f0/ since there is no flow of any kind when f D f0. Also, since the drift
velocity of the carriers is a small part of the total velocity, it is satisfactory to replace
u by 2E=3 m�. This enables us to write (3.6) and (3.7) in the forms

i D � 2e

3m�
1
s
0

g .E/ �eE
df0 .E/

dE

�
dEF

dx
C .E � EF /

T

dT

dx

�
dE; (3.8)

j D ˙EF

e
i C 2

3m�
1
s
0

g .E/ �eE2 df0 .E/

dE

�
dEF

dx
C .E � EF /

T

dT

dx

�
dE: (3.9)

In order to determine the transport parameters, we must insert the appropriate
boundary conditions. Thus, the electrical conductivity is given by the ratio of i

to the electric field when the temperature gradient dT=dx is zero. The electronic
contribution, �e, to the thermal conductivity is equal to the ratio of j to �dT=dx

when the electric current is zero. Also, the Seebeck coefficient is equal to the ratio
of the electric field to the temperature gradient under the same condition. Thence,
the three quantities that appear (with the lattice conductivity) in the thermoelectric
figure of merit are

� D 1

�
D � 2e2

3m�
1
s
0

g .E/ �e

df0 .E/

dE
dE; (3.10)

�e D 2

3m�T
h
(� 1

s
0

g .E/ �eE2 df0 .E/

dE
dE

	2

=
1
s
0

g .E/ �e

df0 .E/

dE
dE

)

�
1
s
0

g .E/ �eE3 df0 .E/

dE
dEi (3.11)
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and

˛ D ˙ 1

eT

�
EF �

1
s
0

g .E/ �eE2 df0 .E/

dE
dE=

1
s
0

g .E/ �eE
df0 .E/

dE
dE

	
: (3.12)

It is convenient to express the integrals that are included in (3.10)–(3.12) in the
form

Ks D � 2T

3m�
1
s
0

g .E/ �eEsC1 df0 .E/

dE
dE: (3.13)

One can then eliminate g and �e in favour of m�, r , and �0. Eventually, one then
finds that

Ks D 8�

3

�
2

h2

�3=2 �
m��1=2

T �0 .s C r C 3=2/ .kT /sCrC3=2 FsCrC1=2; (3.14)

where

Fn .�/ D
1
s
0

�nf0 .�/ d�: (3.15)

Here, the reduced energy, �, has been used as a variable in place of E=kT .
The derivation of (3.14) is given more fully elsewhere [2]. The functions Fn are
known as the Fermi-Dirac integrals and, for convenience, are shown in Tables 3.1
and 3.2 for different values of the reduced Fermi energy, �, which is equal to
EF =kT .

The expressions for the transport coefficients in terms of the integrals Ks are

� D e2

T
K1; (3.16)

�e D 1

T 2

�
K2 � K2

1

K0

�
; (3.17)

and

˛ D ˙ 1

eT

�
EF � K1

K0

�
: (3.18)

Equations (3.16)–(3.18) allow us to relate the thermoelectric figure of merit to
the scattering parameters, the effective mass of the charge carriers, and the Fermi
energy. It is also necessary to express the total thermal conductivity, �, as the
sum of the electronic component, given by (3.17) and the lattice component, �L.
Thus,

� D �e C �L: (3.19)
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Table 3.1 Fermi-Dirac integrals, Fn, as defined by (3.15), for n D �1=2, 0, 1/2, 1, and 3/2. � is
the reduced Fermi energy and is equal to EF =kT

� F
�1=2 F0 F1=2 F1 F3=2

�2:0 0.21919 0.12693 0.11459 0.13101 0.1758
�1:8 0.26278 0.15298 0.13863 0.15893 0.21367
�1:6 0.31393 0.1839 0.1674 0.19253 0.25945
�1:4 0.37352 0.22042 0.2017 0.23286 0.31467
�1:2 0.44235 0.26328 0.24241 0.28112 0.38111
�1:0 0.52114 0.31326 0.2905 0.33865 0.46085
�0:8 0.61308 0.3711 0.34699 0.40695 0.55625
�0:6 0.71033 0.43749 0.41294 0.48766 0.66999
�0:4 0.82094 0.51302 0.48941 0.58255 0.80506
�0:2 0.94179 0.59814 0.57747 0.6935 0.96479
0.0 1.07213 0.69315 0.67809 0.82247 1.1528
0.2 1.21086 0.79814 0.79218 0.97143 1.373
0.4 1.35662 0.91302 0.92051 1.14238 1.62954
0.6 1.50787 1.03749 1.06309 1.33727 1.92679
0.8 1.66299 1.1711 1.22221 1.55798 2.26928
1.0 1.82037 1.31326 1.39637 1.80628 2.66167
1.2 1.97851 1.46328 1.58632 2.0838 3.10867
1.4 2.13609 1.62041 1.79206 2.39205 3.61502
1.6 2.29197 1.7839 2.01348 2.73236 4.18544
1.8 2.44526 1.95297 2.25036 3.10594 4.82462
2.0 2.59528 2.12692 2.50241 3.51383 5.53714
2.2 2.74154 2.30507 2.76928 3.95693 6.32752
2.4 2.88374 2.48681 3.05058 4.43604 7.20015
2.6 3.0217 2.67161 3.34589 4.95181 8.15931
2.8 3.15539 2.859 3.65479 5.50483 9.20915
3.0 3.28485 3.04855 3.97687 6.09556 10.3573
3.2 3.41017 3.23992 4.3117 6.72441 11.59684
3.4 3.5315 3.4328 4.65888 7.39172 12.9423
3.6 3.64903 3.62693 5.01803 8.09775 14.39367
3.8 3.76293 3.82211 5.38877 8.8427 15.95437
4.0 3.87341 4.01815 5.77074 9.62671 17.62761

3.2 Metals and Semiconductors

In the general case, we have to evaluate the transport parameters using tabulated
values for the Fermi-Dirac integrals such as those in Tables 3.1 and 3.2. However,
these integrals can be obtained as simple approximations when the Fermi energy, as
measured from the band edge, is either very much greater than kT or very much less
than –kT.

When EF � kT , the conductor is a metal and the degenerate approxima-
tion may be employed. This approximation is usually regarded as acceptable when



30 3 Thermoelectric Properties of Metals and Semiconductors

Table 3.2 Fermi-Dirac integrals, Fn, as defined by (3.15), for n D 2, 5/2, 3, 7/2 and 4. � is the
reduced Fermi energy and is equal to EF =kT

� F2 F5=2 F3 F7=2 F4

�2:0 0.26627 0.44455 0.8053 1.565 3.2345
�1:8 0.32408 0.54162 0.9819 1.909 3.9471
�1:6 0.39416 0.65954 1.1967 2.3281 4.8157
�1:4 0.479 0.80264 1.4578 2.8383 5.8741
�1:2 0.58151 0.97608 1.775 3.4589 7.1631
�1:0 0.70513 1.18597 2.1598 4.2133 8.7321
�0:8 0.85386 1.43954 2.6262 5.1294 10.6406
�0:6 1.03234 1.74527 3.1904 6.2408 12.9601
�0:4 1.24588 2.11308 3.872 7.5873 15.7765
�0:2 1.50052 2.55444 4.6937 9.2162 19.1926
0.0 1.80309 3.08259 5.6822 11.1837 23.3309
0.2 2.16116 3.71261 6.8685 13.5556 28.3369
0.4 2.58316 4.46164 8.2884 16.4092 34.383
0.6 3.07826 5.34894 9.983 19.8344 41.6723
0.8 3.65642 6.396 11.9991 23.9356 50.4432
1.0 4.32833 7.62661 14.3898 28.8329 60.9745
1.2 5.10535 9.06691 17.2148 34.6643 73.5903
1.4 5.99949 10.74543 20.5409 41.5868 88.6657
1.6 7.02331 12.69308 24.4423 49.7786 106.6324
1.8 8.1899 14.94311 29.0009 59.4401 127.9849
2.0 9.5128 17.53113 34.3067 70.7962 153.2857
2.2 11.00594 20.49501 40.4578 84.097 183.1721
2.4 12.68359 23.87484 47.5608 99.6198 218.3621
2.6 14.56031 27.71286 55.7307 117.6701 259.6599
2.8 16.65089 32.05334 65.0912 138.5827 307.9621
3.0 18.97031 36.9425 75.7744 162.7227 364.2625
3.2 21.53368 42.42834 87.9208 190.486 429.6565
3.4 24.35616 48.56049 101.6791 222.2993 505.344
3.6 27.45291 55.38993 117.2055 258.6194 592.6296
3.8 30.83899 62.06875 134.6629 299.9315 692.9207
4.0 34.52922 71.34963 154.2198 346.7463 807.7205

EF > 4kT . It is found that the Fermi-Dirac integrals for a degenerate conductor
may be expressed as

Fn .�/ D �nC1

n C 1
C n�n�1 �2

6
C n .n � 1/ .n � 2/ �n�3 7�4

360
C : : : (3.20)

The series converges rapidly and one only needs to use as many terms as yield a
non-zero value for the parameter in question.

The evaluation of the electrical conductivity requires only the first term in the
series. Thus,

� D 8�

3

�
2

h2

�3=2

e2
�
m��1=2

�0E
rC3=2
F : (3.21)
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To determine the electronic thermal conductivity, the first two terms in the series
are needed. We make use of the quantity L, known as the Lorenz number, which is
defined as the ratio �e=�T , and is given by

L D �2

3

�
k

e

�2

: (3.22)

In a metal, the electronic thermal conductivity is usually much larger than the lattice
component. Thus, (3.22) is consistent with the Wiedemann–Franz law, which states
that the ratio of the thermal to the electrical conductivity is the same for all metals
at any particular temperature.

The Seebeck coefficient also requires the first two terms of the series in (3.20). It
is found to be

˛ D ��2

3

k

e

.r C 3=2/

�
: (3.23)

As � becomes large, the Seebeck coefficient becomes very much less than k=e. This
is borne out in practice as most metals have Seebeck coefficients of the order of only
a few microvolts per degree.

We turn now to the classical or non-degenerate approximation that applies
to most semiconductors when they do not contain too many impurities. This
approximation is usually acceptable when � < �2kT . Under this condition, the
Fermi-Dirac integrals may be written as

Fn .�/ D exp .�/
1
s
0

�n exp .��/ d� D exp .�/ � .n C 1/ ; (3.24)

where the gamma function is such that

� .n C 1/ D n� .n/ : (3.25)

When n is an integer, �.n C 1/ is equal to n!. Also, one can calculate the gamma
function for half-integral values of n using (3.25) and the relation �.1=2/ D �1=2.

Under the non-degenerate condition, then, one can express the Fermi-Dirac
integrals as

Ks D 8�

3

�
2

h3

�3=2 �
m��1=2

T �0 .kT /sCrC3=2 � .s C r C 5=2/ exp .�/ : (3.26)

The electrical conductivity of a non-degenerate conductor is

� D 8�

3

�
2

h3

�3=2

e2
�
m��1=2 T �0 .kT /rC3=2�



r C 5

.
2

�
exp .�/ : (3.27)
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It is convenient to express the electrical conductivity as

� D ne�; (3.28)

where n is the carrier concentration and � is the carrier mobility, which does not
depend on the Fermi energy under classical conditions. n and � are given by

n D 2

�
2�m�kT

h2

�3=2

exp .�/ ; (3.29)

and

� D 4

3�1=2
�

�
r C 5

2

�
e�0 .kT /r

m� : (3.30)

Equation (3.29) shows that the carrier concentration is that which would be found
if there were 2.2�m�kT=h2/3=2 energy levels located at the band edge, so this
quantity is known as the effective density of states.

The Seebeck coefficient of a non-degenerate conductor is related to the reduced
Fermi energy � through the relation

˛ D �k

e

�
� �

�
r C 5

2

�	
: (3.31)

Remembering that the Peltier coefficient is equal to ˛T , we see that the energy
carried by each electron or hole is made up of a potential component ��kT=e and
a kinetic component equal to .r C 5=2/kT=e. In a typical extrinsic semiconductor,
˙� may be much greater than unity and the magnitude of the Seebeck coefficient
may be several hundred microvolts per degree.

Although the Seebeck coefficient is very much different in semiconductors and
metals, the Lorenz numbers usually differ by a factor of less than 2. For a non-
degenerate conductor, the Lorenz number is

L D
�

k

e

�2 �
r C 5

2

�
: (3.32)

It is independent of the Fermi energy throughout the non-degenerate range.
Although the Lorenz number is so close to that for a metal, semiconductors do
not usually satisfy the Wiedemann–Franz law. This is because the electronic com-
ponent of the thermal conductivity is so much smaller and the lattice component is,
therefore, dominant.

If the Wiedemann–Franz law applied for both semiconductors and metals, there
would be no doubt that the former class of material should be used in thermoelectric
energy conversion in view of the larger magnitude of the Seebeck coefficient. How-
ever, as we shall see, the increase in the thermoelectric coefficients must be balanced
against a decrease in the ratio of the electrical to thermal conductivity. It turns out
that most of the materials of interest for practical applications are semiconductors
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in which the Fermi energy lies close to the edge of the conduction or valence band.
That means that neither the degenerate nor the non-degenerate approximations are
applicable and we must use the tabulated Fermi-Dirac integrals given in Tables 3.1
and 3.2. In Figs. 3.4–3.6, we show how the transport properties of interest vary with
the reduced Fermi energy for the extreme values of r that are likely to be encoun-
tered, namely �1=2 and 3=2.

In Fig. 3.4, the electrical conductivity is given as a ratio of its value at a given
reduced Fermi energy, �, to its value when the Fermi level lies at the band edge.
Because of the rapid variation of the conductivity with Fermi energy, a logarithmic
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Fig. 3.4 Plot of electrical conductivity against reduced Fermi energy for r equal to �1=2 and 3/2.
The electrical conductivity is given as a fraction of its value at � D 0 �.�/=�.0/
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Fig. 3.5 Plot of Seebeck coefficient in units of k=e against reduced Fermi energy r D 3=2
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Fig. 3.6 Plot of Lorenz number in units of .k=e/2 against reduced Fermi energy

scale is used. It is noted that the value of the scattering parameter, �0, has been
supposed to be independent of �. While this is a reasonable assumption for lattice
scattering of the carriers .r D �1=2/, it is unlikely to be appropriate for ionised-
impurity scattering .r D 3=2/. The decrease in the relaxation time as the impurity
concentration rises should be taken into account, if practical use is to be made of
Fig. 3.4.

When the Seebeck coefficient is plotted against �, as in Fig. 3.5, a linear scale can
be used since the variation is relatively small. The Seebeck coefficient will be neg-
ative for an n-type semiconductor in which the Fermi energy is measured upwards
from the edge of the conduction band. It will be positive for a p-type semiconduc-
tor, the Fermi energy then being measured downwards from the edge of the valence
band edge.

As shown in Fig. 3.6, the Lorenz number is only weakly dependent on the Fermi
energy. It becomes smaller than the metallic value when r D �1=2 and larger than
this value when r D 3=2.

3.3 Bipolar Effects

We, now, consider a conductor in which there are both electrons and positive holes.
Such a material would be a wide-gap semiconductor at elevated temperatures or a
narrow-gap semiconductor or semimetal at ordinary temperatures. When both types
of carrier are present, it is possible for them to move in the same direction, trans-
porting energy without an electric current. This leads to interesting effects that have
a bearing on thermoelectric performance.
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Let us denote the separate current densities for the electrons and holes as in and
ip. The expression for in or ip when there is a temperature gradient as well as an
electric field is

in;p D �n;p

�
dV

dx
� ˛n;p

dT

dx

�
: (3.33)

The electrical conductivity is obtained by setting the temperature gradient equal to
zero. Thus,

� D in C ip

dV=dx
D �n C �p: (3.34)

It is, of course, not surprising that the electrical conductivity is the sum of the con-
ductivities of the separate carriers. Likewise, by setting the electric current equal
to zero, we find that the Seebeck coefficient is a weighted average of the Seebeck
coefficients associated with the two types of carrier. Thus,

˛ D dV=dx

dT=dx
D ˛n�n C ˛p�p

�n C �p
: (3.35)

It must be remembered that the Seebeck coefficients for the two carriers are of
opposite sign, so the magnitude of ˛ given by (3.35) can be quite small.

Let us now consider the flow of heat in the two-carrier system. The heat flux
densities for the two types of carrier are found from

jn;p D ˛n;pT in;p � �n;p
dT

dx
: (3.36)

Also, the thermal conductivity is defined for the condition of zero electric current.
Thence,

in D �ip D �n�p

�n C �p

�
˛n � ˛p

� dT

dx
: (3.37)

By combining (3.36) and (3.37) to find the total heat flux density and dividing the
result by the temperature gradient, we find that

�e D �n C �p C �n�p

�n C �p

�
˛n � ˛p

�2
T: (3.38)

The remarkable feature of (3.38) is that the total electronic thermal conductivity is
not merely the sum of the thermal conductivities of the separate carriers. There is
an additional term associated with the bipolar flow [3]. This additional term can be
much larger than either �n or �p. Although the relative effect of the bipolar contri-
bution is greatest for an intrinsic wide-gap semiconductor, the phenomenon is most
easily observed for a narrow-gap material since there are then many more carriers
of both types. Thus, it was first observed for intrinsic bismuth telluride [4], which
has an energy gap at ordinary temperatures of about 6kT. The Lorenz number was
found to be about 25.k=e/2 whereas, when there is only a single type of carrier, L

is no more than about 2.k=e/2.
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3.4 Phonon Conduction

We have already discussed the conduction of heat by the charge carriers. Now,
we discuss the heat conducted by the lattice vibrations. In any solid, each atom
is bonded to its neighbours and, thus, even displacement of any one atom will give
rise to a disturbance that is passed on to the rest of the specimen. The atoms are in
continual vibration and the overall motion can be represented by waves, which may
be either longitudinal or transverse in their nature. At low frequencies, the vibrations
are familiar to us as sound waves but, in considering heat conduction, we are more
interested in much higher frequencies.

Before proceeding further, we need to discuss the nature of the vibrational spec-
trum. This problem was first tackled by Debye [5] who supposed that a crystal
could be represented by an elastic continuum. He showed that the boundary con-
ditions allowed only certain wavelengths to occur. A lower limit to the permissible
wavelengths is set by the atomic nature of matter. The total number of vibrational
modes is equal to 3 N , where N is the number of atoms. According to Debye’s
theory, the number of modes per unit volume that have frequencies between  and
 C d is

nL D 2�3d

v3
; (3.39)

where v is the speed of sound. In order that the total number of modes be equal
to 3N

4�3
D

v3
D 3N: (3.40)

Debye used the newly developed quantum theory to determine the energy, W; in
a mode of frequency : Quantised vibrations satisfy Bose–Einstein statistics rather
than the Fermi-Dirac statistics that apply to the charge carriers. The expression for
W is then

W D h

�
exp

�
h

kT

�
� 1

	�1

: (3.41)

The specific heat at constant volume, cV , is found by differentiating the integrated
internal energy with respect to temperature with the result that

cV D 9N k

�
T

�D

�3

fD

�
�D

T

�
; (3.42)

where �D, which is known as the Debye temperature, is defined as

�D D hD

k
; (3.43)
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and

fD

�
�D

T

�
D
Z �D=T

0

x4 exp .x/

.exp .x/ � 1/2
dx: (3.44)

The general behaviour of real solids is quite close to that predicted by Debye in
spite of the very elementary model that he used. It turns out that the specific heat
is not, particularly, sensitive to the details of the vibrational spectrum. The fact that
Debye’s specific heat theory was so successful has allowed the use of the concept of
a Debye temperature to remain to this day. Discrepancies between the experimen-
tal observations and the theoretical curve are accounted for by allowing �D to be
temperature dependent.

A more advanced discussion of lattice vibrations requires us to differentiate
between transverse and longitudinal waves. It is also necessary to distinguish
between the group velocity, defined as 2�d=dqL, where qL is the wave number,
and the phase velocity, which is equal to 2�=qL. The two velocities have the same
value for the acoustic vibrations at low frequencies but become different at the other
end of the spectrum. This is apparent from the schematic dispersion curve shown in
Fig. 3.7. This diagram also shows acoustic and optic branches which both exist when
there is more than one atom per unit cell. If there are n atoms per unit cell, there will
be three acoustic branches (one longitudinal and two transverse) and 3.n � 1/ optic
branches.

Debye attempted to use his elastic continuum model to explain Eucken’s obser-
vation [6] that the thermal conductivity of a pure insulating crystal varies inversely
with the absolute temperature. However, he was unsuccessful in accounting for the
fact that the thermal conductivity is not infinite. The thermal conductivity becomes
finite only if the thermal vibrations are anharmonic. Peierls [7] was able to take this
anharmonicity into account and, thus, explain the phenomenon of thermal resistance
in the absence of imperfections, such as impurities.

It was Peierls who first introduced the idea of phonons or quantised vibrational
wave packets. He showed that phonons could interact with one another in two ways.
In normal or N-processes, the momentum of the phonons is conserved, whereas
in Umklapp or U-processes, momentum is not conserved. The law of conservation

Fig. 3.7 Schematic
dispersion curve for the
acoustic branches in a
diatomic lattice
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ν
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Fig. 3.8 Representation
in two dimensions of
(a) N-processes and (b)
U-processes

qx qx

qy qy

1 
1

2 2 

3 3 

G 

a b

of momentum is satisfied for U-processes, if the translation of the whole crystal is
taken into account. N-processes are important in redistributing momentum but only
the U-processes lead to thermal resistance. The two types of process are illustrated
in Fig. 3.8.

In Fig. 3.8, we, more properly, use wave vector, q, rather than momentum to
represent the motion of the phonons. The squares are unit cells in two-dimensional
wave-vector space. In the diagram, the phonons 1 and 2 interact to produce a third
phonon 3. In the N-process, the third phonon is obtained simply by vector addition
of 1 and 2, but in the U-process, a reciprocal lattice vector G has to be added to
bring the third phonon within the cell. We may represent the two processes by

q3 D q1 C q2; .N-process/ (3.45)

and

q3 D q1 C q2 C G: .U-process/ (3.46)

Peierls showed that U-processes become more probable as the temperature rises
since they can occur only when there are reasonable numbers of phonons with wave
vectors that are sufficiently large to produce a resultant outside the unit cell in wave-
vector space. At low temperatures, it is predicted that the mean free path of the
phonons should be proportional to Œexp.��D=aT /��1, where a is a constant equal
to about 2. This exponential term should dominate the temperature variation of the
thermal conductivity. It was, therefore, something of a mystery that the 1=T vari-
ation of the thermal conductivity should persist to quite low temperatures in many
materials. Eventually, it was realised that scattering of phonons on various types of
point defect was masking the exponential behaviour. This behaviour was observed
only after pure and perfect single crystals could be studied.

We may express the lattice thermal conductivity in terms of the specific heat, the
speed of sound, and the mean free path, lt, of the phonons using the relation

�L D cVvlt=3: (3.47)

We require this quantity to be small in a thermoelectric material and we shall discuss
the factors that control the magnitude of the phonon free path in later chapters.
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3.5 Phonon Drag

The theoretical approach that has been used in the previous sections is based on the
assumption that the flows of the charge carriers and the phonons can be treated in-
dependently. However, under some circumstance, this assumption becomes invalid.
When the two flows become linked, there appear what are known as the phonon
drag effects.

Generally, the phonon drag effects become stronger as the temperature is
reduced. Thus, their influence on the Seebeck coefficient of germanium was ob-
served [8,9] at temperatures below 100 K. Herring [10] showed that the higher than
expected thermoelectric effect could be explained if it were supposed that electrons
were scattered preferentially by the phonons in the direction of the flow of heat.
Gurevich [11, 12] had earlier proposed that such an effect might occur and phonon
drag is sometimes called the Gurevich effect.

We discuss the origin of phonon drag with reference to the Peltier effect. Even
when phonon drag occurs, the Seebeck and Peltier coefficients still satisfy the
Kelvin relation.

Phonon drag is expected to be strongest when the carrier concentration, n, is
low. Under the influence of an electric field, E , these carriers accept momentum
at the rate neE per unit volume. This momentum may be lost in various ways. It
can be passed on to impurities and other defects and thence lost in random thermal
vibrations. Alternatively, it can be given to the phonon system and retained until
non-momentum-conserving collisions occur. We suppose that the fraction of colli-
sions that involve phonons is x and the relaxation time for the loss of momentum
from the phonons is �d . Then the excess momentum carried by the phonons is

�p D �xne�d E: (3.48)

The key to understanding phonon drag is the realisation that the time �d can be
much greater than the relaxation time that controls the heat conduction process. The
charge carriers in a semiconductor are scattered primarily by phonons of much lower
energy than the heat-conduction phonons.

The electric current density is

i D ne�E; (3.49)

and the rate of flow of heat per unit cross-sectional area is

w D v2�p: (3.50)

The phonon drag contribution to the Peltier coefficient is the ratio of the rate of heat
flow to the electric current, and is thus

�d D �xv2�d

�
; (3.51)
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and the phonon drag Seebeck coefficient is

˛d D �d

T
D �xv2�d

�T
: (3.52)

It is noted that the usual thermoelectric coefficients are reinforced by the phonon-
drag coefficients as they have the same sign.

The phonon drag effects are strongly dependent on temperature. Typically, �d

is proportional to T �5 and � is proportional to T �3=2, so we expect ˛d to vary as
T �9=2. It is unusual to find a significant phonon drag effect at room temperature,
though it has been observed [13] for semiconducting diamond above 300 K. Phonon
drag has certainly been found in bismuth [14,15] at low temperatures and is, gener-
ally, larger in semimetals than metals [16].

It is noteworthy that (3.51) and (3.52) do not contain the carrier concentration.
In fact, the phonon drag effects become smaller as n increases. This is due in part
to the scattering of charge carriers on the donor or acceptor impurities but, more
significantly, to the so-called saturation effect. When the carrier concentration is
high, momentum is increasingly transferred back to the electrons from the phonons.
Herring [10] showed that (3.51) and (3.52) are modified due to the saturation effect.
Equation (3.52) becomes

˛d D �
�

�T

xv2�d

C 3nexv2�d

Ndk�T

��1

; (3.53)

where Nd is the number of phonon modes that interact with the charge carriers. It
is the saturation effect that will probably prevent phonon drag being exploited as a
means of improving the figure of merit.

Keyes [17] showed that the value of z that can be reached using phonon drag is
rather low. We suppose that the ordinary contribution to the Seebeck coefficient is
small compared with the drag component. The optimum carrier concentration can be
found from the expression for the figure of merit with the Seebeck coefficient given
by (3.53) and the electrical conductivity equal to ne�. Since we are seeking an
upper limit for the phonon drag figure of merit, we ignore the electronic component
of the thermal conductivity. Thence,

nopt D NdkT�

3ex�
d

v2
: (3.54)

We then find that the figure of merit is

zd D Ndkx�
d

v2

12�LT
: (3.55)
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Keyes drew attention to the fact that Ndkv2�d =3 is the contribution, �d, of the low
energy phonons to the thermal conductivity and is, therefore, less than the total
lattice conductivity. The phonon drag dimensionless figure of merit is

zdT D x�d

4�L
: (3.56)

Since x is no greater than 1 and �d < �L, we see that zdT must be less than 1=4.
We conclude that phonon drag cannot assist us with our aim of finding values of zT
in excess of unity.

Our discussion has been restricted to bulk thermoelectric materials. Ivanov [18]
has more recently considered phonon drag in low-dimensional structures and has
come to the conclusion that the effect cannot improve the performance in this case
either.
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Chapter 4
Optimisation and Selection of Semiconductor
Thermoelements

4.1 Power Factor

In recent years, it has been found convenient to introduce a quantity known as the
power factor that contains both the Seebeck coefficient and the electrical conduc-
tivity. The power factor is defined as ˛2� and is useful because ˛ and � are the
parameters that are most strongly dependent on the carrier concentration. The other
quantity that is involved in the definition of the figure of merit is the thermal con-
ductivity, �. � is less dependent on the concentration of the charge carriers since it
is often dominated by the lattice contribution. Thus, the carrier concentration that
yields the maximum power factor for a given material is usually close to that which
gives the highest figure of merit.

It is easy to see that the power factor will become small when the Fermi level
moves too far into the forbidden gap of a semiconductor. The Seebeck coefficient of
a non-degenerate material varies linearly with the Fermi energy whereas the electri-
cal conductivity varies in an exponential fashion. Thus, even though it is the square
of the Seebeck coefficient that enters into the expressions for the power factor or
figure of merit, the rapid variation of the electrical conductivity will become the
dominating factor when the reduced Fermi energy, �, is much less than zero. On
the other hand, when we enter the metallic region, with � much greater than zero, the
ratio of the thermal conductivity to the electrical conductivity eventually approaches
the value given by the Wiedemann-Franz law. Further increase of � leads to a de-
crease in the Seebeck coefficient without any compensating increase in the ratio
of electrical to thermal conductivity. Thus, there will always be an optimum value
for the Fermi energy, which implies an optimum value of the carrier concentration.
However, it is usual to optimise the Seebeck coefficient rather than the carrier con-
centration since ˛ and � are so closely related to one another.

In Fig. 4.1, we show how the power factor varies with reduced Fermi energy
when the scattering parameter r D �1=2, that is its value for acoustic-mode lattice
scattering of the charge carriers. There is a maximum value when the Fermi level
lies just inside the conduction or valence band. We would expect the optimum Fermi
energy to become more negative when we consider the figure of merit rather than
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Fig. 4.1 Plot of power factor against reduced Fermi energy for r D �1=2

the power factor but for present day materials � would not be much less than zero.
Reference to Fig. 3.5 indicates that the preferred value for the Seebeck coefficient
will be close to ˙200 �V K�1.

In principle, it is possible for the power factor to increase continually with the
Fermi energy. If the plot in Fig. 4.1 is drawn for r D 3=2, that is for ionised-impurity
scattering, we find that the power factor continues to rise with �. However, that does
not take account of the fact that the relaxation time for such scattering will become
less as impurities are added to produce the charge carriers that are needed to increase
the Fermi energy. Thus, in practice, we would expect the optimum Fermi energy to
be close to zero whatever form of scattering is dominant.

4.2 The Materials Parameter, ˇ

Although the magnitude of the optimum Seebeck coefficient does not vary very
much from one material to another, the values of the power factor and of the figure
of merit can change by orders of magnitude. Thus, we shall now determine the
properties on which the maximum value of z will depend.

It is instructive to express the figure of merit in terms of the reduced Fermi energy
for the region in which non-degenerate statistics can be employed. We then find that

zT D Œ� � .r C 5=2/�2

.ˇ exp .�//�1 C .r C 5=2/
; (4.1)
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where ˇ is a materials parameter that was first introduced by Chasmar and Stratton
[1]. This parameter is defined by the relation

ˇ D
�

k

e

�2
�0T

�L
(4.2)

and �0 is a quantity that depends on the carrier mobility and the effective mass
according to

�0 D 2e�

�
2�m�kT

h2

�3=2

: (4.3)

Equation (4.1) shows us that, for a given scattering parameter r , the dimensionless
figure of merit for any particular Fermi energy is a function solely of the parameter
ˇ. The greater the value of ˇ, the greater is the value of zT .

Although (4.1) holds only for a non-degenerate semiconductor, the parameter
ˇ remains useful when the material is partly or completely degenerate. zT is still
a function only of �, r and ˇ for all values of the Fermi energy. If we ignore
the fundamental constants in (4.2) and (4.3), we find that ˇ is proportional to
.�=�L/ .m�=m/3=2 where m is the mass of a free electron. We see, then, that we
require materials that possess high values of the mobility and effective mass for the
charge carriers and low values of the lattice thermal conductivity.

In Fig. 4.2, we show how the dimensionless figure of merit, zT, varies with the
reduced Fermi energy for different values of the parameter ˇ. We have supposed
that the scattering parameter r has the value of �1=2, as for acoustic-mode lattice
scattering. We see that, as ˇ becomes larger, the optimum value for � becomes
more negative. Thus, if ˇ were large enough, we could use classical statistics in our
calculations. However, for the best materials that are used in today’s thermoelectric
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Fig. 4.2 The dimensionless figure of merit plotted against the reduced Fermi energy for different
values of the parameter ˇ. The scattering parameter r D �1=2
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modules, ˇ is a little less than 0.4 and we hardly expect it ever to approach the
highest value in Fig. 4.2, i.e., 1.6.

Referring to Fig. 4.2, it can be seen that the optimum Fermi energy varies by
little more than kT for a wide range of values for the parameter ˇ. In fact, even
if the optimum value of � were as small as �2, the Seebeck coefficient would be
only about ˙350 �V K�1. It is possible to find semiconducting materials with See-
beck coefficients of the order of ˙1 mV K�1 or more, but we would not expect
them to have high figures of merit. We could improve such materials by doping
them with donor or acceptor impurities so as to increase the electrical conductiv-
ity and this would be more than sufficient compensation for the fall in the Seebeck
coefficient.

4.3 Mobility and Effective Mass

The parameter ˇ is proportional to �m�3=2 but the selection of a material that
satisfies the requirement that this product should be high is not straightforward.
In general, when the effective mass of the carriers is high, the mobility is low.
However, we have not yet specified exactly what we mean by the effective mass
in (4.3).

In a cubic semiconductor with a simple valence or conduction band, having a
maximum or minimum energy at the centre of the unit cell in wave-vector space
(i.e., at the centre of the Brillouin zone), there is only one value for the effective
mass. On the other hand, when the band edges are to be found at other points in
the Brillouin zone, symmetry requires that the bands be of the so-called multi-valley
type. The effective mass that appears in (3.3) and, thence, in the expression for ˇ

is the density-of-states mass. In a band that has Nv valleys, the density-of-states
mass is N 2=3

v times the value that it would have for a single valley.
The effective mass for each valley, i.e., the inertial mass, is still important as it

is related to the carrier mobility. In fact, the inertial mass will generally be different
in different directions and this may have to be taken into account, as well. Thus, the
density-of-states mass m� should really be written as

m� D N 2=3
v .m1m2m3/1=3 ; (4.4)

where m1; m2; and m3 are the effective masses along the axes of symmetry
within each valley. We may write the density-of-states mass, mN , for a single
valley as .m1m2m3/1=3 while an appropriate value for the inertial mass, mI , is
3= .1=m1 C 1=m2 C 1=m3/. Exactly how the mobility varies with the effective
mass depends on the nature of the scattering process. If acoustic-mode lattice scat-
tering is the predominant mechanism, the mobility is proportional to m

�3=2
N m�1

I

so � .m�/3=2 is proportional to Nv/mI . This suggests that we require a multi-valley
semiconductor with a low inertial mass for the carriers but a large number of valleys.
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4.4 The Lattice Thermal Conductivity in Pure Crystals

The basis for one of the first guidelines in the selection of thermoelectric materials
was the observation by Ioffe and Ioffe [2] that the lattice conductivity in a group of
materials with similar structure and bonding falls as the atomic weight becomes
larger. The results that they obtained for a number of materials are included in
Fig. 4.3 in which the lattice conductivity at room temperature is plotted against the
mean atomic weight.

Figure 4.3 shows that, within any group of materials, the lattice conductivity falls
as the mean atomic weight rises. The thermal conductivity of the alkali halides is
an order of magnitude lower than that of the diamond-type elements and the III–V
compounds. Since a low lattice conductivity is desirable for thermoelectric materi-
als, one might think that the ionic compounds would be a good choice. However,
these materials have very small carrier mobilities with very low values for the power
factor. The bonding in most of the useful thermoelectric materials is, in fact, largely
covalent, at least for operation at ordinary temperatures.
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Fig. 4.3 Plot of lattice conductivity against mean atomic weight for certain covalent and ionic
crystals. The plot is based on the observations of Ioffe and Ioffe [2]. The ionic compounds are
divided into those (a) with the atomic weight ratio less than 1.5 and those (b) with the atomic
weight ratio greater than 1.5
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One feature of the behaviour of the ionic compounds is the fact that the lattice
conductivity is lower for those with a high ratio of the atomic weights of the con-
stituent elements than for those with a lower ratio. This suggests that, when using
compounds, one should select those with large differences between the atomic
weights of the elements of which they are composed.

A precise prediction of the lattice conductivity for a new material is not easy.
However, an approximate theory that relates �L to the melting temperature, Tm, has
been developed by Keyes [3]. Keyes based his predictions on earlier approximate
theories presented by other workers.

A good starting point is the formula given by Leibfried and Schlömann [4]. By
using the variational method, they were able to show that the anharmonicity of the
lattice waves leads to the formula

�L D 3:5

�
k

h

�3
M V 1=3�3

D

�2T
; (4.5)

where M is the mean atomic mass and V is the mean atomic volume. � is the
Grüneisen parameter that, with the thermal expansion coefficient, is a measure of
the anharmonicity.

A formula that is close to (4.5) can be obtained by simple arguments. Firstly, one
makes use of a relationship given by Dugdale and MacDonald [5] who proposed
that there should be a link between the lattice conductivity of a pure crystal and its
thermal expansion coefficient, ˛T, since both depend on the anharmonicity. Dugdale
and MacDonald represented the anharmonicity by the dimensionless quantity ˛T�T

and suggested that the mean free path, lt, of the phonons is equal to a=˛T�T , where
a is the lattice constant. Equation (3.47) then leads to the formula

�L D cvav

3˛T�T
: (4.6)

We may then make use of the Debye equation of state

˛T D ��cv

3
; (4.7)

where � is the compressibility. The speed of sound, v, is related to the Debye tem-
perature by the equation

v D .�d�/�1=2 D 2ka�D

h
; (4.8)

where �d is the density. Thence, if the lattice constant is set equal to the cube root
of the atomic volume,

�L D 8

�
k

h

�3
M V 1=3�3

D

�2T
: (4.9)



4.4 The Lattice Thermal Conductivity in Pure Crystals 49

Equation (4.9) differs from Leibfried and Schlömann’s equation (4.5) only in the
value of the numerical constant. For convenience, we shall use (4.9) in our treatment.

Keyes had the intention of relating the lattice conductivity to properties of a sub-
stance that would be known immediately after its synthesis. From this point of view,
(4.6) and (4.9) are not really adequate. Equation (4.6) requires the knowledge of the
expansion coefficient, while to use (4.9) we need the speed of sound.

As an alternative starting point, Keyes made use of Lawson’s relation [6]

�L D a

3�2T�3=2�
1=2
d

; (4.10)

which can be obtained from (4.8) and (4.9). He also used the Lindemann melting
rule

Tm D "mV

R�
; (4.11)

where R is the gas constant and Tm is the melting temperature. The rule is based on
the principle that a solid will melt when the atomic vibrations reach a fraction "m

of the lattice constant, "m being approximately the same for all substances. Thence,
the Keyes relation is

�LT D BK
T

3=2
m �

2=3
d

A7=6
; (4.12)

where

BK D R3=2

3�2"3
mN

1=3
A

: (4.13)

In (4.13), NA is Avogadro’s number and A is the mean atomic weight. Thus, BK

involves only universal constants and the two parameters "m and � that do not vary
much from one material to another. The three variables, Tm, �d and A, that appear
in (4.12) will be known as soon as a material is prepared. Thus, this equation should
be a valuable guide to the prediction of the lattice conductivity.

Keyes was able to compare the thermal conductivity, as predicted by (4.12), with
the experimental data from a large range of dielectric crystals. He found that the data
invariably agreed with this equation, to within an order of magnitude, provided that
BK is given the value of 3 � 10�4 SI units. He was able to improve the agreement
if he selected values for BK equal to 1:3 � 10�3 SI units for covalently-bonded
materials and 1:5 � 10�4 SI units for ionic crystals. We are, particularly, interested
in semiconductors [7] and we find that there is reasonable agreement with (4.12) for
the lattice conductivity of these materials if BK is given the value 6 � 10�4 SI units,
as is shown in Fig. 4.4 in which �LT is plotted against T

3=2
m �d 2=3A�7=6. The data

were not all obtained at room temperature but were restricted to the region in which
�L satisfies Eucken’s law.

The Keyes formula is consistent with the observations of Ioffe and Ioffe but shifts
our attention towards the melting temperature as well as the mean atomic weight.
It must be emphasised that it is an approximation and, as shown by the spread of
values in Fig. 4.4, it merely serves as a useful guideline.
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Fig. 4.4 Plot of �LT against
T
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As we shall see later, there are ways in which the lattice conductivity can be
reduced below its value for a large pure and perfect crystal. Nevertheless, the selec-
tion of a material that has a low value of �L when only phonon–phonon scattering
exists is a good starting point in our search for good thermoelectric materials.

4.5 The Effect of Temperature

It must be realised that there is no single material that can be used in thermoelec-
tric energy conversion at all temperatures. As we shall see, the compound bismuth
telluride has been the basis of the materials for a thriving industry that has produced
modules for Peltier coolers over the past half-century. However, one cannot use
bismuth telluride in thermoelectric generation from a high-temperature heat source
since its properties deteriorate as T becomes greater. As the temperature reaches
a few hundred degrees Celsius, the compound becomes chemically unstable and,
eventually, melts. This, however, is not the only problem. As the temperature is
raised, electron-hole pairs are produced by excitation across the energy gap and this
reduces the Seebeck coefficient while, at the same time, increasing the thermal con-
ductivity through the bipolar effect. To some extent, the onset of mixed conduction



4.6 The Importance of the Energy Gap 51

can be minimised by adding donor or acceptor impurities but the size of the energy
gap sets a limit on what can be done by this means. At some higher temperature,
then, bismuth telluride must be replaced by a material that has a higher melting
point and larger energy gap. The replacement material, in turn, will be overtaken
by a semiconductor with an even larger melting point and wider band gap as the
temperature rises still further.

Over the range of temperature for which minority carrier conduction is negligi-
ble, the dimensionless figure of merit increases with T . This, of course, occurs even
if the figure of merit z remains constant, but there are, in fact, reasons for hoping
that z itself will increase.

The optimum value of the reduced Fermi energy does not change very much
with temperature so the preferred Seebeck coefficient is more-or-less constant. The
optimum carrier concentration is then approximately proportional to T 3=2 since this
quantity appears in expressions, such as (3.29), for the carrier concentration. On the
other hand, if lattice scattering with r D �1=2 is predominant, the mobility, �, of
the carriers varies as T �3=2. This implies that the optimum electrical conductivity
should be almost independent of temperature. Any temperature dependence of the
figure of merit should, thus, be associated with the thermal conductivity.

For a given value of the Lorenz number and electrical conductivity, the electronic
component of the thermal conductivity is proportional to the temperature. However,
in most thermoelectric materials, the lattice component is significantly larger than
the electronic component and, as we have seen, it is inversely proportional to the
absolute temperature for a pure crystal. Even when the phonons are partly scattered
by impurities or lattice defects, we might still expect the lattice conductivity to fall
as the temperature rises. Thus, z will probably rise with temperature and zT will
certainly do so.

For many years, the best dimensionless figure of merit at 300 K remained at about
unity but substantially higher values were being found for generator materials at
elevated temperatures. This was not because of higher values of z but, rather, because
of the factor T in zT. For the same reason, although large values of z have been found
[8] for Bi–Sb alloys at around liquid nitrogen temperature, the corresponding values
of zT at 80 K have remained less than that of alloys based on bismuth telluride at
room temperature.

4.6 The Importance of the Energy Gap

For various reasons, the energy gap of most of the semiconductors that are used in
thermoelectric energy convertors is rather small, in spite of the fact that this leads
to the possibility of minority carrier conduction. The maximum Seebeck coefficient
for a given semiconductor is closely related to the energy gap and it is necessary that
this maximum should be somewhat greater than the optimum value, as derived for a
single type of carrier. It is, in fact, possible to use the observed maximum Seebeck
coefficient to estimate the energy gap if this quantity is not already known [9].
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The Seebeck coefficient of a mixed semiconductor is given by (3.35). In order to
calculate its value, we need to know the relative carrier concentrations and mobilities
for the two types of carrier. We relate the carrier concentrations to the reduced Fermi
energies through the expressions

n D 2

�
2�m�

n kT

h2

�3=2

exp .�n/ ; (4.14)

and

p D 2

�
2�m�

p kT

h2

�3=2

exp
�
�p
�

; (4.15)

where �n and �p are linked to one another and the energy gap, Eg by

�n C �p D � Eg

kT
	 ��g: (4.16)

We shall make use of a parameter C that we define as

C D
�

�n

�p

� 
m�

n

m�
p

!3=2

; (4.17)

where m�
n and m�

p are the density-of-states masses for the electrons and holes. Then

�n

�p
D C exp

�
�n � �p

�
: (4.18)

It is likely that the maximum Seebeck coefficient will be found when the Fermi
level lies sufficiently far from both the valence and conduction bands for classical
statistics to be applicable. The exceptions will occur when the energy gap is very
small or when the parameter C is either very large or very small [10]. When C is
close to unity, the maximum Seebeck coefficient lies close to the value Eg=2eT and
it remains reasonably close to this value even for C � 1 or C � 1.

