14

The Magnetie Field in Various Situations

14-1 The vector potential

In this chapter we continue our discussion of magnetic fields associated with
steady currents—the subject of magnetostatics. The magnetic field is related to
electric currents by our basic equations

V-B =0, (14.1)

2vxB=1. (14.2)
€o

We want now to solve these equations mathematically in a general way, that is,
without requiring any special symmetry or intuitive guessing. In electrostatics,
we found that there was a straightforward procedure for finding the field when the
positions of all electric charges are known: One simply works out the scalar
potential ¢ by taking an integral over the charges—as in Eq. (4.25). Then if one
wants the electric field, it is obtained from the derivatives of ¢. We will now show
that there is a corresponding procedure for finding the magnetic field B if we know
the current density j of all moving charges.

In electrostatics we saw that (because the curl of E was always zero) it was
possible to represent E as the gradient of a scalar field ¢. Now the curl of B is not
always zero, so it is not possible, in general, to represent it as a gradient. However,
the divergence of B is always zero, and this means that we can always represent B as
the curl of another vector field. For, as we saw in Section 2-8, the divergence of a
curl is always zero. Thus we can always relate B to a field we will call 4 by

B=V XA. (14.3)

Or, by writing out the components,

_ _ 904, 94,
Bx—(VXA):c—ay az’
94, 04
B, = (VX A), = o ax’, (14.4)
B,=(va),=%‘%-%1.

Writing B = V X A guarantees that Eq. (14.1) is satisfied, since, necessarily,
V:B=V-(VX A4 =0

The field A is called the vector potential.

You will remember that the scalar potential ¢ was not completely specified
by its definition. If we have found ¢ for some problem, we can always find another
potential ¢’ that is equally good by adding a constant:

¢ =¢+ C

The new potential ¢’ gives the same electric fields, since the gradient VC is zero;
¢’ and ¢ represent the same physics.

Similarly, we can have different vector potentials 4 which give the same
magnetic fields. Again, because B is obtained from A4 by differentiation, adding a
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constant to 4 doesn’t change anything physical. But there is even more latitude
for A. We can add to A4 any field which is the gradient of some scalar field, without
changing the physics. We can show this as follows. Suppose we have an 4 that
gives correctly the magnetic field B for some real situation, and ask in what cir-
cumstances some other new vector potential 4’ will give the same field B if sub-
stituted into (14.3). Then 4 and 4’ must have the same curl:

B =VXA4A=VXA.
Therefore
VXA —-—VXA=VX A —A)=0.

But if the curl of a vector is zero it must be the gradient of some scalar field, say
¥,s0 4" — A = vy. That means that if 4 is a satisfactory vector potential for a
problem then, for any ¥ at all,

A =A+w (14.5)

will be an equally satisfactory vector potential, Jeading to the same field B.

It is usually convenient to take some of the “latitude” out of 4 by arbitrarily
placing some other condition on it (in much the same way that we found it con-
venient—often—to choose to make the potential ¢ zero at large distances). We
can, for instance, restrict 4 by choosing arbitrarily what the divergence of 4 must
be. We can always do that without affecting B. This is because although 4’ and
A have the same curl, and give the same B, they do not need to have the same
divergence. Infact, V-4’ = V-4 + V3, and by a suitable choice of ¢ we can
make V - A’ anything we wish.

What should we choose for V- 4? The choice should be made to get the
greatest mathematical convenience and will depend on the problem we are doing.
For magnetostatics, we will make the simple choice

V-4 =0. (14.6)

(Later, when we take up electrodynamics, we will change our choice.) Our complete
definition* of A is then, for the moment, V X 4 = Band V-4 = 0.

To get some experience with the vector potential, let’s look first at what it is
for a uniform magnetic field B,. Taking our z-axis in the direction of B, we must
have

04, od, _
B~ =
_ 4, 34, _
B, =522, (14.7)
94, 34,
B.= %% ~ 5 ~ Bo

By inspection, we see that one possible solution of these equations is
A, = xBy, A, = 0, A, = 0.
Or we could equally well take

A, = —yBy, A, =0, A, =0.

Still another solution is a linear combination of the two:

A, = —3yB,, A, = $xB;, A, =0. (14.8)

* Our definition still does not uniquely determine 4. For a unique specification we
would also have to say something about how the field 4 behaves on some boundary, or
at large distances. It is sometimes convenient, for example, to choose a field which
goes to zero at large distances.
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It is clear that for any particular field B, the vector potential 4 is not unique;
there are many possibilities.

