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Preface

Julian Schwinger was already the world’s leading nuclear theorist when he
joined the Radiation Laboratory at MIT in 1943, at the ripe age of 25. Just
2 years earlier he had joined the faculty at Purdue, after a postdoc with
Oppenheimer in Berkeley, and graduate study at Columbia. An early semester
at Wisconsin had confirmed his penchant to work at night, so as not to have
to interact with Breit and Wigner there. He was to perfect his iconoclastic
habits in his more than 2 years at the Rad Lab.!

Despite its deliberately misleading name, the Rad Lab was not involved
in nuclear physics, which was imagined then by the educated public as a
esoteric science without possible military application. Rather, the subject at
hand was the perfection of radar, the beaming and reflection of microwaves
which had already saved Britain from the German onslaught. Here was a
technology which won the war, rather than one that prematurely ended it, at
a still incalculable cost. It was partly for that reason that Schwinger joined
this effort, rather than what might have appeared to be the more natural
project for his awesome talents, the development of nuclear weapons at Los
Alamos. He had got a bit of a taste of that at the “Metallurgical Laboratory”
in Chicago, and did not much like it. Perhaps more important for his decision
to go to and stay at MIT during the war was its less regimented and isolated
environment. He could come into the lab at night, when everyone else was
leaving, and leave in the morning, and security arrangements were minimal.

It was a fortunate decision. Schwinger accomplished a remarkable amount
in 2 years, so much so that when he left for Harvard after the war was over, he
brought an assistant along (Harold Levine) to help finish projects begun a mile
away in Cambridge. Not only did he bring the theory of microwave cavities
to a new level of perfection, but he found a way of expressing the results in a
way that the engineers who would actually build the devices could understand,
in terms of familiar circuit concepts of impedance and admittance. And he

! For a comprehensive treatment of Schwinger’s life and work, see [1]. Selections of
his writings appear in [2,3].
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laid the groundwork for subsequent developments in nuclear and theoretical
physics, including the perfection of variational methods and the effective range
formulation of scattering.

The biggest “impedance matching” problem was that of Schwinger’s hours,
orthogonal to those of nearly everyone else. Communication was achieved by
leaving notes on Schwinger’s desk, remarkable solutions to which problems
often appearing the very next day.? But this was too unsystematic. A com-
promise was worked out whereby Schwinger would come in at 4:00 p.m., and
give a seminar on his work to the other members of the group. David Saxon,
then a graduate student, took it on himself to type up the lectures. At first,
Schwinger insisted on an infinite, nonconverging, series of corrections of these
notes, but upon Uhlenbeck’s insistence, he began to behave in a timely man-
ner. Eventually, a small portion of these notes appeared as a slim volume
entitled Discontinuities in Waveguides [5)].

As the war wound down, Schwinger, like the other physicists, started think-
ing about applications of the newly developed technology to nuclear physics
research. Thus Schwinger realized that microwaves could be used to accelerate
charged particles, and invented what was dubbed the microtron. (Veksler is
usually credited as author of the idea.) Everyone by then had realized that the
cyclotron had been pushed to its limits by Lawrence, and schemes for circular
accelerators, the betatron (for accelerating electrons by a changing magnetic
field) and the synchrotron (in which microwave cavities accelerate electrons or
protons, guided in a circular path by magnetic fields) were conceived by many
people. There was the issue of whether electromagnetic radiation by such de-
vices would provide a limit to the maximum energy to which an electron could
be accelerated — Was the radiation coherent or not? Schwinger settled the is-
sue, although it took years before his papers were properly published. His
classical relativistic treatment of self-action was important for his later devel-
opment of quantum electrodynamics. He gave a famous set of lectures on both
accelerators and the concomitant radiation, as well as on waveguides, at Los
Alamos on a visit there in 1945, where he and Feynman first met. Feynman,
who was of the same age as Schwinger, was somewhat intimidated, because
he felt that Schwinger had already accomplished so much more than he had.

The lab was supposed to publish a comprehensive series of volumes on the
work accomplished during its existence, and Schwinger’s closest collaborator
and friend at the lab, Nathan Marcuvitz, was to be the editor of the Waveguide

