21

Solutions of Maxwell’s Equations with
Currents and Charges

21-1 Light and electromagnetic waves

We saw 1n the last chapter that among their solutions, Maxwell’s equations
have waves of electricity and magnetism. These waves correspond to the phe-
nomena of radio, light, x-rays, and so on, depending on the wavelength. We have
already studied light 1n great detail in Vol. I. In this chapter we want to tie together
the two subjects—we want to show that Maxwell’s equations can indeed form the
base for our earlier treatment of the phenomena of light.

When we studied light, we began by writing down an equation for the electric
field produced by a charge which moves 1n any arbitrary way. That equation was
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e, X E.
[See Eq. (28.3), Vol. 1.]

If a charge moves in an arbitrary way, the electric field we would find now at
some point depends only on the position and motion of the charge not now, but
at an earlier time—at an instant which is earlier by the time it would take light,
going at the speed ¢, to travel the distance ’ from the charge to the field point.
In other words, if we want the electric field at point (1) at the time 7, we must cal-
culate the location (2’) of the charge and its motion at the time (z — #’/c), where
r’ is the distance to the point (1) from the position of the charge (2') at the time
(t — r’/¢). The prime is to remind you that 7’ is the so-called “retarded distance”
from the point (2°) to the point (1), and not the actual distance between point (2), the
position of the charge at the time ¢z, and the field point (1) (see Fig. 21-1). Note
that we are using a different convention now for the direction of the unit vector
e.. In Chapters 28 and 36 of Vol. I it was convenient to take r (and hence e,)
pointing toward the source. Now we are following the definition we took for Cou-
lomb’s law, in which r is directed from the charge, at (2), rtoward the field point at (1).
The only difference, of course, 1s that our new r (and e,) are the negatives of the
old ones.

We have also seen that if the velocity v of a charge is always much less than
¢, and if we consider only points at large distances from the charge, so that only the
last term of Eq. (21.1) 1s important, the fields can also be written as

E = q [acceleration of the charge at (t — #'/¢)

_ 41 ’ ,
4megc?r’ | projected at right angles to ' ] 21.1")

and
cB = ¢, X E.

Let’s look at what the complete equation, Eq. (21.1), says 1n a little more
detail. The vector e, 1s the unit vector to point (1) from the retarded position (27).
The first term, then, 1s what we would expect for the Coulomb field of the charge
at its retarded position—we may call this “the retarded Coulomb field.” The
electric field depends inversely on the square of the distance and is directed away
from the retarded position of the charge (that is, in the direction of e,-).

But that is only the first term. The other terms tell us that the laws of electricity
do not say that all the fields are the same as the static ones, but just retarded (which
is what people sometimes like to say). To the “retarded Coulomb field”” we must
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add the other two terms. The second term says that there 1s a “correction” to the
retarded Coulomb field which 1s the rate of change of the retarded Coulomb field
multiplied by r'/c, the retardation delay. In a way of speaking, this term tends to
compensate for the retardation in the first term. The first two terms correspond to
computing the “retarded Coulomb field”” and then extrapolating it toward the
future by the amount »'/c, that 1s, right up to the time t' The extrapolation is linear,
as 1f we were to assume that the “retarded Coulomb field”” would continue to change
at the rate computed for the charge at the point (2’). If the field is changing slowly,
the effect of the retardation is almost completely removed by the correction term,
and the two terms together give us an electric field that is the “instantaneous Cou-
lomb field”’—that is, the Coulomb field of the charge at the point (2)—to a very
good approximation.

Finally, there 1s a third term in Eq. (21.1) which is the second derivative of the
unit vector e,~. For our study of the phenomena of light, we made use of the fact
that far away from the charge the first two terms went nversely as the square of
the distance and, for large distances, became very weak in comparison to the last
term, which decreases as 1/r. So we concentrated entirely on the last term, and we
showed that 1t 1s (again, for large distances) proportional to the component of the
acceleration of the charge at right angles to the hne of sight. (Also, for most of our
work in Vol. 1, we took the case in which the charges were moving nonrelativistic-
ally. We considered the relativistic effects in only one chapter, Chapter 36.)

Now we should try to connect the two things together. We have the Maxwell
equations, and we have Eq. (21.1) for the field of a point charge. We should cer-
tainly ask whether they are equivalent. If we can deduce Eq. (21.1) from Maxwell’s
equations, we will really understand the connection between light and electro-
magnetism. To make this connection is the main purpose of this chapter.