Figure 4.5 shows a plot of 2eT ˛max=Eg against C in a typical case of �g D 10

where it has been assumed that r D �1=2 for both types of carrier. As C becomes
much larger than 1, the maximum Seebeck coefficient becomes somewhat larger
for an n-type sample and somewhat smaller for a p-type sample. However, if the
maximum Seebeck coefficient is found for both types of material, the average is
almost independent of C .

The easiest way to determine the energy gap from Seebeck measurements is to
increase the temperature until mixed and then intrinsic conduction is observed. The
maximum Seebeck coefficient for a plot against temperature at a fixed doping level
is close to the maximum for a plot against electrical conductivity at a fixed temper-
ature. When the Seebeck coefficient is measured over a range of temperature, only
one sample (or, perhaps, one of each conductivity type) is needed.
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Fig. 4.5 2eT ˛max=Eg plotted against the parameter C for n-type and p-type material. The central
line represents the average for the maximum Seebeck coefficients of both types

We can now make a reasonable estimate of the minimum energy gap that is
needed for a thermoelectric material to be operated at a certain temperature. We
know that the optimum Seebeck coefficient for an extrinsic semiconductor is about
˙200 �VK�1. The maximum Seebeck coefficient should be significantly larger
than this if mixed conduction is to be avoided. Let us suppose that the maximum
Seebeck coefficient must not be less than, say, ˙260 �V K�1. This means that the
energy gap must not be smaller than about 6kT. If the energy gap is smaller than
this, for an otherwise suitable material, it may be necessary to operate with a See-
beck coefficient that is smaller than the optimum value for a single carrier.

Empirically, it seems that the best material at any given temperature barely sat-
isfies the condition Eg > 6kT . This is because in a given series of semiconductors,
the ones with the highest mobility, or, rather, the highest product � .m�=m/3=2, ap-
pear to have the smallest energy gaps. Thus, many of the well-known high-mobility
semiconductors, such as indium antimonide, indium arsenide, and mercury telluride
have small energy gaps. This is associated with the fact that the relation between
the energy and wave vector is different near the band edge from that deep within the
band.

4.7 Non-Parabolic Bands

Up to this point, it has been supposed that the energy bands are parabolic; that is, the
energy of the carriers is proportional to .k � k0/2 where k is the wave vector and
k0 its value at the band extremum. This supposition breaks down if the direct gap
(i.e., the gap at a given position in wave vector space) between the valence and con-
duction band is small. The parabolic approximation is, generally, satisfactory only
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close to the band edge. The problem of dealing with non-parabolic bands is difficult
though a somewhat simplified approach has been presented by Kolodziejczak and
Zhukotynski [11].

It was proposed by Kane [12] that the energy–wave vector relation for indium
antimonide should have the form

E D „2k2

2m
� 1

2
Eg C 1

2

�
E2

g C 8Q2k2

3

�1=2

; (4.19)

where the energy gap Eg is supposed to be of the direct type and Q is a parameter
that is characteristic of a particular band. If one neglects the first term on the right-
hand side of (4.19), the result is

E D 1

2

"�
E2

g C 8Q2k2

3

�1=2

� Eg

#

: (4.20)

We notice that, when the energy gap is large compared with Qk, the usual parabolic
relationship between energy and wave vector is the result. In terms of Q the
relation is

E D 2Q2

3Eg
k2: (4.21)

However, when the energy gap is much smaller than Qk, we find that

E D
�

2

3

�1=2

Qk; (4.22)

and the relation between energy and wave vector is linear. The result is an increase
in the effective mass of the carriers and a decrease in the mobility.

One might expect all the semiconductors in a given series to have more-or-less
the same value of Q. If this is so, then (4.21) shows that effective mass should be
inversely proportional to the energy gap. This explains the high mobility of com-
pounds like InSb. It is still possible for the density-of-states mass to be reasonably
large if the bands are of the many-valley type.

In view of the fact that the semiconductors that are used in thermoelectric con-
version are very impure compared with those to be found in the microelectronic
industry, the charge carriers are not likely to be confined to the band edges. Thus,
non-parabolicity of the energy–wave vector relation is a real possibility. Hopefully,
the carriers near the band edge will be dominant so that non-parabolicity may have
only a minor influence on the transport properties. It may, however, account for
anomalies in the behaviour of thermoelectric materials that are sometimes observed.

It is noted that Harman and Honig [13] have discussed non-parabolic bands in
the context of thermoelectric and thermomagnetic devices.
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4.8 Thermomagnetic Materials

It can be shown that an extrinsic conductor is best used in the Seebeck-Peltier mode
rather than as a Nernst-Ettingshausen device. The Nernst coefficient for one type of
charge carrier is given by the approximation [14]

N D �

eT
�
1 C �2B2

z

�
� h�2

e ei
h�2

e i � h�eei
h�ei

	
; (4.23)

where the angular brackets denote averages for all values of the energy ". The quan-
tity in the square brackets varies from zero for a completely degenerate conductor to
rkT for non-degeneracy. The thermomagnetic power, NBz, has a maximum value,
when �B D 1, of no more than rk=2e. The highest value for NBz is 3k=4e, that
is about 65� V K�1, if we assume that r can be no greater than its value of 3/2
for ionised-impurity scattering. This is clearly much less than the optimum Seebeck
coefficient for thermoelectric energy conversion. It should be noted that the Nernst
coefficient takes the same sign as r and can be used in the determination of the
scattering law.

Although mixed and intrinsic conduction should be avoided in a thermoelectric
device, it turns out that the bipolar effects are an advantage when using the Nernst
and Ettingshausen effects. While the electrons and holes act in opposition in the
Peltier and Seebeck effects, they assist one another in the Nernst and Ettingshausen
effects. The difference between the Ettingshausen effects in extrinsic and intrinsic
conductors is illustrated in Fig. 4.6. In the extrinsic case, we have assumed that the
scattering parameter r is less than zero.

Electric
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Cold 

Hot 

Cold 

More energetic 

Less energetic 
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a

b

Fig. 4.6 Origin of the Ettingshausen effect in (a) an extrinsic conductor and (b) an intrinsic
conductor



56 4 Optimisation and Selection of Semiconductor Thermoelements

In the extrinsic conductor, (a), the magnetic field tries to drive the carriers
downwards but the boundaries prevent this flow from taking place. There has to
be zero transverse electric current. However, it is still possible for the carriers with
the longer relaxation time to move down if their partial current is balanced by an
upwards flow of the carriers with a shorter relaxation time. This means that the top
of the sample becomes hot and the bottom becomes cold.

There is again a downwards force on the charge carriers in the intrinsic con-
ductor, (b), and in this case, they can move downwards without any overall charge
flow. Thus, the bottom of the sample becomes heated and the top is cooled. The
Ettingshausen effect is clearly stronger when both positive and negative carriers are
present.

We shall now derive an expression for the Nernst coefficient of a mixed conduc-
tor. We have to set the longitudinal electric current equal to zero, so, from (3.37),

in;x D �ip;x D �n�p

�n C �p

�
˛p � ˛n

� dT

dx
: (4.24)

The magnetic field produces transverse currents in;y and ip;y that must be equal and
opposite. Then, if Ey is the electric field due to the Nernst effect and RH;n and RH;p

are the partial Hall coefficients

in;y D �
Ey C RH;nin;xBz

�
�n; (4.25)

and
ip;y D �

Ey C RH;pip;xBz
�

�p: (4.26)

Setting the transverse current equal to zero and eliminating the partial currents using
(4.24),

Ey D
�
RH;p�p � RH;n�n

�
�n�p

�
�n C �p

�2 .˛p � ˛n/Bz
dT

dx
: (4.27)

The Nernst coefficient is

N D
�
RH;p�p � RH;n�n

�
�n�p

�
�n C �p

�2
�
˛p � ˛n

�
: (4.28)

jRH;n�nj and RH;p�p are the Hall mobilities, �H;n and �H;p; of the two types of
carrier, which become equal to the mobilities �n and �p, as defined by (3.30) in a
high magnetic field. In terms of the Hall mobilities

N D
�
�H;p C �H;n

�
�n�p

�
�n C �p

�2
�
˛p � ˛n

�
: (4.29)
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We also need to use expressions for the electrical and thermal conductivities in a
magnetic field. The electrical conductivity is given by

� D �n

1 C �2
n B2

z
C �p

1 C �2
pB2

z
: (4.30)

The conductivity is defined as the ratio of the current density in the x direction to the
electric field that has no transverse component. The isothermal electrical resistivity,
�i , and the conductivity are related through [15]

� D �i

�
�i
�2 C R2

HB2
z

; (4.31)

where RH is the overall Hall coefficient. At the high magnetic field limit, RH

becomes equal to
�
1=RH;p � 1=RH;n

��1
.

The behaviour of the thermal conductivity in a high magnetic field has been
discussed by Tsidil’kovskii [16]. The theory is complex and the exact expressions
are cumbersome but we are justified in using an approximation for the electronic
thermal conductivity since the lattice conductivity is likely to be predominant. In
this context, a good approximation for the electronic thermal conductivity is

�e D �e;n

1 C �2
H;nB2

z
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1 C �2
H;pB2

z

C �n�p
�
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�2
T

�n
�
1 C �2

H;nB2
z

�C �p



1 C �2

H;pB2
z

� ; (4.32)

where �e;n and �e;p are the partial electronic thermal conductivities in zero magnetic
field.

When the transverse electric field is zero, the electronic thermal conductivity
tends towards zero at very high magnetic fields. However, under the more usual
experimental conditions [17], it is the transverse electric current that is zero and the
total thermal conductivity then becomes

� D �L .1 C ZNET / : (4.33)

We shall discuss this effect later when we deal with the thermal conductivity of
bismuth.

We are now in a position to obtain an expression for the thermomagnetic figure
of merit of an intrinsic conductor. We shall assume that the magnetic field is high
enough for �2

n B2 � 1 � �2
p B2 and that there are equal numbers of mobile elec-

trons and holes. Under these conditions (4.29) becomes

N D �n�p

�n C �p

�
˛p � ˛n

�
: (4.34)
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In a high magnetic field, the Hall coefficient of an intrinsic conductor becomes equal
to zero. Thus, the isothermal electrical resistivity is given by

�i D 1

�
D
 

�n.0/

1 C �2
nB2

z
C �p .0/

1 C �2
p B2

z

!�1

: (4.35)

We are interested in the isothermal thermal conductivity, which, unlike the adia-
batic quantity in (4.33), does tend to �L for a very high magnetic field. Thus, the
thermomagnetic figure of merit is given by

ZNE D nie�n�p
�
˛p � ˛n

�

�
�n C �p

�
�L

; (4.36)

where ni is the number of electrons or holes.
One cannot optimise a thermomagnetic material in the same way as a thermoele-

ment. However, in a range of alloys, the energy gap may vary while the carrier
mobilities and the lattice conductivity may remain more or less constant. Suppose
that we consider first what happens in a non-degenerate conductor as the energy gap
changes, the concentration of each type of carrier is then given by

ni D 2


m�

n m�
p

�3=2
�

2�mkT

h2

�3=2

exp

�
� Eg

2kT

�
: (4.37)

and at the high magnetic field limit

�
˛p � ˛n

� D Eg C 5kT

eT
: (4.38)

Thus, in the classical region

ZNE / �
Eg C 5kT

�2
exp

�
� Eg

2kT

�
: (4.39)

In order for classical statistics to be reasonably accurate, it is necessary that the
energy gap should be greater than about 4kT. If this condition is satisfied, ZNE con-
tinually increases as the energy gap decreases so we know that the optimum gap
must be less than 4kT. We, therefore, have to use Fermi-Dirac statistics.

Let us suppose that the effective masses of the electrons and holes are equal.
When this condition holds, we can obtain the following proportionality:

ZNE / FNE D FrC1=2 .�/

�
5F3=2 .�/

3F1=2 .�/
� �

	2

; (4.40)
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Fig. 4.7 Plot of the function FNE against Eg=2kT for different values of the scattering parameter
r. The Nernst-Ettingshausen figure of merit is proportional to FNE. FNE is defined as the function
on the right hand side of the relation (4.40)

where the reduced Fermi energy, �, is equal to �Eg=2kT . In Fig. 4.7, we show the
function on the right hand side of the proportionality (4.40) plotted against Eg=2kT .

Figure 4.7 shows us that the thermomagnetic figure of merit is highest when
the bands overlap by about 2kT. In other words, the ideal thermomagnetic mate-
rial would seem to be a semimetal with slightly overlapping bands. We note that,
once r becomes positive, it appears that the greater the band overlap the better.
However, such values of r imply a substantial amount of impurity scattering, with
a reduced carrier mobility. This would make it very difficult to achieve the condi-
tion .�B/2 � 1. Thus, it is reasonable to conclude that the best thermomagnetic
materials will have only a small overlap between the conduction and valence bands.

If the energy gap has a certain value, the high field thermomagnetic figure of
merit satisfies the proportionality

ZNE /
�

m�
n m�

p

m2

�3=4 ��
1

�n
C 1

�p

�
�L

	�1

: (4.41)

The quantity on the right-hand side of this proportionality resembles the factor
.�=�L/ .m�=m/3=2 that enters into the parameter ˇ for thermoelectric materials.
If one of the carriers is much more mobile than the other, say �n � �p, then ZNE

is proportional to �p and only the mobility of the less mobile carrier is important.
Thus, we really need a material in which both the carriers are highly mobile.

If the mobilities of both carriers are equal, �p D �n D �, then (4.36) becomes

ZNE D 2nie�˛2

�L
; (4.42)
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where ˛ D ˛p D �˛n. This equation reveals some of the advantages that
thermomagnetic energy convertors might have compared with thermoelectric de-
vices. The factor of 2 in the numerator arises from the fact that the electrons and
holes share a common lattice. Furthermore, the partial Seebeck coefficients usually
become larger when a magnetic field is applied. Also, only the lattice contribu-
tion to the thermal conductivity remains as the magnetic field becomes very large.
However, one must not forget that the thermoelectric figure of merit might itself be
improved in a magnetic field.

4.9 Superconductors as Passive Thermoelements

The circumstances can arise in which there is a good thermoelectric material of
one conductivity type but no equally good material of the other type. For example,
bismuth is an excellent n-type material at low temperatures but not particularly good
when holes are the majority carriers. When only a single material is available, the
thermocouple can be completed using a normal metal as the second branch. The
metal will contribute little or nothing to the Seebeck coefficient but, hopefully, it
will have a much higher ratio of electrical to thermal conductivity than exists in
the active material. In practice, this approach does not really work since a good
thermoelectric material will have a ratio of electrical to thermal conductivity that
is not much less than the value for a metal, that is the Wiedemann-Franz ratio.
However, if the metal is a superconductor, it can be a truly passive branch. It will
not contribute to the thermoelectric effects but will have an infinite ratio of electrical
to thermal conductivity, provided that the critical current is not exceeded.

The use of superconductors as passive thermoelements was first discussed by
Goldsmid et al. [18] and has been investigated more thoroughly by Vedernikov and
Kuznetsov [19]. These authors discussed specifically a Bi–Sb alloy as the active
component in conjunction with a high-temperature superconductor. At present, this
type of combination is restricted to temperatures that are not much greater than that
of liquid nitrogen, i.e., 77 K.

Although the superconducting leg need not add to the electrical resistance, it will
have a finite thermal conductance. Goldsmid and his colleagues noted that a typical
Bi–Sb alloy has a thermal conductivity of 3 W m�1 K�1. They proposed the use
of YBa2Cu3O9�ı , which has a thermal conductivity of 0:6 W m�1 K�1 at 80 K, as
the superconductor. They assumed that the active thermoelement would be 10 mm in
length with a current density of 6�105 A=m2. Thus, so that the heat loss through the
superconductor would not exceed 10% of that through the active branch, it should
have a current density of 12 � 105 A=m2. The critical current density in the sample
of YBa2Cu3O9�ı studied by Goldsmid et al. was only 1:9 � 104 A=m2 even in
zero magnetic field and, in fact, a magnetic field is really needed to enhance the
thermoelectric properties of the Bi–Sb.

Vedernikov and Kuznetsov discussed not only YBa2Cu3O9�ı but also supercon-
ductors from the Bi–Sr–Ca–Cu–O system. The requirement for the superconductor
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Fig. 4.8 Maximum temperature depression plotted against hot junction temperature for a ther-
mocouple made from Bi0:85Sb0:15 and the superconductor BiSrCaCu2Ox. Data of Vedernikov and
Kuznetsov [19]

is that it should have a low thermal conductivity and a high critical current density.
It is also necessary that its electrical contacts should have negligible resistance and,
preferably, it should be capable of being used in a magnetic field if, indeed, it is to be
operated in conjunction with Bi–Sb. The material chosen for the experimental work
was BiSrCaCu2Ox, which has a critical temperature of 87 K and a critical current
density of 12 � 105 A=m2 at 77 K. It was provided with low-resistance electrical
contacts by the electrodeposition of silver with subsequent annealing. Although this
superconductor is barely adequate for the purpose, it was possible to obtain a signif-
icant temperature depression from a thermocouple in which it was combined with
Bi0:85Sb0:15. It was even possible to use this couple in a magnetic field to obtain an
enhanced cooling effect as shown in Fig. 4.8. It is apparent that the use of a super-
conducting branch is a viable option under certain conditions.
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Chapter 5
Minimising the Thermal Conductivity

5.1 Semiconductor Solid Solutions

In the previous chapter, we discussed the selection of materials with a low lattice
conductivity under the condition that the phonons are scattered only by other
phonons. However, we know that the lattice conductivity can be reduced by the
scattering of phonons on various types of defect, including the boundaries of any
finite crystal. Such defects may, of course, scatter the charge carriers as well as the
phonons. Indeed, since the mean free path is usually greater for electrons or holes
than it is for phonons, we might expect there to be a greater effect on the mobil-
ity than on the lattice conductivity. In practice, it turns out that, in many cases,
the ratio of the mobility to the lattice conductivity can be raised through defect
scattering.

A most useful proposal was made in 1956 by Ioffe et al. [1]. They suggested
that the formation of a solid solution between two semiconductors that have the
same crystal structure should lead to a reduction in the lattice conductivity. It was
claimed that the mobility of the charge carriers would not necessarily be reduced
by the alloying process. It was argued that the long-range order would be preserved
and, since the wavelength associated with the charge carriers is also rather large,
they would suffer no additional scattering. On the other hand, the phonons that pre-
dominate in the conduction of heat have short wavelengths and are scattered by the
disturbances in the short-range order in a solid solution.

In Fig. 5.1, we show the lattice resistivity plotted against the proportion of a sec-
ond component in certain semiconductors. The effect of alloying is, particularly,
large in the Si–Ge system because the lattice conductivity of pure silicon and ger-
manium is so high that it is comparable with the total thermal conductivity of most
metals.

Ioffe et al. showed that the lattice conductivity of a solid solution varies approx-
imately according to the rule

1

�L
D 1

.�L/0

C 4x .1 � x/

�
1

.�L/m
� 1

.�L/0

	
; (5.1)
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Fig. 5.1 Lattice thermal
resistivity plotted against
proportion, x, of second
component in semiconductor
solid solutions
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where .�L/0 is the lattice conductivity when the proportion, x, of the second
component is zero and .�L/m is the lattice conductivity, when x D 0:5.

Airapetyants et al. [2] considered the carrier mobility in solid solutions of com-
pounds. They noticed that the mobility of the electrons is more strongly affected
when substitution is made on the electropositive sub-lattice whereas the mobility of
holes is more affected by substitution on the electronegative sub-lattice. Figure 5.2
shows the manner in which the ratio of electron to hole mobility varies in solid
solutions of PbTe with PbSe and SnSe.

The ideas of Airapetyants et al. can be criticised since there are no strong reasons
to associate the motion of electrons or holes with a particular sub-lattice. Moreover,
the principle, that the carrier mobility is less strongly affected than the lattice con-
ductivity by the formation of a solid solution, seems to work satisfactorily in solid
solutions between elemental semiconductors like silicon and germanium for which
electropositive and electronegative sub-lattices cannot be identified. Nevertheless,
there is evidence to support the ideas of Airapetants for other systems. For example,
it seems preferable to use alloys between Bi2Te3 and Sb2Te3 for positive thermoele-
ments and alloys between Bi2Te3 and Bi2Se3 for negative thermoelements.

5.2 Phonon Scattering by Point Defects

The basis of the scattering of phonons in solid solutions is the local changes in
density associated with the different atoms. Scattering can also result from local
changes in the elastic constants. According to the Rayleigh theory, the scattering
cross-section, � , for point defects is given by
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Fig. 5.2 Plot of ratio of electron to hole mobility against concentration of second component in
solid solutions of PbTe with PbSe and SnTe
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where c is the diameter of the defect, qL is the magnitude of the phonon wave vector,
�� is the local change of compressibility, and ��d is the local change of density.
Rayleigh scattering is a classical concept that is applicable only when the defects
are much smaller than the wavelength of the phonons. This is not true for the higher
frequency phonons but we are justified in using (5.2) because such phonons are
so strongly scattered that they make little contribution to the thermal conductivity
[3]. For the same reason, we may use the Debye model for the lattice vibrational
spectrum since it is a good approximation for the low-frequency phonons.

There is a general problem in dealing with the lattice conductivity. As was shown
by Peierls, it is the Umklapp processes that account for the thermal resistance of
pure crystals, but we should not neglect the redistribution of phonons due to the
normal processes. A powerful technique for handling this problem was developed
by Callaway [4]. The normal processes are at first supposed to be just as effective
as Umklapp processes in the scattering of phonons. Then, a correction is applied
on the basis that any disturbance in the phonon distribution relaxes through the
normal processes to a distribution that still carries momentum. Although Callaway’s
treatment has encountered some criticism, it has the virtue that it can be applied with
relative ease. We shall, therefore, give an outline of the Callaway approach.



66 5 Minimising the Thermal Conductivity

Suppose that there are processes with a relaxation time �R that change the
momentum or wave vector and other processes with a relaxation time �N that con-
serve wave vector; then the distribution function, N , will relax according to the
equation �

dN

dt

�

scatter
D N0 � N

�R
C NN � N

�N
; (5.3)

where N0 is the equilibrium distribution function and NN is the distribution function
to which the normal processes on their own would lead. The temperature gradient
rT will change the distribution function according to the equation

�
dN

dt

�

diffusion
D �v � rT

@N

@T
; (5.4)

where v is the sound velocity in the direction of the phonon wave vector, qL. Since
the diffusion and scattering processes must balance,

N0 � N

�R
C NN � N

�N
� v � rT

@N

@T
D 0; (5.5)

The distribution function to which the normal processes lead has to carry momen-
tum against the temperature gradient. The Bose–Einstein function that applies to
phonons in the absence of a temperature gradient is

N0 D
�

exp

�„!

kT

�
� 1

	�1

; (5.6)

so we suppose that we can use the distribution

NN D
�

exp

�„! � qL � l

kT

�
� 1

	�1

: (5.7)

In these equations, we have used „ to represent h=2  and, !, which is equal to
2 f , to denote the angular frequency. l is a constant vector in the direction of the
temperature gradient and is such that q � l � „!. Equation (5.7) differs from (5.6)
in that the frequency ! is changed by �q � l=„. Thus, the normal processes lead to
a change in the distribution function

NN � N0 D qL � l

kT

exp.x/

.exp.x/ � 1/2
; (5.8)

where x D „!=kT . Also, from (5.6)

@N

@T
D „!

kT 2

exp.x/

.exp.x/ � 1/2
(5.9)
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By combining (5.8) and (5.9) we find that
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�
@N

@T
D 0: (5.10)

Since l must be proportional to the temperature gradient, we may express this vector
in the form

l D � „
T

ˇv2rT; (5.11)

where ˇ is a constant that has the dimensions of time. Then, using the Debye model
to replace qL by !=v, (5.10) may be written as

.N0 � N /

�
1

�R
C 1

�N

��
1 C ˇ

�N

��1

� v � rT
@N

@T
D 0: (5.12)

This means that there is an effective relaxation time, �eff, that is given by

1

�eff
D
�

1

�R
C 1

�N

��
1 C ˇ

�N

��1

D 1

�c

�
1 C ˇ

�N

��1

: (5.13)

In this equation, �c is the relaxation time that would be expected if the normal
process did not conserve momentum or wave vector. Equation (5.13) shows that
the effective relaxation time is obtained by multiplying �c by .1 C ˇ=�N/.

Thus, to allow for the normal processes, we have to evaluate the quantity ˇ. In
principle, we can do this by taking account of the fact that the normal processes
conserve wave vector. This means that

Z
NN � N

�N
qLd 3qL D

Z
4�!2

v3

NN � N

�N
qLd! D 0: (5.14)

Now .NN � N / may be written as .N � N0/ C .N0 � N / and is proportional to
.ˇ � �eff/ @N=@T . Thus, (5.14) becomes

Z �D=T

0

�
ˇ

�N
� �c

�N
� ˇ�c

�2
N

�
!4 exp.x/

.exp.x/ � 1/2
dx D 0: (5.15)

The expression for ˇ is then

ˇ D
Z �D=T

0

�c

�N
x4 exp.x/

.exp.x/ � 12
dx=

Z �D=T

0

1

�N

�
1 � �c

�N

�
x4 exp.x/

.exp.x/ � 1/2
dx:

(5.16)
It is possible to estimate ˇ without difficulty only in certain cases. Thus, when scat-
tering on imperfections is very strong, so that the corresponding relaxation time �I
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is very much less than �N, one may use the approximation 1=�eff ' 1=�I C 1=�N.
Another approximation can be used at low temperatures when Umklapp scattering
becomes very weak. However, of most interest to us is an approximation that has
been given by Parrott [5] for relatively high temperatures, that is T > �D. He sup-
posed that the relaxation times for both Umklapp and normal processes are then
proportional to !�2 while the relaxation time for scattering on point defects is pro-
portional to !�4. We can, therefore, write

1=�I D A!4; 1=�U D B!2; 1=�N D C!2;

where A, B , and C are constants for a given specimen. Also, in the high-temperature
region, x � 1 for the whole phonon spectrum, whence x2 exp.x/=Œexp.x/ � 1�2

' 1. It is then found that the lattice conductivity, �L, for the material that contains
defects is related to the value �0 for a pure and perfect sample by the equation

�L

�0

D
�

1 C 5k0

9

�
�1
"

tan�1 y

y
C
�

1 � tan�1 y

y

�2 �
y4.1 C k0/

5k0

� y2

3
� tan�1 y

y

�
�1
#

;

(5.17)

where k0 equal to C /B represents the relative strengths of the normal and Umklapp
processes. Also, y is defined by

y2 D
�

!D

!0

�2 �
1 C 5k0

9

��1

: (5.18)

and �
!D

!0

�2

D k

2�2v�0!DA
: (5.19)

The value of k0 in (5.18) is found experimentally by measuring the lattice conduc-
tivity of a pure sample and one that contains imperfections. The same value of k0

can then be used for samples with other defect concentrations.
We can get a reasonable idea of the effect of scattering in solid solutions at

high temperatures, if we assume that Umklapp processes predominate over normal
processes. Then, (5.17) reduces to

�L

�0

D !0

!D
tan�1

�
!D

!0

�
: (5.20)

Here, �0 represents the lattice conductivity of a virtual crystal, which is the value
that it would have if the solid solution were perfectly ordered with no point-defect
scattering. For want of a better procedure, one might determine �0 for a binary
alloy by linear interpolation between the values for the lattice conductivity of the
two components.
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In accordance with (5.2), phonons can be scattered by local variations in both the
elasticity and the density. Mass-fluctuation scattering is the easier to deal with and,
in fact, might be the major contribution in many semiconductor solid solutions.

If the imperfection scattering is associated with density fluctuations, the appro-
priate value for the parameter A that appears in (5.19) is AM, which is given by

AM D �

2v3N

X

i

xi
�
Mi � NM

�2

NM 2
; (5.21)

where xi is the concentration of unit cells of mass Mi, NM is the average mass of a
unit cell and N is the number of cells per unit volume.

It can be difficult to predict the scattering due to fluctuations in elasticity. Briefly,
a foreign atom changes the local value for the compressibility, partly because it has
bonds that differ from those of a host atom and partly because it does not fit well into
a lattice site, thus straining the crystal. Both these effects will, like mass fluctuations,
cause local changes in the speed of sound. If we use the Debye model of an elastic
continuum, an impurity atom of diameter ı0

i in its own lattice distorts the space that
it occupies from the diameter ı of a host atom to a new diameter ıi. These diameters
are related to one another by

ıi � ı

ı
D �ıi

ı
D �

1 C �

ı0
i � ı

ı
; (5.22)

where

� D .1 C P / Gi

2 .1 C 2P / G
: (5.23)

In this equation, G and Gi are the values for the bulk modulus in the host and
impurity crystals, respectively, and P is Poisson’s ratio for the host crystal. The
equation given by Klemens [3] for the parameter A for strain scattering is

AS D �

v3N

X

i
xi

�
�Gi

G
� 6:4�

�ıi

ı

�2

; (5.24)

where �Gi D Gi � G and � is the Grüneisen parameter.
In Fig. 5.3, we show the ratio of the lattice conductivity of a solid solution to

that of a perfect virtual crystal plotted against !D=!0 on the basis of (5.20). The
curve has been calculated for mass-defect scattering as given by (5.21). The data
points show typical observed values for a number of solid solutions [6]. For some
of the solid solutions, there is reasonable agreement with the theoretical curve, but
in other cases the observed lattice conductivity falls well below the predicted value.
We presume that the difference is accounted for by strain scattering. It is noticeable
that none of the data points lie above the theoretical curve.
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Fig. 5.3 Plot of lattice conductivity against !D=!0 according to (5.20) assuming mass-defect scat-
tering from (5.21). The data points represent thermal conductivity data for semiconductor solid
solutions

5.3 Boundary Scattering

It has long been known that phonons can be scattered on the boundaries of crystals
[7] at low temperatures. However, one would only expect the effect to be observed
at ordinary temperatures when the grain size is exceedingly small since the mean
free path of phonons is usually less than 10�9 m. Nevertheless, it was predicted [8]
in 1968 that the lattice conductivity might be reduced by boundary scattering of the
phonons for grain sizes of the order of 10�6 m. The effect was observed [9] for thin
sheets of silicon in 1973 and has since been found in other semiconductors. As we
shall see, boundary scattering should have a more marked effect for solid solutions
than for elements or simple compounds in spite of the reduction in the phonon free
path length by alloy scattering.

The key to the understanding of the enhanced boundary scattering effect lies in
the fact the free path length for the phonons varies strongly with their vibrational
frequency. The low-frequency phonons, though relatively small in number, have a
large free path length and, therefore, make a sizeable contribution to the lattice con-
ductivity. In fact, if we assume that the relaxation time for Umklapp scattering is
proportional to !�2, we expect that all frequencies will make comparable contri-
butions to the lattice conductivity, as shown by the upper curve in Fig. 5.4. In this
diagram, the relative lattice conductivity �L .!/ due to the phonons having an angu-
lar frequency ! is plotted against !. According to the Debye theory, the number of
phonons of frequency ! is proportional to !2 and we expect the Debye distribution
to be valid at low frequencies. Now, point-defect scattering in a solid solution will
remove the contribution to the lattice conductivity of most of the high-frequency
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Fig. 5.4 Contribution to
the lattice conductivity of
phonons of angular frequency
! plotted against !. The
upper curve is applicable
when only phonon–phonon
scattering occurs. The black
region on the right indicates
the contribution removed by
point-defect scattering. The
grey region on the left shows
the contribution removed by
boundary scattering

λL(ω) 

ω0 ωD

τ = 1/Bω 2

τ= L/v τ= 1/Aω4

phonons. The remaining lattice conductivity is due to low-frequency phonons and,
because of their long free path, they are particularly sensitive to boundary scattering.

In Fig. 5.4, the lattice conductivity of a large pure crystal is represented by the
area under the upper curve. The black area then represents the loss of lattice con-
ductivity due to point-defect scattering and the grey area is the loss due to boundary
scattering. It should be possible to estimate the lattice conductivity in an alloy of
small grain size from the ratio of the unshaded area to the total area. Of course,
in reality, there are regions in which at least two of the scattering effects are of
comparable magnitude and the sharp cut-offs should, therefore, be more gradual.
Nevertheless, because the variation of the relaxation time with frequency is quite
different for Umklapp, point-defect, and boundary scattering, the error introduced
by dividing the plot into three distinct regions is not great. Then, if there is a domi-
nant region for each of these processes, we find that

�L

�S
D 1 � 2

3

�0

�S

r
lt

3L
; (5.25)

where �S is the lattice conductivity of a large crystal of the solid solution, �0 is that
in the absence of alloy scattering, when the mean free path of the phonons is equal
to lt, and L is the effective grain size. L should be close to the actual grain size
unless the scattering at the boundaries is substantially specular. It is noted that lt can
be estimated from the thermal conductivity �0 using (3.47).

Obviously, (5.25) cannot be applicable when the grain size is very small since
it would lead to negative values of �L. The reason for this is that there is then no
region in which phonon–phonon scattering is dominant unless there is little alloy
scattering. There are two special cases of interest.

If alloy scattering is very weak, �S becomes equal to �0 and only two regions
have to be considered. Equation (5.25) is still applicable up to the point at which �L
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is equal to �S=3; for smaller grain sizes, only boundary scattering is important. On
the other hand, if alloy scattering is very strong, (5.25) will apply only until �L is
equal to 2�S=3. In other words, (5.25) can be used until the grain size becomes so
small that the lattice conductivity has fallen to between one-third and two-thirds of
its value in a large crystal.

Consider, then, what happens when boundary scattering is very strong [10]. For
the case of weak alloy scattering, there is no problem. As we enter the region for
which (5.25) no longer holds, the lattice conductivity simply becomes proportional
to the grain size and is equal to �0L=lt. However, the situation is more complicated
for strong alloy scattering. In this case, there is an angular frequency !B at which
alloy scattering takes over from boundary scattering. This frequency is given by
L D v=A!4

B and the equation for the lattice conductivity becomes

�L D
�

cv

!3
D

� 
4.v=A/3=4L1=4

3
� v

A!D

!

: (5.26)

When !B is much less than !D, the second term on the right hand side of (5.26) can
be neglected and we then expect �L to vary as L1=4. Thus, in this region, where both
alloy scattering and boundary scattering are very strong,

�L D
�

2�S

3

�"�
3L

lt

��
�S

2�0

�2
#1=4

: (5.27)

This equation fails as !B approaches !D and, when L becomes very small, we obtain
the same expression as for weak alloy scattering.

5.4 Scattering of Electrons and Phonons

The considerations of the previous section show that boundary scattering can appear
when the mean free path of the phonons is much smaller than the grain size. For
this reason alone, it is possible that boundary scattering can improve the ratio of
mobility to lattice conductivity even when the mean free path is greater for the
charge carriers than for the phonons. It is also possible that boundary scattering
of the charge carriers might be more nearly specular than it is for the phonons.
However, let us for the moment assume that the boundaries are equally effective in
scattering phonons and electrons or holes.

If the charge carriers are scattered by the acoustic-mode lattice vibrations in a
large crystal, the mobility is given by

�0 D 4

3�1=2

e�0.kT /�1=2

m� ; (5.28)
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where we have set r D �1=2 in (3.30). Thence, the mean free path, l0, of the charge
carriers is given by

l0 D 3�0 .2�m�kT /1=2

4e
: (5.29)

When boundary scattering is also present, the free path length for the charge carriers
is given by

le D
�

1

l0
� 1

L

��1

; (5.30)

where L again represents the effective grain size. Thus, the mobility is expressed as

�

�0

D L=l0

1 C L=l0
: (5.31)

Let us then consider the effect of boundary scattering in a Si–Ge alloy, a material that
has found application in thermoelectric generators. Calculations of both the lattice
conductivity and the electron mobility have been carried out [10] using (5.25) and
(5.31) for a wide range of effective grain sizes. Figure 5.5 shows how �=�0 and
�L=�s vary with L=lt for Si–Ge with equal proportions of the two elements.

In Fig. 5.6, we show how the ratio of lattice conductivity to electron mobility
varies with grain size for the same Si–Ge alloy. The ratio �L=� is, generally, reduced
when the grain size becomes smaller, though there is a minimum value for the ratio
when the effective grain size is about ten times the mean path length of the phonons.
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0 

Fig. 5.5 Calculated ratio of lattice conductivity to its value for a large crystal plotted against ratio
of effective grain size to phonon mean free path for Si–Ge at 300 K. Also shown is the ratio of
electron mobility to its value for a large crystal
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Fig. 5.6 Calculated values of .�L�S/ = .��0/ plotted against ratio of effective grain size to phonon
mean free path in a Si–Ge alloy at 300 K

Silicon–germanium alloys are not useful thermoelectric materials at room tem-
perature so the predicted improvement in the ratio of electron mobility to lattice
conductivity, shown in Fig. 5.6, is not immediately applicable to practical applica-
tions. It is worth noting, however, that there is experimental confirmation that the
lattice conductivity can be significantly reduced by boundary scattering. Savvides
and Goldsmid [11] found that the lattice conductivity of undoped Si70Ge30 at
300 K falls from 8.2 to 4:3 W=m K when the grain size is reduced to 2 �m in
polycrystalline-sintered material. At this grain size, one expects very little deteri-
oration of the carrier mobility. Polycrystalline Si–Ge alloys have, in fact, been used
in thermoelectric generation.

5.5 Fine-Grained Material with Large Unit Cells

In the above discussion, it has been implicit that the model of a simple continuum is
adequate for the phonons that contribute to the heat conduction process. However,
most of the materials that are used in thermoelectric devices have several atoms
in each unit cell so that there are more optical modes than acoustic modes in the
vibrational spectrum. We shall now consider the situation that exists for more com-
plicated crystal structures. We shall still use the Debye theory for the low-frequency
acoustic modes, which we understand will make a major contribution to the thermal
conductivity. Our object in this section is to estimate the boundary scattering effect
when there are optical modes as well as acoustic modes.
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We think that most of the heat may still be carried by the acoustic modes of lower
frequency. The value of v in (3.47) for the lattice conductivity should be that for the
group velocity rather than the phase velocity. The group velocity is determined from
the slope of the dispersion curve and, as in Fig. 3.7, this will be relatively low for
the high-frequency acoustic modes and all the optical modes. Nevertheless, because
of their large number, it may well be that there is a significant contribution from the
optical phonons but its magnitude may be difficult to assess. Consequently, we find
it best to describe the effect of boundary scattering, in materials that have large unit
cells, in terms of the difference between the lattice conductivities in large and small
grained material rather than as a ratio, as in (5.25).

The frequency at which Umklapp scattering takes over from boundary
scattering is

!0 D
r

v

BL
: (5.32)

Thus, we shall determine the contribution to the lattice conductivity from the
phonons with frequencies up to this limit with and without boundary scattering. Us-
ing the Debye model to determine the specific heat of these low-frequency modes,
we find that their contribution to the thermal conductivity is

�!<!0
D 1

9
vLc!3

0 ; (5.33)

whereas the contribution from the same modes in the absence of boundary
scattering is

�!<!0
D 1

3
v2 c!0

B
D 1

3
vLc!3

0 : (5.34)

Thence the reduction in the thermal conductivity due to boundary scattering is

��L D 2

9
Lvc!3

0 : (5.35)

Our problem, then, is to find !0.
The value of the Umklapp scattering parameter B can be estimated from Law-

son’s relation, (4.10) and this, in turn, leads to the determination of !0. It is found
that

!0 D
s

a!2
DC

9L˛2
T�dv2T

; (5.36)

where, as before, ˛T is the thermal expansion coefficient and �d is the density. C is
the total specific heat per unit volume and a is the lattice constant that we can set
equal to the cube root of the volume per unit cell.

This approach [10] was originally used to estimate the boundary scattering effect
in the half-Heusler alloy Zr0:5Hf0:5NiSn. It was calculated that a reduction in the
lattice conductivity should be noticeable if the grain size were to fall below about
10 �m. Subsequently, thermal conductivity measurements were performed on poly-
crystalline samples of a similar half-Heusler alloy, TiNiSn1�xSbx , by Bhattacharya
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et al. [12]. It was found that there was good correlation with the theory that is pre-
sented in this section, there being a substantial reduction of the lattice conductivity
as the grain size fell from 10 to 1 �m.

5.6 Phonon-Glass Electron-Crystal

The idea of a crystal with a glass-like thermal conductivity was first put forward by
Slack [13]. It is well known that a glass or an amorphous substance has the lowest
range of thermal conductivity of any type of material. It is, perhaps, strange to refer
to a lattice conductivity in a material that does not have a crystal structure but it is
convenient to use this term for the non-electronic contribution. If we attempt to use
(3.47) to describe this lattice conductivity, inserting measured values for the specific
heat and speed of sound, we find that the free path length for the phonons is equal to
the diameter of each atom. There will be variations in the thermal conductivity from
one glass to another due to variation in v and cV but the range is very small around
an average value of about 0:25 W=m K. This contrasts with the lattice conductivity
in crystals, which can vary over several orders of magnitude.

Amorphous semiconductors are unlikely to be good thermoelectric materials
because they invariably have very small values for the electrical conductivity, stem-
ming from low carrier mobilities. It is just possible that an amorphous material
might prove useful if the low mobility is compensated for by a high density-of-states
effective mass. For the thermoelectric materials that are in use today, Chasmar and
Stratton’s parameter ˇ, as defined in (4.2), has a value of about 0.3. It is unlikely
that an amorphous material will have a high figure of merit unless ˇ is already of
this order in the crystalline state. The material will, probably, not be improved as
we change from a crystalline to a glassy structure unless the mean free path for the
phonons in the crystal is greater than the mean free path of the charge carriers.

Nolas and Goldsmid [14] have discussed the criteria that must be met. They
supposed that the value of ˇ would actually be equal to 0.3 in the crystalline state
and they found that the condition for the charge carriers to have a shorter free path
than the phonons is

9

80�

�
h2

mk

� 
�D

˛2T 2N
1=3
v .m�=m/

!

< 1; (5.37)

where key quantities are the density-of-states effective mass, m�, and the number of
valleys, Nv, in the appropriate energy band.

In a thermoelectric material for use at room temperature, the Debye temperature
might be of the order of 300 K and for all substances a is about 0.5 nm. Under
these conditions, the inequality (5.37) leads to the requirement that N

1=3
v m�=m >

17, an unlikely state of affairs. On the other hand, the requirement becomes less
rigorous at high temperatures. If we suppose that �D and T are again similar to one
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Fig. 5.7 The requirement for improvement in the figure of merit on the transition from the crys-
talline to the amorphous state. An improvement is likely if the parameter N
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the curve

another, the necessary value for N
1=3
v m�=m becomes smaller as T becomes larger.

The minimum value of N
1=3
v m�=m is plotted against temperature in Fig. 5.7. At a

temperature of, say, 1,200 K, N
1=3
v m�=m would need to be no more than 4 for the

amorphous form of the material to be interesting.
Slack’s approach was rather different. He directed attention towards materials

that are essentially crystalline rather than amorphous but which have lattice conduc-
tivities that are very similar to those in true glasses. Thus, the thermal conductivity
of a glass is more-or-less independent of T at high temperatures but varies as T 3

at low temperatures because this is the way that the specific heat behaves. This
behaviour is reproduced in the crystalline materials to which Slack directed his
attention. Because the electronic properties of these materials are essentially no dif-
ferent from those of other crystals, they have been called phonon glass-electron
crystals or PGECs.

The characteristics of crystals that have glass-like thermal conductivities were
detailed by Cahill et al. [15]. They contain atoms that are loose in the sense that
they do not have unique positions in the lattice. These loose atoms do not have fixed
positions relative to each other. They are not like the impurity atoms that one uses
to dope semiconductors since their concentrations may be relatively high, at least
3%. The structures that can accommodate these loose atoms exhibit rather large
open cages formed by more stable atoms. The so-called rattling motion of the loose
atoms is responsible for intense phonon scattering.

The materials that embody the PGEC principle will be discussed in later chap-
ters. Suffice it to say, for the moment, that there do exist certain materials that display
glass-like lattice conductivities combined with electronic properties that are not un-
like those of other semiconductors.
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Chapter 6
The Improvement of a Specific
Material – Bismuth Telluride

6.1 Pure Bismuth Telluride

The first report that bismuth telluride, Bi2Te3, is an effective thermoelectric material
appeared in 1954 [1]. A thermocouple made from a p-type sample of the compound
connected to a negative thermoelement made from bismuth was found to yield a
cooling effect of 26 K below ambient temperature by means of the Peltier effect.