2 A noteworthy example of this was supplied by Mark Kac [4]. He had a query
about a difficult evaluation of integrals of Bessel functions left on Schwinger’s
desk. Schwinger supplied a 40-page solution the following morning, which, unfor-
tunately, did not agree with a limit known by Kac. Schwinger insisted he could
not possibly have made an error, but after Kac had taught himself enough about
Bessel functions he found the mistake: Schwinger had interpreted an indefinite
integral in Watson’s Treatise on the Theory of Bessel Functions as a definite one.
Schwinger thereafter never lifted a formula from a book, but derived everything
on the spot from first principles, a characteristic of his lectures throughout his
career.
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Handbook [6]. Marcuvitz kept insisting that Schwinger write up his work as
The Theory of Wave Guides, which would complement Marcuvitz’ practical
handbook. Schwinger did labor mightily on the project for a time, and com-
pleted more than two long chapters before abandoning the enterprise. When
he joined Harvard in February 1946, he taught a course on electromagnetic
waves and waveguides at least twice. But the emerging problems of quantum
electrodynamics caught his attention, and he never returned to classical elec-
trodynamics while at Harvard. He did often recount how his experience with
understanding radiation theory from his solution of synchrotron radiation led
almost directly to his solution of quantum electrodynamics in terms of renor-
malization theory. In this, he had an advantage over Feynman, who insisted
until quite late that vacuum polarization was not real, while Schwinger had
demonstrated its reality already in 1939 in Berkeley [7].

It was not until some years after Schwinger moved to UCLA in 1971 that he
seriously returned to classical electrodynamics.? It was probably my father-
in-law Alfredo Bafios Jr., who had been a part of the theory group at the
Rad Lab, who in his capacity as Vice-Chairman of the Physics Department
at the time suggested that Schwinger teach such a graduate course. I was
Schwinger’s postdoc then, and, with my colleagues, suggested that he turn
those inspiring lectures into a book. The completion of that project took
more than 20 years [9], and was only brought to fruition because of the efforts
of the present author. In the meantime, Schwinger had undertaken a massive
revision, on his own, on what was a completed, accepted manuscript, only to
leave it unfinished in the mid-1980s.

These two instances of uncompleted book manuscripts are part of a larger
pattern. In the early 1950s, he started to write a textbook on quantum me-
chanics/quantum field theory, part of which formed the basis for his famous
lectures at Les Houches in 1955. The latter appeared in part only in 1970,
as Quantum Kinematics and Dynamics [10], and only because Robert Kohler
urged him to publish the notes and assisted in the process. Presumably this
was envisaged at one time as part of a book on quantum field theory he had
promised Addison-Wesley in 1955. At around the same time he agreed to write
a long article on the “Quantum Theory of Wave Fields” for the Handbuch der
Physik, but as Roy Glauber once told me, the real part of this volume was
written by Kéllén, the imaginary part by Schwinger.

When he felt he really needed to set the record straight, Schwinger was
able to complete a book project. He edited, with an introductory essay, a
collection of papers called Quantum FElectrodynamics [11] in 1956; and more
substantially, when he had completed the initial development of source theory
in the late 1960s, began writing what is now the three volumes of Particles,
Sources, and Fields [12], because he felt that was the only way to spread his
new gospel. But, in general, his excessive perfectionism may have rendered it

3 That move to the West Coast also resulted in his first teaching of undergraduate
courses since his first faculty job at Purdue. The resulting quantum lectures have
been recently published by Springer [8].
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nearly impossible to complete a textbook or monograph. This I have elsewhere
termed tragic [1], because his lectures on a variety of topics have inspired
generations of students, many of whom went on to become leaders in many
fields. His reach could have been even wider had he had a less demanding view
of what his written word should be like. But instead he typically polished and
repolished his written prose until it bore little of the apparently spontaneous
brilliance of his lectures (I say apparently, since his lectures were actually
fully rehearsed and committed to memory), and then he would abandon the
manuscript half-completed.

The current project was suggested by my editors, Alex Chao from SLAC
and Chris Caron of Springer, although they had been anticipated a bit by
the heroic effort of Miguel Furman at LBL who transcribed Schwinger’s first
fading synchrotron radiation manuscript into a form fit for publication in [2].
In spite of the antiquity of the material, they, and I, felt that there was much
here that is still fresh and relevant. Since I had already made good use of the
UCLA archives, it was easy to extract some more information from that rich
source (28 boxes worth) of Schwinger material. I profusely thank Charlotte
Brown, Curator of Special Collections, University Research Library, Univer-
sity of California at Los Angeles, for her invaluable help. The files from the Rad
Lab now reside at the NE branch of the National Archives (NARA-Northeast
Region), and I thank Joan Gearin, Archivist, for her help there. I thank the
original publishers of the papers included in this volume, John Wiley and
Sons, the American Physical Society, the American Institute of Physics, and
Elsevier Science Publishers, for granting permission to reprint Schwinger’s pa-
pers here. Special thanks go to the editor of Annals of Physics, Frank Wilczek,
and the Senior Editorial Assistant for that journal, Eve Sullivan, for extraor-
dinary assistance in making republication of the papers originally published
there possible.* Throughout this project I have benefited from enthusiastic
support from Schwinger’s widow, Clarice. Most of all, I thank my wife, Mar-
garita Banos-Milton, for her infinite patience as I continue to take on more
projects than seems humanly achievable.