The third solution, Eq. (14.8), has some interesting properties. Since the
x-component is proportional to —y and the y-component is proportional to +x,
A must be at right angles to the vector from the z-axis, which we will call # (the
“prime” is to remind us that it is not the vector displacement from the origin).
Also, the magnitude of A is proportional to 4/x2 4+ y2 and, hence, to r’. So 4
can be simply written (for our uniform field) as

A=1iB X r. (14.9)

The vector potential 4 has the magnitude Br’'/2 and rotates about the z-axis as
shown in Fig. 14-1. If, for example, the B field is the axial field inside a solenoid,
then the vector potential circulates in the same sense as do the currents of the
solenoid.

The vector potential for a uniform field can be obtained in another way.
The circulation of 4 on any closed loop T can be related to the surface integral of
VvV X A by Stokes’ theorem, Eq. (3.38):

frA.ds = f (V X A)-nda.

(14.10)
inside I’
But the integral on the right is equal to the flux of B through the loop, so
fA-ds= / B-nda. (14.11)
r

inside I

So the circulation of 4 around any loop is equal to the flux of B through the loop.
If we take a circular loop, of radius #’ in a plane perpendicular to a uniform field
B, the flux is just

7r'%B.

If we choose our origin on an axis of symmetry, so that we can take A as circum-
ferential and a function only of #’, the circulation will be

fA .ds = 2mr'A = mr'%B.

We get, as before,
- B

4=

In the example we have just given, we have calculated the vector potential from
the magnetic field, which is opposite to what one normally does. In complicated
problems it is usually easier 10 solve for the vector potential, and then determine
the magnetic field from it. We will now show how this can be done.

14-2 The vector potential of known currents

Since B is determined by currents, so also is 4. We want now to find 4 in
terms of the currents. We start with our basic equation (14.2):

AvxB=2L,
€o
which means, of course, that
AV X (V X 4) = -e’— (14.12)
0
This equation is for magnetostatics what the equation
v-.ve=—L (14.13)
€0

was for electrostatics.
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Fig. 14-1. A uniform magnetic field
B in the z-direction corresponds to a
vector potential A that rotates about the
z-axis, with the magnitude A = Br'/2
(r' is the displacement from the z-axis).



Fig. 14-2. The vector potential A at
point 1 is given by an integral over the
current elements j dV at all points 2.

Our equation (14.12) for the vector potential looks even more like that for
¢ if we rewrite Vv X (V X A) using the vector identity Eq. (2.58):

VX (VX A) = V(V-A4) — V4. (14.14)

Since we have chosen to make V-4 = 0 (and now you see why), Eq. (14.12)
becomes

vi4 = — ;;Jc—z (14.15)

This vector equation means, of course, three equations:

2 __jz 2 =__ju_, 2 =_jz_
Vido = — 5 VA, V24, - (14.16)

And each of these equations is mathematically identical to

vie = — £. (14.17)

€o

All we have learned about solving for potentials when p 1s known can be used for
solving for each component of 4 when j is known!
We have seen in Chapter 4 that a general solution for the electrostatic equation

(14.17) is

471'60 rie

So we know immediately that a general solution for 4, is

A1) = / JA2)dVs (14.18)

471'6062 rieg

and similarly for 4, and A4,. (Figure 14-2 will remind you of our conventions for
riz and dV,.) We can combine the three solutions in the vector form

A(l) = /j(z) Lty (14.19)

47I"€0C2 ris

(You can verify if you wish, by direct differentiation of components, that this inte-
gral for A satisfies V- A4 = 0solongas V -j = 0, which, as we saw, must happen
for steady currents.)

We have, then, a general method for finding the magnetic field of steady cur-
rents. The principle is: the x-component of vector potential arising from a current
density j is the same as the electric potential ¢ that would be produced by a charge
density p equal to j,/c2—and similarly for the y- and z-components. (This principle
works only with components in fixed directions. The “radial” component of 4
does not come in the same way from the “radial”” component of j, for example.)
So from the vector current density j, we can find 4 using Eq. (14.19)—that is, we
find each component of A4 by solving three imaginary electrostatic problems for
the charge distributions p; = j,/c% ps = j,/c2 and ps = j./c®. Then we get
B by taking various derivatives of A4 to obtain Vv X A4. It’s a little more compli-
cated than electrostatics, but the same idea. We will now illustrate the theory by
solving for the vector potential in a few special cases.

