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The Flow of Dry Water

40~-1 Hydrostatics

The subject of the flow of fluids, and particularly of water, fascinates every-
body. We can all remember, as children, playing in the bathtub or in mud puddles
with the strange stuff. As we get older, we watch streams, waterfalls, and whirl-
pools, and we are fascinated by this substance which seems almost alive relative
to solids. The behavior of fluids is in many ways very unexpected and interesting—
it is the subject of this chapter and the next. The efforts of a child trying to dam a
small stream flowing in the street and his surprise at the strange way the water
works its way out has its analog in our attempts over the years to understand the
flow of fluids. We have tried to dam the water up—in our understanding—by
getting the laws and the equations that describe the flow. We will describe these
attempts in this chapter. In the next chapter, we will describe the unique way 1n
which water has broken through the dam and escaped our attempts to under-
stand it.

We suppose that the elementary properties of water are already known to
you. The main property that distinguishes a fluid from a solid 1s that a fluid cannot
maintain a shear stress for any length of time. If a shear is applied to a fluid, it
will move under the shear. Thicker liquids Iitke honey move less easily than fluids
like air or water. The measure of the ease with which a fluid yields is its viscosity.
In this chapter we will consider only situations in which the viscous effects can be
1ignored. The effects of viscosity will be taken up in the next chapter.

We begin by considering Aydrostatics, the theory of liquids at rest. When
liquids are at rest, there are no shear forces (even for viscous hquids). The law
of hydrostatics, therefore, is that the stresses are always normal to any surface
inside the fluid. The normal force per unit area is called the pressure. From the
fact that there is no shear in a static fluid 1t follows that the pressure stress is the
same in all directions (Fig. 40-1). We will let you entertain yourself by proving
that if there is no shear on any plane in a fluid, the pressure must be the same 1n
any direction.

The pressure in a fluid may vary from place to place. For example, in a static
fluid at the earth’s surface the pressure will vary with height because of the weight
of the fluid. If the density p of the fluid is considered constant, and if the pressure
at some arbitrary zero level is called po (Fig. 40-2), then the pressure at a height
h above this point 18 p = py — pgh, where g is the gravitational force per unit
mass. The combination

p + pgh

is, therefore, a constant in the static fluid. This relation is familiar to you, but we
will now derive a more general result of which it is a special case.

If we take a small cube of water, what is the net force on it from the pressure?
Since the pressure at any place is the same in all directions, there can be a net
force per umit volume only because the pressure varies from one point to another.
Suppose that the pressure is varying in the x-direction—and we take the coordinate
directions parallel to the cube edges. The pressure on the face at x gives the force
p Ay Az (Fig. 40-3), and the pressure on the face at x + Ax gives the force
—[p + (@p/9x) Ax] Ay Az, so that the resultant force is —(dp/dx) Ax Ay Az. If
we take the remaining pairs of faces of the cube, we easily see that the pressure
force per unit volume is — Vp. If there are other forces in addition—such as gravity
—then the pressure must balance them to give equilibrium.

401

40-1 Hydrostatics
40-2 The equations of motion

40-3 Steady flow—Bernoulli’s
theorem

40-4 Circulation
40-5 Vortex lines

Fig. 40-1. In a static fluid the force
per unit area across any surface is
normal to the surface and is the same for
all orientations of the surface.

SURFACE

STATIC
LIQUID

o7

Fig. 40-2. The pressure in a static

liquid.



Az

X Ax

X+ Ax

P+ AX

Ay

Fig. 40-3. The net pressure force on
a cube is — Vp per unit volume.,

Let’s take a circumstance in which such an additional force can be described
by a potential energy, as would be true in the case of gravitation; we will let ¢
stand for the potential energy per unit mass. (For gravity, for instance, ¢ is just gz.)
The force per unit mass 1s given in terms of the potential by — V¢, and if p is the
density of the fluid, the force per unit volume is —p V¢. For equilibrium this
force per unit volume added to the pressure force per unit volume must give zero:

—Vp — pVe = 0. (40.1)

Equation (40.1) is the equation of hydrostatics. In general, it has no solution.
If the density varies in space in an arbitrary way, there is no way for the forces to
be in balance, and the fluid cannot be in static equilibrium. Convection currents
will start up. We can see this from the equation since the pressure term is a pure
gradient, whereas for variable p the other term is not. Only when p is a constant
is the potential term a pure gradient. Then the equation has a solution

p + pgp = const.