A brief remark about the assembly of this volume is called for. As indicated
above, the heart of the present volume consists of those clearly typed and
edited pages that were to make up the Rad Lab book. These manuscript
pages were dated in the Winter 1945 and Spring 1946, before Schwinger left
for Harvard. The bulk of Chaps. 6, 7, and 10 arise from this source. Some
missing fragments were rescued from portions of hand-written manuscript.
Chapter 8 seems to have lived through the years as a separate typescript
entitled “Waveguides with Simple Cross Sections.” Chapter 1 is based on
another typed manuscript which may have been a somewhat later attempt to
complete this book project. Chapter 15 is obviously based on “Radiation by
Electrons in a Betatron,” which is reprinted in Part II of this volume.® Most

45 Refers to the hardcover edition which includes in addition the reprints of seminal
papers by J. Schwinger on these topics.
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of Chap. 11 is an extension of Chap. 25 of [9], the typescript of which was
not discovered by me when I was writing that book. Chapters 2 and 12 were
manuscripts intended for that same book. Other chapters are more or less
based on various fragmentary materials, sometimes hard to decipher, found
in the UCLA and Boston archives. For example, Chap. 16 is based on lectures
Schwinger gave at the Rad Lab in Spring 1945, while the first part of Chap. 17
was a contract report submitted to the US Army Signal Corps in 1956. The
many problems are based on those given many years later by Schwinger in
his UCLA course in the early 1980s, as well as problems I have given in my
recent courses at the University of Oklahoma. I have made every effort to put
this material together as seamlessly as possible, but there is necessarily an
unevenness to the level, a variation, to quote the Reader’s Guide to [9], that
“seems entirely appropriate.” I hope the reader, be he student or experienced
researcher, will find much of value in this volume.

Besides the subject matter, electromagnetic radiation theory, the reader
will discover a second underlying theme, which formed the foundation of
nearly all of Schwinger’s work. That is the centrality of variational or ac-
tion principles. We will see them in the first chapter, where they are used
to derive conservation laws; in Chap. 4, where variational principles for har-
monically varying Maxwell fields in media are deduced; in Chap. 10, where
variational methods are used as an efficient calculational device for eigenval-
ues; in Chap. 16, where a variational principle is employed to calculate dif-
fraction; and in the last chapter, where Schwinger’s famous quantum action
principle plays a central role in estimating quantum corrections. Indeed the
entire enterprise is informed by the conceit that the proper formulation of any
physical problem is in terms of a differential variational principle, and that
such principles are not merely devices for determining equations of motion
and symmetry principles, but they may be used directly as the most efficient
calculational tool, because they automatically minimize errors.

I have, of course, tried to adopt uniform notations as much as possible,
and adopt a consistent system of units. It is, as the recent example of the
3rd edition of David Jackson’s FElectrodynamics [13] demonstrates, impossible
not to be somewhat schizophrenic about electrodynamics units. In the end,
I decided to follow the path Schwinger followed in the first chapter which
follows: For the microscopic theory, I use rationalized Heaviside—Lorentz units,
which has the virtue that, for example, the electric and magnetic fields have
the same units, and 47 does not appear in Maxwell’s equations. However, when
discussion is directed at practical devices, rationalized SI units are adopted.
An Appendix concludes the text explaining the different systems, and how to
convert easily from one to another.

St. Louis, Missouri, USA Kimball A. Milton
February 2006
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1

Maxwell’s Equations

1.1 Microscopic Electrodynamics

Electromagnetic phenomena involving matter in bulk are approximately de-
scribed by the Maxwell field equations, in SI units,*

VXH:%D—i—J, V-D=p, (1.1a)
VXE:—%B, V-B=0, (1.1b)

together with constitutive equations of the medium which in their most com-
mon form are
D=¢ckE, B=uH, J=0E. (1.2)

This theory takes no cognizance of the atomic structure of matter, but rather
regards matter as a continuous medium that is completely characterized by the
three constants €, u, and o. Here € is the electric permittivity (or “dielectric
constant”), p is the magnetic permeability, and o is the electric conductivity.
The dependence of these material parameters on the nature of the substance,
density, temperature, oscillation frequency, and so forth, is to be determined
empirically. Opposed to this point of view, which we shall call macroscopic,
is that initiated by Lorentz as an attempt to predict the properties of gross
matter from the postulated behavior of atomic constituents. It is the twofold
purpose of such a theory to deduce the Maxwell equations as an approximate
consequence of more fundamental microscopic field equations and to relate
the macroscopic parameters €, p, and o to atomic properties. Although the
macroscopic theory forms an entirely adequate basis for our work in this
monograph, the qualitative information given by simple atomic models is of
such value that we begin with an account of the microscopic theory.