14-3 A straight wire

For our first example, we will again find the field of a straight wire—which we
solved in the last chapter by using Eq. (14.2) and some arguments of symmetry.
We take a long straight wire of radius g, carrying the steady current . Unlike the
charge on a conductor in the electrostatic case, a steady current in a wire 1s uni-
formly distributed throughout the cross section of the wire. If we choose our
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coordinates as shown in Fig. 14-3, the current density vector j has only a z-com-
ponent. Its magnitude is

1

a2

J2 = (14.20)

inside the wire, and zero outside.
Since j, and j, are both zero, we have immediately

A, =0, A, =0.

To get A, we can use our solution for the electrostatic potential ¢ of a wire with a
uniform charge density p = j,/c2. For points outside an infinite charged cylinder,
the electrostatic potential is

where ¥ = +/x2 + p2 and X is the charge per unit length, ma%p. So 4, must be

mra¥,
2megc?

A, = — In/
for points outside a long wire carrying a uniform current. Since ma2j, = I, we
can also write

4, = Inr. (14.21)

2megc2

Now we can find B from (14.4). There are only two of the six derivatives that
are not zero. We get

= —__I_ 2_ ;o 1 _y_
Bx N 271'6002 [')y nro= 27,-6002 r'2 ’ (14.22)
_ I ad ;o I X
VT 2mwegc? dx Inr' = 2Tegc? P2 (14.23)
Bz = (.

We get the same result as before: B circles around the wire, and has the magnitude

1 2]

= Tt 7 (14.24)

14-4 A long solenoid

Next, we consider again the infinitely long solenoid with a circumferential
current on the surface of n/ per unit length. (We imagine there are n turns of wire
per unit length, carrying the current 7, and we neglect the slight pitch of the winding.)

Just as we have defined a “surface charge density” ¢, we define here a “sur-
face current density” J equal to the current per unit length on the surface of the
solenoid (which is, of course, just the average j times the thickness of the thin
winding). The magnitude of Jis, here, nl. This surface current (see Fig. 14-4) has
the components.

J. = —Jsin ¢, y = Jcos ¢, J, = 0.

Now we must find A4 for such a current distribution.
First, we wish to find 4, for points outside the solenoid. The result is the same
as the electrostatic potential outside a cylinder with a surface charge

o = 0(sin ¢,

withao = J/c2. We have not solved such a charge distribution, but we have done
something similar. This charge distribution is equivalent to two solid cylinders of
charge, one positive and one negative, with a slight relative displacement of their
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Fig. 14-3. A long cylindrical wire
along the z-axis with o uniform current
density j.

Fig. 14-4. A long solenoid with a
surface current density J.



Fig. 14-5. A rotating charged cylin-
der produces a magnetic field inside. A
short radial wire rotating with the cylinder
has charges induced on its ends.

axes in the y-direction. The potential of such a pair of cylinders is proportional
to the derivative with respect to y of the potential of a single uniformly charged
cylinder. We could work out the constant of proportionality, but let’s not worry
about it for the moment.

The potential of a cylinder of charge is proportional to In#’; the potential
of the pair is then

dlnr _ y
¢ ay  r2
So we know that
4, = —K %, (14.25)

where K is some constant. Following the same argument, we would find

x
4y = K55 (14.26)
Although we said before that there was no magnetic field outside a solenoid, we
find now that there is an A-field which circulates around the z-axis, as in Fig. 14-4.
The question is: Is its curl zero?

Clearly, B, and B, are zero, and
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B,

12X 1 2)°
K<}T2_’ﬁ+'r75_7'y?>=°'
So the magnetic field outside a very long solenoid is indeed zero, even though the
vector potential is not.

We can check our result against something else we know: The circulation of
the vector potential around the solenoid should be equal to the flux of B inside the
coil (Eq. 14.11). The circulation is 4 - 2w+ or, since A = K/r’, the circulation is
2xK. Notice that it is independent of 7. That is just as it should be if there is no
B outside, because the flux is just the magnitude of B inside the solenoid times
wa?. Itis the same for all circles of radius 7’ > a. We have found in the last chapter
that the field inside is n/eyc?, so we can determine the constant K:

or
_ nld®
26002

So the vector potential outside has the magnitude

nla® 1

and is always perpendicular to the vector +.