Another possibility which allows hydrostatic equilibrium is for p to be a function
only of p. However, we will leave the subject of hydrostatics because it is not
nearly so interesting as the situation when fluids are in motion.

40-2 The equations of motion

First, we will discuss fluid motions in a purely abstract, theoretical way and
then consider special examples. To describe the motion of a fluid, we must givc
its properties at every point. For example, at different places, the water (let us
call the fluid “‘water”) is moving with different velocities. To specify the character
of the flow, therefore, we must give the three components of velocity at every point
and for any time. If we can find the equations that determine the velocity, then we
would know how the liquid moves at all times. The velocity, however, is not the
only property that the fluid has which varies from point to point. We have just
discussed the variation of the pressure from point to point. And there are still
other variables. There may also be a variation of density from point to point.
In addition, the fluid may be a conductor and carry an electric current whose
density j varies from point to point in magnitude and direction. There may be a
temperature which varies from point to point, or a magnetic field, and so on. So
the number of fields needed to describe the complete situation will depend on how
complicated the problem is. There are interesting phenomena when currents and
magnetism play a dominant part 1n determining the behavior of the fluid; the
subject is called magnetohydrodynamucs, and great attention is being paid to it at
the present time. However, we are not going to consider these more complicated
situations because there are already interesting phenomena at a lower level of
complexity, and even the more elementary level will be complicated enough.

We will take the situation where there 1s no magnetic field and no conductivity,
and we will not worry about the temperature because we will suppose that the
density and pressure determine in a unique manner the temperature at any point.
As a matter of fact, we will reduce the complexity of our work by making the as-
sumption that the density 1s a constant—we imagine that the fluid is essentially
incompressible. Putting it another way, we are supposing that the variations of
pressure are so small that the changes in density produced thereby are negligible.
If that 1s not the case, we would encounter phenomena additional to the ones we
will be discussing here—for example, the propagation of sound or of shock waves.
We have already discussed the propagation of sound and shocks to some extent,
so we will now isolate our consideration of hydrodynamics from these other
phenomena by making the approximation that the density p is a constant. It is
easy to determine when the approximation of constant p is a good one We can
say that if the velocities of flow are much less than the speed of a sound wave 1n the
fluid, we do not have to worry about variations in density. The escape that water
makes in our attempts to understand it is not related to the approximation of
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constant density. The complications that do permit the escape will be discussed
in the next chapter.

In the general theory of fluids one must begin with an equation of state for
the fluid which connects the pressure to the density. In our approximation this
equation of state is simply

p = const.

This then is the first relation for our variables. The next relation expresses the
conservation of matier—if matter flows away from a point, there must be a decrease
in the amount left behind. If the fluid velocity 1s v, then the mass which flows in a
unit time across a unit area of surface is the component of pv normal to the sur-
face. We have had a similar relation in electricity. We also know from electricity
that the divergence of such a quantity gives the rate of decrease of the density per
unit time. In the same way, the equation

V.(ov) = — P (40.2)
ot
expresses the conservation of mass for a fluid; it is the hydrodynamic eguation of
confnuity. In our approximation, which is the incompressible fluid approximation,
p 1s a constant, and the equation of continuity is simply

Vv =0. (40.3)

The fluid velocity v—Ilike the magnetic field B—has zero divergence. (The hydro-
dynamic equations are often closely analogous to the electrodynamic equations;
that’s why we studied electrodynamics first. Some people argue the other way;
they think that one should study hydrodynamics first so that it will be easier to
understand electricity afterwards. But electrodynamics 1s really much easier than
hydrodynamics.)

We will get our next equation from Newton’s law which tells us how the
velocity changes because of the forces, The mass of an element of volume of the
fluid times its acceleration must be equal to the force on the element. Taking an
element of unit volume, and writing the force per unit volume as f, we have

p X (acceleration) = f.