Bismuth telluride forms single crystals that are markedly anisotropic in their
mechanical properties. The crystal structure is such that the bismuth and tellurium
atoms are arranged in parallel layers following the sequence:

�TeŒ1� � Bi � TeŒ2� � Bi � TeŒ1��;

which is continually repeated. Strong covalent-ionic bonds exist between the Bi
atoms and the Te atoms on both types of site, but the layers of TeŒ1� atoms are
bound to neighbouring TeŒ1� layers only by weak van der Waals forces [2]. It is
found that crystals of bismuth telluride are easily cleaved along the direction of the
layers, normal to the trigonal or c-direction. Perpendicular to the c-axis, there are
two a-axes inclined at 60ı to each other.

It is not only the mechanical properties that are different in the plane of the a-axes
and the c-direction. For example, the electrical and thermal conductivities are higher
parallel to the cleavage planes than perpendicular to them.

Bismuth telluride was selected as a material to be studied on account of its high
mean atomic weight. It also has the relatively low melting temperature of 585ıC and
satisfies the criteria set by both Ioffe and Ioffe [3] and by Keyes [4] for a low lattice
conductivity. The material in the first experiments was produced by the zone melt-
ing of a mixture of the elements in the correct proportions. No attempt was made to
optimise the doping level but it so happens that melt-grown bismuth telluride does
not have the stoichiometric formula Bi2Te3. Instead, there is an excess of Bi atoms,
with corresponding vacancies on some of the Te sites. The excess Bi atoms appear
to act as acceptor impurities leading to p-type conduction. The number of accep-
tors is such that the Fermi energy lies close to the optimum value, with the Seebeck
coefficient equal to 220 �V=K. The original sample was aligned with current flow
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perpendicular to the c-direction and the electrical and thermal conductivities were
found to be 4:0 � 104��1 m�1 and 2.1 W/m K, respectively. The figure of merit zp

was no more than about 0:9 � 10�3 K�1 and, at that time, there was no n-type bis-
muth telluride to complete the couple. In fact, a properly aligned crystal of bismuth
would have provided a negative branch with at least the figure of merit of the posi-
tive bismuth telluride branch but only a polycrystalline sample was available. Poor
as was the performance of the Bi2Te3–Bi couple, it established the fact that semi-
conductor thermoelements are superior to metals.

There is no reason why the negative and positive branches of a thermocouple
should consist of the same element or compound. Nevertheless, it so happens that
the figure of merit of optimised n-type bismuth telluride is almost the same as that
of optimised p-type material. Thus, by 1955, after n-type bismuth telluride had been
obtained through the addition of the donor impurity, iodine, it was found that a
couple made from both types of the compound gave a Peltier cooling effect of 40 K
below room temperature [5]. The figure of merit Z for the couple could have been no
more than about 1:2�10�3 K�1 with ZT equal to about 0.35. During the next couple
of years, the techniques for producing uniformly doped bismuth telluride of both
conductivity types were improved so that the properties could be truly optimised. It
was found [6] that the optimum electrical conductivity is close to 1:0�105��1 m�1

and the dimensionless figure of merit for the best couple made from Bi2Te3 is then
about 0.6.

These early results for bismuth telluride validated the theoretical work on the
selection and optimisation of materials. It also brought into prominence the dele-
terious effect of minority carriers. Thus, the plot of Seebeck coefficient against
electrical conductivity in Fig. 6.1 shows not only the increase of Seebeck coefficient
as the electrical conductivity is reduced in the extrinsic region but also the decrease
of j˛j in the mixed and intrinsic regions. Undoped melt-grown Bi2Te3 is p-type with
the electrical conductivity slightly higher than that for which the Seebeck coefficient
has its maximum value. Higher electrical conductivities are obtained by doping with
an acceptor impurity such as lead. If, instead, a donor impurity, such as iodine, is
added the material becomes intrinsic and then n-type.

In Fig. 6.2, we show how the thermal conductivity varies with electrical conduc-
tivity for the same samples of bismuth telluride as those used to obtain Fig. 6.1. As
one might have expected, the thermal conductivity generally rises with increasing
electrical conductivity due to the increase in the electronic component. However,
at low values of the electrical conductivity, the thermal conductivity again becomes
larger. Clearly, the Lorenz number is becoming much greater than expected for a sin-
gle type of charge carrier. This is a convincing demonstration of the importance of
the bipolar heat conduction effect. For intrinsic bismuth telluride, the Lorenz num-
ber is about 25 .k=e/2 compared with about 2 .k=e/2 for extrinsic material. One can
extrapolate the almost linear plot in the extrinsic region towards the vertical axis to
obtain the lattice conductivity which has the value of about 1.6 W/m K.
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6.2 Band Structure of Bismuth Telluride

One of the consequences of the detailed study of the thermoelectric properties of
bismuth telluride was the availability of high-quality single crystals of the com-
pound. This allowed a large number of physical measurements to be made, thereby
enhancing our knowledge of electronic transport in the material.

As is only to be expected for a substance with such marked anisotropic
mechanical properties, the electrical and thermal conductivities parallel to the
cleavage planes are different from those in the perpendicular direction. The lattice
conductivity in the c-direction is less than that in the plane of the a-axes by a
factor of 2.1. This would make the c-direction preferable for thermoelectric appli-
cations were it not for the fact that the electrical conductivity is even more strongly
anisotropic. The anisotropy of the electrical conductivity is different for n-type and
p-type material and, at least for the former, it varies with the doping level as shown
in Fig. 6.3. The anisotropy of about 2.7 for hole conduction is not much greater than
the anisotropy of the lattice conductivity so, although the p-type figure of merit is
somewhat the smaller for current flow in the c-direction, the difference is not great.
On the other hand, the anisotropy factor for electron conduction is equal to at least
4, so it is most unfavourable for the current flow to be in the c-direction for n-type
thermoelements made from bismuth telluride. This is an important factor if one
wishes to make use of randomly oriented polycrystalline specimens. Although such
material is preferable to single crystals from the mechanical viewpoint, it leads to
a substantial degradation of the figure of merit for the negative branches. In actual
fact, single crystals are usually too fragile for practical applications but one can
make use of melt-grown material in which the cleavage planes all lie parallel to the
growth direction but not parallel to one another.
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Fig. 6.3 Ratio of electrical conductivity in the a-direction to that in the c-direction plotted against
�a for single crystal bismuth telluride at 300 K
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One of the quantities that one wishes to know in any new semiconductor is the
mobility of the electrons and holes. This should be independent of the position of
the Fermi level, if the conductor is non-degenerate and extrinsic, provided that the
scattering is entirely due to the lattice vibrations. In isotropic semiconductors, the
mobility is easily found by measuring the Hall coefficient, RH, and the electrical
conductivity. In an extrinsic conductor with only one type of carrier the Hall coeffi-
cient is given by [7]

RH D ˙aH

ne
; (6.1)

where aH is a parameter close to unity that depends on the scattering law. For
acoustic mode lattice scattering aH is equal to 3 =8, whereas for a fully degen-
erate conductor it is equal to 1. Since the electrical conductivity is equal to ne�, the
mobility is given by jRH�=aHj. It is often convenient to make use of the so-called
Hall mobility given by jRH� j.

For a single crystal with the structure of bismuth telluride, there will be two dif-
ferent Hall coefficients depending on the orientation of the current and the magnetic
field. One might hope to obtain the carrier concentration, n, by taking some aver-
age of the Hall coefficients but it turns out that this leads to an error by a factor of
more than 2. The true carrier concentration can be determined from the Hall coeffi-
cient only if the ratios between the inertial effective masses in each energy band are
known.

It is possible to find the ratios between the effective masses as well as the number
of valleys and the tilt of the constant energy surfaces in wave vector space by mak-
ing comprehensive galvanomagnetic measurements. Such measurements were first
carried out for single crystals of p-type and n-type Bi2Te3 by Drabble et al. [8, 9].
There are two components of the electrical resistivity, two Hall coefficients and eight
magnetoresistance coefficients. Less than half these coefficients are needed once the
number of valleys in the band is given but, if all are measured, the additional infor-
mation can be used to confirm the validity of any hypothetical model. Reference is
made to the basic cell in wave vector space known as the first Brillouin zone, its
shape for bismuth telluride being shown in Fig. 6.4.
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Fig. 6.4 First Brillouin zone for Bi2Te3 and other crystals with the same structure
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The surfaces of constant energy in wave vector space should be ellipsoidal
provided that the electrons or holes have energies that are close to those at the band
edges. The surfaces may be tilted with respect to the axes provided that crystal
symmetry is maintained. Various possibilities exist for the number of valleys but
restrictions are placed so as to satisfy the symmetry conditions. Drabble et al. were
able to show that only a six-valley model could be made to fit the experimental data.
They described the bands in terms of reciprocal effective mass tensors of the form
˛ij =m which are such that the energy of a charge carrier is given by

E D E0 � h2

2m

�
˛11k1

2 C ˛22k2
2 C ˛33k2

3 C 2˛23k2k3

�
; (6.2)

where k is the wave vector for the carriers. It should be noted that the galvanomag-
netic measurements establish the shape of the energy surfaces but not the absolute
values of the effective masses. The latter require the additional knowledge of the
position of the Fermi level. The extra data were provided by Bowley et al. [10], who
observed the Seebeck coefficient and its change in a magnetic field. The Seebeck
coefficient on its own gives a reasonable indication of the Fermi energy but a more
accurate value requires knowledge of the scattering law.

The scattering law can be determined by measurement of either the magneto-
Seebeck coefficient or the Nernst coefficient. If a sufficiently large transverse
magnetic field could be applied so that the condition .�B/2 � 1 were satisfied,
the Seebeck coefficient would eventually reach the value that it would have in zero
field if r were equal to zero. One could, therefore, find the value of r by subtracting
the Seebeck coefficient, ˛0, in zero field from that, ˛1, in a very large field. Thus,
from (3.32)

j.˛1 � ˛0/j D �kr=e: (6.3)

However, even at liquid nitrogen temperature, the mobility of the carriers is too
small for the high field condition to be met with any available magnet. Instead, one
has to be satisfied with measurements under the low field condition .�B/2 � 1. It
can then be shown [10] that

��˛

��
D k

e
.2 � 1

ˇ� /r; (6.4)

where ˇ� is equal to
�
1 � ���=R2

HB2
�
. �� and �� are the changes in electrical

conductivity and resistivity, respectively, in the magnetic field B: �˛ has the same
sign as ˛ if r is negative and the opposite sign if r is positive. Bowley et al. found
that their measurements were consistent with r being equal to �1=2. It would also
have been possible to determine r from the measurement of the Nernst coefficient
as was done by Mansfield and Williams [11].

Table 6.1 shows the band parameters that were determined for p-type material
by Drabble et al. after the Fermi energy of their samples had been established. For
n-type material, the improved data of Caywood and Miller [12] are used. The band
extrema lie on the reflection planes that contain the trigonal and bisectrix directions.
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Table 6.1 Band parameters
for p-type and n-type Bi2Te3

Parameter Valence band Conduction band

Number 6 6
of valleys

Location On reflection On reflection
in k-space planes planes

˛11 19.8 26.8
˛22 3.26 4.12
˛33 4.12 3.72
˛23 1.0 2.4

The reciprocal effective mass tensor ˛11=m is referred to axes x and z in the reflec-
tion plane and y in the perpendicular direction.

In actual fact, although the band model has been described in terms of six valleys,
the galvanomagnetic data would fit equally well for three valleys with the extrema
at the boundaries of the Brillouin zone. This uncertainty was removed by work on
the de Haas-van Alphen effect [13] and by studies of the reflectance minima as-
sociated with the plasma edges [14]. Both experiments showed that there are six
valleys with the extrema inside the zone. Thus, the good thermoelectric properties
of bismuth telluride lend credibility to the idea that the parameter ˇ should be large
for semiconductors with both a high mean atomic weight and a multi-valley band
structure.

There is empirical support for the principle that a good material will have as
small an energy gap as is consistent with the requirement that there should be only
one type of carrier. This means that the energy gap will probably be a few times
kT in width. That, in turn, suggests that materials with different energy gaps will be
needed in each region of temperature. This suggestion is borne out by the experi-
mental data.

The energy gap of a semiconductor can be found either from the variation of the
carrier concentration with temperature in the intrinsic region [15] or from optical
transmission studies. It is usually satisfactory to determine the rate of change of
the electrical conductivity with temperature, since the intrinsic carrier concentration
has an exponential temperature dependence. It is easy enough to take account of the
much slower temperature variation of the mobility.

The observation of the wavelength of the optical absorption edge is probably the
most reliable method of finding the energy gap if due account is taken of the fact that
the Fermi level may lie inside the valence or conduction band. Austin’s value [16]
of 0.13 eV for the gap was later confirmed by Greenaway and Harbeke [17]. The
optical studies reveal what cannot be determined from conductivity measurements,
namely the dependence of the gap width on temperature. It is found that the gap
becomes larger as the temperature falls, the temperature coefficient being �9:5 �
10�5 eV K�1 down to �155ıC.

It is noted that the energy gap has a value of no more than about 5.2kT at
room temperature so it does not quite satisfy our requirement of at least 6kT to
avoid minority carrier conduction. This should not matter too much for refrigeration
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below room temperature but should be significant in applications involving higher
temperatures. To some extent, the problem can be overcome by doping the com-
pound more heavily.

Recently, consideration has been given to the possibility of using ionised-
impurity scattering to improve the figure of merit of a narrow-gap material. It was
pointed out by Ioffe [18] that the increase of the Seebeck coefficient brought about
by the change in the scattering law due to impurity scattering might more than com-
pensate for the fall in the carrier mobility. The effect has never been exploited in
materials with a single type of carrier and the improvement would only be marginal
in that case. However, when there are both electrons and holes in a narrow-gap
semiconductor or semimetal, the situation is different [19]. In a bismuth telluride-
like model with zero energy gap, the figure of merit becomes almost twice as great
if lattice scattering is augmented by ionised-impurity scattering. The improvement
would be less for an energy gap as wide as it actually is in bismuth telluride but
there could still be a significant advantage in having some ionised-impurity scatter-
ing, particularly, for applications above room temperature. It would, of course, be
necessary to optimise the carrier concentration, so counter-doping with donors and
acceptors would have to be carried out.

6.3 Diffusion in Bismuth Telluride

Early attempts to manufacture thermoelectric coolers based on bismuth telluride
received a setback when it was discovered that the observed performance fell far
short of that expected from laboratory measurements of the parameters involved in
the figure of merit. It is not easy to solder directly to bismuth telluride though some
success has been achieved using bismuth for this purpose. More reliable contacts of
low electrical resistance are obtained after first electroplating the ends of the ther-
moelements with metallic layers. The poor performance of the thermocouples was
observed when copper was employed as the plating material. It seemed that copper
was diffusing rapidly through the thermoelements, acting as a donor impurity and
changing the Seebeck coefficient and the electrical conductivity. The problem ap-
peared to be solved when nickel was used to replace copper as the contact material.

However, even when nickel-plated thermoelements were used, further problems
were experienced. In one particular assembly procedure, the solder in contact with
the nickel-plated ends remained molten for several minutes. Thermoelectric mod-
ules that had been made using this procedure were found to have an extremely low
cooling power. It was subsequently established that copper, which had been dis-
solved in the solder, was able to diffuse through the plating and then travel into the
bismuth telluride. It was clear that the diffusion coefficient of copper in bismuth
telluride must be very high, indeed.

The phenomenon of fast copper diffusion can be explained qualitatively by as-
suming that a CuC ion is very small and is able to fit easily between the adjacent
layers of TeŒ1� atoms that are so weakly bound together. This idea was confirmed by
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Fig. 6.5 Diffusion coefficient
of copper in bismuth telluride
in the c-direction and along
the plane of the a-axes
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Carlson [20] who measured the diffusion coefficient for copper in bismuth telluride,
as a function of temperature, in both the a- and c-directions. His results are shown
in Fig. 6.5. The diffusion coefficient in the plane of the a-axes is higher at 300 K
than it is in the c-direction at 800 K.

It is noteworthy that copper will diffuse out from bismuth telluride just as readily
as it diffuses in. The copper that contaminates a sample can be removed by immers-
ing it in an aqueous solution; dilute hydrochloric acid has been found suitable for
this purpose.

These remarks about copper diffusion apply not only to single crystals but also
to the material that is produced by zone melting in which there is a clear path for
the copper ions through the cleavage planes from one end of a sample to the other.
However, copper does not seem to be able to diffuse readily through sintered bis-
muth telluride with its randomly orientated grains. Thus, copper cannot be ruled out
as a useful doping agent in this type of material.

In view of the reasons for the rapid diffusion of copper in bismuth telluride, it is
not surprising that other elements from the same group of the periodic table, namely
silver and gold, behave in more-or-less the same way.

6.4 Solid Solutions Based on Bismuth Telluride

It was not long after the establishment of bismuth telluride as a thermoelectric ma-
terial that the ideas of Ioffe et al. [21] on semiconductor solid solutions became
known. There seemed to be no reason why the beneficial effect on the thermal con-
ductivity of PbTe, on alloying it with PbSe or SnTe, should not be duplicated on
alloying Bi2Te3 with isomorphous compounds such as Sb2Te3 and Bi2Se3.

If the further conclusions of Airapetyants et al. [22], on the importance of substi-
tuting on the appropriate sub-lattice, are valid, then one would expect solid solutions
between Bi2Te3 and Sb2Te3 to be the best p-type materials. Similarly, alloys of
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Bi2Te3 with Bi2Se3 would make better n-type thermoelements. In fact, the solid
solutions based on bismuth telluride do conform to this pattern, though not nec-
essarily for the reasons that Airapetyants et al. put forward. As has already been
mentioned, bismuth telluride itself, when grown from the melt, is non-stoichiometric
and at ordinary temperatures is a p-type extrinsic semiconductor. As the compound
is alloyed with Sb2Te3, the non-stoichiometry becomes even more pronounced and
it would be rather difficult to add sufficient donor impurities, in a controlled manner,
to make these solid solutions n-type. On the other hand, when Bi2Se3 is added to
Bi2Te3, the material becomes less strongly p-type and is more easily doped so as to
have the optimum electron concentration for a negative thermoelement.

There is no doubt that the solid solutions have lattice conductivities that are lower
than that of pure bismuth telluride. This is borne out by the measurements of all
groups of workers [23–25]. The actual values for �L differ from one set of results
to another but this is possibly due to the different methods for estimating the elec-
tronic thermal conductivity. In Figs. 6.6 and 6.7, we show the lattice conductivity
in the .Bi–Sb/2 Te3 and Bi2 .Te–Se/3 systems, respectively, based on the results
of Rosi et al. [23]. The peculiar maximum in the Bi2 .Te–Se/3 system when the
concentration of Bi2Se3 is about 60% was not noticed by Birkholz [24] although
a similar peak was observed at about 25% Bi2Se3 by Champness et al. [26]. It so
happens that the best n-type materials have relatively low amounts of Bi2Se3 and
the observations for higher concentrations do not have any practical significance.

Of course, the important question that must be answered is whether or not the
mobility of the charge carriers is affected by the formation of the solid solutions.
In the .Bi–Sb/2 Te3 system, there actually seems to be an increase in the value
of � .m�=m/3=2 as the proportion of Sb2Te3 rises, as is apparent from the slight
increase in the electrical conductivity at a given value of the Seebeck coefficient.
There is, thus, no doubt that .Bi–Sb/2 Te3 is superior to Bi2Te3 for p-type ther-
moelements. All observers seem to agree that the minimum lattice conductivity is
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Fig. 6.6 Lattice thermal conductivity at 300 K plotted against concentration of Sb2Te3 in
.Bi � Sb/2 Te3 solid solutions (based on the data of Rosi et al. [23])
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Fig. 6.7 Lattice thermal conductivity at 300 K plotted against concentration of Bi2Se3 in
.Bi � Sb/2 Te3 solid solutions (based on the data of Rosi et al. [23])

to be found when the concentration of Sb2Te3 is about 75%. There is some specu-
lation that even more Sb2Te3 might be advantageous but it is difficult to achieve the
optimum Seebeck coefficient when there is more than 75% of this compound in the
alloy. Sb2Te3 itself always displays near-metallic properties with a Seebeck coeffi-
cient of less than 100 �V K�1 but it is uncertain whether this is due to overlapping
valence and conduction bands or to the inability to add enough donor impurities
to compensate for gross non-stoichiometry. It is interesting that materials with the
composition Bi0:5Sb1:5Te3 are still referred to as bismuth telluride alloys or even,
loosely, as bismuth telluride, in spite of the fact that they are composed mostly of
Sb2Te3.

The optimum n-type composition has not been determined with the same con-
fidence. All that seems to be established is that the proportion of Bi2Se3 in the
Bi2 .Te–Se/3 alloy should be quite small. The quantity � .m�=m/3=2 for the elec-
trons certainly becomes less as Bi2Se3 is added, but the fall in the lattice conduc-
tivity more than compensates for this up to a certain concentration. Beyond that
concentration, the deterioration in � .m�=m/3=2 is such that the small benefit from
a further fall in �L is not worthwhile. In any case, although other workers do not
agree with Rosi et al. [23] on the magnitude of �L, they all set the minimum lat-
tice conductivity at a Bi2Se3 concentration of no more than 20%. The composition
Bi2Se0:3Te2:7 is often selected for the n-type material that is used in modules and
this cannot be far from the optimum composition.

Goldsmid and Delves [27] made a direct comparison between the thermoelectric
properties of selected bismuth telluride alloys and the best Bi2Te3 that was avail-
able. This comparison has the advantage that the materials were prepared using
the same zone-melting apparatus and the measurements were all carried out using
the same equipment. The reliability of the results was confirmed by assessing the
performance of thermocouples made from the compound and alloys. The figure of
merit, of course, varies with the carrier concentration, but the optimum electrical
conductivity, not unexpectedly, has more-or-less the same value for both p-type and
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Fig. 6.8 Plot of the thermoelectric figure of merit against electrical conductivity for p-type and
n-type Bi2Te3 and specified solid solutions

n-type material and for both the solid solutions and the pure compound. The figure
of merit at 20ıC is plotted against electrical conductivity in Fig. 6.8.

The compositions that were developed in the late 1950s and the early 1960s have
been used in the manufacture of modules since that time. It is possible that marginal
improvements might result from the simultaneous addition of Sb2Te3 and Bi2Se3 to
Bi2Te3. Yim and Rosi claimed that Bi0:5Sb1:5Te2:91Se0:09 with excess Te is the best
p-type material and that Bi1:8Sb0:2Te2:85Se0:15 doped with SbI3 gives the highest
n-type figure of merit. They observed values for z equal to 3:3 � 10�3K�1 at 300 K
for both materials and it was widely accepted until recently that a dimensionless
figure of merit, zT, equal to unity is the best that can be achieved using bismuth
telluride alloys.

6.5 Practical Developments

One of the problems that was encountered by the manufacturers of thermoelectric
modules was the fact that the thermoelements rarely displayed the best properties
that had been observed in the laboratory. We shall discuss the zone melting tech-
nique in a later chapter but we shall mention here that material that is grown too
rapidly has a non-uniform composition. There can be variations in the proportions of
the major components in an alloy and, what is probably more important, variations
in the concentration of the dopants that are used to control the carrier concentration.
Non-uniform material obviously cannot have the optimum composition through-
out its volume but one might hope that small variations would not have too much
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effect. However, the tolerable departures in a material like bismuth telluride with a
rather small energy gap are not very large since the figure of merit falls off rapidly
as soon as mixed conduction appears. Furthermore, non-uniformity in a thermo-
electric material can give rise to internal circulating currents associated with the
Seebeck effect, producing unwanted heat flow. There is also evidence for additional
phases, such as the deposition of tellurium in the grain boundaries, appearing under
some circumstances, and this may adversely affect the transport properties. One of
the major achievements since the introduction of the bismuth telluride alloys has
been the understanding of the growth factors leading to better control of materials
production.

Bismuth telluride and its alloys are brittle materials. Single crystals are partic-
ularly fragile, and in preparing the samples that were used by Drabble et al. [8, 9]
in their galvanomagnetic measurements, it was necessary to etch away several mil-
limetres on all sides before it could be certain that there were no cracks. It has been
stated that zone melting and similar processes produce materials in which the cleav-
age planes all lie parallel to the direction of motion of the liquid–solid interface. This
is not quite true. There is often some tilt of the cleavage planes, particularly, if the
interface is not planar. This means that the cleavage planes in a thermoelement that
is cut from the grown material may be inclined to the length direction. Subsequent
fracture can have a catastrophic effect on a module in which such a thermoelement
is incorporated. One of the achievements has been better alignment of the cleavage
planes so that any cracks have a minimal effect on the flow of current.

Although bismuth telluride has such weak bonding between the TeŒ1� layers, it
is otherwise strongly bonded. Thus, randomly oriented polycrystalline material has
superior mechanical properties to single crystals or aligned polycrystals. Randomly
oriented material can be produced by various sintering processes but the resulting
thermoelements usually have inferior properties to those of aligned material.

The mechanical strength of polycrystals combined with the high figure of merit
of single crystals can be achieved in aligned polycrystalline material of small grain
size. We shall discuss the processes for obtaining such alignment later but it is con-
venient to consider the properties of partially aligned thermoelements at this point.
In a sintered sample, the grains are symmetrically arranged around the direction of
pressing. Following a suggestion by Penn [29], we suppose that, in such a situation,
the amount of material having its c-axis inclined at a polar angle � to the direction
of symmetry is proportional to cosn �d� . The quantity n is then a measure of the
degree of alignment. It is found that the thermoelectric properties perpendicular to
the axis of symmetry are

˛? D .2 C n/˛a�a C ˛c�c

.2 C n/�a C �c
; (6.5)

�? D .2 C n/�a C �c

n C 3
; (6.6)

�? D .2 C n/�a C �c

n C 3
: (6.7)
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while in the direction of symmetry

˛k D .1 C n/˛c�c C 2˛a�a

.1 C n/�c C 2˛a
; (6.8)

�k D .1 C n/�c C 2�a

n C 3
; (6.9)

�k D .1 C n/�c C 2�a

n C 3
: (6.10)

The above equations allow for anisotropy of the Seebeck coefficient but are probably
in error if such anisotropy exists. This is because non-uniformity of the Seebeck
coefficient will give rise to the circulating currents that have already been mentioned
and which may significantly increase the thermal conductivity. Fortunately, there is
no anisotropy of the Seebeck coefficient in the extrinsic bismuth telluride alloys that
are used for making devices.

Equations (6.6) to (6.10) can be used to assess the degree of alignment in sam-
ples of bismuth telluride but must be employed with caution for sintered material
since pressing faults can distort the behaviour. For this reason, an X-ray diffraction
technique for assessing the alignment was thought to be more reliable [30].

Cold or hot pressing followed by sintering and annealing does not produce
substantial alignment but Kim et al. [31] found that an extrusion process pro-
duces material in which there is significant orientation of the grains. The extruded
.Bi–Sb/2 Te3 produced by these authors appeared to be just as good as monocrys-
talline material but that is not too surprising since the figure of merit is not strongly
anisotropic in p-type crystals. However, the strong alignment achieved by extrusion
should be particularly valuable for n-type material where the anisotropy is much
stronger.

Experts in sintering technology usually regard the density of the final product
as a measure of their success. Density is probably not a good yardstick for sin-
tered thermoelements since sometimes highly dense samples have a poor figure of
merit. In fact, there could be some advantage in using less dense thermoelements
as long as the figure of merit remains high. Provided that the ratio of electri-
cal to thermal conductivity stays unchanged, it does not matter if the material is
porous. This is demonstrated by the low-density samples with a good figure of
merit that were produced by Durst et al. [32]. It has recently been shown [33] that
porous bismuth telluride should be useful in the production of synthetic transverse
thermoelements.

Another area in which advances are being made is in the production of thick
or thin films of thermoelectric material. There is a trend towards the reduction of
the amount of material in a thermoelectric module. In theory, by reducing both the
length and the cross-sectional area, one should be able to economise on the amount
of material that is needed for a given cooling power. In practice, as we shall see
later, there are problems associated with electrical contact resistance and thermal
losses as the size of the thermoelements is reduced but that does not seem to deter
the manufacturers from their attempts to miniaturise their devices. Recent work [34]
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using the flash evaporation technique shows that thin films of Bi0:4Sb1:6Te3 have a
power factor of 3:49 W=m K2 which means that they are comparable in quality with
bulk material for which the power factor is typically about 4 mW m�1 K�2.

6.6 Extension of the Temperature Range

Most applications of bismuth telluride and its alloys are restricted to cooling from
a heat sink at room temperature using a single stage. There is sometimes the need,
however, to use the materials outside the range of, say, 250 to 300 K. For example,
the low temperature stages of a thermoelectric cascade operate below this tempera-
ture region and generators of electricity from low-grade heat sources need modules
that are designed for higher temperatures.

The selection of materials for use outside the usual region of temperature has
been considered by Kutasov et al. [35]. The properties below 200 K have been dis-
cussed by Vedernikov et al. [36]. As a general principle, thermoelements operated
at low temperatures should be less heavily doped. They may, in fact, display sub-
stantial transport by minority carriers at room temperature in order that the Seebeck
coefficient is optimised at some lower temperature. Figure 6.9 shows how the See-
beck coefficient and electrical resistivity vary with temperature for two different
n-type bismuth telluride alloys. Sample 1 would be suitable for use at ordinary tem-
peratures whereas sample 2 would be better at lower temperatures.
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Fig. 6.9 Seebeck coefficient and electrical conductivity plotted against temperature for n-type
alloys of bismuth telluride. A schematic plot based on the data of Kutasov et al. [35]. Sample 1 is
suitable for use at ordinary temperatures while sample 2 is a low-temperature material
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Fig. 6.10 Figure of merit
plotted against temperature
for two bismuth telluride
alloys. Samples 1 and 2 are
similar to those in Fig. 6.9. A
schematic plot based on the
data of Vedernikov et al. [36]
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The difference between the figures of merit of bismuth telluride alloys with dif-
ferent compositions can be substantial. Thus, Fig. 6.10 shows plots of z against
temperature for two different compositions similar to those of the samples in
Fig. 6.9.

A feature that becomes apparent when bismuth telluride or any of its alloys are
studied at low temperatures is that the effective mass is not really a constant. If we
assume that classical statistics are valid, the Seebeck coefficient varies with temper-
ature according to the relation

j˛j D k

e

�
constant C ln

�
m��C 3

2
ln.T /

	
; (6.11)

which may be derived from (3.29) and (3.31).
Even the earliest measurements [37] on bismuth telluride indicated that, although

the plots of the Seebeck coefficient against ln .T / were linear, the slope was not
equal to 3k=2e. The temperature dependence of the effective mass, as derived from
Seebeck coefficient and resistivity measurements, has been highlighted by Kutasov
et al. [35]. Their observations are somewhat confused, with differences between the
temperature variation of the effective mass and its magnitude from one sample to
another. Nevertheless, it must be agreed that their data are consistent with the fact
that the energy band structure of bismuth telluride is more complicated than was at
first supposed. There is good evidence for the presence of a second conduction band
with its edge 0.03 eV above that of the main band [12, 38].

Turning now to the use of bismuth telluride alloys above room temperature, the
most important change to make is the addition of dopants to maintain, as far as
possible, extrinsic conduction over the full operating region. It would, of course, be
helpful if the energy gap could be increased and it appears that this does occur if the
alloys contain substantial concentrations of bismuth selenide. This is indicated by
the plot of energy gap against composition due to Greenaway and Harbeke [17] and
shown in Fig. 6.11.
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Fig. 6.11 Variation of energy
gap with concentration of
Bi2Se3 in Bi2 .Te-Se/3 alloys
based on the observations of
Greenaway and Harbeke [17] Eg
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Fig. 6.12 Figure of merit for
p-type and n-type bismuth–
telluride alloys above ambient
temperature. Data selected by
Matsuura and Rowe [39]
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The discontinuity in Fig. 6.11 at a composition containing about 35% Bi2Se3 is
probably due to a shift in the position of the band extrema. However, Caywood and
Miller [12] reported that a six-valley model for the conduction band in Bi2Se3 is
similar to that in Bi2Te3, though the surfaces of constant energy are more nearly
spherical.

In view of the interest in generating electricity from low-grade heat sources, it
is surprising that relatively little work seems to have been carried out on the im-
provement of bismuth telluride alloys above ambient temperature. Matsuura and
Rowe [39] included a review of the properties of bismuth telluride alloys up to about
150ıC in their work on low-temperature heat conversion and their data are included
in Fig. 6.12. It does not appear that these materials have been optimized, but it is
noteworthy that in their best n-type material the proportion of Bi2Se3 was 25%.
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6.7 Recent Advances

During the past few years, there have been several reports of values of zT substan-
tially greater than unity. Most of these advances have been associated with the use
of nanostructures in one form or another, although Yamashita and Tomiyoshi [40]
have claimed that zT can be as high as 1.41 for p-type Bi0:5Sb1:5Te3 and 1.19 for n-
type Bi2Te2:82Se0:18. These authors used a large excess of tellurium in their p-type
specimens and CuBr as a dopant for the n-type material. However, these high values
remain to be confirmed by other workers.

We shall discuss nanostructures in detail in a later chapter. Briefly, they can lead
to improvements in the figure of merit due to both an enhancement of the electronic
properties and a decrease in the lattice conductivity. Perhaps, the best validated im-
provement in the bismuth telluride system is that obtained [41] from a superlattice
based on Bi2Te3 and Sb2Te3. Successive layers of these two compounds were of
the order of 100 nm in thickness. In p-type material zT at 300 K was found to be as
high as 2.4 while an n-type superlattice consisting of Bi2Te3 and Bi2Te2:83Se0:17

yielded a value for zT of 1.4. The flow of current was in the cross-plane direction;
that is, in the direction of the c-axis. The lattice conductivity is low in this orien-
tation even for a bulk crystal but, in the superlattice, it was found to be as small as
0.22 W/m K. In fact, the high values for the figure of merit can be attributed entirely
to the decrease in the lattice conductivity. It seems possible that nanostructures on an
even smaller scale are needed before significant changes in the electronic properties
can take place. It seems remarkable the carrier mobility remains of the same order
as in bulk material in spite of the strong scattering of phonons in the superlattice
structure.

A substantial improvement of the figure of merit of bismuth telluride alloys
has also been reported for a completely different arrangement. Ghoshal et al. [42]
applied multiple-point metal contacts between flat surfaces of p-type and n-type ma-
terial. The same materials in a commercial module displayed a figure of merit ZT of
0.84, but in Ghoshal’s device, this rose to 1.4. As in the superlattices described by
Venkatasubramanian et al. [41], the improvement of zT is presumably due entirely
to a reduction in the lattice conductivity. This work will be discussed in more detail
later.

Since the lattice conductivity has already been reduced to what must be very
close to the value for amorphous material, it seems unlikely that there can be further
advances using the bismuth telluride alloys unless band structure changes can be
produced in new nanostructures. However, if the reduction of lattice conductivity
can be incorporated in commercial thermoelectric modules, this will have a major
effect on their performance. Perhaps, the best prospects lie in what are called bulk
nanostructures. These materials would have embedded nanoscale inclusions to pro-
duce strong phonon scattering and would probably be much easier to manufacture
than superlattices and the like.
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Chapter 7
Methods for the Production of Materials

7.1 General Principles

The development of thermoelectric refrigerators and generators after the 1950s
stemmed from the work on semiconductors for use in transistors and other elec-
tronic devices. These applications of semiconductors were made possible through
the availability of highly pure and perfect single crystals that could be doped
with minute quantities of donor and acceptor impurities. The effects that were
exploited were for the most part of an interfacial nature generally associated with
internal barriers in silicon and germanium and, later, the III–V compounds. The
problems in producing good thermoelectric materials were different but often
equally demanding. Thus, the carrier concentrations in thermoelectric materials
are usually orders of magnitude greater than those in conventional semiconduc-
tor devices but the proportional variation has to be more strictly controlled. Most
of the conventional semiconductors have cubic structures whereas thermoelectric
materials are often composed of anisotropic crystals. Although single crystals are
not often required, orientation of grains is sometimes of great significance.

The range of elements and compounds that can be classed as thermoelectric
materials is very wide. At the low temperature end, we have semiconductors and
semimetals with relatively low melting points, like bismuth and bismuth telluride.
At the high temperature end, we encounter refractory oxides and silicides. In
between there are materials with simple crystal structures, such as the Si–Ge alloys,
and complex materials like some of the clathrates and skutterudites. Thus, although
thermoelectric materials may all have similar transport properties within their par-
ticular range of operation, they may need quite different methods of production.

We have to discuss growth from the melt and sintering of bulk materials as
well as thin and thick film deposition by physical and chemical techniques. In this
chapter, we shall attempt to discuss the various production techniques as generally
as possible but reference will be made to specific materials to illustrate the different
methods.

99
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7.2 Growth From the Melt

It is often possible to produce a thermoelectric compound by melting together the
constituent elements. Such a melt and freeze technique can be useful in producing
the starting materials for, say, a powder metallurgy process but will not generally
lead to a controlled distribution of impurities nor will it lead to any preferred orien-
tation, if that is needed. Usually, then, some kind of directional freezing technique
is adopted.

A simple example of direction freezing is that in which a sealed quartz capsule
containing the thermoelectric material is slowly lowered out of a furnace that is
maintained above the melting temperature of the charge. Solidification starts at the
bottom of the charge and proceeds upwards. This type of procedure is used in the
growth of single crystals by the Bridgman method. The end of the capsule is conical
in shape and both the temperature gradient and the rate of growth are accurately
controlled.

Bismuth telluride and its alloys are sometimes produced by such a vertical tech-
nique but horizontal methods are also encountered. The charge is placed in a quartz
boat and, very often, no more than a short length is molten at any time. The molten
zone is gradually moved along the boat. Zone melting was introduced by Pfann
[1] as a method of purifying silicon and germanium but is useful in controlling the
distribution of impurities in thermoelectric materials.

We must consider the composition of a solid that is deposited at the freezing
interface with a molten material. In Fig. 7.1, we show the equilibrium phase diagram
for two cases, (a) in which the impurities raise the melting point and (b) in which
they lower it. The distribution coefficient, k, is the ratio of the concentration in the
solid to that in the liquid at equilibrium.

We suppose that the melt is lowered in temperature until the point A is reached.
Then, in case (a), the material that solidifies will have an impurity concentration that
is higher than that in the liquid, as indicated by the point B. This will deplete the
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Fig. 7.1 Equilibrium phase diagrams showing the liquidus and solidus lines for different values
of the segregation coefficient k: (a) k > 1 and (b) k < 1
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impurities in the liquid as the freezing process continues so that the points A and B
will gradually move to the left. In case (b), the liquid that freezes at point A will be in
equilibrium with a solid at point B that has a lower concentration of impurity. As the
interface moves on, the impurities in the liquid will become more concentrated. This
is the basis of the zone refining technique, in which repeated passes of molten zones
sweep the impurities from one end of an ingot to the other. Even before the advent
of zone refining, directional freezing was used to purify metals, but the repeated
traverse of narrow molten zones is much more effective.

When zone melting is used in the production of thermoelectric materials like
bismuth telluride, it serves a dual purpose. It aligns the grains so that, if there is
a preferred direction for the current flow, thermoelements can be cut appropriately
from the resulting ingot. Furthermore, the impurities can be distributed uniformly if
their distribution in the starting material is suitably arranged.

Suppose that we wish to have an impurity concentration c in the solid; then,
the liquid that deposits solid with this composition at the interface must have a
composition c=k. We may use as our starting material an ingot with the impurity
concentration c that has been melted and rapidly frozen so that it is uniform on a
macroscopic scale. We remove a section of the cast ingot equal to the zone length
and replace it with the same length of casting that has the impurity concentration
c=k. Then, as shown in Fig. 7.2, an ingot that is uniform, except at the last end to
freeze, results from the passage of a single zone. This is the loaded zone technique.

Another technique, known as reverse-pass zone melting, also produces reason-
ably uniform material, at least over the central part of an ingot. A molten zone is
formed at one end of a casting and passed to the opposite end, where, if k < 1, it
will have acquired an excess concentration of impurities. The zone is then made to
traverse the ingot in the opposite direction.

We have assumed that the liquid and solid are in equilibrium at all times. Of
course, this is not so unless the zone moves at an infinitesimal speed. Let us, there-
fore consider what happens when the zone moves forward at some arbitrary speed.
The composition of the liquid is no longer uniform and there is a transition region
between the liquid and the solid that, because of segregation, has a reduced melting
temperature. Referring to Fig. 7.1, it will be seen that, irrespective of whether k is
greater than or less than unity, the effect of segregation is to reduce the liquidus
temperature. Figure 7.3 shows how the liquidus temperature is affected close to the
interface.

molten 
zone traverse 

cc/k

Fig. 7.2 The loaded zone technique. The molten zone with an impurity concentration c=k tra-
verses the casting that has an impurity concentration c
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Fig. 7.3 Temperature in
the molten zone near the
solid–liquid interface. The
solid curve represents
the equilibrium liquidus
temperature and the broken
lines give the temperature
gradient in the melt for
two different situations as
discussed in the text
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The width of the transition region is controlled by the speed with which the
molten zone moves away from the frozen solid and on the rate of diffusion of the
impurities in the liquid. If the temperature gradient is high enough, as indicated by
line 1, no particular problems arise. However, if the temperature gradient is low,
as for line 2, a phenomenon known as constitutional supercooling occurs. Freezing
tends to occur in advance of the interface. In practice, solid cells form in advance
of the main front and liquid with a greater impurity concentration and a lower melt-
ing temperature is trapped between these cells. This causes the ingot produced by
the zone melting process to be inhomogeneous on a microscopic scale. This usually
means that the thermoelectric properties will be non-uniform and the figure of merit
will be reduced.

The problem was recognised by Tiller et al. [2] who specified the conditions
under which constitutional supercooling can be avoided. These authors assumed
that the melt is unstirred and it seems clear that stirring would reduce the width
of the transient region. However, it was shown by Hurle [3] that the condition for
constitutional supercooling is independent of whether or not the liquid is stirred
since a boundary layer with a gradient of composition will always remain. Hurle’s
condition for the avoidance of constitutional supercooling is

dT

dx
> v

�
L¡d

�S
� mCS�L.1 � k/

D�Sk

�
; (7.1)

where v is the speed of the zone, L is the latent heat, ¡d is the density, m is the
slope of the liquidus line, CS is the concentration of solute in the solid, and D is
the diffusion coefficient in the liquid. The thermal conductivities in the solid and
liquid are �S and �L, respectively. It may often be assumed that the first term in the
brackets on the right-hand side of the inequality is small compared with the second
term. Also, near the melting temperature, there will probably be little difference
between the thermal conductivities in the liquid and solid states. We can then use a
simpler expression for avoiding constitutional supercooling, namely

dT

dx
>

V�T

D
; (7.2)
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Fig. 7.4 Schematic phase
diagram for the Bi–Sb
system [5] T ºC
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where �T is the difference between the liquidus and solidus compositions at the
temperature in which we are interested.

We may illustrate the problem by referring to the Bi–Sb alloy system. Within a
certain range at the bismuth-rich end, the alloys are narrow-gap semiconductors with
promising thermoelectric properties at low temperatures. The phase diagram for the
Bi–Sb system is shown in Fig. 7.4. It is apparent that there is a very great difference
between the liquidus and solidus temperatures so the quantity �T in (7.2) is very
large as soon as the Sb concentration reaches more than 1 or 2%. The concentration
of antimony in the liquid is only about one-tenth of that in the crystallising solid.
Also, because of the low melting temperature, it is difficult to establish a very large
temperature gradient near the growth front. Thus, the growth of single crystals of
Bi–Sb from the melt requires the use of an extremely low rate of movement of
the liquid–solid interface, if the material is to be uniform in its properties. This
has been realised by all recent workers on Bi–Sb. Thus, Uher [5], who produced
single crystals containing 10% Sb by a horizontal zone melting process, allowed
the interface to move at no more than 1 mm h�1. Uher attempted to increase the
temperature gradient by using a water-cooled jacket near the end of the molten zone
but he found that too steep a gradient led to lineage in his crystals.

The use of a slow growth rate requires the ambient temperature to be kept
constant, the heater power to be very precisely controlled, and the drive for the
movement of the zone to be very steady. As a result of his studies, Uher was able to
present a diagram that specifies the conditions for preventing constitutional super-
cooling in Bi–Sb alloys over a wide range of compositions. His diagram is shown
in Fig. 7.5.

Brown and Heumann [7] grew single crystals of Bi–Sb containing 13% Sb. They
used a steeper gradient than Uher but their results agreed with the conditions that he
specified. Thus, they found that when .dT=dx/=v was 5:2 � 1010 K s�1 m�2, their
crystal was homogeneous but when this ratio was equal to 1:3 � 1010 K s�1 m�2, it
was not. The observations by Yim and Amith [8] of the conditions for the appear-
ance of cellular growth in Bi0:95Sb0:5 also agree with Fig. 7.5. There can, therefore,
be no doubt that the principles for the avoidance of supercooling given in this section
are soundly based on experimental evidence.
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Fig. 7.5 The conditions
for the avoidance of
constitutional supercooling
in Bi–Sb [6]. The ratio of
the temperature gradient to
the speed of the molten zone
should lie to the left of the
curve
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Inhomogeneity in Bi–Sb is important because the transport properties depend
very strongly on the relative concentrations of the two constituents. However, the
problem in the bismuth telluride alloys is different. The liquidus and solidus curves
lie very close together in the .Bi–Sb/2Te3 alloys system [9] as shown in Fig. 7.6
and, in any case, the band parameters change only slowly as the ratio of Sb2Te3 to
Bi2Te3 varies. What is much more important is any inhomogeneity in the impurity
concentration.