It turns out that we won’t quite make it—that the mathematical details get
too complicated for us to carry through in all their gory details. But we will come
close enough so that you should easily see how the connection could be made.
The missing pieces will only be in the mathematical detarls  Some of you may
find the mathematics 1n this chapter rather complicated, and you may not wish to
follow the argument very closely. We think 1t is important, however, to make the
connection between what you have learned earlier and what you are learning now,
or at least to indicate how such a connection can be made. You will notice, if
you look over the earlier chapters, that whenever we have taken a statement as a
starting point for a discussion, we have carefully explained whether it is a new
“assumption™ that is a “basic law,” or whether 1t can ultimately be deduced from
some other laws. We owe 1t to you in the spirit of these lectures te make the con-
nection between light and Maxwell’s equations. 1f 1t gets difficult in places, well,
that’s life—there is no other way.

21-2 Spherical waves from a point source

In Chapter 18 we found that Maxwell’s equations could be solved by letting

= — —~ - 2
E Vo Y (21.2)
and
B = Vv X A, (21.3)
where ¢ and 4 must then be solutions of the equations
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Now we will find the solution of Egs. (21.4) and (21.5). To do that we have
to find the solution ¢ of the equation

- = (21.7)

where s, which we call the source, 1s known. Of course, s corresponds to p/e, and
ytogfor Eq (21.4), or s 18/, /egc 2 1f Y 1s A, etc , but we want to solve Eq (21 7)
as a mathematical problem no matter what y and s are physically.

In places where p and j are zero—in what we have called “[ree” space—the
potentials ¢ and A, and the fields E and B, all satisfy the three-dimensional wave
equation without sources, whose mathematical form is

V%—lgzl—pzo (21.8)
c? 912 ) '
In Chapter 20 we saw that solutions of this equation can represent waves of various
kinds: plane waves in the x-direction, ¢ = f(+ — x/c); plane waves 1n the y- or
z-direction, or in any other direction; or spherical waves of the form

[(_t_;r/ﬂ . (21.9)

ll/(X, Vs Z, t) = -

(The solutions can be written 1n still other ways, for example cylindrical waves
that spread out from an axis.)

We also remarked that, physically, Eq. (21.9) does not represent a wave 1n
free space—that there must be charges at the origin to get the outgoing wave started.
In other words, Eq. (21.9) is a solution of Eq. (21.8) everywhere except right near
r = 0, where 1t must be a solution of the complete equation (21.7), including some
sources. Let’s see how that works. What kind of a source s in Eq. (21.7) would
give rise to a wave like Eq. (21.9)?

Suppose we have the spherical wave of Eq. (21.9) and look at what is happen-
ing for very small ». Then the retardation —r/c in f (¢ — r/c) can be neglected—
provided fis a smooth function—and ¢ becomes

v=19 o (21.10)

So ¢ is just ike a Coulomb field for a charge at the origin that varies with time.
That is, if we had a little lump of charge, limited 1o a very small region near the
origin, with a density p, we know that

6 = Q/‘ivreo ]

where Q = [p dV. Now we know that such a ¢ satisfies the equation
2, = P
Vi = €

Following the same mathematics, we would say that the ¢ of Eq. (21.10)
satisfies

V3 = —5 (r — 0), 21.11)
where s 1s related to f by
S
f=gz
with
S = [st.

The only difference is that in the general case, s, and therefore S, can be a function
of time,

Now the important thing is that if y satisfies Eq. (21.11) for small r, 1t also
satisfies Eq. (21.7). As we go very close to the origin, the 1/r dependence of ¢
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causes the space dertvatives 1o become very large. But the time derivatives keep
their same values [They are just the time derivatives of f (£).] So as r goes to zero,
the term 9%¢/ar* m Eq. (21.7) can be neglected 1n comparison with V%, and Eq.
(21.7) becomes equivalent to Eq. (21.11).

To summarize, then, if the source function s(r) of Eq. (21 7) 1s localized at
the origin and has the total strength

S(f) = / s(r) dv, (21.12)
the solution of Eq. 21.7) 15

1 S@t —r/o)
Ux,y,2,0) = g = (21.13)
The only effect of the term ¢2¢,at* in Eq. (21.7) is to introduce the retardation
(t — r/c¢) in the Coulomb-like potential.