We will write the force density as the sum of three terms. We have already con-
sidered the pressure force per unit volume, —Vp. Then there are the “‘external”
forces which act at a distance—Iike gravity or electrictty. When they are con-
servative forces with a potential per unit mass, ¢, they give a force density —pVe.
(If the external forces are not conservative, we would have to write f,,, for the
external force per unit volume.) Then there is another “internal” force per unit
volume, which is due to the fact that in a flowing fluid there can also be a shearing
stress. This is called the viscous force, which we will write f.,... Our equation of
motion is

p X (acceleration) = —Vp — p Ve + forse. (40.4)

For this chapter we are going to suppose that the liquid 1s “thin” in the sense
that the viscosity is unimportant, so we will omit fi,... When we drop the viscosity
term, we will be making an approximation which describes some ideal stuff rather
than real water. John von Neumann was well aware of the tremendous difference
between what happens when you don’t have the viscous terms and when you do,
and he was also aware that, during most of the development of hydrodynamics
unttl about 1900, almost the main 1nterest was in solving beautiful mathematical
problems with this approximation which had almost nothing to do with real fluids.
He characterized the theorist who made such analyses as a man who studied
“dry water ” Such analyses leave out an essenual property of the fluid It is
because we are leaving this property out of our calculations in this chapter that
we have given it the title “The Flow of Dry Water.” We are postponing a dis-
cussion of real water to the next chapter.
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Fig. 40-4.
fluid particle.
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If we leave out f,,.,, we have 1n Eq. (40.4) everything we need except an ex-
pression for the acceleration. You might think that the formula for the accelera-
tion of a fluid particle would be very simple, for 1t seems obvious that if v is the
velocity of a fluid particle at some place 1n the fluid, the acceleration would just
be dv/d¢. It is not—and for a rather subtle reason. The derivative dv/d1, is the
rate at which the velocity v(x, y, z, ) changes at a fixed point in space. What we
need 1s how fast the velocity changes for a particular piece of fluid. Imagine that
we mark one of the drops of water with a colored speck so we can watch it. In
a small interval of time A¢, this drop will move to a different location. If the drop
is moving along some path as sketched in Fig. 40-4, it might in A7 move from
P, to P,. In fact, it will move in the x-direction by an amount v, At, in the y-direc-
tion by the amount v, A¢, and in the z-direction by the amount v, Az. We see
that, if v(x, y, z, ?) is the velocity of the fluid particle which is at (x, y, z) at the
time ¢, then the velocity of the same particle at the time ¢ 4+ Az is given by v(x +
Ax, y + Ay, z + Az, t + Af)—with

Ax = v, At, Ay = At and Az = v, AL

From the definition of the partial derivatives—recall Eq. (2.7)—we have, to first
order, that

v(x + v ALY 4 v, Atz - v, AL, 1 + Al)
s v v dv
= 0%y, 2, 0) G v A+ 0y AL G20 A AL

The acceleration Av/At is
v

v dv ov
Urg)—c‘*'vy@—f'vz&—*"a—t'

We can write this symbolically——treating V as a vector—as
v
- v + 5 (40.5)

Note that there can be an acceleration even though dv/dr = 0 so that velocity
at a given point is not changing. As an example, water flowing in a circle at a
constant speed 1s accelerating even though the velocity at a given point is not
changing. The reason is, of course, that the velocity of a particular piece of water
which is initially at one point on the circle has a different direction a moment
later; there 1s a centripetal acceleration.

The rest of our theory is just mathematical—finding solutions of the equation
of motion we get by putting the acceleration (40.5) into Eq. (40.4). We get

v Vp
had . [ 40.
5 T @ Vv ’ Vo, (40.6)

where viscosity has been omitted. We can rearrange this equation by using the
following identity from vector analysis:

(- Vv = (VXv) X+ 3V o)
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If we now define a new vector field Q, as the curl of v,
Q =V Xv, 40.7)
the vector identity can be written as
-V =0 Xv+ 3V
ﬂnd our equation of motion (40.6) becomes

v 1.  Vp
E+QXU+§V2 = —

— Vo. (40.8)
You can verify that Egs. (40.6) and (40.8) are equivalent by checking that the
components of the two sides of the equation are equal—and making use of (40.7).

The vector field @ is called the vorticiry. If the vorticity is zero everywhere, we
say that the flow is irrorarional. We have already defined 1n Section 3-5 a thing
called the circulation of a vector field. The circulation around any closed loop in a
fluid is the line integral of the fluid velocity, at a given instant of time, around that
loop:

(Circulation) = % v - ds.