The separation of the liquidus and solidus curves [10] is larger for the
Bi2.Se–Te/3 system than for .Bi–Sb/2Te3, as shown in Fig. 7.7, but is still not
very great for the rather small proportions of Bi2Se3 in which we are usually inter-
ested. Once again, it is variations of the impurity concentration rather than of the
alloy composition that are the more significant.

It is probable that the improvement over the years in the figure of merit of the
bismuth telluride alloys that are used in the production of modules stems largely
from better understanding of the necessary growth conditions. This is suggested by
the experiments carried out by Cosgrove et al. [11] on BiSbTe3. Cosgrove et al.
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Fig. 7.7 Schematic
phase diagram for the
Bi2Te3–Bi2Se3 alloy system
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Fig. 7.8 Thermal conductivity of BiSbTe3 grown at different speeds under different temperature
gradients. Diagram based on the data of Cosgrove et al.[11]

varied the conditions for the growth of their material in a Bridgman furnace. The
temperature gradient was 2.5, 5.0, or 25 K mm�1 and the growth rate varied be-
tween 2:2 � 10�4 and 4:2 � 10�2 mm s�1. One of the parameters that is most
sensitive to non-uniformity of the impurity concentration is the thermal conduc-
tivity as it becomes larger when circulating thermoelectric currents are present. In
Fig. 7.8, we show the variation of the thermal conductivity with the ratio v/(dT=dx).
It will be seen that there is a substantial rise in � when this ratio rises above
2 � 10�4 mm2 K�1 s�1. These results emphasise the need for a slow growth speed
and a steep temperature gradient when bismuth telluride alloys are grown by Bridg-
man or zone melting techniques.

7.3 Sintering

There is no doubt that thermoelectric materials that are produced by a sintering
process have better mechanical properties than those that are usually prepared by
growth from the melt. For those materials that have a cubic structure, there seems
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to be no reason why sintered samples should not be as good as large crystals
provided that the grain size is not so small that the mobility of the charge carri-
ers is reduced. There may, in fact, be an improvement in the figure of merit if the
lattice conductivity is lowered by boundary scattering of the phonons.

The advantages of the sintering process have long been recognised for the
production of bismuth telluride alloys. For these materials, that do not possess a
cubic structure, it has also been realised that randomly orientated polycrystals may
display some deterioration in the figure of merit if, as is usual, the properties differ
substantially in the different crystallographic directions. In such materials, it is an
advantage if some degree of alignment can be achieved during the sintering process.

Thermoelements have been successfully produced by sintering for many systems.
For example, Si–Ge alloys have been prepared by a hot-pressing technique [12].
Sintering is one of the most common methods for producing PbTe and its alloys [13].
However, we shall discuss sintering with specific reference to the bismuth telluride
alloys since we then have to deal with not only the quality of the thermoelectric
properties in each grain but also the problem of grain alignment.

The basic steps in the sintering process are common for all materials. The starting
components are prepared in the form of a powder which is then pressed in some
type of mould. The material in this so-called green state is then heated so that the
powder particles become bonded together. Further heating, or annealing, may then
be employed to homogenise the product through solid-state diffusion and to remove
imperfections in the structure.

There are, of course, differences in detail between the processes that are used for
one material as compared with another. The temperature at which sintering occurs
depends on the melting temperature. The temperature at which one might sinter bis-
muth telluride would be enough to melt bismuth or Bi–Sb. There are wide variations
in the pressure that is used in the compaction of the powders. The powders them-
selves may consist of elements that combine chemically during sintering or they
may consist of already reacted compounds. Heat may be applied while the pressing
is carried out or cold-pressing may be used. Let us, then, look at some of the ways
in which bismuth telluride and its alloys have been produced by sintering.

A typical procedure has been described by Cope and Penn [14]. The powder was
prepared by milling material that had already been reacted in a furnace. They used
a wide range of powder sizes, with particle diameters between 150 �m and 1 mm.
A disadvantage of using fine powders is that there is then greater risk of atmospheric
contamination, oxidation being known to affect the thermoelectric properties [15].
Normally, one selects particles within a certain range of sizes by using a pair of
sieves with appropriate meshes. It seems important that the particles should be
significantly smaller than the smallest dimension of a thermoelement since it is un-
desirable that the whole width should be spanned by a single grain. A wide range
of sintering temperatures is possible. However, if the temperature lies below 300ıC
the process is very slow, while above 450ıC distortion occurs. The sintered mate-
rial produced by Cope and Penn was an n-type bismuth seleno–telluride alloy and
was clearly inferior to zone-melted material. This is not surprising since the n-type
figure of merit is so much less in the c-direction than it is along the cleavage planes.
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The problem of aligning the grains in cold-pressed and sintered n-type bismuth
telluride has been studied by Situmorang et al. [16]. In the first place, the powder was
prepared in the form of plate-like particles as the shavings from ingots were turned
on a lathe. These powders were then suspended in a dielectric liquid under a high
electric field and allowed to settle in a steel die as the field was reduced. The samples
were pressed at between 0.4 and 1 MPa and sintered under argon for 60 h at 420ıC.
X-ray diffraction was used to determine whether or not alignment had taken place.
The possibility of alignment was also investigated by observation of the Seebeck
effect parallel and perpendicular to the pressing direction. The Seebeck coefficient
is isotropic in an extrinsic single crystal but becomes anisotropic as the intrinsic
region is approached. Thus, ˛ was measured up to a temperature of 260ıC and it
did indeed differ by over 20 �V K�1 in the two directions, at this temperature. This
alone indicated substantial alignment though the difference between the Seebeck
coefficients in a single crystal in the principal directions would be about 50 �V K�1.

In Sect. 6.5, we introduced a quantity n as a measure of the degree of alignment
in polycrystalline bismuth telluride alloys. X-ray studies yielded a value for n of 4.0
and this was consistent with the Seebeck measurements. It was calculated that such
alignment would allow sintered n-type material to attain a figure of merit within
10% of the single crystal value in the preferred direction.

The technique described by Situmorang et al. is encouraging in that it leads to
an acceptable degree of alignment in a sintering process that involves cold pressing.
However, it is unlikely to be practical for large-scale production so we should look
at the approaches made by other workers.

The electrical conductivity often appears to be greatest in a direction perpendic-
ular to that of pressing but this is commonly due to the existence of pressing faults
rather than alignment. That is why the X-ray technique for determining preferred
orientation is so valuable.

One obvious way to improve the process of sintering is by using hot pressing
as was done in the early years of research on bismuth telluride by Airapetyants and
Efimova [17]. Their samples were pressed at a temperature of 400ıC at a pressure of
7 � 105 kPa. However, much of the recent work on the sintering of bismuth telluride
has used rather different procedures. Thus, very good thermoelements have been
made using spark plasma sintering [18].

In spark plasma sintering, a pulsed direct current flows between a graphite die
and the powder charge within the die. This current promotes the heating of the pow-
ders during the pressing process. The advantages that are claimed for the spark
plasma process are homogeneity, low operating temperatures, and a shortened sin-
tering time. Jiang et al. [18] reported a high mechanical strength and exceptionally
good thermoelectric properties for samples of .Bi–Sb/2Te3 prepared in this way.
A bending test showed a strength of 80 MPa compared with 10 MPa for the same
alloy when produced by zone melting. Zone-melted material yielded a value of 1.0
for zT at 350 K, whereas the material produced by spark plasma sintering gave a
value of 1.15. It is possible that zT has been over-estimated for both types of ma-
terial since the thermal conductivity was measured indirectly using a laser-flash
method to find the thermal diffusivity. This method has some advantages over
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the direct measurement of the thermal conductivity but can lead to greater errors.
In spite of this reservation, it is obvious that the spark plasma sintered material has
excellent properties and is probably a better material for use in devices than melt-
grown .Bi–Sb/2Te3. Whether or not the same can be said for n-type material is
another matter, but X-ray data on the samples produced by Jiang and his co-workers
indicated significant alignment of the grains.

It was stated that the spark plasma sintered material was produced in the form
of ingots that could then be sliced and diced to yield thermoelements for use in
modules. If a simple sintering process is used, it is probably more convenient to
press the individual thermoelements. A possible danger associated with the cutting
process is the introduction of surface damage. It is known that surface damage can
be minimised by using spark-erosion cutting [19] or an acid saw but it is much
more practical to use rotating diamond-impregnated cutting wheels that are well
lubricated. The care that must be taken to avoid extensive damage to the surfaces of
thermoelements was highlighted by Alieva et al. [20].

One of the advantages of sintering is that the size of the grains in the final product
can be controlled. Jaklovsky et al. [21] have investigated the effect on the thermal
conductivity of reducing the grain size in sintered bismuth telluride. They found
a substantial reduction in the lattice conductivity for grain diameters of less than
about 200 �m and reported a peak in the figure of merit with a grain size of the
order of 80 �m. However, in neither n-type nor p-type material was the figure of
merit greater than can be obtained with zone-melted material and it cannot be taken
as established that z can be improved by reducing the grain size in bismuth telluride-
based thermoelectric alloys.

In recent years, the starting point for the sintering process has often been
a mechanical alloying technique [22]. Elemental powders can be mechanically
alloyed during a milling process and this procedure seems to be widely used in
the metallurgical industry. One development of the method has been the bulk me-
chanical alloying of bismuth telluride alloys [23]. In this process, powder mixtures
of the starting materials are compacted using cyclical loading, avoiding the possi-
bility of contamination in a conventional milling method. Bulk mechanical alloying
followed by hot pressing has led to n-type Bi2Te2:85Se0:15 with the relatively high
value for z of 2:3 � 10�3 K�1.

Another development based on mechanical alloying has been the pulverised and
intermixed elements sintering (PIES) technique [24]. The powdered elements are
pulverised and intermixed before cold pressing and sintering. Good thermoelec-
tric properties can be achieved by the PIES method provided that oxidation can be
prevented.

A most important development in the production of polycrystalline bismuth
telluride alloys has been the use of extrusion to assist in the alignment of the grains.
The process has been described by Seo et al. [25]. Billets of Bi2Te2:85Se0:15 were
first produced by a hot pressing and sintering method. These billets were then hot-
extruded at temperatures between 300ıC and 510ıC with an extrusion ratio of 20:1.
The extruded material was strong, free from defects, and had a density equal to
99.5% of the single crystal value. The best value for the figure of merit at room
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temperature was 2:62 � 10�3 K�1, this being achieved at an extrusion temperature
of 440ıC. Although this value of z is smaller than for the best n-type zone-melted
material, it is sufficiently close to indicate substantial grain alignment.

The evolution of mechanical stress during the extrusion process has been inves-
tigated by Pelletier et al. [26]. Their extruded n-type and p-type bismuth telluride
alloys gave figures of merit equal to 2:8 � 10�3 K�1 and 3:3 � 10�3 K�1, respec-
tively, so it is clear that the process yields material that is virtually the equal of
zone-melted samples in its thermoelectic properties with much better mechanical
strength.

A more extensive study of extruded p-type materials has been carried out by
Ivanova et al. [27]. They were able to optimise the composition of .Bi–Sb/2Te3

over the temperature range 100–300 K, showing that the addition of Se improved
the figure of merit at 200 K. Once again, the properties were found to be as good as
those of single crystals.

The alignment that can be produced by extrusion is much more important for
n-type Bi2.Te–Se/3 than for p-type .Bi–Sb/2Te3. Fan et al. [28] have shown that one
can use a hot extrusion technique in which the cross-sectional area remains constant.
In applying this method to Bi2Te2:85Se0:15, they produced material with zT equal to
0.66. This is not particularly impressive in itself but the Seebeck coefficient had not
been optimised. zT would, probably, have been much closer to unity if the Seebeck
coefficient had been increased from about �150 to �200 �V K�1.

7.4 Thick and Thin films

There are an increasing number of applications for which the thermoelectric mate-
rial takes the form of thick or thin films. There would be a great saving of material
if the elements in a module could be made very short, retaining the same length to
cross-section as in conventional products. There are severe heat transfer problems
when the length falls below about 100 �m and there are also difficulties associated
with electrical contact resistance but this has not dissuaded people from the aim of
using micro-modules.

For most purposes, it would be expected that the thermal and electrical flows
would be perpendicular to the surface of the film but there are devices in which the
flows would be parallel to the surface. In that case, heat losses through the substrates
have to be taken into account.

Films of compound semiconductors can be produced simply by thermal evapo-
ration of the elements from multiple sources in a vacuum. Unless the substrate is
heated, chemical reaction may not have occurred and annealing has to be carried
out. Annealing is also necessary to achieve uniformity and relative freedom from
structural defects. It is sometimes difficult to control the rates at which the differ-
ent components are deposited, particularly, if they have widely different melting
points. Thus, it is more usual to evaporate from a single source that has a compo-
sition close to that required for the final product. Flash evaporation is a technique
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which ensures that the deposited film and the source have almost the same chemical
composition. It has recently been shown [29] that p-type Bi0:4Sb1:6Te3 films pro-
duced by flash evaporation can display a power factor of 3:5 mW=m K, which
compares quite favourably with a value of about 4 mW/m K for bulk material in
the preferred direction.

Electrodeposition is, generally, used to produce rather thicker films. Thus, films
of about 30 �m thickness of Bi2.Te–Se/3 have been prepared [30] by deposition on
gold and stainless steel substrates from solutions of the constituents in dilute nitric
acid. The properties of such films were found to depend on the type of substrate
but, whatever the substrate, the observed Seebeck coefficient was much too low
for practical applications. Thicker films of bismuth telluride have also been pro-
duced. One report describes electrodeposition of 200 �m films on gold-sputtered
aluminium substrates [31]. Such thick films overlap the range that can be covered
by bulk materials. The rather small magnitude of the Seebeck coefficient of less than
80 �V K�1, even after annealing, and a power factor of only 0:23 mW=m K show
that there is a long way to go before such material is useful. However, if thick films
improve with time, as thin films have done, they will eventually have properties that
are comparable with those of bulk materials. They will then, undoubtedly, find their
place in the manufacture of modules.
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Chapter 8
Measurement Techniques

8.1 General Considerations

The measurement of the thermoelectric properties of a material presents some
special problems. In the early stages of the development of a new material, a high
accuracy may not be needed, but, once it is to be used in practical applications,
these quantities must be known precisely. The performance is strongly dependent
on the figure of merit, z, which itself involves three other parameters, the square of
the Seebeck coefficient, the electrical conductivity, and the thermal conductivity. It
is important that these three properties be measured independently but, as we shall
see, it is possible to determine zT directly. In fact, it can be claimed that, when the
Seebeck coefficient and the electrical conductivity are known, the direct measure-
ment of zT provides the most accurate way of establishing the thermal conductivity,
at least at ordinary temperatures for good thermoelectric materials.

It is, generally, preferable for all the measurements to be made on a single sample.
There are examples in the literature where falsely optimistic predictions have been
made about potential new thermoelectric materials on the basis of data obtained
from different specimens. It is understandable how such a problem arises. The elec-
trical conductivity is best found for a sample that is long and of small cross-sectional
area since this minimises possible errors due to non-linear current flow near the con-
tacts. On the other hand, a short sample with a large cross-sectional area is preferred
for thermal conductivity measurements since the relative effect of heat losses, due,
for example, to radiation, is then smaller. When the use of different samples from
a given ingot is unavoidable, it is recommended that several pieces be cut and that
the determination of, say, the thermal conductivity of one piece be accompanied by
electrical conductivity measurements for neighbouring pieces on either side.

Even a simple one-stage Peltier cooler operates over a range of temperature
and some devices, such as thermoelectric generators and multi-stage coolers, may
involve wide ranges. Thus, the thermoelectric properties need to be determined as
a function of temperature. Measurements at different temperatures also assist us
in the understanding of the transport processes. However, it must not be forgotten
that one often needs rapid but nevertheless accurate measurement of the Seebeck
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coefficient or the electrical resistance for the control of quality in the production of
thermoelements, and it is usually satisfactory for this purpose to make observations
at a single temperature.

It is helpful in the basic study of a material to extend the measurements to cover
the Hall effect and useful information can be gained from the changes with mag-
netic field of the thermoelectric properties. Similarly, it is worthwhile determining
such quantities as the Nernst coefficient, in particular, for the information that it
gives about the scattering law. Of course, the transverse thermomagnetic effects
can themselves be used in energy conversion and this may be an extra incentive to
determine the Nernst and Ettingshausen coefficients.

In this chapter, we shall deal mainly with principles rather than experimental
details.

8.2 Electrical Conductivity

Electrical resistance is a property that has been measured for such a long time that
it might be thought unnecessary to devote much attention to it here. However, it
turns out that there are special problems associated with electrical resistance mea-
surements on thermoelectric materials.

The electrical resistance, R, of a piece of metal wire is found by passing a known
current through it and observing the potential difference between the ends. The
electrical conductivity, ¢ , is equal to A=Rl . It is a little more difficult to find the
electrical conductivity of a semiconductor because there is often a resistance associ-
ated with the contacts. The conventional way to overcome this problem involves the
use of inset probes, as shown in Fig. 8.1. The two inset probes should be far enough
from the end contacts for any departures from planar equipotential surfaces to be
eliminated.

The current is introduced by large area contacts at the ends of the sample
which must have a uniform cross-sectional area. The determination of the elec-
trical conductivity requires an accurate knowledge of the spacing between the

Specimen 

Potential
difference 

Current Current 

Fig. 8.1 Arrangement of sample with inset probes for measurement of the electrical conductivity
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potential probes. These probes may be held in contact by pressure or by welding.
Sometimes, they may be inserted in small holes that are drilled in the specimen,
though this distorts the current flow.

Most techniques involve some uncertainty in determining the precise spacing.
For this reason, the use of inset probes is often avoided when it is known that the
electrical resistance at the current contacts is small. In principle, this resistance can
be found by making measurements on samples of different length. In practice, for
semiconductors like bismuth telluride and lead telluride, the electrical resistance at
plated contacts is so small as to be negligible provided that the sample is at least a
few millimetres in length.

The main problem, in measuring the electrical resistance for the materials in
which we are interested, is associated with the thermoelectric effects that are always
present unless isothermal conditions are maintained. If there is a temperature differ-
ence between the two ends, this will give rise to a Seebeck voltage that augments
or opposes the resistive voltage. When that temperature difference arises from some
asymmetry in the experimental arrangement, the problem may be overcome simply
by reversing the current flow. However, there is a more subtle effect that can be very
large for good thermoelectric materials [1]. The flow of current causes a tempera-
ture difference to be established by means of the Peltier effect. When the current is
reversed, the Peltier heating and cooling are also reversed and there is an increase in
the potential difference above the resistive value whichever way the current flows.
This effect may actually be used in determining the thermoelectric figure of merit
but, when only the electrical conductivity is of interest, it is a source of error that
has to be eliminated.

One of the ways of avoiding thermoelectric effects in the measurement of electri-
cal resistance is to use alternating current instead of direct current [2]. An alternating
current bridge that was developed for this purpose is shown in Fig. 8.2. The fre-
quency must be high enough for there to be no appreciable build up of thermoelectric
voltage during each cycle. The thermal mass of soldered contacts is sufficient to
allow frequencies of the order of 50 Hz to be satisfactory.

In the apparatus shown in Fig. 8.2, the sample is shown with inset probes.
The resistance between the two probes is determined by obtaining balance on the
vibration galvanometer at two positions of the moving contact on the calibrated
slide wire. The balancing resistors are adjusted so that both balance points are
within the length of the slide wire. Balance is first obtained with the selectors in
the positions S; measurements are then made with the selectors in the positions M.
The resistance of the length of the sample between the probes is given by PRS=Q,
where P and Q are the resistances of the standard resistors P and Q, and RS is the
resistance of the slide wire between the balance points with the probe selector in the
positions P1 and P2.

There is no doubt that the direct-current potentiometer is a powerful tool for
the precise measurement of small voltages. In spite of the problems that we have
described, this instrument can still be used for thermoelectric materials if the
mechanical chopping device that was designed by Dauphinee and Woods [3] is
incorporated in the apparatus. The potential differences that are encountered in
measuring the galvanomagnetic coefficients are sometimes very small and masked
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Fig. 8.2 Alternating current
bridge for measurement of
electrical conductivity of
thermoelectric materials. B1
and B2 are the balancing
resistors
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Fig. 8.3 Measurement of electrical conductivity of a sample of thermoelectric material using a
DC potentiometer and a mechanical chopper

by noise if an alternating current is used. Thus, the Dauphinee and Woods chopper,
although useful in the measurement of electrical conductivity, is particularly valu-
able when other parameters are also being determined. The principle of the device
is illustrated in Fig. 8.3, which refers specifically to the measurement of electrical
resistance. Figure. 8.4 shows the variation with time of the current input and the
voltage output.
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Fig. 8.4 Input current and output voltage during operation of a synchronous chopper

Fig. 8.5 Four-point probe configurations; (a) probes regularly spaced in line and (b) probes at the
corners of a square. The probes are usually spring-loaded and pressed against the plane surface of
a semiconductor

The principle of the measurement is simple enough but there are some
precautions that have to be taken. The periodic reversal of the current through
the specimens prevents the buildup of temperature gradients from the Peltier effect.
The reversal of the voltage output ensures that the polarity of the signal to the poten-
tiometer is always the same. However, during the brief period when the switching
of the current is taking place, there is the danger of a large induced spurious signal.
Thus, as shown in Fig. 8.4, the voltage pick up does not occur until after the current
switching is complete. Likewise, the potential contacts are broken before the rever-
sal of the current takes place. It is probably not a good idea for the chopper to be
operated at the mains supply frequency, and in the experiments of Drabble et al. [4]
on the galvanomagnetic effects in bismuth telluride, the chopping frequency was
40 Hz. It was found that potential measurements that were accurate to within less
than 1 �V could be achieved.

Some comments may be made about the 4-point probe methods that are often
used in measuring the electrical conductivity or resistivity of semiconductors like
silicon and germanium. Typical arrangements for the probes are shown in Fig. 8.5.
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When the linear arrangement (a) is used, an electric current is passed between
the outer probes and the potential difference is measured between the inner probes.
If the probe spacing is equal to a and the sample is much larger than the distance
between the outer probes, the electrical conductivity is given by [5]

� D I

2�aV
; (8.1)

where I is the current and V is the observed potential difference. The square ar-
rangement (b) has the advantage that it occupies less space and it can, therefore,
be used for smaller samples. In this configuration, the current is passed between
adjacent probes and the potential difference between the other pair of probes is
measured. Another advantage of the square configuration is that it allows the Hall
coefficient to be found. In the measurement of this quantity, the current is passed
between an opposite pair of probes and the potential difference observed between
the other pair, the magnetic field being applied perpendicular to the surface of the
semiconductor.

Neither of the 4-point probe measurements is considered as accurate as a mea-
surement in which the current is passed along a rectilinear specimen with the
potential gradient determined using probes that are spaced as widely as possible.
There is a further disadvantage if the electrical conductivity is anisotropic. In this
case, 4-probe measurements are almost meaningless for polycrystalline samples.
Even when the probes are applied to a surface that is perpendicular to one of the
axes of a single crystal, the observations cannot be interpreted unless one knows the
ratios between the conductivities in the different directions.

8.3 Seebeck Coefficient

In many ways, the Seebeck coefficient is one of the easiest quantities to measure
and for this reason it is often used in preference to, say, the electrical conductivity
in checking whether or not production material falls within its specification. One
merely has to apply a known temperature difference between the ends of a sample
and observe the potential difference that results.

Suppose that the temperature difference is measured using, say, copper–
constantan thermocouples, the copper wires can also be used to determine the
potential difference but due account must be taken of the small but not negligible
absolute Seebeck coefficient of the metal. The question arises as to whether it is
better to attach the thermocouples to the sample as in Fig. 8.6(a) or to the metal
blocks that constitute the heat source and the sink as in Fig. 8.6(b).

In the arrangement (a), the heat conducted along the thermocouple wires may
influence the temperature at the point of contact. Also, there may be a temperature
gradient within the thermocouple junction so that the observed temperature is dif-
ferent from that on the sample at the point of contact. Both these problems may



8.3 Seebeck Coefficient 119

Heat
source 

Heat
source 

Heat
sink 

Heat
sink 

copper-
constantan 
couples 

copper-
constantan 
couples 

Sample Sample

a b

Fig. 8.6 Two different arrangements for the thermocouples in the measurement of the Seebeck
coefficient; (a) thermocouple attached to the sample and (b) thermocouples attached to the source
and sink

be minimised if the wires are of very small diameter, perhaps less than 60 �m.
Alternatively, the wires may be inserted in small holes that are drilled in the sample,
as in some measurements of the electrical conductivity. However, the holes may not
be isothermal enclosures and this can lead to errors if the electric potential and the
temperature are not observed at the same point.

It is not immediately obvious that arrangement (b) is any better unless the source
and sink are soldered to the sample. However, the arrangement seems to work satis-
factorily even if the source and sink are just pressed against the sample. To be sure,
there may then be thermal resistance between the metal blocks and the semicon-
ductor but the temperatures on either side of the actual points of contact must be the
same. Virtually, all the drop in temperature between the source and the sink will exist
in the semiconductor if it is, in fact, a thermoelectric material with a low thermal
conductivity. The metal blocks should preferably be made from a highly conducting
metal like copper. If the material is non-uniform, there may be a difference between
the observed Seebeck coefficients for the blocks soldered to the specimen or merely
pressed against it. For pressed contacts, most of the temperature drop will occur
near the interfaces and these regions will have a predominant influence on the mea-
surement. However, there are other problems in all the transport measurements if
the samples are non-uniform. It is not good enough to take average values since any
non-uniformity may affect the different parameters in different ways.

A small probe for determining the Seebeck coefficient at a localised region of
a semiconductor may actually be the easiest way of detecting non-uniformity. The
apparatus for this purpose uses the arrangement in Fig. 8.6(b) with the large heat
source block being replaced by a much smaller one that is tapered so that the region
of contact is small. The precise thermal distribution does not have to be known as
long as one can be sure that virtually all the temperature difference between the
source and sink is experienced over a small region of the sample.
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Fig. 8.7 Measurement of the Seebeck coefficient using the technique devised by Cowles and
Dauncey [6]. The chromel wires (left to right, a, c, b) are connected to copper wires in an en-
closure at a constant temperature

One does not actually have to measure the temperature difference and the
thermoelectric voltage. A single observation can determine the ratio of the Seebeck
coefficient to that of the thermocouple. A simple and elegant technique that uses this
principle was devised by Cowles and Dauncey [6]. The principle of their method is
clear from Fig. 8.7.

Cowles and Dauncey used chromel–alumel thermocouples in their apparatus and
they determined the Seebeck coefficient of the test sample with respect to chromel.
When the heated probe is placed in contact with the test specimen, a thermal EMF
is generated between the chromel wires a and b. There is also the EMF across the
chromel–alumel couple that appears between the chromel wires a and c. The aim,
then, is to determine the ratio between these EMFs at the same time. In practice,
the temperature difference soon reaches a steady state so that a short time interval
between the observations of the two EMFs is permissible.

The ratio between the EMFs is determined as the ratio between a fixed stan-
dard resistor R1 and a calibrated variable resistor R2. With the switches in the “set”
position S, the uncalibrated variable resistor R3 is adjusted until the galvanome-
ter indicates that balance has been achieved. The switches are then moved to the
“measure” position M and balance is again obtained, this time by adjustment of R2:
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This, of course, upsets the balance in the position S so R3 has to be adjusted again.
However, if R3 is very much greater than R1 and R2, simultaneous balance in both
the S and M positions can be reached very quickly.

The condition for balance in position S is

IR1 D ˛0�T; (8.2)

where ˛0 is the differential Seebeck coefficient of the chromel–alumel couple. The
balance condition for position M is

IR2 D ˛�T; (8.3)

where ˛ is the differential Seebeck coefficient between the test specimen and
chromel.

When simultaneous balance is achieved

˛ D ˛0

R2

R1

: (8.4)

The reversing switch shown in Fig. 8.7 allows measurements to be made on both
p-type and n-type materials.

When the Seebeck coefficient is to be measured over a wide range of temperature,
another approach may be used. One end of the sample is held at a fixed temperature,
say, 300 K, while the other end is slowly heated. The thermoelectric EMF between
the ends is continuously monitored at the same time as the temperature of the hot
end. The Seebeck coefficient at any temperature is then given by the slope of the
plot of thermoelectric voltage against temperature. The method is not as accurate as
one in which the whole sample is heated and the voltage is measured for a small
temperature difference between the ends. However, it allows data to be collected
rapidly and this may be important if the properties of the sample are likely to change
with time at the higher temperatures.

8.4 Thermal Conductivity

It has always been recognised that it is much more difficult to measure the thermal
conductivity than the electrical conductivity. There are a number of reasons for
this. Thus, while extremely good electrical insulators can be found, it is virtually
impossible to separate a body from its surroundings from the viewpoint of heat
transfer. Admittedly, high vacuum prevents heat transfer by conduction and convec-
tion but radiation is always possible. In principle, either of the arrangements shown
in Fig. 8.6 for the determination of the Seebeck coefficient can be adapted for mea-
suring the thermal conductivity. If one assumes that all the heat lost by the source is
conducted through the specimen, one can determine the thermal conductivity as the
ratio of the input power per unit area to the temperature gradient. However, if the
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configuration of Fig. 8.6(b) is used, care must be taken to ensure that the opposite
faces of the sample are in intimate contact with the heat source and the heat sink.

Even when the sample is soldered to the source and sink, there will always be
some thermal contact resistance that has to be taken into account, especially, since
alloys used in soldering have a lower thermal conductivity than most pure metals.
The relative effect of this resistance can be reduced by making the sample very long
but then transfer of heat from the source to the sink via the surrounding medium
becomes more significant. Remembering that good thermoelectric materials are in-
variably poor heat conductors, the sample should probably be short rather than long.
Traditionally, thermal conductivity has been measured on samples of large volume
as this helps us to reduce the relative corrections due to contact resistance and heat
losses. However, most thermoelectric materials are only available in the form of
small bars having a volume considerably less than a cubic centimetre. Some attempt
may be made to calculate the correction factors from first principles but generally
it is necessary for them to be determined by measurements on samples of different
length and cross-section.

In selecting a technique for the measurement of thermal conductivity, one usually
has a choice between an absolute method and a comparative method. A comparative
method has the advantage that heat lost from the source, other than through the test
specimen, can be ignored. On the other hand, successful comparative techniques
require the availability of a standard material with a thermal conductivity similar to
that of the material being tested. Surprisingly, few reliable standard materials are
at hand. In fact, we are usually aiming for greater accuracy in the measurement
of the thermal conductivity of thermoelectric materials than has been achieved in
possible standards of comparison. At ordinary temperatures, it is more usual to adopt
an absolute method, but at high temperatures, when the losses from the heater are
unavoidably greater, a comparative method is often used.

One can also choose between static and dynamic methods. It usually takes a
long time for thermal equilibrium to be established after power is introduced to
the heat source so a great deal of time can be saved by using a dynamic technique
but there is no doubt that a static method is more precise. In establishing a rela-
tion between lattice conductivity and mean atomic weight, Ioffe and Ioffe [7] made
use of a dynamic method [8, 9] so that they could obtain many measurements in a
short time.

Ioffe and Ioffe’s apparatus is illustrated in Fig. 8.8. No doubt different materials
would be used in its construction if the measurements were to be repeated now but
the principles remain sound after about 50 years. The test sample is sandwiched
between two copper blocks and held in place by pressure applied using a screw.
In the original measurements, grease or glycerine was used to improve the thermal
contact between the surfaces. A thin sheet of mica in one of the contacts ensured
electrical insulation between the thermocouples. The acrylic glass enclosure is fit-
ted fairly closely to the specimen so as to minimise convection losses through the
air, the space around the sample not being evacuated as is usual with more pre-
cise measurements. Corrections were made for thermal contact resistance and for
heat losses.
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At the start of a measurement, the whole apparatus was in equilibrium with
the surrounding air. The lower block was then inserted into a bath of refrigerant.
Observations were made of the temperature of one block and of the temperature
difference as a function of time.

Suppose that the temperatures of the lower and upper block are respectively T1

and T2 and that C2 is the known thermal capacity of the upper block, then as a first
approximation, the rate at which the upper block loses heat is equal to the rate at
which heat passes through the sample. Thence

� C2

dT2

dt
D � .T2 � T1/

A

L
; (8.5)

where A=L is the ratio of cross-sectional area to length of the sample. However,
allowance must be made for the fact that part of the heat reaching the lower block
comes from the sample. It was found appropriate to add one-third of the heat
capacity, C , of the sample to C2 giving

� D C2 C C=3

T2 � T1

dT2

dt
: (8.6)

Since it is usual for C2 to be very much greater than C , the latter does not have to
be known very accurately.

The correction for heat loss from the upper block to the surrounding walls was
found from the equilibrium temperature difference between the blocks. By placing
a sample of known thermal conductivity between the blocks, it was possible to de-
termine the heat loss to the lower block through the air. Finally, the correction for
contact resistance across the mica and greased layers was found from the use of
samples of different length. The whole measurement has been put on a firmer foun-
dation by the theoretical treatments of Kaganov [10]and Swann [11]. An important
conclusion from the more refined theory is that the measurements should neither be
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attempted immediately after the lower block is placed in the refrigerating bath nor
when the temperatures are approaching their equilibrium values.

The thermal comparator is another device for the rapid evaluation of the thermal
conductivity. It is based on a principle first developed by Powell [12]. A miniaturised
version of the comparator [13] is shown in Fig. 8.9.

The comparator is made up of a copper–constantan thermocouple, in which one
of the junctions is close to a small resistive heater. The other junction lies close to
the copper tip, which protrudes from the glass tube. In the rest position, a small tem-
perature difference will exist between the two thermocouple junctions. When the tip
is pressed against the sample under test, a much larger temperature difference ap-
pears and this will give rise to a large increase in the output voltage. Clearly, the
voltage will be larger if more heat is conducted away from the tip by a good thermal
conductor. The output voltage will be much smaller, if the tip is pressed against a
poor conductor of heat. The temperature difference reaches a steady state in a few
seconds so the measurement is very rapid. The validity of the test depends on the
contact area remaining the same from one sample to another. One might have ex-
pected this area to be more or less the same only for samples that are harder than
copper, since the force is generated by the coiled constantan wires and should have
a constant value when the tip is retracted to the base of the holder. In practice, the
effective area of the contact seems to remain the same even for quite soft materials.
Thus, if the heater power is kept steady, the steady-state output voltage should be a
measure of the thermal conductivity of the test sample. Although, a theoretical esti-
mate of the output voltage can be made, it is much better to calibrate the instrument
using materials of known thermal conductivity. A thermal comparator of this de-
sign is used frequently in tests of gemstones, diamond, in particular, having a much
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Fig. 8.10 A comparative method for the measurement of the thermal conductivity of thermoelec-
tric materials at elevated temperatures. Electric heaters are represented by the letters A–G and
thermocouples by the numerals 1–10

higher thermal conductivity than any of its simulants. However, the comparator has
also found use in preliminary tests on potential thermoelectric materials.

Precise comparison methods have been used for measuring the thermal con-
ductivity of generator materials at elevated temperatures. The apparatus shown in
Fig. 8.10 has been used up to a temperature of 800ıC in measurements on III–V
compounds [14].

The two standard samples are selected so as to have a similar conductance to that
of the test specimen that is sandwiched between them. Heat transfer from the sides
of the three blocks is prevented by a heat shield with multiple heaters. In any case,
lateral heat flow is minimised by the filling material, fused zirconia powder, which
has a very low thermal conductivity. The length of the stack means that it takes a
long time to reach equilibrium, but the method is an accurate one.

We shall discuss the determination of the thermal conductivity by measuring the
figure of merit later and we shall also devote a section to thermal diffusivity mea-
surements. However, we shall now discuss a method that has come into prominence
in recent years and that is useful in work on thin specimens of poor heat conductors.
This is the 3 ! technique [15], so called because the heat input varies with time at
an angular frequency ! and the analysis is based on the observation of an electrical
signal at the frequency 3 !. Radial flow methods are useful in reducing losses by
thermal radiation but they often need large samples to be available. The 3 ! system
is suitable for use on small specimens. The essential features of the experimental
sample arrangement are shown in Fig. 8.11.

A metal strip is laid down on specimen so that it is in good thermal contact but
electrically isolated from it. The outer side arms are used for the introduction of an
electric current and the inner side arms are for picking up the voltage across the
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Fig. 8.11 Arrangement of the metal strip and side arms on the sample in the 3! method

central section of length l . It is noted that the resistance of the metal strip depends
on the temperature so it can be used as a thermometer. The strip is heated by the
passage of an alternating current of angular frequency ! and a temperature wave
of frequency 2 ! enters the sample since, of course, heat is generated in each half-
cycle. The temperature wave travels radially outwards from the metal strip, suffering
exponential damping as it proceeds. The sample must be thick enough to prevent any
significant interference from the reflected wave at the time that it reaches the strip;
it is satisfactory for the thickness to be not less than 5a, where a is the width of
the strip. Voltage measurements at a specific frequency are observed using a lock-in
amplifier. The voltage oscillations in the strip will have a component at a frequency
! associated with the current flow and a component at a frequency 2 ! associated
with the change of resistance due to the temperature wave. When these two con-
tributions are multiplied together, the resultant will include a term that oscillates at
the frequency 3 !. The thermal conductivity of the sample is obtained after voltage
measurements, V3;1 and V3;2, at two frequencies 3 !1 and 3 !2, respectively, where
!1 and !2 are the frequencies of the applied current. It may be shown [16] that the
thermal conductivity can be calculated from the relation

� D V 3ln .!1=!2/

4�lR2ŒV3;1 � V3;2�

dR

dT
: (8.7)

Here, V is the voltage at some frequency ! and R is the resistance of the metal
strip between the inner side arms. It is noted that, although the technique is based
on thermal diffusion, it is essentially the thermal conductivity that is determined.

8.5 Thermal Diffusivity

Steady-state thermal conductivity measurements become increasingly difficult as
the temperature becomes higher because of the rapidly rising radiation factor.
For this reason, the thermal diffusivity is often determined instead of the thermal
conductivity.
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The thermal diffusivity, 	, is defined by the relation

	 D �

cV

: (8.8)

Variations on the original thermal diffusivity measurements of Ångström [17] are
still encountered. A brief discussion of his technique shows that, in common with
other thermal diffusivity measurements, it allows the thermal losses to be eliminated.

In Ångström’s method, a sinusoidal temperature variation is applied to one end
of a long sample. The amplitude of the temperature wave, as it travels along the
sample, is monitored at two points that are separated by a distance l . Then, in the
absence of lateral heat loss, the thermal diffusivity is given by

	 D !l2

2 ln2 .˛/
D !l2

2ˇ2
; (8.9)

where ˛ is the ratio between the amplitudes of the temperature wave at the two
points and ˇ is the phase difference. If there are losses equation (8.9) has to be
replaced by

k D !l2

2ˇ ln .˛/
: (8.10)

It will be seen that the use of this equation allows the losses to be ignored.
Adaptations of Ångström’s method have been used for thermoelectric materials

by Nii [18] and Abeles et al. [19] but one of the more interesting developments was
the method of Green and Cowles [20] in which a Peltier heat source was employed.
This allowed the temperature wave to be initiated without any overall heating of the
sample. These authors were also able to use the sample as its own thermometer, thus
exploiting its high Seebeck coefficient. It may be noted that, even when the input
is not strictly sinusoidal, the higher harmonics are rapidly attenuated as the wave
moves along the sample but, in any case, Fourier analysis of the temperature fluctu-
ations at any point is not difficult.

A disadvantage of the Ångström principle is that it requires a longer sample
than is commonly available. However, thermal diffusivity measurements are easily
made on short samples. Thus, Goldsmid et al. [21], adopted a thermal diffusivity
measurement for thin crystals of Cd3As2, comparing the transverse electric fields,
generated by the Nernst effect, for steady and intermittent thermal radiation.

Most thermal diffusivity measurements, nowadays, make use of thin samples and
laser heat sources [22]. The essential components for a typical laser flash measure-
ment are shown in Fig. 8.12. The sample is selected so that its cross-section is large
compared with its thickness. One of its faces is irradiated by a pulsed laser and the
fluctuations in temperature at the opposite face are observed using, say, an infrared
sensor. In a typical measurement, the temperature rise at the back surface is com-
pared with that which is reached in the steady state when the sample is continuously
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Fig. 8.12 Essential features of the laser flash method for determining the thermal diffusivity

heated. The time, t1=2, taken to reach one-half of the steady-state temperature rise
allows the thermal diffusivity to be found from the relation

	 D 1:37d 2

�2t1=2

: (8.11)

It must, of course, be remembered that a thermal diffusivity measurement needs
to be accompanied by knowledge of the specific heat if one is to determine the
thermal conductivity, the quantity that is actually needed for the figure of merit.
Nevertheless, the advantages in the avoidance of heat loss corrections are sufficient
to make the laser-flash technique the preferred approach by many workers.

8.6 The Figure of Merit

The thermoelectric figure of merit can be found from independent measurements of
the Seebeck coefficient and the electrical and thermal conductivity. It is, however,
possible to determine the figure of merit directly and, having made this determina-
tion, one of the three quantities, ˛, � or �, can then be found if the other two are
known. The usual procedure is to measure the Seebeck coefficient and the electrical
conductivity, and to deduce the thermal conductivity. In fact, this is often the most
accurate method for determining � but, as we shall see, there are some dangers in
this approach.

The direct measurement of zT was first proposed by Harman [23] and the proce-
dure is usually named after him. In principle, all that needs to be done is to observe
the ratio of the electrical conductivities, �a and �i, under adiabatic and isothermal
conditions respectively. Then,

zT D ¢i

¢a
� 1: (8.12)

Two possible experimental arrangements are shown in Fig. 8.13. In (a) the sample
is suspended by its current and thermocouple leads in a vacuum enclosure while
in (b) one end of the sample is attached to a heat sink. The advantage of arrange-
ment (a) is that the heat loss corrections are smaller, but arrangement (b) is more
practical as it enables equilibrium at different temperatures to be established more
quickly. In both arrangements, the electric current is introduced by copper wires and
the temperatures at the ends of the sample are measured using copper–constantan
thermocouples. The copper branches of the thermocouples are also used to measure
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Fig. 8.13 Experimental arrangements for the direct measurement of the figure of merit. In (a) the
sample is suspended in vacuum and in (b) one end of the sample is attached to a heat sink

the potential difference. The electrical resistance between the sample and the copper
end plates is small and often neglected but it can be included if necessary.

Suppose that a current I is passed along the sample; then, if we ignore Joule heat-
ing for the time being, the temperature difference, �T between the ends is given by

�A�T

L
D j˛jIT; (8.13)

where ˛ is the Seebeck coefficient of the sample with respect to copper, A is the
cross-sectional area, and L is the length. The temperature difference leads to the
development of a thermoelectric voltage given by

j˛j�T D ˛2ILT

�A
: (8.14)

Under isothermal conditions, the potential difference between the contacts is

Vi D IL�

A
: (8.15)

However, under adiabatic conditions, the total potential difference becomes

Va D Vi C ˛2ILT

�A
D Vi

�
1 C ˛2T

��

�
: (8.16)

Rearranging (8.16), we find that

zT D Va

Vi
� 1: (8.17)
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One of the advantages of the Harman procedure is that the heat losses are smaller
than in a conventional static thermal conductivity measurement. In particular, there
is no separate heater that might lose heat to the surroundings. Also, in arrangement
(a) of Fig. 8.13, the losses from the faces of the sample are substantially reduced.
We shall use arrangement (a) as the basis for the following calculations.

In calculating the heat losses, we assume that the isothermal surfaces are nearly
planar so the problem becomes one-dimensional. We must determine the heat
loss by radiation from the end contacts and from the exposed faces of the sam-
ple (assuming that the vacuum in the enclosure is good enough to eliminate both
gaseous conduction and convection). We also have to find the losses along the elec-
trical wires, which we suppose to be anchored at the temperature of the enclosure.

The radiation from each of the end contacts is equal to ˇcAc�T=2 when the
current is small enough for �T � T . One end of the sample is supposed to rise
to T0 C �T=2 and the other end to fall to T0 – �T=2, where T0 is the ambient
temperature. ˇc is the rate of radiation per unit area per unit temperature difference
and Ac is the area of each contact. ˇc is proportional to T 3

0 so radiation becomes a
severe problem at higher temperatures.