21-3 The general solution of Maxwell’s equations

We have found the solution of Eq. (21.7) for a “point” source. The next
question 1s: What is the solution for a spread-out source? That’s easy; we can
think of any source s(x, y, z, t) as made up of the sum of many “pomnt” sources,
one for each volume element dV, and each with the source stiength s(x. y, z, 1) dV.
Since Eq (21.7) 1s linear, the resultant field 1s the superposition of the fields from
all of such source elements.

Using the results of the preceding section [Eq. (21.13)] we know that the
field dy at the point (xy, y1, z)—or (1) for short—at the time f, from a source
element s dV at the point (x5, yo, zg)—or (2) for short—is given by

2,t — ri2/c)dv,
(1, ) = 2L 2O,

where r,, 1s the distance from (2) to (1). Adding the contributions from all the
pieces of the source means. of course, doing an integral over all regions where
s # 0; so we have
_ /

Wi, 0 = / 2t =2 gy, @1.14)
That 1s, the field at (1) at the time ¢ is the sum of all the spherical waves which
leave the source elements at (2) at the times (+ — r,./c). This is the solution of
our wave equation for any set of sources.

We see now how to obtain a general solution for Maxwell’s cquations. If
for y we mean the scalar potential ¢, the source function s becomes p/en. Or we
can let y represent any one of the three components of the vector potential A4,
replacing s by the corresponding component of j/eyc?. Thus, 1if we know the
charge density p(x, y, z, 1) and the current density j(x, y, z, t) everywhere, we can
immediately write down the solutions of Eqs (21.4) and (21.5). They are

_ [pQr=ri0)
o(l, 1) = / frers dvs (21 15)
and
_ [ JCt = 12 ©)
Al 1) = /747“0(_2“2 av,. (21.16)

The fields E and B can then be found by differentiating the potentials, using Egs.
(21.2) and (21.3). [Incidentally, it is possible to verify that the ¢ and A obtained
from Eqgs. (21.15) and (21.16) do satisfy the equality (21.6) ]

We have solved Maxwell’s equations. Given the currents and charges in any
circumstance, we can find the potentials directly from these integrals and then
differentiate and get the fields. So we have finished with the Maxwell theory
Also this permits us to close the ring back to our theory of light, because to connect
with our earlier work on light, we need only calculate the electrnc field from a

214



moving charge. All that remains is to take a moving charge, calculate the po-
tentials from these integrals, and then differentiate to find E from —V¢ — 94/d1.
We should get Eq. (21.1). It turns out to be lots of work, but that’s the principle.

So here is the center of the universe of electromagnetism—the complete theory
of electricity and magnetism, and of light; a complete description of the fields
produced by any moving charges; and more. It is all here. Here is the structure
built by Maxwell, complete in all its power and beauty. It is probably one of the
greatest accomplishments of physics. To remind you of its importance, we will
put 1t all together in a nice frame.

Maxwell’s equations:

V.E:eﬂ V'B=O
_ _9B 2 _J L 9E
v X E = Y cv><B-—€0+at

Their solutions:

0A
E = —V¢d — —67
B=vx A4
_ P(zat — Fi2/C)
d)(l’ t) - / 471'60 r12 dV2

A(, 1) = /j(z’t = ne/) gy,

47TEOCZI'12

21-4 The fields of an oscillating dipole

We have still not lived up to our promuse to derive Eq. (21.1) for the electric
field of a point charge in motion. Even with the results we already have, 1t 1s a
relatively complicated thing to derive. We have not found Eq. (21.1) anywhere in
the published literature except in Vol. I of these lectures.* So you can see that 1t 1s
not easy to derive. (The fields of a moving charge have been written in many othe:
forms that are equivalent, of course.) We will have to limit ourselves here just to
showing that, 1in a few examples, Eqs. (21.15) and (21.16) give the same results as
Eq. (21.1). Furst, we will show that Eq (21.1) gives the correct fields with only the
restriction that the motion of the charged particle is nonrelativistic. (Just this
special case will take care of 90 percent, or more, of what we said about light.)

We consider a situation in which we have a blob of charge that 1s moving
about i some way, in a small region, and we will find the fields far away. To putit
another way, we are finding the field at any distance from a point charge that 1s
shaking up and down in very small motion. Since Lght 1s usually emitted from
neutral objects such as atoms. we will consider that our wiggling charge g 1s located
near an equal and opposite charge at rest. If the separation between the centers of
the charges is d, the charges will have a dipole moment p = gd, which we take to
be a function of time. Now we should expect that if we look at the fields close to
the charges, we won’t have to worry about the delay; the electric field will be
exactly the same as the one we have calculated earlier for an electrostatic dipole

* The formula was worked out by R. P. Feynman, in about 1950, and given 1n some
lectures as a good way of thinking about synchrotron radiation

21-5



Fig. 21-2. The potentials at (1) are
given by integrals over the charge
density p.