! See the Appendix for a discussion of the different unit systems still commonly
employed for electromagnetic phenomena.



2 1 Maxwell’s Equations
1.1.1 Microscopic Charges

That attribute of matter which interacts with an electromagnetic field is elec-
tric charge. Charge is described by two quantities, the charge density p(r,t)
and the current density j(r, ). The charge density is defined by the statement
that the total charge @, within an arbitrary volume V at the time ¢, is rep-
resented by the volume integral [(dr) = dzdydz is the element of volume]

Q= /V (dr) pl(r. 1) (1.3)

Of particular interest is the point charge distribution which is such that the
total charge in any region including a fixed point R is equal to a constant
¢, independent of the size of the region, while the total charge in any region
that does not include the point R vanishes. The charge density of the point
distribution will be written

p(r) =qdé(r—R), (1.4)
with the § function defined by the statements
1, RwithinV |
/V(dr) or—R) = {0 , RnotwithinV . (1.5)

It is a consequence of this definition that the J function vanishes at every point
save R, and must there be sufficiently infinite to make its volume integral
unity. No such function exists, of course, but it can be approximated with
arbitrary precision. We need only consider, for example, the discontinuous
function defined by

0, |r—R|>e¢,
S(r—R) = { L r-R|<e, (1.6)
3

in the limit as ¢ — 0. Other possible representations are

1 €

or—R)=lim o R o (1.7a)
: 1 —7|lr—R|?/e?

o(r —R) = lim e r—RI%/e (1.7b)

We shall not hesitate to treat the § function as an ordinary, differentiable
function.

The elementary constituents of matter, which for our purposes may be
considered to be electrons and atomic nuclei, can ordinarily be treated as point
charges, for their linear dimensions (~ 10713 cm) are negligible in comparison
with atomic distances (~ 1078 ¢cm). The charge density of a number of point
charges with charges ¢, located at the points r,, a =1,...,n, is
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p(l‘) = ana(r - ra) . (18)

If the charges are in motion, the charge density will vary in time in consequence
of the time dependence of r,(t). The time derivative, for fixed r, is

gt anva V. d(r—r,) = anva Ved(r—r,), (1.9)
a=1 a=1
or "
E,O(r,t) + V- ZQava(S(r —1,) =0, (1.10)
a=1

where v, = dt r, is the velocity of the ath point charge.
Charge in motion constitutes a current. The current density or charge flux
vector j(r,t) is defined by the equation

I= /SdSn~j(r,t) , (1.11)

where I dt is the net charge crossing an arbitrary surface S in the time interval
dt. Positive charge crossing the surface in the direction of the normal n, or
negative charge moving in the opposite direction, make a positive contribution
to the total current I, while charges with the reversed motion from these are
assigned negative weight factors in computing I. The total charge leaving an
arbitrary region bounded by the closed surface S, in the time interval dt, is

dQ:dt]{dSn-j(r,t), (1.12)
S

where n is the outward-drawn normal to the surface S. The fundamental
property of charge, indeed its defining characteristic, is indestructibility. Thus
the net amount of charge that flows across the surface S bounding V must
equal the loss of charge within the volume. Hence

. _ . 0
f{gdSn-‘](r,t):/V(dr)V-.](r,t)— ﬁt/(dr) p(r,t), (1.13)

in which we have also employed the divergence theorem relating surface and
volume integrals. Since the statement must be valid for an arbitrary volume,
we obtain as the conservation equation of electric charge

V. j(r,t)+ —p(r,t) =0. (1.14)

ot

It will be noted that an equation of precisely this form has been obtained for
an assembly of point charges in (1.10), with
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)= qaVad(r —rq) . (1.15)

Thus, for a single point charge,
j=opv. (1.16)

The elementary charged constituents of matter possess inertia. Associated
with charges in motion, therefore, are the mechanical properties of kinetic
energy, linear momentum, and angular momentum. The definitions of these

quantities for a system of n particles with masses m,, a = 1,...,n, are,
respectively,
"1
E=>)" §mav§ : (1.17a)
a=1
n
p= Zmava , (1.17b)
a=1
n
L= Zmara X Vg , (1.17¢)

provided all particle velocities are small in comparison with ¢, the velocity of
light in vacuo. The more rigorous relativistic expressions are

fnmcz S a
Efz o (\/W 1), (1.18a)

p= Z \/T/c? (1.18b)
- m
L= — __r,xvVv,, (1.18¢)
= 1-vZ/c?

but this refinement is rarely required in studies of atomic structure.