The circulation per umit area for an infinitesimal loop is then—using Stokes’
theorem—equal to V X v. So the vorticity  1s the circulation around a umit
area (perpendicular to the direction of Q). It also follows that if you put a little
piece of dirt—not an nfinitesimal point—at any place in the liquid 1t will rotate
with the angular velocity /2. Try to see if you can prove that. You can also
check 1t out that for a bucket of water on a turntable, Q 1s equal to twice the local
angular velocity of the water.

If we are nterested only in the velocity field, we can eliminate the pressure
from our equations. Taking the curl of both sides of Eq. (40.8), remembering that
p is a constant and that the curl of any gradient is zero, and using Eq. (40.3), we get

Prvx@xv-=o (40.9)

This equation, together with the equations

Q =V Xv (40.10)
and
vv =0, (40.11)

describes completely the velocity field v. Mathematically speaking, if we know Q
at some time, then we know the curl of the velocity vector, and we also know
that its divergence is zero, so given the physical situation we have all we need to
determine v everywhere. (It is just like the situation in magnetism where we had
V:-B=0and V X B = j/egc?) Thus, a given @ determines v just as a given
j determines B. Then, knowing v, Eq. (40.9) tells us the rate of change of Q from
which we can get the new Q for the next instant. Using Eq. (40.10), again we find
the new v, and so on. You see how these equations contain all the machinery for
calculating the flow. Note, however, that this procedure gives the velocity field
only; we have lost all information about the pressure.

We point out one special consequence of our equation. If @ = 0 everywhere
at any time ¢, dQ/9¢ also vanishes, so that @ is still zero everywhere at 7 + Ar.
We have a solution to the equation; the flow is permanently irrotational. If a
flow was started with zero rotation, it would always have zero rotation. The
equations to be solved then are

v-v =0, v Xv=0.

They are just Iike the equations for the electrostatic or magnetostatic fields in
free space. We will come back to them and look at some special problems later.
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40-3 Steady flow—Bernoulli’s theorem

Now we want to return to the equation of motion, Eq. (40.8), but limit our-
selves to situations in which the flow is “steady.” By steady flow we mean that
at any one place 1n the fluid the velocity never changes. The fluid at any point is
always replaced by new fluid moving in exactly the same way. The velocity picture
always looks the same—v is a static vector field. In the same way that we drew
“field lines” in magnetostatics, we can now draw lines which are always tangent
to the fluid velocity as shown in Fig. 40-5. These lines are called streamlines.
For steady flow, they are evidently the actual paths of fluid particles. (In unsteady
flow the streamline pattern changes in time, and the streamline pattern at any
instant does not represent the path of a fluid particle.)

A steady flow does not mean that nothing 1s happening—atoms in the fluid
are moving and changing their velocities. It only means that dv/9r = 0. Then
if we take the dot product of v into the equation of motion, the term v - (Q X v)
drops out, and we are left with

Lo l? 1ol _
v V{p+¢+2v’—0. (40.12)

Fig. 40-5. Streamlines in steady This equation says that for a small displacement in the direction of the fluid velocity
fluid flow. the quantity inside the brackets doesn’t change. Now in steady flow all displace-
ments are along streamlines, so Eq (40.12) tells us that for all the points along a

streamline, we can write

% + % v® + ¢ = const (streamline). (40.13)

This is Bernoulli’s theorem. The constant may in general be different for different
streamlines; all we know 1s that the left-hand side of Eq. (40.13) 1s the same all
along a given streamline. Incidentally, we may notice that for steady irrotational
motion for which @ = 0, the equation of motion (40.8) gives us the relation

p 1 -
V{p+2v +¢>}—0,
so that

% + %vz + ¢ = const (everywhere). (40.14)

It’s just like Eq. (40.13) except that now the constant has the same value throughout
the fluid.

wAt

Fig. 40-6. Fluid motionin a flow tube.

The theorem of Bernoulli is in fact nothing more than a statement of the con-
servation of energy. A conservation theorem such as this gives us a lot of informa-
tion about a flow without our actually having to solve the detailed equations.
Bernoulli’s theorem is so important and so simple that we would like to show you
how it can be derived in a way that is different from the formal calculations we
have just used. Imagine a bundle of adjacent streamlines which form a stream
tube as sketched in Fig. 40-6. Since the walls of the tube consist of streamlines,
no fluid flows out through the wall. Let’s call the area at one end of the stream
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tube A, the fluid velocity there »,, the density of the flmid p,, and the potential
energy ¢,. At the other end of the tube, we have the corresponding quantities
A, 0o, pe, and ¢,. Now after a short interval of time Az, the fluid at 4 has moved
a distance v At, and the fluid at 4, has moved a distance v, At [Fig. 40-6(b)].
The conservation of mass requires that the mass which enters through 4; must be
equal to the mass which leaves through 4,. These masses at these two ends must
be the same:
AM = plAll)lAf = p2A21)2 At.