—using, of course, the instantaneous dipole moment p(z). But if we go very far
out, we ought to find a term in the field that goes as 1/r and depends on the ac-
celeration of the charge perpendicular to the line of sight. Let’s see if we get such
a result.

We begin by calculating the vector potential 4, using Eq. (21.16). Suppose
that our moving charge is in a small blob whose charge density is given by p(x, y, 2),
and the whole thing is moving at any instant with the velocity v. Then the current
density j(x, y, z) will be equal to vp(x, y,z). It will be convenient to take our
coordinate system so that the z-axis 1s 1n the direction of v; then the geometry of
our problem is as shown in Fig. 21-2. We want the integral

/J(zw’_—’_w/i) av,. (21.17)

T

Now if the size of the charge-blob is really very small compared with ry.,, we
can set the 1, term 1n the denominator equal to r, the distance to the center of the
blob, and take r outside the integral. Next, we are also going to set 15 = r In
the numerator, although that is not really quite right. 1t 1s not right because we
should take j at, say, the top of the blob at a slightly different time than we used
for j at the bottom of the blob. When we set ry5 = r 1n j(t — ry2/c), we are
taking the current density for the whole blob at the same time (¢ — r/c). That 1s
an approximation that will be good only if the velocity » of the charge is much
less than ¢. So we are making a nonrelativistic calculation. Replacing j by pv,
the integral (21.17) becomes

% / (2. 1 — r/c)dVs.

Since all the charge has the same velocity, this integral is just v/r imes the total
charge g. But gv 1s just dp/dt, the rate of change of the dipole moment—which s,
of course, to be evaluated at the retarded time (¢ — r/c). We will write it as
p(t — r/c). So we get for the vector potential

_ 1 p@—r/o
A(l, 1) = Freoc? p . (21.18)

Our result says that the current in a varying dipole produces a vector potential
in the form of spherical waves whose source strength 1s p/4megc?.

We can now get the magnetic field from B = v X 4. Since p 1s totally in the
z-dwrection, A has only a z-component; there are only two nonzero derivatives in
the curl So B, = 94,/dy and B, = —dA,/0x. Let’s first look at B,:

_ 4. _ 1 apu—r/o

e e (21.19)

To carry out the differentiation, we must remember that »r = /x2 4+ y2 + z2, so

_ b
T dqregc?

Jx

SN 1 14
Remembering that dr/dy = y/r, the first term gives

4megc? r3

which drops off as 1/r2 like the fields of a static dipole (because y/r 1s constant for
a given direction).

The second term in Eq. (21.20) gives us the new effects. Carrying out the
differentiation, we get
Yop(t — r/o), (21.22)

degct cr?

where p means, of course, the second derivative of p with respect to 7. This term,
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which comes from differentiating the numerator, 1s responsible for radiation.
First, 1t describes a field which decreases with distance only as 1/r. Second, it
depends on the acceleration of the charge. You can begin to see how we are going
to get a result like Eq. (21 1”), which describes the radiation of Light.

Let’s examine 1n a little more detail how this radiation term comes about—it
18 such an interesting and important result. We start with the expression (21.18),
which has a 1/r dependence and is therefore like a Coulomb potential, except for
the delay term in the numerator. Why is it then that when we differentiate with
respect to space coordinates to get the fields, we don’t just get a 1/r? field—with,
of course, the corresponding time delays?

We can see why in the following way: Suppose that we let our dipole oscillate
up and down in a sinusoidal motion. Then we would have

P = Pz = posinwt
and

I wpgcosw(t — r/c)
A, = S .
47TE()C“ r

If we plot a graph of A4, as a function of rat a given instant, we get the curve shown
in Fig 21-3. The peak amplitude decreases as 1/r, but there is, 1n addition, an
oscillation 1n space, bounded by the 1/r envelope. When we take the spatial de-
rivatives, they will be proportional to the slope of the curve. From the figure we
see that there are slopes much steeper than the slope of the 1/r curve itself. It 1s,
1n fact, evident that for a given frequency the peak slopes are proportional to the
amplitude of the wave, which varies as 1/r. So that explains the drop-off rate of
the radiation term.