The radiation loss per unit length from the part of the sample at temperature
T is equal to ˇP .T � T0/, where ˇ is the rate of radiation per unit area per unit
temperature difference (which may be significantly different from ˇc/ and P is the
perimeter of the sample.

The heat transferred by conduction along the wires at each end is equal to
K1�T=2, being a loss at one end and a gain at the other. K1 is the conductance
in parallel of each set of leads.

At any part of the sample, the rate of heat flow is

q D ��A
dT

dx
; (8.18)

and
dq

dx
D �ˇP .T � T0/ D ��A

d2T

dx2
: (8.19)

At the ends of the sample, when x D ˙L=2, q is equal to ˙q0 which is given by

˙ q0 D ˛IT � ˇcAc�T

2
� K1�T

2
: (8.20)

The solution of the differential equation is then

T �T0 D ˙ q0

.�AˇP /1=2

expŒ.ˇP=�A/1=2 x� � expŒ� .ˇP=�A/1=2 x�

expŒ1
2

.ˇP=�A/1=2 L� C expŒ� 1
2

.ˇP=�A/1=2 L�
: (8.21)

When the temperature gradient is close to being uniform, we find

˙ q0 D �A

L
�T C ˇPL

12
�T (8.22)
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On combining (8.20) and (8.22), we obtain

˛IT

�T
D �

A

L
C ˇPL

12
C ˇcAc

2
C Kl

2
: (8.23)

The first term on the right-hand side represents the heat conducted through the
sample while the remaining terms represent the losses. The second term has only
one-quarter of the value that it would have in a conventional steady-state thermal
conductivity apparatus and the third and fourth terms have been reduced by a factor
of 2. Also, of course, there is a reduction in Ac since the end contacts are so much
smaller than a heating block.

Up to this point, it has been assumed that the current is so small that Joule heating
can be ignored. It can be shown [24] that the effect of Joule heating is to shift the
position on the sample for which T D T0 to x D a, where

a�T D I 2�L=A

ˇP C 2 .ˇcAc C Kl/ =L
: (8.24)

Asymmetry is introduced into the temperature distribution and (8.23) becomes

˛IT

�T
D �

A

L
C ˇP .L ˙ 2a/

4
C .ˇcAc C Kl/

2

�
1 ˙ 2a

L

�
� I 2�L

A�T
: (8.25)

After combining (8.24) and (8.25) to eliminate a, we again obtain (8.23). Thus,
whether or not there is any significant Joule heating, the form of (8.17) that takes
account of the heat losses is

zT D
�

Va

Vi
� 1

��
1 C ˇPL2

12�A
C ˇcAcL

2�A
C Kl

2�A

�
: (8.26)

If the apparatus has the form shown in Fig. 8.13(b), the heat loss terms become
larger and the modified form of (8.23) is

˛IT

�T
D �

A

L
C ˇPL

3
C ˇcAc C Kl: (8.27)

The losses are then virtually the same as they would be in a conventional thermal
conductivity apparatus, apart from the reduction due to the absence of a heater.

The magnitudes of the parameters involved in the loss terms are best obtained ex-
perimentally. Measurements are made using samples of different length and shape.
It is also advisable to check that the electrical contact resistance is negligible by
conducting experiments on very short samples. In fact, the Harman technique offers
what is probably the best way to determine the contact resistance for thermoelec-
tric materials. The usual method for semiconductors involves the use of a probe
that is scanned across the contact region. However, the contact resistances experi-
enced using present-day methods for the attachment of electrodes are too small to be
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detected by such a method. Any deterioration in the observed figure of merit using
the Harman procedure, when the sample becomes very short, may be attributed to
the contacts.

Various authors have used different methods to collect their data from Harman-
type measurements. It is usual to determine not only the figure of merit but the
electrical conductivity and the Seebeck coefficient as well. The Seebeck coefficient
is found by observing the temperature difference and the thermoelectric voltage after
the current is interrupted but before � T has had time to change. If the value of ˛ is
to be accurate, the material must have a reasonably high value of zT, otherwise the
temperature difference will be rather small.

One way of obtaining the adiabatic and isothermal electrical conductivities is to
use direct and alternating currents. However, it is more usual to make use of a rapid
data collection system to observe the potential difference and temperature difference
as a function of time. Typical profiles are shown schematically in Fig. 8.14. It is
assumed that the current has a steady value during the times that it is switched on. It
is possible to measure the thermoelectric and resistive voltages and the temperature
difference after the current is switched on or switched off.

The Harman method was used by Sharp et al. [25] to measure the thermal con-
ductivity of polycrystalline Bi–Sb. However, there were anomalous features in the
experimental results. Since the transport parameters in a transverse magnetic field
were also observed, it was possible to determine the Lorenz number both theo-
retically and experimentally. The experimental Lorenz number was found to be
much smaller than the theoretical value and no real explanation could be found.
What was particularly puzzling was the fact that Jandl and Birkholz [26] had made
similar measurements on single crystal Bi–Sb and had found no anomalies. It
was only later that a reason for the unexpected observations of Sharp et al. was
uncovered.

Thermoelectric
voltage  Potential 

difference 

Temperature 
difference 

Resistive 
voltage  

Time

Current off  Current on  Current off 

Fig. 8.14 Schematic variation of potential and temperature differences with time when the current
is switched on and off in a Harman-type measurement
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 1  2 

Fig. 8.15 Simple heterogeneous model consisting of two elements in series

It was realised that the Seebeck coefficient might vary within a polycrystalline
sample since this quantity is quite strongly anisotropic in single crystals. However, it
had been hoped that the experimental parameters for polycrystalline material would
be some kind of average of the single crystal properties in the different directions.
That such averaging is invalid becomes clear from the following considerations [27].

We suppose that a certain sample is made up of two components connected in
series, as shown in Fig. 8.15. The two components are supposed to have electri-
cal resistances R1 and R2 and thermal resistances W1 and W2, respectively. Then,
a conventional thermal conductivity measurement will yield a value W equal to
W1 C W2. Let us suppose that the Harman procedure leads to a different thermal
resistance W �.

In the Harman measurement, the isothermal voltage is given by

V

I
D R1 C R2: (8.28)

Under adiabatic conditions, the usual Harman theory can be applied to each compo-
nent in turn to give

V1 D IR1 .1 C z1T / ; (8.29)

and

V2 D IR2 .1 C z2T / : (8.30)

The overall adiabatic voltage is then related to the current by

V

I
D R1 .1 C z1T / C R2 .1 C z2T / : (8.31)

The apparent figure of merit, z�, is found from

.R1 C R2/
�
1 C z�T

� D R1 .1 C z1T / C R2 .1 C z2T / : (8.32)

In order to determine the thermal conductivity, we need to know the Seebeck co-
efficient for the system. Let us assume that it is found by applying a temperature
difference �T between the end contacts. This temperature difference will distribute
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itself according to the relative thermal resistances of the components. Then, the
overall Seebeck coefficient is given by

˛ D ˛1W1 C ˛2W2

W
; (8.33)

and the total electrical resistance is

R D R1 C R2: (8.34)

The apparent thermal resistance W � can then be calculated from z�, ˛ and R.
By way of example, let us assume that both components have the same figure

of merit but different Seebeck coefficients. We shall, then, let the ratio W1=W2 be
equal to n, which will also be equal to R1=R2. In this example, ˛1=˛2 also has the
value n. In this case, the true value for the thermal resistance is

W D .1 C n/ W1; (8.35)

and the apparent thermal resistance is

W � D .1 C n/2

4n
W1: (8.36)

In general, W � and W will be different. For example, if n D 3, .1 C n/2 =4n [2]
becomes equal to 4/3 and W � differs from the true thermal resistance by over 30%.
A striking case is that for which ˛1 and ˛2 are equal and opposite, with W1 D
W2 and R1 D R2. The apparent figure of merit z� is then equal to the figure of
merit of each component but the overall Seebeck coefficient is zero. The apparent
thermal resistance W � is, then, infinite. It is clear that under some circumstances,
the Harman technique can lead to substantial errors in the thermal conductivity if the
material is non uniform.

Calculations for R1 ¤ R2 and for W1 ¤ W2 have shown that there is no dif-
ference between W � and W provided that ˛1 D ˛2. It seems clear, then, that the
Harman method must be used with caution for heterogeneous materials. However,
it should be perfectly satisfactory for polycrystalline extrinsic samples of bismuth
telluride or any other anisotropic thermoelectric material in which the Seebeck co-
efficient is independent of crystal orientation.

There is a closely related technique that has sometimes been used for deter-
mining the figure of merit of modules [28, 29] and couples [30]. The thermal
resistance is determined under the open-circuit and short-circuit conditions. The
open-circuit thermal conductance, K , has the value that is calculated from the ther-
mal conductivity and the dimensions of the thermoelements. When the open ends
are short-circuited, the thermal conductance rises to a value K� because of the extra
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heat transport associated with the thermoelectric current. This current is equal to�
˛p–˛n

�
�T=R and it generates a Peltier heat flow equal to

�
˛p–˛n

�
T�T=R [2].

Thus, we see that
K� D K .1 C ZT / : (8.37)

8.7 Thermomagnetic Measurements

We shall discuss some of the principles that are involved in the measurement of the
thermogalvanomagnetic coefficients, partly because of their immediate relevance to
energy conversion, and partly because they are often needed for the understanding
of thermoelectric materials.

Figur. 8.16 shows a typical arrangement of sample, heater, heat sink, and the var-
ious potential probes and thermocouples for the measurements. The sample will
normally be located inside a cryostat so that measurements can be made under vac-
uum down to low temperatures. The thermomagnetic coefficients are often too small
to be measured accurately at room temperature but they become larger at low tem-
peratures because of an increase in the carrier mobility. The external dimensions
of the cryostat should be kept as small as possible if an electromagnet is used to
provide the field though nowadays it is common practice to make use of a supercon-
ducting magnet. A complete set of data requires the application of both transverse
and longitudinal magnetic fields but very often a transverse field will suffice. This
is the case, for example, in the measurement of the Hall and Nernst coefficients.

One must usually take care to avoid distortion of the equipotentials and isother-
mals from the end contacts unless, of course, it is the end effects that are being
studied. A rule of thumb states that probes used in the determination of transverse
coefficients should be inset from the ends by at least twice the sample width, while
probes for observing longitudinal coefficients should be inset by one sample width.
This implies that the sample should be at least four times as long as it is wide.

Heater and 
current 
contact 

Current 
lead 

Heater 
leads 

Heat sink 
and 
current 
contact 

1 

2 3 4 

Fig. 8.16 Arrangement of contacts for thermogalvanomagnetic measurements. 1, 2, 3, and 4 are
thermococouples, one lead of each also serving as a potential probe. The magnetic field is directed
perpendicular to the diagram
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One of the branches of each thermocouple can act as a potential probe. The wires,
generally, should be of as fine a gauge as possible so that the disturbance of the flow
of heat or electricity in the sample is minimal. They are often spark-welded in place
to ensure good thermal contact. The heater block should be small since its ther-
mal mass controls the rate at which equilibrium is reached. The measurements on a
sample, mounted as in Fig. 8.16, normally yield the adiabatic coefficients. However,
it is the isothermal Nernst coefficient that is implicit in the theory of thermomag-
netic energy conversion presented in Sect. 2.5. Account must, therefore, be taken
of the transverse temperature gradient and its influence on the transverse potential
difference through the Seebeck effect. One must also include contributions from the
Hall and Nernst effects in transforming the observed adiabatic electrical resistivity
into the isothermal value.

Guthrie and Palmer [31] have shown that the thermomagnetic figure of merit
ZNE can be determined directly rather than through the measurement of individual
transport parameters. Their method is based on the fact that the transverse temper-
ature gradient has a much shorter time constant than the longitudinal temperature
gradient. This is because samples are generally much longer than they are wide.

The measurement requires that the sample be provided with inset potential
probes. The voltage between these probes is observed as a function of time. Imme-
diately after the current is switched on, a resistive voltage is observed. Thereafter,
the voltage changes as the longitudinal and transverse temperature gradients become
established.

The longitudinal temperature gradient, arising from the Peltier effect, produces
a voltage contribution from the Seebeck effect as in the Harman experiment. The
transverse temperature gradient due to the Ettingshausen effect produces a longitu-
dinal temperature gradient through the Righi–Leduc effect and this also gives rise to
a Seebeck voltage. The transverse temperature gradient also leads to a longitudinal
potential gradient directly through the Nernst effect. It is this last contribution that
is related to the thermomagnetic figure of merit. It is also the only one of the three
contributions to the changing longitudinal potential difference that does not involve
a longitudinal temperature gradient. Since the transverse temperature gradient is es-
tablished much more rapidly than the longitudinal temperature gradient, it is easily
separated out as the effect that is established soon after the current is switched on.

If the sample is, say, 10 times as long as it is wide, the longitudinal thermal
time constant is 100 times the transverse value. This means that, in a period of four
transverse time constants, the transverse temperature gradient will be almost fully
established but the longitudinal temperature gradient will still be negligible. In any
case, the Seebeck coefficient is likely to be small in a good thermomagnetic material
since it will probably be an intrinsic conductor. Figure 8.17 shows schematically a
typical plot of the longitudinal voltage against time. The time over which the cur-
rent is switched on, t1–t0, is supposed to be considerably less than the longitudinal
thermal time constant. The depth, VN, of the plateau below the resistive voltage, V0,
is due to the Nernst effect acting on the transverse temperature gradient. It is also
equal in magnitude to the voltage that is present immediately after the current is
switched off.
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Fig. 8.17 Schematic plot of longitudinal voltage against time in the measurement of the thermo-
magnetic figure of merit using the technique of Guthrie and Palmer [28]

It is readily shown that the thermomagnetic figure of merit can be obtained
from the values of V0 and VN. The transverse temperature gradient due to the
Ettingshausen effect is

dT

dy
D P ixBz D NT ixBz

�
: (8.38)

The longitudinal field due to the Nernst effect is

EN D N 2T ixB
2
z

�
: (8.39)

This is superimposed on the electric field, E0, associated with the resistivity,
�, which is given by

E0 D ix�: (8.40)

Combining (8.38) and (8.39), we find that

VN

V0

D EN

E0

D Zi
NE: (8.41)

In this equation, Zi
NE is the isothermal thermomagnetic figure of merit, whereas it is

the adiabatic thermomagnetic figure of merit, ZNE, which is appropriate in transfer-
ring the thermoelectric energy conversion relations to the Nernst and Ettingshausen
effects. Then,

ZNET D VN

V0 � VN
: (8.42)

The same adiabatic thermomagnetic figure of merit can also be found by measuring
the maximum temperature depression, .T2–T1/max that can be achieved using an
Ettingshausen cooler. Thus,

.T2 � T1/max D 1

2
ZNET 2

1 : (8.43)
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Chapter 9
Review of Thermoelectric Materials

9.1 Bismuth and Bismuth–Antimony

Bismuth was one of the first thermoelectric materials to be studied, and for many
years it was used in radiation thermopiles. It has a negative Seebeck coefficient when
pure, and it was common practice to complete the thermocouple with another Group
V element, antimony, which has a positive Seebeck coefficient.

Bismuth and antimony have the same crystal symmetry as bismuth telluride and
cleave easily along the basal planes. The Brillouin zone of bismuth is similar to that
of bismuth telluride shown in Fig. 6.4, but it is more extensive in the c-direction and
shows only a slight distortion from cubic symmetry.

Both bismuth and antimony are semimetals; i.e., they have overlapping valence
and conduction bands. The overlap is more pronounced in antimony than in bismuth
for which the overlap is only about 0.02 eV [1].

Galvanomagnetic measurements have been performed on both bismuth and
antimony. For bismuth, the results can be interpreted in terms of a three-valley
conduction band with the extrema at the L-points in the Brillouin zone [2]. The
ellipsoids are only slightly tilted away from the principal axes and it is a reasonable
approximation to ignore the tilt [3]. There is a high effective mass in each valley
along the bisectrix direction with rather small effective masses in the binary and
trigonal directions. The valence band consists of a single valley with the surfaces
of constant energy centred at the T-points in the zone. As required by the crystal
symmetry, the surfaces are spheroidal about the trigonal axis.

The conduction band of antimony is also of the three-valley type [4] but the tilt
angle is far larger than for bismuth. Antimony also has a three-valley valence band
with almost spheroidal surfaces of constant energy tilted by about 60ı from the
trigonal direction.

It is of particular interest that, although both bismuth and antimony have overlap-
ping bands, there is a range of Bi–Sb alloys that is semiconducting. This behaviour
was first noticed by Jain [1], who suggested that the compositions between 4 and
40 molar% of Sb have a positive energy gap. The maximum gap of about 0.014 eV
was thought to occur for the composition Bi0:88Sb0:12.

139
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Fig. 9.1 Schematic band diagram for Bi–Sb alloys based on the data of Lenoir et al. [5]

Since the observations by Jain were performed, it has been realised that homoge-
neous alloys of bismuth and antimony are exceedingly difficult to produce because
of the problems of constitutional supercooling. Not surprisingly, Jain’s description
of the bands has had to be modified. A more precise band scheme has been presented
by Lenoir et al. [5], and is shown schematically in Fig. 9.1

There is a positive direct gap of 10 meV for pure bismuth but the heavy electron
band at the T-point overlaps the conduction band by 40 meV. As antimony is added,
the hole band and the heavy electron band move down and the light electron band
moves up. The light bands cross at a concentration of 4% antimony and the heavy
electron band moves below the light hole band at 7% antimony. At this point, the
alloy becomes a semiconductor and remains so until the hole band crosses a heavy
electron band at 22% antimony. Thus, the semiconductor region extends from 7
to 22% antimony with a maximum positive gap of about 30 meV at an antimony
concentration between 15% and 17%.

Bismuth itself is close to being a good thermoelectric material at room tempera-
ture. It, certainly, has a very high value for the product � .m�=m/3=2 in the trigonal
direction, probably higher than any other known material, but the presence of minor-
ity carriers causes the Seebeck coefficient to remain rather low, however the element
is doped. Comprehensive measurements of the thermoelectric properties were car-
ried out by Gallo et al. [6] and their results are summarised in the plots of Figs. 9.2
and 9.3 for the directions normal to and parallel to the trigonal axis, respectively.

It is immediately apparent from Figs. 9.2 and ,9.3 that the thermoelectric figure
of merit is highest for bismuth with the current in the trigonal direction, that is the
direction for which z is lowest in bismuth telluride. This means that thermoelements
made from single crystal bismuth, aligned in the preferred direction, tend to cleave
across the line of current flow. Although the figure of merit, z, is no more than
1:3 � 10�3 K�1 at 300 K, it rises to 1:7 � 10�3 K�1 at 100 K.

The high mobility of electrons in bismuth means that the thermogalvanomag-
netic effects are large and easily observed. Thus, it has been possible to use the
magneto-thermal resistance effect to separate the lattice and electronic components
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Fig. 9.2 Thermoelectric properties of bismuth normal to the trigonal axis

α
μV/K 

   λ
W/m K    ρ

 x 104 

 Ω m 
–150 

–100 

–50 

15 

10 

  5 

0 

1.5 

1.0 

0.5 

0 

T  K 
50 100 150 200 250 300 

   α

   ρ

   λ

Fig. 9.3 Thermoelectric properties of bismuth parallel to the trigonal axis

of the thermal conductivity. For most conductors, this separation can be performed
by extrapolating the observed thermal conductivity to the value for infinite mag-
netic field. However, there is a problem that arises for bismuth because it happens
to have a high thermomagnetic figure of merit. The electronic thermal conductiv-
ity in a very large magnetic field does not then tend towards zero [7]. Uher and
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Fig. 9.4 Plots of the relative change in the total thermal conductivity of bismuth in the binary
direction against the strength of the magnetic field in the bisectrix and trigonal directions. The
temperature is about 115 K
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Goldsmid [8] were able to overcome this difficulty by measuring the thermal con-
ductivity with the magnetic field aligned successively in the bisectrix and trigonal
directions. It is easy to predict the ratio of the electronic thermal conductivities for
infinite magnetic fields in the two directions.

Figure 9.4 shows the relative change in the thermal conductivity, at about 115 K,
of bismuth in a binary direction as a function of the magnetic field in the bisectrix
and trigonal directions. The substantial difference between the two sets of readings
confirms that the electronic thermal conductivity does not become zero whatever
is the magnetic field strength. Figure 9.5 shows the total thermal conductivity and
lattice conductivity of bismuth plotted against 1=T . Over the range covered by the
observations, �L is inversely proportional to the absolute temperature, in accordance
with Eucken’s law.

One of the interesting phenomena that can be observed in bismuth is the Umkehr
effect. As mentioned in Chap. 1, the value of the Seebeck coefficient in a magnetic
field may not remain the same when the direction of the field is reversed. Smith et al.
[9] found that the Seebeck coefficient, of a particular crystal of bismuth in the bi-
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Table 9.1 Basic parameters for bismuth at 80 and 300 K. The 1, 2, and 3
directions lie along the binary, bisectrix, and trigonal axes respectively. The
lattice conductivities at 300 K have been derived from those at 80 K assuming
�L proportional to 1/T

Parameter 80 K 300 K

Ne
�
C=m3

�
7:37 � 104 3:52 � 103

Electron mobility
�n.1/

�
m2 V�1 s�1

�
55.7 3.18

�n.2/
�
m2 V�1 s�1

�
1.40 0.08

�n.3/
�
m2 V�1 s�1

�
33.3 1.90

Hole mobility
�p.1/ D �p.2/

�
m2 V�1 s�1

�
12.4 0.77

�p.3/
�
m2 V�1 s

�
�1

3.33 0.21
Partial Seebeck coefficient .�B/2 � 1/

˛n .�V=K/ �100 �125

˛p .�V=K/ 105 107
Lattice conductivity
�L(normal to trigonal axis)

�
W m�1 K�1

�
11.0 2.9

�L(parallel to trigonal axis)
�
W m�1 K�1

�
7.5 2.0

sectrix direction at 80 K, was equal to �150 �V K�1 in a magnetic field of 1T at
an angle of 60ı to the binary direction. Upon reversal of the field, the Seebeck co-
efficient changed sign to a value of 170 �V K�1. It is a general rule [10] that the
Umkehr effect will be present for any semiconductor with non-spherical surfaces
of constant energy, when the magnetic field does not lie along a reflection plane.
The effect is, particularly, large in bismuth as it contains electrons and holes, both
carriers being highly mobile.

The basic parameters at 80 and 300 K that are relevant to the thermoelectric, gal-
vanomagnetic and thermomagnetic effects in bismuth are given in Table 9.1. These
parameters were obtained from the data of Abeles and Meiboom [3], ignoring the tilt
of the ellipsoids for the conduction band. The thermoelectric parameters obtained by
Gallo et al. [6] were also used. The high field Seebeck coefficients were calculated
from the expressions given by Tsidil’kovskii [11].

Bismuth is no longer used as a thermoelectric material at room temperature. In
the absence of a magnetic field, it is inferior to bismuth telluride and the mobility
near 300 K is not high enough to allow the thermomagnetic effects to be exploited.
However, it is possible that it will find application at ordinary temperatures as a
component in synthetic transverse thermoelements [12].

At low temperatures, it is a different matter. The negative energy gap is still a
major disadvantage for thermoelectric applications in zero magnetic field, but near
liquid nitrogen temperature, the mobility is large enough for �B to become of the
order of unity or greater, as is needed for thermomagnetic applications. For this pur-
pose, the semiconducting Bi–Sb alloys may be superior as they have lower values of
the lattice conductivity but the mobility for a given carrier concentration is also less.
The parameters given in Table 9.1 have been used to predict the thermomagnetic
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Table 9.2 Calculated thermomagnetic figure of merit for single crystal bismuth in different
orientations

Direction of tem-
perature gradient

Direction of elec-
tric current

ZNE at 80 K .�B/2 � 1/ ZNE at 300 K .�B/2 � 1/

Bisectrix Binary 0:63 � 10�3 K�1 0:82 � 10�3 K�1

Binary Bisectrix 0:63 � 10�3 K�1 0:82 � 10�3 K�1

Binary Trigonal 2:1 � 10�3 K�1 2:9 � 10�3 K�1

Bisectrix Trigonal 0:84 � 10�3 K�1 1:1 � 10�3 K�1

Trigonal Binary 1:2 � 10�3 K�1 1:8 � 10�3 K�1

Trigonal Bisectrix 1:2 � 10�3 K�1 1:8 � 10�3 K�1

figure of merit for various orientations in Table 9.2. The high values for 300 K are
probably of no practical interest in view of the very high magnetic field that would
be needed to approach the condition .�B/2 � 1.

As shown in Table 9.2, the thermomagnetic figure of merit might reach a value
in excess of 2�10�3 K�1 at 80 K and the required magnetic field could probably be
attained with a permanent magnet [13]. However, ZNET would still be no more than
about 0.17 so the cooling that would be achieved with an Ettingshausen refrigerator
based on bismuth would be rather small.

The thermomagnetic figure of merit has been measured by Yim and Amith [14]
over the temperature range 70–300 K in a magnetic field of 0.75T. They confirmed
that the highest value is obtained for the predicted orientation. Because the high
magnetic field condition is far from being reached at 300 K, ZNE at this tempera-
ture was found to be no more than about 0.025, but at 80 K a value of 0.24 was
observed, which may be compared with the calculated value of 0.17. The agreement
is remarkably good in view of the approximations that have been made.

Bi–Sb alloys have attracted interest for both thermoelectric and thermomagnetic
applications at low temperatures because of the possibility of obtaining both a pos-
itive energy gap and a reduced lattice conductivity. It is important, therefore, to
determine the effect of alloying on the effective mass and the mobility.

Observations by Smith [15] of cyclotron resonance in Bi0:95Sb0:05 have shown
that, although the shape of the ellipsoids does not change appreciably on adding
antimony to bismuth, the values of the effective masses are reduced. This is not
unexpected if the bands are non-parabolic since the effective mass should then
become smaller as the Fermi level moves closer to the band edge. This idea is
supported by the work of Brandt et al. [16] on alloys containing 1.7–4 molar%
antimony. Unfortunately, the decreased effective mass is not accompanied by an
increase of the mobility. Thus, Jain [1] found no significant differences between
the electron and hole mobilities in Bi0:95Sb0:05 and bismuth, and he noted a decrease
by a factor of 2 for the average mobility in Bi0:93Sb0:07. However, the decrease
in the lattice conductivity may be sufficient compensation for the reduction in
� .m�=m/3=2. Figure 9.6 shows the observations of Cuff et al. of the total thermal
conductivity of different Bi–Sb alloys at 80 K, as a function of the transverse mag-
netic field. For the reasons that we have already discussed, the thermal conductivity
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Fig. 9.6 Thermal
conductivity against magnetic
field for Bi–Sb alloys at 80 K.
The temperature gradient
and magnetic field are in the
binary and bisectrix directions
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may not be approaching the lattice value at the higher fields, particularly, since
the results were obtained for the orientation that yields the highest value of ZNE.
However, it is clear enough that the lattice conductivity of all three alloys is con-
siderably less than the value of 11 W m�1 K�1 for bismuth in the same direction.
The results obtained by Horst and Williams were obtained for other orientations
and probably give a more reliable indication of the lattice conductivity. Their values
for �L are 3:7 W m�1 K�1 for Bi0:95Sb0:05 and 3:1 W m�1 K�1 for Bi0:88Sb0:12.

Bismuth and Bi–Sb alloys can be doped with donor impurities such as tellurium
and acceptor impurities such as tin. However, it was thought for many years that the
undoped material has close to the optimum properties for the negative branch of a
couple. Positive Seebeck coefficients are the result of doping with acceptors, but the
figure of merit is less than for the negative material.

The thermoelectric properties of both undoped and doped Bi–Sb have been given
by Wolfe and Smith [17]. The value of z for undoped Bi0:88Sb0:12 is 5:2�10�3 K�1

at 80 K, but this falls to 2:0 � 10�3 K�1 at 200 K and to 1:0 � 10�3 K�1 at 300 K.
A more dilute alloy, Bi0:95Sb0:05 yields a z value of only 4:8 � 10�3 K�1 at 80 K,
but at 300 K, the value of 1:8 � 10�3 K�1 is superior to that of Bi0:88Sb0:12.

Rather better values were obtained by Jandl and Birkholz [18] for tin-doped
Bi0:95Sb0:05. A sample with a tin content of 145 ppm gave a figure of merit in the
trigonal direction of about 3 � 10�3 K�1 over a wide range of temperature from
about 120 K to 280 K. This material yielded a superior value for the figure of merit
to that of n-type bismuth–telluride alloys over most of this range. However, there
are practical reasons for preferring the use of bismuth–telluride. Aligned polycrys-
tals suffice for bismuth–telluride alloys whereas Bi–Sb needs to be in the form of
a single crystal. Moreover, Bi–Sb crystals aligned in the preferred direction are li-
able to cleavage fracture across the flow lines. An important feature of the results
obtained by Jandl and Birkholz is that they dispel the idea that undoped material has
the best thermoelectric properties.
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Fig. 9.7 Thermoelectric
properties of Bi0:88Sb12 at
160 K. Electric and thermal
flows in the trigonal direction
and magnetic field along a
bisectrix axis [17]
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The thermoelectric figure of merit can be improved significantly, particularly,
at low temperatures, by the application of a magnetic field. For example, Wolfe and
Smith [17] found that z for Bi0:88Sb0:12 at 160 K is more than doubled in a magnetic
field of 0.6T, as shown in Fig. 9.7. Jandl and Birkholz [18] obtained a figure of merit
as high as 5 � 10�3 K�1 at 293 K but only after applying a magnetic field of 0.9T.

Bi–Sb alloys doped with tin have been seriously considered as p-type thermoele-
ments. Yim and Amith [14] reported a figure of merit of 0:3 � 10�3 K�1 at 90 K
for p-type Bi0:88Sb0:12 containing 300 ppm tin, but at 85 K, z became equal to
2:3 � 10�3 K�1 in a magnetic field of 0.75T. This value was not exceeded in any
sample studied by Jandl and Birkholz [18] and must be regarded as close to the best
that can be achieved in such a magnetic field.

The magneto-Seebeck effect in bismuth and Bi–Sb is clearly influenced by the
transverse thermomagnetic phenomena. This was demonstrated Ertl et al. [19] in
their measurement of the Seebeck coefficient at 80 K on a crystal of Bi0:93Sb0:07.
The temperature gradient lay in the trigonal direction and a magnetic field was ap-
plied in a bisectrix direction. The length of the sample was varied so that the ratio
of length to width changed from 0.71 to 2.55. The Seebeck coefficient is plotted
against magnetic field in Fig. 9.8.

Although the shape dependence of the magneto-Seebeck coefficient is evidence
for the influence of the transverse effects, this may not be the whole explanation of
the observations. Thomas and Goldsmid [20] found that the Seebeck coefficient of
Bi0:95Sb0:05 certainly showed a greater change in a magnetic field when there were
two types of carrier, as one would expect if the transverse effects were contributing.
However, the change from �60 to �123 �V K�1 resulting from the application of a
field of 1.6T was thought to be evidence of a non-parabolic dispersion law.

Bi–Sb alloys may, in theory, be superior to pure bismuth as thermomagnetic
materials but, in practice, the reduction in the mobility may be too great a disad-
vantage since it means that a higher magnetic field is needed to satisfy the condition
.�B/2 � 1. Figure 9.9 shows the dimensionless thermomagnetic figure of merit of
bismuth and Bi0:99Sb0:01 plotted against temperature for a magnetic field of 0.75T.
The alloy is superior below 130 K but the pure bismuth has the higher figure of
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Fig. 9.8 Seebeck coefficient
plotted against magnetic field
for Bi0:93Sb0:07 at 80 K. The
length L is in the trigonal
direction and the magnetic
field is along a bisectrix
direction. The width d is
perpendicular to the magnetic
field

α
μV/K 

B  T 

–150 

–130 

–110 

–90 
0.0 0.1 0.2 0.3 0.4 0.5 

L/d =2.55 

L/d =1.39 

L/d =0.71 

Fig. 9.9 Dimensionless
thermomagnetic figure
of merit plotted against
temperature for Bi and
Bi0:99Sb0:01. The magnetic
field is 0.75 T. Observations
of Yim and Amith [14]
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merit above this temperature. No doubt the Bi–Sb alloy would be the better material
at higher temperatures if a larger magnetic field were available.

The thermomagnetic figures of merit shown in Fig. 9.9 fall short of the values
achieved by later workers. Horst and Williams [21] showed that the purity of the
material is of the utmost importance in attaining high values of ZNE. They were able
to reach a value for ZNET of about unity for Bi0:97Sb0:03 at 150 K in a magnetic
field of 1T. Their material had no more than 1020 excess carriers per cubic metre.
The curve in Fig. 9.10 shows the values of ZNET observed by Horst and Williams
plotted against temperature and the straight line on the same diagram shows the
magnetic field strength that was required to reach these values. The broken curve
is a tentative representation of the value of ZNE to be expected, if the number of
excess carriers could be reduced to 1016 per cubic metre. It is possible that the
previous results, which indicated a preference for pure bismuth, are an indication of
the difficulty of achieving purity and homogeneity in Bi–Sb.
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Fig. 9.10 Schematic
representation of the variation
of ZNET with temperature
for Bi0:97Sb0:03 according to
Horst and Williams [21] (solid
curve). The line shows the
requisite strength of magnetic
field. The broken curve is an
estimate of the value of ZNET

that might be reached if the
excess carrier concentration
could be reduced to 1016=m3
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9.2 Lead Telluride and Related Compounds

When Ioffe et al. realized, in the early 1950s, that semiconductors of high mean
atomic weight were likely to be good thermoelectric materials, they became inter-
ested in lead telluride and isomorphous compounds. For example, those semicon-
ductors were used to exemplify the principle [22] that solid solutions have a reduced
lattice conductivity without there necessarily being a change in the carrier mobility.

When lead telluride is compared with bismuth telluride, higher melting temper-
ature, 923ıC compared with 585ıC, and an energy gap of 0.32 eV compared with
0.13 eV, is noted. This means that, although the value of the figure of merit of PbTe
is lower than for Bi2Te3, it can be used up to considerably higher temperatures
without chemical stability problems or unwanted contributions from the minority
charge carriers. PbTe, then, has been considered more as a material for thermoelec-
tric generation at moderately high temperatures rather than for refrigeration at room
temperature and below.

Both p-type and n-type materials can be produced either by departures from sto-
ichiometry or by doping with donor or acceptor impurities [23]. There is a wide
choice of dopants; Na, Au, Ti, and O behave as acceptors and Zn, Cd, In, Bi, and Cl
are donors. PbTe has the cubic rock salt structure so the thermoelectric properties are
isotropic. Hall effect measurements show that the mobilities of both types of carrier
are rather high [24]. Thus, at a temperature of 295 K, �n is equal to 0:16 m2 V�1 s�1

and �p is 0:075 m2 V�1 s�1. However, the density-of-states effective masses of both
electrons and holes are only about 0.03 m. Taking these factors into account, to-
gether with a lattice conductivity of 2:0 W m�1 K�1 at room temperature, it is found
[25] that the maximum value of z is little more than 1 � 10�3 K�1.

In any practical application, one would expect to use a solid solution of the form
PbxSn1�xTeySe1�y or a similar alloy rather than PbTe or one of the other pure
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Fig. 9.11 Schematic plot against x of energy at the band edges in PbxSn1�xTe. Based on the data
of Fano [23] for a temperature of 12 K

compounds. Early work [26] on these alloys suggested that x D 1 is the appropriate
choice for p-type thermoelements and y D 1 is preferable for n-type material. This
seems to be true if we take account only of the mobilities of the electrons and holes
but the lattice conductivity is lower when y D 1 than when x D 1 and this out-
weighs the relative effects on the mobilities [25]. Thus, PbxSn1�xTe is preferred for
both types of thermoelement, if one is restricted to this range of alloys.

There are, however, problems with the use of PbxSn1�xTe. The energy gap falls
rapidly as x becomes smaller and becomes zero when x ' 0:6. On either side of
the zero point, the energy gap is positive though, beyond this point, the positions
of the band extrema in wave–vector space are interchanged as shown in Fig. 9.11.
The energy gap becomes larger on the PbTe-rich side and the cross-over point
changes as the temperature rises. Rosi et al. [27] suggested the use of the com-
position Pb0:75Sn0:25Te for practical applications, but one really needs to consider
carefully the temperatures at which the thermoelectric material will be used.

The figure of merit is higher for n-type PbxSn1�xTe than for p-type material and
reaches a value of about unity at temperatures of the order of 500 K. However, over
the temperature range for which PbTe and its alloys are suitable, the positive ma-
terial is commonly one of the so-called TAGS formulations. TAGS is an acronym
for alloys that contain the elements Te, Ag, Ge, and Sb. These alloys are solid solu-
tions between AgSbTe2 and GeTe, the latter being closely related to PbTe, since Pb
and Ge are in the same group of the periodic table. GeTe has the rock salt structure
but AgSbTe2 is rhombohedral and there is a phase transition at a composition that
contains about 80% GeTe. Although it might be thought that one should avoid com-
positions close to that of the phase transition, it turns out that the alloys with 80 and
85% GeTe have exceptional thermoelectric properties [25]. It seems that the lattice
conductivity is, particularly, small in this region, presumably due to strain scattering.
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Fig. 9.12 Plots of zT against temperature for TAGS formulations and other positive materi-
als. TAGS-80 and TAGS-85 are alloys of AgSbTe2 with 80% and 85% GeTe respectively. The
two curves for PbTe represent different doping constituents. Based on the data of Skrabek and
Trimmer [28]

One might expect some mechanical problems for alloys that lie close to the phase
transition and, indeed, the alloy containing 85% GeTe is less prone to cracking.
Figure 9.12 shows the dimensionless figure of merit plotted against temperature for
the TAGS materials together with data for p-type PbTe and Si–Ge.

Recent observations by Heremans et al. [29] suggest an interesting route to the
improvement of PbTe and, indeed, other thermoelectric materials. They studied the
properties of PbTe doped with thallium, pointing out that this element creates res-
onant energy levels, as do gallium and indium. They showed that this can lead to
an enhanced density of states in the valence band, and hence an improvement in the
figure of merit. The improvement can be quite substantial as shown in Fig. 9.13. In
this figure, zT is plotted against temperature for PbTe doped with a normal acceptor
impurity, Na, and two different levels of Tl. The Na-doped sample has a zT value
of about 0.7 at 700 K whereas the value for PbTe doped with 2% Tl is about 1.5.
There is some support for the suggestion that the density of states has been modified
from the observation that the electrical resistivity has an anomalously high value be-
low 200 K. It is possible that enhanced densities of states may be obtained in other
materials if suitable doping agents can be found. Perhaps, the key to finding these
dopants will be the observation of similar resistivity anomalies.

Although it does not have the same structure as PbTe, AgSbTe2 (i.e., TAGS with-
out GeTe) is a promising material in its own right. AgSbTe2 and the closely related
AgBiTe2 have recently been studied by Morelli et al. [30]. They found that, while
AgInTe2 has a lattice conductivity that is not much smaller than that of PbTe at
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Fig. 9.13 Dimensionless figure of merit plotted against temperature for PbTe doped with thallium.
Values for sodium-doped PbTe are also shown. Schematic plot based on the data of Heremans et al.
[29]

ordinary temperatures, AgSbTe2 and AgBiTe2 both have lattice conductivities that
are close to the calculated minimum value, the value that would be expected in the
amorphous state. This small lattice conductivity is independent of impurity or defect
concentration and is regarded as an intrinsic property of the material. Morelli and
his colleagues did not determine the electronic properties of their material but they
referred to earlier work on AgSbTe2 in which a value of zT equal to 1.3 at 720 K
was reported [31, 32].

Closely related to AgSbTe2 is AgPbmSbTe2Cm, which has a “rock salt”-like
structure. This material is remarkable in that zT rises continuously from room tem-
perature upwards, reaching a value of 2.1 at 800 K [33]. The material is n-type and
the authors speculate on the possibility that the high figure of merit may be due to a
quantum dot effect. Electron microscopy studies revealed the presence of quantum
dot-sized regions that are rich in Ag and Sb.

9.3 Silicon–Germanium Alloys

Both silicon and germanium have rather high lattice conductivities, though they can
yield reasonably large values for the power factor since both elements have high
carrier mobilities. Thus, if the lattice conductivity can be reduced, the figure of merit
will rise to a worthwhile value. We shall see in Chap. 12 that a large value of zT can
be obtained at room temperature using silicon nanowires. Here, we shall discuss the
use of silicon, or rather Si–Ge alloys, in bulk thermoelements.
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Fig. 9.14 Thermal resistivity of silicon-germanium alloys at 300 K. Schematic plot based on the
data of Steele and Rosi [35]

The lattice conductivities of silicon and germanium at 300 K are 145 and
64 W m�1 K�1, respectively [34]. The value of �L falls rapidly on adding ger-
manium to silicon, as is apparent from Fig. 9.14 in which the thermal resistivity is
plotted against the concentration of silicon in germanium for the whole range of
Si–Ge alloys [35]. In fact, even larger increases in thermal resistivity have been
observed by later workers. For example, Vining [36] gives a value for the thermal
resistivity in the range 0.16–0.20 m K/W for Si0:7Ge0:3 at room temperature. It is
possible that the relatively low thermal resistivity observed by Steele and Rosi for
the Si–Ge alloys could have been due to inhomogeneity. The liquidus and solidus
curves are widely separated and constitutional supercooling is a significant problem
for melt-grown material.

In spite of the dramatic decrease in the lattice conductivity when germanium is
alloyed with silicon, the Si–Ge alloys cannot compete with other thermoelectric ma-
terials at ordinary temperatures. However, they come into their own at, say, 600 K.
Above this temperature, zT for both n-type and p-type Si–Ge reaches a value of
about 0.5 and remains at or above this level up to temperatures in excess of 1,000 K
[25]. Si0:7Ge0:3 has a solidus temperature of about 1,500 K and remains stable over
long periods at 1,300 K [31]. The energy gaps for silicon and germanium are 1.15
and 0.65 eV, respectively so the silicon-rich alloys, when heavily doped, remain ef-
fectively free of minority carriers up to high temperatures.
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A powder metallurgical technique is the preferred method for producing Si–Ge
thermoelements [37]. Since these materials have the cubic diamond structure, there
is no question of anisotropy of the thermoelectric properties. The parameters that
are chosen for a hot-pressing and sintering process do not seem to be critical but
there remains the choice of the size of the starting powders.

Because of the major contribution of alloy scattering to the thermal resistance,
most of the heat is carried by low-frequency phonons. As shown in Sect. 5.3, this
means that boundary scattering can have a large effect on the lattice conductivity.
However, because of the high carrier mobility, we might expect this quantity also
to be sensitive to boundary scattering. Although Slack and Hussain [38] have
doubted the possibility of improving the figure of merit by reducing the grain size
in sintered Si–Ge, an improvement for fine-grained material has been claimed by
Rowe and Bhandari [39].

Slack and Hussain [38] have carried out a complete review of the properties
of Si–Ge alloys with the aim of specifying the maximum efficiency that might
be achieved for a generator operating between 300 and 1,300 K. Their calcula-
tions focussed on the Si0:7Ge0:3 alloy since this seems to have the most favourable
combination of properties. Due account was taken of the complexities of the band
structure. For example, the valence band maximum at the centre of the Brillouin
zone actually has three components. There is a heavy mass band, a light mass band,
and a split-off light mass band. Turning to the conduction band, there are minima
at the X and L points that have to be considered. Such complications have an ef-
fect on the variation of Seebeck coefficient with carrier concentration and electrical
conductivity. The carrier mobility, too, varies in an irregular manner with the carrier
concentration. When it came to optimising the carrier concentration, it was found
by Slack and Hussain that there were two maxima for the power factor in n-type
material. The carrier concentrations for the two peaks did not depend strongly on
temperature. One was at just over 1026 electrons per cubic metre and the other at
around 1027 electrons per cubic metre. This means, of course, that there are two
maxima when the figure of merit is plotted against carrier concentration.