So we have the equality
p1Ad1v1 = paAgv,. (40.15)

This equation tells us that the velocity varies inversely with the area of the stream
tube if p is constant.

Now we calculate the work done by the fluid pressure. The work done on the
flmd entering at 4, is pyA4 v At, and the work given up at A, is poAsve At The
net work on the fluid between 4; and 4, is, therefore,

P1Ad1v1 Af — padavs At,

which must equal the increase in the energy of a mass AM of fluid in going from
Ay to A,. In other words,

])1A1?)]At - ])2A202 At = AM(E2 - El); (4016)

where E is the energy per unit mass of fluid at 4,, and E, is the energy per unit
mass at 4;. The energy per unit mass of the fluid can be written as

E=%3+9¢+ U,

where 102 is the kinetic energy per unit mass, ¢ is the potential energy per unit
mass, and U is an additional term which represents the internal energy per unit mass
of flud. The internal energy mught correspond, for example, to the thermal
energy in a compressible fluid, or to chemical energy. All these quantities can
vary from point to point. Using this form for the energies in (40.16), we have

Ay At D2 Aal'e At 1 1.
p—l“AlMl _!-AZA/; :§"§+¢2+U2_27'f_¢1_ul

But we have seen that AM = pAr A1, so we get

1
Py

|
S+ e+ U= 24 S0d + ¢y + Us, (40.17)
P1 2 P2

2

which is the Bernoulli result with an additional term for the internal energy. If
the fluid is incompressible, the internal energy term is the same on both sides, and
we get again that Eq. (40.14) holds along any streamline.

We consider now some simple examples in which the Bernoulli integral gives
us a description of the flow. Suppose we have water flowing out of a hole near
the bottom of a tank, as drawn in Fig. 40-7. We take a situation in which the
flow speed »,,, at the hole is much larger than the flow speed near the top of the
tank; in other words, we imagine that the diameter of the tank is so large that
we can neglect the drop in the liquid level. (We could make a more accurate
calculation if we wished.) At the top of the tank the pressure is p, the atmospheric
pressure, and the pressure at the sides of the jet is also py. Now we write our
Bernoulli equation for a streamline, such as the one shown in the figure. At the
top of the tank, we take » equal to zero and we also take the gravity potential
¢ to be zero. At the speed v, and ¢ = —gh, so that

Po = po + 3pv%, — pgh,
or

Cout = V2gh. (40.18)
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Fig. 40-7. Flow from a tank.

Fig. 40-9. The pressure is
where the velocity is highest.

Fig. 40-8. With a re-entrant dis-
charge tube, the stream contracts to one-
half the area of the opening.

This velocity is just what we would get for something which falls the distance 4.
It is not too surprising, since the water at the exit gains kinetic energy at the ex-
pense of the potential energy of the water at the top. Do not get the idea, however,
that you can figure out the rate that the fluid flows out of the tank by multiplying
this velocity by the area of the hole. The fluid velocities as the jet leaves the hole
are not all parallel to each other but have components inward toward the center
of the stream—the jet is converging. After the jet has gone a little way, the con-
traction stops and the velocities do become parallel. So the total flow is the velocity
times the area at that point. In fact, if we have a discharge opening which is just a
round hole with a sharp edge, the jet contracts to 62 percent of the area of the hole.
The reduced effective area of the discharge varies for different shapes of discharge
tubes, and experimental contractions are available as tables of ¢fflux coefficients.