It all comes about because the variations with time at the source are translated
into variations m space as the waves are propagated outward, and the magnetc
fields depend on the spatial derivatives of the potential.

Let’s go back and finish our calculation of the magnetic field. We have for
B, the two terms (21.21) and (21.22), so

B - [_ yp(t — r/e)  yp(t — r/c)]_

4mregc? rs cr?

With the same kind of mathematics, we get

B, = ! [xp(t —rfe) | xp(t = r/c)].

T dregc? r3 cr2
Or we can put it all together 1n a nice vector formula:

I [p+ (/0)plirie X 1
- 47T€()C2 rs ’ (2] 23)

Now let’s look at this formula. First of all, if we go very far out in r, only the
pterm counts. The direction of Bis given by p X r, which is at right angles to the
radius r and also at right angles to the acceleration, as in Fig. 21-4. Everything 1s
coming out right; that 1s also the resuit we get from Eq. (21.1°).

Now let’s look at what we are not used to—at what happens closer in. In
Section 14-9 we worked out the law of Biot and Savart for the magnetic field of an
element of current. We found that a current element j dV contributes to the mag-
netic field the amount

_ 1 jXr
dB = i dv. (21.24)

You see that this formula looks very much like the first term of Eq (21.23), if we
remember that p is the current. But there is one difference. In Eq. (21.23), the
current 1s to be evaluated at the time (r — r/¢), which doesn’t appear in Eq. (21.24).
Actually, however, Eq. (21.24) 1s still very good for small r, because the second
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term of Eq. (21 23) tends to cancel out the effect of the retardation in the first term.
The two together give a result very near to Eq. (21 24) when r is small.

We can see that this way. When ris small, (r — r/c) 1s not very different from
t, so we can expand the bracketin Eq. (21.23) in a Taylor series. For the first term,

p(t = r/e) = p(t) — 7 p(0) + ete.

and to the same order in r/c,
P — r/c) = B().

When we take the sum, the two terms in p cancel, and we are left with the wun-
retarded current p: that is, p(r)—plus terms of order (r/c)? or higher [e.g., (r/c)p]
which will be very small for r small enough that p does not alter markedly in the
time r/c.

So Eq. (21 23) gives fields very much like the instantaneous theory—much
closer than the instantaneous theory with a delay; the first-order effects of the delay
are taken out by the second term. The static formulas are very accurate, much
more accurate than you might think Of course, the compensation only works for
points close in. For points far out the correction becomes very bad, because the
time delays produce a very large effect, and we get the important 1/r term of the
radiation,

We still have the problem of computing the electric field and demonstrating
that it is the same as Eq. (21.1°). For large distances we can see that the answer
is going to come out all right. We know that far from the sources, where we have
a propagating wave, E 1s perpendicular to B (and also to r), as in Fig. 21-4, and
that ¢B = E So E 1s proportional to the acceleration p, as expected from Eq.
QL.1").

To get the electric field completely for all distances, we need to solve for the
electrostatic potential. When we computed the current integral for 4 to get
Eq. (21.18), we made an approximation by disregarding the slight variation of r
in the delay terms. This will not work for the electrostatic potential, because we
would then get 1/r times the integral of the charge density, which 1s a constant.
This approximation 1s too rough. We need to go to one higher order. Instead of
getting involved in that higher-order computation directly, we can do something
else—we can determine the scalar potential from Eq. (21.6), using the vector po-
tential we have already found. The divergence of A, in our case, is just 9A4,/9z
—since 4, and A4, are identically zero. Differentiating 1n the same way that we
did above to find B,

1 a (1 19
VA= dmec? [p(t — r/c)& (;) + 7&[)(1 — r/c)]
! [_ 2Pt = r/e) _ zplt :Lc)].

47enc? r3 cr?

Or, 1n vector notation,

V-Ad = —- 1 : [P+ (r/f),é_ll—T/c'V_
4mrenc? r3

Using Eq. (21.6), we have an equation for ¢:

o _ 1 [P+ (/Olerye 1

ot 4d7e r3

Integrating with respect to 7 just removes one dot from each of the p’s, so

_ U Ip+ r/e)ple—ric-r
o(r, 1) = dre, pe (%1 25)
(The constant of 1ntegration would correspond to some superposed static field
which could, of course, exist. For the oscillating dipole we have taken, there 15
no static field )
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We are now able to find the electric field E from