1.1.2 The Field Equations

The electromagnetic field is described by two vectors, the electric field in-
tensity (or electric field strength) e(r,t) and the magnetic field intensity
(or magnetic induction) b(r,t). [In this chapter, for pedagogical purposes, we
will use lowercase letters to denote the microscopic fields, for which we will
use (rationalized) Heaviside-Lorentz units. See the Appendix.] The equations
defining these vectors in relation to each other and to the charge—current
distribution are postulated to be
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10 1.
be—gae—FEJ, V~e—p, (119&)
Vxes 125 w.b—o (1.19D)
- cot - '

which are known variously as the microscopic field equations, or the Maxwell—
Lorentz equations. Correspondence is established with the physical world by
the further postulate that an electromagnetic field possesses the mechanical
attributes of energy and momentum. These quantities are considered to be
spatially distributed in the field, and it is therefore necessary to introduce
not only measures of density, analogous to the charge density, but in addition
measures of flux, analogous to the current density. We define

e cnergy density:

2 b2
U="¢ ;r : (1.20a)
e energy flux vector or the Poynting vector:
S=cexb, (1.20b)
e linear momentum density:
1
G=-exb, (1.20¢)
c
e linear momentum flux dyadic or the stress dyadic:
2 b2
711" e _bb, (1.20d)

The symbol 1 indicates the unit dyadic. The basis for these definitions are
certain differential identities, valid in the absence of charge and current, which
have the form of conservation equations, analogous to that for electric charge.
It may be directly verified that (p =0, j = 0)

0 0
U +V:8=0, —SG+V.T=0, (1.21)

on employing the identities
V- (AxB)=(VxA)-B-(VxB)-A, (1.22a)
(V><A)><A:—Ax(VxA):(A-V)A—V%AZ. (1.22b)
The total energy,
E = /(dr)U, (1.23)

and the total linear momentum,
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p= /(dr) G, (1.24)

of an electromagnetic field confined to a finite region of space, are constant in
time, for no energy or momentum flows through a surface enclosing the entire
field. Energy and momentum, like charge, are recognized by the property of
permanence.

The relation between the energy and momentum quantities expressed by

S =c*G (1.25)

is a consequence of, or at least is consistent with, the relativistic connection
between energy and mass,
E=mc. (1.26)

This may be seen from the remark that the momentum density can also be
considered a mass flux vector, or alternatively, by the following considera-
tions. On multiplying the energy conservation equation in (1.21) by r and
rearranging terms, we obtain

%rU—!—V-(Sr) =S =G, (1.27)

which, on integration over a volume enclosing the entire field, yields

d U FEFdJdR F
—— d _— = —_— - = — 1.2
P=q ( r)][‘CQ c2dt e’ (1.28)
where )
R = 5 /(dr)rU (1.29)

is the energy center of gravity of the field, which moves with velocity V =
dR/dt. Here we have the conventional relation between momentum and ve-
locity, with E/c? playing the role of the total mass of the electromagnetic
field.

The velocity of the energy center of gravity, V, which we shall term the
group velocity of the field, is necessarily less in magnitude than the velocity
of light. This is a result of the identity

(exlﬂQ::(62;lﬂ>2——(62;b2)2—(e~by, (1.30)

and the consequent inequality

€2 + b?
2 b

le x b| < (1.31)

for from (1.24)
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1 FE
<2 [nlexb <=, (1.32)

and therefore
V| <ec. (1.33)

Equality of |V| with ¢ is obtained only when e-b = 0, ¢ = b% and e x b
has the same direction everywhere. That is, the electric and magnetic field
intensities must be equal in magnitude, perpendicular to each other, and to a
fixed direction in space, as is the case for an ideal plane wave. More generally,
we call such a configuration a unidirectional light pulse, for which further
properties are given in Problem 1.34.

Another velocity associated with the field can be defined in terms of the
center of gravity of the momentum distribution. We proceed from the conser-
vation of momentum equation in (1.21) written, for manipulatory convenience,
in component form,

9 L0
=G T = 1 =1,2,3. 1.34
atGﬁ;axi =0, j=123 (1.34)

On multiplying this equation by x;, and summing with respect to the index
j, we obtain

0 0
aZa:iGiJFZ%(TU%) => T; =TT, (1.35)
i i,j v i

(which introduces the concept of the trace of the dyadic T, Tr T) or, returning
to vector notation,

B
50 GV (Tor)=U, (1.36)

for (note that we do not use the summation convention over repeated indices
here)
Ti=U~(+b7), TT=U. (1.37)

The relation (1.36) thus established between the energy density and momen-
tum quantities we shall call the virial theorem. On integration over the entire
region occupied by the field, we find
d

E:a (dr)r-G=W -p, (1.38)
which defines a velocity W, or at least its component parallel to p, which we
shall term the phase velocity of the field. Combining the two relations between
the total energy and momentum, (1.28) and (1.38), we obtain