If the discharge tube is re-entrant, as shown in Fig. 40-8, it 1s possible to prove
i a most beautiful way that the efflux coefficient 1s exactly 50 percent. We will
give just a hint of how the proof goes. We have used the conservation of energy
to get the velocity, Eq. (40.18), but there is also momentum conservation to
consider. Since there is an outflow of momentum in the discharge jet, there must
be a force applied over the cross section of the discharge tube Where does the
force come from? The force must come from the pressure on the walls. As long
as the efflux hole is small and away from the walls, the fluid velocity near the walls
of the tank will be very small. Therefore, the pressure on every face is almost
exactly the same as the static pressure in a fluid at rest—from Eq. (30.14). Then
the static pressure at any point on the side of the tank must be matched by an
equal pressure at the point on the opposite wall, except at the points on the wall
opposite the charge tube. If we calculate the momentum poured out through the
jet by this pressure, we can show that the efflux coefficient 1s 1/2. We cannot use
this method for a discharge hole like that shown in Fis. 40-7, however, because
the velocity increase along the wall right near the disciiarge area gives a pressure
fall which we are not able to calculate.

Let’s look at another example—a horizontal pipe with changing cross
section, as shown m Fig. 40-9, with water flowing in one end and out the
other. The conservation of energy, namely Bernoulli’s formula, says that the pres-
sure 1s lower in the constricted area where the velocity 1s higher. We can easily
demonstrate this effect by measuring the pressure at different cross sections with
small vertical columns of water attached to the flow tube through holes small
enough so that they do not disturb the flow. The pressure is then measured by
the height of water in these vertical columns. The pressure 1s found to be less at
the constriction than it is on either side. If the area beyond the constriction comes
back to the same value it had before the constriction, the pressure rises again.
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Bernoullr’s formula would predict that the pressure downstream of the con-
striction should be the same as it was upstream, but actually 1t 1s noticeably less.
The reason that our prediction is wrong 1s that we have neglected the frictional,
viscous forces which cause a pressure drop along the tube. Despite this pressure
drop the pressure 1s definitely lower at the constriction (because of the increased
speed) than 1t 1s on either side of 1it—as predicted by Bernoulh. The speed v,
must certainly exceed vy to get the same amount of water through the narrower
tube. So the water accelerates in going from the wide to the narrow part. The
force that gives this acceleration comes {rom the drop in pressure.

We can check our results with another simple demonstration Suppose we
have on a tank a discharge tube which throws a jet of water upward as shown in
Fig 40-10. If the efMux velocity were exactly \/2gh, the discharge water should
rise to a level even with the surface of the water in the tank. Experimentally, 1t
falls somewhat short. Our prediction 1s roughly right, but again viscous friction
which has not been included in our energy conservation formula has resulted 1n
a loss of energy s

Have you ever held two pieces of paper close together and tried to blow
them apart? Try it! They come rogether. The reason, of course, 1s that the air has
a higher speed going through the constricted space between the sheets than it
does when it gets outside. The pressure between the sheets 1s Jower than atmos-
pheric pressure, so they come together rather than separating,.

40-4 Circulation

We saw at the beginning of the last section that 1f we have an incompressible
fluid with no circulation, the flow satisfies the following two equations:
vV-v=0,

v Xv=0. (40.19)

They are the same as the equations of electrostatics or magnetostatics in empty
space. The divergence of the electric field is zero when there are no charges, and
the curl of the electrostatic field is always zero. The curl of the magnetic field is
zero if there are no currents, and the divergence of the magnetic field is always
zero. Therefore, Eqgs. (40.19) have the same solutions as the equations for E in
electrostatics or for B in magnetostatics. As a matter of fact, we have already
solved the problem of the flow of a fluid past a sphere, as an electrostatic analogy,
i Section 12-5. The electrostatic analog is a uniform electric field plus a dipole
field. The dipole field 1s so adjusted that the flow velocity normal to the surface
of the sphere 1s zero. The same problem for the flow past a cylinder can be worked
out n a similar way by using a surtable line dipole with a uniform flow field. This
solution holds for a situation in which the fluid velocity at large distances 1s con-
stant—both in magnitude and direction. The solution is sketched in Fig. 40-11(a).

There is another solution for the flow around a cylinder when the conditions
are such that the fluid at large distances moves 1n circles around the cylinder. The
flow is, then, circular everywhere, as in Fig. 40-11(b). Such a flow has a circulation
around the cylinder, although v X v is still zero in the fluid. How can there be
circulation without a curl? We have a circulation around the cylinder because the
line integral of v around any loop enclosing the cylinder s not zero. At the same
time, the line integral of v around any closed path which does #not include the cyl-
inder is zero. We saw the same thing when we found the magnetic field around a
wire. The curl of B was zero outside of the wire, although a line integral of B
around a path which encloses the wire did not vanish. The velocity field in an 1r-
rotational circulation around a cylinder is precisely the same as the magnetic
field around a wire. For a circular path with its center at the center of the cylinder,
the line integral of the velocity 1s

f v-ds = 2.