Y|
= —V¢ — 5
Since the steps are tedious but straightforward [providing you remember that
p(t — r/c) and its time derivatives depend on x, y, and z through the retardation
r/c], we will just give the result:

E(r, 1) = 21?——60%5 [— =3 (”r—fz’)' + 6-12 (Bt — r/c) X r} X r} (21.26)
with
p* = p(t—r/c)+ g pt — r/o). (1.27)

Although it looks rather complicated, the result 1s easily interpreted. The
vector p* is the dipole moment retarded and then “‘corrected” for the retardation,
so the two terms with p* give just the static dipole field when 7 is small. [See
Chapter 6, Eq. (6.14).] When r is large, the term in p dominates, and the electric
field is proportional to the acceleration of the charges, at right angles to r, and, 1n
fact, directed along the projection of jj in a plane perpendicular to r.

This result agrees with what we would have gotten using Eq. (21.1). Of
course, Eq. (21.1) is more general; it works with any motion, while Eq. (21.26) 1s
valid only for small motions for which we can take the retardation r/c¢ as constant
over the source. At any rate, we have now provided the underpinnings for our
entire previous discussion of light (excepting some matters discussed in Chapter
36 of Vol. 1), for it all hinged on the last term of Eq. (21.26). We will discuss next
how the fields can be obtained for more rapidly moving charges (leading to the
relativistic effects of Chapter 36 of Vol. I).

21-5 The potentials of a moving charge; the general solution of Liénard and
Wiechert

In the last section we made a simplification in calculating our integral for 4
by considering only low velocities. But in doing so we missed an important point
and also one where it is easy to go wrong. We will therefore take up now a calcula-
tion of the potentials for a point charge moving in any way whatever—even with
a relativistic velocity. Once we have this result, we will have the complete electro-
magnetism of electric charges. Even Eq. (21.1) can then be derived by taking
derivatives. The story will be complete. So bear with us.

Let’s try to calculate the scalar potential ¢(1) at the point (xy, v, z1) produced
by a point charge, such as an electron, moving in any manner whatsoever. By a
“point” charge we mean a very small ball of charge, shrunk down as small as you
like, with a charge density p(x, y, z). We can find ¢ from Eq. (21.15):

o(1, 1) = —1—/”—(2—”—1’42—@ dvs. (21.28)

471'6() ris

The answer would seem to be—and almost everyone would, at first, think—that
the integral of p over such a “pomnt” charge is just the total charge ¢, so that

_ ! 4
d)(l’ t) - 47r€() ",12 (Wrong).

By r{, we mean the radius vector from the charge at point (2) to point (1) at the
retarded time (¢ — r,9/c). It 1s wrong.
The correct answer is

$(1,0) = o L L, (21.29)

where v, 1s the component of the velocity of the charge parallel to rj;—namely,
toward point (1). We will now show you why. To make the argument easier to
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Fig. 21-5. (a) A “point” charge—considered as a small cubical distribution of
charge—moving with the speed v toward point (1) {b) The volume element AV,
used for calculating the potentials.

Hiere A TALICY: Iy 0
@) i

Fig. 21-6. Integrating p(t — ', c)dV
for a moving charge.

follow, we will make the calculation first for a “point” charge which is 1n the form
of a little cube of charge moving toward the point (1) with the speed », as shown
in Fig. 21-5(a). Let the length of a side of the cube be a, which we take to be
much, much less than r;,, the distance from the center of the charge to the
point (1).

Now to evaluate the integral of Eq. (21.28), we will return to basic principles;
we will write it as the sum

D Pl_r“_Vl, (21.30)

where r, 1s the distance from point (1) to the /th volume element AV, and p, is the
charge density at AV, at the time 1, = t — r,/c. Since r, >> u, always, 1t will be
convenient to take our AV, in the form of thin, rectangular slices perpendicular to
ri», as shown in Fig. 21-5(b).

Suppose we start by taking the volume elements AV, with some thickness w
much less than . The individual elements will appear as shown 1n Fig. 21-6(a),
where we have put in more than enough to cover the charge. But we have not
shown the charge, and for a good reason. Where should we draw 1t? For each
volume element AV,, we are to take p at the time 1, = (t — r,/c), but since the
charge 1s moving, 1t is in a different place for each volume element AV !