Slack and Hussain supposed that some means is found to reduce the lattice con-
ductivity below its value when only Umklapp and alloy scattering exist. As has
already been mentioned, they doubted that boundary scattering would be useful but
micro-inclusions might have a beneficial effect. Whatever mechanism is introduced
to lower the lattice conductivity, it will never fall below a value �min that represents
the value for amorphous material. A quantity f signifies the reduction of the lattice
conductivity due to these unspecified processes. f is equal to zero without this ad-
ditional scattering, and to unity when the lattice conductivity is equal to �min. Slack
and Hussain presented data for the maximum figure of merit as a function of temper-
ature for different values of f but Fig. 9.15 is restricted to the results for f equal to
zero. It shows the figure of merit zT plotted against the absolute temperature for both
n-type and p-type Si0:7Ge0:3. Practical figures of merit have fallen some way short
of the projected values. Nevertheless, there seems to be the possibility of exceeding
these projections, if forms of phonon scattering can be introduced that increase f

above zero.
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Fig. 9.15 Projected values of
zT for Si0:7Ge0:3 plotted
against temperature. A
schematic plot based on the
calculations of Slack and
Hussain [38]
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9.4 Skutterudites and Clathrates

9.4.1 Skutterudites

We now turn to the materials that have been studied as the likely embodiments of
the phonon-glass electron-crystal (PGEC) concept that was discussed in Sect. 5.6.
The types of material that might have a low lattice conductivity and at the same
time have a large power factor have been considered by Nolas et al. [40]. They drew
attention to the criteria that were enumerated by Cahill et al. [41] for a glass-like
lattice conductivity.

The materials should possess loose atoms or molecules that have more than one
metastable position in the lattice and do not have well-defined positions or motion.
These atoms or molecules have no long range correlation with one another. They
are an integral part of the compound rather than impurities, contributing at least 3%
to the total mass. It is important to realise that the role of these loose atoms is quite
different from that of the impurities that usually lead to point-defect scattering.

One of the classes of material that have been studied is that of the skutterudites.
Skutterudite is the name first given to the mineral CoAs3 and since extended to
other compounds in the same family, such as CoSb3. Such materials satisfy the
requirements of Cahill et al. for a small lattice conductivity and possess reasonably
mobile charge carriers.

A key feature of the unit cell of a skutterudite is that it contains empty spaces.
In CoSb3, the cobalt atoms form an almost cubic framework with square arrange-
ments of each set of four antimony atoms, there being six such squares for every
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eight pseudo cubes. The voids that exist in such an arrangement can be occupied by
loosely bound atoms that are known as “rattlers”. It is these rattlers that reduce the
lattice conductivity to an extremely low level.

The general formula for the basic skutterudites can be written as MX3 where M
is Co, Rh, or Ir and X is P, As, or Sb. An alternative representation is Œ �2 M8X24,
which takes account of the two voids for every 8 M atoms and 24 X atoms. We
may then introduce guest atoms into the voids to form what can be called filled
skutterudites. An indication of the ability of the guest atoms to rattle, and thereby
reduce the lattice conductivity, is the atomic displacement parameter. One partly
filled mixed skutterudite that has been studied is La0:75Fe3CoSb12. Here, the atomic
displacement parameter [42] at 300 K of La is about 0:02 Å

2
compared with about

0:007 Å
2

for Sb and 0:005 Å
2

for Fe and Co. It is expected, then, that the lattice
conductivity of La0:75Fe3CoSb12 should be small. This is, indeed, the case as is
illustrated in Fig. 9.16 in which the lattice conductivity of the closely related com-
pound La0:75Th0:2Fe3CoSb12 is plotted against temperature. Also shown are the
values for the unfilled skutterudite CoSb3 and the amorphous material, vitreous sil-
ica. The minimum thermal conductivity of the filled skutterudites could, in principle,
reach even lower values.

Sales and his colleagues measured all the thermoelectric parameters on their ma-
terial and were, thus, able to assess the figure of merit. Two of the compositions that
gave, particularly, favourable results were Ce0:9Fe3CoSb12 and La0:9Fe3CoSb12.
It was observed that zT became equal to about unity for both these compounds at
700 K, as shown in Fig. 9.17, and it was predicted that a value of about 1.4 might
be reached at 1,000 K. It is noted that both materials displayed a Seebeck coeffi-
cient equal to about 200 �V K�1 at 700 K, this probably being close to the optimum
level. At lower temperatures, the Seebeck coefficient became smaller and it is ex-
pected that the figure of merit in this region could be improved.

The skutterudites are unlike many semiconductors in that the density-of-states
effective mass is rather large so that the optimum Seebeck coefficient is reached at

Fig. 9.16 Lattice
conductivity of a filled
skutterudite plotted against
temperature. Also shown are
values for CoSb3 and vitreous
silica. Based on the data of
Sales et al. [42]
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Fig. 9.17 Schematic plots
of zT against temperature
for Ce0:9Fe3CoSb12 and
La0:9Fe3CoSb12 based on
the data of Sales et al. [42]
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carrier concentrations that would lead to metallic conduction in other materials. The
effective mass for p-type skutterudites is of the same order as the free electron mass,
and for n-type compositions is an order of magnitude greater [40]. The guest atoms
that are introduced into the voids act as dopants and the high effective masses allow
their concentration to be high without the Seebeck coefficient becoming too small.

There are a large number of both host compositions and guest atoms from which
to choose. Many seem to have promising thermoelectric properties [43] and provide
dimensionless figures of merit of the order of unity or greater in the temperature
range 500–700 K.

A curious effect has been reported by He et al. [44]. He and his co-workers pre-
pared the skutterudite Co1�xNixSb3 by adding Co1�xNixSb3:05 and found that, after
annealing, the material was porous. The presence of the pores, of more than 1 �m
in diameter, was found to change the thermoelectric properties. The electrical con-
ductivity became greater at the expense of the Seebeck coefficient and the thermal
conductivity was substantially reduced. It was found that the porous material had
a value of zT equal to 0.6 at 400 K, about twice the value for the original mate-
rial. Perhaps, when this effect is properly understood, a general improvement of the
thermoelectric properties of the skutterudites will be achieved.

9.4.2 Clathrates

The clathrates are another group of compounds that have open structures into which
loosely bound guest atoms can be incorporated. The original clathrates were crys-
talline complexes of H2O with trapped atoms or molecules. Ice clathrates were
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known to have very small thermal conductivities. They typically have a very large
number of host atoms in the unit cell. For example, Type I ice clathrates have 46
H2O molecules in the unit cell and Type II ice clathrates have 136 such molecules.
These clathrates are, of course, electrical insulators but there also clathrates with
semiconducting properties and it is these in which we are interested.

Type I conducting clathrates have the general formula X2Y6E46 where X and Y
are guest atoms on two different sites and E is Si, Ge, or Sn. The corresponding
formula for the Type II clathrates is X8Y16E136. The elements in Group IV of the
periodic table are usually found to have the diamond structure, each atom being co-
valently bonded to four other atoms. These bonds are retained in the clathrates but
there are no longer groups of four atoms forming tetrahedra. Instead, the Group IV
atoms form dodecahedra and either tetrakaidecahedra or hexakaidecahedra [45]. In
Type I clathrates, the unit cell is made up of six tetrakaidecahedra and two dodec-
ahedra, whereas in Type II clathrates, the cell comprises 16 dodecahedra and eight
hexakaidecahedra. It is, therefore, possible for each unit cell in a Type I clathrate to
accommodate eight guest atoms and in a Type II clathrate it can accommodate 24
guest atoms.

Most of the experimental work has been performed on Type I clathrates.
Figure 9.18 shows how the lattice conductivity of a number of these materials
varies with temperature. Also shown is the lattice conductivity of amorphous ger-
manium. It is clear that the lattice conductivity of the clathrates approaches the value
for amorphous germanium at the higher temperatures and in some cases reaches it.

The lattice conductivity of all the clathrates at room temperature is much lower
than for silicon or germanium in the usual crystalline state. At lower temperatures,
it becomes even lower for most samples suggesting that the guest atoms are par-
ticularly effective in scattering the low-frequency phonons. The exception is the Sn
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Fig. 9.18 Lattice conductivity plotted against temperature for selected Type I clathrates. A
schematic plot based on the data of Cohn et al. [46]
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clathrate and it is thought by Cohn et al. [46] that this is because the Cs ion has a
large radius and only just fits into the Sn cage. Nevertheless, at higher temperatures,
this clathrate, too, has a low thermal conductivity. Even when the phonon free path
length is not reduced, the very large size of the unit cell is instrumental in reducing
the heat conduction by the lattice.

We have already discussed atomic displacement parameters for the skutterudites.
The concept has the same significance for the clathrates. Thus, in Sr8Ga16Ge30, the
Sr ions in one type of cage site have a very large atomic displacement parameter [47]
and this can be associated with the small lattice conductivity at low temperatures.

Of course, the lattice conductivity is only one factor when a potential thermo-
electric material is being selected. The electronic properties are equally important.

The thermoelectric properties of various clathrates have been studied by several
workers. Kuznetsov et al. [48] have made observations in the temperature range
100–870 K on Ba8Ga16Si30; Ba8Ga16Ge30; Ba8Ga16Sn30, and Sr8Ga16Ge30.
These compounds were all found to have negative Seebeck coefficients as shown in
Fig. 9.19. The electrical resistivity of the same samples is shown in Fig. 9.20.

Kuznetsov et al. did not measure the thermal conductivity but they estimated
its value from the data for Ba8Ga16Ge30 and Sr8Ga16Ge30 that were available for
the temperature range 10–300 K [46, 49]. They assumed that the lattice conductiv-
ity would remain constant above 300 K, which seems to be reasonable from the data
shown in Fig. 9.18. Using calculated values for the electronic component of the ther-
mal conductivity, they estimated that zT would be equal to 0.7 for Ba8Ga16Ge30 at
700 K and 0.87 for Ba8Ga16Si30 at 870 K. Inspection of Fig. 9.19 suggests that nei-
ther of these compositions has the optimum carrier concentration. It appears that the
sample of Ba8Ga16Ge30 is entering the mixed conduction region at 700 K and would
be improved at this temperature by the addition of donor impurities. On the other
hand, the Seebeck coefficient of the specimen of Ba8Ga16Si30 seems to lie below its
optimum value at 870 K and a reduction in the donor concentration should improve

Fig. 9.19 Seebeck coefficient
plotted against temperature
for some Type I clathrates.
Schematic representation of
the data of Kuznetsov et al.
[48]
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Fig. 9.20 Electrical resistivity plotted against inverse temperature for some Type I clathrates.
Schematic representation of the data of Kuznetsov et al. [48]

its properties. A figure of merit zT as high as 1.35 at 900 K has been reported [50]
for single crystal Ba8Ga16Ge30. Martin et al. [51] have found that the substitution
of a certain proportion of 20% Si for Ge in Ba8Ga16Ge30 can enhance the perfor-
mance. There is no doubt then that the clathrates can provide worthwhile n-type
thermoelements.

It is possible to produce p-type material using Al as a doping agent. Thus, Deng
et al. [52] have prepared p-type samples with the formula Ba8Ga16AlxGe30�x ,
where x D 1; 2; 3; 4 or 5. The atomic displacement parameter is not affected by
the aluminium substitution so the thermal conductivity should remain low at all
temperatures. In fact, mass fluctuation scattering lowers the lattice conductivity still
further. The reasonably large value of 0.61 for zT at 760 K has been observed for
Ba8Ga16Al3Ge27.

9.5 Oxides

Oxides are attractive for high-temperature applications as they are potentially stable
and chemically inert. However, they must still have high values of the figure of
merit if they are to be of any use. Scientists were unaware of the possibility of using
them as thermoelements until the observation of a reasonably large figure of merit
for NaCo2O4. Yakabe et al. [53] prepared material by sintering, using both hot and
cold pressing techniques. The figure of merit of the hot-pressed material remained
above 0:5 � 10�3 K�1 over the temperature range 100–400ıC. The Seebeck coef-
ficient varied between 100 and 140 �V K�1 and was clearly less than the optimum
value. It was shown that higher Seebeck coefficients could be reached using doping
agents including Ba, Cu, and Mn. The largest Seebeck coefficient reported in this
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early work was 180 �V K�1 at 400ıC for Na .Co0:95Mn0:05/2 O4 though the highest
figure of merit of more than 0:8�10�3 K�1 was observed for Na .Co0:95Cu0:05/2 O4

because this formulation had the exceedingly small thermal conductivity of about
1:0 W m�1 K�1 over the same temperature range. In these measurements, the high-
est value of zT was about 0.54 at 673 K, certainly a most promising starting point
for further investigation of oxide systems.

NaCo2O4 with improved thermoelectric properties was reported by Ohtaki et al.
[54]. An essential feature of the preparation of this improved material seems to be a
double-sintering procedure. This led to an increase in both the Seebeck coefficient
and the electrical conductivity with a doubling of the power factor, admittedly from
a rather low starting level. The value of zT for this p-type conductor reached 0.78 at
1,053 K. Similar values are found for another p-type oxide [55], Ca3Co4O9 so it is
clear that NaCo2O4 is not unique among the oxides in possessing good thermoelec-
tric properties.

Perhaps, the best of the n-type oxides [56] is SrTiO3. Although the mobility
is low, the effective mass is high and the power factor at room temperature com-
pares well with that of material like Bi2Te3. However, the thermal conductivity is
rather high, at about 8 W m�1 K, and this means that zT at room temperature is
only about 0.08. Because of the high effective mass and the low mobility, there are
good prospects for reducing the lattice conductivity without affecting the electronic
properties. Muta et al. [57] reduced the thermal conductivity to 3:4 W m�1 K�1 at
300 K by partially substituting Dy for Sr. A value for zT of 0.37 at 1,000 K has been
achieved for SrTiO3 with a high concentration of Nb [58]. One can certainly do bet-
ter than this with other thermoelectric materials so further progress needs to be made
before it can be claimed that there is a satisfactory n-type oxide at 1,000 K. However,
one should remember that SrTiO2 has the high melting temperature of 2; 080ıC so
it may be possible to use this material under conditions that are unsuitable for other
thermoelements.

9.6 Other Thermoelectric Materials

9.6.1 Zinc Antimonide

Zinc antimonide, Zn4Sb3, exists in three crystalline forms. One of these, the
“-phase, which is stable between 263 and 765 K, has very good thermoelectric prop-
erties in a particular temperature range. The key to its high figure of merit is a small
lattice conductivity associated with a disordered crystal structure [59].

It is a p-type conductor with a figure of merit zT that rises from about 0.6 at
200ıC to about 1.3 at 400ıC. Over this range, it is probably as good as any other
material that is available. Caillat et al. [60], who reported the thermoelectric proper-
ties in 1997, mentioned that it is difficult to grow large crack-free crystals because
of the phase transitions. However, they were able to produce good material using a
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sintering process. Their typical samples displayed a Seebeck coefficient of nearly
200 �V K�1 at the upper end of the temperature range, but at 200ıC, it was no more
than 150 �V K�1, which is almost certainly below its optimum value. Pedersen et al.
[59] studied the effect of Mg as a dopant but were unable to report any improvement
in the figure of merit. It is possible that there will be no substantial improvement on
the results obtained by Caillat and his colleagues for pure Zn4Sb3 though Peder-
sen and co-authors mentioned that later work by Caillat et al. showed some benefit
from the substantial Cd content in the composition Cd0:8Zn3:2Sb3. The lattice con-
ductivity already lies below 1 W m�1 K�1 so the reduction in this quantity by alloy
scattering of the phonons is never likely to be very great.

9.6.2 Half-Heusler Compounds

The basic Heusler alloy Cu2MnAl is a ferromagnetic material with a structure in
which the copper atoms form a primitive cubic lattice with alternative cells con-
taining Mn and Al atoms. The half-Heusler structure is the same except that half
the atoms on the copper sites are missing. In the prototype half-Heusler compound,
AgAsMg, the Mg and Ag atoms form a rock salt structure, and the As and either the
Mg or Ag atoms form a zinc blende structure. A group of half-Heusler compounds
with the formula MNiSn, where M D H, Zr, or Ti, is known to have good n-type
thermoelectric properties even though the lattice conductivity is rather high.

A typical half-Heusler compound, ZrNiSn, has a lattice conductivity that is equal
to about 10 W m�1 K�1, but this can be reduced by forming a solid solution such
as Zr0:5Hf0:5NiSn [60]. The prospects for improvement are good since the effective
mass is of the order of 5m and the mobility is correspondingly small and not likely
to be reduced much when attempts are made to reduce the lattice conductivity still
further.

If it is assumed that most of the heat conduction is due to the acoustic-mode
phonons because of their large group velocity, it turns out that the mean free path
of the phonons exceeds that of the electrons. Thus, it is likely that ZrNiSn in the
amorphous state would be superior to crystalline material [62].

Many of the half-Heusler compounds, such as ZrNiSn, HfNiSn, and TiNiSn,
normally display n-type conduction but others including HfPtSn and ZrPtSn are
p-type conductors [63]. However, the latter have rather high values for the electrical
resistivity with zT less than 0.03 at all temperatures. The effective mass is smaller
for holes than for electrons and the hole mobility is not particularly high.

Muta et al. [64] have found that the thermal conductivity at high temperatures
can be reduced by the addition of impurities but they showed that the effect was due
to the elimination of the bipolar electronic conduction rather than a decrease in the
lattice conductivity.

Ono et al. [65] were able to improve the power factor of spark-plasma-sintered
and arc-melted half-Heusler compounds by substitution on both the Nb and Sn
sites in NbCoSn. The highest power factor of 2:2 mW m�1 K�2 was observed
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for Nb0:99Ti0:01CoSn0:9Sb0:1 at 700 K. However, the lattice conductivity was not
significantly reduced and zT did not rise above 0.3 at 850 K. This would certainly
be a useful material if the lattice conductivity could be made smaller. A similar
result was obtained by Sekimoto et al. [66] for TiCoSn0:1Sb0:9 at 959 K while zT
rose to 0.45 at 958 K for ZrCoSn0:1Sb0:9. It does not seem that the formation of
such solid solutions is going to reduce the lattice conductivity sufficiently for zT to
approach unity. The exceptionally high power factor of 4:1 mW m�1 K�2 at 673 K
observed by Matsubara et al. [67] for .Ti0:5Zr0:25Hf0:25/0:99 Y0:01NiSn0:99Sb0:01

suggests that this composition may have a high figure of merit but its thermal
conductivity is not known. Matsubara et al. observed a chain-like nanostructural
feature in their material and it could be that this type of structure is responsi-
ble for the promising properties. The half-Heusler compounds, particularly, those
with n-type conduction, remain as contenders for supremacy in thermoelectric
applications at certain temperatures.

9.6.3 Metal Silicides

Iron disilicide, FeSi2, has long been considered as a suitable thermoelectric
generator material even though it does not have the highest figure of merit at
any temperature. Its great virtues are its stability and strength, while it is made
from two elements that are cheap and plentiful. The compound exists in two phases,
the ’-phase being produced on solidification of the melt and the “-phase being the
more stable form below 955ıC. FeSi2 can be produced by a powder metallurgy
technique [68] with an optimum annealing temperature for the production of the
“-phase of about 800ıC. The compound can be obtained in either n-type or p-type
form by doping with either cobalt or aluminium, respectively. Rather high dopant
concentrations are needed as the effective masses of the carriers are large. The
dimensionless figure of merit for a thermocouple in which both legs are made from
FeSi2 rises from about 0.03 at 100ıC to 0.2 at 700ıC. Stable contacts at the hot
junction can be made by direct sintering. There is no doubt that FeSi2 has practical
advantages over other materials and, in some circumstances, these may outweigh
the poor figure of merit.

There are a number of transition metal silicides that share many of the advantages
of FeSi2. Their properties have been reviewed by Fedorov and Zaitsev [69]. The
highest value of zT seems to be around 0.4, this being exhibited by Rh-doped Ru2Si3
at about 900ıK and by Fe0:95Co0:05Si2 at 800ıK.

Rather better thermoelectric properties are found for alloys based on magnesium
silicide, Mg2Si. The properties of Mg2Si and the isomorphous compounds Mg2Ge
and Mg2Sn, together with their solid solutions, have been reviewed by Zaitsev et al.
[70]. The solid solutions are, particularly, interesting because of the substantial in-
crease in thermal resistivity compared with that of any of the pure compounds [71].
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Fig. 9.21 Schematic plot
of lattice conductivity at
room temperature against
concentration of second
component in Mg2 (Si,Ge,Sn)
alloys. Based on data of
Zaitsev et al. [70]
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The variation of lattice conductivity with composition for the three solid solution
systems is shown in Fig. 9.21.

All the solid solutions display favourable n-type thermoelectric properties at tem-
peratures above, say, 500 K. The best results were reported for Mg2Si0:6Sn0:4 with
zT rising from just over 0.4 at 500 K to about 0.9 at 800 K. Zaitsev et al. believe that
further work should be done on this group of compounds and alloys.

9.6.4 Boron Carbide

In this chapter, an attempt has been made to portray the properties of a wide variety
of thermoelectric materials. It is remarkable how many different systems yield
values of zT that are equal to about unity or greater over some temperature range.
No mention has been made, for example, of organic semiconductors and there are
other omissions of systems that might eventually give good thermoelectric proper-
ties, However, it is hoped that the readers of this book will be able to evaluate new
materials as they appear, basing their judgement on the principles that have been
outlined.

We shall, finally, mention the thermoelectric properties of boron carbide, a
refractory material of exceptional hardness [72]. The thermoelectric properties of
this material have been measured by Bouchacourt and Thevenot. The value of zT
observed by these authors was 1.06 at 1,250 K so boron carbide is clearly a poten-
tial thermoelectric material for use at high temperatures.

Boron carbide is normally a p-type conductor, and in this context, Mori and
Nishimura [74] have drawn attention to rare earth boron cluster compounds that
have similar refractory characteristics but are n-type. At present, these materials do
not have high figures of merit but this is not surprising in view of the fact that the
Seebeck coefficient lies far below its optimum value. Mori and Nishimura consider
that these boron cluster compounds are worth further study.
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Chapter 10
Thermoelectric Modules and Their Application

10.1 The Modular Concept

In principle, a single thermocouple can be adapted to provide any required cooling
capacity as a refrigerator by altering the ratio of length to cross-sectional area.
However, such a couple would operate from a very small voltage and the current
would be very large except for minimal cooling power. For most practical purposes,
a number of thermocouples are connected in series electrically, while operating
thermally, in parallel. Such an arrangement of thermocouples is known as a thermo-
electric module. The essential features of a typical module are shown in Fig. 10.1.

The thermoelements in a module are linked together by strips of a good electrical
conductor, such as copper. The connecting links are usually held in good ther-
mal contact with electrically insulating plates that should be made from material
that conducts heat well. Very often, alumina plates are used but these are not partic-
ularly good thermal conductors and beryllia, for example, is a better material for this
purpose. Sometimes, the ceramic plates are metallised to assist in the connection to
a heat source and a sink.

The number, N; of thermocouples in a module is determined primarily by the
required cooling capacity and the maximum electric current. Suppose, for example,
that 10 W of cooling is required for a particular application, such a level of cool-
ing power might be adequate for a small portable refrigerator. One could design the
module for operation at maximum cooling power or optimum coefficient of perfor-
mance or, probably, some intermediate condition. It might seem attractive to attempt
to obtain the maximum possible cooling from a module, but the lower the coefficient
of performance, the greater the amount of heat that has to be removed by the sink.
One could very well economise on the cost of the module only to spend more on
increasing the capacity of the heat sink. On the other hand, it would be absurd to
attempt to operate at maximum coefficient of performance if the temperature differ-
ence across the module were very small. This is because the cooling power has then
to be very small if (2.8) is to be satisfied.

The coefficient of performance depends on the temperature difference between
the thermocouple junctions. This temperature difference will be larger than that
between the source and sink since there will always be some thermal resistance

167
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Fig. 10.1 Schematic diagram of a thermoelectric module

other than that of the module. This should be borne in mind when the coefficient of
performance is calculated using (2.7) or (2.9).

To proceed further, we must be more specific about the operating temperatures
and the properties of the materials in the module. Suppose that the hot side of the
module is maintained at 300 K and that a temperature difference between the junc-
tions of 40ı must be maintained, we shall also assume that the value of ZT is equal
to 0.8 and that the differential Seebeck coefficient is 400 �V K�1. The value of ZT
is not the best that can be achieved but it is typical of a good production module.
The optimum COP is then found, from (2.9), to be equal to 0.40. From (2.8), we find
that the current through each thermoelement is 46:8 � 10�3=

�
Rp C Rn

�
A, where

the resistance is expressed in ohms. If we assume that the current is not to exceed,
say, 5 A, the resistance

�
Rp C Rn

�
must not be less than about 9:4 m�. The elec-

trical power per couple is found using (2.4) and is not greater than 0.31 W. The
coefficient of performance of 0.4 then indicates that the cooling power per couple
is 0.125 W. Thus, to obtain 10 W of cooling, we need about 80 couples. This would
be a convenient number as we could arrange the 160 thermoelements in a 16 � 10

matrix.
We have not as yet determined the dimensions of each thermoelement though we

know that its resistance must be about 4:7 m�. The electrical resistivity of a typical
thermoelectric material is some 10�5� m, so we require L/A to be 0:47 mm�1. For
reasons that we discuss later in this chapter, it would be difficult to reduce the length
of a thermoelement below 1 mm. Then, each would have a cross-sectional area of
about 2:1 mm2. In actual fact, the thermoelements in most commercial modules
have rather larger values of L/A than 0:47 mm�1 suggesting that a lower current
than 5 A is preferable in typical applications.

The user of thermoelectric refrigeration is faced with a somewhat different
problem. It is usually a matter of selecting one or more modules from the range
offered by a manufacturer to meet a specific requirement. The procedure in this case
has been outlined by Buist [1]. It is supposed that the user is supplied with a set of
design curves and a range of module sizes. The range of modules that are available
is now much greater than it was when Buist described his selection process, but
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Table 10.1 Range of thermoelectric modules used
to illustrate Buist’s selection process [1]

Model number N L=Amm�1 NA/L mm

MI 1020 7 2.52 2.78
MI 1021 17 2.52 6.75
MI 1022 31 2.52 12.30
MI 1023 71 2.52 28.17
MI 1050 35 0.921 38.00
MI 1060 7 0.727 9.63
MI 1061 17 0.727 23.38
MI 1062 31 0.727 42.64
MI 1063 71 0.727 97.66
MI 1092 31 0.523 59.27
MI 1120 31 0.414 74.88
MI 1142 31 0.327 94.80

Data on current thermoelectric modules are available
from www.marlow.com

to illustrate the steps that must be taken, we shall restrict ourselves to the standard
modules listed by Marlow Industries in the 1970s. The data for these modules are
listed in Table 10.1.

One needs a set of performance curves that relate to the series of modules under
consideration. Such curves are based on the assumption that all modules make use
of the same thermoelectric materials. Figure 10.2 shows how four parameters that
are independent of the size or number of thermoelements vary with the hot junction
temperature. These curves can be updated as new thermoelectric materials are in-
troduced. The independent parameters are IqL=A, qmaxL=NA, Vq=N , and �Tmax

and relate to the maximum temperature difference and cooling power and the corre-
sponding current and voltage.

Figure 10.3, perhaps, needs some explanation. It shows plots of �T=�Tmax

against the ratio q1=qmax of the ratio of the cooling power to its maximum value
for various ratios of the current to the current for maximum cooling power. The
intersection of each of the lines with the broken curve corresponds to operation at
the optimum coefficient of performance. It is obvious that the cooling power will
be zero when �T D �Tmax and, as mentioned previously, the optimum COP also
requires a very small cooling power when �T � �Tmax.

Figures 10.2 and 10.3 are used in the following way. The hot junction temperature
T2 is first selected and this determines the four parameters in Fig. 10.2. One then
turns to Fig. 10.3 to select a suitable value for I=Iq so that the module operates
in the region to the right of the broken curve; that is, between the condition for
optimum COP and that for maximum cooling power. From the specified cooling
power, one can then determine an acceptable value for NA=L.

Buist used a realistic example to illustrate the procedure. He supposed that heat
has to be removed at the rate of 10 W from a heat source at 290 K and transferred
into a heat sink at 350 K. Strictly speaking, these are the temperatures of the cold
and hot junctions, respectively.
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Figure 10.2 shows that �T=�Tmax is equal to 0.63 and that qmaxL=NA is
0:45 W=mm2.

Then, from Fig. 10.3, one finds that q1=qmax should lie between 0.18 for opti-
mum COP and 0.36 for maximum cooling power. Since q1 is to be equal to 10 W,
qmax should be between 55.6 and 27.8 W. This means that NA=L must be in the
range 123 mm and 61.7 mm. By referring to Table 10.1, we see that a number of
modules might meet this requirement. Thus, MI 1063 and MI 1142 both have val-
ues of NA=L that are reasonably close to the value of 123 mm for optimum COP
and MI 1120 has a value that is closer to that for maximum cooling power. Buist’s
conclusion was that MI 1063 would be the best choice since it is advantageous to
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operate closer to the optimum COP condition than that for maximum cooling power
and it is usually preferable to use the smallest possible current. Having selected the
appropriate module, one then finds from Fig. 10.2 that the operating current and
voltage are 4.18 A and 6.53 V, respectively.

Marlow et al. [2] have pointed out that it is often necessary to work as close
as possible to the condition of optimum COP. This is the case, for example, if
the supply source is a storage battery rather than the electrical mains. Thus, in the
example that we have considered, the use of two modules of the type MI 1092 might
have been a better option. This would have brought the overall value of NA=L to
118.5 mm, which is very close to the value of 123 mm that we obtained when the
COP was optimised.

10.2 Heat Transfer Problems

One of the aims of the manufacturers of thermoelectric modules is the reduction in
size of the thermoelements. The cost of the raw materials is a significant factor and
there are other advantages that would accrue if modules could be made smaller and
lighter. However, when we reduce the size of a module, we encounter problems
associated with the transfer of heat. The smaller the cross-sectional area of the end
plates, the more difficult it is to transfer heat from the source and to the sink without
excessive temperature differences. It is certainly possible to alleviate this problem
by increasing the space between the thermoelements but this makes greater the heat
losses by convection, conduction, and radiation. Thus, there is an optimum spacing
giving the best balance between excessive thermal resistance at the end plates and
unwanted heat losses around the thermoelements. We analyse this problem [3] using
the model shown in Fig. 10.4.

Fig. 10.4 Model for the
calculation of heat losses and
thermal resistance

Ceramic plate

Ceramic plate

p nThermal
ininsululatioion

Heat source

Heat sink

Thermal
insulation
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It is supposed that there is thermal insulation between the thermoelements that
occupies a fraction g of the area occupied by the thermoelements. This insulation
has a thermal conductivity �I and it is assumed that there are no radiation or con-
vection losses. The conduction of heat through the insulating material increases the
thermal conductance by a factor .1 C �Ig=�/, where � is the average thermal con-
ductivity of the thermoelectric material. The effective figure of merit then becomes
Z= .1 C �Ig=�/.

By inserting the insulation between the thermocouples the total cross-sectional
area is increased from A to A .1 C g/. Thus, if Kc is the thermal conductance per
unit area of the end plates, the thermal conductance of each plate is KcA .1 C g/.
When heat is being extracted from the source at a rate q1, it is delivered to the sink
at the rate q1 .1 C 1=�/, where � is the coefficient of performance. The unwanted
temperature differences across the end plates at the source and sink are equal to
q1=ŒKcA .1 C g/� and q1 .1 C 1=�/ =ŒKcA .1 C g/�, respectively. Thus if �T � is
the required temperature difference between the sink and the source, the temperature
difference across the thermocouples has to be

�T D �T � C q1 .2 C 1=�/

KcA .1 C g/
(10.1)

The coefficient of performance is reduced since �T > �T �.
In order to make further progress, we need to specify the condition of operation.

For our present purposes, it will be supposed that we want to obtain the maximum
temperature difference when the heat drawn from the source is zero. We know that
this temperature difference is equal to ZT 2

1 =2 when there are no heat losses and
no thermal resistance at the end plates. According to (2.6), the current that gives
the maximum temperature difference is equal to

�
˛p � ˛n

�
T1=R and we find that

the power input is
�
˛p�˛n

�2
T1T2=R. If we set

�
˛p�˛n

�2
=R equal to Z�A=L, we

obtain

�Tmax D �T �
max C �ZT1T2

KcL .1 C g/
; (10.2)

which shows that the maximum temperature difference �T �
max between the sink and

the source is less than that across the thermocouples.
If we combine (10.1) and (10.2) to include both the heat losses through the insu-

lation and the thermal resistance across the end plates, we obtain

�T �
max D 1

2
ZT 2

1

�
1

1 C �Ig=�
� 2�T2

KcL .1 C g/ T1

	
: (10.3)

The aim is to make the quantity in the square brackets as close to unity as possible.
Let us apply (10.3) to a specific example. We shall suppose that the module is

made of excellent thermoelectric materials with ZT close to unity and T2=T1 hav-
ing a maximum value of about 1.4. For good thermoelectric materials, the thermal
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conductivity � would be equal to about 1:5 W m�1 K�1 and the spaces between
the thermoelements might be filled with expanded polyurethane that has a thermal
conductivity of 0:02 W m�1 K�1. The thermal conductivity [4] of alumina is about
30 W m�1 K�1 and for the purpose of this calculation we shall assume a thickness
of 1 mm and a thermal conductance of 3 � 104 W=m2 K.

Figure 10.5 shows a plot of the term in the square brackets of (10.3) against the
spacing factor g. It will be seen that the maximum temperature difference has its
highest value when g is about 2. This value is equal to about 93% of ZT 2

1 =2. It
is noted that the thermal resistance of the end plates can be reduced by making
them from aluminium nitride [5] instead of alumina while an even better thermal
conductor is diamond, though the cost of the latter would usually rule it out.

In fact, in many practical applications, a major factor in the degradation of the
performance of a thermoelectric refrigerator lies in the thermal resistance between
the surfaces of the end plates and the real source and sink. Even if solid copper
conductors are used to spread the heat flux, there can be a substantial temperature
difference over their length.

One solution of this problem lies in the use of fluid heat exchangers. Attey [6] has
shown that in a typical application using solid-state heat exchangers, the coefficient
of performance of a thermoelectric cooling system was found to be 0.4. In this
application, the temperature difference between the source and sink was only 20ı
and, for the particular thermoelectric materials that were used in the module, the
theoretical COP was as high as 1.3. The value of ZT for the thermocouples was
0.65 but, because of the ineffectiveness of the solid-state heat transfer system, the
module was behaving as if ZT were no more than 0.28. Using Attey’s liquid heat
transfer system, the COP rose to 0.8 corresponding to an effective value of 0.43 for
ZT. Obviously, there is some way to go before the full potential of the thermoelectric
cooling modules is realized, but Attey’s work highlights the need to improve heat
transfer as well as the figure of merit.
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10.3 Electrical Contact Resistance

Heat transfer is not the only problem that arises when we attempt to reduce the
size of a thermoelectric module. If there is any significant electrical resistance at
the contacts, this will become more apparent as the length of the thermoelements is
made smaller.

It is actually extremely difficult to measure the electrical contact resistance when
present-day methods for attaching metal connectors to thermoelements are used.
The only real test is the performance of the thermocouples as coolers or generators
when the length is made as small as possible. Semenyuk [5] estimates the electrical
resistance of his contacts to be 0:84 � 10�10 � m2.

The effect of electrical contact resistance on the performance of thermoelectric
refrigerators was analysed by Parrott and Penn [7] and we shall give an outline
of their treatment here. Although the methods for making electrical contact to
thermoelectric materials have improved since this analysis was performed, the ther-
moelements themselves have become shorter, so the problem is still a real one.

The aim of Parrott and Penn was not to eliminate the effect of contact resistance
but rather to take account of it in minimising the amount of thermoelectric material
needed for a module. It is supposed that the contact resistance is equal to rc for unit
cross-sectional area. Then, (2.3) becomes

q1 D �
˛p � ˛n

�
IT1 � .T2 � T1/

�
Kp C Kn

�� I 2


Rp C Rn C rc

A

�
=2: (10.4)

Equation (2.4) for the rate of consumption of electrical energy becomes

w D �
˛p � ˛n

�
I .T2 � T1/ C I 2



Rp C Rn C rc

A

�
: (10.5)

The effect is the same as that of increasing the resistance of the two branches from�
Rp C Rn

�
to
�
Rp C Rn C rc=A

�
. Alternatively, the average electrical resistivity can

be regarded as increasing from � to .� C rc=L/.
Parrott and Penn stated that one can proceed further by assuming either maxi-

mum cooling power or optimum coefficient of performance. It is easier to use the
first of these assumptions using (10.4) with the current given by (2.6) modified by
the inclusion of the contact resistance. Then the maximum cooling power per unit
volume is given by

qmax

AL
D 2�T

r2
c �2

�q; (10.6)

where �q is a function that was defined by Parrott and Penn and is given by

�q D r2
c

�2L2

"
ZT

4

�
1 C rc

�L

��1

� �T

2T

#

: (10.7)

Parrott and Penn defined a similar but more complex function �¥ to be used when
the coefficient of performance rather than the cooling power is maximised.
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Fig. 10.6 Plot of Parrott and
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Figure 10.6 shows the function �q plotted against the length of the thermoelements
for contact resistance values of 0:84 � 10�10 and 8:4 � 10�10�m2, the latter figure
being close to the lowest value observed by Plekhotkin et al. [8]. Typical values of
ZT and �T=T have been selected. In both cases, there is a maximum at a particular
length. Below this maximum, there are two values of L that give a specific ratio
of cooling power to volume of thermoelectric material and it is always preferable
to choose the greater length since this corresponds to the higher coefficient of
performance. It will be seen that �q becomes negative below a certain value of L

indicating that the specified temperature difference can no longer be met. In other
words, it would not be possible to obtain the rather modest value for �T of about
20ı if L D 0:1 mm and rc were as high as 8:4 � 10�10�m2. On the other hand,
using Semenyuk’s value for rc a temperature difference of 20ı could still be reached
with a thermoelement length of about 20 �m.

The expression for the coefficient of performance at maximum cooling power is

�q D
ZT � 2



1 C rc

�L

�
�T
T

2ZT
�
1 C �T

T

� : (10.8)

The coefficient of performance will become appreciably reduced by the effect of
contact resistance when rc=�L becomes a significant fraction of unity. For a typical
thermoelectric material with � of the order of 10�5�m and, assuming rc equal to
Semenyuk’s value, rc=�L is of the order of 10�2=L mm�1. Contact resistance will
start to make itself felt as the length of the thermoelements falls below about 0.1 mm.

The miniaturisation of thermoelectric modules has recently been discussed in
detail by Semenyuk [9]. He pointed out that there is a need for coolers with a
high power density for use with semiconductor lasers and other electronic de-
vices. Thermoelements of up to 50 �m in length can be produced by thin film
techniquesm, but the figure of merit is less than can be achieved with bulk ma-
terials. Very short samples with excellent thermoelectric properties have been cut
from extruded bismuth telluride alloys. Such materials have a figure of merit of
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Fig. 10.7 Dependence
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over 3 � 10�3 K�1 with no difference between thermoelements of 200 and 130 �m
length. However, because of contact resistance, the maximum temperature differ-
ence that can be reached is less for modules made from the shorter samples. Thus,
with the heat sink at 30ıC, the maximum temperature depression was observed to be
70:6ı for thermoelements of 200 �m length and 64:2ı when the length was reduced
to 130 �m. The variation of �Tmax with thermoelement length is shown in Fig. 10.7.
It was noted that the ceramic end plates were made from AlN rather than alumina
so that the fall in �Tmax as the length is reduced is associated with electrical contact
resistance. Semenyuk’s work confirms that effective thermoelectric coolers can be
made with thermoelements of the order of 100 �m in length but some degradation
in performance due to contact resistance must be accepted.

10.4 Applications of the Peltier Effect

At the present time, the performance of thermoelectric refrigerators is inferior to that
of conventional compressor-type machines. It is likely that the difference between
the two types of cooler will become narrower with the passage of time but, until this
takes place, Peltier cooling will be restricted to those areas in which it has obvious
advantages.

One of the characteristics of a Peltier device is that its performance is almost
independent of its capacity. It, therefore, has a definite advantage for the cool-
ing of small enclosures. Manufacturers have considered it to be advantageous to
use thermoelectric refrigeration for small portable cold boxes, particularly, when
the available power source is a 12 V automobile battery. In this field, there is
competition from absorption refrigerators that have the advantage that they can
be gas-operated, but when they make use of an electric power source, they are
no more efficient than thermoelectric coolers. The thermoelectric devices are also
insensitive to movement or inclination and, because of this characteristic, they are
attractive for use on board ship.
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A feature of the Peltier effect is that it can be used for heating as well as cooling.
Thus, in principle, it is possible to maintain foodstuffs in an enclosure that is re-
frigerated until their time of use whereupon they can be heated to the required
temperature for consumption.

Domestic applications of thermoelectric cooling have been reviewed by Banney
et al. [10]. These authors state that thermoelectric refrigerators outperform absorp-
tion units in mobile applications. They are already effective in dispensers of chilled
water. They also claim that even now household refrigerators using the Peltier effect
can perform almost as well as compressor units if an efficient heat transfer system,
probably based on liquid flow, is incorporated.

One of the largest potential fields of application is in air conditioning and heat
pumping. Very often, the required temperature difference between the source and
sink is small compared with the maximum that can be reached. Compressor units
deal with this situation by being switched on for short periods of time but Peltier
devices can be operated continuously at the optimum current. This allows them
to adapt readily to changes of the sink temperature whether cooling or heating is
needed.

As long ago as 1958, Lindenblad [11] demonstrated the air conditioning of
a room by incorporating a thermoelectric cooling unit in one of its walls. Basu
[12] claimed that his thermoelectric air conditioner that was powered by a solar
battery compared well with a compressor unit from the viewpoints of maintenance,
life, cost, and power consumption. Kulagin and Makov [13] used a solar thermo-
electric generator to power their Peltier air conditioner claiming the system to be
self-regulating, since the cooling power rises with increase of the incoming ther-
mal radiation. It may be noted that Vella et al. [14] used a thermoelectric generator
to power a thermoelectric refrigerator claiming that this combination enabled the
number of thermocouples to be minimised.

One of the most successful projects involving the use of thermoelectric air condi-
tioning was reported by Stockholm et al. [15]. The objective was the control of the
temperature in a train carriage on the French national railways. At different times
of the year, both heating and cooling are required though the temperature difference
from that of the surrounding air is usually not large. The flexibility of the Peltier
effect would seem to make this application particularly suitable.

Stockholm [16] claimed that it is advantageous in large-scale applications to inte-
grate the heat exchangers with the thermoelements. Such integrated heat exchangers
minimise the thermal resistance at the source and sink, and were used in the rail-
way application. However, they can present structural problems and the modular
approach is preferred for small- to medium-scale applications [17].

The structural problems were certainly overcome by Stockholm et al. The 20 kW
air conditioning unit was operated successfully on a particular route for over 10
years without a single failure of the thermoelectric components. However, in spite
of this success, thermoelectric air conditioners have not been installed elsewhere
in the French railways since there is always some reluctance to replace an existing
system with a new one unless the latter has an overwhelming advantage.

Perhaps, the greatest advantage of thermoelectric cooling over other systems lies
in the ease with which it can be controlled. This was recognised in the early days
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with applications such as dew point hygrometers [18] and thermocouple reference
enclosures. The maintenance of an enclosure at a constant temperature can present
problems, if conventional systems are used. For example, suppose that the required
temperature is only a few degrees above that of the ambient air; a simple heater
can then raise the temperature of the enclosure to the specified level, but once it
passes this level, the loss of heat can be a slow process. However, if the Peltier
effect is employed, the ability to heat or cool by small or large amounts by adjusting
the current is a considerable asset.

It is in the cooling of small electronic and electro-optic devices that thermo-
electric cooling has undoubtedly come into its own [19]. Multi-stage units are used
in this type of application when the need is a large temperature depression with a
small cooling power. On the other hand, in other situations, high thermal flux densi-
ties with more modest temperature differences are often needed with expense being
a secondary consideration. Thus, if necessary, the device to be cooled might be
mounted on a diamond substrate, which would provide electrical insulation with the
minimum of thermal resistance. Semenyuk has presented data that show what can
be achieved with different substrate materials. His results are presented in graphical
form in Fig. 10.8.

In Fig. 10.8, the maximum temperature difference and maximum cooling power
are plotted against the length of the thermoelements. The region for L < 10 �m is
covered by thin film thermoelements and requires diamond substrates. For 10 �m <

L < 60 �m, one uses thick-film thermoelements and either diamond or aluminium
nitride substrates. Techniques for making thermoelements with L between 60 and
200 �m are in the course of development and, again, diamond or aluminium nitride
substrates are needed. The region 200 �m < L < 300 �m is covered by existing
modules with aluminium nitride end plates, whereas for L > 300 �m, alumina end
plates can be employed, though aluminium nitride will give a superior performance.

Fig. 10.8 Representation
of Semenyuk’s data on
thermoelectric modules
for cooling optoelectronic
components
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10.5 Transient Cooling

We are interested in the transient behaviour of thermoelectric coolers from two
points of view. In some applications, it is useful to know how rapidly the system
responds to changes in the load conditions. Also, there always exists the possibility
of increasing the temperature difference above its usual maximum value for a short
time by applying a large current pulse.