For irrotational flow the integral must be independent of . Let’s call the constant
40-9
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to \/2gh.

Proof that v is not equal
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Fig. 40-12. Water with circulation
draining from a tank.

value C, then we have that

p o= = (40.20)

where v is the tangential velocity, and # is the distance from the axis.

There is a nice demonstration of a fluid circulating around a hole. You take a
transparent cylindrical tank with a drain hole 1n the center of the bottom. You fill
1t with water, stir up some circulation with a stick, and pull the dramn plug. You
get the pretty effect shown in Fig. 40-12. (You’ve seen a similar thing many
times in the bathtub!) Although you put in some w at beginning, it soon dies down
because of viscosity and the flow becomes irrotational—although still with some
circulation around the hole.

From the theory, we can calculate the shape of the mner surface of the water.
As a particle of the water moves inward it picks up speed. From Eq. (40 20) the
tangential velocity goes as 1/r—it’s just from the conservation of angular mo-
mentum, like the skater pulling in her arms. Also the radial velocity goes as
1/r. Ignonng the tangential motion, we have water going radially inward toward
a hole; from v - v = 0, it follows that the radial velocity 18 proportional to 1/r.
So the total velocity also increases as 1/r, and the water goes in along Archimedean
spirals. The air-water surface is all at atmospheric pressure, so it must have—from
Eq. (40.14)—the property that

gz + $mv? = const.

But v is proportional to 1/r, so the shape of the surface is
k
(z — zp) = 73"

An interesting point—which is nof true in general but is true for incompressible,
irrotational flow—is that if we have one solution and a second solution, then the
sum is also a solution. This is true because the equations i (40.19) are linear.
The complete equations of hydrodynamics, Eqgs. (40.8), (40.9), and (40.10), are
not linear, which makes a vast difference. For the irrotational flow about the
cylinder, however, we can superpose the flow of Fig. 40-11(a) on the flow of
Fig. 40-11(b) and get the new flow pattern shown in Fig. 40-11(c). Thss flow is
of special interest. The flow velocity is higher on the upper side of the cylinder
than on the lower side. The pressures are therefore lower on the upper side than
on the lower side. So when we have a combination of a circulation around a
cylinder and a net horizontal flow, there is a net vertical force on the cylinder—it
1s called a /ift force. Of course, if there 1s no circulation, there 1s no net force on
any body according to our theory of “dry” water.

40-5 Vortex lines

We have already written down the genezf‘a] equations for the flow of an in-
compressible fluid when there may be vorticity. They are

I. v-v=0,

II. @ =V X,
11l %‘;-’;—VX(QXU):O.

The physical content of these equations has been described in words by Helmholtz
in terms of three theorems. First, imagine that in the fluid we were to draw vortex
lines rather than streamlines. By vortex lines we mean field lines that have the
direction of Q and have a density in any region proportional to the magnitude of
Q. From II the divergence of Q is always zero (remember—Section 3-7—that the
divergence of a curl is always zero). So vortex lines are like lines of B—they never
start or stop, and will tend to go in closed loops. Now Helmholtz described 111

40-10



in words by the following statement: the vortex lines move with the fluid. This
means that if you were to mark the fluid particles along some vortex lines—by
coloring them with ink, for example—then as the fluud moves and carries those
particles along, they will always mark the new positions of the vortex lines. In
whatever way the atoms of the liquid move, the vortex lines move with them
That is one way to describe the laws.

It also suggests a method for solving any problems. Given the initial flow
pattern—say v everywhere—then you can calculate Q. From the v you can also
tell where the vortex lines are going to be a little later—they move with the speed
v. With the new © you can use I and 1I to find the new v. (That’s just like the
problem of finding B, given the currents.) If we are given the flow pattern at one
instant we can in principle calculate it for all subsequent times. We have the general
solution for nonviscous flow.