W.-V=¢, (1.39)

which implies that the magnitude of the phase velocity is never less than the
speed of light.
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A further conservation theorem, which is to be identified as that for an-
gular momentum, can be deduced from the linear momentum conservation
theorem. Multiplying the jth component of (1.34) by z; and subtracting a
similar equation with ¢ and j interchanged, we obtain

0 0

a(.’l?lGj - .TjGi) = Z 871'k<Tkixj — Tiji) + Tz - Tji 5 (140)
k

However, the stress dyadic is symmetrical,

e’ +b?
Ty = 0ij—— —eiej — bibj = Tja (1.41)

and therefore (in vector notation)

%(MGHV.(—TH):O, (1.42)

which implies that the total angular momentum

L= /(dr)r x G (1.43)

of a field confined to a finite spatial volume is constant in time.
In the presence of electric charge, the energy and momentum of the elec-
tromagnetic field are no longer conserved. It is easily shown that

0

- .S =—_j. 1.44
6tU+V S j-e, (1.44a)
) 1,

implying that electromagnetic energy is destroyed at the rate of j - € per unit
volume, and that pe+ % j X b measures the rate of annihilation of linear elec-
tromagnetic momentum, per unit volume. In a region that includes only the
ath elementary charge, electromagnetic energy and momentum disappear at
a rate guv, - e(ry), and ¢ (e(ra) + %va X b(ra)), respectively. If the inde-
structibility of energy and momentum is to be preserved, these expressions
must equal the rate of increase of the energy and linear momentum of the ath
elementary charge,

d(ia = (qaVa - e(ru) 5 (145&)
dpa _ 1 B
T (e(ra) + 2 Va X b(ra)> =F,, (1.45b)

which determines the force, F,, exerted on the ath charge by the electromag-
netic field, in terms of the rate of change of mechanical momentum p, = m,v,.
The consistency of the definitions adopted for field energy and momentum is
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verified by the observation that the rate of increase of the energy of the ath
particle, in accord with mechanical principles, is equal to the rate at which
the force F, does work on the particle,

dE,
dt

=F, v,. (1.46)

In a similar fashion, the rate of loss of electromagnetic angular momentum
per unit volume r x (pe + % jx b), when integrated over a region enclosing
the ath charge, must equal the rate of increase of L,, the angular momentum
of the particle,

dL,
dt

= @alq X <e(ra) + lva X b(ra)> =r, xF,. (1.47)
Cc

The identification of electromagnetic angular momentum is confirmed by this
result, that the rate at which the angular momentum of the particle increases
equals the moment of the force acting on it. For a further discussion of the
local conservation of energy and momentum, see Problem 1.31.

1.2 Variational Principle

The equations of motion of the field and matter can be expressed in the
compact form of a variational principle or Hamilton’s principle. It is first con-
venient to introduce suitable coordinates for the field. These we shall choose
as the vector potential a and the scalar potential ¢, defined by

e=———a—-V¢, b=V xa, (1.48)

which ensures that the second set of field equations (1.19b) is satisfied identi-
cally. The potentials are not uniquely determined by these equations; rather,
the set of potentials

, , 10

a’=a— Vv, ¢—¢+Cat (1.49)
leads to the same field intensities as a and ¢, for arbitrary . Such a modifica-
tion of the potentials is referred to as a gauge transformation, and those quan-
tities which are unaltered by the transformation are called gauge invariant.
The absence of a precise definition for the potentials will cause no difficulty
provided that all physical quantities expressed in terms of the potentials are
required to be gauge invariant.

A mechanical system is completely characterized by a Lagrangian L, which
is such that f;l dt L is an extremal for the actual motion of the system, in com-
parison with all neighboring states with prescribed values of the coordinates
at times ty and tq,
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t1
6/ dtL=0. (1.50)
to

We consider a general Lagrangian for the system of fields and matter which
depends upon the positions and velocities of the particles, and the potentials
and field quantities descriptive of the field. From the standpoint of the field,
the Lagrangian is best regarded as the volume integral of a Lagrangian density
L. Thus, the effect of an arbitrary variation of the vector potential is expressed
by

oL oL 1o .
5aL—/(dr) <8a 5a+% V x da — cae-éa)

:/(dr) (‘;’;.5“(22-55) , (151)

in which we have introduced the variational derivatives,

oL oL oL

£7$+VX%’ (152&)
oL 10L

3 e’ (1.52b)

and discarded a surface integral by requiring that all variations vanish on the
spatial boundary of the region, as well as at the initial and terminal times ¢
and t1. In a similar fashion,