The theory of transient cooling used by Babin and Iordanishvili [20] is based on
the assumption that the thermocouple consists of two infinitely long thermoelements
that are joined at the position x D 0. The thermal load is assumed to be negligible.
The distribution of temperature in either branch has to satisfy the equation

@2T

@x2
C i2�

�
D 1

	

@T

@t
; (10.9)

where, as before, �, �, and 	 are the electrical resistivity, the thermal conductivity,
and the thermal diffusivity, respectively. When the time, t , is zero, the temperature
is T2 at all points. When x D 1, @T=@x D 0, while for x D 0, �@T=@x D ˛IT ,
where it has been assumed that ˙˛ is the Seebeck coefficient of each branch of the
couple. Applying these conditions, (10.9) becomes

T2 � T1 D T2

��
1 � exp

�
A2
�

erfc .A/
� � zT2 C 1

zT2

�
� 2

�1=2

A

zT2

	
: (10.10)

In this equation, erfc represents the complementary error function and A D
˛	1=2i t1=2�. The depression of temperature at the junction rises, reaches a maxi-
mum, and then falls. The maximum is reached when A satisfies the equation

zT2 D �1=2A exp
�
A2
�

erfc.A/

1 � �1=2A exp .A2/ erfc.A/
: (10.11)

In Fig. 10.9, we show a plot of .T2 � T1/ =T2 against time in arbitrary units,
according to (10.10), for zT2 D 1. If the couple were to be operated under steady-
state conditions, the maximum value of .T2 � T1/ =T2 would be equal to 0.265. The
reason that the maximum temperature difference in the transient mode is smaller is
that there is no heat sink. It should be noted that the maximum temperature differ-
ence does not depend on the current; a change of current merely alters the time scale
so that i t1=2 remains constant for a particular point on the curve.

Of course, the assumption of infinite length is unrealistic but the theory holds for
samples of finite length up to a certain time. As an empirical rule, the infinite-length
approximation is valid up to the maximum temperature difference if the current
density is at least twice that which produces maximum cooling in the steady state.

Babin and Iordanishvili showed that one can obtain transient temperature depres-
sions that are significantly greater than the steady-state maximum value. They used
a technique in which a steady current giving maximum cooling power is first applied
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Fig. 10.9 Temperature depression in the transient mode. �T=T2 is plotted against time in arbitrary
units. zT2 is equal to unity

to a thermocouple and then, after equilibrium has been established, the current is in-
creased to some higher value. One can still use (10.9) but the temperature at zero
time now has the value

T .x/ D T2 � �Tmax



1 � x

L

�2

; (10.12)

where �Tmax is the maximum temperature depression in the steady state. The
current density is then increased by the superposition of i� on iq, whereupon

�T D .T2 � �Tmax/

��
1 � exp

�
A2
�

erfc.A/
� �

� C 1

z .T2 � �Tmax/

	

� 2

�1=2

A

z .T2 � �Tmax/

�
; (10.13)

where

� D 1 � 2�Tmax

.T2 � �Tmax/
h
.1 C 2zT2/1=2

i �
1 C i�ıiq

� : (10.14)

When i� >> iq;� ! 1 and (10.13) becomes identical with (10.10) with the excep-
tion that T2 is replaced by .T2–�Tmax/. This means that the temperature depression
portrayed in Fig. 10.9 is superimposed on the maximum temperature difference in
the steady state. Babin and Iordanishvili stated that one can increase the maximum
temperature difference for a thermocouple with Z D 2:5 � 10�3 K�1 from 70 to
105 K by this method.

A more refined calculation has been carried out by Hoysos et al. [21, 22]
performed experiments in which short current pulses of large magnitude were su-
perimposed on a steady current using a thermocouple made from bismuth–telluride
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alloys. The transient behaviour was improved by tapering the branches of the
thermocouple so that the cross-sectional area was much smaller near the junction.
With the heat sink maintained at 290 K, the minimum temperature of the cold junc-
tion in the steady state was found to be 220 K. On the application of current pulses
with i� ' 8iq, a cold junction temperature as low as 175 K was obtained. The dura-
tion of each pulse was 50 ms and recovery took place in less than 2 s because of the
tapering of the thermoelements. Similar experiments on pulsed currents have been
performed by Field and Blum [23].

Most of the work on enhanced cooling using pulsed currents has been of an
exploratory nature but Yamamoto [24] applied the effect to improve the performance
of GaAs electroluminescent diodes and lasers. The same current was passed through
the thermocouple and the GaAs diode, which was interposed between the positive
and negative thermoelements. The doubling of the emitted radiation from the diode
indicated a reduction of the temperature by an additional 50ı.

Woodbridge and Ertl [25] have shown that the transient cooling can be enhanced
by using shaped pulses. The optimisation of the pulse shape has been discussed
by Landecker and Findlay [26]. In principle, one can reduce the temperature to any
desired level by continuously increasing the current within a pulse. It is necessary
to keep on increasing the Peltier effect to compensate for the Joule heat arriving at
the cold junction.

In the experiments performed by Landecker and Findlay, the temperature at the
junction was measured after the application of the current pulse. Let us suppose
that the pulse is supplied up to time t1 and the temperature is measured at time t2.
Also, the current within the pulse is proportional to .t2–t/�1=2. Then, the tempera-
ture at the time of observation is given by

T D ZT 2
2

�
ln

�
t2 � t1

t2

�
: (10.15)

This equation shows that the temperature can become vanishingly small as the time
of observation approaches the time that the pulse is terminated, but this also re-
quires that the current approaches infinity. Nevertheless, it does appear that very low
temperatures can be reached using shaped pulses for the current. The experimental
results that were obtained by Landecker and Findlay for one particular bismuth–
telluride couple are shown in Fig. 10.10.

The results obtained by Landecker and Finlay are supported by the observations
on ramp-shaped pulses by Woodbridge and Ertl [25] and by the studies of Idnurm
and Landecker [27], who were able to generate shaped pulses in which the current
was proportional to .t2–t/�1=2.

Woodbridge and Ertl [28] also carried out experiments on transient cooling
using the transverse thermomagnetic effects. They pointed out that the advantage
of this mode of operation is the virtual elimination of any thermal mass at the cold
surface, an advantage that should also be found for synthetic transverse thermoele-
ments. They observed a temperature depression of 4 K below 80 K for bismuth in
a magnetic field of 0.8 T when they used a pulsed current whereas the maximum
temperature difference was only 1.2 K for a steady current.
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Fig. 10.10 Plot of cold junction temperature against pulse length for different values of the pulse
current. The pulses are superimposed on a steady current of 5 A. Data obtained for a bismuth–
telluride couple by Landecker and Finlay [26]

From the practical viewpoint, one really needs to discuss transient cooling with
substantial thermal loads. The behaviour of a two-stage module during the cooling-
down period has been investigated by Hendricks and Buist [29]. A problem arises
when one wishes to obtain a rapid response from a conventional module. From
this point of view, one would like to reduce the thermal capacity of the copper links
but any decrease in thickness can lead to a significant electrical resistance. One
means of decreasing the time taken to reach a given temperature is to increase the
current above the steady-state optimum value during the cool-down period. Also,
in a cascade cooler, it is an advantage to make the different stages closer in cooling
capacity than is the case if only the equilibrium condition is being considered. These
features were accurately modelled by the calculations of Hendricks and Buist and
the work was later extended to 3-stage refrigerators [30]. The transient response of
single-stage modules is, of course, a much simpler proposition.

10.6 Seebeck Devices

Although most of the activity in the field of thermoelectric energy conversion over
the past 50 years has been concentrated on refrigeration, it is likely that thermo-
electric generation will become the more important aspect if the figure of merit
can be substantially improved. Unconventional methods for the generation of elec-
tricity will be sought as new sources of heat become available. For example, it
may be necessary to make use of low-grade heat, with unusually small differences
of temperature between the source and sink. Of course, there will always remain
those fields of application of the Seebeck effect that are already attractive in which
reliability is of more importance than efficiency.
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Radio-isotope-powered thermoelectric generators have been used for many years
in space vehicles and, more recently, fission power has been utilised. The advantages
of thermoelectric generators over other systems include not only reliability but also
robustness, long life, capacity for uninterrupted operation, and insensitivity to ra-
diation and degradation due to the environment [31]. Unlike many other types of
generator, thermoelectric devices are almost independent of scale and, having no
moving parts, are free from noise and vibration. Their linear current–voltage char-
acteristic makes them easy to control.

The first radio-isotope-powered generators used lead telluride thermoelements.
This compound and its alloys were deemed to be the best materials for operation
with heat sources at temperatures that were moderate but still too high for bismuth
telluride and its alloys; an efficiency of just over 5% could be achieved [32]. To im-
prove the efficiency, one can either increase the figure of merit of the thermocouple
materials or raise the temperature difference. Over the course of time, both these
approaches have been used. Thus, p-type lead telluride has been replaced by TAGS
(Te–Ag–Ge–Sb) alloys [33] and, for higher temperatures, Si–Ge alloys have been
used. These measures have led to efficiencies in the range 6–7%.

Efficiency is an important factor in space vehicles, because as the efficiency
increases, the weight of both the generator and the power source can be reduced.
The power and mass of space generators covers a wide range [31]. A generator for a
U.S. earth orbit satellite launched in1961 gave an electrical output of 2.7 W whereas
a Russian generator powered from a nuclear reactor had an output of 5.5 kW and a
mass of 1,000 kg.

Turning to terrestrial applications, there is an interest in generating electricity
from waste heat. An analysis of the sources of waste heat, with special reference
to Japan, has been carried out by Kajikawa [34]. It is evident from his observations
that there is a great variation in the temperatures of the different sources, ranging
from about 100 to 1; 000ıC. Since it is best to make use of the highest available
temperature, it is clear that a range of generators is needed. In a specific design [35],
a Si–Ge alloy thermocouple is used with hot and cold junction temperatures equal
to 1,123 K and 323 K, respectively. The heat flux is 80:4 kW=m2 and the thermo-
electric efficiency is 10.1%. However, only a fraction of the available heat can be
used by the generator so the system efficiency is less than this value. It is clearly
important to ensure that as much as possible of the heat of combustion passes to the
heat sink via the generator.

There are a number of possible low-temperature heat sources that could be
exploited using thermocouples [36]. Geothermal energy is available at tempera-
tures of up to about 200ıC. This energy may be found in the form of hot water
or steam. At the higher temperatures, it can be used to drive steam turbines but
when the temperature is no more than 100ıC, some other means of generation
is preferred. Thermoelectricity seems to be an obvious possibility. It must be re-
membered that even the Carnot cycle efficiency is rather low when the temperature
difference between the source and sink is less than 100ı. A low efficiency is not
necessarily too bad a factor in itself since the heat source is free but the smaller
the efficiency the larger and more costly is the generator and heat transfer system.
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With such a low-temperature source, bismuth telluride alloys are the preferred ther-
moelectric materials but they should have higher carrier concentrations than they
would have in refrigeration applications. The connections between the thermoele-
ments should, of course, be capable of withstanding the operating temperatures, but,
otherwise, it is probably most economical to make use of modules of the same kind
as are used in cooling.

In some parts of the world, there is a substantial difference between the temper-
ature at the surface of the ocean and that at a depth of, say, 500 m. This temperature
difference is of the order of 20ı so the efficiency is bound to be low and the size
of the plant large, if this source of energy is converted to electricity. Nevertheless,
the resource is large and already there are pilot plants for ocean thermal energy con-
version (OTEC) schemes. Nihous [37] has pointed out that large-scale use of OTEC
systems could, eventually, deplete the resource and this is something that might have
to be borne in mind for the future. Nevertheless, there is the potential for large-scale
use of thermal gradients in the ocean [38], and thermoelectric generation with an
improved efficiency may form part of an integrated system.

Closely related to the use of ocean thermal gradients is the exploitation of solar
ponds. Under normal circumstances, water in the sea, which is heated by the sun,
rises to the surface because of its lower density. It is, however, possible to invert the
usual temperature gradient using a saline gradient to stabilise the system. Straatman
and van Sark [39] have discussed the use of the Rankine cycle to capture the energy
of this resource and propose that solar ponds should be employed to augment OTEC
systems. A thermoelectric generator could be used as an alternative to the Rankine
engine.

The efficiency of a thermoelectric generator is always going to be greater if
the whole temperature range between that of the source and a sink at ambient
temperature can be utilised. Thus, although the motivation may be different, ther-
moelectric cascades may be used in generation as well as refrigeration. Two- and
three-stage cascades for generation have been described by Zhang et al. [40]. These
authors used bismuth–telluride alloys for the low-temperature stage and oxides for
the higher temperatures. In their two-stage cascade, titanium oxide and strontium
titanate were used as the p- and n-type high-temperature materials. The three-stage
cascade yielded an efficiency of 13.5% with the hot junctions at 1,223 K. The usual
practice when a wide temperature range is to be covered is to use segmented legs
rather than a cascade. The question then arises as to whether or not different thermo-
electric materials are compatible with one another. This problem has been discussed
by Ursell and Snyder [41].

At first sight, it might appear that it is best to make a segmented thermoele-
ment from different materials, each having the highest figure of merit for its range
of operation. For example, one might propose a segmented element consisting of
bismuth telluride for the low temperature end and Si–Ge for the high temperature
end. However, this would not be a good choice as the so-called compatibility factor
is substantially different for these two materials. If the compatibility factor differs
greatly between the materials, one cannot match the electrical and thermal flux den-
sities without a considerable reduction in efficiency.
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Ursell and Snyder considered the reduced efficiency, �r, of a given segment at
the limit of very small �T=T , �r being defined as the ratio of the efficiency to that
of a Carnot cycle. Their expression for the reduced efficiency is

�r D
u��
˛



1 � u��

˛

�

u��
˛

C 1
zT

; (10.16)

where u is the ratio of electric current density to heat flux density. The value of
u that yields the maximum efficiency is called the compatibility factor s. If the
values of s are similar for different materials in a segmented leg, a compromise
value for u can be found for which the efficiency of each component is not far from
its optimum value. Figure 10.11 shows the variation of reduced efficiency with u for
p-type generator materials. It is clear that a compromise value of u can be found for
bismuth telluride, zinc antimonide, and CeFe4Sb12 but none of these materials are
compatible with Si–Ge.

A basic requirement for two components is that the compatibility factor of
one should correspond to a positive value of u for the other. A multi-staged
cascade operating between room temperature and 1; 000ıC might make use of
.Bi–Sb/2 Te3, Zn4Sb3, TAGS, CeFe4Sb12; and Si–Ge as the positive branches of
the thermocouples. The negative branches for the different stages could be made
from Bi2.Te–Se/3, PbTe alloys, CoSb2, and La2Te3. However, segmented legs in
simple thermocouples could not utilise all these materials because of differences in
compatibility factor.
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Fig. 10.11 Reduced efficiency as a function of the ratio of electric current density to heat flux
density. Schematic plot based on the data of Ursell and Snyder [41]
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Snyder [42] has given values for zT and s for a number of p-type and n-type
generator materials for use at temperatures of up to 1; 000ıC. His data for p-type
materials are given in Figs. 10.12 and 10.13, whereas those for n-type materials
are shown in Figs. 10.14 and 10.15.

Fig. 10.12 Dimensionless
figure of merit of p-type
generator materials.
Schematic plot based on
data of Snyder [42]
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Fig. 10.13 Compatibility
factor of p-type generator
materials. Schematic plot
based on data of Snyder [42]
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Fig. 10.15 Compatibility
factor of n-type generator
materials. Schematic plot
based on data of Snyder [42]
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Snyder has proposed as a rule of thumb that segmented materials should have
values of s that do not differ by more than a factor of 2. He has been able to explain
why the addition of a TAGS segment to a PbTe or SnTe segment produced little
extra power since there was a mismatch of compatibility factors. Si–Ge is a material
that is particularly difficult to match in segmented generators. Snyder has concluded
that, important though the figure of merit is, it is essential to take account of the
compatibility factor in selecting generator materials.

The radiation thermopile existed long before it was realised that the use of semi-
conductors would improve the efficiency of thermoelectric generators. There are
other factors besides the figure of merit Z that are important when we consider
thermoelectric radiation detectors. In fact, there are two other figures of merit that
one might use to characterise such devices. The responsivity, R, is the ratio of out-
put voltage to the incident radiation power. This quantity gives no indication of the
rate of response of the device and is not as relevant to high-sensitivity detection as
the specific detectivity, D*. The detectivity is the reciprocal of the noise equivalent
power (NEP). By dividing the square root of the product of surface area and fre-
quency band width by the NEP, one obtains a quantity that allows direct comparison
between different sensors. The NEP is equal to the smallest detectable radiation
input, so D� allows us to compare different sensing technologies.

Graf et al. [43] have carried out an extensive review of radiation thermopiles
and compared the different types of device that are available. The highest respon-
sivity of 500 �V W�1 was reported [44] for a detector based on a couple between
.Bi–Sb/2 Te3 and Bi–Sb but a Bi/Sb couple, although having only about half the
responsivity, had a slightly higher specific detectivity equal to 88 � 105m=Hz1=2 W.
There is no doubt that the thermoelectric figure of merit is most useful in selecting
materials for radiation thermopiles but R and D� also depend on the techniques that
are used in the construction of the devices. One of the most important considerations
is the rate of response to the incoming signal. The thermal capacity of the receiver
is, therefore, of great significance and, in this respect, transverse devices are most
attractive. The transverse thermomagnetic effects have already been mentioned and
transverse thermoelectric devices are discussed in the next chapter.
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Chapter 11
Transverse Devices

11.1 Features of Transverse Coolers and Generators

There are two methods by which one can obtain a transverse temperature gradient
from a longitudinal electric current or a transverse electromotive force from a longi-
tudinal heat flow. We have already discussed the transverse thermomagnetic effects
and have shown that they can be exploited in low-temperature energy conversion.
Transverse thermoelectric effects will also occur for arbitrary orientations in con-
ductors that possess anisotropic Seebeck coefficients.

We first consider the inherent characteristics of transverse devices. Apart from
the fact that there are disturbances in the thermal and electrical flow lines near
the end contacts, the principal difference lies in the fact that the electrical and thermal
resistances can be adjusted independently. As was shown in Chap. 2, the electrical
resistance in the direction of current flow is equal to �xLx=

�
LzLy

�
and the thermal

conductance in the direction of heat flow is equal to �yLxLz=Ly. Thus, while in
an ordinary thermoelement the product of the electrical resistance and the thermal
conductance cannot be altered by changing the dimensions, this is not the case when
a transverse effect is being used. The product of these two quantities in the trans-
verse device is equal to �x�yLx2=Ly2. In a transverse refrigerator, we can make the
sample long in the direction of current flow and short in the direction of heat flow
so that the applied voltage matches the output of any available supply, while at the
same time providing the required cooling power. A transverse generator will have a
short response time, if the length in the direction of heat flow is small, but the output
voltage can be large, if the length in the perpendicular direction is increased.

Another feature of a transverse device that was discussed in Chap. 2, in the con-
text of thermomagnetic refrigeration, is the capability of making an infinite-staged
cascade by suitable shaping of the sample. This feature is shared by all transverse
devices. However, the transverse thermoelements to be discussed in the next section
possess an advantage over thermomagnetic devices in that the length can be in-
creased indefinitely by adopting a serpentine configuration, as shown in Fig. 11.1.
The need for the magnetic field to be applied in a certain direction prevents that
configuration being used in a Nernst–Ettingshausen device, though, in principle, a
spiral arrangement could be devised with the magnetic field directed along the axis
and the heat flow in a radial direction.
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Fig. 11.1 Labyrinth form
of transverse thermoelement
giving increase in length in a
compact arrangement

Heat
flow   

Electric
current  

Electric
current  

11.2 Synthetic Transverse Thermoelements

An essential requirement in a material that is to be used for a transverse
thermoelement is a substantial anisotropy of the Seebeck coefficient. It also needs
a high electrical conductivity and a low thermal conductivity just like any other
thermoelectric device. In most extrinsic semiconductors, the Seebeck coefficient
displays little if any anisotropy even if the crystal structure allows it and the elec-
trical and thermal conductivities are orientation dependent. It is certainly possible
to find a large anisotropy of the Seebeck coefficient in an intrinsic conductor but
the other properties are then unfavourable. The problem has been solved by using a
synthetic transverse thermoelement made from two conductors that have different
Seebeck coefficients. A requirement is that one of the conductors should have much
higher electrical and thermal conductivities than the other. The principle of the sys-
tem may be understood with reference to Fig. 11.2, which shows a layered structure
composed of two materials, A and B. This model was used by Babin et al. [1, 2]
as the basis for their theory of synthetic transverse thermoelements. It is supposed
that �A�A � �B�B. We can, therefore, select the relative thicknesses of the layers
so that the electrical resistances satisfy the inequality RB � RA and the thermal
conductances obey the inequality KA � KB.

Let the Seebeck coefficients of the two conductors be ˛A and ˛B. In the x0

direction, each component will contribute to the overall Seebeck coefficient in
proportion to the temperature difference between its surfaces. The temperature dif-
ference across each layer will be inversely proportional to its thermal conductance.
Thus,
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Fig. 11.2 Diagram showing the principle of a synthetic transverse thermoelement

˛x0
D ˛A=KA C ˛B=KB

1=KA C 1=KB
: (11.1)

Applying the condition KA � KB, ˛x0 ' ˛B

The Seebeck coefficient of the composite in the y0 direction is given by

˛y0
D ˛A=RA C ˛B=RB

1=RA C 1=RB
(11.2)

Since RB � RA, it follows that ˛y0 ' ˛A.
A layered composite of the form that we have described does not display a trans-

verse Seebeck or Peltier effect, if the current passes parallel to or normal to the
layers. To obtain such an effect, a sample must be cut at some angle. Let us suppose
that this sample is oriented at some angle � to the perpendicular to the layers. We
also assume that the thicknesses of the layers, dA and dB, are such that dB=dA is
equal to n. When the angle � is equal to zero, (11.1) and (11.2) become

˛x0
D ˛A=�A C n˛B=�B

1=�A C n=�B
: (11.3)

and

˛y0
D ˛A�B C n˛B�A

n�A C �B

(11.4)

We may also obtain expressions for the electrical resistance and the thermal con-
ductance of the layered structure in the x0 and y0 directions. In the x0 direction, the
effective electrical resistivity of the layers in series is

�x0
D �A C n�B

n C 1
: (11.5)
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and the effective thermal conductivity is

�x0
D n C 1

1=�A C n=�B
: (11.6)

In the y0 direction the electrical resistivity of the layers in parallel becomes

�y0
D n C 1

1=�A C n=�B
: (11.7)

and the thermal conductance is

�y0
D �A C n�B

n C 1
.1 C ZABTm/ : (11.8)

It is noted that the thermal conductivity in the y0 direction is augmented by a factor
that includes the figure of merit ZAB of a longitudinal thermocouple made up of the
materials A and B. This is necessary because there will be circulating thermoelectric
currents in the layers that will produce a Peltier effect. The value of ZAB is given by

ZAB D .˛A � ˛B/2

.�A C n�B/ .�A C �B=n/
: (11.9)

We now consider the situation, when � ¤ 0. Then, the transverse Seebeck voltage
in the y direction due to a temperature gradient in the x direction is given by

˛y�x� D �
˛x0

� ˛y0

�
sin � cos �: (11.10)

It is apparent that the transverse Seebeck coefficient can be quite large if there is
a large difference between the Seebeck coefficients of the two components. The
effective thermal conductivity and electrical resistivity of the composite, in the y�

and x� directions respectively, are

�y� y� D �x0
sin2 � C �y0

cos2 �; (11.11)

and
�x� x� D �x0

cos2 � C �y0
sin2 �: (11.12)

The transverse figure of merit is

Z� D ˛2
y�x�

�y�y��x�x�

: (11.13)

Babin et al. showed that there is a simple expression for the optimum transverse
figure of merit when �A�A � �B�B. It is then found that
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Zmax
� D zA

.1 � ˛B=˛A/2

h
1 Cp

.�B�B=�A�A/ .1 C ZABTm/
i2

; (11.14)

where zA is the longitudinal figure of merit for component A. This expression is
identical to that of a longitudinal couple made from A and B apart from the term
.1 C ZABTm/. The figure of merit is always less than that of a longitudinal couple
but the loss of performance may be quite small.

The optimum angle � is may be found from

tan �opt D
p

n

n C 1

�
�A�B

�B�A
.1 C ZABTm/

	1=4

: (11.15)

Babin et al. pointed out that (11.14) does not contain the quantity n that defines the
relative thicknesses of the two layers. They stated that Zmax

� is not critically sensitive
to the value of n.

If the inequality �A�A � �B�B is not satisfied, the equations for the maximum
figure of merit and the optimum angle become more complicated. This situation
was also considered by Babin et al. who obtained analytical expressions in the more
general case. However, it does not take long to find Zmax

� from (11.10) to (11.13)
by computation, and the optimum values of � and n can then be determined by
inspection. An approximate value for the optimum ratio of the layer thicknesses is

nopt '
 

2 �B�B
�A�A

1 C �B�B
�A�A

!1=2

: (11.16)

If both components satisfied the Wiedemann–Franz law �B�B would be equal to
�A�A and nopt would be equal to 1. Babin et al. discussed the case where material A
is a semiconductor and B is a metal. Then, material B would satisfy the Wiedemann–
Franz law, but the thermal conductivity would be larger than this law would indicate
for material A. However, if A is a good thermoelectric material, the lattice con-
ductivity would be small and the total thermal conductivity would be greater than
the Wiedemann–Franz value by a relatively small factor. For example, in a typical
bismuth–telluride alloy, this factor might be no more than 4. In this case, nopt would
be about 0.6. Generally speaking, it seems that it is likely to be satisfactory to use
layers of approximately equal thickness.

11.3 Materials for Transverse Thermoelements

The first demonstration of transverse thermoelectric energy conversion was reported
by Korolyuk et al. [3] who made use of the anisotropy of the Seebeck coefficient in
a single crystal of cadmium antimonide. However, the performance was poor, as
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it would be for any other known single-phase material. Much better results were
obtained by Gudkin et al. [4] who made a multi-layer composite from bismuth–
antimony telluride and bismuth. These authors achieved a figure of merit Z� of
0:85 � 10�3 K�1 and actually observed cooling of 23ı below room temperature
using the transverse Peltier effect in a rectangular bar in which the angle � was
equal to 60ı. A trapezoidal sample with a ratio of 10:1 between the widths of the
hot and cold faces, acting as a cascade, yielded a maximum temperature difference
of 35ı. More recently, Kyarad and Lengfellner [5] have obtained cooling through
22ı using a multi-layer structure consisting of bismuth telluride and lead.

Kyarad and Lengfellner produced their composites by stacking plates of lead
and n-type Bi2Te3 of 10 � 20 mm2 cross-section. The stacks were heated in argon
at 320ıC under pressure. The bismuth telluride layers were 1 mm thick while exper-
iments were made with different thicknesses of the lead component. The observed
anisotropy of the Seebeck coefficient is shown in Fig. 11.3, where the curve repre-
sents the variation with the ratio n expected from (11.3) and (11.4).

Kyarad and Lengfellner opted for a thickness ratio n equal to 1 and adopted a tilt
angle of 25ı in cutting samples from their stack. Typically, the length of a sample
was 20 mm, its thickness 10 mm and its width 2 mm. Figure 11.4 shows a plot of
temperature difference against current for such a sample.

Ideally, the two materials that are used in a synthetic transverse thermoelement
should have a high figure of merit when used together in a conventional thermo-
couple. They should also have very different values for the electrical and thermal
conductivity so that the condition �A�A � �B�B can, at least, be approached.
Unfortunately, in most thermocouples with high figures of merit, the positive and
negative branches have similar electrical and thermal conductivities. That is the
reason, of course, why Gudkin et al. [4] and Kyarad and Lengfellner [5] chose a
semimetal or metal rather than a semiconductor as the second component of their
composites.
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Fig. 11.3 Anisotropy of Seebeck coefficient in a Bi2Te3–Pb composite plotted against ratio of
layer thicknesses. The curve is the theoretical variation from (11.3) and (11.4) and the points are
the experimental data of Kyarad and Lengfellner [5]
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Fig. 11.4 Temperature
difference produced by the
transverse Peltier effect in a
Bi2Te3–Pb composite. The
heat sink was kept at 295 K.
Observations of Kyarad and
Lengfellner [5]
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There are some general steps that can be taken to make the best of the situa-
tion. Thus, if one opts for a semiconductor–metal combination, at least a metal that
has a reasonably large Seebeck coefficient of opposite sign to that of the semicon-
ductor can be selected. As we shall see later, narrow-gap semiconductors that have
Seebeck coefficients of about ˙100 �V K�1 with a high power factor might be used
in combination with a conventional thermoelectric material to form composites with
a reasonably high transverse figure of merit. One could probably improve on the re-
sults of Gudkin et al. by using single crystal bismuth oriented with the trigonal
axis in the plane of the layers. In this direction, the Seebeck coefficient of bismuth
at 300 K is �105 �V K�1 and the figure of merit of a longitudinal couple with a
p-type bismuth–telluride alloy could be almost as great as that of a couple made en-
tirely from bismuth–telluride alloys. The condition �A�A � �B�B would not really
be satisfied, but the ratio .�A�A/ = .�B�B/ could be improved by using a sintered
bismuth–telluride alloy rather than aligned crystalline material.

It has recently been suggested that one might be able to obtain �A�A � �B�B for
a pair of good thermoelectric semiconductors by making one of the materials porous
or, perhaps, discontinuous in some other fashion [6]. In principle, the electrical and
thermal conductivities should become less in a porous material but their ratio should
remain the same.

The n-type semiconductor Bi2 .Te–Se/3 has its highest figure of merit when
oriented with current flow perpendicular to the trigonal axis but orientation is not
a major factor for p-type .Bi–Sb/2 Te3. Thus, a thermocouple made from sintered
p-type material and aligned n-type material has a value of ZT equal to about 0.85.
A synthetic transverse thermoelement made from fully dense samples of these ma-
terials would have a very small figure of merit Z� , but a value in excess of 0.7
would be obtained if the porosity of the sintered component were such as to reduce
its conductivities by a factor of 20. Figure 11.5 shows how the transverse figure of
merit of a composite of aligned Bi2 .Te–Se/3 and sintered .Bi–Sb/2 Te3 varies with
the porosity factor p of the latter component. The porosity factor is defined as the
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Fig. 11.5 Plot of optimum dimensionless transverse figure of merit against the porosity factor
of the positive component .Bi–Sb/2 Te3. For the solid curves, the negative component is either
Bi2 .Te–Se/3 or Bi. For the broken curve, the negative component is YbAl2:96Mn0:04

Table 11.1 Properties of materials for use in synthetic transverse thermoelements

Material
Seebeck coefficient
�V K�1

Electrical resistivity
�� m

Thermal
conductivity W/m K

Oriented n-type
Bi2 .Te–Se/3

�180 7.2 1.51

Sintered p-type
.Bi–Sb/2 Te3*

245 17.5 1.25

n-type bismuth
parallel to layers

�105 1.1 13.0

n-type bismuth
perpendicular to
layers

�50 1.3 6.0

YbAl2:96Mn0;04 �90 1.3 3.1
�

The values in this row are for fully dense material i.e., p D 1

ratio of the conductivity of fully dense material to that of the porous material. At
moderate porosities, one should be able to relate p to the density using the formula
given by Kingery [7]. As an alternative to making use of porosity to lower the ef-
fective conductivities, one might make use of one of the components in the form of
widely spaced thin strips.

In the calculations on which the plot in Fig. 11.5 is based, the p-type material
has been selected with a higher Seebeck coefficient than its optimum in a con-
ventional couple whereas the n-type material has a lower than optimum Seebeck
coefficient. The values for the thermoelectric parameters of the two materials are
given in Table 11.1.

Figure 11.5 shows that a transverse dimensionless figure of merit of over 0.7
might be achieved with a porosity factor for the p-type component in excess of 15.
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Such a high porosity might be difficult to achieve in practice, so a similar calculation
[8] has been carried out for a composite in which the negative component is single
crystal bismuth, aligned with the c-axis parallel to the layers. The properties of
bismuth in the two directions are also included in Table 11.1.

Bismuth has an advantage over Bi2 .Te–Se/3 as the n-type component in a trans-
verse thermoelement since its ratio of thermal conductivity to electrical resistivity
is somewhat greater. Thus, as shown in Fig. 11.5, the value of Z� is higher for the
.Bi–Sb/2 Te3–Bi composite than for .Bi–Sb/2 Te3–Bi2 .Te–Se/3 with porosity fac-
tors of less than about 12 for the p-type component.

Some indication of the effect of changing the angle � and the ratio n of the layer
thicknesses for the .Bi–Sb/2 Te3–Bi2 .Te–Se/3 composite may be assessed from
Figs. 11.6 and 11.7. Figure 11.6 shows how Z¥T varies with � when n D 1:1 and
p D 20, whereas in Fig. 11.7, Z�T is plotted against n when � D 18:4ı. For the
.Bi–Sb/2 Te3–Bi composite, the preferred value of n remains at about 1.3 for all

Fig. 11.6 Plot of
dimensionless transverse
figure of merit against angle
of orientation of layers in a
.Bi–Sb/2 Te3–Bi2 .Te–Se/3

composite. The thickness
ratio n D 1:1 and the
porosity factor for the p-type
component is 20
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Fig. 11.7 Dimensionless transverse figure of merit plotted against ratio of layer thicknesses for a
.Bi–Sb/2 Te3–Bi2 .Te–Se/3 composite. The porosity factor for the p-type component is 20 and the
angle of orientation of the layers is 18:4ı
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porosities but the optimum value for � varies from 40ı when p D 1, through 30ı
when p D 5, to less than 20ı when p D 20.

It has recently been reported [9] that YbAl2:96Mn0:04 has a Seebeck coeffi-
cient of �90 � V K�1, a resistivity of 31:3 �� m, and a thermal conductivity of
3:1 W m�1 K. This gives it the reasonably high value for zT of 0.6 at 300 K. The
alloy would also be useful as one component of a synthetic transverse thermoele-
ment. The value of Z� for a composite consisting of fully dense sintered p-type
bismuth telluride and YbAl2:96Mn0:04 is not as good as for one in which single-
crystal bismuth is used, probably because advantage can be taken of the anisotropy
of the latter. However, as shown by the broken curve in Fig. 11.5, there is a range
of the porosity factor for which bismuth telluride and YbAl2:96Mn0:04 is the best
combination. Even for lower porosities of the positive component, it may be prefer-
able to use YbAl2:96Mn0:04 as the negative component since it does not need to be
monocrystalline. The alloy has a cubic structure and can be prepared by sintering.

It will be seen that the concept of a porous or open-structured material of one
conductivity type in conjunction with a dense material of the other conductivity
type should lead to a great improvement in the performance of synthetic transverse
thermoelements. It is expected that these improved composites will find application
in cascade coolers, that will outperform conventional multi-stage thermoelectric re-
frigerators, and in fast-response radiation detectors.

11.4 Alternative Configurations

Although synthetic transverse thermoelements are easy to handle once they are
made, their construction presents problems that are not encountered in ordinary ther-
moelectric modules. Thought has therefore been given to alternative arrangements
for producing the transverse devices.

Investigators in the past always seem to have made use of the multi-layer princi-
ple to obtain a large anisotropy of the Seebeck coefficient. However, the same results
should be obtained if one of the components is in the form of parallel wires that are
embedded in the second component. The principle can be understood with reference
to Fig. 11.8, which shows a single rod embedded in a bar of material. Suppose that
the rod and the bar have Seebeck coefficients ˛R and ˛B that differ greatly from

Fig. 11.8 Cylindrical
conducting rod imbedded
in another conductor

x0

y0
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x0 y0 

Fig. 11.9 Schematic representation of a synthetic anisotropic thermoelement, produced by thin-
film technology. The mask is shifted in regular steps as each half-layer is deposited

one another. Also, let the electrical and thermal conductivities of the rod be much
greater than those of the bar. Then, in the x0 direction, the Seebeck coefficient will
be equal to ˛B since the rod will merely form an internal isothermal and equipoten-
tial surface. In the y0 direction, the electrical and thermal flows will be controlled
by the rod and the Seebeck coefficient will be equal to ˛R.

It may not be necessary for the rods to extend from one end of the composite
to the other. A substantial anisotropy of the Seebeck coefficient could result from
the inclusion of shorter aligned rods within the matrix. If these rods were to take
the form of nanowires, then one could, perhaps, combine the improvement in the
figure of merit resulting from a nanostructure with the practical advantages of the
transverse thermoelectric effects.

Even though the arrangement of rods or wires in a matrix might be simpler to
manufacture than a layered structure, there still exists the need to cut a section from
it at the preferred angle. A synthetic transverse device with the appropriate orienta-
tion might be made in a single process using thin-film technology. The principle is
illustrated in Fig. 11.9.
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Chapter 12
Properties of Nanostructured Materials

12.1 Theory of Nanostructures

Since the development of thermoelectric materials in the 1950s, most of the attempts
to improve the figure of merit have centred on the reduction of the lattice conduc-
tivity. It is only since the advent of studies of nanostructures that there has been a
real possibility of improving the electronic properties, i.e., an increase of the power
factor.

The present interest in low-dimensional thermoelectric materials was prompted
by the theoretical work of Hicks and Dresselhaus [1]. Their calculations were based
on a conductor with a single parabolic band. The carriers were assumed to be elec-
trons and the conduction band was used in the theory, but the valence band would
have suited the purpose equally well. They first obtained an expression for the di-
mensionless figure of merit in the three-dimensional case in terms of the Fermi
energy and a parameter that is virtually the same as Chasmar and Stratton’s ˇ, mod-
ified to allow for anisotropy of the effective mass.

The theory was then adapted to the situation in which the electrons are con-
fined within a two-dimensional quantum well. This would be the case for a thin
narrow-gap semiconductor sandwiched between two plates of a wide-gap material.
The wide-gap semiconductor does not contribute to the transport processes. The
dispersion relation for the electrons in three dimensions is

" D „2k2
x

2mx
C „2k2

y

2my
C „2k2

z

2mz
: (12.1)

For the two-dimensional quantum well, this relation is changed to

" D „2k2
x

2mx
C „2k2

y

2my
C „2�2

2mza2
; (12.2)
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where a is the width of the well in the z direction. The expressions for the Seebeck
coefficient, the electrical conductivity and the electronic thermal conductivity, for a
constant relaxation time, become

˛ D �k

e

�
2F1

F0

� ��
�

; (12.3)

� D 1

2�a

�
2kT

„2

� �
mxmy

�1=2
F0e�x; (12.4)

and

�e D �„2

4�a

�
2kT

„2

�2 �my

mx

�1=2

k

�
3F2 � 4F 2

1

F0

�
: (12.5)

In (12.3), the quantity �� is defined in terms of the reduced Fermi energy � by

�� D � � „�2

2mxa2kT
: (12.6)

The dimensionless figure of merit is

Z2DT D .2F1=F0 � ��/2 F0

1=ˇ0 C 3F2 � 4F 2
1 =F0

; (12.7)

where

ˇ0 D 1

2�a

�
2kT

„2

��
mxmy

�1=2 k2T�x

e�L
: (12.8)

Equation (12.7) allows us to optimise ��, just as � can be optimised for a three-
dimensional material. Hicks and Dresselhaus found that ��

opt remains fairly close to
zero, as �opt does in three dimensions, until ˇ0 becomes appreciably greater than
unity. Figure 12.1 shows a schematic plot of ��

opt against ˇ0.

Fig. 12.1 Schematic plot
of ˜�

opt against “0 for a 2D
conductor. Diagram based
on the data of Hicks and
Dresselhaus [1]
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Fig. 12.2 Schematic plot
of z2DT against “0 for a 2D
conductor. Diagram based
on the data of Hicks and
Dresselhaus [1]
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Fig. 12.3 Schematic plot of
z2DT against thickness of
confined region for bismuth
telluride with current flow
perpendicular to the c axis.
Based on the data of Hicks
and Dresselhaus [1]
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Figure 12.2 shows the variation of the two-dimensional figure of merit with ˇ0
for the optimum value of ��. It will be seen that if ˇ0 is of the order of unity or
greater, then z2DT can be significantly larger than unity. Comparing ˇ0 with ˇ we
find that

ˇ0

ˇ
/
�
mxmy

�1=2

am�3=2
: (12.9)

Since the respective figures of merit depend on ˇ and ˇ0 in a similar fashion it
follows that z2DT should eventually become larger than zT as a is made smaller.

Hicks and Dresselhaus applied their theory to predict the behaviour of two-
dimensional bismuth telluride. They selected parameters for this material that
corresponded to z3DT D 0:52. They assumed that the mobility along the confined
layer would remain the same for two-dimensional material since there should be
no interface scattering of the electrons. Phonons are not confined in the same way
so the lattice conductivity will probably become smaller for two-dimensional mate-
rial, but in their calculations, Hicks and Dresselhaus did not take this into account.
Nevertheless, they were able to predict a substantial increase for the figure of merit,
over the value for three-dimensional samples, when the layer thickness a falls below
about 5 nm, as illustrated in Fig. 12.3.
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Having established the principle for two-dimensional conductors, Hicks and
Dresselhaus [2] went on to extend their ideas to one-dimensional conductors or
quantum wires. The simplest one-dimensional model has a square cross-section of
side a. The two-dimensional dispersion relation (12.2) then changes to

" D „2k2
x

2mx

C „2�2

2mya2
C „2�2

2mza2
: (12.10)

Once again one can obtain expressions for the transport properties. Thus,

˛ D �k

e

�
3F1=2

F�1=2

� �

�
; (12.11)

� D 1

�a2

�
2kT

„2

�1=2

.mx/1=2 F�1=2e�x; (12.12)

and

�e D 2�

�a2

�
2kT

„2

�1=2

.mx/�1=2 k2T

 
5

2
F3=2 � 9F 2

1=2

2F�1=2

!

: (12.13)

� is the reduced chemical potential referred to the lowest bound state. The resultant
expression for the one-dimensional figure of merit is
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Comparing ˇ00 with ˇ, we find that

ˇ00

ˇ
/ .mx/1=2

a2m�3=2
: (12.16)

Since z1D is dependent on ˇ00 just as z2D depends on ˇ0, we realise that the one-
dimensional figure of merit should rise very rapidly as a decreases.

Hicks and Dresselhaus again applied their calculations to the specific case of
bismuth telluride for quantum wires aligned parallel to the binary, bisectrix, and
trigonal directions. Improvements in z1DT were found for all orientations once the
width of the specimen became less than about 10 nm. Comparing one- and two-
dimensional quantum wells made from bismuth telluride, z1DT was found to be 6
for a 1 nm wire whereas z2DT was 2.5 for a thickness of 1 nm. There definitely
seems to be an advantage in going from two dimensions to one dimension.
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The obvious conclusion to be drawn from these findings is that a zero-dimension
sample would be still better. The difficulty, of course, is to make use of a specimen
of zero dimensions if it does, indeed, have a high figure of merit. As we shall see, the
problem can be solved and the so-called quantum dots have led to the demonstration
of zT values substantially greater than unity.

There are other low-dimensional configurations that have been studied. For
example, there are quantum tubes in which both the wall thickness and the tube
diameter can be on a nanoscale. Then, again quantum dots have been incorporated
in nanowires to form superlattice nanowires [3]. Perhaps, the most important devel-
opment has been the inclusion of nanodots in bulk material since this configuration
seems to offer scope for exploitation in commercial thermoelectric devices. These
and other directions for research on thermoelectric nanostructures have been re-
viewed by Dresselhaus and Heremans [4].

In ordinary thermoelectric materials, the power factor for a given Fermi energy
depends on the carrier mobility and the density of electronic states. Since we as-
sume that the mobility is the same for the nanostructure and the bulk material, it
seems reasonable to assign the improvement in the low-dimensional configuration
to an increase in the density of states. It is, in fact, correct to describe the quantum
well effects as changes in the band structure. Beneficial changes can include both
a greater density of states and an increase in the band gap. The latter could allow
a semimetal, with favourable electronic properties other than a large enough band
gap, to become a semiconductor. A schematic representation of the changes in the
dependence on energy of the density of states is shown in Fig. 12.4.

In selecting materials that are likely to yield high figures of merit when fab-
ricated as nanostructures, it is thought that they should already have reasonably
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Fig. 12.4 Schematic diagrams for the density of states as a function of energy in bulk (3D), 2D,
nanowires (1D), and quantum dot (0D) configurations. Based on the review by Dresselhaus and
Heremans [4]
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good thermoelectric properties as bulk samples. Bismuth is, particularly, promising
since it has one of the highest known power factors. Nanostructured bismuth might
display not only an increase in the density of states and a reduction in the lattice
conductivity but also a transition from semimetal to semiconductor.