We would like to show how Helmholtz’s statement—and, therefore, III—can
be at least partly understood. It is really just the law of conservation of angular
momentum applied to the fluid. Suppose we imagine a small cylinder of the liquid
whose axis 1s parall’] to the vortex lines, as in Fig. 40-13(a). At some time later,
this same piece of fltlid will be somewhere else. Generally it will occupy a cylinder
with a different diameter and be in a different place. It may also have a different
orientation, say as in Fig, 40-13(b). If the diameter has changed, however, the
length will have increased to keep the volume constant (since we are assuming an
incompressible fluid). Also, since the vortex lines are stuck with the material,
their density will go up as the cross-sectional area goes down. The product of the
vorticity Q and area 4 of the cylinder will remain constant, so according to
Helmholtz, we should have

Qads = Q14 (40.21)

Now notice that with zero viscosity all the forces on the surface of the cy-
Iindrical volume (or any volume, for that matter) are perpendicular to the surface
The pressure forces can cause the volume to be moved from place to place, or
can cause it to change shape; but with no tangential forces the magnitude of the
angular momentum of the material inside cannot change. The angular momentum
of the liquid in the little cylinder is its moment of inertia / times the angular
velocity of the liquid, which 1s proporuional to the vorticity 2. For a cylinder, the
moment of mertia is proportional to mr2. So from the conservation of angular
momentum, we would conclude that

(M1RDQ1 = (M3R3)Q,.

But the mass is the same, M, = M,, and the areas are proportional to R2, so
we get again just Eq. (40.21). Helmholtz’s statement—which is equivalent to
I11—is just a consequence of the fact that in the absence of viscosity the angular
momentum of an element of the fluid cannot change.

A 0 )

Fig. 40-14.
tex ring.

There 1s a nice demonstration of a moving vortex which is made with the
simple apparatus of Fig 40-14. It is a “drum” two feet in diameter and two feet
long made by stretching a thick rubber sheet over the open end of a cylindrical
“box.” The “bottom”—the drum is tipped on its side—is solid except for a 3-inch
diameter hole. If you give a sharp blow on the rubber diaphragm with your hand,
a vortex ring is projected out of the hole. Although the vortex is invisible, you can
tell 1t’s there because it will blow out a candle 10 to 20 feet away. By the delay in
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Fig. 40-13. (a) A group of vortex

lines at t; (b} the same lines at a later
time t.

Making a travelling vor-
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the effect, you can tell that “something’ 1s travelling at a finile speed. You can
see better what 1s going on if you first blow some smoke nto the box. Then you
see the vortex as a beautiful round “smoke ring.”

The smoke ring 1s a torus-shaped bundle of vortex lines, as shown in Fig
40-15(a). Smce @ = ¥ X v, these vortex lines represent also a circulation of v
as shown in part (b) of the figure. We can understand the forward motion of the
ring 1 the following way: The circulating velocity around the bortom of the ring
extends up to the top of the ring, having there a forward motion. Since the lines
of £ move with the fluid, they also move ahead with the velocity v. (Of course,
the circulation of v around the top part of the ring 1s responsible for the forward
motion of the vortex lines at the bottom.

We must now mention a serious difficulty We have already noted that Eq.
(40 9) says that, if  is imually zero, it will always be zero. This result is a great
failure of the theory of “dry” water, because 1t means that once @ 1s zero 1t 1s
always zero—it 1s impossible to produce any vorticity under any circumstance.
Yet, in our simple demonstration with the drum, we can generate a vortex ring
starting with air which was imtially at rest. (Certamnly, v = 0, = 0 everywhere
n the box before we hit it.) Also, we all know that we can start some vorticity n a
lake with a paddle. Clearly, we must go to a theory of “wet” water to get « complete
understanding of the behavior of a flud.

Another feature of the dry water theory which 1s incorrect 1s the supposition
we make regarding the flow at the boundary between i1t and the surface of a sohd.
When we discussed the flow past a cylinder——as in Fig. 40-11, for example—we
permitted the fluid to siide along the surface of the solid. In our theory, the
velocity at a solid surface could have any value depending on how 1t got started.
and we did not consider any “friction” between the fluid and the sohd. It is an
experimental fact, however, that the velocity of a real flurd always goes to zero at
the surface of a solid object. Therefore, our solution for the cylinder, with or
without circulation, is wrong—as 1s our result regarding the generation of vorticity.
We will tell you about the more correct theories in the next chapter.
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