6¢L:/( ><a¢‘5¢ oc v5¢) /(dr)@&b, (1.53)

oL 0L oL

provided the time derivative of the scalar potential is absent in the Lagrangian.
These relations, (1.51) and (1.53), expressed in terms of variational deriva-
tives, are formally analogous to the variation of a Lagrangian associated with
a material particle’s coordinates,

with

OL oL d

5raL:ara~6ra+87va'&

dr, . (1.55)

Therefore, the condition expressing the stationary character of ftil dt L for
variations of r,, subject to the vanishing of all variations at the termini,

4oL I
dtov, Or,’

(1.56)

has a formally similar aspect for variations of a and ¢,
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0 6L L oL
&5—57 O—%. (1.57)

Hence, the field equations deduced from a variational principle are

&C 190L 0L oL oL

which are identical with the Maxwell-Lorentz equations (1.19a) if

e? — b2

L= 3

I
- po + da (1.59)

The Lagrangian thus consists of a part involving only the field quantities,

Lf:/(dr)e ;b : (1.60)

a part containing the coordinates of both field and matter,

Lfm=—/( )<¢—J a)z an( a—l a-a(ra)>, (1.61)

and a part involving only material quantities, which, as we shall verify, is for
nonrelativistic particles
1
Lm=>)_ imavg . (1.62)
a

(For the relativistic generalization, see Problem 1.32.) The Lagrangian form
of the ath particle’s equation of motion (1.56) is

% (mava + %a(ra)) —, <q§(ra) - %va : a(ra)) : (1.63)

where we see the appearance of the canonical momentum,

Ty = MgVg + q—aa(ra) ) (1.64)
c
However,
d 0 0
&a(ra,t) —Ea—l—vmVa—aa—va Xb+V(v,-a), (1.65)

for in computing the time derivative, the implicit dependence of the particle’s
position on the time cannot be ignored. It is thus confirmed that the Lorentz
force law (1.45b) holds,

d 1
amava =q. (e(ra) + Eva X b(ra)) . (1.66)
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1.3 Conservation Theorems

The various conservation laws, those of charge, energy, linear momentum, and
angular momentum, are consequences of the invariance of Hamilton’s principle
under certain transformations. These are, respectively, gauge transformations,
temporal displacements, spatial translations, and spatial rotations. A gauge
transformation (1.49) induces the variation

190

Se=6b=0, (1.67b)

whence
oL 100L 1d oL

from which we can infer from (1.59) that the local charge conservation equa-
tion,

oL 7] oL 0

. _ J— _— frd 3 —_ = 1.
v G&)+m< w) Vet gr=0, (1.69)

must be a consequence of the field equations, for f tt01 dt L is stationary with
respect to arbitrary independent variations of a and ¢.
The value of ftt)l dt L is in no way affected by an alteration of the time
origin,
t1—6ot ty
/ auuwwf/ At L(t) =0, (1.70)
to—0Jt to
where dt is an arbitrary constant. We may conceive of the time displacement as
a variation of the system’s coordinates which consists in replacing the actual
values at time ¢ by the actual values which the system will assume at time
t 4+ dt. The statement of invariance with respect to the origin of time now
reads

h B dL
/idezauuﬁy—anzaﬂ/ a4 (1.71)

to to dt

where §L is the consequence of the variations
da=06ta, Op=0tp, Org=0dtv,, (1.72a)
oL , oOL . oL oL oL

6L—5t [/(dr) (6aa+(5{1a+5¢¢) +za:(anl'va+m'va>] .
(1.72b)

In writing this expression for § L various surface integrals have been discarded.
This can no longer be justified by the statement that the variation vanishes at



1.3 Conservation Theorems 13

the surface of the integration region, for it is not possible to satisfy this condi-
tion with the limited type of variation that is being contemplated. Rather, it
is assumed for simplicity that the volume integration encompasses the entire
field. On rearranging the terms of § . and employing the Lagrangian equations
of motion (1.56) and (1.57), we obtain

d oL oL
5L:6t(1t</(dr)(5éa+za:émva> s (173)

from which it follows from (1.71) that

5L oL
E:/(dr)£~é+ZW~VG—L (1.74)

is independent of time. It is easily verified from (1.59) that F is the total
energy of the system,

2 2
1
E:/(dr)e -QFb +Z§mavg. (1.75)

The Lagrangian is unaltered by an arbitrary translation of the position
variable of integration, that is, if r is replaced by r 4 dr, with dr an arbitrary
constant vector. The region of integration must be suitably modified, of course,
but this need not be considered if the entire field is included, for the limits
of integration are then effectively infinite. Under this substitution, the matter
part of the Lagrangian, which corresponds to the Lagrange density £,,(r) =
L(r)0(r — ry), is replaced by L, (r 4+ dr) é(r + or — r,). Hence, viewed as
the variation

da=(or-V)a, d¢p=(r-V)p, or,=—Ir, (1.76)

the translation of the space coordinate system induces a variation of

6L:/(dr) [gi~(6r-V)a ZL (or- V)a —&-%(51’ V)0

—Z ara , (1.77)

which must be zero. As a consequence of the Lagrangian equations of motion
(1.56) and (1.57) and the relations