Let’s say that we begin with the volume element labeled ““1”° 1n Fig. 21-6(a),
chosen so that at the time £, = (r — r,/c) the “back” edge of the charge occupies
AV, as shown in Fig. 21-6(b). Then when we evalute py AV 5, we must use the
position of the charge at the slightly later time 1, = (t — ry/c), when the charge
will be in the position shown in Fig. 21-6(c). And so on, for AV 3, AV, etc. Now
we can evaluate the sum.

Since the thickness of each AV, 1s w, 1ts volume is wa?. Then each volume
clement that overlaps the charge distribution contains the amount of charge
wa’p, where p is the density of charge within the cube—which we take to be
uniform. When the distance from the charge to point (1) 1s large, we will make a
negligible error by setting all the »,’s in the denominators equal to some average
value, say the retarded position r* of the center of the charge. Then the sum (21.30)

InY
N 2
owa
2
’

=1

where AV, is the last AV, that overlaps the charge distributions, as shown in Fig.
21-6(e). The sum is, clearly,
pom o (1),
r r a

Now pa? is just the total charge ¢ and Nw is the length b shown in part (e) of the
figure. So we have

_ 4 (bY.
= fre <u> (21.31)
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What is b? 1t 1s the length of the cube of charge increased by the distance
moved by the charge between t{ = (¢ — ry/c) and ¢x» = (t — rx/c)—which 1s
the distance the charge moves 1n the time

At =ty — ty = (r1 — ry)/c = b/c.

Since the speed of the charge 1s v, the distance moved 1s » At = vb/c. But the
length b is this distance added to a:

b=a+%h

Solving for b, we get
a

1 — e

Of course by » we mean the velocity at the retarded time ¥ = (¢ — r'/c¢), which
we can indicate by writing [1 — »/c¢].t, and Eq. (21.31) for the potential becomes

b =

q 1
drent’ [1 — (U/C)]rct ‘

o(l, 1) =

This result agrees with our assertion, Eq. (21.29). There is a correction term which
comes about because the charge is moving as our integral “sweeps over the charge.”
When the charge is moving toward the point (1), its contribution to the integral 1s
increased by the ratio b/a. Therefore the correct integral is g/’ multiplied by
b/a, which1s 1/[1 — »/clrey-

If the velocity of the charge 1s not directed toward the observation point (1),
you can see that what matters 1s the component of its velocity toward point (1).
Calling this velocity component »,, the correction factor 1s 1/[l — r,/cl.t. Also,
the analysis we have made goes exactly the same way for a charge distribution of
any shape—it doesn’t have to be a cube. Finally, since the “size” of the charge
doesn’t enter into the final result, the same result holds when we let the charge
shrink to any size—even to a point. The general result 1s that the scalar potential
for a point charge moving with any velocity is

_ q
#(1) = 4rer'[l — (v,/c)]m' (21.32)

This equation is often written in the equivalent form

q
P00 = el — @ 0 (@133
where r 1s the vector from the charge to the point (1), where ¢ is being evaluated,
and all the quantities in the bracket are to have their values at the retarded time
V' =1—+/e
The same thing happens when we compute 4 for a point charge, from Eq.
(21.16). The current density is pv and the integral over p 1s the same as we found
for ¢. The vector potential is

qu

The potentials for a point charge were first deduced 1n this form by Liénard
and Wiechert and are called the Liénard-Wiechert potentials.

To close the ring back to Eq. (21.1) 1t 1s only necessary to compute E and B
from these potentials (using B = vV X 4 and E = —V¢ — dA/d1). It 1s now
only arithmetic. The arithmetic, however, 1s fairly involved, so we will not write
out the details. Perhaps you will take our word for 1t that Eq. (21.1) is equivalent
to the Liénard-Wiechert potentials we have derived.*

*If you have a lot of paper and time you can try to work 1t through yourself. We
would, then, make two suggestions' First, don’t forget that the derivatives of r’ are
complicated, smce it 1s a function of ¥/ Second, don’t try to derive (21 1), but carry out
all of the derivatives n 1t, and then compare what you get with the E obtained from the
potentials (21.33) and (21.34).
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21-6 The potentials for a charge moving with constant velocity; the Lorentz
formula

We want next to use the Liénard-Wiechert potentials for a special case—to
find the fields of a charge moving with uniform velocity in a straight line. We will
do 1t agan later, using the principle of relativity. We already know what the po-
tentials are when we are standing in the rest frame of a charge. When the charge
1s moving, we can figure everything out by a relativistic transformation {rom one
system to the other. But relativity had its origin 1n the theory of electricity and
magnetism. The formulas of the Lorentz transformation (Chapter 15, Vol. 1)
were discoveries made by Lorentz when he was studying the equations of electricity
and magnetism, So that you can appreciate where things have come from, we
would like to show that the Maxwell equations do lead to the Lorentz transforma-
tion. We begin by calculating the potentials of a charge moving with uniform
velocity, directly from the electrodynamics of Maxwell’s equations. We have
shown that Maxwell’s equations lead to the potentials for a moving charge that we
got 1n the last section. So when we use these potentials, we are using Maxwell’s
theory.