We have been thinking of a solenoidal coil of wire, but we would produce
the same fields if we rotated a long cylinder with an electrostatic charge on the
surface. If we have a thin cylindrical shell of radius a with a surface charge o,
rotating the cylinder makes a surface current J = gv, where v = aw is the velocity
of the surface charge. There will then be a magnetic field B = caw/egc? inside
the cylinder.

Now we can raise an interesting question. Suppose we put a short piece of
wire W perpendicular to the axis of the cylinder, extending from the axis out to
the surface, and fastened to the cylinder so that it rotates with it, as in Fig. 14-5.
This wire is moving in a magnetic field, so the v X B forces will cause the ends of
the wire to be charged (they will charge up until the E-field from the charges just
balances the v X B force). If the cylinder has a positive charge, the end of the wire
at the axis will have a negative charge. By measuring the charge on the end of the
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wire, we could measure the speed of rotation of the system. We would have an
“angular-velocity meter”!

But are you wondering: “What if I put myself in the frame of reference of the
rotating cylinder? Then there is just a charged cylinder at rest, and I know that the
electrostatic equations say there will be no electric fields inside, so there will be no
force pushing charges to the center. So something must be wrong.” But there is
nothing wrong. There is no “relativity of rotation.” A rotating system is not an
inertial frame, and the laws of physics are different. We must be sure to use equa-
tions of electromagnetism only with respect to inertial coordinate systems.

It would be nice if we could measure the absolute rotation of the earth with
such a charged cylinder, but unfortunately the effect is much too small to observe
even with the most delicate instruments now available.

14-5 The field of a small loop; the magnetic dipole

Let’s use the vector-potential method to find the magnetic field of a small
loop of current. As usual, by “small” we mean simply that we are interested in
the fields only at distances large compared with the size of the loop. It will turn
out that any small loop is a “magnetic dipole.” That is, it produces a magnetic
field like the electric field from an electric dipole.

X
FrErt 4+
l!‘
Fig. 14-6. A rectangular loop of wire with the Fig. 14-7. The distribution of jx in

current I. What is the magnetic field at P2 (R > a, or b.) the current loop of Fig. 14-6.

We take first a rectangular loop, and choose our coordinates as shown in
Fig. 14-6. There are no currents in the z-direction, so A, is zero. There are currents
in the x-direction on the two sides of length a. In each leg, the current density
(and current) is uniform. So the solution for 4, is just like the electrostatic po-
tential from two charged rods (see Fig. 14-7). Since the rods have opposite charges,
their electric potential at large distances would be just the dipole potential (Section
6-5). At the point P in Fig. 14-6, the potential would be

_ 1 p-er,
= e R (14.28)

where p is the dipole moment of the charge distribution. The dipole moment, in
this case, is the total charge on one rod times the separation between them:

p = hab. (14.29)

The dipole moment points in the negative y-direction, so the cosine of the angle
between R and p is —y/R (where y is the coordinate of P). So we have
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Fig. 14-8. The vector potential of a
small current loop at the origin {in the
xy-plane); a magnetic dipole field.

By the same reasoning,

Iab x

4= e R

(14.31)
Again, A, is proportional to x and A4, is proportional to —y, so the vector potential
(at large distances) goes in circles around the z-axis, circulating in the same sense
as I in the loop, as shown in Fig. 14-8.

The strength of A4 is proportional to Jab, which is the current times the area
of the loop. This product is called the magnetic dipole moment (or, often, just
“magnetic moment™) of the loop. We represent it by u:

w = lab. (14.32)

The vector potential of a small plane loop of any shape (circle, triangle, etc.) is
also given by Eqgs. (14.30) and (14.31) provided we replace Iab by

u = I- (area of loop). (14.33)

We leave the proof of this 1o you.

We can put our equation in vector form if we define the direction of the vector
1 to be the normal to the plane of the loop, with a positive sense given by the right-
hand rule (Fig. 14-8). Then we can write

1 uXR_ 1 pXex
4= dregcz R3  dmwegc?  R2 (14.34)

We have still to find B. Using (14.33) and (14.34), together with (14.4), we get
B et BT R (14.3)

(where by . . . we mean u/4meoc?),

B o ( yY _ 3yz
V=35 gE) = REe

0 (.xyY_98(_...»
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The components of the B-field behave exactly like those of the E-field for a
dipole oriented along the z-axis. (See Eqs. (6.14) and (6.15); also Fig. 6-5.)
That’s why we call the loop a magnetic dipole. The word ‘““dipole” is slightly
misleading when applied to a magnetic field because there are no magnetic *““poles”
that correspond to electric charges. The magnetic “dipole field” is not produced
by two “charges,” but by an elementary current loop.