(or-V)a = -a)+b X dr, (1.78a)

v (2 ) _ (gg) L, 75

we obtain
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Therefore,

P = —/(dr) % X b+ Za: (nga - 1qaa(ra)>
- /(dr) %e Xb+> mava, (1.80)

the total linear momentum of the system, must be constant in time.
Similar considerations are applicable to a rotation of the coordinate sys-
tem. The infinitesimal rotation

r—-r+exr (1.81)
induces the variation (because a, like r,, is a vector)
da=(exr-V)a—exa, dp=(exr-V)p, or,=—-€exr,, (1.82)

which must leave the Lagrangian unaltered,

5L:/(dr){gf;.[(E.rxv)a—exa]—kg-[(e~r><V)é—e><é}

oL oL oL
+M(e-rxV)¢}—;e-raxara—;e-vaxava—0.
(1.83)

However, again using (1.78b),

6L:—% [—/(dr)rx (‘;s xb) +Za:ra X (aﬁ‘i—iqaa(ra))] ‘€,

in consequence of the identity
(eerxV)a—exa=V(e-rxa)+bx(exr), (1.85)

we conclude that

L= /(dr)r x (ie x b) +) mare X v, (1.86)

the total angular momentum is unchanged in time.
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1.4 Delta Function

Preparatory to determining the fields produced by given distributions of
charge and current, it is useful to consider some properties of the ¢ func-
tion, and in particular, its connections with the Fourier integral theorem. A
one-dimensional § function is defined by the statements

i N 1, 1> 0> 2,
/IO dz§(x){0, x1>29 >0, or 0>z > x0, (1.87)

that is, the integral vanishes unless the domain of integration includes the
origin, when the value assumed by the integral is unity. The function é(x —z’)
has corresponding properties relative to the point z’. Particular examples of
functions possessing these attributes in the limit are

1 €

o(x) = lg% ST (1.88a)
. 1 2,2
8(z) = lim e~ ™/ (1.88b)

e—0 €

An integral representation for §(z) can be constructed from the formulae

]. € ]- OO ikx —elk

sty op )  dkee Ikl (1.89a)
1 1 i

Lomestit _ L [ g gho-irir (1590)
€ 27

If we perform the limiting operation under the integral sign, either expression
yields
1 > ikx 1 >
o(x) dke™ = — dkcos kx . (1.90)
T Jo

:g .

The three-dimensional ¢ function already introduced, (1.5), is correctly
represented by
o(r) = 6(2)d(y)(2) , (1.91)

for 0(r) certainly vanishes unless z, y, and z are simultaneously zero, and the
integral over any volume enclosing the origin is unity. More generally,

Sr—r')=06(z—2)o(y—y)d(z—2"). (1.92)

The representation for (r), obtained by multiplying individual integrals (1.90)
for the one-dimensional delta functions can be regarded as an integral ex-
tended over the entirety of the space associated with the vector k,

5(r) = @ / (dk) e (1.93)

The functional representations mentioned previously, (1.7a) and (1.7b), are
consequences of the formulae
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1 € 1 ik-r ,—ek

e = @n)? /(dk)e e ", (1.94a)
1 . 1 ;
o = @) / (dk) elkremF/am (1.94b)

An arbitrary function of a coordinate x can be represented by a linear
superposition of § functions,

o0

) = / ' 6(z — ) f(2') | (1.95)

— 00

for the entire contribution to the integral comes from the point 2’ = z. On
employing the integral representation (1.90) for é(x — '), we obtain

f@) = o /_m ket /_m da’ e (o) (1.96)

which states the possibility of constructing an arbitrary function from the
elementary periodic function e'** — the Fourier integral theorem. The corre-
sponding statements in three dimensions are

£ = (@) oe 1))
. ﬁ / (dk) el / (dr') e f(r) | (1.97)

while a function of space and time is represented by
f(r,t) = /(dr’) dt's(r —)o(t =) f(x', 1)

_ (21)4 /(dk) dw ei(k‘r—wt) /(dr/) dt e—i(k‘r/—wt/)f(r/’t/) )
™
(1.98)

Thus, an arbitrary function f(r,t) can be synthesized by a proper su-
perposition of the functions exp[i(k - r — wt)], which are the mathematical
descriptions of plane waves, harmonic disturbances propagating in the direc-
tion of the vector k, with a space periodicity length or wavelength A\ = 27/ k|,
and a time periodicity or period T = 27 /w.

1.5 Radiation Fields

The tre