The thermoelectric properties of bismuth nanowires at 77 K have been calculated
by Lin et al. [5]. It was found that zT in the trigonal direction should reach a value
of 6 for an electron concentration of 1024 per cubic metre in a wire of 5-nm di-
ameter. The Seebeck coefficient [6] would be �400 � V K�1, a value that is much
greater than that observed in single crystals in any direction, whatever be the dop-
ing. In spite of the high Seebeck coefficient, the electrical conductivity would be
as large as 3:4 � 106 ��1m�1 because of an increase in the density of states. The
power factor would then, of course, be higher than for any known material. Lin et
al. did not assume that the lattice conductivity would be reduced below its value for
bulk material though the considerations in the following section suggest that further
improvement should be possible. Rabin et al. [7] have extended the calculation of
the electronic properties to Bi–Sb nanowires and these should, in any case, have a
reduced thermal conductivity.

12.2 Thermal Conduction in Low-Dimensional Materials

There have been a number of experimental demonstrations of improved figures of
merit in nanostructures and, in some cases, these have been due to modifications
of the electronic properties. However, even when the electronic properties do not
change, zT can still be larger than for bulk material. This benefit is associated with a
reduction in the lattice conductivity. It is not surprising that the scattering of phonons
should be stronger when the size of the sample in at least one direction is reduced.
We have already discussed the effect of grain size on the lattice conductivity in bulk
materials but there are some more subtle effects that become apparent in nanostruc-
tures.

Perhaps, we should discuss the first practical realisation of a figure of merit,
zT , that is substantially greater than unity at ordinary temperatures using a low-
dimensional structure. In 2001, Venkatasubramanian et al. [8] observed a value of zT
equal to 2.4 for a p-type Bi2Te3=Sb2Te3 superlattice. There were certainly changes
in the electronic properties when the superlattice period fell below 25 nm but these
were not the major reason for the improved figure of merit. More significant was
the reduction in the lattice conductivity. Measurements were made in the cross-
plane direction which happened to be parallel to the c axis. The observed thermal
conductivity was smaller by a factor of 2.2 than the value in the same direction for
bulk crystals.

The thermal conductivity of Bi2Te3=Sb2Te3 superlattices has been analysed by
Touzelbaev et al. [9]. The thermal conductivity measurements were carried out using
a thermoreflectance technique on superlattices with periods ranging from 4 to 12 nm.
The results are shown schematically in Fig. 12.5.
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Fig. 12.5 Thermal conductivity of a Bi2Te3=Sb2Te3 superlattice plotted against the superlattice
period. Schematic diagram based on the data of Touzelbaev et al. [9]. The three curves represent
calculated values using the Boltzmann equation for different degrees of roughness at the interfaces.
The broken lines show the thermal conductivities of bulk bismuth telluride and the minimum value
predicted by Cahill’s theory [10]. The dots are the experimental data

The thermal conductivity of all the superlattices was much less than the value for
bulk bismuth telluride but did not become as low as one would expect for amorphous
material, that is the minimum value calculated using the theory of Cahill et al. [10].
The effect of interface scattering was calculated using the Boltzmann theory for
various degrees of surface roughness. Although these calculations for a roughness of
0.2 nm agreed with some of the experimental data, they did not account for the fact
that the thermal conductivity failed to increase with increasing superlattice period
l . Touzelbaev et al. speculated that disorder rather than interface scattering may
have been the main reason for the reduction in thermal conductivity. They pointed
out that previous work [11] on the thermal conductivity of Si–Ge superlattices had
shown that, although there was an increase of � with l as was expected for l < 5 nm,
� became appreciably smaller for l > 13 nm. It was supposed that the superlattices
with the longer period were strongly disordered. If there were similar disorder in the
Bi2Te3=Sb2Te3 superlattices, this could account for the observations.

Although the studies by Venkatasubramanian et al. [8] were made with current
flowing in the cross-plane direction, superlattices can also be used with in-plane
conduction. One would expect quite different phonon scattering mechanisms to ap-
ply in this situation. For one-dimensional nanostructures, the current always flows
parallel to the interfaces and it is clear that one needs a treatment for the thermal
conductivity behaviour in both directions.

The thermal conductivity of nanostructures has been reviewed by Dames and
Chen [12]. They pointed out that one can change the lattice conductivity not only by
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altering the free path length of the phonons but also by modifying the specific heat
or the speed of sound. It is, certainly, possible in principle to alter the dispersion
relation for the phonons. However, there are practical problems if we wish to make
use of such changes. If the specific heat is to be changed, the size of the nanos-
tructure must be smaller than the phonon wavelength. It is also necessary that the
phonons remain coherent. It should be somewhat easier to obtain changes in the
group velocity of the phonons over part of the spectrum, particularly when the flow
is perpendicular to the interfaces. It seems, though, that the reduction of the phonon
free path length by additional scattering processes is a more profitable approach.

It would be easiest if one could use Matthiessen’s rule in adding the reciprocal
mean free paths for the different scattering processes, but one may question its va-
lidity because of the different phonon wavelengths that are involved. Nevertheless,
Matthiessen’s rule is still often used although one must be aware of its limitations.

The lattice conductivity of superlattices in the cross-plane direction has been
considered by Chen [13]. He showed that the thermal resistance is the sum of a
contribution from each layer and a thermal boundary resistance. This boundary re-
sistance is not characteristic only of the interface but also depends on the layer
thickness. When the superlattice period is small, the thermal boundary resistance is
the dominant factor. Under this condition, the effective thermal conductivity may be
quite different from that of a bulk sample. It is not necessarily true that those mate-
rials with the lowest lattice conductivity as bulk materials will also have the lowest
value as nanostructures. A critical factor seems to be the acoustic mismatch at the
interfaces. When there is a large acoustic contrast between the two materials on ei-
ther side of the boundary, the reflection of phonons is strong. In this case, roughness
of the interface may not be beneficial. Furthermore, if the confined region is very
small, one can obtain interference effects and tunneling. It is not surprising that the
variation with period of the thermal conductivity of the Bi2Te3=Sb2Te3 superlattices
in the cross-plane direction failed to satisfy the expectations of classical theory.

When the flow is parallel to the interfaces, there are significant differences.
Specular reflection at the boundaries should not affect the thermal resistance, so
interface roughness must be an important factor. As a general rule, the thermal con-
ductivity in superlattices will be greater for in-plane flow than in the cross-plane
direction. In superlattice nanowires, the flow is parallel to the outer surface but per-
pendicular to the internal boundaries.

The range of phonon wavelengths that makes a significant contribution to the
thermal conductivity extends over 2 decades. It may well be that a different scatter-
ing mechanism is dominant for each part of that range. Thus, we know that Umklapp
scattering is effective over a wide range of wavelengths but alloy scattering predom-
inates at the short wavelength end. In nanostructures, we expect a major contribution
to the scattering from the boundaries.

There are two simple models for the lattice vibrational spectrum that might be
used. We have discussed the Debye model in Chap. 3. An alternative is the Born-
von Karman model in which the frequency becomes more or less independent of
wave vector near its limiting value. If this model is used, the short wavelength
phonons have a low group velocity and do not contribute greatly to the thermal
conductivity. At all longer wavelengths, the two models become equivalent. When
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the temperature is well below �D, only the long wavelength modes are excited and
it does not matter which model is used, but we are probably more interested in tem-
peratures of the order of �D or higher. Dames and Chen [12] have calculated that,
even though the Born-von Karman model tends to favour heat conduction by the
phonons of longer wavelength, 90% of the thermal conductivity at high tempera-
tures is due to phonons with wavelength less than 2:94 
0, where 
0 is the smallest
possible phonon wavelength set by the size of the unit cell. It turns out that 90% of
the heat is carried by phonons of wavelength 
 less than about 2 nm. This is small
compared with the scale of all but the smallest nanostructures.

A consequence of the small wavelength of the phonons is that they will be dif-
fusively scattered at the interfaces rather than specularly reflected. If we define the
proportion of specular reflection as p, where p D 0 for completely diffuse scatter-
ing and p D 1 for perfect specular reflection,

p D exp

��16�3"2


2

�
; (12.17)

where " is the surface roughness. It appears that the roughness of nanowires and
superlattices is not less than 1 or 2 nm so that most interfaces are diffuse scatterers
of phonons. This is favourable from the viewpoint of improving the figure of merit.
It might be thought that there would also be a reduction of the carrier mobility but
the electron wavelength is much larger. An interface that seems to be rough for the
phonons can be specular for the electrons and holes.

Boundary scattering will be the more effective when most of the heat is carried
by phonons that have a long mean free path. We have discussed this for bulk mate-
rials in Sect. 5.3. There, we showed that boundary scattering can affect the thermal
conductivity even when the sample size is somewhat greater than the mean free path.

Dames and Chen expressed the lattice conductivity in terms of the free path
length, lt which itself is dependent on frequency !. Thence,
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In this equation, N0 is the Bose–Einstein distribution function. One can make use
of (12.19) when the dispersion relation and the dependence of the mean free path
on frequency are known. Dames and Chen were able to substitute appropriate val-
ues for two different types of material, namely silicon, which has a large lattice
conductivity, and lead telluride for which the lattice conductivity is low. Thermal
conductivity measurements have been made on both materials over a wide temper-
ature range and, for silicon, these measurements have been extended to nanowires
[14]. The experimental observations on silicon nanowires are compared with the
theoretical predictions in Fig. 12.6.



212 12 Properties of Nanostructured Materials

Fig. 12.6 Schematic plot of
lattice conductivity against
temperature for a silicon
nanowire of 56 nm diameter.
The experimental points
indicated by the dots are
based on the data of Li et al.
[14] and the curve represents
the theoretical calculations of
Dames and Chen [12]
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Fig. 12.7 Schematic plot of lattice conductivity against temperature for PbTe. The experimental
points indicated by the dots are based on the data of Greig [16] for a bulk crystal and the curves
represent the theoretical calculations of Dames and Chen [12]

Dames and Chen mentioned a surprising feature of their calculations, namely
the significant contribution to the thermal conductivity of phonons with long wave-
lengths. To account for 90% of the heat conduction, wavelengths of up to 12:8 �m
have to be considered. They pointed out, however, that this is consistent with the
observation of boundary scattering in bulk silicon at high temperatures by Savvides
and Goldsmid [15].

Dames and Chen predicted the lattice conductivity of nanowires of PbTe after
showing that the theory was consistent with observations on large crystals of the
compound. The experimental data of Greig [16] are shown in Fig. 12.7 together
with theoretical curves for bulk material and nanowires down to 10 nm in diameter.
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From the point of view of thermoelectric applications, the substantial fall in the
lattice conductivity at high temperatures is, particularly, interesting.

The reduction of the lattice conductivity that results from the use of nano-
structures is noticeable when the dimensions are too large for any changes in the
electronic parameters to be apparent. This effect will be particularly valuable pro-
vided that the carrier mobility does not become significantly smaller than it is in
bulk material.

12.3 Observations on Nanostructures

One of the predictions of Lin et al. [5] was that nanowires of bismuth should display
large Seebeck coefficients. This is supported by the experimental work of Heremans
et al. [17] who claim to have observed Seebeck coefficients of a magnitude of the
order of 1 mV K�1 for bismuth nanowire composites. The composites consisted of
wires of down to 7 nm diameter deposited by a vapour-phase technique in porous
silica and alumina templates. The variation of electrical resistance with temperature
was found to be consistent with semiconducting rather than semimetallic behaviour.
A wire of 15 nm diameter appeared to have an energy gap of 0.18 eV and a 9 nm wire
displayed a gap of 0.29 or 0.39 eV. However, the fact that the 9 nm wires seemed to
have a Seebeck coefficient of �100 mV K�1 casts some doubt on the observations
since it is difficult to explain such a high value. Heremans et al. mentioned that
the measurements were difficult to perform since the sample resistances were in the
range 1 M�–1G �, though they were able to use an electrometer with an impedance
of 1014 �. Even if the measurements have to be accepted with some reservation,
they do provide evidence for a substantial energy gap in bismuth nanowires. It seems
that Seebeck coefficients in excess of �200 �V K�1 can be reached for Bi0:95Sb0:05

with an electron concentration of about 4 � 1022 per cubic metre when the wire
diameter is less than 30 nm. There is evidence for neutral impurity scattering of the
electrons but not boundary scattering, so it seems that high mobilities can still be
maintained in the nanostructures.

The results of Heremans and his co-workers may be compared with those of Lin
et al. [18]. In both cases, a semiconductor-like variation of the electrical resistivity
with temperature was found though Lin et al. did not observe the same large Seebeck
coefficients, admittedly for nanowires of a larger diameter. The overall impression
seems to be that nanostructure dimensions of the order of 10 nm or less are needed
if the potential of bismuth or Bi–Sb is to be fully realised.

Semiconducting behaviour has also been found for bismuth nanotubes with wall
thicknesses of 15 nm though an increase of the wall thickness to 100 nm leads to
metallic behaviour [19].

The improved figure of merit in bismuth telluride superlattices has been dis-
cussed in the previous section and other configurations based on this compound
are being investigated. Here, we shall draw attention to some interesting experi-
ments on point contacts to Bi0:5Sb1:5Te3 and Bi2Te2:9Se0:1. Ghoshal et al. [20]
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Fig. 12.8 Arrangement
of point contacts to
p-type Bi0:5Sb1:5Te3 and
n-type Bi2Te2:9Se0:1 in the
experiment of Ghoshal et al.
[20]
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used the arrangement shown in Fig. 12.8. They observed the cooling of the central
plate when a voltage was applied between the outer plates. The cooling effect was
consistent with a figure of merit ZT at room temperature as high as 1.7. The p-type
and n-type materials were taken from batches used in commercial thermoelectric
modules having a value of ZT below unity.

It is clear that the improved performance is due to the fact that the thermal and
electrical gradients are concentrated in the thermoelectric materials in the region of
the point contacts. Although the radius of the contact of each tip was stated to be
0:6 �m, the actual contact region was, no doubt, much smaller. Ghoshal et al., in
fact, considered two extremes for the nature of the contacts. In one extreme, the
electronic transport between the cone and the thermoelectric material takes place
by tunneling and the phonons do not contribute in the contact region. At the other
extreme, there is electrical and thermal contact over the entire tip width. It is proba-
ble that the actual contact takes place at a number of points each of which must be of
much less than 1 �m radius. It may, therefore, be appropriate to regard the contact
regions as nanostructures with a reduced thermal conductivity. It is significant that
substantial cooling through over 60ı was achieved using a current of some hundreds
of mA, so the point contact arrangement may have practical applications.

One of the first demonstrations that low-dimensional thermoelements can have
improved electronic properties as well as a reduced thermal conductivity was re-
ported by Harman et al. [21]. These authors worked on a PbTe/Te superlattice and
measured the Seebeck coefficient, Hall coefficient, and electrical resistivity. The
specimens were prepared using molecular beam epitaxy (MBE) with superlattice
periods between 15 and 30 nm. The tellurium layers were estimated to be between
0.8 and 1.5 nm in thickness. Measurements were made for the in-plane direction.
The Seebeck coefficient at any particular carrier concentration was distinctly greater
for the superlattices than for bulk PbTe, as shown in Fig. 12.9. The thermal conduc-
tivity was not measured but, using calculated values for this quantity, zT was found
to have increased from 0.37 to 0.52 on changing from bulk material to superlattice.

Rather surprisingly, there does not seem to be any correlation between superlat-
tice period and the enhancement of the Seebeck coefficient within the range covered
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Fig. 12.10 Dimensionless
figure of merit plotted against
temperature for an n-type
PbSe0:98Te0:02=PbTe quantum
dot superlattice. Based on the
data of Harman et al. [22]
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by the measurements. Harman et al. thought that a change in the scattering parame-
ter might be affecting the Seebeck coefficient, but it is difficult to see how this could
improve the power factor. Thus, the results are a good indication that the figure of
merit can be increased in nanostructures by a modification of the density of states.

Outstanding results have been obtained by Harman et al. [22] for quantum
dot superlattices made from Pb(Te–Se) and PbTe. Samples were produced on
BaF2 substrates using the MBE technique. A wide range of carrier concentra-
tion was investigated and values of zT in excess of 1.6 at 300 K were found
for PbSe0:98Te0:02=PbTe samples with Seebeck coefficients between �220 and
�240 �V K�1. The dimensionless figure of merit rose with temperature, reaching
a value in excess of 3 at about 550 K, as shown in Fig. 12.10.



216 12 Properties of Nanostructured Materials

Thermal conductivity measurements were performed on Pb(Te–Se) superlattices
using the 3! method at 300 K. The electronic component was calculated from the
electrical conductivity so that the lattice conductivity could be found. The value
at 300 K for the quantum dot superlattice was 0:33 W m�1 K�1 compared with
0:84 W m�1 K�1 for a simple superlattice. The results show that the high figure
of merit is due to a reduction in the lattice conductivity as well as an increase in the
power factor.

Most electronic devices that are in use at the present time make use of silicon and
it would be an advantage if this element could be used as a thermoelectric material
at ordinary temperatures. This is not feasible with bulk silicon, mainly because of
its high thermal conductivity. It is, therefore, remarkable that recent work on silicon
nanowires has led to high values of zT. Hochbaum et al. [23] made arrays of these
nanowires by an aqueous electroless etching technique. The wires had a range of
diameters between 20 and 300 nm and had a roughness of typically 1–5 nm. The
improvement in the figure of merit is primarily due to a reduction in the thermal
conductivity. Thus, a 52 nm silicon nanowire was found to have a thermal conduc-
tivity of 1:6 W m�1 K�1 of which 1:2 W m�1 K�1 is the lattice contribution. The
nanowires have reasonable power factors that are comparable with the values found
for bismuth telluride and zT reached 0.6 at 300 K.

The possibility of using nanostructures based on silicon is certainly a promis-
ing development but, perhaps, even more promising is the report of a high value of
zT for a nanostructured bulk material. Poudel et al. [24] have been able to make
such material by hot-pressing .Bi–Sb/2 Te3 alloys. They observed values of zT were
equal to 1.2 at room temperature, 0.8 at 250ıC, and a maximum of 1.4 at 100ıC.
These high values of the figure of merit were confirmed by the large temperature dif-
ferences that were produced using the new material in Peltier coolers. Temperature
differences of 86ı, 106ı, and 119ı were observed with hot junction temperatures of
50ıC, 100ıC, and 250ıC, respectively.

The material made by Poudel et al. differs from other sintered products in that
nanosized powders were used and care was taken that a fine structure was main-
tained during sintering. They prevented oxidation of the powders, a problem that
has been encountered by previous workers who attempted to use finely powdered
bismuth–telluride alloys. Microstructure studies revealed that most of the grains
are nanosized and larger grains contain nanodot regions. It is not sufficient to have
nanoinclusions in a matrix through which the current flows. The high figure of merit
is the result of flow within the nanoparticles. In other words, one cannot achieve the
best performance merely by using nanoparticles as scattering centres.

12.4 Preparation of Nanostructures

The first practical demonstration of the outstanding properties of superlattices was
presented by Venkatasubramanian et al. as mentioned in the Sect. 12.2. The super-
lattices were grown by a metallorganic chemical vapour deposition method [25,26].
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Films of Bi2Te3 and Sb2Te3 were grown on sapphire and fcc GaAs substrates in a
vertical reactor at a pressure of 46.7 kPa and a temperature of 350ıC. The growth
of both the tellurides made use of pyrolytic reactions involving metallorganic com-
pounds of bismuth, antimony, and tellurium. The crystal perfection of the films was
ascertained using X-ray diffraction and low-energy electron diffraction. The other
feature of significance was the stoichiometry and this was confirmed using X-ray
photoemission spectrometry and Rutherford back-scattering. A key to the success
of the deposition technique was the monitoring of the growth using spectroscopic
ellipsometry [27]. Ellipsometry measures the change of polarisation of a beam of
light on reflection from a surface and, in this work, allowed the accurate measure-
ment and control of the growth rate and the thickness.

Nanowires are, usually, made by the deposition of the thermoelectric material
within the pores of a template. One of the earliest techniques made use of the pres-
sure injection of liquid bismuth into the nanochannels of a porous alumina sheet
[28]. Arrays of nanowires of 65 nm diameter and 109 �m length were made by this
method. Keyani et al. [29] were able to electrodeposit Bi–Sb from a non-aqueous
solution into alumina that contained pores of 100 nm diameter. The template had
been coated with a thin layer of nickel which acted as an electrode during the de-
position process. The nanowires had the composition Bi0:3Sb0:7 which is probably
not very favourable from the figure of merit viewpoint, but the authors were able
to incorporate their nanowire array in a thermocouple with Bi0:4Sb1:6Te3 to yield a
Peltier cooling effect of 7 K.

Wang et al. [30] also used a porous alumina template for the precipitation of a
Bi2Te3–Te heterostructure from supersaturated Bi0:26Te0:74. Nanowires of 60 nm
diameter were produced. A pulsed electrodeposition technique was used by Trahey
et al. [31] to produce nanowires of bismuth telluride with a diameter of 35 nm. These
nanowires were crystalline with their length direction perpendicular to the c-axis,
as is favourable for thermoelectric applications. Pulsed electrodeposition was also
used by Dou et al. [32] to produce nanowires and nanotubes of Bi–Sb.

Nanotubes, rather than nanowires, of bismuth telluride were produced by a gal-
vanic displacement technique that was described by Xiao et al. [33]. Ni nanotubes
were displaced by bismuth telluride using the difference between the redox poten-
tials to drive out bismuth and tellurium from a nitric acid solution. Nanotubes of
bismuth telluride were also synthesised by Cao et al. [34] using a low-temperature
aqueous chemical method. Their tubes were of about 100 nm diameter with a wall
thickness of 30–40 nm and a length of 500 nm–1 �m. Li et al. [35] extended the
production of nanotubes by an electrodeposition technique to .Bi–Sb/2 Te3 and
Bi2 .Te–Se/3 and investigated the importance of the diameter of the channels in
the alumina template, the reaction rate, and the thickness of the gold electrode that
completed the electrolytic circuit.

An unusual method for creating the template for the electrodeposition of Bi2Te3

nanowires has been devised by Koukharenko et al. [36]. They introduced pores in
polyimide by ion beam irradiation followed by etching. The pores were 30–80 nm
in diameter and the thickness of the polyimide was 24 �m so the aspect ratio of the
pores was 300:1 upwards.
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Any enhancement of the electronic properties in nanostructures is likely to be
greater as the dimensionality is reduced [4]. Thus, zero dimension should be su-
perior to one dimension. It is this factor that encourages work on quantum dots.
However, quantum dots present a problem in that it is not immediately apparent
how electric current is to be made to flow through them. The quantum dots must,
therefore, be embedded in another conducting medium. If the quantum dots are
close together, one might hope for tunnelling directly between them. Alternatively,
if tunnelling cannot occur, it is important that the surrounding medium should not
detract significantly from the overall performance.

A successful quantum dot device was made by Harman et al. [37]. These authors
used the MBE technique to grow PbSe0:98Te0:2 quantum dots in a PbTe matrix.
A sample on which measurements were made was described as a thick film; its
thickness was given as 104 �m with its other dimensions being 5 mm and 11 mm.
Metallisation was applied so that current could be passed parallel to the 5 mm edges.

Quantum dot configurations, such as that of Harman et al., have the advantage
over some other nanostructures in that they can be handled in the same way as bulk
materials. They are, in this sense, not dissimilar to bulk materials that have built in
nanostructures.

Hogan et al. [38] have discussed compounds in which there exist spontaneously
formed endotaxially embedded nanostructures. They made samples of PbTe with
4% concentrations of Sb, Bi, and InSb. A reduction in the thermal conductiv-
ity of the samples containing Sb and InSb was attributed to the formation of
nanostructured regions. Similar regions were observed in AgPbmSbTe2Cm and
Ag .Pb1�xSnx/m SbTe2Cm.

Nanocomposites based on bismuth telluride have been prepared by Hu et al. [39].
These authors prepared powders of both nano-size and micro-size. The powders
were mixed together and hot-pressed. The ratio of nano-powder to micro-powder
lay in the range 0–15% with the optimum estimated at about 10%. Cao et al. [40]
produced powders of bismuth–antimony telluride by a hydrothermal process and,
when the powders were hot-pressed, it was found that the resultant samples pos-
sessed a nanostructure. Grain growth during the hot-pressing process seemed to
have been avoided. Since the value of zT, equal to 1.28 at 303 K, is higher than
is usual for bulk bismuth–antimony telluride, it seems reasonable to suppose that
the structure has been changed and that nanostructured composites can be obtained
by established sintering methods, if sufficiently small-sized powders are used. It
is noted, however, that the improvement in figure of merit seems to come about
through enhanced scattering of the phonons and it is much more difficult to develop
nanostructures that are small enough to change the electron density of states.

An improvement in the figure of merit for the compound Ag0:8Pb22:5SbTe20

when prepared by mechanical alloying and spark plasma sintering has been at-
tributed to the formation of nanoscopic Ag/Sb-rich regions [41]. Once again, this
supports the idea that nanostructured regions can be retained in bulk thermoelec-
tric materials after sintering, if the composition and size of the starting powders are
properly chosen.
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Finally, we mention another technique for the production of a nanocomposite. It
has been reported [42] that bismuth telluride with a nanostructure has been prepared
by melt spinning. Melt spinning is a process that enables a molten material to be
cooled at a very rapid rate. When applied to bismuth telluride, the flakes of the
compound that were produced had rather low values of the Seebeck coefficient. This
could possibly be improved by annealing but one cannot be sure that a nanostructure
would then be retained.
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Chapter 13
Thermionic Energy Conversion

13.1 Vacuum Thermoelements

Ioffe [1] drew attention to the fact that a major contributor to the losses in
thermoelectric energy convertors, namely the heat conduction by the lattice, could
be eliminated if the conduction of electricity took place in a vacuum. He gave the
name vacuum thermoelements to vacuum diodes that are used in energy conversion.
In such diodes, there would still, of course, be heat losses associated with radiation
and these would not be negligible at high temperatures. In the 1950s, it was incon-
ceivable that vacuum thermoelements could be operated at ordinary temperatures,
since the thermionic emission of electrons from then known materials was too small
for practical purposes below about 1,000 K. Although this seems to preclude the
possibility of using vacuum diodes for refrigeration, they might still be employed
as high-temperature generators. Hatsopoulos and Kaye [2] did, in fact, carry out
experiments on thermionic diodes with this aim.

The anode and cathode of a vacuum diode may be connected externally via a
resistive load. The potential distribution is shown in Fig. 13.1. It is supposed that the
work functions at the cathode and anode are ˚2 and ˚1, respectively. The electrons
in the space between the electrodes will oppose the flow of current between the
electrodes, so a space charge potential ı is also included in the diagram.

If the temperature of the cathode is higher than that of the anode, there will be a
tendency for electrons to pass from the former to the latter. The saturation current
density from either electrode is given by Richardson’s equation

i1;2 D A0T 2
1;2 exp

�
� ˚1;2

kT1;2

�
; (13.1)

where the subscripts 1 and 2 refer to the anode and cathode, respectively. A0 is a
constant that has the ideal value 1:2 � 106A m�2K�2.
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Fig. 13.1 Schematic plot
showing potential as a
function of displacement
in a thermionic diode Potential 
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The net current density, taking account of the emission from both electrodes and
the space charge potential is

i D A0

�
T 2

2 exp

�
� ˚1

kT2

�
exp

�
� ı

kT2

�
exp

�
� V

kT2

�
� T 2

1 exp

�
� ˚1

kT1

�
exp

�
� ı

kT1

�	
:

(13.2)

The current per unit area depends on the temperatures of the two electrodes, the
height of the space charge barrier, and the work function of the cold anode. It does
not depend on the work function of the hot cathode.

The space charge effect can be eliminated by making the space between the elec-
trodes very small. In this case, the current density is approximately given by

i D A0T 2
2 exp

�
� ˚1

kT2

�
exp

�
� V

kT2

�
: (13.3)

The power output per unit area is

w D iV � wL; (13.4)

where wL is the ohmic loss in the leads. The efficiency is

� D iV � wL

j
; (13.5)

where j is the heat flux per unit area of the cathode. Part of this heat flux will be
lost in radiation and there may be other losses in the supporting structure.

Hatsopoulos and Kaye’s experiments were performed with both electrodes made
from (Ba–Sr)CO3. The cathode and the anode temperatures were 1,260 and 538ıC,
respectively. The efficiency was measured as a function of the output voltage and
reached a maximum of about 13%.
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Fig. 13.2 Schematic plot
of the potential energy
of the electrons against
displacement in a thermionic
diode with ˚1 D ˚2
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Mahan [3] showed that it might be possible to operate a thermionic diode as a
refrigerator at a temperature of the order of 500 K without a major breakthrough
in the development of emitters with low work functions. He considered that a work
function of 0.7 eV would be sufficiently small. Even lower work functions have been
reported for materials known as electrides and alkalides [4]. Measurable thermionic
emission was observed [5] at a temperature as low as 193 K and a work function of
0.2 eV has been mentioned. Whether or not stable emitters with low work functions
that can yield large electron current densities will be available is still an unanswered
question. However, it does seem that one can do much better than using traditional
emitter materials that have work functions of the order of 1 eV.

We follow Mahan’s derivation of the coefficient of performance (COP) of a
thermionic diode in the refrigeration mode. Figure 13.2 plots the potential energy
of the electrons within the diode where the cathode is at a temperature T1 and the
anode is at a temperature T2. The space between the anode and cathode represents
the vacuum through which the electrons travel. We suppose that the work function
has the same value, ˚ , at both the anode and cathode though Mahan did not actually
restrict his theory in this way.

We make use of Richardson’s equation (13.1) to obtain the current densities from
the electrodes. Part of the applied voltage, V , equal to V0, is used to balance the
different emissions from the anode and cathode due to the higher temperature of
the former. The remaining part, V � V0, drives the electron current. Since V0 is the
voltage that must be applied for the current to be equal to zero, it resembles the
Seebeck voltage in a conventional thermoelement.

If we suppose that conventional current is positive when it flows towards the
cathode (that is, when the electrons flow towards the anode), the total current density
in the vacuum space is

i D i1 � i2 D A0

�
T 2

1 exp

�
� ˚

kT1

�
� T 2

2

�
� ˚

kT2

�	
: (13.6)

The value of V0 is found by setting i equal to zero. Thence,

eV0 D ˚

�
T2

T1

� 1

�
C 2 ln

�
T2

T1

�
: (13.7)
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Just as the energy of the carriers in a thermoelectric material consisting of a kinetic
part and a potential contribution associated with the position of the Fermi level, so
also does the energy of the electrons in a thermionic diode. The kinetic term has the
value 2 kT and the potential energy is ˚ . Thus, as the electrons leave the cathode,
they carry away heat at the rate j per unit area, where j is given by

j D i
˚ C 2kT1

e
: (13.8)

Also, the rate of expenditure of electrical energy per unit area associated with the
current flow is

wi D iV: (13.9)

We have to take account of the transfer of heat between the electrodes by radiation
at the rate

wr D �"�.T 4
2 � T 4

1 /; (13.10)

where " is the emissivity of the surfaces of the electrodes and � is the Stefan–
Boltzmann constant. The negative sign is consistent with the fact that thermal
radiation opposes the cooling effect of the current flow.

It is necessary to provide a return path for the electrons just as one has to use two
branches in a thermocouple [6]. The electrical resistance encountered by this return
flow represents some loss of performance. We shall suppose that the return path
makes use of a metallic conductor but Xuan [7] has shown that it is more effective
under some circumstances to use a p-type thermoelectric material for this purpose.
It will be assumed that the electrical resistance R and the thermal conductance K

in the metal are linked by the Wiedemann–Franz law. R and K have values that are
appropriate for unit area of the electrodes.

Taking into account the losses due to the thermal radiation and to the resistance
and thermal conductance in the metal, the overall cooling effect per unit area is

j D ji C wr � i2R=2 � K.T2 � T1/; (13.11)

The electrical power input per unit area is

w D wi C i2R: (13.12)

Mahan [3] has discussed the problem of space charge in the space between the elec-
trodes. We are dealing with high current densities and the electrons already in the
vacuum space will, undoubtedly, set up a barrier to further flow. The space charge ef-
fect becomes less as the distance between the electrodes is reduced. Mahan showed
that an inter-electrode distance of 1 mm is the upper limit for operation at 700 K. The
space charge problem becomes greater as the operating temperature is reduced, and
may present severe practical difficulties, if low temperature thermionic refrigerators
are ever constructed.
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Mahan showed that the limiting space charge voltage is equal to 2kT ln .pd=�/

where p is defined as
�
4�e2=kT 
3

�1=2
and 
2 D h2=2�mkT . He assumed that

the lowest possible work function is 0.71 eV but, as we shall see, a value of about
0.3 eV is necessary for a thermionic refrigerator working at ordinary temperatures.
This means that ln .pd=�/ would differ by a factor of 4.2 compared with the value
derived by Mahan. This leads to a maximum value for d of no more than 0:4 �m
and to attain this would certainly be a formidable problem. However, it is assumed
that it can be solved.

Nolas and Goldsmid [6] considered the requirements for a thermionic refriger-
ator to be competitive with ordinary Peltier devices at 300 K. They assumed that a
metallic connector would be used for the return path, though Xuan [7] has pointed
out the advantage of using a thermoelement as stated above. It was thought that the
cooling power would have to be at least 104 W m�2. Figure 13.3 shows the variation
of the thermionic cooling power qi with work function assuming the heat sink to
be at 300 K and the source at 260 K. Also shown, as a broken curve, is the cooling
power minus the radiation loss. It will be seen that it is virtually impossible to obtain
a cooling effect at these temperatures if the work function is greater than 0.5 eV. In
order to achieve a cooling of 104 W m�2, the work function should not be greater
than about 0.3 eV, and this value will be assumed in the following calculations.

The cooling power has its maximum value when the Joule heating and thermal
conduction losses are equal to one another. Thus,

R D ŒL.T2 � T1/.T2 C T1/�1=2=I; (13.13)

where L is the Lorenz number. However, this does not optimise the COP. The losses
in the passive conductor do not have much effect on the cooling power but they have
more influence on the COP. This would be more noticeable for a thermionic refrig-
erator than for present-day thermoelectric refrigerators because of the improvement

Fig. 13.3 Maximum cooling
power of a thermionic diode
against work function. The
solid line gives values when
there are no losses and the
broken curve takes account
of radiation. The source and
sink are at 260 and 300 K,
respectively
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in efficiency. The modification to (13.13) that would be needed for optimum COP is
somewhat complicated by the exponential terms in the relation between current and
voltage.

A thermionic refrigerator is, probably, more suitable for improving the COP with
small temperature differences between source and sink rather than for obtaining
large vales of �Tmax. Nevertheless, if the work function were as high as 0.3 eV, it
should still be possible to reach a value of 100ıC for �Tmax, as shown in Fig. 13.4.
In this diagram, �Tmax is plotted against ˚ for a heat sink temperature of 300 K.

The COP for a thermionic refrigerator with ˚ equal to 0.3 eV is plotted against
the applied voltage in Fig. 13.5. The source and sink temperatures have again been
set at 260 and 300 K, respectively. The cooling power for the same set of conditions
is shown in Fig. 13.6.

The maximum in the plots of COP against voltage is due to the fact that there
are radiation losses, small though they are. The radiation losses become significant
only when the cooling power is extremely low. It is noteworthy that the cooling
power remains above 104 W m�2 for a wide voltage range. The cut off in both

Fig. 13.4 Maximum
temperature difference for a
thermionic refrigerator plotted
against the work function. The
heat sink is at 300 K
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Fig. 13.5 Coefficient of
performance as a function
of voltage for a thermionic
cooler with ˚ D 0:3. The
source and sink are at 260
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upper curve is optimum COP
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Fig. 13.6 Cooling power
against voltage for conditions
as in Fig. 13.5. The upper
curve for maximum cooling
power, the lower for optimum
COP
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Fig. 13.7 Coefficient of performance plotted against source temperature for thermionic and ther-
moelectric refrigerators. The heat sink is at 300 K

the cooling power and the COP between 0.05 and 0.06 V occurs when the applied
voltage is insufficient to compensate for the temperature difference between the
source and sink.

The main objective in the study by Nolas and Goldsmid was to compare the
performance of the projected thermionic refrigerator with that of an improved ther-
moelectric refrigerator that should be available in the future. It was supposed [8]
that the projected thermoelectric cooler might be made from materials with ZT as
high as 4. Figure 13.7 shows plots of COP for the thermionic and thermoelectric re-
frigerators against the temperature of the heat source. It is clear that the thermionic
refrigerator is superior to the thermoelectric device but recent developments suggest
that the latter is much closer to becoming available.
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13.2 Thermionic Emission in Solids

The great attraction of vacuum thermionic energy convertors is the absence of heat
conduction other than by the free electrons. However, there remains the question
as to whether or not suitable electrode materials will become available. There is
the alternative of making use of thermionic emission in solids. The difficulty of
obtaining adequate emission currents can, then, be overcome but one no longer elim-
inates the conduction of heat through the medium in which the charge carriers move.
Solid-state diodes have an advantage over vacuum devices in that both positive and
negative carriers can be used, so the problems associated with the return path no
longer exist.

The possibility of using the thermionic effects in solids instead of the thermo-
electric effects has been discussed by Mahan et al. [9]. They first pointed out the
basic difference between the two effects. In thermionic transport, the current flow
is ballistic so that a carrier leaving one electrode arrives at the other with the same
kinetic energy. On the other hand, in thermoelectric devices, the carriers undergo
many collisions as they travel from one junction to the other, the motion then being
described as diffusive. In some nanostructured configurations, the motion may be
intermediate between ballistic and diffusive.

In a thermionic device, the applied voltage drives the more energetic electrons
from the cold surface across a barrier to the hot surface. These electrons are re-
placed by others of lower energy through the external circuit. For the flow to be
ballistic rather than diffusive, the mean free path, le, has to be greater than the barrier
width, d . It is also necessary that the barrier width be greater than dt, the maximum
width for tunnelling to be possible. This width is given by the expression

dt D „
2kT

r
e˚

m� ; (13.14)

where ˚ is the barrier height. For most semiconductors, dt is less than 10 nm and le

is often greater than 100 nm so it is not difficult to satisfy the condition for ballis-
tic flow.

In the absence of losses, the rate of cooling per unit area is still given by (13.8)
and, allowing for heat conduction across the barrier,

j D i
˚ C 2kT1

e
� K�T; (13.15)

where K is the thermal conductance. It is obvious that the heat conduction loss is
going to be very large, because of the small barrier width, unless �T is very small
and, for this reason, Mahan et al. proposed the use of a multi-layer arrangement.

For a single layer, the theory is simplified by the fact that T1 and T2 are nearly
equal. Thus, Richardson’s equation is the same for both sides of the barrier,

i1;2 D A0T 2 exp

�
� ˚

kT

�
; (13.16)
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and

i D eA0T

k
.V � V0/ exp

�
� ˚

kT

�
; (13.17)

where V is the applied voltage. V0 is given by

V0 D k�T

e

�
˚

kT
C 2

�
: (13.18)

In a semiconductor or metal, ˚ can be small enough for Fermi–Dirac statistics to
be necessary but, for the optimum COP in a device that is better than existing ther-
mocouples, classical statistics are satisfactory.

The cooling power per unit area is

j D i1

�
˚

kT
C 2

�
.V � Vj /; (13.19)

where

Vj D k�T

e

�
˚

kT
C 2 C c

�
: (13.20)

The quantity c is defined as

c D 2 C eK=ki1

2 C ˚=kT
: (13.21)

Thence the COP is

� D j

w
D kT

e

�
˚

kT
C 2

�
.V � Vj /

V .V � V0/
: (13.22)

The COP has its maximum value when

V D Vj C
q

Vj .Vj � V0/; (13.23)

and then

�max D T

�T

�
˚

kT
C 2

�


p
2 C ˚=kT C c C p

c
�2

: (13.24)

It is convenient to introduce a parameter TR, with the dimensions of temperature,
that is defined by

.kTR/2 D 2�2„3K

m�kT
: (13.25)

This parameter is proportional to the square root of the thermal conductance of the
barrier and should be as small as possible. In Fig. 13.8, the COP, divided by its
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Fig. 13.9 Coefficient of
performance for a multi-layer
thermionic refrigerator. A
schematic plot based on the
data of Mahan et al. [9]. The
source is at 260 K and the
sink at 300 K. ˚ is the barrier
height
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value for a Carnot cycle, is plotted against the barrier height for selected values of
TR between 100 and 500 K. The optimum barrier height should be somewhat greater
than kT .

Although the COP might be reasonably high for a single-barrier device, cooling
across a reasonably large temperature difference requires a multi-layer arrangement.
In other words, a practical device would operate as a multi-stage cascade. Mahan
et al. have optimised the conditions for a multi-layer thermionic refrigerator and
their results are shown in Fig. 13.9. In this diagram, the COP is plotted against the
barrier height, for source and sink temperatures of 260 and 300 K. A thermoelectric
refrigerator with ZT equal to unity would have a COP of 0.7 under these conditions.
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Fig. 13.10 Efficiency of
a multi-layer thermionic
generator plotted against the
barrier height. A schematic
plot based on the data of
Mahan et al. [9]. The source is
at 400 K and the sink at 300 K
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The multi-layer thermionic device would give a similar performance, if TR were
equal to about 500 K. For the thermionic refrigerator to be superior, it would be
necessary for TR to be less than 500 K.

Mahan et al. [9] also considered solid-state thermionic devices as generators of
electricity. The factor .˚=kT C 2/ Œ.˚=kT C 2 C c/1=2 C c1=2��2 that appears in
(13.24) for the COP of a thermionic refrigerator is found in the expression for the
efficiency of a single-barrier thermionic generator, in this case multiplied by �T=T .
A single barrier would generate a very small voltage and would, undoubtedly, be
replaced by a multi-barrier system. The variation of the efficiency of a multi-layer
generator with barrier height bears some resemblance to that of the COP for a multi-
layer refrigerator, as shown in Fig. 13.10, except, of course, that the efficiency never
falls to zero.

Mahan et al. pointed out that the equations for thermionic generators and
refrigerators have the same form as those for thermoelectric energy convertors
if the Seebeck coefficient, electrical conductivity, and thermal conductivity are
replaced by three quantities, ˛I, �I, and �I that are defined by

˛I D k

e
.˚=kT C 2/ ; (13.26)

�I D ei1d

kT
; (13.27)

and

�I D
�

2
k

e
i1 C K

�
d: (13.28)

It is also possible to define a figure of merit for thermionic devices as

ZIT D ˚=kT C 2

c
: (13.29)
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Vining and Mahan [10] have drawn attention to an analogy between thermionic and
thermoelectric devices. They showed that, for thermionic materials, one can use a
parameter ˇI that plays more or less the same role as the parameter ˇ that was
discussed for thermoelectric materials in Chap. 4. The quantity ˇI is defined as

ˇI D m�k.kT /2d

2�2„3�L
: (13.30)

Then

ZIT D .˚=kT C 2/2

2 C Œexp.˚=kT /�=ˇI
: (13.31)

Equation (13.31) is similar to the equation for zT in a thermoelectric material.
A thermionic device will be the superior if ˇI > ˇ.

The ratio of ˇI to ˇ is equal to d=
�
le�

1=2
�
, but it has already been assumed that

d < le, if the device is to operate in the thermionic mode. Thus, as shown by Vining
and Mahan, we might expect the thermoelectric mode to be the better. However, it
is possible that �L will be much less for the thermionic structure and this may be
sufficient compensation for any loss in the power factor.

There have, in fact, been experimental demonstrations of thermionic refrigeration
in solids. For example, Shakouri et al. [11] made use of a (In–Ga–As)P barrier of
1 �m thickness between layers of nC (In–Ga)As. Although a cooling effect of only
0:5ıC was observed in the preliminary experiment, it was expected that this would
rise to about 10ıC after improvements in the design.

More recently, it has been suggested that tunnelling effects might also be used
in solid-state refrigeration. A device proposed by Chao et al. [12] takes advantage
of both tunnelling and ballistic effects. Its operation is described with reference to
Fig. 13.11.
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Fig. 13.11 Schematic potential diagram for a heterojunction refrigerator



References 233

The contribution from thermionic emission has already been described. The
additional feature in the new device is a barrier that is thin enough to allow
tunnelling. The predominant cooling is associated with resonant tunnelling. Chao
et al. based their treatment on (Al–Ga)As heterostructures. They admitted that they
are not good thermoelectric materials but are well characterised and allow accu-
rate predictions to be made. In the embodiment of the device, the material at either
end is n-type GaAs. Tunnelling takes place through AlyGa1�yAs into GaAs and
the carriers are emitted into AlxGa1�xAs. The calculations indicate that a tem-
perature depression of between 5 and 7ıC might be achieved using this structure.
Although this is much less than the value for conventional devices made from bis-
muth telluride, it compares favourably with what could be obtained using GaAs as
the thermoelectric material. Moreover, the structure could readily be produced using
existing technology. Solid-state refrigerators based on ballistic rather than diffusive
transport may well offer a viable alternative to existing cooling techniques, particu-
larly, when integrated with semiconductor junction devices.
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