1t is curious, though, that starting with completely different laws, V- E = p/eq
and V X B = j/eoc?, we can end up with the same kind of a field. Why should
that be? It is because the dipole fields appear only when we are far away from
all charges or currents. So through most of the relevant space the equations for
E and B are identical: both have zero divergence and zero curl. So they give the
same solutions. However, the sources whose configuration we summarize by the
dipole moments are physically quite different—in one case, it’s a circulating cur-
rent; in the other, a pair of charges, one above and one below the plane of the loop
for the corresponding field.

14-6 The vector potential of a circuit

We are often interested in the magnetic fields produced by circuits of wire in
which the diameter of the wire is very small compared with the dimensions of the
whole system. In such cases, we can simplify the equations for the magnetic field.
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For a thin wire we can write our volume element as
dv = Sds,

where S is the cross-sectional area of the wire and ds is the element of distance
along the wire. In fact, since the vector ds is in the same direction as j, as shown in
Fig. 14-9 (and we can assume that j is constant across any given cross section),
we can write a vector equation:

jdv = jSds. (14.37)

But jS is just what we call the current 7 in a wire, so our integral for the vector
potential (14.19) becomes

A(1) = —l—f”‘2 (14.38)

47!'60(.'2 rio

(see Fig. 14-10). (We assume that 7 is the same throughout the circuit. If there are
several branches with different currents, we should, of course, use the appropriate
I for each branch.)

Again, we can find the fields from (14.38) either by integrating directly or by
solving the corresponding electrostatic problems.

14-7 The law of Biot and Savart

In studying electrostatics we found that the electric field of a known charge
distribution could be obtained directly with an integral (Eq. 4-16):

E(l) = 1 /P(2)312 dV2 .

47eg r2,

As we have seen, it is usually more work to evaluate this integral—there are really
three integrals, one for each component—than to do the integral for the potential
and take its gradient.

There is a similar integral which relates the magnetic field to the currents.
We already have an integral for 4, Eq. (14.19); we can get an integral for B by
taking the curl of both sides:

B(l) = v X A1) = v X [ L /j(z) dVZ]- (14.39)

47!'6062 rie

Now we must be careful: The curl operator means taking the derivatives of
A(1), that is, it operates only on the coordinates (xy, ¥1, z;). We can move the
VvV X operator inside the integral sign if we remember that it operates only on
variables with the subscript 1, which of course, appear only in

riz = [(x1 = x2)* + 01 — y2)* + (21 — 22)°1% (14.40)
We have, for the x-component of B,

04, _ 94y
1 9z,

1 ., 0 (1 ., 8 (1
= __—41reoc2f|:12 5)7;(@) —_— _]y 52; (;I;)] dV2 (1441)

. D Sl WP Gl
- 47reoc2/[’ r3 Jv 33 ava.

12 12

B, =

The quantity in brackets is just the x-component of

iXris _jXes,
3 2
T2 iz
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Fig. 14-9. For o fine wire jdV is the
same as | ds.

Fig. 14-10. The magnetic field of a
wire can be obtained from an integral
around the circuit.



Corresponding results will be found for the other components, so we have

_ 1 JQ2) X e12
B) = gy / o Vs (14.42)

The integral gives B directly in terms of the known currents. The geometry in-
volved is the same as that shown in Fig. 14-2.

If the currents exist only in circuits of small wires we can, as in the last section,
immediately do the integral across the wire, replacing j dV by I ds, where ds is an
element of length of the wire. Then, using the symbols in Fig. 14-10,

- 1 1812 X d32
B) = ~ 4 f o (14.43)

(The minus sign appears because we have reversed the order of the cross product.)
This equation for B is called the Biot-Savart law, after its discoverers. It gives a
formula for obtaining directly the magnetic field produced by wires carrying
currents.

You may wonder: “What is the advantage of the vector potential if we can
find B directly with a vector integral? After all, 4 also involves three integrals!”
Because of the cross product, the integrals for B are usually more complicated, as
is evident from Eq. (14.41). Also, since the integrals for 4 are like those of electro-
statics, we may already know them. Finally, we will see that in more advanced
theoretical matters (in relativity, in advanced formulations of the laws of me-
chanics, like the principle of least action to be discussed later, and in quantum
mechanics) the vector potential plays an important role.
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