(x’y,z)

"RETARDED" POSITION
(At t'=1t~r'/c)

le— v’ [—2-?\13
—]

fe— vt /
“PRESENT" POSITION ’
{At t)

Fig. 21-7. Finding the potential at _L/
P of a charge moving with uniform - m = = == ==
velocity along the x-axis. z

Suppose we have a charge moving along the x-axis with the speed ». We want
the potenuals at the point P(x, y, z), as shown in Fig. 21-7. If 1 = 01s the moment
when the charge 1s at the origin, at the time ¢ the chargeisat x = nf,y = z = 0
What we need to know, however, 1s its position at the retarded time

!

r=r -1, 3
t t . (21.35)
where #’ is the distance to the point P from the charge at the retarded time. At the
earlier time t’, the charge was at x = o', so
Fo= AV (x — ot')? + pt -+ oz (21.36)

To find ¥ or ¢ we have to combine this equation with Eq. (21.35). First, we
eliminate » by solving Eq. (21.35) for ' and substituting in Eq. (21.36). Then,
squaring both sides, we get

At — 1?2 = (x — o) + y? + 2%

which is a quadratic equation in ¢. Expanding the squared binomials and collecting
Iike terms 1n ¢, we get

(r? — 2 — 20xv — 20 + x2 + p2 4 22 — (et)? = 0.

Solving for ¢,

vy, rx 1 B 2 1'2> 2 z‘
<1—§>z_z—-cz-—c\/(x—z't)—{— L= )0 + 29 (21.37)
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To get r’ we have to substitute this expression for ¢ into
r=c@ — 7).

Now we are ready to find ¢ from Eq. (21.33), which, since v is constant,
becomes

- 49 1 )
#(x,y, 2, 1) = P (21.38)

The component of v in the direction of ¢ is v X (x — v)/r, so v-F is just
v X (x — '), and the whole denominator is

2
c(t—t’)—%(x—vt’)=c[t—%—(1—%)t’]-

Substituting for (1 — »2/c%)¢ from Eq. (21.37), we get for ¢
1

q
477'6() 2 '
\/ (x —v)® + (1 - %)(yz + 2%

This equation is more understandable if we rewrite it as

d(x,y,2,1) =

q 1 1

4re 2 _ 2 1/2
° 1 = % _Xxzu + y? + 22
NV — v2/c2

The vector potential 4 1s the same expression with an additional factor of v/c2:

o(x,,2,1) = (21.39)

v

In Eq. (21.39) you can clearly see the beginning of the Lorentz transformation.
If the charge were at the origin 1n its own rest frame, its potential would be

g 1 )
dmeo [x2 4 y? + zZJU2

#(x,y,2) =

We are seeing it in a moving coordinate system, and it appears that the coordinates
should be transformed by

x — vt
X = ————
V1 = 2/c?
y =)
zZ — Z.

That is just the Lorentz transformation, and what we have done 1s essentially the
way Lorentz discovered it.

But what about that extra factor 1/4/1 — v2/c2 that appears at the front of
Eq. (21.39)? Also, how does the vector potential 4 appear, when it is everywhere
zero in the rest frame of the particle? We will soon show that 4 and ¢ together
constitute a four-vector, like the momentum p and the total energy U of a particle.
The extra 1/4/1 — v2/c2 in Eq. (21.39) is the same factor that always comes in
when one transforms the components of a four-vector—just as the charge density p
transforms to p/v/1 — v2/c2. In fact, it is almost apparent from Eqgs. (21 4)
and (21.5) that 4 and ¢ are components of a four-vector, because we have already
shown in Chapter 13 that j and p are the components of a four-vector.

Later we will take up in more detail the relativity of electrodynamics; here we
only wished to show how naturally the Maxwell equations lead to the Lorentz
transformation. You will not, then, be surprised to find that the laws of electricity
and magnetism are already correct for Finstein’s relativity. We will not have to
“fix them up.” as we had to do for Newton’s laws of mechanics.
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